

R20UT3068EJ0100 Rev.1.00 Page 1 of 62

2014.9.20

３４

Tutorial for RH850 Multi core（Debug）

Introduction

Welcome to the world of development environment CubeSuite+.
This tutorial introduces you to the integrated development environment provided
by CubeSuite+ and the operation of CubeSuite+. By carrying out all the steps
described in this tutorial, from creating a program to debugging of the
microcontroller, you can easily experience the operation of CubeSuite+.
In this tutorial, you will use the E1 (on-chip debugging emulator) and
MSRHQ176CP01 (target board: RH850/E1x evaluation board (made by Hitachi
ULSI Systems Co., Ltd.)) to actually experience microcontroller system
development using CubeSuite+.

R20UT3068EJ0100

Rev.1.00

2014.9.20

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 2 of 62

2014.9.20

Features of CubeSuite+

CubeSuite+ is an integrated development environment that provides an environment
for developing microcontrollers from code generation, build, and debugging all in one
tool.

Easy GUI customization

You can customize the screen as you like using such features as "docking",
"floating", or "automatic hiding" to manipulate various panels of CubeSuite+
at will. CubeSuite+ now provides a feature to save the development
environment in addition to the conventional feature to save the project
environment. All of these features help you develop a microcontroller system
more smoothly.

Easy preparation of development environment

Since the development environment for system development is integrated, it
is easy to install the required tools. Because it is equipped with an automatic
update function, you can update the software to its latest version (including
documents) with a single click.

Reading this tutorial and the following document enables you to learn Overeview of
programming for the RH850 multi-core.

Overview of programming for the RH850 multi-core(R20UT3069EJ)

http://www.renesas.com/request?SCREEN_ID=ViewDocumentSearch&EXECUTE_ACTION=search&DOCUMENT_NO=r20ut3069ej

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 3 of 62

2014.9.20

Flow of Microcontroller System Development

This section describes a flow of system development using CubeSuite+.

Following are the functions of CubeSuite+ corresponding to the flow of system development.

System test

General flow of system development (V-shaped model)

Integration/Functional test

Debugging function

Unit test

Coding

Basic designing

Requirement definition

Edit function/Build function

Detailed designing
Analysis function

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 4 of 62

2014.9.20

Overview of Sample Program

This section describes an overview of the sample program and target board
(MSRHQ176CP01).

1. Overview of sample program
The program used here controls (turns on/off) a different LED for each core (CPU1
and PCU) of RH850/E1x.
For a detailed description of the program, refer to appendix, Description of Sample
Programs.

CPU1 core: Controls LED9 and makes LED9 turn on and off.
PCU core: Controls LED10 and makes LED10 turn on and off.

2. Overview of target board (MSRHQ176CP01)
The following is an overview of MSRHQ176CP01 which is used as the target
board.

 MSRHQ176CP01

LED8 to LED15: Lights when P2_n (n = 0-7) of port group 2 is high.
CN10: Used at on-chip debugging or data writing

LEDs for evaluation

Right: LED8

Left: LED15

CN10: 14-pin connector

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 5 of 62

2014.9.20

Installing

This section describes a procedure to install CubeSuite+.

1. Installing Microsoft software products prior to installation

You must install .NET Framework and Visual C++ Runtime Library before installing
CubeSuite+. If these software products have not been installed in the PC used, they
will be installed at the time of the setup of CubeSuite+.

Insert CubeSuite+ product DVD into the drive of the PC.
The following screen appears automatically.

Install the required software products.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 6 of 62

2014.9.20

Installing

2. Running the integrated installer

CubeSuite+ products are installed by running the integrated installer.
Click [Begin CubeSuite+ Setup] and start the setup of
CubeSuite+.

Make settings following the instructions provided by the
installation wizard. As a final step, click the [Finish] button
and complete installation.
* Restart the PC after installation.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 7 of 62

2014.9.20

Starting CubeSuite+

This section describes the procedures from starting CubeSuite+ to creating a project.

1. Starting CubeSuite+

Start CubeSuite+ by selecting [Start] > [All Programs] > [Renesas Electronics
CubeSuite+] > [CubeSuite+].

