RLENESAS

User Manual

DA1458x/DA1468x Production
Line Tool Libraries

UM-B-040

Abstract

This document describes the DA1458x/DA1468x Production Line Tool source code libraries. The
heart of the source code comes in the form of Windows Dynamic Link Libraries (DLLs). These DLLs

give the necessary APIs for validating and programming DA14580/1/2/3, DA14585/6, DA14680/1/2/3
and DA15100/1 Bluetooth® low energy devices in the factory production line.

o0 LENESAS

DA1458x/DA1468x Production Line Tool

Libraries

Contents
F N 05 1 = Tt A OO RT P PTPPRPPPP 1
O NS 2
o [0 =S PR PROTPPRPR 4
L= 101 LT PP PP PP P PPPPPPPPPRR 4
1 Terms and DefiNitiONSooii i s 5
2 REIEIBNCES oottt e et 6
I I 1 0L (oY 1U o (Yo o PP RRPRRPP 7
S T 10| £ o = o Lo L= PO P PP PPRPRRRPRI 12
o N (=TT o U] (S PP PP PP PP PTPPPPP 13
4.2 Building the Source Code for Windows 7/8/8.1/10c..eeeiiiiiiiiiiiiee e 15
4.3 DA14580/1/2/3/5/6 Required FirMWAIEccoiiiiiiiiiiiiiieaee e 17
43.1 Building the DA14580/1/2/3/5/6 FIrMWAIE..........ceeiiiiiiieiiiiiee i 18
4.4 DAL1468X REQUIrEd FIMMWAIE........uuvieiieeeiiiiiiieieeeeesisitiieee e e e e e s seatrae e e e e e e s s ssntnreeeeeeeseannrnnnees 20
44.1 Building the DA1468x Production Test Firmware...........cccveeviiieeeiiiieee i 21
4.4.2 Building the DA1468x Memory Programmer Firmware............ccccvveeeeeesescevvvnnnnn. 21
4.5 RUNNING the APPHCALIONScooiiiiiiiiii e 21
451 DA1458X _DALAB8X_CFG_PLT.EXE ..cocvivireeeeeeeeeieeeeeieeeseeeeeesssesesesesesesesesssesennn 23
452 DA1458X_DAL1468X_GUI_PLT.EXE ..eeiveiiieieririeiieeesieee e 24
453 DAL1458X_DAL4AB8BX_CLI_PLT.EXE .eeiiuiiiiiiieiiiieeitie ettt 25
ST 1 €T T I SRR 26
5.1 CFG_DLL API FUNCHONS.ottt 26
5.2 CFG_DLL AP DELAIISccueieiitiie ittt ettt st esnee s 32
SR D] 21 T B I T O PPV TP P UU PP 32
6.1 DBG_DLL AP FUNCHONSeiiiiiitiiiiiiiiiee ittt ettt e e e e e nnnee s 32
6.1.2 DBG_DLL Function INnput Parameters..........ccccvveeeeiiiiiiiieeee e cieiee e e e s 33
6.1.2.1 Function dbg_init INput ArgumentS...........cccoveviieee e 33
6.1.2.2 Function dbg_close Input ArgumentS...........ceevvveeeiniiene i 34
6.1.2.3 Function dbg_print Input ArgumMentsccueeeieeeiiiiniiiiieeeee e 35
6.2 DBG _DLL APl DELAIISciiieeiieiiieiieeie ettt e e e e e e e e e e e e e e aee s 35
2 O T | TSP 36
A% R O 1 Y o B U T o o =SSP 36
7.1.2 U_DLL Function INPUt ArQUMENTSeeiiiiiiiieeiiieee ettt 37
7.1.2.1 Function udll_set_prog_params Input Arguments.............ccceeeennnen. 38
7.1.2.2 Function udll_set_device_params Input Arguments 40
7.2 U_DLL STAtUS COUES ...oeiiiiiiiiiiitiiie ettt ettt ettt et e et e e e s b e e e s baeeeesnneeee s 42
7.3 U_DLL APIDEIAIIS ..ottt ettt s 44
7.4 U_DLL Operation EXamMPIEoueeiiiiiiiii ettt 44
S = I USSR 47
S 700 R = 0 I A U T o PO 47
8.1.2 P_DLL Function INPUt AFQUMENTScoiiiiiiiiiiieiaae et e e e e snebeeee s 48
8.1.2.1 Function pdll_set_device_params Input Argumentscc.ccue.e. 48
8.1.2.2 Function pdll_perform_test Input Argumentscccccvveeeeeeeiiinnns 54
8.2 P_DLL SHAUS COUES. ... eeeiiiiitiii ettt ettt e s e e e s et e e s annbe e e e e nneas 54
User Manual Revision 4.3 17-Jan-2022

CFR0012-00 2 of 99 © 2022 Renesas Electronics

UM-B-040
DA1458x/DA1468x Production Line Tool
Libraries
TR I B 1 Y o B T = 1 ST RS 56
8.4 P_DLL Operation EXamPIecc.uuviiiiieeiiecieie et e e 56
8.4.1 Simple RX-TX Operation EXampPle ... 56
8.4.2 Scan Operation EXAMPIE... ... 57
T =12 10] o I N7 = o Y T H o IR 59
9.1 PROD_LINE _TOOL DLL API FUNCLONS.....cctiiiiiiiiiiiiiiie e e ettt e e et e e e e sanrnaee s 59
9.1.2 Production Line Tool DLL Function Input ArgumMENtS..........ceevviviieeniiieeeniiieeeenane 62
9.1.2.1 Function pltd_set_device_params Input Argumentsc.....ceueee 62
9.1.2.2 Function pltd_set_general_params Input Arguments...................... 65
9.2 PROD_LINE_TOOL _DLL APIDELallScuvviiiiieeeiiiiiiiee et svree e 68
9.3 PROD_LINE_TOOL_DLL Example ProCeAUIES...........ccoeieiiiiiiiiiiieeee e iariieiee e 68
9.3.1 PROD_LINE_TOOL_DLL RF Test Procedureccccvveieeeieiciiiieeeee e seseiieeeeens 68
10 VOLT_METER _SCPI DLL .. s 71
10.1 VOLT_METER_SCPI API FUNCHONSutiiiiiiiiiiiiiieice ettt e e e st e e e e snrnrnnee e e e 71
10.2 VOLT _METER_SCPI APIDELaIlS.......c.uviiiiiieie ittt 72
11 VOLT METER DRIVER DLL.ccooiiiiiiiie ettt ettt et e e e e 73
11.1 VOLT_METER_DRIVER AP FUNCHONSciiiiiiiiiiiieiie e e cetteeee e e e ssieeeea e e e e s sninaneeeeee s 73
11.2 VOLT_METER_DRIVER API DELallS......occiiiiiiiiiiiiiiiiee ettt e 75
12 MT8852B and IQXEIM DLLSccoiiiiiiiiii ettt e e e e e e st e e e e e e e e s enbareeeeaaeeean 76
12.1 BLE TeSter API FUNCHONS......couiiiiiii ettt e e et e et e e e et e e e s et s e s e aaeeeeatans 76
12.2 MT8852B and IQXeIM API DELAIISuuviiieeeei it e e e e e e e e e e e 81
13 BLE_TESTER_DRIVER DLL ..o s 82
13.1 BLE_TESTER_DRIVER AP FUNCHONSccciiiiiiiiiiiiie ettt ettt e et e e e e 82
13.2 BLE_TESTER_DRIVER AP DEallS.......ocutiiieiiiiiiiiiiiiee e citieeee et ee s e e sninaeeee e e e 88
I I U X0 1 PSPPSR 89
14.1 NI_USB _TCOL APl FUNCLONSccciiiiiiiiiieiiee e e ettt e e e e st e e e e e e s st e e e e e e e s snnrnraeaeaeeeean 89
14.2 NI_USB_TCOL API DELAIISccuvviieeiiiiiee et ctte e sttt ste e sttt e e e satae e e e staee e s sntaeeessnraneeeanes 90
15 TMU_TEMP_SENS DLL ..utitiiiiiiiiiiiiiiie ettt ettt e et e e e e e e e et e e e e e e e e e sntnreeeeaaeaaan 91
15.1 TMU_TEMP_SENS APl FUNCLONScutiiiiiiiee i e e e st eee e e e e s snreaeeea e e e e s snnnsnnneeaeee e s 91
15.2 TMU_TEMP_SENS API DELaIlS........cccutiiiiiee ettt e et e e e e 91
16 TEMP_MEAS DRIVER DLL oiiiiiiitiiiiii ettt ettt s e ee e e e e e e s st e e e e e e e e snnnnrneeeaeeeean 92
16.1 TEMP_MEAS DRIVER API FUNCLONS.......ccciiitiiieiiiiiee et seee e stee e e staee e stree e s stanaasanes 92
16.2 TEMP_MEAS _DRIVER APIDELaIlScuviiiiieeiiiiiiiiiee ettt ea e 94
17 BARCODE_SCANNER DLL ..o s 95
17.1 BARCODE_SCANNER API FUNCLONScoiiiiiiiiiiiiiiiee ettt ettt e eeatnbe e e e 96
17.2 BARCODE_SCANNER API DELaAIlS......uuuiiiiieeeiiiiiiieiiiee e e ciiieeee e e e e s seieaeeen e e s e s snsnneeeeeeeeean 97
REVISION HISTOTY ...ttt h bt e e ekt e e e bt e e et e e e e b b e e e e e nbe e e e annreas 98
User Manual Revision 4.3 17-Jan-2022

CFR0012-00 3 0f 99 © 2022 Renesas Electronics

LENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool

Libraries

Figures

Figure 1: Production Line Tool BIOCK DIiagram............eeiieeiiiiiiiiieiiee e cciiieee e e e e s e siinre e e e e e e s e snnvnneeeeeae s 8
Figure 2: Production Line Tool Visual Studio 2015 Solution Explorer Projectsccccccoevecvvvveereeenn. 12
Figure 3: Visual Studio 2015 Release Configurationcccvueveeeeiiiiiiiieireee et e e seinreee e e e 15
Figure 4: Unload Visual Studio AmMMEter PrOJECESuuiviiiiieciiiiiiee et e e 16
Figure 5: Visual Studio Explorer Tab with Projects Unloaded..............ccccvvveviiiiiiiiiiiee e 17
Figure 6: Production Line TOOl REIEASE DIrECLONYcciieicuriiiiieeeesieiiiiieeeee e e ssseteieeeee e e e e snnnnneeeeeeeeen 21
Figure 7: DA1458x_DA1468x_CFG_PLT.exe GU COM Port Error MeSSagecevveeeeeiicvvveeenaaannn 23
Figure 8: DA1458x_DA1468x_CFG_PLT.exe Initial Screen with GU COM Port Errorccc........ 24
Figure 9: DA1458x_DA1468x_CFG_PLT.exe Initial SCreen........ccccoooiuiiiiiiiie e 24

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:

DA1458x_DA1468x_GUI_PLT.exe Initial SCreen.........ccccvcuuiiiiiaas 25
DA1458x_DA1468x_CLI_PLT.exe Initial SCreen..........ccccuuemiiiiiii e 25
DA1458x_DA1468x_CFG_PLT.exe with TWO GU RF TeStSccocoviiiiiiiieeriee e 29
AV 27 o1 a1)2 o] o 1= - 1o o PP 66
VBAT ON WIth RESEL ...ttt 67
VBAT 8S RESEL.....eeiiiiiiieii ittt s e s e e 67
volt_meter_driver.dll BIOCK DIaQIamccueeieiiuiiiaiiiiee ittt 73
ble_tester_driver.dll BIOCK DIiagramcooiiiiiiiiiiiiee et 82
temp_meas_driver.dll Usage BIOCK Diagram............coccuueieriiiiieniiiiee e 92

Tables

Table 1: Production Line Tool SOftware BIOCKSccuuiiiiiiiiiii e 9
Table 2: Production Line Tool - Visual Studio Project Groupingcceeruveeeeriieeeeniieeesiieee e 12
Table 3: Visual Studio ProjeCt DIF€CIOMESueiiiiieeiiieiieiie et e e e e e e e eeee e e e e e s neeee 13
Table 4: Production Line TOOI Prer@qUISILESccuuiiiiiiiiiiiieie ettt e e e e 13
Table 5: DA1458X ReqUIred FIFMWAIEooiuuiiiiiiiie ettt e e e e e e e e e e s eneeee 18
Table 6: DA14580/1/2/3 — Steps to Build the Production Test Firmware............cccccooviiiiiiiieieieneiiins 18
Table 7: DA14585/6 — Steps to Build the Production Test Firmware...........cccccvvvvveeeeiiiiiiieeeee e 19
Table 8: DA14580/1/2/3 — Steps to Build the Flash Programmer Firmwarecccooecvvveveeeeeeiennnns 19
Table 9: DA14585/6— Steps to Build the Flash Programmer Firmwareccccceeeeeiiviviveeeeeee s 20
Table 10: Description of BUild OULPUL FIlESoiveiiiiiiiiii et 22
Table 11: DAL1458X UART PINS SEIECHONuuiiiiiieii it e e e e e e e e e nnnene e e e e e e snnnenes 41
Table 12: rx_stats Callback Parametersuuiieieiiiiiiiiiiee e st e e s e e e e e e e snsnnrereeeeeeesnnnenes 51
Table 13: P_DLL Supported OPEratiONSueeiiiieeiiaiiiiiieeeaeeeeeeitieeeeeae e e eaenneteeeeeeeeesassnreeeeeaeeesaannnes 52
Table 14: pltd_set_general_params Function Parameters for RF TeSt.........ccccccviiiiiiiiiiiiee e 69
Table 15: pltd_set_device_params Function Parameters for RF TeSt..........ccccvoiiiiiiiiiinieee e 70
Table 16: Software Installations for volt_meter_Scpi.dll ..o 71
Table 17: Barcode Scanner Modes Of OPEerationc..ueeiiiieaiiiiiiiiiiie e 95
Table 18: Barcode Scanner COM Port SELHNGSccoiieiiiiiiiiee e e e sesre e e e s snrre e e e e e e e senaenes 96
User Manual Revision 4.3 17-Jan-2022

CFR0012-00 4 of 99 © 2022 Renesas Electronics

UM-B-040

RENESAS

DA1458x/DA1468x Production Line Tool

Libraries

1 Terms and Definitions

API Application Programming Interface

BD Bluetooth Device

.bin Firmware files in binary format

BLE Bluetooth low energy

CFG Configuration

CLI Command Line Interface

COM Communication port

CPLD Complex Programmable Logic Device

Ccsv Comma Separated Values

DLL Dynamic Link Library

DMA Direct Memory Access

DMM Digital Multi Meter

DTM Direct Test Mode (as specified by the BLE Core standard)
DUT Device Under Test

DVM Digital Voltage Meter

EEPROM Electrically Erasable Programmable Read-Only Memory
.exe Executable file

FTDI Future Technology Devices International Ltd.

GPIO General Purpose Input-Output

GU Golden Unit

GUI Graphical User Interface

Hex Firmware file in ASCII format

HW hardware

IC Integrated Circuit

IDE Integrated Development Environment

12C Inter-Integrated Circuit

JTAG Joint Test Action Group

(O] Operating System

OoTP One Time Programmable (memory)

PC Personal Computer

PLTD Production Line Tool DLL

RAM Random Access Memory

RCX Resistor Crystal Oscillator

RF Radio Frequency

RX Receive

SCPI Standard Commands for Programmable Instruments
SoC System on Chip

SDK Software Development Kit

SPI Serial Peripheral Interface

stdio Standard Input Output

SW Software

TX Transmit

UART Universal Asynchronous Receiver/Transmitter

Ul User Interface

User Manual Revision 4.3 17-Jan-2022
CFR0012-00 5 of 99 © 2022 Renesas Electronics

RENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

USB Universal Serial Bus

VISA Virtual Instrument Software Architecture
VPP Programming supply voltage (pin)

XML Extensible Markup Language

XTAL Crystal

XSD XML Schema Definition

2 References

[1]
(2]
[3]
[4]
[5]
[6]

[7]
(8]

9]
[10]

[11]
[12]

[13]
[14]
[15]

[16]
[17]

User

UM-B-041, Production Line Tool Hardware and GUI, User manual, Dialog Semiconductor.
UM-B-014, DA1458x Bluetooth Smart Development Kit — Expert, Dialog Semiconductor.
UM-B-010, DA14580 Proximity application, User manual, Dialog Semiconductor.
FT4232H — Hi-Speed Quad USB UART IC, FTDI Chip.

FT232 — USB UART IC, FTDI Chip

AN-B-020, DA14580 End product testing and programming guidelines, Application note, Dialog
Semiconductor.

Anritsu MT8852B, https://www.anritsu.com/en-US/test-measurement/products/mt8852b
Keysight 34401A, http://www.keysight.com/en/pd-1000001295%3Aepsg%3Apro-pn-
34401A/digital-multimeter-6-digit?cc=US&Ic=eng

Keithley 2000, http://www.tek.com/tektronix-and-keithley-digital-multimeter/keithley-2000-series-
69%C2%BD-digit-multimeter-scanning

Papouch TMU USB thermometer, https://www.papouch.com/en/shop/product/tmu-usb-
thermometer/

NI USB TC-01, http://sine.ni.com/nips/cds/view/p/lang/en/nid/208177

Honeywell Xenon 1900, https://www.honeywellaidc.com/products/barcode-scanners/general-
duty/xenon-1900g-1902g

Zebra/Motorola LS2208, https://www.zebra.com/us/en/products/scanners/general-purpose-
scanners/handheld/Is2208.html

UM-B-056, DA1468x Software Developer's Guide, User manual, Dialog Semiconductor.
Litepoint 1QXel-M, http://www.litepoint.com/test-solutions-for-manufacturing/igxel-m/
NI USB-6009 DAQ, http://sine.ni.com/nips/cds/view/p/lang/en/nid/201987

Keysight 34461A, http://www.keysight.com/en/pd-2270273-pn-34461A/digital-multimeter-6-digit-
34401a-replacement-truevolt-dmm?cc=GR&lc=eng

Manual Revision 4.3 17-Jan-2022

CFR0012-00 6 of 99 © 2022 Renesas Electronics

http://www.ftdichip.com/Products/ICs/FT4232H.htm
http://www.ftdichip.com/Products/ICs/FT232R.htm
http://www.tek.com/tektronix-and-keithley-digital-multimeter/keithley-2000-series-6%C2%BD-digit-multimeter-scanning
http://www.tek.com/tektronix-and-keithley-digital-multimeter/keithley-2000-series-6%C2%BD-digit-multimeter-scanning
https://www.papouch.com/en/shop/product/tmu-usb-thermometer/
https://www.papouch.com/en/shop/product/tmu-usb-thermometer/
http://sine.ni.com/nips/cds/view/p/lang/en/nid/208177
https://www.honeywellaidc.com/products/barcode-scanners/general-duty/xenon-1900g-1902g
https://www.honeywellaidc.com/products/barcode-scanners/general-duty/xenon-1900g-1902g
http://www.litepoint.com/test-solutions-for-manufacturing/iqxel-m/
http://sine.ni.com/nips/cds/view/p/lang/en/nid/201987
http://www.keysight.com/en/pd-2270273-pn-34461A/digital-multimeter-6-digit-34401a-replacement-truevolt-dmm?cc=GR&lc=eng
http://www.keysight.com/en/pd-2270273-pn-34461A/digital-multimeter-6-digit-34401a-replacement-truevolt-dmm?cc=GR&lc=eng

RENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

3 Introduction

The DA1458x/DA1468x Production Line Tool is a tool able to perform functional validation and
memory programming of Dialog Semiconductor Bluetooth® low energy devices, during factory
production. It supports devices that use DA14580, DA14581, DA14582, DA14583, DA14585,
DA14586, DA1468, DA14680, DA14682, DA14683, DA15100 and DA15101 SoCs (also referred to
as ‘DUT’ or simply ‘device’ in this document). The Production Line Tool (PLT) requires dedicated
hardware [1] to be operational.

This guide describes the software part of the DA1458x/DA1468x Production Line Tool included in the
DA1458x_DA14658x_PLT_v4.2 released package. Figure 1 shows the various components of the
Production Line Tool. The diagram is split into two parts: Production Line Tool Software (top, this
document) and Production Line Tool Hardware (bottom).

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 7 of 99 © 2022 Renesas Electronics

RENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

Production Line Tool Software

CFG, GUI or CLI barcode_scanner.dll

volt_meter_scpi.dll

ammeter_scpi.dll
Params.xml

volt_meter_driver.dll
ammeter_driver.dll

tmu_temp_sens.dll

temp_meas_driver.dll prod_line_tool_dll.dll

dbg_dil.dIl

ni_usb_tc01.dll

ble_tester_driver.dll

1QxelM.dlI mt8852b.dll p_dil.dll u_dll.dll

I User interface
[Instruments
I Core DLLs

USB Cable 2 USB Cable 1

FT4232 FT4232 FT4232 FT4232

Production Line Tool Hardware

DUT2 DUT3

Figure 1: Production Line Tool Block Diagram

The DA1458x/DA1468x Production Line Tool runs on a Windows 7/8/8.1/10 PC. It communicates
with the Production Line Tool hardware [1] through two USB cables. One of the USB cables is
directly connected to the Golden Unit (GU) through an FT232 IC [5]. The Golden Unit is a factory
validated and calibrated DA14580-QFN48 daughterboard device [2]. The other cable is connected,
via a USB hub, to four USB-to-UART interface ICs [4]. The UART interfaces are connected, through
the CPLD device, to the DUTSs.

The Production Line Tool software consists of the software blocks described in Table 1.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 8 of 99 © 2022 Renesas Electronics

UM-B-040

LENESAS

DA1458x/DA1468x Production Line Tool

Libraries

Table 1: Production Line Tool Software Blocks

Library

Purpose

Description

prod_line_tool_dll.dll

Main test state
machines

The prod line tool dll.dllis the top level dynamic link
library. It is the heart of the system. It implements basic state
machines using any of the DLLs surround it to download the
necessary firmware to the devices and run the desired tests. It
keeps detailed logging per device tested, as well as a
summary of the test results in a CSV formatted file.

u_dlidll

Memory
programming

The u_dll.dllis used to download firmware to the device’s
system RAM. It is also responsible for any other device’s
memory operation (write or erase SPI Flash, write EEPROM,
write QSPI or OTP, etc.).

p_dil.dll

Functional/Peripheral
tests

The p d11.d11is used to set the DUTs in the various
functional test modes, such as RF tests, XTAL trim calibration,
sensor tests and other. The same DLL is used to issue
specific commands to the Golden Unit (GU). With these
specific commands the GU is able to control the CPLD on the
Production Line Tool hardware [1]. Some of the CPLD
commands include the control of the DUT power supplies, the
UART connections, the XTAL trim calibration pulse
generation, and other.

dbg_dIl.dll

Debug prints

The dbg_dl1.d1lis a debug print DLL. It provides a simple
API in order to print various levels of messages to a specific
output (console or file). It is used by all the software blocks.
Therefore, every software block has its own debug information
configured and controlled separately. For example, the
p_dl1.d11 debug print can be enabled and have debug prints
send to the console. At the same time the u_d11.d11 debug
can be disabled and the prod line tool dl11.d11 debug print
can be enabled but show only the error prints to a file.

cfg_dil.dll

Configuration
parameters

The cfg_dll.dllis the configuration parameter DLL. It
provides a simple API to import, export and validate
configuration settings from or to an XML file (params.xml).
These parameters tell what tests will be performed (e.g. RF
Test, XTAL trim test) and which memories will be burned (e.g.
OTP, SPI or I2C EEPROM) They hold various other settings
needed for a complete DUT validation. Every single parameter
imported is validated using an XML schema file, provided
together with the tool (params.xsd). The XML schema file
(params. xsd) should not be modified in any way unless a new
configuration parameter is introduced.

ammeter_driver.dll

Current
measurements

The ammeter driver.dllis a DLL that provides a generic
interface to Digital Multi Meters (DMMs). It is used for
measuring the device current. It loads all ammeter instrument
DLLs found inside the ammeter instr plugins folder. Any
DLL placed inside this folder, the driver will load it and use it if
selected by the user. Ideally, any DMM could be loaded and
used by the driver, as long as it follows the specific driver API.

ammeter_scpi.dll

Current
measurements

This is an actual DMM current measurement DLL. On one
end, it follows the ammeter driver.dll API. On the other end
it communicates to SCPI based instruments to configure them
to the appropriate scaling and acquire current measurements.
Keysight 34401A [8], Keysight 34461A [17] and Keithley 2000
[9] have been tested to be compatible with this DLL.

ni6009.dll

Current
measurements

This is a DLL to interface to the NI-6009 USB DAQ [16]. It is
compatible to the ammeter driver.d11 APl and thus can be
used to take current measurements. However, external shunt

User Manual

Revision 4.3

17-Jan-2022

CFR0012-00

9 of 99 © 2022 Renesas Electronics

LENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

Library Purpose Description

resistor will be required. Due to the difficulty to change the
current measurement scaling, it is only recommended if idle
current measurements need to be taken and not sleep.

volt_meter_driver.dll

DA14680/1-00 ADC
calibration

The volt meter driver.dllis a DLL that provides a generic
APl interface to Digital Voltage Meters (DVMs). The driver can
load many different voltage meter instrument DLLs as long as
they follow a specific API. It is used to calibrate the ADC gain
offset in DA14681-00 (AD) silicon based devices. No other
device needs this type of calibration as the calibration is
performed during IC manufacturing.

volt_meter_scpi.dll

DA14680/1-00 ADC
calibration

The volt meter scpi.dll is the actual interface to the
voltage meter instrument. SCPI generic commands are used
to setup the instrument and take measurements. This
particular DLL has been tested with the Keysight 34401A [8]
and Keithley 2000 [9] instruments. Users could implement
their own voltage meter DLL and place it in a specific folder.
The volt meter driver.dll will load it and use it if selected.

ble_tester_driver.dll

RF Direct Test Mode
measurements

The ble tester driver.dllis a DLL that provides a generic
API to BLE tester instruments. Various BLE testers could
possibly be supported through this interface. Currently, the
Litepoint 1QXel-M [15] and the Anritsu MT8852B [7] are
supported and have been tested to be compatible to this
driver. However, one could implement any other instrument
DLL to be interfaced to this driver. The driver will load this
custom DLL, which could be used if selected in the CFG PLT
or in the parameter XML file.

IQxelM.dlI RF Direct Test Mode | The I0xelM.dl11 is a DLL that communicates with the Litepoint
measurements IQXel-M [15] BLE tester instrument. It is able to perform
standard Direct Test Mode BLE tests.
mt8852b.dll RF Direct Test Mode | The mt8852b.d11 is a DLL that communicates with the Anritsu

measurements

MT8852B [7] BLE tester instrument. It is able to perform
standard Direct Test Mode RF BLE tests.

temp_meas_driver.dll

Ambient temperature
measurements

The temp meas driver.dllis a driver DLL that can load and
use any temperature sensor DLL. The temperature
measurements are not currently used in a particular test. The
ambient temperature measurement is just saved in the log
files. However, by minor software changes it could be used to
calibrate sensors. Currently, the PLT supports two different
temperature sensors. These described next. The PLT users
can select any of these two DLLs to take temperature
measurements or implement a new instrument DLL and place
it in the appropriate folder. The PLT with the use of the driver
will load it and use it, if it is selected by the user.

tmu_temp_sens.dll

Ambient temperature
measurements

The tmu_temp sens.dllis a DLL that communicates with the
Papouch-TMU USB thermometer [10]. It reads the ambient
temperature, which is then passed to the

prod line tool dll.dll through the temp meas driver.dll.

ni_usb_tc01.dll Ambient temperature | The ni_usb tc01.d11lis a DLL able to communicate with the
measurements NI USB TCO1 thermocouple measurement device [11]. As
with the tmu temp sens.dll, the DLL reads the ambient
temperature, which is passed to the prod line tool dll.dll
through the temp meas driver.dll.
CFG Setup the The CFG is a graphical user interface (GUI) Windows
configuration application with its official build name to be
parameters DA1458x_DA1468x_CFG_PLT.exe. It mostly uses the
cfg dll.dl1to load and save PLT configuration parameters
User Manual Revision 4.3 17-Jan-2022
CFR0012-00 10 of 99 © 2022 Renesas Electronics

RENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool

Libraries

Library Purpose Description
in the params.xmnl file. It also uses the
prod line tool dll.dllto automatically fill some
configuration parameters, like the DUT and GU COM ports, or
the available instrument DLL names.

GUI The main test This is the test execution graphical user interface Windows

execution application | application with its official name to be

DA1458x_DA1468x_GUI_PLT.exe. It provides a user friendly
interface to start device testing, check results and logging.

CLI The main test This is the test execution command line interface Windows

execution CLI
application

application with its official name to be
DA1458x_DA1468x_CLI_PLT.exe. As with the GUI, one can
start device testing, check the results and perform various
other actions, like disable/enable devices, set device BD
addresses, etc.

barcode_scanner.dll

Scan BD addresses
and data to be
programmed to
memory

The barcode scanner.dllis used only by the GUI
application. It is used to interface a barcode scanner in order
to scan device BD addresses and data for memory
programming, prior to each test. The DLL has been tested
with the Honeywell Xenon 1900 and the Motorola LS2208
barcode scanners [12] [13]. However, it is expected that any
other barcode scanner with a USB to serial interface to be
compatible with this DLL.

User Manual

Revision 4.3 17-Jan-2022

CFR0012-00

11 of 99 © 2022 Renesas Electronics

RENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

4 Source Code

All the Production Line Tool source code is organized in a Microsoft Visual Studio 2015 Express
solution. The source code and the Visual Studio solution files can be found under the folder
source\production line toolinthe DA1458x DA1468x PLT v x.x released software package. To
open the Microsoft Visual Studio Express 2015 project, select the production line tool.sln file.

Twenty different projects are included in the Visual Studio 2015 production line tool.sln solution.
These are illustrated in Figure 2.

n PO0UCTon e oo - MICrosom Vivusl Samn [iprest

[Laa Ve Proywat buas Debuy Toae

o- gt R Relasse +

oty tien Erptorves «-3¥Ix
D DS FfR Op -

o SoABen preduckan e 100l 00 prageey
. ore_db
[frd,
N ST
b dng ot
PSS
b oS prod e tool 8
S um
- i urreeny
. anmetery
P I emereter dreer
» oIS et sop
y N oo
- Darcode_ i mvw
P oIS bennde scannm
‘ le testes

b Wl M tenter dove

» N Qe

P IS e
‘ tomp sormcny

P oS o uth it

P AN g e
P WISt temp sern
. vmeten,
P S oo meter_ e
b S volmeter acp
. 1
i t snmen
bl g g
b oS Gl
b GUN g

Figure 2: Production Line Tool Visual Studio 2015 Solution Explorer Projects

The projects are grouped into three main categories. These are illustrated in Table 2.

Table 2: Production Line Tool - Visual Studio Project Grouping

Project Group Description

core_dlls The core dl11s project folder contains the most important DLLs that are needed for
almost any type of test or memory programming. Without these, the application will not
be able to operate.

instruments The instruments project folder contains DLLs responsible to interface external
measurement instruments, like BLE testers, voltage meters, current meters, barcode
scanners and temperature measurement sensors. Some of these projects are optional
and can be unloaded prior of building the tool as they require external components
(like NI VISA) to be installed to the PC.

ul The UT project folder contains the three user interface projects.
® cfg gui. Builds the DA1458x_DA1468x_CFG_PLT.exe application.
® CLI plt. Builds the DA1458x_DA1468x_CLI_PLT.exe application.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 12 of 99 © 2022 Renesas Electronics

UM-B-040

LENESAS

DA1458x/DA1468x Production Line Tool

Libraries

Project Group

Description

® GUI plt. Builds the DA1458x_DA1468x_GUI_PLT.exe application.

