

Tutorial

SPI Adapters

For the DA1468x SoC

Abstract

This tutorial should be used as a reference guide to gain a deeper understanding of the ‘SPI Adapters’ concept.
As such, it covers a broad range of topics including an introduction to Adapter mechanism as well as a detailed
description of the various SPI transaction schemes. Furthermore, it covers a number of sections containing in
depth software analysis of a complete demonstration example.

For the DA1468x SoC

SPI Adapters

 2 of 33 © 2018 Dialog Semiconductor

Contents

For the DA1468x SoC .. 1

Abstract .. 1

Contents ... 2

Figures .. 2

Tables ... 3

Terms and Definitions ... 3

References ... 3

1 Introduction.. 4

1.1 Before You Start .. 4

1.2 SPI Adapters Introduction ... 4

2 SPI Adapters Concept ... 5

2.1 Header Files .. 5

2.2 Preparing an SPI Operation .. 6

2.3 SPI Transactions ... 10

2.3.1 Synchronous Mode .. 10

2.3.2 Asynchronous Mode .. 11

2.4 Duplex Transmissions ... 12

2.5 SPI Related Macros .. 13

3 Analyzing The Demonstration Example .. 13

3.1 Application Structure ... 13

4 Running The Demonstration Example .. 16

4.1 Verifying with a Serial Terminal .. 16

4.2 Verifying with a Logic Analyzer ... 20

5 Code Overview .. 21

5.1 Header Files .. 21

5.2 System Init Code ... 21

5.3 Wake-Up Timer Code ... 23

5.4 Hardware Initialization ... 25

5.5 Task Code for MCP4822... 26

5.6 Task Code for Loopback Test ... 29

5.7 Macro Definitions .. 31

5.8 SPI Bus Configuration Macros .. 31

Revision History .. 32

Figures

Figure 1: Adapters Communication ... 5
Figure 2: The Four-Step Process for Setting an Adapter Mechanism .. 5
Figure 3: Headers for SPI Adapters .. 6
Figure 4: First Step for Configuring the SPI Adapter Mechanism. .. 7
Figure 5: Second Step for Configuring the SPI Adapter Mechanism .. 7
Figure 6: Third Step for Configuring the SPI Adapter Mechanism .. 9
Figure 7: Fourth Step for Configuring the SPI Adapter Mechanism. ... 9
Figure 8: Duplex SPI Transaction ... 12

For the DA1468x SoC

SPI Adapters

 3 of 33 © 2018 Dialog Semiconductor

Figure 9: Echo Task – Main Execution Path ... 14
Figure 10: MCP4822 Write SW FSM – Main Execution Path ... 15
Figure 11: MCP4822 Async Write SW FSM – Callback Function Execution Path 15
Figure 12: Control and Data bits of MCP4822 DAC Chip ... 16
Figure 13: DA1468x Pro DevKit .. 17
Figure 14: Creating platform_devices.h Header File, Step 1 .. 18
Figure 15: Creating platform_devices.h Header File, Step 2 .. 18
Figure 16: Configuring the MCP4822 DAC Slave Device ... 19
Figure 17: Debugging Messages Indicating the Status of the Duplex SPI Transaction 20
Figure 18: SPI Duplex Transaction Captured using a Logic Analyzer. ... 21
Figure 19: SPI Write Transaction Captured using a Logic Analyzer. .. 21

Tables

Table 1: Header Files used by SPI Adapters .. 6
Table 2: Description of the Macro Fields Used for Declaring an SPI Device .. 7
Table 3: Available Arguments for Configuring SPI Asynchronous Transactions 11
Table 4: APIs for Duplex Transactions .. 12
Table 5: SPI Macros .. 13

Terms and Definitions

CS Chip Select

DAC Digital-to-Analog Converter

DevKit Development Kit

DMA Direct Memory Access

FSM Finite-State-Machine

GPADC General Purpose Analog-to-Digital Converter

ISR Interrupt Service Routine

I2C Inter-Integrated Circuit

LLD Low Level Drivers

MISO Master Input Slave Output

MOSI Master Output Slave Input

ms millisecond

OS Operating System

SDK Software Development Kit

SPI Serial Peripheral Interface

SW Software

References

[1] UM-B-044, DA1468x Software Platform Reference, User Manual, Dialog Semiconductor

For the DA1468x SoC

SPI Adapters

 4 of 33 © 2018 Dialog Semiconductor

1 Introduction

1.1 Before You Start

Before you start you need to:

• Install the latest SmartSnippets Studio

• Download the latest SDK for the DA1468x platforms

These can be downloaded from the Dialog Semiconductor support portal.

Additionally, for this tutorial either a Pro or Basic Development kit is required.

The key goals of this tutorial are to:

• Provide a basic understanding of Adapters concept

• Explain the different APIs and configurations of SPI peripheral Adapters

• Give a complete sample project demonstrating the usage of SPI peripheral Adapters

1.2 SPI Adapters Introduction

This tutorial explains SPI adapters and how to configure the DA1468x family of devices as an SPI

Master device. Adopting an SPI Slave role is not used for the majority of situations and so is not

covered in this tutorial. The SPI adapter is an intermediate layer between the SPI Low Level Drivers

(LLDs) and a user application. It allows the user to utilize the SPI interface in a simpler way than

when using APIs from LLDs. The key features of SPI adapters are:

• Synchronous writing/reading operations block the calling freeRTOS task while the operation is

performed using semaphores rather than relying on a polling loop approach. This means that

while the hardware is busy transferring data, the operating system (OS) scheduler may select

another task for execution, utilizing processor time more efficiently. When the transfer has

finished the calling task is released and resumes its execution.

• A DMA channel can be used among various peripherals (for example, I2C, UART).

Interconnected peripherals may use the same DMA channel if necessary. The adapter takes

care of DMA channel resource management.

• It ensures that only one device can use the SPI bus after acquiring it.

• Placing code between ad_spi_bus_acquire() and ad_spi_bus_release() ensures that only one

task can use the SPI bus to communicate with an external connected device. During this period

no other device or task can use the SPI interface until the ad_spi_bus_release() function is

called by the owning task.

