
…personal

…portable

…connected

Dialog SDK 5.0.x/6.0.x Tutorial
Pairing, Bonding and Security

2017 March

BLE Security

Let’s build a demo together …

Dialog Semiconductor © 2017 2

 Before we start, we recommend you to …

 Install the latest Smartsnippets studio from Dialog customer support website

 Download the SDK as well

 Link:

 https://support.dialog-semiconductor.com/connectivity

 Require to look at Dialog hands on tutorial 1, 2, 3 and 4

 Consideration …

 All the changes are applicable in both the SDK 5.0.x (DA14580/1/2/3) and SDK 6.0.x

(DA14585/6) if it is not mentioned specifically for a particular application

 BLE 4.1 spec is supported by DA14580/1/2/3

 BLE 4.2 and 5.0 spec is supported by DA14585/6

BLE Security

Let’s build a demo together …

Dialog Semiconductor © 2017 3

 What are you going to learn from this tutorial …

 Basic understanding of BLE Security

 What is Pairing? What is Bonding?

 ‘Just-Works’ pairing

 Single-device bonding

 Basic understanding of multi-device bonding

 Small assignment to add pairing in the custom service database

BLE security

Source code discussion WRT BLE security

Dialog Semiconductor © 2017 4

Contents

What would you see as output

BLE security

Overview

Dialog Semiconductor © 2017 5

 Protection of private information of a user is important for every wireless low energy device,

from fitness band to payment systems. Privacy mechanisms prevent devices from being

tracked by untrusted devices. Secure communications keep data safe while also preventing

unauthorized devices from injecting data to trigger unintended operation of the system.

 In Bluetooth Low Energy (BLE) devices connected in a link can pass sensitive data by

setting up a secure encrypted link.

 In BLE the confidential payload includes a Message Identification Code (MIC) that is

encrypted with the data.

 In BLE the secure link is more vulnerable to passive eavesdropping, however because of

the short transmission periods this vulnerability is considered a low risk.

 Therefore data encryption is used to prevent passive and active Man-In-The-Middle

(MITM) – eavesdropping attacks on a Bluetooth low energy link.

BLE security

Overview

Dialog Semiconductor © 2017 6

 Encryption is the means to make the data unreadable to all but the Bluetooth master and

slave devices forming a link.

 Because eavesdropping attacks are directed on the over-the-air transmissions between the

BLE devices, so data encryption is accomplished prior to transmission using a shared,

secret key.

 Common attacks on wireless communication protocols:

 Man-in-the-Middle (MITM)

 Passive Eavesdropping

 Privacy or Identity tracking

 To protect communications from unauthorized access, wireless systems must prevent

passive eavesdropping and man-in-the-middle (MITM) attacks.

BLE security

Overview – MITM

Dialog Semiconductor © 2017 7

 MITM is an attacking method where as two devices try to communicate with each other, a

third ghost device inserts in the communication model between the actual two devices and

emulates a behavior to both actual devices that those devices directly communicating to

each other. This is also known as active eavesdropping.

 Authentication protects against MITM by ensuring that the device is communicating with

actually the intended device and not an unauthorized ghost device emulating as the

intended one.

BLE security

Overview – Passive Eavesdropping

Dialog Semiconductor © 2017 8

 Passive eavesdropping is a third device silently listens to the private communication

between two devices.

 Protection against this security hole is important in applications such as payment system

where the confidentiality of information is very import.

BLE security

Overview – Passive Eavesdropping

Dialog Semiconductor © 2017 9

 Systems can protect against passive eavesdropping by using a key to encrypt data.

 LE Secure Connections, introduced in BLE 4.2 uses the Federal Information Processing

Standard (FIPS) compliant Elliptic Curve Diffie-Hellman (ECDH) algorithm. It generates

DHKey (Diffe-Hellman Key) as well which is never shared over the air.

 This DHKey key is used to generate other keys such as Long Term Keys (LTK).

 As the DHKey is never exchanged over the air, it becomes very difficult for a third device to

guess the encryption key.

 Earlier versions of BLE (Bluetooth 4.1 or older) devices used easy-to-guess Temporary

Keys (TK) to encrypt the link for the first time. Long Term Keys (LTK) along with other

keys, were then exchanged between devices over this encrypted but potentially

compromised link.

BLE security

Overview – Privacy or Device Identity Tracking

Dialog Semiconductor © 2017 10

 BLE supports the privacy feature that reduces the ability to track an LE device over a period

of time by changing the Bluetooth device address frequently. The frequently changing

address is called the Resolvable Private Address (RPA) and only the trusted devices can

resolve it.

BLE security

Overview – BLE solutions to protect device attacks

Dialog Semiconductor © 2017 11

 In Bluetooth, an association model is a mechanism that two devices use to authenticate

each other and then securely exchange data. These are used to remove the risk of BLE

device attacks called MITM and passive eavesdropping.

 Which model to use - Ask the designed system:

 Input/Output capabilities of the devices: Does the device receive data from a user (such

as a keyboard) or output data to the user (such as an LCD with 6 digit number display

capability)?