The source code of each Visual Studio project can be found under the directories given in Table 3.

Table 3: Visual Studio Project Directories

Project Directory

cfg_dll source\production line tool\core dlls\cfg dll
dbg_dll source\production line tool\core dlls\dbg dll
p_dll source\production line tool\core dlls\p dll

prod_line_tool_dll

source\production line tool\core dlls\prod line tool dll

u_dll

source\production line tool\core dlls\u dll

barcode_scanner

source\production line tool\instruments\barcode scanner

ble_tester_driver

source\production line tool\instruments\ble testers\ble tester driver

IQxelM source\production line tool\instruments\ble testers\IQxelM
mt8852b source\production line tool\instruments\ble testers\mt8852b
ni_usb_tc01 source\production line tool\instruments\temp sensors\ni usb tc0l

temp_meas_driver

source\production line tool\instruments\temp sensors\temp meas driver

tmu_temp_sens

source\production line tool\instruments\temp sensors\tmu temp sens

ammeter_driver

source\production line tool\instruments\ammeters\ammeter driver

ammeter_scpi

source\production line tool\instruments\ammeters\ammeter scpi

ni6009

source\production line tool\instruments\ammeters\nic009

volt_meter_driver

source\production line tool\instruments\voltmeter\volt meter driver

volt_meter_scpi

source\production line tool\instruments\voltmeter\volt meter scpi

cfg_gui source\production line tool\UI\cfg GUI
CLI_plt source\production line tool\UI\CLI plt
GUI_plt source\production line tool\UI\GUI plt

4.1 Prerequisites

Before building and running the code the items indicated in Table 4 should be installed into the PC.
Some are optional and will only be required if particular tests are going to be performed.

Table 4: Production Line Tool Prerequisites

Item Optional | Description

Visual Studio 2015 Express No The IDE used to program and debug the Production Line Tool.

MSXML6 No Installed by default in PCs with Windows 7/8/8.1/10 OS.

.NET framework 4 No Needed for the graphical user interface applications.

Latest FTDI drivers No Tested with FTDI v2.12.24 and v2.12.26 drivers

Honeywell Xenon 1900 drivers Yes Used if a barcode scanner is going to be used for scanning the
device BD addresses and/or memory data.

Motorola LS2208 drivers Yes Used if a barcode scanner is going to be used for scanning the
device BD addresses and/or memory data.

NI-VISA 15.5 Yes Used for instrument control, like BLE tester and voltage meter.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 13 of 99 © 2022 Renesas Electronics

LENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool

Libraries

Item Optional | Description

NI-488.2 15.5 Yes Used for instrument control through the GPIB interface.

NI_DAQmx Yes Used for instrument control, like temperature measurements
using the NI USB TCO1 sensor.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 14 of 99 © 2022 Renesas Electronics

RENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

4.2 Building the Source Code for Windows 7/8/8.1/10

To build the solution (including all DLLs, the CFG, GUI and the CLI executables), one has to make
sure that the active Visual Studio 2015 configuration is set to the Release Configuration.

Before building the code, a simple configuration is needed, as follows:

1. Inthe Visual Studio 2015 Solution Explorer window, right-click on Solution ‘production_line_tool’.
2. Select Properties->Common Properties->Startup Project.

3. Open the Single start-up project dropdown menu.
4

Select either cfg gui, CLI plt orthe GUI plt and apply the change. The selection depends on
which application is going to start in the Visual Studio debug operation, after key F5 is pressed.

Alternatively, one could select ‘Multiple startup projects’ to start all or some of the executables.
Exit the solution options.
7. Inthe top toolbar make sure the Release build configuration is selected as shown in Figure 3.

o

Microsoft Visual Studic Express 2015 for Windows Desktop
. Build Debug Team Tools Test Window Help

-

Debug = Win32 -
Debug

i Release

B u_dl Configuration Manager.”.

Figure 3: Visual Studio 2015 Release Configuration
8. If current measurements are not required to be performed, then the instrument DLL projects

should better be unloaded as they will require NI-VISA to be built. Right click the ammeter scpi
and ni6009 projects and select ‘Unload Project’, as shown in Figure 4.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 15 of 99 © 2022 Renesas Electronics

UM-B-040

LENESAS

DA1458x/DA1468x Production Line Tool
Libraries

10.

11.

12.

n Frtate=_ime_tos - Moredt Vel Stusc Egresr M5 for Arrcows Deaezy
Fls iR Vesr Fapt Gt Dwteg Teex Tesh Tem Window
0-2 QWERP 7 - -] teng - wan
Sohzon Ligios

RS9 p-

0] Schsion peadecticn e Soof (3 propeces
- coee_ S

L=

o Oy S

a2 0

P

V% pod lee oo &

SR K

- L o i o]

Yywweww

3 X was_owe

»
’
A QU
»

Figure 4: Unload Visual Studio Ammeter Projects

If the device to be tested is not DA14680-00 (AD), then the ADC gain calibration is not required.
The volt meter scpi project used for this purpose should be unloaded, following the method
described above.

If BLE tester measurements are not required, then the I0xelM and the mt8852b projects should
also be unloaded. Otherwise they will require NI-VISA to be installed to be able to build them and
of course user should have the appropriate BLE tester instrument.

The same process should be applied for the ni usb tc01 and tmu_temp sens projects. If no
temperature measurement is required, then the instrument projects should be unloaded. Project
ni usb tc01 uses NI-VISA libraries and cannot be built unless the libraries are installed by the
user. TMU thermometer [10] can be used instead, which uses a simple USB-to-serial interface.
If all of the mentioned instruments are not required and were unloaded, then the Visual Studio
explorer instruments tab should look like the one in Figure 5.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 16 of 99 © 2022 Renesas Electronics

RENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

n peadurtan_kne_tcol - Mcmsft Vsl ‘Suda

Fle [de View Peogect Budd Debnug

e - Tt om « & ~| Oct

Sosticn laplomr

ARIRCES S R A

» core
+ Malraments
. a=meten
» 35 amemeter_drer
? o aremste_scp
» N 00

- Bercode_scanney
¥ 4% becede scanne
. ie terten
» S e teser diver
» SR
LI, S

¥ IS rocab e (usevmlatie)
? oIS temp_mess dever
? IRt temp_sens (unyeaiabie)
. veltmeten
? oI% voit_meter_dirver
> IS voit_meter scpe lunasadianlel
) u

Figure 5: Visual Studio Explorer Tab with Projects Unloaded

13. Select ‘Build->Build Solution’ or press F7.

All DLLs and application executables will be created in source\production line tool\Release
directory.

4.3 DA14580/1/2/3/5/6 Required Firmware

The DA1458x product family requires at least two pieces of firmware for the Production Line Tool to
be operational. The flash programmer XXX.bin firmware is used by the u d11.d11 to be able to
download the customer firmware to be written into the memories (OTP, SPI Flash or I2C EEPROM).
The flash programmer 580.bin firmware is used for DA14580, DA14581, DA14582 and DA14583
ICs, while the flash programmer 585.bin firmware is used for the DA14585 and DA14586 ICs.

The p dl1.d11 requires the prod test 580.bin (for DA14580 or DA14583 devices), the

prod test 581.bin (for DA14581 devices), the prod test 582.bin (for DA14582 devices) or the
prod test 585.bin firmware (for DA14585 and DA14586 devices) to perform the RF, XTAL trim
calibration, the audio, the scan and other tests. Customers will also need to use their own firmware to
be written in the SPI Flash, EEPROM or OTP memory.

The required firmware for the production tests used by the p d11.d11 and the required firmware for
memory programming used by the u d11.d11 can be found under the directory
\source\production line tool\UI\common\binaries.

To test the u_d11.d11 memory programming features, a proximity reporter firmware could be written
to the OTP, SPI Flash or the EEPROM. A proximity reporter firmware example

(prox reporter 580.bin and prox reporter 585.bin) is included and can be found under the
same directory.

Finally, the firmware for the Golden Unit (prod test GU.bin) is included under the directory
source\production line tool\UI\common\binaries\GU. This image should be updated in the
Golden Unit (GU) SPI Flash memory mounted in the Production Line Tool hardware [1].

Summarizing, the source\production line tool\UI\common\binaries directory should contain the
firmware files for DA1458x devices as indicated in Table 5.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 17 of 99 © 2022 Renesas Electronics

RENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

Table 5: DA1458x Required Firmware

Firmware Description

prod test 580.bin DA14580/583 firmware for RF, XTAL trim, sensor and scan test.

prod test 581.bin DA14581 firmware for RF test, XTAL trim, sensor and scan test.

prod test 582.bin DA14582 firmware for RF, XTAL trim, audio, sensor and scan test.

prod test 585.bin DA14585/586 firmware for RF, XTAL trim, audio, sensor and scan test.

flash programmer 580.bin Firmware used by DA14580/581/582/583 for memory programming.

flash programmer 585.bin Firmware used by DA14585/586 for memory programming.

prox_reporter 580.bin Example binary of a proximity reporter to test memory programming of
DA14580/581/582/583 devices.

prox_reporter 585.bin Example binary of a proximity reporter to test memory programming of
DA14585/586 devices.

When a Visual Studio ‘Release’ build is performed, the entire binaries folder is copied from the
source\production line tool\UI\common\binaries directory to the
source\production line tool\Release\binaries directory.

4.3.1 Building the DA14580/1/2/3/5/6 Firmware

If users need to add extra tests to expand the PLT functionality, then a specific build procedure
should be followed for the firmware (prod test 580.bin, prod test 581.bin, prod test 582.bin,
prod test 585.bin, flash programmer 580.bin and flash programmer 585.bin) to be used by
the PLT software. The steps required to build the firmware are analyzed in Table 6, Table 7, Table 8
and Table 9.

Table 6: DA14580/1/2/3 — Steps to Build the Production Test Firmware

Step | Description

1 Download SDK 5.0.4 from the Dialog BLE customer portal (DA1458x_SDK_5.0.4).

2 Go to source\production line tool\fw files\DUT PLT folder. Depending on the device IC used,
open the DA14580_581_583 or the DA14582 folder.

3 Copy the files taken from these folders to the equivalent SDK files downloaded at step 1.

4 Go to SDK 5.0.4 DA1458x SDK\5.0.4\projects\target apps\prod test\prod test\Keil 5 folder and
open the prod test.uvprojx project in Keil IDE.

5 Build the code by first selectlng the appropnate target.
EC\Users\eﬁlllpa\Docu : \580_s
File Edit View Project Flash Debug Peripherals

15 d @ 3 | | | ®
éﬁ :] | 3 ‘ lprod test_580 E
i prod test 580
i ® B0 test 581
=-“% Project: prod test prod_test 583

Users should select ‘prod test 580’ to build the production test firmware for DA14580, DA14582 and
DA14583 devices.

Users should select ‘prod test 581’ for DA14581 devices.

6 If code was built for DA14580 then copy

DA1458x SDK\5.0.4\projects\target apps\prod test\prod test\
Keil 5\out 580\prod test 580.binto

source\production line tool\UI\common\binaries\prod test 580.bin.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 18 of 99 © 2022 Renesas Electronics

UM-B-040

RENESAS

DA1458x/DA1468x Production Line Tool
Libraries

Step

Description

If code was built for DA14581 then copy
DA1458x SDK\5.0.4\projects\target apps\prod test\prod test\

Keil 5\out 581\prod test 581.binto
source\production line tool\UI\common\binaries\prod test 581.bin.

If code was built for DA14582 then copy

DA1458x SDK\5.0.4\projects\target apps\prod test\prod test\
Keil 5\out 580\prod test 580.binto

source\production line tool\UI\common\binaries\prod test 582.bin.

If code was built for DA14583 then copy

DA1458x SDK\5.0.4\projects\target apps\prod test\prod test\
Keil 5\out 580\prod test 580.binto

source\production line tool\UI\common\binaries\prod test 580.bin.

Table 7: DA14585/6 — Steps to Build the Production Test Firmware

Step | Description
1 Download SDK 6.0.4.326 from the Dialog BLE customer portal (DA14585_SDK_6.0.4.326).
2 Go to source\production line tool\fw files\DUT\DA14585 586 PLT folder.
3 Copy the files taken from this folder to the equivalent SDK files downloaded at step 1.
4 Go to SDK 6.0.4.326
DA14585 SDK 6.0.4.326 0\DA14585 SDK\6.0.4.326\projects\target apps\prod test\prod test\Keil
_5 folder and open the prod test.uvprojx project in Keil IDE.
5 Build the code by selecting the ‘prod test 585’ target.
LA C\Users\efill '
File Edit View Project Flash Debug Peripherals
=" N - | | B
S [@ @ (1| ¥ [prodtest 585 =
: F_ d test 585
i pd test 536 E
Users should select ‘prod test 585’ to build the production test firmware for DA14585 and DA14586
devices.
6 Copy DA1458x SDK\5.0.4\projects\target apps\prod test\prod test\

Keil 5\out 585\prod test 585.binto
source\production line tool\UI\common\binaries\prod test 585.bin.

This procedure is the same for DA14585 and DA14586 devices.

Table 8: DA14580/1/2/3 — Steps to Build the Flash Programmer Firmware

Step | Description
1 Download SDK 5.0.4 from the Dialog BLE customer portal (DA1458x_SDK_5.0.4).
2 Go to source\production line tool\fw files\DUT PLT folder. Depending on the device IC used,
open the DA14580_581_583 or the DA14582 folder.
3 Copy the files taken from these folders to the equivalent SDK files downloaded at step 1.
4 Go to SDK 5.0.4 DA1458x_SDK\5.0.4\DA1458x SDK\5.0.4\utilities\flash programmer folder and
open the programmer .uvprojx project in Keil IDE.
5 Build the code by selecting the ‘programmer uart’ target.
User Manual Revision 4.3 17-Jan-2022

CFR0012-00 19 of 99 © 2022 Renesas Electronics

RENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

Step | Description

ﬂ C:\Users\efillipa\Documents\WORK\BTLE\code\580_sdk,

File Edit View Project Flash Debug Peripherals
& 4@ s -2 | |

I & i 'fgl lprogrammer_uart El

= programmer_jtag
Projee

6 Copy DA1458x SDK\5.0.4\utilities\flash programmer\Out uart\flash programmer.binto
source\production line tool\UI\common\binaries\flash programmer 580.bin.

This procedure is the same for DA14580, DA14581, DA14582 and DA14583 devices.

Table 9: DA14585/6— Steps to Build the Flash Programmer Firmware

Step | Description

1 Download SDK 6.0.4.326 from the Dialog BLE customer portal (DA14585_SDK_6.0.4.326).

Go to source\production line tool\fw files\DUT\DA14585 586 PLT folder.

2
3 Copy the files taken from this folder to the equivalent SDK files downloaded at step 1.
4

Go to SDK 6.0.4.326 DA14585 SDK 6.0.4.326 0\DA14585 SDK\6.0.4.326\utilities\flash programmer
folder and open the programmer .uvprojx project in Keil IDE.

5 Build by selecting the ‘programmer uart’ target.
KA C:\Users\efillipa\Documents\WORK\BTLE\code\585_sdk'

File Edit View Project Flash Debug Peripherals

P IPET e

ety LOAD

S AR hai 53 | |programmer_uart El

programmer_jtag

programmer_uart

6 Copy DA14585 SDK 6.0.4.326 0\DA14585 SDK\6.0.4.326\utilities\flash programmer\Out uart to
source\production line tool\UI\common\binaries\flash programmer 585.bin.

This procedure is the same for DA14585 and DA14586 devices.

4.4 DA1468x Required Firmware

Similar to the DA1458x product family, the DA1468x and DA1510x chipsets also requires two pieces
of firmware. One is the uartboot XXX.bin, which is used by the u_d11.d11 to burn the QSPI and the
OTP memories. In addition, the p_d11.d11 requires the prod test 681 00.bin for DA14681-00
(AD) or DA14680-00 (AD) devices, the prod test 681 01.bin for DA14681-01 (AE) or DA14680-01
(AE) devices and the prod test 683 00.binfor DA14683-00 (BB), DA14682-00 (BB), DA15100-00
(BB) and DA15101-00 (BB). These are needed to perform XTAL trim calibration, RF tests and other
tests.

The firmware files can be found under the source\production line tool\UI\common\binaries
directory.

To test the u d11.d11 memory programming feature, a proximity reporter firmware could be written
to the QSPI Flash memory. A proximity reporter firmware example

(pxp_reporter 681 0l.bin.cached, pxp reporter 681 00.bin.cached and

pxp reporter 683 00.bin.cached) is included and can be found under
source\production line tool\UI\common\binaries directory. The .cached format is created using
the bin2image.exe application on a firmware binary. It is a special bootable format for
DA1468x/DA1510x devices. The bin2image.exe application can be found under the
source\production line tool\UI\common\binaries directory.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 20 of 99 © 2022 Renesas Electronics

o0 LENESAS

DA1458x/DA1468x Production Line Tool
Libraries

4.4.1 Building the DA1468x Production Test Firmware

If users need to add extra tests to expand the PLT functionality for DA1468x/DA1510x based
devices, then the DA1468x/DA1510x production test firmware (plt fw.bin) should be modified.
Details on how to build a DA1468x/DA1510x proximity reporter application project are given in [14].
Similar process should be followed to build the plt fw project.

The PLT v_4.2 uses the firmware from DA1468x DA15xxx SDK 1.0.10.1072 DA1468x/DA1510x
SDK. Prior of building the pl1t fw project, the files inside
source\production line tool\fw files\DUT\DA1468x-DAl5xxx should be copied to the
equivalent DA1468x DAl15xxx SDK 1.0.10.1072 SDK files. These are some patches required
specifically for the PLT.

The binary produced when building the plt fw project is named plt fw.bin. This should be
renamed either to prod test 681 00.bin, prod test 681 0l1.bin Or prod test 683 00 and be
placed under the source\production line tool\UI\common\binaries directory.

4.4.2 Building the DA1468x Memory Programmer Firmware

The firmware responsible to perform the memory operations to DA1468x/DA1510x devices is called
uartboot.bin. If users would like to add extra functionality, then the uvartboot Eclipse project should
be modified and build. Details on how to build a DA1468x proximity reporter application project in an
Eclipse IDE environment are given in [14]. Similar process should be followed for the uartboot .bin
project. DA14681-01, DA14680-01, DA14682-00, DA14683-00, DA15100-00 and DA15101-00
devices use the same uartboot .bin firmware as auto IC detection exists in the firmware start-up
function.

Prior of building the uartboot .bin, the files inside
source\production line tool\fw files\DUT\DA1468x-DAl5xxx should be copied to the
equivalent DA1468x DA15xxx SDK 1.0.10.1072 SDK files. These are some patches required
specifically for the PLT. The output binary should be renamed to uartboot 681 01.bin and be
placed under the source\production line tool\UI\common\binaries directory.

45 Running the Applications

The directory source\production line tool\Release contains all the necessary files, after a
successful project build, for the application to run. Bear in mind that for the Release folder to be
created, the project has to be built with a ‘Release’ Visual Studio configuration as mentioned in
section 4.2.

Figure 6 shows the files created inside the Release directory. Table 10 gives a short description of
the files and folders contained in that directory.

. ammeter_instr_plugins ﬂvc_redist.xﬁd.ace (| volt_meter_driver.dll
. binaries ﬂvc_redist.xSﬁ.exe 7| ammeter_driver.lib
. ble_tester_instr_plugins (%] ammeter_driver.dil 7| barcode_scanner.lib
. icons |%| barcode_scanner.dll 7| ble_tester_driver.lib
. IQmeasure 3.1.2 (%] ble_tester_driver.dll 2| cfg_dILlib
| params (| cfg_dIl.dil 7| dbg_dIlLlib
| scripts (%] dbg_dIl.dil 2| p_dillib
. temp_meas_instr_plugins (| frd2wecdll 7] prod_line_tool_dILlib
J volt_meter_instr_plugins %[p_dil.dll 7| temp_meas_driver.lib
i DAL458x_DA1468x_CFG_PLT.exe %) prod_line_teol_dIl.dll 7 u_dILlib
i DA1458x_DA1468x_CLI PLT.exe %] temp_meas_driver.dll 7| volt_meter_driver.lib

= DAL458x DAL4GEx GUI PLT.exe % u_dildll

Figure 6: Production Line Tool Release Directory

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 21 of 99 © 2022 Renesas Electronics

UM-B-040

LENESAS

DA1458x/DA1468x Production Line Tool

Libraries

Table 10: Description of Build Output Files

File or Folder

Description

ammeter_instr_plugins/

Contains the ammeter instrument plug-n DLLs. This folder is
only created if any of the ammeter projects is included during
build.

ammeter_instr_plugins/ammeter_scpi.dll

This is the DLL that performs current measurements, by
interfacing to SCPI compatible DMMs.

ammeter_instr_plugins/ni6009.dll

This is the DLL for the NI USB-6009 DAQ [16] able to
perform current measurements.

binaries/

Contains the necessary firmware binaries as described in
section 4.3 and 4.4.

ble_tester_instr_plugins/

Contains the BLE tester instrument DLLs. This folder is only
created if any of the BLE tester projects is included during
build.

ble_tester_instr_plugins/mt8852b.dlI

This is the DLL that performs BLE RF tests using the Anritsu
MT88252B instrument [7].

ble_tester_instr_plugins/IQxelM.dll

This is the DLL that performs BLE RF tests using the
Litepoint IQxelM instrument [15].

icons/

Contains pictures used by the PLT applications.

IQmeasure_3.1.2

Contains Litepoint IQxelM instrument [15] specific DLLs,
provided as is by Litepoint.

params/ Contains the configuration params.xml file, the XML schema
params.xsd and a BD address file sample, named
bd address.ini.

scripts/ Contains example scripts to be executed by the PLT before

or after the tests. User can edit them or create new ones with
different names. The new created scripts can be selected
from the DA1458x_DA1468x_CFG_PLT.exe.

temp_meas_instr_plugins/

Contains the temperature measurement instrument DLLs.

temp_meas_instr_plugins/ni_usb_tc01.dll

The ni usb tc01.dllis the DLL used to interface a NI USB
TCO01 temperature sensor [11], for temperature
measurements.

temp_meas_instr_plugins/
tmu_temp_sens.dll

The tmu_temp sens.dllis the DLL used to interface a
Papouch TMU sensor [10], for temperature measurements.

volt_meter_instr_plugins/

Contains the voltage meter instrument DLLs. These are used
to calibrate the internal ADC for DA1468x-00 devices.

volt_meter_instr_plugins/volt_meter_scpi.dll

The volt meter scpi.dllis a DLL that implements basic
control to a DVM instrument using SCPI commands. It uses
NI-VISA libraries and GPIB interface.

DA1458x_DA1468x_CFG_PLT.exe

This is the configuration application. It is a graphical user
interface application used to edit the configuration XML file,
params.xml.

DA1458x_DA1468x_CL|_PLT.exe

This is the command line interface tool. It performs
production tests and memory programming through a
console.

DA1458x_DA1468x_GUI_PLT.exe

This is the graphical user interface tool. It performs
production tests and memory programming through a
graphical interface.

vc_redist.x64.exelvc_redist.x86.exe

Visual Studio 2015 redistributable packages for 32 and 64-bit
machines. These should be installed prior of PLT execution.

User Manual

Revision 4.3

17-Jan-2022

CFR0012-00

22 of 99 © 2022 Renesas Electronics

UM-B-040

LENESAS

DA1458x/DA1468x Production Line Tool

Libraries

File or Folder

Description

ammeter_driver.dll/.lib

This is the DLL that loads and accesses the current
measurement instrument DLLs from inside the
ammeter_instr_plugins folder. It is the middle layer software
between the PLT host application and the instrument
measurement DLL plug in.

barcode_scanner.dll/.lib

This is the DLL that implements the control to a USB to serial
barcode scanner instrument, for scanning device BD
addresses.

ble_tester_driver.dll/.lib

This is the DLL that loads and accesses all BLE tester
instrument DLLs from the ble tester instr plugins folder

cfg_dll.dll/lib This is the configuration parameter handling DLL. It can
validate, load and save parameters from a given XML file.

dbg_dIl.dll/.lib The dog d11.d11file is a DLL used to print debug messages
to a file or to a debug console.

ftd2xx.dll This is the FTDI DLL. It is used to hard reset the Golden Unit
from the application when needed, via an FTDI GPIO pin.

p_dll.dll/lib This is the production test DLL that performs device

functional tests.

prod_line_tool_dll.dll/.lib

This is the core DLL. The heart of the system that performs
basic state machines for all tests and memory actions to be
executed.

temp_meas_driver.dll/.lib

This is the temperature measurement driver DLL. It loads and
accesses all temperature measurement DLLs from
temp meas instr plugins folder.

u_dll.dll/lib

This is the DLL that performs memory actions.

volt_meter_driver.dll/.lib

This is the voltage meter driver DLL. It loads and accesses all
voltage meter DLLs from folder volt meter instr plugins.

45.1 DA1458x_DA1468x_CFG_PLT.exe

Double click the DA1458x_DA1468x_CFG_PLT.exe to run the configuration application. Most
probably an error message will pop, as shown in Figure 7. This is to indicate that the Golden Unit
COM port is either not valid or the GU USB cable from the PLT board is not connected to the PC.

a3 -
DA4YEGDALAG: Praduction Lne Too! Confayuraten BN |

Failed to losd TabPage: (Hardware Setup] settings.
\ ERROF: Value of [qu_com_porf] is not vald

0%

Figure 7: DA1458x_DA1468x_CFG_PLT.exe GU COM Port Error Message

Press ‘OK’ if the message in Figure 7 is shown. The configuration application initial screen will then
be shown (Figure 8). Connect the two USB cables from the PLT board to the PC and after the PC
has enumerated all 17 COM ports (16 for the devices and one for the GU) press ‘Auto’ under the
‘Golden Unit COM Port’. This action will automatically find the GU COM port. Press the ‘Save’ button.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 23 of 99 © 2022 Renesas Electronics

UM-B-040

RENESAS

DA1458x/DA1468x Production Line Tool

Libraries

. ~ T e

el ey

Cntems e Gase | 50 atTisse | ST | T Satg Sy P | M Sesne | Satag S | Secany
. o — 3
s — [
p— e
et p— - ‘

A d |
» o ") e Sara .‘

sur2 =" 3 4 rorw ‘

Cwr ” o= M o] {
) nrs nra rare

pe—_ 2

- L

RETPES
-
HesTmr ST Gawers| B0 mbwanes | UART | TowSwtogn | Merwey Fuastocs | Mamary inacke Dnbeg basegn Sevusty
|8 S rtbatme i
| e sepe—
& et
Devee € (AR =
Mo s Ewre D
By e e T
f1aum £y out 1o L OuT 18
Hovte fowre Bourw 1ouT e
T] & L]
' .
' .
[][-
Set e TU COM g - | _Fetwee | lOOME v
€ 1 ot v ook e et e -,
Oase
—_—

Figure 9: DA1458x_DA1468x_CFG_PLT.exe Initial Screen

45.2 DA1458x_DA1468x_GUI_PLT.exe

Double click the DA1458x_DA1468x_GUI_PLT.exe to run the GUI PLT application. The initial

screen will appear as shown in Figure 10.

User Manual Revision 4.3

17-Jan-2022

CFR0012-00 24 of 99

© 2022 Renesas Electronics

LENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

T ———

DAJA3SUTAL4E2x Froducon Line Toxt - » 41219

Fie Gt Sew

Stant BD addrass

030002 (03001

:
|
[

but HO Addruss

Stuteaties
0 BLE Tostor Teowp Ao Voot

A Exmn
) Chwch
VEATAMRT

LUART chash

e smart

- START

Wit g Docamwnd AORORTLE e @098 1201 JTun @ead_ 1300/ 02 1005 Easnian_Me_So30 B aume faes fam ol Botdct tubes Duiktend Tart Bawe B0000s

Figure 10: DA1458x_DA1468x_GUI_PLT.exe Initial Screen

4.5.3 DA1458x_DA1468x_CLI_PLT.exe

Double click the DA1458x_DA1468x_CLI_PLT.exe to run the CLI PLT application. The initial screen
will then appear as shown in Figure 11.

p DA1458w/DALLGEx Production Line Tool - v_4,10150
1458 x/DR1468x Praduction Line Tool &
). 4.1.8.158
/681 -WR 681815 > Select the 1C Fay ¢
» Import new configuration settis 2 DL y reinitialized with the new para
int the c¢ i L moteve from the currently use

(L131500 .
o uged in the fFirst active DUT of the nex

d conpare with given BD address

by blinking it .
> NSB«1 s " X & hi ‘ for A o DUT VHAT/UART et
> Enable Error an Info . . rinte file or in the oo .
< i . ield Ficld From any mnenory.

1152008/1 B0 > > Bun the uar dure

> Connand used only for tool svaluation. Runz multiple testu. one after the other, without

t all paraneteorz to their default
t thiz help.

Figure 11: DA1458x_DA1468x_CLI_PLT.exe Initial Screen

A user guide document [1] is available to help users get familiar with all three applications.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 25 of 99 © 2022 Renesas Electronics

o0 LENESAS

DA1458x/DA1468x Production Line Tool
Libraries

5 CFG_DLL

The CFG_DLL dynamic link library provides the necessary API functionality to import, validate and
export configuration parameters to or from an XML file. These parameters tell which tests will be
performed, which memories will be written, which binary will be written into the memories, what the
memory interface GPIOs will be and many other settings that the user needs to configure prior to
each test. The cfg d11.d11 is only used by the User Interface software applications (CFG, GUI or
CLI). The parameters loaded by the Ul tools using the cfg d11.d11 are passed to the

prod line tool dll.dll. The prod line tool dl1.dl1l copies these parameters to its local data
structures in an appropriate format to be passed to the rest of the DLLs or used internally for
controlling the test state machines.

A default configuration parameter file, params.xml, is provided in the directory
source\production line tool\UI\common\params. This file is automatically edited when a change
and a save is made in the DA1458x DA1468x CFG PLT.exe tool. Some parameters are also
automatically modified by the DA1458x DA1468x GUI PLT.exe and DA1458x DA1468x CLI PLT.exe,
like the statistics and the next device BD addresses. This file, although not suggested, can also be
edited manually. One could then use the “File —> Open XML file” option in the CFG or GUI tool to
import the new parameters. Similarly, the CLI command “1 params\params.xml” will import a new
configuration file to the CLI application.

The parameter validation is performed using the XML schema file, params.xsd. This file contains the
parameter default values as well as the type and range of values that each parameter can accept.

Finally, the cfg d11.d11 provides an API function to import DUT BD addresses from a file. A sample
file of device BD addresses, bd address.ini, is provided and can be found under the
source\production line tool\UI\common\params directory.

Note: The end of the bd_address.ini file must have an all-zeroes BD address.

5.1 CFG_DLL API Functions

The CFG_DLL API header file can be found in
source\production line tool\core dlls\cfg dll\cfg dll.h

It has the following user accessible functions.

