To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 “Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

 “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

 “Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g., artificial life support devices or systems), surgical implants or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss arising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.
IMPORTANT INFORMATION

READ FIRST

• READ this user's manual before using this emulator product.
• KEEP the user's manual handy for future reference.

Do not attempt to use the emulator product until you fully understand its mechanism.

Emulator Product:

Throughout this document, the term "emulator product" shall be defined as the following products produced only by Renesas Technology Corp. and Renesas Solutions Corp. excluding all subsidiary products.

- E10A-USB emulator main unit
- Debugging MCU board

The user system or a host computer is not included in this definition.

Purpose of the Debugging MCU Board:

This debugging MCU board is used to connect the E10A-USB emulator to the user system. This debugging MCU board must only be used for the above purpose.

Limited Applications:

This emulator product is not authorized for use in transportation, vehicular, medical (where human life is potentially at stake), aerospace, nuclear, or undersea repeater applications. Buyers of this emulator product must notify Renesas Technology Corporation, Renesas Solutions Corporation or an authorized Renesas Technology product distributor before planning to use the product in such applications.

Improvement Policy:

Renesas Technology Corp. (including its subsidiaries, hereafter collectively referred to as Renesas) pursues a policy of continuing improvement in design, performance, and safety of the emulator product. Renesas reserves the right to change, wholly or partially, the specifications, design, user's manual, and other documentation at any time without notice.
Target User of the Emulator Product:

This emulator product should only be used by those who have carefully read and thoroughly understood the information and restrictions contained in the user's manual. Do not attempt to use the emulator product until you fully understand its mechanism.

It is highly recommended that first-time users be instructed by users that are well versed in the operation of the emulator product.

Users are required to be familiar with the basic knowledge for the electric circuits, logic circuits, and microcomputers.

Precautions to be Taken when Using This Product:

1. This emulator is a development supporting unit for use in your program development and evaluation stages. In mass-producing your program you have finished developing, be sure to make a judgment on your own risk that it can be put to practical use by performing integration test, evaluation, or some experiment else.

2. In no event shall Renesas Solutions Corporation be liable for any consequence arising from the use of this emulator.

3. Renesas Solutions Corporation strives to renovate or provide a workaround for product malfunction at some charge or without charge. However, this does not necessarily mean that Renesas Solutions Corporation guarantees the renovation or the provision under any circumstances.

4. This emulator has been developed by assuming its use for program development and evaluation in laboratories. Therefore, it does not fall under the application of Electrical Appliance and Material Safety Law and protection against electromagnetic interference when used in Japan.

5. This emulator does not conform to safety standards such as UL or IEC. Be careful when you take this emulator overseas.

6. Renesas cannot anticipate every possible circumstance that might involve a potential hazard. The warnings in this user's manual and on the emulator product are therefore not all inclusive. Therefore, you must use the emulator product safely at your own risk.
LIMITED WARRANTY

Renesas warrants its emulator products to be manufactured in accordance with published specifications and free from defects in material and/or workmanship. Renesas, at its option, will replace any emulator products returned intact to the factory, transportation charges prepaid, which Renesas, upon inspection, shall determine to be defective in material and/or workmanship. The foregoing shall constitute the sole remedy for any breach of Renesas’ warranty. See the Renesas warranty booklet for details on the warranty period. This warranty extends only to you, the original Purchaser. It is not transferable to anyone who subsequently purchases the emulator product from you. Renesas is not liable for any claim made by a third party or made by you for a third party.

DISCLAIMER

RENESAS MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, ORAL OR WRITTEN, EXCEPT AS PROVIDED HEREIN, INCLUDING WITHOUT LIMITATION THEREOF, WARRANTIES AS TO MARKETABILITY, MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE OR USE, OR AGAINST INFRINGEMENT OF ANY PATENT. IN NO EVENT SHALL RENESAS BE LIABLE FOR ANY DIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY NATURE, OR LOSSES OR EXPENSES RESULTING FROM ANY DEFECTIVE EMULATOR PRODUCT, THE USE OF ANY EMULATOR PRODUCT, OR ITS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCEPT AS EXPRESSLY STATED OTHERWISE IN THIS WARRANTY, THIS EMULATOR PRODUCT IS SOLD "AS IS", AND YOU MUST ASSUME ALL RISK FOR THE USE AND RESULTS OBTAINED FROM THE EMULATOR PRODUCT.
State Law:

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives you specific legal rights, and you may have other rights which may vary from state to state.

The Warranty is Void in the Following Cases:

Renesas shall have no liability or legal responsibility for any problems caused by misuse, abuse, misapplication, neglect, improper handling, installation, repair or modifications of the emulator product without Renesas’ prior written consent or any problems caused by the user system.

All Rights Reserved:

1. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Renesas’ semiconductor products. Renesas assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.

2. No license is granted by implication or otherwise under any patents or other rights of any third party or Renesas.

3. This user's manual and emulator product are copyrighted and all rights are reserved by Renesas. No part of this user's manual, all or part, may be reproduced or duplicated in any form, in hard-copy or machine-readable form, by any means available without Renesas’ prior written consent.

Figures:

Some figures in this user's manual may show items different from your actual system.
SAFETY PAGE

READ FIRST

• READ this user's manual before using this emulator product.
• KEEP the user's manual handy for future reference.

Do not attempt to use the emulator product until you fully understand its mechanism.

DEFINITION OF SIGNAL WORDS

Either in the user's manual or on the product, several icons are used to insure proper handling of this product and also to prevent injuries to you or other persons, or damage to your properties. Their graphic images and meanings are given in this safety page. Be sure to read this chapter before using the product.

⚠️ This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

⚠️ DANGER DANGER indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

⚠️ WARNING WARNING indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

⚠️ CAUTION CAUTION indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury.

CAUTION CAUTION used without the safety alert symbol indicates a potentially hazardous situation which, if not avoided, may result in property damage.