The One Point Advice dialog box opens when CubeSuite+ is
started. Click the [Next] button if you want to read the content.
Clicking the [OK] button displays the start screen of CubeSuite+.

Tip

About the Start panel
When you start to use CubeSuite+ to create a new project, click the "Start panel"
button (see the figure below). The Start panel opens where you can easily create a
new project or open the project you used recently or your favorite project. (The Start
panel is displayed when you start CubeSuite+ for the first time after installation. If you
have created a project, the latest project opens when you start CubeSuite+.)

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 8 of 62

2014.9.20

Starting CubeSuite+

2. Loading the sample project

In this step, load the sample project.

This document describes the step using a project that has been created according to
the construction method for a project using CubeSuite+.
For details, refer to Tutorial for RH850 Multi-core Environment (Build).

Tutorial for RH850 Multi-core Environment(R20UT3070EJ)

In the "Open Existing Project" field, click the [GO] button, then
select the created project (.mtpj).

Follow the on-screen instructions. A sample project opens as
shown in the figure below.

http://www.renesas.com/request?SCREEN_ID=ViewDocumentSearch&EXECUTE_ACTION=search&DOCUMENT_NO=r20ut3070ej

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 9 of 62

2014.9.20

Tip

About sample projects
CubeSuite+ provides sample projects.
Sample projects are in a state after the "Editing the Program" operations in this
document have been performed.
When using a sample project provided by CubeSuite+, load the sample project as
shown below.

In the "Open Sample Project" field, from the [RH850] tab, select
"RH850_Multicore_E1x_Tutorial_Basic_Operation", then click
the [GO] button.

Follow the on-screen instructions. A sample project opens as
shown in the figure below.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 10 of 62

2014.9.20

Manipulating Windows

In CubeSuite+, you can customize the windows at will. This section describes the
configuration of windows and window customization functions such as "automatic
hiding", "floating", and "docking".

1. Configuration of windows

The following figure shows the configuration of windows of CubeSuite+.

Project Tree panel: Displays the functions of CubeSuite+ corresponding to the flow of

system development.
Main panel: Displays the panel (Editor panel, etc.) corresponding to the function selected

in the Project Tree.
Output panel: Displays the output results.

Main panel

Output panel Project Tree panel

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 11 of 62

2014.9.20

Manipulating Windows

2. Automatic hiding

By clicking the Pin icon on the title bar of each panel, you can easily change the
setting that determines whether or not to hide the panel automatically. By hiding the
panels not necessary for operation, you can use the screen more effectively.

(a) Hiding the panel automatically (example: Project Tree)

Click the Pin icon in the Project Tree.

The Project Tree automatically disappears and the tab representing it
appears.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 12 of 62

2014.9.20

(b) Displaying the hidden panel (example: Project Tree)

 Place the pointer on the [Project Tree] tab.

The Project Tree slides out.

Tip

Locations to hide the panels
You can hide the panel in three locations: one to the left of the window, one to the
right of the window and one below the window. You can also hide multiple panels in
the same location.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 13 of 62

2014.9.20

Manipulating Windows

3. Floating

Right-clicking on the title bar and selecting [Floating] from the menu allows you to
move the panel at will.

(a) Making the panel float (example: Project Tree)
Right-click on the title bar and select [Floating].

The panel enters the floating state.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 14 of 62

2014.9.20

Manipulating Windows

4. Docking

You can attach the floating panel to any of the four sides of another panel such as
the main panel. You can easily change the position of the panel by dragging and
dropping it to a desired location using a navigation icon.

(a) Moving the panel (example:Project Tree)

When you drag the floating panel, the navigation icon appears.

Place the pointer on the navigation icon located in the desired
destination location and the destination area is highlighted in
blue.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 15 of 62

2014.9.20

Drop the panel there and the Project Tree moves to the desired
location (the figure below shows the example of attaching it to
the right of the main panel).