CEG DLL API int cfg dbg init(dbg params *dbg params t);

CEG DLL APTI int cfg dbg close(void);

CEG DLL API int cfg init(char *file path t);

CFG DLL API int cfg close(void);

CFG DLL API int cfg get value(char *param name, uint8 t idx, char *param value);

CEG DLL API int cfg set default values(void);

CFG DLL API int cfg get info(char *param name, char *info);

CFG DLL API int cfg set value(char *param name, uint8 t idx, char *param value);

CFG DLL API int cfg check value(char *param name, uint8 t idx, char *param value);

CFG DLL API int cfg check param idx(char *param name, uint8 t idx);

CEG DLL API int cfg add param idx(char *param name);

CEG DLL API int cfg del param idx(char *param name) ;

CFG DLL API int cfg import settings(cfg params *cfg params t, cfg errors
*cfg errors t);

CFG DLL API char *cfg get param name (int idx);

CEG DLL API int cfg cross check settings(cfg params *cfg params t, cfg errors
*cfg errors t);

CFG DLL API int cfg export settings(cfg params *cfg params t);

CFG DLL API int cfg load bd addr(cfg params *cfg params t, uint8 t *next bd addr);

A short description of each API function follows below.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 26 of 99 © 2022 Renesas Electronics

o0 LENESAS

DA1458x/DA1468x Production Line Tool
Libraries

CFG_DLL_APIlint cfg _dbg init(_ dbg params *dbg params_t)

The cfg dbg init API function is used to initialize the debug print messages of the cfg d11.d11l
library. It uses dbg dl11.d11 for printing messages to either a debug console or a file. The function
returns CFG_SUCCESS if the debug operation was correctly initialized or CFG_ERROR if an error occurred.

CFG_DLL_APIlint cfg_dbg close(void)

The cfg _dbg close API function is used to stop the debug print messages of the cfg d11.d11 and
free all allocated resources previously acquired. The function returns CEG_SUCCESS if the debug was
correctly closed or CFG_ERRCR if an error was occurred.

CFG_DLL_APIint cfg_init(char *file_path_t)

The cfg_init API function is used to initialize the cfg d11.d11 library. It loads the XML and XSD
files into memory. It is crucial, for better system memory performance, to initialize the cfg d11.d1l
once in an application lifetime. Otherwise, the MSXML’s internal memory management caching will
keep older files loaded into RAM for longer time than it is expected by the developer, even if these
are released when the cfg close API function is called. The function returns CEG_SUCCESS if the
cfg dl1.d11 was correctly initialized, CFG_CANNOT OPEN FILE if the file given at the file path t
function argument cannot be opened or CFG_ERRCR if another error has occurred.

CFG_DLL_API int cfg_close(void)

The cfg_close API function is used to close the cfg d11.dl11 library and release all acquired
resources, like COM objects and MSXML DOM XML and schema documents. The function returns
CFG_SUCCESS if the cfg d11.d11 was correctly closed or CFG_ERRCR if an error has occurred.

CFG_DLL_APIlint cfg_get value(char *param_name, uint8_t idx, char *param_value)

The cfg get value API function returns the value in string format of a given parameter name with a
specific index. The purpose of the index, idx, is to distinguish input parameter names that exist
multiple times in the XML file. Such parameters exist for tests that can be executed multiple times.
For example, the RF RX test can be performed up to 10 times in 10 different channels. In that case,
the configuration parameter rssi freq will exist 10 times in the file. It will be distinguished by the
item property. The following is an example or three rssi freq parameters.

<rssi freq item="1">2410</rssi freg>
<rssi freq item="2">2420</rssi freg>
<rssi freq item="3">2430</rssi freg>

To get the value of the rssi_freqfor the second test one should call the API function like that:
cfg get value (“rssi freq”, 2, ¶m value);

Before returning the parameter value, the API function validates it with the definition given in the XML
schema document, params.xsd. If the parameter value in the XML file is wrong, the default value will
be returned in the param value argument, taken from the params.xsd file. In that case the function
will return CFG_PARAM ERRCR. If there is no error, CFG_SUCCESS will be returned and the param value
argument will have a valid parameter value. If another error occurs while parsing the value,

param value argument will be invalid and the function will return CFG_ERROR.

CFG_DLL_APIlint cfg_get info(char *param_name, char *info)

The cfg get info API function returns the x:info attribute from the XML schema element in the
params . xsd document. This attribute provides a short tooltip description for each different parameter
that is loaded in the graphical user interface tool. An example XML schema element is shown below.

<xs:element name="dut num 15"
type="xs:boolean"

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 27 of 99 © 2022 Renesas Electronics

T RENESAS

DA1458x/DA1468x Production Line Tool
Libraries

x:use="required"
x:default="false"
x:info="Disable if testing at DUT position 15 is not required."/>

This is the element describing the behavior of the XML dut num 15 parameter. The info attribute
gives a short description of the dut_num 15 parameter.

The API function returns CFG_SUCCESS if it succeeded to get the information attribute from the XML
schema document, in which case the info argument will have a valid value, or CFG_ERROR if an error
was occurred. In that case the info argument will be invalid.

CFG_DLL_APIlint cfg_set default values(void)

The cfg_set default values API function sets all XML parameters to their default values. The
default values are taken from the XML schema file (params.xsd). As an example consider the
reset duration XML value. The value in the XML may have changed to 100.

<reset duration>100</reset duration>
The default value of the reset duration inside the params.xsdfile is 50 as shown below.

<xs:element name="reset duration"
type="x:cfg reset time"
x:use="required"
x:default="50"
x:info="Reset time duration in ms. 10ms to 1000ms is supported."/>

By calling the cfg set default values function the reset duration inside the params.xml file will
get the default value of 50.

CFG_DLL_APIlint cfg_set value(char *param_name, uint8 tidx, char *param_value)

The cfg_set value API function sets the value of a given parameter name with a specific index. The
function returns CFG_SUCCESS if the cfg d11.d11 succeeded to set the value or CEG_ERROR if an error
was occurred.

CFG_DLL_APIint cfg_check_value(char *param_name, uint8_t idx, char *param_value)

The cfg_check value API function checks if the value in the param value input function argument is
valid for the parameter with name pointed by the param name input function argument. The function
checks the parameter definition in the XML schema document (params.xsd) to find whether the given
value is valid. The schema document contains data types, boundaries and other restrictions for each
particular parameter value so to protect for errors that could occur during parameter parsing. Device
could eventually be destroyed if erroneous parameters are programmed in the One Time
Programmable memory (OTP), so parameter validation is a key part of the configuration DLL. An
example of such a value boundary is shown next.

<xs:element name="RF path loss DUT 1"

type="x:cfg dut path losses"

x:use="required"

x:default="0"

x:info="Set the RF path losses in dB between the device and the GU or the BLE
tester instrument."/>

<!--cfg dut path losses-->
<xs:simpleType name="cfg dut path losses">
<xs:restriction base="xs:float">
<xs:minInclusive value="0"/>
<xs:maxInclusive value="40"/>
</xs:restriction>
</xs:simpleType>

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 28 of 99 © 2022 Renesas Electronics

RENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

The above XML schema parts are definitions for the RF path loss DUT 1, which keep the path
losses value for DUT 1. The attribute type describes the type that the RF ' path loss DUT 1 value
can take. This should be of type cfg dut path losses. Looking at the definition of the

cfg dut path losses element we can see that this type is float with minimum value 0 and
maximum 40. Checking the XML file for RF path loss DUT 1 the following exists.

<RF path loss DUT 1>0.00</RF path loss DUT 1>

If a negative value or a value larger than 40 is set, the validation of the value will fail. Similarly, if the
cfg check value API function is called with cfg check value (“"RF path loss DUT 1”, 0, “45”)
the function will return CEG_PARAM ERROR.

The API function will return CFG_SUCCESS if the value is a valid value that the param name can take or
CFG_ERROR On system failure.

CFG_DLL_APIlint cfg_check param_idx(char *param_name, uint8_t idx)

The cfg_check param idx API function checks whether a parameter index for a specific parameter
name exists. As noted in the cfg _get value API function, some parameter names could exist more
than one time in the XML file, if the test that they belong is to be executed more than one time. The
return of the cfg check param idx API function helps the CFG application to draw the exact number
of tests.

For example consider an XML file that has the following entries. These are entries for two RSSI tests
using the GU as transmitter.

<rssi test enable item="1">true</rssi test enable
<rssi test enable item="2">true</rssi test enable>
<rssi freq [item="1">2424</rssi _freg>

<rssi freq item="2">2450</rssi freg>

<rssi limit item="1">-70.0</rssi limit>

<rssi limit item="2">-70.0</rssi limit>

When the CFG application is started it will call the cfg check param idx API function with the idx
parameter starting from O up to MAX SUPPORTED RF TESTS, until it returns CFG_ERROR. For any
success loop it will draw a new test ‘tab. For this | partlcular XML example, two tabs of RF RX tests will
be drawn as illustrated in Figure 12.

L& _Fi e

Sokoen Lre
8.E Tege BF K we wnrgs swg Te 30w e
P ioeees per DT

¢ Tt
Seneg

g O - Wy

Figure 12: DA1458x_DA1468x_CFG_PLT.exe with Two GU RF Tests

CFG_DLL_APIlint cfg_add_param_idx(char *param_name)

The cfg add param idx API function will add a new test item in the XML file with the given
parameter name. If the function succeeds it will return CFG_SUCCESS, otherwise CEG_ERRCR. As an
example consider the following XML entries.

<rssi limit item="1">-70.0</rssi limit>
<rssi limit item="2">-70.0</rssi limit>

If the API function is called as cfg add param idx (“rssi limit”); then the XML file will be updated
to the following.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 29 of 99 © 2022 Renesas Electronics

o0 LENESAS

DA1458x/DA1468x Production Line Tool
Libraries

<rssi limit item="1">-70.0</rssi limit>
<rssi limit item="2">-70.0</rssi limit>
<rssi limit item="3">-70.0</rssi limit>

The default value used for new added parameter items is taken from the XML schema document,
params.xsd. For this example the default value is -70. Below is the schema part for the rssi limit,
where the default value can be seen.

<xs:sequence minOccurs="1"
maxOccurs ="10">
<xs:element name="rssi limit"

type="x:cfg rssi limit i"
x:use="required"
x:default="-70"
x:info="The RSSI limit for..”

</xs:sequence>

The API function will return CFG_SUCCESS if it succeeds to add a new parameter item or CFG_ERROR
otherwise.

CFG_DLL_APlint cfg_del param_idx(char *param_name)

The cfg del param idx API function will delete the last test item in the XML file for the given
parameter name. If the function succeeds it will return CFG_SUCCESS, otherwise CEG_ERRCR. As an
example consider the following XML entries.

<rssi limit item="1">-70.0</rssi limit>
<rssi limit item="2">-70.0</rssi limit>

If the API function is called as cfg del param idx(“rssi limit”); then then XML file will be
updated to the following.

<rssi limit item="1">-70.0</rssi limit>

The API function will return CFG_SUCCESS if it succeeds to delete a parameter item or CFG_ERROR
otherwise.

CFG_DLL_APIlint cfg_import_settings(_cfg_params *cfg_params_t, cfg_errors *cfg_errors_t)

The cfg import settings API function imports all configuration parameters from the XML to the
cfg params_t data structure. The cfg errors t argumentis an array. Each array position keeps a
Boolean value that corresponds to each of the imported parameters. The index in the array is taken
from the cfg param idx enumeration. If the Boolean value is true then an error exists for the
particular parameter, meaning that the value in the XML for this parameter is invalid. The function will
return the default value instead in the cfg params t argument. Therefore, if a parameter value in the
XML file is not valid (the value is out of range, misspelled or empty) the default value from the
params.xsd file will be returned for this parameter in the cfg params t data structure. At the same
time, an error flag will be set and returned for the specific parameter in the cfg error t data
structure . The value in the XML file will remain as it was before, erroneous, and can only be replaced
by a cfg export settings API function call (see next) or if the user corrects the value by hand.

This function can set an error flag in the cfg errors t data structure for a particular parameter even
if this parameter is not going to be used. For example consider the following XML entries.

<xtal trim enable>false</xtal trim enable>
<xtal trim gpio>P0 5</xtal trim gpio>
<xtal trim otp burn>none</xtal trim otp burn>

The xtal trim otp burn value has an error since it should either be false or true, but is none. The
cfg import settings API function will read it and set an error flag in the XTAL. TRIM BURN OTP index
of the cfg errors t array. The value in the cfg params_t array for the xtal trim otp burn
parameter will be the default one taken from the schema file. Therefore, even if the XTAL trim test is

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 30 of 99 © 2022 Renesas Electronics

o0 LENESAS

DA1458x/DA1468x Production Line Tool
Libraries

disabled the function will set an error on the xtal trim otp burn. However, the parameter will only
be used if the XTAL trim test is enabled. To eliminate such kind of errors, the API function
cfg cross check settings can be used, which is explained next.

CFG_DLL_APIlint cfg_cross_check_settings(_cfg_params *cfg_params_t, cfg_errors
*cfg_errors_t)

The cfg cross check settings API function is used to check whether error flags enabled in the
cfg errors t array are actual valid errors, as they may belong to tests and memory operations that
are disabled. Whether tests or memory operations are disabled is checked from the input

cfg params_t data structure. If the function finds at least one valid error flag contained in the

cfg errors t array it keeps the flag set and returns CFG_ERROR. For any error that is not valid the
error flag is cleared. If no valid errors exist the function will return CFG_SUCCESS.

CFG_DLL_APIint cfg_export_settings(_cfg_params *cfg_params_t)

The cfg export settings API function is used to save all the configuration parameters in the XML
file. The parameters to be saved are taken from the cfg params t function argument. No validation
is performed in the parameters prior to be saved. The function, prior of saving the parameters,
transforms each cfg params_t data structure member from any type to string, in order to be saved in
the XML file. If the save succeeds the function returns CFG_SUCCESS, otherwise it returns CFG_ERROR.

CFG_DLL_API char *cfg_get _param_name(int idx);

The cfg get param name API function returns the parameter name for a given index. The index is
taken from the cfg param idx enumeration found in the API header file, cfg d11.h.

CFG_DLL_APIlint cfg_load _bd_addr(_cfg_params *cfg_params_t, uint8 t *next_bd_addr)

The cfg load bd addr API function, loads DUT BD addresses from a predefined file. The predefined
file path is stored in cfg params t->plt ui params.bd addr.file path variable. If the file does not
exist the function will return CEG_ERROR. The function searches the given file to find the initial BD
address to start reading from. It will not start reading BD addresses from the beginning of the file but
from the BD address pointed by the cfg params t->plt ui params.bd addr.next variable.

If the next BD address does not exist in the file, the function will return an error. If it exists it will copy
it to the first active DUT and the following ones to the rest of the active DUTSs.

The end of the bd_address.ini file must have an all zero BD address.
As an example consider the following bd address. ini file contents:

00:00:00:01:10:30
00:00:00:01:10:40
00:00:00:01:10:50
00:00:00:01:10:60
00:00:00:01:10:061
00:00:00:01:10:62
00:00:00:01:10:63
00:00:00:01:10:64
00:00:00:00:00:00

Consider the input function parameters, given in the first function argument (cfg params t) to have
the following values:

cfg params t->plt ui params.bd addr.next = 00:00:00:01:10:40;

cfg params t->pltd device params[0].is active = true;
cfg params_t->pltd device params[l].is active = true;
cfg params t->pltd device params[2].is active = true;
(31.
[4].

cfg params t->pltd device params is active = true;
cfg params t->pltd device params is active = true;

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 31 0f 99 © 2022 Renesas Electronics

LENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

cfg params t->pltd device params[5].is active = false;

cfg params_t->pltd device params[15].is active = false;

Only DUTs 0 to 4 are active. The next BD address is set to 00:00:00:01:10:40. If the
cfg load bd addr function is called then it will return the following results.

.bd addr = 00:00:00:01:10:40;
.bd addr = 00:00:00:01:10:50;
.bd addr = 00:00:00:01:10:60;
.bd addr = 00:00:00:01:10:61;
.bd addr = 00:00:00:01:10:62;
.bd addr = 00:00:00:00:00:00;

cfg params t->pltd device params
cfg params t->pltd device params
cfg params t->pltd device params
cfg params t->pltd device params
cfg params t->pltd device params
cfg params t->pltd device params

(0]
(1]
(2]
[3]
(4]
[5]

cfg params t->pltd device params[7].bd addr = 00:00:00:00:00:00;

The DUT BD addresses will be copied to the first function argument (cfg params t). The second
function argument of the cfg load bd addr function will contain the next BD address to be used at
the next PLT test run. This will be address 00:00:00:01:10:63. When the current test is finished, the
Ul application will save the returned next bd addr argument to the cfg params t-

>plt ui params.bd addr.next. It can then be retrieved from the file in the next PLT test run.

The CFG DLL API is defined as follows.

#define CFG DLL EXPORTS

#ifdef CFG DLL EXPORTS

#define CFG DLL API declspec (dllexport)
#else

#define CFG DLL API _ declspec (dllimport)
#endif

The declspec (dllexport) keyword automatically places the exported names in the .1ib file during
compilation. The .1ib file can be used when a static DLL link is required. The declspec (d11import)
keyword is used in DLL header files in order to import DLL public data and objects.

5.2 CFG_DLL API Details

The CFG_DLL API data structures, enumerations, return codes and other details can be found in the
API header file source\production line tool\core dlls\cfg dll\cfg dll.horinthe HTML
based help pages loaded after pressing the source\production line tool\help\help.html link.

6 DBG DLL

The DBG_DLL dynamic link library provides the necessary API functionality to print debug
information in different outputs and for different message levels. All software blocks can access the
dog dl1.d11. By using a specific handle for each software block, every message can be separated
and handled differently.

Note that printing debug information may introduce system delay and thus some tests may fail due to
time out expirations. We suggest having debug information disabled in all software blocks and only
partially enable when there is a real need for it. From PLT v4.0 and onwards, this system delay has
been almost eliminated as debug print messages are printed from a lower priority queue. It is safer,
but it is still suggested to have the debug prints disabled.

6.1 DBG_DLL API Functions

The DBG_DLL API header file can be found in
source\production line tool\core dlls\dbg dll\dbg dll.h

It has the following user accessible functions.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 32 of 99 © 2022 Renesas Electronics

RENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

DBG DLL API int dbg init (void **dbg session, dbg params *dbg params t);

DBG DLL API int dbg close(void *dbg session);

DBG DLL API void dbg print (void *dbg session, DBG LEVEL dbg level, char *dbg sw, char
*func, int line, char *fmt, ...);

A short description of each API function follows.

DBG_DLL_API int dbg_init(void **dbg_session, _dbg_params *dbg_params_t)

The dbg_init API function initializes the debug session for a specific software block. It returns a
handle in the first function argument specific to the software block. If the debug print output is set to
DBG_TO STDIO then a console will open to print messages. The dog d11.d11 will keep the debug
console open if at least one of the active debug sessions has its output set to DBG_TO STDIO. If the
function succeeds, it returns DBG_SUCCESS and the dog_session handle is valid. If it fails due to invalid
input parameters that could exist in the dbg params_t data structure, it returns DBG WRONG PARAMS. In
any other failure it returns DBG_ERRCR.

DBG_DLL_API int dbg_close(void *dbg_session)

The dbg_close API function closes the specific debug session and frees all allocated resources for
the particular session pointed by the dbg_session input pointer parameter. The dbg d11.d11 will
keep the debug console open if at least one of the active debug sessions has its output set to

DBG TO STDIO. If the close was successful the function returns DBG SUCCESS otherwise it returns
DBG ERROR.

DBG_DLL_APIvoid dbg print(void *dbg_session, DBG_LEVEL dbg_level, char *dbg_sw, char
*func, int line, char *fmt, ...)

The dbg_print API function prints the debug information for the specific session pointed by the
dbg_session input pointer parameter. The rest of the input parameters provide information for a more
detailed print format.

The DBG DLL API is defined as follows.

#define DBG DLL EXPORTS

#ifdef DBG DLL EXPORTS

#define DBG DLL API _ declspec (dllexport)
#else

#define DBG DLL API declspec (dllimport)
#endif

The declspec (dllexport) keyword automatically places the exported names to the .11ib file during
compilation. The .1ib file can be used when a static DLL link is required. The declspec (d1limport)
keyword is used in header files that use the DLL in order to import DLL public data and objects.

6.1.1 DBG_DLL Function Input Parameters

The dbg_init API function takes a data structure as argument, which contains the debug settings.
The dbg_print API function has some fixed arguments but also variable length, which are required
for different kind of prints.

The following sections describe the function parameters in detail.

6.1.1.1 Function dbg_init Input Arguments
The dbg_init function takes a pointer as argument to the following data structure.

typedef struct dbg params
{

bool dog_enable;
int dbg_out;
User Manual Revision 4.3 17-Jan-2022

CFR0012-00 33 of 99 © 2022 Renesas Electronics

RENESAS

UM-B-040
DA1458x/DA1468x Production Line Tool
Libraries
int dbg_ level;
char dbg_file path[FILE PATH SIZE];
~dbg clbk dbg clbk;
} dbg params;

Additionally, there are two enumerations that specify the selection of the debug output and the
selection of the debug level. These two enumerations are the following:

typedef enum DBG OUTPUT

{
DBG TO STDIO = 0x1l, /*!< Send debug to stdio output. */
DBG TO FILE = 0x2, /*!< Send debug info to a file. */
DBG TO CLBK 0x4, /*!< Use a callback function. */
DBG OUTPUT INVALID 0x8 /*!< Invalid debug output. */

}DBG_OUTPUT;

typedef enum DBG LEVEL
{

DBG LVL ERR = 0x1, /*!< Error debug level. */
DBG_LVL INFO = 0x2, /*!< Information debug level. */
DBG_LVL DEBUG = 0Ox4, /*!< Level for debug prints. */
DBG LVL INVALID = 0x8 /*!< Invalid debug level. */

}DBG_LEVEL;

bool dbg enable;

The dbg_enable parameter is used to enable or disable the debug prints.

int dbg out;

The dbg_out parameter value tells where the debug messages will be printed at. It can be any
combination of the DBG OUTPUT enumeration given above. That means, for example, that debug
messages can be sent to either a file or stdio or even to both of them.

int dog level;

The dbg_level parameter value tells which debug level will be allowed to be printed. It can be any
combination of the DBG_LEVEL enumeration given above.

char dog file path[FILE PATH SIZE];

The dbg file path parameter specifies the path where the debug output file will be stored. It is used
only when DBG TO FILEis setin the dog out value.

The FILE PATH SIZE is defined as:
#define FILE PATH SIZE 256

_dbg clbk dog clbk;

The dog_clbk parameter is a callback function registration that will return the debug message on a
string to be used by the calling process. The callback function has the following type:

typedef void (_ stdcall * dbg clbk) (char *dbg str);

void **dbg session

The dbg_session parameter is an output parameter returned by the dog init function. This
parameter should be stored by the block that called the dbg_init function, and used whenever the
dbg print or dbg close function is to be called.

6.1.1.2 Function dbg_close Input Arguments

Function dog close takes only one argument, the handle to the debug session.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 34 of 99 © 2022 Renesas Electronics

UNLB-040 LENESAS

DA1458x/DA1468x Production Line Tool
Libraries

void *dbg session

The dog session parameter is a handle to the debug session, acquired when the dog init API
function was called.

6.1.1.3 Function dbg_print Input Arguments

void *dbg session

The dbg_session parameter is a handle to the debug session, acquired when the dog_init API
function was called.

DBG LEVEL dbg level

The dbg_level parameter specifies the debug print level of the particular print. If the level of this
particular print was not enabled in the dbg_init function, then this print will not be printed.

char *dbg sw

The dbg_sw parameter is a string that contains the software block name. It will be printed in front of
the actual debug message so users can distinguish prints by software blocks.

char *func

The func parameter is a string that contains the name of the function that this print came from. It will
be printed in front of the actual debug message so users can easily point in the code where this
message came from.

int line

The 1ine parameter value specifies the line number from the file that this print came from. It will be

printed in front of the actual debug message so user can easily point in the code where this message
came from.

char *fmt,

The fmt parameter contains the variable length print arguments. It is the actual debug print message.

6.2 DBG_DLL API Details

The DBG_DLL API data structures, enumerations and return codes and other details can be found in
the API header file source\production line tool\core dlls\dog dll\dbg dll.h, orinthe HTML
based help pages loaded after pressing the source\production line tool\help\help.html link.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 35 of 99 © 2022 Renesas Electronics

o0 LENESAS

DA1458x/DA1468x Production Line Tool
Libraries

7 UDLL

The U_DLL dynamic link library provides the necessary API functionality to download any firmware to
the DUT’s system RAM. For example, it is used to download the production test firmware

(prod test 580.bin, prod test 581.bin, prod test 582.bin, Or prod test 681 0l.bin) to the
device. Having downloaded this particular firmware, the user could then use the P_DLL functions to
send commands to the devices (via the UART), set it to continuous packet transmit, continuous
packet receive mode or perform other test operations like XTAL trim.

The u_dl1.d11 can also be used to perform operations to externally attached memories (SPI Flash,
I2C EEPROM or QSPI) or the internal OTP memory. First, the flash programmer.bin (DA1458x) or
the vartboot.bin (DA1468x) firmware has to be downloaded to the DUT’s system RAM. Then, the
u dl1.d11 can erase or write any data to any of the supported memories.

File source\production line tool\core dlls\u dll\u dll.h contains all the necessary API
information. It can be included as is in any user project.

7.1 U_DLL API Functions

U_DLL has the following user accessible functions:

U DLL API int udll init (void);

U DLL API int udll dbg init(dog params *dbg params t);

U DLL APT int udll dbg close (void);

U DLL APT int udll set prog params(udll params *udll params t);

U DLL APT int udll set device params(udll device params *udll device params);
U DLL APT int udll start prog(void);

U DLL APT int udll close(void);

A short description of each API function follows.

U DLL_APIlint udll _init(void);

The udll init API function initializes the u_d11.d11 library. It should be called before any other
operation with the u_d11.d11 library. It returns UDLL SUCCESS.

U DLL_APIlint udll_dbg init(_dbg params *dbg_params_t);

The udll dbg init API function initializes the u_d11.d11 debug print session. The u_d11.d11 library
has a dynamic link to the dbg d11.d11 such that the dog dl1.d11 debug API can be used. It returns
UDLL_SUCCESS if the initialization was successfully performed or UDLL INTERNAL ERRCR otherwise.

U DLL_APIlint udll dbg close(void);

The udll dbg close API function closes the u_d11.d11 debug session. It should be called before
the u d11.d11 library is unloaded, otherwise the debug resources will not be freed and memory leaks
will exist. It returns UDLL_SUCCESS if the close was successfully performed or UDLL INTERNAL ERROR
otherwise.

U DLL_APIlint udll_set prog params(_udll_params *udll_params_t);

With the ud1ll set prog params API function the user can set the appropriate u d11.d11
programming parameters. The function parameters specify which firmware the u d11.d11 will
download, whether it will erase or write any memory and what data to write to that memory. It returns
UDLL_SUCCESS if the operation was successful. It returns UDLL _PROG_PARAMS ERRCR if any of the input
parameter is invalid or UDLL INTERNAL ERROR otherwise. For example if the input parameter

udll 580 params t->baud rate has an invalid baud rate setting, other than 9600, 57600, 115200 or
1000000 then the API function will return UDLL, PROG PARAMS ERRCR. If input udll params t

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 36 of 99 © 2022 Renesas Electronics

LENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

parameter is NULL, then the API function will return UDLL INTERNAL ERROR. The HTML help pages
loaded after pressing the source\production line tool\help\help.html link contain more details
on the API function input parameters.

U DLL_APIlint udll _set device params(_udll _device params *udll_device params);

With the ud1ll set device params API function users can set the device parameters. Up to 16
devices are supported. The host application should use the following pre-processor definition for the
maximum allowable devices:

#define MAX UDLL DEVICES 16

Device parameters are parameters that are specific to each device to be tested. Among others, the
device parameters include the COM port, the baud rate, the Bluetooth Device (BD) address and a
user callback function that will be called every time a process finishes for each device. The HTML
help pages loaded after pressing the source\production line tool\help\help.html link contain
more details on the API function input parameters. The function returns UDLL SUCCESS if the set of the
parameter was successfully performed. It returns UDLL. PROG PARAMS ERROR if any of the input
parameter is invalid or UDLL INTERNAL ERROR otherwise.

U DLL_APIlint udll_start prog(void);

The udll start prog API function performs a specific DUT memory action. The action to perform

was set when the udll set prog params function was called. For example, if the fw load action

was configured when udll set prog params function was called, the udll start prog will read the
_udll 580 fw load parameters. It will then get the firmware from the host PC, pointed by the

fw load.fw path parameter (e.g. flash programmer.bin, uartboot bin, prod test 580.bin,

etc.) and download it into the system RAM of each DUT in parallel. The callback function

user callback udll (see section 7.1.1.2) is setin udll set device params function. It will be

called for each device to report its status. Status code UDLL FW DOWNLOAD SUCCESS (see section 7.2)

indicates a successful completion of the firmware download. Other codes denote the successful or

erroneous completion of a memory action (SPI read, OTP write, QSPI erase, etc.).

U DLL_APIlint udll _close(void);

The udll close API function should be called after the ud1l star prog function has finished. It will
release the COM ports and free any resources acquired by the u_d11.d11 operation. It returns
UDLL_SUCCESS.

The U DLL API is defined as follows.

#define U DLL EXPORTS

#ifdef U DLL EXPORTS

#define U DLL API declspec (dllexport)
#telse

#define U DLL API declspec (dllimport)
#endif

The declspec (dllexport) keyword automatically places the exported names to the .lib file during
compilation. The .lib file can be used when a static DLL link is required. The declspec (d11limport)
keyword is used in header files that the DLL in order to import DLL public data and objects.

7.1.1 U_DLL Function Input Arguments

Two U_DLL API functions take pointers to data structures as arguments. Function

udll set prog params and udll set device params provide the necessary configuration setup for
the u d11.d11 to operate. When the configuration has been successfully executed, the necessary
operations will be performed by calling the ud11l start prog function.

The following sections describe the function parameters in detail.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 37 of 99 © 2022 Renesas Electronics

Eon RRENESAS

DA1458x/DA1468x Production Line Tool
Libraries

71.1.1 Function udll_set _prog_params Input Arguments

The udll set prog params function takes a pointer to the following union data structure, as
argument:

typedef union _ udll params

{

_u dut ic dut ic;
_udll 580 params params_580;
_udll 680 params params_680;

} udll params;

typedef enum u dut ic

{

~

U DUT IC DA14580 =
U DUT IC DA14581
U DUT IC DA14582
U DUT IC DA14583 =
U DUT IC DA14585

U DUT IC DA14586

U DUT IC DA14681 00
U DUT IC DA14681 01 =
U DUT IC DA14683 00
U DUT IC DA15101 00
U DUT IC INVALID =

} u dut ic;

~

~

Il
N

~

~

Il
~

~

Il
HWOWwowoJoud W - O
~

o~

The above enumeration indicates the Dialog BLE chipset used. According to this value the
u dl1.dl11 software either reads the udll 580 params or the udll 680 params data structures
described next.

typedef struct udll 580 params
{

_u dut ic dut ic;
uint32 t baud rate;
_udll 580 mem params mem;

} udll 580 params;

uint32 t baud rate;

The baud rate parameter value indicates the DA1458x UART baud rate during firmware download
and memory programming. It supports 9600, 19200, 57600, 115200 and 1Mb baud rates.

