To our customers,

Old Company Name in Catalogs and Other Documents

On April 1\(^{\text{st}}\), 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1\(^{\text{st}}\), 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depend on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
SuperH™ Family E10A-USB Emulator

Additional Document for User’s Manual
Supplementary Information on Using the SH/Tiny Series Debugging MCU Board

Renesas Microcomputer Development Environment System
SuperH™ Family / SH/Tiny Series

E10A-USB for SH/Tiny Series HS7125DBKCU01HE
1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guarantees regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.
Regulatory Compliance Notices

European Union Regulatory Notices on Electromagnetic Compatibility

CE Certifications:

This product complies with the following European EMC standards.

- EMC Directive 2004/108/EC
 - EN 55022 Class A

 WARNING: This is a Class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

- EN 55024

Information for Traceability:

- Authorized representative
 - Name: Renesas Technology Corp.
 - Address: Nippon Bldg., 2-6-2, Ote-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Manufacturer
 - Name: Renesas Solutions Corp.
 - Address: Nippon Bldg., 2-6-2, Ote-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Person responsible for placing on the market
 - Name: Renesas Technology Europe Limited European Headquarters
 - Address: Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
United States Regulatory Notices on Electromagnetic Compatibility

FCC Certifications:

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

CAUTION: Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
Contents

Section 1 About the Emulator ... 1
1.1 Components of the Emulator ... 1
1.2 Connecting the Emulator with the SH/Tiny Series Debugging MCU Board 3

Section 2 Software Specifications when Using the SH/Tiny Series Debugging MCU Board ... 5
2.1 Differences between the MCU and the Emulator .. 5
2.2 Specific Functions and Notes for the Emulator when Using the SH/Tiny Series Debugging MCU Board... 8
 2.2.1 Selecting the Target MCU .. 8
 2.2.2 Event Condition Functions ... 8
 2.2.3 Trace Functions ... 14
 2.2.4 Note on Using the JTAG (H-UDI) Clock (TCK) 25
 2.2.5 Notes on Setting the [Breakpoint] Dialog Box 25
 2.2.6 Notes on Setting the [Event Condition] Dialog Box and the BREAKCONDITION_SET Command ... 25
 2.2.7 Performance Measurement Function .. 26
Section 1 About the Emulator

1.1 Components of the Emulator

The E10A-USB emulator supports the SH/Tiny series debugging MCU board (SH7124 debugging MCU board or SH7125 debugging MCU board). Table 1.1 lists the components of the emulator.
Table 1.1 Components of the Emulator

<table>
<thead>
<tr>
<th>Classification</th>
<th>Component</th>
<th>Appearance</th>
<th>Quantity</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware</td>
<td>Emulator box</td>
<td></td>
<td>1</td>
<td>HS0005KCU01H: Depth: 65.0 mm, Width: 97.0 mm, Height: 20.0 mm, Mass: 72.9 g or HS0005KCU02H: Depth: 65.0 mm, Width: 97.0 mm, Height: 20.0 mm, Mass: 73.7 g</td>
</tr>
<tr>
<td>User system interface cable</td>
<td>14-pin type</td>
<td></td>
<td>1</td>
<td>Length: 20 cm, Mass: 33.1 g</td>
</tr>
<tr>
<td>User system interface cable</td>
<td>36-pin type</td>
<td></td>
<td>1</td>
<td>Length: 20 cm, Mass: 49.2 g (only for HS0005KCU02H)</td>
</tr>
<tr>
<td>USB cable</td>
<td></td>
<td></td>
<td>1</td>
<td>Length: 150 cm, Mass: 50.6 g</td>
</tr>
<tr>
<td>Software</td>
<td>E10A-USB emulator setup program, SuperH™ Family E10A-USB Emulator User's Manual, Supplementary Information on Using the SH/Tiny Series Debugging MCU Board*, and Test program manual for HS0005KCU01H and HS0005KCU02H</td>
<td></td>
<td>1</td>
<td>HS0005KCU01SR, HS0005KCU01HJ, HS0005KCU01HE, HS7125DBKCU01HJ, HS7125DBKCU01HE, HS0005TM01HJ, HS0005TM01HE (provided on a CD-R)</td>
</tr>
</tbody>
</table>

Note: Additional document for the MCUs supported by the emulator is included. Check the target MCU and refer to its additional document.
1.2 Connecting the Emulator with the SH/Tiny Series Debugging MCU Board

Table 1.2 shows the type number of the emulator, the corresponding connector type, and the use of AUD function.

Table 1.2 Type Number, AUD Function, and Connector Type

<table>
<thead>
<tr>
<th>Type Number</th>
<th>Connector</th>
<th>AUD Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS0005KCU02H</td>
<td>36-pin connector</td>
<td>Available</td>
</tr>
<tr>
<td>HS0005KCU01H, HS0005KCU02H</td>
<td>14-pin connector</td>
<td>Not available</td>
</tr>
</tbody>
</table>

The H-UDI port connector has the 36-pin and 14-pin types as described below. Use them according to the purpose of the usage.