 Requirement of MITM protection

 OOB data availability: Does the device communicate with other devices using Out-of-

Band (OOB)? For example, if part of the security key can be transferred between the two

devices over Near-Field Communication (NFC), an eavesdropper will not be able to

make sense of the final data.

BLE security

Overview – BLE solutions to protect device attacks

Dialog Semiconductor © 2017 12

 There are two variants of the privacy feature to resolve identity tracking attack:

 First variant: Private addresses are resolved and generated by the Host. This is used in

the before 4.2 Bluetooth stacks.

 Second variant: Private addresses are resolved and generated by the Controller without

involving the Host after the Host provides the controller device identity information. This

is used by Bluetooth 4.2 compliant devices.

BLE security

Overview – BLE Association models

Dialog Semiconductor © 2017 13

 Four association models are available in Bluetooth 4.2 for Bluetooth Low Energy:

 Numeric Comparison

 Just Works

 Passkey Entry

 Out of Band (OOB)

BLE security

Overview – BLE Association models

Dialog Semiconductor © 2017 14

 Four association models are available in Bluetooth 4.2 for Bluetooth Low Energy:

 Numeric Comparison –

In this model both devices display a six-digit number and the user authenticates by

selecting YES if both devices are displaying the same number.

 Just Works –

This model is used when either MITM protection is not needed or devices

have I/O capabilities shown in the page 15. The Just Works association model

follows the same steps as mentioned in Numeric Comparison. However, a six-digit

number is not generated or displayed.

BLE security

Overview – BLE Association models

Dialog Semiconductor © 2017 15

 Passkey Entry –

The user either inputs an identical passkey into both devices, or one device displays

the passkey and the user enters that passkey into the other device. Exchange of the

passkey one bit at a time in Bluetooth 4.2 is an important enhancement over the

legacy passkey entry model (Bluetooth 4.1 or older) where the whole passkey is

exchanged in a single confirm operation. This has enhanced the passkey exchange

mechanism and now it is very difficult to guess the passkey in 4.2.

BLE security

Overview – BLE Association models

Dialog Semiconductor © 2017 16

 Out Of Band OOB –

The OOB association model is the model to use if at least one device with OOB

capability already has cryptographic information exchanged out of band. Here, protection

against MITM depends on the MITM resistance of the OOB protocol used for sharing the

information.

BLE security

Overview – Association model

Dialog Semiconductor © 2017 17

 The use of each association model is based on the I/O capabilities of the devices. The best

pairing method can be chosen based on the following table:

BLE security

Overview – Association model

Dialog Semiconductor © 2017 18

BLE security

Overview – Pairing and bonding to resolve attacking issue

Dialog Semiconductor © 2017 19

 Pairing is the process of key exchange and authentication.

 Bonding means storing a set of secure device information in the memory. When the same

peripheral device will try to connect to the peer device then peripheral device will need not

to go through the pairing process again as long as the secure information is stored in the

peer device.

 There are two types of paring base on BLE version:

 LE Legacy Pairing (supported in Bluetooth 4.0 and 4.1)

 LE Secure Connections (introduced in Bluetooth 4.2)

 Before going further ahead we need to understand a few terms used in pairing and

authentication.

BLE security

Overview – Pairing and bonding to resolve attacking issue

Dialog Semiconductor © 2017 20

 A BLE device uses a shared secret key with the trusted peer device. This key is known as

Identity Resolving Key (IRK).

 IRK is used to generate and resolve an RPA.

 IRK is shared with peer devices during the time of pairing process between a BLE

peripheral and a peer master device.

 The private address RPA is generated using the devices IRK exchanged during the

previous pairing/bonding procedure.

 Depending on the application requirement and the capability of the devices, Bluetooth has

several options for pairing.

BLE security

Overview – Pairing and bonding to resolve attacking issue

Dialog Semiconductor © 2017 21

 In version 4.0 and 4.1 of the core specification, BLE functionality uses the secure simple

pairing model (now known as LE Legacy), in which devices choose one method from

Just Works, Passkey Entry and Out Of Band (OOB) based on the input/output capability

of the devices.

 In version 4.2, security is enhanced by the new LE secure connections pairing model. In

this model, the numeric comparison is added to the LE Legacy methods and the Elliptical

Curve Diffie-Hellman (ECDH) algorithm is introduced for key exchange in this process.

 If you use LE legacy pairing Just Works and Passkey Entry do not provide any passive

eavesdropping protection.

BLE security

Overview – Pairing

Dialog Semiconductor © 2017 22

 A BLE device that wants to share secure data with another device must first pair with that

device. The Security Manager Protocol (SMP) carries out the pairing in three steps:

 The two connected BLE devices announce their input and output capabilities based on

association model and from that information the BLE stack determine a suitable method

for step 2.

 The purpose of this step 2 is to generate the Short Term Key (STK) used in the third

step to secure key distribution. The devices agree on a Temporary Key (TK) that along

with some random numbers creates the STK.