Tip
Saving and restoring layouts

You can save up to four panel layout (panel location information) states for before
and after connecting to the debug tool. To do so, from the menu bar, select [View] ->
[Save or Restore Docking Layout].
* Becomes a debugging-specific layout only when the debug tool is connected.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 16 of 62

2014.9.20

Editing the Program

In this section, you edit the user program.
First, the basic editing method is explained, and then you can edit the program through
a simple copy and paste procedure. Edit the program following the steps listed below.

1. How to open a source code file

The following step describes how to open a source code file.

Find the source code file you want to edit in the Project Tree and
double-click it.

This displays the source code in the main panel.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 17 of 62

2014.9.20

Editing the Program

2. Renaming a file

Rename the file following the steps listed below.
Select main.c of pm1 (subproject) in the Project Tree, right-click
it to display the pop-up menu, then select "Rename" from the
pop-up menu.

Since the file name can now be edited, change it to pm1_main.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 18 of 62

2014.9.20

In a similar manner, rename the following files:

cstartm.asm of pm1 (subproject) -> pm1_cstartm.asm
main.c of pm3 (subproject) -> pm3_main.c
cstartm.asm of pm3 (subproject) -> pm3_cstartm.asm

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 19 of 62

2014.9.20

Editing the Program

3. Editing

Edit the program following the steps listed below.

Change the main() function name of pm1_main.c to pm1_main(),
and copy the following code and paste it in the pm1_main()
function.

void pm1_main(void)
{

func1();
func_cmn();

cmn_gHwinitFlag =1;

while(1)
{

func_cmn();
if ((cmn_gCounter & 0xffff) == 0)
{

pm1_dat ^= 1;
PORT.P2.BIT.P2_0 = pm1_dat;

}
}

}

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 20 of 62

2014.9.20

To add the hdwinit2() function to pm1_main.c, copy and paste
the following code.

void hdwinit2(void)
{

cmn_gHwinitFlag = 0;

PORT.PMC2.BIT.PMC2_0 = 0;
PORT.PMC2.BIT.PMC2_1 = 0;
PORT.PMC2.BIT.PMC2_2 = 0;
PORT.PMC2.BIT.PMC2_3 = 0;
PORT.PMC2.BIT.PMC2_4 = 0;
PORT.PMC2.BIT.PMC2_5 = 0;
PORT.PMC2.BIT.PMC2_6 = 0;
PORT.PMC2.BIT.PMC2_7 = 0;
PORT.PSR2.BIT.PSR2_0 = 1;
PORT.PSR2.BIT.PSR2_1 = 1;
PORT.PSR2.BIT.PSR2_2 = 1;
PORT.PSR2.BIT.PSR2_3 = 1;
PORT.PSR2.BIT.PSR2_4 = 1;
PORT.PSR2.BIT.PSR2_5 = 1;
PORT.PSR2.BIT.PSR2_6 = 1;
PORT.PSR2.BIT.PSR2_7 = 1;
PORT.PIPC2.BIT.PIPC2_0 = 1;
PORT.PIPC2.BIT.PIPC2_1 = 1;
PORT.PIPC2.BIT.PIPC2_2 = 1;
PORT.PIPC2.BIT.PIPC2_3 = 1;
PORT.PIPC2.BIT.PIPC2_4 = 1;
PORT.PIPC2.BIT.PIPC2_5 = 1;
PORT.PIPC2.BIT.PIPC2_6 = 1;
PORT.PIPC2.BIT.PIPC2_7 = 1;
PORT.PM2.BIT.PM2_0 = 0;
PORT.PM2.BIT.PM2_1 = 0;
PORT.PM2.BIT.PM2_2 = 0;
PORT.PM2.BIT.PM2_3 = 0;
PORT.PM2.BIT.PM2_4 = 0;
PORT.PM2.BIT.PM2_5 = 0;
PORT.PM2.BIT.PM2_6 = 0;
PORT.PM2.BIT.PM2_7 = 0;

}

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 21 of 62

2014.9.20

To add include statements to pm1_main.c, copy and paste the
following code.