~udll 580 mem params mem;

The mem parameter is a union that stores the memory action parameters that the u_d11.d11 will
perform. One memory action can be performed at any given time by the u_dl11.d11. The union
contents are described next.

typedef union udll 580 mem params

{

_UDLL_ACTIONS action;
_udll 580 fw load fw load;
~udll 580 fw ver fw ver get;
~udll 580 otp img otp img;
~udll 580 otp hdr otp hdr;
_udll 580 otp bda otp bda;
~udll 580 spi img spi img;
~udll 580 spi erase spi erase;
~udll 580 spi check empty spi check empty;
~udll 580 eeprom img eeprom_img;
_udll mem data mem data;
User Manual Revision 4.3 17-Jan-2022

CFR0012-00 38 of 99 © 2022 Renesas Electronics

UM-B-040 RENESAS

DA1458x/DA1468x Production Line Tool
Libraries

~udll mem read mem read;
} udll 580 mem params;

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 39 of 99 © 2022 Renesas Electronics

RENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

typedef enum UDLL ACTIONS
{
FW_LOAD =0,
FW_VERSION GET,
OTP_IMG WRITE,
OTP_HDR WRITE,
OTP_BDA WRITE,
OTP_XTAL WRITE,
OTP BDA READ,
OTP_ADC CALIB WRITE,
SPI_IMG WRITE,
SPI ERASE,
SPI CHECK EMPTY,
EEPROM IMG WRITE,
QSPI IMG WRITE,
QSPI ERASE,
QSPI CHECK EMPTY,
QSPI BDA WRITE,
QSPI XTAL TRIM WRITE,
QSPI BDA READ,
QSPI ADC CALIB WRITE,
MEM DATA WRITE,
MEM READ,
RAM FW DOWNLOAD,
INVALID UDLL ACTION
} UDLL ACTIONS;

These are the current operations the u_d11.d11 supports. For each one of the operations a different
data structure exists. Some of these actions are only supported by the DA1458x chipset and some
by the DA1468x chipset. The DA1458x chipset does not support the QSPI actions, while the
DA1468x chipset does not support the SPI and I12C/EEPROM actions.

Further comments on the memory operation data structures can be found in the actual u di1.d11
API header file found under source\production line tool\core dlls\u dll\u dll.h orinthe
HTML pages opened by pressing the source\production line tool\help\help.html link.

7.1.1.2 Function udll_set_device_params Input Arguments

The udll set device params function takes a pointer as argument to the following data structure.

typedef struct udll device params

{

bool is active;

_U DUT NUM dut num;

uint32 t com port boot;

uint32 t com port prog;

uint8 t bd addr[BD ADDR SIZE];

_OTP _customer field OTP customer field;

uint8 t xtal trim val[XTAL TRIM SIZE];
intle t adc calib val;

uint8 t mem data[MAX MEM DATA SIZE];
_user callback udll user callback udll;

} udl lﬁde;i ce params;

bool is active;

The is active parameter enables or disables the u d11.d11 operations for the specific DUT.

~ U DUT NUM dut num;

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 40 of 99 © 2022 Renesas Electronics

LENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

The dut num parameter indicates the DUT number that corresponds to the PLT hardware DUT
connector.

uint32 t com port boot;

The com port boot parameter specifies the actual device Windows COM port.

uint32 t com port prog;

The com port prog parameter is used only by DA1458x chipsets. It specifies the Windows COM port
of the DUT that will be used during memory programming. Two COM ports can be used with different
sets of UART pins. The reason for this is to be able to use different pins between booting and SPI
Flash or EEPROM memory programming.

During device boot the UART pins can only be among the sets shown in Table 11. When a memory
is present at those pins, the programming of that memory may not be possible and a different set of
UART pins may be required. This new set of UART pins will also have a different Windows COM port
number, specified by the com port prog parameter.

Table 11: DA1458x UART Pins Selection

UART TX Pin UART RX Pin
PO_0 PO_1
PO_2 PO_3
PO_4 PO_5
PO_6 PO_7

uint8 t bd addr[BD ADDR SIZE];

The bd addr parameter specifies the BD address to be written in the DUT’s memory. For DA1458x
chipsets the BD address is written into the OTP header memory space. It will only be written when
the OTP_BDA WRITE action is used and the appropriate parameters in the udll 580 otp bda data
structure are filled in. For DA1468x chipsets the BD address can be written either to the QSPI or
OTP memory spaces. For the OTP memory space the OTP_BDA WRITE action should be used and the
appropriate parameters in the udll 680 otp bda data structure should be filled in. For the QSPI
memory, action QSPI_BDA WRITE should be used and _udll 680 gspi bda data structure should be
filled in.

The BD ADDR SIZEis defined as:
#define BD ADDR SIZE 4

~OTP customer field OTP_customer field[OTP CUSTOMER FIELD SIZE];

The OTP customer field parameter is only used by DA1458x devices. It holds the data to be written
in the DUT OTP customer header field. It was moved from the udll prog params data structure in
order to support different OTP customer field per DUT.

typedef struct OTP customer field

{
uint8 t data[OTP_585 CUSTOMER FIELD SIZE];
uintl6 t size;

} OTP customer field;

The OTP 585 CUSTOMER FIELD SIZE is defined as:
#define OTP_585 CUSTOMER FIELD SIZE 144

uint8 t xtal trim val[XTAL TRIM SIZE];

The xtal trim val parameter holds the XTAL trim value to be programmed to the DUTSs. For
DA1458x devices, the XTAL trim value can be written by the prod test 580.bin during the

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 41 of 99 © 2022 Renesas Electronics

T RENESAS

DA1458x/DA1468x Production Line Tool
Libraries

automatic XTAL trim operation. In that case this variable will not be used. If the automatic XTAL trim
operation is not used and users want to have the same XTAL trim value for all DUTSs, then this
variable needs to be filled in. In that case the XTAL trim value will be written when the OTP header is
going to be burned, using the OTP_HDR WRITE action.

For DA1468x devices the XTAL trim value is always written using the u_d11.d11 and the
uartboot.bin firmware, irrespectively if the value was edited manually or calculated using the
automatic process.

intl6 t adc calib val;

The adc calib val parameter is only used by DA14681-00 (AD) silicon based devices. It keeps the
ADC gain calibration value for each device, calculated during the ADC gain calibration test process.

uint8 t mem data[MAX MEM DATA SIZE];

This array holds generic data to be written to a specific memory according to the memory action
selected inside the _udll mem data data structure.

~user callback udll user callback udll;

The user callback udll parameter is a pointer to a user space application function that will be
called whenever the u_d11.d11 wants to update the DUT status. The function type is as follows:

typedef void(* user callback udll) (int g com port number, int status);

The g _com port number value indicates the COM port of the DUT for which the callback is made.
The status value indicates whether a u_d11.d11 operation was successful or failed (see section
7.2).

7.2 U _DLL Status Codes

The following list shows the U_DLL status codes, which are returned directly by the u_d11.d11 API
functions or added in the status parameter of the user callback udll function.

typedef enum UDLL RETURN CODES
{
UDLL SUCCESS = 0,
UDLL ACTION RESPONSE ERRCR,
UDLL UART RX TIMEOUT ERROR,
UDLL NO CRC MATCH ERROR,
UDLL PROG PARAMS ERROR,
UDLL DEVICE PARAMS ERROR,
UDLL UART WRITE ERRCR,
UDLL UART READ ERROR,
UDLL INTERNAL ERROCR,
UDLL COM PORT INIT ERROR,
UDLL COM PORT ERROR,
UDLL CANNOT ALLOCATE MEMORY,
UDLL READ FILE SIZE ERROR,
UDLL CANNOT OPEN FW FILE,
UDLL CANNOT OPEN IMAGE FILE,
UDLL UART PINS PATCH ERROCR,
UDLL INVALID DBG PARAMS,
UDLL DBG DLL ERROR,
UDLL FW DOWNLOAD START,
UDLL FW DOWNLOAD SUCCESS,
UDLL FW VERSION GET START,
UDLL FW VERSION GET SUCCESS,
UDLL SPI ERASE START,
UDLL SPI ERASE SUCCESS,
UDLL SPI CHECK EMPTY START,
UDLL SPI CHECK EMPTY SUCCESS,

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 42 of 99 © 2022 Renesas Electronics

UM-B-040

RLENESAS

DA1458x/DA1468x Production Line Tool
Libraries

UDLL SPI WRITE START,
UDLL_SPI WRITE SUCCESS,
UDLL_SPI_WRITE ERROR,
UDLL_EEPROM WRITE START,
UDLL_EEPROM WRITE SUCCESS,
UDLL_EEPROM WRITE ERROR,
UDLL _OTP WRITE START,
UDLL OTP WRITE SUCCESS,
UDLL_OTP WRITE ERROR,
UDLL_OTP HEAD WRITE START,
UDLL_OTP HEAD WRITE SUCCESS,
UDLL_OTP HEAD WRITE ERROR,
UDLL_OTP_BD ADDR WRITE START,
UDLL OTP BD ADDR WRITE SUCCESS,
UDLL,_OTP BD ADDR WRITE ERROR,
UDLL_OTP BD ADDR READ START,
UDLL_OTP BD ADDR READ SUCCESS,
UDLL OTP BD ADDR CMP SUCCESS,
UDLL OTP BD ADDR CMP ERROR,
UDLL,_OTP XTAI, TRIM WRITE START,
UDLL OTP XTAL TRIM WRITE SUCCESS,
UDLL _OTP XTAL TRIM WRITE ERROR,
UDLL OTP ADC CALIB WRITE START,
UDLL OTP ADC CALIB WRITE SUCCESS,
UDLL_OTP _ADC CALIB WRITE ERROR,
UDLL_OTP CHECK EMPTY START,
UDLL_OTP CHECK EMPTY SUCCESS,
UDLL OTP CHECK SAME DATA SUCCESS,
UDLL OTP CHECK EMPTY ERROR,
UDLL_QSPI_WRITE START,
UDLL_QSPI WRITE SUCCESS,
UDLL_QSPI WRITE ERROR,
UDLL QSPI ERASE START,
UDLL QSPI ERASE SUCCESS,
UDLL_QSPI CHECK EMPTY START,
UDLL _QSPI CHECK EMPTY SUCCESS,
UDLL _QSPI_CHECK EMPTY ERROR,
UDLL_QSPI BD ADDR WRITE START,
UDLL QSPI BD ADDR WRITE SUCCESS,
UDLL,_QSPT BD ADDR WRITE ERROR,
UDLL_QSPI BD ADDR READ START,
UDLL _QSPI BD ADDR READ SUCCESS,
UDLL QSPI BD ADDR CMP SUCCESS,
UDLL_QSPI BD ADDR CMP ERROR,
UDLL, QSPT XTAL TRIM WRITE START,
UDLL_QSPI XTAL, TRIM WRITE SUCCESS,
UDLL QSPI XTAL TRIM WRITE ERROR,
UDLL QSPI ADC CALIB WRITE START,
UDLL QSPI ADC CALIB WRITE SUCCESS,
UDLL_QSPI_ADC CALIB WRITE ERROR,
UDLL_MEM DATA WRITE START,
UDLL MEM DATA WRITE SUCCESS,
UDLL_MEM DATA WRITE ERROR,
UDLL_MEM READ START,
UDLL _MEM READ SUCCESS,
UDLL RAM FW DOWNLOAD START,
UDLL RAM FW DOWNLOAD SUCCESS,
UDLL RAM FW DOWNLOAD ERROR,

} UDLL RETURN CODES;

User Manual

Revision 4.3

17-Jan-2022

CFR0012-00 43 of 99

© 2022 Renesas Electronics

RENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

7.3 U_DLL API Details

The U_DLL API function arguments, data structures, enumerations, return codes and other details
can be found in the API header file source\production line tool\core dlls\u dll\u dll.h, or
in the HTML based help pages loaded after pressing the source\production line tool\help\
help.html link.

7.4 U _DLL Operation Example
Below, a step-by-step example is given to illustrate how a user can set up and operate the U_DLL.

1. U_DLL initialization
Function call: U DILL API void udll init (void);
2. U_DLL programming parameter setup
Function call: U DLL. APT int udll set prog params(udll params *udll params t);

In: typedef struct udll params
Out: U DLL status codes

The user should fill the ud11 params data structure with the appropriate parameters. When RF
tests and XTAL trimming are required the Fw_LOAD action should be used and depending of the
device chipset either the udll 580 fw load orthe udll 680 fw load data structures should
be filled.

Let us consider that a DA14580 device is going to be tested. A sample function is given next to
show how the udll set prog params function can be initialized with the appropriate parameters
in order to download the prod test 580.bin firmware.

int example udll prog params (void)
{

int ret = UDLL SUCCESS;

~udll params udll params;

memset (¢udll params, 0, sizeof(udll params));

/* Set the appropriate parameters for the prod test 580.bin firmware download
to a DAl14580 device with UART baud rate at 115200 and UART GPIO pins
TX=P0 4, RX=P0 5.

*/

udll params.dut ic = U DUT IC 580;

udll params.params 580.baud rate = 115200;

udll params.params 580.dut ic = U DUT IC 580;

udll params.params 580.mem.action = FW LOAD;

udll params.params 580.mem.fw load.action = FW LOAD;

udll params.params 580.mem.fw load.en = true;

strcpy (udll params.params 580.mem.fw load.fw path, "prod test 580.bin");

udll params.params 580.mem.fw load.uart boot pins = P04 P05;

udll params.params 580.mem.fw load.uart change pins = false;

udll params.params 580.mem.fw load.uart pins.uart port tx = 0;

udll params.params 580.mem.fw load.uart pins.uart pin tx = 4;

udll params.params 580.mem.fw load.uart pins.uart port rx = 0;

udll params.params 580.mem.fw load.uart pins.uart pin rx = 5;

ret = udll set prog params (&udll params);

if (ret != UDLL SUCCESS) {
printf ("Error in udll set prog params with return code [%d].\n", ret);
return -1;

}

return 0;

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 44 of 99 © 2022 Renesas Electronics

UM-B-040

RENESAS

DA1458x/DA1468x Production Line Tool

Libraries
}

3. U_DLL device parameter setup

Function call: U DLL. APT int udll set device params(udll device params
*udll device params);

In: typedef struct udll device params
Out: U DLL status codes

The next step is to set the appropriate device parameters in the U_DLL by using the

udll set device params function. Let’s consider that we have 3 devices active connected in
the PLT DUT connectors 1, 2 and 16. We will need to provide the device parameters for these
three devices. Next, an example code is given.

int example udll device params (void)

{
int
int

ret = UDLL SUCCESS;
i=0;

~udll device params udll device params;

memset (¢udll device params, 0, sizeof(udll device params));

/*

for

}

Set the device parameters for all 16 DUTs.

Activate only DUTs 1, 2 and 16.

The rest of the DUTs should be set to false.

The DUTs COM ports and BD addresses are stored in the com port

and bd addr tables respectively.

Also, the device callback udll function is used as a callback function
to get the DUT results during operations.

Variables com port boot and com port prog have the same COM port as

we will not change ports during memory programming. */

(1=0; i<MAX UDLL DEVICES; i++)
memset (§¢udll device params, 0, sizeof(udll device params));

if (=0 [l (==1) Il (1 ==15))
udll device params.is active = true;
else
udll device params.is active = false;

udll device params.dut num = (U DUT NUM) i+1;

udll device params.com port boot = com port[i];

udll device params.com port prog = com port[i];

memcpy (udll device params.bd addr, bd addr[i], BD ADDR SIZE);

udll device params.user callback udll = device callback udll;

ret = udll set device params (&udll device params);

if (ret != UDLL SUCCESS) {
printf ("Error in udll set device params with ret code [%d].\n", ret);
return -1;

}

return 0;

}

4. U _DLL start programming
Function call: U DLL. APT int udll start prog(void);

Calling this function will start the U_DLL operation. The U_DLL will perform the following steps.

a. Download the firmware indicated by the udll params.params 580.mem.fw load.fw path
parameter to the active DUTs system RAM.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00

45 of 99 © 2022 Renesas Electronics

LENESANS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

b. Return a status code per DUT to indicate whether the firmware download was successful.
The status code is returned through the device callback function. The callback function
pointer was initialized as described in section 7.1.1.2.

c. Return a status code per DUT to indicate whether the operation was successful or not. The
status code is returned through the device callback function. The callback function pointer
was initialized as described in section 7.1.1.2.

5. U_DLL close
Function call: U DLL. APT int udll close (void);

In: void
Out: U DLL status codes

Calling this function will release the COM ports and the U_DLL resources.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 46 of 99 © 2022 Renesas Electronics

LENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

8 P_DLL

The P_DLL dynamic link library provides the necessary API functionality to perform basic device
tests, such as RF tests, crystal (XTAL) frequency trimming, audio tests, GPIO tests, sensor tests, or
BLE scan tests. The p d11.d11 can set the DUTSs in the following RF test modes: continuous packet
TX, continuous RX or normal BLE central scanner. In continuous RX operation the DUT can report
packet reception statistics and RSSI values.

For the p_d11.d11 to be operational the production test firmware (prod test 580.bin,

prod test 58l.bin, prod test 582.bin, prod test 585.bin, prod test 681 00.bin,
prod test 681 0l.bin Or prod test 683 00.bin) must be downloaded to the DUTssystem
RAM. This can be done using the u_d11.d11 commands described in section 7.

File source\production line tool\core dlls\p dll\p dll.h contains all necessary API
information. It can be included as is in any user project.

8.1 P_DLL API Functions

P_DLL has the following user accessible functions:

P DLL API int pdll init(void);

P DLL API int pdll dbg init(dog params *dbg params t);

P DLL API int pdll dbg close(void);

P DLL API int pdll set device params(pdll device *pdll device t);
P DLL API int pdll perform test(pdll test id test id);

A short description of each API function follows.

P_DLL_API void pdll_init(void)

The pdll init API function initializes the p d11.d11. It should be called before any other operation
with the p d11.d11 library. It always returns PDLL, NO ERROR.

P _DLL_APIlint pdll_dbg_init(_ dbg _params *dbg_params_t);

The pdll dbg init API function initializes the p d11.d11 debug print session. The p d11.d11 has a
dynamic link to the dog d11.d11 such that the debug API is available to be used. The function will
return PDLL. NO ERROCR if no errors were reported, PDLL DBG DLL ERRCR if an error occurred during the
dog d11.d11 dynamic linking or PDLL. _INVALID DBG PARAMS if the dog params t contains invalid
parameters.

P_DLL_APIlint pdll_dbg_close(void);

The pdll dbg close API function closes the p d11.d11 debug session. It should be called before
the p d11.d11 library is unloaded, otherwise the debug resources will not be freed and memory leaks
will exist. The function will return PDLL, NO ERRCR if no errors were reported or PDLL, DBG DLL ERROCR if
an error occurred during dog_d11.d11 unloading.

P_DLL_APIlint pdll_set _device _params(_pdll_device *pdll_device_t)

With the pd11 set device params API function users can set a single device’s parameters. Up to 16
devices are supported. Therefore, the host application should call this function for as many active
devices exist in order to set the parameters for all the devices to be tested.

The device parameters include the COM port, the UART baud rate, the frequency of the RF tests, the
type of the RF test (continuous packet TX, continuous RX or even scan tests), the XTAL trim input
reference pulse GPIO, a user callback function that will be called every time a process finishes and
other values necessary to perform specific tests. Please check section 8.1.1 for a full description of
the input parameters. The function returns PDLL NO ERROR is no errors occurred, PDLL PARAMS ERROR

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 47 of 99 © 2022 Renesas Electronics

RENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

if a pdll device tinput parameter is not valid or PDLL, CANNOT ALLOCATE MEMORY if no memory can
be allocated to store the new device parameters.

P_DLL_API int pdll_perform_test(_pdll_test_id test_id)

By calling the pd11 perform test API function all the devices that have been set up (when the
pdll set device params function was called) will start operating with the test specified from the
enumeration parameter pdll test id. It sends test progress results to the upper layer software
using callbacks. The callback function is given in pdll device t->user callback pdll when the
pdll set device params function is called.

The P DLL API is defined as follows.

#define P DLL EXPORTS

#ifdef P DLL EXPORTS

#define P DLL API declspec (dllexport)
#else

#define P DLL API declspec (dllimport)
#endif

The declspec (dllexport) keyword automatically places the exported names to the .1ib file during
compilation. The .1ib file can be used when a static DLL link is required. The declspec (d11import)
keyword is used in header files that the DLL in order to import DLL public data and objects.

8.1.1 P_DLL Function Input Arguments

The P_DLL function parameters include a data structure and an enumeration. The data structure
specifies the device test parameters and the enumeration the test to be performed.

In the next sections the function parameters are described in detail.

8.1.1.1 Function pdll_set _device_params Input Arguments
The pdll set device params function takes a pointer as argument to the following data structure:

typedef struct pdll device
{

bool is active;

_p dut ic dut ic;

uint32 t com port boot;
uint32 t com_port prog;

_uart pins uart pins;

uint32 t baud rate;

_user_callback pdll user callback pdll;
pdll test data test;

}Apdilidevice;

bool is active;
The is active parameter enables or disables the device under test.
~p dut ic dut ic;

The dut ic parameter contains the type of the device to be tested. The following enumeration shows
the valid options for this parameter.

typedef enum p dut ic
{
P DUT IC DA14580 =
P DUT IC DA14581
P DUT IC DA14582
P DUT IC DA14583
P DUT IC DA14585 =

~

~

([l
S W e o
~

~

~

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 48 of 99 © 2022 Renesas Electronics

Eon LENESAS

DA1458x/DA1468x Production Line Tool
Libraries

P DUT IC DA14586 =

P DUT IC DA14681 00 =

P DUT IC DAl4681 01 =

P DUT IC DA14683 00 =

P DUT IC DA15101 00 =

P DUT IC INVALID =
} p dut ic;

~

~

~

= O 0 J o Ul
~

o~

uint32 t com port boot;

The com port boot parameter specifies the actual device Windows COM port.

uint32 t com port prog;

The com port prog parameter specifies the device Windows COM port that will be used during tests.
P_DLL has the option to use two different sets of UART pins. It can only be used in DA1458x
devices.

During booting the UART pins can only be among the ones shown in Table 11 for DA1458x devices.
However, these pins may also be connected to other peripherals that need to interact with during
tests. For example, the audio codec integrated in DA14582 is using the GPIO PO_5 as 16MHz input
clock source. So, PO_5 GPIO cannot be used if we need to test the audio. Therefore, the p d11.d11
software will issue a command to the production test firmware to change the UART GPIO pins to
another pair. The second pair of DUT GPIOs should be connected to the next PLT hardware DUT
connection (e.qg. if first DUT UART is connected to PLT DUT 11, the second should be connected to
PLT DUT connection 12), which eventually has a different com port number. So, the new set of
UART pins will also have a different Windows COM port number as well, specified by the

com port prog parameter.

~uart pins uart pins;

The vart pins data structure holds the second UART GPIO pins as described above. The data
structure is the following:

typedef struct uart pins

{
uint8 t uart port tx;
uint8 € uart pin tx;
uint8 t uart port rx;
uint8 € uart pin rx;

} uart pins

uint32 t baud rate;

The baud rate parameter specifies the baud rate for the UART communication between the
p_dll.d1l and the DUT. Currently, this parameter only supports a value of 115200 and users should
use the following definition when setting the p d11.d11 baud rate.

#define PDLL UART BAUD RATE 115200

~user callback pdll user callback pdll;

The user callback pdll parameter is a pointer to a user application function that will be called
whenever the p_d11.d11 wants to update the DUT status.

The function type and data structure are defined as follows:

typedef void (* user callback pdll) (int com port number, int status, rx stats
*rx stats t);

® The com port nurber holds the COM port of the device. It is used as an index to indicate for
which device the callback belongs.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 49 of 99 © 2022 Renesas Electronics

LENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

® The status value indicates whether a p_d11.d11 operation was successful or failed. The status
value can be one among PDLL RETURN CODES.

e The rx stats tvalue is a pointer to a structure that contains the test results. Table 12 gives a
more detailed explanation of the rx_stats data structure.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 50 of 99 © 2022 Renesas Electronics

UM-B-040

LENESANS

DA1458x/DA1468x Production Line Tool

Libraries

typedef struct rx stats

{
uint32 t
uint32 t
uint32 t
uintlé t
uint8 t
float
uint8 t

rssi;

pkts crc ok;
pkts sync err;
pkts crc err;
xtal trim val;
custom data;

periph bd addr [MAX DEVS TO SCAN] [BD ADDR SIZE];

~pdll fw versions pdll fw versions;

}_rx stats;

Table 12: rx_stats Callback Parameters

Parameter Description
uint32 t status; Contains the p d11.d11 return status codes.
uint32 t pkts_crc ok; Contains the received packet statistics when the device
uint32 © pkts sync err; operates in the start pkt rx stats mode.
uint32 t pkts crc err;
uintl6 t xtal trim val; Returns the XTAL trimming value calculated during the
xtal trim test operation.
uint8 t custom data; Returns the custom data during the custom test operation.
float rssi; Returns the average RSSI found when the device operates in
the start pkt rx stats mode.
uint8 t Contains the BD addresses found during the start scan test.

periph bd addr[MAX DEVS TO SCAN]
[BD ADDR SIZE];

The p_d11.d1l will only return BD addresses that were initially
passed to the pdll device structure.

_pdll fw versions pdll fw versions;

The p_d11.d1l and production test firmware versions for the
Golden Unit and the devices under test.

_pdll test data test;

The test parameter is a union of data structures. Each data structure holds the settings of each test.
The format of the union is shown next.

typedef union pdll test data
{
_pdll test id
_pdll rf test
_pdll audio test
_pdll audio tone
_pdll custom test
_pdll rdtester
_pdll scan test
_pdll xtal test
_pdll gpio toggle
_pdll adc_read
_pdll sensor test
_pdll otp xtal trim read
_pdll sleep test
_pdll uart loop test
} pdll test data;

id;

rf;

audio;

audio tone;
custom;
rdtester;
scan;

xtal trim;
gpio toggle;
adc_read;
sensor;

otp xtal trim read;
sleep;

uart loop;

More details on the test data structures can be found in the p_d11.d11 APl include file found under
production line tool\core dlls\p dll\p dll.h. Here a brief description will be given.

User Manual

Revision 4.3 17-Jan-2022

CFR0012-00

51 of 99 © 2022 Renesas Electronics

UM-B-040

RENESAS

DA1458x/DA1468x Production Line Tool
Libraries

_pdll test id id;

The id parameter is an enumeration indicating the p d11.d11 operation to be performed. The
following shows the current supported operations.

typedef enum pdll test id

{

dut com init =0,
cont pkt tx =1,
pkt tx =2,
stop pkt tx =3,
start pkt rx stats = 4,
stop pkt rx stats =5,
custom test = 6,
xtal trim =1,
xtal trim val read =8,
scan_test =9,
rdtester init = 10,
rdtester uart connect =11,
rdtester uart loop =12,
rdtester vbat uart ctrl =13,
rdtester vpp ctrl = 14,
rdtester rst pulse = 15,
rdtester xtal pulse uart 16,
rdtester xtal pulse =17,
rdtester pulse width = 18,
uart resync =19,
audio test = 20,
audio tone =21,
gpio toggle = 22,
adc read = 23,
sensor_ test = 24,
otp xtal trim read = 25,
rdtester vbat ctrl = 26,
sleep =27,
uart loop = 28,
INVALID TEST =29

} pdll test id;

Table 13: P_DLL Supported Operations

Command

Description

dut com init

Initializes the DUT COM ports.

Direct Test Mode (DTM) continuous ‘packet transmit’ command as specified

t pkt t
cont_pit_tx by the BLE Core standard.
Dialog custom ‘packet transmit’ command. Transmits a specific number of
pkt tx
— packets.
stop pkt tx Direct Test Mode (DTM) command to stop the continuous packet

transmission, as specified by the BLE Core standard.

start pkt rx stats

Dialog custom packet reception command. Receives packets from a specific
BLE channel and returns extended statistics that include the RSSI level of
the received signal.

stop pkt rx stats

Dialog custom command to stop the custom packet reception operation
(start pkt rx stats).

custom test

A custom test command where users can add their own tests.

xtal trim Automatic XTAL trim operation.
User Manual Revision 4.3 17-Jan-2022
CFR0012-00 52 of 99 © 2022 Renesas Electronics

LENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

Command Description

xtal trim val read

Returns the value found from the automatic XTAL trim operation.

scan test

BLE scan test. Usually performed by the GU to scan for the DUTSs.

rdtester init

PLT hardware CPLD initialization.

rdtester uart connect

PLT hardware, CPLD. Enable the UART connection between the PLT DUT
connector and the FTDI. The UART lines go through the CPLD so they can
be disconnected to avoid current leakages thus having correct power on
reset operation.

rdtester uart loop

PLT hardware, CPLD. Enable the UART loopback mode in the CPLD. The
PLT software sends a word to a specific DUT UART and the CPLD echoes
that word back to the PLT application. Using this procedure, the PLT
application can identify which Windows COM port has its DUT.

rdtester vbat ctrl

PLT - CPLD. Enable/disable the DUT VBAT at DUT connector pin 1.

rdtester vpp ctrl

PLT - CPLD. Enable/disable VPP at DUT connector pin 8 for OTP burn.

rdtester rst pulse

PLT hardware, CPLD. DUT reset pulse at PLT DUT connector pin 10.

rdtester xtal pulse uart

PLT hardware, CPLD. Sends a reference pulse in the DUT UART RX pin 9
for XTAL trim calibration.

rdtester xtal pulse

PLT hardware, CPLD. Sends a reference pulse in the PLT DUT connector
pin 2 for XTAL trim calibration.

rdtester pulse width

PLT hardware, CPLD. Sends a command to the CPLD to set the size of the
XTAL trim reference pulse.

uart resync

Sends a UART resync command to the DUT for UART resynchronization. If
the XTAL trim pulse is given in the DUT UART RX pin, the DUT UART loses
synchronization and returns frame errors. This P_DLL command will send
characters ‘RW!" to the DUT, which will resync the UART controller.

audio test

Only available in DA14582 devices. It places the DUT in audio test mode.
The DUT will send captured audio data to the PLT software through UART.

audio tone

Play an audio tone. This command is send to the Golden Unit to start playing
a 4KHz audio tone. The DUTs previously configured for audio test, will
start listen to that tone.

gpio toggle

This test toggles a specific DUT GPIO.

adc_read

DA14681-00 ADC read samples, used in ADC gain calibration procedure.

sensor test

DA14580, DA14581, DA14582 and DA14583 peripheral sensor testing. It can
test sensors by reading their ID. It can also test interrupt and data ready
(DRDY) GPIOs.

otp xtal trim read

Reads the OTP XTAL trim value in order not to overwrite it in case of device
retesting.

Sets the device into Deep or Extended sleep. Used for current

1
S-SeP measurements.
Sets the device into UART loop mode. Whatever data it receives the device
uart loop will send them back to the user. This test is used for characterizing the PLT

to DUT physical connections.

_pdll rf test rf;

The rf data structure holds the parameters for the supported RF tests. The start pkt rx stats
and pkt tx p dll.dll library actions are using this data structure.

~pdll audio test audio;

The audio data structure holds the parameters for the audio test supported only by the DA14582

devices.
User Manual Revision 4.3 17-Jan-2022
CFR0012-00 53 of 99 © 2022 Renesas Electronics

o0 LENESAS

DA1458x/DA1468x Production Line Tool
Libraries

_pdll audio tone audio tone;

The audio tone data structure holds the parameters for generating an audio tone. It is used by the
Golden Unit to generate a 4 kHz tone for the DA14582 audio test.

_pdll custom test custom;

The custom data structure holds the data of a generic custom test. The custom test sends a single
byte to the DUT running the production test firmware. The firmware gets this byte and sends it back
to the PLT host application. PLT produces a success if the data byte received is the same as the one
it sent. Customers can add their own test in the production test firmware and trigger it using the
custom test operation.

_pdll rdtester rdtester;
The rdtester data structure holds information for the Golden Unit CPLD control.
_pdll scan test scan;

The scan data structure holds scan test device parameters. The scan test is supported in both
DA1458x and DA1468x devices. For the test to succeed the BD addresses should have been burned
in the appropriate memory location such that the devices to start advertise with the BD address given
by the PLT.

_pdll xtal test xtal trim;

The xtal trimdata structure holds the parameters for the XTAL calibration procedure.
_pdll gpio toggle gpio toggle;

The gpio toggle data structure holds the parameters for the GPIO/LED test procedure.
_pdll adc read adc read;

The adc read data structure holds the parameters for the DA14681-00 ADC gain calibration
procedure.