• The Power Manager (PM) of the chip is aware of the SPI peripheral usage and, before the

system enters sleep, it checks whether or not there is activity on the SPI bus.

Note: Adapters are not implemented as separate tasks and should be considered as an

additional layer between the application and the LLDs. It is recommended to use adapters for

accessing a hardware block.

https://support.dialog-semiconductor.com/connectivity

For the DA1468x SoC

SPI Adapters

 5 of 33 © 2018 Dialog Semiconductor

Figure 1: Adapters Communication

2 SPI Adapters Concept

This section describes the key features of SPI peripheral adapters as well as the procedure to enable

and correctly configure the peripheral adapters for the SPI functionality. The procedure is a four-step

process which can be applied to almost every type of adapter including serial peripheral adapters

(I2C, SPI, UART) and GPADC adapters.

Figure 2: The Four-Step Process for Setting an Adapter Mechanism

2.1 Header Files

The header files related to adapter functionality can be found in /sdk/adapters/include. These files

contain the APIs and macros for configuring the majority of the available peripheral hardware blocks.

In particular, this tutorial focuses on the adapters that are responsible for the SPI peripheral

hardware block. Table 1 briefly explains the header files related to SPI adapters (red indicates the

path under which the files are stored while green indicates which ones are used for SPI operations).

For the DA1468x SoC

SPI Adapters

 6 of 33 © 2018 Dialog Semiconductor

Figure 3: Headers for SPI Adapters

Table 1: Header Files used by SPI Adapters

Filename Description

ad_spi.h
This file contains the recommended APIs and macros for performing SPI
related operations. Use these APIs when accessing the SPI peripheral bus.

platform_devices.h
This file contains all the device configurations. These devices may be
connected to the Dialog family of devices via a peripheral bus (for example,
SPI, I2C, UART) or a peripheral hardware block (for example, GPADC).

2.2 Preparing an SPI Operation

1. As illustrated in Figure 4, the first step for configuring the SPI adapter mechanism is to enable it

by defining the following macros in /config/custom_config_qspi.h:

/*

 * Macros for enabling SPI operations using Adapters

 */

#define dg_configUSE_HW_SPI (1)

#define dg_configSPI_ADAPTER (1)

For the DA1468x SoC

SPI Adapters

 7 of 33 © 2018 Dialog Semiconductor

Figure 4: First Step for Configuring the SPI Adapter Mechanism.

From this point onwards, the overall adapter implementation with all its integrated functions is

available.

2. The second step, is to declare all the devices externally connected on the SPI bus. A device

can be considered a set of settings describing the complete SPI interface. These settings are

applied every time the device is selected and used. To do this, the SDK uses a macro, named

SPI_SLAVE_DEVICE:

/*

 * Macro for settings SPI bus parameters

 */

SPI_SLAVE_DEVICE(bus, name, cs_port, cs_pin, _word_mode, pol_mode,

 _phase_mode, xtal_div, dma_channel)

Figure 5: Second Step for Configuring the SPI Adapter Mechanism

Table 2: Description of the Macro Fields Used for Declaring an SPI Device

Argument Name Description

bus
The DA1468x family of devices features two distinct SPI hardware blocks. Valid
values are SPI1 and SPI2.

name
Declare an arbitrary alias for the SPI interface (for instance, My_slave_device).
This name should be used for opening that specific device.

cs_port Slave Chip Select line: this can be any available port on the DA1468x chip.

For the DA1468x SoC

SPI Adapters

 8 of 33 © 2018 Dialog Semiconductor

cs_pin Slave Chip Select line: this can be any available pin on the DA1468x chip.

_word_mode
The size of each data packet sent over the bus. Valid values are those from
HW_SPI_WORD enum in /sdk/peripherals/include/hw_spi.h.

pol_mode
Clock polarity. Valid values are those from HW_SPI_POL enum in
/sdk/peripherals/include/hw_spi.h.

_phase_mode
Clock phase. Valid values are those from HW_SPI_PHA enum in
/sdk/peripheral/include/hw_spi.h.

xtal_div
SPI interface speed. Valid values are those from HW_SPI_FREQ enum in
/sdk/peripherals/include/hw_spi.h.

dma_channel

The DA1468x family of devices features eight general-purpose DMA channels
that can be used for various transactions. This field defines the DMA number for
the RX channel. TX will have the next number and it is automatically assigned by
the adapter mechanism.

Note: In contrast with the I2C adapters, SPI adapters share the same macro whether or not a

DMA channel is used for a transaction. Therefore, if a DMA channel is not needed a value

equal to -1 should be declared. Also note that DMA RX/TX channels must be set in pairs, that

is, 0/1, 2/3, 4/5 and 6/7. Thus, RX channel must always be set to an even number (0, 2, 4, 6).

The DA1468x family of devices incorporates two distinct SPI blocks namely SPI1 and SPI2.

Depending on the SPI interface used, device declarations must be placed between the correct macro

indicators in platform_devices.h:

/* Declare SPI bus configurations for devices connected to SPI1 hardware block */

SPI_BUS(SPI1)

// Use SPI_SLAVE_DEVICE()for each device declaration

SPI_BUS_END

/* Declare SPI bus configurations for devices connected to SPI2 hardware block */

SPI_BUS(SPI2)

// Use SPI_SLAVE_DEVICE() for each device declaration

SPI_BUS_END

3. As illustrated in Figure 6, the third step is the declaration of the SPI signals. The user can

multiplex and expose SPI signals on any available pin on DA1468x SoC.

static void prvSetupHardware(void)

{

 /* Init hardware */

 pm_system_init(periph_init)

}

For the DA1468x SoC

SPI Adapters

 9 of 33 © 2018 Dialog Semiconductor

Figure 6: Third Step for Configuring the SPI Adapter Mechanism

Note: When the system enters sleep it loses its pin configurations. Thus, it is essential for the

pins to be reconfigured to their last state as soon as the system wakes up. To do this, all pin

configurations must be declared in periph_init() which is supervised by the Power Manager of

the system.