#include "iodefine.h"
#include "cmn.h"
#include "prg1.h"

To add the hdwinit2() call to the pm1_main() function, copy and
paste the following code.

hdwinit2();

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 22 of 62

2014.9.20

Change the main() function name of pm3_main.c to pm3_main(),
and copy the following code and paste it in the pm3_main()
function.

void pm3_main(void)
{

func3();

while(1)
{

if (cmn_gHwinitFlag != 0)
{

break;
}

}

while(1)
{

cmn_gCounterPm3++;
if ((cmn_gCounterPm3 & 0xffff) == 0)
{

pm3_dat ^= 1;
PORT.P2.BIT.P2_2 = pm3_dat;

}
if ((cmn_gCounter & 0xfffff) == 0)
{
pm3_dat2 ^= 1;
PORT.P2.BIT.P2_7 = pm3_dat2;
}

}

}

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 23 of 62

2014.9.20

To add include statements to pm3_main.c, copy and paste the
following code.

#include "iodefine.h"
#include "cmn.h"
#include "prg3.h"

Change the branch destination of pm1_cstartm.asm to
pm1_main() and the branch destination of pm3_cstartm.asm to
pm3_main().

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 24 of 62

2014.9.20

Change the label name "_pm1_setting_table" of
pm3_cstartm.asm to "_pm3_setting_table".

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 25 of 62

2014.9.20

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 26 of 62

2014.9.20

Editing the Program

4. Adding files

Add programs following the steps listed below.
Select a file of pm1 (subproject) in the Project Tree, right-click it
to display the pop-up menu, and then select "Add File..." from
the pop-up menu.

This opens the Add Existing File dialog box. Add the files in the
following folder.

<Folder created when loading the sample project>¥
 RH850_MultiCore_E1x_Tutorial_Basic_Operation¥pm1
 - prg1.c
 - prg1.h
 - cmn.h

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 27 of 62

2014.9.20

In a similar manner, add the following files to pm3 (subproject).

<Folder created when loading the sample project>¥
 RH850_MultiCore_E1x_Tutorial_Basic_Operation¥pm3
 - prg3.c
 - prg3.h

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 28 of 62

2014.9.20

Editing the Program

5. Deleting files

Delete programs following the steps listed below.
Select common.c of pm1 (subproject) in the Project Tree,
right-click it to display the pop-up menu, then select "Remove
from Project" from the pop-up menu.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 29 of 62

2014.9.20

Editing the Program

6. Changing the property of the compiler (CC-RH)

Change the property of CC-RH following the steps listed below.
Display the property of CC-RH of pm3 (subproject) in the Project
Tree, then click the Add button to add an additional include path
as a compile option.

This opens the Path Edit dialog box. Click the Browse button.

This opens the Browse For Folder dialog box. Select the pm1
folder shown below.

<Folder created when loading the sample project>¥
 RH850_MultiCore_E1x_Tutorial_Basic_Operation¥pm1

Click here

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 30 of 62

2014.9.20

After confirming that the folder has been added, click the OK
button.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 31 of 62

2014.9.20

Editing the Program

7. Editing the section start address

Change the section start address following the steps listed below.

Display the property of CC-RH of pm3 (subproject) in the Project
Tree, then click the Edit button at the section start address of the
section group as a link option.

This opens the Section Settings dialog box. Click the Add button
to add the .const.cmn section and make settings and edit
settings as shown below.

Click here

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 32 of 62

2014.9.20

Rebuilding a Program

Rebuild the program of the loaded sample project.

1. Building a project

In this step, rebuild the program of the loaded sample project.

Click the [Rebuild Project.] button.

Check to see if the rebuild process has been completed
correctly. If the build process has been completed correctly, a
load module file is created.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 33 of 62

2014.9.20

Connecting a Debugger and Downloading

In this section, you debug the program using the E1. First, make preparations for
debugging.

1. Selecting a debug tool

In this step, select [RH850 E1(LPD) (Debug Tool)] as a debug tool to be used.

Right-click on the Debug Tool in the Project Tree and select
[Using Debug Tool] -> [RH850 E1(LPD)].

[RH850 E1(LPD) (Debug Tool)] is selected as a debug tool.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 34 of 62

2014.9.20

Connecting a Debugger and Downloading

2. Setting E1 for connection to the target board

Right-click the debug tool in the Project Tree to select [Property].

Make settings as shown below in the [Connection with Target
Board] tab.