1. 36-pin type (with AUD function)
 The AUD trace function is supported. A large amount of trace information can be acquired in realtime. The window trace function is also supported for acquiring memory access in the specified range (memory access address or memory access data) by tracing.

2. 14-pin type (without AUD function)
 The AUD trace function cannot be used because only the H-UDI function is supported.
Section 2 Software Specifications when Using the SH/Tiny Series Debugging MCU Board

2.1 Differences between the MCU and the Emulator

1. When the emulator system is initiated, it initializes the general registers and part of the control registers. The initial values of the MCU are undefined. When the emulator is initiated from the workspace, a value to be entered is saved in a session.

<table>
<thead>
<tr>
<th>Register</th>
<th>Emulator at Link Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>R0 to R14</td>
<td>H'00000000</td>
</tr>
<tr>
<td>R15 (SP)</td>
<td>Value of the SP in the power-on reset vector table</td>
</tr>
<tr>
<td>PC</td>
<td>Value of the PC in the power-on reset vector table</td>
</tr>
<tr>
<td>SR</td>
<td>H'000000F0</td>
</tr>
<tr>
<td>GBR</td>
<td>H'00000000</td>
</tr>
<tr>
<td>VBR</td>
<td>H'00000000</td>
</tr>
<tr>
<td>MACH</td>
<td>H'00000000</td>
</tr>
<tr>
<td>MACL</td>
<td>H'00000000</td>
</tr>
<tr>
<td>PR</td>
<td>H'00000000</td>
</tr>
</tbody>
</table>

2. The emulator uses the H-UDI; do not access the H-UDI.

3. Low-Power States
 — When the emulator is used, the sleep state can be cleared with either the clearing function or with the [STOP] button, and a break will occur.
 — The memory must not be accessed or modified in software standby state.
 — When the emulator is used, do not use the deep software standby mode.

4. Reset Signals
 The MCU reset signals are only valid during emulation started with clicking the GO or STEP-type button. If these signals are enabled on the user system in command input wait state, they are not sent to the MCU.

Note: Do not break the user program when the /RES signal is being low. A TIMEOUT error will occur.
5. Memory Access during User Program Execution
 During execution of the user program, memory is accessed by the following two methods, as shown in table 2.2.

 Table 2.2 Memory Access during User Program Execution

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-UDI read/write</td>
<td>The stopping time of the user program is short because memory is accessed by the dedicated bus master.</td>
</tr>
<tr>
<td>Short break</td>
<td>This method is not used in this product. (Do not set short break.)</td>
</tr>
</tbody>
</table>

 The method for accessing memory during execution of the user program is specified by using the [Configuration] dialog box.

 Table 2.3 Stopping Time by Memory Access (Reference)

<table>
<thead>
<tr>
<th>Method</th>
<th>Condition</th>
<th>Stopping Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-UDI read/write</td>
<td>Reading of one longword for the internal RAM</td>
<td>Reading: Maximum 2 bus clocks (Bφ)</td>
</tr>
<tr>
<td></td>
<td>Writing of one longword for the internal RAM</td>
<td>Writing: Maximum 2 bus clocks (Bφ)</td>
</tr>
</tbody>
</table>

6. Using WDT
 The WDT does not operate during break.

7. Loading Sessions
 Information in [JTAG clock] of the [Configuration] dialog box cannot be recovered by loading sessions. Thus the TCK value will be as follows:
 — When HS0005KCU01H or HS0005KCU02H is used: TCK = 2.5 MHz

8. [IO] Window
 — Display and modification
 For each watchdog timer register, there are two registers to be separately used for write and read operations.
Table 2.4 Watchdog Timer Register

<table>
<thead>
<tr>
<th>Register Name</th>
<th>Usage</th>
<th>Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>WTCSR (W)</td>
<td>Write</td>
<td>Watchdog timer control/status register</td>
</tr>
<tr>
<td>WTCNT (W)</td>
<td>Write</td>
<td>Watchdog timer counter</td>
</tr>
<tr>
<td>WTCSR(R)</td>
<td>Read</td>
<td>Watchdog timer control/status register</td>
</tr>
<tr>
<td>WTCNT(R)</td>
<td>Read</td>
<td>Watchdog timer counter</td>
</tr>
</tbody>
</table>

— Customization of the I/O-register definition file
After the I/O-register definition file is created, the MCU’s specifications may be changed.
If each I/O register in the I/O-register definition file differs from addresses described in the
hardware manual, change the I/O-register definition file according to the description in the
hardware manual. The I/O-register definition file can be customized depending on its
format. Note that, however, the emulator does not support the bit-field function.

— Verify
In the [IO] window, the verify function of the input value is disabled.