_pdll sensor test sensor;
The sensor data structure holds the parameters required for DA1458x peripheral sensor testing.
~pdll otp xtal trim read otp xtal trim read;

The otp xtal trim read data structure holds the parameters required to read the XTAL trim value
from the OTP memory.

_pdll sleep test sleep;

The sleep data structure holds the parameters required for setting the device into sleep mode, used
for current measurements.

8.1.1.2 Function pdll_perform_test Input Arguments

The function pdll perform test takes as argument the enumeration described in Table 13.

As already described, this enumeration indicates the actual test to be performed. Example: when
calling the function pd11l perform test(cont pkt tx), all the devices with
pdll device params.pdll prod test = cont pkt tx will start transmitting.

8.2 P_DLL Status Codes

The following list shows the p d11.d11 status codes, which are returned directly by the DLL API
functions or added in the status parameter of the user callback pdll function.

typedef enum PDLL RETURN CODES

{
PDLL NO ERROR = 0,
PDLL PARAMS ERROR,

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 54 of 99 © 2022 Renesas Electronics

UM-B-040

RLENESAS

DA1458x/DA1468x Production Line Tool
Libraries

PDLL RX TIMEOUT,
PDLL TX TIMEOUT,
PDLL_UNEXPECTED EVENT,
PDLL_CANNOT ALLOCATE MEMORY,
PDLL_INTERNAL ERROR,
PDLL_THREAD CREATION ERROR,
PDLL DBG DLL_ERROR,
PDLL_INVALID DBG PARAMS,
PDLL_COM PORT START,
PDLL_COM PORT OK,
PDLL_COM PORT FAILED,

PDLL_FW VERSION GET START,
PDLL_FW VERSION GET OK,
PDLL_RDTESTER INIT START,
PDLL_RDTESTER INIT OK,
PDLL_RDTESTER UART CONNECT START,
PDLL_RDTESTER UART CONNECT OK,
PDLL_RDTESTER UART LOOPBACK START,
PDLL_RDTESTER UART LOOPBACK OK,
PDLL_RDTESTER VBAT CNTRL START,
PDLL_RDTESTER VBAT CNTRL OK,
PDLL_RDTESTER VPP CNTRL_START,
PDLL_RDTESTER VPP CNTRL OK,
PDLL_RDTESTER RST PULSE START,
PDLL_RDTESTER RST PULSE OK,
PDLL_RDTESTER UART PULSE START,
PDLL_RDTESTER UART PULSE OK,
PDLL_RDTESTER XTAL PULSE START,
PDLL_RDTESTER XTAL PULSE OK,
PDLL, RDTESTER PULSE WIDTH START,
PDLL_RDTESTER PULSE WIDTH OK,
PDLL_RDTESTER INVALID COMMAND,
PDLL_XTAL TRIM START,

PDLL XTAL TRIM OK,
PDLL_XTAL, TRIM OUT OF RANGE,
PDLL_XTAL TRIM FREQ CAL NOT CONNECTED,
PDLL_XTAL TRIM OTP WRITE FATILED,
PDLL,_XTAL TRIM READ START,
PDLL_XTAL TRIM READ OK,
PDLL_UART RESYNC START,
PDLL_UART RESYNC OK,

PDLL_UART RESYNC FAILED,
PDLL_CONT PKT TX START,
PDLL_CONT PKT TX STARTED OK,
PDLL_HCI TEST STOP START,
PDLL_HCI TEST STOPPED OK,

PDLL PKT TX START,
PDLL,_PKT TX STARTED OK,
PDLL_PKT TX ENDED OK,
PDLL_PKT RX STATS START,
PDLL_PKT RX STATS STARTED OK,
PDLL,_PKT RX STATS STOP START,
PDLL PKT RX STATS STOPPED OK,
PDLL PKT RX START,
PDLL_PKT RX STARTED OK,
PDLL_CUSTOM ACTION START,

PDLL CUSTOM ACTION OK,

PDLL BLE SCAN START,

PDLL BLE SCAN OK,
PDLL_AUDIO TONE START,

User Manual Revision 4.3

17-Jan-2022

CFR0012-00 55 of 99

© 2022 Renesas Electronics

T RENESAS

DA1458x/DA1468x Production Line Tool
Libraries

PDLL_AUDIO TONE STARTED OK,
PDLL_AUDIO TONE STOP,
PDLL,_AUDIO TONE_STOPPED OK,
PDLL_AUDIO TEST START,
PDLL_AUDIO TEST ALREADY ACTIVE,
PDLL_AUDIO TEST STARTED OK,
PDLL AUDIO TEST STOP,
PDLL_AUDIO TEST STOPPED OK,
PDLL_AUDIO TEST PASSED,
PDLL_AUDIO TEST FATLED,
PDLL_AUDIO TEST INVALID COMMAND,
PDLL_GPIO TOGGLE START,
PDLL_GPIO TOGGLE FINISHED OK,
PDLL_ADC READ START,
PDLL_ADC READ OK,
PDLL_SENSOR TEST START,
PDLL SENSOR TEST OK,
PDLL OTP XTAL TRIM READ START,
PDLL_OTP XTAL TRIM READ OK,
PDLL_SLEEP START,
PDLL_SLEEP OK,
PDLL _UART LOOP START,
PDLL _UART LOOP FAILED,
PDLL UART LOOP OK,

} PDLL RETURN CODES;

#define PDLL HCI STANDARD ERROR CODE BASE 1000

The PDLL HCI STANDARD ERROR CODE BASE return code is used when the production test firmware
returns a standard HCI error code message. The P_DLL will add the standard HCI error code
returned by the firmware to the PDLL, HCI STANDARD ERROR CODE BASE. The final return code value
will be between 1000 and 1063.

8.3 P_DLL API Details

P_DLL API function arguments, data structures, enumerations, return codes and other details can be
found in the API header file source\production line tool\core dlls\p dll\p dll.hor inthe
HTML based help pages loaded after pressing the source\production line tool\help\help.html
link.

8.4 P_DLL Operation Example

Below, a step-by-step example is given to briefly illustrate how users could set up and operate the
P_DLL. Itis assumed that the prod test 580.bin firmware has already been downloaded to the
DUT’s system RAM using the U_DLL procedure.

8.4.1 Simple RX-TX Operation Example
1. P_DLL initialization
Function call: P DLL APT int pdll init (void);
2. P_DLL device parameter setup
Function call: P DILL APT int pdll set device params(pdll device *pdll device t);

In: typedef struct pdll device
Out: P DLL status codes

This function should be called once for every device to be tested. To set up a simple RX-TX test
using two DUTS, this function should be called twice: once for each device. The first device
should be set to cont pkt tx and the second to start pkt rx stats.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 56 of 99 © 2022 Renesas Electronics

LENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

3. P_DLL start testing
Function call: P DILL APT int pdll perform test(pdll prod tests pdll prod test);
In: typedef enum pdll prod tests
Out: P DLL status codes
Calling this function will instruct all DUTs with the specified pd11 prod test to start the test.
The P_DLL will then call the user callback pdll function to report the status of each device.
For a simple RX-TX test this function should be called twice. Once to start the DUTs that have
pdll device params.test.id = cont pkt txand a second time for the DUTs that have
pdll device params.test.id = start pkt rx stats;
These two calls will be as follows:
pdll perform test (start pkt rx stats);
pdll perform test (cont pkt tx);

4. P_DLL stop testing
Function call: P DLL APT int pdll perform test(pdll test id test id);
In: typedef enum pdll prod tests
Out: P DLL status codes
Calling this function will instruct each DUT with the specified pd11 prod test to stop the test.
The P_DLL will then call the user callback pdll function to report the status of each device.
When the device operates in start pkt rx stats mode, the user callback function will return
with the RX statistics structure filled. The two function calls to stop a simple RX-TX test are:
pdll perform test (stop pkt tx);
pdll perform test (stop pkt rx stats);
Note: Some tests terminate without requiring an extra command to be received. For example, the
pkt tx test will send a specific number of packets and then terminate. In that case, the user does
not have to send any special command to stop the test.

5. P_DLL re-initialization
Function call: P DLL APT int pdll init (void);
The pdll init function should be called again at the end of the tests to release the COM ports
and all other P_DLL resources.

8.4.2 Scan Operation Example

The following procedure explains how to perform a scan test on a single device. This test is actually
meant to be performed by a Golden Unit device in order to scan for advertising peripheral DUTSs.

1. P_DLL initialization
Function call: P DLL APT int pdll init (void);
2. P_DLL device parameter setup
Function call: P DILL APT int pdll set device params(pdll device *pdll device t);

In: typedef struct pdll device
Out: P DILL status codes.

This function should be called once for the GU device. Two important parameters should be set
in the pdll device params structure: pdll prod test and periph bd addr

A code snippet could be as follows:

_pdll device pdll device;

pdll device params.is active = 1;

pdll device params.dut ic = P DUT IC DA14580;

pdll device params.com port boot = 10; // The GU com port.

pdll device params.com port prog = 10; // The GU com port.

pdll device params.baud rate = 115200;

pdll device params.user callback pdll = user callback pdll;
pdll device params.test.id = start scan;

// fill in the bd addresses to be found from a local array.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 57 of 99 © 2022 Renesas Electronics

RENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

for (i=0; i<MAX DEVS TO SCAN; i++) {
memcpy (pdll device params.test.periph bd addr[i], bd addr([i], BD ADDR SIZE);
}

pdll set device params (§pdll device params);
3. P_DLL start test
Function call: P DLL, APT int pdll perform test(pdll test id test id);

In: typedef enum pdll test id
Out: P DLL status codes

Calling this function will instruct each DUT with the specified pd11 prod test to start the test.
From step 2 onwards, only the GU should be set to perform the scan test. The P_DLL will then
call the user callback pdll to report the status of the BD addresses that were found.

The following function call will start the scanning test:
pdll perform test (start scan);

No stop command is required. The user callback pdll callback function will be called as soon
as the BD addresses are found. In case not all addresses are returned to the result parameter
(rx stats.periph bd addr) of the callback function, steps 1 to 4 can be repeated.

4. P_DLL re-initialization
Function call: P DLL API int pdll init (void);

The pdll init function should be called again at the end of the tests to release the COM ports
and all other P_DLL resources.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 58 of 99 © 2022 Renesas Electronics

RENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

9 PROD_LINE TOOL DLL

The prod line tool dll.dll, hereafter called PLTD, is a top level DLL that uses most of the other
DLLs to run all appropriate device tests. It actually combines various state machine actions for each
test to be performed under a simple API. Additionally, it is responsible for creating logs for every
device under test as well as the golden unit.

File source\production line tool\core dlls\prod line tool dll\prod line tool dll.h
contains all necessary API information. It can be included as is in any user project.

9.1 PROD_LINE_TOOL_DLL API Functions

PLTD has the following user accessible functions:

PLTD API int pltd init(int gu com);

PLTD API void pltd close (void);

PLTD API int pltd set device params(pltd device params *pltd device params t);
PLTD API int pltd set general params(pltd general params *pltd general params t);
PLTD APT int pltd start (void);

PLTD API int pltd com port enum(uint3Z t *com port dut);

PLTD API int pltd GU com find(int *gu com port);

PLTD API int pltd GU check LED(void);

PLTD API int pltd dog init(pltd dbg params *pltd dog params t);

PLTD API char *pltd get volt meter instr names (char *prev name);

PLTD APT char *pltd get ble tester instr names (char *prev name);

PLTD API char *pltd get ammeter instr names (char *prev name);

PLTD API char *pltd get temp meas instr names (char *prev name) ;

PLTD API int pltd vbat uart set(bool start, uintl6 t duts);

PLTD API int pltdguartgcomsgtest(pltd uart test *uart _test);

PLTD APT pltd versions *pltd get versions (void);

A short description of each API function follows.

PLTD_API int pltd_init(int gu_com)

The pltd init API function initializes the PLTD library. It should be called before any other
operation with the PLTD library. This function returns PLTD ERROCR if a failure occurs or PLTD SUCCESS
otherwise.

PLTD_API void pltd _close(void)

The pltd close API function should be called after the pltd start function has returned. It will
close the u dl1.d11 and p dl1.d11 libraries; close all open handles and free any acquired
resources. This API function returns PLTD) ERROR if a failure occurs or PLTD SUCCESS otherwise.

PLTD_API int pltd_set_device params(_pltd_device_params *pltd_device params_t)

With the pltd set device params API function users can set the parameters for all DUTs. Up to 16
devices are supported. The host application should use the following pre-processor definition for the
maximum allowable devices:

#define PDLT MAX DEVICES 16
The pltd device params t parameters are specific for each DUT. This function should be called
once for each of the 16 devices, even if the device is disabled. The parameters are explained in

detail in section 9.1.1. This API function returns PLTD WRONG DEV_PARAMS when an input parameter is
invalid. It returns PLTD ERROR in any other failure or PLTD SUCCESS otherwise.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 59 of 99 © 2022 Renesas Electronics

LENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

PLTD_API int pltd_set_general_params(_pltd_general_params *pltd_general_params_t)

The pltd set general params API function sets specific parameters that affect all DUTs. These
parameters are the actual parameters that tell which tests will be performed, with what settings and
what memory actions are going to be executed. The parameters are mainly used to program the

u dll.dll, the p dl11.d11 and the instrument libraries. This API function returns

PLTD WRONG DEV_PARAMS when an input parameter is invalid. It returns PLTD ERROR in any other
failure or PLTD SUCCESS otherwise.

PLTD_API int pltd_start(void)

The pltd start API function will perform all configured tests and memory programming actions in
one sequence depending on the general parameter settings described before. It will update the
device status on the higher layer software blocks (CFG, GUI or CLI) using callbacks. It will return
when all device tests and memory actions have finished. It will return PLTD SUCCESS when no system
error occurred. If a test using external instrument is active and an error occurred during instrument
initialization face the function will return PLTD INSTR ERROR.

PLTD_API int pltd_com_port_enum(uint32_t *com_port_dut);

The pltd com port enum API function performs loopback in the PLT CPLD [1] hardware in order to
identify the Windows COM port assigned to each DUT. This process is automatically being done in
the first test execution after the start of the tool. However, it may be a case where the Windows re-
enumerates the COM ports and therefore devices may take different COM port numbers. So, users
can either restart the application or manually run the COM port enumeration to find the new DUT
COM ports. When this APl is used by the CFG or the CLI applications the returned DUT COM ports
are saved in the params.xml file. Then, each time the test execution is started the DUT COM ports
will not be enumerated again since the ports previously saved in the params.xml file will be used.
Doing so, a lot of time can be saved when the CLI is used in batch commands. The API function
returns PLTD SUCCESS even if a device COM port was not found. The upper layer software will be
notified with callbacks about the results of the COM port enumeration for each device. It returns
PLTD ERROR only if a system error occurs, if for example it cannot allocate memory.

PLTD_APIlint pltd GU _com_find(int *gu_com_port);

The pltd GU com find API function finds the Golden Unit (GU) Windows COM port and returns it as
a function argument, in the gu_com port. No callbacks are sent to the upper layer application. It
returns PLTD SUCCESS if the GU COM port was found, otherwise it returns PLTD ERROR.

PLTD_API int pltd_GU_check_LED(int *gu_com_port);

The pltd GU check LED API function is used to toggle the Golden Unit LED. The GU LED exists on
the PLT hardware board [1]. When this function is called, the LED is toggled for 10 times with a 10ms
period. Callbacks are sent to the upper layer software to update the GU status. The API function
returns PLTD SUCCESS if the process finished successfully or PLT ERROR if a system error occurred.

PLTD_APIlint pltd_dbg_init(_pltd_dbg_params *pltd_dbg_params_t);

The pltd dbg init API function initializes the PLTD debug information. It also initializes the debug
information for all the PLTD dynamic loaded DLLs (e.g., U DLL, P DLL, BARCODE SCANNER.DLL, etc.)
illustrated in Figure 1. The API function returns PLTD SUCCESS if the initialization finished successfully
or PLT DBG ERRCR if a system error occurred.

PLTD_API char *pltd_get_volt_meter_instr_names(char *prev_name);

The pltd get volt meter instr names API function is used in the DA14681-00 ADC gain
calibration. It returns the names of the voltage meter DLLs found in the volt meter instr plugins

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 60 of 99 © 2022 Renesas Electronics

o0 LENESAS

DA1458x/DA1468x Production Line Tool
Libraries

folder. The first time this function is called the prev name parameter should be set to NULL. The
second time it should take the return value of the first call. When all DLL names have been returned
a NULL will be returned. This API function is used by the CFG application. By calling this function,
the CFG will return a list of all instruments found in the designated folder. Users can then select a
specific DLL to use. At this moment one instrument DLL exists, named volt meter scpi.dll.
Users can create their own DLL, if specific instrument programming is required, other than what the
default volt meter scpi.dll supports.

PLTD_API char *pltd_get_ble_tester_instr_names(char *prev_name);

The pltd get ble tester instr names API function, like the pltd get volt meter instr names
described above, returns the names of the BLE tester instrument DLLs found in the

ble tester instr plugins folder. The first time this function is called the prev name parameter
should be set to NULL. The second time it should take the return value of the first call. When all DLL
names have been returned a NULL will be returned. This API function is used by the CFG
application. By calling this function, the CFG will return a list of all instruments found in the
designated folder. Users can then select a specific DLL to use. At this moment two BLE tester
instrument DLL exists, the mt8852b.d11 and the IQ0xeIM.d11. These are the DLLs used for the
Anritsu MT8852B and the LitePoint IQxelM BLE tester instruments. Users can create their own DLL
if support to other BLE tester instrument is required.

PLTD_API char * pltd_get_ammeter_instr_names(char *prev_name);

The pltd get ammeter instr names API function is used to return the current measurement
instrument DLLs found under the ammeter instr plugins folder. The operation of this function is
similar to the p1td get ble tester instr names previously described.

PLTD_API char *pltd_get_temp_meas_instr_names(char *prev_name);

The pltd get temp meas instr names API function, like the pltd get volt meter instr names
described above, returns the names of the temperature measurement instrument DLLs found in the
temp meas instr plugins folder. The first time this function is called the prev name parameter
should be set to NULL. The second time it should take the return value of the first call. When all DLL
names have been returned a NULL will be returned. This API function is used by the CFG
application. By calling this function, the CFG will return a list of all instruments found in the
designated folder. Users can then select a specific DLL to use. At this moment two instrument DLL
exist, the ni_usb tc01.d11l for the NI USB TCO1 temperature sensor and the tmu_temp sens.dll
for the Papouch TMU sensor. Users can create their own DLL if support to other temperature
sensors is required.

PLTD_API int pltd_vbat_uart_set (bool start, uintl6_t duts);

The pltd vbat uart set API function enables the VBAT and opens the UART to a specific set of
devices. This is accomplished by instructing the GU to send an appropriate command to the CPLD
on the PLT hardware. Callbacks for the GU status update are been send to the upper layer software.
This feature could be used to communicate with the devices through UART by a user application
other than PLT. The API function returns PLTD SUCCESS if the process finished successfully or

PLT ERROR if a system error occurred.

PLTD_APIl int pltd_uart_coms_test(_pltd_uart_test *uart_test);

This function is used to test the communication path between the PLT host application and the
devices under test. The test is performed at a user given UART baud rate. If the test fails then the
communication to the device is not considered to be stable. A test failure could be due to long and
unshielded cables between the PLT hardware and the DUT.

PLTD_API pltd_versions *pltd_get_versions(void);

The pltd get versions API function will return the PLTD library version.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 61 of 99 © 2022 Renesas Electronics

T RENESAS

DA1458x/DA1468x Production Line Tool
Libraries

9.1.1 Production Line Tool DLL Function Input Arguments

Two of the PLTD API functions take pointers to data structures as arguments. Functions

pltd set device params and pltd set general params provide all the necessary configuration
setup for the PLTD to operate. After a successful configuration, calling the pltd start function the
device testing and programming will be performed.

In the next sections the function parameters are described in detail.

9.1.1.1 Function pltd_set_device params Input Arguments
Function pltd set device params takes a pointer as argument to the following data structure.

typedef struct pltd device params
{
_DUT NUM dut num;
bool is active;
uint8 t bd addr[BD ADDR SIZE];
uint87t OTP_Customer_field[OTP_CUSTOMER_FIELD_SIZE] ;
uint8 t xtal trim val[XTAL TRIM SIZE];
float path loss;
uint32 t com port;
uint8 t mem data[MAX MEM DATA SIZE];
}_pltd device params;

~ DUT NUM dut num;

The dut_num parameter can take values between 1 and 16. It serves as an index to the Production
Line Tool hardware DUT connection [1]. No COM port number for the device is required as this is
automatically found using a special loopback mechanism implemented in the CPLD and triggered by
the GU device. However, if the com port variable is not zero, then the automatic DUT com port find
procedure is skipped and the particular COM port number will be used for this device.

The DUT NUMenumeration declaration is the following:

typedef enum DUT NUM

{
DUT 1 =
DUT 2 =
DUT 3
DUT 4
DUT 5 =
DUT 6
DUT 7
DUT 8
DUT 9 =
DUT 10
DUT 11
DUT 12
DUT 13 =
DUT 14
DUT 15
DUT 16 =
INVALID DUT NUM

} DUT NUM;

~

~

~

~

Il
<

~

O ~Joy b W
~

~

(]l (L Il
e e el e)
U WN P O
NN N

bool is active;

The is active parameter enables or disables the device testing. The PLT hardware supports up to
16 devices. If some devices are not connected then they should be set to inactive using this variable.
In that case, the PLTD will not perform any actions on disabled DUTSs.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 62 of 99 © 2022 Renesas Electronics

RLENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

uint8 t bd addr[BD ADDR SIZE];
The bd addr parameter contains the device BD address.

The BD ADDR SIZE is defined as:
#define BD ADDR SIZE 4

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 63 of 99 © 2022 Renesas Electronics

LENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

uint8 t OTP customer field[OTP CUSTOMER FIELD SIZE];

The OTP_customer field parameter holds the data to be written in the DUT OTP customer header
field. Different customer field per DUT is supported.

The OTP_CUSTOMER FIELD SIZE is defined as:
#define OTP CUSTOMER FIELD SIZE 16

uint8 € xtal trim val[XTAL TRIM SIZE];

The xtal trim val parameter holds the XTAL trim value for each DUT. Users can manually fill the
particular element with a valid device XTAL trim value, if the automatic XTAL trim procedure is not
used. The value to set here could possibly be approximated by measuring the actual crystal
frequency on a satisfied number of devices and calculating the correction needed for each one. An
average value of all calculated correction values could then be used.

float path loss;
The path loss parameter holds the RF path losses between the GU antenna or the BLE tester
antenna and the DUT antenna. It is used in the RF tests to compensate for differences in signal

strength (RSSI) and TX power output between different device placements. This value can be
between 0 and 40 dB.

uint32 t com port;
If the com port value is not zero for all active DUTs, then the automatic DUT COM port search will
not be executed and the particular DUT COM ports defined in this variable will be used. This is

mostly used to save time when the CLI application is used. A usual procedure using this value is
explained below.

a. Call pltd set general params to setup the active DUTSs.

b. Execute pltd com port enum function to get the DUT com ports for each DUT.
c. Export the new DUT COM ports to the params.xml file.
d

Each time the CLI starts, the COM ports from the params.xm1 file will be used, exported at
step c. No automatic DUT COM port search will be executed.

This procedure needs to be executed only once on a particular test machine. The purpose will be to
get the DUT COM ports and save them in the params.xml configuration file. Having done that, even if
the CLI exits and restarts, the DUT COM ports will be read from the file and the automatic DUT COM
port search procedure will not be executed, saving a considerable amount of time.

Check function c1i_dut com port enumin the CLI plt project for an example.
uint8 t mem data[MAX MEM DATA SIZE];

This array keeps device specific data to be written to the device memory.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 64 of 99 © 2022 Renesas Electronics

RENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

9.1.1.2 Function pltd_set_general _params Input Arguments
The function pltd set general params takes a pointer to the following data structure as argument:

typedef struct pltd general params
{

_plt log info log info;

_user callback pltd user callback pltd;

uint32 t GU_com port;

bool mem wr_en;

bool tests en;

bool vbat uart en;

bool vbat uart rst;

_vbat rst mode vbat rst mode;

uintle t vbat low time;

uintlo t reset time;

char flash prog fw dir[FILE PATH SIZE];
char prod test fw dir[FILE PATH SIZE];
char gu fw version[LOG PARAM STR SIZE];
bool qu fw version check;

bool use programmer;

_pltd ic specific ic_spec;

} pltd general params;

typedef struct plt log info
{

char station num[LOG PARAM STR SIZE];
char caller name[LOG PARAM STR SIZE];
char caller ver[LOG PARAM STR SIZE];

} plt log info;

char station num[LOG PARAM STR SIZE];

The station num parameter contains an identifier string indicating the testing station name. This
string will be stored in the test result logs for easy identification of the testing station used.

The LOG_PARAM STR SIZE is defined as:
#define LOG PARAM STR SIZE 32
char caller name[LOG PARAM STR SIZE];

The caller name parameter contains the name of the caller application. This string will be stored in
the test result logs for easy identification of the application that called the PLTD API (e.g. a CLl or a
GUI tool).

The LOG PARAM STR SIZE is defined as:
#define LOG PARAM STR SIZE 32
char caller ver[LOG PARAM STR SIZE];

The caller ver parameter contains the version of the caller application. This string will be stored in
the test result logs for easy identification of the version on which the tests were performed.

The LOG PARAM STR SIZE is defined as:
#define LOG PARAM STR SIZE 32
_user callback pltd user callback pltd;

The user callback pltd parameter is a pointer to a function. The PLTD will call the pointed function
every time the DUT status changes. The actual declaration of this function is as follows:

typedef void (_ stdcall * user callback pltd) (pltd dut results *pltd dut results t);

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 65 of 99 © 2022 Renesas Electronics

o0 LENESAS

DA1458x/DA1468x Production Line Tool
Libraries

The pltd dut results data structure will contain the results for all active DUTSs.

uint32 t GU com port;

The GU_com port parameter should contain the COM port number of the Golden Unit. This COM port
definition is required, as no loopback functionality is supported for the GU. Users can call the
pltd GU com find function to automatically find the GU COM port. The gu_com port argument of
the pltd GU com find function will contain the GU COM port found. This value can then be set to the
GU_com port parameter.

bool mem wr en;

The mem wr_en parameter enables or disables the memory programming.

bool tests en;

The tests_en parameter enables or disables the production tests.

bool vbat uart en;

The vbat uart en parameter enables or disables the device VBAT and opens the UART interface
between the CPLD and the DUT so the DUTs can be accessed from any other PC application.

bool vbat uart rst;

The vbat uart rst parameter resets the device before the VBAT and UART are enabled. If this is
not set then the PLT could download a test firmware to the device, open the VBAT and UART using
the vbat uart en and access the device from an external host application.

_vbat rst mode vbat rst mode;

Three different modes of device boot are supported. These can be found in the next enumeration.

typedef enum vbat rst mode

{
VBAT ONLY = 0,
VBAT ON RST,
VBAT AS RST,
INVALID VBAT MODE

} vbat rst mode;

The VBAT ONLY mode is the default mode, where the PLT VBAT line should be connected to the DUT
VBAT. The PLT will power-up the device using the VBAT line and the DUT will enter the boot mode
so a test firmware can be downloaded. Figure 13 shows an example of this operation.

VBAT Production test Flash programmer
firmware download and firmware download and
performtests perform memory actions
o

RESET

oV

Figure 13: VBAT only operation

When the VBAT ON RST mode is selected, the VBAT PLT line stays always on but the PLT RST line is
toggled high for a configurable amount of time. Figure 14 shows an example of this operation.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 66 of 99 © 2022 Renesas Electronics

RENESAS

UM-B-040
DA1458x/DA1468x Production Line Tool
Libraries
VBAT
o
RESEL e s ke wid el iyl
performtests perform memory actions

oV

Figure 14: VBAT On with Reset

When the VBAT AS RST mode is selected, the VBAT line will toggle high for a configurable amount of
time. The VBAT line can be connected to the DUT reset signal. Figure 15 shows an example of this
operation.

VEBAT Production test Flash programmer
firmware download and firmware download and
performtests perform memory actions

oV

RESET

oV

Figure 15: VBAT as Reset

uintl6o t vbat low time;

This configures the time that the VBAT will stay low in the VBAT ONLY mode. VBAT goes low to reboot
the device in order to download the flash programmer firmware after production tests have been
executed.

uintlé t reset time;

This configures the time that the RST signal will be toggled high in the VBAT ON RST mode so the
device can enter the boot mode. Additionally controls the time that the VBAT remains at a high level
in the VBAT AS RST mode.

char flash prog fw dir[FILE PATH SIZE];

The flash prog fw dir parameter should contain the path to the flash programmer.bin or
uartboot.bin firmware.

The FILE PATH SIZE is defined as:
#define FILE PATH SIZE 256

char prod test fw dir[FILE PATH SIZE];

The prod test fw dir parameter should contain the path to the prod test 580.bin,
prod test 58l.bin, prod test 582.bin, prod test 681 00.bin Or prod test 681 0l.bin
firmware.

The FILE PATH SIZE is defined as:
#define FILE PATH SIZE 256

char gu fw version[LOG PARAM STR SIZE];

This holds the value of the Golden Unit firmware version that the current PLT software supports. The
GU firmware version supported by the current version of the tool is loaded from the configuration file.
When the tests start the PLT reads the GU firmware version from the actual GU device and
compares it to the value stored inside the gu_fw_version. If these do not match then an error will
occur. This process helps to keep compatibility between the PLT software and the GU firmware
burned in the GU SPI mounted on the PLT hardware board.

bool gu fw version check;

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 67 of 99 © 2022 Renesas Electronics

RENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

When this is true the PLT will compare the GU version stored inside the gu fw_version value to
the one read from the GU device. If these do not match then an error will occur.

bool use programmer;

If the use programmer value is set to true, the production test firmware in DA1468x/DA1510x will be
downloaded using the uartboot .bin and not the ROM bootloader. Doing so, fastest speed
downloads can be achieved since the firmware can now be downloaded at the highest supported
UART baud rate of 1Mbaud.

_pltd ic specific ic spec;
The ic spec parameter is a data structure union that contains specific DA1458x or DA1468x
production test parameters. The union structure is shown below.

typedef union pltd ic specific
{

_dut _ic dut ic;
_pltd 580 params params_580;
_pltd 680 params params_680;

} pltd ic specific;

File prod line tool dll.hinthe prod line tool dl11 Visual Studio 2015 project, contains a lot of
information about the contents of the pltd ic specific union data structures. Additionally, the
HTML based help pages loaded after pressing the source\production line tool\help\help.html
link can be used for more details.

9.2 PROD_LINE_TOOL_DLL API Details

More details on the PLTD API can be found in the API header file source\production line tool\
core dlls\prod line tool dll\prod line tool dll.h, orinthe HTML based help pages loaded
after pressing the source\production line tool\help\help.html link.

9.3 PROD_LINE_TOOL_DLL Example Procedures

In the next sections a procedure example will be given for performing a single RF test. The example
briefly explains how the prod line tool.dll API can be used by a host application to perform this
action.