Tip

About the security ID
The 128-bit ID code can be written to the microcontroller so that the flash memory
contents are not read by an unauthorized user. If the code that is input by the user
when the debugger is started does not match the ID code written to the
microcontroller, flash memory cannot be accessed. Settings should be made by a
flash programmer. When a blank product (all flash memory contents are erased) is
used, only F should be input for the security ID.

It is still the initial value.
There are thirty-two Fs

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 35 of 62

2014.9.20

Connecting a Debugger and Downloading

3. Connecting E1

In this step, on-chip debugging is performed using E1.
Connect E1 to the RH850/E1x board (MSRHQ176CP01). Align
pin 1 of the connector.

Connect E1 to the PC. ("Found New Hardware Wizard" appears
when E1 is connected for the first time. Select "Install software
automatically" and install the USB driver following the
instructions.)

Turn on the power of MSRHQ176CP01.

Tip
About option bytes

In flash memory, there is an extended area (option bytes) for holding data specified
by the user for various purposes. In the RH850/E1x-FCC1 microcontroller, not only
are settings for the debugging interface made, but settings for WDT-related features
and the operating mode and startup area of the microcontroller are to be made.
When the program of this tutorial is used, set the OPBT0 register to H'53FFFFED
and the OPBT2 register to H'BFFFFFFF.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 36 of 62

2014.9.20

Connecting a Debugger and Downloading

4. Downloading a load module file to E1

In this step, download the load module file generated by the build process to the
target microcontroller.
When download is complete, the program can be executed.

Click the Download button in the menu.

The status bar of the main window changes as shown below.

Tip
Registering load module files

Load module files generated in subprojects need to be registered as load module
files subject to download.
Load module files can be registered in the [Download File Settings] tab of the
Property panel of the debug tool.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 37 of 62

2014.9.20

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 38 of 62

2014.9.20

Switching Cores

Now that download of the load module file to the target is complete, let's switch the
core to be debugged.

1. Switching the core
There are two methods for switching the core to be debugged.
a. Switch the core from the status bar

The core can be switched using the drop-down list on the status bar of the main
window.

b. Switch the core from the Debug Manager panel
Selecting [View] menu -> [Debug Manager] opens the Debug Manager panel.
The core can be switched in the Debug Manager panel.

Here, the state of CPU1 being selected should not be changed.

Tip
Core to be debugged

Running or stopping of the program cannot be performed by only one core running or
stopping the program.
Running or stopping of the program must be performed by both cores operating in a
coordinated manner.
When CPU1 is set as the core to be debugged, referencing or changing memory by
CubeSuite+ is effective only for CPU1. To perform operations for the other core, the
core to be debugged has to be switched.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 39 of 62

2014.9.20

Running and Stopping the Program

Now that download of the load module file to the target is complete, the program can be
executed. First, run and stop the program.

1. Running the program

Run the program after resetting the CPU.

Click the [Restart] button in the menu.

This runs the program and displays [RUN] in the status bar.

LED9 and LED10 on MSRHQ176CP01 light alternately.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 40 of 62

2014.9.20

Running and Stopping the Program

2. Stopping the program

In this step, stop the program.

Click the Stop button.

This stops the program and displays [BREAK] in the status bar.

The source code line where the program stopped (current
position of the program counter (PC)) is highlighted in yellow.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 41 of 62

2014.9.20

Running and Stopping the Program

3. Resetting the program

In step 1, you have reset and run the program using a single button, but you can also
carry out the reset operation independently.

Click the Reset button.

The program is reset and the program counter (PC) goes back to
the start of the program.

Tip

About the program counter
The program counter (PC) is a control register that holds information on the next
program address. When the RH850/E1x-FCC1 microcontroller generates a reset
signal, 00000000H is set in the PC for user mode and 01000000H is set in the PC for
user boot mode. In the program of this tutorial, since the program is set to run up to
the __start function after a reset, the program enters the break state after executing
the __start function. Such kind of behavior can be changed in the [Download File
Settings] tab of the Property panel of RH850 E1(LPD).