4. Having enabled the SPI adapter mechanism, the developer is able to use all the available APIs

for performing SPI transactions. The following describes the required sequence of APIs in an

application to successfully execute an SPI write/read operation.

Figure 7: Fourth Step for Configuring the SPI Adapter Mechanism.

a. ad_spi_init()

 This must be called once at either platform start (for instance, in system_init()) or task

initialization to perform all the necessary initialization routines.

b. ad_spi_open()

 Before using the SPI interface, the application task must open the device that will access the

bus. Opening a device, involves enabling the SPI controller. If the device is the only connected

device on the SPI bus, configuration of the SPI controller also takes place. The function returns

a handler to the main flow for use in subsequent adapter functions. Subsequent calls from other

tasks simply return the already existing handler.

c. ad_spi_bus_acquire()

 This API is optional since it is automatically called upon a write/read transaction and is used for

locking the SPI bus for the given opened device. This function should be called when the

application task wants to communicate to the SPI bus directly using low level drivers.

Note: The function can be called several times. However, it is essential that the number of

calls must match the number of calls to ad_spi_bus_release().

For the DA1468x SoC

SPI Adapters

 10 of 33 © 2018 Dialog Semiconductor

d. Perform a write/read transaction either synchronously or asynchronously.

 After opening a device, the application task(s) can perform any read/write SPI transaction either

synchronously or asynchronously. Please note that all the available APIs for writing/reading

over the SPI bus, nest the corresponding APIs for acquiring and releasing a device.

e. ad_spi_bus_release()

 This function must be called for each call to ad_spi_bus_acquire().

f. ad_spi_close()

 After all user operations are done and the device is no longer needed, it should be closed by

the task that has currently acquired it. The application can then switch to other devices

connected on the same SPI bus. Remember that the SPI adapter implementation follows a

single device scheme, that is only one device can be opened at a time.

2.3 SPI Transactions

Write and read functions can be divided into two distinct categories:

• Synchronous Mode

• Asynchronous Mode

2.3.1 Synchronous Mode

In synchronous mode, the calling task is blocked for the duration of the write/read access but other

tasks are not. The mechanism initially waits for the SPI bus to become available and then blocks the

calling task until a transaction is completed. Once a write/read process is finished, the SPI bus is

freed and further write/read transactions over the SPI bus can take place.

Code snippet of a typical write followed by a read synchronous SPI transaction:

// Open the device that will utilize the SPI bus

spi_device dev = ad_spi_open(My_Slave_Device);

// Perform SPI transactions to the already opened device

ad_spi_transact(dev, command, sizeof(command), response, sizeof(response));

// Close the already opened device

ad_spi_close(dev);

The above code performs a write transaction followed by a read transfer. First, the chip select line is

activated for the slave device and then data is sent over the SPI bus. When the current transaction is

finished, the device changes to read mode and reads data from the connected device. Finally, the

chip select line is deactivated when the transaction has finished.

Note: The aforementioned API can also be used for write only or read only transactions by

providing a NULL pointer in the corresponding input parameter. For example, to perform a

write only operation: ad_spi_transact(dev, command, sizeof(command), NULL, 0);

For the DA1468x SoC

SPI Adapters

 11 of 33 © 2018 Dialog Semiconductor

2.3.2 Asynchronous Mode

In asynchronous mode, the calling task is not blocked by the write or read operation. It can continue

with other operations while waiting for a dedicated callback function to be called, signaling the

completion of the read or write transaction. SPI adapters allow developer to perform SPI transactions

that consist of a number of reads, writes, and callback calls. This provides a time-efficient way to

manage all SPI related actions. Most of the actions are executed within ISR context. There are a

number of arguments-actions that should be used to perform various SPI transaction schemes. Table

3 explains all the available arguments that can be used to declare an SPI transaction scheme.

Table 3: Available Arguments for Configuring SPI Asynchronous Transactions

Argument Name Description

SPI_CSA Use this argument to select the Chip Select line.

SPI_CSD Use this argument to deselect the Chip Select line.

SPI_SND() Use this argument to send data over SPI bus.

SPI_RCV() Use this argument to read data over SPI bus.

SPI_SRCV() This argument is a combination of a write followed by a read SPI transaction.

SPI_CB0()
Declare a callback function that should be called when finishing with all defined
SPI actions. Developer cannot pass any data in the callback function.

SPI_CB1()
Declare a callback function that should be called when finishing with all defined
SPI actions. Developer can pass data in the callback function.

SPI_END
Use this argument to mark the end of an SPI transaction scheme. This argument
should be the last declared action.

Code Snippet of a typical write followed by a read asynchronous SPI transaction:

// Open the device that will utilize the SPI bus

spi_device dev = ad_spi_open(My_Slave_Device);

// Perform SPI transactions to the already opened device

ad_spi_async_transact(dev, SPI_CSA, // Activate the Chip Select line

 SPI_SND(command, sizeof(command)), // SPI write operation

 SPI_RCV(response, sizeof(response)), // SPI read operation

 SPI_CB0(final_callback) , // User-defined callback function

 SPI_CSD, // Deactivate the Chip Select line

 SPI_END); // Indicate the end of SPI operations

// Make sure that the current transaction completes

// Close the already opened device

ad_spi_close(dev);

For the DA1468x SoC

SPI Adapters

 12 of 33 © 2018 Dialog Semiconductor

When performing SPI operations in asynchronous mode, the following should be considered:

• Callback functions are executed from within Interrupt Service Routine (ISR) context. Therefore,

a callback's execution time should be as short as possible and not contain complex

calculations. Please note that for as long as a system interrupt is serviced, the main application

is halted.

• If the callback function is the last action to be performed, then resources (SPI device and bus)

are released before the callback is called.

• Do not call asynchronous related APIs consecutively without guaranteeing that the previous

asynchronous transaction is finished.

• After the callback function is called, it is not guaranteed that the scheduler will give control to

the freeRTOS task waiting for that transaction to complete. This is important to consider if

several tasks are using this API.

