SH7450 シリーズ用デバッギング MCU ボード
R0E574504PBZ00、R0E574504CBF10、R0E574552CBG00
ユーザーズマニュアル
ルネサスマイクロコンピュータ開発環境システム
SuperH™ファミリ / SH7450 シリーズ
R0E574504PBZ00J
ご注意書き

1. 本資料に記載されている内容は本資料発行時点のものであり、予告なく変更することがあります。当社製品のご購入およびご使用にあたりましては、事前に当社営業窓口で最新の情報をご確認いただきますとともに、当社ホームページを通じて公開される情報に常にお注意ください。

2. 本資料に記載された当社製品および技術情報の使用に関連し発生した第三者の特許権、著作権その他の知的財産権の侵害等に関し、当社は、一切その責任を負いません。当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を再許諾するものではありません。

3. 当社製品を改造、改変、複製等しないでください。

4. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。お客様の機器の設計において、回路、ソフトウェアおよびこれらに関連する情報を使用する場合には、お客様の責任において行ってください。これらの使用に起因しお客様または第三者に生じた損害に関して、当社は、一切その責任を負いません。

5. 輸出に関しては、「外国為替及び外国貿易法」その他輸出関連法令を遵守し、かかる法令の定めるところにより必要な手続を行ってください。本資料に記載されている当社製品および技術を大量破壊兵器の開発等の目的、軍事利用の目的その他軍事用途の目的で使用しないでください。また、当社製品および技術を国内外の法令及び規制により製造・使用・販売を禁止されている機器を使用することができません。

6. 本資料に記載されている情報は、正確を期すため慎重に作成したものですが、誤りがないことを保証するものではありません。万一、本資料に記載されている情報の誤りに起因する損害がお客様に生じた場合には、当社は、一切その責任を負いません。

7. 当社は、当社製品の品質水準を「標準水準」、「高品質水準」および「特定水準」に分類しております。また、各品質水準は、以下に示す用途に製品が使用される事を意味しております。当社製品の品質水準をご確認ください。お客様は、当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途に当社製品を使用することができません。また、お客様は、当社の文書による事前の承諾を得ることなく、意図されていない用途に当社製品を使用することができません。当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途または意図されていない用途に当社製品を使用したことによりお客様または第三者に生じた損害等に関し、当社は、一切その責任を負いません。なお、当社製品のデータ・シート、データ・ブック等の資料で特に品質水準の表示がない場合は、標準水準製品であることを表します。

標準水準： コンピュータ、OA機器、通信機器、計測機器、AV機器、家電、工作機械、バーソナル機器、産業用ロボット

高品質水準： 輸送機器（自動車、電車、船舶等）、交通情報機器、防災・防犯装置、各種安全装置、生命維持を目的として設計されていない医療機器（厚生労働省認定の管理医療機器に相当）

特定水準： 航空機器、航空宇宙機器、海底中継機器、原子力制御システム、生命維持のための医療機器（生命維持装置、人体に埋め込み使用するもの、治療行為（患部切出し等）を行うもの、その他直接人命に影響を与えるもの）（厚生労働省認定の高度管理医療機器に相当）またはシステム等

8. 本資料に記載された当社製品のご使用につき、特に、最大定格、動作電圧電圧範囲、放熱特性、実装条件その他の諸条件につきましては、当社保証範囲内でご使用ください。当社保証範囲を超えて当社製品をご使用された場合の故障および事故につきましては、当社は、一切その責任を負いません。

9. 当社は、当社製品の品質および信頼性の向上に努めておりますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は耐放射線設計については行っておりません。当社製品の故障または誤動作が生じた場合も、事故、火災事故、社会的損害などを生じさせないようお客様の責任において元長設計、延焼対策設計、過作り防止設計その他の安全設計およびエーディング処理等、機器またはシステムとしての出荷保証をお願いいたします。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様が製造された最終の機器・システムとしての安全検証をお願いいたします。

10. 当社製品の環境適合性等、詳細につきましては製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、当社の物質の含有・使用を規制するRoHs指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。

11. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを固くお断りいたします。

12. 本資料に関する詳細についてのお問い合わせその他お気付きの点等がございましたら当社営業窓口までご照会ください。

注1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社がその総株主の議決権の過半数を直接または間接に保有する会社をいいます。

注2. 本資料において使用されている「当社製品」とは、注1において定義された当社の開発、製造製品をいいます。
Regulatory Compliance Notices

European Union regulatory notices

CE Certifications:
 EN 55022 Class A

 WARNING: This is a Class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

 EN 55024

Environmental Compliance and Certifications:

Information for Traceability:
- Authorized representative
 Name: Renesas Electronics Corp.
 Address: 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa, 211-8668, Japan
- Manufacturer
 Name: Renesas Solutions Corp.
 Address: Nippon Bldg., 2-6-2, Ote-machi, Chiyoda-ku, Tokyo 100-0004, Japan
- Person responsible for placing on the market
 Name: Renesas Electronics Europe Ltd.
 Address: Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.

 Trademark and Type name
 Trademark: Renesas
 Product name: Debug MCU Board
 Type name: R0E574504PBZ00
United States Regulatory Notices on Electromagnetic Compatibility:

FCC Certifications:
This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

CAUTION: Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
重要事項

・本エミュレータをご使用になる前に、必ずユーザーズマニュアルをよく読んで理解してください。

・ユーザーズマニュアルは、必ず保管し、使用上不明な点がある場合は再読してください。

エミュレータとは:
ここでいうエミュレータとは、ルネサス レクストロンクス株式会社（以下、「ルネサス」という）、株式会社ルネサス ソリューションズが製作した次の製品を指します。
(1) E10A-USB エミュレータ本体
(2) デバッグ MCU ボード
お客様のユーザシステムおよびホストコンピュータは含みません。

デバッグ MCU ボードの使用目的:
本デバッグ MCU ボードは、E10A-USB エミュレータとユーザシステムを接続するためのボードです。この使用目的に従って、本デバッグ MCU ボードを正しく使用してください。この目的以外に本デバッグ MCU ボードの使用を堅くお断りします。

エミュレータを使用する人は:
本エミュレータは、ユーザーズマニュアルをよく読み、理解した人のみが使用してください。
特に、本エミュレータを初めて使用する人は、本エミュレータをよく理解し、使い慣れている人から指導を受けることを強くお勧めします。
本エミュレータを使用する上で、電気回路、論理回路およびマイクロコンピュータの基本的な知識が必要です。

エミュレータご利用に際して:
(1) 本エミュレータは、プログラムの開発、評価段階に使用する開発支援装置です。
開発の完了したプログラムを量産される場合には、必ず事前に実装評価、試験などにより、お客様の責任において適用可否を判断してください。
(2) 本エミュレータを使用したことによるお客様での開発結果については、一切の責任を負いません。
(3) 弊社は、本製品不具合に対する回避策の提示または、不具合改修などについて、有償もしくは無償の対応を努めます。ただし、いかなる場合でも回避策の提示または不具合改修を保証するものではありません。
(4) 本エミュレータは、プログラムの開発、評価用に実験室での使用を想定して準備された製品です。国内の使用に際し、電気用品安全法および電磁波障害対策の適用を受けておりません。
(5) 本エミュレータは、UL などの安全規格、IEC などの規格を取得しておりません。
したがって、日本国内から海外に持ち出される場合は、この点をご承知おきください。
(6) ルネサスは、潜在的な危険が存在するおそれのあるすべての起こりうる諸状況や誤使用を予見できません。したがって、このユーザーズマニュアルと本エミュレータに貼付されている警告がすべてではありません。お客様の責任で、本エミュレータを正しく安全に使用してください。
使用制限について：
本エミュレータは、開発支援用として開発したものです。したがって、機器組み込み用として使用しないでください。
(1) 運輸、移動体用
(2) 医療用（人命に関わる装置用）
(3) 航空宇宙用
(4) 原子力制御用
(5) 海底中継用
このような目的で本エミュレータの採用をお考えのお客様は、ルネサス エレクトロニクス、ルネサス ソリューションズ、ルネサス エレクトロニクス販売または特約店へ是非ご連絡頂きますようお願い致します。

製品の変更について：
ルネサスは、本エミュレータのデザイン、性能を絶えず改良する方針をとっています。したがって、予告なく仕様、デザインおよびユーザーズマニュアルを変更することがあります。

権利について：
(1) 本資料に掲載された情報、製品または回路の使用に起因する損害または特許権その他権利の侵害に関しては、ルネサスは一切その責任を負いません。
(2) 本資料によって第三者またはルネサスの特許権その他権利の実施権を許諾するものではありません。
(3) このユーザーズマニュアルおよび当デバッグ MCU ボードは著作権で保護されており、すべての権利はルネサスに帰属しています。このユーザーズマニュアルの一部であると全部であろうといかなる箇所も、ルネサスの書面による事前の承諾なしに、複写、複製、転載することはできません。

図について：
このユーザーズマニュアルの図は、一部の実物と異なっていることがあります。
安全事項

シグナル・ワードの定義

ユーザーズマニュアルおよびエミュレータへの表示では、エミュレータを正しくご使用頂き、あなた
や他の人々への危害や財産への損害を未然に防止するために、いろいろな絵表示をしています。
安全事項では、その絵表示と意味を示し、本エミュレータを安全に正しくご使用されるため
の注意事項を説明します。
ここに記載している内容を良く理解してからご使用ください。

これ、安全警告記号です。潜在的に、人に危害を与える危険に対し注意を喚起するた
めに用います。起こり得る危害又は死を回避するためにこの記号の後に続くすべての安
全メッセージに従ってください。