 In this step 3 each device may distribute to the other device up to three keys:

• The Long Term Key (LTK) used for Link Layer encryption and authentication,

• The Connection Signature Resolving Key (CSRK) used for data signing at the ATT layer, and

• The Identity Resolving Key (IRK) used to generate a private address.

BLE security

Overview – Pairing

Dialog Semiconductor © 2017 23

BLE security

Overview – Pairing

Dialog Semiconductor © 2017 24

 A Pairing Request message is transmitted from the initiator containing the IO capabilities,

authentication data availability, authentication requirements, key size requirements, and

other data.

 A Pairing Response message is transmitted from the responder and contains much of the

same information as the initiators Pairing Request message thus confirming that a pairing is

successfully negotiated.

 Sharing a sample SMP decode in the next slide page, please note the key identified.

 Creating a shared, secret key is an evolutionary process that involves several intermediary

keys.

BLE security

Overview – Security Manager Protocol

Dialog Semiconductor © 2017 25

BLE security

Overview – Pairing

Dialog Semiconductor © 2017 26

 The resulting several intermediary keys include:

 IRK: 128-bit key used to generate and resolve random address.

 CSRK: 128-bit key used to sign data and verify signatures on the receiving device.

 LTK: 128-bit key used to generate the session key for an encrypted connection.

 Encrypted Diversifier (EDIV): 16-bit stored value used to identify the LTK. A new EDIV

is generated each time a new LTK is distributed.

 Random Number (RAND): 64-bit stored value used to identify the LTK. A new RAND is

generated each time a unique LTK is distributed.

 Note that, particular importance to decrypting the encrypted data on a BLE link is LTK,

EDIV, and RAND.

BLE security

Overview – Pairing

Dialog Semiconductor © 2017 27

 Note that, IRK and CSRK are passed in an encrypted link along with LTK and EDIV.

 The use of the IRK and CSRK attempt to place an identity on devices operating in a

piconet. The probability that two devices will have the same IRK and generate the same

random number is low.

 IRK:

BLE has a feature that reduces the ability of an attacker to track a device over a long

period buy by frequently and randomly changing an advertising device’s address. This is the

privacy feature. This feature is not used in the discovery mode and procedures but is used in

the connection mode and procedures.

If the advertising device was previously discovered and has returned to an

advertising state, the device must be identifiable by trusted devices in future connections

without going through discovery procedure again. The IRK stored in the trusted device will

overcome the problem of maintaining privacy while saving discovery computational load and

connection time. The advertising devices IRK was passed to the master device during initial

bonding. The a master device will use the IRK to identify the advertiser as a trusted device.

BLE security

Overview – Pairing

Dialog Semiconductor © 2017 28

 CSRK:

BLE supports the ability to authenticate data sent over an unencrypted ATT bearer

between two devices in a trust relationship. If authenticated pairing has occurred and

encryption is not required (security mode 2) data signing is used if CSRK has been

exchanged. The sending device attaches a digital signature after the data in the packet that

includes a counter and a message authentication code (MAC). The key used to generate MAC

is CSRK. Each peer device in a Piconet will have a unique CSRK.

The receiving device will authenticate the message from the trusted sending device

using the CSRK exchanged from the sending device. The counter is initialized to zero when

the CSRK is generated and is incremented with each message signed with a given CSRK.

The combination of the CSRK and counter mitigates replay attacks.

BLE security

Overview – Anatomy of Pairing Methods

Dialog Semiconductor © 2017 29

 The two devices in the link use the IO capabilities from Pairing Request and Pairing

Response packet data to determine which of two pairing methods to use for generation of

the Temporary Key (TK).

 The two methods are Just Works and Passkey Entry.

 Example when Just Works method is appropriate is when the IO capability input = None

and output = None.

 Example when Passkey Entry would be appropriate would be if input= Keyboard and

output = Display.

BLE security

Overview – Anatomy of Pairing Methods

Dialog Semiconductor © 2017 30

 In Just Works the TK = 0.

 In the Passkey Entry method

TK = {

6 numeric digits, Input = Keyboard

6 random digits, Input = Display

}

 Mechanism:

The initiating device will generate a 128-bit random number that is combined with –

TK,

Pairing Request command,

Pairing Response command,

Initiating device address and address type,

and responding device address and address type.

BLE security

Overview – Anatomy of Pairing Methods

Dialog Semiconductor © 2017 31

 The resulting value is a random number Mconfirm

that is sent to the responding device by the pairing

confirm command.

 The responding device will validate the responding

device data in the Pairing Confirm command and if it

is correct will generate a Sconfirm value using the

same methods as used to generate Mconfirm only

with different 128-bit random number and TK.

 The responding device will send a Pairing Confirm

command to the initiator and if accepted the

authentication process is complete.

BLE security

Overview – Anatomy of Pairing Methods

Dialog Semiconductor © 2017 32

 Mrand is the random number in Mconfirm.