2.4 Duplex Transmissions

The SPI hardware block supports a Duplex mode separately from write or read only mode. In Duplex

mode, at the same time as data is shifted out from the Master Output pin (MOSI), data is shifted in

from the Master Input pin (MISO). This feature can be useful when loopback tests are needed to

validate the functionality of the SPI interface or when an SPI transaction between devices needs to

do so. SDK provides an API along with a data structure that should be used for duplex SPI

transactions.

Table 4: APIs for Duplex Transactions

Name Description

ad_spi_complex_transact()

Use this function to perform duplex transactions on an SPI bus. Please
note that buffers for both written and read data should be provided.
This function can also be used for complex transactions, that is, it can
perform several transactions in one Chip Select activation. The total
number of transactions is determined by the last input parameter. For
instance, when two identical transactions are needed, set this
parameter to '2'.

spi_transfer_data
Use this structure when performing either a complex or duplex SPI
transaction.

Figure 8: Duplex SPI Transaction

For the DA1468x SoC

SPI Adapters

 13 of 33 © 2018 Dialog Semiconductor

2.5 SPI Related Macros

SPI adapters have macros for facilitating various management schemes and can be used as

required by the developer. The available macros can be found in /sdk/adapters/include/ad_spi.h. It is

recommended that any macro definition is put in the platform_devices.h header file. The most

frequently used macros are explained in Table 5.

Table 5: SPI Macros

Macro Name Description

CONFIG_SPI_EXCLUSIVE_OPEN

Set this macro to '1' to prevent multiple tasks from opening
the same device. When set to '1' both
ad_spi_device_acquire() and ad_spi_device_release() are
no longer necessary.

CONFIG_SPI_ONE_DEVICE_ON_BUS
Set this macro to '1' if only one device is connected on the
SPI bus (one on SPI1 and one on SPI2). This will reduce
code size and improve performance.

3 Analyzing The Demonstration Example

This section analyzes an application example which demonstrates using the SPI adapters. The

example is based on the freertos_retarget sample code found in the SDK. It adds two additional

freeRTOS tasks which are responsible for various SPI operations. One task performs loopback tests

using the SPI interface in duplex mode, while the second task controls an external SPI module,

connected on SPI1 bus. The code also enables the wake-up timer for handling external events. Both

synchronous and asynchronous SPI operations are demonstrated.

3.1 Application Structure

1. The key goal of this demonstration is for the device to perform a few SPI operations following

an event. For demonstration purposes the K1 button on the Pro DevKit has been configured

as a wake-up input pin. For more detailed information on how to configure and set a pin for

handling external events, read the External Interruption tutorial. At each external event

(produced at every K1 button press), a dedicated callback function named wkup_cb() is

triggered.

https://support.dialog-semiconductor.com/resource/external-interruption-tutorial-html

For the DA1468x SoC

SPI Adapters

 14 of 33 © 2018 Dialog Semiconductor

Figure 9: Echo Task – Main Execution Path

In this function, the task responsible for the SPI loopback tests is signaled so that it can

unblock. In this freeRTOS task, a duplex transaction takes place, that is, the data shifted out

from the MOSI pin is shifted in from the MISO pin at the same time. Upon finishing the

transaction, a data integrity check is performed and the corresponding debugging message is

printed out on the serial console.

2. At the same time, at every 100 ms time interval, the task which is responsible for controlling

the MCP4822 DAC module is executed. Depending on the value of the SPI_ASYNC_EN

macro, a synchronous or an asynchronous SPI write operation is performed. A 2-byte data is

sent over the SPI bus to update the analog output value of the MCP4822 DAC module. A

variable named data holds both the control bits as well as the raw data. At the end of every

SPI transaction, the raw data increments thus increasing the output analog value of the DAC

module.

For the DA1468x SoC

SPI Adapters

 15 of 33 © 2018 Dialog Semiconductor

Figure 10: MCP4822 Write SW FSM – Main Execution Path

3. As mentioned, the SPI_ASYNC_EN macro can be used to enable asynchronous SPI write

operations. As described in SPI Transactions, developers must not call asynchronous related

APIs without guaranteeing that the previous asynchronous transaction is finished. To ensure

this, after calling the ad_spi_async_transact() function, the code waits for the arrival of a

signal, indicating the end of the current SPI operation.

Figure 11: MCP4822 Async Write SW FSM – Callback Function Execution Path

spi_adapters.html#spi-transactions

For the DA1468x SoC

SPI Adapters

 16 of 33 © 2018 Dialog Semiconductor

4. The selected DAC module consists of a 2-byte register, in which the first four significant bits

(MSbits) control the behavior of the module. Since the demonstrated example masks all four

configuration bits with 0xF000, it is expected that the module is in active mode and VoutB is

activated. For more information on the control bits, read the Serial Interface section in the

manufacturer datasheet.

Figure 12: Control and Data bits of MCP4822 DAC Chip

Note: The MCP4822 DAC module has been selected for demonstration purposes only.

Providing complete drivers for this module is out of the scope of this tutorial.

4 Running The Demonstration Example

This section describes the steps required to prepare the Pro DevKit and other tools to successfully

run the example code. A serial terminal, an MPC4822 DAC module, a digital multimeter, and

optionally a logic analyzer are required for testing and verifying the code. In addition, a breadboard

and a few jumper wires are required to connect the SPI module to the Pro DevKit. If you are not

familiar with the recommended process on how to clone a project or configure a serial terminal, read

the Starting a Project tutorial.

There are two main methods to verify the correct behavior of the demonstrated code. The first

method is to use a Serial Terminal and the second is to use a logic analyzer. Both cases are given

below as a logic analyzer can be quite an expensive tool.

4.1 Verifying with a Serial Terminal

1. Establish a connection between the target device and your PC through the USB2(DBG) port of

the motherboard. This port is used both for powering and communicating to the DA1468x SoC.