9. Illegal Instructions
Do not execute illegal instructions with STEP-type commands.

10. MCU Operating Mode
Do not use the emulator in the boot mode and user program mode.

11. MCU On-chip Flash Memory
The MCU on-chip flash memory cannot be reprogrammed during execution of the user program.
2.2 Specific Functions and Notes for the Emulator when Using the SH/Tiny Series Debugging MCU Board

2.2.1 Selecting the Target MCU

Select the target MCU for the emulator according to that in use. For details, refer to section 4, Preparations for Debugging, in the SuperH™ Family E10A-USB Emulator User’s Manual.

For debugging the SH/Tiny series debugging MCU board, select the following in the [Debugger Target] and [Select Emulator mode] dialog boxes.

- [Debugger Target] dialog box
 - SH7125Series Debug MCU BOARD E10A-USB SYSTEM

- [Select Emulator mode] dialog box
 - For SH7124: SH7124_Debug_MCU_BOARD
 - For SH7125: SH7125_Debug_MCU_BOARD

Note: When the mode selection is SH7124_Debug_MCU_BOARD or SH7125_Debug_MCU_BOARD, check_sum value in “Writing Flash Memory” will be calculated from 128 Kbytes.

2.2.2 Event Condition Functions

The emulator is used to set event conditions for the following three functions:

- Break of the user program
- Internal trace
- Start or end of performance measurement
Table 2.5 lists the types of Event Condition.

<table>
<thead>
<tr>
<th>Event Condition Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address bus condition</td>
<td>Sets a condition when the address bus (data access) value or the program</td>
</tr>
<tr>
<td>Address (Address)</td>
<td>counter value (before or after execution of instructions) is matched.</td>
</tr>
<tr>
<td>Data bus condition (Data)</td>
<td>Sets a condition when the data bus value is matched. Byte, word, or longword</td>
</tr>
<tr>
<td>Bus state condition</td>
<td>There are two bus state condition settings:</td>
</tr>
<tr>
<td>(Bus State)</td>
<td>Bus state condition: Sets a condition when the data bus value is matched.</td>
</tr>
<tr>
<td></td>
<td>Read/Write condition: Sets a condition when the read/write condition is</td>
</tr>
<tr>
<td></td>
<td>matched.</td>
</tr>
<tr>
<td>Count</td>
<td>Sets a condition when the specified other conditions are satisfied for the</td>
</tr>
<tr>
<td></td>
<td>specified counts.</td>
</tr>
<tr>
<td>Action</td>
<td>Selects the operation when a condition (such as a break, a trace halt</td>
</tr>
<tr>
<td></td>
<td>condition, or a trace acquisition condition) is matched.</td>
</tr>
</tbody>
</table>

Using the [Combination action (Sequential or PtoP)] dialog box, which is opened by selecting [Combination action (Sequential or PtoP)] from the pop-up menu on the [Event Condition] sheet, specifies the sequential condition and the start or end of performance measurement.
Table 2.6 lists the combinations of conditions that can be set under Ch1 to Ch10.

Table 2.6 Dialog Boxes for Setting Event Conditions

<table>
<thead>
<tr>
<th>Dialog Box</th>
<th>Function</th>
<th>Address Bus Condition (Address)</th>
<th>Data Bus Condition (Data)</th>
<th>Bus State Condition (Bus State)</th>
<th>Count Condition (Count)</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Event Condition 1]</td>
<td>Ch1</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>(B, T1, and P)</td>
</tr>
<tr>
<td>[Event Condition 2]</td>
<td>Ch2</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>(B, T1, and P)</td>
</tr>
<tr>
<td>[Event Condition 3]</td>
<td>Ch3</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>(B and T2)</td>
</tr>
<tr>
<td>[Event Condition 4]</td>
<td>Ch4</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>(B and T2)</td>
</tr>
<tr>
<td>[Event Condition 5]</td>
<td>Ch5</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>(B and T3)</td>
</tr>
<tr>
<td>[Event Condition 6]</td>
<td>Ch6</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>(B and T2)</td>
</tr>
<tr>
<td>[Event Condition 7]</td>
<td>Ch7</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>(B and T2)</td>
</tr>
<tr>
<td>[Event Condition 8]</td>
<td>Ch8</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>(B and T2)</td>
</tr>
<tr>
<td>[Event Condition 9]</td>
<td>Ch9</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>(B and T2)</td>
</tr>
<tr>
<td>[Event Condition 10]</td>
<td>Ch10</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>(B and T2)</td>
</tr>
</tbody>
</table>

Notes:
1. O: Can be set in the dialog box.
 X: Cannot be set in the dialog box.
2. For the Action item,
 B: Setting a break is enabled. (For the count condition, setting a break is only enabled.)
 T1: Setting the trace halt and acquisition conditions are enabled for the internal trace.
 T2: Setting the trace halt is enabled for the internal trace.
 T3: Setting the trace halt and point-to-point is enabled for the internal trace.
 P: Setting a performance-measurement start or end condition is enabled.
Sequential Setting: Using the [Combination action (Sequential or PtoP)] dialog box specifies the sequential condition and the start or end of performance measurement.

