

Tutorial

Starting a Project

For the DA1468x SoC

Abstract

This tutorial should be used as a reference guide to gain a deeper understanding of the DA1468x family of
devices. As such, it covers a broad range of topics including a brief discussion on the software tools and the
usage of the most common hardware blocks of the device. Furthermore, it covers a number of sections
containing in depth software analysis of the fundamental code found on every sample application.

For the DA1468x SoC

Starting a Project

 2 of 28 © 2018 Dialog Semiconductor

Contents

Abstract .. 1

Contents ... 2

Figures .. 2

Tables ... 3

Terms and Definitions ... 3

References ... 3

1 Introduction.. 4

1.1 Before We Start ... 4

2 Creating a New Project ... 4

2.1 Importing a Project .. 4

2.2 Configuring the Workspace ... 6

2.3 Copying a Demo Project ... 7

2.4 Adding a New Folder/File to the Project ... 9

3 Analyzing the Key Points of a Sample Code .. 12

3.1 Clock and Power Manager .. 12

3.2 The Key Points of the Main Function .. 13

3.3 The Key Points of the System Initialization Function .. 14

4 Running The Demonstration Example .. 16

4.1 Verifying with a Serial Terminal .. 17

4.2 Verifying with SmartSnippets Toolbox .. 21

5 Code Overview .. 23

5.1 Header Files .. 23

5.2 System Init Code ... 23

5.3 Wake-Up Timer Code ... 24

5.4 Hardware Initialization ... 26

Revision History .. 27

Figures

Figure 1: Open Project Browser .. 5
Figure 2: Select SDK Folder .. 5
Figure 3: Project Selection .. 6
Figure 4: Configure SEGGER J-Link Tool Chain .. 6
Figure 5: Second Step to Configure the Workspace ... 7
Figure 6: First Step to Copy a Project ... 8
Figure 7: Second Step to Copy a Project .. 8
Figure 8: Third Step to Copy a Project .. 9
Figure 9: Select New Folder Menu .. 9
Figure 10: Select Parent Folder, Input New Name ... 10
Figure 11: Add the New Folder to the Include Search Path .. 11
Figure 12: Input New Folder Name ... 11
Figure 13: The Clock Tree Diagram for the DA1468x Family of Devices ... 12
Figure 14: SW FSM of main() Function ... 13
Figure 15: Possible Device's States .. 16
Figure 16: Event Counter State Machine for the Wake-Up Interrupt Generator 17
Figure 17: The ProDev Kit (Motherboard and Daughterboard) ... 18
Figure 18: General Purpose LED and BUTTON Schematics ... 18

For the DA1468x SoC

Starting a Project

 3 of 28 © 2018 Dialog Semiconductor

Figure 19: Select the Serial Port to which the Development Kit is Connected 19
Figure 20: Configure the Serial Port with the Correct Settings ... 20
Figure 21: The Special Character '#' is Displayed on the Screen ... 20
Figure 22: Opening a Project in the SmartSnippets Toolbox .. 21
Figure 23: Initializing Power Profiler .. 22
Figure 24: Verifying the Correct Functionality of the Device before and after Entering Sleep 22
Figure 25: Verifying the Correct Functionality of the Device between Wake-Ups 22
Figure 26: Verifying the Power Consumption while in Active and Sleep Mode 23

Tables

Table 1: Dialog's API for Clock Control ... 13
Table 2: System Clock Types .. 14
Table 3: DA1468x Pin Assignment of the General Purpose LED and BUTTON 18

Terms and Definitions

AHB AMBA High Speed Bus Clock

APB AMBA Peripheral Bus Clock

BLE Bluetooth Low Energy

LP Low Power

ms Milliseconds

OS Operating System

ProDev Pro Development Kit

USB Universal Serial Bus

References

[1] UM-B-044, DA1468x Software Platform Reference, User Manual, Dialog Semiconductor.