For this tutorial a Pro DevKit is used.

https://people.ece.cornell.edu/land/courses/ece4760/labs/f2017/lab2_mcp4822.pdf
https://support.dialog-semiconductor.com/resource/starting-project-html

For the DA1468x SoC

SPI Adapters

 17 of 33 © 2018 Dialog Semiconductor

Figure 13: DA1468x Pro DevKit

2. Import and then make a copy of the freertos_retarget sample code found in the SDK of the

DA1468x family of devices.

Note: It is essential to import the folder named scripts to perform various operations

(including building, debugging, and downloading).

3. In the newly created project, create a new platform_devices.h header file under the project's

/config folder. To do this:

a. Right-click on the /sdk/adapters/include/platform_devices.h header file (1) and select

Copy (2).

For the DA1468x SoC

SPI Adapters

 18 of 33 © 2018 Dialog Semiconductor

Figure 14: Creating platform_devices.h Header File, Step 1

b. Right-click on the /config folder (3) and select Paste (4).

Figure 15: Creating platform_devices.h Header File, Step 2

For the DA1468x SoC

SPI Adapters

 19 of 33 © 2018 Dialog Semiconductor

Note: If a new platform_devices.h file is not created in /config directory, the application will

inherit the default macro definitions from /sdk/adapters/include/platform_devices.h.

4. In the target application, add/modify all the required code blocks as illustrated in the Code

Overview section.

Note: It is possible for the defined macros not to be taken into consideration instantly. Hence,

resulting in errors during compile time. If this is the case, the easiest way to deal with the

issue is to: right-click on the application folder, select Index > Rebuild and then Index >

Freshen All Files.

5. Build the project either in Debug_QSPI or Release_QSPI mode and burn the generated image

to the chip.

6. Connect the DAC module to the Pro DevKit. Figure 15 illustrates the pin connections required

to configure the MCP4822 module. For more information on the DAC module used, read the

manufacturer datasheet.

Figure 16: Configuring the MCP4822 DAC Slave Device

Note: A shortcut between MOSI (P3_2) and MISO (P3_1) pins on the Pro DevKit must be done

for testing the chip in duplex mode.

7. Connect a digital multimeter to VoutB pin of the DAC module.

8. Press the K2 button on Pro DevKit. This step starts the chip executing its firmware.

9. Open a serial terminal (115200, 8-N-1) and press the K1 button on Pro DevKit. A debugging

message is displayed on the console indicating whether or not the duplex SPI transaction has

been successfully executed.

https://people.ece.cornell.edu/land/courses/ece4760/labs/f2017/lab2_mcp4822.pdf

For the DA1468x SoC

SPI Adapters

 20 of 33 © 2018 Dialog Semiconductor

Figure 17: Debugging Messages Indicating the Status of the Duplex SPI Transaction

10. Verify that the analog output value of the DAC module increments until it reaches a value close

to 2.5 V. The read value is then wrapped around starting from 0 V. Note that the internal Vref

signal of the module is set to 2.5 V.

4.2 Verifying with a Logic Analyzer

This step is optional and is intended for those who are interested in using an external logic analyzer

to capture the SPI signals during a transaction

1. With the whole system up and running, open the software that controls the logic analyzer. For

this step a logic analyzer from Saleae Incorporation and its official software was used.

2. Connect the logic analyzer to the Pro DevKit. To do this, you should:

a. Connect a channel from the logic analyzer to P3_0 pin of Pro DevKit. This is the Clock

signal (SCK).

b. Connect a channel from the logic analyzer to P3_2 pin of Pro DevKit. This is the Master

Output Slave Input signal (MOSI).

c. Connect a channel from the logic analyzer to P3_4 pin of Pro DevKit. This is the Chip

Select signal (CS).

3. Press the K1 button on Pro DevKit and capture the SPI duplex transaction (loopback test).

For the DA1468x SoC

SPI Adapters

 21 of 33 © 2018 Dialog Semiconductor

Figure 18: SPI Duplex Transaction Captured using a Logic Analyzer.

4. At any time, capture an SPI write transaction between the system and the MCP4822.

Figure 19: SPI Write Transaction Captured using a Logic Analyzer.

5 Code Overview

This section provides the code blocks needed to successfully execute this tutorial.

5.1 Header Files

In main.c, add the following header files:

#include "ad_spi.h"

#include "hw_wkup.h"
#include <platform_devices.h>

5.2 System Init Code

In main.c, replace system_init() with the following code:

/*
 * Macro for enabling asynchronous SPI transactions.
 *
 * Valid values:
 * 0: SPI transactions will follow a synchronous scheme
 * 1: SPI transactions will follow an asynchronous scheme

For the DA1468x SoC

SPI Adapters

 22 of 33 © 2018 Dialog Semiconductor

 *
 */
#define SPI_ASYNC_EN (1)

/* OS signals used for synchronizing OS tasks*/
static OS_EVENT signal_echo;
static OS_EVENT signal_mcp_4822;

/* SPI Task priority */
#define mainSPI_TASK_PRIORITY (OS_TASK_PRIORITY_NORMAL)

/*
 * SPI application tasks - Function prototype
 */
static void prvSPITask_ECHO(void *pvParameters);
static void prvSPITask_MCP_4822(void *pvParameter);

static void system_init(void *pvParameters)
{
 OS_TASK task_h = NULL;

 /* Handler for SPI freeRTOS tasks */
 OS_TASK echo_h = NULL;
 OS_TASK mcp4822_h = NULL;

#if defined CONFIG_RETARGET
 extern void retarget_init(void);
#endif

 /*
 * Prepare clocks. Note: cm_cpu_clk_set() and cm_sys_clk_set() can be called only
 * from a task since they will suspend the task until the XTAL16M has settled and,
 * maybe, the PLL is locked.
 */
 cm_sys_clk_init(sysclk_XTAL16M);
 cm_apb_set_clock_divider(apb_div1);
 cm_ahb_set_clock_divider(ahb_div1);
 cm_lp_clk_init();

 /* Prepare the hardware to run this demo. */
 prvSetupHardware();

 /* init resources */
 resource_init();

#if defined CONFIG_RETARGET
 retarget_init();
#endif

 /* Set the desired sleep mode. */
 pm_set_sleep_mode(pm_mode_extended_sleep);