Table 2.7 Conditions to Be Set

<table>
<thead>
<tr>
<th>Classification</th>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Ch1, 2, 3] list box</td>
<td>Sets the sequential condition and the start or end of performance measurement using Event Conditions 1 to 3.</td>
<td></td>
</tr>
<tr>
<td>Don’t care</td>
<td>Sets no sequential condition or the start or end of performance measurement.</td>
<td></td>
</tr>
<tr>
<td>Break: Ch3-2-1</td>
<td>Breaks when a condition is satisfied in the order of Event Condition 3, 2, 1.</td>
<td></td>
</tr>
<tr>
<td>Break: Ch2-1</td>
<td>Breaks when a condition is satisfied in the order of Event Condition 2, 1.</td>
<td></td>
</tr>
<tr>
<td>I-Trace stop: Ch3-2-1</td>
<td>Halts acquisition of an internal trace when a condition is satisfied in the order of Event Condition 3, 2, 1.</td>
<td></td>
</tr>
<tr>
<td>I-Trace stop: Ch2-1</td>
<td>Halts acquisition of an internal trace when a condition is satisfied in the order of Event Condition 2, 1.</td>
<td></td>
</tr>
<tr>
<td>Ch2 to Ch1 PA</td>
<td>Sets the performance measurement period during the time from the satisfaction of the condition set in Event Condition 2 (start condition) to the satisfaction of the condition set in Event Condition 1 (end condition).</td>
<td></td>
</tr>
<tr>
<td>Ch1 to Ch2 PA</td>
<td>Sets the performance measurement period during the time from the satisfaction of the condition set in Event Condition 1 (start condition) to the satisfaction of the condition set in Event Condition 2 (end condition).</td>
<td></td>
</tr>
<tr>
<td>[Ch4, 5] list box</td>
<td>Sets the point-to-point of the internal trace (the start or end condition of trace acquisition) using Event Conditions 4 and 5.</td>
<td></td>
</tr>
<tr>
<td>Don’t care</td>
<td>Sets no start or end condition of trace acquisition.</td>
<td></td>
</tr>
<tr>
<td>I-Trace: Ch5 to Ch4 PtoP</td>
<td>Sets the acquisition period during the time from the satisfaction of the condition set in Event Condition 5 (start condition) to the satisfaction of the condition set in Event Condition 4 (end condition).</td>
<td></td>
</tr>
</tbody>
</table>
Notes: 1. If the start condition is satisfied after the end condition has been satisfied by measuring performance, performance measurement will be restarted. For the measurement result after a break, the measurement results during performance measurement are added.
 2. If the start condition is satisfied after the end condition has been satisfied by the point-to-point of the internal trace, trace acquisition will be restarted.
 3. When the start or end of performance measurement is used, the count for specifying the condition of Event Condition 1 must be once.

Usage Example of Sequential Break Extension Setting: A tutorial program provided for the product is used as an example. For the tutorial program, refer to section 6, Tutorial, in the SuperH™ Family E10A-USB Emulator User’s Manual.

The conditions of Event Condition are set as follows:

1. Ch3
 Breaks address H’00001068 when the condition [Only program fetched address after] is satisfied.
2. Ch2
 Breaks address H’0000107a when the condition [Only program fetched address after] is satisfied.
3. Ch1
 Breaks address H’00001086 when the condition [Only program fetched address after] is satisfied.
 Note: Do not set other channels.
4. Sets the content of the [Ch1,2,3] list box to [Break: Ch 3-2-1] in the [Combination action (Sequential or PtoP)] dialog box.
5. Enables the condition of Event Condition 1 from the popup menu by clicking the right mouse button on the [Event Condition] sheet.

Then, set the program counter and stack pointer (PC = H’00000800, R15 = H’00010000) in the [Registers] window and click the [Go] button. If this does not execute normally, issue a reset and execute the above procedures.

The program is executed up to the condition of Ch1 and halted. Here, the condition is satisfied in the order of Ch3 -> 2 -> 1.
If the sequential condition, performance measurement start/end, or point-to-point for the internal trace is set, conditions of Event Condition to be used will be disabled. Such conditions must be enabled from the popup menu by clicking the right mouse button on the [Event Condition] sheet.

Notes:
1. If the Event condition is set for the slot in the delayed branch instruction by the program counter (after execution of the instruction), the condition is satisfied before executing the instruction in the branch destination (when a break has been set, it occurs before executing the instruction in the branch destination).
2. Do not set the Event condition for the SLEEP instruction by the program counter (after execution of the instruction). Do not set the data access condition before executing one or two instructions in the SLEEP instruction.
3. If the power-on reset and the Event condition are matched simultaneously, no condition will be satisfied.
4. If a condition of which intervals are satisfied closely is set, no sequential condition will be satisfied. Set the Event conditions sequentially, which are satisfied closely, by the program counter with intervals of two or more instructions.