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 42 of 62

2014.9.20

Referring to a Variable

Watch function
By registering a variable as a watch-expression, it is possible to display the value of
that variable. Here, register the two shared variables (variables which are located in a
shared area that can be referenced from both the CPU1 core and PCU core)
"cmn_gCounter" and "cmn_gCounterPm3" as watch-expressions and confirm that the
values of the variables are incremented. cmn_gCounter and cmn_gCounterPm3 are
variables that are incremented by the CPU1 core and PCU core, respectively, while
the program is running. It is possible to confirm that the count values at a break differ
because the execution speed of the CPU1 core and PCU core are different.

In the Project Tree, double click "prg1.c" to display the source code
file.

Select variable "cnm_gCounter" in the source code.

While "cnm_gCounter" is selected, right-click the mouse and
select [Register to Watch1] from the menu.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 43 of 62

2014.9.20

This opens the Watch panel where you can confirm that the
variable is now registered. The current value of "cnm_gCounter"
is ?.

In a similar manner, register "cmn_gCounterPm3" in the Watch
panel from pm3_main.c.

Click the [Restart] button in the menu. After several seconds
have passed, click the [Stop] button.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 44 of 62

2014.9.20

The difference in the operating frequency of the CPU1 core and
PCU core cause the execution count of cmn_gCounter and
cmn_gCounterPm3 to differ. The difference in the execution
count can be confirmed by the fact that LED9 turns on and off at
a high speed whereas LED10 turns on and off at a lower speed
than LED9.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 45 of 62

2014.9.20

Setting a Breakpoint

Setting a breakpoint

If you want to stop the program at a specific position intentionally in the source code,
you can break the program before executing the instruction at the specified address
("before execution" break) by setting a breakpoint.
Let's see how the variable (cnm_gCounter) that was registered as a watch-expression
changes by running the program and causing it to break.

Click the empty column to the left of the desired line in the source
code as shown below. A hardware break is set and the line is
highlighted in red.

Click the [Restart] button in the menu.

The program breaks at the line where the break has been set
and the breakpoint line is highlighted in yellow.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 46 of 62

2014.9.20

See the Watch panel and confirm that the value of
[cnm_gCounter] is counted up to 0x0.

The status bar shows [BREAK] and the PC value at the break.

Click the [Go] button in the menu.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 47 of 62

2014.9.20

The program breaks again at the line where the break has been
set. See the Watch panel and confirm that the value of
[cnm_gCounter] is counted up to 0x1.

Tip
Break in a multi-core device

Normally, the position where a break occurred in the program is displayed when a
break occurs. In a multi-core device, if a break was caused by a break source of
another core (core not being debugged), a break occurs in the target core (core
being debugged) at an address where no break condition has been set. The break
source can be checked in the Output panel.
In the example below, the Output panel shows that a break (relay break) in another
core is the break source.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 48 of 62

2014.9.20

Acquiring the Execution History

Acquiring the execution history

In general, the execution history of the program is called trace information. If a
program gets out of control, it is extremely difficult to investigate the cause only
from the memory contents or stack information after the runaway occurred.
However, using the trace function and analyzing the acquired trace information
enables the process until the runaway occurred to be directly investigated.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 49 of 62

2014.9.20

Collecting the Execution History

Setting trace operation
When the trace function starts recording, the execution process of the program
currently running is recorded in trace memory (when program execution stops, the
trace function also stops automatically).
Settings related to tracing need to be made in advance to use the trace function.

Select [Trace] from the [View] menu.

This opens the Trace panel.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 50 of 62

2014.9.20

Settings for tracing can be made in the [Trace] category on the
[Debug Tool Settings] tab of the Property panel.
Select the [Debug Tool Settings] tab and make the settings as
shown below.

Click the [Go] button in the menu.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 51 of 62

2014.9.20

A break occurred and the execution history is displayed in the
Trace window.

Tip

Tracing in a multi-core device
When trace data is acquired with the core to be debugged set to CPU1, only
information for the CPU1 side can be observed. In order to acquire trace data for the
PCU side, execute the program again after switching the core to be debugged to
PCU.
After trace data has been acquired with the core to be debugged set to CPU1, even
though the core to be debugged is switched to PCU, trace data for the PCU side
cannot be observed.