 /* Initialize the OS event signals */
 OS_EVENT_CREATE(signal_echo);

For the DA1468x SoC

SPI Adapters

 23 of 33 © 2018 Dialog Semiconductor

 OS_EVENT_CREATE(signal_mcp_4822);

 /* Start main task here */
 OS_TASK_CREATE("Template", /* The text name assigned to the task, for
 debug only; not used by the kernel. */
 prvTemplateTask, /* The function that implements the task. */
 NULL, /* The parameter passed to the task. */
 200 * OS_STACK_WORD_SIZE, /* The number of bytes to allocate to
 the stack of the task. */
 mainTEMPLATE_TASK_PRIORITY, /* The priority assigned to the task. */
 task_h); /* The task handle */
 OS_ASSERT(task_h);

 /* Suspend task execution */
 OS_TASK_SUSPEND(task_h);

 /*
 * Create an SPI task responsible for SPI loopback tests
 */
 OS_TASK_CREATE("SPI_ECHO",

 prvSPITask_ECHO,
 NULL,
 200 * OS_STACK_WORD_SIZE,

 mainSPI_TASK_PRIORITY,
 echo_h);
 OS_ASSERT(echo_h);

 /*
 * Create an SPI task responsible for controlling the
 * externally connected MCP4822 module.
 */
 OS_TASK_CREATE("SPI_MCP_4822",

 prvSPITask_MCP_4822,
 NULL,
 200 * OS_STACK_WORD_SIZE,

 mainSPI_TASK_PRIORITY,
 mcp4822_h);
 OS_ASSERT(mcp4822_h);

 /* the work of the SysInit task is done */
 OS_TASK_DELETE(xHandle);

}

5.3 Wake-Up Timer Code

In main.c, after system_init(), add the following code for handling external events via the wake-up

controller:

/*

For the DA1468x SoC

SPI Adapters

 24 of 33 © 2018 Dialog Semiconductor

 * Callback function to be called after an external event is generated,
 * that is, after K1 button on the Pro DevKit is pressed.
 */
void wkup_cb(void)
{
 /*
 * This function must be called by any user-specified
 * interrupt callback, to clear the interrupt flag.
 */
 hw_wkup_reset_interrupt();

 /*
 * Notify the [prvSPITask_ECHO] task that time for performing
 * a loopback test has elapsed.
 */
 OS_EVENT_SIGNAL_FROM_ISR(signal_echo);
}

/*
 * Function which makes all the necessary initializations for the
 * wake-up controller
 */
static void init_wkup(void)
{
 /*
 * This function must be called first and is responsible
 * for the initialization of the hardware block.
 */
 hw_wkup_init(NULL);

 /*
 * Configure the pin(s) that can trigger the device to wake up while
 * in sleep mode. The last input parameter determines the triggering
 * edge of the pulse (event)
 */
 hw_wkup_configure_pin(HW_GPIO_PORT_1, HW_GPIO_PIN_6, true,
 HW_WKUP_PIN_STATE_LOW);

 /*
 * This function defines a delay between the moment at which
 * a trigger event is present and the moment at which the controller
 * takes this event into consideration. Setting debounce time to [0]
 * hardware debouncing mechanism is disabled. Maximum debounce
 * time is 63 ms.
 */
 hw_wkup_set_debounce_time(10);

// Check if the chip is either DA14680 or 81
#if dg_configBLACK_ORCA_IC_REV == BLACK_ORCA_IC_REV_A
 /*
 * Set threshold for event counter. Interrupt is generated after
 * the event counter reaches the configured value. This function
 * is only supported in DA14680/1 chips.

For the DA1468x SoC

SPI Adapters

 25 of 33 © 2018 Dialog Semiconductor

 */
 hw_wkup_set_counter_threshold(1);
#endif

 /* Register interrupt handler */
 hw_wkup_register_interrupt(wkup_cb, 1);
}

5.4 Hardware Initialization

In main.c, replace both periph_init() and prvSetupHardware() with the following code responsible

for configuring pins after a power-up/wake-up cycle. Please note that every time the system enters

sleep, it loses all its pin configurations.

/* SPI pin configurations */
static const gpio_config gpio_cfg[] = {

 // The system is set to [Master], so it outputs the clock signal
 HW_GPIO_PINCONFIG(HW_GPIO_PORT_3, HW_GPIO_PIN_0,
 OUTPUT, SPI_CLK, true),

 // Pin for capturing data
 HW_GPIO_PINCONFIG(HW_GPIO_PORT_3, HW_GPIO_PIN_1,
 INPUT, SPI_DI, true),

 // Pin for outputting data
 HW_GPIO_PINCONFIG(HW_GPIO_PORT_3, HW_GPIO_PIN_2,
 OUTPUT, SPI_DO, true),

 /*
 * CS pin used when performing the loopback tests. Since the system is set
 * to [Master], it drives this line.
 */
 HW_GPIO_PINCONFIG(HW_GPIO_PORT_3, HW_GPIO_PIN_3,
 OUTPUT, GPIO, true),

 /*
 * CS pin used when performing transactions with the MCP4822 module, externally
 * connected on the SPI1 bus. Since the system is set to [Master], it drives this line.
 */
 HW_GPIO_PINCONFIG(HW_GPIO_PORT_3, HW_GPIO_PIN_4,
 OUTPUT, GPIO, true),

 // This is critical for the correct termination of the structure
 HW_GPIO_PINCONFIG_END
};

/**
 * @brief Initialize the peripherals domain after power-up.
 *
 */

For the DA1468x SoC

SPI Adapters

 26 of 33 © 2018 Dialog Semiconductor

static void periph_init(void)
{
if dg_configBLACK_ORCA_MB_REV == BLACK_ORCA_MB_REV_D
define UART_TX_PORT HW_GPIO_PORT_1
define UART_TX_PIN HW_GPIO_PIN_3
define UART_RX_PORT HW_GPIO_PORT_2
define UART_RX_PIN HW_GPIO_PIN_3
else
error "Unknown value for dg_configBLACK_ORCA_MB_REV!"
endif

 hw_gpio_set_pin_function(UART_TX_PORT, UART_TX_PIN,
 HW_GPIO_MODE_OUTPUT, HW_GPIO_FUNC_UART_TX);

 hw_gpio_set_pin_function(UART_RX_PORT, UART_RX_PIN,
 HW_GPIO_MODE_INPUT, HW_GPIO_FUNC_UART_RX);