[2] DA14680-01 DS v2.1 Datasheet, Low Power Bluetooth Smart 4.2 SoC with Flash, Dialog
Semiconductor.

For the DA1468x SoC

Starting a Project

 4 of 28 © 2018 Dialog Semiconductor

1 Introduction

1.1 Before We Start

Before we start you need to:

• Install the latest SmartSnippets Studio

• Download the latest SDK for the DA1468x platforms

These can be downloaded from the Dialog Semiconductor support portal.

For this tutorial, either a Pro or Basic Development kit is required.

The key goals of this tutorial are to:

• Start working with a customized project

• Analyze the key points of the code structure

• Prepare both hardware and software to run a demonstration code example

2 Creating a New Project

This section describes how to import a project containing source code and start working with a

custom one. There are two ways to start working with a custom project, either import an existing

sample design and make all the necessary changes after copying it or build a new one from the

scratch. Since the latter is time consuming and out of the scope of this tutorial, only the first process

is demonstrated.

2.1 Importing a Project

To import a project:

1. On the SmartSnippets Welcome page, click Browse (1.1) in the SOFTWARE RESOURCES

section.

https://support.dialog-semiconductor.com/connectivity
https://support.dialog-semiconductor.com/connectivity/product/da14680?qt-product_restricted_=4&qt-view__development_kits__block_1=1#qt-view__development_kits__block_1

For the DA1468x SoC

Starting a Project

 5 of 28 © 2018 Dialog Semiconductor

Figure 1: Open Project Browser

2. In the pop-up window, click OK (2.1) as your current workspace folder should be automatically

selected. If this is not the case, you must explicitly select it.

Figure 2: Select SDK Folder

3. The final step is to select the preferred project(s) to import. By default all projects are selected.

The simplest way to continue is to:

1. Click Deselect All (3.1).

2. Select the desired projects by clicking on the respective tick boxes (3.2).

For the DA1468x SoC

Starting a Project

 6 of 28 © 2018 Dialog Semiconductor

3. Click Finish (3.3).

Now you are ready to start working with the project.

Figure 3: Project Selection

2.2 Configuring the Workspace

The SEGGER J-Link drivers must be correctly installed in SmartSnippets ™ Studio. To check this:

1. Click Window > Preferences.

Figure 4: Configure SEGGER J-Link Tool Chain

For the DA1468x SoC

Starting a Project

 7 of 28 © 2018 Dialog Semiconductor

2. In the displayed window, go to Run/Debug > SEGGER J-Link and, in the Folder section, click

Browse.... Browse for the J-Link drivers (normally found under C:\Program Files (x86)).

Figure 5: Second Step to Configure the Workspace

The same procedure should be carried out for SEGGER Ozone and SystemView. If one of these

tools is not already installed then you need to download it from SEGGER's official web site.

2.3 Copying a Demo Project

As mentioned in previous section, there are two phases to start working with a custom project. The

first stage is to import a demo project from Dialog's SDK and the second is to copy it and make all

the required changes. The recommended way to copy sample code is:

1. Right-click on the imported sample code folder and select Copy.

https://www.segger.com/downloads/jlink/

For the DA1468x SoC

Starting a Project

 8 of 28 © 2018 Dialog Semiconductor

Figure 6: First Step to Copy a Project

2. Right-click on a blank area (in the Project Explorer) and select Paste. In the Copy Project

window, enter a Project name (2.1) and uncheck Use default location (2.2). Browse... for a

location to store the new project (2.3).

Figure 7: Second Step to Copy a Project

3. In the Browse For Folder window, select the location where the new project will be stored

(3.1). It is recommended to select one of the folders under which the various sample codes are

stored in the SDK (for example, <sdk_folder>/projects/dk_apps/<imported_project_location>).

Create a new folder by clicking on Make New Folder (3.2) and entering a folder name (3.3).

Click OK (3.4).