 Srand is the random number in Sconfirm.

 Mrand and Srand have a key role in setting encrypting the link.

 Finally the master and slave devices exchange Mrand and Srand so that the slave can

calculate and verify Mconfirm and the master can likewise calculate and verify Sconfirm.

 The Short Term Key (STK) is used for encrypting the link the first time the two devices pair.

STK remains in each device on the link and is not transmitted between devices. STK is

formed by combining Mrand and Srand which were formed using device information and

TKs exchanged with Pairing Confirmation (Pairing Confirm).

What would you see as output

Dialog Semiconductor © 2017 33

Contents

Source code discussion WRT Security

Custom service

Custom service profile example

Dialog Semiconductor © 2017 34

 This example demonstrates:

 Simple bonding based on custom profile database

 This tutorial covers a step by step procedure how to enable security during the process of

device connection between a master and a slave.

 Software you need:

 Dialog Smartsnippets studio

 Dialog SDK

 Project location:

 ..\projects\target_apps\ble_examples\ble_app_security

Code

target_apps\ble_examples\ble_app_security project covers

Dialog Semiconductor © 2017 35

 Configuring security parameters using passkey procedure of association model

 Applying security in custom profile

Code

Dialog Semiconductor © 2017 36

Custom service profile basic message flow

Code

ble_app_security.uvprojx project layout

Dialog Semiconductor © 2017 37

 Group user_config, user_platform and user_app.

 These groups contain the user configuration files.

Code

Description of some important files

Dialog Semiconductor © 2017 38

/* Holds DA1458x basic configuration settings. */

da1458x_config_basic.h

/* Holds DA1458x advanced configuration settings. */

da1458x_config_advanced.h

/* Holds user specific information about software version. */

user_config_sw_ver.h

/* Defines which application modules are included or excluded from the user’s application. */

user_modules_config.h

/* The Device information application profile is excluded. */

#define EXCLUDE_DLG_PROXR (1)

/* The Device information application profile is included. */

#define EXCLUDE_DLG_CUSTS1 (0)

/* Note: */

/* This setting has no effect if the respective module is a BLE Profile */

/* that is not used in the user's application. */

/* Callback functions that handle various events or operations. */

user_callback_config.h

/* Holds advertising parameters, connection parameters, and compile time security parameters etc. */

user_config.h

Code

Description of some important files

Dialog Semiconductor © 2017 39

/* Defines which BLE profiles (Bluetooth SIG adopted or custom ones) will be included in user’s application.

each header file denotes the respective BLE profile*/

user_profiles_config.h

#inlucde "diss.h" // Includes Device Information Service.

#include "custs1.h" // Includes Custom service.

Note: SDK6 has provided a robust interface so the above implementation is done by MACRO flags

#define CFG_PRF_DISS

#define CFG_PRF_CUST1

/* Defines the structure of the Custom profile database structure and

cust_prf_funcs[] array, which contains the Custom profile API functions calls.*/

user_custs_config.h

Note: SDK6 uses the following file for the same purpose

user_custs_config.c

/* Holds hardware related settings relative to the used Development Kit. */

user_periph_setup.h

/* Source code file that handles peripheral (GPIO, UART, SPI, etc.)

configuration and initialization relative to the Development Kit.*/

user_periph_setup.c

Code

Security step by step

Dialog Semiconductor © 2017 40

TODO 1 – Change the default BD_ADDRESS, this address has to be unique in a BLE network.

/* @file da1458x_config_advanced.h */

/* copy and paste in code step 1 change the BLE device address */

#define CFG_NVDS_TAG_BD_ADDRESS {0x01, 0x01, 0x01, 0x01, 0x01, 0x01}

TODO 2 – Check and define DLG_CUST1 module in your application code

/* @file user_modules_config.h */

#define EXCLUDE_DLG_SPOTAR (1) /* excluded */

/* copy and paste in code step 2 define DLG_CUST1 module in your application code */

#define EXCLUDE_DLG_CUSTS1 (0) /* included */

TODO 3 – Check and include cust1.h in your application code to activate custom profile

/* @file user_profiles_config.h */

#include "diss.h"

/* copy and paste in code step 3 add custs1.h NOTE: For SDK6 check the MACRO flags mentioned in slide 14 */

#include "custs1.h"

Code

Security step by step

Dialog Semiconductor © 2017 41

TODO 4 – Information and change your advertising device name

/* @file user_config.h */

/* default sleep mode. Possible values ARCH_SLEEP_OFF, ARCH_EXT_SLEEP_ON, ARCH_DEEP_SLEEP_ON

ARCH_EXT_SLEEP_ON, ARCH_DEEP_SLEEP_ON – You cannot debug in these modes

*/

const static sleep_state_t app_default_sleep_mode = ARCH_SLEEP_OFF;