NOTE emphasizes essential information.

In addition to the four above, the following are also used as appropriate.
WARNING

Observe the precautions listed below. Failure to do so will result in a FIRE HAZARD and will damage the user system and the emulator product or will result in PERSONAL INJURY. The USER PROGRAM will be LOST.

1. Do not repair or remodel the emulator product by yourself for electric shock prevention and quality assurance.

2. Always switch OFF the emulator and user system before connecting or disconnecting any CABLES or PARTS.

3. Always before connecting any CABLES, make sure that pin 1 on both sides are correctly aligned.

4. If cables are connected incorrectly in the case of the SH7125, the power-supply pins will be shorted as shown below:

<table>
<thead>
<tr>
<th>90° rotation</th>
<th>270° rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (Vcc)</td>
<td>52 (AVss)</td>
</tr>
<tr>
<td>22 (Vcc)</td>
<td>6 (Vss)</td>
</tr>
<tr>
<td>24 (Vss)</td>
<td>8 (VCL)</td>
</tr>
<tr>
<td>6 (Vss)</td>
<td>22 (Vcc)</td>
</tr>
<tr>
<td>8 (VCL)</td>
<td>52 (AVss)</td>
</tr>
<tr>
<td>24 (Vss)</td>
<td>4 (Vcc)</td>
</tr>
</tbody>
</table>
User Registration

When you have purchased the emulator represented in this user's manual, be sure to register it. As the H/W Tool Customer Registration Sheet is included with this product, fill it in and send the same contents to the following address by an email. Your registered information is used for only after-sale services, and not for any other purposes. Without user registration, you will not be able to receive maintenance services such as a notification of field changes or trouble information. So be sure to carry out the user registration.

For more information about user registration, send an email to the following address.

regist_tool@renesas.com
Contents

Section 1 Product Overview .. 1
 1.1 Introduction .. 1
 1.2 Components .. 4
 1.3 Components in the Package for the Debugging MCU Board 5
 1.4 Hardware Configuration .. 8
 1.5 Environmental Conditions .. 15

Section 2 Setting Up the Debugging MCU Board ... 17
 2.1 Flow Chart before Using the Debugging MCU Board 17
 2.2 Setting Up the Debugging MCU Board .. 18
 2.2.1 Connecting the Debugging MCU Board to the E10A-USB Emulator 18
 2.2.2 Connecting the Debugging MCU Board to the User System 21
 2.2.3 Setting the Power-Selection Switch ... 24
 2.2.4 Connecting the Power Cable .. 25
 2.2.5 Setting the Clock-Selection Jumper ... 26
 2.2.6 Installing a Crystal Resonator ... 27
 2.2.7 Setting the User-System Input Signal Enabling/Disabling Switches 28
 2.2.8 Connecting the System Ground .. 29
 2.3 Setting the E10A-USB Emulator .. 30
 2.3.1 Setting the DIP Switches of the E10A-USB Emulator 30
 2.3.2 CD-R ... 31
 2.3.3 Connecting the E10A-USB Emulator to the Host Computer 32
 2.3.4 Setting Up the E10A-USB Emulator ... 33
 2.3.5 Activating the High-performance Embedded Workshop 33
 2.4 Setting Up the Debugging MCU Board for Single Operation 34
 2.4.1 Setting Switches on the Debugging MCU Board 34
 2.4.2 Inputting Reset Signals to the Debugging MCU Board 35

Section 3 Hardware Specifications .. 37
 3.1 External Dimensions of the Debugging MCU Board .. 37
 3.2 Resulting Dimensions after Connecting User System Interface Board 39
 3.3 Recommended Dimensions for User System Mount Pad (Footprint) 39
 3.3.1 Using the PLQP0064KB-A (FP-64K) Package .. 40
 3.3.2 Using the PRQP0064GB-A (FP-64A) Package .. 41
 3.3.3 Using the PLQP0048JA-A (FP-48F) Package ... 42
 3.4 Installing the MCU to the User System ... 43
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>User System Interface Circuits</td>
<td>45</td>
</tr>
<tr>
<td>3.6</td>
<td>Delay Time for the User System Interface</td>
<td>49</td>
</tr>
<tr>
<td>Section 4</td>
<td>Maintenance and Guarantee</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>User Registration</td>
<td>51</td>
</tr>
<tr>
<td>4.2</td>
<td>Maintenance</td>
<td>51</td>
</tr>
<tr>
<td>4.3</td>
<td>Guarantee</td>
<td>51</td>
</tr>
<tr>
<td>4.4</td>
<td>Repair Provisions</td>
<td>52</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Repair with Extra-Charge</td>
<td>52</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Replacement with Extra-Charge</td>
<td>52</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Expiration of the Repair Period</td>
<td>52</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Transportation Fees at Sending Your Product for Repair</td>
<td>52</td>
</tr>
<tr>
<td>4.5</td>
<td>How to Make a Request for Repair</td>
<td>53</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Repair Request Sheet</td>
<td>55</td>
</tr>
</tbody>
</table>
Section 1 Product Overview

1.1 Introduction

The High-performance Embedded Workshop is a graphical user interface intended to ease the
development and debugging of applications written in C/C++ programming language and
assembly language for Renesas microcomputers. Its aim is to provide a powerful yet intuitive way
of accessing, measuring, and modifying the debugging platform in which the application is
running.

This system is a software and hardware development support tool for application systems using
the Renesas original microcomputer.

The debugging MCU board is connected to the user system through the IC socket on the user
system. The user system can be debugged under the conditions similar to the actual application
conditions. The debugging MCU board enables debugging anywhere indoors or out with the
E10A-USB emulator. The host computer for controlling the debugging MCU board must be an
IBM PC compatible machine with USB 1.1/2.0 (Full-Speed).
Figure 1.1 System Configuration with the Debugging MCU Board
The debugging MCU board provides the following features:

- **Excellent cost-performance in-circuit emulator**

 Using the debugging MCU board with the E10A-USB emulator implements low-cost debugging of the user system without the user pins being occupied by the debugging interface (H-UDI).