The CPU is structured as a pipeline; the order between the instruction fetch cycle and the memory cycle is determined by the pipeline. Accordingly, when the channel condition is matched in the order of bys cycle, the sequential condition is satisfied.
5. If the settings of the Event condition or the sequential conditions are changed during execution of the program, execution will be suspended. (The number of clocks to be suspended during execution of the program is a maximum of about 52 bus clocks (Φ). If the bus clock (Φ) is 10.0 MHz, the program will be suspended for 5.2 μs.)

6. If the settings of Event conditions or the sequential conditions are changed during execution of the program, the emulator temporarily disables all Event conditions to change the settings. During this period, no Event condition will be satisfied.

7. When the emulator is being connected, the user break controller (UBC) function is not available.

2.2.3 Trace Functions

The emulator supports the trace functions listed in table 2.8.

Table 2.8 Trace Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Internal Trace</th>
<th>AUD Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branch trace</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Memory access trace</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Software trace</td>
<td>Not supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>

Table 2.9 shows the type numbers that the AUD function can be used.

Table 2.9 Type Number and AUD Function

<table>
<thead>
<tr>
<th>Type Number</th>
<th>AUD Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS0005KCU01H</td>
<td>Not supported</td>
</tr>
<tr>
<td>HS0005KCU02H</td>
<td>Supported</td>
</tr>
</tbody>
</table>

The internal and AUD traces are set in the [Acquisition] dialog box of the [Trace] window.
Internal Trace Function: When [I-Trace] is selected for [Trace type] on the [Trace Mode] page of the [Acquisition] dialog box, the internal trace can be used.

Figure 2.2 [Acquisition] Dialog Box (Internal Trace Function)
The following three items can be selected as the internal trace from [Type] of [I-Trace mode].

Table 2.10 Information on Acquiring the Internal Trace

<table>
<thead>
<tr>
<th>Item</th>
<th>Acquisition Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>[L-Bus & Branch]</td>
<td>Acquires the data and branch information on the L-bus.</td>
</tr>
<tr>
<td></td>
<td>• Data access (read/write)</td>
</tr>
<tr>
<td></td>
<td>• Branch information</td>
</tr>
<tr>
<td></td>
<td>• Instruction fetch</td>
</tr>
<tr>
<td>[I-Bus]</td>
<td>Acquires the data on the I-bus.</td>
</tr>
<tr>
<td></td>
<td>• Data access (read/write)</td>
</tr>
<tr>
<td></td>
<td>• Selection of the bus master on the I-bus (CPU/DMA/DTC)</td>
</tr>
<tr>
<td>[I-Bus, L-Bus & Branch]</td>
<td>Acquires the contents of [L-Bus & Branch] and [I-Bus].</td>
</tr>
</tbody>
</table>

After selecting [Type] of [I-Trace mode], select the content to be acquired from [Acquisition]. Typical examples are described below (note that items disabled for [Acquisition] are not acquired).

For the MCUs that incorporate neither DMAC or DTC, do not select DMA or DTC when selecting the bus master on the I-bus.

- Example of acquiring branch information only:
 Select [L-Bus & Branch] from [Type] and enable [Branch] on [Acquisition].

- Example of acquiring the read or write access (L-bus) only by a user program:
 Select [L-Bus & Branch] from [Type] and enable [Read], [Write], and [Data access] on [Acquisition].

- Example of acquiring the read access only by DMA (I-bus):
 Select [I-Bus] from [Type] and enable [Read], [DMA], and [Data access] on [Acquisition].
Using Event Condition restricts the condition; the following three items are set as the internal trace conditions.

Table 2.11 Trace Conditions of the Internal Trace

<table>
<thead>
<tr>
<th>Item</th>
<th>Acquisition Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trace halt</td>
<td>Acquires the internal trace until the Event Condition is satisfied. (The trace content is displayed in the [Trace] window after a trace has been halted. No break occurs in the user program.)</td>
</tr>
<tr>
<td>Trace acquisition condition</td>
<td>Acquires only the data access where the Event Condition is satisfied.</td>
</tr>
<tr>
<td>Point-to-point</td>
<td>Traces the period from the satisfaction of Event Condition 5 to the satisfaction of Event Condition 4.</td>
</tr>
</tbody>
</table>

To restrict trace acquisition to access for only a specific address or specific function of a program, an Event Condition can be used. Typical examples are described below.

- **Example of halting a trace with a write access (L-bus) to H’FFFFFF8000 by the user program as a condition (trace halt):**

 Set the condition to be acquired on [I-Trace mode].

 Set the following in the [Event Condition 1] or [Event Condition 2] dialog box:

 - Address condition: Set [Address] and H’FFFFFF8000.
 - Bus state condition: Set [L-Bus] and [Write].
 - Action condition: Disable [Acquire Break] and set [Acquire Trace] for [Stop].