//-------------NON-CONNECTABLE & UNDIRECTED ADVERTISE RELATED COMMON -- //

/// Advertising service data

/// dev step 5 explanation of the following 3 items

#define USER_ADVERTISE_DATA ("\x03"\

ADV_TYPE_COMPLETE_LIST_16BIT_SERVICE_IDS\

ADV_UUID_DEVICE_INFORMATION_SERVICE\

"\x11"\ /// The next section takes hex x11 = decimal 17 bytes

ADV_TYPE_COMPLETE_LIST_128BIT_SERVICE_IDS\ /// Shows complete list of 128 bit Service IDs

"\x2F\x2A\x93\xA6\xBD\xD8\x41\x52\xAC\x0B\x10\x99\x2E\xC6\xFE\xED") /// Your Custom Service UUID

/// Note– Custom service UUID is shown from right to left <-- EDFEC6...2F in the client LightBlue iOS app GUI

/* copy and paste in code step 4 change your advertising device name */

#define USER_DEVICE_NAME ("B-SEC1")

Code

Security step by step

Dialog Semiconductor © 2017 42

TODO 5 – Overview of existing BLE Profile custom service characteristic values and properties

NAME PROPERTIES LENGTH DESCRIPTION

Control Point WRITE 1 Accept commands from peer

LED State WRITE NO RESPONSE 1 Toggles a LED connected to a GPIO

ADC Value 1 READ, NOTIFY 2 Reads sample from an ADC channel

ADC Value 2 READ 2 Reads sample from an ADC channel

Button State READ, NOTIFY 1
Reads the current state of a push
button connected a GPIO

Indicate able READ, INDICATE 20 Demonstrate indications

Long Value READ, WRITE. NOTIFY 50
Demonstrate writes to long
characteristic value

Code

Security step by step

Dialog Semiconductor © 2017 43

TODO 6 – Now define or enable the application security flag

/* @file da1458x_config_basic.h */

/***/

/* Enables the BLE security functionality in TASK_APP. If not defined BLE security related code is compiled out.*/

/**/

#define CFG_APP_SECURITY

TODO 7 – Now define or enable compile time security feature wrt association model

/* @file user_config.h */

/**

* Pairing Methods: - JUST WORKS (#define USER_CFG_PAIR_METHOD_JUST_WORKS)

* PASSKEY (#define USER_CFG_PAIR_METHOD_PASSKEY)

* OOB (#define USER_CFG_PAIR_METHOD_OOB)

* Select only one option.

***/

#define USER_CFG_PAIR_METHOD_PASSKEY

Code

Security step by step

Dialog Semiconductor © 2017 44

TODO 8 – Now for simplicity use a public address to play around privacy feature

/* @file user_config.h */

/***

* Privacy feature:

* PRIV_GEN_STATIC_RND (#define USER_CFG_PRIV_GEN_STATIC_RND)

* PRIV_GEN_RSLV_RND (#define USER_CFG_PRIV_GEN_RSLV_RND)

* This configuration flags are used for selecting privacy feature of the peripheral device.

* This feature allows the device to use random addresses to prevent peers from tracking it.

* Privacy feature is selected through the following two flags.

* Select only one option for random address. If none is selected, a public

* address will be used.

**/

#undef USER_CFG_PRIV_GEN_STATIC_RND

#undef USER_CFG_PRIV_GEN_RSLV_RND

Code

Security step by step

Dialog Semiconductor © 2017 45

TODO 9 – Peer device’s bond data can be stored on an external SPI Flash or I2C EEPROM memory. Un-

define both to store bonding information in sysRAM for application simplicity

/* @file user_config.h */

/**

* Select memory medium for bond data storage:

* - SPI FLASH (#define USER_CFG_APP_BOND_DB_USE_SPI_FLASH)

* - I2C EEPROM (#define USER_CFG_APP_BOND_DB_USE_I2C_EEPROM)

* - SysRAM only (define nothing)

* Select only one option.

***/

#undef USER_CFG_APP_BOND_DB_USE_SPI_FLASH

#undef USER_CFG_APP_BOND_DB_USE_I2C_EEPROM

Code

Security step by step

Dialog Semiconductor © 2017 46

TODO 10 – BLE Security configuration, it should look like the following

/* @file user_config.h */

/* **

* Security related configuration simplified view as the structure is very huge

***/

static const struct security_configuration user_security_conf = {

/**

* IO capabilities (@see gap_io_cap)

* - GAP_IO_CAP_NO_INPUT_NO_OUTPUT No Input No Output

**/

.iocap = GAP_IO_CAP_NO_INPUT_NO_OUTPUT,

/**

* OOB information (@see gap_oob)

* - GAP_OOB_AUTH_DATA_NOT_PRESENT OOB Data not present

**/

.oob = GAP_OOB_AUTH_DATA_NOT_PRESENT,

Code

Security step by step

Dialog Semiconductor © 2017 47

TODO 10 – BLE Security configuration, it should look like the following

/* @file user_config.h */

/**

* Authentication (@see gap_auth)

* - GAP_AUTH_REQ_MITM_BOND MITM and Bonding

**/

#if defined (USER_CFG_PAIR_METHOD_PASSKEY)