 When the AUD function on the debugging MCU board is used, the debugging MCU board supports the window trace function for trace acquisition of a large-capacity realtime trace or a memory access (memory access address or memory access data) within the specified ranges.

- **Realtime emulation**

 Realtime emulation of the user system is enabled at the maximum operating frequency of the CPU.

- **Excellent operability**

 Using the High-performance Embedded Workshop on the Microsoft® Windows® 98SE, Microsoft® Windows® Me, Microsoft® Windows® 2000, and Microsoft® Windows® XP operating systems enables user program debugging using a pointing device such as a mouse. The High-performance Embedded Workshop enables high-speed downloading of load module files.

- **Debugging of the user system in the final development stage**

 The user system can be debugged under conditions similar to the actual application conditions.

- **Compact debugging environment**

 When the emulator is used, a laptop computer can be used as a host computer, creating a debugging environment in any place.
CAUTION

READ the following warnings before using the debugging MCU board. Incorrect operation will damage the user system and the debugging MCU board. The USER PROGRAM will be LOST.

1. Check all components against the component list after unpacking the emulator.
2. Never place heavy objects on the casing.
3. Protect the emulator from excessive impacts and stresses. For details, refer to section 1.5, Environmental Conditions.
4. Only supply the power of the specified voltages or power-supply frequencies to the debugging MCU board.
5. When moving the host computer or user system, take care not to vibrate or damage it.
6. After connecting the cable, check that it is connected correctly. For details, refer to section 2, Setting Up the Debugging MCU Board.
7. Supply power to the connected equipment after connecting all cables. Cables must not be connected or removed while the power is on.

1.2 Components

After removing the product from its packaging, confirm that you have all of the components. For details on the components of the debugging MCU board, refer to section 1.3, Components in the Package for the Debugging MCU Board. If any component is not present, contact your nearest Renesas sales office.
1.3 Components in the Package for the Debugging MCU Board

The debugging MCU board supports the SH7125 series (SH7124/SH7125). Table 1.1 lists the components supplied in the package for the debugging MCU board.

In the product as shipped, the main unit of the debugging MCU board is connected to the user system interface board with the flexible flat cable (FFC). Do not detach them from each other.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Component</th>
<th>Appearance</th>
<th>Qty</th>
<th>Remarks</th>
</tr>
</thead>
</table>
| Hardware | Debugging MCU board main unit | ![Appearance](image) | 1 | Depth: 80.0 mm, width: 85.0 mm, height: 22.3 mm, mass: 55.2 g
 * The main unit of the debugging MCU board is connected to the user system interface board with the FFC cable. Do not disconnect these components. |
<p>| FFC cables | | | 2 | Length: 150.0 mm, mass: 1.4 g |
| User system interface board | | | 1 | Depth: 35.0 mm, width: 40.0 mm, height: 10.3 mm, mass: 8.5 g |
| Power cable | | | 1 | Length: 0.5 m |</p>
<table>
<thead>
<tr>
<th>Classification</th>
<th>Component</th>
<th>Appearance</th>
<th>Qty</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware</td>
<td>IC socket</td>
<td></td>
<td>1</td>
<td>Connect the IC socket to the user system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*The IC socket provided will differ according to the supported MCU.</td>
</tr>
<tr>
<td></td>
<td>Socket cover</td>
<td></td>
<td>1</td>
<td>For installing the MCU</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*The socket cover provided will differ according to the supported MCU.</td>
</tr>
<tr>
<td></td>
<td>Screws (M2.0 x 10 mm)</td>
<td></td>
<td>4</td>
<td>For fastening the user system interface board</td>
</tr>
<tr>
<td></td>
<td>Screws (M2.0 x 6 mm)</td>
<td></td>
<td>4</td>
<td>For fastening the socket cover</td>
</tr>
<tr>
<td></td>
<td>Guide pins</td>
<td></td>
<td>2 or 3</td>
<td>*The quantity will differ according to the supported device.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Two guide pins are provided for the SH7125 (PLQP0064KB-A) and SH7124 (PLQP0048JA-A), and three are provided for the SH7125 (PRQP0064GB-A).</td>
</tr>
<tr>
<td></td>
<td>Screwdriver</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>User’s manual</td>
<td></td>
<td>1</td>
<td>SH7125 Series Debugging MCU Board User’s Manual (this manual)</td>
</tr>
</tbody>
</table>
CAUTION

Use the following IC sockets and socket covers on the user system.

- For SH7125 (package code: PLQP0064KB-A; former code: FP-64K):
 - IC socket: NQPACK064SD-ND (manufactured by Tokyo Eletech Corporation)
 - IC socket cover: HQPACK064SD (manufactured by Tokyo Eletech Corporation)

- For SH7125 (package code: PRQP0064GB-A; former code: FP-64A):
 - IC socket: NQPACK064SA (manufactured by Tokyo Eletech Corporation)
 - IC socket cover: HQPACK064SA (manufactured by Tokyo Eletech Corporation)

- For SH7124 (package code: PLQP0048JA-A; former code: FP-48F):
 - IC socket: NQPACK048SB (manufactured by Tokyo Eletech Corporation)
 - IC socket cover: HQPACK048SB (manufactured by Tokyo Eletech Corporation)
1.4 Hardware Configuration

As shown in figure 1.2, the usable configuration of the debugging MCU board consists of the main unit, FFC cable, user system interface board, and power cable. The debugging MCU board is connected, via the E10A-USB emulator, to the host computer over a USB 1.1/2.0 (Full-Speed) link.

The host computer, E10A-USB emulator, and external power supply must be separately obtained by the user.