危険

危険は、回避しないと、死亡又は重傷を招く差し迫った危険な状況を示します。
ただし、本製品では該当するものはありません。

警告

警告は、回避しないと、死亡又は重傷を招く可能性がある潜在的に危険な状況を
示します。

注意

注意は、回避しないと、軽傷又は中程度の傷害を招くことがある潜在的に危険な
状況を示します。

注意

安全警告記号の付かない注意は、回避しないと、財物損傷を引き起こすことがある
潜在的に危険な状況を示します。

注、重要

は、例外的な条件や注意を操作手順や説明記述の中で、ユーザに伝達する場合に
使用しています。
警告

1. 感電、火災等の危険防止および品質保証のために、お客様ご自身による修理や改造は行わないでください。故障の際のアフターサービスにつきましては、ルネサスまたはルネサス特約店保守担当にお申し付けください。

2. エミュレータまたはユーザシステムのパワーオン時、すべてのケーブル類の抜き差しを行わないでください。抜き差しを行った場合、エミュレータとユーザシステムの発煙、発火の可能性があります。

また、デバッグ中のユーザプログラムを破壊する可能性があります。

3. エミュレータまたはユーザシステムのパワーオン時、エミュレータとユーザシステムインタフェースボードおよびユーザシステムインタフェースボードとユーザシステム上のICソケットの抜き差しを行わないでください。
抜き差しを行った場合、エミュレータとユーザシステムの発煙、発火の可能性があります。また、デバッグ中のユーザプログラムを破壊する可能性があります。

4. ユーザシステムインタフェースボードとユーザシステム上のICソケットはピン番号を確かめて正しく接続してください。接続を誤るとエミュレータとユーザシステムの発煙、発火の可能性があります。

5. SH7450、SH7451グループをご使用時は誤接続を行った場合に、以下のように電源端子がショートします。

<table>
<thead>
<tr>
<th>90°回転</th>
<th>180°回転</th>
<th>270°回転</th>
</tr>
</thead>
<tbody>
<tr>
<td>A8(Vss)</td>
<td>—</td>
<td>H20(PVcc)</td>
</tr>
<tr>
<td>A14(Vss)</td>
<td>—</td>
<td>P20(AVcc)</td>
</tr>
<tr>
<td>B8(Vss)</td>
<td>—</td>
<td>H19(PVcc)</td>
</tr>
<tr>
<td>B20(Vss)(N.C.)</td>
<td>—</td>
<td>Y19(AVcc)(N.C.)</td>
</tr>
<tr>
<td>D16(Vdd)</td>
<td>—</td>
<td>T17(AVcc)(N.C.)</td>
</tr>
<tr>
<td>G17(PLLVcc)</td>
<td>—</td>
<td>A16(Vss)</td>
</tr>
<tr>
<td>H9(Vdd)</td>
<td>—</td>
<td>J13(Vss)</td>
</tr>
<tr>
<td>H10(Vdd)</td>
<td>—</td>
<td>H1(Vdd)</td>
</tr>
<tr>
<td>H11(Vdd)</td>
<td>—</td>
<td>L1(Vdd)</td>
</tr>
<tr>
<td>H12(Vdd)</td>
<td>—</td>
<td>M13(Vss)</td>
</tr>
<tr>
<td>J8(Vss)</td>
<td>—</td>
<td>H12(Vdd)</td>
</tr>
<tr>
<td>J11(Vdd)</td>
<td>—</td>
<td>K12(Vdd)</td>
</tr>
<tr>
<td>K8(Vss)</td>
<td>—</td>
<td>H11(Vdd)</td>
</tr>
<tr>
<td>K12(Vdd)</td>
<td>—</td>
<td>L11(Vdd)</td>
</tr>
<tr>
<td>L8(Vss)</td>
<td>—</td>
<td>J1(Vdd)</td>
</tr>
<tr>
<td>M8(Vss)</td>
<td>—</td>
<td>H9(Vdd)</td>
</tr>
<tr>
<td>M9(Vss)</td>
<td>—</td>
<td>J9(Vdd)</td>
</tr>
<tr>
<td>N20(AVcc)</td>
<td>—</td>
<td>Y8(Vcc)</td>
</tr>
<tr>
<td>W20(AVcc)(N.C.)</td>
<td>—</td>
<td>Y2(Vcc)(N.C.)</td>
</tr>
<tr>
<td>Y1(Vcc)(N.C.)</td>
<td>—</td>
<td>A1(Vss)(N.C.)</td>
</tr>
<tr>
<td>Y2(Vcc)(N.C.)</td>
<td>—</td>
<td>B1(Vss)(N.C.)</td>
</tr>
<tr>
<td>Y8(Vcc)</td>
<td>—</td>
<td>H12(Vdd)</td>
</tr>
<tr>
<td>Y18(AVcc)(N.C.)</td>
<td>—</td>
<td>W1(Vss)(N.C.)</td>
</tr>
<tr>
<td>Y20(AVcc)(N.C.)</td>
<td>—</td>
<td>Y1(Vcc)(N.C.)</td>
</tr>
</tbody>
</table>

6. SH7455、SH7456グループをご使用時は誤接続を行った場合に、以下のように電源端子がショートします。
<table>
<thead>
<tr>
<th></th>
<th>90°回転</th>
<th>180°回転</th>
<th>270°回転</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3(Vcc)</td>
<td>K5(Vdd)</td>
<td>A1(Vss(N.C.))</td>
<td>R15(AVcc(N.C.))</td>
</tr>
<tr>
<td>K3(Vss)</td>
<td>G6(Vdd)</td>
<td>L4(Vcc)</td>
<td>E12(Vss)</td>
</tr>
<tr>
<td>L4(Vcc)</td>
<td>D5(Vdd)</td>
<td>K4(Vss)</td>
<td>F12(Vcc)</td>
</tr>
<tr>
<td>K4(Vss)</td>
<td>D6(Vdd)</td>
<td>D5(Vdd)</td>
<td>M11(Vss)</td>
</tr>
<tr>
<td>D5(Vdd)</td>
<td>E12(Vss)</td>
<td>C5(Vdd)</td>
<td>N11(Vss)</td>
</tr>
<tr>
<td>K4(Vss)</td>
<td>D6(Vdd)</td>
<td>D5(Vdd)</td>
<td>M10(Vcc)</td>
</tr>
<tr>
<td>N10(Vcc)</td>
<td>K3(Vss)</td>
<td>G6(Vdd)</td>
<td>N10(Vcc)</td>
</tr>
<tr>
<td>M10(Vcc)</td>
<td>K4(Vss)</td>
<td>N11(Vdd)</td>
<td>D8(Vcc)</td>
</tr>
<tr>
<td>N11(Vss)</td>
<td>L3(Vcc)</td>
<td>M7(Vdd)</td>
<td>D8(Vcc)</td>
</tr>
<tr>
<td>M11(Vss)</td>
<td>L4(Vcc)</td>
<td>N8(Vdd)</td>
<td>D8(Vss)</td>
</tr>
<tr>
<td>R15(AVcc(N.C.))</td>
<td>B1(Vss(N.C.))</td>
<td>M8(Vdd)</td>
<td>D8(Vss)</td>
</tr>
<tr>
<td>A15(Vss(N.C.))</td>
<td>R15(AVcc(N.C.))</td>
<td>R15(AVcc(N.C.))</td>
<td>A15(Vss(N.C.))</td>
</tr>
</tbody>
</table>
ユーザ登録について

ご購入頂いた際には WEB でのユーザ登録をお願いします。アフターサービスの情報としてのみ利用させて頂きます。

なお、登録なき場合は、フィールドチェンジ、不具合情報の連絡等の保守サービスが受けられなくなりますので、必ずご登録頂きますようお願いいたします。
http://tool-support.renesas.com/jpn/toolnews/registration/index.html
上記アドレスにアクセスをお願いいたします。
（ユーザ登録に関するお問合せ先：regist_tool@renesas.com）
目次

1. 製品概要...1
 1.1 はじめに...1
 1.2 構成内容...5
 1.3 デバッグ MCU ボードの構成品 ...5
 1.4 ハードウェア構成 ..8
 1.4.1 デバッグ MCU ボード本体の構成 ...9
 1.4.2 ユーザシステムインタフェースボードの構成 ...14
 1.5 使用環境条件 ..15
2. セットアップ ...17
 2.1 デバッグ MCU ボード使用までのフローチャート ..17
 2.2 デバッグ MCU ボードのセットアップ..18
 2.2.1 デバッグ MCU ボードと E10A-USB エミュレータの接続 ...18
 2.2.2 ユーザシステムへの接続 ...20
 2.2.3 電源選択スイッチの設定 ...24
 2.2.4 電源ケーブルの接続 ..26
 2.2.5 制御用信号設定スイッチの設定 ..27
 2.2.6 システムグランド系の接続 ..30
 2.3 E10A-USB のセットアップ ..31
 2.3.1 E10A-USB エミュレータのDIPスイッチ設定 ..31
 2.3.2 CD-ROMについて ...32
 2.3.3 ホストコンピュータとの接続 ...33
 2.3.4 E10A-USB エミュレータのセットアップ ..34
 2.3.5 High-performance Embedded Workshop の起動 ...34
 2.3.6 ターゲットの選択 ..35
 2.4 デバッグ MCU ボード単体動作時のセットアップ ...36
 2.4.1 デバッグ MCU ボードのスイッチ設定 ..36
 2.4.2 デバッグ MCU ボードへのリセット入力 ...38
3. ハードウェア仕様 ...39
 3.1 デバッグ MCU ボードの外形寸法 ..39
 3.2 ユーザシステムインタフェースボード接続時の寸法 ...42
 3.3 ユーザシステムの推奨マウントパッド寸法 ...44
 3.3.1 SH7450、SH7451 グループ(PRBG0292GB-A パッケージ)をご使用の場合44
 3.3.2 SH7455、SH7456 グループ(PRBG0176GA-A パッケージ)をご使用の場合45
 3.4 MCU を IC ソケットに実装する場合 ..46
 3.5 ユーザシステムインタフェース回路 ..48
 3.6 ユーザシステムインタフェースのディレイ時間 ...52
4. 保守と保証 ...53
 4.1 ユーザ登録 ..53
 4.2 保守 ...53
 4.3 保証内容 ...53
4.4 修理規定 ... 54
4.5 修理依頼方法 .. 55
付録 A 故障症状調査書 .. 57
1. 製品概要