- **Example of acquiring the write access (L-bus) only to H’FFFFFF8000 by the user program (trace acquisition condition):**

 Select [L-Bus & Branch] from [Type] and enable [Write] and [Data access] on [Acquisition].

 Set the following in the [Event Condition 1] or [Event Condition 2] dialog box:

 - Address condition: Set [Address] and H’FFFFFF8000.
 - Bus state condition: Set [L-Bus] and [Write].
 - Action condition: Disable [Acquire Break] and set [Acquire Trace] for [Condition].

For the trace acquisition condition, the condition to be acquired by Event Condition should be acquired by [I-Trace mode].

- **Example of acquiring a trace for the period while the program passes H’1000 through H’2000 (point-to-point):**

 Set the condition to be acquired on [I-Trace mode].

 Set the address condition as H’1000 in the [Event Condition 5] dialog box.
Set the address condition as H’2000 in the [Event Condition 4] dialog box.
Set [Ch4,5] as [I-Trace Ch5 to Ch4 PtoP] in the [Combination action (Sequential or PtoP)] dialog box.

When point-to-point and trace acquisition condition are set simultaneously, they are ANDed.

Notes on Internal Trace:

- **Timestamp**
 The timestamp is twice the crystal oscillator or the external clock that is connected to or input to the target MCU. Table 2.12 shows the timing for acquiring the timestamp.

| Table 2.12 Timing for the Timestamp Acquisition |
|-----------------------------|---|
| **Item** | **Counter Value Stored in the Trace Memory** |
| L-bus instruction fetch | Counter value when instruction fetch has been |
| | completed |
| L-bus data access | Counter value when data access has been completed |
| Branch | Counter value when the next bus cycle has been |
| | completed after a branch |
| I-bus fetch | Counter value when a fetch has been completed |
| I-bus data access | Counter value when data access has been completed |

- **Point-to-point**
 The trace-start condition is satisfied when the specified instruction has been fetched. Accordingly, if the trace-start condition has been set for the overrun-fetched instruction (an instruction that is not executed although it has been fetched at a branch or transition to an interrupt), tracing is started during overrun-fetching of the instruction. However, when overrun-fetching is achieved (a branch is completed), tracing is automatically suspended. If the start and end conditions are satisfied closely, trace information will not be acquired correctly.
 The execution cycle of the instruction fetched before the start condition is satisfied may be traced.

- **Halting a trace**
 Do not set the trace end condition for the sleep instruction and the branch instruction that the delay slot becomes the sleep instruction.
• Trace acquisition condition
 Do not set the trace end condition for the sleep instruction and the branch instruction according to which the delay slot becomes the sleep instruction.
 When [I-Bus, L-Bus & Branch] is selected and the trace acquisition condition is set for the L-bus and I-bus with Event Condition, set the L-bus condition and the I-bus condition for [Event Condition 1] and [Event Condition 2], respectively.
 If the settings of [I-Trace mode] are changed during execution of the program, execution will be suspended. (The number of clocks to be suspended during execution of the program is a maximum of about 26 bus clocks (Bϕ). If the bus clock (Bϕ) is 10.0 MHz, the program will be suspended for 2.6 μs.)
 Do not use the data condition as the trace acquisition condition.

• Displaying a trace
 If a trace is displayed during execution of the program, execution will be suspended to acquire the trace information. (The number of clocks to be suspended during execution of the program is a maximum of about 16384 peripheral clocks (Pϕ) + 12310 bus clocks (Bϕ). If the peripheral clock (Pϕ) is 10.0 MHz and the bus clock (Bϕ) is 10.0 MHz, the program will be suspended for 2.87 ms.)
 If a break occurs with the Event Condition, when one or two instructions have been executed after a break occurred in an instruction and there is an unconditional branch, a trace result will be displayed even if the unconditional branch has not been executed.

• Restarting trace acquisition after halting
 Restarting trace acquisition is disabled during execution of the user program; a break must be generated.

• Note on execution of the user program
 Do not change trace settings during execution of the user program; trace acquisition may be disabled. The following trace settings will be changed: the conditions of Event Condition, the sequential conditions satisfied by Event Condition, and internal trace set in the [Acquisition] dialog box. To change these settings, a break must be generated.
AUD Trace Functions: This function is operational when the AUD pin of the device is connected to the emulator. Table 2.13 shows the AUD trace acquisition mode that can be set in each trace function.