.auth = GAP_AUTH_REQ_MITM_BOND,

#endif

/**

* Device security requirements (minimum security level). (@see gap_sec_req)

* - GAP_SEC1_AUTH_PAIR_ENC Authenticated pairing with encryption

**/

#if defined (USER_CFG_PAIR_METHOD_PASSKEY)

.sec_req = GAP_SEC1_AUTH_PAIR_ENC,

#endif

Code

Security step by step

Dialog Semiconductor © 2017 48

TODO 10 – BLE Security configuration, it should look like the following

/* @file user_config.h */

/// Encryption key size (7 to 16) - LTK Key Size

.key_size = KEY_LEN,

/**

* Initiator key distribution (@see gap_kdist)

* - GAP_KDIST_IDKEY IRK (ID key)in distribution

* - GAP_KDIST_SIGNKEY CSRK (Signature key) in distribution

**/

#if defined (USER_CFG_PAIR_METHOD_JUST_WORKS) || defined (USER_CFG_PAIR_METHOD_PASSKEY) || defined (USER_CFG_PAIR_METHOD_OOB)

.ikey_dist = GAP_KDIST_SIGNKEY | GAP_KDIST_IDKEY,

#endif

/**

* Responder key distribution (@see gap_kdist)

* - GAP_KDIST_ENCKEY LTK (Encryption key) in distribution

**/

#if defined (USER_CFG_PAIR_METHOD_JUST_WORKS) || defined (USER_CFG_PAIR_METHOD_PASSKEY) || defined (USER_CFG_PAIR_METHOD_OOB)

.rkey_dist = GAP_KDIST_ENCKEY,

#endif

};

Code

Security step by step

Dialog Semiconductor © 2017 49

TODO 11 – Apply your passkey

/* @file user_security.h */

/// Passkey that is presented to the user and is entered on the peer device (MITM) <= 6 digit number

#define APP_SECURITY_MITM_PASSKEY_VAL (321456)

Code

Security step by step

Dialog Semiconductor © 2017 50

TODO 12 – BLE events are processed using the following callbacks in Dialog SDK

/* @file user_callback_config.h */

static const struct app_callbacks user_app_callbacks = {

.app_on_connection = user_app_connection,

.app_on_disconnect = user_app_disconnect,

.app_on_set_dev_config_complete = default_app_on_set_dev_config_complete,

.app_on_adv_undirect_complete = user_app_adv_undirect_complete,

.app_on_db_init_complete = default_app_on_db_init_complete,

.app_on_get_dev_appearance = default_app_on_get_dev_appearance,

.app_on_get_dev_slv_pref_params = default_app_on_get_dev_slv_pref_params,

.app_on_set_dev_info = default_app_on_set_dev_info,

.app_on_update_params_request = default_app_update_params_request,

#if (BLE_APP_SEC)

.app_on_pairing_request = default_app_on_pairing_request,

.app_on_tk_exch_nomitm = user_app_on_tk_exch_nomitm,

.app_on_ltk_exch = default_app_on_ltk_exch,

.app_on_pairing_succeded = user_app_on_pairing_succeeded,

.app_on_encrypt_req_ind = user_app_on_encrypt_req_ind,

#endif // (BLE_APP_SEC)

};

Code

Dialog Semiconductor © 2017 51

Abstract code flow

Pairing using Passkey Entry

Code

Security step by step

Dialog Semiconductor © 2017 52

TODO 13 – Apply Permission on a GATT characteristic value. This can be achieved by changing the

permissions from UNAUTH to AUTH. Using this setting the following:

.security_request_scenario = DEF_SEC_REQ_ON_CONNECT

in user_config.h you can select when authorization is required, during connection or during

read/write of a characteristic.

/* @file user_config.h */

static const struct default_handlers_configuration user_default_hnd_conf = {

//Configure the advertise operation used by the default handlers

//Possible values:

// - DEF_ADV_FOREVER

// - DEF_ADV_WITH_TIMEOUT

.adv_scenario = DEF_ADV_FOREVER,

//Configure the advertise period in case of DEF_ADV_WITH_TIMEOUT.

//It is measured in timer units (3 min). Use MS_TO_TIMERUNITS macro to convert

//from milliseconds (ms) to timer units.

.advertise_period = MS_TO_TIMERUNITS(180000),

//Configure the security start operation of the default handlers

//if the security is enabled (CFG_APP_SECURITY)

.security_request_scenario = DEF_SEC_REQ_ON_CONNECT

};

Code

Single Device Bonding Example

Dialog Semiconductor © 2016 53

TODO 14 –To convert an existing read or write characteristic to require pairing change the

Characteristic Value permissions in the Database Description change the permission flag:

This is the only change required to support bonding with a single Master.

What would you see as output

Dialog Semiconductor © 2017 54

Contents

Output

Output

Dialog Semiconductor © 2017 55

 The LightBlue iOS application can be used to connect an iPad/iPod/iPhone device

to the application. In such a case the iPad/iPod/iPhone acts as a BLE Central and

the application as a BLE Peripheral. It should be listed by the name given in the

USER_DEVICE_NAME definition.