![Figure 1.2 Hardware Configuration of the Debugging MCU Board](image-url)
1.4.1 Configuration of the Main Unit of the Debugging MCU Board

The names of each section of the debugging MCU board are explained below.

Top of the Main Unit of the Debugging MCU Board (1)

Figure 1.3 Top of the Main Unit of the Debugging MCU Board (1)

(a) External power LED: Marked ‘BOARD POWER’. This LED is lit while external power is being supplied from the power cable.
(b) User VCC LED: Marked ‘USER VCC’. This LED is lit while power is being supplied from the user system to the VCC pin of the MCU.
(c) User AVCC LED: Marked ‘USER AVCC’. This LED is lit while power is being supplied from the user system to the AVCC pin of the MCU.
(d) Reset LED: Marked ‘RST’. This LED is lit while the reset signal is being input to the MCU.
Figure 1.4 Top of the Main Unit of the Debugging MCU Board (2)
(a) Power-selection switch:
This switch is used to select the power source for the debugging MCU board.
When ‘EXTERNAL’ is selected, an external power supply is the source for the debugging MCU board.
When ‘USER SYSTEM’ is selected, the VCC power supply on the user system is the source for the debugging MCU board.

(b) Clock-selection jumper:
This jumper is used to select the clock signal for input to the MCU on the debugging MCU board.
When ‘XTAL’ is selected, the input clock signal is from the crystal resonator on the debugging MCU board. When ‘USER CLK’ is selected, the input clock signal is from the EXTAL pin on the user system.

(c) Crystal-resonator installation sockets:
The crystal resonator for supplying the external clock signal is mounted here when ‘XTAL’ has been selected on the clock-selection jumper.

(d) Reset switch:
This switch is used to input reset signals manually to the debugging MCU board.

(e) User-system input signal enabling/disabling switches:
These switches are used to enable or disable the input of /RES and NMI signals from the user system and connect or disconnect the user system.
Figure 1.5 Top of the Main Unit of the Debugging MCU Board (3)

(a) Power-cable connector: This connector is used to connect the debugging MCU board to the power cable for the external power supply.

(b) H-UDI interface connector (36 pins): This connector is used to connect the debugging MCU board to the 36-pin cable of the E10A-USB emulator.

(c) H-UDI interface connector (14 pins): This connector is used to connect the debugging MCU board to the 14-pin cable of the E10A-USB emulator.

(d) User system interface connector 1: This connector is used to connect the main unit of the debugging MCU board to the FFC cable.

Note: The FFC cable already occupies this connector in the product as shipped. Do not remove the cable from the connector.
Bottom of the Main Unit of the Debugging MCU Board

(a) User system interface connector 2: This connector is used to connect the main unit of the debugging MCU board to the FFC cable.

Note: The FFC cable already occupies this connector in the product as shipped. Do not remove the cable from the connector.
1.4.2 Configuration of the User System Interface Board

The names of each section of the user system interface board are explained below.

(a) User system interface connector 1:
This connector is used to connect the user system interface board to the FFC cable.
Note: The FFC cable already occupies this connector in the product as shipped. Do not remove the cable from the connector.

(b) User system interface connector 2:
This connector is used to connect the user system interface board to the FFC cable.
Note: The FFC cable already occupies this connector in the product as shipped. Do not remove the cable from the connector.

(c) User system connector: This connector is for connection to the user system.
1.5 Environmental Conditions

⚠ CAUTION

Observe the conditions listed in tables 1.6 and 1.7 when using the debugging MCU board. Failure to do so can lead to abnormal operation of the user system, the debugging MCU board, and the user program.

Table 1.6 Environmental Conditions

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
</table>
| Temperature | Operating: +10°C to +35°C
 | Storage: −10°C to +50°C |
| Humidity | Operating: 35% RH to 80% RH, no condensation
 | Storage: 35% RH to 80% RH, no condensation |
| Vibration | Operating: 2.45 m/s² max.
 | Storage: 4.9 m/s² max.
 | Transportation: 14.7 m/s² max. |
| Ambient gases | No corrosive gases may be present |

Table 1.7 Operating Environment

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
</table>
| Host computer | IBM PC or compatible machine that satisfies the operating-environment
 conditions of the E10A-USB emulator |
| Emulator | Renesas microcomputer development tool:
 E10A-USB emulator (HS0005KCU01H or HS0005KCU02H) |
| Power supply | DC 5 V ± 10% |
| Supply current | 300 mA (max.) |
Section 2 Setting Up the Debugging MCU Board

2.1 Flow Chart before Using the Debugging MCU Board

Unpack the debugging MCU board and prepare it for use as follows:

⚠️ WARNING

READ the reference sections shaded in figure 2.1 before using the debugging MCU board. Incorrect operation will damage the user system and the debugging MCU board. The USER PROGRAM will be LOST.

Unpack the debugging MCU board

Check the components against the component list

Set up the debugging MCU board
- Connect the E10A-USB emulator
- Connect the user system
- Set the switches of the debugging MCU board

Set up the E10A-USB emulator
- Install the emulator's software
 (Check the components and register the user information.)
- Insert the emulator
- Set up the main unit of the emulator

Start the High-performance Embedded Workshop

Turn on the user system

Input the user system reset signal

Reference
Component list
Section 2 in the Debugging MCU Board User's Manual (this manual)

When the debugging MCU board is used first.
When the debugging MCU board is used for second time or later.

Figure 2.1 Preparation Flow Chart for the Debugging MCU Board
2.2 Setting Up the Debugging MCU Board

To apply the debugging MCU board, you must obtain an E10A-USB emulator. This section describes how to connect the debugging MCU board, the E10A-USB emulator, and the user system interface board.

Before making the connections, check that the host computer is turned off, the E10A-USB emulator is not connected to the host computer via the USB cable, and power is being supplied to neither the debugging MCU board nor the user system.

2.2.1 Connecting the Debugging MCU Board to the E10A-USB Emulator

Follow the below procedure to connect the debugging MCU board to the E10A-USB emulator.

