

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas

Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog

and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)

Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand

names are mentioned in the document, these names have in fact all been changed to Renesas

Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and

corporate statement, no changes whatsoever have been made to the contents of the document, and

these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.

Customer Support Dept.

April 1, 2003

To all our customers

Cautions

Keep safety first in your circuit designs!

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but

there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire

or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i)

placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or

mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation

product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any

other rights, belonging to Renesas Technology Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights,

originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in

these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents

information on products at the time of publication of these materials, and are subject to change by Renesas Technology

Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact

Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product

information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these

inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various means, including the

Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and

algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of

the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other

loss resulting from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used

under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an

authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for

any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea

repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these

materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license

from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is

prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.

SuperH™ RISC engine High-
performance Embedded Workshop 2
(for Windows® 98/Me, Windows NT® 4.0,
Windows® 2000 and Windows® XP)

User’s Manual

U
ser’s M

anual

 Rev.3.0 2002.12

Renesas Microcomputer Development
Environment System

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark,
or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for
problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the
information contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest
product standards or specifications before final design, purchase or use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s
sales office before using the product in an application that demands especially high quality and reliability or where its
failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics,
nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum
rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics.
Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the
guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ
systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury,
fire or other consequential damage due to operation of the Hitachi product.

5. This product is not designed to be radiation resistant.

6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written
approval from Hitachi.

7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products.

Trademarks

Microsoft, MS-DOS, Windows, Windows NT are registered trademarks of Microsoft Corporation. Visual SourceSafe is a
trademark of Microsoft Corporation.
IBM is a registered trademark of International Business Machines Corporation.
All brand or product names used in this manual are trademarks or registered trademarks of their respective companies or
organizations.

Document Information

Product Code: S32HEWM
Version: 2. 1

Copyright © Hitachi Micro Systems Europe Ltd. 2002. All rights reserved.
Copyright © Hitachi, Ltd. 2002. All rights reserved.

Introduction

The Hitachi Embedded Workshop (HEW) is a powerful development environment for embedded applications targeted at
Hitachi microcontrollers. The main features are:

� A configurable build engine that allows you to set-up compiler, assembler and linker options via an easy to use
interface.

� An integrated text editor with user customizable syntax coloring to improve code readability.

� A configurable environment to run your own tools.

� An integrated debugger which allows you to build and debug in the same application.

� Version control support.

The Hitachi Embedded Workshop has been designed with two key aims; firstly to provide you, the user, with a set of
powerful development tools and, secondly, to unify and present them in a way that is easy to use.

About This Manual

This manual describes the HEW system. This manual is composed of two parts. HEW part describes information on the
basic “look and feel” of the HEW and customizing the HEW environment and detail the build. Simulator/Debugger part
describes Debugger functions of the Hitachi Embedded Workshop.

This manual does not intend to explain how to write C/C++ or assembly language programs, how to use any particular
operating system or how best to tailor code for the individual devices. These issues are left to the respective manuals.

Document Conventions

This manual uses the following typographic conventions:

Table 1 Typographic Conventions

Convention M eaning

[Menu->Menu Option] Bold text with ‘->’ is used to indicate menu options
(for example, [File->Save As...]).

FILENAME.C Uppercase names are used to indicate filenames.

“enter this string” Used to indicate text that must be entered (excluding the “” quotes).

Key + Key Used to indicate required key presses. For example, CTRL+N means
press the CTRL key and then, whilst holding the CTRL key down,
press the N key.

(The “how to” symbol)

When this symbol is used, it is always located in the left hand margin.
It indicates that the text to its immediate right is describing “how to”
do something.

i

Contents

HEW Part ...1

1. Overview..3
1.1 Workspaces, Projects and Files...3
1.2 The Main Window...4

1.2.1 The Title Bar ..4
1.2.2 The Menu Bar...4
1.2.3 The Toolbars...5
1.2.4 The Workspace Window..6
1.2.5 The Editor Window..9
1.2.6 The Output Window...10
1.2.7 The Status Bar ..10

1.3 The Help System ...11
1.4 Launching the HEW..12
1.5 Exiting the HEW ...12
1.6 Component System Overview...12

2. Build Basics ...13
2.1 The Build Process..13
2.2 Project Files ...14

2.2.1 Adding Files to a Project..15
2.2.2 Removing Files from a Project ..17
2.2.3 Excluding a Project File from Build..19
2.2.4 Including a Project File in Build..19

2.3 File Extensions and File Groups ...19
2.4 Specifying How to Build a File...26
2.5 Build Configurations ...27

2.5.1 Selecting a Configuration...28
2.5.2 Adding and Deleting Configurations...28

2.6 Building a Project ..30
2.6.1 Building a Project...30
2.6.2 Building Individual Files ...30
2.6.3 Stopping a Build...31
2.6.4 Building Multiple Projects...31
2.6.5 The Output Window...31
2.6.6 Controlling the Content of the Output Window..32

2.7 File Dependencies..32
2.8 Configuring the Workspace Window..33

2.8.1 Show Dependencies under Each File ..33
2.8.2 Show Standard Library Includes..34
2.8.3 Show File Paths..35

2.9 Setting the Current Project ..35
2.10 Inserting a Project into a Workspace ..35
2.11 Specifying Dependencies between Projects..37
2.12 Removing a Project from a Workspace ..38
2.13 Relative projects paths in the workspace ..39

3. Advanced Build Features..41
3.1 The Build Process Revisited..41

ii

3.1.1 What is a Build? ... 41
3.2 Creating a Custom Build Phase... 43
3.3 Ordering Build Phases... 47

3.3.1 Build Phase Order .. 48
3.3.2 Build File Phase Order... 50

3.4 Setting Custom Build Phase Options .. 50
3.4.1 Options Tab .. 51
3.4.2 Output Files Tab... 52
3.4.3 Dependent Files Tab .. 54

3.5 File Mappings .. 56
3.6 Controlling the Build... 58
3.7 Logging Build Output ... 58
3.8 Changing Toolchain Version .. 60
3.9 Using an External Debugger ... 61
3.10 Generating a Makefile ... 62

4. Using the Editor ... 63
4.1 The Editor Window... 63
4.2 Working with Multiple Files ... 64

4.2.1 The Editor Toolbars ... 64
4.2.2 Editor Toolbar Buttons... 64
4.2.3 Search Toolbar Buttons.. 66
4.2.4 Bookmarks Toolbar Buttons.. 66
4.2.5 Templates Toolbar Buttons.. 66

4.3 Standard File Operations... 67
4.3.1 Creating a New File ... 67
4.3.2 Saving a File... 67
4.3.3 Saving all Files... 68
4.3.4 Opening a File .. 68
4.3.5 Closing Files... 69

4.4 Editing a File ... 70
4.5 Searching and Navigating through Files... 71

4.5.1 Finding Text ... 71
4.5.2 Finding Text in Multiple Files ... 72
4.5.3 Replacing Text ... 72
4.5.4 Jumping to a Specified Line .. 73

4.6 Bookmarks... 73
4.7 Printing a File .. 75
4.8 Configuring Text Layout... 76

4.8.1 Page Set-up... 76
4.8.2 Changing Tabs.. 77
4.8.3 Auto Indentation... 77

4.9 Splitting a Window.. 79
4.10 Configuring Text ... 80

4.10.1 Changing the Editor Font... 80
4.11 Syntax Coloring... 80
4.12 Templates... 83

4.12.1 Defining a Template... 83
4.12.2 Deleting a Template ... 84
4.12.3 Inserting a Template... 84
4.12.4 Brace Matching. ... 84

4.13 Editor Column management .. 85

iii

5. Tools Administration..87
5.1 Tool Locations...88
5.2 HEW Registration Files (*.HRF)..88
5.3 Registering Components ...89

5.3.1 Searching Drives for Components...89
5.3.2 Registering a Single Component ...90

5.4 Unregistering Components..90
5.5 Viewing and Editing Component Properties ..91
5.6 Uninstalling Components ..93
5.7 Technical Support Issues...95
5.8 Custom Project Types..96

6. Customizing the Environment ..97
6.1 Customizing the Toolbar ...97
6.2 Customizing the Tools Menu ..100
6.3 Configuring the Help System..102
6.4 Specifying Workspace Options...103

6.4.1 Open last workspace at start-up ...103
6.4.2 Restore the files on opening workspace ..103
6.4.3 Display workspace information dialog on opening workspace104
6.4.4 Save workspace before executing any tools ..104
6.4.5 Prompt before saving workspace...104
6.4.6 Default directory for new workspaces...105
6.4.7 Prompt before saving session...105

6.5 Using an External Editor ...106
6.6 Customizing File Save...107

6.6.1 Save files before executing any tools ..107
6.6.2 Prompt before saving files ...107

6.7 Using an External Debugger ...108
6.8 Using Custom Placeholders...109

7. Version Control ..111
7.1 Selecting a Version Control System ...112

8. Using the Custom Version Control System ..115
8.1.1 System menu options and toolbar buttons...117
8.1.2 User menu options..119

8.2 Defining Version Control Commands ..121
8.2.1 Executable return code...121

8.3 Specifying Arguments ...122
8.3.1 Specifying File Locations ..123
8.3.2 Specifying Environment ..126
8.3.3 Specifying Comments ..127
8.3.4 Specifying a User Name and Password...128

8.4 Controlling Execution ...130
8.4.1 Prompt before executing command ...130
8.4.2 Run in DOS Window ...130
8.4.3 Use forward slash ‘/’ as version control directory delimiter.................................130

8.5 Importing and exporting a Set-up ...130

9. Using Visual SourceSafe ..133
9.1 Attaching Visual SourceSafe to a Workspace ..133

iv

9.1.1 Selecting Visual SourceSafe.. 133
9.1.2 Adding files to Visual SourceSafe... 134

9.2 Visual SourceSafe commands... 135
9.2.1 Removing a File from Version Control... 135
9.2.2 Getting a Read Only Copy of a File from Version Control 135
9.2.3 Checking Out a Writable Copy of a File from Version Control........................... 135
9.2.4 Checking In a Writable Copy of a File into Version Control 136
9.2.5 Undoing a Check Out Operation ... 136
9.2.6 Viewing the Status of a File... 136
9.2.7 Viewing the History of a File .. 136

9.3 Visual SourceSafe Integration Options... 137

Simulator/Debugger Part .. 139

Section 1 Overview... 141
1.1 Workspaces, Projects, and Files.. 141
1.2 Launching the HEW.. 141
1.3 Creating a New Workspace... 143
1.4 Opening a Workspace ... 144
1.5 Saving a Workspace .. 144
1.6 Closing a Workspace... 145
1.7 Using Old Workspaces.. 145
1.8 Exiting the HEW ... 145
1.9 Debugger Sessions... 145

Section 2 Simulator/Debugger Functions.. 147
2.1 Features.. 147
2.2 Target User Program ... 147
2.3 Simulation Range .. 147
2.4 Memory Management ... 148
2.5 Endian .. 149
2.6 Pipeline Reset Processing.. 149
2.7 Memory Management Unit (MMU) ... 149
2.8 Cache ... 150

2.8.1 Displaying Cache Contents.. 150
2.8.2 Cache Hit Rate ... 152

2.9 Bus State Controller (BSC) ... 152
2.10 Direct Memory Access Controller (DMAC) .. 152
2.11 SH-4 and SH-4 (SH7750R) Supporting Functions... 152

2.11.1 BSC... 152
2.11.2 DMA... 153
2.11.3 External/Internal Clock Ratio .. 153
2.11.4 Control Registers.. 153

2.12 Exception Processing... 156
2.13 Control Registers ... 157
2.14 Trace .. 158
2.15 Standard I/O and File I/O Processing ... 159
2.16 Break Conditions ... 160
2.17 Floating-Point Data ... 163
2.18 Display of Function Call History .. 163
2.19 Performance Measurement.. 163

2.19.1 Profiler.. 163

v

2.19.2 Performance Analysis ..164
2.20 Pseudo-Interrupts...164
2.21 Coverage ..164

Section 3 Preparations for Debugging ...165
3.1 Building before Debugging...165
3.2 Selecting a Debugging Platform ...165
3.3 Configuring the Debugging Platform..175

3.3.1 Memory Map..175
3.3.2 Memory Resource ..177
3.3.3 Downloading a Program ..177
3.3.4 Manual Download of Modules ..181
3.3.5 Automatic Download of Modules..181
3.3.6 Unloading of Modules ...181

3.4 Debugger Sessions...181
3.4.1 Selecting a Session...181
3.4.2 Adding and Deleting Sessions ...183
3.4.3 Saving Session Information ...186

Section 4 Debugging ...187
4.1 Viewing a Program..187

4.1.1 Viewing the Source Code ..187
4.1.2 Source Address Column...187
4.1.3 Debugger Columns...189
4.1.4 Viewing the Assembly-Language Code ..189
4.1.5 Modifying the Assembly-Language Code...189
4.1.6 Viewing a Specific Address...190
4.1.7 Viewing the Current Program Counter Address ...190

4.2 Operating Memory ..190
4.2.1 Viewing a Memory Area..191
4.2.2 Displaying Data in Different Formats ...191
4.2.3 Splitting Up the Window Display..192
4.2.4 Viewing a Different Memory Area..192
4.2.5 Modifying the Memory Contents ..192
4.2.6 Selecting a Memory Range..193
4.2.7 Finding a Value in Memory...193
4.2.8 Filling a Memory Area with a Value...194
4.2.9 Copying a Memory Area..194
4.2.10 Saving and Verifying a Memory Area...195
4.2.11 Disabling Update of the Window Contents...196
4.2.12 Updating the Window Contents...196
4.2.13 Comparing the Memory Contents..196
4.2.14 Loading a Memory Area from a File...196

4.3 Viewing the TLB Contents..197
4.3.1 Opening a TLB Window..197
4.3.2 Modifying the TLB Contents...200
4.3.3 Flushing the TLB Contents..200
4.3.4 Searching the TLB Items ...200
4.3.5 Continuing the TLB Search ...201

4.4 Viewing the Cache Contents ...201
4.4.1 Opening a Cache Window ...201
4.4.2 Modifying the Cache Contents ..205

vi

4.4.3 Flushing the Cache Contents ... 205
4.4.4 Searching the Cache Items... 205
4.4.5 Continuing the Cache Search... 206
4.4.6 Modifying the Cache Capacity .. 206

4.5 Displaying Memory Contents as an Image... 207
4.5.1 Opening the Image View Window .. 207
4.5.2 Automatically Updating the Window Contents .. 209
4.5.3 Updating the Window Contents... 209
4.5.4 Displaying the Pixel Information... 210

4.6 Displaying Memory Contents as Waveforms... 210
4.6.1 Opening the Waveform View Window... 210
4.6.2 Automatically Updating the Window Contents .. 212
4.6.3 Updating the Window Contents... 212
4.6.4 Zoom-In Display .. 212
4.6.5 Zoom-Out Display ... 212
4.6.6 Resetting the Zoom Display... 212
4.6.7 Setting the Zoom Magnification.. 212
4.6.8 Setting the Horizontal Scale... 212
4.6.9 Non-Display of Cursor... 212
4.6.10 Displaying the Sampling Information ... 212

4.7 Viewing the I/O Memory .. 213
4.7.1 Opening the IO Window.. 213
4.7.2 Expanding the I/O Register Display.. 213
4.7.3 Modifying the I/O Register Contents .. 214

4.8 Looking at Labels .. 214
4.8.1 Listing Labels... 215
4.8.2 Adding a Label... 216
4.8.3 Editing a Label ... 216
4.8.4 Deleting a Label ... 217
4.8.5 Deleting All Labels .. 217
4.8.6 Loading Labels from a File.. 217
4.8.7 Saving Labels into a File.. 218
4.8.8 Searching for a Label ... 218
4.8.9 Searching for the Next Label ... 219
4.8.10 Viewing the Source Corresponding to a Label.. 219

4.9 Looking at Registers.. 220
4.9.1 Opening the Register Window... 220
4.9.2 Expanding a Bit Register ... 221
4.9.3 Modifying Register Contents... 221
4.9.4 Using Register Contents .. 221

4.10 Executing Your Program... 221
4.10.1 Running from Reset ... 222
4.10.2 Continuing Run .. 222
4.10.3 Running to the Cursor .. 222
4.10.4 Running from a Specified Address.. 222
4.10.5 Single Step.. 223
4.10.6 Stepping Into a Function.. 223
4.10.7 Stepping Over a Function Call... 223
4.10.8 Stepping Out of a Function.. 223
4.10.9 Multiple Steps .. 224

4.11 Stopping Your Program... 224
4.11.1 Halting Execution... 224

vii

4.11.2 Standard Breakpoints (PC Breakpoints)..225
4.12 Elf/Dwarf2 Support ...225

4.12.1 C/C++ Operators ..226
4.12.2 C/C++ Expressions...226
4.12.3 Supporting Duplicate Labels..227
4.12.4 Debugging an Overlay Program ..228

4.13 Looking at Variables ...229
4.13.1 Tooltip Watch...229
4.13.2 Instant Watch..229
4.13.3 Watch Window...230
4.13.4 Locals Window ..233

4.14 Viewing the Profile Information ...234
4.14.1 Stack Information Files..234
4.14.2 Profile Information Files..234
4.14.3 Loading Stack Information Files ...235
4.14.4 Enabling the Profile..236
4.14.5 Specifying Measuring Mode..236
4.14.6 Executing the Program and Checking the Results ..236
4.14.7 List Sheet..236
4.14.8 Tree Sheet...238
4.14.9 Profile-Chart Window..239
4.14.10 Types and Purposes of Displayed Data ...240
4.14.11 Creating Profile Information Files...241
4.14.12 Notes...241

4.15 Viewing the Function Call History ...242
4.15.1 Opening the Stack Trace Window...242
4.15.2 Viewing the Source Program...242
4.15.3 Specifying the View...242

4.16 Viewing the Trace Information ...244
4.16.1 Opening the Trace Window...244
4.16.2 Specifying Trace Acquisition Conditions..244
4.16.3 Acquiring Trace Information ...245
4.16.4 Searching for a Trace Record ..249
4.16.5 Clearing the Trace Information..249
4.16.6 Saving the Trace Information in a File ..249
4.16.7 Viewing the Source Window...249
4.16.8 Trimming the Source..250
4.16.9 Analyzing Statistical Information..251

4.17 Using the Simulator/Debugger Breakpoints ...251
4.17.1 Listing the Breakpoints ..252
4.17.2 Setting a Breakpoint...252
4.17.3 Modifying Breakpoints ..256
4.17.4 Enabling a Breakpoint..256
4.17.5 Disabling a Breakpoint...256
4.17.6 Deleting a Breakpoint ..256
4.17.7 Deleting All Breakpoints ...256
4.17.8 Viewing the Source Line for a Breakpoint..256
4.17.9 Closing Input or Output File ..257
4.17.10 Closing All Input and Output Files..257

4.18 Analyzing Performance...257
4.18.1 Opening the Performance Analysis Window ..257
4.18.2 Specifying a Target Function...258

viii

4.18.3 Starting Performance Data Acquisition... 258
4.18.4 Resetting Data .. 258
4.18.5 Deleting a Target Function .. 258
4.18.6 Deleting All Target Functions ... 258

4.19 Acquiring Code Coverage... 258
4.19.1 Opening the Coverage Window... 258
4.19.2 Acquiring Coverage Information... 260
4.19.3 Viewing the Source Window... 260
4.19.4 Changing the Display Address .. 260
4.19.5 Changing the Coverage Range .. 260
4.19.6 Clearing Coverage Information ... 261
4.19.7 Saving Coverage Information in a File.. 261
4.19.8 Loading Coverage Information from a File... 261
4.19.9 Updating the Information... 261
4.19.10 Stopping Update... 262
4.19.11 Confirmation Request Dialog Box .. 262
4.19.12 Save Coverage Data Dialog Box ... 263
4.19.13 Displaying the Coverage Information in the Source Window.............................. 263

4.20 Viewing the Current Status ... 264
4.21 Debugging with the Command Line Interface ... 265

4.21.1 Opening the Command Line Window... 265
4.21.2 Specifying a Command File... 265
4.21.3 Executing a Command File.. 266
4.21.4 Stopping Command Execution .. 266
4.21.5 Specifying a Log File... 266
4.21.6 Starting or Stopping Logging .. 266
4.21.7 Entering a Full Path to the File .. 266
4.21.8 Pasting a Placeholder ... 266

4.22 Generating a Pseudo-Interrupt Manually.. 267
4.22.1 Setting a Trigger Button... 268
4.22.2 Changing the Size of Trigger Buttons ... 269

4.23 Modifying the Simulator/Debugger Settings.. 269
4.23.1 Simulator System Dialog Box ... 269
4.23.2 Memory Map Modify Dialog Box... 271
4.23.3 Set State Dialog Box .. 272
4.23.4 Simulator Memory Resource Dialog Box ... 274
4.23.5 System Memory Resource Modify Dialog Box .. 275

4.24 Standard I/O and File I/O Processing ... 276
4.24.1 Opening the Simulated I/O Window ... 276
4.24.2 I/O Functions.. 277

4.25 Synchronizing Multiple Debugging Platforms... 287

Section 5 Command Lines .. 289
5.1 !(COMMENT)... 291
5.2 ANALYSIS.. 292
5.3 ANALYSIS_RANGE ... 292
5.4 ANALYSIS_RANGE_DELETE .. 293
5.5 ASSEMBLE .. 294
5.6 ASSERT .. 294
5.7 BREAKPOINT.. 295
5.8 BREAK_ACCESS .. 297
5.9 BREAK_CLEAR .. 299

ix

5.10 BREAK_CYCLE...300
5.11 BREAK_DATA...303
5.12 BREAK_DISPLAY...305
5.13 BREAK_ENABLE..306
5.14 BREAK_REGISTER ..307
5.15 BREAK_SEQUENCE...309
5.16 CHANGE_CONFIGURATION ...311
5.17 CHANGE_PROJECT..311
5.18 CLOCK_RATE ...312
5.19 COVERAGE..312
5.20 COVERAGE_DISPLAY ..313
5.21 COVERAGE_LOAD ..313
5.22 COVERAGE_RANGE..314
5.23 COVERAGE_SAVE...314
5.24 DEFAULT_OBJECT_FORMAT ...315
5.25 DISASSEMBLE..315
5.26 ERASE...316
5.27 EVALUATE..317
5.28 EXEC_MODE...318
5.29 FILE_LOAD..319
5.30 FILE_SAVE ..320
5.31 FILE_VERIFY ..320
5.32 GO ..321
5.33 GO_RESET ...321
5.34 GO_TILL...322
5.35 HALT...323
5.36 INITIALIZE ..324
5.37 LOG ..324
5.38 MAP_DISPLAY..325
5.39 MAP_SET..325
5.40 MEMORY_DISPLAY ..326
5.41 MEMORY_EDIT ..327
5.42 MEMORY_FILL...328
5.43 MEMORY_MOVE ...329
5.44 MEMORY_TEST..329
5.45 OPEN_WORKSPACE..330
5.46 PROFILE ...330
5.47 PROFILE_DISPLAY..331
5.48 PROFILE_SAVE...331
5.49 QUIT..332
5.50 RADIX...332
5.51 REGISTER_DISPLAY...333
5.52 REGISTER_SET...333
5.53 RESET ...334
5.54 RESPONSE ...334
5.55 SLEEP..335
5.56 STATUS ..335
5.57 STEP ..335
5.58 STEP_MODE ..336
5.59 STEP_OUT..336
5.60 STEP_OVER...337
5.61 STEP_RATE..338

x

5.62 STEP_UNIT .. 338
5.63 SUBMIT .. 339
5.64 SYMBOL_ADD.. 339
5.65 SYMBOL_CLEAR ... 340
5.66 SYMBOL_LOAD ...340
5.67 SYMBOL_SAVE.. 341
5.68 SYMBOL_VIEW.. 341
5.69 TCL .. 342
5.70 TRACE .. 342
5.71 TRACE_ACQUISITION.. 343
5.72 TRACE_SAVE.. 344
5.73 TRACE_STATISTIC.. 344
5.74 TRAP_ADDRESS... 345
5.75 TRAP_ADDRESS_DISPLAY ... 345
5.76 TRAP_ADDRESS_ENABLE... 346

Section 6 Messages... 347
6.1 Information Messages ... 347
6.2 Error Messages .. 348

Appendix A: Trouble Shooting... 351

Appendix B: Regular Expressions .. 353

Appendix C: Placeholders... 355
C.1 What is a Placeholder? .. 355
C.2 Inserting a Placeholder .. 355
C.3 Available Placeholders .. 357
C.4 Placeholder Tips .. 359

Appendix D: I/O File Format.. 360
D.1 File format ... 360

Appendix E: Symbol File Format ... 363

1

HEW Part

2

3

1. Overview

This chapter describes the fundamental concepts of the Hitachi Embedded Workshop. It is intended to give users who are
new to Windows® extra help, filling in the details that are required by later chapters.

1.1 Workspaces, Projects and Files

Just as a word processor allows you to create and modify documents, the Hitachi Embedded Workshop allows you to
create and modify workspaces. A workspace can be thought of as a container of projects and, similarly, a project can be
though of as a container of project files. Thus, each workspace contains one or more projects and each project contains one
or more files. Figure 1.1 illustrates this graphically.

PROJECT

PROJECT

PROJECT

FILE

FILE

FILE

WORKSPACE

Figure 1.1: Workspaces, Projects and Files

Workspaces allow you to group related projects together. For example, you may have an application that needs to be built
for different processors or you may be developing an application and library at the same time. Projects can also be linked
hierarchically within a workspace, which means that when one project is built all of its “child” projects are built first.

However, workspaces on their own are not very useful, we need to add a project to a workspace and then add files to that
project before we can actually do anything.

4

1.2 The Main Window

The HEW main window appears as shown in figure 1.2.

Figure 1.2: HEW Main Window

There are three main windows; the workspace window, the editor window and the output window. The workspace window
shows the projects and files which are currently in the workspace, the editor window provides file viewing and editing
facilities and the output window shows the results of a various processes (e.g. build, version control commands and so on).

1.2.1 The Title Bar

The title bar displays the name of the currently open workspace, project and file. It also contains the standard minimize,
maximize and close buttons. Click the minimize button to minimize the HEW on the windows start bar. Click the
maximize button to force HEW to fill the screen. Click the close button to close the HEW (this has the same effect as
selecting [File->Exit] or pressing ALT+F4).

1.2.2 The Menu Bar

The menu bar contains nine menus: File, Edit, View, Project, Options, Build, Tools, Window and Help. All of the menu
options are grouped logically under these headings. For instance, if you wanted to open a file then the file menu is where
you will find the right menu option, if you wanted to set-up a tool then the tools menu is the correct selection. The
following sections will cover the functions of the various menu options, as they become relevant. However, at this stage, it
is worth taking a few moments to familiarize yourself with the options that each menu provides.

5

1.2.3 The Toolbars

The toolbars provide a shortcut to the options, which you will use the most often. There are eight default toolbars:
Bookmarks, Debug, Debug Run, Editor, Search, Standard, Templates, and Version Control (as shown in figure 1.3 to
1.10). Toolbars can be created, modified and removed via the [Tools->Customize…] menu option (see chapter 6,
“Customizing the Environment”, for further information).

Figure 1.3: Bookmarks Toolbar

Figure 1.4: Debug Toolbar

Figure 1.5: Debug Run Toolbar

Figure 1.6: Editor Toolbar

Figure 1.7: Search Toolbar

6

Figure 1.8: Standard Toolbar

Figure 1.9: Templates Toolbar

Figure 1.10: Version Control Toolbar

When the Standard toolbar or a toolbar is docked, it has a control bar as shown in figure 1.11 (i). If you want to move the
docked Standard toolbar, click and drag its control bar to the new location. Figure 1.11 (i) shows the Standard toolbar
when it is docked and figure 1.11 (ii) shows the Standard toolbar when it is floating.

Figure 1.11: Standard Toolbar, Docked and Floating

 To dock the menu bar or a toolbar:

1. Double-click on the title bar of a floating menu bar or toolbar.

or:

2. Drag the title bar of a floating menu bar or toolbar and draw it toward an edge of a docked window, menu bar,
toolbar or the HEW main frame, on whose edge you would like to dock the window, until the shape of the floating
bar changes.

 To float the menu bar or a toolbar:

1. Double-click on the control bar of a docked menu bar or toolbar.

or:

2. Drag the control bar of a docked menu bar or toolbar and draw it away from the edge of the HEW main frame and
from an edge of the other docked windows, menu bar or toolbar.

1.2.4 The Workspace Window

The “Workspace” window when the HEW is launched only has a single pane. This is the “Projects” tab. If a workspace is
opened then the workspace window displays two default tabs. The “Projects” tab shows the current workspace, projects

7

and fi les (figure 1.12). You can quickly open any pr oject file or dependent file by double clicking on its corre sponding
icon.

Figure 1.12: Workspace Window Projects Tab

The “Navigation” tab provides jumps to various textual constructs within your project’s files. What is actually displayed
within the navigation tab depends upon what components are currently installed. Figure 1.13 shows ANSI C functions.
See chapter 2, “Build Basics”, for more information on the “Workspace” window.

Figure 1.13: Workspace Window Navigation Tab

 To allow the “Workspace” window or the “Output” window docking:

Click the right mouse button anywhere inside the “Workspace” window or the “Output” window. Then a pop-up menu
will be displayed. If [Allow Docking] is checked, docking is allowed; otherwise, docking is not allowed. Select [Allow
Docking] to check or uncheck it.

When [Allow Docking] is checked, you can dock a window, a toolbar or a menu bar to the edge of the HEW main
window or to the edge of another docked window. Also if [Allow Docking] is checked, you can float them “above” the
other HEW windows or outside the HEW main window. Figure 1.14 (i) shows a docked “Workspace” window, and figure
1.14 (ii) shows a floating “Workspace” window.

8

Figure 1.14: Workspace Window, Docked and Floating

When the “Workspace” window or the “Output” window is docked, it has a control bar as shown in figure 1.15. If you
want to move a docked window, click and drag its control bar to the new location.

Figure 1.15: Control Bar of Docking Window

 To dock the “Workspace” window or the “Output” window:

[Allow Docking] must be checked on the pop-up menu of the window to dock the “Workspace” window or the
“Output” window. (The pop-up menu will be displayed when you click the right mouse button anywhere inside the
window.) Then you have two ways to dock the window.

1. Double-click on the control bar of a floating window.

or:

2. Drag the title bar of a floating window and draw it toward an edge of a docked window, menu bar or toolbar, or the
HEW main frame, on whose edge you would like to dock the window, until the shape of the floating window
changes.

9

 To float the “Workspace” window or the “Output” window:

[Allow Docking] must be checked on the pop-up menu of the window to float the “Workspace” window or the
“Output” window. (The pop-up menu will be displayed when you click the right mouse button anywhere inside the
window.) Then you have two ways to float the window.

1. Double-click on the control bar of a docking window.

or:

2. Drag the control bar of a docked window and draw it away from the edge of the HEW main frame and from an
edge of the other docked windows, menu bar or toolbar.

 To hide the “Workspace” window or the “Output” window:

Click on the close button, which is located in the top right corner of the window. Or push the right mouse button
anywhere inside a floating window and select [Hide] on the pop-up menu.

 To display the “Workspace” window or the “Output” window:

Select [View->Workspace] or [View->Output], respectively.

1.2.5 The Editor Window

The editor window is where you will work with the files of your project. The HEW allows you to have many files open at
one time, to switch between them, to arrange them and to edit them in whichever order you want to. By default, the editor
window is displayed in a notebook style, where each text file has a separate tab (as shown in figure 1.16).

The editor contains a gutter on the left-hand side of the window. The gutter in HEW can be configured to contain many
columns. Each column can refer to a different component’s capability. In figure 1.16 the editor is displayed with the
debugger address column and the standard column. The standard column allows the user to configure the position of
bookmarks and software breakpoints quickly and easily.

Figure 1.16: Editor Window

The editor window can be customized via the “Format Views” dialog box, which can be invoked via the [Tools->Format
Views…] menu option. This dialog allows you to configure fonts, colors, tabs and so on for the editor window. It also
allows the user to change the look of other views, which have been installed by HEW. If you would prefer to use your
favorite editor rather than the HEW internal editor then specify your alternative in the “Options” dialog box, which can be

10

invoked via the [Tools->Option…] menu option. For further details on how to use and configure the editor, refer to
chapter 4, “Using the Editor”.

1.2.6 The Output Window

The “Output” window by default has four tabs on display. The “Build” tab shows the output from any build process (e.g.
compiler, assembler and so on). If an error is encountered in a source file then the error will be displayed in the build tab
along with the source file name and line number. To quickly locate a problem, double click on the error to jump to the
source file and line.

Figure 1.17: Output Window

The “Debug” tab shows the output from any debugger process. Any debug component that needs to display information
will send its output to this window.

The “Find in Files” tab displays the results of the last “Find in Files” action. To activate find in files, select the [Edit-
>Find in Files…] menu option, the toolbar button. For further details on how to use find in files, refer to chapter 4, “Using
the Editor”.

The “Version Control” tab displays the results of version control actions. The tab is only displayed if a version control
system is in use. For further details on version control, refer to chapter 7, “Version Control”.

1.2.7 The Status Bar

The status bar displays information as to the current state of the HEW. Figure 1.18 shows the seven sections of the status
bar.

Figure 1.18: Status Bar

11

1.3 The Help System

The help menu is the rightmost menu on the HEW menu ba r. It contains the menu option “Con tents” which, when selected ,
takes you to the main HEW help window.

To obtain help on specific dialogs click on the context sensitive help button, which is located in the top r ight-hand corner
of each dialog box (as shown in figure 1.19).

Figure 1.19: Help Button

When this is clicked, the mouse pointer will change to a pointer with a question mark above it. Whilst the mouse pointer is
in this state, click on the part of the dialog box that you require assistance on.

Alternatively, select the control that you require help for and then press the F1 key.

12

1.4 Launching the HEW

To ru n the HEW , open the “Star t” menu of Windows®, select “Progra ms”, select “Hitach i Embedded Work shop” and
then select th e shor tcut of the “Hitachi Embe dded Workshop 2”. By default, the “Welcome!” dialog box shown in figure
1.20 will be displayed.

Figure 1.20: Welcome! Dialog

To create a new workspace, select “Create a new project workspace”, and click “OK”. To open one of recent project
workspaces, select “Open a recent project workspace”, select a workspace from the drop-down list, and click “OK”. The
recent project workspace list displays the same information as that seen in the workspace most recently used file list. This
list appears on the file menu. To open a workspace by specifying a workspace file (.HWS file), select “Browse to another
project workspace”, and click “OK”. To register a tool to or unregister a tool from the HEW, click the “Administration…”
button (see chapter 5, “Tool Administration” for details). Click the “Cancel” button to use the HEW without opening a
workspace.

1.5 Exiting the HEW

The HEW can be exited by selecting [File->Exit], pressing ALT+F4 or by selecting the close option from the system
menu. (To open the system menu, click the icon at the upper-left corner of the HEW title bar.) If a workspace is open then
the same workspace closedown procedure is followed as described in the previous section.

1.6 Component System Overview

The HEW allows the user to extend the HEW functionality by adding additional components to the system. This is
achieved by registering the component in the Tools Administration dialog box. These components can add windows,
menus and toolbars to the HEW system. Examples of the components are the debugger and builder components of HEW.
The debugger component adds all of the menus and toolbars associated with the debugger and the builder component does
the same for the build functionality. The components you have registered in the system will modify the look and feel of
HEW. In some cases you may not have some of the menus which you can see in this manual. For instance if the
debugger component is not installed you will not have the “Debug” menu in the HEW main window.

13

2. Build Basics

This chapter explains the general functions of the HEW whilst the more advanced features can be found in chapter 3,
“Adv anced Bui ld Features”.

2.1 The Build Process

The typical build process is outlined in figure 2.1. This may not be the exact build process, which your installation of
HEW will use as it depends upon the tools that were provided with your installation of HEW (e.g. you may not have a
compiler for instance). In any case, the principles are the same - each step or phase of the build takes a set of project files
and then builds them, if all succeeds then the next step or phase is executed.

Project

Object
Files

C
Source Files

Assembler
Source Files

Library
Files

Load
Module

BUILD

COMPILER

ASSEMBLER

LINKER

Figure 2.1: Typical Build Process

In the example shown in figure 2.1 the compiler is the first phase, the assembler is the second phase and the linker is the
third and final phase. During the compiler phase, the C source files from the project are compiled in turn, during the
assembler phase, the assembler source files are assembled in turn. During the linker phase all library files and output files
from the compiler and assembler phases are linked together to produce the load module. This module can then be
downloaded and used by the debugger functionality in HEW.

The build process can be customized in several ways. For instance, you can add your own phase, disable a phase, delete
phases and so forth. These advanced build issues are left to chapter 3, “Advanced Build Features”. In this chapter, only the
general principles and basic features will be detailed.

14

2.2 Project Files

In or der for t he HEW to be able to bui ld your a pplication, you must firs t tell it, which files should be in the pr oject, and
how each file should be built (figure 2.2).

Project

C
Source Files

Assembler
Source Files

Library
Files

Debug: ON
Optimize: OFF
List File: YES

Debug: OFF
Optimize: OFF
List File: YES

Debug: ON
Silent: YES
Map File: YES

Add Project Files

Remove Project Files

Set Compiler Options

Set Assembler Options

Set Linker options

Figure 2.2: Editing a Project

15

2.2.1 Adding Files to a Project

Before you can build your application you must firs t inform the Hitachi Embedded Workshop, which files it, is composed
of.

 To add a files to a project:

1. Select [Project->Add Files...], select [Add Files…] from the “Workspace” window’s pop-up menu (see figure
2.3), or press INS when the “Workspace” window is selected.

Figure 2.3: Project Pop-up Menu

2. The “Add” dialog will be displayed.

3. Select the file(s), that you want to add and then click “Add”.

16

There are a number of other ways to add new files to the proj ect. These are described below:

� Clicking ri ght button on a n open file in the editor window displays a pop-up menu opt ion (figure 2.4). If the file is
alread y in the project th en the “Add File to Pr oject” menu opt ion is disabled. Selecting the “Add File to Pr oject” then
adds the file to the curre nt project.

Figure 2.4: Editor Window Pop-up Menu

• In the HEW it is also possible to “Drag and Drop” files from Windows Explorer onto the workspace window. These
files will be automatically added to the project and are displayed in the folder in which they were dragged to.

Note: If you add a file to a project when it is an unrecognized file type then it will still be added to the project. Certain
functions will be disabled with reference to this file. When this file is double clicked in the workspace window instead of
opening the file in the editor the open operation is passed to Windows operating system. The default open operation is
then carried out as if the file was opened in Windows Explorer. To view the current defined extensions use the “File
Extensions” dialog (see the section on file extensions later in this chapter).

17

2.2.2 Removing Files from a Project

Files can be individually removed from a proj ect, selections of files can be removed or all files can be removed.

 To remove files from a project:

1. Select [Project->Remove Files...], or select [Remove Files…] from the “Projects” tab’s pop-up menu in the
Workspace window (see figure 2.5). The “Remove Project Files” dialog will be displayed (figure 2.6).

Figure 2.5: Projects Tab Pop-up Menu

Figure 2.6: Remove Project Files Dialog

18

2. Select th e file or files which you want to r emove from the “Pr oject files” list.

3. Click the “Remove” button to remove the selected files or c lick “Remove All” to r emove all p roject files.

4. Click “OK” to remove the files from the project.

 To remove selected files from a project:

1. Select the files, which you want to remove, in the “Projects” tab of the “Workspace” window. Multiple files can be
selected by holding down the SHIFT or CTRL key.

2. Press the DEL key. The files will be removed.

19

2.2.3 Excluding a Project File from Build

A file in a proj ect can be individually excluded from bui ld on a configura tion by configuration ba sis.

 To exclude a file in a project from build:

1. Push the right mouse button on a file, which you want to be excluded from build, in the “Projects” tab of the
“Workspace” window.

2. Select [Exclude Build file], where <file> is the selected file, from the pop-up menu (figure 2.5). Then a red cross
will be put on the file’s icon, and the file will be excluded from build.

2.2.4 Including a Project File in Build

An excluded file can be included in the project again.

 To include a file which has been excluded from build:

1. Push the right mouse button on a file, which has been excluded from build, on the “Projects” tab of the
“Workspace” window.

2. Select [Include Build file], where <file> is the selected file, from the pop-up menu. Then a red cross will be
removed from the file’s icon, and the file will be included in build.

2.3 File Extensions and File Groups

The HEW can identify files by their extension. The system defines certain extensions depending upon the tools, which are
being used. For example, if you are using a compiler then the .c extension will be in the “C source file” group and be used
as input to the compiler phase (figure 2.1, Typical Build Process). Additionally, the HEW allows you to define your own
extensions. For example, if the project you are developing uses assembler source files the default extension may be .src. If
you would like to use a different extension instead of .src (e.g. .asm) then you can define a new extension and request that
the HEW treats it in the same way as a .src file.

File extensions and file groups can be viewed and modified via the “File Extensions” dialog (figure 2.7). This is invoked
by selecting [Project->File Extensions...]. This dialog displays all of the extensions and file groups, which are defined
within the current workspace.

Figure 2.7: File Extensions Dialog

20

The “File Extensions” list shown in figure 2.7 is divided into two columns. On the left ar e the file extensions themselves,
whilst on the right are the file groups . Many file extensions can belong to the same group. For example, assembler sourc e
files may have severa l extensions in a single pr oject (e.g. .src , .asm, .mar etc) as shown in figure 2.8.

.SRC .ASM .MAR .C .LIB .LPF

Assembler source files C source files Library files

Figure 2.8: File Extensions and Groups

When creating a new extension you should consider whether the extension belongs to a group, which is already defined, or
whether you need to create a new file group. If you are adding a completely new type of file then you will want to create a
new file group. This process is described below.

21

 To create a new file extension in a new file group:

1. Select [Project->File Extensions...] from the menu bar. The “File Extensions” dialog will be displayed (figure 2.7).

2. Click the “Add…” button. The “Add File Extension” dialog will be displayed (figure 2.9).

3. Enter the extension, which you want to define into the “File extension” field. It is not necessary to type the period
(.) character. The drop list contains all extensions that are undefined in the current project. Selecting one of these
extensions will add the text to the file extension field automatically.

4. Select the “Extension belongs to a new group” option and enter a description, which defines this new file group.

5. At this stage it is possible to change the associated application. There are four available choices in the “Open”
with drop list. These are listed below:

• Editor

• None

• Other

• Windows default

If the editor is selected, the open file function in the workspace window causes the file to be opened in the HEW
editor. If none is selected then the open operation is disabled when the open file function is attempted. Selecting
“Other” allows you to configure an another tool for the open file operation. See “To associate an application with
a file group” for more details. If the “Windows default” option is selected then the open file function in the
workspace window passes the open file to the Windows operating system. This then selects the default behavior
for this file extension as defined in Windows Explorer.

6. Click “OK” to add the extension to the “File Extensions” list.

Figure 2.9: Add File Extension Dialog (New Group)

22

If you wan t to create a n ew extension because your project u ses a d ifferen t extension from those accepted by the HEW.
For example, a phase might by default u se the extension .asm but th e HEW only recognizes .src. Then you need to create
a new extension and a dd it to an existing file group. This proc ess is described below.

23

 To create a new file extension in an existing file group:

1. Select [Project->File Extensions...] from the menu bar. The “File Extensions” dialog will be displayed (figure 2.7).

2. Click the “Add…” button. The “Add File Extension” dialog will be displayed (figure 2.10).

3. Enter the extension, which you want to define into the “File extension” field. It is not necessary to type the period
(.) character. The drop list contains all extensions that are undefined in the current project. Selecting one of these
extensions will add the text to the file extension field automatically.

4. Select the “Extension belongs to an existing group” option and select which group you would like to add this new
extension.

5. Click “OK” to add the extension to the “File Extensions” list.

Figure 2.10: Add File Extension Dialog (Existing Group)

In addition to opening a file with the editor, the “File Extensions” dialog allows you to associate any application with any
file group so that when you double click on a file in the “Projects” tab of the “Workspace” then the appropriate application
is launched with the file. Figure 2.11 shows the association between a word processor and the extension .DOC.

24

Figure 2.11: File Groups and Applications

 To associate an application with a file group:

1. Select the file group to be associated from the “File Extensions” dialog (figure 2.11).

2. Click the “Open with…” button. The “Modify File Extension” dialog will be displayed (figure 2.12).

Figure 2.12: Modify File Extension Dialog

3. Select “None” to remove any association, select “Editor” to open this type of file in the internal/external editor or
select “Other” if you want to open this type of file with a specific application. If you select “Other” then you can
select from any previously defined application from the drop-down list or specify a new application.

4. Click “Add…” to define a new application. The “Add Application” dialog will be displayed (figure 2.13).

25

Figure 2.13: Add Application Dialog

5. Enter the name of the tool into the “Name” field. Enter the full path to the tool in the “Command” field (do not
include any parameters). Enter the parameters that are required to open a file in the “Parameters” field. Be sure to
use the $(FULLFILE) placeholder to specify the location file (see appendix C, “Placeholders”, for more
information on placeholders and their uses). Enter the initial directory, in which you would like the application to
run, into the “Initial directory” field. Click “OK” to create the application.

6. Click “Modify…” to modify an application. The “Modify Application” dialog will be displayed. This dialog is the
same as the “Add Application” dialog described above except that the “Name” field is read only. Modify the
settings as desired and then click “OK”.

7. Click “OK” to set the application for the selected file group.

26

2.4 Specifying How to Build a File

Once you have added the necessary files to the project th e next step is to instruct th e HEW on how to build each file. To
do th is, you will need to select a m enu option from the “Options” menu. The contents of this menu d epend u pon which
tools you ar e using. For example, if you ar e using a compiler , assembler and linker then there will be three menu options,
each one referri ng to one of the tools.

 To set options for a build phase:

1. Select the options menu and find the phase whose options you would like to modify. Select this option.

2. A dialog will be invoked which allows you to specify the options.

3. After making your selections, click “OK” to set them.

To obtain further information, use the context sensitive help button or select the area in which you need assistance and
then press F1.

27

2.5 Build Configurations

The HEW allows you to store all of your build options into a build configuration (figure 2.14). This means that you can
“freeze” all of the options and give them a name. Later on, you can select that configuration and all of the options for all of
the build phases will be restored. These build configurations also allow the user to specify debugger settings for a build
configuration. This means that each configuration can be targeted at a different end platform. (See Simulator/Debugger
Part in this manual, for further information).

Figure 2.14 shows three build configurations; “Default”, “MyDebug” and “MyOptimized”. In the first configuration,
“Default”, each of the phases (compile and assemble) are set to their standard settings. In the second configuration,
“MyDebug”, each of the files are being built with debug information switched on. In the third configuration,
“MyOptimized”, each of the files are being built with optimization on full and without any debug information. The
developer of this project can select any of those configurations and build them without having to return to the options
dialogs to set them again.

C
Source Files

Assembler
Source Files

C:\MyProject\Default

"Default"
Configuration

C:\MyProject\MyDebug

"MyDebug"
Configuration

C:\MyProject\MyOptimized

"MyOptimized"
Configuration

Debug: ON
Optimize: OFF
List File: YES

Debug: ON
Optimize: OFF
List File: NO

Debug: OFF
Optimize: ON
List File: NO

Debug: OFF
Optimize: ON
List File: NO

Debug: OFF
Optimize: OFF
List File: YES

Debug: ON
Optimize: OFF
List File: NO

Figure 2.14: Configurations and File Options

28

2.5.1 Selecting a Configuration

The current configuration can be set in two ways:

Either:

1. Select it from the drop down list box (figure 2.15) in the toolbar.

Figure 2.15: Toolbar Selection

or:

1. Select [Options->Build Configurations…]. This will invoke the “Build Configurations” Dialog (figure 2.16).

Figure 2.16: Build Configurations Dialog

2. Select the configuration that you want to use from the “Current configuration” drop down list.

3. Click “OK” to set the configuration.

2.5.2 Adding and Deleting Configurations

You can add a new configuration by copying settings from another configuration or delete a configuration. These three
tasks are described below.

 To add a new configuration:

1. Select [Options->Build Configurations…] to display the “Build Configurations” dialog (figure 2.16).

2. Click the “Add…” button. The “Add Configuration” dialog will be invoked (figure 2.17).

29

Figure 2.17: Add Configuration Dialog

3. Enter the new configuration name into the “Configuration name” field. As you enter the new configuration name,
the directory underneath changes to reflect the configuration directory that will be used. Select one of existing
configurations, from which you want to copy a configuration, out of the drop-down list of the “Based on
configuration” field. Click “OK” on both dialogs to create the new configuration.

 To remove a configuration:

1. Select [Options->Build Configurations…] to display the “Build Configurations” dialog (figure 2.16).

2. Select the configuration that you want to remove and then click the “Remove” button.

3. Click “OK” to close the “Build Configurations” dialog.

30

2.6 Building a Project

The outline of the build process is shown in figure 2.1.

2.6.1 Building a Project

The build option only compiles or assembles those files that have changed since the last build. Additionally, it will rebuild
source files if they depend upon a file that has changed since the last build. For instance, if the file “test.c” #include’s the
file “header.h” and the latter has changed since the last build, the file “test.c” will be recompiled.

 To perform a build:

Select [Build->Build] or click the build toolbar button () or press F7 or click the right mouse button on a project
icon in the “Projects” tab of the “Workspace” window and select [Build] from the pop-up menu.

The build all option compiles and assembles all source files, irrespective of whether they have been modified or not, and
links all of the new object files produced.

 To perform a build all:

Select [Build->Build All], or click the build all toolbar button (), or click the right mouse button on a project icon in
the “Projects” tab of the “Workspace” window and select [Build All] from the pop-up menu.

Both the build and the build all will terminate if any of the project files produce errors.

2.6.2 Building Individual Files

The Hitachi Embedded Workshop lets you build project files individually.

 To build an individual file:

1. Select the file which you want to build from the project window.

2. Select [Build->Build File], click the build file toolbar button () or press CTRL+F7 or click the right mouse
button on a file icon in the “Projects” tab of the “Workspace” window and select [Build <file>] from the pop-up
menu.

31

2.6.3 Stopping a Build

The Hitachi Embedded Workshop allows you to halt the build process.

 To stop a build:

1. Select [Build->Stop Build] or click the stop build toolbar button (). The build will be stop after the current file
has been built.

2. Wait until the message “Build Finished” appears in the “Output” window before continuing.

 To forcibly terminate a current tool

1. Select [Build->Terminate Current Tool]. The HEW will attempt to stop the tool immediately.

Note: Do NOT assume that any output from the tool you terminated is valid. It is recommended that you delete any

output files produced and ensure that the phase is executed again.

2.6.4 Building Multiple Projects

The Hitachi Embedded Workshop lets you build multiple projects and configurations at once.

 To build multiple projects:

1. Select [Build->Build Multiple]. The figure displayed in figure 2.18.

2. The build multiple gives you the choice of which projects and configurations should be built. To select which
projects and configurations need to be built select the check box next to the project – configuration combination
you want to build. For example, in figure 2.18 if you wanted to build the entire “hewtest2” project you would
check the “hewtest2-Debug” and the “hewtest2-Release” selections and leave all other check boxes unchecked.

3. When you are happy with your chosen selection click the build button and the HEW will then build the projects
and configurations you have chosen.

4. If you want to build all the projects which you choose, you click the build all button.

5. Results from the build are displayed in the build window in the same way as the normal build process.

Figure 2.18: Build Multiple Dialog

2.6.5 The Output Window

When a tool executes (i.e. compiler, assembler, linker etc.) its output is displayed in the “Output” window. If any of the
tools produce any errors or warnings then they are displayed along with the source file name and the line number at which
the error is located. To quickly locate a specific bug, double click on a given error/warning to invoke the current editor.

32

2.6.6 Controlling the Content of the Output Window

It is often useful to display low-level information (such as the command line options that are being applied to a file) during
a build. The HEW allows you to specify whether or not you want such options displayed in the “Output” window during a
build, build all or build file operation via the “Tools Options” dialog.

 To view or hide extra information during a build:

1. Select [Tools->Options...]. The “Options” dialog will be displayed.

2. Select the “Build” tab (figure 2.19).

3. Set the three check boxes in the “Show” group as follows. “Command line” controls whether the command line is
shown as each tool is executed. “Environment” controls whether the environment is shown as each tool is executed.
“Initial directory” controls whether the current directory is shown as each tool is executed.