1.1 はじめに

High-performance Embedded Workshop は、ルネサスのマイクロコンピュータ用に、C/C++言語およびアセンブリ言語で書いたアプリケーションの開発およびデバッグを簡単に行うためのグラフィカルユーザインタフェースを提供します。アプリケーションを実行するエミュレータのアクセス、測定、および変更に関して、High-performance Embedded Workshop は高機能でしかも直観的な手段を提供することを目的としています。

本システムは、ルネサスオリジナルマイクロコンピュータを使用したシステムの開発をソフトウェア、ハードウェアの両面からサポートする支援装置です。

デバッグ MCU ボードは、ユーザシステム上の IC ソケットを経由して、ユーザシステムに接続します。このため完成した製品に近い形態でデバッグを行うことができます。また、E10A-USB エミュレータと組み合わせることにより、USB1.1/2.0(Full-Speed)を搭載しているパーソナルコンピュータ（IBM PC 互換機）をホストコンピュータにして実験室、フィールドと場所を選ばずデバッグを行うことができます。
図 1.1 デバッグ MCU ボードを使用したシステム構成外観

【注】ユーザシステムインタフェースボードはデバッグ MCU ボードとは別売りで、デバッグ対象 MCU によりご使用になるユーザシステムインタフェースボードが異なりますのでご注意願います。
デバッグ MCU ボードの特長は、以下の通りです。

(1) コストパフォーマンスに優れたインサーキットエミュレータ

E10A-USBエミュレータと組み合わせることにより、ユーザ端子をデバッグインタフェース(H-UDI)に占有されることなく、安価にユーザシステムのデバッグが可能です。

デバッグMCUボードのAUD機能を使用することにより、大容量のリアルタイムトレースや指定した範囲内のメモリアクセス（メモリアクセスアドレスやメモリアクセスデータ）をトレース取得するウィンドウトレース機能をサポートできます。

(2) リアルタイムエミュレーション

CPUの最高動作周波数でのリアルタイムエミュレーションができます。

(3) 優れた操作性を実現

Microsoft®Windows®2000、Microsoft®Windows®XP、Windows Vista®環境下で動作するHigh-performance Embedded Workshopの使用により、マウスなどのボインティングデバイスを用いて、ユーザプログラムのデバッグが可能です。また、High-performance Embedded Workshopを使用して、ロードモジュールファイルを高速にダウンロードできます。

(4) 製品形態でのユーザシステムのデバッグ

ユーザシステム完成時の製品形態に近い状態でユーザシステムのデバッグを行うことができます。

(5) コンパクトなデバッグ環境

ノート型パソコンをホストコンピュータとして使用でき、場所を選ばずデバッグ環境を作成することができます。
注意

デバッガ ボードをお使いになる前に、以下の注意事項を必ず確認してください。誤った使い方は、デバッガ ボード、ユーザープログラムおよびユーザーシステムの破壊につながります。

1. 製品を梱包箱から取り出し、納品送付書に示されているものがそろっているか、確認してください。
2. 製品に重量物を上積みするなどして、無理な力を加えないでください。
3. 製品に過大な物理的衝撃を与えないでください。「1.5 使用環境条件」を参照してください。
4. デバッガMCUボードに、指定された電圧、電源、周波数以外の電源を供給しないでください。
5. ホストコンピュータまたはユーザーシステムの設置場所を移動する場合は、本製品に強い振動、衝撃が加わらないように注意してください。
6. ケーブルを接続した後は、接続位置が正しいことを再度確認してください。接続方法については、「2. セットアップ」を参照してください。
7. すべてのケーブルを接続し終えてから、接続した各装置へ電源を投入してください。また、電源が入っているときにケーブルの接続および取り外しを行わないでください。
1.2 梱包内容

梱包を解いた後、梱包がそろっているか確認してください。デバッグ MCU ボードの梱包品は、「1.3 デバック MCU ボードの構成品」を参照してください。確認した結果、梱包品に不足がありましたら、ルネサス エレクトロニクス販売または特約店、ルネサス エレクトロニクス コンタクトセンタ (csc@renesas.com) までご連絡ください。

1.3 デバッグ MCU ボードの構成品

デバッグ MCU ボードは、SH7450 シリーズ (SH7450、SH7451、SH7455、SH7456 グループ) をサポートしています。

表 1.1 に、デバッグ MCU ボードの構成品を示します。

<table>
<thead>
<tr>
<th>分類</th>
<th>品名</th>
<th>構成品外観</th>
<th>数量</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>ハードウェア</td>
<td>デバッグMCUボード本体</td>
<td></td>
<td>1</td>
<td>幅：106.0 mm、横：135.0 mm、高さ：13.0 mm、重量：120 g</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ユーザシステムインターフェース共通ケーブル</td>
<td></td>
<td>4</td>
<td>長さ：267.0 mm、重量：8.0 g</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ユーザシステムインターフェースボード</td>
<td></td>
<td>1</td>
<td>幅：35.0 mm、横：58.5 mm、高さ：7.2 mm、重量：17.0 g</td>
</tr>
<tr>
<td></td>
<td>(別売り：R0E574504CBF10)</td>
<td></td>
<td></td>
<td>SH7450、SH7451グループ用</td>
</tr>
</tbody>
</table>

RJJ10J2731-0100 Rev.1.00
2010.05.25
表 1.1 デバッガMCUボードの構成品（つづき）

<table>
<thead>
<tr>
<th>分類</th>
<th>品名</th>
<th>構成品外観</th>
<th>数量</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>ハードウェア</td>
<td>ユーザシステムインタフェースボード (別売り：R0E574552CBG00)</td>
<td></td>
<td>1</td>
<td>縦：35.0 mm、横：58.5 mm、高さ：7.2 mm、質量：17.0g ⦿SH7455、SH7456グループ用</td>
</tr>
<tr>
<td></td>
<td>電源ケーブル</td>
<td></td>
<td>1</td>
<td>長さ：0.5 m</td>
</tr>
<tr>
<td></td>
<td>ICソケットプラグ (別売り)</td>
<td></td>
<td>1</td>
<td>ユーザシステムインタフェースボードとICソケット接続用 ⦿デバッガ対象MCUにより、添付されるICソケットプラグが異なります。 ユーザシステムインタフェースボードに添付されます。</td>
</tr>
<tr>
<td></td>
<td>ユーザーズマニュアル</td>
<td></td>
<td>1</td>
<td>SH7450シリーズ用デバッガMCUボード取扱い説明書（本取り扱い説明書）</td>
</tr>
</tbody>
</table>
1. **注意**

1. ユーザシステム、ユーザシステムインタフェースボードおよびデバッグ MCU ボードを接続するには次の IC ソケットおよび IC ソケットプラグを使用してください。ユーザシステムインタフェースボードおよびデバッグ MCU ボードには IC ソケットは添付していませんので、別途購入する必要があります。

 SH7450、SH7451 グループ(パッケージコード：PRBG0292GB-A)対応 IC ソケット
 IC ソケット：東京エレテック株式会社製 BSOCKET292A2017RE21N
 IC ソケットプラグ：東京エレテック株式会社製 CSPLUG/W292A2017RE01

 SH7455、SH7456 グループ(パッケージコード：PRBG0176GA-A)対応 IC ソケット
 IC ソケット：東京エレテック株式会社製 BSOCKET176A1513RE21N
 IC ソケットプラグ：東京エレテック株式会社製 CSPLUG/W176A1513RE01

2. ユーザシステムにユーザシステムインタフェースボードおよびデバッグ MCU ボードを接続せず、製品マイコンを実装するには次の IC ソケットおよび IC ソケット上ぶたを使用してください。ユーザシステムインタフェースボードおよびデバッグ MCU ボードには IC ソケットおよび IC ソケット上ぶたは添付していませんので、別途購入する必要があります。

 SH7450、SH7451 グループ(パッケージコード：PRBG0292GB-A)対応 IC ソケット
 IC ソケット：東京エレテック株式会社製 BSOCKET292A2017RE21N
 IC ソケット上ぶた：東京エレテック株式会社製 LSPACK292A2017RE02

 SH7455、SH7456 グループ(パッケージコード：PRBG0176GA-A)対応 IC ソケット
 IC ソケット：東京エレテック株式会社製 BSOCKET176A1513RE21N
 IC ソケット上ぶた：東京エレテック株式会社製 LSPACK176A1513RE01
1.4 ハードウェア構成

デバッガ MCU ボードは、図 1.2 に示すようにデバッガ MCU ボード本体、ユーザシステムインタフェース共通ケーブルおよび電源ケーブルで構成され、ユーザシステムとはユーザシステムインタフェースボードを経由して接続します。またホストコンピュータとは E10A-USB エミュレータを経由して USB 1.1/2.0(Full-Speed) で接続します。