Table 2.13 AUD Trace Acquisition Mode

<table>
<thead>
<tr>
<th>Type</th>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous trace occurs</td>
<td>Realtime trace</td>
<td>When trace information is being generated so intensely that the output from the AUD pin is incapable of keeping up, the CPU temporarily suspends the output of trace information. Therefore, although the user program is run in real time, the acquisition of some trace information might not be possible.</td>
</tr>
<tr>
<td></td>
<td>Non realtime trace</td>
<td>When trace information is being generated so intensely that the output from the AUD pin is incapable of keeping up, CPU operations are temporarily suspended and the output of trace information takes priority. In such cases, the realtime characteristics of the user program are lost.</td>
</tr>
<tr>
<td>Trace buffer full</td>
<td>Trace continue</td>
<td>This function overwrites the latest trace information to store the oldest trace information.</td>
</tr>
<tr>
<td></td>
<td>Trace stop</td>
<td>After the trace buffer becomes full, the trace information is no longer acquired. The user program is continuously executed.</td>
</tr>
</tbody>
</table>

To set the AUD trace acquisition mode, click the [Trace] window with the right mouse button and select [Setting] from the pop-up menu to display the [Acquisition] dialog box. The AUD trace acquisition mode can be set in the [AUD mode1] or [AUD mode2] group box in the [Trace mode] page of the [Acquisition] dialog box.
When the AUD trace function is used, select the [AUD function] radio button in the [Trace type] group box of the [Trace mode] page.
(a) Branch Trace Function
The branch source and destination addresses and their source lines are displayed. Branch trace can be acquired by selecting the [Branch trace] check box in the [AUD function] group box of the [Trace mode] page. The branch type can be selected in the [AUD Branch trace] page.

Figure 2.4 [AUD Branch trace] Page
(b) Window Trace Function

Memory access in the specified range can be acquired by trace. Two memory ranges can be specified for channels A and B. The read, write, or read/write cycle can be selected as the bus cycle for trace acquisition.

[Setting Method]
(i) Select the [Channel A] and [Channel B] check boxes in the [AUD function] group box of the [Trace mode] page. Each channel will become valid.
(ii) Open the [Window trace] page and specify the bus cycle, memory range, and bus type that are to be set for each channel.

![Figure 2.5 [Window trace] Page](image-url)
(c) Software Trace Function

Note: This function can be supported with SHC/C++ compiler (manufactured by Renesas Technology Corp.; including OEM and bundle products) V7.0 or later.

When a specific instruction is executed, the PC value at execution and the contents of one general register are acquired by trace. Describe the Trace(x) function (x is a variable name) to be compiled and linked beforehand. For details, refer to the SHC manual.

When the load module is downloaded on the emulator and is executed while a software trace function is valid, the PC value that has executed the Trace(x) function, the general register value for x, and the source lines are displayed.

To activate the software trace function, select the [Software trace] check box in the [AUD function] group box of the [Trace mode] page.

Notes on AUD Trace:

1. When the trace display is performed during user program execution, the mnemonics, operands, or sources are not displayed.

2. The AUD branch trace function outputs the differences between newly output branch source addresses and previously output branch source addresses. The window trace function outputs the differences between newly output addresses and previously output addresses. If the previous branch source address is the same as the upper 16 bits, the lower 16 bits are output. If it matches the upper 24 bits, the lower 8 bits are output. If it matches the upper 28 bits, the lower 4 bits are output.

 The emulator regenerates the 32-bit address from these differences and displays it in the [Trace] window. If the emulator cannot display the 32-bit address, it displays the difference from the previously displayed 32-bit address.

3. If the 32-bit address cannot be displayed, the source line is not displayed.

4. If a completion-type exception occurs during exception branch acquisition, the next address to the address in which an exception occurs is acquired.

5. The AUD trace is disabled while the profiling function is used.

6. Set the AUD clock (AUDCK) frequency to 40 MHz or lower. If the frequency is higher than 40 MHz, the emulator will not operate normally.
2.2.4 Note on Using the JTAG (H-UDI) Clock (TCK)

1. Set the JTAG clock (TCK) frequency to 1/4 or lower than the frequency of the peripheral clock (Pφ) and to 2 MHz or more.
2. The initial value of the JTAG clock (TCK) is 2.5 MHz.
3. A value to be set for the JTAG clock (TCK) is initialized after executing [Reset CPU] or [Reset Go].

2.2.5 Notes on Setting the [Breakpoint] Dialog Box

1. When an odd address is set, the next lowest even address is used.
2. A BREAKPOINT is accomplished by replacing instructions of the specified address. Accordingly, it can be set only to the internal RAM area.
 A BREAKPOINT cannot be set to the following addresses:
 — An area other than CS, the internal RAM, and the internal flash memory
 — An instruction in which Break Condition 2 is satisfied
 — A slot instruction of a delayed branch instruction
3. During step operation, specifying BREAKPOINTS and Event Condition breaks are disabled.
4. When execution resumes from the address where a BREAKPOINT is specified and a break occurs before Event Condition execution, single-step operation is performed at the address before execution resumes. Therefore, realtime operation cannot be performed.
5. If an address of a BREAKPOINT cannot be correctly set in the ROM, a mark ⬤ will be displayed in the [BP] area of the address on the [Source] or [Disassembly] window by refreshing the [Memory] window, etc. after Go execution. However, no break will occur at this address. When the program halts with the event condition, the mark ⬤ disappears.