Figure 2.19: Options Dialog Build Tab

2.7 File Dependencies

A typical project will contain dependencies between files, for example, one C file may “#include” one or more header files.
In complex projects, source files will include (or depend upon) others and this can quickly become difficult to manage.
However, the HEW provides a dependency scanning mechanism whereby all files in a project are checked for
dependencies. Once complete, the project window will display an up-to-date list with all the project file dependencies.

 To update a project’s dependencies:

Select [Build->Update All Dependencies] or click the right mouse button on a project icon in the “Projects” tab of the
“Workspace” window and select [Update All Dependencies] from the pop-up menu.

Initially, the dependencies for all files are contained within the “Dependencies” folder (figure 2.20.i).

33

2.8 Configuring the Workspace Window

If you click the right mouse button anywhere inside the “Projects” tab of the “Workspace” window, a pop-up menu will be
invoked. Select the “Configure View…” menu option to modify the way in which information is displayed. The following
four sections detail the effect of each option on the “Configure View” dialog.

2.8.1 Show Dependencies under Each File

If you select “Show dependencies under each file”, the dependent files are shown under the including source file as a flat
structure, i.e. the files themselves become folders (figure 2.20.ii). If this option is not selected then a separate folder
contains all dependencies (figure 2.20.i).

Figure 2.20: Dependencies under Each File

34

2.8.2 Show Standard Library Includes

By default, any dependent files found in standard include paths will not be shown (figure 2.21.i). For example, in C code,
if you write an include statement such as “#include <stdio.h>” then stdio.h will not be listed as a dependent file. To view
such system include files, select the “Show standard library includes” option (figure 2.21.ii).

Figure 2.21: Standard Library Includes

35

2.8.3 Show File Paths

If “Show file paths” is selected, all of the files in the project window are shown with their full path, i.e. from a drive letter
(figure 2.22).

Figure 2.22: File Paths Shown

2.9 Setting the Current Project

A workspace can contain more than one project but only one of the projects can be active at any time. This active project
is the one which build actions and debug operations can be performed on. It is possible to change the builder or debugger
options for the project. An active project is displayed in bold.

 To set a project as the current project:

1. Select the project from the “Projects” tab of the “Workspace” window.

2. Click the right mouse button to display the pop-up menu and select the [Set as Current Project] option.

or:

1. Select the project, which you want to make active from the [Project->Set Current Project] sub-menu.

2.10 Inserting a Project into a Workspace

When a workspace is created, it contains only one project but, after it is created, you can insert new or existing projects
into a workspace.

 To insert a new project into a workspace:

1. Select [Project->Insert Project…]. The “Insert Project” dialog will be displayed (figure 2.23).

2. Set the “New Project” option.

3. Click OK. The “Insert New Project” dialog will be invoked.

4. Enter the name of the new workspace into the “Name” field. This can be up to 32 characters in length and contain
letters, numbers and the underscore character. As you enter the project name the HEW will add a subdirectory for
you automatically. This can be deleted if desired.

5. Click the “Browse…” button to graphically select the directory in which you would like to create the project.
Alternatively, you can type the directory into the “Directory” field manually.

6. The “Project type” list displays all of the available project types (e.g. application, library etc.). Select the type of
project that you want to create from this list.

7. Click “OK” to create the project and insert it into the workspace.

36

Note: When a new project is being inserted, the CPU family and tool chain cannot be specified as these properties are
already defined by the workspace (i.e. all projects within the same workspace target the same CPU family and
toolchain).

Figure 2.23: Insert Project Dialog

37

 To insert an existing project into a workspace:

1. Select [Project->Insert Project…]. The “Insert Project” dialog will be displayed.

2. Set the “Existing Project” option.

3. Enter the full path of the project database file (.HWP file) into the edit field or click “Browse…” to search for it
graphically.

4. Click “OK” to insert the existing project into the workspace.

Note: When an existing project is being inserted into a workspace, the CPU family and tool chain upon which that

project is based must match those of the current workspace. If they do not then the project cannot be inserted into
the workspace.

2.11 Specifying Dependencies between Projects

The projects within a workspace can be dependent upon one another so that when one project is built, all its dependent
projects are built first. This is useful if another project uses one of the others in the workspace. For example, imagine that
a workspace contains two projects. The first project is a library that is included by an application project. In this case the
library must have been built and up to date before the second application can build correctly. To achieve this situation we
can specify the library as a dependent (i.e. child) project of the application project. This would then allow the library to be
built first if it is out-of-date.

When a dependent project is built the HEW attempts to match the configuration in the dependent project with that of the
current project. This means that if the current configuration is “Debug” then the HEW will attempt to build the “Debug”
configuration in the dependent project. If this matched configuration does not exist then the HEW will use the
configuration that was last used in the dependent project.

 To make projects depend upon another:

1. Select [Project->Dependent Projects]. The “Dependent Projects” dialog will be displayed.(figure 2.24)

2. Select the project to which you would like to add dependents to. When you do this, the “Dependent projects” list
will display all of the projects in the workspace (excluding the selected project).

3. The “Dependent projects” list has a check box for each project listed. Set the associated check boxes to make those
projects depend upon the selected project.

4. Click “OK” to confirm the new project dependencies.

Figure 2.24: Dependent Projects dialog

38

2.12 Removing a Project from a Workspace

 To remove a project from a workspace:

1. Select the project from the “Projects” tab of the “Workspace” window and click the right mouse button to invoke a
pop-up menu.

2. Select the [Remove Project] option.

or:

1. Select the project from the “Projects” tab of the “Workspace” window.

2. Press the DEL key.

Note: You cannot remove the current project from the workspace.

39

2.13 Relative projects paths in the workspace

In the Hitachi Embedded Workshop when you add a project to the workspace you can choose to add the project to the
workspace using a relative path. This allows you to position a project above the workspace directory and it will still be
relocated correctly if you relocate the HEW workspace. The project is always relative to the workspace so if the project is
one directory above the workspace before it is moved the HEW will try to find the project in the same relative location
after the relocation procedure. This is especially useful if you are using a project shared between more than one workspace.

In older versions of the HEW this project would not have been relocated and would have still tried to access the original
project path. The older version of the HEW could only relocate the projects, which were in a subdirectory of the
workspace directory. This is still the standard behavior for the Hitachi Embedded Workshop.

 To change a projects relative path flag:

1. Select the project in the workspace window.

2. Right click and then select properties.

3. Click the “Project relative file path” checkbox to switch on or off the relative file path feature. (figure 2.25)

4. Click “OK”.

Figure 2.25: Properties Dialog

40

41

3. Advanced Build Features

This chapter explains the more advanced build concepts.

3.1 The Build Process Revisit ed

Chapter 2, “Build Ba sics” began by describing the build process in terms of a compiler, an assembler and a linker (figure
2.1). This will be the case for most installations of the Hitachi Embedded Workshop. However, if you want to begin
changing the build process (e.g. adding and removing phases) then it is important to understand more about the way in
which a build functions.

3.1.1 What is a Build?

Building a project means applying a set of tools upon certain input files in order to produce the desired output. Thus, we
apply a compiler upon C/C++ source files in order to create object files, we apply an assembler upon assembler source
files in order to create object files and so forth. At each step or “phase” of the build, we apply a different tool upon a
different set of input files. Figure 3.1 presents another view of the build process.

BEGIN

END

PHASE 1

PHASE 2

PHASE 3

PHASE X

Phase 1 Output Files

Phase 2 Output Files

Phase 1 Input Files

Phase 2 Input Files

Phase 3 Output Files

Phase X Output Files

Phase 3 Input Files

Phase X Input Files

Figure 3.1: Build Process

The Hitachi Embedded Workshop provides the ability to change this build process via its “Build Phases” dialog, which
can be, accessed via the [Options->Build Phases…] (figure 3.2). On the left-hand side are the phases that are defined in

42

the current project (Figure 3.2 shows a standard set of build phases). The remainder of this chapter details the various
functions that the “Build Phases” dialog provides.

Figure 3.2: Build Phases Dialog

43

3.2 Creating a Custom Build Phase

If you want to execute another tool before, during or after a standard build process then this can be achieved by creating
your own (i.e. custom) build phase.

Select [Options->Build Phases…] to invoke the “Build Phases” dialog (figure 3.2) and then click the “Add…” button.
This will invoke the new build phase wizard dialog (figure 3.3a).

The first step (as shown in figure 3.3a) asks whether you want to create an entirely new phase or whether you want to add
a system phase. A system phase is a “ready made” phase which is already defined within the toolchain you are using (e.g.
compiler, assembler, linker, librarian, etc.) or a utility phase (e.g. file copy, complexity analyzer etc.).

The “Add an existing system phase” button is inactive if no more system phases are available. Select the “Create a new
custom phase” button to create your own build phase.

Figure 3.3a: New Build Phase Dialog (Step 1)

44

The second step (figure 3.3b) asks what type of phase you would like to create. There are two choices: multiple or single.
When a multiple phase is executed, the command is applied to each file in the project of a certain file group. For example,
if you set the input file group to be C source files then the command will be executed once for each C source file in the
project. A single phase is executed once at most during a build.

Figure 3.3b: New Build Phase Dialog (Step 2)

The input file group list contains the current file groups defined for the project. It is possible to define multiple input file
groups by selecting the “Multiple Groups…” entry in the input file group list. Selecting this list entry displays the dialog
in figure 3.3c.

Figure 3.3c: Modify multiple input file groups

Once this choice has been made the input file group selection is displayed as “Multiple Groups…” This dialog allows the
user to choose multiple input file groups for the custom phase being added to the project. To select a file group check the
box next to the file groups name. One or more file groups can be selected in this dialog.

45

The third step (figure 3.3d) requests the fundamental information about the new build phase. Enter the name of the phase
into the “Phase name” field. Enter the location of the program file into the “Command” field (do not insert any command
line options as these options are specified via the [Options] menu of the HEW menu bar). Specify the default options for
the phase (i.e. what options you would like new files to take when added to the project) into the “Default options” field. If
you have a preferred directory in which you would like this program to run from (i.e. where you want the current working
directory to be set to before the tool is executed) then enter it into the “Initial directory” field.

Figure 3.3d: New Build Phase Dialog (Step 3)

46

The fourth and final step (figure 3.3e) allows you to specify any environment variables, which the phase requires.

Figure 3.3e: New Build Phase Dialog (Step 4)

To add a new environment variable click the “Add…” button (the dialog shown in figure 3.4 will be invoked). Enter the
variable name into the “Variable” field and the variable’s value into the “Value” field and then click “OK” to add the new
variable to the list of the fourth step. To modify an environment variables select the variable in the list and then click the
“Modify…” button. Make the required changes to the “Variable” and “Value” fields and then click “OK” to add the
modified variable to the list. To remove environment variables select the variable that you want to remove from the list
and then click the “Remove” button.

Figure 3.4: Environment Variable Dialog

If the tool you are adding can display its output as the tool is running then use the ‘Read Output On Fly’ option. This will
display the tool output as each line of output happens. If this option is set to off then the HEW will store all output, which
is being displayed by the tool, and display it in the output window when the tool has finished its operation. This can be a
problem when the tool is running an operation that might take many minutes, as it is difficult to see the progress of the
current execution.

Note: Using ‘Read Output On Fly’ can cause problems when using certain tools on certain operating systems. If you are
having problems with tools locking up or freezing in HEW then uncheck the ‘Read Output On Fly’ option.

Click the “Finish” button to create the new phase. By default the new phase is added to the bottom of the “Build Phase
Order” list in the “Build Order” tab of the “Build Phases” dialog (Figure 3.2).

47

3.3 Ordering Build Phases

In a standard build (shown in figure 3.5), you could add a phase at four different positions: before the compiler, before the
assembler, before the linker or after the linker. You may place your own custom phases or move system phases to any
position in the build order. It is important to remember that if the output of your custom phase can be input into another
phase then the phase order must be correct if the build is to behave as intended.

BEGIN

END

COMPILE

ASSEMBLE

LINK

1

2

3

4

Figure 3.5: Typical Build Process

The build phase dialog provides facilities for ordering build phases via the “Build Phases” dialog. It has two tabs, which
are concerned with the ordering of phases: “Build Order” and “Build File Order”.

48

3.3.1 Build Phas e Order

The “Build Order” tab (figure 3.6) displays the current order in which phases will be executed when the build () or
build all () operation is selected. The check box to the left of each phase indicates whether or not it is currently enabled.
By clicking this box, the phase can be toggled on or off.

Figure 3.6: Build Phases Dialog Build Order Tab

In addition the following operations can be performed:

 To remove a phase:

1. Select the phase that you would like to remove.

2. Click the “Remove” button.

 To view the properties of a system phase:

1. Select the system phase that you would like to examine.

2. Click the “Modify…” button.

 To move a phase:

1. Select the phase that you would like to move.

2. Click the “Move Up” or “Move Down” button.

 To import a phase:

1. Click the import button. A dialog is displayed which allows the user to browse to an existing project to import a
custom phase from.

2. Choose the location of the project you wish to import a custom phase from. Once selected a dialog is displayed
which lists the custom phases in the imported project.

3. Selecting a phase name and then clicking properties displays the custom phase details. This allows you to decide
whether the phase does the functionality you require.

4. Once you have decided which phase to import highlight it in the list and then click OK. The phase will then be
added to the build phases dialog at the bottom of the build order.

49

 To modify a custom phase:

1. Select the custom phase that you would like to modify.

2. Click the “Modify…” button. The modify phase dialog will be invoked with the “Command” tab selected (figure
3.7).

3. Change the contents of the fields as appropriate.

4. Set the “Don’t check for input file(s) existence before executing” check box if you don’t want the HEW to abort
the execution of the phase if any of the input files don’t exist.

Figure 3.7: Modify Phase Dialog Command Tab

5. Select the “Environment” tab (figure 3.8) to edit the environment settings for the phase.

6. Use the “Add…”, “Modify…” and “Remove” buttons to add, modify and remove environment variables. The
operation is the same as discussed in the previous section.

7. Click “OK” when all modifications have been made.

Figure 3.8: Modify Phase Dialog Environment Tab

50

3.3.2 Build File Phase O rder

If you were to select a C source file from the “Workspace” window and then activate [Build->Build File] (or press)
you would expect the file to be compiled. Likewise, if you were to select an assembly source file from the workspace
window and then activate [Build->Build File] you would expect the file to be assembled. The connection between file
group and which phase(s) to execute is managed by the “Build File Order” tab of the “Build Phases” dialog (figure 3.9).

Figure 3.9: Build Phases Dialog Build File Order Tab

The list displays all of the current phases that will be executed when the build file operation is selected upon the file group
shown in the “File group” list box. In figure 3.9 the “C source file” file group is selected and the “Compiler” and
“MyPhase” phases are associated with it.

Entries in the “Phase order” list, of the “Build File Order” tab, are added automatically as new entries are added to the
“Build Order” tab. For example, if you were to add a phase which takes C source files as input then this phase will be
automatically added to the list of phases to execute when a build file operation is applied to a C source file. If you don’t
want a certain phase to execute when [Build->Build File] is selected then clear the check box to the left of the phase name
in the “Phase order” list.

3.4 Setting Custom Build Phase Options

Once you have defined a custom phase, you will want to specify the command line options that should be used when it is
executed. Each defined phase has a menu option on the [Options] menu. To specify options for that phase select it. The
dialog that will be invoked depends upon whether the custom phase selected was a multiple or single phase (according to
the selection of phase type in figure 3.3b).

51

Figure 3.10: Custom Options Dialog

The dialog in figure 3.10 is a custom phase options dialog. The implementation of which is slightly different depending
on whether you are using a multiple or single shot phase. On the left-hand side is the project and file list. It is possible to
select multiple projects and files in the same way as Windows explorer to modify the options for more than one selection.
On the right-hand side are the 3 options tabs. This is where you set the options that you want to apply to the selected
file(s). You can also choose which configuration information is being viewed from the configuration list on the upper left
of the dialog box. Each configuration is listed along with a special entry named “Multiple configurations…”. If you
select multiple configurations then a dialog is displayed which allows you to select more than one configuration. This
method is used throughout HEW for modifying multiple configurations at once.

3.4.1 Options Tab

The “Options” tab (figure 3.11) allows you to define the command line options that will be passed to the phase. The
“Command” field displays the command, which was entered when you defined the phase (figure 3.3d). Enter into the
“Options” field the command line arguments that you would like to pass to the command. If you want to insert a
placeholder, select the relevant placeholder from the “Placeholder” drop-down list box and then click the “Insert” button.
For a detailed description of placeholders see appendix C, “Placeholders”.

52

Figure 3.11: Custom Options Options Tab

3.4.2 Output Files Tab

The “Output Files” tab (figure 3.12) is where you can specify the output file or files that will be produced by the phase.
Before each file is passed into this phase, the HEW checks that the output files are of a less recent date than the input file.
If so, the phase will be executed for that file (i.e. input files have been modified since the output file or files were last
produced). If the files are up to date then the phase will not be executed.

Note: If no output files are specified, the phase will execute regardless.

53

Figure 3.12: Custom Options Output Files Tab

 To add an output file:

1. Click “Add…”. The “Add Output File” dialog will be invoked (figure 3.13).

2. Enter the file path or browse to it using the “Browse…” button.

3. Click “OK” to add this output file to the list.

Figure 3.13: Add Output File Dialog

 To modify an output file:

1. Select the output file that you would like to modify.

2. Click “Modify…”. The “Modify Output File” dialog, which is the same as figure 3.13 except the title, will be
invoked.

3. Modify the fields as required and then click the “OK” button to add the modified entry back to the list.

 To remove an output file:

1. Select the output file that you would like to remove.

2. Click the “Remove” button.

54

3.4.3 Dependent Files Ta b

The “Dependent Files” tab (figure 3.14) is where you can specify the dependent files that are needed by the phase. Before
each file is passed into this phase, the HEW checks that the dependent files are of a more recent date than the input file. If
so, the phase will be executed for that file (i.e. dependent files have been modified since the input file or files were last
modified). If not, the phase is not executed for the files.

Figure 3.14: Dependent Files Tab in Custom Options

55

 To add a dependent file:

1. Click “Add…”. The “Add Dependent File” dialog will be invoked (figure 3.15).

2. Enter the file path or browse to it using the “Browse…” button.

3. Click “OK” to add this output file to the list.

Figure 3.15: Add Dependent File Dialog

 To modify a dependent file:

1. Select the dependent file that you would like to modify.

2. Click “Modify…”. The “Modify Dependent File” dialog, which is the same as figure 3.15 except the title, will be
invoked.

3. Modify the fields as required and then click the “OK” button to add the modified entry back to the list.

 To remove a dependent file:

1. Select the dependent file that you would like to remove.

2. Click the “Remove” button.

56

3.5 File Mappings

By default, the files input to a phase are only taken from the project, i.e. all project files of the type specified in the “Select
input file group” drop-down list on the “New Build Phase” dialog (figure 3.3b). If you would like a phase to take files
output from a previous phase (i.e. intermediate files) then you must define this in the “File Mappings” tab of the “Build
Phases” dialog (figure 3.16).

Figure 3.16: Build Phases Dialog File Mappings Tab

57

A file mapping states that you would like the HEW to pass output files of a certain type produced by one phase (referred
to as the source phase) to another phase (referred to as the destination phase). Such intermediate files are passed in
addition to the project files.

 To add a file mapping:

1. Click “Add…”. The “Define File Mapping” dialog will be invoked (figure 3.17).

2. Select the file group, which you want to pass between the phases from the “File group” drop-down list box.

3. Select the source phase (i.e. which phase generates the files) from the “Source phase” drop-down list box.

4. Select the destination phase (i.e. which phase takes these files) from the “Destination phase” drop-down list box.

5. Click “OK” to create the new mapping.

Figure 3.17: Define File Mapping Dialog

 To modify a file mapping:

1. Select the mapping to be modified.

2. Click “Modify…” button. The “Define File Mapping” dialog will be invoked (figure 3.17).

3. Modify the options as necessary.

4. Click “OK” to commit the changes.

58

3.6 Controlling the Bu ild

By default, the Hitachi Embedded Workshop will execute all of the phases in a build and only stop if a fatal error is
encountered. You can change this behavior by setting the controls on the “Build” tab of the “Options” dialog (figure 3.18).

Figure 3.18: Options Dialog Build Tab

Select [Tools->Options…] to invoke the dialog. If you want to stop the build when a certain number of errors are
exceeded then set the “Stop build if the no. of errors exceed” check box and then specify the error count limit in the edit
field to the right. If you want to stop the build when a certain number of warnings are exceeded then set the “Stop build if
the no. of warnings exceed” check box and then specify the warning count limit in the edit field to the right.

Note: Irrespective of what these controls are set to, the build will always halt if a fatal error is encountered.

In addition to specifying error and warning count limits, the “Build” tab also allows you to request that the command line,
environment and initial directory of each execution should be displayed. Check the appropriate check boxes as necessary.

3.7 Logging Build Output

If you would like to write the results of each build to file then invoke the “Customize” dialog by selecting [Tools ->
Customize…] and select the “Log” tab (figure 3.19). Set the “Generate log file” check box and then enter the full path of
the log file into the “Path” field or browse to it graphically by clicking the “Browse…” button.

59

Figure 3.19: Tools Customize Dialog Log Tab

60

3.8 Changing Toolchain Version

If two or more versions of the same toolchain are registered in the HEW, you can choose a version of the toolchain on the
“Change Toolchain Version” dialog shown in Figure . To invoke the dialog, select [Tools->Change Toolchain
Version…]. Choose one of the versions from the “Available versions” drop-down list and click the “OK” button to
enforce your choice.

Figure 3.20: Change Toolchain Version Dialog

To show information of toolchain components select a tool from the “Toolchain build phases” list on the “Change
Toolchain Version” dialog and click the “Information” button. Then a tool information dialog (figure 3.21) will show you
the information of the tool. Click the “Close” button to close the dialog.

Figure 3.21: Toolchain Information Dialog

61

3.9 Using an External Debugger

The Hitachi Embedded Workshop can launch an external debugger tool. If you want to use another debugger then you
must add it to the Tools menu (as described in chapter 6, “Custom iz ing the En vironm ent”, in this manual).

The “Debugger” tab of the “Customize” dialog (figure 3.22) is where the Hitachi Debugging Interface related information
is configured. You may wish to use an older version of the debugger if certain targets are not currently supported in the
new environment. Invoke it by selecting [Tools->Customize…] and then selecting the “Debugger” tab.

Figure 3.22: Customize Dialog Debugger Tab

When an external debugger is used, check ‘Use external debugger’ and then set the following items. Firstly, the location of
the HDI executable must be specified. This must be version 4.0 or greater otherwise the behavior is not guaranteed. The
second item of data is the session file. This tells HDI which session to load when it is launched. Finally, the location of the
download module is required. This allows the HEW to automatically switch to HDI when the download module changes
after a build.

62

Click the “Launch External Debugger” toolbar button to invoke HDI with the specified session file:

After a build, if the download module has been updated, the HEW will switch back to HDI to enable immediate debugging.
Whilst using HDI, double clicking in any source window will switch back to the HEW with the source file open at the line
which was double clicked.

3.10 Generating a Makefile

The HEW allows you to generate a makefile, which can be used to build parts of your workspace without HEW. This is
particularly useful of you want to send a project to a user who does not have the HEW or if you want to version control an
entire build, including the make components.

 To generate a makefile:

1. Ensure that the project, which you want to generate a makefile for, is the current project.

2. Ensure that the build configuration that you want to build the project with is the current configuration.

3. Select [Build>Generate Makefile].

4. Once this menu has been selected a dialog is displayed which asks the user what parts of the workspace need to be
added to the make file. (See figure 3.23.)

5. Select the radio button which is relevant for your make file and then click OK.

Figure 3.23: Generate makefile Dialog

The HEW will create a subdirectory “make” within the current workspace directory and then generate the makefile into it.
It is named after the selection, with a .mak extension for example the current project and configuration(e.g.
project_debug.mak). The executable HMAKE.EXE, located in the HEW installation directory, is provided for you to
execute the makefiles generated by the HEW. It is not intended to execute makefiles, which have been user modified.

 To execute a makefile:

1. Open a command window and change to the “make” directory where the makefile was generated.

2. Execute HMAKE. Its command line is HMAKE.EXE <makefile>.

Note: The degree portability of a generated makefile is entirely dependent upon how portable the project itself is. For
example, any compiler options, which include full paths to an output directory or include file directory, will mean
that, when given to another user with a different installation, the build will probably fail. In general use
placeholders wherever possible – using a full, specific path should be avoided when possible.

63

4. Using the Editor

This chapter describes how to use the editor that is provided with the Hitachi Embedded Workshop.

4.1 The Editor Window

The editor window (figure 4.1) contains the file windows that are being viewed or edited. Only one window is active at
anytime. This window is called the active window (or current window) and its title bar will appear a different color from
that of the others (“dbsct.c” is the active window in figure 4.1). All text operations such as typing, pasting text and so forth
only affect the active window. To switch to another source file window (i.e. to make some other window the active
window) there are a number of methods:

� Click on it if it is visible.

� Press CTRL+TAB to cycle through the windows one after another.

� Select the window by name from the “Window” menu.

� Select its tab at the bottom of the editor window.

When a file has been edited, an asterisk (*) is appended to the window’s title bar. The asterisk remains there until the file
is saved. The asterisk is also removed if all of the edited changes are undone in the current window.

Figure 4.1: Editor Window

64

4.2 Working with Multiple Files

The file area is where you will work with the files of your project. The editor allows you to have many files open at one
time, to switch between them, to arrange them in different configurations and to edit them in whichever order you want to.
The operations that you can perform upon the windows are typical of most Windows® applications and they can be found
under the [Window] menu:

� [Window->Cascade]

Arrange all open windows so that they overlap, with the top left of each window visible.

� [Window->Tile Horizontally]

Arrange all open windows in sequence (horizontally) so that they occupy the entire editor window with no overlapping
edges.

� [Window->Tile Vertically]

Arrange all open windows in sequence (vertically) so that they occupy the entire editor window with no overlapping
edges.

� [Window->Arrange Icons]

Line up all minimized windows at the bottom of the editor window.

� [Window->Close All]

Close all open editor windows.

The files within the editor can be displayed in a “notebook” style. This means that each file has a separate tab associated
with it to aid in navigating between files.

 To show files in notebook:

1. Select [Tools->Options…]. The “Tools Options” dialog box will be displayed. Select the “Editor” tab.

2. Set the “Show files in notebook” check box as appropriate.

3. Click “OK” for the new settings to take effect.

4.2.1 The Editor Toolbars

The editor has four related toolbars: Editor, Search, Bookmarks and Templates. They provide a shortcut to the functions of
the editor, which you will use most often. The following sections describe each buttons function.

4.2.2 Editor Toolbar Buttons

 New File

The new file button creates a new source file window with a default name. When you save the file, you can specify your
own filename.

 Open File

Click this button if you want to open a file. It invokes a standard file chooser - select the file which you want to open and
then click “Open”.

 Save File

Saves the active source file.

 Save All Files

Saves all of the files in the editor.

65

 Print File

To print the contents of the current window, click this button.

 Cut

Clicking this button will remove the current text selection and place a copy of it onto the Windows® clipboard (it can be
pasted back to a file with a paste operation).

 Copy

This button allows you to copy the current text selection into the Windows® clipboard.

 Paste

The paste button copies the contents of the clipboard into the active window at the position of the insertion cursor.

 Find

Click this button if you want to find a certain text string in the current file. It invokes a find dialog box where you can
specify the search parameters.

 Find in Files

To search several files for a text string then click this button. All find results are displayed in the “Find in Files” tab of the
“Output” window. For further information, refer to the “Searching and Navigating Through Files” section later in this
chapter.

 Match Braces

The match braces button highlights text between braces of type { }, [] and (). This is particularly useful when attempting
to find out the structure of C/C++ code blocks which are opened with { and closed with }. To use it, select the open brace
to match from, or place the cursor before it, and then click this button. For further information on brace matching, refer to
the “Brace Matching” section later in this chapter.

 Insert Template

To insert a pre-defined template at the current cursor position, click this toolbar button. The “Insert Template” dialog box
will be invoked. Select a template name and then click OK. For further information on templates, refer to the “Templates”
section later in this chapter.

 Toggle Bookmark

The Hitachi Embedded Workshop editor provides standard bookmark capabilities. To set a bookmark, select the line to
mark and click this button (a green mark will then appear in the blank on the left side of the editor window). To remove a
bookmark, select the line to remove a bookmark and click this button (the mark in the blank on the left side of the editor
window will disappear). For further information on bookmarks, refer to the “Bookmarks” section later in this chapter.

66

4.2.3 Search Toolbar Buttons

 Find in Files

To search several files for a text string then click this button. All find results are displayed in the “Find in Files” tab of the
“Output” window. For further information, refer to the “Searching and Navigating Through Files” section later in this
chapter.

 Find

Click this button if you want to find a certain text string in the current file. It invokes a find dialog box where you can
specify the search parameters.

 Find Next

Finds the next occurrence of the current search string.

 Find Previous

Finds the previous occurrence of the current search string.

4.2.4 Bookmarks Toolbar Buttons

 Toggle Bookmarks

Sets a bookmark at the current line or clears a bookmark at the current line.

 Next Bookmark

Jumps to the next bookmark in the current file from the current line.

 Previous Bookmark

Jumps to the previous bookmark in the current file from the current line.

 Clear All Bookmarks

Clears all bookmarks in the current file.

4.2.5 Templates Toolbar Buttons

 Define Template

Specify template text for subsequent insertion.

 Insert Template

Insert the template selected in the drop-down list at the current cursor position.

67

4.3 Standard File Operations

4.3.1 Crea ti ng a N ew Fi l e

 To create a new editing window:

Select [File->New] or click the new file toolbar button () or press CTRL+N.

The window will be given an arbitrary name by default. You can provide a new name when you save the file.

4.3.2 Saving a File

 To save the contents of an editing window:

1. Ensure that the window, whose contents you want to save, is the active window.

2. Select [File->Save] or click the save file toolbar button () or press CTRL+S.

3. If the file has not been saved before, a file save dialog box will be displayed. Enter a filename, specify a directory
and then click OK to create the file with the name given, in the directory specified.

4. If the file has been saved before, then the file will be updated (no dialog box will be displayed).

 To save the contents of an editing window under a new name:

1. Ensure that the window, whose contents you want to save, is the active window.

2. Select [File->Save As...].

3. A file save dialog box will be displayed. Enter a filename, specify a directory and then click OK to create the file
with the name given, in the directory specified.

68

4.3.3 Savi ng al l Fi l es

 To save the contents of every open editor window:

1. Select [File->Save All] or click the save all files toolbar button ().

2. If any of the files has not been saved before, a file save dialog box will be displayed. Enter a filename, specify a
directory and then click OK to create the file with the name given, in the directory specified.

3. If any of the files have been saved before, then the file will be updated (no dialog box will be displayed).

4.3.4 Opening a File

 To open a file:

1. Select [File->Open...] or click the open file toolbar button () or press CTRL+O.

2. An open file dialog box will be displayed. Use the directory browser (on the right) to navigate to the directory in
which the file you want to open is located. Use the “Files of type” combo box to select the type of file you want to
open (or set it to “All Files (*.*)” to see every file in a directory).

3. Once you have located the file select it and click “Open”.

The Hitachi Embedded Workshop keeps track of the last five files that you have opened and adds them to the file menu
under the “Recent Files” sub-menu. This gives you a shortcut to opening files which you have used recently.

 To open a recently used file:

Select the [File->Recent Files] menu option and from this sub-menu select the desired file.

You can also open a file via the “Projects” tab of the “Workspace” window. Either double click the file you want to open
or select it, click the right mouse button (to invoke a pop-up menu) and then choose the [Open <file>] menu option (where
<file> is the name of the file selected).

69

4.3.5 Cl os ing Fi l es

 To close individual files select one of the following methods:

 Double click on the editor window’s system menu (located at the top left of each window when not maximized).

 Click on the editor window’s system menu (located at the top left of each window when not maximized) and select
the “Close” menu option.

 Ensure that the window that you want to close is the active window and then press CTRL+F4.

 Ensure that the window that you want to close is the active window and then select
[File->Close].

 Click on the close button (located at the top right of each window when not maximized).

 To close all windows at once:

Select [Window->Close All].

70

4.4 Editing a File

The Hitachi Embedded Workshop editor supports standard editing functionality. This is available through the usual
methods (i.e. the menu, toolbar and keyboard shortcuts) and is additionally supported via a pop-up menu (or local menu)
that is local to each editor window. To invoke it, place the pointer in an open window and click the right mouse button.
Table 4.1 outlines the basic operations that are provided by the editor.

Table 4 .1 Basic Editing Operations

Operation E ffect Action

Cut Remov es highli ghted text and pla ces it on the
Windows® cl ipboar d

Cli ck the cut toolb ar but t on

Sele ct [Edit->Cut]

Sele ct [Cut] - lo cal menu

Pr ess CTRL+X

Copy Places a copy of the highlighted text into the
Windows® clipboard

Click the copy toolbar button

Select [Edit->Copy]

Select [Copy] - local menu

Press CTRL+C

Paste Copies the contents of the Windows®
clipboard into the active window at the
position of the insertion cursor

Click the paste toolbar button

Select [Edit->Paste]

Select [Paste] - local menu

Press CTRL+V

Delete Removes highlighted text (it is not copied to
the Windows® clipboard)

Select [Edit->Clear]

Select [Clear] - local menu

Press Delete

Select All Selects (i.e. highlights) the entire contents of
the active window

Select [Edit->Select All]

Select [Select All] - local menu

Undo Reverses the last editing operation Select [Edit->Undo]

Select [Undo] - local menu

Press CTRL+Z

Redo Repeats the last “undone” editing operation Select [Edit->Redo]

Select [Redo] - local menu

Press CTRL+Y

71

4.5 Searching and Navigating thr ough Files

The Hitachi Embedded Workshop editor provides find, replace and file navigation functionality. The following three
sections detail how to use these features.

4.5.1 Fi nding Text

 To search for text in the current file:

1. Ensure that the window, whose contents you want to search, is the active window.

2. Position the insertion cursor at the point from which you want to start your search.

3. Select [Edit->Find...], press CTRL+F, select [Find...] from the editor window’s local menu or click the find
toolbar button (). The “Find” dialog box will be displayed (figure 4.2).

Figure 4.2: Find Dialog

4. Enter the text that you want to search for into the “Find what” field, or select a previous search string from the
drop-down list box. If you select text before invoking the find operation, the selected text will be automatically
placed into the “Find what” field.

5. If you would like to search for character string as a whole word then check the “Match whole word only” check
box. When this option is not selected, the search will be for any string that is matched by the search string.

6. If you would like your search to be case sensitive (i.e. to distinguish between upper and lower case letters) then
check the “Match case” check box.

7. If your search string uses regular expressions then check the “Regular expressions” check box. Refer to Appendix
B, “Regular Expressions” for further information.

8. The “Direction” radio buttons allow you to select the direction of the search. Selecting “Down” means that the
search will be performed from the insertion cursor towards the bottom of the file. Selecting “Up” means that the
search will be performed from the insertion cursor towards the top of the file.

9. Click the “Find Next” button to begin the search. Click “Cancel” to stop the find action.

The Hitachi Embedded Workshop editor also allows you to search for a string across many files.

72

4.5.2 Finding Text in Multiple Files

 To search for text in many files:

1. Select [Edit->Find in Files...], select [Find in Files...] from the editor window’s local menu or click the find in
files toolbar button (). The “Find in Files” dialog box will be displayed (figure 4.3).

Figure 4.3: Find in Files Dialog

2. Enter the text that you want to search for into the “Find” field, or select a previous search string from the drop-
down list box. If you select text before invoking the find operation, the selected text will be automatically placed
into the “Find” field.

3. Enter the file extensions of the files you would like to search into the “In files/types” field. If several extensions are
specified be sure to separate them with a comma (e.g. *.c,*.h).

4. Enter the directory in which you would like to search files into the “Directory” field. Alternatively you may browse
to the desired directory graphically if you click the “Browse…” button.

5. If you would like to search the directory specified and all directories below it then check the “Search sub
directories” check box. If you just want to search the single directory specified in the “Directory” field then ensure
that this check box is not checked.

6. If you would like to search for character string as a whole word then check the “Match case” check box. When this
option is not selected, the search will be for any string that is matched by the search string.

7. If you would like your search to be case sensitive (i.e. to distinguish between upper and lower case letters) then
check the “Match case” check box.

8. Click “Find” to begin the search. Any matches found will be displayed in the “Find in Files” tab of the “Output”
window. To jump to an instance of the string, double click on the desired entry in the “Output” window.

4.5.3 Replacing Text

Replacing text is similar to finding text, as discussed in the previous section. The difference is that when the text is found
you have the option to replace it with other text.

 To replace text in a file:

1. Ensure that the window, whose contents you want to replace, is the active window.

2. Position the insertion cursor at the point from which you want to start your search.

3. Select [Edit->Replace...], press CTRL+H or select [Replace...] from the editor window’s local menu. A replace
dialog box will be displayed (figure 4.4).

4. Enter the text that you want to search for into the “Find what” field, or select a previous search string from the
drop-down list box. If you select text before invoking the replace operation, the selected text will be automatically
placed into the “Find what” field.

73

5. Enter the text that you want to replace the search string with into the “Replace with” field, or select a previous
replace string from the drop-down list box.

Figure 4.4: Replace Dialog

6. If you would like to search for character string as a whole word then check the “Match whole word only” check
box. When this option is not selected, the search will be for any string that is matched by the search string.

7. If you would like your search to be case sensitive (i.e. to distinguish between upper and lower case letters) then
check the “Match case” check box.

8. If your search string uses regular expressions then check the “Regular expressions” check box. Refer to appendix B,
“Regular Expressions” for further information.

9. If you clicked “Find Next”, the editor will search for the first occurrence of the search string. Click “Replace” if
you want to replace it. Click “Replace All” to replace all occurrences or click “Cancel” to stop the replace action.
If you select “Selection” in “Replace In”, selected range of the text is replaced. If you select “whole file”, the
whole files are replaced. If you select all open files, all files that are currently open in the editor have the replace
operation carried out on them.

4.5.4 Jumping to a Specified Line

 To jump to a line in a file:

1. Ensure that the window, whose contents you want to replace, is the active window.

2. Select [Edit->Goto Line...], press CTRL+G. or select [Goto Line...] from the editor window’s local menu. A goto
line dialog box will be displayed (figure 4.5).

3. Enter into the dialog box the number of the line that you want to go to, and then click “OK”.

4. The insertion cursor will be placed at the start of the line number specified.

Figure 4.5: Goto Dialog

4.6 Bookmarks

When working with many large files at a time, it can become difficult to locate specific lines or areas of interest.
Bookmarks enable you to specify lines that you want to jump back to at a subsequent time. One example of its use is in a
large C file where you may want to set a bookmark on each function definition. Once a bookmark has been set, it exists
until it is removed or the file is closed.

74

 To set a bookmark:

1. Place the insertion cursor on the line to mark.

2. Select [Edit->Bookmarks->Toggle Bookmark], press CTRL+F2, select [Bookmarks
->Toggle Bookmark] from the local menu or click the toggle bookmark toolbar button ().

3. A green mark appears in the blank on the left side of the line to indicate the presence of an active bookmark.

 To remove a bookmark:

1. Place the insertion cursor on the marked line.

2. Select [Edit->Bookmarks->Toggle Bookmark], press CTRL+F2, select [Bookmarks
->Toggle Bookmark] from the local menu or click the toggle bookmark toolbar button ().

3. The mark will be removed and the line will return to normal text.

75

 To jump to the next bookmark in a file:

1. Ensure that the insertion cursor is somewhere within the file to be searched.

2. Select [Edit->Bookmarks->Next Bookmark], press F2 or select [Bookmarks->Next Bookmark] from the local
menu or click the next bookmark toolbar button ().

 To jump to the previous bookmark in a file:

1. Ensure that the insertion cursor is somewhere within the file to be searched.

2. Select [Edit->Bookmarks->Previous Bookmark], press SHIFT+F2 or select [Bookmarks->Previous
Bookmark] from the local menu or click the previous bookmark toolbar button ().

 To remove all bookmarks in a file:

1. Ensure that the window, whose bookmarks you want to remove is the active window.

2. Select [Edit->Bookmarks->Clear All Bookmarks] or select [Bookmarks->Clear All Bookmarks] from the
local menu or click the clear all bookmarks toolbar button ().

4.7 Printing a File

 To print a file:

1. Ensure that the window, whose contents you want to print, is the active window.

2. Select [File->Print...], or click the print toolbar button () or press CTRL+P.

76

4.8 Configuring Text Layout

The following sections detail how to set-up the layout of the text within the editor windows.

4.8.1 Page Set-up

When you print a file from the Hitachi Embedded Workshop editor, the settings in the print dialog box affect the way in
which the file is printed (e.g. double or single sided). Control over how the text is formatted on the page can also be
controlled via the page set-up option. This allows you to specify the margins (top, bottom, left and right) of your printouts.
It is often necessary to set this because some printers cannot print to the edges of an A4 page. Furthermore, some users
have their own layout requirements (e.g. a large left hand margin so that code can be placed in an A4 binder).

 To set-up the page margins:

1. Select [File->Page Setup...]. The “Page Setup” dialog will be invoked (figure 4.6).

2. Enter into the edit fields the margins required (set the “inch” or “mm” radio buttons to set the measurements).

3. Click “OK” for the new settings to take effect.

Figure 4.6: Page Setup Dialog

 To set-up the page header and footers:

1. Select [File->Page Setup...]. The “Page Setup” dialog will be invoked (figure 4.6).

2. Enter into the header and footer edit fields the text required to be displayed. All normal placeholders are available
along with page numbering, text justification and date fields. These are all expanded before the page is to be
printed.

3. Click “OK” for the new settings to take effect.

77

4.8.2 Changing Tabs

 To change tab size:

1. Select [Tools->Options...]. The “Options” dialog will be displayed. Select the “Editor” tab (figure 4.7)).

2. Enter into the “Tab size” field the number of desired tabs.

3. Click “OK” for the tab setting specified to take effect.

Figure 4.7: Options Dialog Editor Tab

When a TAB key is pressed in the editor a tab character is usually stored in the file. However, sometimes it is preferable
to store spaces instead. The representation of tab characters can be controlled via the “Options” dialog.

 To use spaces as tabs:

1. Select [Tools->Options...]. The “Options” dialog will be displayed. Select the “Editor” tab (figure 4.7).

2. Set the “Use spaces as tabs” check box as appropriate.

3. Click “OK” for the tab setting specified to take effect.

4.8.3 Auto Indentation

When you press return in a standard editor the insertion cursor will move to the next line down, at the first column (i.e.
against the left hand side of a window). Auto Indentation is a feature which, when return is pressed, places the insertion
cursor on the next line (as before) but under the first non-white space character of the previous line. This enables you to
type neat C/C++ or assembler code faster as you don’t have to type leading spaces or tabs yourself.

Figure 4.8 illustrates two examples. The first (i) shows the effect of pressing return when the auto indentation feature is
disabled - the insertion cursor returns to the left-hand side of the window on the next line. When the line “int z=20” is
typed, it is not aligned with the previous two lines. The second example (ii) shows the effect of pressing return when auto

78

indentation is enabled - the insertion cursor drops underneath the “i” of the previous line. Now, when the line “int z=20” is
typed, it is automatically aligned (i.e. automatically indented).

void myfunction(void)

{

 int x=5;

 int y=10;

int z=20;

void myfunction(void)

{

 int x=5;

 int y=10;

 int z=20;

i) Auto Indentation Disabled ii) Auto Indentation Enabled

Figure 4.8: Effect of Auto Indentation

 To enable/disable Auto Indentation:

1. Select [Tools->Options...]. The “Options” dialog will be displayed. Select the “Editor” tab (figure 4.7).

2. Set the “Enable auto indentation” check box accordingly.

3. Click “OK” for the setting of the auto indentation check box to take effect.

79

4.9 Splitting a Window

The Hitachi Embedded Workshop editor allows you to split a text window into two. Figure 4.9 shows the split bar button
which is located just underneath the maximize button at the top right hand corner of any text window.

Figure 4.9: Split Bar Button

 To split a window:

Double click on the split bar button to split the window in half or click on the split bar button, keep the button pressed,
move the mouse down and then release the mouse button at the point you want to split the window.

 To adjust the position of the split bar:

Click on the split bar itself, keep the button pressed then move the bar to the new position and then release the button.

 To remove the split bar:

Double click on the split bar or move the split bar to the top or bottom of the window.

80

4.10 Configuring Text

The following sections detail how to change the appearance of the text displayed in the editor windows.

4.10.1 Changing the Editor Font

The Hitachi Embedded Workshop allows you to specify the font to be used in its internal editor. All editor windows,
regardless of the file type, use the same font.

 To change the editor font:

1. Select [Tools->Format Views...]. The “Format Views” dialog will be displayed. Select the Source icon in the tree
(figure 4.10).

2. Select the desired font from the “Font” list.

3. Select the size of the font from the “Size” list.

4. Click “OK” to confirm the new editor settings.

Figure 4.10: Format Views Dialog Font Tab

4.11 Syntax Coloring

To enhance code readability, the HEW editor can display specific strings (i.e. keywords) in different colors. For instance,
C source code comments could be shown in green and C types (e.g. int) could be shown in blue.

The coloring method used can be specified on a file group by file group basis. For example, you can define different color
schemes for a C source files, text files, map files or even your own files.

 To change existing colors:

1. Select [Tools->Format Views...]. The “Format Views” dialog will be displayed.

81

2. Select the item underneath the icon in the tree you wish to modify the colour for. This should be the file type (e.g.
C source file) and correct keyword group (e.g. identifier or pre-processor).

3. Select the “Colour” tab.

4. Modify the “Foreground” and “Background” color lists as desired. The color “System” refers to the current
window foreground and background settings in control panel.

5. Click “OK” for the new colors to take effect.

 To create new keyword groups:

1. Select [Tools->Format Views...]. The “Format Views” dialog will be displayed.

2. Select the file type in the tree to which you wish to add the new keyword group.

3. Click “Add…” underneath the tree. The “Add Category” dialog box will be displayed (figure 4.11). Enter the name
of the keyword group in the “Category Title” field, then click “OK” to create the new keyword group.

Figure 4.11: Add Category Dialog

 To create new keywords:

1. Select [Tools->Format Views...]. The “Format Views” dialog will be displayed.

2. Select the item underneath the source view icon in the tree you wish to modify the syntax highlighting for. This
should be the file type (e.g. C source file) and correct keyword group (e.g. identifier or pre-processor).

3. Select the “Keywords” tab (figure 4.12).

Figure 4.12: Format Views Dialog Keywords Tab

82

4. Click the “Add…” button to add a keyword. Then the “Add Keyword” dialog (figure 4.13) will be launched.
Specify a keyword in the “Keyword” field and click “OK” to close the dialog. To remove a keyword, select the
keyword and click the “Remove” button.

Figure 4.13: Add Keyword Dialog

When you create a new file, syntax coloring will not be active as a new file does not initially have an extension (new files
are named arbitrarily by the editor without an extension). In order to activate syntax coloring, you must save the new file
with a name, which has one of the above extensions.

 To disable/enable syntax coloring:

1. Select [Tools->Options...]. The “Options” dialog will be displayed. Select the “Editor” tab (figure 4.7).

2. Set the “Enable syntax coloring” check box as necessary and then click “OK”.

83

4.12 Templates

When developing software it is often necessary to enter the same text repeatedly, for instance, when typing a function
definition, for loop or a comment block for a function. The Hitachi Embedded Workshop editor allows you to specify a
block of text (or template) which can be inserted into the currently active editor window. Thus, once a template has been
defined, it can be automatically inserted without the need to re-enter it manually.

4.12.1 Defining a Template

 To define a template:

1. Select [Edit->Templates->Define Templates...], select [Templates->Define Templates...] from the local menu,
press CTRL+T or click on the define template toolbar button (). The dialog shown in figure 4.14 will be
displayed.

2. Click “Add”. A dialog is displayed that asks you to enter your chosen template name. This name must be unique
otherwise a duplicated template name message will be displayed and the template will not be added.

3. If you want to modify an existing template use the “Template name” drop down menu to select which template
you want to modify.

4. Enter the desired text into the “Template text” text area. You can copy text from another editor window and then
paste it into this dialog using CTRL+V.

5. Enter the following keywords to insert special information when the template is inserted:

Menu Entry Placeholder Replaced With

Time $(TIME) Current time

Date as DMY $(DATE_DMY) Current date, in dd/mm/yy form

Date as MDY $(DATE_MDY) Current date, in mm/dd/yy form

Date as YMD $(DATE_YMD) Current date, in yy/mm/dd form

Date as Text $(DATE_TEXT) Current date in text form

Line $(LINE) First line number of template insertion

User $(USER) Current windows user

File $(FULLFILE) Name of the file

Filename $(FILE) Name and full path of the file

Project Name $(PROJNAME) Current project name

Workspace Name $(WORKSPNAME) Workspace name

Cursor position $(^) Insertion cursor – Positions the cursor
in this position after template has been
inserted

6. Enter the $(^) character to specify where the insertion cursor is to be placed after the template has been inserted. If
this is not specified then the insertion cursor will be placed after the last character in the template (as in a normal
paste operation).

84

Figure 4.14: Define Template Dialog

4.12.2 Deleting a Template

 To delete a template:

1. Select [Edit->Templates->Define Templates...], select [Templates->Define Templates...] from the local menu,
press CTRL+T or click on the define template bookmark toolbar button (). The dialog shown in figure 4.14
will be displayed.

2. Use the Template name drop down list to select the name of the template you wish to remove and then click the
“Remove” button.

3. Clicking “OK” saves the template changes and dismisses the dialog.

4.12.3 Inserting a Template

 To insert a template:

1. Select a template in the toolbar, then click the insert template toolbar button (), select [Edit-> Templates-
>Insert Template...] or select [Templates-> Insert Template...] from the local menu. The dialog is dismissed and
the chosen template is added to the current editor window.

4.12.4 Brace Matching.

Complicated source code can often become unwieldy, especially when blocks of C code are deeply nested within each
other or when complex logic statements are expressed within an ‘if’ clause. To help in such situations, the Hitachi
Embedded Workshop editor provides a match brace feature which highlights text between braces of type { }, () and [].

 To find a matching brace:

1. Either highlight the open brace to match from or place the cursor before it.

2. Click the match braces toolbar button (), press CTRL+B, select [Edit->Match Braces] or select [Match
Braces] from the local menu.

To check the structure of an entire file, place the cursor at its start and then repeatedly invoke the match brace operation.
The editor will successively highlight each pair of braces in turn until there are no more to match.

85

4.13 Editor Column management

The editor in HEW has the ability to manage columns apart from the main editor column. These can be added and used by
debugger feature. You can choose the column to display/undisplay.

Figure 4.15: Editor columns

 To switch off a column in all source files:

1. Right click on the editor window.

2. Click the “Define Column Format…” menu item.

3. The “Global Editor Column States” dialog is displayed.

4. The “Check status” shows whether the column is enabled or not. If it is checked it is enabled if the check box is
gray this means that in some files the column is enabled and in other files it is not.

5. Click “OK” for the new column settings to take effect.

 To switch off a column in one source files:

1. Right click on the editor window, which you wish to remove a column from, and the editor pop-up is displayed.

2. Click the Columns menu item and a cascaded menu item appears. Each column is displayed in this pop-up menu.
If the column is enabled it has a tick next to its name. Clicking the entry will toggle whether the column is
displayed or not.

86

Figure 4.16: Global column state Dialog

87

5. Tools Administration

You control the components, which can be used by the Hitachi Embedded Workshop via the “Tools Administration”
dialog (figure 5.1), which is invoked via [Tools->Administration …]. Modification of the “Tools Administration” dialog
box is only possible when no workspace is open, while only reference is possible when a workspace is open.

Figure 5.1: Tools Administration Dialog (Example)

There are five standard types of component:

• Toolchain - a set of build phases (e.g. compiler, assembler, and linker). These components provide the build capability.

• System Tool - an application (.EXE) which can be launched from the “Tools” menu. They are often provided as extra
applications, which support the toolchain (e.g. an external debugger like the Hitachi Debugging Interface (HDI) or an
interactive graphical librarian).

• Utility Phase - a “ready made” build phase which supports some specific build functionality (e.g. analyze complexity
of source code, count lines of source code, etc.). These components provide added functionality to the build that is not
toolchain specific.

• Debugger Component – a component that supports some specific debugger functionality (e.g. Target platform, Object
reader, etc).