For the DA1468x SoC

Starting a Project

 9 of 28 © 2018 Dialog Semiconductor

Figure 8: Third Step to Copy a Project

4. Click OK in the Copy Project window (2.4). The newly copied project will be displayed in

Project Explorer below the imported project.

Note: The new project must remain at the same hierarchical depth as the source project as

some of the environment variables rely on the relative path. If the user fails to keep the depth

consistent, the project will fail to compile.

2.4 Adding a New Folder/File to the Project

1. To add a new folder to your project, select File > New > Folder.

Figure 9: Select New Folder Menu

2. In the New Folder window, select the path under which the new folder will be added (2.1), enter

the Folder name (2.2), and click Finish (2.3). The new folder will be displayed.

For the DA1468x SoC

Starting a Project

 10 of 28 © 2018 Dialog Semiconductor

Figure 10: Select Parent Folder, Input New Name

3. Use the same procedure to define new source and header files (at step 1.3 select either

Source File or Header File respectively, instead of selecting Folder). In this case, the

preferred names (step 2.2) should end with a .c or .h suffix respectively (for example, source.c

or header.h).

4. Every newly created folder must be placed inside the project's path, in a folder that is in the

compiler's include path. To do this, select Project > Properties > C/C++ Build > Settings > Tool

Settings > Cross ARM C Compiler > Includes and click on the Add... icon (4.6).

For the DA1468x SoC

Starting a Project

 11 of 28 © 2018 Dialog Semiconductor

Figure 11: Add the New Folder to the Include Search Path

5. In the Add directory path window, click Workspace... (5.1) and specify the path of the newly

created folder/file. It will be displayed in the Directory section. Click OK (5.2) and then click OK

in the previously opened window (4.7).

Figure 12: Input New Folder Name

For the DA1468x SoC

Starting a Project

 12 of 28 © 2018 Dialog Semiconductor

3 Analyzing the Key Points of a Sample Code

This section covers the fundamental code structure found in every demonstration application

included in Dialog's SDK. All applications are implemented as FreeRTOS tasks that are created

under the system_init() function.

3.1 Clock and Power Manager

The clock manager is part of the clock and power manager (CPM) and it:

• Controls the system level clocks. The divider of each hardware resource is responsible to

control the clock settings for the resource. In this context, the CPM controls the system clock

which is illustrated with green line (sys_clk) in Figure 13, the AHB and APB clocks which are

the blue lines at the top of the figure, and the low power clock which is the black line (lp_clk).

• Handles requests to switch to another clock configuration (cm_sys_clk_set()). A request may be

denied if this switch affects a hardware resource that is active (for example, a hardware timer).

• Offers the application tasks the ability to switch to another clock configuration during runtime, if

possible. The low power clock cannot be changed during runtime.

Figure 13: The Clock Tree Diagram for the DA1468x Family of Devices

SmartBond ™ DA1468x SDK abstracts the complexity of the clock tree from the applications by

offering a unified API for clock control. The details of the API are highlighted in Table 1

For the DA1468x SoC

Starting a Project

 13 of 28 © 2018 Dialog Semiconductor

Table 1: Dialog's API for Clock Control

Function name Description

bool cm_sys_clk_set(sys_clk_t type)
Sets the system clock. The available options are: RC16,
XTAL16M (or XTAL32M), PLL48, and PLL96. The low
power clock cannot be set as the system clock.

bool cm_cpu_clk_set(cpu_clk_t clk)
Sets the system clock and the AHB divisor such that the
requested clock frequency is achieved.

void
cm_apb_set_clock_divider(apb_div_t
div)

Sets the clock divisor for the APB clock. The actual
frequency depends on the system clock used.

bool
cm_ahb_set_clock_divider(ahb_div_t
div)

Sets the clock divisor for the AHB clock. The actual
frequency depends on the system clock used.