 /* LED D2 on ProDev Kit for debugging purposes */
 hw_gpio_set_pin_function(HW_GPIO_PORT_1, HW_GPIO_PIN_5,
 HW_GPIO_MODE_OUTPUT, HW_GPIO_FUNC_GPIO);

 /* Configure the SPI pins */
 hw_gpio_configure(gpio_cfg);
}

/**
 * @brief Hardware Initialization
 */
static void prvSetupHardware(void)
{

 /* Init hardware */
 pm_system_init(periph_init);
 init_wkup();
 }

5.5 Task Code for MCP4822

Code snippet of the prvSPITask_MCP_4822 task responsible for interacting with the MCP4822 DAC

module, externally connected on SPI1 bus. In main.c, add the following code (after system_init()):

/*
 * Data structure for the DAC4822 module
 */
static struct spi_mcp_4822 {

 // DAC4822 consists of a 2-byte register
 uint16_t data;

For the DA1468x SoC

SPI Adapters

 27 of 33 © 2018 Dialog Semiconductor

 // Control bits mask
 uint16_t mask;

 // Device handle
 spi_device spi_dev;

} spi_mcp_4822_t = { // Create an instance of the above structure

 .data = 0x0000,

 // Control bits occupy the 4 MSbits and are set to '1'
 .mask = 0xF000,

 .spi_dev = NULL,
};

#if SPI_ASYNC_EN == 1

/*
 * Callback function called upon an SPI asynchronous transaction.
 *
 * \param[in] user_data User data that can be passed and used within the function
 */
void spi_mcp_4822_cb(void *user_data)
{
 /*
 * Just to show how parameters can be passed
 * within callback functions!
 */
 struct spi_mcp_4822 *spi_param = (struct spi_mcp_4822 *)user_data;

 /*
 * Increment the analog output value of the DAC module. When data reaches
 * its maximum value, it wraps around starting from zero value.
 */
 spi_param->data += 10;

 /* Signal [prvSPITask_MCP_4822] that time for resuming has elapsed */
 OS_EVENT_SIGNAL_FROM_ISR(signal_mcp_4822);
}
#endif

/* Task responsible for controlling the MCP4822 module */
static void prvSPITask_MCP_4822(void *pvParameters)
{
 /*
 * SPI adapter initialization should be done once at the beginning. Alternatively,
 * this function could be called during system initialization in system_init().
 */
 ad_spi_init();

For the DA1468x SoC

SPI Adapters

 28 of 33 © 2018 Dialog Semiconductor

 for (;;) {

 /* Suspend task's execution for 100 ms */
 OS_DELAY(OS_MS_2_TICKS(100));

 /*
 * Set DAC's control bits using a mask.
 */
 spi_mcp_4822_t.data |= spi_mcp_4822_t.mask;

 /*
 * Turn on LED D2 on ProDev Kit indicating the start of a process
 */
 hw_gpio_set_active(HW_GPIO_PORT_1, HW_GPIO_PIN_5);

 /*
 * Open the device that will access the SPI bus
 */
 spi_mcp_4822_t.spi_dev = ad_spi_open(MCP_4822);

#if SPI_ASYNC_EN == 0
 /*
 * Perform a synchronous SPI write operation, that is, the task is blocking
 * waiting for the transaction to finish. Upon transaction completion,
 * the blocked task unblocks and resumes its operation.
 */
 ad_spi_write(spi_mcp_4822_t.spi_dev, (uint8_t *)&spi_mcp_4822_t.data,
 sizeof(uint16_t));

 /*
 * Increment the analog output value of the DAC module. When data reaches
 * its maximum value, it wraps around starting from zero value.
 */
 spi_mcp_4822_t.data += 10;

#else
 /*
 * Perform an asynchronous SPI write operation, that is, the task does not
 * block waiting for the transaction to finish. Upon transaction completion
 * callback function is triggered indicating the completion of the SPI operation
 */
 ad_spi_async_transact(spi_mcp_4822_t.spi_dev,
 SPI_CSA, // Activate CS signal

 /* Send some data... */
 SPI_SND((uint8_t *)&spi_mcp_4822_t.data, sizeof(uint16_t)),

 /* Declare callback function and data to be passed inside it. */
 SPI_CB1(spi_mcp_4822_cb, &spi_mcp_4822_t),

 SPI_CSD, // Deactivate CS signal
 SPI_END

For the DA1468x SoC

SPI Adapters

 29 of 33 © 2018 Dialog Semiconductor

);

 /*
 * In the meantime and while SPI transactions are performed in the
 * background, application task can proceed to other operations/calculation.
 * It is essential that, the new operations do not involve SPI transactions
 * on the already occupied bus!!!
 */

 /*
 * Make sure that the current SPI operation has finished,
 * blocking here forever.
 */
 OS_EVENT_WAIT(signal_mcp_4822, OS_EVENT_FOREVER);
#endif

 /* Close the already opened device */
 ad_spi_close(spi_mcp_4822_t.spi_dev);

 /*
 * Turn off LED D2 on ProDev Kit indicating the end of a process
 */
 hw_gpio_set_inactive(HW_GPIO_PORT_1, HW_GPIO_PIN_5);

 } // end of for()
} // end of task

5.6 Task Code for Loopback Test

Code snippet of the prvSPITask_ECHO task responsible for performing loopback tests. In main.c,

add the following code (after prvSPITask_MCP_4822()):

/* Number of transmitted/received data */
#define BUFFER_SIZE 5

/*
 * Create an SPI task responsible for SPI loopback tests
 */
static void prvSPITask_ECHO(void *pvParamters)
{
 /* Buffer for storing the transmitted data */
 uint8_t wbuf[BUFFER_SIZE];