• Extension Component – a component that provides key functionality in a certain area of the HEW system. These
components cannot be unregistered when installed (e.g. The HEW builder, debugger and flash support).

88

5.1 Tool Locations

The HEW maintains the locations of HEW compatible components automatically as each new tool is installed. After
installation, the HEW stores information about the component (including its location) – this is referred to as registra tion.
Although initial registration is automatic, during the course of development or if you want to manage the tools being used
in your projects more effectively, you may need to register components yourself. The remainder of this chapter discusses
registration and how it affects you.

5.2 HEW Registration Files (*.HRF)

When a HEW compatible component (i.e. toolchain, system tool or utility phase) is installed, part of its installation will
include a file with the extension .HRF (figure 5.2.i). This file, named a “HEW Registration File”, describes the component
to the HEW. The process of registration refers to loading a component’s .HRF file into the tools administration dialog
(figure 5.2.ii).

C:\

MyTool

MYTOOL.HRF

bin

etc

help

C:\

MyTool

MYTOOL.HRF

bin

etc

help

HEW

i. INSTALL ii. REGISTER

Figure 5.2: HRF File Location and Registration

In order to use a component with HEW it must first be registered. The “Tools Administration” dialog (figure 5.1) shows
all currently registered components. To access it, ensure no workspaces are open and then select [Tools
->Administration…]. If you attempt to access tools administration when there is a workspace open the tools
administration dialog is opened but cannot be modified. When HEW is installed by default any new tools are
automatically registered.

HEW stores tool information in a tool database file. By default this is created in the HEW application directory, however
if you are working in a network environment this directory may be set to another location. It is possible to change the tool
directory location.

 To change the tools location:

1. Select [Tools->Administration…].

2. Click the “Modify” button for the “Current HEW tools database location” field.

3. Select the directory under which the new tool is located, then click “OK”.

4. This will switch the directory and change the tool location to the new directory. It will be necessary to scan for
any new tools that may be in this location this is achieved by using the scan disk or register tool functionality.

89

5.3 Registering Components

The HEW will automatically attempt to register any new components installed since the last time it was invoked. However,
in some circumstances you may need to register components yourself.

5.3.1 Searching Drives for Components

In some cases it is useful to search a drive for HEW compatible components. This is especially useful if the HEW
installation was deleted or corrupted as it can recreate your tool information instantly.

 To search for components:

1. Click the “Search Disk…” button on the “Tools Administration” dialog (figure 5.1). The “Search Disk for
Components” dialog will be displayed (figure 5.3).

Figure 5.3: Search Disk for Components Dialog

2. Enter the directory in which you would like to search into the top field or browse to it graphically by clicking the
“Browse…” button.

3. Check the “Include subfolders” check box if you would like to search the directory specified and all directories
below it.

4. Click the “Start” button to begin the search. During the search, the “Start” button will change to a “Stop” button.
Click the “Stop” button to halt the search at any time.

5. The results of the search are shown in the “Located components” list. Select a component and click “Register” to
register an individual component or click “Register All” to register all located components.

6. Click “Close” to exit the dialog.

90

5.3.2 Registering a Single Component

The HEW allows you to navigate directly to a single component in order to register it. The HEW Registration File
(*.HRF) is located in the root directory of a component’s installation.

 To register a component:

1. Click the “Register…” button on the “Tools Administration” dialog. A standard file open dialog will be launched
with its file filter set to “HEW Registration Files (*.hrf)”.

2. Navigate to the .HRF file of the component you would like to register, select it and then click “Select”.

3. A dialog will be invoked which displays information regarding the selected tool. Click “Register” to confirm that
you want to register the tool or click “Close” to abort the operation.

5.4 Unregistering Components

The components, which are registered with the HEW, affect the way in which it behaves. For example, every compatible
system tool, which is registered, will be added to the tools menu when a new project is created. Sometimes this may not be
desirable. If so, open the “Tools Administration” dialog, select the component from the “Registered components” list and
then click the “Unregister” button. A dialog will be invoked which asks you to confirm this action. Click “Yes” to confirm
the action.

Note: Unregistering a component does not remove its installation from hard disk. It simply removes the information,
which the HEW was storing about that component (i.e. it “disconnects” it from the HEW). The action can be
easily reversed at anytime by registering the tool (see above). If you want to remove a component from the hard
disk (i.e. uninstall a component) then refer to the section “Uninstalling Components” later in this chapter.

91

5.5 Viewing and Editing Component Properties

To view information regarding a component, select it from the “Registered components” list and then click the
“Properties” button. The properties dialog will be displayed with the “General” tab selected (figure 5.4). This tab displays
the name, version and location of the selected component. None of the information on this tab is editable.

Figure 5.4: Properties Dialog General Tab

Select the “Information” tab to view any information about the component (figure 5.5). This may include copyright
information, enhancements, bug fixes, user notes and so on.

Figure 5.5: Properties Dialog Information Tab

92

Select the “Environment” tab, if it exists, to view and edit a component’s environment settings (figure 5.6). This dialog is
most commonly used to modify the environment of a toolchain.

Figure 5.6: Properties Dialog Environment Tab

To add a new environment variable, click the “Add…” button (the dialog shown in figure 5.7 will be invoked). Enter the
variable name into the “Variable” field, the variable’s value into the “Value” field and then click “OK” to add the new
variable to the “Environment” tab. Placeholder pop-up menus are included to ensure that the environment can be specified
as flexibly as possible. For a detailed description of placeholders see appendix C, “Placeholders”.

To modify an environment variable, select the variable that you want to modify from the “Environment” tab and then click
the “Modify…” button. Make the required changes to the “Variable” and “Value” fields, and then click “OK” to add the
modified variable to the “Environment” tab. To remove an environment variable, select it and then click the “Remove”
button.

Figure 5.7: Environment Variable Dialog

93

5.6 Uninstalling Components

The HEW provides a built in uninstaller method, which can remove unregistered components.

 To uninstall a component:

1. Select [Tools->Administration…].

2. Click on the uninstaller button. The “Uninstall HEW Tool” dialog is invoked (figure 5.8).

Figure 5.8: Uninstall HEW Tool

3. Enter the directory in which you would like to search into the top field or browse to it graphically by clicking the
“Browse…” button.

4. Check the “Include subfolders” check box if you would like to search the directory specified and all directories
below it.

5. Click the “Start” button to begin the search. During the search, the “Start” button will change to a “Stop” button.
Click the “Stop” button to halt the search at any time.

6. The results of the search are shown in the “Located Tools which can be uninstalled” list. Select a component and
click “Uninstall” to uninstall a component.

7. Click “Exit” to exit the dialog.

A component may only be uninstalled if it is not currently registered with the HEW. If you attempt to uninstall a tool,
which is registered, then the dialog shown in figure 5.9 will be displayed. In such a case, you must return to the “Tools
Administration” dialog via [Tools->Administration…], unregister the tool and then invoke the tool uninstaller again.

94

Figure 5.9: Unable to Uninstall Tool

If a tool is not registered with the HEW then the dialog shown in figure 5.10 will be displayed when the “Unregister”
button is clicked. This confirmation dialog displays all of the files and folders that will be deleted. If you are certain that
these files and folders can be deleted then click the “Yes” button. To abort the uninstall click the “No” or “Cancel” buttons.

Figure 5.10: Confirmation Dialog

95

5.7 Technical Support Issues

The “Tools Administration” dialog is also capable of displaying information regarding “hidden” system components.
These are part of the HEW itself that cannot be unregistered/registered manually. If you check the “Show all components”
check box on the tools administration dialog, extra component folders are displayed (see figure 5.11).

Figure 5.11: All Components Shown

When seeking technical support, you may be asked to give details about some or all of these components. To do so, open
the respective folder, select a component and click the “Properties” button. The properties dialog that will be invoked
behaves in the same way as discussed previously in this chapter, with the exception that there is no “Environment” tab.

The HEW also has a feature, which outputs tool information regarding the registered components to a file. This allows
you to retrieve information on the entire HEW system. This information can then be sent to your technical support contact
if you are experiencing problems with the HEW.

 To output tool information:

1. Click the [Tools->Administration] menu item.

2. Click the “Tool information…” button. A standard windows file save dialog is displayed.

3. Choose the file location and click OK.

4. A file is created in the chosen location with the current registered tool setup of the HEW 2.

96

5.8 Custom Project Types

The [Project->Create Project Type…] menu item in HEW allows you to create a template for your project. This menu
item takes the settings of the current project and then creates a project type for you. The user can specify the name of the
new type and style of the project generation wizard. Once created these project types appear in the “Tools
Administration” dialog and are initially hidden in the system components part of the tools administration tree. To export
one of the custom project generators select the “Export” button on the “Tools Administration” dialog. The execution
environments of the custom project generators are packaged on the execution file that can be installed. When this file is
executed on the target user’s machine, the custom project generator is installed.

97

6. Customizing the Environment

6.1 Customizing the Toolbar

The Hitachi Embedded Workshop provides 2 standard toolbars as detailed in chapter 1, “Over view”. In addition to these,
you may also construct your own toolbars via the “Customize” dialog (figure 6.1).

Figure 6.1: Customize Dialog Toolbars Tab

 To create a new toolbar:

1. Select [Tools->Customize…]. The dialog shown in figure 6.1 will be displayed.

2. Click the “New...” button. The dialog shown in figure 6.2 will be displayed.

3. Enter the name of the new toolbar into the “Toolbar name” field.

4. Click “OK” to create the new toolbar.

Figure 6.2: New Toolbar Dialog

98

When a new toolbar is created it will appear undocked (i.e. “floating”) and empty.

 To add buttons to a toolbar:

1. Select [Tools->Customize…]. The dialog shown in figure 6.1 will be displayed. Select the “Commands” tab (see
figure 6.3).

2. Browse the available buttons by selecting the button categories from the “Categories” list. Select a button from the
“Buttons” area to display information on its operation.

3. Click and drag a button from the dialog onto the toolbar.

Figure 6.3: Customize Dialog Commands Tab

99

 To remove buttons from a toolbar:

1. Select [Tools->Customize…]. The dialog shown in figure 6.1 will be displayed. Select the “Commands” tab (see
figure 6.3).

2. Click and drag a button from the toolbar onto the “Buttons” area.

 To remove a user defined toolbar:

1. Select [Tools->Customize…]. The dialog shown in figure 6.1 will be displayed.

2. Select the user-defined toolbar from the “Toolbars” list, and the “Reset” button in figure 6.1 changes to the
“Delete” button. Then click the “Delete” button.

 To reset a standard toolbar back to its original state:

1. Select [Tools->Customize…]. The dialog shown in figure 6.1 will be displayed.

2. Select the standard toolbar from the “Toolbars” list and then click the “Reset” button.

 To show or hide toolbar tooltips:

1. Select [Tools->Customize…]. The dialog shown in figure 6.1 will be displayed.

2. Set the “Show Tooltips” check box as desired.

 To modify the toolbar name of a toolbar created by a user:

1. Select [Tools->Customize…]. The dialog shown in figure 6.1 will be displayed.

2. In the “Toolbars” list, select a toolbar, which has been created by a user and whose name you, want to modify.

3. Modify the name of the toolbar in the “Toolbar name” filed.

100

6.2 Customizing the Tools Menu

The “Tools” menu can be customized to include your own menu options.

 To add a new menu option:

1. Select [Tools->Customize…]. The dialog shown in figure 6.1 will be displayed. Select the “Menu” tab (see
figure 6.4). The first thing for you to decide is whether you are adding a global application wide tool
(“Application wide tools:”), which will be available to all of your workspaces. Or whether you wish to add a
workspace wide tool (“Workspace wide tool:”), which is only valid for the current workspace. Once you have
made the choice choose the relevant section of the dialog.

Figure 6.4: Customize Dialog Menu Tab

2. Click the “Add…” button (the dialog shown in figure 6.5 will be invoked). If you would like to add an existing
system tool to the menu then select the “Select from existing system tools” radio button, choose the tool from the
drop-down list and then click “OK”. Alternatively, if you would like to add a tool of your own then follow the
remaining steps.

3. Enter the name of the tool into the “Name” field.

4. Enter the command, excluding arguments, into the “Command” field.

5. Enter any arguments that you would like to pass to the command into the “Arguments” field.

6. Enter an initial directory in which you would like the tool to run, into the “Initial directory” field.

7. Click “OK” to add the menu option to the “Tools” menu.

101

Figure 6.5: Add Tool Dialog

New menu options are added to the bottom of the list (i.e. bottom of the tools menu) by default. The order of menu options
in the “Tools” menu can also be modified.

 To modify a menu option:

1. Select [Tools->Customize…]. The dialog shown in figure 6.1 will be displayed. Select the “Menu” tab (see figure
6.4).

2. Select the menu option that you would like to modify and then click the “Modify…” button.

3. Make the desired changes on the “Modify Tool” dialog (figure 6.6) and then click “OK”.

Figure 6.6: Modify Tool Dialog

 To remove a menu option:

1. Select [Tools->Customize…]. The dialog shown in figure 6.1 will be displayed. Select the “Menu” tab (see figure
6.4).

2. Select the menu option that you would like to remove and then click the “Remove” button.

102

6.3 Configuring the Help System

The Hitachi Embedded Workshop provides context sensitive help within the editor window. In other words, if you select
some text in the editor window and then press F1, the Hitachi Embedded Workshop will attempt to locate help on that
selected item. The help files, which will be searched, are listed in the “Help” tab of the “Customize” dialog.

 To add a new help file:

1. Select [Tools->Customize…]. The dialog shown in figure 6.1 will be displayed. Select the “Help” tab (see figure
6.7).

Figure 6.7: Customize Dialog Help Tab

2. Click the “Add…” button. The “Add Help File” dialog will be displayed (figure 6.8).

3. Enter a description of the help file into the “Title” field.

4. Enter the full path of the help file into the “Path” field (or browse to it graphically by clicking on the “Browse…”
button).

5. Click “OK” to define the new help file.

Figure 6.8: Add Help File Dialog

103

To make a help file the default choice, select it from the “Default help file” drop-down list or set it to “(None)” if you
would like to be prompted for a help file when F1 is pressed.

6.4 Specifying Workspace Options

The Hitachi Embedded Workshop allows you to control several aspects of a workspace via the “Options” dialog (figure
6.9). To invoke it select [Tools->Options…], and select the “Workspace” tab.

Figure 6.9: Options Dialog Workspace Tab

The following sections explain the options available on this tab.

6.4.1 Open last workspace at start-up

Set this check box if you would like the Hitachi Embedded Workshop to automatically open the last workspace you
opened when it is launched.

6.4.2 Restore the files on opening workspace

When you close a workspace, the HEW stores, which files were open. When you open a workspace, the HEW can restore
(i.e. open) the same files so that you can continue your session in exactly the same state as when you left it. If you would
like the files associated with a workspace to be opened when you open a workspace then set this check box.

104

6.4.3 Display workspace information dialog on opening workspace

When many workspaces are being used, it is sometimes difficult to remember exactly what was contained within each
workspace. To help resolve this, the Hitachi Embedded Workshop allows you to enter a textual description of each
workspace.

 To enter a workspace description:

1. Select the workspace icon from the “Projects” tab of the ”Workspace” window.

2. Click the right mouse button to invoke the pop-up menu and then select the “Properties” option. The dialog shown
in figure 6.10 will be displayed.

3. Enter the description into the “Information” field.

4. Check the “Show workspace information on workspace open” check box if you want a workspace properties dialog
to be launched on opening a workspace. This check box has the same role as the “Display workspace information
dialog on opening workspace” on the “Workspace” tab of the “Options” dialog.

5. Click “OK” to save the description on the “Information” dialog. Click the “Cancel” button not to save the
description.

Figure 6.10: Workspace Properties Dialog

When a workspace is opened, the Hitachi Embedded Workshop can display this information so that it is possible to
determine whether the workspace is the desired workspace. To display this information on opening a workspace, set the
“Display workspace information dialog on opening workspace” check box.

6.4.4 Save workspace before executing any tools

To force the Hitachi Embedded Workshop into saving the current workspace before executing any build phases (i.e. build,
build all or build file operations) or version control commands set the “Save workspace before executing any phases”
check box.

6.4.5 Prompt before saving workspace

In addition to the above check box, set this to prompt before saving.

105

6.4.6 Default directory for new workspaces

When a new workspace is created the Hitachi Embedded Workshop invokes the “New Workspace” dialog. One of the
fields on this dialog is the directory in which the new workspace will be created. By default, this is the root directory.
However, if you would like to set this default directory to another location (e.g. “C:\Workspaces”) then enter the desired
directory into the field or browse to it graphically via the “Browse…” button.

6.4.7 Prompt before saving session

Checking this option will force the Hitachi Embedded Workshop into displaying a prompt before the session is saved to
disk.

106

6.5 Using an External Editor

The Hitachi Embedded Workshop allows you to use an external editor. Once an external editor has been specified, it will
be launched when the following actions are performed:

� Double clicking on a file in the “Projects” tab of the “Workspace” window.

� Double clicking on an entry in the “Navigation” tab of the “Workspace” window.

� Double clicking on an error/warning in the “Build” tab of the “Output” window.

� Double clicking on an entry in the “Find in Files” tab of the “Output” window.

� Selecting the [Open <file>] option from the “Workspace” windows pop-up menu.

� Clicking the “Launch Editor” toolbar button.

 To specify an external editor:

1. Select [Tools->Options…]. The “Options” dialog will be displayed. Select the “Editor” tab (figure 6.11).

Figure 6.11: Options Dialog Editor Tab

107

2. Check the “Use external editor” check box.

The “External Editor” dialog will be displayed (figure 6.12).

Figure 6.12: External Editor Dialog

3. Enter the path of the executable (without any arguments) into the “Command” field.

4. Enter the arguments required to open a file into the “Arguments to open file” field. Use the $(FULLFILE)
placeholder to represent the path of the file to be opened.

5. Enter the arguments required to open a file at a specific line into the “Arguments to open file at line” field. Use the
$(FULLFILE) placeholder to represent the path of the file to be opened and the $(LINE) placeholder to represent
the line number at which the cursor should be initially positioned.

6. Click “OK” to define the editor.

Note: When using an external editor be aware of the following issues:

• Each time you invoke the external editor, in whichever way, a separate instance of the editor will be launched.

• You must save your own files before you perform a build file, build or build all operation.

6.6 Customizing File Save

The Hitachi Embedded Workshop allows you to customize file save on the “Editor” tab of the “Options” dialog (figure
6.11). To open the tab, select [Tools->Options…] and click the “Editor” tab.

The following sections explain the options related to file save.

6.6.1 Save files before executing any tools

To force the Hitachi Embedded Workshop into saving edited files before executing any build phases (i.e. build, build all or
build file operations) or version control commands, set the “Save files before executing any tools” check box.

6.6.2 Prompt before saving files

In addition to the above check box, set this to prompt before saving.

108

6.7 Using an External Debugger

The Hitachi Embedded Workshop can launch an external debugger tool. If you want to use another debugger then you
must add it to the “Tools” menu.

The “Debugger” tab of the “Customize” dialog (figure 6.13) is where the Hitachi Debugging Interface related information
is configured. You may wish to use an older version of the debugger if certain targets are not currently supported in the
new environment. Invoke it by selecting [Tool s -> Cus tomize…] and then selecting the “Debugger” tab.

Figure 6.13: Customize Dialog Debugger Tab

To use an external debugger, check the “Use external debugger” checkbox and specify the items described below. There
are three items of information, which need to be specified. Firstly, the location of the HDI executable must be specified.
This must be version 4.0 or greater otherwise the behavior is not guaranteed. The second item of data is the session file.
This tells HDI which session to load when it is launched. Finally, the location of the download module is required. This
allows the HEW to automatically switch to HDI when the download module changes after a build. Click the “Launch
External Debugger” toolbar button to invoke HDI with the specified session file.

After a build, if the download module has been updated, the HEW will switch back to HDI to enable immediate debugging.
Whilst using HDI, double clicking in any source window will switch back to the HEW with the source file open at the line
which was double clicked.

109

6.8 Using Custom Placeholders

Throughout the Hitachi Embedded Workshop the user can use a number of pre-defined placeholders for directory
definitions. For example the user can use the “$(PROJDIR)” variable to signify the current HEW project directory. This
makes it much easier to relocate projects and keep all of the paths correct.

The Hitachi Embedded Workshop also has the ability to define custom placeholders. This means you can enter your own
custom placeholder definition and decide upon its directory value. Once defined this placeholder becomes available
throughout the rest of the HEW system.

The placeholders can be defined on an application wide level so the placeholders are available to all workspaces and
projects that use the HEW. The other method of defining the placeholders is using the workspace wide custom
placeholders this means the placeholders can only be used in the current workspace. This list is only available when you
have a workspace open.

Figure 6.14: Customize Dialog Placeholder Tab

 To add a custom placeholder:

1. Select [Tools->Customize…]. The dialog shown in figure 6.1 will be displayed. Select the “Placeholders” tab
(figure 6.14).

2. Choose whether you need to use an “Application wide custom placeholder” or “Workspace wide custom
placeholder”. Click “Add” on the adjacent button to the list you require.

3. The dialog, add “New Custom Placeholder” dialog is displayed. (figure 6.15)

4. In the fields provided choose a suitable name for the placeholder and a description of what the placeholder means.

5. Then choose a directory, which relates to this placeholder. It is possible to use placeholders that are already
defined in this field such as $(PROJDIR).

110

Figure 6.14: New Custom Placeholder Dialog

111

7. Version Control

The Hitachi Embedded Workshop provides facilities for connecting to a version control tool. Some of the reasons why
version control tools are used with a project are:

� To maintain the integrity of a project.

� To store each stage of a project.

� To enable different users to co-develop a project by controlling revisions to its source files.

Figure 7.1 illustrates a typical project where a version control system is in use. This shows three users who all use the
same-shared network drive to exchange source code. The version control system provides access and updates to the source
files.

LOCAL LOCAL

NETWORK

LOCAL

VERSION CONTROL SYSTEM

PROJECT

FILE FILE FILE

Figure 7.1: Version Control

112

7.1 Selectin g a Vers ion Control S y s tem

Initially, the version control sub-menu will appear as shown in figure 7.2. At this time only the [Version Contro l ->
Select…] option is available because a version control system is not yet active for the current workspace.

Figure 7.2: Version Control Sub-Menu

 To select a version control system:

1. Select [Version Control->Select…]. The dialog shown in figure 7.3 will be displayed. This dialog lists all of the
supported version control systems.

2. Select the desired version control system from the “Version control systems” list and click the “Select” button. The
“Current version control system” is changed to reflect the new selection.

3. Click the “OK” button to confirm the selection.

Figure 7.3: Select Version Control System Dialog

113

Note: Only those version control systems which have been installed with the HEW will appear in the “Select Version
Control System” dialog (figure 7.3).

Once a version control tool is selected you will notice that the [Vers ion Control - >Confi gure…] option has now become
available.

The next chapter discusses the usage of the custom version control system.

114

115

8. Using the Custom Version Control System

The custom version control system is a configurable addition to the Hitachi Embedded Workshop, which allows you to
connect to a version control system already installed on your machine. To clarify further, the Hitachi Embedded
Workshop does not provide a version control tool itself, only a means by which you can integrate the version control
system, which you use into your workspaces and projects.

8.1 Defining Version Control Menu Options

The custom version control system allows you to invoke a version control command either by selecting an option from the
[Tools-> Version Control] sub-menu or by clicking a version control toolbar button. When either of these actions are
performed, the associated commands are executed and the output is displayed in the “Version Control” tab of the “Output”
window.

 To execute a version control menu option or toolbar button:

1. Select whichever items you would like to apply the version control command to from the “Workspace” window.
This may include a workspace, project(s), folder(s) and file(s). When the command is selected, all of the files will
be extracted from the selected items and passed, in turn, to the version control command. For example, if you select
the workspace icon then all of the files in all of the projects will be passed, in turn, to the version control command.
This will include any system files. For example if you select the project item then

2. Select the required menu option from the [Tools->Version Control] sub-menu or click the desired version control
toolbar button.

The custom version control support allows you the most flexibility in specifying how a version control system is to be
used. To configure it, select [Version Control->Configure…]. The “Version Control Setup” dialog will be displayed
(figure 8.1).

116

Figure 8.1: Version Control Setup Dialog Commands Tab

117

The “Commands” tab contains two lists of menu options. The first list, “System menu options and toolbar buttons”,
represents those menu options which always appear on the version control sub-menu. These menu options also have an
associated toolbar button on the version control toolbar. The second list, “User menu options”, represents those additional
user defined options which are added to the bottom of the version control sub-menu. Figure 8.2 shows the structure of the
version control sub-menu.

Figure 8.2: Version Control Sub-Menu

8.1.1 System menu options and toolbar buttons

In order to invoke commands from the toolbar or the system defined options of the [Tools->Version Control] sub-menu,
you must first define the associated commands that should be executed when they are activated. The names of the options
and their intended action are listed in table 8.1.

Table 8.1: System Menu Option

Option Description

Add File(s) Add selected file(s) to version control system.

Remove File(s) Remove selected file(s) from version control system.

Get File(s) Get a read only local copy of the selected file(s) from version control system.

Check In File(s) Put back, i.e. update, the selected file(s) in version control system with the
local copy.

Check Out File(s) Get a writable local copy of the selected file(s) from version control system.

Status of File(s) View the status of the selected file(s).

 To modify a system menu / toolbar option:

1. Select [Version Control->Configure…]. The dialog shown in figure 8.1 will be displayed.

2. Select the option to be modified from the “System menu options and toolbar buttons” list and then click the
“Modify…” button. The dialog shown in figure 8.3 will be displayed. This figure shows a dialog when “Add
File(s)” has been selected for example.

3. Commands are added via the “Add…” button. See the section, “Defining Version Control Commands”, later in this
chapter for further information.

4. Close the “Define Command for “<command>”” dialog by clicking “OK”.

5. Close the “Version Control Setup” dialog by clicking “OK”.

118

Figure 8.3: Modify System Menu Option (Example)

119

8.1.2 User menu options

You can create as many user defined menu options as you like, name them how you want and define their order in the
menu. User defined menu options do not appear on the version control toolbar.

 To create a new version control menu option:

1. Select [Version Control->Configure…]. The dialog shown in figure 8.1 will be displayed.

2. Click the “Add..” button. The dialog shown in figure 8.4 will be displayed.

3. Enter the name of the menu option into the “Option” field.

4. Commands are added to the menu option via the “Add…” button. See the section, “Defining Version Control
Commands”, later in this chapter for further information.

5. Close the “Add Menu Option” dialog by clicking “OK”.

6. Close the “Version Control Setup” dialog by clicking “OK”.

Figure 8.4: Add Menu Option Dialog

120

 To remove an existing version control menu option:

1. Select [Version Control->Configure…]. The dialog shown in figure 8.1 will be displayed.

2. Select the menu option to be removed from the “User menu options” list and then click the “Remove” button.

3. Close the “Version Control Setup” dialog by clicking “OK”.

 To modify an existing version control menu option:

1. Select [Version Control->Configure…]. The dialog shown in figure 8.1 will be displayed.

2. Select the menu option to be modified from the “User menu options” list and then click the “Modify…” button
beside the list. The dialog shown in figure 8.4 will be displayed. (The title of the dialog is “Modify Menu Option”.)

3. Modify the commands as necessary and then click “OK”.

4. Close the “Version Control Setup” dialog by clicking “OK”.

 To change the ordering of version control menu options:

1. Select [Version Control->Configure…]. The dialog shown in figure 8.1 will be displayed.

2. Select the menu option to be moved and then click the “Move up” and “Move down” buttons as necessary.

3. Close the “Version Control Setup” dialog by clicking “OK”.

121

8.2 Defining Ve rs ion Control Commands

Commands are defined when the “Add…” or “Modify…” buttons are clicked on the dialogs shown in figure 8.3 and
figure 7.4. In either case, the dialog shown in figure 8.5 is invoked.

Figure 8.5: Add/Modify Command Dialog

 To define a command:

1. Enter the full path of the command into the “Version control executable” field or browse to it graphically by
clicking the “Browse…” button.

2. Enter the arguments for the command into the “Arguments” field.

3. Enter the initial directory in which you would like to run the executable from into the “Initial directory” field or
browse to it graphically by clicking the “Browse…” button. In most cases this should be set to the “$(FILEDIR)”
placeholder, i.e. execute the command from the same directory as the file.

4. Set the “Executable return code” options as described in the following section.

5. Click “OK” to define the new command.

8.2.1 Executable return code

If the return code of the command(s) can be used to indicate a failure then you should select the “Command has failed if
the return code is” option and set the two fields to the right as required.

If the “Command has failed if the return code is” option is selected then the HEW will check the return code of each
command to determine whether a failure occurred. If so, no further commands will be executed and any other processes
which would follow the commands (e.g. build) will not be executed.

If the “Return code of tool is not meaningful” option is selected then the HEW will not check the return code of each.
Consequently, all commands will execute regardless.

122

8.3 Specifying Arguments

It is obvious that arguments must be specified correctly, otherwise the version control tool executed will not function as
intended. However, it is also important, when using custom version control support, to specify the arguments in a flexible
way as a single version control command can be applied to more than one file. To facilitate this, the “Arguments” field has
a placeholder button (refer to appendix C, “Placeholders”, for an in depth discussion of placeholders) which, when clicked
on, invokes a pop-up menu of available placeholders (figure 8.6). An explanation of each placeholder and how their values
are derived can be found in table 8.2, Arguments Field Placeholders.

Figure 8.6: Arguments Field Placeholder Pop-up Menu

123

Table 8.2: Arguments Field Placeholders

Placeholder Value and How its Determined

User login name Current user login (“General” tab)

User login password Current user password (“General” tab)

Version control directory “Virtual” version control mapping (“Projects” tab)

Comment Comment specified before command execution

File path + name Full path and name of file involved in operation

Filename Filename (including extension) of file involved

File leaf Filename (excluding extension) of file involved

File extension Extension of file involved in operation

File directory Directory of file involved in operation

Configuration directory Current configuration directory

Project directory Current project directory

Workspace directory Current workspace directory

Temp directory Temporary directory

Command directory Version control executable directory

Windows directory Directory where Windows® is installed

Windows system directory Directory where Windows® system files exist

Workspace name Current workspace name

Project name Current project name

Configuration name Current configuration name

8.3.1 Specifying File Locations

When referring to a file’s location, be sure to use a placeholder, otherwise the command will only relate to a hardwired file.
For example, let’s imagine that a version control executable has been selected which uses a –GET command to obtain a
read only copy of a file. The “Arguments” field could be specified as:

-GET “c:\vc\files\project\main.c”

However, when executed, this command can only ever get the file MAIN.C. To resolve this problem, HEW uses a system
of placeholders and directory mappings. The latter tell the HEW which “working” directories (i.e. where source files are
being worked on) map to which “controlled” directories (i.e. where the source files are stored in the version control
system). Mappings between these two directory systems can be specified via the “Projects” tab of the ”Version Control
Setup” dialog (figure 8.7).

124

Figure 8.7: Version Control Setup Dialog Projects Tab

 To define a new mapping:

1. Select [Version Control->Configure…]. The dialog shown in figure 8.1 will be displayed. Select the “Projects”
tab, and the dialog shown in figure 8.7 will be displayed.

2. Click the “Add…” button that is next to the “Version control directory mappings” list. The dialog shown in figure
8.8 will be displayed.

3. Enter the source (i.e. “working”) directory into the “Source directory” field or browse to it graphically by clicking
the “Browse…” button.

4. Enter the version control directory (i.e. “controlled”) directory into the “Version control directory”.

Figure 8.8: Version Control Directory Mapping Dialog

125

 To modify an existing mapping:

1. Select [Version Control->Configure…]. The dialog shown in figure 8.1 will be displayed. Select the “Projects”
tab, the dialog shown in figure 8.7 will be displayed.

2. Select the mapping to be modified from the “Version control directory mappings” list and then click the
“Modify…” button. The dialog shown in figure 8.8 will be displayed.

3. Make the necessary changes to the two directories and then click “OK” to confirm the edits.

 To remove an existing mapping:

1. Select [Version Control->Configure…]. The dialog shown in figure 8.1 will be displayed. Select the “Projects”
tab, the dialog shown in figure 8.7 will be displayed.

2. Select the mapping to be removed from the “Version control directory mappings” list and then click the “Remove”
button.

Once the mappings have been defined you can use the “Version control directory” placeholder, $(VCDIR), to represent
the directory in which the project file is stored. Consider the scenario shown in figure 8.9. Here are three directories,
which are mapped from a shared version control drive (X:\) to a local drive where the development is being done (C:\).

C:\work\application\project1 X:\vc\sw\app\project1

C:\work\application\src X:\vc\sw\app\src

C:\work\shared X:\vc\sw\shared

LOCAL - C:\ NETWORK - X:\Mapped To

Figure 8.9: Example Mappings

Now let’s imagine that a version control executable has been selected which uses a –GET command to obtain a read only
copy of a file. In order to get all of the files in a project we need to use the following command:

-GET “$(VCDIR)\$(FILENAME)”

When the HEW executes the command for a given project file, it will replace $(VCDIR) for the equivalent version control
directory in the file mapping.

For example, suppose FILE1.C is located at:

c:\work\application\project1\file1.c

If the get command is applied to FILE1.C then:

(1) X:\vc\sw\app\project1 is substituted for $(VCDIR) as this is the version control directory mapping for
c:\work\application\project1.

(2) FILE1.C is substituted for $(FILENAME).

126

C:\work\application\project1 \ file1.c

$(VCDIR) \ $(FILENAME)

X:\vc\sw\app\project1 \ file1.c

Arguments:

Project File:

Command:

(1) (2)

Figure 8.10: Example of Substitution

8.3.2 Specifying Environment

Select the “Projects” tab of the “Version Control Setup” dialog to view the current settings (figure 8.7).

To add a new environment variable click the “Add…” button beside the “Environment” list (the dialog shown in Figure
will be invoked). Enter the variable name into the “Variable” field, the variable’s value into the “Value” field and then
click “OK” to add the new variable to the “Environment” list.

Figure 8.11: Environment Variable Dialog

To modify an environment variable, select the variable that you want to modify from the “Environment” list and then click
the “Modify…” button beside it. Make the required changes to the “Variable” and “Value” fields and then click “OK” to
add the modified variable back to the list. To remove an environment variable, select the variable that you want to remove
from the “Environment” list and then click the “Remove” button beside it.

127

8.3.3 Specif ying Comments

If a command contains the placeholder “$(COMMENT)” then the HEW will request that you enter the comment when the
command is executed (via the dialog as shown in figure 8.12).

Figure 8.12: Please Enter Comment Dialog

You may specify a comment for each file or, if you would like to specify the same comment for all files, check the “Apply
comment to all files” check box before clicking “OK”.

128

8.3.4 Specifying a U ser Name and Pas sword

Most version control tools will require you to pass a user name and password on the command line in order to keep files
secure and to keep a record of which files were changed by which users. The custom version control support provides two
placeholders “User login name”, $(USERNAME), and “User login password”, $(PASSWORD). When the command is
executed, these placeholders will be replaced with the current settings in the “General” tab of the “Version Control Setup”
dialog (figure 8.13).

Figure 8.13: Version Control Setup Dialog General Tab

129

In order to give the $ (USERNAME) a nd $(PASSWORD) fields a v a lue y ou will firs t need to login. If you have not logged
in bef ore a co mma nd is exe cute d which us es either o f thes e place holders the n you will be prompte d to d o s o be fore the
comman d can be ex ec uted .

 To login (i.e. specify a user name and password):

1. Click the “Log in…” button. The dialog shown in figure 8.14 will be displayed.

2. Enter your user name into the “User name” field.

3. Enter your password into the “Password” field.

4. Re-type your password again into the “Confirm password by retyping it below” field.

5. Click “OK” to set the new user name and password. If there is any inconsistency between the two versions of the
password which you entered then you will be requested to type your password again.

Figure 8.14: Log in Dialog

130

8.4 C ontrolling Execution

The “General” tab of the “Version Control Setup” dialog (figure 8.13) allows you to control the way in which the version
control tool is executed. It also shows the full path to the current version control configuration file.

8.4.1 Prompt before ex ecuting co mmand

If this check box is set then, before any version control commands are executed, a dialog is displayed (figure 8.15) which
lists all of the files involved in the operation. Files may be deselected by clearing the associated check box. Clicking “OK”
will apply the command to each of the selected files. Clicking “Cancel” will abort the operation.

Figure 8.15: Command Prompt Dialog (Example)

8.4.2 Run in DOS Window

By default, the output of the version control commands is redirected to the “Version Control” tab of the “Output” window.
If you would rather run each command in a separate DOS window then set this check box.

8.4.3 Use forward slash ‘/’ as version control directory delimiter

By default, when the HEW substitutes the placeholder $(VCDIR) it uses the backward slash character ‘\’ to divide
directories. However, if the version control system you are using uses a forward slash character (e.g. Visual SourceSafe) to
divide directories then set the “Use forward slash ‘/’ as version control directory delimiter”.

8.5 Importing and exporting a Set-up

Each workspace can have a different version control set-up. The HEW allows you to store the version control settings
independently so that you can import them into other workspaces. This greatly reduces the amount of time it takes to
configure the same version control settings across several workspaces.

 To export a version control set-up:

1. Select [Version Control->Configure…]. The dialog shown in figure 8.1 will be displayed.

2. Click the “Export…” button. A standard file save dialog will be displayed. Browse to the directory in which you
would like to save the configuration.

3. Enter the name of the file and then click “OK”.

131

 To import a version control set-up:

1. Select [Version Control->Configure…]. The dialog shown in figure 8.1 will be displayed.

2. Click the “Import…” button. A standard file open dialog will be displayed. Browse to the *.HVC file which you
would like to import.

3. Select the file and then click “OK”.

132

133

9. Using Visual SourceSafe

The Hitachi Embedded Workshop provides specific support for the Visual SourceSafe version control system. At the time
of writing, the HEW can only attach to versions 5 and 6 of Visual SourceSafe.

The Visual SourceSafe version control system associates a project in your workspace with a project inside a Visual
SourceSafe database. It allows you to quickly invoke the standard commands either by selecting an option from the
[Tools->Version Control] sub-menu or by clicking a version control toolbar button.

9.1 Attaching Visual SourceSafe to a Workspace

The following sections describe how you can associate Visual SourceSafe with your current workspace.

9.1.1 Selecting Visual SourceSafe

First, you need to select Visual SourceSafe as the version control system.

 To use Visual SourceSafe 5.0 or 6.0:

1. Select [Tools->Version Control->Select…]. The “Select Version Control System” dialog will be displayed (figure
7.3) which lists all of the supported version control systems.

2. Select the “Visual SourceSafe 5.0/6.0” entry from the Version Control Systems list and click the “Select” button.

3. Click “OK” to confirm the selection. The SourceSafe Login dialog is displayed (figure 9.1).

4. Enter your Visual SourceSafe login into “Username” and password into “Password”.

5. Enter into Database path the full path to the Visual SourceSafe database (i.e. SRCSAFE.INI) into which you would
like to add this project.

6. Click “OK”. The “Create SourceSafe Project” dialog is invoked (figure 9.2).

7. The “Project name” field displays the name of the project (i.e. folder) to be created in the database. If necessary
you can change this name to another.

8. The tree underneath the “Project name” field shows the structure of the database specified in step 6. Select the
folder into which you would like to create the folder specified in the “Project name” field.

9. Click “OK”.

10. HEW will require you to repeat steps 7-9 for as many projects as are present in the current workspace.

Figure 9.1: SourceSafe Login Dialog

134

Figure 9.2: Create SourceSafe Project

The HEW has now created the necessary projects within Visual SourceSafe and sets-up the version control toolbar and
menu for immediate access. However, although the Visual SourceSafe projects themselves have been created, no files
have been added to them.

9.1.2 Adding files to Visual SourceSafe

The previous section has only established the mappings between the project directory on your hard disk (i.e. the working
directory) and the project directory in Visual SourceSafe (i.e. the controlled directory). Although the project directory (and
any subdirectories) on your hard disk may contain many source files whereas the directly its mapped to in Visual
SourceSafe will be initially empty.

Firstly, you must select Visual SourceSafe as the version control system.

 To add a file or files to Visual SourceSafe:

1. Select the file(s), which you would like to add to Visual SourceSafe. You may also select a file folder, project
folder, a workspace folder or combination thereof. When selecting the project or workspace folder then the system
files will be added to the selected file list. For example, selecting the project folder will also add the project file to
the file list. If the project file is then checked out and the version is newer than when it was last loaded you will be
asked whether you want to reload the project.

2. Click the Add Files toolbar button () or select the [Tools->Version Control->Add Files] menu option.

When you add files to Visual SourceSafe the local versions in your working directory will become read only. To check
that the add files operation was carried out as you expected, or to quickly review the status of all of the files in a project:

1. Select the poject folder whose files you want to check.

2. Click the Status of Files toolbar button () or select the [Tools->Version Control->Status of Files] menu
option.

3. The status of each file will be displayed in the “Version Control” tab of the “Output” window. The information
shown includes whether the file is added to the project, if the file is checked out and, if it is checked out, who did
so.

135

9.2 Visual S ourceS afe comman ds

The following 8 operations are available:

� Add a file to version control

� Remove a file from version control

� Get a read only copy of a file or files

� Check out a read/write copy of a file or files (i.e. for editing)

� Check in a previously checked out file or files (i.e. update Visual SourceSafe with the edits made)

� Undo a previously check out operation on a file or files (i.e. cancel any edits made)*

� View the status of a file

� View the history of a file*

*These commands can only be accessed via the [Tools->Version Control] sub-menu whereas all of the other commands
can be accessed from both the toolbar and menu.

9.2.1 Removing a File from Version Control

Although files appear in your HEW project (in the “Projects” tab of the “Workspace” window, Visual SourceSafe is not
necessarily controlling them.

 To remove a file or files from Visual SourceSafe:

1. Select the file(s), which you would like to remove from Visual SourceSafe. You may also select a file folder,
project folder, a workspace folder or combination thereof.

2. Click the Remove Files toolbar button () or select the [Tools->Version Control->Remove Files] menu
option.

9.2.2 Getting a Read Only Copy of a File from Version Control

Visual SourceSafe protects your source files and ensures that only one user can have a writable copy of a controlled file at
any one time. However, it is possible for any user to obtain a read only copy of any file.

 To get a read only copy of a file or files from Visual SourceSafe:

1. Select the file(s), which you would like to get from Visual SourceSafe. You may also select a file folder, project
folder, a workspace folder or combination thereof.

2. Click the Get Files toolbar button () or select the [Tools->Version Control->Get Files] menu option.

9.2.3 Checking Out a Writable Copy of a File from Version Control

Visual SourceSafe protects your source files and ensures that only one user can have a writable copy of a controlled file at
any one time. The check out operation takes a writable copy of the file from Visual SourceSafe and places it on your local
drive. This can only be done if another user does not already check out the file or files in question.

 To check out a writable copy of a file or files from Visual SourceSafe:

1. Select the file(s), which you would like to check out from Visual SourceSafe. You may also select a file folder,
project folder, a workspace folder or combination thereof.

2. Click the Check Out Files toolbar button () or select the [Tools->Version Control->Check Out Files] menu
option.

136

9.2.4 Checking In a Writable Copy of a File into Version Control

Visual SourceSafe protects your source files and ensures that only one user can have a writable copy of a controlled file at
any one time. The check out operation takes a writable copy of the file from Visual SourceSafe and places it on your local
drive. Once a file is checked out it is edited and then checked back in so that the edits can be made available to other users.

 To check in edits made to a file or files in Visual SourceSafe:

1. Select the file(s) upon which you would like to check back into Visual SourceSafe. You may also select a file
folder, project folder, a workspace folder or combination thereof.

2. Click the Check In Files toolbar button () or select the [Tools->Version Control->Check In] menu option.

9.2.5 Undoing a Check Out Operation

Visual SourceSafe protects your source files and ensures that only one user can have a writable copy of a controlled file at
any one time. The check out operation takes a writable copy of the file from Visual SourceSafe and places it on your local
drive. Once a file is checked out it is edited and then checked back in so that the edits can be made available to other users.
However, if the check out operation was carried out by mistake, or perhaps is no longer required, then the operation can be
undone.

 To undo a check out of a file or files from Visual SourceSafe:

1. Select the file(s) upon which you would like to undo a previous check out operation. You may also select a file
folder, project folder, a workspace folder or combination thereof.

2. Select the [Tools->Version Control->Undo Check Out] menu option.

9.2.6 Viewing the Status of a File

Although files appear in your HEW project (in the Projects tab of the Workspace window), Visual SourceSafe is not
necessarily controlling them. Of those files, which are being controlled by Visual SourceSafe, some will be checked in and
others will be checked out (i.e. being edited by a user). The status command displays the current status of a file or file(s).

 To view the status of a file or files in Visual SourceSafe:

1. Select the file(s) whose status you would like to view. You may also select a file folder, project folder, a workspace
folder or combination thereof.

2. Click the Status of Files toolbar button () or select the [Tools->Version Control->Status of Files] menu option.

9.2.7 Viewing the History of a File

Visual SourceSafe controls the edits to the files in its projects and allows you to view the complete history of these edits
right back to the time that the file was first added to the project.

 To view the history of a file or files in Visual SourceSafe:

1. Select the file(s) whose history you would like to view. You may also select a file folder, project folder, a
workspace folder or combination thereof.

2. Select the [Tools->Version Control->Show History] menu option.

137

9.3 Visual SourceSafe Integration Options

You c an c ontrol the way in which the his tory a nd s ta tus comma nds a re displayed b y s e lecting [Tools->Version Control-
>Configure …].

To display the re sults of a his tory command in a dia log box then check the “Display dia log b ox for his tory” check box or
clea r it if you would ra ther display the output in the “Vers ion C ontrol” tab of the “Output” window. To display the results
of a s tatu s co mman d in a d ialog box then ch ec k the “Display dia log b ox for file s ta tus” check box or c lea r it if you w ould
ra ther display the output in the “Vers ion C ont rol” tab of the “Output” window.

138

139

Simulator/Debugger Par t

140

141

Section 1 Overview

This section describes the fundamental concepts of the Hitachi Embedded Workshop (HEW) necessary to use the
simulator/debugger. It is intended to give users who are unfamiliar with the Windows® extra help, the details that are
required by subsequent sections.

1.1 Workspaces, Projects, and File s

Just as a word processor allows you to create and modify documents, the HEW allows you to create and modify
workspaces.

A workspace can be thought of as a container of projects. Similarly, a project can be thought of as a container of project
files. Thus, each workspace contains one or more projects and each project contains one or more files. Figure 1.1 shows
this configuration.

PROJECT

PROJECT

PROJECT

FILE

FILE

FILE

WORKSPACE

Figure 1.1 Workspaces, Projects, and Files

Workspaces allow you to group related projects together. This is useful when you have an application that needs to be
built for different processors, when you are developing an application and library at the same time, or in other cases.
Projects can also be linked hierarchically within a workspace, which means that when one project is built all of its child
projects are built first.

However, workspaces on their own are not very useful, first you need to add a project to a workspace and then add files to
that project before you can actually do anything.

1.2 Launching the HEW

To initiate the HEW, open the [Start] menu of Windows®, select [Programs], select [Hitachi Embedded Workshop 2], and
then select the shortcut of the HEW. The [Welcome!] dialog box shown in figure 1.2 will be displayed by default.

142

Figure 1.2 Welcome! Dialog Box

To create a new workspace, select the [Create a new project workspace] button, and click the [OK] button. To open one of
the recent project workspaces, select the [Open a recent project workspace] button, select a workspace from the drop-down
list, and click the [OK] button. The recent project workspace list displays the same information as that seen in the
workspace most recently used file list. This list appears on the file menu. To open a workspace by specifying a
workspace file (.HWS file), select the [Browse to another project workspace] button, and click the [OK] button. To
register or unregister a tool from the HEW, click the [Administration] button. Click the [Cancel] button to use the HEW
without opening a workspace.

143

1.3 Creating a New Workspace

 To create a new workspace

1. Select the [Create a new project workspace] option from the [Welcome!] dialog box (figure 1.2) and click the [OK]
button or select [File -> New Workspace...]. The [New Project Workspace] dialog box will be displayed (figure
1.3).

Figure 1.3 New Project Workspace Dialog Box

2. Enter the name of the new workspace into the [Workspace Name] field. This can be up to 32 characters in length
and contain letters, numbers, and the underscore character. As you enter the workspace name, the HEW will add a
subdirectory and project name for you automatically. To select the directory in which you would like to create the
workspace, use the [Browse…] button or type the directory into the [Directory] field manually. This allows the
workspace and project name to be different.

3. Select the CPU family and toolchain upon which you would like to base the workspace. Note that these cannot be
changed once the workspace has been created.

4. When a new workspace is created, the HEW will also automatically create a project with the name specified in the
project name field and place it inside the new workspace. The [Project types] list displays all of the available
project types (application, library, etc.). Select the project type you want to create from this list. The project types
displayed will be all valid types for the current pair of CPU family and toolchain. The project types are classified
in three classes: toolchain-only, debugger-only, and full project generator that configures both the debugger and
toolchain aspect of the HEW.

5. Click the [OK] button to create the new workspace and project.

Note: It is not possible to create a workspace if one already exists in the same directory.

144

1.4 Opening a Workspace

 To open a workspace

1. Select [Browse to another project workspace] option from the [Welcome!] dialog box (figure 1.2) and click the
[OK] button or select [File -> Open Workspace…]. The [Open Project Workspace] dialog box will be displayed.

2. Select the workspace file that you want to open (.HWS files only).

3. Click the [Open] button to open the workspace. If the HEW is set up to display information when a workspace is
opened, the [Workspace Properties] dialog box will be displayed (figure 1.4). Otherwise, the workspace will be
opened.

Note that whether the [Workspace Properties] dialog box is shown depends on the setting of either the [Show
workspace information on workspace open] check box in the [Workspace Properties] dialog box or the [Display
workspace information dialog on opening workspace] check box on the [Workspace] sheet of the [Tools Options]
dialog box. Click the [OK] button in the [Workspace Properties] dialog box to open the workspace. Click the
[Cancel] button to stop opening the workspace.

Figure 1.4 Workspace Properties Dialog Box

The HEW keeps track of the last five workspaces that you have opened and adds them to the [File] menu under the
[Recent Workspaces] submenu. This gives you a shortcut to opening workspaces, which you have used recently.

 To open a recently used workspace

Select [Open a recent project workspace] in the [Welcome!] dialog box, select the name of the workspace from the
drop-down list, and then click the [OK] button.

Another way is to select [File -> Recent Workspaces], and then from this submenu select the name of the workspace.

Note: The HEW only permits one workspace to be open at a time. Consequently, if you attempt to open a second

workspace, the first will be closed before the new one is opened.

1.5 Saving a Workspace

Selecting [File -> Save Workspace] saves a HEW workspace.

145

1.6 Closing a Workspace

Selecting [File -> Close Workspace] closes a HEW workspace. If there are any changes to the workspace or any of its
projects, you will be requested whether or not you wish to save them.

Selecting [File -> Save Workspace] can save a HEW workspace.

1.7 Using Old Workspaces

The HEW can open any workspace that was created on a previous version of the HEW. This should not cause any
problems, and any differences in the workspace file details should be upgraded when the workspace is opened. A back-up
version of the initial workspace or project file must be saved in the current directory of the file that has been upgraded.
The session files used in the Hitachi Debugging Interface will not be upgraded.

1.8 Exiting the HEW

The HEW can be exited by selecting [File -> Exit], pressing the ALT + F4 accelerator, or selecting the [Close] option
from the system menu. (To open the system menu, click the icon at the upper-left corner of the HEW title bar.) If a
workspace is currently open, the same workspace closing procedure is followed as described in section 1.6, Closing a
Workspace.

1.9 Debugger Sessions

The HEW stores all of your builder options into a configuration. In a similar way, the HEW stores your debugger options
in a session. The debugging platforms, the programs to be downloaded, and each debugging platform’s options can be
stored in a session.

Sessions are not directly related to a configuration. This means that multiple sessions can share the same download
module and avoid unnecessary code rebuilds.

Each session’s data should be stored in a separate file in the HEW project. For details, refer to section 3.4, Debugger
Sessions.

146

147

Section 2 Simulator/Debugger Functions

This section describes the functions of the SuperHTM RISC engine simulator/debugger.

2.1 Features

� Since the simulator/debugger runs on a host computer, software debugging can start without using an actual user
system, thus reducing overall system development time.

� The simulator/debugger performs a pipeline simulation to calculate the number of instruction execution cycles for a
program, thus enabling performance evaluation without using an actual user system.