_get and _fromISR Variants of the above _set functions.

void cm_lp_clk_init(void) Initializes the Low Power clock.

bool cm_lp_clk_is_avail(void) Checks if the Low Power clock is available.

void cm_clk_init_low_level(void) Executes clock initialization after power-up.

void cm_sys_clk_init(sys_clk_t type) Executes clock initialization after the OS has started.

3.2 The Key Points of the Main Function

The main() function is the basic routine of every source code and is responsible for the following

actions:

Figure 14: SW FSM of main() Function

1. The cm_clk_init_low_level function must be called before any other configuration related to

system clocks. It is the lowest level function. More specifically, it switches to the internal 16MHz

RC oscillator (RC16M), restarts the external 16 MHz crystal (XTAL16M) and may wait for it to

settle. It also sets the DIVN clock divider which provides the 16 MHz clock source to various

hardware blocks of the device, regardless of the system clock source. It then sets up the low

power clock, according to the value of the dg_configUSE_LP_CLK macro in the

config/custom_config_qspi.h header file. This function must be called only once, before the

freeRTOS scheduler is started.

For the DA1468x SoC

Starting a Project

 14 of 28 © 2018 Dialog Semiconductor

Note: One case where the system does not wait for the settling of the XTAL16M, is when both

the external 32kHz crystal is selected as low power clock (LP_CLK_32768) and it has explicitly

defined not to wait for the settling of the crystal, that is, pm_set_wakeup_mode(false). The

hardware blocks that require the XTAL16M to properly work are the BLE, USB and the UART

peripheral.

2. The next step is to create the task named system_init that is responsible for initializing the

system. In this FreeRTOS task all the application tasks should be declared as well.

3. After creating all the required FreeRTOS tasks, it's time to start running the scheduler which is

responsible for controlling and executing all the previous defined tasks, according to their

priorities.

3.3 The Key Points of the System Initialization Function

1. All the system clocks should be initialised according to the target application needs. In specific,

the system clock, low power clock source, clock divider for the AMBA peripheral bus clock

(APB) and AMBA high speed bus (AHB) are set.

Code Snippet:

/*

 * Prepare clocks. Note: cm_cpu_clk_set() and cm_sys_clk_set() can only be called from a

 * task since they will suspend the task until the XTAL16M has settled and the PLL maybe

 * locked.

 */

 cm_sys_clk_init(sysclk_XTAL16M); // Set the system clock

 cm_apb_set_clock_divider(apb_div1); // Set divider for the APB bus

 cm_ahb_set_clock_divider(ahb_div1); // Set divider for the AHB bus

 cm_lp_clk_init(); // Set the clock source of the low power clock

Note: The function which sets the low power clock does not have any input parameters. The

desired clock source must be defined using the macro dg_configUSE_LP_CLK, preferably set

in the /config/custom_config_qspi.h header file. The valid values this macro can accept is:

LP_CLK_RCX (internal RC oscillator), LP_CLK_32768 (external 32 kHz crystal) or

LP_LCK_32000 (external clock pulses). By default all code examples found in Dialog's SDK

use the external crystal 32 kHz as the LP clock, that is, #define dg_configUSE_LP_CLK

LP_CLK_32768. Table 2 contains the system clock source enumerated type values.

Table 2: System Clock Types

Enumeration name Value Description

sysclk_RC16 0 Sets the internal RC oscillator of 16 MHz as the source clock.

sysclk_XTAL16M 1 Sets the external crystal of 16 MHz as the source clock.

sysclk_XTAL32M 2 Sets the external crystal of 32 MHz as the source clock.

sysclk_PLL48 3 Sets the PLL block at 48 MHz as the source clock.

For the DA1468x SoC

Starting a Project

 15 of 28 © 2018 Dialog Semiconductor

sysclk_PLL96 6 Sets the PLL block at 96 MHz as the source clock.

sysclk_LP 255 Sets the low power clock as the source clock.

Note: If the external 32kHz crystal is selected as low power clock, the system is prevented

from entering sleep for approximately 8 seconds after a HW reset (cold boot). This delay

ensures the external crystal is settled before using it as a low power clock for the system.