 /* Buffer for storing the received data */
 uint8_t rbuf[BUFFER_SIZE];

 /* Configure the transfer scheme used during the SPI duplex transaction */
 spi_transfer_data spi_transfer_cfg = {
 .wbuf = (void *)wbuf,
 .rbuf = (void *)rbuf,

For the DA1468x SoC

SPI Adapters

 30 of 33 © 2018 Dialog Semiconductor

 .length = BUFFER_SIZE,
 };

 /* Initialize transmitted data - All data are set to 0x55 */
 memset(wbuf, 0x55, BUFFER_SIZE);

 /*
 * Initialization should be done once at the beginning. Alternatively,
 * this function could be called during system initialization in [system_init]
 * function.
 */
 ad_spi_init();

 spi_device spi_dev;

 for (;;) {

 /*
 * Suspend task execution - As soon as WKUP callback function
 * is triggered the task resumes its execution.
 */
 OS_EVENT_WAIT(signal_echo, OS_EVENT_FOREVER);

 /* Open the device that will access the SPI bus */
 spi_dev = ad_spi_open(ECHO_LOOP);

 printf("\n\rSPI loopback operation...\n\r");

 /* Perform a duplex SPI transaction */
 ad_spi_complex_transact(spi_dev, &spi_transfer_cfg, 1);

 /* Close the already opened device */
 ad_spi_close(spi_dev);

 /*
 * Check whether the read data matches written data. If there is a match
 * [strncmp] returns [0].
 */
 if (!strncmp((char *)spi_transfer_cfg.rbuf, (char *)spi_transfer_cfg.wbuf,
 BUFFER_SIZE)) {
 printf("\n\rRead data matches written data!\n\r\n\r");
 } else {
 printf("\n\rRead data does not match written data!\n\r\n\r");
 }

 /* Print out the received data */
 for (int i = 0; i < 5; i++) {
 printf("\n\rRBUF[%d] = 0x%X\n\r", i,
 *(((uint8_t *)spi_transfer_cfg.rbuf) + i));
 }
 fflush(stdout);

 } // end of for()

For the DA1468x SoC

SPI Adapters

 31 of 33 © 2018 Dialog Semiconductor

} // end of task

5.7 Macro Definitions

In config/custom_config_qspi.h, add the following macro definitions:

/*
 * Enable the preferred devices, declared in "platform_devices.h"
 */
#define SPI_ECHO
#define SPI_MCP_4822

/*
 * Macros for enabling SPI operations using Adapters
 */
#define dg_configUSE_HW_SPI (1)
#define dg_configSPI_ADAPTER (1)

5.8 SPI Bus Configuration Macros

In the newly created platform_devices.h, add the following device configurations between

SPI_BUS(SPI1) and SPI_BUS_END:

#ifdef SPI_ECHO
 SPI_SLAVE_DEVICE(SPI1, ECHO_LOOP, HW_GPIO_PORT_3, HW_GPIO_PIN_3,
 HW_SPI_WORD_8BIT, HW_SPI_POL_LOW, HW_SPI_PHA_MODE_0,
 HW_SPI_FREQ_DIV_2, -1);
#endif

#ifdef SPI_MCP_4822
 SPI_SLAVE_DEVICE(SPI1, MCP_4822, HW_GPIO_PORT_3, HW_GPIO_PIN_4,
 HW_SPI_WORD_16BIT, HW_SPI_POL_LOW, HW_SPI_PHA_MODE_0,
 HW_SPI_FREQ_DIV_2, -1);
#endif

Note: By default, the SDK comes with a few predefined device configurations in the

platform_devices.h header file. Therefore, the developer should check whether an entry

matches with a device connected to the controller.

For the DA1468x SoC

SPI Adapters

 32 of 33 © 2018 Dialog Semiconductor

Revision History

Revision Date Description

1.0 19-Mar-2018 First released version

2.0 23-July-2018 More descriptive steps to follow, figures and examples.

2.1 20-Sep-2018 Updated figures, Minor improvements in prvSPITask_MCP_4822 task.

For the DA1468x SoC

SPI Adapters

 33 of 33 © 2018 Dialog Semiconductor

Status Definitions

Status Definition

DRAFT
The content of this document is under review and subject to formal approval, which may result in modifications or

additions.

APPROVED

or unmarked
The content of this document has been approved for publication.

Disclaimer

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or
warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no
responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the
specification and the design of the related semiconductor products, software and applications.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes
no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further
testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog
Semiconductor excludes all liability in this respect.

Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software
and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor’s Standard
Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.

Dialog and the Dialog logo are trademarks of Dialog Semiconductor plc or its subsidiaries. All other product or service names are the property of
their respective owners.

© 2018 Dialog Semiconductor. All rights reserved.

Contacting Dialog Semiconductor

United Kingdom (Headquarters)

Dialog Semiconductor (UK) LTD

Phone: +44 1793 757700

Germany

Dialog Semiconductor GmbH

Phone: +49 7021 805-0

The Netherlands

Dialog Semiconductor B.V.

Phone: +31 73 640 8822

North America

Dialog Semiconductor Inc.

Phone: +1 408 845 8500

Japan

Dialog Semiconductor K. K.

Phone: +81 3 5769 5100

Taiwan

Dialog Semiconductor Taiwan

Phone: +886 281 786 222

Hong Kong

Dialog Semiconductor Hong Kong

Phone: +852 2607 4271

Korea

Dialog Semiconductor Korea

Phone: +82 2 3469 8200

China (Shenzhen)

Dialog Semiconductor China

Phone: +86 755 2981 3669

China (Shanghai)

Dialog Semiconductor China

Phone: +86 21 5424 9058

Email:

enquiry@diasemi.com

Web site:

www.dialog-semiconductor.com

http://www.dialog-semiconductor.com/standard-terms-and-conditions
http://www.dialog-semiconductor.com/standard-terms-and-conditions
http://www.dialog-semiconductor.com/