� The simulator/debugger offers the following functions that enable efficient program testing and debugging.

� The ability to handle all of the SuperHTM RISC engine series CPUs

� Functions to stop or continue execution when an error occurs during user program execution

� Profile data acquisition and function-unit performance measurement

� A comprehensive set of break functions (Pseudo-interrupts are also possible)

� Functions to set or edit memory maps

� Functions to display function call history

� Coverage information is displayed in the C/C++ or assembly-source level

� Visual debugging functions provided through the display of memory contents as images or waveforms

� The breakpoints, memory map, performance, and trace can be set through the dialog boxes under Windows®.
Environments corresponding to each memory map of the SuperHTM RISC engine microcomputers can be set through
the dialog box.

� Intuitive user interface

� Online help

� Common display and operationality

2.2 Target User Program

Load modules in the Elf/Dwarf2 format can be symbolically debugged with the simulator/debugger. Load modules in
other formats can be downloaded, and their instructions can be executed, however, they cannot be symbolically debugged.
For details, refer to section 4.12, Elf/Dwarf2 Support.

2.3 Simulation Range

The simulator/debugger provides simulation functions for the SuperHTM RISC engine series (SH-1, SH-2, SH-2E, SH-3,
SH-3E, SH3-DSP, SH-4, and SH2-DSP series) microcomputers. The SH-4 series consists of two types of microcomputers,
SH-4 and SH-4 (SH7750R), which have different cache specifications. In addition, the SH-4 consists of two different-
version microcomputers; one improves the simulation speed by limiting a part of simulation functions (called SH-4 in this
manual) and one provides high-level functions (called SH-4BSC in this manual). The SH2-DSP series consists of the SH2-
DSP (Core), the SH2-DSP (SH7410), and the SH2-DSP (SH7065) which do not have cache, and the SH2-DSP (SH7612)
which has on-chip cache. The SH3-DSP series consists of the SH3-DSP (Core) and the SH3-DSP, and these two types
have different DSP functions. Note that in this manual, the SH-4 series means the SH-4, the SH-4BSC, and the SH-4
(SH7750R). The SH2-DSP series means the SH2-DSP (Core), the SH2-DSP (SH7410), the SH2-DSP (SH7065), and the
SH2-DSP (SH7612). The SH3-DSP series means the SH3-DSP (Core) and the SH3-DSP.

The simulator/debugger supports the following SuperHTM RISC engine series microcomputer functions:

� All CPU instructions (pipeline simulation)

� Exception processing

� Registers

148

� All address areas

� Peripheral functions shown in table 2.1

Table 2 .1 Simulator/Debug ger Functions and Corresponding CPUs

Names of Debugging
Platforms

Endian

MMU

Cache

Register

BSC

DMAC

SH-1 � � � � � �

SH-2/SH-2E      

SH-3/SH-3E ! ! ! !  

SH3-DSP ! ! ! !  

SH3-DSP (Core) ! ! ! !  

SH-4 ! ! ! ! ! 

SH-4BSC ! ! ! ! ! !

SH-4 (SH7750R) ! ! ! ! ! 

SH2-DSP (SH7410)      

SH2-DSP (Core)      

SH2-DSP (SH7065) !     

SH2-DSP (SH7612) !  ! !  

Note: !!!!: Supported
   : Not supported
 !!!!: Partly supported

The simulator/debugger does not support the following SuperHTM RISC engine series MCU functions. Programs that use
these functions must be debugged with the SuperHTM RISC engine series emulator.

• 16-bit free-running timer (FRT)

• Serial communication interface (SCI)

• I/O ports

• Interrupt controller (INTC)

2.4 Memory Management

Memory Map Specification: A memory map is used to calculate the number of memory access cycles during simulation.
The following items can be specified:

• Memory type

• Start and end addresses of the memory area

• Number of memory access cycles

• Memory data bus width

The memory types that can be specified differ according to the CPU. For details, refer to section 4.23, Modifying the
Simulator/Debugger Settings. The user program can be executed in all areas except for the internal I/O area.

Memory Resource Specification: A memory resource must be specified to load and execute a user program. The
following items can be specified:

• Start address

• End address

• Access type

149

The access type can be readable/writable, read-only, or write-only.

Since an error occurs if the user program attempts an illegal access (for example, trying to write to read-only memory),
such an illegal access in the user program can be easily detected.

For details on memory resource setting, refer to section 3.3.2, Memory Resource.

2.5 Endian

In the SH-3, SH-3E, SH3-DSP series, SH-4 series, SH2-DSP (SH7065), and SH2-DSP (SH7612), little endian as well as
big endian can be specified as the data allocation format in the memory. This enables a user program created in the little
endian format to be simulated and debugged. Specify the endian when selecting the debugging platform.

The specified endian is valid for all accesses to external memory, and in the SH3-DSP series it is also valid for accesses to
the X or Y memory. Word or longword data is written to or read from the memory in the specified byte order.

Note: The specified endian is applied to all accesses to external memory in common. The SH2-DSP (SH7612) and
SH2-DSP (SH7065) have the function for specifying endian in memory area units, but the
simulator/debugger does not support this function.

2.6 Pipeline Reset Processing

The simulator/debugger that simulates the pipeline execution, resets the pipeline when:

• The program counter (PC) is modified after the instruction simulation stops and before it restarts.

• The Run command to which the execution start address has been specified is executed.

• Initialization is performed.

When the pipeline is reset, data already fetched and decoded is cleared, and new data is fetched and decoded from the
current PC. In addition, the number of executed instructions and the number of instruction execution cycles are zero-
cleared.

2.7 Memory Management Unit (MMU)

For the SH-3, SH-3E, SH3-DSP series, and SH-4 series, the simulator/debugger simulates MMU operations such as TLB
operations, address translation, or MMU-related exceptions (TLB miss exception, TLB protection exception, TLB invalid
exception, and initial page write exception). The user program using address translation by the MMU can thus be
simulated and debugged. In addition, the MMU-related exception handler routines can be simulated and debugged. The
MMU functions differ according to the CPU.

SH-3, SH-3E, and SH3-DSP Series:

The following window and dialog boxes are provided to manipulate the 32-entry 4-way TLB contents.

• TLB window: Displays and flushes the TLB contents

• TLB item modify dialog boxes: Modifies the TLB items

• TLB item find dialog boxes: Searches for the TLB items

For details, refer to section 4.3, Viewing the TLB Contents.

The TLB is mapped in the range H'F2000000 to H'F3FFFFFF (all entries of the TLB are allocated within this range).

SH-4 Series:

150

The following windows and dialog boxes are provided to manipulate the 4-entry instruction TLB and 64-entry unified
TLB contents:

� Instruction TLB window: Displays and flushes the instruction TLB contents

� Unified TLB window: Displays and flushes the unified TLB contents

� TLB item modify dialog boxes: Modifies the TLB items

� TLB item find dialog boxes: Searches for the TLB items

For details, refer to section 4.3, Viewing the TLB Contents.

The instruction TLB is mapped in the range H'F2000000 to H'F3FFFFFF, and the unified TLB is mapped in the range
H'F6000000 to H'F7FFFFFF. The simulator/debugger does not support data array 2 for both the instruction TLB and
unified TLB.

As well as during simulation, the MMU translates virtual addresses into physical addresses during address display or input
in the dialog boxes or windows. Therefore, in the dialog boxes and windows, memory can be accessed with the virtual
addresses used in the user program. Note however that physical addresses must be used in [Memory map] and [System
memory resource].

Note: If an associative write to a TLB entry is performed using the [Memory] window, the entry may not be
modified correctly. In this case, use the [Edit] dialog box in the longword format. To open the [Edit] dialog
box in the longword format, open the [Memory] window in the longword format and double-click the data
to be modified.

2.8 Cache

For the SH-3, SH-3E, SH3-DSP series, SH-4 series, and SH2-DSP (SH7612), the simulator/debugger simulates cache
operations and displays the cache contents and cache hit rate. This allows cache operations to be monitored during user
program execution. The cache contents differ according to the CPU.

2.8.1 Displaying Cache Contents

SH-3, SH-3E, SH3-DSP Series, and SH2-DSP (SH7612):

The following window and dialog boxes are provided to manipulate the cache contents:

� Cache window: Displays and flushes the cache contents

� Cache item modify dialog boxes: Modifies the cache items

� Cache item find dialog boxes: Searches for the cache items

For the SH-3 and SH-3E series, the [Cache Capacity] dialog box enables the cache capacity to be specified. This function
is unique to this simulator. Half of the cache can be specified as internal RAM. Table 2.2 shows the cache capacity and the
ways to be used.

Table 2.2 Specifiable Cache Capacity for SH-3 and SH-3E Series Simulator/Debugger

Cache Capacity Ways to Be Used
Internal RAM Specification
(Ways that Can Be Used as Internal RAM)

8 kbytes Ways 0 to 3 Ways 2 and 3 can be used as internal RAM

4 kbytes Ways 0 and 1 Way 1 can be used as internal RAM

2 kbytes Way 0 No way can be used as internal RAM (internal
RAM specification is ignored)

For details, refer to section 4.4, Viewing the Cache Contents.

151

The cache is mapped in the range H'F0000000 to H'F1FFFFFF in the SH-3, SH-3E, and SH3-DSP series. In the SH2-DSP
(SH7612), the address array is mapped in the range H'60000000 to H'7FFFFFFF, and the data array is mapped in the range
H'C0000000 to H'C0000FFF.

SH-4 and SH-4BSC:

The simulator/debugger simulates operations of the 8-kbyte instruction cache, the 16-kbyte operand cache, and two 32-
byte store queues (SQ). The following windows and dialog boxes are provided to manipulate the cache contents:

• Instruction cache window: Displays and flushes the instruction cache contents

• Operand cache window: Displays and flushes the operand cache contents

• Cache item modify dialog boxes: Modifies the cache items

• Cache item find dialog boxes: Searches for the cache items

For details, refer to section 4.4, Viewing the Cache Contents.

The instruction cache is mapped in the range H'F0000000 to H'F1FFFFFF, the operand cache is mapped in the range
H'F4000000 to H'F5FFFFFF, and the SQ is mapped in the range H'E0000000 to H'E3FFFFFF.

Note: If an associative write to a cache entry or modification of a cache address array is performed by using the
[Memory] window, the entry or array may not be modified correctly. In this case, use the [Edit] dialog box
in the longword format. To open the [Edit] dialog box in the longword format, open the [Memory] window
in the longword format and double-click the data to be modified.

The simulator/debugger does not change the high-order three bits of the address tag stored in a cache address array to
zeros.

When loading a program to the area where the cache is mapped by using the [Load Object File] dialog box or by copying
memory data to this area via the [Copy Memory] dialog box, clear the AT bit of the MMUCR to zero to disable the MMU.

SH-4 (SH7750R):

The simulator/debugger simulates operations of the 16-kbyte instruction cache, the 32-kbyte operand cache, and two 32-
byte store queues (SQ). The following windows and dialog boxes are provided to manipulate the cache contents:

• Instruction cache window: Displays and flushes the instruction cache contents

• Operand cache window: Displays and flushes the operand cache contents

• Cache item modify dialog boxes: Modifies the cache items

• Cache item find dialog boxes: Searches for the cache items

For details, refer to section 4.4, Viewing the Cache Contents.

The instruction cache is mapped in the range H'F0000000 to H'F1FFFFFF, the operand cache is mapped in the range
H'F4000000 to H'F5FFFFFF, and the SQ is mapped in the range H'E0000000 to H'E3FFFFFF.

Note: If an associative write to a cache entry or modification of a cache address array is performed by using the
[Memory] window, the entry or array may not be modified correctly. In this case, use the [Edit] dialog box
in the longword format. To open the [Edit] dialog box in the longword format, open the [Memory] window
in the longword format and double-click the data to be modified.

The simulator/debugger does not change the high-order three bits of the address tag stored in a cache address array to
zeros.

When loading a program to the area where the cache is mapped by using the [Load Object File] dialog box or by copying
memory data to this area via the [Copy Memory] dialog box, clear the AT bit of the MMUCR to zero to disable the MMU.

152

2.8.2 Ca che Hit Ra te

Checking a nd Displa y ing the Ca che Hit Rate: The simulator/debugger acquires the rate of the cache hit count to the
cache access count as the cache hit rate. The cache hit rate is displayed in percentage in the [Platform] sheet in the [Status]
window. The cache hit rate is obtained by dividing the cache hit count by the cache access count (the sum of the cache hit
count and cache miss count).

The cache hit count and cache miss count are also displayed.

Initia lizing the Ca che Hit Rate: The displayed cache hit rate is reset to zero when the simulator/debugger is initiated, the
pipeline is reset, or the CCR control register value is modified. In the SH3-DSP series, the cache hit rate is reset to zero
also when the CCR2 control register value is modified.

2.9 Bus State Controller (BSC)

For the SH-4BSC, the simulator/debugger has the functions for specifying and modifying the memory map to use the BSC
so that a user program using the BSC can be debugged.

Table 2.3 lists the memory types that can be specified for the SH-4BSC.

Table 2 .3 Memory Ty pes f or SH- 4BSC Simula tor/Debugger

Address Specifiable Memory Types

H'00000000 to H'03FFFFFF (area 0) Normal memory, burst ROM, and MPX

H'04000000 to H'07FFFFFF (area 1) Normal memory, byte control SRAM, and MPX

H'08000000 to H'0BFFFFFF (area 2) Normal memory, DRAM, SDRAM, and MPX

H'0C000000 to H'0FFFFFFF (area 3) Normal memory, DRAM, SDRAM, and MPX

H'10000000 to H'13FFFFFF (area 4) Normal memory, byte control SRAM, and MPX

H'14000000 to H'17FFFFFF (area 5) Normal memory, burst ROM, and MPX

H'18000000 to H'1BFFFFFF (area 6) Normal memory, burst ROM, and MPX

H'1C000000 to H'1FFFFFFF (area 7) Cannot be specified

H'7C000000 to H'7C001FFF Internal RAM (cannot be changed)

H'E0000000 to H'FFFFFFFF I/O (cannot be changed)

The high-order three bits of the addresses for areas 0 to 7 in table 2.3 must be ignored; H'00000000 and H'20000000 are
both in area 0.

The simulator/debugger does not support the PCMCIA interface.

For details on settings of memory mapping, refer to section 3.3.1, Memory Map.

2.10 Direct Memory Access Controller (DMAC)

For the SH-4BSC, the simulator/debugger simulates the 4-channel DMAC operations; the user program using the DMAC
can be debugged.

2.11 SH-4 and SH-4 (SH7750R) Supporting Functions

2.11.1 BSC

For the SH-4 and SH-4 (SH7750R), by eliminating the bus control function in the BSC, only SRAM, bus width, and the
number of states can be specified.

153

Table 2.4 lists the memory types that can be specified for the SH-4 and SH-4 (SH7750R).

Table 2 .4 Memo ry Types f or SH-4/SH-4 (SH7750R) Simula tor/Debug ger

Address Specifiable Memory Types

H'00000000 to H'03FFFFFF (area 0)

H'04000000 to H'07FFFFFF (area 1)

H'08000000 to H'0BFFFFFF (area 2)

H'0C000000 to H'0FFFFFFF (area 3)

H'10000000 to H'13FFFFFF (area 4)

H'14000000 to H'17FFFFFF (area 5)

H'18000000 to H'1BFFFFFF (area 6)

SRAM

H'1C000000 to H'1FFFFFFF (area 7) Cannot be specified

H'7C000000 to H'7C001FFF Internal RAM (cannot be changed)

H'E0000000 to H'FFFFFFFF I/O (cannot be changed)

2.11.2 DMA

The DMA function cannot be used.

2.11.3 External/Internal Clock Ratio

The external/internal clock ratio is 1:1. This can be modified by the CLOCK_RATE command only for the SH-4 series.
For details on the CLOCK_RATE command, refer to section 5.18, CLOCK_RATE.

2.11.4 Control Registers

Table 2.5 lists the control registers supported by the SH-4 and SH-4 (SH7750R) simulator/debugger.

154

Table 2 .5 Contro l Regist ers Suppo rt ed by SH- 4/SH- 4 (SH7750R) Simula tor/Debugger (1)

Register Name Whether or Not Supported

PTEH S upported

PTEL Supported

TTB Supported

TEA Supported

MMUCR Supported

EXPEVT Supported

INTEVT Supported

TRA Supported

CCR Supported

QACR0, QACR1 Supported

SAR0-SAR3 Not supported

DAR0-DAR3 Not supported

DMATCR0-DMATCR3 Not supported

CHCR0-CHCR3 Not supported

DMAOR Not supported

MCR Not supported

BCR1, BCR2 Partly supported

WCR1, WCR2 Partly supported

WCR3 Not supported

RTCSR Not supported

RTCNT Not supported

RTCOR Not supported

RFCR Not supported

Note: Values of the registers that are not supported can be modified or referenced via the [IO] window, etc., but
the simulator/debugger execution will not be affected.

Table 2.6 shows how each control register is supported by each field.

155

Table 2 .6 Contro l Regist ers Suppo rt ed by SH- 4/SH- 4 (SH7750R) Simula tor/Debugger (2)

Register Name Field Name Whether or Not Supported

BCR1 E NDIAN Supported

 MASTER Not supported

 A0MPX Not supported

 A0BST Not supported

 A5BST Not supported

 A6BST Not supported

 DRAMTP Not supported

 IPUP Not supported

 OPUP Not supported

 A1MBC Not supported

 A4MBC Not supported

 BREQEN Not supported

 PSHR Not supported

 MEMMPX Not supported

 HIZMEM Not supported

 HIZCNT Not supported

 A56PCM Not supported

BCR2 A6SZ-A0SZ Supported

 PORTEN Not supported

WCR1 DMAW Not supported

 A6IW-A0IW Supported

WCR2 A6W-A0W Supported

 A6B Not supported

 A5B Not supported

 A0B Not supported

Note: Values of the registers that are not supported can be modified or referenced via the [IO] window, etc., but
the simulator/debugger execution will not be affected.

156

2.12 Exception Processing

The simulator/debugger detects the generation of exceptions corresponding to TRAPA instructions, general illegal
instructions, slot illegal instructions, and address errors. In addition, for the SH-3, SH-3E, SH3-DSP series, and SH-4
series, the simulator/debugger simulates MMU-related exception processing (TLB miss, TLB protection exception, TLB
invalid exception, and initial page write). For the SH-2E, SH-3E, and SH-4 series, the simulator/debugger also simulates
FPU exception processing. Accordingly, simulation can be performed even when an exception occurs.

The simulator/debugger simulates exception processing with the following procedures, depending on the [Execution
Mode] setting in the [Simulator System] dialog box.

SH-1, SH-2, SH-2E, and SH2-DSP Series:

� When [Continue] is selected (continuation mode):

1. Detects an exception during instruction execution.

2. Saves the PC and SR in the stack area.

3. Reads the start address from the vector address corresponding to the vector number.

4. Starts instruction execution from the start address. If the start address is 0, the simulator/debugger stops exception
processing, displays that an exception processing error has occurred, and enters the command input wait state.

� When [Stop] is selected (stop mode):

Executes steps 1 to 3 above, then stops.

SH-3, SH-3E, and SH3-DSP Series:

� When [Continue] is selected (continuation mode):

1. Detects an exception during instruction execution.

2. Saves the PC and SR to the SPC and SSR, respectively.

3. Sets the BL bit, RB bit, and MD bit in the SR to 1.

4. Sets an exception code in control register EXPEVT. If necessary, appropriate values are set in other control
registers.

5. Sets the PC to the vector address corresponding to the exception cause. (If an exception is detected when the BL bit
in the SR is 1, reset vector address H'A0000000 is set in the PC regardless of the exception cause.)

6. Starts instruction execution from the address set in the PC.

� When [Stop] is selected (stop mode):

Executes steps 1 to 5 above, then stops.

157

SH-4 Series :

� When [Continue] is selected (continuation mode):

1. Detects an exception during instruction execution.

2. Saves the PC and SR to the SPC and SSR, respectively.

3. Sets the BL bit, RB bit, and MD bit in the SR to 1.

4. Sets the FD (FPU disable) bit in the SR to 0 at reset.

5. Sets an exception code in control register EXPEVT. If necessary, appropriate values are set in other control
registers.

6. Sets the PC to the vector address corresponding to the exception cause. (If an exception is detected when the BL bit
in the SR is 1, reset vector address H'A0000000 is set in the PC regardless of the exception cause.)

7. Starts instruction execution from the address set in the PC.

� When [Stop] is selected (stop mode):

Executes steps 1 to 6 above, then stops.

2.13 Control Registers

For the SH-3, SH-3E, SH3-DSP series, and SH-4 series, the simulator/debugger supports the memory-mapped control
registers that are used for exception processing, MMU control, and cache control. In addition, for the SH-4 series, the
simulator/debugger also supports the control registers that are used for BSC and DMAC control. For the SH2-DSP
(SH7612), the simulator/debugger only supports the CCR register that is used for cache control. Therefore, a user program
using exception processing, MMU control, cache control, BSC control, and DMAC control can be simulated and
debugged.

The control registers supported by the simulator/debugger are listed below.

MMU PTEH: Page table entry high register
 PTEL: Page table entry low register
 TTB: Translation table base register
 TEA: TLB exception address register
 MMUCR: MMU control register
Exception processing TRA: TRAPA exception register
 EXPEVT: Exception event register
 INTEVT: Interrupt event register
Cache CCR: Cache control register
 CCR2 *1: Cache control register 2
 QACR0 and QACR1*2: Queue address control registers 0 and 1

158

BSC BCR1 and BCR2*2: Bus control registers 1 and 2
 WCR1 to WCR3*2: Wait state control registers 1 to 3
 MC R*2: Individual memory control register
 RT CSR*2: Refresh timer control/status register
 RT CNT*2: Refresh timer/counter
 RT COR*2: Refresh time constant register
 RFCR *2: Refresh count register
DMAC SAR0 to SAR3*2: DMA source address registers 0 to 3
 DAR0 to DAR3*2: DMA destination address registers 0 to 3
 DMATCR0 to DMATCR3*2: DMA transfer count registers 0 to 3
 CHCR0 to CHCR3*2: DMA channel control registers 0 to 3
 DMAOR *2: DMA operation register

Notes: 1. The regist er marked wit h *1 is suppo rt ed onl y f or t he SH3- DSP series.

 2. The regist ers ma rked wit h *2 a re suppo rt ed only f or t he SH- 4 series.
Only the CCR regist er is suppo rt ed for t he SH2- DSP (SH7612).

The simulator/debugger does not support the PCMCIA interface and the synchronous DRAM mode register.

To modify or display a control register value, use the [IO] window. For details, refer to section 4.7, Viewing the I/O
Memory.

2.14 Trace

The simulator/debugger writes the execution results of each instruction into the trace buffer. The conditions for trace
information acquisition can be specified in the [Trace Acquisition] dialog box. Right-clicking on the [Trace] window
displays the pop-up menu. Choose [Acquisition...] from the pop-up menu to display the [Trace Acquisition] dialog box.
The acquired trace information is displayed in the [Trace] window. The trace information displayed in the [Trace] window
differs according to the CPU.

The trace information can be searched. The search conditions can be specified in the [Trace Search] dialog box. Right-
clicking on the [Trace] window displays the pop-up menu. Choose [Find...] from the pop-up menu to display the [Trace
Search] dialog box.

For details, refer to section 4.16, Viewing the Trace Information.

159

2.15 Standar d I/O and F ile I/O Processi ng

The simulator/debugger enables the standard I/O and file I/O processing listed in table 2.7 to be executed by the user
program. When the I/O processing is executed, the [Simulated I/O] window must be open. Table 2.7 shows the supported
I/O functions.

Table 2 .7 I/O Funct ions

No.
Function
Code Func tion Name Description

1 H'21 GETC Inputs one byte from the standard input device

2 H'22 PUTC Outputs one byte to the standard output device

3 H'23 GETS Inputs one line from the standard input device

4 H'24 PUTS Outputs one line to the standard output device

5 H'25 FOPEN Opens a file

6 H'06 FCLOSE Closes a file

7 H'27 FGETC Inputs one byte from a file

8 H'28 FPUTC Outputs one byte to a file

9 H'29 FGETS Inputs one line from a file

10 H'2A FPUTS Outputs one line to a file

11 H'0B FEOF Checks for end of the file

12 H'0C FSEEK Moves the file pointer

13 H'0D FTELL Returns the current position of the file pointer

For details on I/O functions, refer to section 4.24, Standard I/O and File I/O Processing.

160

2.16 Break Conditions

The simulator/debugger provides the following conditions for interrupting the simulation of a user program during
execution.

� Break due to the satisfaction of a break command condition

� Break due to the detection of an error during execution of the user program

� Break due to a trace buffer overflow

� Break due to execution of the SLEEP instruction

� Break due to the [STOP] button

Brea k Due t o Sa tisf action o f a Bre ak Co mma nd Co ndit ion: There are six break commands as follows:

� BREAKPOINT: Break based on the address of the instruction executed

� BREAK_ACCESS: Break based on access to a memory range

� BREAK_CYCLE Break based on the number of execution cycles

� BREAK_DATA: Break based on the value of data written to memory

� BREAK_REGISTER: Break based on the value of data written to a register

� BREAK_SEQUENCE: Break based on a specified execution sequence

If [Stop] is specified as the action for when a break condition is satisfied, user program execution stops when the break
condition is satisfied. For details, refer to section 4.17, Using the Simulator/Debugger Breakpoints.

When a break condition is satisfied and user program execution stops, the instruction at the breakpoint may or may not be
executed before a break depending on the type of break, as listed in table 2.8.

Table 2 .8 Processing When a Brea k Co ndit ion is Sa tisf ied

Command Instruction When a Break Condition is Satisfied

BREAKPOINT N ot executed

BREAK_ACCESS Executed

BREAK_CYCLE Executed

BREAK_DATA Executed

BREAK_REGISTER Executed

BREAK_SEQUENCE Not executed

For BREAKPOINT and BREAK_SEQUENCE, if a breakpoint is specified at an address other than the beginning of the
instruction, the break will not be detected.

When a break condition is satisfied during user program execution, a break condition satisfaction message is displayed in
the [Output] window and execution stops.

Break Due to Error Detection during User Program Execution: The simulator/debugger detects simulation errors, that
is, program errors that cannot be detected by the CPU exception generation functions. The [Simulator System] dialog box
specifies whether to stop or continue the simulation when such an error occurs. Table 2.9 lists the error messages, error
causes, and the action of the simulator/debugger in the continuation mode.

161

Table 2 .9 Simula t ion Erro rs

Error Message Error Cause
Processing in Continuation
Mode

Access to a memory area that has not
been allocated

Write to a memory area having the write
protect attribute

Read from a memory area having the
read disable attribute

Memory Access Error

Access to an area where memory does
not exist

On memory write, nothing is
written; on memory read, all bits
are read as 1.

Zero division executed by the DIV1
instruction

Illegal Operation

Writing zero by the SETRC instruction

Shift of more than 32 bits executed by
the PSHA instruction

Illegal DSP Operation

Shift of more than 16 bits executed by
the PSHL instruction

Operates in the same way as the
actual device operation.

Invalid DSP Instruction
Code

Invalid DSP instruction code Always stops.

TLB Multiple Hit Hit to multiple TLB entries at MMU
address translation (only for the SH-3,
SH-3E, and SH3-DSP series)

Undefined.

When a simulation error occurs in the stop mode, the simulator/debugger returns to the command input wait state after
stopping instruction execution and displaying the error message. Table 2.10 lists the states of the program counter (PC) at
simulation error stop. The status register (SR) value does not change at simulation error stop.

162

Table 2.10 Register States at Simulation Error Stop

Error Message PC Value

Memory Access Error � When an instruction is read:

� SH2-DSP and SH3-DSP series

The third instruction address before the instruction that caused the
error.

� SH-1, SH-2, SH-2E, SH-3, SH-3E, and SH-4 series

The instruction address before the instruction that caused the error.

The slot address if an error occurs when a branch destination is
read.

� When an instruction is executed:

The instruction address following the instruction that caused the error.

Illegal Operation The instruction address following the instruction that caused the error.

Illegal DSP Operation The second instruction address following the instruction that caused the
error.

Invalid DSP
Instruction Code

The second instruction address following the instruction that caused the
error.

TLB Multiple Hit The address of the instruction that caused the error.

Use the following procedure when debugging programs that include instructions that generate simulation errors.

1. First execute the program in the stop mode and confirm that there are no errors except those in the intended locations.

2. After confirming the above, execute the program in the continuation mode.

Note: If an error occurs in the stop mode and simulation is continued after changing the simulator mode to the

continuation mode, simulation may not be performed correctly. When restarting a simulation, always
restore the register contents (general, control, and system registers) and the memory contents to the state
prior to the occurrence of the error.

Break Due to a Trace Buffer Overflow: After the [Break] mode is specified with [Trace Buffer Full Handling] in the
[Trace Acquisition] dialog box, the simulator/debugger stops execution when the trace buffer becomes full. The following
message is displayed in the [Output] window when execution is stopped.

 Trace Buffer Full

Break Due to Execution of the SLEEP Instruction: When the SLEEP instruction is executed during instruction
execution, the simulator/debugger stops execution. The following message is displayed in the [Output] window when
execution is stopped.

 Sleep

Note: When restarting execution, change the PC value to the instruction address at the restart location.

Break Due to the [STOP] Button: Users can forcibly terminate execution by clicking the [STOP] button during
instruction execution. The following message is displayed in the [Output] window when execution is stopped.

 Stop

Execution can be resumed with the GO or STEP command.

163

2.17 Floating-Point Data

Floating-point numbers can be used for the following real-number data, which makes floating-point data processing easier.
The following data can be specified for floating-point data:

� Data in the [Set Break] dialog box when the break type is set to [Break Data] or [Break Register]

� Data in the [Memory] window

� Data in the [Fill Memory] dialog box

� Data in the [Search Memory] dialog box

� Input data in the [Register] dialog box

The floating-point data format conforms to the ANSI C standard.

In the simulator/debugger, the rounding mode for floating-point decimal-to-binary conversion can be selected in the
[Simulator System] dialog box. One of the following two modes can be selected:

� Round-to-nearest (RN)

� Round-to-zero (RZ)

If a denormalized number is specified for binary-to-decimal or decimal-to-binary conversion, it is converted to zero in RZ
mode, and left as a denormalized number in RN mode. If an overflow occurs during decimal-to-binary conversion, the
maximum floating-point value is returned in RZ mode, and the infinity is returned in RN mode.

2.18 Display of Function Call History

The simulator/debugger displays the function call history in the [Stack Trace] window when simulation stops, which
enables program execution flow to be checked easily. Selecting a function name in the [Stack Trace] window displays the
corresponding source program in the [Source] window. This allows the function that has called the current function to also
be checked.

The displayed function call history is updated in the following cases:

� When simulation stops due to the break conditions described in section 2.16, Break Conditions.

� When register values are modified while simulation stops due to the above break conditions.

� While single-step execution is performed.

For details, refer to section 4.15, Viewing the Function Call History.

2.19 Perfor man ce Meas uremen t

The simulator/debugger has the profiler function and performance analysis function for performance measurement of the
user program.

2.19. 1 Profi ler

The profiler function displays the memory address and size allocated to functions and global variables, the number of
function calls, and the profile data for the entire user program. The profile data displayed differs according to the CPU.

Profile information is displayed in list, tree, and chart formats.

Profile information is useful in optimizing user programs by reducing the size and putting the most frequently called
functions in-line.

164

When using the profile information saved in a file, it is possible to optimize user programs based on dynamic information
using the optimizing linkage editor.

For details, refer to section 4.14, Viewing the Profile Information, and section 4.2.3, Optimize Option Profile in the
Optimizing Linkage Editor User's Manual.

2.19.2 Performance Analysis

The performance analysis function displays the number of execution cycles and function calls for the specified function in
the user program. Since performance data for only the specified function is acquired, simulation can be done faster. For
details, refer to section 4.18, Analyzing Performance.

2.20 Pseudo-Interrupts

The simulator/debugger can generate pseudo-interrupts during simulation in the following two ways:

1. Pseudo-interrupts generated by break conditions

A pseudo-interrupt can be generated using a break command to specify [Interrupt] as the action when a break condition
is satisfied. For details, refer to “Specifying the Action at Break” in section 4.17.2, Setting a Breakpoint.

2. Pseudo-interrupts generated from the [Trigger] window

A pseudo-interrupt can be generated by clicking a button in the [Trigger] window. For details, refer to section 4.22,
Generating a Pseudo-Interrupt Manually.

If another pseudo-interrupt occurs between a pseudo-interrupt occurrence and its acceptance, only the interrupt that has a
higher priority can be processed.

Note: Whether an interrupt is accepted is determined by the specifications of the CPU for the selected debugging
platform. Note however that when H'11 is specified as the priority level of an interrupt, that interrupt is
always accepted. The simulator/debugger does not simulate the operation of the interrupt controller.

2.21 Coverage

The simulator/debugger acquires instruction coverage information during instruction execution within the address range
specified by the user.

The status of each instruction execution can be monitored through the instruction coverage information. In addition, this
information can be used to determine which part of a program has not been executed.

The [Coverage] window displays the acquired instruction coverage information:

The instruction coverage information can also be displayed in the [Source] window by highlighting the column
corresponding to the source line of the executed instruction.

The instruction coverage information can be saved in or loaded from a file. Only a file in the .COV format can be loaded.

For details, refer to section 4.19, Acquiring Code Coverage.

165

Section 3 Preparations for Debugging

This section describes the preparations for debugging your program. You will learn how to select and configure a
debugging platform with which to debug, how to load your debug target file, and what the debugger sessions are.

3.1 Building before Debugging

To debug your program in the C/C++ source level, your C/C++ program must be compiled and linked with the [Debug]
option enabled. When this option is enabled, the compiler puts all the information necessary for debugging your C/C++
code into the absolute file or management information file. If either of these files is used for this purpose, it is usually
called a debug object file. When you create your project, the initial setup will normally be configured for debugging.

Note: Make sure you have the [Debug] option enabled in your compiler and linker, when you generate an object
file for debugging.
Even if your debug object file does not contain any debugging information (for example, the S-record
format), you can still load it into the debugging platform, but you will only be able to debug it in the
assembly-language level.

3.2 Selecting a Debugging Platform

Selecting the debugging platform is very dependent on the installation method of the HEW. If the HEW has a toolchain
installed, the application project generator will be able to set up both the toolchain and the debugger targets
simultaneously. This allows the options for the targets and toolchain to be matched closely so no inconsistencies occur. If
there is no toolchain installed, you will only be able to select debug-only project types. By default, the HEW will display
the debug-only project generation type for each CPU family in the [New Project Workspace] dialog box. This project type
will provide similar behavior to the previous [HDI session] dialog box.

Figure 3.1 New Project Workspace Dialog Box

166

The dialog box shown in figure 3.1 allows you to select a project generation type that matches your target CPU.

[Application] Project for generating an execution program that includes the initial routine file written in the
C/C++ language or assembly language.

[Demonstration] Project for generating a demonstration program written in the C language or assembly language.

[Empty Application] Project for only setting the toolchain environment (no generation file).

[Library] Project for generating a library file (no generation file).

Note: Select [Empty Applica t ion] to genera te a debug- only proj ect .

Figure 3.2 CPU Selection Display (Step 1)

1. Select the CPU in Step 1. The CPU types ([CPU Type]) are classified according to the CPU series ([CPU Series]).
Select the CPU corresponding to the program to be developed because the generation file differs according to the
[CPU Series] and [CPU Type] settings. If there is no corresponding CPU, select a CPU with similar hardware
specifications or [Other].

The following buttons at the bottom of the dialog box are the same as those in the [New Project] wizard dialog box.

[Next>] Moves to the next display.

[<Back] Returns to the previous display.

[Finish] Opens the [Summary] dialog box.

[Cancel] Returns to the [New Project Workspace] dialog box.

To move to Step 2, click the [Next>] button in Step 1.

167

Figure 3.3 Option Setting Display (Step 2)

2. Specify the options common to all project files in Step 2. The specifiable items depend on the CPU selected in Step 1.

List Box Settings:

[Endian] Selects the endian type.

 [Big] Byte order of memory data is big endian

 [Little] Byte order of memory data is little endian

[FPU] Selects the floating-point operation mode.

 [Single] Single-precision operation

 [Double] Double-precision operation

 [Mix] Operation according to the source code definition

[Round] Selects the rounding mode of the floating-point operation result.

 [Zero] Round-to-zero

 [Nearest] Round-to-nearest

168

Check Bo x Set t ings:

[Denormalized number allowed as a result] Checking handles the denormalized number of a floating-point number
as a denormalized number. By default, the denormalized number is
handled as zero.

[Position independent code (PIC)] Checking generates a position independent code.

[Treat double as float] Checking converts double type into float type before object file
generation.

[Use try, throw and catch of C++] Checking enables the C++ exception processing functions (try, catch,
and throw).

[Enable/disable runtime type information] Enables or disables the type information at execution.

 When checked, dynamic_cast and typeid are enabled.

To move to Step 3, click the [Next>] button in Step 2.

Figure 3.4 Generation File Setting Display (Step 3)

3. Specify the generation file in Step 3.

[Use I/O Library] Checking enables use of standard I/O libraries.

 [Number of I/O Specifies the number of I/O streams that
Streams] can be used simultaneously.

[Use Heap Memory] Checking enables use of the heap area management function sbrk().

 [Heap Size] Specifies the size of the heap area to be
 managed.

[Generate main() Function] Selects generation of a model main function.
Generates a main function file [(Project name).c(cpp)].

[I/O Register Definition Files] Checking generates an I/O register definition file (iodefine.h) written in the C language.

 [Generate Hardware Selects generation of a model I/O
Setup Function] register initial setting program.
 Generates a hardware setting file
 (hwsetup.c(cpp) or hwsetup.src).

169

Note: To include a main function that has already been made, select [None] in [Generate main() Function]
and after making the project, add the file containing the main function to the project. Note that if the
name of the function to be included is different, the function calling section in resetprg.c must be
modified. Be sure to refer to the hardware manual of the CPU for actual values of the sample file
contents, such as the vector table definition and I/O register definition, which are generated by the
project generator.

To move to Step 4, click the [Next>] button in Step 3.

Figure 3.5 Standard Library Setting Display (Step 4)

4. Specify the configuration of the standard libraries used by the C/C++ compiler in Step 4.

The functions defined in the checked items and the runtime function are included.

[Enable all] Selects all standard library functions.

[Disable all] Does not select all standard library functions.
Note that only the minimum required functions, runtime and new, are selected.

To move to Step 5, click the [Next>] button in Step 4.

170

Figure 3.6 Stack Area Setting Display (Step 5)

5. Specify the stack area in Step 5. This is done by setting the initial value of the stack pointer and the stack size. The
initial value of the stack areas depends on the CPU selected in Step 1.

Note: The stack area is defined by stacksct.h which is generated by the HEW. If stacksct.h has been modified
by an editor, it cannot be modified from [Project -> Edit Project Configuration] in the HEW.

To move to Step 6, click the [Next>] button in Step 5.

171

Figure 3.7 Vector Setting Display (Step 6)

6. Specify the vector in Step 6.

[Vector Definition Files] Checking generates a vector definition file and a vector table setting function definition
file.

[Vector Handlers] [Handler] Displays the handler program name of the reset
 vector.
 To modify the handler program, after selecting the
 handler program name by clicking on it, enter the
 new handler program name. Note that if the handler
 program is modified, a reset program (resetprg.c)
 is not generated.

 [Vector] Displays a description of the vector.

Note: Since the generated reset program, interrupt functions, reset vector handlers, and interrupt source
register definitions are samples, be sure to refer to the CPU hardware manual.

To move to Step 7, click the [Next>] button in Step 6.

172

Figure 3.8 Debugger Target Setting Display (Step 7)

7. Specify the debugger targets in Step 7.

[Targets] Sets the debugger targets. Select (by checking) the debugger targets. No selection or a selection of
more than one target is possible.

[Target Type] Specifies the type of the targets displayed in [Targets].

To move to Step 8, click the [Next>] button in Step 7.

173

Figure 3.9 Debugger Option Setting Display (Step 8)

8. Set the options for the debugger targets selected in Step 8.

[Configuration name] By default, the HEW generates two configurations: [Release] and [Debug]. If a debugger
target is selected, a configuration for the selected target is also generated (an abbreviation
including the target name). This configuration name can be changed in [Configuration
name].

[Detail options] Sets the debugger target options. To modify an option, select [Item] and click [Modify]. If
the selected item cannot be modified, [Modify] remains gray even when [Item] is selected.

 [Simulator I/O] System call for standard I/O or file I/O
 from the user program is enabled ([Enable])
 or disabled ([Disable]).

 [Simulator I/O addr.] Address for above system call.

 [Bus mode] Currently cannot be used by the
 simulator/debugger.

To move to Step 9, click the [Next>] button in Step 8.

174

Figure 3.10 Generation File Name Modification Display (Step 9)

9. The files to be generated by the HEW based on the settings made so far is displayed as a list in Step 9.

[File Name] File name
To change a file name, after selecting the file name by clicking on it, enter the new file name.

[Extension] File extension

[Description] Description of the file

Clicking the [Finish] button in Step 9 displays the [Summary] dialog box.

175

Figure 3.11 Summary Dialog Box

10. The project generator displays information on the project to be generated in the [Summary] dialog box. After
confirming the display contents, click the [OK] button.

Checking [Generate Readme.txt as a summary file in the project directory] will save the project information displayed
in the [Summary] dialog box as a text file named Readme.txt in the project directory.

3.3 Configuring the Debugging Platform

Before loading a program into your debugging platform, the platform must be set up to match your application system.
The items that must be set are typically the device type, operating mode, clock speed, and memory map. It is particularly
important to set the memory map. In the HEW, the project generation process will have completed much of this work.
However if you are using a board with a configuration different from the standard types, then some customization will be
required.

3.3.1 Memory Map

The debugging platform needs to know which areas in the device's address space are RAM, ROM, on-chip registers, or
areas where memory is not allocated. Therefore, the memory map must be set up.

When you select the device type and mode in the project generator, the HEW will automatically set up the map for that
device and the mode in which the processor is operating. For example, in a device with internal ROM and RAM, the areas
where these are located in the device's memory map will be set by default.

When external memory is used, the debugging platform requires to be informed.

When using the simulator, the memory map settings can be modified in the [Simulator System] dialog box. For details,
refer to section 4.24.1, Simulator System Dialog Box.

176

In this case, the settings can be referred to in the [Simulator] sheet of the [Standard Toolchain] dialog box. Clicking the
[View] button of the [Standard Toolchain] dialog box (figure 3.12) displays the [CPU hardware map] dialog box (figure
3.13).

Figure 3.12 Standard Toolchain Dialog Box

Figure 3.13 CPU hardware map Dialog Box

The following information is displayed:

[Operation] Displays the address range in the upper step.
Displays the linkage map in the lower step.

[Memory View] Displays memory map and memory resource information.
A memory resource already allocated (Allocated Area) is displayed in yellow.

177

3.3.2 Memory Resource

To use the simulator, the memory resource of the address range being used must be saved.

In this case, the settings can be referred to in the [Simulator] sheet of the [Standard Toolchain] dialog box (figure 3.12).
The [Simulator] sheet contains the following buttons:

[View] Displays the memory map information.

[Add] Adds a memory resource.

[Modify] Modifies the selected memory resource.

[Remove] Removes the selected memory resource.

Clicking the [Add] button displays the [Add memory resource] dialog box (figure 3.14).

Figure 3.14 Add memory resource Dialog Box

Specify the following items in the [Add memory resource] dialog box:

[Start] Start address

[End] End address

[Attribute] Attribute (R: Read-only, R/W: Readable/Writable)

The memory resource settings can be changed in the [Simulator Memory Resource] dialog box. For details, refer to
section 4.24.4, Simulator Memory Resource Dialog Box.

Modification of the memory resource information in the [Simulator Memory Resource] dialog box will be reflected in the
contents of the [Standard Toolchain] dialog box, and modification in the [Standard Toolchain] dialog box will be reflected
in the contents of the [Simulator Memory Resource] dialog box as well.

3.3.3 Downloading a Program

If there is sufficient memory in the system in which to download your program, you can then proceed to download a
program to debug. By default, the program output from the linker of the current project is automatically downloaded.

It is also possible to manually choose the download modules after the project creation. This is achieved via the [Debug
Settings] dialog box shown in figure 3.16. This dialog box allows you to control the debug settings throughout your
workspace. The tree on the left of the dialog box contains all of the current projects. Selecting a project in this tree will
then show you the settings for that project, and the session selection in the session drop-down list. Multiple sessions or all

178

sessions in this list box can be selected. If you select multiple sessions, you can choose to modify the settings for one or
more sessions at once. The [Debug Settings] dialog box displays the following debug options:

� Current debug target for the current project and session selection

� Download modules for the current project and session selection

The download module list displays the order in which the files will be downloaded to the target. It is possible to add,
remove, modify, move up, and move down modules in this list.

 To add a new download module:

1. Select [Options -> Debug Settings…]. The dialog box shown in figure 3.16 will be displayed.

2. Select the project and configurations you are interested in adding a download module to in [tree control].

3. Click the [Add] button. The dialog box displayed in figure 3.15 is displayed.

4. The [Format] list box contains a list of supported object format readers. This allows you to choose the correct
reader for the download module you wish to add to the project.

5. The [Filename] field allows you to browse to the download module on your disk, or simply type it into [edit
control] if you have not yet built the module.

6. Enter an offset address to the [Offset] field (suitable only for some object formats).

7. When the user clicks the [OK] button, the debug download module is added to the bottom of the list. If you wish to
position the module in a different position in relation to the other modules, select the module and then use the [Up]
and [Down] buttons to position the module correctly.

Figure 3.15 Download Module Dialog Box

179

Figure 3.16 Debug Settings Dialog Box ([Target] Sheet)

Any changes made in the [Debug Settings] dialog box do not take effect until you click the [OK] button.

The default debug format is set to the first download module in the list by default. Only one default debug object format
can be specified for each session. All currently installed debugger formats are listed here.

Figure 3.17 Debug Settings Dialog Box ([Options] Sheet)

180

The [Options] sheet (figure 3.17) of the [Debug Settings] dialog box contains the option that determines when a target is
connected. If the option is checked, the target is not connected until you select [Build -> Debug -> Go]. If the option is
unchecked, the target is connected whenever a configuration is opened. This happens when a new workspace or project is
opened or also when you switch configuration using the toolbar or [Build Configurations] dialog box.

The [Command Line Batch Processing] list in the sheet contains a list of command line batch commands. These batch
commands can perform debug operations via the command line. When these commands are executed can be selected in
the [Command batch file load timing] drop-down list. Add the batch file to be executed after selecting an item in the
[Command batch file load timing] drop-down list. The order in the list is the order in which the command line batch files
will be executed when the timing event occurs.

181

3.3.4 Manual Download of Modules

Once you have decided which modules are to be downloaded to the target, it is possible to manually update the modules of
the connected target by selecting [Debug -> Download Modules]. This allows a single module or all of the modules to be
downloaded. This can also be achieved by right-clicking on modules under the [Download Module] folder in the
[Workspace] window.

3.3.5 Automatic Download of Modules

When you select [Debug -> Run…], the HEW calculates whether any of the files or debugger settings that affect the
modules have changed since the last download. If the HEW detects a change, then it asks the user whether a download
needs to take place for each module. If the user selects [Yes], then the module is downloaded to the target.

If you have banked multiple modules at the same start address, only the first module at that address is downloaded by
default. It is then possible to manually load or unload the other modules in the list whenever you want from the [Debug ->
Download Modules] and the [Debug -> Unload Modules] menu items.

3.3.6 Unloading of Modules

It is possible to manually unload downloaded modules in the list whenever you want from the [Debug -> Unload Modules]
menu item. This can also be done from the [Download Module] pop-up menu in the [Workspace] window.

When a module is unloaded, its symbols are erased from the HEW debugging system, but the memory contents of the
target remains unmodified. After a module has been unloaded, it cannot be debugged unless it is reloaded.

3.4 Debugger Sessions

The HEW stores all of your builder options into a configuration. In a similar way, the HEW stores your debugger options
in a session. The debugging platforms, the programs to be downloaded, and each debugging platform’s options can be
stored in a session.

Sessions are not directly related to a configuration. This means that multiple sessions can share the same download
module and avoid unnecessary program rebuilds.

Each session’s data should be stored in a separate file in the HEW project. Debugger sessions are described in detail
below.

3.4.1 Selecting a Session

The current session can be selected in the following two ways:

• From the toolbar

Select a session from the drop-down list box (figure 3.18) in the toolbar.

Figure 3.18 Toolbar Selection

• From the dialog box

1. Select [Options -> Debug Sessions…]. This will open the [Debug Sessions] dialog box (figure 3.19).

182

Figure 3.19 Debug Sessions Dialog Box

2. Select the session you want to use from the [Current session] drop-down list.

3. Click the [OK] button to set the session.

183

3.4.2 Adding and Deleting Sessions

A new session can be added by copying settings from another session or deleting a session.

� To add a new empty session

1. Select [Options -> Debug Sessions…] to display the [Debug Sessions] dialog box (figure 3.19).

2. Click the [Add…] button to display the [Add new session] dialog box (figure 3.20).

3. Check the [Add new session] radio button.

4. Enter a name for the session.

5. Click the [OK] button to close the [Debug Sessions] dialog box.

6. This creates a file with the same name as the entered session name. If the file name already exists, an error is
displayed.

Figure 3.20 Add new session Dialog Box

184

� To import an existing session into a new session file

1. Select [Options -> Debug Sessions…] to display the [Debug Sessions] dialog box (figure 3.19).

2. Click the [Add…] button to display the [Add new session] dialog box (figure 3.20).

3. Check the [Use an existing session file] radio button.

4. Enter a name for the session.

5. Browse to the existing session file location that you would like to import into the current project.

If the [Open and maintain link to session file] check box is not checked, the imported new session file is generated
in the project directory.

If the [Open and maintain link to session file] check box is checked, a new session file is not generated in the
project directory but is linked to the current session file.

If the [Make session file link read only] check box is checked, the linked session file is used as read-only.

6. Click the [OK] button to close the [Debug Sessions] dialog box.

� To remove a session

1. Select [Options -> Debug Sessions…] to display the [Debug Sessions] dialog box (figure 3.19).

2. Select the session you would like to remove.

3. Click the [Remove] button.

Note that the current session cannot be removed.

4. Click the [OK] button to close the [Debug Sessions] dialog box.

� To view the session properties

1. Select [Options -> Debug Sessions…] to display the [Debug Sessions] dialog box (figure 3.19).

2. Select the session you would like to view the properties for.

3. Click the [Properties] button to display the [Session Properties] dialog box (figure 3.21).

Figure 3.21 Session Properties Dialog Box

185

� To make a session read-only

1. Select [Options -> Debug Sessions…] to display the [Debug Sessions] dialog box (figure 3.19).

2. Select the session you would like to make read-only.

3. Click the [Properties] button to display the [Session Properties] dialog box (figure 3.21).

4. Check the [Read only] check box to make the link read-only. This is useful if you are sharing debugger-setting
files and you do not want data to be modified accidentally.

5. Click the [OK] button.

� To save a session with a different name

1. Select [Options -> Debug Sessions…] to display the [Debug Sessions] dialog box (figure 3.19).

2. Select the session you would like to save.

3. Click the [Save as] button to display the [Save Session] dialog box (figure 3.22).

4. Browse to the new file location.

5. If you want to export the session file to another location, leave the [Maintain link] check box unchecked. If you
would like the HEW to use this location instead of the current session location, check the [Maintain link] check box.

6. Click the [OK] button.

Figure 3.22 Save Session Dialog Box

186

3.4.3 Saving Session Information

� To sa ve a se ssio n

Select [File -> Sav e Sessio n].

187

Section 4 Debugging

This section describes the debugging operations and their related windows and dialog boxes.

4.1 Viewing a Program

How to look at your program as source code and assembly language mnemonics is explained here. The HEW has various
facilities for dealing with code and symbol information which are explained in this section and you will be shown how to
look at text files via the user interface.

Note: After a break occurs, the HEW displays the location of the program counter (PC). In most cases, for
example if an Elf/Dwarf2 based project is moved from its original path, the source file may not be
automatically found. In this case, the HEW will open a source file browser dialog box to allow you to
manually locate the file. This path will then be used to update any other source files in this debug project.

4.1.1 Viewing the Source Code

Select your source file and click the [Open] button to make the HEW open the file in the integrated editor. It is also
possible to display your source files by double-clicking on them in the [Workspace] window.