 One service should be listed – the Device Information Service. On some scanners,

this will be listed either as a named service, or as a set of hex numbers (0A 18) as

part of a list of 16-bit Service class UUIDs.

 On connecting to the device, the Characteristics should be retrieved.

Output

Passkey

Dialog Semiconductor © 2016 56

 Note: The devices will be connectable in this and future examples. Connecting to a

device will mean that other scanners won’t be able to locate the device – it is

recommended that you only connect to your own device.

 Note: Some scanners (notably Apple devices) may not update the name of device if it is

changed – to correct this, it is necessary to disable then re-enable Bluetooth.

Output

Dialog Semiconductor © 2016 57

Output

Multiple Device Bonding

Dialog Semiconductor © 2016 58

• To support multiple devices, the bonding information must be stored for each

device.

• The simplest way is to store the bonding information in retained memory, using the

attribute __attribute__((section("retention_mem_area0"),zero_init)).

• The SDK app_sec module provides a structure app_sec_env in this retained

memory in which bonding information may be stored.

– This module also provides helper functions to generate PINs and the Long Term

Key

Output

Multiple Device Bonding

Dialog Semiconductor © 2016 59

• Bonding information may be stored and used using the following procedure:

– On successful pairing, the callback .app_on_pairing_succeded will be called. At this

point you may store the app_sec_env.rand_nb, app_sec_env.ediv, app_sec_env.ltk and

app_sec_env.key_size values to your permanent store.

– When the callback .app_on_encrypt_req_ind is called, do a lookup on the

app_sec_env.rand_nb and app_sec_env.ediv variables stored previously. If a match is

found, write the values to app_sec_env.rand_nb, app_sec_env.ediv, app_sec_env.ltk and

app_sec_env.key_size and return true.

• Dialog’s IoT Sensor and Keyboard reference designs (available through

support.dialog-semiconductor.com) include example code dealing with storing

bonding information to EEPROM.

Output

Further Considerations

Dialog Semiconductor © 2016 60

• Other pairing modes:

– Other pairing methods like Pass Key Entry and Out Of Band are supported by

the Dialog platform and SDK

• Private addresses:

– Generally, a peripheral will broadcast its presence to all listeners using the same

address every time. It is possible to obfuscate the identity of a peripheral using a

‘Private Address’

– Only devices which are bonded to the client can resolve the address, using their

stored keys.

• Bondable / non-bondable:

– When a master connects to a BLE slave, it may only pair if the slave allows it.

– Typically, bonding can be controlled using a user interaction on the device – for

example, pressing a specific button will start the device advertising in a mode

that allows bonding.

Output

Further Considerations

Dialog Semiconductor © 2016 61

• The DA14580 does not store any bonding info after power cycling the device. Even

if the PIN code is not changed, the LTK is changed every time.

– It is recommended to remove the bonding info in the Smartphone/Tablet.

– It is normal because when you reset the DA14580, the keys do not match

anymore.

– There is a random part in the key so the bonding information is not stored in the

memory of DA14580.

Information

What would you see as output

Dialog Semiconductor © 2017 62

 Note: The devices will be connectable in this and future examples. Connecting to a

device will mean that other scanners won’t be able to locate the device – it is

recommended that you only connect to your own device.

 Note: Some scanners (notably Apple devices) may not update the name of device

if it is changed – to correct this, it is necessary to disable then re-enable Bluetooth.

Some more easy tasks

© Copyright 2017 Dialog Semiconductor. All Rights Reserved

Small Do-it-youself assignement with code indication

63

 Task 1:

 Implement MITM security with access key provided out of band

 Use clean SDK5.0.4 empty_peripheral_template project as starting point

 Will trigger a pin code prompt upon connection establishment

Security configuration

© Copyright 2017 Dialog Semiconductor. All Rights Reserved

In ‘user_config.h’, change to these settings:

64

Security configuration

© Copyright 2017 Dialog Semiconductor. All Rights Reserved

In ‘user_config.h’, change to this setting

65

.security_request_scenario = DEF_SEC_REQ_ON_CONNECT

Security configuration

© Copyright 2017 Dialog Semiconductor. All Rights Reserved

In ‘user_callback_config.h’, route the tk exchange callback to user space:

66

.app_on_tk_exch_nomitm = user_app_on_tk_exch_nomitm,

Security configuration

© Copyright 2017 Dialog Semiconductor. All Rights Reserved

In the main header file make a reference to the user function:

67

void user_app_on_tk_exch_nomitm(uint8_t connection_idx, struct gapc_bond_req_ind const *param);

Security configuration

© Copyright 2017 Dialog Semiconductor. All Rights Reserved

In the main file implement a function that returns the access key:

68

void user_app_on_tk_exch_nomitm(uint8_t connection_idx, struct gapc_bond_req_ind const *param)