1. Connect the user system interface cable (14 or 36 pins) provided with the E10A-USB emulator to the side connector of the E10A-USB emulator as shown in figure 2.2.

Figure 2.2 Connecting the E10A-USB Emulator to the User System Interface Cable
2. Connect the 14-pin or 36-pin connector of the user system interface cable to the H-UDI interface connector on the debugging MCU board as shown in figures 2.3 and 2.4. Connect the 36-pin or 14-pin connector to CN2 or CN3, respectively.

Figure 2.3 Connecting the User System Interface Cable (36 Pins) to the Debugging MCU Board
Figure 2.4 Connecting the User System Interface Cable (14 Pins) to the Debugging MCU Board
2.2.2 Connecting the Debugging MCU Board to the User System

To connect the debugging MCU board to the user system, follow the instructions below.

WARNING

Always switch OFF the emulator product, the debugging MCU board, and the user system before any connection or removal of the USER SYSTEM INTERFACE BOARD. Furthermore, make sure that the pin 1 positions on both sides are correctly aligned. Failure to do so will create a FIRE HAZARD that can damage the emulator product, the debugging MCU board, the user system interface board, or the user system, or produce PERSONAL INJURY.

1. Solder the IC socket to the user system.

CAUTION

Before applying solder, use epoxy resin adhesive to affix the guide points on the IC socket to the user system.

Ensure full wetting of the leads so that the solder flows over the leads and forms good fillets (use slightly more solder than you normally would).
2. Align pin 1 on the IC socket on the user system with pin 1 on the user system interface board, and plug the user system connector of the interface board into the IC socket on the user system, as is shown in figure 2.5.

CAUTION

Ensure that the locations of pin 1 on the socket and connector are aligned before inserting the connector. If this is not done in the case of the SH7125, power-supply pins will be shorted as shown below.

<table>
<thead>
<tr>
<th>90° rotation</th>
<th>270° rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (Vcc)</td>
<td>52 (AVss)</td>
</tr>
<tr>
<td>22 (Vcc)</td>
<td>6 (Vss)</td>
</tr>
<tr>
<td>24 (Vss)</td>
<td>8 (VCL)</td>
</tr>
<tr>
<td>52 (AVss)</td>
<td>4 (Vcc)</td>
</tr>
<tr>
<td>6 (Vss)</td>
<td>22 (Vcc)</td>
</tr>
<tr>
<td>8 (VCL)</td>
<td>24 (Vss)</td>
</tr>
</tbody>
</table>

CAUTION

1. Use a Philips-head screwdriver with a head-size matching that of the screw.

2. The tightening torque must be no greater than 0.054 N·m. If the applied torque cannot be accurately measured, stop tightening the screw when the force required for further tightening suddenly becomes significantly greater than was initially required. Excessive tightening may break the screw head or crack the IC-socket solder, leading to an IC contact error.

3. If the emulator does not operate correctly, cracks may have been produced in the solder. Check conduction with a tester and re-solder the IC socket if necessary.
3. Fasten the user system interface board to the IC socket on the user system with the four screws (M2.0 x 10 mm) provided. Tighten each of the screws a little at a time, alternating between those on opposing corners. Do not concentrate on fully tightening one screw at a time. Take special care, such as manually securing the IC-socket soldered area, to prevent damage to the soldered IC socket due to excessive tightening of the screws or twisting of components.

Figure 2.5 Connecting the User System Interface Board to the User System
2.2.3 Setting the Power-Selection Switch

The external power supply or the VCC power supply on the user system can be selected as the source of power for the debugging MCU board. Refer to table 2.1 when selecting the power supply to be used.

![Figure 2.6 Power-Selection Switch](image)

Table 2.1 Correspondence of Power-Selection Switch Settings

<table>
<thead>
<tr>
<th>Silk-Screened Label</th>
<th>Power Supply to be Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXTERNAL</td>
<td>External power supply connected to the power cable (factory setting)</td>
</tr>
<tr>
<td>USER SYSTEM</td>
<td>VCC on the user system</td>
</tr>
</tbody>
</table>
2.2.4 Connecting the Power Cable

When the power-selection switch is set to ‘EXTERNAL’, the power cable must be connected to the debugging MCU board so that power can be supplied from beyond the board. Connect the power cable to the power-cable connector on the debugging MCU board as shown in figure 2.7.

Figure 2.7 Connecting the Power Cable to the Debugging MCU Board
2.2.5 Setting the Clock-Selection Jumper

The EXTAL input from the user system or the crystal resonator installed on the debugging MCU board can be selected as the source of the clock signal for the MCU. Refer to table 2.2 when selecting the clock.

![Figure 2.8 Clock-Selection Jumper](image)

<table>
<thead>
<tr>
<th>Silk-Screened Label</th>
<th>Jumper Pin (SW3)</th>
<th>Clock to be Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>XTAL</td>
<td>Pins 1-2 closed</td>
<td>Crystal resonator installed on the debugging MCU board</td>
</tr>
<tr>
<td>USER CLK</td>
<td>Pins 2-3 closed</td>
<td>EXTAL input from the user system (factory setting)</td>
</tr>
</tbody>
</table>

Note: ‘XTAL’ should only be selected if a crystal resonator has been mounted across the crystal-resonator installation sockets (X1) of the debugging MCU board. Users must provide the crystal resonator.
2.2.6 Installing a Crystal Resonator

‘XTAL’ should only be selected if a crystal resonator has been mounted on the debugging MCU board. Install the crystal resonator across the crystal-resonator installation sockets of the debugging MCU board.

Figure 2.9 Installing a Crystal Resonator
2.2.7 Setting the User-System Input Signal Enabling/Disabling Switches

Enabling or disabling of particular input signals from the user system can be set on the debugging MCU board. In addition, connecting or disconnecting the user system must be set with these switches. Table 2.3 lists the signals and settings.