9.3.1 PROD_LINE_TOOL_DLL RF Test Procedure

1. PLTD initialization
Function call: PLTD APT int pltd init (void);
Out: PLTD status codes

2. PLTD general parameter setup

Function call: PLTD API int pltd set general params(pltd general params
*pltd general params t);

In: typedef struct pltd general params

Out: PLTD status codes

The data structure explained in section 9.1.1.2 should be filled and passed to this function as an
argument. Example: consider the parameters shown in Table 14. Only the parameters necessary
for the RF tests are shown. The other parameters should be initialized to zero.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 68 of 99 © 2022 Renesas Electronics

UM-B-040

LENESAS

DA1458x/DA1468x Production Line Tool

Libraries

Table 14: pltd_set_general_params Function Parameters for RF Test

Parameter

Value

Description

log info.station num

PC-10

The PC name of where the tool is
running.

log info.caller name

DA1458x_DA1468x_GUI _
PLT.exe

The name of the host application.

log info.caller ver

v_3.0.7.500

The version of the host application.

user callback pltd

gplt_upgrade_datagrid

A callback function pointer that the DLL
will call at every DUT status change.

GU _com port

100

The COM port of the Golden Unit device.
The GU is connected through the
Production Line Tool hardware [3] directly
to the PC with a dedicated FTDI USB
cable. A virtual COM port will be
assigned by Windows to the GU device.
This port number should be entered here.

mem wr en

false

Disable the memory programming.

tests en

True

Enable the production tests.

flash prog fw dir

“binaries\
flash_programmer.bin”

Supply the flash programmer binary path.

prod test fw dir

“binaries\prod_test_580.bin

Supply the production test binary path.

ic spec.dut ic

DUT_IC_580

Set the device chipset to DA14580.

ic spec.params 580.baud rate 115200 Set the baud rate.

ic spec.params 580.tests. false Disable the automatic XTAL trim

xtal trim enable calibration.

ic_spec.params 580.tests. false Disable the XTAL trim value burn in the

OTP _xtal trim burn OTP.

ic spec.params 580.tests. PO_5 Supply the XTAL trim GPIO input.

xtal trim gpio

ic_spec.params 580.tests. true Enable the first RF test.

rf rx test enable[0]

ic spec.params 580.tests. false Disable the second RF test.

rf rx test enable[l]

ic spec.params 580.tests. false Disable the third RF test.

rf rx test enable[2]

ic_spec.params 580.tests. 2412 Set the RF channel for the first active RF

frequency[0] test. The rest of the frequency channels
do not matter since the tests are
disabled.

ic_spec.params 580.tests. -60 Set the RSSI threshold for the first RF

RSSI 1imit[0] test at which the DUTs will be marked as
failed or passed.

ic spec.params 580.tests. false Disable the audio test.

audio test enable

ic spec.params 580.tests. false Disable the custom test.

custom data test enable

ic spec.params 580.tests. false Disable the scan test.

scan enable

User Manual

Revision 4.3

17-Jan-2022

CFR0012-00

69 of 99

© 2022 Renesas Electronics

LENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool

Libraries

Parameter Value Description

ic spec.params 580.tests. false Disable all GPIO LED tests.
gpio led test enable([0], [1], [2]

For the rest of the parameters it does not matter what values they have, since we have enabled only
a single RF test.

3.

PLTD device parameter setup

Function call: PLTD API int pltd set device params(pltd device params
*pltd device params_t);

In: typedef struct pltd device params

Out: PLTD status codes

This function should be called 16 times, once for each device. The data structure explained in
section 9.1.1.1 should be filled and passed to this function as an argument. As an example
consider the parameters shown in Table 15. The pltd set device params function should be
called for every DUT even if this is disabled. In that case is_active should be set to false. The
following tables explain how the parameters may change among the different devices.

Table 15: pltd_set_device_params Function Parameters for RF Test

Parameter Value Description

dut_num 0-15 The device number.

is_active true Enable the tests for this device.

bd_addr 00:01:32:42:23:98 The BD address of this device. The BD address will be
used in the test result logs as a DUT identifier.

OTP_customer_field 00:00:00:00...00 We will not write anything in OTP.

xtal_trim_val 00:00:00:00 XTAL trim value burn will not be performed, so this value

can have just zeros.

com_port 0 Set to 0. Filled by the automatic DUT COM port find.

4. PLTD start operation

Function call: PLTD APT int pltd start(void);

In: void

Out: PLTD status codes

This function will start the RF test for all configured DUTSs. It will call the user callback pltd

callback at every device status change and then return. It will use the U_DLL and P_DLL library
APIs, as explained in sections 7.1 and 8.1, to download the prod test 580.binto the DUTs and

start the TX-RX operation between the GU and the devices.
After the tests have finished and the pltd start function has returned, steps 2 to 4 can be
repeated without the need to re-initialize the library.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 70 of 99 © 2022 Renesas Electronics

LENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

10 VOLT_METER_SCPIDLL

The volt meter scpi.dllis a DLL with a generic APl interface used to take voltage measurements
with instruments that support the SCPI commands of digital meters defined class. Currently, it has
been tested with the Keithley 2000 [9] and the Agilent 34401A [8] digital multimeter instruments,
using the GPIB interface. This particular DLL is only used in the DA14681-00 silicon ADC gain
calibration procedure. Other DA1468x based chipsets do not require this calibration as this is
performed during IC manufacturing. The VBAT going to the DUTs will be measured using this DLL.
The measured VBAT voltage will be compared to the one read by the device’s ADC, returned by the
adc read P_DLL test procedure. A gain difference will be calculated and stored either in QSPI Flash
or OTP. This value will be used later by the product firmware.

For the DLL to operate, NI-VISA and NI-488.2 software installations are needed. These, can be
downloaded from the paths shown in Table 16.

Table 16: Software Installations for volt_meter_scpi.dll

Software Installation Link
NI-VISA http://www.ni.com/download/ni-visa-15.5/5846/en/
NI-488.2 http://www.ni.com/download/ni-488.2-15.5/5859/en/

Directory source\production line tool\instruments\voltmeter\volt meter scpi contains all
the necessary source code of this particular DLL. The API of the DLL can be found in
source\production line tool\voltmeter\volt meter driver\volt meter api.h.

Users can create similar DLLs in order to interface to voltage meter instruments that do not follow the
SCPI commands of the digital meters defined class. These custom DLLs should make use of the API
described next.

10.1 VOLT_METER_SCPI API Functions
The volt meter scpi.dll has the following user accessible functions:

VOLT METER API int volt meter api dbg init(dbg params *dbg params t);
VOLT METER API int volt meter api dbg close(void);

VOLT METER API int volt meter api init(char *iface, callback volt meter
callback volt meter);

VOLT METER API int volt meter api close(void);

VOLT METER API int volt meter api measure (void);

A short description of each API function follows.

VOLT_METER_APIint volt_meter_api_dbg_init(_dbg_params *dbg_params_t);

The volt meter api dbg init API function initializes the debug print information of the particular
DLL. The dbg params t function parameter is a pointer to the debug parameter structure. It should
contain the necessary debug print parameters. Details of this structure can be found in section
6.1.1.1. The API function returns VOLT METER API INVALID DBG PARAMS if an error occurs or

VOLT METER API SUCCESS otherwise.

VOLT_METER_APIint volt_meter_api_dbg close(void);

The volt meter api dbg close API function closes the interface to the dbg d11.d11 library and all
debug print information is disabled. This function returns always VOLT METER API SUCCESS.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 71 of 99 © 2022 Renesas Electronics

http://www.ni.com/download/ni-visa-15.5/5846/en/
http://www.ni.com/download/ni-visa-15.5/5846/en/
http://www.ni.com/download/ni-488.2-15.5/5859/en/
http://www.ni.com/download/ni-488.2-15.5/5859/en/

UNLB-040 LENESAS

DA1458x/DA1468x Production Line Tool
Libraries

VOLT_METER_APIint volt_meter_api_init(char *iface, callback volt _meter
callback_volt_meter);

The volt meter api init API function is used to initialize the voltage meter instrument. It opens a
VISA session to the instrument, queries the instrument identification string, clears all queues and
resets the instrument to a defined state.

Function input parameter iface is a string that defines the instrument interface, e.g. “GPIB0::11".
Additionally, the function input parameter callback volt meter sets the callback function to be
called when the voltage meter results are available after the volt meter api measure function
described below is called. The function returns VOLT METER API ERROR if an error occurs or

VOLT METER API SUCCESS otherwise.

VOLT_METER_API int volt_meter_api_close(void);

The volt meter api close API function frees all DLL allocated resources. This function returns
always VOLT METER API SUCCESS.

VOLT_METER_APIint volt_meter_api_measure(void);

When the volt meter api measure API function is called, the instrument is instructed to perform
voltage measurements at a 5 V range and with a 0.00001 V resolution. It sets the instrument to take
four voltage samples. In parallel, a thread is created, which will fetch the four voltage meter results,
when available, using the FETCH? SCPI query command. It will then average them and return the
result using the callback function that was initialized when the volt meter api init API function
was called. Therefore, the function will return immediately but the upper layer software should wait
for the result callbacks to be received from the thread created. The function will return

VOLT METER API ERROR On a system error or VOLT METER API SUCCESS otherwise.

10.2 VOLT_METER_SCPI API Details

More details on the VOLT_METER_SCPI API can be found in the API header file in
source\production line tool\instruments\voltmeter\volt meter driver\volt meter api.h,

or in the HTML based help_pages loaded after pressing the
source\production line tool\help\help.html link.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 72 of 99 © 2022 Renesas Electronics

LENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

11 VOLT_METER_DRIVER DLL

The volt meter driver.dllis a driver that can load all voltage meter DLLs from the

volt meter instr plugins folder. Itis able to return all the DLL names existing in that folder and is
able to load and use any one of them as long as they are following the correct API found under
source\production line tool\instruments\voltmeter\volt meter driver\volt meter api.h.

The CFG application uses this driver, through PLTD, to display the available voltage meter
instrument DLLs (e.g. volt meter scpi.dll). Users can then select a DLL name and all voltage
meter functions will go through the one selected. The block describing this operation is shown in
Figure 16.

volt_meter_driver.dll prod_line_tool_dll.dll

volt_meter_scpi.dll

IIIHHHII

During the prod line tool dll.dll initialization face (pltd init) the volt meter driver.dllis
also initialized. It loads all voltage meter instrument DLLs from the volt meter instr plugins
folder. The DLL function handlers and the DLL names are stored on a linked list inside the driver.
Users can then get all voltage instrument DLL names by calling the

pltd get volt meter instr names API function from prod line tool.dll

Figure 16: volt_meter_driver.dll Block Diagram

11.1 VOLT_METER_DRIVER API Functions
The volt meter driver.dll has the following user accessible functions.

VOLT METER DRV API int volt meter drv init (void);

VOLT METER DRV API int volt meter drv close(void);

VOLT METER DRV API int volt meter drv dbg init(dbg params *dbg params t);

VOLT METER DRV API int volt meter drv dbg_close (void) ;

VOLT METER DRV API volt meter drv instr hdl
volt meter drv get instr hdl(volt meter drv instr hdl prev instr hdl);

VOLT METER DRV API int volt meter drv get instr name (volt meter drv instr hdl
1nstr hdl char *name, int 81ze)

VOLT METER DRV API int volt meter drv instr init(volt meter drv instr hdl instr hdl,
char *1face, ~callback volt meter callback volt meter)

VOLT METER DRV API int volt meter drv instr close(volt meter drv instr hdl instr hdl);

VOLT 1 METER DRV API int volt meter drv instr measure (volt meter drv instr hdl
instr hdl)

A detailed description of the API functions will be given next.

VOLT_METER_DRV_API int volt_meter_drv_init(void);

The volt meter drv init API function initializes the DLL. It searches the folder
volt meter instr plugins to find voltage meter instrument DLLs and saves them to an internal
linked list. If no instrument DLL is found the function will return VOLT METER DRV NO INSTR PLUGIN.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 73 of 99 © 2022 Renesas Electronics

UNLB-040 LENESAS

DA1458x/DA1468x Production Line Tool
Libraries

On a system error the function will return VOLT METER DRV ERROR Of VOLT METER DRV SUCCESS
otherwise.

VOLT_METER_DRV_APIint volt_meter_drv_close(void);

The volt meter drv close API function frees the allocated resources of the voltage meter plugins
created during the initialization process. The function will always return VOLT METER DRV SUCCESS.

VOLT_METER_DRV_APIlint volt_meter_drv_dbg_init(_dbg params *dbg_params_t);

The volt meter drv dbg init API function initializes the debug information. Details on the
dbg_params_t input parameter can be found in section 6.1.1.1. This function will return

VOLT METER DRV _INVALID DBG PARAMS if an invalid dbg params t input parameter is given. If an
error occurred during dbg_d11.d11 initialization, the function will return

VOLT METER DRV DBG DLL ERROR. On success the function will return VOLT METER DRV SUCCESS.

VOLT_METER_DRV_APIlint volt meter_drv_dbg close(void);

The volt meter drv dbg close API function closes the debug session. It calls the dbg close API
function from dog d11.d1l. If an error occurred in the dog d11.d11 then

VOLT METER DRV DBG DLL ERROR Wwill be returned. The function will return VOLT METER DRV SUCCESS
on success.

VOLT_METER_DRV_API volt_meter_drv_instr_hdl
volt_meter_drv_get_instr_hdl(volt_meter_drv_instr_hdl prev_instr_hdl);

The volt meter drv get instr hdl API function returns the handles of the voltage meter DLLs
created when the volt meter drv_init API function was called. First call of this function must be
made with the prev_instr hdl input parameter set to NULL. All subsequent calls must be made with
the prev_instr hdl input parameter set to the handle returned from the previous function call. When
this function returns NULL no more instrument handles exist.

VOLT_METER_DRV_APIint volt meter_drv_get _instr_name(volt_meter drv_instr_hdl
instr_hdl, char *name, int size);

The volt meter drv get instr name API function returns the voltage meter instrument DLL names
as recorded when the volt meter drv init API function was called. It is mainly used to display the
names in the CFG appllcatlon, S0 users can select a specific DLL to use for the DA14681-00 ADC
gain calibration.

VOLT_METER_DRV_APIint volt_meter_drv_instr_init(volt_meter_drv_instr_hdl instr_hdl, char
*iface, _callback_volt_meter callback_volt_meter);

The volt meter drv instr init API function initializes a voltage meter instrument DLL with
instr hdl handle. It actually calls the volt meter api init API function in the voltage meter DLL
pomted by the instr hdl handle. The input callback volt meter parameter is used to return
measurement status and results through callbacks. A pointer to a callback function is passed that will
be called when a voltage measurement is ready. If the function succeeds it will return

VOLT METER DRV SUCCESS, otherwise it will return VOLT METER DRV ERROR on failure.

VOLT_METER_DRV_API int volt_meter_drv_instr_close(volt_meter_drv_instr_hdl instr_hdl);

The volt meter drv instr close API function closes the voltage meter instrument DLL. It actually
calls the volt meter api close API function in the DLL pointed by the instr hdl handle. If the
function succeeds it will return VOLT METER DRV SUCCESS otherwise it will return

VOLT METER DRV ERROR on failure.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 74 of 99 © 2022 Renesas Electronics

Eon RRENESAS

DA1458x/DA1468x Production Line Tool
Libraries

VOLT_METER_DRV_API int volt_meter_drv_instr_measure(volt_meter_drv_instr_hdl
instr_hdl);

The volt meter drv instr measure API function starts the voltage measurements. It actually calls
the volt meter api measure API function in the voltage meter instrument DLL pointed by the
instr hdl input parameter handle. A thread is created that waits for the instrument to return some
measurements. After averaging the measurements, the result is returned to the upper layer software
using callbacks. The function returns immediately but the upper layer software has to wait for the
callback that will come later as a thread is created. If the function succeeds to create the
measurement thread it will return VOLT METER DRV _SUCCESS otherwise it will return

VOLT METER DRV ERRCR on failure.

11.2 VOLT_METER_DRIVER API Details

More details on the VOLT_METER_DRIVER API can be found in the APl header file in
source\production line tool\instruments\voltmeter\volt meter driver\volt meter driver.h
or in the HTML based help pages loaded after pressing the
source\production line tool\help\help.html link.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 75 of 99 © 2022 Renesas Electronics

T RENESAS

DA1458x/DA1468x Production Line Tool
Libraries

12 MT8852B and IQxelM DLLs

The mt8852b.d11 and IQxelM.d11 are DLLs that support BLE DTM measurements using the Anritsu
MT8852B and the Litepoint IQxelM Bluetooth test set instruments [7] [15]. The API used by both
DLLs is designed such that it can be used by other BLE tester instruments as well. It is able to
perform TX power, TX modulation index, TX frequency drift and offset and RX RSSI measurements.
All test settings and pass/fail limits are configurable giving a great flexibility to the user.

For the DLLs to operate, NI-VISA and NI-488.2 software installations are needed. These can be
downloaded from the paths shown in Table 16.

Directory source\production line tool\instruments\ble testers\mt8852b contains all the
necessary source code of the mt8852b.d11 DLL. Directory

source\production line tool\instruments\ble testers\IQxelM contains all the necessary
source code of the TOxelM.d11 DLL.

The API of the BLE tester DLLs is defined in
source\production line tool\instruments\ble testers\ble tester driver\ble instr api.h.

12.1 BLE Tester API Functions

The BLE tester API has the following user accessible functions:

BLE INSTR API int ble instr dog init(dbg params *dbg params t);

BLE INSTR API int ble instr dobg close(void);

BLE INSTR API int ble instr init(void *data, callback ble instr callback ble instr);
BLE INSTR API int ble instr close(void);

BLE INSTR API int ble instr set path loss(float path loss);

BLE INSTR API int ble instr set pwr range(ble instr pwr range pwr range);

BLE INSTR API int ble instr set tx pwr h llm(float avg _high limit);

BLE INSTR API int ble instr set tx pwr 1 lim(float avg low limit);

BLE INSTR API int ble instr set tx pwr pk lim(float pk avg limit);

BLE INSTR API int ble instr do tx pwr(uint32 t freq);

BLE INSTR API int ble instr set freq offs h lim(uint32 t pos freq limit);

BLE INSTR API int ble instr set freq offs 1 lim(uint32 t neg freq limit);

BLE INSTR API int ble instr set freqg drift pkt lim(uint32 t drift pkt limit);

BLE INSTR API int ble instr set freq drift rate lim(uint32 t drift rate limit);

BLE INSTR API int ble instr - do freq offs(u1nt32 t freq);

BLE INSTR API int ble instr set mod idx fl min(uint32 t fl min limit);
BLE INSTR API int ble instr set 1 mod 1dx fl max(uint32 t fl max limit);
BLE INSTR API int ble instr set 1 mod 1dx f2 max (uint32 t f2 max limit);
BLE INSTR API int ble instr set mod idx fl1f2 ratio(float fl1f2 ratio limit);
BLE INSTR API int ble instr do mod idx(uint32 t freq);

BLE INSTR API int ble instr set rx sens tx pat(uint8 t pattern);

BLE INSTR API int ble instr set rx sens pkt space (uintl6 t spacing);

BLE INSTR API int ble instr set rx sens pkt num(uintl6 t num of pkts);

BLE INSTR API int ble instr set rx sens tx pwr(float tx power);

BLE INSTR API int ble instr set rx sens tx dirty(bool dirty);

BLE INSTR API int ble instr set rx sens tx crc(bool crc state);

BLE INSTR API int ble instr do rx sens(u1nt32 t freq);

’

A detailed description of the API functions will be given next.

BLE_INSTR_API int ble_instr_dbg_init(_dbg_params *dbg_params_t)

The ble instr dbg init API function is used to initialize the debug print operation. Details on the
dbg params_t input parameter can be found in section 6.1.1.1. This function will return
BLE INSTR INVALID DBG PARAMS if an invalid dog params t input parameter is given. If an error

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 76 of 99 © 2022 Renesas Electronics

o0 LENESAS

DA1458x/DA1468x Production Line Tool
Libraries

occurs during dog_d11.d11 initialization, the function will return BLE INSTR DBG DLL ERROR. On
success the function will return BLE INSTR SUCCESS.

BLE_INSTR_APIint ble_instr_dbg close(void)

The ble instr dbg close API function closes the debug session. It calls the dbg_close API function
from dbg_d11.d11 library to free all the resources acquired. It always returns BLE INSTR SUCCESS.

BLE _INSTR_APIint ble instr_init(void *data, callback ble instr callback ble instr);

The ble instr init API function resets and initializes the instrument and the NI VISA resource
manager. The data input pointer parameter points to the interface string, which by default is set to
“GPIBO::27" in the configuration parameter file, params.xml. The callback ble instris a pointer to
a callback function that the DLL will call to update measurement status and results. If the function
succeeds it returns BLE INSTR SUCCESS, otherwise it returns BLE INSTR ERROR.

BLE_INSTR_APIint ble instr_close(void)

The ble instr close API function deallocates all NI VISA and other local resources used during
measurements. It closes the measurement thread, if this has remained opened for some reason, and
disables any GPIB service requests. If it succeeds it returns BLE INSTR SUCCESS, otherwise it returns
BLE INSTR ERROR.

BLE_INSTR_API int ble_instr_set_path_loss(float path_loss)

The ble instr set path loss API function sets the path losses between the device antenna and
the BLE tester instrument antenna. It is recommended that the RF measurements take place in a
shielded box and that the antennas are as close as possible. The path loss input parameter is a
positive number from 0 to 40 dB. This value is added in the TX power and RSSI measurements. If
the function succeeds it returns BLE INSTR SUCCESS, otherwise it returns BLE INSTR ERROR.

BLE _INSTR_APIint ble_instr_set_pwr_range(_ble_instr_pwr_range pwr_range);

The ble instr set pwr range API function is used to set the TX input power range. It is used in all
the TX measurements. It pre-sets the instrument to a specific input power scale. The input pwr range
parameter is an enumeration that provides different power scale ranges. It is suggested to use the
AUTO PWR RANGE selection as it will allow the instrument to select the appropriate TX input power
range scale. If the function succeeds it returns BLE INSTR SUCCESS, otherwise it returns

BLE INSTR ERROR.

BLE_INSTR_APIint ble instr_set_tx_pwr_h_lim(float avg_high_limit)

The ble instr set tx pwr h lim API function sets the average high power limit for the TX output
power measurements. The avg high limit input parameter units are in dBm and the allowable
range is between -80 and 30 dBm. If the function succeeds it returns BLE INSTR SUCCESS, otherwise
it returns BLE_INSTR ERRCR on failure.

BLE_INSTR_APIint ble instr_set _tx_pwr_| lim(float avg low_limit)

The ble instr set tx pwr 1 1lim API function sets the average low power limit for the TX output
power measurements. The avg low limit input parameter units are in dBm and the allowable range
is between -80 and 30 dBm. If the function succeeds it returns BLE INSTR SUCCESS, otherwise it
returns BLE INSTR ERROR.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 77 of 99 © 2022 Renesas Electronics

o0 LENESAS

DA1458x/DA1468x Production Line Tool
Libraries

BLE_INSTR_API int ble_instr_set_tx_pwr_pk_lim(float pk_avg_limit)

The ble instr set tx pwr pk 1lim API function sets the peak-to-average power limit for the TX
output power measurements. The pk avg limit input parameter units are in dB and the allowable
range is between 0 and 10 dB. If the function succeeds it returns BLE INSTR SUCCESS, otherwise it
returns BLE INSTR ERROR.

BLE_INSTR_API int ble_instr_do_tx_pwr(uint32_t freq)

The ble instr do tx pwr API function starts the TX output power measurements at the frequency
given to the freqginput parameter. This function enables GPIB service requests, which provide
measurement completion information. It also creates a thread for the service requests to be handled.
Appropriate callbacks are sent to the upper layer software when measurements are ready. The
callback function has the following type.

typedef void (* callback ble instr) (int status, char *data);

The status argument is of BLE INSTR STATUS CODES type and describes the status of the
measurement. For a TX power measurement, if the callback has status =

BLE INSTR TX PWR PASSED Or status = BLE INSTR TX PWR FATILED then the data output argument
will contain the measurement results.

The ble instr do tx pwr API function returns immediately after setting up the measurement.
Actual measurement results are returned using callbacks. If the function succeeds to initialize the
measurement it returns BLE INSTR SUCCESS, otherwise it returns BLE INSTR ERROR.

BLE_INSTR_APIint ble_instr_set_freq_offs_h_lim(uint32_t pos_freq_limit)

The ble instr set freqg offs h 1im API function sets the maximum positive offset limit in kHz for
the TX carrier frequency offset measurements. The pos freq limit input parameter units are in kHz
and the allowable range is between 0 and 250 kHz. If the function succeeds it returns

BLE INSTR SUCCESS, otherwise it returns BLE INSTR ERROR.

BLE_INSTR_APIint ble_instr_set_freq_offs_| lim(uint32_t neg_freq_limit)

The ble instr set freq offs 1 1imAPI function sets the maximum negative offset limit in kHz for
the TX carrier frequency offset measurements. The neg freq limit input parameter units are in kHz
and the allowable range is between 0 and 250 kHz. If the function succeeds it returns

BLE INSTR SUCCESS, otherwise it returns BLE INSTR ERROR.

BLE_INSTR_APIint ble_instr_set_freq_drift_pkt_lim(uint32_t drift_pkt_limit)

The ble instr set freq drift pkt 1imAPI function sets the overall packet drift limit in kHz for the
TX carrier frequency offset measurements. The drift pkt limit input parameter units are in kHz
and the allowable range is between 0 and 200 kHz. If the function succeeds it returns

BLE INSTR SUCCESS, otherwise it returns BLE INSTR ERROR.

BLE INSTR_APIint ble_instr_set_freq_drift_rate_lim(uint32_t drift_rate_limit)

The ble instr set freq drift rate 1imAPI function sets the drift rate limit in kHz/50 ps. It is
used in the TX carrier frequency offset and drift measurements. The drift rate limit input
parameter allowable range is between 1 and 90 kHz/50 us. If the function succeeds it returns
BLE INSTR SUCCESS, otherwise it returns BLE INSTR ERROR.

BLE_INSTR_APIint ble_instr_do_freq_offs(uint32_t freq)

The ble instr do freq offs API function performs the TX carrier frequency offset and drift
measurements at the frequency given to the freqinput parameter. This function enables the GPIB

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 78 of 99 © 2022 Renesas Electronics

LENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

service requests, which provide measurement completion information. It also creates a thread for the
service requests to be handled. Appropriate callbacks are sent to the upper layer software when the
measurements are ready. The callback function has the following type.

typedef void (* callback ble instr) (int status, char *data);

The status argument is of BLE INSTR STATUS CODES type and describes the status of the
measurement. For a TX carrier frequency offset and drift measurement, if the callback has status =
BLE INSTR TX FREQ OFFS PASSED O status = BLE INSTR TX FREQ OFFS FAILED then the data
output argument will contain the measurement results.

The ble instr do freq offs API function returns immediately after setting up the measurement.
Actual measurement results are returned using callbacks. If the function succeeds to initialize the
measurement it returns BLE _INSTR SUCCESS, otherwise it returns BLE INSTR ERROR.

BLE_INSTR_APIint ble_instr_set_ mod_idx_f1 _min(uint32_t f1_min_limit)

The ble instr set mod idx f1 min API function sets the F1 minimum average limit in kHz for the
TX modulation index measurements. The £1 _min limit input parameter units are in kHz and the
allowable range is between 0 and 300 kHz. If the function succeeds it returns BLE INSTR SUCCESS,
otherwise it returns BLE INSTR ERROR.

BLE_INSTR_APIint ble_instr_set mod_idx_fl1 _max(uint32_t f1_max_limit)

The ble instr set mod idx f1 max API function sets the F1 maximum average limit in kHz for the
TX modulation index measurements. The f1 max limit input parameter units are in kHz and the
allowable range is between 0 and 300 kHz. If the function succeeds it returns BLE INSTR SUCCESS,
otherwise it returns BLE INSTR ERROR.

BLE_INSTR_APIint ble instr_set mod_idx f2 max(uint32_t f2_max_limit)

The ble instr set mod idx f£2 max API function sets the F2 maximum average limit in kHz for the
TX modulation index measurements. The £2 max limit input parameter units are in kHz and the
allowable range is between 0 and 300 kHz. If the function succeeds it returns BLE INSTR SUCCESS,
otherwise it returns BLE INSTR ERROR.

BLE_INSTR_APIint ble instr_set mod _idx f1f2 ratio(float f1f2_ratio_limit)

This API function sets the F1/F2 maximum average ratio limit for the TX modulation index
measurements. The f1f2 ratio limit input parameter allowable range is between 0 and 1. If the
function succeeds it returns BLE INSTR SUCCESS, otherwise it returns BLE INSTR ERROR.

BLE_INSTR_APIint ble_instr_do_mod_idx(uint32_t freq)

The ble instr set mod idx f1f2 ratio API function starts the TX modulation index measurement
at the frequency given to) the freq input parameter. This function enables GPIB service requests,
which provide measurement completion information. It also creates a thread for the service requests
to be handled. Appropriate callbacks are sent to the upper layer software when measurements are
ready. The callback function has the following type.

typedef void (* callback ble instr) (int status, char *data);

The status argument is of BLE INSTR STATUS CODES type and describes the status of the
measurement. For a TX carrier frequency offset and drift measurement, if the callback has status =
BLE INSTR TX MOD IDX PASSED Or status = BLE INSTR TX MOD IDX FAILED then the data output
argument will contain the measurement results.

The ble instr do mod idx API function returns immediately after setting up the measurement.
Actual measurement results are returned using callbacks. If the function succeeds to initialize the
measurement it returns BLE INSTR SUCCESS, otherwise it returns BLE INSTR ERROR.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 79 of 99 © 2022 Renesas Electronics

LENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

BLE_INSTR_APIint ble instr_set rx_sens_tx_pat(uint8_t pattern)

The ble instr set rx sens tx pat API function sets the TX packet pattern type that the BLE
tester instrument will transmit when performing RX RSSI measurements. The pattern input
parameter can take the following values.

e 0: pseudo random binary sequence 9 (PRBS9)
e 1: alternate Os and 1s.
e 2: alternation between 0000 and 1111.

If the function succeeds it returns BLE INSTR SUCCESS, otherwise it returns BLE INSTR ERROR.

BLE_INSTR_APIint ble_instr_set rx_sens_pkt _space(uintl6 _t spacing)

The ble instr set rx sens pkt space API function sets the TX packet spacing that the BLE tester
instrument will transmit when performing RX RSSI measurements. The spacing input parameter has
a measurement unit of microseconds (us) and can take values from 625 ps to 65535 pus. If the
function succeeds it returns BLE INSTR SUCCESS otherwise it returns BLE INSTR ERRCR on failure.

BLE_INSTR_APIint ble_instr_set_rx_sens_pkt num(uintl6_t num_of pkts)

The ble instr set rx sens pkt numAPI function sets the TX packets number that the BLE tester
instrument will transmit when performing RX RSSI measurements. The num of pkts input
parameter can take values from 1 to 65535. If the function succeeds it returns BLE INSTR SUCCESS,
otherwise it returns BLE INSTR ERROR.

BLE_INSTR_APIint ble instr_set rx_sens_tx_pwr(float tx_power)

The ble instr set rx sens tx pwr API function sets the TX output power that the BLE tester
instrument will transmit when performing RX RSSI measurements. The tx power input parameter
measurements unit is in dBm and can take values from 0 to -90 dBm. If the function succeeds it
returns BLE_INSTR SUCCESS, otherwise it returns BLE INSTR ERROR.

BLE_INSTR_APIint ble instr_set rx_sens_tx_dirty(bool dirty)

The ble instr set rx sens tx dirty API function enables or disables the ‘TX dirty’ option used in
the RX RSSI measurements. When enabled the BLE tester packet generator uses an internal dirty
table to be transmitted. If the function succeeds it returns BLE INSTR SUCCESS, otherwise it returns
BLE INSTR ERROR.