ユーザシステムインタフェースボードはデバッガ対象 MCU により使用するボードが異なり、別途ご購入する必要があります。

ホストコンピュータ、E10A-USB エミュレータ及び外部電源は、別途ご用意頂く必要があります。
1.4.1 デバッグ MCU ボード本体の構成

デバッグ MCU ボード本体における各部の名称を下記に示します。
(1) デバッグMCUボード本体上面の構成(1)

図 1.3 デバッグ MCU ボード本体の上面(1)

(a) 外部電源 LED 表示 : “POWER”と表示してある LED です。点灯時は電源ケーブルより外部電源が供給されていることを示しています。
(b) ユーザケーブル接続表示 : “CONNECT”と表示してある LED です。点灯時はユーザシステムとデバッグ MCU ボードが接続されていることを示しています。
(c) ユーザ VCC LED 表示 : “UVCC”と表示してある LED です。点灯時はユーザシステムからの VCC 電源がデバッグ MCU ボードへ供給されていることを示しています。
(d) リセット LED 表示 : “RESET”と表示してある LED です。点灯時は MCU ヘリセット信号が入力されていることを示しています。
(2) デバッグMCUボード本体上面の構成

図1.4 デバッグMCUボード本体の上面

(a) ユーザNMI入力信号
有効無効スイッチ

"SW1(UNMIE)"と表示してあるスイッチです。ユーザシステムからのNMI入力信号の有効無効を選択するスイッチです。
左側にした場合はユーザシステムからのNMI入力信号が有効です。
右側にした場合はユーザシステムからのNMI入力信号が無効です。

(b) ユーザDET3OR5信号
有効無効スイッチ

"SW2"と表示してあるスイッチです。ユーザシステムからのDET3OR5入力信号の有効無効を選択するスイッチです。
左側にした場合はユーザシステムからのDET3OR5入力信号が有効です。
右側にした場合はユーザシステムからのDET3OR5入力信号が無効です。この場合はMCUに入力されるDET3OR5信号レベルは下記(c)の設定に従います。

(c) DET3OR5信号レベル
設定用スイッチ

"SW3"と表示してあるスイッチです。DET3OR5信号レベルの設定用スイッチです。
VCC = 5 V で使用する場合は左側に、VCC = 3.3 V で使用する場合は右側に設定してください。

注：本スイッチの設定と下記(h)のスイッチの設定は合わせてください。

(d) 制御用信号設定スイッチ1

"SW4"と表示してあるスイッチです。MCUに入力するMD2-0およびFWE信号設定用スイッチです。
下記(i)を上側に設定した場合は本スイッチの設定は全て無効になります。
(e) 制御用信号設定用スイッチ 2
"SW5"と表示してあるスイッチです。ユーザーシステムより入力される/RES 信号およびクロックの有効/無効の設定およびデバッガ対象の MCU を選択するスイッチです。

(f) 制御信号および電圧端子
上側にした場合は(d)の設定に従わず、ユーザーシステムから入力された信号値に従います。また、下記の電圧設定スイッチ(g)～(i)に従わずユーザ電圧で動作します。
上側にした場合は(d)の設定に従い、電圧も下記電圧設定用スイッチ(g)～(i)に従います。

(g) PVCC 電圧設定用スイッチ
"SW8(PVCCSEL)"と表示してあるスイッチです。MCU に入力される PVCC 電圧を選択するスイッチです。
上側（3V）にした場合は PVCC = 3.3 V で動作します。
下側（5V）にした場合は PVCC = 5.0 V で動作します。
本 SW の設定は上記(f)を下側に設定した場合のみ有効です。

(h) VCC 電圧設定用スイッチ
"SW7(VCCSEL)"と表示してあるスイッチです。MCU に入力される VCC 電圧を選択するスイッチです。
上側（3V）にした場合は VCC = 3.3 V で動作します。
下側（5V）にした場合は VCC = 5.0 V で動作します。
注：本スイッチの設定と上記(c)のスイッチの設定は合わせてください。
本 SW の設定は上記(f)を下側に設定した場合のみ有効です。

(i) AVCC 電圧設定用スイッチ
"SW9(AVCCSEL)"と表示してあるスイッチです。MCU に入力される AVCC 電圧を選択するスイッチです。
上側（3V）にした場合は AVCC = 3.3 V で動作します。
下側（5V）にした場合は AVCC = 5.0 V で動作します。
本 SW の設定は上記(f)を下側に設定した場合のみ有効です。

(j) 将来拡張用スイッチ
"SW10(E10A)"と表示してあるスイッチです。現在未使用で将来拡張用スイッチです（左側であること）。

(k) リセットスイッチ
"SW11(USETRES)"と表示してあるスイッチです。MCU へ手動でリセットを入力するためのスイッチです。
（3）デバッグMCUボード本体上面の構成（3）

図1.5 デバッグMCUボード本体上面（3）

(a) H-UDI インタフェースコネクタ（36ピン）
"CN7"と表示してあるコネクタです。デバッグMCUボードとE10A-USBエミュレータの36ピンケーブルを接続するためのコネクタです。

(b) H-UDI インタフェースコネクタ（14ピン）
"CN6"と表示してあるコネクタです。デバッグMCUボードとE10A-USBエミュレータの14ピンケーブルを接続するためのコネクタです。

(c) 電源ケーブル接続用コネクタ
"CN5"と表示してあるコネクタです。デバッグMCUボードと外部電源用の電源ケーブルを接続するためのコネクタです。

(d) 未使用コネクタ
"J1"と表示してあるコネクタです。現在未使用のコネクタです。何も接続しないで下さい。

(e) 将来拡張用コネクタ
"CN8"と表示してあるコネクタです。現在未使用で将来拡張用コネクタです。
(4) デバッグMCUボード本体下面の構成

図1.6 デバッグMCUボード本体の下面

(a) ユーザシステムインタフェースコネクタ："CN1,CN2,CN3,CN4"と表示してあるコネクタです。デバッグMCUボード本体とユーザシステムインタフェース共通ケーブルを接続するためのコネクタです。
1.4.2 ユーザシステムインタフェースボードの構成

ユーザシステムインタフェースボードにおける各部の名称を下記に示します。
ユーザシステムインタフェースボードはデバッグ MCU ボードとは別売りで、デバッグ対象 MCU によりご使用になるユーザシステムインタフェースボードが異なります。
SH7450、SH7451 グループをデバッグする場合は R0E574504CBF10 を、SH7455、SH7456 グループをデバッグする場合は R0E574552CBG00 をご使用ください。

図 1.7 ユーザシステムインタフェースボード

(a) ユーザシステムインタフェースコネクタ："CONNECTOR1,CONNECTOR2,CONNECTOR3,CONNECTOR4"と表示してあるコネクタです。ユーザシステムインタフェースボードとユーザシステムインタフェースボードを接続するためのコネクタです。

(b) ユーザシステム接続用コネクタ: IC ソケットプラグを経由してユーザシステムを接続するためのコネクタです。
1.5 使用環境条件

⚠️ 注意 ⚠️
デバッグボードを使用する場合、表1.1および表1.2に示す条件を守ってください。この条件を満たさない状態でデバッグボードを使用した場合、デバッグボード、ユーザープログラムおよびユーザシステムが正常に動作しない場合があります。

<table>
<thead>
<tr>
<th>項番</th>
<th>項目</th>
<th>動作時</th>
<th>非動作時</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>温度</td>
<td>10〜35℃</td>
<td>-10〜50℃</td>
</tr>
<tr>
<td>2</td>
<td>湿度</td>
<td>35〜80%RH</td>
<td>結露なし</td>
</tr>
<tr>
<td>3</td>
<td>振動</td>
<td>最大2.45m/s²</td>
<td>最大4.9m/s²</td>
</tr>
<tr>
<td>4</td>
<td>周囲ガス</td>
<td>穀食性ガスのないこと</td>
<td></td>
</tr>
</tbody>
</table>

表1.3 動作環境

<table>
<thead>
<tr>
<th>項番</th>
<th>項目</th>
<th>動作環境</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ホストコンピュータ</td>
<td>E10A-USB エミュレータの動作環境条件を満たす IBM PC およびその互換機</td>
</tr>
<tr>
<td>2</td>
<td>エミュレータ</td>
<td>ルネサスマイクロコンピュータ開発装置 E10A-USB エミュレータ (HS0005KCU01H 又は HS0005KCU02H)</td>
</tr>
<tr>
<td>3</td>
<td>電源</td>
<td>DC5V 10%</td>
</tr>
<tr>
<td>4</td>
<td>消費電流</td>
<td>300mA (max)</td>
</tr>
</tbody>
</table>
2. セットアップ

2.1 デバッガ MCU ボード使用までのフローチャート

デバッガ MCU ボードを使用するにあたって、梱包を解いた後下記の手順で準備を行ってください。

⚠️ 警告 ⚠️

準備を行う前に図 2.1中のアミのかかっている参照先をすべてよく読んで理解してください。誤った使い方は、デバッガ □□□ボード、ユーザープログラムおよびユーザーシステムの破壊につながります。

图 2.1 デバッガ MCU ボード使用フローチャート
2.2 デバッグ MCU ボードのセットアップ

デバッグ MCU ボードを使用するためには、別途 E10A-USB エミュレータをご用意頂く必要があります。本章では、デバッグ MCU ボードと E10A-USB エミュレータとユーザシステムインタフェースボードおよびユーザシステムの接続方法についてご説明します。

接続時には、ホストコンピュータの電源がオフになっているか、E10A-USB エミュレータが USB ケーブルでホストコンピュータと接続されていないことを確認してください。