After that time delay, the device can enter a sleep mode. The low power clock (LP) is used

during the device sleep. Also note that sysclk_LP cannot be used as system clock source.

2. The next step is the initialization of the device's peripherals used in the project, for example, the

pins multiplexing for the UART interface. The state configurations are not retained during sleep

and have to be restored at wake up. All device configurations should be placed in

prvSetupHardware function. In this function pm_system_init routine is called as well. This

function performs the actual device's pin initialization after a power-up and a wake-up cycle.

3. The next step is the selection of the sleep mode. Please note that the recommended sleep

mode for all applications is the extended sleep mode.

Code Snippet:

/* Set the desired sleep mode */

pm_set_wakeup_mode(true); // If the input parameter is set to "true" then the device waits until

//XTAL16M is settled.

pm_set_sleep_mode(pm_mode_extended_sleep);

Note: After wake-up, the system runs using the internal 16 MHz (RC16) clock oscillator. The

clock manager (CM) switches back to the last system clock configuration (before sleep) and

the FreeRTOS resumes its tasks either immediately or after the external 16MHz crystal

(XTAL16M) has settled. This procedure is transparent to the application tasks. The CPM

unblocks any task that has been blocked, waiting for the high precision clock (external crystal

16 MHz). The hardware blocks of the device that require the XTAL16M to properly work are the

Bluetooth (BLE), USB and the UART peripheral.

For the DA1468x SoC

Starting a Project

 16 of 28 © 2018 Dialog Semiconductor

Figure 15: Possible Device's States

4. After all the mandatory configurations, all the application tasks that will be executed by the

FreeRTOS scheduler should be declared.

Note: The last code line of system_init task is OS_TASK_DELETE(

OS_GET_CURRENT_TASK()) for deleting the task itself. This is done in order to release

valuable system resources. After all, the initialization of the system only needs to be done

once at beginning of the device's start.

4 Running The Demonstration Example

This section describes the steps required to prepare the Pro DevKit and other tools to successfully

run an example code that is based on freertos_retarget sample code found in the SDK

(demonstrates using the UART functionality).

To make things more interesting, let's give some extra functionality to the device making the LED D2

on Pro DevKit to toggle after pressing a push button. The Wakeup controller can be programmed to

wake up the DA1468x family of devices from a power-down mode after a pre-programmed number of

GPIO events. In summary, this module consists of an event counter and a timer that counts every 1

ms. If the event counter reaches its pre-defined value, the counter is reset and an interrupt is

generated. Each of the GPIO inputs can be selected to generate an interrupt event. As far as the

timer is concerned, this hardware block can add a delay until an event (Key Hit) is being considered

valid. This feature works as follow: upon an event the timer starts counting-down from its pre-defined

value and, if it reaches zero and the Key hit is still valid, then the event counter is incremented. This

For the DA1468x SoC

Starting a Project

 17 of 28 © 2018 Dialog Semiconductor

feature is useful when using mechanical parts to trigger the controller by eliminating debouncing

issues.

Figure 16: Event Counter State Machine for the Wake-Up Interrupt Generator

Note: The event counter is edge sensitive. After detecting an active edge, a reverse edge must

be detected first before it goes back to the IDLE state and from there starts waiting for a new

active edge.

Note: The Wakeup controller can be used even when the system is set to always active.

There are two main methods to verify the correct behavior of the demonstrated code. The first

method is to use a Serial Terminal and the second is to use the SmartSnippets Toolbox.

4.1 Verifying with a Serial Terminal

1. Establish a connection between the target device and your PC through the USB2(DBG) port of

the motherboard. This port is used both for powering and communicating to the DA1468x SoC.