Address and source that were executed
first after the program was restarted

Address and source that were executed
last just before the break occurred

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 52 of 62

2014.9.20

Canceling a Break

Canceling a Break

In this section, you cancel the break which was set in the previous section. The
previously set break is set as a hardware break. A hardware break is registered as an
event. Deleting the event will cancel the hardware break.
An event is an operation of the microcontroller such as fetch, read, and write. The
event can be used as an action trigger to enable debugging functions such as setting
a breakpoint or tracing. The hardware break that was set in the previous section was
an event causing the program to break when a particular address is fetched (before it
is executed).

Select [Event] from the [View] menu.

This opens the Event panel. Select [Break0001].

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 53 of 62

2014.9.20

Left-click the Delete button. This cancels the access break.

Confirm that [Break0001] has been deleted from the Event
panel.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 54 of 62

2014.9.20

Displaying Special Function Registers (IORs)

Displaying IORs

In this section, you observe the values of registers that implement peripheral functions
built in the microcontroller. First, let's make the panel float so that it is easier to view.

Select [IOR] from the [View] menu.

This opens the IOR panel.

Right-click on the title bar of the IOR panel and check [Floating].

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 55 of 62

2014.9.20

The IOR panel enters the floating state and it becomes easier to
view.

Tip

About display of IOR Bits
The IOR panel does not support displaying of IOR bits. Therefore, in order to check
the bits of an IOR, that IOR has to be registered in a Watch panel so it can be
referenced.
Select [Add New Watch] from the context menu in the desired Watch panel and input
a watch-expression. To specify register bits, enter as shown below.
 AAA0.BBB.CCC
 <Module name>.<Register name>.<Bit name>

[Example]
Watch-expression for registering the P2_1 bit in the P2 register of a (general I/O) port
in a Watch panel:
 PORT.P2.P2_1

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 56 of 62

2014.9.20

Displaying Memory

Displaying the Memory panel

The Memory panel displays the state of memory. In this example, two of the four
Memory panels are displayed. If [Memory 1] and [Memory 2] are displayed at the
same time, they are tabbed by default, making it impossible to view both panels at
same time. Let's dock these two panels so that they can be viewed together.

Select [Memory 1] from the [View] menu.

The Memory 1 panel is displayed.
(Similarly, display the Memory 2 panel.)

Make the Memory 2 panel enter the floating state and dock it to
the Output panel.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 57 of 62

2014.9.20

It becomes possible to view the Memory 1 and Memory 2 panels at
the same time.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 58 of 62

2014.9.20

Disconnecting a Debug Tool

When finishing debugging, disconnect the debug tool.

Click the "Disconnect from Debug Tool" button.

The status bar in the main window shows [DISCONNECT] as
shown below and debugging finishes.

Tip

Downloading a program
If a program is changed after being downloaded to the target, you have to perform
the build process again and download the program. If a program is changed after
downloading, the right side of the line number turns yellow (or green) and
breakpoints cannot be set.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 59 of 62

2014.9.20

Termination Procedure

This section describes the termination procedure.

Click the Close button in the main window.

This closes the main window and exits CubeSuite+. If the
environment is not saved, a window that prompts you to select
whether or not to save it will appear, so follow the instructions.

Tip

Saving the development environment (project saving function and packing
function)
CubeSuite+ provides two functions (project saving function and packing function) for
saving the development environment. Each of these functions is used to save the
contents shown in the figure below. Either saving function can be chosen depending
on the development phase.

Project file

(settings for debugging, build, etc.) Tool environment (compiler, debugger, etc.)

Program file (C source code, etc.)

Project file

(settings for debugging, build, etc.)

Packing function Project saving function

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 60 of 62

2014.9.20

About Flash Programming

When using the E1 emulator to write a .hex file to the microcontroller, use Renesas
Flash Programmer (RFP).

• Start Renesas Flash Programmer (RFP) by selecting [Start] -> [All Programs] ->
[Renesas Electronics Utilities] -> [Programming tools].

• Refer to the user’s manual for the usage method.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 61 of 62

2014.9.20

Description of Sample Programs

The flow diagrams of sample programs are shown below.