また、デバッグ MCU ボード及びユーザシステムに電源が供給されていないことを確認してください。

2.2.1 デバッグ MCU ボードと E10A-USB エミュレータの接続

以下に示す手順でデバッグ MCU ボードと E10A-USB エミュレータを接続してください。

1. 図2.2のように、E10A-USBエミュレータのユーザ側画面のコネクタにE10A-USBエミュレータに付属されているユーザインタフェースケーブル（14ピンケーブルまたは36ピンケーブル）を接続してください。

図 2.2 E10A-USB エミュレータとユーザインタフェースケーブルの接続

2. 図2.3、図2.4のようにユーザインタフェースケーブルの14ピンコネクタまたは36ピンコネクタをデバッグMCUボード上のH-UDIインタフェースコネクタに接続してください。

36ピンコネクタの場合はCN7、14ピンコネクタの場合はCN6へ接続してください。
2. セットアップ

図2.3 デバッグMCUボードとユーザインタフェースケーブル（36ピン）の接続

図2.4 デバッグMCUボードとユーザインタフェースケーブル（14ピン）の接続
2.2.2 ユーザシステムへの接続

以下に示す手順でデバッグMCUボードとユーザシステムインタフェースボードとユーザシステムを接続してください。
ただし、本デバッグMCUボードはユーザシステムを接続しない状態でもデバッグが可能です。

⚠️ 警告 ⚠️
ユーザシステムインタフェースボードの接続、取り外しを行なう場合は、必ずエミュレータ、デバッグ(tcp)ボード本体およびユーザシステムの電源全てをオフにし、ソケットのピン番号を確かめて作業してください。
電源がオンの状態で作業を行なったり、接続を誤ると、エミュレータ、デバッグ(tcp)ボード本体、ユーザシステムインタフェースボード、ユーザシステムの破壊の可能性があります。

1. ICソケットをユーザシステムに実装（はんだ付け）します。

⚠️ 注意 ⚠️
はんだ付け後にソケットの底面をエポキシ樹脂系の接着剤でユーザシステムに固定してください。

2. ユーザシステムインタフェース共通ケーブルをデバッグMCUボード本体上のCN4-1ピンの位置を確認した上で差し込みます（図2.5参照）。デバッグMCUボード本体上のシルク表示でCN4-CN3-CN2-CN1の順番で合計4本を差し込みます。

3. ユーザシステムインタフェースボードにICソケットブラグを差し込みます（図2.6参照）

4. ユーザシステムインタフェース共通ケーブルをユーザシステムインタフェースボード上のCONNECTOR1-1ピン位置を確認した上で差し込みます（図2.7参照）。ユーザシステムインタフェースボード上のシルク表示でCONNECTOR1-CNCONNECTOR2-CNCONNECTOR3-CNCONNECTOR4の順番で合計4本を差し込みます。
これにより、デバッグMCUボード本体とユーザシステムインタフェースボードがユーザシステムインタフェース共通ケーブルによって接続されます。

5. ユーザシステムインタフェースボードをユーザシステム上のICソケットにA1ピンの位置を確認した上で差し込みます（図2.8参照）。

注：図2.6-図2.8はSH7450、SH7451グループになっていますが、SH7455、SH7456グループでも同様にして、デバッグループMCUボードとユーザシステムインタフェースボードとユーザシステムを接続してください。
注意

必ず PBピンを確認してから接続してください。

複数のグループをご使用時に誤接続を行なった場合は、以下のように電源端子がショートします。

<table>
<thead>
<tr>
<th>図1</th>
<th>図2</th>
<th>図3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

複数のグループをご使用時に誤接続を行なった場合は、以下のように電源端子がショートします。

<table>
<thead>
<tr>
<th>図1</th>
<th>図2</th>
<th>図3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

注意

1. 使用中に導通がなくなった場合は、シーロケットはんだ付け部分にクラックが発生した可能性があります。テストなどで導通を確認しその箇所を再度はんだ付けしてください。

図 2.5 デバッグ MCU ボード本体とユーザシステムインタフェース共通ケーブルの接続

図 2.6 ユーザシステムインタフェースボードと IC ソケットプラグの接続
2. セットアップ

図2.7 ユーザシステムインタフェースボードとユーザーインタフェース共通ケーブルの接続

図2.8 ユーザシステムへの接続
2.2.3 電源選択スイッチの設定

デバッガ MCU ボードは、MCU に入力する電源として外部電源又はユーザシステム上の VCC 電源を選択することができます。ただし電源としてユーザシステムからの電源を選択した場合でも、電源ケーブルにより外部電源をデバッガ MCU ボードに供給する必要があります。

表 2.1 を参考に、MCU に入力する電源を選択してください。
表 2.1 電源選択スイッチ対応表

<table>
<thead>
<tr>
<th>番号</th>
<th>SW 番号</th>
<th>シルク表示</th>
<th>使用する電源</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>SW6</td>
<td>USERE (上側)</td>
<td>ユーザシステムの VCC、PVCC および AVCC を MCU の電源に使用します（出荷時）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USERE (下側)</td>
<td>電源ケーブルに接続された外部電源を使用します</td>
</tr>
<tr>
<td>(2)</td>
<td>SW8</td>
<td>PVCCSEL (3V)</td>
<td>PVCC = 3.3V で動作します。【注】</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PVCCSEL (5V)</td>
<td>PVCC = 5.0V で動作します。（出荷時）【注】</td>
</tr>
<tr>
<td>(3)</td>
<td>SW7</td>
<td>VCCSEL (3V)</td>
<td>VCC = 3.3V で動作します。【注】</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VCCSEL (5V)</td>
<td>VCC = 5.0V で動作します。（出荷時）【注】</td>
</tr>
<tr>
<td>(4)</td>
<td>SW9</td>
<td>AVCCSEL (3V)</td>
<td>AVCC = 3.3V で動作します。【注】</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AVCCSEL (5V)</td>
<td>AVCC = 5.0V で動作します。（出荷時）【注】</td>
</tr>
</tbody>
</table>

注：（1）の USERE を下側に設定した場合のみ有効です。USERE を上側に設定した場合は本設定に関わらずユーザ電源で動作します。
2.2.4 電源ケーブルの接続

本デバッグルボードは電源ケーブルを接続し、外部より電源を供給する必要があります。図2.10のように、
デバッグルボード上の電源ケーブル接続用コネクタ(CNS)と電源ケーブルを接続してください。

![接続図](image)

図2.10 デバッグルボードと電源ケーブルの接続
2.2.5 制御用信号設定スイッチの設定

本デバッグ MCU ボードは、ユーザシステムを接続しない状態でのデバッグをサポートするために MCU に入力する制御用信号(MD2-0 および FWE)を設定することができます。また、ユーザシステムから入力された NMI、DET30R5, /RES およびクロックの有効/無効の設定およびデバッグ対象 MCU を選択することができます。表 2.2、表 2.3 および表 2.4 を参考に設定してください。

図 2.11 制御用信号有効/無効スイッチ
表 2.2 制御用信号設定用スイッチ対応表

<table>
<thead>
<tr>
<th>SW 上の番号</th>
<th>左側</th>
<th>右側</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW4-1(MD0)</td>
<td>MODE0 = "H"入力</td>
<td>MODE0 = "L"入力(出荷時)</td>
</tr>
<tr>
<td>SW4-2(MD1)</td>
<td>MODE1 = "H"入力</td>
<td>MODE1 = "L"入力(出荷時)</td>
</tr>
<tr>
<td>SW4-3(MD2)</td>
<td>MODE2 = "H"入力</td>
<td>MODE2 = "L"入力(出荷時)</td>
</tr>
<tr>
<td>SW4-4</td>
<td>切り替えないでください</td>
<td>切り替えないでください(出荷時)</td>
</tr>
<tr>
<td>SW4-5</td>
<td>切り替えないでください</td>
<td>切り替えないでください(出荷時)</td>
</tr>
<tr>
<td>SW4-6(FWE)</td>
<td>FWE = "H"入力</td>
<td>FWE = "L"入力(出荷時)</td>
</tr>
<tr>
<td>SW5-1(URESE)</td>
<td>ユーザシステムからのRESET 入力信号有効</td>
<td>ユーザシステムからのRESET 入力信号無効(出荷時)</td>
</tr>
<tr>
<td>SW5-2(SEL)</td>
<td>SH7455、SH7456 グループデバッグ時</td>
<td>SH7450、SH7451 グループデバッグ時(出荷時)</td>
</tr>
<tr>
<td>SW5-3(MICTORE)</td>
<td>38 ビンコネクタ(CN8)使用時</td>
<td>E10A-USB を使用してデバッグする時(出荷時)</td>
</tr>
<tr>
<td>SW5-4(UEXTALE)</td>
<td>ユーザシステムより入力されるクロックを使用【注 3】</td>
<td>デバッグ MCU ボード上の発振モジュール(20MHz)を使用(出荷時)</td>
</tr>
<tr>
<td>SW5-5</td>
<td>切り替えないでください</td>
<td>切り替えないでください(出荷時)</td>
</tr>
<tr>
<td>SW5-6</td>
<td>切り替えないでください(出荷時)</td>
<td>切り替えないでください</td>
</tr>
</tbody>
</table>

【注 1】「2.2.3 電源選択スイッチの設定」に記載しているSW6(USERE)を上側に設定した場合はユーザシステムから入力される信号レベルがMCUに入力されるため、本設定は無効となります。SW6(USERE)を下側に設定した場合のみ、本設定是有効となります。

【注 2】本SW設定は将来拡張用コネクタである38ビンコネクタ使用時のみ設定するため、通常使用時(E10A-USBを使用してデバッグする場合)は右側で使用してください。また、本SWを左側にした場合はSW10(E10A)も右側にしてください。