For this tutorial a Pro DevKit is used. Ensure the jumper settings are set as displayed in the

following figure:

For the DA1468x SoC

Starting a Project

 18 of 28 © 2018 Dialog Semiconductor

Figure 17: The ProDev Kit (Motherboard and Daughterboard)

Figure 18: General Purpose LED and BUTTON Schematics

Table 3: DA1468x Pin Assignment of the General Purpose LED and BUTTON

DA1468x Pin Name Signal Name Multiplexed with Functions

P1_5 RTS D2 LED, through J5

P1_6 CTS K1 push button, through jumper J8

For the DA1468x SoC

Starting a Project

 19 of 28 © 2018 Dialog Semiconductor

2. Import and then make a copy of the freertos_retarget sample code found in the SDK of the

DA1468x family of devices.

Note: It is essential to import the folder named scripts to perform various operations

(including building, debugging, and downloading)

3. In the target application, add/modify all the required code blocks as illustrated in the Code

Overview section.

4. Build the project either in Debug_QSPI or Release_QSPI mode and burn the generated image

to the chip.

5. Press the K2 button on Pro DevKit to start the chip executing its firmware.

6. Select a serial console and open it. In this tutorial we have selected Tera Term which is a free

and easy-to-use serial terminal. Follow the steps in the following figures to successfully

establish a connection via the USB port. If you connect the device it is automatically displayed

as an option (2).

Figure 19: Select the Serial Port to which the Development Kit is Connected

For the DA1468x SoC

Starting a Project

 20 of 28 © 2018 Dialog Semiconductor

In the displayed window, select the UART parameters:

Figure 20: Configure the Serial Port with the Correct Settings

After successfully setting the serial port you should see the special character '#' displayed on the

console.

Figure 21: The Special Character '#' is Displayed on the Screen

7. Press and release the K1 button on Pro DevKit three times. LED D2 on Pro DevKit should be

turned on. For as long as LED D2 is active, the device is not allowed to enter sleep. Press and

release the K1 button on Pro DevKit three times again. LED D2 should be turned off and the

device should enter sleep.

Note: The number of events required for the led to toggle is configured through

hw_wkup_set_counter_threshold API in init_wkup routine.

For the DA1468x SoC

Starting a Project

 21 of 28 © 2018 Dialog Semiconductor

4.2 Verifying with SmartSnippets Toolbox

1. With the system up and running, open the SmartSnippets Toolbox and execute the following

steps:

a. (Optional) Select New to create a new project (1). In the New Project window, enter a

name for the project (2). This step is optional if a project has already been created.

b. Choose an available project (4).

c. Choose a communication interface (3) and a port (5).

d. Select the family of devices to use (6).

e. Open the selected project (7).

Figure 22: Opening a Project in the SmartSnippets Toolbox

2. Start power profile monitoring:

a. Switch to the Power Profiler window (1).

b. Initialize Power Profiler (2).

c. Start Power Profiler (3).

For the DA1468x SoC

Starting a Project

 22 of 28 © 2018 Dialog Semiconductor

Figure 23: Initializing Power Profiler

3. Press the K2 button on Pro Dev Kit to reset the device. It should enter sleep approximately 8

seconds after a power-up event.

Figure 24: Verifying the Correct Functionality of the Device before and after Entering Sleep

After the passage of 8 seconds the device should wake up every 200ms (LED D2 is turned off).

Figure 25: Verifying the Correct Functionality of the Device between Wake-Ups

For the DA1468x SoC

Starting a Project

 23 of 28 © 2018 Dialog Semiconductor

Press and release the K1 button on Pro DevKit three times. Verify the increased power consumption

while the device is in active mode (LED D2 on).

Figure 26: Verifying the Power Consumption while in Active and Sleep Mode

5 Code Overview

This section contains the code blocks needed to successfully execute this tutorial.