<table>
<thead>
<tr>
<th>Silk-Screened Label</th>
<th>Number on SW2</th>
<th>ENABLE</th>
<th>DISABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNMI</td>
<td>1</td>
<td>Enables the NMI input. (factory setting)</td>
<td>Disables the NMI input.</td>
</tr>
<tr>
<td>URES</td>
<td>2</td>
<td>Enables the /RES input. (factory setting)</td>
<td>Disables the /RES input.</td>
</tr>
<tr>
<td>UCON</td>
<td>3</td>
<td>Set this switch when the user system is connected for operation. (factory setting)</td>
<td>Set this switch for single operation of the debugging MCU board.</td>
</tr>
<tr>
<td>—</td>
<td>4</td>
<td>Do not change this switch. (factory setting)</td>
<td>Do not change this switch.</td>
</tr>
</tbody>
</table>

Note: When ‘UCON’ is set as ‘DISABLE’, the debugging MCU board can be initiated even if the user system has not been connected. Set the debugging MCU board, referring to section 2.4, Setting Up the Debugging MCU Board for Single Operation, for the use of simple evaluation before designing the user system.
2.2.8 Connecting the System Ground

WARNING

Separate the frame ground and signal ground of the user system. Failure to do so will create a FIRE HAZARD that can damage the user system and emulator product, or produce PERSONAL INJURY.

The signal grounds of the E10A-USB emulator and the debugging MCU board are connected to the user system’s signal ground. In the emulator, the signal ground and frame ground are connected. In the user system, only connect the frame ground to earth; do not connect the signal ground to the frame ground (figure 2.11).

If it is difficult to separate the frame ground from the signal ground in the user system, tie the frame ground of the user system to the same potential as the GND level of the DC power input (AC adapter) of the host computer. This is because differences in GND potential between the host computer and target system will lead to excessive flows of current in the low-impedance GND lines, and thin lines might burn out.

![Figure 2.11 Connecting System Ground](image-url)
2.3 Setting the E10A-USB Emulator

2.3.1 Setting the DIP Switches of the E10A-USB Emulator

Set the DIP switches of the E10A-USB emulator as follows.

1. Open the sliding switch cover in the lower right portion of the upper side of the E10A-USB emulator by sliding it to the right as shown in figure 2.12.
2. Turn all of the DIP switches (SW1, SW2, and SW3) on (‘1’ side).

Figure 2.12 Setting the DIP Switches of the E10A-USB Emulator
2.3.2 CD-R

The emulator’s software for the debugging MCU board is included in the CD-R provided with the E10A-USB emulator.

The root directory of the CD-R contains a setup program for installing the emulator’s software for the debugging MCU board. The folders contain the files and programs listed below.

Table 2.4 Contents of the CD-R Directories

<table>
<thead>
<tr>
<th>Directory Name</th>
<th>Contents</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dlls</td>
<td>Microsoft® runtime library</td>
<td>A runtime library for the High-performance Embedded Workshop. The version is checked at installation and this library is copied to the hard disk as part of the installation process.</td>
</tr>
<tr>
<td>Drivers</td>
<td>E10A-USB emulator driver</td>
<td>USB drivers for the E10A-USB emulator.</td>
</tr>
<tr>
<td>Help</td>
<td>Online help for the E10A-USB emulator</td>
<td>An online help file. This is copied to the hard disk as part of the installation process.</td>
</tr>
<tr>
<td>Manual</td>
<td>E10A-USB emulator manuals</td>
<td>E10A-USB emulator user’s manuals. They are provided as PDF files.</td>
</tr>
</tbody>
</table>

Execute Setup.exe from the root directory of the CD-R to start the installation wizard.

Follow the cues given by the installation wizard to install the software.

Note: When a driver is installed in Windows® XP, a warning message on the Windows® logo test may be displayed, but it is not a problem. Select [Continue Anyway] to proceed with driver installation.
2.3.3 Connecting the E10A-USB Emulator to the Host Computer

This section describes how to connect the E10A-USB emulator to the host computer. For the position of each connector of the emulator, refer to the SuperH™ Family E10A-USB Emulator User’s Manual.

Notes:
1. When [Add New Hardware Wizard] is displayed, select the [Search for the best driver for your device. (Recommended)] radio button and then the [Specify a location] check box to select the path to be searched for drivers. The location must be specified as <Drive>:\DRIVERS. (<Drive> is the CD drive letter.)
2. When a driver is installed in Windows® XP, a warning message on the Windows® logo test may be displayed, but it is not a problem. Select [Continue Anyway] to proceed with driver installation.
3. Be sure to install the software for the E10A-USB emulator before putting the emulator in place.

⚠️ WARNING

Always switch OFF the emulator product and the user system before connecting or disconnecting any CABLES except for the USB interface cable. Failure to do so will result in a FIRE HAZARD and will damage the user system and the emulator product or will result in PERSONAL INJURY. The USER PROGRAM will be LOST.
The E10A-USB emulator is connected to the host computer via the USB 1.1, and also to the USB port conforming to USB 2.0. Figure 2.13 shows the system configuration.

![Figure 2.13 System Configuration when Connecting the E10A-USB Emulator to the Host Computer](image)

2.3.4 Setting Up the E10A-USB Emulator

Set up the E10A-USB emulator’s firmware referring to section 3.10, Setting Up the Emulator, and section 3.11, System Check, in the SuperH™ Family E10A-USB Emulator User’s Manual.

2.3.5 Activating the High-performance Embedded Workshop

Activate the High-performance Embedded Workshop referring to section 4, Preparations for Debugging, in the SuperH™ Family E10A-USB Emulator User’s Manual, which describes the activation procedure.
2.4 Setting Up the Debugging MCU Board for Single Operation

Since the debugging MCU board can be initiated even if the user system has not been connected, it is available for simple evaluation before designing the user system.