【注 3】本デバッグMCUボードはユーザシステムからのクロックとして水晶発振子および振動子はサポートしていません。

【注 4】本デバッグMCUボードは単体動作が可能です。この際、「2.4 デバッグMCUボード単体動作時のセットアップ」を参考に設定を行い、ユーザシステム設計前の簡易評価に利用してください。

【注 5】E10A-USBをセットアップする際は「2.3.6 ターゲットの選択」を参照してください。

表 2.3 動作モードの端子設定表（参考）

<table>
<thead>
<tr>
<th>番号</th>
<th>モード名</th>
<th>端子設定</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MD 2</td>
</tr>
<tr>
<td>モード 0</td>
<td>シングルモード</td>
<td>"L"</td>
</tr>
<tr>
<td>モード 1</td>
<td>チップモード</td>
<td>"L"</td>
</tr>
<tr>
<td>モード 2</td>
<td>ユーザモード</td>
<td>"H"</td>
</tr>
<tr>
<td>モード 3</td>
<td>ROM 有効</td>
<td>"L"</td>
</tr>
<tr>
<td>モード 4</td>
<td>拡張モード</td>
<td>"L"</td>
</tr>
<tr>
<td>モード 5</td>
<td>ユーザモード</td>
<td>"H"</td>
</tr>
</tbody>
</table>
図 2.12 NMI および DET3OR5 信号設定スイッチ

表 2.4 NMI, DET3OR5 信号設定用スイッチ設定表

<table>
<thead>
<tr>
<th>番号</th>
<th>SW 番号</th>
<th>左側</th>
<th>右側</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>SW1(UNMIE)</td>
<td>ユーザシステムからの NMI 入力信号有効 (出荷時)</td>
<td>ユーザシステムからの NMI 入力信号無効 (MCU の NMI 信号は常に“H”が入力される。)</td>
</tr>
<tr>
<td>(2)</td>
<td>SW2</td>
<td>ユーザシステムからの DET3OR5 入力信号有効 (出荷時)</td>
<td>ユーザシステムからの DET3OR5 入力信号無効 (MCU に入力される DET3OR5 信号レベルは下記 SW3 で決定されます)</td>
</tr>
<tr>
<td>(3)</td>
<td>SW3</td>
<td>VCC=5.0V で使用する場合(出荷時)</td>
<td>VCC = 3.3V で使用する場合</td>
</tr>
<tr>
<td>(4)</td>
<td>SW10(E10A) 【注】</td>
<td>E10A-USB を使用してデバッグする時(出荷時)</td>
<td>38 ピンコネクタ(CN8)使用時</td>
</tr>
</tbody>
</table>

【注】：本 SW 設定は将来拡張用コネクタである 38 ピンコネクタ使用時のみ設定するため、通常使用時(E10A-USB を使用してデバッグする場合)は左側で使用してください。また、本 SW を右側にした場合は SW5-3(MICTORE)も左側にしてください。
2.2.6 システムグランド系の接続

⚠️ 警告 ⚠️
システムグランドは必ずユーザシステム上で、フレームグランドとシグナルグランドを切り離してください。フレームグランドとシグナルグランドを接続した状態でエミュレータを接続すると、グランド電位の差により発電、発火、感電の危険性があります。

E10A-USB エミュレータとデバッグ MCU ボードのシグナルグランドは、ユーザシステムのシグナルグランドに接続されます。

エミュレータ内部では、シグナルグランドとフレームグランドが接続されています。ユーザシステムでは、シグナルグランドとフレームグランドを接続せず、フレームグランドだけを接地してください。（図 2.13）

ユーザシステム内でフレームグランドとシグナルグランドを切り離すのが難しい場合、ホストコンピュータの DC 電源入力（AC アダプタ）の GND 電位とユーザシステムの FG を同電位にしてください。（図 2.13）

ユーザシステム内でフレームグランドとシグナルグランドを切り離すのが難しい場合、ホストコンピュータとターゲットシステムの GND に電位差がある場合、インピーダンスが低い GND ラインに過電流が流れ、細いラインの焼損などの危険性があります。

図 2.13 システムグランド系の接続
2.3 E10A-USB のセットアップ

2.3.1 E10A-USB エミュレータの DIP スイッチ設定

以下に示す手順で E10A-USB エミュレータの DIP スイッチを設定してください。
1. 図2.14のように、E10A-USB エミュレータの上面右下にある、スライドスイッチカバーを右側にスライドさせ、開いてください。
2. DIPスイッチ（SW1, SW2, SW3）を全てON（↑側）に設定してください。

図2.14 E10A-USB エミュレータの DIP スイッチ設定
2.3.2 CD-R について

デバッグ MCU ボード用エミュレータソフトウェアは、E10A-USB エミュレータに添付されている CD-R 内に収録されています。

CD-R のルートディレクトリにはデバッグ MCU ボードエミュレータソフトウェアインストール用プログラムが含まれています。

その他、各フォルダには下記に示すファイルおよびプログラムが含まれます。

表 2.5 CD-R フォルダ内容

<table>
<thead>
<tr>
<th>フォルダ名</th>
<th>内容</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dlls</td>
<td>Microsoft® ランタイムライブラリ</td>
<td>High-performance Embedded Workshop を動作させるために必要なランタイムライブラリです。インストール時にバージョンのチェックを行い、必要に応じてハードディスクにコピーされます。</td>
</tr>
<tr>
<td>Drivers</td>
<td>E10A-USB エミュレータ用ドライバ</td>
<td>E10A-USB エミュレータ用 USB ドライバです。</td>
</tr>
<tr>
<td>Help</td>
<td>E10A-USB エミュレータオンラインヘルプ</td>
<td>オンラインヘルプです。インストール時にハードディスクにコピーされます。</td>
</tr>
<tr>
<td>Manual</td>
<td>E10A-USB エミュレータマニュアル</td>
<td>E10A-USB エミュレータユーザーズマニュアルです。PDF 文書で提供しています。</td>
</tr>
</tbody>
</table>

CD-R のルートディレクトリから HewInstMan.exe を実行し、表示される手順に従いインストールを行ってください。

【注】 Windows® XP をご使用の場合ドライバのインストール時に Windows® ログテストについての警告が表示されますか問題ありません。[続行]を選択し、ドライバのインストールを進めてください。
2.3.3 ホストコンピュータとの接続

E10A-USB エミュレータとホストコンピュータを接続する方法を説明します。なお、E10A-USB エミュレータ本体における各コネクタの位置は、「SuperH ファミリ用 E10A-USB エミュレータ ユーザーズマニュアル」を参照してください。

【注】 1. 「新しいハードウェアの追加ウィザード」が表示された場合、[使用中のデバイスに最適なドライバを検索する（推奨）]を選択し、検索場所として[検索場所の指定]を選択してください。検索場所は、「<ドライバ>:¥DRIVERS」を指定してください。
（<ドライバ>はCDドライバのドライバ名です。）
2. Windows®XP をご使用の場合、ドライバのインストール時に Windows®ロゴテストについての警告が表示されますが問題ありません。[続行]を選択し、ドライバのインストールを進めてください。

【留意事項】
E10A-USB エミュレータ装着前に、必ずエミュレータソフトウェアのインストールを行ってください。

⚠ 警告 ⚠
ユーザースチメの電源投入時、USBインタフェースケーブルを除くケーブル類の抜き差しは、一切行わないでください。抜き差しを行った場合、USBポートのエミュレータとユーザースチメの発煙発火の可能性があります。また、デバッグ中のユーザープログラムの破壊の可能性があります。
E10A-USB エミュレータは、ホストコンピュータと USB 1.1 で接続できます。また、USB2.0 準拠の USB ポートにも接続できます。システム構成を図 2.15 に示します。

![図 2.15 E10A-USB エミュレータのホストコンピュータ接続システム構成](image)

2.3.4 E10A-USB エミュレータのセットアップ

次に、E10A-USB エミュレータのセットアップをします。
「SuperH ファミリ用 E10A-USB エミュレータ ユーザーズマニュアル」の「3.10 E10A-USB エミュレータのセットアップ」及び「3.11 システムチェック」を参照し、E10A-USB エミュレータのファームウェアをセットアップしてください。

2.3.5 High-performance Embedded Workshop の起動

High-performance Embedded Workshop 起動以降の手順は、「SuperH ファミリ用 E10A-USB エミュレータ ユーザーズマニュアル」の「4 章 デバッグの準備をする」に記載されています。4章を参考に起動を行ってください。
2.3.6 ターゲットの選択

ご使用のターゲットに合わせて、E10A-USB のターゲットを選択してください。詳細は、SuperH™ファミリ用 E10A-USB エミュレータユーザーズマニュアルの 4 章「デバッグの準備をする」を参照してください。

SH7450 シリーズデバッグ MCU ボードをデバッグするためには、[デバッグターゲット]ダイアログボックスおよび、[Select Emulator mode]ダイアログボックスでは下記の表 2.6 を参照に選択してください。

<table>
<thead>
<tr>
<th>デバイスグループ</th>
<th>SW5-2 (SEL)</th>
<th>[デバッグターゲット]</th>
<th>[Select Emulator mode]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH7450、SH7451 グループ</td>
<td>右</td>
<td>SH-4A E10A-USB SYSTEM (CPU SH-4A)</td>
<td>SH74504_Debug_MCU_BOARD</td>
</tr>
<tr>
<td>SH7455、SH7456 グループ</td>
<td>左</td>
<td></td>
<td>SH74552_Debug_MCU_BOARD</td>
</tr>
</tbody>
</table>
2.4 デバッグ MCU ボード単体動作時のセットアップ