2.2.6 Notes on Setting the [Event Condition] Dialog Box and the BREAKCONDITION_SET Command

1. When [Go to cursor], [Step In], [Step Over], or [Step Out] is selected, the settings of Event Condition 3 are disabled.
2. When an Event Condition is satisfied, emulation may stop after two or more instructions have been executed.
2.2.7 Performance Measurement Function

The emulator supports the performance measurement function.

1. Setting the performance measurement conditions

 To set the performance measurement conditions, use the [Performance Analysis] dialog box and the PERFORMANCE_SET command. When any line in the [Performance Analysis] window is clicked with the right mouse button, a popup menu is displayed and the [Performance Analysis] dialog box can be displayed by selecting [Setting].

Note: For the command line syntax, refer to the online help.

(a) Specifying the measurement start/end conditions

 The measurement start/end conditions are specified by using Event Condition 1,2. The [Ch1,2,3] list box of the [Combination action (Sequential PtoP)] dialog box can be used.

Table 2.14 Measurement Period

<table>
<thead>
<tr>
<th>Classification in the [Ch1, 2, 3] list box</th>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch2 to Ch1 PA</td>
<td></td>
<td>The period from the satisfaction of the condition set in Event Condition 2 (start condition) to the satisfaction of the condition set in Event Condition 1 (end condition) is set as the performance measurement period.</td>
</tr>
<tr>
<td>Ch1 to Ch2 PA</td>
<td></td>
<td>The period from the satisfaction of the condition set in Event Condition 1 (start condition) to the satisfaction of the condition set in Event Condition 2 (end condition) is set as the performance measurement period.</td>
</tr>
<tr>
<td>Other than above</td>
<td></td>
<td>The period from the start of execution of the user program to the occurrence of a break is measured.</td>
</tr>
</tbody>
</table>
For measurement tolerance,

- The measured value includes tolerance.
- Tolerance will be generated before or after a break.

Note: When [Ch2 to Ch1 PA] or [Ch1 to Ch2 PA] is selected, to execute the user program, specify conditions set in Event Condition 2 and Event Condition 1 and one or more items for performance measurement.

(b) Measurement item

Items are measured with [Channel 1 to 4] in the [Performance Analysis] dialog box. Maximum four conditions can be specified at the same time. Table 2.15 shows the measurement items.
Table 2.15 Measurement Item

<table>
<thead>
<tr>
<th>Selected Name</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disabled</td>
<td>None</td>
</tr>
<tr>
<td>Elapsed time</td>
<td>AC (the number of execution cycles (Iφ))</td>
</tr>
<tr>
<td>Number of execution states</td>
<td>VS</td>
</tr>
<tr>
<td>Branch instruction counts</td>
<td>BT</td>
</tr>
<tr>
<td>Number of execution instructions</td>
<td>I</td>
</tr>
<tr>
<td>Exception/interrupt counts</td>
<td>EA</td>
</tr>
<tr>
<td>Interrupt counts</td>
<td>INT</td>
</tr>
<tr>
<td>URAM area access counts</td>
<td>UN</td>
</tr>
<tr>
<td>URAM area instruction access counts</td>
<td>UIN</td>
</tr>
<tr>
<td>URAM area data access counts</td>
<td>UDN</td>
</tr>
</tbody>
</table>

Note: Selected names are displayed for CONDITION in the [Performance Analysis] window. Options are parameters for <mode> of the PERFORMANCE_SET command.

Each measurement condition is also counted when a condition in table 2.16 is generated.

Table 2.16 Performance Measurement Condition to be Counted

<table>
<thead>
<tr>
<th>Measurement Condition</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branch count</td>
<td>The counter value is incremented by 2. This means that two cycles are valid for one branch.</td>
</tr>
</tbody>
</table>

Notes: 1. In the non-realtime trace mode of the AUD trace, normal counting cannot be performed because the generation state of the stall or the execution cycle is changed.
2. When the CPU clock is halted in the mode, such as sleep, counting is also halted.
3. When the measurement start or end condition is set, counting is halted if a power-on reset is input after and before the satisfaction of measurement start and end conditions.

2. Displaying the measured result

The measured result is displayed in the [Performance Analysis] window or the PERFORMANCE_ANALYSIS command with hexadecimal (32 bits).

Note: If a performance counter overflows as a result of measurement, "********" will be displayed.
3. Initializing the measured result

To initialize the measured result, select [Initialize] from the popup menu in the [Performance Analysis] window or specify INIT with the PERFORMANCE_ANALYSIS command.

Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2285-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd.
Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: <603> 7955-9390, Fax: <603> 7955-9510
SuperH™ Family E10A-USB Emulator
Additional Document for User’s Manual
Supplementary Information on Using the
SH/Tiny Series Debugging MCU Board