Figure 4.1 Source Window

The editor is divided into two areas: the gutter area (containing markers for breakpoints, PC location, etc.) and the text
area (containing color syntax highlighted code). This is shown above in figure 4.1.

4.1.2 Source Address Column

After your program has been downloaded, the [Source] window displays the addresses for the current source file (figure
4.2). The addresses are shown on the left-hand side of the [Source] window. This is useful for deciding where to set the
PC or breakpoints.

188

Figure 4.2 Source Window and Address Column

 To switch off a column in all source files

1. Right-click on the [Editor] window.

2. Click the [Define Column Format…] menu item.

3. The [Global Editor Column States] dialog box is displayed.

4. The [Check status] check box indicates whether the column is enabled or not. If it is checked, the column is
enabled. If the check box is gray, the column is enabled in some files and disabled in others.

5. Click the [OK] button for the new column settings to take effect.

Figure 4.3 Global Editor Column States Dialog Box

 To switch off a column in one source file

1. Right-click on the [Editor] window which contains the column you wish to remove to display the pop-up menu.

2. Click the [Columns] menu item to display a cascaded menu item. Each column is displayed in this pop-up menu.
If the column is enabled, it has a tick mark next to its name. Clicking the entry will toggle whether the column is
displayed or not.

189

4.1.3 Debugger Columns

The debugging platform can add columns to the [Source] window. These added columns are referred to as debugger
columns.

The columns that can be added to the [Source] window differ according to the debugging platform. The [Coverage]
column that graphically displays code coverage during debugger execution is an example of the columns that can be added.

Right-clicking on the column displays the respective pop-up menu for that column. Double-clicking on the column has a
different effect depending on the column. For example, in the [Editor] column, this sets a PC breakpoint.

4.1.4 Viewing the As s embl y-L a nguage Code

If you have a source file open, right-click to open the pop-up menu and select [Go to Disassembly] to open the
[Disassembly] window at the same address as the current [Source] window.

If you do not have a source file, but wish to view code in the assembly-language level, either choose [View ->
Disassembly…], use the Ctrl + D accelerator, or click on the [Disassembly] window’s toolbar button [].

The [Disassembly] window opens at the current PC location and shows [Address] and [Code] (optional) which show the
disassembled mnemonics (with labels when available).

Figure 4.4 Disassembly Window

4.1.5 Modifying the Assembly-Language Code

You can modify the assembly-language code by double-clicking on the instruction that you wish to change. The
[Assembler] dialog box will open.

190

Figure 4.5 Assembler Dialog Box

The address, machine code, and disassembled instruction are displayed. Enter the new instruction or edit the old
instruction in the [Mnemonics] field. Pressing the Enter key will assemble the instruction into memory and move on to the
next instruction. Clicking the [OK] button will assemble the instruction into memory and close the dialog box. Clicking
the [Cancel] button or pressing the Esc key will close the dialog box.

Note: The assembly-language display is disassembled from the machine code in the debugging platform's memory
contents. If the memory contents are changed the dialog box (and [Disassembly] window) will show the new
assembly-language code, but the [Source] window contents will be unchanged. This is the same even if the
source file contains an assembler.

4.1.6 Viewing a Specific Address

When you are viewing your program in the [Disassembly] window, you may wish to look at another area of your
program's code. Rather than scrolling through a lot of code in the program, you can go directly to a specific address. Select
[Set Address] from the pop-up menu, and the dialog box shown in figure 4.6 is displayed.

Figure 4.6 Set Address Dialog Box

Enter the address or label name in the edit box and either click on the [OK] button or press the Enter key. The
[Disassembly] window will be updated to show the code at the new address. When an overloaded function or a class name
is entered, the [Select Function] dialog box opens for you to select a function. For details, refer to section 4.13,
Elf/Dwarf2 Support.

4.1.7 Viewing the Current Program Counter Address

Wherever you can enter an address or value into the HEW, you can also enter an expression. If you enter a register name
prefixed by the hash character, the contents of that register will be used as the value in the expression. Therefore, if you
open the [Set Address] dialog box and enter the expression #pc, the [Source] or [Disassembly] window will display the
current PC address. It also allows the offset of the current PC to be displayed by entering an expression with the PC
register plus an offset, e.g., #PC+0x100.

4.2 Operating Memory

This section describes how to look at memory areas in the CPU's address space. How to look at a memory area in different
formats, how to fill and move a memory block, and how to load and verify a memory area with a disk file are described.

191

4.2.1 Viewing a Memory Area

To look at a memory area, choose [View -> CPU -> Memory…] with the Ctrl + M accelerator or click the [View
Memory] toolbar button [] to open the [Memory] window. This will open the [Set Address] dialog box shown in figure
4.7.

Figure 4.7 Set Address Dialog Box

Enter the range you wish to display as an address value or an equivalent symbol in the [Begin] and [End] fields. Select the
data size for the display from the [Display Data As] drop-down list. Click the [OK] button or press the Enter key, and the
dialog box closes and the [Memory] window opens. The display can be scrolled within the range of the entered display
start and end addresses.

Figure 4.8 Memory Window

There are three display columns:

[Address] Address of the first item in the [Data] column of this row

[Data] Data is read from the debugging platform’s physical memory in the access width, and then converted to
the display width.

[Value] Data displayed in an alternative format

4.2.2 Displaying Data in Different Formats

If you want to change the display format of the [Memory] window, select [Format] from the pop-up menu. The dialog
box shown in figure 4.9 is displayed.

192

Figure 4.9 Format Memory Display Dialog Box

To display and edit memory in different widths, use the [Display Data As] drop-down list. For example, choose the [Byte]
option and the display will be updated to show the memory area as individual bytes.

The data can be converted into different formats, as shown in the third column [Value]. The list of formats depends on the
data selection.

The font of the [Value] column can be different from the font used to display the data. This is useful for displaying
[double] byte character values when the data is displayed in the [Word] format.

4.2.3 Splitting Up the Window Display

To vertically divide the [Memory] window display into two, select [Split] from the pop-up menu and move the split-up bar.
Moving the split-up bar to the top end or bottom end of the window cancels the split-up display.

4.2.4 Viewing a Different Memory Area

To change the memory area displayed in the [Memory] window, use the scroll bars. To quickly look at a new address, use
the [Set Address] dialog box. This can be opened by choosing [Start Address] from the pop-up menu.

Enter the new address value, and click the [OK] button or press the Enter key. The dialog box closes and the [Memory]
window display is updated with the data at the new address. When an overloaded function or a class name is entered, the
[Select Function] dialog box opens for you to select a function.

4.2.5 Modifying the Memory Contents

The memory contents can be modified via the [Edit Memory] dialog box. Move the cursor on the memory unit (according
to the [Memory] window display choice) that you wish to change. Either double-click on the memory unit or press the
Enter key. The dialog box shown in figure 4.10 is displayed.

Figure 4.10 Edit Memory Dialog Box

193

A number or C/C++ expression can be entered in the [New Value] field. After you have entered the new number or
expression, click the [OK] button or press the Enter key. Then the dialog box closes and the new value is written into
memory.

The memory contents can also be modified by moving the cursor on the memory unit and entering the new value in
hexadecimal through the keyboard.

4.2.6 Sel ect ing a Memory Ra nge

If the memory address range is in the [Memory] window, you can select the range by clicking on the first memory unit
(according to the [Memory] window display choice) and dragging the mouse to the last unit. The selected range is
highlighted.

If the memory address range is larger than or outside the [Memory] window, you can enter the start address and byte count
in the respective fields of the [Memory] dialog box.

4.2.7 F inding a Value in Memory

To find a value in memory, open the [Memory] window and select [Search] from the pop-up menu.

The [Search Memory] dialog box shown in figure 4.11 is displayed.

Figure 4.11 Search Memory Dialog Box

Enter the start and end addresses of the range in which to search (if a memory area was selected in the [Memory] window,
the start and end address values will be automatically filled in) and the data value to search for, and select the search
format. If pattern search is selected as the search format, a byte string of up to 256 bytes can be searched for. The end
address can also be prefixed by a plus (+); the end address will become the (start address) + (entered value).

Search conditions other than pattern search are data match/mismatch and search direction. Note that only data match and
forward direction can be selected with pattern search.

Click the [OK] button or press the Enter key. The dialog box closes and the HEW searches the range for the specified data.
If the data is found, the address at which the data has been found is displayed in the [Memory] window.

If the data could not be found, the [Memory] window display remains unchanged and a message box informing that the
data could not be found is displayed.

194

If [Search Next] is selected from the pop-up menu in the state where data has been found, the search will continue from
the next address.

4.2.8 F illing a Memory Area wit h a Value

A value can be set as the contents of a memory address range using the memory fill function.

To fill a memory range with the same value, choose [Fill] from the pop-up menu of the [Memory] window or choose [Fill]
from the [Memory] drop-down menu. The [Fill Memory] dialog box is shown in figure 4.12.

Figure 4.12 Fill Memory Dialog Box

If an address range has been selected in the [Memory] window, the specified start and end addresses will be displayed.
Select a format from the [Format] drop-down list and enter the data value in the [Data] field. On clicking the [OK] button
or pressing the Enter key, the dialog box closes and the new value is written into the memory range.

4.2.9 Copying a Memory Area

You can copy a memory area using the memory copy function. Select a memory range and then choose [Copy…] from the
pop-up menu. The [Copy Memory] dialog box opens (figure 4.13).

Figure 4.13 Copy Memory Dialog Box

195

The source start address and end address selected in the [Memory] window will be displayed in the [Begin] and [End]
fields. Checking the [Verify] check box enables copying while comparing the copy source and copy destination. The copy
unit can be selected in the [Format] list box. Enter the destination start address in the [Destination] field and click the [OK]
button or press the Enter key. This will close the dialog box and copy the memory block to the new address.

4.2.10 Savi ng and Verifyi ng a Memory Area

A memory area in the address space can be saved into a disk file using the memory save function. Open the [Save Memory
As] dialog box by choosing [File -> Save memory...].

Figure 4.14 Save Memory As Dialog Box

Enter the start and end addresses of the memory block that you wish to save, and a name and format for the file. The [File
name] drop-down list contains the previous four file names used for saving memory.

Clicking the [Browse…] button can open the standard [File Save As] dialog box. On clicking the [OK] button or pressing
the Enter key, the dialog box closes and the memory block will be saved into the disk as a file of the specified format type.
When file saving has completed, a confirmation message box may be displayed.

A memory area in the address space can be verified using the memory verify function. Open the [Verify Memory] dialog
box by choosing [File -> Verify Memory...].

Figure 4.15 Verify Memory Dialog Box

196

4.2.11 Dis a bl ing Upda te of th e Window Contents

Automatic update of the [Memory] window contents, which is performed when user program execution stops and in other
cases, can be disabled. This is done by checking [Lock Refresh] in the pop-up menu.

4.2.12 Updat ing the Window Contents

The [Memory] window contents can be forcibly updated. This is done by checking [Refresh] in the pop-up menu.

4.2.13 Comparing the Memory Contents

The contents of two memory blocks can be compared. Open the [Compare Memory] dialog box by selecting [Memory ->
Compare…] from the main menu or by selecting [Compare…] from the pop-up menu of the [Memory] window.

Figure 4.16 Compare Memory Dialog Box

Enter the comparison format ([Format]), the start address ([Begin]) and end address ([End]) of the source memory area,
and the start address ([Start Compare]) of the destination memory area. If the memory block is already highlighted in the
[Memory] window, the start and end addresses will be automatically filled in when the [Compare Memory] dialog box is
opened.

If there is a mismatch, the address where it was found is displayed in a message box.

4.2.14 Loading a Memory Area from a File

A file can be loaded to the debugging platform’s memory. Select [Load…] from the pop-up menu of the [Memory]
window to open the [Load Program] dialog box.

197

Figure 4.17 Load Program Dialog Box

Enter the file format ([Format]) and the file name ([File name]). If the load address value is to be changed, enter the offset
value in the offset field ([Offset address]), otherwise enter zero.

4.3 Viewing the TLB Contents

The TLB window is used to display the TLB contents in a CPU with the MMU (Memory Management Unit) function. The
TLB window differs according to the CPU. Read the description corresponding to your CPU.

4.3.1 Opening a TLB Window

SH-3, SH-3E, and SH3-DSP Series:

Choose [View -> CPU -> TLB] or click the [TLB] toolbar button [] to open the [TLB] window.

Figure 4.18 TLB Window (SH-3/SH-3E/SH3-DSP Series)

This window displays the TLB contents. The selected entry is displayed in green. Since each way has one sheet, clicking
the way’s sheet displays the way’s contents. The contents of a currently disabled way are grayed out.

The following items are displayed in the window:

[Entry] Entry number in the TLB (H’00 to H’FF)

[VPN] Virtual page number (longword). Bits 31 to 10 are valid.

[PPN] Physical page number (longword). Bits 31 to 10 are valid.

198

[ASID] Address space identifier

[V] Valid ity bit

[SZ] P age-size bit

[PR] Protection key field

[C] C acheable bit

[D] Di rty bit

[SH] Share status bit

SH-4 Series :

The SH-4 series has two kinds of TLB windows: instruction TLB window and unified TLB window.

Choose [View -> CPU -> TLB] or click the [TLB] toolbar button [] to open the [Select TLB] dialog box (figure 4.19)
for selecting the TLB window type to be displayed.

Figure 4.19 Select TLB Dialog Box

This dialog box selects the TLB to be displayed. Select one of the following TLB types:

[Instruction TLB] Opens the instruction TLB window.

[Unified TLB] Opens the unified TLB window.

Clicking the [OK] button displays the selected TLB window. Clicking the [Cancel] button closes the dialog box without
opening a TLB window.

• Instruction TLB window

Figure 4.20 Instruction TLB Window (SH-4 Series)

This window displays the instruction TLB contents. The selected entry is displayed in green.

The following items are displayed in the window:

[Entry] Entry number in the instruction TLB (H’0 to H’3)

[VPN] Virtual page number (longword). Bits 31 to 10 are valid.

199

[PPN] Physical page number (longword). Bits 31 to 10 are valid.

[ASID] Address space identifier

[V] Valid ity bit

[SZ] P age-size bit

[PR] Protection key field

[C] C acheable bit

[SH] Share status bit

� Unified TLB window

Figure 4.21 Unified TLB Window (SH-4 Series)

This window displays the unified TLB contents. The selected entry is displayed in green.

The following items are displayed in the window:

[Entry] Entry number in unified TLB (H’00 to H’3F)

[VPN] Virtual page number (longword). Bits 31 to 10 are valid.

[PPN] Physical page number (longword). Bits 31 to 10 are valid.

[ASID] Address space identifier

[V] Validity bit

[SZ] Page-size bit

[PR] Protection key field

[C] Cacheable bit

[D] Dirty bit

[SH] Share status bit

[WT] Write-through bit

200

4.3.2 Modif y ing the TLB Contents

Selecting [Modify…] from the pop-up menu with a TLB item selected opens the dialog box to modify the selected TLB
item.

Figure 4.22 Modify TLB Dialog Box (VPN is Selected in SH-3)

This dialog box allows the currently selected TLB item to be modified. The selected TLB item and entry number are
displayed in the caption of the dialog box. The way number is also displayed for a TLB with ways. The item name in the
dialog box displays the selected TLB item.

Clicking the [OK] button stores the newly entered contents in the TLB. Clicking the [Cancel] button closes the dialog box
without storing the newly entered contents in the TLB.

4.3.3 Flushing the TLB Contents

Selecting [Flush] from the pop-up menu flushes the TLB. All valid bits are cleared to 0 and all TLB entries are invalidated.

Note that during execution of an instruction, the [Flush] menu is disabled and the TLB cannot be flushed.

4.3.4 Searching the TLB Items

Selecting [Find…] from the pop-up menu opens the [Find TLB] dialog box in which a TLB item can be searched for in
column units.

Note that during execution of an instruction, the [Find…] menu is disabled and the TLB item cannot be searched for.

Figure 4.23 Find TLB Dialog Box

This dialog box searches for a TLB item. The following search conditions can be specified:

[Search column] Item to be searched for

[Search value] Value to be searched for

After setting the search conditions, the search can be started by clicking the [OK] button. As a result, the matching entry is
highlighted.

Clicking the [Cancel] button closes the dialog box without searching for a TLB item.

201

4.3.5 Continuing the TLB Sea rch

The next matching TLB item can be searched for with the search conditions that have previously been set. In the state
where a matching TLB item was found in the preceding search, select [Find Next] from the pop-up menu.

Note that during execution of an instruction, the [Find Next] menu is disabled and the next matching TLB item cannot be
searched for.

4.4 Viewing the Ca ch e Contents

The cache window is used to display the cache contents in a CPU with cache. The cache window differs according to the
CPU. Read the description corresponding to the CPU.

4.4.1 Opening a Ca che Window

SH- 3, SH- 3E, SH3- DSP, a nd SH2- DSP (SH7612) Series:

Choose [View -> CPU -> Cache] or click the [Cache] toolbar button [] to open the [Cache] window.

Figure 4.24 Cache Window (SH-3/SH-3E/SH3-DSP/SH2-DSP (SH7612) Series)

This window displays the cache contents. The selected entry is displayed in green. Since each way has one sheet, clicking
the way’s sheet displays the way’s contents. The contents of a currently disabled way are grayed out.

The following items are displayed in the window:

[Entry] Entry number in the cache. The specifiable value depends on the CPU.
 • SH-3 and SH-3E series: H'00 to H'7F
 • SH3-DSP series: H'00 to H'FF
 • SH2-DSP (SH7612): H'00 to H'3F

[V] Validity bit. When this bit is 1, the entry is valid.

[U] Update bit. When this bit is 1, the entry has been written to.

[LRU] Numerical string that determines which way's entry should be replaced when a cache miss occurs.
(The same LRU value is assigned to the same entry in all ways.)

[Tag Address] Tag address

[Longword0] to Longword data 0 to 3 set to the cache entry
[Longword3]

202

SH- 4 a nd SH- 4BSC:

The SH-4 and SH-4BSC have two kinds of cache windows: instruction cache window and operand cache window.

Choose [View -> CPU -> Cache] or click the [Cache] toolbar button [] to open the [Select Cache] dialog box (figure
4.25) for selecting the cache window type to be displayed.

Figure 4.25 Select Cache Dialog Box

This dialog box selects the cache to be displayed. Select one of the following cache types:

[Instruction cache] Opens the instruction cache window.

[Operand cache] Opens the operand cache window.

Clicking the [OK] button displays the selected cache window. Clicking the [Cancel] button closes the dialog box without
opening a cache window.

• Instruction cache window

Figure 4.26 Instruction Cache Window (SH-4/SH-4BSC)

This window displays the instruction cache contents. The selected entry is displayed in green.

The following items are displayed in the instruction cache window:

[Entry] Entry number in the instruction cache (H’00 to H’FF)

[V] Validity bit. When this bit is 1, the entry is valid.

[Tag Address] Tag address

[Longword0] to Longword data 0 to 7 set to the instruction cache entry
[Longword7]

203

� Operand cache window

Figure 4.27 Operand Cache Window (SH-4/SH-4BSC)

This window displays the operand cache contents. The selected entry is displayed in green.

The following items are displayed in the operand cache window:

[Entry] Entry number in the operand cache (H’000 to H’1FF)

[V] Validity bit. When this bit is 1, the entry is valid.

[U] Update bit. When this bit is 1, the entry has been written to.

[Tag Address] Tag address

[Longword0] to Longword data 0 to 7 set to the operand cache entry
[Longword7]

SH-4 (SH7750R):

The SH-4 (SH7750R) has two kinds of cache windows: instruction cache window and operand cache window.

Choose [View -> CPU -> Cache] or click the [Cache] toolbar button [] to open the [Select Cache] dialog box (figure
4.28) for selecting the cache window type to be displayed.

Figure 4.28 Select Cache Dialog Box

This dialog box selects the cache to be displayed. Select one of the following cache types:

[Instruction cache] Opens the instruction cache window.

[Operand cache] Opens the operand cache window.

204

Clicking the [OK] button displays the selected cache window. Clicking the [Cancel] button closes the dialog box without
opening a cache window.

� Instruction cache window

Figure 4.29 Instruction Cache Window (SH-4 (SH7750R))

This window displays the instruction cache contents. The selected entry is displayed in green. Since each way has one
sheet, clicking the way’s sheet displays the way’s contents. The contents of a currently disabled way are grayed out.

The following items are displayed in the instruction cache window:

[Entry] Entry number in the instruction cache (H’00 to H’FF)

[V] Validity bit. When this bit is 1, the entry is valid.

[Tag Address] Tag address

[Longword0] to Longword data 0 to 7 set to the instruction cache entry
[Longword7]

• Operand cache window

Figure 4.30 Operand Cache Window (SH-4 (SH7750R))

205

This window displays the operand cache contents. The selected entry is displayed in green. Since each way has one sheet,
clicking the way’s sheet displays the way’s contents. The contents of a currently disabled way are grayed out.

The following items are displayed in the operand cache window:

[Entry] Entry number in the operand cache (H’000 to H’1FF)

[V] Validity bit. When this bit is 1, the entry is valid.

[U] Update bit. When this bit is 1, the entry has been written to.

[Tag Address] Tag address

[Longword0] to Longword data 0 to 7 set to the operand cache entry
[Longword7]

4.4.2 Modify ing the C a che Co ntents

Selecting [Modify…] from the pop-up menu with a cache item selected opens the dialog box to modify the selected cache
item.

Note that during execution of an instruction, the [Modify…] menu is disabled and the cache items cannot be modified.

Figure 4.31 Modify Cache Dialog Box (Tag Address is Selected in SH-3)

This dialog box allows the currently selected cache item to be modified. The selected cache item and entry number are
displayed in the caption of the dialog box. The way number is also displayed for a cache with ways. The item name in the
dialog box displays the selected cache item.

Clicking the [OK] button stores the newly entered contents in the cache. Clicking the [Cancel] button closes the dialog box
without storing the newly entered contents in the cache.

4.4.3 Flushing the Cache Contents

Selecting [Flush] from the pop-up menu flushes cache. All V, U, and LRU bits are cleared to 0 and all cache entries are
invalidated.

Note that during execution of an instruction, the [Flush] menu is disabled and cache cannot be flushed.

4.4.4 Searching the Cache Items

Selecting [Find…] from the pop-up menu opens the [Find Cache] dialog box in which a cache item can be searched for in
column units.

Note that during execution of an instruction, the [Find…] menu is disabled and the cache item cannot be searched for.

206

Figure 4.32 Find Cache Dialog Box

This dialog box searches for a cache item. The following search conditions can be specified:

[Search column] Item to be searched for

[Search value] Value to be searched for

After setting the search conditions, the search can be started by clicking the [OK] button. As a result, the matching entry is
highlighted.

Clicking the [Cancel] button closes the dialog box without searching for a cache item.

4.4.5 Continuing the Cache Search

The next matching cache item can be searched for with the search conditions that have previously been set. In the state
where a matching cache item was found in the preceding search, select [Find Next] from the pop-up menu.

Note that during execution of an instruction, the [Find Next] menu is disabled and the next matching cache item cannot be
searched for.

4.4.6 Modifying the Cache Capacity

This function is provided only for the SH-3 and SH-3E series. Selecting [Capacity…] from the pop-up menu opens the
[Cache Capacity] dialog box in which the cache capacity can be modified.

Note that during execution of an instruction, the [Capacity…] menu is disabled and the cache capacity cannot be modified.

Figure 4.33 Cache Capacity Dialog Box

This dialog box allows the cache capacity to be modified.

The following cache capacities can be selected:

[8-kbyte] 8-kbyte cache capacity (default)
All four ways (Way0 to Way3) (two ways (Way0 and Way1) when internal RAM is specified) are
valid.

207

[4-kbyte] 4-kbyte cache capacity (default)
Two ways (Way0 and Way1) (one way (Way0) when internal RAM is specified) are valid.

[2-kbyte] 2-kbyte cache capacity (default)
One way (Way0) is valid. The internal RAM specification is ignored.

Clicking the [OK] button modifies the cache capacity. Clicking the [Cancel] button closes the dialog box without
modifying the cache capacity.

4.5 Displaying Memory Contents as an Image

The memory contents can be displayed as an image in the [Image View] window.

4.5.1 Opening the Image View Window

Choose [View -> Graphic -> Image…] or click the [Image] toolbar button [] to open the [Image Properties] dialog box
shown in figure 4.34.

Figure 4.34 Image Properties Dialog Box

The [Image Properties] dialog box is used to specify the display method of the [Image View] window.

208

The following items are to be specified:

[Color Information] Specifies the color information of the image to be displayed.

 [Mode] Specifies the format.
 [MONOCHROME] Displays in black and white.
 [RGB] Displayed in R (red), G (green), and B
 (blue)
 [BGR] Displayed in B (blue), G (green), and R
 (red)
 [YCbCr] Displayed by Y (brightness), Cb (color
 difference in blue), and Cr (color difference
 in red)

 [Bit/Pixel] Specifies Bit/Pixel according to the selected [Mode]. (Valid when
RGB or BGR is selected)

 [Sampling] Specifies the format of sampling. (Valid when YCbCr is selected)

 [Format] Specifies Chunky/planar. (Valid when YCbCr is selected)

[Buffer Information] Specifies the area to store data, size, and the address of the palette.

 [Data Address] Specifies the start address of the memory where image data is to
be displayed. (Displayed in hexadecimal)

 [Palette Address] Specifies the start address of the memory of color palette data.
(Displayed in hexadecimal) (Valid when 8Bit is selected for RGB or BGR)

 [Width/Height Size] Specifies the width and height of the image.
 [Width (Pixel)] Specifies the width of the image.
 (When a prefix is omitted, the values are
 input and displayed in decimal.)
 [Height (Pixel)] Specifies the height of the image.
 (When a prefix is omitted, the values are
 input and displayed in decimal.)
 [Buffer Size] Displays the buffer size of the image
 from the width and height
 (Displayed in hexadecimal)

[View Information] Specifies the location, size, and data start location of the part to be
displayed among the entire image.

 [View Mode] Specifies the entire/part to be displayed in the image.
 [Full Size] Displays the entire image.
 [Part Size] Displays part of the image.

 [Start Position]
 [Top] Displays data from the upper left.
 [Bottom] Displays data from the lower left.

 [Position] Specifies the start position of the image where part of the image is
to be displayed. (Valid when [Part Size] is selected)
 [X Position] Specifies the X axis of the start location.
 (When a prefix is omitted, the values are
 input and displayed in decimal.)

209

 [Y Position] Specifies the Y axis of the start location.
 (When a prefix is omitted, the values are
 input and displayed in decimal.)

 [Width/Height Size] Specifies the height and width of the image to be displayed partly.
 [Width (Pixel)] Displays the width of display.
 (When a prefix is omitted, the values are
 input and displayed in decimal.)
 [Height (Pixel)] Displays the height of display.
 (When a prefix is omitted, the values are
 input and displayed in decimal.)

After the settings have been made in the [Image Properties] dialog box, clicking the [OK] button opens the [Image View]
window.

Even after the [Image View] window is displayed, the display contents can be modified by opening this dialog box by
choosing [Properties…] from the pop-up menu.

Figure 4.35 Image View Window

Displays the memory contents as an image.

4.5.2 Automatically Updating the Window Contents

Checking [Auto Refresh] in the pop-up menu will allow the window contents to be automatically updated when user
program execution stops.

4.5.3 Updating the Window Contents

Selecting [Refresh Now] from the pop-up menu immediately updates the window contents.

210

4.5.4 Dis pl ayi ng th e Pi xel Infor mati on

Double-clicking within the window displays information on the pixel on which the mouse pointer is located in the [Pixel
Information] dialog box.

Figure 4.36 Pixel Information Dialog Box

This dialog box displays pixel information on the cursor location.

[Color Mode] Displays the format of the image.

[Pixel] Displays color information of the cursor location. (Displayed in decimal)

[Position] Displays the cursor location in X and Y axis. (Displayed in decimal)
[X] Displays the X axis of the cursor location.
[Y] Displays the Y axis of the cursor location.

[Buffer Size] Displays the buffer size. (Displayed in decimal)
[Width] Displays the buffer width.
[Height] Displays the buffer height.

[Image Size] Displays the width and height of the display. (Displayed in decimal)
[Width] Displays the width.
[Height] Displays the height.

4.6 Displaying Memory Contents as Waveforms

Memory contents can be displayed as waveforms in the [Waveform View] window.

4.6.1 Opening the Waveform View Window

Choose [View -> Graphic -> Waveform…] or click the [Waveform] toolbar button [] to open the [Waveform
Properties] dialog box shown in figure 4.37.

211

Figure 4.37 Waveform Properties Dialog Box

Specifies the waveform format. The following items can be specified.

[Data Address] Specifies the start address of data in memory. (Displayed in hexadecimal)

[Data Size] Selects 8Bit or 16Bit.

[Channel] Specifies Mono or Stereo.

[Buffer Size] Specifies the buffer size of data. (Displayed in hexadecimal)

After the settings have been made in the [Waveform Properties] dialog box, clicking the [OK] button opens the
[Waveform View] window.

Even after the [Waveform View] window is displayed, the display contents can be modified by opening this dialog box by
choosing [Properties…] from the pop-up menu.

Figure 4.38 Waveform View Window

Displays the memory contents as waveforms. The X axis shows the number of sampling data and the Y axis shows the
sampling value.

212

4.6.2 Aut omat ica lly Updat ing the Window Contents

Checking [Auto Refresh] in the pop-up menu will allow the window contents to be automatically updated when user
program execution stops.

4.6.3 Updat ing the Window Contents

Selecting [Refresh Now] from the pop-up menu immediately updates the window contents.

4.6.4 Zoom-I n Dis pl ay

Selecting [Zoom In] from the pop-up menu displays the waveforms with the horizontal axis enlarged.

4.6.5 Zoom-Ou t Dis pl ay

Selecting [Zoom Out] from the pop-up menu displays the waveforms with the horizontal axis reduced.

4.6.6 Res etti ng th e Zoom Dis pl ay

Selecting [Reset Zoom] from the pop-up menu displays the waveforms in its original size.

4.6.7 Setti ng th e Zoom Magnif ica t ion

In the [Zoom Magnification] submenu of the pop-up menu, the zoom magnification can be selected from 2, 4, or 8.

4.6.8 Set t ing the Horiz onta l Sca l e

In the [XScale] submenu of the pop-up menu, the size of the X axis can be selected from 128, 256, or 512 pixels.

4.6.9 Non- Dis pl ay of Curs or

Selecting [Clear Cursor] from the pop-up menu hides the cursor display.

4.6.10 Dis pl ayi ng th e Sa mpl ing Infor mati on

Selecting [Sample Information…] from the pop-up menu displays the [Sample Information] dialog box.

Figure 4.39 Sample Information Dialog Box

213

Displays the sampling information of the cursor location in the [Waveform View] window. The following information is
displayed.

[Data Size] Displays 8bit or 16bit.

[Channel] Displays the data channel.

[Value] [X] Displays the X axis of cursor location.

[Y] Displays the Y axis of cursor location (displays Y axes for both the upper and
lower plots when Stereo is selected).

4.7 Viewing the I/O Memory

As well as a CPU and ROM/RAM, a microcomputer also contains on-chip peripheral modules. The exact number and type
of peripheral modules differ between devices but the typical modules are a DMA controller, serial communications
interface, A/D converter, integrated timer unit, bus state controller, and watchdog timer. Registers that are mapped to the
microcomputer’s address space controls the on-chip peripheral modules.

The [Memory] window enables you to look at data in continuous memory addresses as byte, word, longword, single-
precision floating-point, double-precision floating-point, or ASCII values. However, registers of different sizes are
allocated to non-continuous memory addresses in the I/O memory. To handle this memory, the HEW has the [IO] window
to facilitate checking and setting up of these kinds of registers.

4.7.1 Opening the IO Window

To open the [IO] window, select [View -> CPU -> IO] or click the [View I/O] toolbar button []. Modules that match
the on-chip peripheral modules organize the I/O register information. When the [IO] window is first opened, only a list of
module names is displayed.

Figure 4.40 IO Window

4.7.2 Expanding the I/O Register Display

To display the names, addresses, and values of the I/O registers, double-click on the module name or select the module
name by clicking on it or using the cursor keys and press the Enter key. The module display will expand to show the
individual registers of that peripheral module and their names, addresses, and values. Double-clicking (or pressing the
Enter key) again on the module name will close the I/O register display.

For a display in the bit level, expand the I/O register in a similar way to the [Registers] window.

214

4.7.3 Modifying the I/O Register Contents

To edit the value in an I/O register, type hexadecimal values directly into the window. To enter more complex expressions,
double-click or press the Enter key on the register to open a dialog box to modify the register contents. When you have
entered the new number or expression, click the [OK] button or press the Enter key; the dialog box closes and the new
value is written into the register.

4.8 Looking at Labels

Symbol information is included in the debugging information, which is used when the HEW links the user program source
code to the actual code in the memory. Symbol information is also included in the debug object file. This information is a
list of names that indicate addresses in the program. These names are called labels in the HEW. The [Disassembly]
window shows the first eight characters of each label instead of the corresponding address or as a part of an instruction
operand*.

Note: When a label value matches an operand, the corresponding instruction operand is replaced by the label. If
two or more labels have the same value, the one that comes first in alphabetical order is displayed.

Hint: When [edit control] accepts an address or a value, a label can be input instead.

215

4.8.1 Listing Labels

Choose [View -> Symbol -> Labels] or click the [View Labels] toolbar button to list all labels defined in the current
debugger session.

Figure 4.41 Label Window

You can view symbols sorted either alphabetically (by ASCII code) or by address value by clicking on the respective
column heading.

Double-clicking in the [BP] column can set or clear a software breakpoints at the start of the function.

216

4.8.2 Adding a Label

Choose [Add..] from the pop-up menu and open the [Add Label] dialog box to add a label:

Figure 4.42 Add Label Dialog Box

Enter the new label name into the [Name] field and the corresponding value into the [Address] field and press [OK]. The
[Add Label] dialog box closes and the label list is updated to show the new label. When an overloaded function or a class
name is entered in the [Address] field, the [Select Function] dialog box opens for you to select a function. For details, refer
to section 4.12.3, Supporting Duplicate Labels.

4.8.3 Editing a Label

Choose [Edit...] from the pop-up menu and open the [Edit Label] dialog box to edit a label:

Figure 4.43 Edit Label Dialog Box

Edit the label name and value as required and then press [OK] to save the modified version in the label list. The list
display is updated to show the new label details. When an overloaded function or a class name is entered in the [Address]
field, the [Select Function] dialog box opens for you to select a function. For details, refer to section 4.12.3, Supporting
Duplicate Labels.

217

4.8.4 Deleting a Label

To delete a label, select the label and choose [Delete] from the pop-up menu. A confirmation message box appears:

Figure 4.44 Message Box for Confirming Label Deletion

If you click [OK], the label is removed from the list and the window display is updated. If the message box is not required
then do not select the [Delete Label] option of the [Confirmation] sheet in the HEW [Options] dialog box.

4.8.5 Deleting All Labels

To delete all the labels from the list, choose [Delete All] from the pop-up menu. A confirmation message box appears:

Figure 4.45 Message Box for Confirming All Label Deletion

If you click [OK], all the labels are removed from the HEW system’s symbol table and the list display will be cleared. If
the message box is not required, do not select the [Delete All Labels] option of the [Confirmation] sheet in the HEW
[Options] dialog box.

4.8.6 Loading Labels from a File

A symbol file can be loaded and merged into the HEW's current symbol table. Choose [Load...] from the pop-up menu to
open the [Load Symbols] dialog box:

218

Figure 4.46 Load Symbols Dialog Box

The dialog box operates like a standard Windows® [open file] dialog box; select the file and click [Open] to start loading.
The standard file extension for symbol files is “.sym”. When the symbol loading is complete a confirmation message box
may be displayed showing how many symbols have been loaded (this can be switched off in the [Confirmation] sheet on
the HEW [Options] dialog box).

4.8.7 Saving Labels into a File

Choose [Save As...] from the pop-up menu to open the [Save Symbols] dialog box. The [Save Symbols] dialog box
operates like a standard Windows® [Save File As] dialog box. Enter the name for the file in the [File name] field and click
[Save] to save the HEW's current label list to a symbol file. The standard file extension for symbol files is “.sym”.

See appendix B, Symbol File Format, for symbol file format.

Once a file is specified by the [Save As...] menu, the current symbol table can be saved in the same symbol file just by
choosing [Save] from the pop-up menu.

4.8.8 Searching for a Label

Choose [Find...] from the pop-up menu to open the [Find Label] dialog box:

Figure 4.47 Find Label Dialog Box

Enter all or part of the label name that you wish to find into the edit box and click [OK] or press the Enter key. The HEW
searches the label list for a label name containing the text that you entered.

Note: Only the label is stored by 1024 characters of the start, therefore the label name must not overlap mutually
in 1024 characters or less. Labels are case sensitive.

219

4.8.9 Searching for the Next Label

Choose [Find Next] from the pop-up menu to find the next occurrence of the label containing the text that you entered.

4.8.10 Viewing the Source Corresponding to a Label

Select a label and choose [View Source] from the pop-up menu to open the [Source] or [Disassembly] window containing
the address corresponding to the label.

220

4.9 Looking at Registers

If you are debugging at assembly-language level, then you will probably find it useful to see the contents of the CPU's
general registers. You can do this using the [Register] window.

4.9.1 Opening the Register Window

To open the [Register] window choose [View->CPU->Registers] or click the [Register] toolbar button . The [Register]
window opens showing all of the CPU's general registers and the values, displayed in hexadecimal.

Figure 4.48 Register Window

221

4.9.2 Expanding a Bit Register

If a register is used as a set of flags at the bit level for the control of state, its one-character symbol rather than its state
indicate each bit. Double-click on the register’s name to display the [Edit Register] dialog box and switch each bit on or
off. Checking the check box for any bit specifies it as holding a 1, while removing the check specifies it as a 0.

Figure 4.49 Expanding a Bit Register

4.9.3 Modifying Register Contents

To change a register's contents, open the [Edit Register] dialog box in one of the following methods:

• Double-click the register you want to change.

• Select the register you want to change, and choose [Edit…] from the pop-up menu.

Figure 4.50 Edit Register Dialog Box

You can enter a number or C/C++ expression in the [Value] field. You can choose whether to modify the whole register
contents, a masked area, floating or flag bits by selecting an option from the drop-down list (the contents of this list
depend on the CPU model and selected register).

When you have entered the new number or expression, click the [OK] button or press the Enter key; the dialog box closes
and the new value is written into the register.

4.9.4 Using Register Contents

Use the value contained in a CPU register by specifying the register name prefixed by the “#” character, e.g.: #R1, #PC,
#R6L, or #ER3 when you are entering a value elsewhere in the HEW, for example when displaying a specified address in
the [Disassembly] or [Memory] windows.

4.10 Executing Your Program

This section describes how you can execute your program's code. You will learn how to do this by either running your
program continuously or stepping single or multiple instructions at a time.

222

4.10.1 Running from Reset

To reset your user system and run your program from the reset vector address, choose [Debug->Reset Go], or click the
[Go Reset] toolbar button .

The program will run until it hits a breakpoint or a break condition is met. You can stop the program manually by
choosing [Debug->Halt], or by clicking the [Halt] toolbar button .

Note: The program will start running from whatever address is stored in the Reset Vector location. Therefore it is
important to make sure that this location contains the address of your startup code.

4.10.2 Continuing Run

When your program is stopped, the HEW will display an yellow arrow mark in the gutter of the line in the editor and
[Disassembly] windows that correspond to the CPU's current program counter (PC) address value. This will be the next
instruction to be executed if you perform a step or continue running.

To continue running from the current PC address, click the [Go] toolbar button , or choose [Debug->Go].

To continue running from a specified address which is not the stop address, change the PC value in one of the following
ways, and click the [Go] toolbar button or choose [Debug->Go].

• Change the PC value in the [Register] window. Refer to section 4.9.3, Modifying Register Contents.

• Place the text cursor (not the mouse cursor) to a target line in the [Source] or [Disassembly] window, and choose [Set
PC Here] from the pop-up menu.

4.10.3 Running to the Cursor

Sometimes as you are going through your application you may want to run only a small section of code, that would require
many single steps to execute. You can do this using the Go To Cursor feature.

 How to use the Go To Cursor

1. Make sure that a [Source] or [Disassembly] window is open showing the address at which you wish to stop.

2. Position the text cursor on the address at which you wish to stop by either clicking in the [Address] field or using the
cursor keys.

3. Choose [Go To Cursor] from the pop-up menu.

The debugging platform will run your code from the current PC value until it reaches the address indicated by the cursor's
position.

Notes: 1. If your program never executes the code at this address, the program will not stop. If this happens, code
execution can be stopped by pressing the Esc key, choosing [Debug->Halt], or clicking on the [Halt]
toolbar button .

 2. The Go To Cursor feature requires a PC breakpoint - if you have already used all those available, then
the feature will not work.

4.10.4 Running from a Specified Address

The [Run Program] dialog box allows the user to run the program from any address. Choose [Debug -> Run...] to open the
[Run Program] dialog box.

223

Figure 4.51 Run Program Dialog Box

The following execution conditions can be specified in this dialog box:

[Program Counter] Instruction address to start execution. The initial value is
 the current PC value.

[Temporary PC Breakpoints] A temporary PC breakpoint. When execution started
 by this dialog box stops, this breakpoint is cleared.

Note: The [Temporary PC Breakpoints] feature requires a PC breakpoint - if you have already used all those
available then the feature will not work.

Clicking the [Go] button starts execution according to the settings. Clicking the [Reset Go] button starts execution from
the reset vector. Clicking the [Cancel] button closes this dialog box without executing instructions.

4.10.5 Single Step

To debug your code it is very useful to be able to step a single line or instruction at a time and examine the effect of that
instruction on the system. In the [Source] window, then a step operation will step a single source line. In the
[Disassembly] window, a step operation will step a single assembly-language instruction. If the instruction calls another
function or subroutine, you have the option to either step into or step over the function. If the instruction does not perform
a call, then either option will cause the debugger to execute the instruction and stop at the next instruction.

4.10.6 Stepping Into a Function

If you choose to step into the function the debugger will execute the call and stop at the first line or instruction of the
function. To step into the function either click the [Step In] toolbar button , or choose [Debug->Step In].

4.10.7 Stepping Over a Function Call

If you choose to step over the function the debugger will execute the call and all of the code in the function (and any
function calls that that function may make) and stop at the next line or instruction of the calling function. To step over the
function either click the [Step Over] toolbar button , or choose [Debug->Step Over].

4.10.8 Stepping Out of a Function

There are occasions when you may have entered a function, finished stepping through the instructions that you want to
examine and would like to return to the calling function without tediously stepping through all the remaining code in the
function. Or alternatively you may have stepped into a function by accident, when you meant to step over it and so want to

224

return to the calling function without stepping all the way through the current function. You can do this with the Step Out
feature.

To step out of the current function either click the [Step Out] toolbar button , or choose [Debug->Step Out].

4.10.9 Multiple Steps

You can step several instructions at a time by using the [Step Program] dialog box. The dialog box also provides an
automated step with a selectable delay between steps. Open it by choosing [Debug-> Step...].

The [Step Program] dialog box is displayed:

Figure 4.52 Step Program Dialog Box

[Steps] Number of steps to be executed.

[Delay (seconds)] Delay between steps when the program is automatically stepped.
 Value 0 to 6 can be specified where value 0 indicates the longest delay.

[Step Over Calls] Selecting this box steps over function calls.

[Source Level Step] Selecting this box steps the program at the source level.

Clicking the [OK] button or pressing the Enter key starts step execution.

4.11 Stopping Your Program

This section describes how you can halt execution of your application's code. This section describes how to do this directly
by using the [Halt] button and by setting breakpoints at specific locations in your code.

4.11.1 Halting Execution

When your program is running, the [Halt] toolbar button is enabled [] (a red STOP sign), and when the program has
stopped it is disabled [] (the STOP sign is grayed out). Click on the [Halt] toolbar button, or choose [Debug->Halt
Program].

When the program has been stopped by [Halt], "Stop" is displayed in the [Debug] sheet of the [Output] window.

225

4.11.2 Standard Breakpoints (PC Breakpoints)

When you are trying to debug your program you will want to be able to stop the program running when it reaches a
specific point or points in your code. You can do this by setting a PC breakpoint on the line or instruction at which to want
the execution to stop. The following instructions will show you how to quickly set and clear simple PC breakpoints. If
more complex breakpoint operation is required, use the [Breakpoints] window, which can be opened by clicking the
button or choosing [View -> Code -> Breakpoints]. For details, refer to section 4.17, Using the Simulator/Debugger
Breakpoints.

• To set a PC breakpoint in the [Source] window

1. Make sure that the [Disassemble] or a [Source] window is open at the place you want to set a PC breakpoint.

2. Choose [Toggle Breakpoint] from the pop-up menu, or press F9, at the line showing the address at which you want
the program to stop.

3. You will see a red circle appear in the gutter to indicate that a PC breakpoint has been set.

4. The current breakpoint set can be enabled or disabled by using [Enable/Disable Breakpoint] in the pop-up menu.

Now when you run your program and it reaches the address at which you set the PC breakpoint, execution halts with the
message "Break = PC Breakpoint" displayed in the [Debug] sheet of the [Output] window, and the [Source] or
[Disassembly] window is updated with the PC breakpoint line marked with an arrow in the gutter.

Note: When a break occurs, the program stops just before it is about to execute the line or instruction at which
you set a program PC breakpoint. If you choose Go or Step after stopping at the PC breakpoint, then the
line marked with an arrow will be the next instruction to be executed.

• To set a PC breakpoint by using the [Breakpoints] dialog box

The [Breakpoints] dialog box is shown in figure 4.53. It allows the user to view the current breakpoints set. Clicking
the [Edit Code] button displays the source where each breakpoint is set. The [Remove] or [Remove All] button deletes
one or all breakpoints, respectively. The check box of each breakpoint enables or disables the breakpoint.

Figure 4.53 Breakpoints Dialog Box

• Toggling PC breakpoints

It is possible to toggle the [PC Breakpoints] setting by either double-clicking in the [BP] column of the line where the
PC breakpoint is set or placing the cursor on the line and pressing the F9 key. The setting to be toggled depends on the
debugging platform.

4.12 Elf/Dwarf2 Support

The HEW supports the Elf/Dwarf2 object file format for debugging applications written in C/C++ and assembly language
for Hitachi microcomputers. It provides a powerful way of accessing, observing and modifying the symbolic level
debugging information about the user application that is running.

226

Key Features

� Source level debugging

� C/C++ operators

� C/C++ expression (casting, pointers, references, etc.)

� Ambiguous function names

� Overlay memory loading

� Watch - locals, and user defined

� Stack Trace

4.12.1 C/C++ Operators

The C/C++ language operators are available:

+, -, *, /, &, |, ^, ~, !, >>, <<, %, (,), <, >, <=, >=, ==, !=, &&, ||

Buffer_start + 0x1000
#R1 | B'10001101
((pointer + (2 * increment_size)) & H'FFFF0000) >> D'15
!(flag ^ #ER4)

4.12.2 C/C++ Expressions

Expression Examples

Object.value //Specifies direct reference of a member (C/C++)
p_Object->value //Specifies indirect reference of a member (C/C++)
Class::value //Specifies reference of a member with class (C++)
*value //Specifies a pointer (C/C++)
&value //Specifies a reference (C/C++)
array[0] //Specifies an array (C/C++)
Object.*value //Specifies reference of a member with pointer (C++)
::g_value //Specifies reference of a global variable (C/C++)
Class::function(short) //Specifies a member function (C++)
(struct STR) *value //Specifies cast operation (C/C++)

227

4.12.3 Supporting Duplicate Labels

In some languages, for example C++ overloaded functions, a label may represent more than one address. When such a
label name is entered in a dialog box, the HEW will display the [Select Function] dialog box to display overloaded
functions and member functions.

Figure 4.54 Select Function Dialog Box

Select overloaded functions or member functions in the [Select Function] dialog box. Generally, one function can be
selected at one time; only for setting breakpoints, multiple functions can be selected. This dialog box has three areas.

[Select Function Name] Displays the same-name functions or member functions and
 their detailed information.

[Set Function Name] Displays the function to be set and their detailed information.

[Counter] [All Function] Displays the number of same-name functions
 or member functions.
 [Select Function] Displays the number of functions displayed
 in the [Select Function Name] list box.
 [Set Function] Displays the number of functions displayed
 in the [Set Function Name] list box.

Selecting a Function

Click the function you wish to select in the [Select Function Name] list box, and click the [>] button. You will see the
selected function in the [Set Function Name] list box. To select all functions in the [Select Function Name] list box, click
the [>>] button.

Deselecting a Function

Click the function you wish to deselect from the [Set Function Name] list box, and click the [<] button. To deselect all
functions, click the [<<] button. The deselected function will be moved from [Set Function Name] list box back to the
[Select Function Name] list box.

Setting a Function

Click the [OK] button to set the functions displayed in the [Set Function Name] list box. The functions are set and the
[Select Function] dialog box closes.

228

Clicking the [Cancel] button closes the dialog box without setting the functions.

4.12.4 Debugging an Overlay Program

This section explains the settings for using the overlay program debugging functions.

Displaying Section Group

When the overlay mode is used, that is, when several section groups are assigned to the same address range, the address
ranges and section groups are displayed in the [Overlay] dialog box.

Open the [Overlay] dialog box by choosing [Memory->Configure Overlay].

Figure 4.55 Overlay Dialog Box (at Opening)

This dialog box has two areas: the [Address] list box and the [Section Name] list box.

The [Address] list box displays the address ranges used in the overlay mode. Click to select one of the address ranges in
the [Address] list box.

Figure 4.56 Overlay Dialog Box (Address Range Selected)

The [Section Name] list box displays the section groups assigned to the selected address range.

" Setting Section Group

When using the overlay function, the highest-priority section group must be selected in the [Overlay] dialog box;
otherwise the HEW will operate incorrectly.

First click one of the address ranges displayed in the [Address] list box. The section groups assigned to the selected
address range will then be displayed in the [Section Name] list box.

229

Click to select the section group with the highest-priority among the displayed section groups.

Figure 4.57 Overlay Dialog Box (Highest-Priority Section Group Selected)

After selecting a section group, clicking the [OK] button stores the priority setting and closes the dialog box. Clicking the
[Cancel] button closes the dialog box without storing the priority setting.

Note: Within the address range used by the overlay function, the debugging information for the section specified
in the [Overlay] dialog box is referred to. Therefore, the same section of the currently loaded program must
be selected in the [Overlay] dialog box.

4.13 Looking at Variables

This section describes how you can look at variables in the source program.

4.13.1 Tooltip Watch

The quickest way to look at a variable in your program is to use the Tooltip Watch feature.

" To use Tooltip Watch:

Open the [Source] window showing the variable that you want to examine.
Rest the mouse cursor over the variable name that you want to examine - a tooltip will appear near the variable containing
basic watch information for that variable.

Figure 4.58 Tooltip Watch

4.13.2 Instant Watch

Open the [Source] window showing the variable that you want to examine.
Rest the mouse cursor over the variable name that you want to examine and choose [Instant Watch...] from the pop-up
menu; the [Instant Watch] dialog box will appear and display the variable at the cursor location.

230

Figure 4.59 Instant Watch Dialog Box

“+” shown to the left of the variable name indicates that the information may be expanded by clicking on the variable
name, and “-” indicates that the information may be collapsed. Clicking [Add] registers the variable in the [Watch]
window. Clicking [Close] closes the window without registering the variable in the [Watch] window.

4.13.3 Watch Window

You can view any value in the [Watch] window.

Opening a [Watch] Window

To open a [Watch] window, choose [View->Symbol->Watch] or click on the [Watch] toolbar button if it is visible. A
[Watch] window opens. Initially the contents of the window will be blank.

Figure 4.60 Watch Window

This window allows the user to view and modify C/C++-source level variables. The contents of this window are displayed
only when the debugging information available in the absolute file (*.abs) includes the information on the C/C++ source
program. The variable information is not displayed if the source program information is excluded from the debugging
information during optimization by the compiler. In addition, the variables that are declared as macro cannot be displayed.

The following items are displayed.

[Name] Name of the variable

[Value] Value and assigned location.
 The assigned location is enclosed by { }.

231

[Type] Type of the variable

Adding a Watch Item

Use the [Add Watch] dialog box in the [Watch] window to add Watch items to the [Watch] window.