デバッグ MCU ボードは、ユーザシステムを接続していない状態でも、起動することが可能なため、ユーザシステム設計前の簡易評価にも利用することができます。

⚠️ 警告 ⚠️

1. デバッグボードのスイッチ設定を行なう場合は、必ず エミュレータとホストコンピュータとの接続及びデバッグボードの電源をオフにしてください。
電源がオンの状態で作業を行なうと、エミュレータ、デバッグボード本体、ユーザシステムインタフェースボードを破壊する可能性があります。

2. デバッグボード単体動作時には、ユーザシステムインタフェースボード裏面のユーザシステム接続用コネクタ端子が、未接続の状態になります。コネクタ端子のショートを防止する為、必ずユーザシステムインタフェースボードの下に絶縁物を敷いてください。もしくは、ユーザシステムインタフェース共有ケーブルをデバッグボード本体から外してご使用ください。

2.4.1 デバッグ MCU ボードのスイッチ設定

デバッグ MCU ボードを単体で動作させるためには、以下に示すデバッグ MCU ボードのスイッチを設定後、High-performance Embedded Workshop を起動してください。

1. デバッグMCUボード単体動作時のクロック源は、デバッグMCUボード上の発振モジュールのみをサポートします。クロック選択ジャンパ（SW5-4:UEXTALE）を右側に設定してください。

2. デバッグMCUボード単体動作時には、以下のスイッチを設定する必要があります。
 ・ ユーザ NMI 信号有効/無効スイッチ(SW1:UNMIE)を無効
 ・ ユーザ DET3OR5 信号有効/無効スイッチ(SW2)を無効
 ・ DET3OR5 信号設定用スイッチ(SW3)を動作電圧に合わせる。
 ・ 制御信号用設定スイッチ 1(SW4)を動作モードに合わせる。
 ・ 制御信号用設定スイッチ 2(SW5)の SW5-1 をユーザ/RESET 信号を無効側に設定する。
 ・ 電圧設定用スイッチ(SW7:VCCSEL,SW8: PVCC, SW9: AVCC)を動作電圧に合わせる。
 ・ デバッグ対象 MCU の選択スイッチ (SW5-2:SEL) を MCU に合わせる。

3. デバッグMCUボード単体動作時の電源は、外部電源のみをサポートします。
電源選択スイッチ(SW6:USERE)を下側に設定し、電源ケーブル接続用コネクタから外部電源を供給してください。
表2.7にデバッグMCUボード単体動作時のスイッチ設定一覧を示します。

<table>
<thead>
<tr>
<th>番号</th>
<th>意味</th>
<th>単体動作時</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW1 (UNMIE)</td>
<td>ユーザシステムからの NMI 入力信号の有効/無効設定</td>
<td>右側（無効）</td>
</tr>
<tr>
<td>SW2</td>
<td>ユーザシステムからの DET3ORS 入力信号の有効/無効設定</td>
<td>右側（無効）</td>
</tr>
<tr>
<td>SW3</td>
<td>DET3ORS 信号値の設定
(左側: VCC = 5.0V 動作時、右側: VCC=3.3V 動作時)</td>
<td>動作させたい VCC 電圧側</td>
</tr>
<tr>
<td>SW4-1 (MD0)</td>
<td>MODE0 信号値の設定
(左側: □ H □ 入力、右側: "L"入力)</td>
<td>動作させたいモード</td>
</tr>
<tr>
<td>SW4-2 (MD1)</td>
<td>MODE1 信号値の設定
(左側: □ H □ 入力、右側: "L"入力)</td>
<td>入力したい FWE 信号値</td>
</tr>
<tr>
<td>SW4-3 (MD2)</td>
<td>MODE2 信号値の設定
(左側: □ H □ 入力、右側: "L"入力)</td>
<td>右側（無効）</td>
</tr>
<tr>
<td>SW4-4</td>
<td>未使用 SW</td>
<td>右側（出荷時）</td>
</tr>
<tr>
<td>SW4-5</td>
<td>未使用 SW</td>
<td>右側（出荷時）</td>
</tr>
<tr>
<td>SW4-6 (FWE)</td>
<td>FWE 信号値の設定
(左側: □ H □ 入力、右側: "L"入力)</td>
<td>右側（出荷時）</td>
</tr>
<tr>
<td>SW5-1 (URESE)</td>
<td>ユーザシステムからの RESET 入力信号の有効/無効設定</td>
<td>右側（無効）</td>
</tr>
<tr>
<td>SW5-2(SEI)</td>
<td>デバッグ対象 MCU の選択
(左側: SH7455、SH7456 グループ、右側: SH7450、SH7451 グループ)</td>
<td>右側（出荷時）</td>
</tr>
<tr>
<td>SW5-3(MICTORE)</td>
<td>拡張コネクタの有効/無効</td>
<td>右側（出荷時）</td>
</tr>
<tr>
<td>SW5-4(UEXTALE)</td>
<td>ユーザシステム入力されるクロックの有効/無効設定</td>
<td>右側（無効）</td>
</tr>
<tr>
<td>SW5-5</td>
<td>未使用 SW</td>
<td>右側（出荷時）</td>
</tr>
<tr>
<td>SW5-6</td>
<td>未使用 SW</td>
<td>左側（出荷時）</td>
</tr>
<tr>
<td>SW6 (USE E)</td>
<td>MCU 入力する電源選択</td>
<td>下側（電源ケーブルからの電源使用）</td>
</tr>
<tr>
<td>SW7 (VCCSEL)</td>
<td>VCC 電圧指定
(下側: VCC = 5.0V、上側: VCC=3.3V)</td>
<td>動作させたい VCC 電圧</td>
</tr>
<tr>
<td>SW8 (PVCCSEL)</td>
<td>PVCC 電圧指定
(下側: PVCC = 5.0V、上側: PVCC=3.3V)</td>
<td>動作させたい PVCC 電圧</td>
</tr>
<tr>
<td>SW9 (AVCCSEL)</td>
<td>AVCC 電圧選択
(下側: AVCC = 5.0V、上側: AVCC=3.3V)</td>
<td>動作させたい AVCC 電圧</td>
</tr>
<tr>
<td>SW10(E10A)</td>
<td>拡張用 SW</td>
<td>左側</td>
</tr>
<tr>
<td>SW11 (USETRES)</td>
<td>デバッグ MCU ボード上の MCU へのリセット入力</td>
<td>左側（"1"側）: リセット入力時
右側（"3"側）: リセット未入力時</td>
</tr>
</tbody>
</table>
2.4.2 デバッグ MCU ボードへのリセット入力

High-performance Embedded Workshop の起動時やデバッグ時等、デバッグ MCU ボード単体動作時にリセット信号を入力する必要がある場合は、デバッグ MCU ボード上のリセットスイッチから手動でリセット信号を MCU へ入力することができます。表 2.8 を参考に、リセット信号を入力してください。

![リセットスイッチ](image)

表 2.8 リセットスイッチ対応表

<table>
<thead>
<tr>
<th>SW11 設定</th>
<th>デバッグ MCU ボード上の MCU へのリセット入力</th>
</tr>
</thead>
<tbody>
<tr>
<td>シルクの'3'側スイッチを倒した時</td>
<td>リセットスイッチによる MCU へのリセット入力が解除されます(出荷時)</td>
</tr>
<tr>
<td>シルクの'1'側スイッチを倒した時</td>
<td>リセットスイッチによる MCU へのリセット入力が入力されます</td>
</tr>
</tbody>
</table>

【注】 本リセットスイッチは、MCU に対して手動でリセット信号を入力する為のスイッチです。ユーザシステム接続時に SW5-1(URESE)を無効側に設定してユーザシステムからの RESET 信号入力を無効に設定しても、本リセットスイッチにより MCU へリセット入力をすることが可能です。ユーザシステムに対してはリセット出力されませんのでご注意ください。
3. ハードウェア仕様

3.1 デバッグ MCU ボードの外形寸法

図 3.1 および図 3.2 にデバッグ MCU ボードの外形寸法を示します。また、図 3.3 および図 3.4 にユーザシステムインタフェースボードの外形寸法を示します。

図 3.1 デバッグ MCU ボードの外形寸法図

単位：mm
公差：±0.5mm
3. ハードウェア仕様

図 3.2 デバッグ MCU ボード本体の外形寸法図

図 3.3 ユーザシステムインタフェースボードの外形寸法図(R0E574504CBF10)
図 3.4 ユーザシステムインタフェースボードの外形寸法図(R0E574552CBG00)
3.2 ユーザシステムインタフェースボード接続時の寸法

図3.5および図3.7にユーザシステムインタフェースボードをユーザシステムに接続した場合の寸法を示します。図3.6にSH7450、SH7451グループ用ユーザシステム作成時の高さ制限を、図3.8にSH7455、SH7456グループ用ユーザシステム作成時の高さ制限を示します。ユーザシステム作成時にはこの高さ制限を守るようにしてください。

図3.5 ユーザシステムインタフェースボード（R0E574504CBF10）接続時のユーザシステムとの寸法

図3.6 SH7450、SH7451グループ用ユーザシステム作成時の部品高さ制限
図 3.7 ユーザシステムインタフェースボード（R0E574552CBG00）接続時のユーザシステムとの寸法

図 3.8 SH7455、SH7456 グループ用ユーザシステム作成時の部品高さ制限
3.3 ユーザシステムの推奨マウントパッド寸法

IC ソケットを使用する場合のユーザシステム推奨マウントパッド(フットプリント)寸法を図 3.9 および図 3.10 に示します。

3.3.1 SH7450, SH7451 グループ(PRBG0292GB-A パッケージ)をご使用の場合

ユーザシステム推奨マウントパッド寸法を図 3.9 に示します。

図 3.9 PRBG0292GB-A の推奨マウントパッド寸法
3.3.2 SH7455、SH7456 グループ(PRBG0176GA-A パッケージ)をご使用の場合