BLE_INSTR_APIint ble instr_set rx sens_tx_crc(bool crc_state)

The ble instr set rx sens tx crc API function enables or disables the “TX CRC alternate state’
option used in the RX RSSI measurements. When enabled the BLE tester packet generator will
alternate the CRC of the transmitted packets. It will send a packet with CRC error, one without and
so on. If the function succeeds it returns BLE INSTR SUCCESS, otherwise it returns BLE INSTR ERROR.

BLE_INSTR_APIl int ble_instr_do_rx_sens(uint32_t freq);

The ble instr do rx sens API function starts the BLE tester packet generator, used in the RX
RSSI measurements. This function enables GPIB service requests, which provide measurement
completion information. It also creates a thread for the service requests to be handled. Appropriate
callbacks are sent to the upper layer software when the measurements are ready. The callback
function has the following type.

typedef void (* callback ble instr) (int status, char *data);

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 80 of 99 © 2022 Renesas Electronics

Eon RRENESAS

DA1458x/DA1468x Production Line Tool
Libraries

The status argument is of BLE_INSTR STATUS CODES type and describes the status of the
measurement. For the RX RSSI measurements, status = BLE INSTR TX RX SENS OK denotes that
the packet generator has finished transmitted the programmed packets.

The ble instr do rx sens API function returns immediately after initializing the packet generator.
The status of the packets transmitted is reported to the upper layer software using callbacks as noted
above. If the function succeeds to initialize the measurement it returns BLE INSTR SUCCESS,
otherwise it returns BLE INSTR ERROR.

12.2 MT8852B and IQxelM API Details

More details on the MT8852B and IQxelM API can be found either in the API header file in
source\production line tool\instruments\ble testers\ble tester driver\ble instr api.h
or in the HTML based help pages loaded after pressing the
source\production line tool\help\help.html link.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 81 of 99 © 2022 Renesas Electronics

LENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

13 BLE_TESTER_DRIVER DLL

The ble tester driver.dllis a DLL driver used to load and access different BLE tester instrument
DLLs from ble tester instr plugins folder. It is able to return all the DLL names existing in that
folder and able to use any one of them as long as they are following the correct API found under
source\production line tool\instruments\ble tester\ble tester driver\ble instr api.h.
The APl in the ble instr api.hfile was actually described in section 12 since it is the one that the
mt8852b.d11l and IQxelM.dll are using. The CFG application uses this driver through the PLTD to
display the available BLE tester instrument DLLs (e.g. mt8852b.d11). Users can then select a DLL
name and all the BLE measurements will go through the one selected. The actual block describing
this operation is shown in Figure 17.

ble_tester_driver.dll prod_line_tool_dil.dll

mt8852Db.dll

Figure 17: ble_tester_driver.dll Block Diagram

During the prod line tool dll.dll initialization face (pltd init)the ble tester driver.dllis
also initialized. The BLE tester instrument driver DLL loads all the DLLs found in

ble tester instr plugins folder. The driver creates function handles to all the loaded DLL APIs
and each DLL name is stored on a linked list in the driver. Users can then get all BLE tester
instrument DLL names by calling the pltd get ble tester instr names prod line tool.dll API
function.

13.1 BLE_TESTER_DRIVER API Functions
The ble tester driver.dll has the following user accessible functions:

BLE TESTER DRV API int ble tester drv init(void);

BLE TESTER DRV API int ble tester drv close(void);

BLE TESTER DRV API int ble tester drv dbg init(dbg params *dbg params t);

BLE TESTER DRV API int ble tester drv dbg close (void);

BLE TESTER DRV API int ble tester drv get instr name (ble drv instr hdl instr hdl, char
*name, int size);

BLE TESTER DRV API ble drv instr hdl ble tester drv get instr hdl (ble drv instr hdl
prev_instr hdl);

BLE TESTER DRV API int ble tester drv instr init(ble drv instr hdl instr hdl, void
*data, callback ble instr callback ble instr);

BLE TESTER DRV API int ble tester drv instr close(ble drv instr hdl instr hdl);

BLE TESTER DRV API int ble tester drv set path loss(ble drv instr hdl instr hdl, float
path_loss)

BLE TESTER DRV API int ble tester drv set pwr range(ble drv instr hdl instr hdl,
~ble instr pwr range pwr range);

BLE TESTER DRV API int ble tester drv set tx pwr h lim(ble drv instr hdl instr hdl,
float avg_high _ llmlt)

BLE TESTER DRV API int ble tester drv set tx pwr 1 lim(ble drv instr hdl instr hdl,
float avg low limit);

BLE TESTER DRV API int ble tester drv set tx pwr pk lim(ble drv instr hdl instr hdl,
float pk avg limit);

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 82 of 99 © 2022 Renesas Electronics

Eon RRENESAS

DA1458x/DA1468x Production Line Tool
Libraries

BLE TESTER DRV API int ble tester drv do tx pwr(ble drv instr hdl instr hdl, uint32 t
freq);

BLE TESTER DRV API int ble tester drv set freq offs h lim(ble drv instr hdl instr hdl,
uint32 t pos freq limit)

BLE TESTER DRV API int ble tester drv set freq offs 1 lim(ble drv instr hdl instr hdl,
uint32 € neg freq . llmlt)

BLE TESTER DRV API int ble tester drv set freq drift pkt lim(ble drv instr hdl
instr hdl, uwint32 t drift pkt limit);

BLE TESTER DRV API int ble tester drv set freq drift rate lim(ble drv instr hdl
instr | hdl uint32 t drlft rate 11m1t)

BLE TESTER DRV API int ble_tester_drv_do_freq_pffs(ble_drv_instr_hdl instr hdl,
uint32 t freq);

BLE TESTER DRV API int ble tester drv set mod idx fl min(ble drv instr hdl instr hdl,
uint32 t fl min limit);

BLE TESTER DRV API int ble tester drv set mod idx fl max(ble drv instr hdl instr hdl,
uint32 t fl max limit);

BLE TESTER DRV API int ble tester drv set mod idx f2 max(ble drv instr hdl instr hdl,
uint32 t £2 max limit);

BLE TESTER DRV API int ble tester drv set mod idx fl1f2 ratio(ble drv instr hdl
instr | hdl float f1f2 _ratio 11mlt)

BLE TESTER DRV API int ble_tester_drv_do_mod_idx(ble_drv_instr_hdl instr hdl, uint32 t
freq);

BLE TESTER DRV API int ble tester drv set rx sens tx pat(ble drv instr hdl instr hdl,
uint8 t pattern);

BLE TESTER DRV API int ble tester drv set rx sens pkt space(ble drv instr hdl
instr | hdl uintl6 t spa01ng)

BLE TESTER DRV API int ble_tester_drv_set_rx_sens_pkt_num(ble_drv_instr_hdl instr hdl,
uintlé t num of pkts);

BLE TESTER DRV API int ble tester drv set rx sens tx pwr(ble drv instr hdl instr hdl,
float tx power)

BLE TESTER DRV API int ble tester drv set rx sens tx dirty(ble drv instr hdl
instr | hdl bool dlrty)

BLE TESTER DRV API int ble tester drv set rx sens tx crc(ble drv instr hdl instr_hdl,
bool crc state);

BLE TESTER DRV API int ble tester drv do rx sens(ble drv instr hdl instr hdl, uint32 t
freq) ;

A detailed description of the API functions will be given next.

BLE_TESTER_DRV_APIlint ble_tester_drv_init(void)

The ble tester drv init API function initializes the DLL. It searches ble tester instr plugins
folder to find BLE instrument DLLSs. It loads the DLLs found and saves the names and the function
handles to an internal linked list. If no instrument DLLs are found the function will return

BLE TESTER DRV NO INSTR PLUGINS. On a system error the function will return

BLE TESTER DRV ERROR Or BLE TESTER DRV SUCCESS otherwise.

BLE TESTER _DRV_APIint ble tester drv_close(void)

The ble tester drv_close API function frees the allocated resources of all the BLE tester DLL
plugins created during the initialization process. The function will always return

BLE TESTER DRV SUCCESS.
BLE_TESTER_DRV_API int ble_tester_drv_dbg_init(_dbg_params *dbg_params_t);

The ble tester drv dbg init API function initializes the debug information. Details on the
dbg params_t input parameter can be found in section 6.1.1.1. This function will return
BLE TESTER DRV INVALID DBG PARAMS if an invalid dog params t input parameter is given. If an

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 83 of 99 © 2022 Renesas Electronics

UNLB-040 LENESAS

DA1458x/DA1468x Production Line Tool
Libraries

error occurred during dbg_d11.d11 initialization, the function will return
BLE TESTER DRV DBG DLL ERROR. On success the function will return BLE TESTER DRV SUCCESS.

BLE_TESTER_DRV_APIlint ble tester drv_dbg close(void)

The ble tester drv dbg close API function closes the debug session. It calls the dbg close API
function from the dog dl1.d1l library. If an error occurs in the dog d11.dl11 then

BLE TESTER DRV DBG DLL ERROR Wwill be returned. Otherwise the function will return

BLE TESTER DRV SUCCESS On sSuccess.

BLE _TESTER_DRV_APIlint ble tester drv_get instr_name(ble_drv_instr_hdl instr_hdl, char
*name, int size)

The ble tester drv get instr name API function returns the voltage meter instrument DLL names
as these were taken when the ble tester drv init API function was called. It is mainly used to
display the DLL names in the CFG PLT application, so users can select a specific DLL to use
together with a specific BLE tester instrument.

BLE_TESTER_DRV_API ble_drv_instr_hdl ble_tester_drv_get_instr_hdl(ble_drv_instr_hdl
prev_instr_hdl)

The ble tester drv get instr hdl API function returns the handles of the BLE tester instrument
DLLs created when the ble tester drv init API function was called. First call of this function must
be made with the prev_instr hdl input parameter set to NULL. All subsequent calls must be made
with the prev_instr hdl input parameter set to the handle returned from the previous function call.
When this function returns NULL no more instrument handles exist.

BLE TESTER _DRV_APIint ble tester drv_instr_init(ble_drv_instr_hdl instr_hdl, void *data,
_callback_ble_instr callback _ble_instr)

The ble tester drv instr init API function initializes a specific BLE tester instrument DLL that is
pointed by the instr hdl handle. It actually calls the ble instr init API function for the instrument
DLL pointed by the instr hdl handle. The input callback ble instr parameter is used to return
measurement status and results through callbacks. A pointer to a callback function is passed that will
be called when a BLE RF measurement is ready. If the function succeeds it will return

BLE TESTER DRV SUCCESS, otherwise it will return BLE TESTER DRV ERROR.

BLE TESTER_DRV_APIlint ble_tester_drv_instr_close(ble_drv_instr_hdl instr_hdl);

The ble tester drv instr close API function closes the BLE tester instrument DLL. It actually
calls the ble instr close API function for the instrument DLL pointed by the instr hdl handle. If
the function succeeds it will return BLE TESTER DRV SUCCESS, otherwise it will return

BLE TESTER DRV ERROR.

BLE_TESTER_DRV_APIlint ble tester drv_set path loss(ble drv_instr_hdl instr_hdl, float
path_loss)

The ble tester drv set path loss API function sets the path losses between the device antenna
and the antenna of the BLE instrument used. It actually calls the ble instr set path loss API
function for the instrument DLL pointed by the instr hdl input parameter. If the function succeeds it
will return BLE TESTER DRV _SUCCESS, otherwise it will return BLE TESTER DRV ERROR.

BLE TESTER_DRV_APIlint ble_tester_drv_set_pwr_range(ble_drv_instr_hdl instr_hdl,
_ble_instr_pwr_range pwr_range);

The ble tester drv set pwr range API function is used to set the TX input power range in the
BLE instrument DLL that has a handle pointed by the instr hdl input parameter. This function calls

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 84 of 99 © 2022 Renesas Electronics

UNLB-040 LENESAS

DA1458x/DA1468x Production Line Tool
Libraries

the ble instr set pwr range API function for the instrument DLL pointed by the instr hdl input
parameter. If the function succeeds it will return BLE TESTER DRV SUCCESS otherwise, it will return
BLE TESTER DRV ERROR.

BLE TESTER_DRV_APIlint ble tester drv_set tx _pwr_h_lim(ble_drv_instr_hdl instr_hdl, float
avg_high_limit)

The ble tester drv set tx pwr h 1im API function is used to set the average high power limit for
the TX output power measurements. . This function calls the ble instr set tx pwr h 1imAPI
function for the instrument DLL pointed by the instr hdl input parameter. I the function succeeds it
will return BLE TESTER DRV SUCCESS, otherwise it will return BLE TESTER DRV ERROR.

BLE TESTER_DRV_APIlint ble tester drv_set tx_pwr_| lim(ble drv_instr_hdl instr_hdl, float
avg_low_limit)

The ble tester drv set tx pwr 1 1imAPI function is used to set the average low power limit for
the TX output power measurements. . This function calls the ble instr set tx pwr 1 lim API
function for the instrument DLL pointed by the instr hdl input parameter. If the function succeeds it
will return BLE TESTER DRV SUCCESS, otherwise it will return BLE TESTER DRV _ERROR.

BLE_TESTER_DRV_APIint ble_tester_drv_set_tx_pwr_pk_lim(ble_drv_instr_hdl instr_hdl,
float pk_avg limit)

The ble tester drv set tx pwr pk 1imAPI function is used to set the peak to average power limit
for the TX output power measurements. This function calls the ble instr set tx pwr pk lim API
function for the instrument DLL pointed by the instr hdl input parameter. If the function succeeds it
will return BLE TESTER DRV SUCCESS, otherwise it will return BLE TESTER DRV ERROR.

BLE_TESTER_DRV_APIint ble_tester_drv_do_tx_pwr(ble_drv_instr_hdl instr_hdl, uint32_t
freq)

The ble tester drv do tx pwr API function is used to start the TX output power measurements at
the frequency given to the freqinput parameter. This function calls the ble instr do tx pwr API
function for the instrument DLL pointed by the instr hdl input parameter. If the function succeeds it
will return BLE TESTER DRV SUCCESS, otherwise it will return BLE TESTER DRV ERRCR.

BLE _TESTER DRV_APIlint ble_tester_drv_set freq_offs_h_lim(ble_drv_instr_hdl instr_hdl,
uint32_t pos_freqg_limit)

The ble tester drv set freq offs h lim API function is used to set the maximum positive offset
limit in kHz for the TX carrier frequency offset measurements. This function calls the

ble instr set freq offs h lim API function for the instrument DLL pointed by the instr hdl
input parameter. If the function succeeds it will return BLE TESTER DRV SUCCESS, otherwise it will
return BLE TESTER DRV ERROR.

BLE _TESTER_DRV_APIlint ble_tester_drv_set _freq_offs_| lim(ble_drv_instr_hdl instr_hdl,
uint32_t neg_freq_limit)

The ble tester drv set freq offs 1 1imAPI function is used to set the maximum negative offset
limit in kHz for the TX carrier frequency offset measurements. This function calls the

ble instr set freq offs 1 1im API function for the instrument DLL pointed by the instr hdl
input parameter. If the function succeeds it will return BLE TESTER DRV SUCCESS, otherwise it will
return BLE TESTER DRV ERROR.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 85 of 99 © 2022 Renesas Electronics

RENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

BLE TESTER_DRV_APIlint ble_tester_drv_set_freq_drift_pkt_lim(ble_drv_instr_hdl instr_hdl,
uint32_t drift_pkt_limit)

The ble tester drv set freq drift pkt 1imAPI function is used to set the overall packet drift
limit in kHz for the TX carrier frequency offset measurements. This function calls the

ble instr set freq drift pkt 1imAPI function for the instrument DLL pointed by the instr hdl
input parameter. If the function succeeds it will return BLE TESTER DRV_SUCCESS, otherwise it will
return BLE TESTER DRV ERROR.

BLE _TESTER_DRV_APIlint ble_tester_drv_set freq_drift_rate lim(ble_drv_instr_hdl instr_hdl,
uint32_t drift_rate_limit)

The ble tester drv set freq drift rate 1imAPI function is used to set the drift rate limit in
kHz/50us for the TX carrier frequency offset and drift measurements. This function calls the

ble instr set freq drift rate 1imAPI function for the instrument DLL pointed by the instr hdl
input parameter. If the function succeeds it will return BLE . TESTER DRV SUCCESS, otherwise it will
return BLE TESTER DRV ERROR.

BLE_TESTER_DRV_APIint ble_tester_drv_do_freq_offs(ble_drv_instr_hdl instr_hdl, uint32_t
freq)

The ble tester drv do freq offs API function is used to start the TX carrier frequency offset and
drift measurements at the frequency given to the freqinput parameter. This function calls the

ble instr do freq offs API function for the instrument DLL pointed by the instr hdl input
parameter. . If the function succeeds it will return BLE TESTER DRV SUCCESS, otherwise it will return
BLE TESTER DRV ERROR.

BLE TESTER_DRV_APIlint ble_tester_drv_set_mod_idx_f1_min(ble_drv_instr_hdl instr_hdl,
uint32_t f1_min_limit)

The ble tester drv set mod idx f1 min API function is used to set the F1 minimum average limit
in kHz for the TX modulation index measurements. This function calls the

ble instr set mod idx f1 min API function for the instrument DLL pointed by the instr hdl input
parameter. If the function succeeds it will return BLE . TESTER DRV SUCCESS, otherwise it will return
BLE TESTER DRV ERROR.

BLE TESTER_DRV_APIlint ble_tester_drv_set_mod_idx_f1_max(ble_drv_instr_hdl instr_hdl,
uint32_t f1_max_limit)

The ble tester drv set mod idx f1 max API function is used to set the F1 maximum average limit
in kHz for the TX modulation index measurements. This function calls the

ble instr set mod idx f1 max API function for the instrument DLL pointed by the instr hdl input
parameter. . If the function succeeds it will return BLE . TESTER DRV SUCCESS, otherwise it will return
BLE TESTER DRV ERROR.

BLE_TESTER_DRV_APIlint ble_tester_drv_set_mod_idx_f2_max(ble_drv_instr_hdl instr_hdl,
uint32_t f2_max_limit)

The ble tester drv set mod idx f2 max API function is used to set the F2 maximum average limit
in kHz for the TX modulation index measurements. This function calls the

ble instr set mod idx f£2 max API function for the instrument DLL pointed by the instr hdl input
parameter. If the function succeeds it will return BLE TESTER DRV SUCCESS, otherwise it will return
BLE TESTER DRV ERROR.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 86 of 99 © 2022 Renesas Electronics

RENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

BLE TESTER_DRV_APIlint ble_tester_drv_set mod_idx_f1f2 ratio(ble_drv_instr_hdl
instr_hdl, float f1f2_ratio_limit)

The ble tester drv set mod idx f1f2 ratio API function is used to set the F1/F2 maximum
average ratio limit for the TX modulation index measurements. This function calls the

ble instr set mod idx f1f2 ratio API function for the instrument DLL pointed by the instr hdl
input parameter. If the function succeeds it will return BLE TESTER DRV _SUCCESS, otherwise it will
return BLE TESTER DRV _ERROR.

BLE TESTER_DRV_APIint ble_tester_drv_do_mod_idx(ble_drv_instr_hdl instr_hdl, uint32_t
freq)

The ble tester drv do mod idx API function is used to start the TX modulation index
measurement at the frequency given to the freqinput parameter. This function calls the

ble instr do mod idx API function for the instrument DLL pointed by the instr hdl input
parameter. . If the function succeeds it will return BLE . TESTER DRV_SUCCESS, otherwise it will return
BLE TESTER DRV ERROR.

BLE_TESTER DRV_APIlint ble_tester_drv_set_rx_sens_tx_pat(ble_drv_instr_hdl instr_hdl,
uint8_t pattern)

The ble tester drv set rx sens tx pat API function is used to set the TX packet pattern type
that the BLE tester instrument will transmit when performing RX RSSI measurements. This function
calls the ble instr set rx sens tx pat API function for the instrument DLL pointed by the

instr hdl input parameter. If the function succeeds it will return BLE TESTER DRV SUCCESS,
otherwise it will return BLE TESTER DRV _ERRCR.

BLE _TESTER_DRV_APIlint ble_tester_drv_set rx_sens_pkt _space(ble_drv_instr_hdl
instr_hdl, uintl6_t spacing)

The ble tester drv set rx sens pkt space API function is used to set the TX packet spacing that
the BLE tester instrument will transmit when performing RX RSSI measurements. This function calls
the ble instr set rx sens pkt space API function for the instrument DLL pointed by the

instr hdl input parameter. If the function succeeds it will return BLE TESTER DRV SUCCESS otherwise
it will return BLE TESTER DRV_ERRCR on failure.

BLE_TESTER_DRV_API int ble_tester_drv_set_rx_sens_pkt_num(ble_drv_instr_hdl instr_hdl,
uintlé_t num_of_pkts)

The ble tester drv set rx sens pkt numAPI function is used to set the TX packets number that
the BLE tester instrument will transmit when performing RX RSSI measurements. This function calls
the ble instr set rx sens pkt numAPI function for the instrument DLL pointed by the instr hdl
input parameter. If the function succeeds it will return BLE TESTER DRV_SUCCESS, otherwise it will
return BLE TESTER DRV ERROR.

BLE_TESTER_DRV_APIlint ble_tester_drv_set rx_sens_tx_pwr(ble_drv_instr_hdl instr_hdl,
float tx_power)

The ble tester drv set rx sens_tx pwr API function is used to set the TX output power that the
BLE tester instrument will transmit when performing RX RSSI measurements. This function calls the
ble instr set rx sens tx pwr API function for the instrument DLL pointed by the instr hdl input
parameter. If the function succeeds it will return BLE TESTER DRV SUCCESS, otherwise it will return
BLE TESTER DRV _ERROR.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 87 of 99 © 2022 Renesas Electronics

T RENESAS

DA1458x/DA1468x Production Line Tool
Libraries

BLE TESTER_DRV_APIlint ble_tester_drv_set rx_sens_tx_dirty(ble_drv_instr_hdl instr_hdl,
bool dirty)

The ble tester drv set rx sens tx dirty API function enables or disables the TX dirty option
used in the RX RSSI measurements. This function calls the ble instr set rx sens tx dirty API
function for the instrument DLL pointed by the instr hdl input parameter. If the function succeeds it
will return BLE TESTER DRV SUCCESS, otherwise it will return BLE TESTER DRV ERROR.

BLE _TESTER_DRV_APIint ble_tester_drv_set rx_sens_tx_crc(ble_drv_instr_hdl instr_hdl,
bool crc_state)

The ble tester drv set rx sens_tx crc API function enables or disables the TX CRC alternate
state option used in the RX RSSI measurements. This function calls the

ble instr set rx sens tx crc API function for the instrument DLL pointed by the instr hdl input
parameter. . If the function succeeds it will return BLE . TESTER DRV SUCCESS, otherwise it will return
BLE TESTER DRV ERROR.

BLE_TESTER_DRV_API int ble_tester_drv_do_rx_sens(ble_drv_instr_hdl instr_hdl, uint32_t
freq)

The ble tester drv do rx sens API function is used to start the BLE tester packet generator at
the frequency given to the freqinput parameter. This function calls the ble instr do rx sens API
function for the instrument DLL pointed by the instr hdl input parameter. If the function succeeds it
will return BLE TESTER DRV SUCCESS, otherwise it will return BLE TESTER DRV ERRCR.

13.2 BLE_TESTER_DRIVER API Details

More details on the BLE_ TESTER_DRIVER API can be found either in the API header file in
source\production line tool\instruments\ble testers\ble tester driver\ble tester drive

r.h, orinthe HTML based help pages loaded after pressing the
source\production line tool\help\help.html link.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 88 of 99 © 2022 Renesas Electronics

RENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

14 NI_USB_TCO1DLL

The ni usb tc01.d1lis a DLL with an API used to take ambient temperature measurements using
the NI USB TCO1 temperature sensor [11]. The APl used in the ni usb tc01.d11is designed in
such a way so it can be used by other temperature sensor measurement instruments as well. All
temperature measurement settings are configurable giving a great flexibility to the user.

For the DLL to operate the NI-VISA software installation is needed. It can be downloaded from the
path shown in Table 16.

Folder source\production line tool\instruments\temp sensors\ni usb tcO0l contains all the
necessary source code for the particular DLL. The API of the DLL is defined in
source\production line tool\instruments\temp sensors\temp meas driver\temp meas api.h.

14.1 NI_USB_TCO1 API Functions
The ni usb tc01.d11 has the following user accessible functions:

TEMP MEAS API int temp meas api dbg init(dbg params *dbg params t);
TEMP MEAS API int temp meas api dbg close (void);

TEMP MEAS API int temp meas api init(char *iface, callback temp meas
callback . temp meas);

TEMP MEAS API int temp meas api close(void);

TEMP MEAS API int temp meas apl measure (void);

A detailed description of the API functions will be given next.

TEMP_MEAS_APIl int temp_meas_api_dbg_init(_dbg params *dbg_params_t)

The temp meas api dbg init API function is used to initialize the debug print operation. Details on
the dog params t input parameter can be found in section 6.1.1.1. This function will return

TEMP MEAS API INVALID DBG PARAMS if an invalid dbg params t input parameter is given. If an error
occurred durlng dbg dll.dll ‘initialization, the function will return TEMP ' MEAS API DBG DLL ERROR.
On success the function will return TEMP MEAS API SUCCESS.

TEMP_MEAS_APIl int temp_meas_api_dbg close(void)

The temp meas api dbg close API function closes the debug session. It calls the dbg close API
function from dbg_d11.d11 to free all the resources acquired. It always returns
TEMP MEAS API SUCCESS.

TEMP_MEAS_APIl int temp_meas_api_init(char *iface, callback temp meas
callback_temp_meas)

The temp meas api init API function resets and initializes the instrument. The iface input pointer
parameter points to the interface string, which even if not used should have a valid pointer to an
allocated space. The ni_udo tc01.d11 does not use this parameter, because the interface is
automatically found by the software that uses appropriate NI VISA functions. On the other hand, the
tmu temp sens.dll temperature measurement DLL for the Papouch TMU temperature sensor [10] is
using this parameter. The tmu temp sens.dll does not use NI VISA but RS232 serial interface to
communicate. In that case the iface parameter provides the COM port. The callback temp meas is
a pointer to a callback function that the DLL will call to update measurement status and results. If the
function succeeds it returns TEMP MEAS API SUCCESS otherwise it returns TEMP MEAS API ERROR ON
failure.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 89 of 99 © 2022 Renesas Electronics

UNLB-040 LENESAS

DA1458x/DA1468x Production Line Tool
Libraries

TEMP_MEAS_APIlinttemp_meas_api_close(void)

The temp meas api close API function deallocates all resources allocated during the temperature
measurements. Closes the measurement thread, if this has been remained opened for some reason,
disables any GPIB service requests if NI VISA is used or closes any used COM port resources. If the
function succeeds it returns TEMP MEAS API SUCCESS, otherwise it returns TEMP MEAS API ERROR.

TEMP_MEAS_APIl int temp_meas_api_measure(void)

The temp meas api measure API function is used to start the temperature measurement operation. It
creates a thread for the measurements to take place and initializes NI VISA resources if needed. It
then returns immediately with TEMP API SUCCESS if the measurement operation started successfully
or TEMP API ERROR if an error occurred. The actual measurement results will be returned using the
callback function registered when the temp meas api init API function was called. The callback
function has the following type.

typedef void (* callback temp meas) (int status, float temp);

When the status input parameter is set to TEMP MEAS API READ OK the output temperature result is
valid and it is returned in the temp argument. The upper layer software handling the callback can then
read the result.

14.2 NI_USB_TCO1 API Details

More details on the NI_USB_TCO01 API can be found either in the API header file in
source\production line tool\instruments\temp sensors\temp meas driver\temp meas api.h

or in the HTML based help pages loaded after pressing the
source\production line tool\help\help.html link.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 90 of 99 © 2022 Renesas Electronics

LENESANS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

15 TMU_TEMP_SENS DLL

The tmu_temp sens.dllis a DLL with an API used to take ambient temperature measurements
using the Papouch TMU temperature sensor [10]. The API is the same as the one described for the
NI USB TCO1 sensor in section 14.

Folder source\production line tool\instruments\temp sensors\tmu temp sens contains all the
necessary source code for the particular DLL. The API of the DLL is defined in
source\production line tool\instruments\temp sensors\temp meas driver\temp meas api.h.

15.1 TMU_TEMP_SENS API Functions

The tmu_temp sens.dll has the same API functions as the NI USB TCO1 sensor described in
section 14.1.

The API is the same in order for the upper layer software, the TEMP MEAS DRIVER described next in
section 16, to be able to load and access both. By using function pointers to those two DLLs the
TEMP MEAS DRIVER can operate with any one.

15.2 TMU_TEMP_SENS API Details

More details on the TMU_TEMP_SENS API can be found either in the API header file in
source\production line tool\instruments\temp sensors\temp meas driver\temp meas api.h

or in the HTML based help pages loaded after pressing the
source\production line tool\help\help.html link.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 91 of 99 © 2022 Renesas Electronics

LENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

16 TEMP_MEAS_ DRIVER DLL

The temp meas driver.dllis a DLL driver used to load and access different temperature
measurement DLLs from the temp meas instr plugins folder. It is able to return all the DLL names
existing in that folder and is able to use any one of them, as long as they are following the correct
API found under

source\production line tool\instruments\temp sensors\temp meas driver\temp meas api.h.

The API in the temp meas api.h file was actually described in section 14 since it is the one that

ni usb tc01.dll and tmu temp sens.dll are using. The CFG application uses the

temp meas driver.dll through the PLTD to display the available temperature measurement DLLs
(e.g. tmu_temp sens.dll). Users can then select a DLL name and all the temperature
measurements will go through the one selected. The actual block diagram describing this operation
is shown in Figure 18.

temp_meas_driver.dll prod_line_tool_dll.dll

Adll m B -ETPSES) i ush_teon.dil

Figure 18: temp_meas_driver.dll Usage Block Diagram

During the prod line tool dll.dll initialization phase (pltd init)the temp meas driver.dllis
also initialized. During temp meas driver.dll initialization all the DLLs found in the

temp meas instr plugins folder are loaded. The driver stores the loaded DLL names and creates
function handles in a linked list of the driver. Users can then get all the temperature measurement
DLL names by calling the pltd get temp meas instr names prod line tool.dll API function.

16.1 TEMP_MEAS_DRIVER API Functions
The temp meas driver.dll has the following user accessible functions:

TEMP MEAS DRV API int temp meas drv_init (void);

TEMP MEAS DRV API int temp meas drv close(void);

TEMP MEAS DRV API int temp meas drv dbg init(dbg params *dog params t);

TEMP MEAS DRV API int temp meas drv dbg close(void);

TEMP MEAS DRV _API int temp meas drv ~ get _instr name (temp meas drv instr hdl instr hdl,
char *name, int size);

TEMP MEAS DRV API temp meas drv instr hdl

temp meas drv get instr hdl(temp meas drv instr hdl prev instr hdl);

TEMP MEAS DRV API int temp meas drv instr init(temp meas drv instr hdl instr hdl, char
*1face, callback __temp meas callback . temp meas) ;

TEMP MEAS DRV _API int temp meas drv instr close(temp meas drv instr hdl instr hdl);
TEMP MEAS DRV API int temp meas drv instr measure (temp meas drv instr hdl instr hdl);

A detailed description of the API functions will be given next.

TEMP_MEAS DRV_API int temp _meas_drv_init(void)

The temp meas drv_init API function initializes the DLL. It searches the temp meas instr plugins
folder to find temperature measurement instrument DLLs. It loads the DLLs found and saves the

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 92 of 99 © 2022 Renesas Electronics

RENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

names and the function handles in an internal linked list. If no instrument DLLs are found the function
will return TEMP MEAS DRV NO INSTR PLUGINS. On a system error the function will return
TEMP MEAS DRV _ERROR Or TEMP MEAS DRV SUCCESS otherwise.