{

uint32_t pass_key = 456789;

app_easy_security_tk_exch(connection_idx, (uint8_t*)&pass_key, sizeof(pass_key));

}

Some more easy tasks

© Copyright 2017 Dialog Semiconductor. All Rights Reserved

Small Do-it-youself assignement with code indication

69

 Task 2:

 AES 128 bit encryption / Decryption in DA1458x

 Demonstrates how to use AES library for data encryption and decryption

 Uses empty_peripheral_template as a starting point

 Assumes that you have arch_printf working

 Assumes that you have pointed the app_on_init callback to your user

space

 AES encryption and decryption is achieved with only two function calls

 This tutorial only demonstrates synchronous mode does not utilize call-

backs

The AES init function

© Copyright 2017 Dialog Semiconductor. All Rights Reserved

aes_init():

70

void aes_init(bool reset, void (*aes_done_cb)(uint8_t status))

int aes_operation

(

unsigned char * key, // The AES encryption key

int key_len, // The length of the key in number of octets

unsigned char *in, // The input data

int in_len, // The length of the input data in number of octets

unsigned char *out, // The output data

int out_len, // The length of the output data in number of octets

int enc_dec, // 0 = Decryption, 1 = Encryption

void(*aes_done_cb)(uint8_t status), // Callback function called on completion (asynchronous use only)

unsigned char ble_flags // Flags

)

The AES operation function

© Copyright 2016 Dialog Semiconductor. All Rights Reserved 71

aes_operation()

Implementing AES support

© Copyright 2017 Dialog Semiconductor. All Rights Reserved

In the main user file, include the AES library:

72

#include "aes.h"

In the user_config.h file add these two #defines:

A helper function for visualization

© Copyright 2017 Dialog Semiconductor. All Rights Reserved

In the main user file implement the following:

73

void user_serial_dump(char* label, uint8_t* data_ptr, uint8_t data_len, bool hex_format)

{

// Print the label

arch_printf("%s: ",label);

// Iterate through the data and dump to serial port console in either hex or ascii format

for(uint8_t i = 0; i < data_len; i++)

{

if(hex_format)

arch_printf("0x%02X ",*data_ptr++);

else

arch_printf("%c",*data_ptr++);

}

// Add line-feed and carriage-return

arch_puts("\n\r");

}

AES encryption and decryption function

© Copyright 2017 Dialog Semiconductor. All Rights Reserved

In the main user file implement the following:

74

void user_app_on_init(void)

{

// Call the default handler

default_app_on_init();

// Set the AES initialization vector to all zeroes

memset(aes_env.aes_key.iv, 0, KEY_LEN);

// Initialize the AES environment

aes_init(false, NULL);

// Declare a result array

uint8_t aes_result[KEY_LEN];

// Define some data and a key

uint8_t aes_in[KEY_LEN] = {'D', 'i', 'a', 'l', 'o', 'g', ' ', 'S', 'e', 'm', 'i', ' ', '2', '0', '1', '7'};

uint8_t aes_key[KEY_LEN] = {0x53, 0x69, 0x6e, 0x67, 0x6c, 0x65, 0x20, 0x62, 0x6c, 0x6f, 0x63, 0x6b, 0x20,

0x6d, 0x73, 0x67};

// Dump cleartext data to console

user_serial_dump("\n\rData", aes_in, KEY_LEN, false);

// Dump encryption key

user_serial_dump("KEY ", aes_key, KEY_LEN, true);

// Encrypt data using key

aes_operation(aes_key, KEY_LEN, aes_in, KEY_LEN, aes_result, KEY_LEN, 1, NULL, 0);

// Dump resulting encrypted data to console

user_serial_dump("Dec ", aes_result, KEY_LEN, true);

// Decrypt the previously encrypted data using key (to get back to original cleartext data)

aes_operation(aes_key, KEY_LEN, aes_result, KEY_LEN, aes_in, KEY_LEN, 0, NULL, 0);

// Dump decrypted data to console (will match original cleartext data)

user_serial_dump("Enc ", aes_in, KEY_LEN, false);

}

AES Encryption demo

© Copyright 2017 Dialog Semiconductor. All Rights Reserved

The application should dump the following on boot-up:

75

Reference

Reference

Dialog Semiconductor © 2017 76

 http://support.dialog-semiconductor.com/connectivity

 https://developer.bluetooth.org/gatt/Pages/default.aspx

 https://www.bluetooth.com/specifications/adopted-specifications

 https://www.wikiwand.com/en/Universally_unique_identifier

What’s next

For more …

Dialog Semiconductor © 2017 77

 What’s next …

 Please follow the other tutorials based on –

 SDK 5.0.x for DA14580/1/2/3 development OR

 SDK 6.0.x for DA14585/6 development

 See Reference section of this training slide

 Learn about Dialog BLE chip differences at a glance from –

https://support.dialog-semiconductor.com/connectivity/products

…personal

…portable

…connected

Dialog Semiconductor © 2017 78

The Power To Be...