ユーザシステム推奨マウントパッド寸法を図 3.10 に示します。

図 3.10 PRBG0176GA-A の推奨マウントパッド寸法
3.4 MCU を IC ソケットに実装する場合

<table>
<thead>
<tr>
<th>注意</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 必ず □ピンを確認してから接続してください。</td>
</tr>
<tr>
<td>2. ドライバの先端はネジの十字溝にきちんと合うものを必ず使用してください。</td>
</tr>
<tr>
<td>3. ネジの締めつけ方は、締めつける力が急激に変化した時点で締めつけを中止してください（トルク設定作業が行なえる場合は、□以下を目安としてください）。必要以上にネジを締めつけた場合、ソケットのネジ山が破損したり、□ソケット側のはんだクラックによる接触不良が生じたりすることがありますので、注意してください。</td>
</tr>
<tr>
<td>4. 使用中に導通がなくなった場合は、□ソケットはんだ付け部分にクラックが発生した可能性があります。テストなどで導通を確認しその箇所を再度はんだ付けしてください。</td>
</tr>
</tbody>
</table>

MCU をユーザシステムに実装する場合は、図 3.11 に示すように IC ソケットに MCU の A 1 ピン位置を確認した上で実装し、上ぶたを 4 つのネジ（M2.0×10 mm）で固定します。このとき、IC ソケットのはんだ付け部分を手で固定し、ネジ止めによるひずみ等の力が加わらないように注意してください。
図 3.11 MCU をユーザシステムに実装する場合

注：IC ソケットおよびIC ソケット上ぶたはサポート MCU によりご使用が異なりますのでご注意願います。

図 3.11 は SH7450、SH7451 グループを示していますが、SH7455、SH7456 グループも同様にして MCU を IC ソケットに実装してください。
3.5 ユーザシステムインタフェース回路

図3.12〜図3.17にユーザシステムインタフェース回路を示します。プルアップ抵抗の値などを決めるときに参考にしてください。
3. ハードウェア仕様

図 3.13 ユーザインタフェース回路(2)

図 3.14 ユーザインタフェース回路(3)
3. ハードウェア仕様

図 3.15 ユーザインタフェース回路(4)
図3.16 ユーザインタフェース回路(5)

図3.17 ユーザインタフェース回路(6)
3.6 ユーザシステムインタフェースのディレイ時間

_RES 信号及び NMI 信号はデバッグ MCU ボード上の論理を介して MCU に接続されますので、ユーザシステムから MCU に信号が入力されるまで、表 3.1 に示すディレイ時間が生じます。

<table>
<thead>
<tr>
<th>No</th>
<th>信号名</th>
<th>ディレイ時間 (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>_RES</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>NMI</td>
<td>5</td>
</tr>
</tbody>
</table>

表 3.1 デバッグ MCU ボード経由信号のディレイ時間
4. 保守と保証

第4章では、本エミュレータの保守方法と保証内容、修理規定と修理の依頼方法を説明しています。

4.1 ユーザ登録

ご購入頂いた際にはWEBでのユーザ登録をお願いします。
ユーザ登録については、本ユーザーズマニュアルの「ユーザ登録について」にしたがって行ってください。

4.2 保守

1. 本製品に埃や汚れが付着した場合は、乾いた柔らかい布で拭いてください。シンナーなどの溶剤を使用した場合は、塗装が剥げたりしますので、使用しないでください。

長時間使用しない時は、安全のため電源プラグをコンセント等から抜いて保管してください。

4.3 保証内容

本ユーザーズマニュアルの「重要事項」を守った正常な使用状態のもとで、購入後1年以内に故障した場合は、無償修理または、無償交換致します。

但し、次の項目による故障の場合は、ご購入から1年以内でも有償修理または、有償交換と致します。

- 製品の誤用、濫用または、その他異常な条件下での使用
- 弊社以外のものによる改造、修理、保守または、その他の行為
- ユーザシス템の不備または、誤使用
- 火災、地震または、その他の事故

その際は、ご購入された販売元の担当者へご連絡ください。なお、レンタル中の製品は、レンタル会社または、貸し主とご相談ください。
4.4 修理規定

(1) 有償修理
ご購入後１年を超えて修理依頼される場合は、有償修理となります。

(2) 修理をお断りする場合
次の項目に該当する場合には、修理でなく、ユニット交換または、新規購入頂く場合があります。
- 機構部分の故障、破損
- 塗装、メッキ部分の傷、剥がれ、錆
- 樹脂部分の傷、割れなど
- 使用上の誤り、不当な修理、改造による故障、破損
- 電源ショートや過電圧、過電流のため電気回路が大きく破損した場合
- プリント基板の割れ、パターン焼失箇所
- 修理費用より交換の費用が安くなる場合
- 不良箇所が特定できない場合

(3) 修理期間の終了
製品生産中止後、1年を経過した場合は修理不可能な場合があります。

(4) 修理依頼時の輸送料など、
修理依頼時の輸送費などの費用は、お客様でご負担願います。
4.5 修理依頼方法

エミュレータの故障と診断された場合には、以下の手順にて修理を依頼してください。

お客様：故障発生
添付の「故障状況調査書」に必要事項をご記入の上、故障状況調査書と故障したエミュレータを販売元まで返送してください。
「故障状況調査書」は、迅速な修理を行うためにも詳しく記入してください。

⚠️ 注意

エミュレータの輸送方法に関して：
修理のために本エミュレータを輸送される場合、本エミュレータの梱包箱、クッション材を用いて精密機器扱いで発送してください。エミュレータの梱包が不十分な場合、輸送中に損傷する恐れがあります。やむをえず他の手段で輸送する場合、精密機器を保護のため、梱包の必要なエアキャップもしくは導電性ポリ袋（通常青色の袋）をご使用ください。他の袋を使用した場合、静電気の発生などによりエミュレータ別の故障を引き起こす恐れがあります。
付録 A 故障症状調査書

貴社益々ご清栄のこととお喜び申し上げます。
この度、SH7450 シリーズ用デバッグ MCU ボード（R0E574504PBZ00）をご購入頂き、厚く御礼申し上げます。
さて、万一故障が発生したときには、お手数ですが次ページの故障症状調査書に症状をご記入の上、担当営業まで御連絡くださいますようお願い申し上げます。
故障症状調査書

ご購入営業担当 行

<table>
<thead>
<tr>
<th>お客様ご芳名</th>
<th>会社名</th>
<th>担当者名</th>
<th>TEL</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>調査項目</th>
<th>症状</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 故障発生 年月日、時期</td>
<td>年 月 日 (システム立ち上げ時、システム動作時) *[]内の該当時期を @で囲んでください。</td>
</tr>
<tr>
<td>2 故障発生頻度</td>
<td>() (日、週、月) に () 回発生 *[() 内に該当数字を記入し、() 内の該当時期を @で囲んでください。</td>
</tr>
</tbody>
</table>
| 3 エラー発生時の システム構成 | エラー発生時のシステム構成を記入してください。
- E10A-USB エミュレータ(HS0005KCU01H, HS0005KCU02H)
 シリアル No.__________レビジョン__________
 (萬体裏面の製品管理シールに表示しています：シリアル No.は数字5桁、レビジョンはそれに続くアルファベットです)
- 付属 CD-R(HS0005KCU01SR) バージョン V__________
 (CD-R に V.x.xx release と表示しています(x：数字))
- SH7450 シリーズ用デバッグ MCU ボード
 (R0E574504PBZ00)
 シリアル No.__________レビジョン__________
 (被板上に捺印表示しています)
- ユーザシステムインタフェースボード
 (R0E574504CBF10, R0E574552CBG00、未接続)
 シリアル No.__________レビジョン__________
 (被板上に捺印表示しています)
- ご使用になっている PC
 メーカ名__________型式_________________
 使用 OS ____________________________ |
4 エラー発生時の設定内容

デバッグ MCU ボードの動作設定を記入してください。

1. 電源選択スイッチの設定(USERE(SW6))
 - 上側、下側いずれかに □
2. クロック選択ジャンパ(UEXTALE(SW5-4))の設定
 - 左側、右側いずれかに □
 - 入力クロック: ______MHz
3. ユーザシステム入力信号有効/無効スイッチの設定
 - UNMIE(SW1): 左側、右側いずれかに □
 - URESE(SW5-1): 左側、右側いずれかに □
4. 動作電圧
 - Vdd: _____V, VCC: _____V, PVCC: _____V, AVCC: _____V

<table>
<thead>
<tr>
<th>5</th>
<th>故障現象</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>デバッグ時のエラー内容</td>
</tr>
</tbody>
</table>

7 High-performance Embedded Workshop がLink up しない

エラーメッセージ内容

上記以外のエラーについては、下記に症状を記載いただくようお願いいたします。
SH7450シリーズ用デバッグMCUボード
R0E574504PBZ00、R0E574504CBF10、R0E574552CBG00
ユーザーズマニュアル

発行年月日 2010 年 5 月 25 日 Rev.1.00
発行 ルネサス エレクトロニクス株式会社
〒211-8668 神奈川県川崎市中原区下沼部1753

© 2010 Renesas Electronics Corporation. All rights reserved.
SH7450 シリーズ用デバッグ MCU ボード
R0E574504PBZ00、R0E574504CBF10、R0E574552CBG00
ユーザーズマニュアル