True: When the calculation result is 0

Reset

__start_pm:
Initialization of CPU1
(source file: pm1_cstartm.asm)

__start:
_hwinit: Initialization process for interrupt table
_hdwinit2: Setting process for port 2

The entity of hdwinit2() is in pm1_main.c.

The sample program is created based on the distributed functional
model. It carries out the common start-up process (source file:
boot.asm).

__start_pm:
Initialization of PCU
(source file: pm3_cstartm.asm)

pm1_main()
Main CPU program
(source file: pm1_main.c)

pm3_main()
PCU program
(source file: pm3_main.c)

pm1_main()

cmn_gHwinitFlag=1

func1()

func_cmn()

: Shared variable cmn_gHwinitFlag is operated.

func_cmn()

cmn_gCount
er & 0xffff

False: When the calculation result is not 0

pm1_dat ^= 1;
PORT.P2.BIT.P2_1 = pm1_dat;

: LED9 of port 2 is turned on and off.

: Calling process of a non-shared function
The entity of func1() is in prg1.c.

: Calling process of a shared function
(shared variable cmn_gCounter++ is incremented)
The entity of func_cmn() is in prg1.c.

Tutorial for RH850 Multi core(Debug)

R20UT3068EJ0100 Rev.1.00 Page 62 of 62

2014.9.20

False: When the calculation
result is 1

True: When the calculation result is 0

False: When the calculation
result is 1

Y

N

True: When the calculation result is 0

pm3_main()

func3()

: LED10 of port 2 is turned on and off.

func1()

cpm1_x++; pm1_y++;
: Non-shared variables are operated.

The entities of the variables are in prg1.c.

func_cmn()

cmn_gCounter++;
: A shared variable is operated.

This variable can also be referenced from PCU.
The entity of the variable is in prg1.c.

cmn_gHwinitFalg
!= 0;

pm3_dat ^= 1;
PORT.P2.BIT.P2_2 = pm3_dat;

cmn_gCounterPm3
 & 0xffff

cmn_gCounterPm3++;

pm3_dat2 ^= 1;
PORT.P2.BIT.P2_7 = pm3_dat2;

cmn_gCounter
 & 0xfffff

func3()

pm3_x++; pm3_y++;
: Non-shared variables are operated (PCU side).

The entities of the variables are in prg3.c.

: Calling process of a non-shared function (PCU side)
The entity of func3() is in prg3.c.

: A shared variable is operated.
This variable can also be referenced
from PCU.
The entity of the variable is in prg1.c.

: LED15 of port 2 is turned on and off.
The timing of turning on and off differs
because the counter value is different
from that in the pm1_main processing.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Ku, Seoul, 135-920, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2014 Renesas Electronics Corporation. All rights reserved.
Colophon 4.0

© 2014 Renesas Electronics Corporation and Renesas Solutions Corp.

Colophon 4.0

	Introduction
	Introduction
	Features of CubeSuite+

	Overview
	Flow of Microcontroller System Development
	Overview of Sample Program

	Installing
	Installing Microsoft software products prior to installation
	Running the integrated installer

	Start
	Starting CubeSuite+
	Starting CubeSuite+
	Loading the sample project

	Manipulating Windows
	Configuration of windows
	Automatic hiding
	Floating
	Docking

	Coding
	Editing the Program
	How to open a source code file
	Renaming a file
	Editing
	Adding files
	Deleting files
	Changing the property of the compiler (CC-RH)
	Editing the section start address

	Rebuilding a Program

	Debug
	Connecting a Debugger and Downloading
	Selecting a debug tool
	Setting E1 for connection to the target board
	Connecting E1
	Downloading a load module file to E1

	Switching Cores
	Running and Stopping the Program
	Running the program
	Stopping the program
	Resetting the program

	Referring to a Variable
	Setting a Breakpoint
	Tracing
	Setting trace operation

	Canceling a Break
	Displaying Special Function Registers (IORs)
	Displaying Memory
	Disconnecting a Debug Tool

	Termination Procedure
	About Flash Programming
	Description of Sample Programs