5.1 Header Files

In main.c, add the following header file:

/* For the Wakeup Timer */

#include "hw_wkup.h"

5.2 System Init Code

In main.c, replace system_init() with the following code:

static void system_init(void *pvParameters)

{

 OS_TASK task_h = NULL;

#if defined CONFIG_RETARGET

 extern void retarget_init(void);

#endif

 /* Prepare clocks. Note: cm_cpu_clk_set() and cm_sys_clk_set() can only be called from a

 * task since they will suspend the task until the XTAL16M has settled and the PLL maybe

For the DA1468x SoC

Starting a Project

 24 of 28 © 2018 Dialog Semiconductor

 * is locked.

 */

 cm_sys_clk_init(sysclk_XTAL16M);

 cm_apb_set_clock_divider(apb_div1);

 cm_ahb_set_clock_divider(ahb_div1);

 cm_lp_clk_init();

 /* Prepare the hardware to run this demo. */

 prvSetupHardware();

 /* init resources */

 resource_init();

#if defined CONFIG_RETARGET

 retarget_init();

#endif

 /* Set the desired sleep mode. */

 pm_set_wakeup_mode(true);

 pm_set_sleep_mode(pm_mode_extended_sleep);

 /* Start main task here (text menu available via UART1 to control application) */

 OS_TASK_CREATE("Template", /* The text name assigned to the task; for

 debug only, not used by the kernel. */

 prvTemplateTask, /* The function that implements the task. */

 NULL, /* The parameter passed to the task. */

 200 * OS_STACK_WORD_SIZE, /* The number of bytes to allocate to the

 stack of the task. */

 mainTEMPLATE_TASK_PRIORITY, /* The priority assigned to the task. */

 task_h); /* The task handle. */

 OS_ASSERT(task_h);

 /* The work of the SysInit task is done */

 OS_TASK_DELETE(xHandle);

}

5.3 Wake-Up Timer Code

In main.c, after system_init(), add the following code for handling external events via the wake-up

controller:

PRIVILEGED_DATA volatile bool pin_status_flag = 0;

/* Callback function to be called after an interrupt is generated, that is, when event counter reaches

configured value. */

void wkup_cb(void)

{

 /* This function must be called by any user-specified interrupt callback, to clear the interrupt flag.

*/

 hw_wkup_reset_interrupt();

For the DA1468x SoC

Starting a Project

 25 of 28 © 2018 Dialog Semiconductor

 /* Toggle the LED D2 on the Pro DevKit */

 hw_gpio_toggle(HW_GPIO_PORT_1, HW_GPIO_PIN_5);

 /* Toggle the value of the flag indicating the status of the LED before entering sleep */

 pin_status_flag ^= 1;

}

/* Function which makes all the necessary initializations for the wake-up controller. */

static void init_wkup(void)

{

 /* This function must be called first and is responsible for the initialization of the hardware block

*/

 hw_wkup_init(NULL);

 /*

 * Configure the pin(s) that can trigger the device to wake-up while in sleep mode. The last input

parameter

 * determines the triggering edge of the pulse (event)

 */

 hw_wkup_configure_pin(HW_GPIO_PORT_1, HW_GPIO_PIN_6, true,

HW_WKUP_PIN_STATE_LOW);

 /*

 * This function defines a delay between the time a trigger event will be presented and the time

the controller

 * will take this event into consideration.

 * Setting debounce time to 0 disables hardware debouncing. Maximum debounce time is 63

ms.

 */

 hw_wkup_set_debounce_time(10);

#if dg_configBLACK_ORCA_IC_REV == BLACK_ORCA_IC_REV_A // Check if the chip is either

//DA14680 or 81

 /*

 * Set threshold for event counter. Interrupt is generated after the event counter reaches the

configured value.

 * This function is only supported in DA14680/1 chips.

 */

 hw_wkup_set_counter_threshold(3);

#endif

 /* Register interrupt handler. */

 hw_wkup_register_interrupt(wkup_cb, 1);

}

Note: If the variable named pin_status_flag is not used, LED D2 on Pro DevKit will lose its

state after entering sleep. The default state for all pins when entering sleep is input pull-down.