⚠️ WARNING ⚠️

1. Always disconnect the E10A-USB emulator from the host computer and switch OFF the debugging MCU board before setting switches on the debugging MCU board. Failure to do so will create a FIRE HAZARD that can damage the E10A-USB emulator product, the debugging MCU board, or the user system interface board.

2. For the single operation of the debugging MCU board, connector pins on the bottom of the user system interface board, which are used for connecting the user system, are disconnected. To prevent connector pins from being shorted, be sure to put an insulator under the user system interface board.

2.4.1 Setting Switches on the Debugging MCU Board

For the single operation of the debugging MCU board, set the switches on the debugging MCU board as described below and activate the High-performance Embedded Workshop.

1. Only the external power supply is supported. Set the power-selection switch to ‘EXTERNAL’ and supply the external power from the power-cable connector.

2. Only the crystal resonator installed on the debugging MCU board is supported as the source of the clock signal.
 Set the clock-selection jumper to ‘XTAL’ to install the crystal resonator across the crystal-resonator installation sockets.

3. The user-system input signal enabling/disabling switches must be set on the debugging MCU board. Set ‘UCON’ of these switches as ‘DISABLE’.
2.4.2 Inputting Reset Signals to the Debugging MCU Board

When reset signals must be input, such as the case when activating the High-performance Embedded Workshop or debugging, they can be manually input from the reset switch on the debugging MCU board. For details on inputting reset signals, see table 2.5.

Table 2.5 Correspondence of Reset Switch Settings

<table>
<thead>
<tr>
<th>Setting of SW4</th>
<th>Reset Signal Input to the Debugging MCU Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turned to ‘3’ of silk-screened label</td>
<td>Reset signal input from the reset switch is canceled. (factory setting)</td>
</tr>
<tr>
<td>Turned to ‘1’ of silk-screened label</td>
<td>Reset signal is input from the reset switch.</td>
</tr>
</tbody>
</table>

Note: This reset switch is used to manually input reset signals to the debugging MCU board. When the user system is connected, this reset switch is also available for inputting reset signals to the debugging MCU board, however, note that no reset signal is output to the user system.
Section 3 Hardware Specifications

3.1 External Dimensions of the Debugging MCU Board

Figures 3.1 through 3.3 show the external dimensions of the debugging MCU board.

Figure 3.1 External Dimensions of the Debugging MCU Board

Figure 3.2 External Dimensions of the Main Unit of the Debugging MCU Board
Figure 3.3 External Dimensions of the User System Interface Board
3.2 Resulting Dimensions after Connecting User System Interface Board

Figure 3.4 shows the resulting dimensions, after connecting the user system interface board to the user system.

![Figure 3.4 Resulting Dimensions after Connecting User System Interface Board](image)

3.3 Recommended Dimensions for User System Mount Pad (Footprint)

Figures 3.5 through 3.7 show the recommended dimensions for the mount pad (footprint) for the user system with an IC socket. Note that the dimensions in those figures are somewhat different from those of the actual MCU’s mount pad.
3.3.1 Using the PLQP0064KB-A (FP-64K) Package

Figure 3.5 shows the recommended dimensions for the mount pad (footprint) for the user system with an IC socket for a PLQP0064KB-A (former code: FP-64K) package (NQPACK064SD-ND: manufactured by Tokyo Eletech Corporation).

Figure 3.5 Recommended Dimensions for Mount Pad for PLQP0064KB-A (Former Code: FP-64K)
3.3.2 Using the PRQP0064GB-A (FP-64A) Package

Figure 3.6 shows the recommended dimensions for the mount pad (footprint) for the user system with an IC socket for a PRQP0064GB-A (former code: FP-64A) package (NQPACK064SA: manufactured by Tokyo Eletech Corporation).

![Diagram of recommended dimensions for mount pad](image)

<table>
<thead>
<tr>
<th>Dimension and tolerance</th>
<th>Dimension</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Up to 1.2</td>
<td>±0.05</td>
</tr>
<tr>
<td></td>
<td>1.3 to 2.0</td>
<td>±0.10</td>
</tr>
<tr>
<td></td>
<td>2.1 to 5.0</td>
<td>±0.15</td>
</tr>
<tr>
<td></td>
<td>5.1 to 10.0</td>
<td>±0.20</td>
</tr>
<tr>
<td></td>
<td>10.1 or above</td>
<td>±0.30</td>
</tr>
</tbody>
</table>

Unit: mm

Figure 3.6 Recommended Dimensions for Mount Pad for PRQP0064GB-A (Former Code: FP-64A)
3.3.3 Using the PLQP0048JA-A (FP-48F) Package

Figure 3.7 shows the recommended dimensions for the mount pad (footprint) for the user system with an IC socket for a PLQP0048JA-A (former code: FP-48F) package (NQPACK048SB: manufactured by Tokyo Eletech Corporation).

![Diagram of recommended dimensions for mount pad for PLQP0048JA-A](image)

<table>
<thead>
<tr>
<th>Dimension and tolerance</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>Tolerance</td>
</tr>
<tr>
<td>Up to 1.2</td>
<td>±0.05</td>
</tr>
<tr>
<td>1.3 to 2.0</td>
<td>±0.10</td>
</tr>
<tr>
<td>2.1 to 5.0</td>
<td>±0.15</td>
</tr>
<tr>
<td>5.1 to 10.0</td>
<td>±0.20</td>
</tr>
<tr>
<td>10.1 or above</td>
<td>±0.30</td>
</tr>
</tbody>
</table>

Unit: mm

Figure 3.7 Recommended Dimensions for Mount Pad for PLQP0048JA-A (Former Code: FP-48F)
3.4 Installing the MCU to the User System

CAUTION

1. Check the location of pin 1 before inserting.
2. Use a Philips-type screwdriver whose head matches the screw head.
3. The tightening torque must be 0.054 N•m or less.
 If the applied torque cannot be accurately measured, stop tightening when the force required to turn the screw becomes significantly greater than that needed when first tightening. If a screw is tightened too much, the screw head may break or an IC socket contact error may be caused by a crack in the IC socket solder.
4. If the MCU does not operate correctly, cracks might have occurred in the solder. Check conduction with a tester and re-solder the IC socket if necessary.