" To use Add Watch from a [Watch] window:

Open the [Watch] window.
Choose [Add Watch] from the pop-up menu.
The [Add Watch] dialog box opens:

Figure 4.61 Add Watch Dialog Box

Enter the name of the variable that you wish to watch and click [OK]. The variable is added to the [Watch] window. A
variable can be dragged from the [Source] window and dropped into the [Watch] window.

Note: If the variable that you have added is a local variable that is not currently in scope, the HEW will add it to
the [Watch] window but its value will be blank, or set to a question mark, '?'.

Expanding a Watch Item

If a watch item is a pointer, array, or structure, then you will see a plus sign (+) expansion indicator to left of its name, this
means that you can expand the watch item. To expand a watch item, double click on it. The item expands to show the
elements (in the case of structures and arrays) or data value (in the case of pointers) indented by one tab stop, and the plus
sign changes to a minus sign (-). If the elements of the watch item also contain pointers, structures, or arrays then they will
also have expansion indicators next to them.

Figure 4.62 Expanding a Watch Item

To collapse an expanded watch item, double click on the item again. The item's elements will collapse back to the single
item and the minus sign changes back to a plus sign.

232

Editing a Watch Item's Value

You may wish to change the value of a watch variable, e.g. for testing purposes or if the value is incorrect due to a bug in
your program. To change a watch item's value use the Edit Value function.

" Editing a watch item's value:

Enter a value directly in the window.

In another way, select the item to edit by clicking on it, you will see a flashing cursor on the item.
Choose [Edit Value] from the pop-up menu.
The [Edit Value] dialog box opens:

Figure 4.63 Edit Value Dialog Box

Enter the new value or expression in the [New Value] field and click [OK]. The [Watch] window is updated to show the
new value.

Deleting a Watch Item

To delete a watch item, select it and choose [Delete] from the pop-up menu. The item is deleted and the [Watch] window
is updated.

To delete all watch items, choose [Delete All] from the pop-up menu. All items are deleted and the [Watch] window is
updated.

Specifying Realtime Update

The R mark shown to the left of each variable indicates whether the variable is updated in real time. When an R mark is
displayed in bold face, the value of the corresponding variable will be updated in realtime during user program execution.

A pop-up menu containing the following options is available in the [Watch] window:

• Auto Update

Marks the selected variable with a bold R and updates the variable in real time.

• Auto Update All

Marks all variables with bold Rs and updates all variables in real time.

• Delete Auto Update

Marks the selected variable with an outlined R and cancels realtime update.

• Delete Auto Update All

Marks all variables with outlined Rs and cancels realtime update.

Modifying the Radix

The radix for the selected variable display can be modified by choosing [Radix] from the pop-up menu.

Saving the Watch Window Contents in a File

233

To save the contents of the [Watch] window, choose [Save As...] from the pop-up menu; the Save As dialog box opens. It
allows the user to specify the name of a file and to save the contents of the [Watch] window in the file. If the [Append]
check box is selected, the window contents are appended to the existing file, and if it is not selected, the existing file is
overwritten.

Opening a Memory Window

The contents of the memory area to which the selected variable is assigned can be displayed in the [Memory] window.
Choose [Go To Memory...] from the pop-up menu; the [Set Address] dialog box opens, showing the information (start
address, end address, and size) of the selected variable as default. Clicking [OK] opens the [Memory] window.

4.13.4 Locals Window

The local variables and their values can be displayed in the [Locals] window.

Opening the Locals Window

To open the [Locals] window, choose [View->Symbol->Locals] or click the [Locals] toolbar button .

Figure 4.64 Locals Window

As you debug your program, the [Locals] window will be updated. If a local variable is not initialized when defined, then
the value in the [Locals] window will be undefined until a value is assigned to the local variable.

The local variable values and the radix for local variable display can be modified in the same manner as in the [Watch]
window.

234

4.14 Viewing the Profile Information

The profile function enables function-by-function measurement of the performance of the application program in
execution. This makes it possible to identify parts of an application program that degrade its performance and the reasons
for such degradation.

The HEW displays the results of measurement in three windows, according to the method and purpose of viewing the
profile data.

4.14.1 Stack Information Files

The profile function allows the HEW to read the stack information files (extension: “.SNI”) which are output by the
Hitachi Optimizing Linker (ver. 7.0 or later). Each of these files contains information related to the calling of static
functions in the corresponding source file. Reading the stack information file makes it possible for the HEW to display this
information to do with the calling of functions without executing the user application (i.e. before measuring the profile
data). However, this feature is not available when [Setting->Only Executed Functions] is checked in the pop-up menu of
the [Profile] window.

When the HEW does not read any stack information files, the data about the functions executed during measurement will
be displayed by the profile function.

To make the linker create a stack information file, choose [Options -> Hitachi SuperH Risc engine Standard Toolchain...],
and select [Other] from the [Category] list box and check the [Stack information output] box in the [Link/Library] sheet of
the [Standard Toolchain] dialog box.

Figure 4.65 Standard Toolchain Dialog Box (1)

4.14.2 Profile Information Files

To create a profile information file, choose the [Output Profile Information Files…] menu option from the pop-up menu of
the [Profile] window and specify the file name, after measuring a profile data of the application program.

235

This file contains information on the number of times functions are called and global variables are accessed. The Hitachi
Optimizing Linker (ver. 7.0 or later) is capable of reading the profile information file and optimizing the allocation of
functions and variables in correspondence with the status of the actual operation of the program.

To input the profiler information file to the linker, choose [Optimize] from the [Category] list box and check the [Include
Profile] box in the [Link/Library] sheet of the [Standard Toolchain] dialog box, and specify the name of the profile
information file.

Figure 4.66 Standard Toolchain Dialog Box (2)

To enable the settings in the [Include Profile] box, specify the [Optimize] list box as some setting other than [None].

4.14.3 Loading Stack Information Files

You can select whether or not to read the stack information file in a message box for confirmation that is displayed when a
load module is loaded. Clicking the [OK] button of the message box loads the stack information file. The message box for
confirmation will be displayed when:

• There are stack information files (extension: “*.SNI”).

• The [Load Stack Information Files (SNI files)] check box is checked in the [Confirmation] sheet of the [Options]
dialog box (figure 4.67) that can be opened by choosing [Tools->Options] from the main menu.

236

Figure 4.67 Options Dialog Box

4.14.4 Enabling the Profile

Choose [View->Performance->Profile] to open the [Profile] window.

Choose [Enable Profiler] from the pop-up menu of the [Profile] window. The item on the menu will be checked.

4.14.5 Specifying Measuring Mode

You can specify whether to trace functions calls while profile data is acquired. When function calls are traced, the
relations of function calls during user program execution are displayed as a tree diagram. When not traced, the relations of
function calls cannot be displayed, but the time for acquiring profile data can be reduced.

To stop tracing function calls, choose [Disable Tree (Not traces function call)] from the pop-up menu in the [Profile]
window (a check mark is shown to the left of the menu item).

When acquiring profile data of the program in which functions are called in a special way, such as task switching in the
OS, stop tracing function calls.

4.14.6 Executing the Program and Checking the Results

After the user program has been executed and execution has been halted, the results of measurement are displayed in the
[Profile] window.

The [Profile] window has two sheets; a [List] sheet and a [Tree] sheet.

4.14.7 List Sheet

This sheet lists functions and global variables and displays the profile data for each function and variable.

237

Figure 4.68 List Sheet

Clicking the column header sorts the items in an alphabetical or ascending order. Double-clicking the [Function/Variable]
or [Address] column displays the source program corresponding to the address in the line.

Right-clicking on the mouse within the window displays a pop-up menu. For details on this pop-up menu, refer to section
4.14.8, Tree Sheet.

238

4.14.8 Tree Sheet

This sheet displays the relation of function calls along with the profile data that are values when the function is called.
This sheet is available when [Disable Tree (Not traces function call)] is not selected from the pop-up menu in the [Profile]
window.

Figure 4.69 Tree Sheet

Double-clicking a function in the [Function] column expands or reduces the tree structure display. The expansion or
reduction is also provided by the “+” or “-“ key. Double-clicking the [Address] column displays the source program
corresponding to the specific address.

Right-clicking on the mouse within the window displays a pop-up menu. Supported menu options are described in the
following:

• View Source

Displays the source program or disassembled memory contents for the address in the selected line.

• View Profile-Chart

Displays the [Profile-Chart] window focused on the function in the specified line.

• Enable Profiler

Toggles acquisition profile data. When profile data acquisition is active, a check mark is shown to the left of the menu
text.

• Not trace the function call

Stops tracing function calls while profile data is acquired. This menu is used when acquiring profile data of the
program in which functions are called in a special way, such as task switching in the OS.

To display the relation of function calls in the [Tree]sheet of the [Profile] window, acquire profile data without
selecting this menu. In addition, do not select this menu when optimizing the program by the optimizing linkage editor
using the acquired profile information file.

• Find…

Displays the [Find Text] dialog box to find a character string in the [Function] column. Search is started by inputting a
character string to be found in the edit box and clicking [Find Next] or pressing the Enter key.

• Find Data…

Displays the [Find Data] dialog box.

239

Figure 4.70 Find Data Dialog Box

By selecting the column to be searched in the [Column] combo box and the search type in the [Find Data] group and
entering [Find Next] button or Enter key, search is started. If the [Find Next] button or the Enter key is input repeatedly,
the second larger data (the second smaller data when the Minimum is specified) is searched for.

• Clear Data

Clears the number of times functions are called and profile data. Data in the [List] sheet of the [Profile] window and
the data in the [Profile-Chart] window are also cleared.

• Output Profile Information Files…

Displays the [Save Profile Information Files] dialog box. Profiling results are saved in a profile information file (.pro
extension). The optimizing linkage editor optimizes user programs according to the profile information in this file. For
details of the optimization using the profile information, refer to the manual of the optimizing linkage editor.

Note: If profile information has been acquired by choosing the [Not trace the function call] menu, the program

cannot be optimized by the optimizing linkage editor.

• Output Text File…

Displays the [Save Text of Profile Data] dialog box. Displayed contents are saved in a text file.

• Setting

This menu has the following submenus (the menus available only in the [List] sheet are also included).

 Show Functions/Variables

Displays both functions and global variables in the [Function/Variable] column.

 Show Functions

Displays only functions in the [Function/Variable] column.

 Show Variables

Displays only global variables in the [Function/Variable] column.

 Only Executed Functions

Only displays the executed functions. If a stack information file (.sni extension) output from the optimizing linkage
editor does not exist in the directory where the load module is located, only the executed functions are displayed
even if this check box is not checked.

 Include Data of Child Functions

Sets whether or not to display information for a child function called in the function as profile data.

• Properties...

This menu cannot be used in this simulator/debugger.

4.14.9 Profile-Chart Window

The [Profile-Chart] window displays the relation of calls for a specific function. This window displays the specified
function in the middle, with the callers of the function on the left and the callees of the function on the right. The numbers
of times the function calls the called functions or is called by the calling functions are also displayed in this window.

240

Figure 4.71 Profile-Chart Window

4.14.10 Types and Purposes of Displayed Data

The profile function is able to acquire the following information:

Address You can see the locations in memory to which the functions are allocated.
 Sorting the list of functions and global variables in order of their addresses
 allows the user to view the way the items are allocated in the memory space.

Size Sorting in order of size makes it easy to find small functions that are frequently
 called. Setting such functions as inline may reduce the overhead of function
 calls. If you are using a microcomputer which incorporates a cache memory,
 more of the cache memory will need to be updated when you execute larger
 functions. This information allows you to check if those functions that may
 cause cache misses are frequently called.

Stack Size When there is deep nesting of function calls, pursue the route of the function
 calls and obtain the total stack size for all of the functions on that route to
 estimate the amount of stack being used.

Times Sorting by the number of calls or accesses makes it easy to identify the
 frequently called functions and frequently accessed global variables.

Profile Data Measurement of a variety of CPU-specific data is also available as follows:

• SH-1/SH-2/SH-2E Series, SH2-DSP (SH7410), SH-2DSP (Core), and SH2-DSP (SH7065):

[Times] (the number of function calls or global variable accesses),
[Cycle] (the number of execution cycles),
[Ext_mem] (the number of external memory accesses),
[I/O_area] (the number of internal I/O area accesses),
[Int_mem] (the number of internal memory accesses)

• SH-3/SH-3E/SH3-DSP Series and SH2-DSP (SH7612):

[Times] (the number of function calls or global variable accesses),
[Cycle] (the number of execution cycles),
[Cache miss] (the number of cache misses),
[Ext_mem] (the number of external memory accesses),
[I/O_area] (the number of internal I/O area accesses),
[Int_mem] (the number of internal memory accesses)

241

• SH-4 Series:

[Times] (the number of function calls or global variable accesses),
[Cycle] (the number of execution cycles),
[ICache miss] (the number of instruction cache misses),
[OCache miss] (the number of operand cache misses),
[Ext_mem] (the number of external memory accesses),
[I/O_area] (the number of internal I/O area accesses),
[Int_mem] (the number of internal memory accesses)

The number of execution cycles and cache misses are calculated by subtracting the total execution cycles or cache misses
at a specific function call instruction execution from the total execution cycles or cache misses at a return instruction
execution of a specific function.

4.14.11 Creating Profile Information Files

To create a profile information file, choose the [Output Profile Information Files…] menu option from the pop-up menu.
The [Save Profile Information Files] dialog box is displayed. Pressing the [Save] button after selecting a file name will
write the profile information to the selected file. Pressing the [Save All] button will write the profile information to all of
the profile information files.

Figure 4.72 Save Profile Information Files Dialog Box

4.14.12 Notes

1. The number of executed cycles for an application program as measured by the profile function includes a margin of
error. The profile function only allows the measurement of the proportions of execution time that the functions occupy
in the overall execution of the application program. Use the Performance Analysis function to precisely measure the
numbers of executed cycles.

2. The names of the corresponding functions may not be displayed when the profile information on a load module with
no debug information is measured.

3. The stack information file (extension: “.SNI”) must be in the same directory as the load module file (extension:
“.ABS”).

4. It is not possible to store the results of measurement.

242

5. It is not possible to store the results of measurement.

4.15 Viewing the Function Call History

The [Stack Trace] window shows the function call history.

4.15.1 Opening the Stack Trace Window

To open the [Stack Trace] window, choose [View -> Code -> Stack Trace] or click the [Stack Trace] toolbar button .

Figure 4.73 Stack Trace Window

The following items are displayed.

[Kind] Indicates the type of the symbol.
F: Function
P: Function parameter
L: Local variable

[Name] Indicates the symbol name.

[Value] Indicates the value, address, and type of the symbol.

4.15.2 Viewing the Source Program

Select a function and choose [Go to Source] from the pop-up menu to display, in the [Source] window, the source program
corresponding to the selected function.

4.15.3 Specifying the View

Choose [View Setting...] from the pop-up menu to open the [Stack Trace Setting] dialog box, which allows the user to
specify the [Stack Trace] window settings.

243

Figure 4.74 Stack Trace Setting Dialog Box

[Nest level] Specifies the level of function call nesting to be displayed in the [Stack Trace] window.

[Display symbol] Specifies the symbol types to be displayed in addition to functions.

[Display Radix] Specifies the radix for displays in the [Stack Trace] window.

244

4.16 Viewing the Trace Information

The simulator/debugger acquires the results of each instruction execution as trace information and displays it in the
[Trace] window. The conditions for the trace information acquisition can be specified in the [Trace Acquisition] dialog
box.

4.16.1 Opening the Trace Window

To open the [Trace] window, choose [View -> Code -> Trace] or click the [Trace] toolbar button .

4.16.2 Specifying Trace Acquisition Conditions

After the [Trace] window opens, the trace acquisition conditions must be specified in the [Trace Acquisition] dialog box.
To open this dialog box, choose [Acquisition...] from the pop-up menu.

Figure 4.75 Trace Acquisition Dialog Box

This dialog box specifies the conditions for trace information acquisition.

[Trace Start/Stop]
 [Disable] Disables trace information acquisition.
 [Enable] Enables trace information acquisition.

[Instruction Type]
 [Instruction] Acquires trace information for all instructions.
 [Subroutine] Acquires trace information for the subroutine instructions only.

[Trace Buffer Full Handling]
 [Continue] Continues acquiring trace information even if the trace information acquisition buffer becomes full.
 [Break] Stops execution when the trace information acquisition buffer becomes full.

The trace buffer capacity can be selected from 1024 records, 4096 records, 16384 records, and 32768 records in the [Trace
Capacity].

245

Clicking the [OK] button stores the settings. Clicking the [Cancel] button closes this dialog box without modifying the
settings.

4.16.3 Acquiring Trace Information

After trace acquisition is enabled, trace information is acquired during instruction execution. The acquired information
will be displayed in the [Trace] window. The displayed information items depend on the target CPU as follows:

SH-1, SH-2, SH-2E, and SH2-DSP Series:

Figure 4.76 Trace Window (for SH-1, SH-2, SH-2E, and SH2-DSP Series)

This window displays the following trace information items:

[PTR] Pointer in the trace buffer (0 for the last executed instruction)

[Cycle] Total number of instruction execution cycles (cleared by pipeline reset)

[Address] Instruction address

[Pipeline] Pipeline execution status
 Each symbol has the following meaning:
 F: Instruction fetch (with memory access)
 f: Instruction fetch (without memory access)
 D: Instruction decode
 E: Instruction execution
 M: Memory access
 W: Write back
 P: DSP
 m: Multiplier execution
 –: Stall inherent in the instruction
 >: Split
 <: Stall due to conflict
 Refer to the programming manual of each device for more information on pipeline operation.

[Instruction] Instruction mnemonic

[Access Data] Data access information (display format: destination <- accessed data)

[Source] C/C++ or assembly-language source programs

246

SH-3 and SH-3E Series:

Figure 4.77 Trace Window (for SH-3 and SH-3E Series)

This window displays the following trace information items:

[PTR] Pointer in the trace buffer (0 for the last executed instruction)

[Cycle] Total number of instruction execution cycles (cleared by pipeline reset)

[Address Bus] Data on the address bus

[Data Bus] Data on the data bus

[Code] Instruction code

[No] Instruction number (corresponds to execution number in each stage)

[Instruction] Instruction mnemonic

[IF] Instruction number that was fetched (enclosed by [] when the instruction did not access memory)

[DE] Instruction number that was decoded

[EX] Instruction number that was executed

[MA] Instruction number that accessed memory

[SW] Instruction number that wrote back data

[Access Data] Data access information (display format: destination <- accessed data)

[Source] C/C++ or assembly-language source programs

247

SH3-DSP Series:

Figure 4.78 Trace Window (for SH3-DSP Series)

This window displays the following trace information items:

[PTR] Pointer in the trace buffer (0 for the last executed instruction)

[Cycle] Total number of instruction execution cycles (cleared by pipeline reset)

[Address] Program counter value

[Code] Instruction code

[IF] Instruction number that was fetched (enclosed by [] when the instruction did not access memory)

[DE] Instruction number that was decoded

[EX] Instruction number that was executed

[MA] Instruction number that accessed memory

[SW] Instruction number that wrote back data

[No] Instruction number (corresponds to execution number in each stage)

[Instruction] Instruction mnemonic

[Access Data] Data access information (display format: destination <- accessed data)

[Source] C/C++ or assembly-language source programs

248

SH-4 Series:

Figure 4.79 Trace Window (for SH-4 Series)

This window displays the following trace information items:

[PTR] Pointer within the trace buffer (The latest instruction is 0)

[Cycle] Total number of instruction execution cycles (cleared by pipeline reset). The CPU internal clock
cycles are counted as execution cycles. The rates of the external and internal clocks can be specified
using the Clock Rate command. For the SH-4BSC, one execution cycle is equivalent to three external
cycles.

[Address Bus] Program counter value

[Code1] Fetched code 1

[Code2] Fetched code 2
The code currently decoded is marked with *. If the two codes are executed in parallel, the code
fetched at the smaller address is marked with *.

[EX-EAS] Instruction number that was executed (in the E stage), accessed memory
(in the A stage), or wrote back data (in the S stage) in the EX pipeline

[LS-EAS] Instruction number that was executed, accessed memory, or wrote back data in the LS pipeline

[BR-EAS] Instruction number that was executed, accessed memory, or wrote back data in the BR pipeline

[FP-EXASD] Instruction number that was executed, accessed memory, or wrote back data in the FP pipeline (only
for FSCA, FSRRA, FIPR, and FTRV instructions in the X stage, and for FDIV and FSQRT
instructions in the D stage)

[No] Instruction number (corresponds to execution number in each stage)

[Address] Executed instruction address

[Code] Executed instruction code

[Instruction] Executed instruction mnemonic

[Access Data] Data access information (display format: destination <- transfer data)

[Source] C/C++ or assembly-language source programs

249

4.16.4 Searching for a Trace Record

Use the [Trace Search] dialog box to search for a trace record. To open this dialog box, choose [Find...] from the pop-up
menu.

Figure 4.80 Trace Search Dialog Box

This dialog box specifies the conditions for searching trace information. Specify a search item in [Item] and search for the
specified contents in [Value].

[PTR] Pointer in the trace buffer (0 for the last executed instruction, specify in the form of -nnn)

[Cycle] Total number of instruction execution cycles

[Address] Instruction address

[Instruction] Instruction mnemonic

Clicking the [OK] button stores the settings and starts searching. Clicking the [Cancel] button closes this dialog box
without searching.

When a trace record that matches the search conditions is found, the line for the trace record will be highlighted. When no
matching trace record is found, a message dialog box will appear.

If a find operation is successful, choosing [Find Next] from the pop-up menu will move to the next found item.

4.16.5 Clearing the Trace Information

Choose [Clear] form the pop-up menu to empty the trace buffer that stores the trace information. If more than one [Trace]
window is open, all [Trace] windows will be cleared as they all access the same buffer.

4.16.6 Saving the Trace Information in a File

Choose [Save...] from the pop-up menu to open the [Save As] dialog box, which allows the user to save the contents of the
trace buffer as a text file. A range can be specified based on the [PTR] number (saving the complete buffer may take
several minutes). Note that this file cannot be reloaded into the trace buffer.

4.16.7 Viewing the Source Window

The [Source] window corresponding to the selected trace record can be displayed in the following two ways:

• Select a trace record and choose [View Source] from the pop-up menu.

250

� Double-click a trace record

The [Source] or [Disassembly] window opens and the selected line is marked with a cursor.

4.16.8 Trimming the Source

Choose [Trim Source] from he pop-up menu to remove the white space from the left side of the source.

When the white space is removed, a check mark is shown to the left of the [Trim Source] menu. To restore the white space,
choose [Trim Source] while the check mark is shown.

251

4.16.9 Analyzing Statistical Information

Choose [Statistic] from the pop-up menu to open the [Trace Statistic] dialog box and analyze statistical information under
the specified conditions.

Figure 4.81 Trace Statistic Dialog Box

This dialog box allows the user to analyze statistical information concerning the trace information. The target of analysis
is specified in [Item] and the input value or character string is specified by [Start] and [End].

When [Default] is selected, the input value or character string cannot be specified as a range. To specify a range, select
[Range].

[Set] Adds a new condition to the current one

[New] Creates a new condition

[Result] Obtains the result of statistical information analysis

[Clear] Clears all condition and results of statistical information analysis

Clicking the [Close] button closes this dialog box.

4.17 Using the Simulator/Debugger Breakpoints

Sophisticated breakpoint functions are available in the simulator/debugger in addition to the HEW standard PC
breakpoints. The user can specify break conditions and actions after a break condition is satisfied, and can display the
breakpoints set.

252

4.17.1 Listing the Breakpoints

Choose [View -> Code -> Breakpoints] or click the [Breakpoints] toolbar button to open the [Break] window, which
lists the breakpoints set.

Figure 4.82 Break Window

The following items are displayed:

[Enable] Displays whether the breakpoint is enabled or disabled.
 [Enable]: Valid
 [Disable]: Invalid

[Type] Displays break types
 [BP]: PC break
 [BA]: Break access
 [BD]: Break data
 [BR]: Break register (Register name)
 [BS]: Break sequence
 [BCY]: Break cycle

[Condition] Displays the conditions that satisfies a break condition. The contents displayed differ from the type of the
break. When the type of the break is BR, the register name is displayed, and when the type of the break is
BCY, the number of cycles is displayed.

 BP: PC = Program counter (Corresponding file name, line, and symbol name)
 BA: Address = Address (Symbol name)
 BD: Address = Address (Symbol name)
 BR: Register = Register name
 BS: PC = Program counter (Corresponding file name, line, and symbol name)
 BCY: Cycle = Number of cycles (displayed in hexadecimal)

[Action] Displays the operation of the simulator/debugger when a break condition is satisfied.
 [Stop]: Execution halts
 [File Input] (file name) [File state]: Memory data is read from file]
 [File Output] (file name) [File state]: Memory data is written to file]
 [Interrupt] (Interrupt type/priority): Interrupt processing
 Only for SH3-DSP (Interrupt type 1,

 interrupt type 2/priority) is displayed.

4.17.2 Setting a Breakpoint

Choose [Add...] from the pop-up menu in the [Breakpoints] window to open the [Set Break] dialog box, which allows the
user to set a breakpoint.

The [Set Break] dialog box has two pages: [Condition] page for specifying break conditions and [Action] page for
specifying the action when a break condition is satisfied.

253

Specifying Break Conditions:

Specify break conditions in the [Condition] page in the [Set Break] dialog box (figure 4.83).

Figure 4.83 Set Break Dialog Box (Condition Page)

This dialog box specifies break conditions.

Set a break type in the [Break type] box. The following shows the conditions that can be specified in each type.

[PC Breakpoint] Up to 255 breakpoints can be specified
 [Address] Address where a break occurs
 [Count] Number of times that a specified instruction is fetched (when the prefix is omitted,

values must be input and are displayed in decimal) (1 to 16383, default: 1)

[Break Access] Up to two addresses can be specified
 [Start address] Start address of memory where a break occurs if the memory is accessed
 [End address] End address of memory where a break occurs if the memory is accessed (If no data is

input, only the start address is break range)
 [Access type] Read, Write, or Read/Write

[Break Data] Up to eight values of data can be specified
 [Start address] Address of memory where a break occurs
 [Data] Data value that causes a break
 [Size] Data size
 [Option] Data match/mismatch

[Break Register] Up to eight register names can be specified

254

 [Register] Register name where break conditions are specified
 [Size] Data size
 [Data] Data value that causes a break (If no data is input, a break occurs whenever data is

written to the register)
 [Option] Data match/mismatch

[Break Sequence] Only one address can be specified
 [Address1] to Pass addresses that are the conditions to generate a break.
 [Address8] (All eight breakpoints do not have to be set.)

[Break Cycle] Up to 255 cycles can be specified
 [Cycle] Number of cycles to determine a break (H’1 to H’FFFFFFFF).
 A condition will be satisfied by a number of cycles of [Cycle] x n. However, the

specified number of cycles and the number of cycles that satisfied the condition may
be different.

 [Count] Number of times breaks will occur
 [ALL] A break will occur whenever a condition is satisfied.
 [Times] (when the prefix is omitted, values must be input and are displayed in

hexadecimal) (1 to 65535)
 A break will occur only when the number of times
 the conditions is satisfied is equal to or below the
 value specified for [Times].

When [PC Breakpoint] and [Break Sequence] is selected, if an overloaded function or class name including a member
function is specified in address, the [Select Function] dialog box opens. In the dialog box, select a function. For details,
refer to section 4.12.3, Supporting Duplicate Labels.

Clicking the [OK] button sets the break conditions. Clicking the [Cancel] button closes this dialog box without setting the
break conditions.

Note: For the SH3-DSP series, specify values within the range H'A5000000 to H'A501FFFF (X and Y memory
virtual addresses, corresponding to physical addresses H'05000000 to H'0501FFFF) as the [Start address]
and [End address] in [Break Access] and as the [Start address] in [Break Data] for X or Y memory accesses
by the MOVX or MOVY instruction.

Specifying the Action at Break:

Specify the action when a break condition is satisfied in the [Action] page in the [Set Break] dialog box (figure 4.84).

255

Figure 4.84 Set Break Dialog Box (Action Page)

This dialog box specifies the action when a break condition is satisfied. Set the action in [Action type]. The following
show the items that can be set in each action.

[Stop] Stops the operation of user program when a condition is satisfied. There is no item to be set.
[File Input] The data of a specified file is referred to and its contents are written to the specified memory when a

condition has been satisfied
 [Input file] Data file to refer to.
 When the simulator/debugger has reached referring to the end of a file, it will repeat

referring to the beginning of the same file.
 [Address] Memory address where data should be written to.
 [Data size] Data size to be written to (1/2/4/8).
 [Count] Number of data to be written to (when the prefix is omitted, values must be input and

are displayed in decimal) (H’1 to H’FFFFFFFF).

[File Output] The contents of a specified memory is written to the specified file when a condition has been satisfied.
 [Output file] Data file to be written to.
 [Append] When a existing file is specified for the [Output File],
 [Address] Memory address to read data to.
 [Data size] Size of one data to refer to (1/2/4/8).
 [Count] Number of data to refer to (when the prefix is omitted, values must be input and are

displayed in decimal) (H’1 to H’FFFFFFFF).
 [Option] Data match/mismatch
[Interrupt] Interrupts the program when a condition has been satisfied. For details, refer to section 2.20, Pseudo-

Interrupts.

256

 [Interrupt type1] Specifies the following values for each CPU (when the prefix is omitted, values must
be input and are displayed in hexadecimal)

 � SH-1, SH-2, and SH2-DSP series
 Interrupt vector number (H’0 to H’FF)
 � SH-3, SH-4, and SH3-DSP series
 INTEVT (H’0 to H’FFF)
 [Interrupt type2] Only the SH3-DSP series can specify the following (when the prefix is omitted, values

must be input and are displayed in hexadecimal):
 INTEVT2 (H’0 to H’FFF)
 [Priority] Interrupt priority (when the prefix is omitted, values must be
 input and are displayed in hexadecimal) (H’0 to H’11)

When H'10 is specified, the interrupt is always accepted regardless of the I bit in SR,
but is masked by the BL bit in SR.
When H'11 is specified, the interrupt is always accepted regardless of the I and BL bits
in SR.

Note: When the same file is specified for multiple [File Input], the simulator/debugger will read data from the file
in the order conditions are satisfied. When the same file is specified for multiple [File Output], the
simulator/debugger will write data to the file in the order conditions are satisfied. However, when [File
Input] and [File Output] specify the same file, only the operation for the first condition satisfied is valid.

4.17.3 Modifying Breakpoints

Select a breakpoint to be modified, and choose [Edit...] from the pop-up menu to open the [Set Break] dialog box, which
allows the user to modify the break conditions. The [Edit...] menu is only available when one breakpoint is selected.

4.17.4 Enabling a Breakpoint

Select a breakpoint and choose [Enable] from the pop-up menu to enable the selected breakpoint.

4.17.5 Disabling a Breakpoint

Select a breakpoint and choose [Disable] from the pop-up menu to disable the selected breakpoint. When a breakpoint is
disabled, the breakpoint will remain in the list, but a break will not occur when the specified conditions have been satisfied.

4.17.6 Deleting a Breakpoint

Select a breakpoint and choose [Delete] from the pop-up menu to remove the selected breakpoint. To retain the breakpoint
but not have it cause a break when its conditions are met, use the [Disable] option (see section 4.17.5, Disabling a
Breakpoint).

4.17.7 Deleting All Breakpoints

Choose [Delete All] from the pop-up menu to remove all breakpoints.

4.17.8 Viewing the Source Line for a Breakpoint

Select a breakpoint and choose [Go to Source] from the pop-up menu to open the [Source] or [Disassembly] window at
address of breakpoint. The [Go to Source] menu is only available when one breakpoint is selected.

257

4.17.9 Closing Input or Output File

Select a breakpoint and choose [Close File] from the pop-up menu to close the selected [File Input] or [File Output] data
file and to reset the address to read the file.

4.17.10 Closing All Input and Output Files

Choose [Close All Files] from the pop-up menu to close all [File Input] and [File Output] data files and to reset the address
to read the file.

4.18 Analyzing Performance

Use the [Performance Analysis] window to select a function name and analyze the performance.

4.18.1 Opening the Performance Analysis Window

Choose [View -> Performance -> Performance Analysis] or click the [PA] toolbar button to open the [Performance
analysis] window.

Figure 4.85 Performance Analysis Window

This window displays the number of execution cycles required for each specified function.

The number of execution cycles are calculated as follows:

Execution cycles = total number of execution cycles when execution returns from the function
 – total number of execution cycles when the target function is called

The following items are displayed:

[Index] Index number of the set condition

[Function] Name of the function to be measured (or the start address of the function)

[Cycle] Total number of instruction execution cycles

[Count] Total number of calls for the function

[%] Ratio of execution cycle count required for the function to the execution cycle count required for the whole
program

[Histogram] Histogram display of the above ratio

258

4.18.2 Specifying a Target Function

After the [Performance Analysis] window is open, choose [Add Range...] from the pop-up menu or press the Insert key to
open the [Performance Option] dialog box, which allows the user to specify a function to be analyzed.

Figure 4.86 Performance Option Dialog Box

This dialog box specifies a function (including a label) to be evaluated. Up to 255 functions can be specified in total.
When an overloaded function or a class name including a member function is specified, the [Select Function] dialog box
opens. In the dialog box, select a function. For details, refer to section 4.12.3, Supporting Duplicate Labels.

Clicking the [OK] button stores the setting. Clicking the [Cancel] button closes this dialog box without setting the function
to be evaluated.

Select a function that has been set and choose [Edit Range] from the pop-up menu or press the Enter key to open the
[Performance Option] dialog box and to change the function to be evaluated.

4.18.3 Starting Performance Data Acquisition

Choose [Enable Analysis] from the pop-up menu (a check mark is shown to the left of [Enable analysis]) to start acquiring
performance analysis data.

4.18.4 Resetting Data

Choose [Reset Counts/Times] from the pop-up menu to clear the current performance analysis data.

4.18.5 Deleting a Target Function

Select a function and choose [Delete Range] from the pop-up menu to delete the selected target function and to recalculate
the data for the other ranges. The selected function can also be deleted by the Delete key.

4.18.6 Deleting All Target Functions

Choose [Delete All Ranges] from the pop-up menu to delete all the current target functions and to clear the performance
analysis data.

4.19 Acquiring Code Coverage

The [Coverage] window acquires code coverage information (C0 coverage and C1 coverage) in the range specified by the
user, and displays the information.

4.19.1 Opening the Coverage Window

Choose [View -> Code -> Coverage...] or click the [Coverage] toolbar button to open the [Open Coverage] dialog box.

259

Figure 4.87 Open Coverage Dialog Box

This dialog box specifies the coverage acquiring range. To acquire coverage for a new range, specify the start and end
addresses in [New Window]. The following items can be specified:

[Start Address] Start address of coverage information display
 (When a prefix is omitted, the values is input in hexadecimal.)

[End Address] End address of coverage information display
 (When a prefix is omitted, the value is input in hexadecimal.)

To use the settings saved in a coverage information file, choose the file from [Open a recent coverage file], or open a file
open dialog box by [Browse to another coverage file] and select the file. When [Open a recent coverage file] is selected,
up to four recent files that have been saved are displayed.

Clicking [OK] opens the [Coverage] window.

Figure 4.88 Coverage Window

This window displays the coverage information in C/C++ and assembly-language level.

The following items are displayed:

[Times] Number of times instruction was executed

260

[Pass] Execution status of conditional branch instructions
 T: A branch occurred because the condition was satisfied
 F: No branch has occurred because the condition was not satisfied

[Address] Ins truction Address

[Assembler] Disassembled display

[Source] C/C++ or assembly-language source

When the [Coverage] window is closed, the acquired coverage information and the conditions to acquire information will
be cleared.

4.19.2 Acquiring Coverage Information

Select [Enable Coverage] from the pop-up menu and execute the user program to acquire coverage information.

4.19.3 Viewing the Source Window

Choose [View Source] from the pop-up menu to display the [Source] window corresponding to the cursor location in the
[Coverage] window.

4.19.4 Changing the Display Address

Choose [Go to Address...] to open the [Go To Address] dialog box.

Figure 4.89 Go To Address Dialog Box

This dialog box changes the address displayed in the [Coverage] window.

4.19.5 Changing the Coverage Range

Choose [Set Range...] from the pop-up menu to open the [Coverage Range] dialog box.

Figure 4.90 Coverage Range Dialog Box

This dialog box specifies the condition to acquire instruction execution information. The following items can be specified.

[Start Address] Start address (When a prefix is omitted, the value is input in hexadecimal.)

261

[End Address] End address (When a prefix is omitted, the value is input in hexadecimal.)

Clicking [OK] changes the coverage range.

4.19.6 Clearing Coverage Information

Choose [Clear Data] from the pop-up menu to clear the acquired coverage information.

4.19.7 Saving Coverage Information in a File

Choose [Save Data...] from the pop-up menu to open the [Save Data] dialog box, which allows the user to save the
coverage information in a file.

Figure 4.91 Save Data Dialog Box

This dialog box specifies the location and name of a coverage information file to be saved. The placeholder or the
[Browse...] button can be used.

If a file name extension is omitted, .COV is automatically added. If a file name extension other than .COV or .TXT is
specified, an error message will be displayed.

4.19.8 Loading Coverage Information from a File

Choose [Load Data...] from the pop-up menu to open the [Load Data] dialog box, which allows the user to load the
coverage information from a file.

Figure 4.92 Load Data Dialog Box

This dialog box specifies the location and name of a coverage information file to be loaded. The placeholder or the
[Browse...] button can be used.

Only .COV files can be loaded. If a file name extension other than .COV is specified, an error message will be displayed.

4.19.9 Updating the Information

Choose [Refresh] from the pop-up menu to update the [Coverage] window to the latest information.

262

4.19.10 Stopping Update

Choose [Lock Refresh] from the pop-up menu to only update [Times] and [Pass] when program execution stops. Memory
accesses to update instruction codes in the [Coverage] window are stopped.

4.19.11 Confirmation Request Dialog Box

A confirmation request dialog box will appear when [Clear Data] or [Set Range...] is clicked or an attempt is made to close
the [Coverage] window.

Figure 4.93 Confirmation Request Dialog Box

Clicking [OK] clears the coverage data. Choosing [Save Coverage data] opens the [Save Coverage Data] dialog box
(figure 4.94) to save the coverage data in a file before it is cleared.

263

4.19.12 Save Coverage Data Dialog Box

When [File -> Save Session] menu option is clicked, the [Save Coverage Data] dialog box will appear, which allows the
user to save the [Coverage] window data in separate files or a single file.

Figure 4.94 Save Coverage Data Dialog Box

When multiple [Coverage] windows are open, a [Save Coverage Data] dialog box will appear for each open coverage
window.

Clicking the [No To All] button closes the dialog box without saving any coverage data.

Clicking the [Yes To All] button saves the data of all [Coverage] windows in a single file.

4.19.13 Displaying the Coverage Information in the Source Window

The coverage information is reflected to the [Source] window by highlighting the debugger columns corresponding to the
source lines of executed instructions. When the coverage settings are modified in the [Coverage] window, the debugger
column display will be updated.

Figure 4.95 Debugger Column (Coverage)

264

4.20 Viewing the Current Status

Choose [View -> CPU -> Status] or click the [View Status] toolbar button to open the [Status] window and see the
current status of the debugging platform.

Figure 4.96 Status Window

The [Status] window is split into three sheets:

• [Memory] sheet

Contains information about the current memory status including the memory mapping resources and the areas used by
the currently loaded object file.

• [Platform] sheet

Contains information about the current status of the debugging platform, typically including CPU type and mode; and
run status.

• [Events] sheet

Contains information about the current event (breakpoint) status, including resource information.

265

4.21 Debugging with the Command Line Interface

Use the [Command Line] window to enter text-based commands instead of window menus and commands.

4.21.1 Opening the Command Line Window

Choose [View -> Command Line] or click the [Command Line] toolbar button to open the [Command Line] window.

Figure 4.97 Command Line Window

This window allows the user to control the debugging platform by sending text-based commands. A series of predefined
command lines can be called from a file and the output can be recorded in a file. The command can be executed by
pressing the Enter key after the command is input at the prompt (<) on the last line. For information about the available
commands, refer to section 5, Command Lines, and the on-line help.

If available, the window title displays the current batch and log file names separated by colons.

Pressing the Ctrl + ↑ or Ctrl + ↓ keys on the last line displays the previously executed command line.

4.21.2 Specifying a Command File

It is useful to use a command file when a series of predefined command lines need to be executed, such as when an
automatic test is executed. Create a command file by a text editor and write necessary command lines. The default
extension of a command file is .hdc.

Choose [Set Batch File...] from the pop-up menu to open the [Set Batch File] dialog box, in which the name of a command
file (*.hdc) can be specified. Clicking the [OK] button displays the specified command file name as the window title.
Clicking the [Cancel] button closes the dialog box without modifying the setting.

Figure 4.98 Set Batch File Dialog Box

266

4.21.3 Executing a Command File

Click the [Play] button in the [Set Batch File] dialog box or choose [Play] from the pop-up menu to execute the command
file. The [Play] menu is displayed in gray while the file is running and can be used when the command file execution stops
and control returns to the user.

4.21.4 Stopping Command Execution

Choose [Stop] from the pop-up menu to stop command execution. The [Stop] menu becomes valid during command
execution.

4.21.5 Specifying a Log File

Choose [Set Log File...] from the pop-up menu to open the [Open Log File] dialog box, in which a log file to store the
command execution results can be specified.

Figure 4.99 Open Log File Dialog Box

Enter the name of a log file (*.log). The logging option is automatically set and the name of the file is shown on the
window title bar.

Opening a previous log file will ask the user if they wish to append or overwrite the current log.

4.21.6 Starting or Stopping Logging

Choose [Logging] from the pop-up menu to toggle logging to file on and off. When logging is active, the button becomes
effective. Note that the contents of the log file cannot be viewed until logging is completed, or temporarily disabled by
clearing the check box. Re-enabling logging will append to the log file.

4.21.7 Entering a Full Path to the File

It is recommended that the full path to a file is specified as a file name in the [Command line] window because the current
directory can be moved. However, care must be taken to enter the correct full path to a file when it is entered from the
keyboard. To save this trouble, a full path can be easily specified by browsing through files.

Choose [Browse...] from the pop-up menu to open the [Browse] dialog box. Select a file and click [Open] to paste the full
path to the selected file to the cursor location. This option can only be used when the cursor is located on the last line.

4.21.8 Pasting a Placeholder

Select a placeholder from the [Placeholder] submenu in the pop-up menu to paste the selected placeholder to the cursor
location. This function is only available when the cursor is located on the last line.

267

4.22 Generating a Pseudo-Interrupt Manually

Choose [View -> CPU -> Trigger] or click the [Trigger] toolbar button to open the [Trigger] window, which allows
the user to generate a pseudo-interrupt manually by pressing a button on the window.

Figure 4.100 Trigger Window

This window displays trigger buttons that generate pseudo-interrupts manually. The details of the interrupt to be generated
by pressing each trigger button can be specified in the [Trigger Setting] dialog box.

Up to 16 trigger buttons can be used.

For details on the interrupt processing in the simulator/debugger, refer to section 2.20, Pseudo-Interrupts.

268

4.22.1 Setting a Trigger Button

Choose [Setting...] from the pop-up menu to open the [Trigger Setting] dialog box and to specify the details of the pseudo-
interrupt to be generated by pressing each trigger button.

Figure 4.101 Trigger Setting Dialog Box

This dialog box allows the user to specify the details of the pseudo-interrupt to be generated by pressing each trigger
button.

[Trigger No.] Selects a trigger button to specify details

[Name] Specifies the name of the selected trigger button, which will be displayed in the [Trigger] window

[Enable] Enables the trigger button when this box is checked.

[Interrupt Type1] Specifies the following values for each CPU
SH-1, SH-2, and SH2-DSP series:
 Interrupt vector number (H’0 to H’FF)
SH-3, SH-4, and SH3-DSP series:
 INTEVT (H’0 to H’FFF)

[Interrupt Type2] Only the SH3-DSP series can specify the following:
INTEVT2 (H’0 to H’FFF)

[Priority] Interrupt priority (when the prefix is omitted, values must be input and are displayed in hexadecimal)
(H’0 to H’11)
When H'10 is specified, the interrupt is always accepted regardless of the I bit in SR, but is masked by
the BL bit in SR.
When H'11 is specified, the interrupt is always accepted regardless of the I and BL bits in SR.

Clicking the [OK] button stores the setting. Clicking the [Cancel] button closes this dialog box without setting the details
of the interrupt.

Note: If the [Cancel] button is clicked after multiple trigger button settings are modified, the modifications of all
those buttons are canceled.

269

4.22.2 Changing the Size of Trigger Buttons

Specify the size of trigger buttons displayed in the [Trigger] window in the [Size] submenu in the pop-up menu. [Large],
[Normal], or [Small] can be selected.

4.23 Modifying the Simulator/Debugger Settings

This section describes how to modify the simulator system settings after the simulator/debugger is started.

4.23.1 Simulator System Dialog Box

The [Simulator System] dialog box specifies the system call start location, execution mode, floating-point rounding mode,
and memory map.

Choose [Options -> Simulator -> System...] or click the [Simulator System] toolbar button to open this dialog box.

Figure 4.102 Simulator System Dialog Box

The following items can be specified in this dialog box:

[CPU] Displays the current CPU. (The CPU must be specified in the [Debug Settings] dialog box.)
For the SH2-DSP (SH7410), [Internal Mode] or [External Mode] is selected.
For SH2-DSP (SH7065), one of the following is selected:
 [ROM Disable/Fast Mode] Specifies internal ROM disabled/fast access mode.
 [ROM Disable/Slow Mode] Specifies internal ROM disabled/slow access mode.
 [ROM Enable/Fast Mode] Specifies internal ROM enabled/fast access mode.
 [ROM Enable/Slow Mode] Specifies internal ROM enabled/slow access mode.
For SH2-DSP (Core), one of the following is selected:
 [ROM Disable] Specifies internal ROM disabled mode.
 [ROM Enable] Specifies internal ROM enabled mode.

[Bit size] Displays the address bus width. It is fixed to 32 bits.

[Endian] Displays the currently specified endian.

270

[Clock Rate] This can be specified only for SH-4 series.
Specifies the internal clock ratio when the external clock is assumed 1. (H1 to H’10)

[System Call Address] Specifies the start address of a system call that performs standard input/output or file
input/output processing from the user program. [Enable] Specifies whether the system call is
enabled or disabled.

[Response] Specifies the window refresh timing, that is, how many instructions should be executed
between refresh actions (1 to D'65535).

[Execution Mode] Specifies whether the simulator/debugger stops or continues operating when a simulation error
occurs.

 [Stop] Stops the simulation.
 [Continue] Continues the simulation.

[Round Mode] Specifies the rounding mode for floating-point decimal-to-binary conversion.
 [Round to nearest] Rounds to the nearest value.
 [Round to zero] Rounds toward zero.

[Step Unit] This can be specified only for SH-3, SH3-DSP series, and SH-4 series.
 Specifies the status of the instruction executed when STEP command is executed and a PC break is

satisfied.
 [Stage] Stops before instruction is executed.
 Pipeline operation is not affected.
 [Instruction] Stops after instruction is executed.
 Pipeline operation is affected, and as a result, the
 number of effective cycles become incorrect.

In the [Memory Map], the start address, end address, memory type, data bus width, and access cycles are displayed in that
order. The memory types are as follows:

� SH-1, SH-2, SH-2E, SH-3, and SH-3E

ROM (internal ROM), RAM (internal RAM), EXT (external memory), I/O (internal I/O)

� SH2-DSP (SH7410)/SH3-DSP

XROM (internal XROM), YROM (internal YROM), XRAM (internal XRAM), YRAM (internal YRAM), EXT
(external memory), I/O (internal I/O)

� SH2-DSP (SH7612)

XRAM (internal XRAM), YRAM (internal YRAM), INTRAM (internal RAM), EXT (external memory), I/O (internal
I/O)

� SH2-DSP (SH7065)

XRAM (internal XRAM), YRAM (internal YRAM), INTROM (internal ROM), EXT (external memory), I/O (internal
I/O)

� SH2-DSP (Core)

XRAM (internal XRAM), YRAM (internal YRAM), INTROM (internal ROM), INTRAM (internal RAM), EXT
(external memory), I/O (internal I/O)

� SH3-DSP (Core)

XRAM (internal XRAM), YRAM (internal YRAM), URAM (user RAM), EXT (external memory), I/O (internal I/O)

� SH-4/SH-4 (SH7750R)

NORMAL (normal memory), INTRAM (internal RAM), I/O (internal I/O)

� SH-4BSC

NORMAL (normal memory), MPX (Multiplex), BCSRAM (byte-control SRAM), BSTROM (burst ROM and burst
count), DRAM (DRAM), SDRAM (synchronous DRAM), INTRAM (internal RAM), I/O (internal I/O)

271

[Memory Map] can be specified, modified, or deleted using the following buttons:

[Add] Specifies [Memory Map] items. Clicking this button opens the [Memory Map Modify] dialog box (section
4.23.2), and memory map items can be specified.

[Modify] Modifies [Memory Map] items. Select an item to be modified in the list box and click the [Modify] button.
The [Memory Map Modify] dialog box (section 4.23.2) opens and memory map items can be modified.

[Delete] Deletes [Memory Map] items. Select an item to be deleted in the list box and click the [Delete] button.

Notes: For the SH-4BSC, the following must be noted:

 1. The access cycle count is displayed as --.

 2. Memory map entries cannot be newly created or canceled. Therefore, only the [Modify] button can be
used for [Memory Map].

 3. For the internal RAM and I/O, the memory map entries cannot be modified. To enable or disable the
internal RAM, use the ORA bit of the CCR control register.

 4. The memory map contents depend on the BSC settings in addition to the settings in the [Memory Map
Modify] dialog box. If the memory map contents cannot be determined due to BSC incorrect settings,
this dialog box shows ?????? for memory types and ?? for the bus width.

Clicking the [OK] button stores the modified settings. Clicking the [Cancel] button closes this dialog box without
modifying the settings.

4.23.2 Memory Map Modify Dialog Box

The [Memory Map Modify] dialog box specifies the memory map of the target CPU.

The contents displayed in this dialog box depend on the target CPU. The simulator/debugger uses the specified data to
calculate the number of cycles for memory accesses.

Figure 4.103 Memory Map Modify Dialog Box

The following items are specified:

[Memory type] Memory type

[Start address] Start address of the memory corresponding to a memory type

[End address] End address of the memory corresponding to a memory type

[State count] Number of memory access cycles

[Data bus size] Memory data bus width

For the SH-4 series, [Start address] and [End address] cannot be modified. Specify [Memory type] and [Data bus size].

272

In addition, for the SH-4 series, clicking the [Set state...] button opens the [Set State] dialog box (section 4.23.3), and the
number of wait states to be inserted in areas 0 to 7 can be specified. The specified values correspond to the values in the
WCR1 and WCR2 control registers.

Clicking the [OK] button stores the settings. Clicking the [Cancel] button closes this dialog box without modifying the
settings.

Note: The memory map setting for the area allocated to a system memory resource cannot be deleted or modified.
First delete the system memory resource allocation with the [Simulator Memory Resource] dialog box, then
delete or modify the memory map setting.

4.23.3 Set State Dialog Box

The [Set State] dialog box specifies the wait state to be inserted in each area. This dialog box is provided only for the SH-4
series.

Note that only the normal memory is supported for the SH-4/SH-4 (SH7750R).

The [Set State] dialog box contents depend on the memory type allocated to the target area. The values set in this dialog
box are also set to the WCR1 and WCR2 control registers.

Normal Memory, Burst ROM, and Byte-Control SRAM:

Figure 4.104 Set State Dialog Box (Normal Memory)

[Inserted Idle Cycle] Specifies the number of idle cycles to be inserted when the access type changes from read to
write, or when the access area changes (corresponds to the AnIW in WCR1).

[Inserted Wait Cycle] Specifies the number of wait cycles to be inserted in all accesses (corresponds to the AnW in
WCR2).

DRAM:

Figure 4.105 Set State Dialog Box (DRAM)

[Inserted Idle Cycle] Specifies the number of idle cycles to be inserted when the access type changes from read to
write, or when the access area changes (corresponds to the AnIW in WCR1).

[CAS Assertion Width] Specifies the CAS assertion width (corresponds to the AnW in WCR2).