For the DA1468x SoC

Starting a Project

 26 of 28 © 2018 Dialog Semiconductor

5.4 Hardware Initialization

In main.c, replace both periph_init() and prvSetupHardware() with the following code to configure

pins after a power-up/wake-up cycle. Please note that every time the system enters sleep, it loses all

its pin configurations.

/**

 * @brief Initialize the peripherals domain after power-up.

 *

 */

static void periph_init(void)

{

if dg_configBLACK_ORCA_MB_REV == BLACK_ORCA_MB_REV_D

define UART_TX_PORT HW_GPIO_PORT_1

define UART_TX_PIN HW_GPIO_PIN_3

define UART_RX_PORT HW_GPIO_PORT_2

define UART_RX_PIN HW_GPIO_PIN_3

else

error "Unknown value for dg_configBLACK_ORCA_MB_REV!"

endif

 hw_gpio_set_pin_function(UART_TX_PORT, UART_TX_PIN, HW_GPIO_MODE_OUTPUT,

 HW_GPIO_FUNC_UART_TX);

 hw_gpio_set_pin_function(UART_RX_PORT, UART_RX_PIN, HW_GPIO_MODE_INPUT,

 HW_GPIO_FUNC_UART_RX);

 /* Configure pin PIN_5 as a GPIO with output functionality.*/

 hw_gpio_configure_pin(HW_GPIO_PORT_1, HW_GPIO_PIN_5, HW_GPIO_MODE_OUTPUT,

HW_GPIO_FUNC_GPIO, pin_status_flag);

}

/**

 * @brief Hardware Initialization

 */

static void prvSetupHardware(void)

{

 /* Init hardware */

 pm_system_init(periph_init);

 init_wkup();

}

For the DA1468x SoC

Starting a Project

 27 of 28 © 2018 Dialog Semiconductor

Revision History

Revision Date Description

1.0 08-Dec-2017 First released version

2.0 26-Nov-2018 Updated released version

For the DA1468x SoC

Starting a Project

 28 of 28 © 2018 Dialog Semiconductor

Status Definitions

Status Definition

DRAFT
The content of this document is under review and subject to formal approval, which may result in modifications or

additions.

APPROVED

or unmarked
The content of this document has been approved for publication.

Disclaimer

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or
warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no
responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the
specification and the design of the related semiconductor products, software and applications.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes
no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further
testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog
Semiconductor excludes all liability in this respect.

Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software
and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor’s Standard
Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.

Dialog and the Dialog logo are trademarks of Dialog Semiconductor plc or its subsidiaries. All other product or service names are the property of
their respective owners.

© 2018 Dialog Semiconductor. All rights reserved.

Contacting Dialog Semiconductor

United Kingdom (Headquarters)

Dialog Semiconductor (UK) LTD

Phone: +44 1793 757700

Germany

Dialog Semiconductor GmbH

Phone: +49 7021 805-0

The Netherlands

Dialog Semiconductor B.V.

Phone: +31 73 640 8822

North America

Dialog Semiconductor Inc.

Phone: +1 408 845 8500

Japan

Dialog Semiconductor K. K.

Phone: +81 3 5769 5100

Taiwan

Dialog Semiconductor Taiwan

Phone: +886 281 786 222

Hong Kong

Dialog Semiconductor Hong Kong

Phone: +852 2607 4271

Korea

Dialog Semiconductor Korea

Phone: +82 2 3469 8200

China (Shenzhen)

Dialog Semiconductor China

Phone: +86 755 2981 3669

China (Shanghai)

Dialog Semiconductor China

Phone: +86 21 5424 9058

Email:

enquiry@diasemi.com

Web site:

www.dialog-semiconductor.com

http://www.dialog-semiconductor.com/standard-terms-and-conditions
http://www.dialog-semiconductor.com/standard-terms-and-conditions
http://www.dialog-semiconductor.com/