TEMP_MEAS_DRV_APIlinttemp_meas _drv_close(void)

The temp meas drv_close API function frees the allocated resources of all the temperature

measurement DLL plugins created during the initialization process. The function will always return
TEMP MEAS DRV SUCCESS.

TEMP_MEAS_DRV_APIl int temp_meas_drv_dbg _init(_dbg params *dbg_params t)

The temp meas drv dbg_init API function initializes the debug information. Details on the
dbg_params_t input parameter can be found in section 6.1.1.1. This function will return

TEMP MEAS DRV INVALID DBG PARAMS if an invalid dog params t input parameter is given. If an error
occurred durlng dog_dll.d1l initialization, the function will return TEMP MEAS DRV DBG DLL ERROR.
On success the function will return TEMP MEAS DRV SUCCESS.

TEMP_MEAS_DRV_API int temp_meas_drv_dbg_close(void)

The temp meas drv dbg close API function closes the debug session. It calls the dbg close API
function from dbg_d11.d11. If an error occurred in the dog d11.d11 then

TEMP MEAS DRV DBG DLL ERROR will be returned. Otherwise the function returns

TEMP MEAS DRV_SUCCESS On success.

TEMP_MEAS_DRV_APIlint temp_meas _drv_get instr_name(temp_meas_drv_instr_hdl
instr_hdl, char *name, int size)

The temp meas drv get instr name API function returns the temperature measurement instrument
DLL names as these were taken when the temp meas drv init API function was called. It is mainly
used to display the DLL names in the CFG PLT appllcatlon SO users can select one to use together
with a specific temperature measurement instrument.

TEMP_MEAS DRV_APItemp_meas _drv_instr_hdl
temp_meas_drv_get_instr_hdl(temp_meas_drv_instr_hdl prev_instr_hdl)

The temp meas drv get instr hdl API function returns the handles of the temperature
measurement instrument DLLs created when the temp meas drv_init API function was called. First
call of this function must be made with the prev_instr hdl input parameter set to NULL. All
subsequent calls must be made with the prev _instr hdl input parameter set to the handle returned
from the previous function call. When this function returns NULL, no more instrument handles exist.

TEMP_MEAS _DRV_APIlint temp_meas_drv_instr_init(temp_meas_drv_instr_hdl instr_hdl,
char *iface, callback _temp_meas callback_temp_meas)

The temp meas drv instr int API function initializes a specific temperature measurement
instrument DLL that is pomted by the instr hdl handle. It actually calls the temp meas api init API
function from the DLL pointed by the instr hdl handle. The input callback temp meas parameter
is used to return measurement status and results through callbacks. A pointer to a callback function
is passed, which will be called when a temperature measurement is ready. If the function succeeds it
will return TEMP MEAS DRV _SUCCESS, otherwise it will return TEMP MEAS DRV _ERROR.

TEMP_MEAS DRV_APIlinttemp_meas_drv_instr_close(temp_meas_drv_instr_hdl instr_hdl)

The temp meas drv instr close API function closes the temperature measurement instrument
DLL. It actually calls the temp meas api close API function from the DLL pointed by the instr hdl

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 93 of 99 © 2022 Renesas Electronics

RENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

handle. If the function succeeds it will return TEMP MEAS DRV SUCCESS, otherwise it will return
TEMP MEAS DRV ERROR.

TEMP_MEAS DRV_API int temp_meas_drv_instr_measure(temp_meas_drv_instr_hdl
instr_hdl)

The temp meas drv instr measure API function starts the temperature measurements. It actually
calls the temp meas_api measure API function from the instrument DLL pointed by the instr hdl
input parameter handle. In the currently supported instrument DLLS, the temp meas api measure API
function creates a thread that waits for the instrument to return some measurements. After averaging
the measurements, the result is returned using callbacks. The function returns immediately but the
upper layer software has to wait for the callback to arrive, in order to get the temperature results. If
the function succeeds to start the measurement and create the measurement thread it will return
TEMP MEAS DRV_SUCCESS, otherwise it will return TEMP MEAS DRV _ERROR.

16.2 TEMP_MEAS_DRIVER API Details

More details on the TEMP_MEAS_ DRIVER API can be found in the API header file in
source\production line tool\instruments\temp sensors\temp meas driver\temp meas driver.h

or in the HTML based heﬁ) pages loaded after pressing the
source\production line tool\help\help.html link.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 94 of 99 © 2022 Renesas Electronics

o0 LENESAS

DA1458x/DA1468x Production Line Tool
Libraries

17 BARCODE_SCANNER DLL

The barcode scanner.dllis a DLL that is directly loaded and used by the GUI PLT. It provides a
generic interface to scan device BD addresses and memory data. The barcode scanner instrument
should be connected to the PC using a USB to RS232 or plain RS232 interface. Ideally, any barcode
scanner instrument that has USB to RS232 or plain RS232 interface could be used with the

barcode scanner.dll. However, the particular DLL has been tested with the Honeywell Xenon 1900
USB to RS232 barcode scanner [12] and the Motorola LS2208 [13]. The DLL supports two modes of
operation as described in Table 17.

Table 17: Barcode Scanner Modes of Operation

Barcode Scan | Description
Operation

Auto When the auto mode is selected, users only need to scan device BD addresses one after the
other. The device to be scanned is automatically selected by the upper layer software (GUI).
The GUI automatically increments the device selected to be scanned. Additionally, in the GUI
there are user accessible controls where any of the devices to be scanned can be selected
manually.

The following picture illustrates the barcode scan screen. Buttons NEXT or PREV can be
pressed by the users to select any of the four active devices. Currently, device 1 is selected.
If user presses the NEXT button device 2 will be selected and if the barcode scanner scans a
BD address it will be passed to device 2. If Custom Memory Data are also to be scanned
using a barcode scanner then the PLT will select the next cell named Memory Data, in the
same DUT row.

SRS TR} Prodcior Lom - A 30N —)
T

S1an (D addrenn
062108 3000 17 our m ans Hemn

Neest £ addowns Rdsodanenad
NN C

rvrr— 4 | 00M00N 00N

lsmant FREY. EN D NEXT

M R Lt M WU B S0 i Y 00 w10 Gl T b S o . A D

After the BD address of the 2" device has been scanned, the GUI tool will automatically
select the 3" device. If a BD address is scanned again, the BD address will be saved in the
third device and the GUI tool will automatically select the next device, device 4.

Scan position In this mode the GUI PLT waits for a specific callback status code from the barcode scanner
in order to select a different device to be scanned. The callback status code is the

BARCODE SCANNER API POS READ OK. This callback status code comes with data that denote
which device to select. The barcode scanner should scan a special word with the following
format: ‘'TEST POSITION XxX.Word ‘xxxX should be replaced with the actual device position.

For example, if the user would like to scan the BD address for device 10, then the word to
scan should be ‘TEST POSITION 010’. When this word is scanned and if the automatic mode
is disabled, the barcode scanner.dll will send a callback to the upper layer software, the
GUI in that case, with status code BARCODE SCANNER API POS READ OK and data value from 1
to 16 indicating the device to be selected.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 95 of 99 © 2022 Renesas Electronics

UNLB-040 LENESAS

DA1458x/DA1468x Production Line Tool
Libraries

17.1 BARCODE_SCANNER API Functions
The barcode scanner.dll has the following user accessible functions.

BARCODE SCANNER API int barcode scanner api dbg init ((dbg params *dbg params t);
BARCODE SCANNER API int barcode scanner api dbg close (void);

BARCODE SCANNER API int barcode scanner api init (_barcode scanner cfg *cfg);

BARCODE SCANNER API int barcode scanner api close(void);

BARCODE SCANNER API int barcode scanner api get BDA (void);

BARCODE, SCANNER API int barcode scanner api get mem data(uint32 t size);

A detailed description of the API functions will be given next.

BARCODE_SCANNER_API int barcode scanner_api_dbg_init(_dbg params *dbg_params_t)

The barcode scanner api dbg init API function initializes the debug information. Details on the
dbg params_t input parameter can be found in section 6.1.1.1. This function will return

BARCODE SCANNER API INVALID DBG PARAMS if an invalid dog params t input parameter is given. If
an error occurs during dog_d11.d11 initialization, the function will return

BARCODE SCANNER API DBG DLL ERROR. On success the function will return

BARCODE SCANNER API DBG DLIL SUCCESS.

BARCODE_SCANNER_API int barcode scanner_api_dbg_close(void)

The barcode scanner api dbg close API function closes the debug session. It calls the dog close
API function from dog_d11.d11. The function always returns BARCODE SCANNER API SUCCESS.

BARCODE_SCANNER_APIint barcode scanner_api_init(_barcode scanner_cfg *cfg);

The barcode scanner api init API function initializes the barcode scanner DLL. It takes as
argument the following data structure.

typedef struct barcode scanner cfg
{

char iface[256];

bool mode auto;

_callback barcode scanner callback barcode scanner;
} barcode scanner cfg;

In the iface parameter a COM port number is expected. This should be the COM port number of the
barcode scanner instrument. The API function will open the PC COM port and keep the COM port
handle open to be used during the scan operation. The PC COM port initialization settings are
illustrated in the following Table 18.

Table 18: Barcode Scanner COM Port Settings

Parameter Value
Baud rate 115200
Byte size 8

Parity Disabled
Stop bits One
Flow control Disabled

The second function parameter mode auto, is used to set the DLL scan operation mode as described
in Table 17. The last parameter, callback barcode scanner, is a pointer to the upper layer software,
pointing to the function to be called when a valid scan takes place.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 96 of 99 © 2022 Renesas Electronics

RENESAS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

BARCODE_SCANNER_API int barcode scanner_api_get BDA(void)

The barcode scanner api get BDA API function is used to start the barcode scan operation. When
called, the DLL will create a thread for the scan messages to be received. It will then return
immediately with BARCODE SCANNER API SUCCESS if the thread was successfully created or
BARCODE SCANNER API ERRCRif an error “occurred. The upper layer software should wait for the scan
results through the callback function pointer passed in the barcode scanner api init API function.

The callback function has the following type.

typedef void (stdcall * callback barcode scanner) (int status, uint32 t size, uint8 t
*data) ;

BARCODE_SCANNER_API int barcode scanner_api_get mem_data(uint32_t size)

The barcode scanner api get mem data API function is used to start the barcode scan operation in
order to scan data to be burned into the device memory. When called, the DLL will create a thread
for the scan messages to be received. It will then return immediately with

BARCODE SCANNER API SUCCESS if the thread was successfully created or

BARCODE SCANNER API ERROR if an error occurred. The upper layer software should wait for the scan
results through the callback function pointer passed in the barcode scanner api init API function.

The callback function has the following type.

typedef void (stdcall * callback barcode scanner) (int status, uint32 t size, uint8 t
*data) ;

The status parameter can take one of the following enumeration values.

typedef enum BARCODE SCANNER API STATUS CODES

{
BARCODE SCANNER API SUCCESS = 0,
BARCODE SCANNER API ERROR,
BARCODE_SCANNER API INVALID DBG PARAMS,
BARCODE_SCANNER API DBG DLL ERROR,
BARCODE_SCANNER API START,
BARCODE SCANNER API BDA READ OK,
BARCODE SCANNER API BDA READ ERROR,
BARCODE_SCANNER API POS READ OK,
BARCODE_SCANNER API DATA READ OK,
BARCODE_SCANNER API DATA RFAD ERROR

}BARCODE SCANNER API STATUS CODES;

Callback data passed to the data callback parameter pointer are only valid when the
BARCODE_SCANNER API BDA READ CK Or the BARCODE SCANNER API POS READ OK callback status is
received. If BARCODE SCANNER API DATA READ OKiS received then data contains a valid scanned
data with up to 256 bytes of allowable size. If BARCODE SCANNER API POS READ OKis received then
data contain a valid device position number from 1 to 16.

17.2 BARCODE_SCANNER API Details

More details on the BARCODE_SCANNER API can be found in the API header file in
source\production line tool\instruments\barcode scanner\barcode scanner. horin the
HTML based help pages loaded after pressing the source\production line tool\help\help.html
link.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 97 of 99 © 2022 Renesas Electronics

LENESANS

UM-B-040

DA1458x/DA1468x Production Line Tool
Libraries

Revision History

Revision Date Description

1.0 26-Jan-2015 Initial release version for
DA1458x_Production_Line_Tool_v_3.0.7.494 release.

2.0 14-Jul-2015 Updated for DA14580_Production_Line_Tool_v_3.170.2 release.

3.0 28-Apr-2016 Updated for DA1458x_68x_PLT_v3 release.

3.1 05-Aug-2016 Updated for DA1458x_DA1468x_PLT_v3.1 release.
Template and spelling updated to latest branding guidelines.

4.0 13-Dec-2016 Updated for DA1458x_DA14658x_PLT_v4 release.

4.2 19-Oct-2017 Updated for DA1458x_DA14658x_PLT_v4.2 release.

4.3 17-Jan-2022 Updated logo, disclaimer, copyright.

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 98 of 99 © 2022 Renesas Electronics

RLENESAS

DA1458x/DA1468x Production Line Tool

Libraries

Status Definitions

Status Definition

DRAFT The content of this document is under review and subject to formal approval, which may result in modifications or
additions.

APPROVED The content of this document has been approved for publication.

or unmarked

User Manual Revision 4.3 17-Jan-2022

CFR0012-00 99 of 99 © 2022 Renesas Electronics

	Abstract
	Contents
	Figures
	Tables
	1 Terms and Definitions
	2 References
	3 Introduction
	4 Source Code
	4.1 Prerequisites
	4.2 Building the Source Code for Windows 7/8/8.1/10
	4.3 DA14580/1/2/3/5/6 Required Firmware
	4.3.1 Building the DA14580/1/2/3/5/6 Firmware

	4.4 DA1468x Required Firmware
	4.4.1 Building the DA1468x Production Test Firmware
	4.4.2 Building the DA1468x Memory Programmer Firmware

	4.5 Running the Applications
	4.5.1 DA1458x_DA1468x_CFG_PLT.exe
	4.5.2 DA1458x_DA1468x_GUI_PLT.exe
	4.5.3 DA1458x_DA1468x_CLI_PLT.exe

	5 CFG_DLL
	5.1 CFG_DLL API Functions
	CFG_DLL_API int cfg_dbg_init(_dbg_params *dbg_params_t)
	CFG_DLL_API int cfg_dbg_close(void)
	CFG_DLL_API int cfg_init(char *file_path_t)
	CFG_DLL_API int cfg_close(void)
	CFG_DLL_API int cfg_get_value(char *param_name, uint8_t idx, char *param_value)
	CFG_DLL_API int cfg_get_info(char *param_name, char *info)
	CFG_DLL_API int cfg_set_default_values(void)
	CFG_DLL_API int cfg_set_value(char *param_name, uint8_t idx, char *param_value)
	CFG_DLL_API int cfg_check_value(char *param_name, uint8_t idx, char *param_value)
	CFG_DLL_API int cfg_check_param_idx(char *param_name, uint8_t idx)
	CFG_DLL_API int cfg_add_param_idx(char *param_name)
	CFG_DLL_API int cfg_del_param_idx(char *param_name)
	CFG_DLL_API int cfg_import_settings(_cfg_params *cfg_params_t, _cfg_errors *cfg_errors_t)
	CFG_DLL_API int cfg_cross_check_settings(_cfg_params *cfg_params_t, _cfg_errors *cfg_errors_t)
	CFG_DLL_API int cfg_export_settings(_cfg_params *cfg_params_t)
	CFG_DLL_API char *cfg_get_param_name(int idx);
	CFG_DLL_API int cfg_load_bd_addr(_cfg_params *cfg_params_t, uint8_t *next_bd_addr)

	5.2 CFG_DLL API Details

	6 DBG_DLL
	6.1 DBG_DLL API Functions
	DBG_DLL_API int dbg_init(void **dbg_session, _dbg_params *dbg_params_t)
	DBG_DLL_API int dbg_close(void *dbg_session)
	DBG_DLL_API void dbg_print(void *dbg_session, DBG_LEVEL dbg_level, char *dbg_sw, char *func, int line, char *fmt, ...)
	6.1.1 DBG_DLL Function Input Parameters
	6.1.1.1 Function dbg_init Input Arguments
	6.1.1.2 Function dbg_close Input Arguments
	6.1.1.3 Function dbg_print Input Arguments

	6.2 DBG_DLL API Details

	7 U_DLL
	7.1 U_DLL API Functions
	U_DLL_API int udll_init(void);
	U_DLL_API int udll_dbg_init(_dbg_params *dbg_params_t);
	U_DLL_API int udll_dbg_close(void);
	U_DLL_API int udll_set_prog_params(_udll_params *udll_params_t);
	U_DLL_API int udll_set_device_params(_udll_device_params *udll_device_params);
	U_DLL_API int udll_start_prog(void);
	U_DLL_API int udll_close(void);
	7.1.1 U_DLL Function Input Arguments
	7.1.1.1 Function udll_set_prog_params Input Arguments
	7.1.1.2 Function udll_set_device_params Input Arguments

	7.2 U_DLL Status Codes
	7.3 U_DLL API Details
	7.4 U_DLL Operation Example

	8 P_DLL
	8.1 P_DLL API Functions
	P_DLL_API void pdll_init(void)
	P_DLL_API int pdll_dbg_init(_dbg_params *dbg_params_t);
	P_DLL_API int pdll_dbg_close(void);
	P_DLL_API int pdll_set_device_params(_pdll_device *pdll_device_t)
	P_DLL_API int pdll_perform_test(_pdll_test_id test_id)
	8.1.1 P_DLL Function Input Arguments
	8.1.1.1 Function pdll_set_device_params Input Arguments
	8.1.1.2 Function pdll_perform_test Input Arguments

	8.2 P_DLL Status Codes
	8.3 P_DLL API Details
	8.4 P_DLL Operation Example
	8.4.1 Simple RX-TX Operation Example
	8.4.2 Scan Operation Example

	9 PROD_LINE_TOOL_DLL
	9.1 PROD_LINE_TOOL_DLL API Functions
	PLTD_API int pltd_init(int gu_com)
	PLTD_API void pltd_close(void)
	PLTD_API int pltd_set_device_params(_pltd_device_params *pltd_device_params_t)
	PLTD_API int pltd_set_general_params(_pltd_general_params *pltd_general_params_t)
	PLTD_API int pltd_start(void)
	PLTD_API int pltd_com_port_enum(uint32_t *com_port_dut);
	PLTD_API int pltd_GU_com_find(int *gu_com_port);
	PLTD_API int pltd_GU_check_LED(int *gu_com_port);
	PLTD_API int pltd_dbg_init(_pltd_dbg_params *pltd_dbg_params_t);
	PLTD_API char *pltd_get_volt_meter_instr_names(char *prev_name);
	PLTD_API char *pltd_get_ble_tester_instr_names(char *prev_name);
	PLTD_API char * pltd_get_ammeter_instr_names(char *prev_name);
	PLTD_API char *pltd_get_temp_meas_instr_names(char *prev_name);
	PLTD_API int pltd_vbat_uart_set (bool start, uint16_t duts);
	PLTD_API int pltd_uart_coms_test(_pltd_uart_test *uart_test);
	9.1.1 Production Line Tool DLL Function Input Arguments
	9.1.1.1 Function pltd_set_device_params Input Arguments
	9.1.1.2 Function pltd_set_general_params Input Arguments

	9.2 PROD_LINE_TOOL_DLL API Details
	9.3 PROD_LINE_TOOL_DLL Example Procedures
	9.3.1 PROD_LINE_TOOL_DLL RF Test Procedure

	10 VOLT_METER_SCPI DLL
	10.1 VOLT_METER_SCPI API Functions
	VOLT_METER_API int volt_meter_api_dbg_init(_dbg_params *dbg_params_t);
	VOLT_METER_API int volt_meter_api_dbg_close(void);
	VOLT_METER_API int volt_meter_api_init(char *iface, _callback_volt_meter callback_volt_meter);
	VOLT_METER_API int volt_meter_api_close(void);
	VOLT_METER_API int volt_meter_api_measure(void);

	10.2 VOLT_METER_SCPI API Details

	11 VOLT_METER_DRIVER DLL
	11.1 VOLT_METER_DRIVER API Functions
	VOLT_METER_DRV_API int volt_meter_drv_init(void);
	VOLT_METER_DRV_API int volt_meter_drv_close(void);
	VOLT_METER_DRV_API int volt_meter_drv_dbg_init(_dbg_params *dbg_params_t);
	VOLT_METER_DRV_API int volt_meter_drv_dbg_close(void);
	VOLT_METER_DRV_API volt_meter_drv_instr_hdl volt_meter_drv_get_instr_hdl(volt_meter_drv_instr_hdl prev_instr_hdl);
	VOLT_METER_DRV_API int volt_meter_drv_get_instr_name(volt_meter_drv_instr_hdl instr_hdl, char *name, int size);
	VOLT_METER_DRV_API int volt_meter_drv_instr_init(volt_meter_drv_instr_hdl instr_hdl, char *iface, _callback_volt_meter callback_volt_meter);
	VOLT_METER_DRV_API int volt_meter_drv_instr_close(volt_meter_drv_instr_hdl instr_hdl);
	VOLT_METER_DRV_API int volt_meter_drv_instr_measure(volt_meter_drv_instr_hdl instr_hdl);

	11.2 VOLT_METER_DRIVER API Details

	12 MT8852B and IQxelM DLLs
	12.1 BLE Tester API Functions
	BLE_INSTR_API int ble_instr_dbg_init(_dbg_params *dbg_params_t)
	BLE_INSTR_API int ble_instr_dbg_close(void)
	BLE_INSTR_API int ble_instr_init(void *data, _callback_ble_instr callback_ble_instr);
	BLE_INSTR_API int ble_instr_close(void)
	BLE_INSTR_API int ble_instr_set_path_loss(float path_loss)
	BLE_INSTR_API int ble_instr_set_pwr_range(_ble_instr_pwr_range pwr_range);
	BLE_INSTR_API int ble_instr_set_tx_pwr_h_lim(float avg_high_limit)
	BLE_INSTR_API int ble_instr_set_tx_pwr_l_lim(float avg_low_limit)
	BLE_INSTR_API int ble_instr_set_tx_pwr_pk_lim(float pk_avg_limit)
	BLE_INSTR_API int ble_instr_do_tx_pwr(uint32_t freq)
	BLE_INSTR_API int ble_instr_set_freq_offs_h_lim(uint32_t pos_freq_limit)
	BLE_INSTR_API int ble_instr_set_freq_offs_l_lim(uint32_t neg_freq_limit)
	BLE_INSTR_API int ble_instr_set_freq_drift_pkt_lim(uint32_t drift_pkt_limit)
	BLE_INSTR_API int ble_instr_set_freq_drift_rate_lim(uint32_t drift_rate_limit)
	BLE_INSTR_API int ble_instr_do_freq_offs(uint32_t freq)
	BLE_INSTR_API int ble_instr_set_mod_idx_f1_min(uint32_t f1_min_limit)
	BLE_INSTR_API int ble_instr_set_mod_idx_f1_max(uint32_t f1_max_limit)
	BLE_INSTR_API int ble_instr_set_mod_idx_f2_max(uint32_t f2_max_limit)
	BLE_INSTR_API int ble_instr_set_mod_idx_f1f2_ratio(float f1f2_ratio_limit)
	BLE_INSTR_API int ble_instr_do_mod_idx(uint32_t freq)
	BLE_INSTR_API int ble_instr_set_rx_sens_tx_pat(uint8_t pattern)
	BLE_INSTR_API int ble_instr_set_rx_sens_pkt_space(uint16_t spacing)
	BLE_INSTR_API int ble_instr_set_rx_sens_pkt_num(uint16_t num_of_pkts)
	BLE_INSTR_API int ble_instr_set_rx_sens_tx_pwr(float tx_power)
	BLE_INSTR_API int ble_instr_set_rx_sens_tx_dirty(bool dirty)
	BLE_INSTR_API int ble_instr_set_rx_sens_tx_crc(bool crc_state)
	BLE_INSTR_API int ble_instr_do_rx_sens(uint32_t freq);

	12.2 MT8852B and IQxelM API Details

	13 BLE_TESTER_DRIVER DLL
	13.1 BLE_TESTER_DRIVER API Functions
	BLE_TESTER_DRV_API int ble_tester_drv_init(void)
	BLE_TESTER_DRV_API int ble_tester_drv_close(void)
	BLE_TESTER_DRV_API int ble_tester_drv_dbg_init(_dbg_params *dbg_params_t);
	BLE_TESTER_DRV_API int ble_tester_drv_dbg_close(void)
	BLE_TESTER_DRV_API int ble_tester_drv_get_instr_name(ble_drv_instr_hdl instr_hdl, char *name, int size)
	BLE_TESTER_DRV_API ble_drv_instr_hdl ble_tester_drv_get_instr_hdl(ble_drv_instr_hdl prev_instr_hdl)
	BLE_TESTER_DRV_API int ble_tester_drv_instr_init(ble_drv_instr_hdl instr_hdl, void *data, _callback_ble_instr callback_ble_instr)
	BLE_TESTER_DRV_API int ble_tester_drv_instr_close(ble_drv_instr_hdl instr_hdl);
	BLE_TESTER_DRV_API int ble_tester_drv_set_path_loss(ble_drv_instr_hdl instr_hdl, float path_loss)
	BLE_TESTER_DRV_API int ble_tester_drv_set_pwr_range(ble_drv_instr_hdl instr_hdl, _ble_instr_pwr_range pwr_range);
	BLE_TESTER_DRV_API int ble_tester_drv_set_tx_pwr_h_lim(ble_drv_instr_hdl instr_hdl, float avg_high_limit)
	BLE_TESTER_DRV_API int ble_tester_drv_set_tx_pwr_l_lim(ble_drv_instr_hdl instr_hdl, float avg_low_limit)
	BLE_TESTER_DRV_API int ble_tester_drv_set_tx_pwr_pk_lim(ble_drv_instr_hdl instr_hdl, float pk_avg_limit)
	BLE_TESTER_DRV_API int ble_tester_drv_do_tx_pwr(ble_drv_instr_hdl instr_hdl, uint32_t freq)
	BLE_TESTER_DRV_API int ble_tester_drv_set_freq_offs_h_lim(ble_drv_instr_hdl instr_hdl, uint32_t pos_freq_limit)
	BLE_TESTER_DRV_API int ble_tester_drv_set_freq_offs_l_lim(ble_drv_instr_hdl instr_hdl, uint32_t neg_freq_limit)
	BLE_TESTER_DRV_API int ble_tester_drv_set_freq_drift_pkt_lim(ble_drv_instr_hdl instr_hdl, uint32_t drift_pkt_limit)
	BLE_TESTER_DRV_API int ble_tester_drv_set_freq_drift_rate_lim(ble_drv_instr_hdl instr_hdl, uint32_t drift_rate_limit)
	BLE_TESTER_DRV_API int ble_tester_drv_do_freq_offs(ble_drv_instr_hdl instr_hdl, uint32_t freq)
	BLE_TESTER_DRV_API int ble_tester_drv_set_mod_idx_f1_min(ble_drv_instr_hdl instr_hdl, uint32_t f1_min_limit)
	BLE_TESTER_DRV_API int ble_tester_drv_set_mod_idx_f1_max(ble_drv_instr_hdl instr_hdl, uint32_t f1_max_limit)
	BLE_TESTER_DRV_API int ble_tester_drv_set_mod_idx_f2_max(ble_drv_instr_hdl instr_hdl, uint32_t f2_max_limit)
	BLE_TESTER_DRV_API int ble_tester_drv_set_mod_idx_f1f2_ratio(ble_drv_instr_hdl instr_hdl, float f1f2_ratio_limit)
	BLE_TESTER_DRV_API int ble_tester_drv_do_mod_idx(ble_drv_instr_hdl instr_hdl, uint32_t freq)
	BLE_TESTER_DRV_API int ble_tester_drv_set_rx_sens_tx_pat(ble_drv_instr_hdl instr_hdl, uint8_t pattern)
	BLE_TESTER_DRV_API int ble_tester_drv_set_rx_sens_pkt_space(ble_drv_instr_hdl instr_hdl, uint16_t spacing)
	BLE_TESTER_DRV_API int ble_tester_drv_set_rx_sens_pkt_num(ble_drv_instr_hdl instr_hdl, uint16_t num_of_pkts)
	BLE_TESTER_DRV_API int ble_tester_drv_set_rx_sens_tx_pwr(ble_drv_instr_hdl instr_hdl, float tx_power)
	BLE_TESTER_DRV_API int ble_tester_drv_set_rx_sens_tx_dirty(ble_drv_instr_hdl instr_hdl, bool dirty)
	BLE_TESTER_DRV_API int ble_tester_drv_set_rx_sens_tx_crc(ble_drv_instr_hdl instr_hdl, bool crc_state)
	BLE_TESTER_DRV_API int ble_tester_drv_do_rx_sens(ble_drv_instr_hdl instr_hdl, uint32_t freq)

	13.2 BLE_TESTER_DRIVER API Details

	14 NI_USB_TC01 DLL
	14.1 NI_USB_TC01 API Functions
	TEMP_MEAS_API int temp_meas_api_dbg_init(_dbg_params *dbg_params_t)
	TEMP_MEAS_API int temp_meas_api_dbg_close(void)
	TEMP_MEAS_API int temp_meas_api_init(char *iface, _callback_temp_meas callback_temp_meas)
	TEMP_MEAS_API int temp_meas_api_close(void)
	TEMP_MEAS_API int temp_meas_api_measure(void)

	14.2 NI_USB_TC01 API Details

	15 TMU_TEMP_SENS DLL
	15.1 TMU_TEMP_SENS API Functions
	15.2 TMU_TEMP_SENS API Details

	16 TEMP_MEAS_DRIVER DLL
	16.1 TEMP_MEAS_DRIVER API Functions
	TEMP_MEAS_DRV_API int temp_meas_drv_init(void)
	TEMP_MEAS_DRV_API int temp_meas_drv_close(void)
	TEMP_MEAS_DRV_API int temp_meas_drv_dbg_init(_dbg_params *dbg_params_t)
	TEMP_MEAS_DRV_API int temp_meas_drv_dbg_close(void)
	TEMP_MEAS_DRV_API int temp_meas_drv_get_instr_name(temp_meas_drv_instr_hdl instr_hdl, char *name, int size)
	TEMP_MEAS_DRV_API temp_meas_drv_instr_hdl temp_meas_drv_get_instr_hdl(temp_meas_drv_instr_hdl prev_instr_hdl)
	TEMP_MEAS_DRV_API int temp_meas_drv_instr_init(temp_meas_drv_instr_hdl instr_hdl, char *iface, _callback_temp_meas callback_temp_meas)
	TEMP_MEAS_DRV_API int temp_meas_drv_instr_close(temp_meas_drv_instr_hdl instr_hdl)
	TEMP_MEAS_DRV_API int temp_meas_drv_instr_measure(temp_meas_drv_instr_hdl instr_hdl)

	16.2 TEMP_MEAS_DRIVER API Details

	17 BARCODE_SCANNER DLL
	17.1 BARCODE_SCANNER API Functions
	BARCODE_SCANNER_API int barcode_scanner_api_dbg_init(_dbg_params *dbg_params_t)
	BARCODE_SCANNER_API int barcode_scanner_api_dbg_close(void)
	BARCODE_SCANNER_API int barcode_scanner_api_init(_barcode_scanner_cfg *cfg);
	BARCODE_SCANNER_API int barcode_scanner_api_get_BDA(void)
	BARCODE_SCANNER_API int barcode_scanner_api_get_mem_data(uint32_t size)

	17.2 BARCODE_SCANNER API Details

	Revision History