273

SDRAM:

Figure 4.106 Set State Dialog Box (SDRAM)

[Inserted Idle Cycle] Specifies the number of idle cycles to be inserted when the access type changes from read to
write, or when the access area changes (corresponds to the AnIW in WCR1).

[CAS Latency Cycle] Specifies the number of CAS latency cycles (corresponds to AnW in WCR2).

MPX:

Figure 4.107 Set State Dialog Box (MPX)

[Inserted Idle Cycle] Specifies the number of idle cycles to be inserted when the access type changes from read to
write, or when the access area changes (corresponds to the AnIW in WCR1).

[First Read Cycle]* Specifies the number of cycles to be inserted in the first cycle for the read access.

[First Write Cycle]* Specifies the number of cycles to be inserted in the first cycle for the write access.

[Second After Cycle]* Specifies the number of cycles to be inserted in the second and the following cycles for the
burst transfer.

Note: The items marked with * correspond to the AnW in WCR2.

274

4.23.4 Simulator Memory Resource Dialog Box

This dialog box displays the target CPU information, and sets and modifies memory resources.

Figure 4.108 Simulator Memory Resource Dialog Box

The following items are specified:

[System Configuration] Displays the target CPU, address bus width, and execution mode of the simulator/debugger.

[System memory resource] Displays the access type, start address, and end address of the current memory resources.

[Memory map] Displays the start address, end address, memory type, data bus width, and access cycles.

[System memory resource] can be specified, modified, and deleted using the following buttons:

[Add] Specifies [System memory resource] items. Clicking this button opens the [System Memory
Resource Modify] dialog box, and [System memory resource] items can be specified.

[Modify] Modifies [System memory resource] items. Select an item to be modified in the list box and click this
button. The [System Memory Resource Modify] dialog box opens and [System memory resource]
items can be modified.

[Delete] Deletes [System memory resource] items. Select an item to be deleted in the list box and click this
button.

Note that the [Reset] button can reset the [Memory map] and [System memory resource] to the default value. Clicking the
[Close] button closes this dialog box. [System memory resource] contains the same setting information as [Memory
resource] on the [Simulator] sheet in the [Hitachi SuperH RISC engine Standard Toolchain] dialog box. For details on the
[Hitachi SuperH RISC engine Standard Toolchain] dialog box, refer to section 3.3.1, Memory Mapping.

275

4.23.5 System Memory Resource Modify Dialog Box

The [System Memory Resource Modify] dialog box sets and modifies memory resources.

Figure 4.109 System Memory Resource Modify Dialog Box

The following items are specified:

[Start address] Start address of the memory area to be allocated

[End address] End address of the memory area to be allocated

[Access type] Access type
[Read] Read only
[Write] Write only
[Read/Write] Read and write

Click the [OK] button after specifying the [Start address], [End address], and [Access type]. Clicking the [Cancel] button
closes this dialog box without modifying the setting.

276

4.24 Standard I/O and File I/O Processing

Use the [Simulated I/O] window to enable the standard I/O and file I/O system calls from the user program.

4.24.1 Opening the Simulated I/O Window

Choose [View -> CPU -> Simulated I/O] or click the [Simulated I/O] toolbar button to open the [Simulated I/O]
window.

Figure 4.110 Simulated I/O Window

The standard output from the user program is displayed in this window. The key input from this window is handled as the
standard input to the user program.

277

4.24.2 I/O Functions

Table 4.1 lists the supported I/O functions.

Table 4.1 I/O Functions

No.
Function
Code Func tion Name Description

1 H'21 GETC Inputs one byte from the standard input device

2 H'22 PUTC Outputs one byte to the standard output device

3 H'23 GETS Inputs one line from the standard input device

4 H'24 PUTS Outputs one line to the standard output device

5 H'25 FOPEN Opens a file

6 H'06 FCLOSE Closes a file

7 H'27 FGETC Inputs one byte from a file

8 H'28 FPUTC Outputs one byte to a file

9 H'29 FGETS Inputs one line from a file

10 H'2A FPUTS Outputs one line to a file

11 H'0B FEOF Checks for end of file

12 H'0C FSEEK Moves the file pointer

13 H'0D FTELL Returns the current position of the file pointer

To perform I/O processing, use the [System Call Address] in the [Simulator System] dialog box (section 4.23.1) in the
following procedure.

1. Set the address specialized for I/O processing in the [System Call Address], select [Enable] and execute the program.

2. When detecting a subroutine call instruction (BSR, JSR, or BSRF), that is, a system call to the specialized address
during user program execution, the simulator/debugger performs I/O processing by using the R0 and R1 values as the
parameters.

Therefore, before issuing a system call, set as follows in the user program:

• Set the function code (table 4.1) to the R0 register

MSB 1 byte 1 byte LSB

H'01
Function
code

278

� Set the parameter block address to the R1 register (for the parameter block, refer to each function description)

MSB LSB

Parameter block address

• Reserve the parameter block and input/output buffer areas

Each parameter of the parameter block must be accessed in the parameter size.

After the I/O processing, the simulator/debugger resumes simulation from the instruction that follows the system call
instruction.

Note: When a JSR, BSR, or BSRF instruction is used as a system call instruction, the instruction following the
JSR, BSR, or BSRF instruction is executed as a normal instruction, not a slot instruction. Therefore, the
instruction placed immediately after the system call instruction (JSR, BSR, or BSRF) must not be one that
produces different results depending on whether executed as a normal instruction or as a slot instruction.

Each I/O function is described in the following format:

(2) (1)

(3)

(4)

Parameter Block

(5)

Parameters

(6)

(1) Number corresponding to table 4.1

(2) Function name

(3) Function code

(4) I/O overview

(5) I/O parameter block

(6) I/O parameters

GETC 1

H'21

Inputs one byte from the standard input device

Parameter Block

+0

+2
Input buffer start address

One byte One byte

Parameters

• Input buffer start address (input)

Start address of the buffer to which the input data is written to.

279

PUTC 2

H'22

Outputs one byte to the standard output device

Parameter Block

+0

+2
Output buffer start address

One byte One byte

Parameters

• Output buffer start address (input)

Start address of the buffer in which the output data is stored.

GETS 3

H'23

Inputs one line from the standard input device

Parameter Block

+0

+2
Input buffer start address

One byte One byte

Parameters

• Input buffer start address (input)

Start address of the buffer to which the input data is written to.

PUTS 4

H'24

Outputs one line to the standard output device

Parameter Block

+0

+2
Output buffer start address

One byte One byte

Parameters

• Output buffer start address (input)

Start address of the buffer in which the output data is stored.

280

FOPEN 5

H'25

Opens a file

The [FOPEN] opens a file and returns the file number. After this processing, the returned file number must be used to
input, output, or close files. A maximum of 256 files can be open at the same time.

Parameter Block

Start address of file name

One byte

+0

+2

+4

+6

One byte

Return value

Open mode

File number

Unused

Parameters

• Return value (output)

0: Normal completion

–1: Error

• File number (output)

The number to be used in all file accesses after opening.

• Open mode (input)

H'00: "r"

H'01: "w"

H'02: "a"

H'03: "r+"

H'04: "w+"

H'05: "a+"

H'10: "rb"

H'11: "wb"

H'12: "ab"

H'13: "r+b"

H'14: "w+b"

H'15: "a+b"

These modes are interpreted as follows.

"r": Open for reading.

"w": Open an empty file for writing.

"a": Open for appending (write starting at the end of the file).

"r+": Open for reading and writing.

"w+": Open an empty file for reading and writing.

"a+" : Open for reading and appending.

"b" : Open in binary mode.

• Start address of file name (input)

The start address of the area for storing the file name.

281

FCLOSE 6

H'06

Closes a file

Parameter Block

+0 Return value File number

One byte One byte

Parameters

• Return value (output)

0: Normal completion

–1: Error

• File number (input)

The number returned when the file was opened.

282

FGETC 7

H'27

Inputs one byte from a file

Parameter Block

Start address of input buffer

+0

+2

+4

+6

Return value File number

Unused

One byte One byte

Parameters

• Return value (output)

0: Normal completion

–1: EOF detected

• File number (input)

The number returned when the file was opened.

• Start address of input buffer (input)

The start address of the buffer for storing input data.

FPUTC 8

H'28

Outputs one byte to a file

Parameter Block

Start address of output buffer

+0

+2

+4

+6

Return value File number

Unused

One byte One byte

Parameters

• Return value (output)

0: Normal completion

–1: Error

• File number (input)

The number returned when the file was opened.

• Start address of output buffer (input)

The start address of the buffer used for storing the output data.

283

FGETS 9

H'29

Reads character string data from a file

Reads character string data from a file. Data is read until either a new line code or a NULL code is read, or until the buffer
is full.

Parameter Block

Start address of input buffer

+0

+2

+4

+6

Return value File number

Buffer size

One byte One byte

Parameters

• Return value (output)

0: Normal completion

–1: EOF detected

• File number (input)

The number returned when the file was opened.

• Buffer size (input)

The size of the area for storing the read data. A maximum of 256 bytes can be stored.

• Start address of input buffer (input)

The start address of the buffer for storing input data.

284

FPUTS 10

H'2A

Writes character string data to a file

Writes character string data to a file. The NULL code that terminates the character string is not written to the file.

Parameter Block

Start address of output buffer

+0

+2

+4

+6

Return value File number

Unused

One byte One byte

Parameters

• Return value (output)

0: Normal completion

–1: Error

• File number (input)

The number returned when the file was opened.

• Start address of output buffer (input)

The start address of the buffer used for storing the output data.

FEOF 11

H'0B

Checks for end of file

Parameter Block

+0 Return value File number

One byte One byte

Parameters

• Return value (output)

0: File pointer is not at EOF

–1: EOF detected

• File number (input)

The number returned when the file was opened.

285

FSEEK 12

H'0C

Moves the file pointer to the specified position

Parameter Block

Offset

+0

+2

+4

+6

Return value

Direction

File number

Unused

One byte One byte

Parameters

• Return value (output)

0: Normal completion

–1: Error

• File number (input)

The number returned when the file was opened.

• Direction (input)

0: The offset specifies the position as a byte count from the start of the file.

1: The offset specifies the position as a byte count from the current file pointer.

2: The offset specifies the position as a byte count from the end of the file.

• Offset (input)

The byte count from the location specified by the direction parameter.

286

FTELL 13

H'0D

Returns the current position of the file pointer

Parameter Block

+0

+2

+4

+6

Return value File number

Unused

Offset

One byte One byte

Parameters

• Return value (output)

0: Normal completion

–1: Error

• File number (input)

The number returned when the file was opened.

• Offset (output)

The current position of the file pointer, as a byte count from the start of the file.

The following shows an example for inputting one character as a standard input (from a keyboard)

 MOV.L PAR_ADR,R1

 MOV.L REQ_COD,R0

 MOV.L CALL_ADR,R3

 JSR @R3

 NOP

STOP NOP

SYS_CALL NOP

 .ALIGN 4

CALL_ADR .DATA.L SYS_CALL

REQ_COD .DATA.L H’01210000

PAR_ADR .DATA.L PARM

PARM .DATA.L INBUF

INBUF .RES.B 2

 .END

287

4.25 Synchronizing Multiple Debugging Platforms

Multiple debugging platforms can be operated at the same time in the HEW.

Multiple debugging platforms are synchronized by initiating a HEW from another HEW. The HEW that initiates another
HEW is called the master, and the initiated HEW is called the slave. Choose [Tools -> Launch Slave HEW...] or click the
[Launch Slave HEW] toolbar button to initiate a slave HEW.

The slave HEW has the same functionality as the master HEW.

The slave HEW is notified of the following actions done in the master HEW to ensure synchronization of the slave HEW
and the master HEW.

• Reset go

• Go

• Stop debugging

Note: The master HEW can initiate multiple slave HEWs, but slave HEWs cannot be nested (no slave HEW can

initiate another slave HEW).

288

289

Section 5 Command Lines

Table 5.1 lists the commands.

Table 5.1 Simulator/Debugger Commands

No. Command Name Abbreviation Function

1 ! - Comment

2 ANALYSIS AN Enables or disables performance analysis

3 ANALYSIS_RANGE AR Sets or displays performance analysis functions

4 ANALYSIS_RANGE_
DELETE

AD Deletes a performance analysis range

5 ASSEMBLE AS Assembles instructions into memory

6 ASSERT - Checks if an expression is true or false

7 BREAKPOINT BP Sets a breakpoint at an instruction address

8 BREAK_ACCESS BA Specifies a memory range access as a break condition

9 BREAK_CLEAR BC Deletes breakpoints

10 BREAK_CYCLE BCY Specifies a cycle as a break condition

11 BREAK_DATA BD Specifies a memory data value as a break condition

12 BREAK_DISPLAY BI Displays a list of breakpoints

13 BREAK_ENABLE BE Enables or disables a breakpoint

14 BREAK_REGISTER BR Specifies a register data as a break condition

15 BREAK_SEQUENCE BS Sets sequential breakpoints

16 CHANGE_CONFIGURA
TION

CC Sets the current configuration

17 CHANGE_PROJECT CP Sets the current project

18 CLOCK_RATE CKR Sets a clock rate

19 COVERAGE CV Enables or disables coverage measurement

20 COVERAGE_DISPLAY CVD Displays coverage information

21 COVERAGE_LOAD CVL Loads coverage information

22 COVERAGE_RANGE CVR Sets a coverage range

23 COVERAGE_SAVE CVS Saves coverage information

24 DEFAULT_OBJECT_FO
RMAT

DO Sets the default object (program) format

25 DISASSEMBLE DA Disassembles memory contents

26 ERASE ER Clears the [Command Line] window

27 EVALUATE EV Evaluates an expression

290

Table 5.1 Simulator/Debugger Commands (cont)

No. Command Name Abbreviation Function

28 EXEC_MODE EM Sets and displays execution mode.

29 FILE_LOAD FL Loads an object (program) file

30 FILE_SAVE FS Saves memory to a file

31 FILE_VERIFY FV Verifies file contents against memory

32 GO GO Executes user program

33 GO_RESET GR Executes user program from reset vector

34 GO_TILL GT Executes user program until temporary breakpoint

35 HALT HA Halts the user program

36 INITIALIZE IN Initializes the debugging platform

37 LOG LO Controls command output logging

38 MAP_DISPLAY MA Displays memory mapping

39 MAP_SET MS Allocates a memory area

40 MEMORY_DISPLAY MD Displays memory contents

41 MEMORY_EDIT ME Modifies memory contents

42 MEMORY_FILL MF Fills a memory area

43 MEMORY_MOVE MV Moves a block of memory

44 MEMORY_TEST MT Tests a block of memory

45 OPEN_WORKSPACE OW Opens a workspace

46 PROFILE PR Enables or disables profile

47 PROFILE_DISPLAY PD Displays profile information

48 PROFILE_SAVE PS Saves the profile information to file

49 QUIT QU Exits HEW

50 RADIX RA Sets default input radix

51 REGISTER_DISPLAY RD Displays CPU register values

52 REGISTER_SET RS Changes CPU register contents

53 RESET RE Resets CPU

54 RESPONSE RS Sets a window refresh area

55 SLEEP - Delays command execution

56 STATUS STA Displays the debugging platform status

57 STEP ST Steps program (by instructions or source lines)

58 STEP_MODE SM Sets the step mode

59 STEP_OUT SP Steps out of the current function

291

Table 5.1 Simulator/Debugger Commands (cont)

No. Command Name Abbreviation Function

60 STEP_OVER SO Steps program, not stepping into functions

61 STEP_RATE SR Sets or displays rate of stepping

62 STEP_UNIT SN Sets the unit of execution

63 SUBMIT SU Executes a command file

64 SYMBOL_ADD SA Defines a symbol

65 SYMBOL_CLEAR SC Deletes a symbol

66 SYMBOL_LOAD SL Loads a symbol information file

67 SYMBOL_SAVE SS Saves a symbol information file

68 SYMBOL_VIEW SV Displays symbols

69 TCL - Enables or disables the TCL

70 TRACE TR Displays trace information

71 TRACE_ACQUISITION TA Enables or disables trace information acquisition

72 TRACE_SAVE TV Outputs trace information into a file

73 TRACE_STATISTIC TST Analyzes statistic information

74 TRAP_ADDRESS TP Sets a system call address

75 TRAP_ADDRESS_
DISPLAY

TD Displays system call address settings

76 TRAP_ADDRESS_
ENABLE

TE Enables or disables the system call

The following describes the syntax of each command.

5.1 !(COMMENT)

Abbreviation: None

Description:

Allows a comment to be entered, useful for documenting log files.

Syntax:

! <text>

Parameter Type Description

<text> Text Output text

Example:

! Start of test routine Outputs comment 'Start of test routine' into the [Command Line]
window (and to the log file, if logging is active).

292

5.2 ANALYSIS

Abbreviation: AN

Description:

Enables/disables performance analysis. Counts are not automatically reset before running.

Syntax:

an [<state>]

Parameter Type Description

None Displays the performance analysis state

<state> Keyword Enables or disables performance analysis

 Enable Enables performance analysis

 Disable Disables performance analysis

 Reset Resets performance analysis counts

Examples:

ANALYSIS Displays performance analysis state.

AN enable Enables performance analysis.

AN disable Disables performance analysis.

AN reset Resets performance analysis counts.

5.3 ANALYSIS_RANGE

Abbreviation: AR

Description:

Sets a function for which the performance analysis is provided, or displays a function for which the performance analysis
is provided without parameters.

Syntax:

ar [<function name>]

Parameter Type Description

None Displays all functions for which the
performance analysis is provided

<function name> Character string Name of function for which the performance
analysis is provided

Examples:

ANALYSIS_RANGE sort Provides the performance analysis for the function sort.

AR Displays the function for which the performance analysis
is provided.

293

5.4 ANALYSIS_RANGE_DELETE

Abbreviation: AD

Description:

Deletes the specified function, or all functions if no parameters are specified (it does not ask for confirmation).

Syntax:

ad [<index>]

Parameter Type Description

None Deletes all functions

<index> Numeric Index number of function to delete

Examples:

ANALYSIS_RANGE_DELETE 6 Deletes the function with index number 6.

AD Deletes all functions.

294

5.5 ASSEMBLE

Abbreviation: AS

Description:

Assembles mnemonics and writes them into memory. In assembly mode, '.' exits, '^' steps back a byte, the Enter key steps
forward a byte.

Syntax:

as <address>

Parameter Type Description

<address> Numeric Address at which to start assembling

Example:

AS H’1000 Starts assembling from H’1000.

5.6 ASSERT

Abbreviation: None

Description:

Checks if an expression is true or false. It can be used to terminate the batch file when the expression is false. If the
expression is false, an error is returned. This command can be used to write test harnesses for subroutines.

Syntax:

assert <expression>

Parameter Type Description

<expression> Expression Expression to be checked

Example:

ASSERT #R0 == 0x100 Returns an error if R0 does not contain 0x100.

295

5.7 BREAKPOINT

Abbreviation: BP

Description:

Specifies a breakpoint at the address where the instruction is written.

Syntax:

bp�� address> [� count>] [� Action>]

Parameter Type Description

<address> Numeric The address of a breakpoint

<count> Numeric The number of times the instruction at the specified
address is to be fetched (1 to 16383, default = 1).

Keyword Action taken when the conditions are satisfied (optional,
default = Stop)

Stop (P) Halts the execution of the user program

Input (I) Inputs (saves) data to a file

Output (O) Outputs (reads) data from a file

<Action>

Interrupt (T) Initiates a pseudo-interrupt

Format:

The method of defining each Action are as follows.

Stop

Input <filename> <addr> <size> <count>

Parameter Type Description

<filename> Character
string

The name of the file from which data is input

<addr> Numeric Address to which the data is read.

<size> Numeric Size per data packet (1/2/4/8)

<count> Numeric Number of data packets (H’01 to H’FFFFFFFF)

296

Output <filename> <addr> <size> <count> [<option>]

Parameter Type Description

<filename> Character
string

The name of the file to which data is saved

<addr> Numeric Address from which data is output

<size> Numeric Size per data packet (1/2/4/8)

<count> Numeric Number of data packets (H’01 to H’FFFFFFFF)

Keyword Specifies a new file or appends to an existing file.

(optional, makes a new file when abbreviated.)

<option>

A Adds the data to the existing file.

Interrupt <interrupt type1> <interrupt type2> [<priority>]

Parameter Type Description

<interrupt type1> Numeric Type of interrupt

SH-1, SH-2, SH-DSP series Interrupt vector number (0 to
FF)

SH-3, SH-4, SH3-DSP series INTEVT (0 to H’FFF)

<interrupt type2> Numeric Value of INTEVT2 (0 to H’FFF)

<priority> Numeric Interrupt priority (optional, default = 0)

0 to 17

Note: <interrupt type2> can only be specified for the SH3-DSP series.

Examples:

BREAKPOINT 0 2 A break occurs when an attempt is made to execute the instruction at
address H'0 for the second time.

BP C0 Input in.dat
100 2 8

Eight two-byte data fields are written from file “in.dat” to H’100 when
an attempt is made to execute the instruction at address H'C0.

297

5.8 BREAK_ACCESS

Abbreviation: BA

Description:

Specifies a memory range as a break condition

Syntax:

ba <start address> [<end address>] [<mode>] [� Action>]

Parameter Type Description

<start address> Numeric The start address of a breakpoint

<end address> Numeric The end address of a breakpoint (optional, default =
<start address>)

Keyword Access type (optional, default = RW).

R A break occurs when the specified range is read.

W A break occurs when the specified range is written to.

<mode>

RW A break occurs when the specified range is read or
written to.

Keyword Action taken when the conditions are satisfied (optional,
default = Stop)

Stop (P) Halts the execution of the user program

Input (I) Inputs (saves) data to a file

Output (O) Outputs (reads) data from a file

<Action>

Interrupt (T) Initiates a pseudo-interrupt

Format:

The method of defining each Action are as follows.

Stop

Input <filename> <addr> <size> <count>

Parameter Type Description

<filename> Character
string

The name of the file from which data is input

<addr> Numeric Address to which the data is read.

<size> Numeric Size per data packet (1/2/4/8)

<count> Numeric Number of data packets (H’01 to H’FFFFFFFF)

298

Output <filename> <addr> <size> <count> [<option>]

Parameter Type Description

<filename> Character
string

The name of the file to which data is saved

<addr> Numeric Address from which data is output

<size> Numeric Size per data packet (1/2/4/8)

<count> Numeric Number of data packets (H’01 to H’FFFFFFFF)

Keyword Specifies a new file or appends to an existing file.

(optional, makes a new file when abbreviated.)

<option>

A Adds the data to the existing file.

Interrupt <interrupt type1> <interrupt type2> [<priority>]

Parameter Type Description

<interrupt type1> Numeric Type of interrupt

• SH-1, SH-2, SH2-DSP series interrupt vector
number (0 to H’FF)

• SH-3, SH-4, SH3-DSP series INTEVT (0 to H’FFF)

<interrupt type2> Numeric Value of INTEVT2 (0 to H’FFF)

<priority> Numeric Interrupt priority (optional, default = 0)

0 to 17

Note: <interrupt type2> can only be specified for the SH3-DSP series.

Examples:

BREAK_ACCESS 0 1000 W A break occurs when the specified range from address H'0 to
address H'1000 is written to.

BA FFFF A break occurs when address H'FFFF is accessed.

Note: For the SH3-DSP series, specify values within the range H'A5000000 to H'A501FFFF (X and Y memory
virtual addresses, corresponding to physical addresses H'05000000 to H'0501FFFF) as the start end
addresses for X or Y memory accesses by the MOVX or MOVY instruction.

299

5.9 BREAK_CLEAR

Abbreviation: BC

Description:

Deletes breakpoints.

Syntax:

bc <index>

Parameter Type Description

<index> Nu meric Index of the breakpoint to be canceled. If the index is
omitted, all breakpoints are deleted.

Examples:

BREAK_CLEAR 0 The first breakpoint is deleted.

BC All breakpoints are deleted.

300

5.10 BREAK_CYCLE

Abbreviation: BCY

Description:

Specifies the number of cycles as a break condition.

Syntax:

by <cycle> [<count>] [<Action>]

Parameter Type Description

<cycle> Numeric The condition matching the number of cycles <cycle>� n.

Keyword The condition satisfying the number of times. (optional,
default =ALL)

All Break condition is satisfied every time the condition is
matched.

<count>

Numeric 1 to H’FFFF

Break condition is satisfied only when it matches the
specified number of times.

Keyword Action taken when the conditions are satisfied (optional,
default = Stop)

Stop (P) Halts the execution of the user program

Input (I) Inputs(saves) data to a file

Output (O) Outputs(reads) data from a file

<Action>

Interrupt (T) Initiates a pseudo-interrupt

Format:

The method of defining each Action are as follows.

Stop

Input <filename> <addr> <size> <count>

Parameter Type Description

<filename> Character
string

The name of the file from which data is input

<addr> Numeric Address to which the data is read.

<size> Numeric Size per data packet (1/2/4/8)

<count> Numeric Number of data packets (H’01 to H’FFFFFFFF)

301

Output <filename> <addr> <size> <count> [<option>]

Parameter Type Description

<filename> Character
string

The name of the file to which data is saved

<addr> Numeric Address from which data is output

<size> Numeric Size per data packet (1/2/4/8)

<count> Numeric Number of data packets (H’01 to H’FFFFFFFF)

Keyword Specifies a new file or appends to an existing file.

(optional, makes a new file when abbreviated.)

<option>

A Adds the data to the existing file.

302

terrupt <interrupt type1> <interrupt type2> [<priority>]

Parameter Type Description

<interrupt type1> Numeric Type of interrupt

� SH-1, SH-2, SH2-DSP series interrupt vector
number (0 to H’FF)

� SH-3, SH-4, SH3-DSP series INTEVT (0 to H’FFF)

<interrupt type2> Numeric Value of INTEVT2 (0 to H’FFF)

<priority> Numeric Interrupt priority (optional, default = 0)

0 to 17

Note: <interrupt type2> can only be specified for the SH3-DSP series.

Examples:

BREAK_CYCLE 1000 20 Specifies breaks to occur H’20 times in every H’1000 cycles.

BCY 5000 Specifies a break to occur in every H’5000 cycles.

303

5.11 BREAK_DATA

Abbreviation: BD

Description:

Specifies a memory data value as a break condition.

Syntax:

bd � address��� data> [� size>] [� option>] [� Action>]

Parameter Type Description

<address> Numeric The address where the break condition is checked.

<data> Numeric Access data

Keyword Size (optional, default = L).

byte Byte size

word Word size

longword Longword size

single Single-precision floating-point size

<size>

double Double-precision floating-point size

304

Keyword Match or mismatch of data. The default is EQ.

EQ A break occurs when the data matches the specified
value.

<option>

NE A break occurs when the data does not match the
specified value.

Keyword Action taken when the conditions are satisfied (optional,
default = Stop)

Stop (P) Halts the execution of the user program

Input (I) Inputs(saves) data to a file

Output (O) Outputs(reads) data from a file

<Action>

Interrupt (T) Initiates a pseudo-interrupt

Format:

The method of defining each Action are as follows.

Stop

Input <filename> <addr> <size> <count>

Parameter Type Description

<filename> Character
string

The name of the file from which data is input

<addr> Numeric Address to which the data is read.

<size> Numeric Size per data packet (1/2/4/8)

<count> Numeric Number of data packets (H’01 to H’FFFFFFFF)

Output <filename> <addr> <size> <count> [<option>]

Parameter Type Description

<filename> Character
string

The name of the file to which data is saved

<addr> Numeric Address from which data is output

<size> Numeric Size per data packet (1/2/4/8)

<count> Numeric Number of data packets (H’01 to H’FFFFFFFF)

Keyword Specifies a new file or appends to an existing file.

(optional, makes a new file when abbreviated.)

<option>

A Adds the data to the existing file.

305

Interrupt <interrupt type1> <interrupt type2> [<priority>]

Parameter Type Description

<interrupt type1> Numeric Type of interrupt

� SH-1, SH-2, SH2-DSP series interrupt vector
number (0 to FF)

� SH-3, SH-4, SH3-DSP series INTEVT (0 to H’FFF)

<interrupt type2> Numeric Value of INTEVT2 (0 to H’FFF)

<priority> Numeric Interrupt priority (optional, default = 0)

0 to 17

Note: <interrupt type2> can only be specified for the SH3-DSP series.

Examples:

BREAK_DATA 0 100 L EQ A break occurs when H'100 is written to memory address H'0
in longword.

BD C0 FF B NE A break occurs when a value other than H'FF is written to
memory address H'C0 in byte.

BD 4000 1000 A break occurs when H'1000 is written to memory address
H'4000 in longword.

Note: For the SH3-DSP series, specify values within the range H'A5000000 to H'A501FFFF (X and Y memory
virtual addresses, corresponding to physical addresses H'05000000 to H'0501FFFF) as the start end
addresses for X or Y memory accesses by the MOVX or MOVY instruction.

5.12 BREAK_DISPLAY

Abbreviation: BI

Description:

Displays a list of breakpoints.

Syntax:

bi

Parameter Type Description

None Displays a list of breakpoints

Examples:

BREAK_DISPLAY A list of breakpoints is displayed.

BI A list of breakpoints is displayed.

306

5.13 BREAK_ENABLE

Abbreviation : BE

Descript ion:

Enables or disables a breakpoint.

Sy ntax:

be � flag> [� index>]

Parameter Type Description

Keyword Enables or disables a breakpoint

E Enable

<flag>

D Disable

<index> Numeric Index of the breakpoint to be canceled. If the index is
omitted, all breakpoints are deleted.

Examples:

BREAK_ENABLE D 0 The first breakpoint is disabled.

BE E All breakpoints are enabled.

307

5.14 BREAK_REGISTER

Abbreviation : BR

Descript ion:

Specifies a register data as a break condition

Sy ntax:

br � register name> [� data�� � size>] [<option>] [� Action>]

Parameter Type Description

<register> Character
string

Register name.

<data> Numeric Access data.

Keyword Access size. If no size is specified, the size of the
specified register is assumed. Note that when data is
specified, the size must not be omitted.

byte Byte size

word Word size

longword Longword size

single Single-precision floating-point size

<size>

double Double-precision floating-point size

Keyword Match or mismatch of data. The default is EQ.

EQ A break occurs when the data matches the specified
value.

<option>

NE A break occurs when the data does not match the
specified value.

Keyword Action taken when the conditions are satisfied (optional,
default = Stop)

Stop (P) Halts the execution of the user program

Input (I) Inputs(saves) data to a file

Output (O) Outputs(reads) data from a file

<Action>

Interrupt (T) Initiates a pseudo-interrupt

Format:

The method of defining each Action are as follows.

Stop

Input <filename> <addr> <size> <count>

Parameter Type Description

<filename> Character
string

The name of the file from which data is input

<addr> Numeric Address to which the data is read.

<size> Numeric Size per data packet (1/2/4/8)

<count> Numeric Number of data packets (H’01 to H’FFFFFFFF)

308

Output <filename> <addr> <size> <count> [<option>]

Parameter Type Descri pt ion

<filename> Character
string

The name of the file to which data is saved

<addr> Numeric Address from which data is output

<size> Numeric Size per data packet (1/2/4/8)

<count> Numeric Number of data packets (H’01 to H’FFFFFFFF)

Keyword Specifies a new file or appends to an existing file.

(optional, makes a new file when abbreviated.)

<option>

A Adds the data to the existing file.

Interrupt <interrupt type1> <interrupt type2> [<priority>]

Parameter Type Description

<interrupt type1> Numeric Type of interrupt

• SH-1, SH-2, SH2-DSP series interrupt vector
number (0 to H’FF)

• SH-3, SH-4, SH3-DSP series INTEVT (0 to H’FFF)

<interrupt type2> Numeric Value of INTEVT2 (0 to H’FFF)

<priority> Numeric Interrupt priority (optional, default = 0)

0 to 17

Note: <interrupt type2> can only be specified for the SH3-DSP series.

Examples:

BREAK_REGISTER R0 FFFF W EQ A break occurs when the lower two bytes of the R0
register change to H'FFFF.

BR R10 A break occurs when the R10 register is written to.

309

5.15 BREAK_SEQUENCE

Abbreviation : BS

Descript ion:

Sets sequential breakpoints

Sy ntax:

bs � address1> [� address2> [� address 3> [...]]] [� Action>]

Parameter Type Description

<address1> -
<address8>

Numeric Addresses of sequential breakpoints. Up to eight
addresses can be specified.

Keyword Action taken when the conditions are satisfied (optional,
default = Stop)

Stop (P) Halts the execution of the user program

Input (I) Inputs(saves) data to a file

Output (O) Outputs(reads) data from a file

<Action>

Interrupt (T) Initiates a pseudo-interrupt

Format:

The method of defining each Action are as follows.

Stop

Input <filename> <addr> <size> <count>

Parameter Type Description

<filename> Character
string

The name of the file from which data is input

<addr> Numeric Address to which the data is read.

<size> Numeric Size per data packet (1/2/4/8)

<count> Numeric Number of data packets (H’01 to H’FFFFFFFF)

310

Output <filename> <addr> <size> <count> [<option>]

Parameter Type Descri pt ion

<filename> Character
string

The name of the file to which data is saved

<addr> Numeric Address from which data is output

<size> Numeric Size per data packet (1/2/4/8)

<count> Numeric Number of data packets (H’01 to H’FFFFFFFF)

Keyword Specifies a new file or appends to an existing file.

(optional, makes a new file when abbreviated.)

<option>

A Adds the data to the existing file.

Interrupt <interrupt type1> <interrupt type2> [<priority>]

Parameter Type Description

<interrupt type1> Numeric Type of interrupt

• SH-1, SH-2, SH-DSP series interrupt vector number
(0 to H’FF)

• SH-3, SH-4, SH3-DSP series INTEVT (0 to H’FFF)

<interrupt type2> Numeric Value of INTEVT2 (0 to H’FFF)

<priority> Numeric Interrupt priority (optional, default = 0)

0 to 17

Note: <interrupt type2> can only be specified for the SH3-DSP series.

Examples:

BREAK_SEQUENCE 1000 2000 A break occurs when addresses H'1000 and H'2000 are
passed in this order.

BS 1000 A break occurs when address H'1000 is executed.

311

5.16 CHANGE_CONF IGURATION

Abbrevi a ti on: CC

Descript ion:

Sets the current configuration.

Sy ntax:

cc <config name>

Parameter Type Description

<config name> Character
string

Configuration name

Example:

CC Debug Sets the current configuration to Debug.

5.17 CHANGE_PROJECT

Abbreviation: CP

Description:

Sets the current project.

Syntax:

cp <project name>

Parameter Type Description

<project name> Character
string

Project name

Example:

CP PROJ2 Sets the current project to PROJ2.

312

5.18 CLOCK_RATE

Abbrevi a ti on: CKR

Descript ion:

Sets the internal/external clock rate. This command can only be used in the SH-4 series.

Sy ntax:

ckr [<rate>]

Parameter Type Description

None Displays the clock rate.

<rate> Numeric When the external clock rate is 1, the internal
clock rate is 1 to 16. (default = 1). However,
default is 3 only for SH-4 with BSC.

Example:

CLOCK RATE 6 Sets the clock rate to 1:6.

5.19 COVERAGE

Abbreviation: CV

Description:

Enables or disables the coverage range measurement or resets coverage information.

Syntax:

cv [<state>]

Parameter Type Description

none Displays coverage state.

enable Enables coverage measurement.

disable Disables coverage measurement.

<state>

reset Resets result of coverage measurement.

Examples:

COVERAGE Displays coverage state.

CV enable Enables coverage measurement.

CV r Resets result of coverage measurement.

313

5.20 COVERAGE_DISP LAY

Abbrevi a ti on: CVD

Descript ion:

Displays coverage information.

Sy ntax:

cvd

Parameter Type Description

none Displays coverage information.

Example:

COVERAGE_DISPLAY Displays coverage information.

5.21 COVERAGE_LOAD

Abbreviation: CVL

Description:

Loads the coverage information from a .COV file.
If a wrong file format is specified or the specified file is not found, a warning message will be displayed.

Syntax:

cvl <filename>

Parameter Type Description

filename Character
string

File name

Examples:

COVERAGE_LOAD TEST Loads the coverage information from the TEST.COV file.

CLV COVERAGE.COV Loads the coverage information from the COVERAGE.COV
file.

314

5.22 COVERAGE_RANGE

Abbrevi a ti on: CVR

Descript ion:

Sets the coverage range or displays the range of coverage measurement without parameters.

Sy ntax:

cvr [<start> <end>]

Parameter Type Description

none Displays the coverage measurement range.

<start> Numeric Start address of the coverage measurement
range.

<end> Numeric End address of the coverage measurement
range.

Examples:

COVERAGE_RANGE
H’1000 H’10FF

Measures the coverage of addresses between H’1000 and
H’10FF.

CVR Displays the range of coverage measurement.

5.23 COVERAGE_SAVE

Abbreviation: CVS

Description:

Saves the coverage information in a .COV or .TXT file.
If a wrong file extension is specified, an error message will be displayed.

Syntax:

cvs <filename>

Parameter Type Description

filename Character
string

File name

Examples:

COVERAGE_SAVE TEST Saves the coverage information in the TEST.COV file.

CVS COVERAGE.COV Saves the coverage information in the COVERAGE.COV file.

315

5.24 DEFAULT_OBJECT_FORMAT

Abbrevi a ti on: DO

Descript ion:

Specifies the default format for loading object (program) files. The format specified with this command is only valid when
the format specification is omitted from the FILE_LOAD command.

Sy ntax:

do [<format>]

Parameter Type Description

none Displays the default format settings.

<format> Keyword Object format

 Binary Binary type

 Elf/Dwarf2 Elf/Dwarf2 type

 IntelHex Intel Hex type

 S-Record S type

Example:

DEFAULT_OBJECT_FORMAT Displays the default format settings.

DO binary Specifies the binary format as the default format.

5.25 DISASSEMBLE

Abbreviation: DA

Description:

Disassembles memory contents to assembly-language code. The display of disassembled memory is fully symbolic.

Syntax:

da <address> [<length>]

Parameter Type Description

<address> Numeric Start address

<length> Numeric Number of instructions (optional, default = 16)

Examples:

DISASSEMBLE H’100 5 Disassembles 5 lines of code starting at H’100.

DA H’3E00 20 Disassembles 20 lines of code starting at H’3E00.

316

5.26 ERASE

Abbrevi a ti on: ER

Descript ion:

Clears the [Command Line] window

Sy ntax:

er

Parameter Type Description

none Clears the [Command Line] window

Example:

ER Clears the [Command Line] window.

317

5.27 EVALUATE

Abbrevi a ti on: EV

Descript ion:

Provides a calculator function, evaluating simple and complex expressions, with parentheses, mixed radices, and symbols.
All operators have the same priority but parentheses may be used to change the order of evaluation. The operators have the
same meaning as in C/C++. Expressions can also be used in any command where a number is required. Register names
may be used, but must always be prefixed by the ‘#’ character. The result is displayed in hexadecimal, decimal, octal, or
binary.

Sy ntax:

ev <expression>

Parameter Type Description

<expression> Expression Expression to be evaluated

Valid operators:

&& logical AND || logical OR << left arithmetic
shift

>> right arithmetic
shift

+ addition - subtraction * multiplication / division

% modulo | bitwise OR & bitwise AND ~ bitwise NOT

^ bitwise exclusive OR ! logical NOT == equal to != unequal to

> greater than < less than >= greater than or
equal to

<= less than or
equal to

Examples:

EV H’123 + (D’73 | B’10) Result: H’16E D’366 O’556
B’00000000000000000000000101101110

EV #R1 * #R2 Result: H’121 D’289 O’441
B’00000000000000000000000100100001

318

5.28 EXEC_MODE

Abbrevi a ti on: EM

Descript ion:

Specifies the operation of the simulator/debugger when a simulation error occurs.

Sy ntax:

em [<mode>]

Parameter Type Description

None Displays the current execution mode.

Keyword Execution mode (operation of the simulator/debugger
when a simulation error occurs)

S Stops operation

<mode>

C Continues operation

Examples:

EXEC_MODE Displays the current execution mode.

EM c Specifies to continue operation when a simulation
error occurs.

319

5.29 FILE_LOAD

Abbrevi a ti on: FL

Descript ion:

Loads an object code file to memory with the specified offset. Existing symbols are cleared, and the new ones are defined.
If an offset is specified this will be added to the symbols. The file extension default is .MOT .

Sy ntax:

fl [<format>] <filename> [<offset>] [<state>]

Parameter Type Description

Keyword Object format (optional, default =
DEFAULT_OBJECT_FORMAT settings)

Binary Binary type

Elf/Dwarf2 Elf/Dwarf2 type

IntelHex Intel-Hex type

<format>

S-Record S type

<filename> Character string File name

<offset> Numeric Offset to be added to load address (optional, default = 0)

Keyword Verify flag (optional, default = V)

V Verify

<state>

N No verify

Examples:

FILE_LOAD A:\\BINARY\\TESTFILE.A22 Loads Motorola S-Record file "testfile.a22".

FL ANOTHER.MOT H’200 Loads Motorola S-Record file "another.mot"
with an offset of H’200 bytes.

320

5.30 FILE_SAVE

Abbrevi a ti on: FS

Descript ion:

Saves the specified memory area data to a file. The user is warned if about to overwrite an existing file. The file extension
default is .MOT . Symbols are not automatically saved.

Sy ntax:

fs [<format>] <filename> <start> <end>

Parameter Type Description

Keyword Object format (optional, default =
DEFAULT_OBJECT_FORMAT settings)

Binary Binary type

IntelHex Intel-Hex type

<format>

S-Record S type

<filename> Character string File name

<start> Numeric Start address

<end> Numeric End address

Examples:

FILE_SAVE TESTFILE 0 H’2013 Saves address range 0-H’2013 as Motorola S-
Record file "TESTFILE.MOT".

FS D:\\USER\\ANOTHER.A22 H’4000
H’4FFF

Saves address range H’4000-H’4FFF as
Motorola S-Record format file
"ANOTHER.A22".

5.31 FILE_VERIFY

Abbreviation: FV

Description:

Verifies file contents against memory contents. The file data must be in a Motorola S-Record format. The file extension
default is .MOT.

Syntax:

fv <filename> [<offset>]

Parameter Type Description

<filename> Character
string

File name

<offset> Numeric Offset to be added to file address (optional, default = 0)

321

Exa mples:

FILE_VERIFY A:\\BINARY\\TEST.A22 Verifies Motorola S-Record file "TEST.A22" against
memory.

FV ANOTHER 200 Verifies Motorola S-Record file "ANOTHER.MOT"
against memory with an offset of H’200 bytes.

5.32 GO

Abbrevi a ti on: GO

Descript ion:

Executes object code (the user program). While the user program is executing, the [Performance Analysis] window is
updated. While the user system is halted, a PC value is displayed.

Sy ntax:

go [<state>] [<address>]

Parameter Type Description

Keyword Specifies whether or not to continue command processing during
user program execution (optional, default = wait)

wait Causes command processing to wait until user program stops

<state>

continue Continues command processing during execution

<address> Numeric Start address for PC (optional, default = PC value)

Wait is the default and this causes command processing to wait until user program stops executing.

Continue allows you to continue to enter commands (but they may not work depending on the debugging platform).

Examples:

GO Executes the user program from the current PC value. Command
processing cannot be continued.

GO CONTINUE H’1000 Executes the user program from H’1000. Command processing can
be continued.

5.33 GO_RESET

Abbreviation: GR

Description:

Executes the user program starting at the address specified in the reset vector.

While the user program is executing, the [Performance Analysis] window is updated.

Syntax:

gr [<state>]

322

Parameter Type Descri pt ion

Keyword Specifies whether or not to continue command processing
during user program execution (optional, default = wait)

wait Causes command processing to wait until user program stops

<state>

continue Continues command processing during execution

Wait is the default and this causes command processing to wait until user program stops executing.

Continue allows you to continue to enter commands (but they may not work depending on the debugging platform)

Example:

GR Executes the user program starting at the address specified in the
reset vector (does not continue command processing).

5.34 GO_TILL

Abbreviation: GT

Description:

Executes the user program from the current PC with temporary breakpoints. This command takes multiple addresses as
parameters, and these are used to set temporary PC breakpoints (these breakpoints only exist for the duration of the
command).

Syntax:

gt [<state>] <address>...

Parameter Type Description

Keyword Specifies whether or not to continue command processing
during user program execution (optional, default = wait)

wait Causes command processing to wait until user program
stops

<state>

continue Continues command processing during execution

<address>... Numeric Temporary breakpoint address (list)

Wait is the default and this causes command processing to wait until user program stops executing

Continue allows you to continue to enter commands (but they may not work depending on the debugging platform)

Example:

GO_TILL H’1000 Continues execution until the PC reaches address H’1000.

323

5.35 HALT

Abbrevi a ti on: HA

Descript ion:

Halts the user program. This command can be used after the GO command if the GO command uses continue for option.

Sy ntax:

ha

Parameter Type Description

none Halts the user program

Example:

HA Halts the user program.

324

5.36 INITIALIZE

Abbrevi a ti on: IN

Descript ion:

Initializes all breakpoints and memory mapping. It also initializes debugging platform, as if you had reselected the target
DLL.

Sy ntax:

in

Parameter Type Description

none Initializes debugging platform.

Example:

IN Initializes debugging platform.

5.37 LOG

Abbreviation: LO

Description:

Controls logging of command output to file. If no parameters are specified, logging status is displayed. If an existing file is
specified, you will be warned; if you answer 'No', data will be overwritten to the existing file, otherwise the file will be
added. Logging is only supported for the command line interface.

Syntax:

lo [<state>|<filename>]

Parameter Type Description

none Displays logging status

Keyword Starts or suspends logging

+ Starts logging

<state>

- Suspends logging

<filename> Numeric Specifies the logging output file

Examples:

LOG TEST Stores the logging in file TEST.

LO - Suspends logging.

LOG + Resumes logging.

LOG Displays logging status

325

5.38 MAP_DISPLAY

Abbrevi a ti on: MA

Descript ion:

Displays memory mapping.

Sy ntax:

ma

Parameter Type Description

none Displays the current memory mapping

Example:

MA Displays the current memory mapping.

5.39 MAP_SET

Abbreviation: MS

Description:

Allocates a memory area.

Syntax:

ms <start address> [<end address>] [<mode>]

Parameter Type Description

<start address> Numeric Specified start address

<end address> Numeric Specified end address (optional, default = start
address)

Keyword Access type (optional, default = RW)

R Read only

W Write only

<mode>

RW Displays the current memory mapping

Examples:

MAP_SET 0000 3FFF RW A read/write-enabled area is allocated to addresses H'0000 to
H'3FFF.

MS 5000 A read/write-enabled area is allocated to address H'5000.

326

5.40 MEMORY_DISPLAY

Abbrevi a ti on: MD

Descript ion:

Displays memory contents.

Sy ntax:

md <address> [<length>] [<mode>]

Parameter Type Description

<address> Numeric Start address

<length> Numeric Length (optional, default = H’100 bytes)

Keyword Display format (optional, default = byte)

byte Displays in byte units

word Displays in word units (2 bytes)

long Displays in longword units (4 bytes)

ascii Displays in ASCII codes

single Displays in single-precision floating-point format

<mode>

double Displays in double-precision floating-point format

327

Exa mples:

MEMORY_DISPLAY H’C000 H’100 WORD Displays H’100 bytes of memory starting at
H’C000 in word units

MEMORY_DISPLAY H’1000 H’FF Disp lays H’FF bytes of memory starting at
H’1000 in byte units

5.41 MEMORY_EDIT

Abbrevi a ti on: ME

Descript ion:

Allows memory contents to be modified. When editing memory the current location may be modified in a similar way to
that described in the ASSEMBLE command description.

When editing, '.' exits edit mode, '^' goes back one data unit, and blank line goes forward without modification.

Sy ntax:

me <address> [<mode>] [<state>]

Parameter Type Description

<address> Nu meric Address to edit

Keyword Format (optional, default = byte)

byte Edits in byte units

word Edits in word units

long Edits in longword units

ascii Edits in ASCII codes

single Edits in the single-precision floating-point
format

<mode>

double Edits in the double-precision floating-point
format

Keyword Verify flag (optional, default = V)

V Verify

<state>

N No verify

328

Exa mple:

ME H’1000 WORD Modifies memory contents in word units starting from H’1000 (with
verification)

5.42 MEMORY_FILL

Abbrevi a ti on: MF

Descript ion:

Modifies the contents in the specified memory area to the specified data value.

Sy ntax:

mf <start> <end> <data> [<mode>] [<state>]

Parameter Type Description

<start> Nu meric Start address

<end> Numeric End address

<data> Numeric Data value

Keyword Data size (optional, default = byte)

byte Byte

word Word

long Longword

single Single-precision floating-point

<mode>

double Double-precision floating-point

Keyword Verify flag (optional, default = V)

V Verify

<state>

N No verify

Examples:

MEMORY_FILL H’C000
H’C0FF H’55AA WORD

Modifies memory contents in the range from H’C000 to
H’C0FF to word data H’55AA.

MF H’5000 H’7FFF H’21 Modifies memory contents in the range from H’5000 to
H’7FFF to data H’21.

329

5.43 MEMORY_MOVE

Abbrevi a ti on: MV

Descript ion:

Moves data in the specified memory area.

Sy ntax:

mv <start> <end> <dest> [<state>]

Parameter Type Description

<start> Nu meric Start address

<end> Numeric End address (including this address)

<dest> Numeric Destination start address

Keyword Verify flag (optional, default = V)

V Verify

<state>

N No verify

Examples:

MEMORY_MOVE H’1000 H’1FFF H’2000 Moves memory contents in the area from
H’1000 to H’1FFF into H’2000.

MV H’FB80 H’FF7F H’3000 Moves memory contents in the area from
H’FB80 to H’FF7F into H’3000.

5.44 MEMORY_TEST

Abbreviation: MT

Description:

Performs read, write, and verification testing in the specified address range. The original contents of memory have been
replaced by the newly written data. The test will access the memory according to the map settings.

This simulator/debugger does not support the MEMORY_TEST command.

Syntax:

mt <start> <end>

Parameter Type Description

<start> Numeric Start address

<end> Numeric End address (including this address)

Examples:

MEMORY_TEST H’8000 H’BFFF Tests from H’8000 to H’BFFF.

MT H’4000 H’5000 Tests from H’4000 to H’5000.

330

5.45 OPEN_WORKSPACE

Abbrevi a ti on: OW

Descript ion:

Opens a workspace.

Sy ntax:

ow <filename>

Parameter Type Description

filename Character
string

Workspace file name

Example:

OW WKSP.HWS Opens the WKSP.HWS file.

5.46 PROFILE

Abbreviation: PR

Description:

Enables, disables or sets the profiler display and resets the profiler information.

Syntax:

pr [<state>]

Parameter Type Description

None Displays the profiler information.

Keyword Enables, disables or sets the profiler display
and resets the profiler information.

enable Enables the profiler.

tree-off Enables the profiler but does not trace function
calls during profile information acquisition.

disable Disables the profiler.

<state>

reset Resets the profiler information.

Examples:

PROFILE ENABLE Enables the profiler.

pr r Resets the profiler information.

331

5.47 PROFILE_DISPLAY

Abbrevi a ti on: PD

Descript ion:

Displays the profiler information.

Sy ntax:

pd [<mode>] [<state1>] [<state2>] [<count>]

Parameter Type Description

Keyword Specifies the method of displaying the profiler
information. (optional, default=list)

tree Displays in tree format

<mode>

list Displays in list format

Keyword Specifies whether or not to include child function
information in the parent function cycle
information. (optional, default=n)

i Specifies child function information to be
included in the display.

<state1>

n Specifies child function not to be included in the
display.

Keyword Specifies whether or not to control displaying
functions that are not executed (optional,
default=a).

e Displays only executed functions.

<state2>

a Displays all functions.

<count> Numeric Specifies the nesting level for calling functions
to be displayed. This can be specified only
when the <mode> parameter is ‘tree’ (optional,
default = 16).

Examples:

PROFILE_DISPLAY TREE I Specifies the profiler information to be displayed in tree
format and to include child functions.

pd Specifies the profiler information to be displayed in list
format, without child function information.

5.48 PROFILE_SAVE

Abbreviation: PS

Description:

Saves the profiler information to a file. The default file extension is .PRO.

Syntax:

ps [<filename>]

332

Parameter Type Descri pt ion

None Saves the profiler information on all download
modules to files.

<filename> Character
string

Specifies the name of the file to which profiler
information is saved.

Example:

PROFILE_SAVE PR_INFO Saves profiler information to a file named PR_INFO.PRO.

5.49 QUIT

Abbreviation: QU

Description:

Exits HEW. Closes a log file if it is open.

Syntax:

qu

Parameter Type Description

None Exits HEW

Example:

QU Exits HEW.

5.50 RADIX

Abbreviation: RA

Description:

Sets default input radix. If no parameters are specified, the current radix is displayed. Radix can be changed by using B’,
H’, D’, or O’ before numeric data.

Syntax:

ra [<mode>]

Parameter Type Description

none Displays current radix

Keyword Sets radix to specified type

H Sets radix to hexadecimal

D Sets radix to decimal

O Sets radix to octal

<mode>

B Sets radix to binary

333

Exa mples:

RADIX Displays the current radix.

RA H Sets the radix to hexadecimal.

5.51 REGISTER_DISPLAY

Abbrevi a ti on: RD

Descript ion:

Displays CPU register contents.

Sy ntax:

rd

Parameter Type Description

none Displays all register contents

Example:

RD Displays all register contents

5.52 REGISTER_SET

Abbreviation: RS

Description:

Changes the contents of a register.

Syntax:

rs <register> <value> [<mode>]

Parameter Type Description

<register> Keyword Register name

<value> Numeric Register value

Keyword Data size (optional, default = corresponding
register size)

byte Byte

word Word

long Longword

single Single-precision floating-point

<mode>

double Double-precision floating-point

334

Exa mples:

RS PC_StartUp Sets the program counter to the address defined by the symbol
_StartUp

RS R0 H’1234 WORD Sets word data H’1234 to R0.

5.53 RESET

Abbrevi a ti on: RE

Descript ion:

Resets the microprocessor. All register values are set to the initial values of the device. Memory mapping and breakpoints
are not initialized.

Sy ntax:

re

Parameter Type Description

none Resets the microprocessor

Example:

RE Resets the microprocessor.

5.54 RESPONSE

Abbreviation: RP

Description:

Specifies the frequency of the window update.
When a long refresh interval is specified, the simulation becomes faster but the response, such as for the break button,
becomes slower. Set a frequency appropriate for the machine used.

Syntax:

rp [<instruction number>]

Parameter Type Description

<instruction number> Numeric Specifies the frequency, in number of instruction
executions, the window is to update. 1 to 65535
(optional, default=40000)

Example:

RESPONSE 9 Sets the window to refresh every 9 information executions.

335

5.55 SLEEP

Abbrevi a ti on: None

Descript ion:

Delays command execution for a specified period.

Sy ntax:

sleep <milliseconds>

Parameter Type Description

<milliseconds> Numeric Delayed time (ms)

The value must always be specified in decimal.

Example:

SLEEP D’9000 Delays 9 seconds.

5.56 STATUS

Abbreviation: STA

Description:

Displays the current status of the debugging platform. The contents of the [Platform] sheet in the [Status] window is
displayed.

Syntax:

sta

Parameter Type Description

None Displays the current status of the debugging platform.

Example:

STA Displays the current status of the debugging platform.

5.57 STEP

Abbreviation: ST

Description:

Single step (in source line or instruction units) execution. Performs a specified number of instructions, from current PC.
Default is stepping by lines if source debugging is available. Count default is 1.

336

Sy ntax:

st [<mode>] [<count>]

Parameter Type Description

Keyword Type of single step (optional)

instruction Steps by assembly instruction

<mode>

line Steps by source code line

<count> Numeric Number of steps (optional, default = 1)

Example:

STEP 9 Steps code for 9 steps.

5.58 STEP_MODE

Abbreviation: SM

Description:

Selects the step mode.

Syntax:

sm <mode>

Parameter Type Description

Keyword Step mode

Auto Selects the mode automatically.

Assembly Steps by assembly-language instruction

<mode>

Source Steps by source code line

Example:

STEP_MODE auto Selects the step mode automatically.
When the [Source] window is active, execution steps by source code
line. When the [Disassembly] window is active, execution steps by
assembly-language instruction.

5.59 STEP_OUT

Abbreviation: SP

Description:

Steps the program out of the current function. (i.e., a step up). This works for both assembly-language and source level
debugging.

337

Sy ntax:

sp

Parameter Type Description

none Steps the program out of the current function

Example:

SP Steps the program out of the current function.

5.60 STEP_OVER

Abbreviation: SO

Description:

Performs a specified number of instructions from current PC.

This command differs from STEP in that it does not perform single step operation in subroutines or interrupt routines.
These are executed at full speed.

Syntax:

so [<mode>] [<count>]

Parameter Type Description

Keyword Type of stepping (optional)

instruction Steps by assembly instruction

<mode>

line Step by source code line

<count> Numeric Number of steps (optional, default = 1)

Example:

SO Steps over 1-step code.

338

5.61 STEP_RATE

Abbrevi a ti on: SR

Descript ion:

Controls the speed of stepping in the STEP and STEP_OVER commands. A rate of 6 causes the fastest stepping. A value
of 0 is the slowest.

Sy ntax:

sr [<rate>]

Parameter Type Description

none Displays the step rate

<rate> Numeric Step rate 0 to 6 (6 = fastest)

Examples:

SR Displays the current step rate.

SR 6 Specifies the fastest step rate.

5.62 STEP_UNIT

Abbreviation: SN

Description:

Sets and displays the execution unit. This command is only supported in the SH-3, SH-3E, SH3-DSP, and SH-4 series.

Syntax:

sn [<mode>]

Parameter Type Description

Keyword Sets and displays an instruction unit (optional,
default = display).

stage Executed in pipeline stage units. Pipeline does
not become disordered.

<mode>

instruction Executed in instruction units. Pipeline becomes
disordered.

Example:

STEP_UNIT
INSTRUCTION

Executed in instruction units (initiates a break after memory
access).

339

5.63 SUBMIT

Abbrevi a ti on: SU

Descript ion:

Executes a file of emulator commands. This command can be used even in a command file to be processed. Any error
aborts the file.

Sy ntax:

su <filename>

Parameter Type Description

<filename> Character
string

File name

Examples:

SUBMIT COMMAND.HDC Processes the file COMMAND.HDC.

SU A:SETUP.TXT Processes the file SETUP.TXT on drive A:.

5.64 SYMBOL_ADD

Abbreviation: SA

Description:

Adds a symbol, or changes an existing one.

Syntax:

sa <symbol> <value>

Parameter Type Description

<symbol> Character string Symbol name

<value> Numeric Value

340

Exa mples:

SYMBOL_ADD start H’1000 Defines the symbol start at H’1000.

SA END_OF_TABLE 1FFF Uses current default radix and defines END_OF_TABLE at
H'1FFF .

5.65 SYMBOL_CLEAR

Abbrevi a ti on: SC

Descript ion:

Deletes a symbol. If no parameters are specified, deletes all symbols (after confirmation).

Sy ntax:

sc [<symbol>]

Parameter Type Description

none Deletes all symbols

<symbol> Character
string

Symbol name

Examples:

SYMBOL_CLEAR Deletes all symbols (after confirmation).

SC start Deletes the symbol ‘start’.

5.66 SYMBOL_LOAD

Abbreviation: SL

Description:

Loads symbols from file. File must be in XLINK Pentica-b format (i.e. 'XXXXH name'). The symbols are added to the
existing symbol table.

Syntax:

sl <filename>

Parameter Type Description

<filename> Character
string

File name

Examples:

SYMBOL_LOAD TEST.SYM Loads the file TEST.SYM.

SL MY_CODE.SYM Loads the file MY_CODE.SYM.

341

5.67 SYMBOL_SAVE

Abbrevi a ti on: SS

Descript ion:

Saves symbols to a file in XLINK Pentica-b format. The symbol file extension default is .SYM.

Sy ntax:

ss <filename>

Parameter Type Description

<filename> Character
string

File name

Examples:

SYMBOL_SAVE TEST Saves symbol table to TEST.SYM.

SS MY_CODE.SYM Saves the symbol table to MY_CODE.SYM.

5.68 SYMBOL_VIEW

Abbreviation: SV

Description:

Displays all defined symbols, or those containing the case sensitive string pattern.

Syntax:

sv [<pattern>]

Parameter Type Description

none Displays all symbols

<pattern> Character
string

Character string that should be contained in the symbols to
be displayed

Examples:

SYMBOL_VIEW BUFFER Displays all symbols containing the word BUFFER.

SV Displays all the symbols.

342

5.69 TCL

Abbrevi a ti on: None

Descript ion:

Enables or disables the TCL.

Sy ntax:

tcl [<state>]

Parameter Type Description

None Displays the TCL information.

Keyword Enables or disables the TCL

enable Enables the TCL

<state>

disable Disables the TCL

Examples:

TCL Displays the TCL information.

TCL enable Enables the TCL.

TCL d Disables the TCL.

5.70 TRACE

Abbreviation: TR

Description:

Displays the trace buffer contents. The record in the buffer that was executed first is 0; older records have positive offset
values.

Syntax:

tr [[<start rec> [<count>]] | [<clear>]]

Parameter Type Description

<start rec> Numeric Record to start display (optional, default = most recent
record - 9)

<count> Numeric Number of records to be displayed (optional, default = 10)

Keyword Clears all trace records (optional) <clear>

clear Clears all trace records

Note: When a negative value is specified for <start rec> (-0 cannot be specified), the value is recognized as a PTR
value.

343

Exa mples:

TR 0 20 Displays twenty lines of trace buffer contents starting from the top of the
buffer.

TR Displays ten lines of trace buffer contents starting from the end of the buffer
(the ten most recently executed lines).

TR –20 10 Displays trace buffer contents for which the PTR value is between –20
and -11.

TR C Clears all trace records.

5.71 TRACE_ACQUISITION

Abbrevi a ti on: TA

Descript ion:

Enables or disables trace information acquisition

Sy ntax:

ta <mode> [<trace full handling>] [<trace capacity>]

Parameter Type Description

Keyword Enables or disables trace information acquisition.

E Trace information acquisition is enabled.

<mode>

D Trace information acquisition is disabled.

Keyword Specifies the operation when the trace buffer becomes full.

C Continues operation. (default)

<trace full
handling>

B Stops operation.

Keyword Specifies the capacity of the trace buffer.

BUF=1 D'1024 records (default)

BUF=4 D'4096 records

BUF=16 D'16384 records

<trace capacity>

BUF=32 D'32768 records

Note: The capacity of the trace buffer can be modified only while the trace buffer is empty.

Examples:

TRACE_ACQUISITION E
B BUF=32

Trace information acquisition is enabled.
Operation stops when the trace buffer becomes full.
The capacity of the trace buffer is set to 32768.

TA D Trace information acquisition is disabled.

344

5.72 TRACE_SAVE

Abbrevi a ti on: TV

Descript ion:

Saves the trace information in files. The files are in text format, so the default file extension is .TXT.

Sy ntax:

tv<filename> [<mode>]

Parameter Type Description

<filename> Character
string

File name

Keyword File writing mode

A Appends information to the file.

<mode>

O Overwrites the file. (default)

Examples:

TRACE_SAVE TEST Saves the trace information in TEST.TXT.

TV TRACE.TXT Saves the trace information in TRACE.TXT

5.73 TRACE_STATISTIC

Abbreviation: TST

Description:

Analyzes the statistic information under the specified conditions.

Syntax:

tst <item> <string>

Parameter Type Description

<item> Character
string

Statistic information item to be analyzed

<string> Character
string

Character string that specifies conditions

Example:

TST CODE1 E630 Analyzes the statistic information under condition CODE1 = E630.

345

5.74 TRAP_ADDRESS

Abbrevi a ti on: TP

Descript ion:

Specifies the system call address for standard I/O and file I/O functions from the user program. For details, refer to section
4.24, Standard I/O and File I/O Processing.

Sy ntax:

tp <address>

Parameter Type Description

<address> Numeric System call address

Example:

TP 1000 Sets the system call address to 1000.

5.75 TRAP_ADDRESS_DISPLAY

Abbreviation: TD

Description:

Displays the current system call address for standard I/O and file I/O functions from the user program. For details, refer to
section 4.24, Standard I/O and File I/O Processing.

The system call address is displayed in the following format:

H'xxxxxxxx Y

H'xxxxxxx: System call address (8-digit hexadecimal value)
Y: E: System call enabled
 D: System call disabled

Syntax:

td

Parameter Type Description

None Displays the current system call address and whether the
system call is enabled or disabled.

Example:

TD Displays the system call address value and whether the system call
is enabled or disabled.

346

5.76 TRAP_ADDRESS_ENABLE

Abbrevi a ti on: TE

Descript ion:

Enables or disables the system call for standard I/O and file I/O functions from the user program. For details, refer to
section 4.24, Standard I/O and File I/O Processing.

Sy ntax:

te <mode>

Parameter Type Description

<mode> Keyword Enables or disables the system call.

 E Enables the system call.

 D Disable the system call.

Example:

TE E Enables the system call.

347

Section 6 Messages

6.1 Information Messages

The simulator/debugger outputs information messages as listed in table 6.1 to notify users of execution status.

Ta bl e 6.1 Infor mati on Mes s ages

Message Con tents

Break Access The break access condition was satisfied and execution has stopped.

Break Cycle The break cycle condition was satisfied and execution has stopped

Break Data The break data condition was satisfied and execution has stopped.

Break Register The break register condition was satisfied and execution has stopped.

Break Sequence The break sequence condition was satisfied and execution has stopped.

PC Breakpoint The breakpoint condition was satisfied and execution has stopped.

Sleep Execution has been stopped by the SLEEP instruction.

Step Normal End The step execution succeeded.

Stop Execution has been stopped by the [Stop] button.

Trace Buffer Full Since the Break mode was selected by [Trace buffer full handling] in the
[Trace Acquisition] dialog box and the trace buffer became full, execution
was terminated.

348

6.2 Error Messages

The simulator/debugger outputs error messages to notify users of the errors of user programs or operation. Table 6.2 lists
the error messages.

Table 6 .2 Error Mes s ages

Message Con tents

Address Error One of the following states occurred:

� A PC value was an odd number.

� An instruction was read from the internal I/O area.

� Word data was accessed to an address other than a multiple of 2.

� Longword data was accessed to an address other than a multiple of 4.

� The VBR or SP was a value other than a multiple of 4.

� An error occurred in the exception processing of an address error.

Correct the user program to prevent the error from occurring.

Exception Error An error occurred during exception processing.

Correct the user program to prevent the error from occurring.

File Open Error An error occurred during opening a file with the break of file-input/output
action. Correct the file setting.

File Input Error An error occurred during reading a file with the break of file-input/output action.
Correct the file setting.

File Output Error An error occurred during writing to a file with the break of file-input/output
action. Correct the file setting.

FPU Disable An attempt was made to execute an FPU instruction while the FPU is disabled
(SR.FD = 1). Correct the user program to prevent the error from occurring.

FPU Error One of the following states occurred during floating-point operation:

• An FPU error occurred.

• An invalid operation occurred.

• A division by zero occurred.

• An overflow occurred.

• An underflow occurred.

• An inaccurate operation occurred.

Correct the user program to prevent the error from occurring.

349

Table 6.2 Error Messages (cont)

Message Con tents

General Invalid
Instruction

Either of the following states occurred:

� A code other than an instruction was executed.

� An error occurred in the exception processing of a reserved instruction
exception.

Correct the user program to prevent the error from occurring.

Illegal CCR2 Set The CCR2 value is illegal. Check the setting.

Illegal DSP
Operation

Either of the following states occurred:

• A shift of more than 32 bits was executed with the PSHA instruction.

• A shift of more than 16 bits was executed with the PSHL instruction.

Correct the user program to prevent the error from occurring.

Illegal LRU Set LRU value of the cache is invalid. Check the setting.

Illegal Operation Either of the following states occurred:

• A division by zero occurred during DIV1 instruction execution.

• Zero was written to by the SETRC instruction.

Correct the user program to prevent the error from occurring.

Illegal PR bit An attempt was made to execute an FPU instruction while the PR bit value of
the FPSCR is illegal. Correct the user program to prevent the error from
occurring.

Initial Page Write Initial page write occurred during simulation. Take necessary procedures such
as updating the TLB contents.

Instruction TLB
Illegal LRU

An LRU value in the instruction TLB is illegal. Check the setting.

Instruction TLB
Miss

An instruction TLB miss occurred during memory access. Take necessary
procedures such as updating the TLB contents.

Instruction TLB
Protection Violation

An instruction TLB protection exception occurred during memory access. Take
necessary procedures such as updating the TLB contents.

Interrupt Exception An interrupt exception occurred, execution halted

Invalid DSP
Instruction Code

An invalid instruction code was detected in the DSP parallel instruction.
Correct the user program to prevent the error from occurring.

Invalid Slot
Instruction

Either of the following states occurred:

• An instruction that changes a PC value (a branch instruction) immediately
after a delayed branch instruction was executed.

• An error occurred during the exception processing of an invalid slot
instruction.

Correct the user program to prevent the error from occurring.

350

Ta ble 6 .2 Erro r Mes s a ges (co nt)

Message Con tents

Illegal Combination
BSC Register

An attempt was made to access the area for which the BSC register setting is
invalid. Correct the user program to prevent the error from occurring.

Memory Access
Error

One of the following states occurred:

• A memory area that had not been allocated was accessed.

• Data was written to a memory area having the write protect attribute.

• Data was read from a memory area having the read disable attribute.

• A memory area in which memory does not exist was accessed.

Allocate memory, change the memory attribute, or correct the user program to
prevent the memory from being accessed.

Multiple Exception Multiple exceptions occurred. Correct the user program to prevent the error
from occurring.

Slot FPU Disable An attempt was made to execute an FPU instruction in a delay slot while the
FPU is disabled (SR.FD = 1). Correct the user program so that no error
occurs.

System Call Error System call error occurred. Modify the incorrect contents of registers R0, R1,
and parameter block.

TLB Invalid TLB invalid exception occurred during simulation or during command
execution. Take necessary procedures such as updating the TLB contents.

TLB Miss TLB miss occurred during simulation or during command execution. Take
necessary procedures such as updating the TLB contents.

TLB Multiple Hit Multiple TLB entries were hit when a virtual address was accessed during
simulation or command execution. TLB is not correctly set. Modify TLB
contents and user program (handler routine).

TLB Protection
Violation

Illegal TLB protection exception occurred during simulation.

Unified TLB Miss A unified TLB miss occurred during memory access. Take necessary
procedures such as updating the Unified TLB (UTLB) contents.

Unified TLB
Multiple Hit

Multiple unified TLB entries were hit when a virtual address was accessed.
TLB is not correctly set. Modify TLB contents and user program (handler
routine).

Unified TLB
Protection Violation

A unified TLB protection exception occurred during memory access. Take
necessary procedures such as updating the Unified TLB (UTLB) contents.

351

Appendix A: Trouble Shooting

? I have clicked the “Stop Build” button or selected [Build->Stop Build] to abort a build but the build process has
not stopped.

The HEW will stop the build after it has built the current file (or executed the current single phase). If the builder does
not respond after a longer period of time you can select [Build->Terminate Current Tool] which will attempt to
forcibly terminate the current process. Do NOT assume that any output from the tool you terminated is valid. It is
recommended that you delete any output files produced and ensure that the phase is executed again.

? I have a text file in the editor but it does not show any syntax coloring.

Ensure that you have named the file (i.e. saved it) and that the “Enable syntax coloring” check box is set on the
“Editor” tab of the “Tools Options” dialog, which is launched via [Tools->Options...]. HEW checks a file group to
which the file’s extension belongs and decides whether the file is colored. To view the current defined extensions and
their file groups, use the “File Extensions” dialog which is launched via [Project->File Extensions...]. To view
coloring information, use the “Format” tab of the “Tools Options” dialog, which is launched via [Tools->Options...].
(See the “Syntax Coloring” section in chapter 4, “Using the Editor” for details.)

? I want to change the settings of a tool but the [Tools->Administration…] menu option cannot be selected.

[Tools->Administration...] cannot be selected while a workspace is open. To enter the “Tool Administration” dialog
first close the current workspace.

? I did not edit any of the project files. But some of files were built again when I selected [Build->Build].

A file is built again if any of the following conditions holds:

? The options for the current file have been modified since the last build.

? If any of the output files are missing.

? Any of the source files have a newer date than the phase’s output files.

? Any of the dependent files have a newer date than the phase’s output files.

? In a user-defined custom build phase, the “Don’t check for input file(s) existence before executing” check box is
checked. To see the status of this check box, select [Options->Build Phases…], select the phase in the “Build
Phase Order” list in the “Build Order” tab, and click the “Modify…” button. Then you will see the “Don’t check
for input file(s) existence before executing” check box on the “Command” tab.

? A subcommand file is selected in Hitachi Optimizing Linkage Editor.

? I want to exclude a file in a project from build temporarily.

Push the right button of your mouse on the file in the “Projects” tab of the “Workspace” window, and select [Exclude
Build <file>], where <file> is the selected file. Then the file is excluded from build. To include the file in build again,
push the right button of your mouse on the file, and select [Include Build <file>].

? I opened a workspace from my PC, and one of my colleagues opened the same workspace simultaneously from
another PC. I changed the settings of the workspace and saved it. He or she saved the workspace after me. I opened
the workspace again and found that the settings of the workspace differed from what I had set before.

The settings saved last are enforced. Once HEW opens a workspace, it is updated inside the memory. HEW does not
save the settings into a file until a user saves the workspace intentionally.

? I want HEW to automatically specify default options to a file, which is newly added to a project.

You can specify default options to a phase if the phase is a multiple build phase. Select a phase from the [Options]
menu. If the phase is a multiple build phase, a file list is displayed on the left-hand side of the options dialog (figure
A.1). In the file list, open a folder of a file group to which you want to specify your default options. You will find a
“Default Options” icon in the folder. Select the icon, specify options on the right-hand side of the options dialog, and
click “OK”. The options specified here will be given to any new file of that file group when it is first added to the
project.

352

Figure A.1: Options Dialog File List

? I selected [Build->Build All], but the dependencies in the “Projects” tab of the “Workspace” window is not updated
while selecting [Build->Build] updates the dependencies.

[Build->Build All] does not update the dependencies in the “Projects” tab of the “Workspace” window. To update the
dependencies, select [Build->Update All Dependencies].

353

Appendix B: Regular Expressions

The Hitachi Embedded Workshop editor allows you to include special characters in search strings when performing a find
or replace operation. These characters are listed in table B.1 and are detailed in the following pages.

Ta bl e B.1: Regul a r Expres s ion Char ac ters

Character Func tion

? Matches any single character (except newline)

* Matches any number of occurrences (0 or more) of any character except a
newline

\n Matches a new line character

\t Matches a tab character

[] Matches any one character or range listed within the brackets

\ Overrides any following regular expression character

• Symbol: ?

Meaning: This character matches any single character, except the newline character.

Example: t?p matches “top”, “tip” but not “trap”.

• Symbol: *

Meaning: This character matches any number of occurrences (0 or more) of any character except a newline. Thus,
this character will not match across new lines. The * character will match as few occurrences as are
necessary to make the rest of the pattern match.

Example 1: t*o matches the “to” of “too”, the “tro” of “trowel” and the “ty o” of
“sporty orange” but not “smart
orange” because the * character does not match across a new line.

• Symbol: \n

Meaning: This character matches the newline character.

 \n would be used to search for line endings or in patterns that cross line boundaries.

Example 1: ;\n

 matches every occurrence of a newline following a semicolon

Example 2: ;\nif

 searches for a semicolon, a new line and a line beginning with “if”.

354

� Sy mbo l: \t

Meaning: This character matches the tab character.

Example 1: \t8

 Finds every occurrence of a tab character followed by an 8.

Example 2: init\t

 Finds every occurrence of a tab character following “init”.

� Sy mbo l: []

Meaning: This matches any one character or a range of single characters listed within the brackets. Brackets cannot
be nested.

 [-] specifies a range of characters e.g. [a-z] or [0-9]. The beginning character in the range must have a
lower ASCII value than the ending character of the range.

 [~] matches a single character if it is not any one of the characters between
[~ and]. This pattern also matches newline characters, unless the newline character is included within the
brackets.

Example 1: [AEIOU]

 Finds every uppercase vowel.

Example 2: [<>?]

 Finds a literal <, > or ?.

Example 3: [A-Za-z0-9_]

 Matches an upper or lowercase letter, a digit or an underscore.

Example 4: [~0-9]

 Matches any character except a digit.

Example 5: [\t\n]

 Matches a space, a tab or newline.

Example 6: [\]]

 Matches a literal] if] is placed after \.

� Sy mbo l: \

Meaning: This is the regular expression override character. If the character following the backslash is a regular
expression character, it is treated as a normal character. The backslash is ignored if it is followed by a
normal (non-regular expression) character.

Example 1: *

 Searches for every occurrence of an asterisk.

Example 2: \\

 Searches for every occurrence of a backslash.

355

Appendix C: Placeholders

This appendix describes how to use the placeholders, a feature provided by several of the Hitachi Embedded Workshop
components.

C.1 What is a P l ac eholder?

A placeholder is a special string, inserted into text, which is replaced at some subsequent time for the actual value. For
example, one of the HEW placeholders is $(FULLFILE) which represents a file with a full path. Suppose that you have an
editor in c:\myedit\myeditor.exe, which can take the file to edit as a parameter. When invoking the editor the following
shortcut could be made, e.g.:

c:\myedit\myeditor.exe c:\files\file1.c

if you wanted to open FILE1.C from the directory c:\files. However, what happens if you want the HEW to open any file
through this editor? The problem is that the command above is specific to “c:\files\file1.c”. What we want to be able to do
is to tell the HEW to use the editor specified but to open the file that I have chosen at that time. To do this, you can replace
the specific name of the file for a general placeholder, i.e.:

c:\myedit\myeditor.exe $(F ULLF ILE)

Now whenever the HEW launches the editor with a file, it knows that it has to replace $(FULLFILE) with the file you
have selected.

C.2 Ins ertin g a Pla ceh old er

Placeholders can only be entered into three specific edit fields within the HEW (figures C.1, C.2 and C.3). There are four
ways a placeholder can be entered:

In the first example, place the insertion cursor at the point you would like to insert the placeholder and then select the
required placeholder from the pop-up menu to the right of the edit field.

Figure C.1: Placeholder Pop-up Menu

In the second example, select the required placeholder other than “Custom directory” from the drop-down list box and
specify a sub-directory relative to the directory shown by the placeholder. If you select “Custom directory”, specify an
absolute directory path in the “Sub-Directory” field.

Figure C.2: Placeholder Drop-down List and Sub-Directory Field

356

In the third example, place the insertion cursor at the point you would like to insert the placeholder, select the required
placeholder from the drop-down list box and then click the “Insert” button.

Figure C.3: Placeholder Drop-down List

In the fourth example, type the placeholder into the field directly. Ensure that you type the placeholder name in uppercase
and that it is preceded by $(and followed by), i.e.

This is correct:

$(FILEDIR)

These are incorrect:

$(Filedir)
$(FILEDIR)
$FILEDIR

357

C.3 Available Placeholders

Table C.1 lists the placeholders and their meanings.

Table C.1: Placeholders

Placeholder M eaning

$(FULLFILE) Filename (including full path)

$(FILEDIR) File directory

$(FILENAME) Filename (excluding path including extension)

$(FILELEAF) Filename (excluding path and extension)

$(EXTENSION) File extension

$(WORKSPDIR) Workspace directory

$(WORKSPNAME) Workspace name

$(PROJDIR) Project directory

$(PROJECTNAME) Project name

$(CONFIGDIR) Configuration directory

$(CONFIGNAME) Configuration name

$(HEWDIR) HEW installation directory

$(TCINSTALL) Toolchain install directory (on option dialog)

$(TOOLDIR) Tool installation directory (Tools Administration)

$(TEMPDIR) Temp directory

$(WINDIR) Windows® directory

$(WINSYSDIR) Windows® system directory

$(EXEDIR) Command directory

$(USERNAME) User login (Version control)

$(PASSWORD) User password (Version control)

$(VCDIR) “Virtual” version control directory

$(COMMENT) Comment (Version control)

$(LINE) Line number of an error/warning

358

For example, the placeholders will be expanded as shown in table C.2.

Table C.2: Placeholder Expansions (Example)

Placeholder Expanded placeholder (example)

$(FULLFILE) c :\hew\workspace\project\file.src

$(FILEDIR) c:\hew\workspace\project

$(FILENAME) file.src

$(FILELEAF) file

$(EXTENSION) src

$(WORKSPDIR) c:\hew\workspace

$(WORKSPNAME) workspace

$(PROJDIR) c:\hew\workspace\project

$(PROJECTNAME) project

$(CONFIGDIR) c:\hew\workspace\project\debug

$(CONFIGNAME) debug

$(HEWDIR) c:\hew

$(TCINSTALL) c:\hew\toolchains\hitachi\sh\511

$(TOOLDIR) c:\hew\toolchains\hitachi\sh\511

$(TEMPDIR) c:\Temp

$(WINDIR) c:\Windows

$(WINSYSDIR) c:\Windows\System

$(EXEDIR) v:\vc\win32

$(USERNAME) JHARK

$(PASSWORD) 214436

$(VCDIR) “c:\project” is mapped to “x:\vc\project”

$(COMMENT) “Please Enter Comment” dialog is invoked

$(LINE) 12

In table C.2, we are assuming that

• a file path is “c:\hew\workspace\project\file.src”

• a workspace named “workspace” is located at “c:\hew\workspace”

• a project named “project” is located at “c:\hew\workspace\project”.

• a configuration named “debug” has a configuration directory located at “c:\hew\workspace\project\debug”.

• HEW.EXE is installed in “c:\hew”.

• a *.HRF file of a toolchain (i.e. compiler, assembler, linker) is located in “c:\hew\toolchain\hitachi\sh\511”. This is
referred to as $(TCINSTALL) on the option setting dialogs of the [Options] menu and as $(TOOLDIR) on the “Tools
Administration” dialog.

• the Windows® operating system is installed in “c:\Windows” and the Windows® system directory is
“c:\Windows\System”.

• a version control executable path is “v:\vc\win32\ss.exe”, a user name and its password to login the version control
system are “JHARK” and “214436” respectively, $(COMMENT) is specified in a command line to the version control
executable, and “c:\project” is mapped to “x:\vc\project” on the “Projects” tab of the “Version Control Setup” dialog,
which is invoked via [Tools->Version Control->Configure…].

• an error of compiler or assembler occurred at line 12.

359

Note: Not all of the placeholders are relevant in every field. For example, the $(LINE) placeholder has no meaning when
specifying a dependent files location. $(USERNAME), $(PASSWORD), $(VCDIR), and $(COMMENT)
placeholders are acceptable only in version control. If you enter a placeholder into an edit field where it is not
acceptable you might be informed.

C.4 Placeholder Tips

Placeholders are there to allow you to create flexible paths to the various files used by the system.

� If there is a placeholder pop-up menu () next to an edit field into which you are about to enter a path or file, you
should consider how you can use a placeholder to make that path or file definition flexible.

• If you use several configurations, then the $(CONFIGDIR) placeholder is very useful to ensure that files can be written
to and from the current configuration’s directory.

• Wherever possible, use a placeholder. They can always be removed or added later so don’t be afraid to experiment.

360

Appendix D: I/O File Format

HEW formats the [IO] window based on information it finds in an I/O Register definition file. When you select a
debugging platform, HEW will look for a “<device>.IO” file corresponding to the selected device and load it if it exists.
This file is a formatted text file that describes the I/O modules and the address and size of their registers. You can edit this
file, with a text editor, to add support for memory mapped registers or peripherals you may have specific to your
application e.g. registers in an ASIC device mapped into the microcomputer's address space.

D.1 File format

Each module name must be defined in the [Modules] definition section and the numbering of each module must be
sequential. Each module corresponds to a register definition section and within the section each entry defines an I/O
register.

The [BaseAddress] definition is for devices where the location of I/O registers moves in the address space depending on
the CPU mode. In this case, the [BaseAddress] value is the base address of the I/O registers in one specific mode and the
addresses used in the register definitions are the address locations of the registers in the same mode. When the I/O register
file is actually used, the [BaseAddress] value is subtracted from the defined register address and the resultant offset added
to the relevant base address for the selected mode.

Each module has a section that defines the registers forming it along with an optional dependency, the dependency is
checked to see if the module is enabled or not. Each register name must be defined in the section and the numbering of
each register must be sequential. The dependency is entered in the section as dep=<reg> <bit> <value>.

1. <reg> is the register id of the dependency.

2. <bit> is the bit position within the register.

3. <value> is the value that the bit must be for the module to be enabled.

The [Register] definition entry is entered in the format id=<name> <address> [<size>
[<absolute>[<format>[<bitfields>]]]].

1. <name> register name to be displayed.

2. <address> address of the register.

3. <size> which may be B, W or L for byte, word, or long word (default is byte).

4. <absolute> which can be set to A if the register is at an absolute address. This is only relevant if the I/O
area address range moves about on the CPU in different modes. In this case, if a register is defined as
absolute the base address offset calculation is not performed and the specified address is used directly.

5. <format> Format for register output. Valid values are H for Hexadecimal, D for decimal, and B for
binary.

6. <bitfields> section defining the bits within the register.

Bitfield sections define the bits within a register each entry is of the type bit<no>=<name>.

1. <no> is the bit number.

2. <name> is a symbolic name of the bit.

Comment lines are allowed and must start with a “;” character.

361

362

363

Appendix E: Symbol File Format

In order for HEW to be able to understand and decode the symbol file correctly, the file must be formatted as a
Pentica-B file:

1. The file must be a plain ASCII text file.

2. The file must start with the word “BEGIN”.

3. Each symbol must be on a separate line with the value first, in hexadecimal terminated by an
“H”, followed by a space then the symbol text.

4. The file must end with the word “END”.

Example:

BEGIN
11FAH Symbol_name_1
11FCH Symbol_name_2
11FEH Symbol_name_3
1200H Symbol_name_4
END

	Cover
	Cautions
	Introduction
	About This Manual
	Contents
	HEW Part
	1.	Overview
	1.1	Workspaces, Projects and Files
	1.2	The Main Window
	1.2.1	The Title Bar
	1.2.2	The Menu Bar
	1.2.3	The Toolbars
	1.2.4	The Workspace Window
	1.2.5 The Editor Window
	1.2.6	The Output Window
	1.2.7	The Status Bar

	1.3	The Help System
	1.4	Launching the HEW
	1.5	Exiting the HEW
	1.6	Component System Overview

	2. Build Basics
	2.1	The Build Process
	2.2	Project Files
	2.2.1	Adding Files to a Project
	2.2.2	Removing Files from a Project
	2.2.3	Excluding a Project File from Build
	2.2.4	Including a Project File in Build

	2.3	File Extensions and File Groups
	2.4	Specifying How to Build a File
	2.5	Build Configurations
	2.5.1	Selecting a Configuration
	2.5.2	Adding and Deleting Configurations

	2.6	Building a Project
	2.6.1	Building a Project
	2.6.2	Building Individual Files
	2.6.3	Stopping a Build
	2.6.4	Building Multiple Projects
	2.6.5	The Output Window
	2.6.6	Controlling the Content of the Output Window

	2.7	File Dependencies
	2.8	Configuring the Workspace Window
	2.8.1	Show Dependencies under Each File
	2.8.2	Show Standard Library Includes
	2.8.3	Show File Paths

	2.9	Setting the Current Project
	2.10	Inserting a Project into a Workspace
	2.11	Specifying Dependencies between Projects
	2.12	Removing a Project from a Workspace
	2.13	Relative projects paths in the workspace

	3.	Advanced Build Features
	3.1	The Build Process Revisited
	3.1.1	What is a Build?

	3.2	Creating a Custom Build Phase
	3.3	Ordering Build Phases
	3.3.1	Build Phase Order
	3.3.2	Build File Phase Order

	3.4	Setting Custom Build Phase Options
	3.4.1	Options Tab
	3.4.2	Output Files Tab
	3.4.3	Dependent Files Tab

	3.5	File Mappings
	3.6	Controlling the Build
	3.7	Logging Build Output
	3.8	Changing Toolchain Version
	3.9	Using an External Debugger
	3.10	Generating a Makefile

	4.	Using the Editor
	4.1	The Editor Window
	4.2	Working with Multiple Files
	4.2.1	The Editor Toolbars
	4.2.2	Editor Toolbar Buttons
	4.2.3 Search Toolbar Buttons
	4.2.4	Bookmarks Toolbar Buttons
	4.2.5	Templates Toolbar Buttons

	4.3	Standard File Operations
	4.3.1	Creating a New File
	4.3.2	Saving a File
	4.3.3	Saving all Files
	4.3.4	Opening a File
	4.3.5	Closing Files

	4.4	Editing a File
	4.5	Searching and Navigating through Files
	4.5.1	Finding Text
	4.5.2	Finding Text in Multiple Files
	4.5.3	Replacing Text
	4.5.4	Jumping to a Specified Line

	4.6	Bookmarks
	4.7	Printing a File
	4.8	Configuring Text Layout
	4.8.1	Page Set-up
	4.8.2	Changing Tabs
	4.8.3	Auto Indentation

	4.9	Splitting a Window
	4.10	Configuring Text
	4.10.1	Changing the Editor Font

	4.11	Syntax Coloring
	4.12	Templates
	4.12.1	Defining a Template
	4.12.2	Deleting a Template
	4.12.3	Inserting a Template
	4.12.4	Brace Matching.

	4.13 Editor Column management

	5.	Tools Administration
	5.1	Tool Locations
	5.2	HEW Registration Files (*.HRF)
	5.3	Registering Components
	5.3.1	Searching Drives for Components
	5.3.2	Registering a Single Component

	5.4	Unregistering Components
	5.5	Viewing and Editing Component Properties
	5.6	Uninstalling Components
	5.7	Technical Support Issues
	5.8	Custom Project Types

	6.	Customizing the Environment
	6.1	Customizing the Toolbar
	6.2	Customizing the Tools Menu
	6.3	Configuring the Help System
	6.4	Specifying Workspace Options
	6.4.1	Open last workspace at start-up
	6.4.2	Restore the files on opening workspace
	6.4.3	Display workspace information dialog on opening workspace
	6.4.4	Save workspace before executing any tools
	6.4.5	Prompt before saving workspace
	6.4.6	Default directory for new workspaces
	6.4.7	Prompt before saving session

	6.5	Using an External Editor
	6.6	Customizing File Save
	6.6.1	Save files before executing any tools
	6.6.2	Prompt before saving files

	6.7	Using an External Debugger
	6.8	Using Custom Placeholders

	7.	Version Control
	7.1	Selecting a Version Control System

	8.	Using the Custom Version Control System
	8.1 Defining Version Control Menu Options
	8.1.1	System menu options and toolbar buttons
	8.1.2	User menu options

	8.2	Defining Version Control Commands
	8.2.1	Executable return code

	8.3	Specifying Arguments
	8.3.1	Specifying File Locations
	8.3.2	Specifying Environment
	8.3.3	Specifying Comments
	8.3.4	Specifying a User Name and Password

	8.4	Controlling Execution
	8.4.1	Prompt before executing command
	8.4.2	Run in DOS Window
	8.4.3	Use forward slash ‘/’ as version control directory delimiter

	8.5	Importing and exporting a Set-up

	9.	Using Visual SourceSafe
	9.1	Attaching Visual SourceSafe to a Workspace
	9.1.1	Selecting Visual SourceSafe
	9.1.2	Adding files to Visual SourceSafe

	9.2	Visual SourceSafe commands
	9.2.1	Removing a File from Version Control
	9.2.2	Getting a Read Only Copy of a File from Version Control
	9.2.3	Checking Out a Writable Copy of a File from Version Control
	9.2.4	Checking In a Writable Copy of a File into Version Control
	9.2.5	Undoing a Check Out Operation
	9.2.6	Viewing the Status of a File
	9.2.7	Viewing the History of a File

	9.3	Visual SourceSafe Integration Options

	Simulator/Debugger Part
	Section 1 Overview
	1.1	Workspaces, Projects, and Files
	1.2	Launching the HEW
	1.3	Creating a New Workspace
	1.4	Opening a Workspace
	1.5	Saving a Workspace
	1.6	Closing a Workspace
	1.7	Using Old Workspaces
	1.8	Exiting the HEW
	1.9	Debugger Sessions

	Section 2 Simulator/Debugger Functions
	2.1	Features
	2.2	Target User Program
	2.3	Simulation Range
	2.4	Memory Management
	2.5	Endian
	2.6	Pipeline Reset Processing
	2.7	Memory Management Unit (MMU)
	2.8	Cache
	2.8.1	Displaying Cache Contents
	2.8.2	Cache Hit Rate

	2.9	Bus State Controller (BSC)
	2.10	Direct Memory Access Controller (DMAC)
	2.11	SH-4 and SH-4 (SH7750R) Supporting Functions
	2.11.1	BSC
	2.11.2	DMA
	2.11.3	External/Internal Clock Ratio
	2.11.4	Control Registers

	2.12	Exception Processing
	2.13	Control Registers
	2.14	Trace
	2.15	Standard I/O and File I/O Processing
	2.16	Break Conditions
	2.17	Floating-Point Data
	2.18	Display of Function Call History
	2.19 Performance Measurement
	2.19.1	Profiler
	2.19.2	Performance Analysis

	2.20	Pseudo-Interrupts
	2.21	Coverage

	Section 3 Preparations for Debugging
	3.1	Building before Debugging
	3.2	Selecting a Debugging Platform
	3.3	Configuring the Debugging Platform
	3.3.1	Memory Map
	3.3.2	Memory Resource
	3.3.3	Downloading a Program
	3.3.4	Manual Download of Modules
	3.3.5	Automatic Download of Modules
	3.3.6	Unloading of Modules

	3.4	Debugger Sessions
	3.4.1	Selecting a Session
	3.4.2	Adding and Deleting Sessions
	3.4.3	Saving Session Information

	Section 4 Debugging
	4.1	Viewing a Program
	4.1.1	Viewing the Source Code
	4.1.2	Source Address Column
	4.1.3	Debugger Columns
	4.1.4	Viewing the Assembly-Language Code
	4.1.5	Modifying the Assembly-Language Code
	4.1.6	Viewing a Specific Address
	4.1.7	Viewing the Current Program Counter Address

	4.2	Operating Memory
	4.2.1	Viewing a Memory Area
	4.2.2	Displaying Data in Different Formats
	4.2.3	Splitting Up the Window Display
	4.2.4	Viewing a Different Memory Area
	4.2.5	Modifying the Memory Contents
	4.2.6	Selecting a Memory Range
	4.2.7	Finding a Value in Memory
	4.2.8	Filling a Memory Area with a Value
	4.2.9	Copying a Memory Area
	4.2.10	Saving and Verifying a Memory Area
	4.2.11	Disabling Update of the Window Contents
	4.2.12	Updating the Window Contents
	4.2.13	Comparing the Memory Contents
	4.2.14	Loading a Memory Area from a File

	4.3	Viewing the TLB Contents
	4.3.1	Opening a TLB Window
	4.3.2	Modifying the TLB Contents
	4.3.3	Flushing the TLB Contents
	4.3.4	Searching the TLB Items
	4.3.5	Continuing the TLB Search

	4.4	Viewing the Cache Contents
	4.4.1	Opening a Cache Window
	4.4.2	Modifying the Cache Contents
	4.4.3	Flushing the Cache Contents
	4.4.4	Searching the Cache Items
	4.4.5	Continuing the Cache Search
	4.4.6	Modifying the Cache Capacity

	4.5	Displaying Memory Contents as an Image
	4.5.1	Opening the Image View Window
	4.5.2	Automatically Updating the Window Contents
	4.5.3	Updating the Window Contents
	4.5.4	Displaying the Pixel Information

	4.6	Displaying Memory Contents as Waveforms
	4.6.1	Opening the Waveform View Window
	4.6.2	Automatically Updating the Window Contents
	4.6.3	Updating the Window Contents
	4.6.4	Zoom-In Display
	4.6.5	Zoom-Out Display
	4.6.6	Resetting the Zoom Display
	4.6.7	Setting the Zoom Magnification
	4.6.8	Setting the Horizontal Scale
	4.6.9	Non-Display of Cursor
	4.6.10	Displaying the Sampling Information

	4.7	Viewing the I/O Memory
	4.7.1	Opening the IO Window
	4.7.2	Expanding the I/O Register Display
	4.7.3	Modifying the I/O Register Contents

	4.8	Looking at Labels
	4.8.1	Listing Labels
	4.8.2	Adding a Label
	4.8.3	Editing a Label
	4.8.4	Deleting a Label
	4.8.5	Deleting All Labels
	4.8.6	Loading Labels from a File
	4.8.7	Saving Labels into a File
	4.8.8	Searching for a Label
	4.8.9	Searching for the Next Label
	4.8.10	Viewing the Source Corresponding to a Label

	4.9	Looking at Registers
	4.9.1	Opening the Register Window
	4.9.2	Expanding a Bit Register
	4.9.3	Modifying Register Contents
	4.9.4	Using Register Contents

	4.10	Executing Your Program
	4.10.1	Running from Reset
	4.10.2	Continuing Run
	4.10.3	Running to the Cursor
	4.10.4	Running from a Specified Address
	4.10.5	Single Step
	4.10.6	Stepping Into a Function
	4.10.7	Stepping Over a Function Call
	4.10.8	Stepping Out of a Function
	4.10.9	Multiple Steps

	4.11	Stopping Your Program
	4.11.1	Halting Execution
	4.11.2	Standard Breakpoints (PC Breakpoints)

	4.12	Elf/Dwarf2 Support
	4.12.1	C/C++ Operators
	4.12.2	C/C++ Expressions
	4.12.3	Supporting Duplicate Labels
	4.12.4	Debugging an Overlay Program

	4.13	Looking at Variables
	4.13.1	Tooltip Watch
	4.13.2	Instant Watch
	4.13.3	Watch Window
	4.13.4	Locals Window

	4.14	Viewing the Profile Information
	4.14.1	Stack Information Files
	4.14.2	Profile Information Files
	4.14.3	Loading Stack Information Files
	4.14.4	Enabling the Profile
	4.14.5	Specifying Measuring Mode
	4.14.6	Executing the Program and Checking the Results
	4.14.7	List Sheet
	4.14.8	Tree Sheet
	4.14.9	Profile-Chart Window
	4.14.10	Types and Purposes of Displayed Data
	4.14.11	Creating Profile Information Files
	4.14.12	Notes

	4.15	Viewing the Function Call History
	4.15.1	Opening the Stack Trace Window
	4.15.2	Viewing the Source Program
	4.15.3	Specifying the View

	4.16	Viewing the Trace Information
	4.16.1	Opening the Trace Window
	4.16.2	Specifying Trace Acquisition Conditions
	4.16.3	Acquiring Trace Information
	4.16.4	Searching for a Trace Record
	4.16.5	Clearing the Trace Information
	4.16.6	Saving the Trace Information in a File
	4.16.7	Viewing the Source Window
	4.16.8	Trimming the Source
	4.16.9	Analyzing Statistical Information

	4.17	Using the Simulator/Debugger Breakpoints
	4.17.1	Listing the Breakpoints
	4.17.2	Setting a Breakpoint
	4.17.3	Modifying Breakpoints
	4.17.4	Enabling a Breakpoint
	4.17.5	Disabling a Breakpoint
	4.17.6	Deleting a Breakpoint
	4.17.7	Deleting All Breakpoints
	4.17.8	Viewing the Source Line for a Breakpoint
	4.17.9	Closing Input or Output File
	4.17.10	Closing All Input and Output Files

	4.18	Analyzing Performance
	4.18.1	Opening the Performance Analysis Window
	4.18.2	Specifying a Target Function
	4.18.3	Starting Performance Data Acquisition
	4.18.4	Resetting Data
	4.18.5	Deleting a Target Function
	4.18.6	Deleting All Target Functions

	4.19	Acquiring Code Coverage
	4.19.1	Opening the Coverage Window
	4.19.2	Acquiring Coverage Information
	4.19.3	Viewing the Source Window
	4.19.4	Changing the Display Address
	4.19.5	Changing the Coverage Range
	4.19.6	Clearing Coverage Information
	4.19.7	Saving Coverage Information in a File
	4.19.8	Loading Coverage Information from a File
	4.19.9	Updating the Information
	4.19.10	Stopping Update
	4.19.11	Confirmation Request Dialog Box
	4.19.12	Save Coverage Data Dialog Box
	4.19.13	Displaying the Coverage Information in the Source Window

	4.20	Viewing the Current Status
	4.21	Debugging with the Command Line Interface
	4.21.1	Opening the Command Line Window
	4.21.2	Specifying a Command File
	4.21.3	Executing a Command File
	4.21.4	Stopping Command Execution
	4.21.5	Specifying a Log File
	4.21.6	Starting or Stopping Logging
	4.21.7	Entering a Full Path to the File
	4.21.8	Pasting a Placeholder

	4.22	Generating a Pseudo-Interrupt Manually
	4.22.1	Setting a Trigger Button
	4.22.2	Changing the Size of Trigger Buttons

	4.23	Modifying the Simulator/Debugger Settings
	4.23.1	Simulator System Dialog Box
	4.23.2	Memory Map Modify Dialog Box
	4.23.3	Set State Dialog Box
	4.23.4	Simulator Memory Resource Dialog Box
	4.23.5	System Memory Resource Modify Dialog Box

	4.24	Standard I/O and File I/O Processing
	4.24.1	Opening the Simulated I/O Window
	4.24.2	I/O Functions

	4.25	Synchronizing Multiple Debugging Platforms

	Section 5 Command Lines
	5.1	!(COMMENT)
	5.2	ANALYSIS
	5.3	ANALYSIS_RANGE
	5.4	ANALYSIS_RANGE_DELETE
	5.5	ASSEMBLE
	5.6	ASSERT
	5.7	BREAKPOINT
	5.8	BREAK_ACCESS
	5.9	BREAK_CLEAR
	5.10	BREAK_CYCLE
	5.11	BREAK_DATA
	5.12	BREAK_DISPLAY
	5.13	BREAK_ENABLE
	5.14	BREAK_REGISTER
	5.15	BREAK_SEQUENCE
	5.16	CHANGE_CONFIGURATION
	5.17	CHANGE_PROJECT
	5.18	CLOCK_RATE
	5.19	COVERAGE
	5.20	COVERAGE_DISPLAY
	5.21	COVERAGE_LOAD
	5.22	COVERAGE_RANGE
	5.23	COVERAGE_SAVE
	5.24	DEFAULT_OBJECT_FORMAT
	5.25	DISASSEMBLE
	5.26	ERASE
	5.27	EVALUATE
	5.28	EXEC_MODE
	5.29	FILE_LOAD
	5.30	FILE_SAVE
	5.31	FILE_VERIFY
	5.32	GO
	5.33	GO_RESET
	5.34	GO_TILL
	5.35	HALT
	5.36	INITIALIZE
	5.37	LOG
	5.38	MAP_DISPLAY
	5.39	MAP_SET
	5.40	MEMORY_DISPLAY
	5.41	MEMORY_EDIT
	5.42	MEMORY_FILL
	5.43	MEMORY_MOVE
	5.44	MEMORY_TEST
	5.45	OPEN_WORKSPACE
	5.46	PROFILE
	5.47	PROFILE_DISPLAY
	5.48	PROFILE_SAVE
	5.49	QUIT
	5.50	RADIX
	5.51	REGISTER_DISPLAY
	5.52	REGISTER_SET
	5.53	RESET
	5.54	RESPONSE
	5.55	SLEEP
	5.56	STATUS
	5.57	STEP
	5.58	STEP_MODE
	5.59	STEP_OUT
	5.60	STEP_OVER
	5.61	STEP_RATE
	5.62	STEP_UNIT
	5.63	SUBMIT
	5.64	SYMBOL_ADD
	5.65	SYMBOL_CLEAR
	5.66	SYMBOL_LOAD
	5.67	SYMBOL_SAVE
	5.68	SYMBOL_VIEW
	5.69	TCL
	5.70	TRACE
	5.71	TRACE_ACQUISITION
	5.72	TRACE_SAVE
	5.73	TRACE_STATISTIC
	5.74	TRAP_ADDRESS
	5.75	TRAP_ADDRESS_DISPLAY
	5.76	TRAP_ADDRESS_ENABLE

	Section 6 Messages
	6.1	Information Messages
	6.2	Error Messages

	Appendix A: Trouble Shooting
	Appendix B: Regular Expressions
	Appendix C: Placeholders
	C.1	What is a Placeholder?
	C.2	Inserting a Placeholder
	C.3	Available Placeholders
	C.4	Placeholder Tips

	Appendix D: I/O File Format
	D.1	File format

	Appendix E: Symbol File Format