Check the location of pin 1 before inserting the MCU into the IC socket on the user system, as shown in figure 3.8. After inserting the MCU, fasten the socket cover with the provided four screws (M2.0 x 6 mm). Take special care, such as manually securing the IC socket soldered area, to prevent the IC socket from being damaged by overtightening the screws or twisting the components.
Figure 3.8 Installing MCU to User System
3.5 User System Interface Circuits

Figures 3.9 through 3.14 show user system interface circuits. Use them as a reference to determine the value of the pull-up resistance.

Figure 3.9 User System Interface Circuits

Figure 3.10 User System Interface Circuits
Figure 3.11 User System Interface Circuits
Figure 3.12 User System Interface Circuits
Figure 3.13 User System Interface Circuits

Figure 3.14 User System Interface Circuits
3.6 Delay Time for the User System Interface

Since the _RES and NMI signals are connected to the user system via the logic on the EV-chip unit, a delay time shown in table 3.1 will be generated until the signal is input from the user system to the MCU.

Table 3.1 Delay Time for Signals via the EV-chip Unit

<table>
<thead>
<tr>
<th>No.</th>
<th>Signal Name</th>
<th>Delay Time (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>_RES</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>NMI</td>
<td>10</td>
</tr>
</tbody>
</table>
Section 4 Maintenance and Guarantee

This section describes maintenance, guarantee, repair provisions, and how to request for repair of the emulator.

4.1 User Registration

When you purchase our product, be sure to register as a user. For user registration, refer to the section of ‘User Registration’ (p. i) of this user's manual.

4.2 Maintenance

1. If dust or dirt collects on any equipment of this product, wipe the board dry with a soft cloth. Do not use thinner or other solvents because these chemicals can cause the equipment's surface coating to separate.

2. When you do not use this product for a long period, for safety purposes, disconnect the power cable from the power supply.

4.3 Guarantee

If your product becomes faulty within one year after its purchase while being used under good conditions by observing ‘IMPORTANT INFORMATION’ described in this user's manual, we will repair or replace your faulty product free of charge. Note, however, that if your product's fault is raised by any one of the following causes, we will repair it or replace it with new one with extra-charge:

- Misuse, abuse, or use under extraordinary conditions
- Unauthorized repair, remodeling, maintenance, and so on
- Inadequate user's system or misuse of it
- Fires, earthquakes, and other unexpected disasters

In the above cases, contact your local distributor. If your product is being leased, consult the leasing company or the owner.
4.4 Repair Provisions

4.4.1 Repair with Extra-Charge

The products elapsed more than one year after purchase can be repaired with extra-charge.

4.4.2 Replacement with Extra-Charge

If your product's fault falls in any of the following categories, the fault will be corrected by replacing the entire product instead of repair, or you will be advised to purchase new one, depending on the severity of the fault.

- Faulty or broken mechanical parts
- Flaw, separation, or rust in coated or plated parts
- Flaw or cracks in plastic parts
- Faults or breakage caused by improper use or unauthorized repair or modification
- Heavily damaged electric circuits due to overvoltage, overcurrent or shorting of power supply
- Cracks in the printed circuit board or burnt-down patterns
- Wide range of faults that makes replacement less expensive than repair
- Unlocatable or unidentified faults

4.4.3 Expiration of the Repair Period

When a period of one year elapses after the model was dropped from production, repairing products of the model may become impossible.

4.4.4 Transportation Fees at Sending Your Product for Repair

Send your product to us for repair at your expense.
4.5 How to Make a Request for Repair

If your product is found faulty, follow the procedure below to send your product for repair.

Fill in the Repair Request Sheet included with this product, then send it along with this product for repair to your local distributor. Make sure that information in the Repair Request Sheet is written in as much detail as possible to facilitate repair.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note on Transporting the Product:</td>
</tr>
<tr>
<td>When sending your product for repair, use the packing box and cushion material supplied with this product when delivered to you and specify handling caution for it to be handled as precision equipment. If packing of your product is not complete, it may be damaged during transportation. When you pack your product in a bag, make sure to use conductive polyvinyl supplied with this product (usually a blue bag). When you use other bags, they may cause a trouble on your product because of static electricity.</td>
</tr>
</tbody>
</table>
Appendix A Repair Request Sheet

Thank you for purchasing the SH7125 series debugging MCU board (HS7125EDB01H, HS7125EDB02H, or HS7124EDB01H).

In the event of a malfunction, fill in the repair request sheet on the following pages and send it to your distributor.
Repair Request Sheet

To Distributor

Your company name:

Person in charge:

Tel.:

<table>
<thead>
<tr>
<th>Item</th>
<th>Symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Date and time when the malfunction occurred</td>
<td>Month/Day/Year (at system initiation, in system operation) *Circle either of items in the braces { }.</td>
</tr>
<tr>
<td>2. Frequency of generation of the malfunction</td>
<td>() times in () (day(s), week(s), or month(s)) *Enter the appropriate numbers in the parentheses () and circle one of the three items in the braces { }.</td>
</tr>
<tr>
<td>3. System configuration when the malfunction occurred</td>
<td>Enter the system configuration in use when the malfunction occurred.</td>
</tr>
<tr>
<td></td>
<td>• E10A-USB emulator (HS0005KCU01H or HS0005KCU02H):</td>
</tr>
<tr>
<td></td>
<td>Serial No.:</td>
</tr>
<tr>
<td></td>
<td>Revision:</td>
</tr>
<tr>
<td></td>
<td>The above items are written on the label for product management at the bottom of the emulator unit; the serial no. is the five-digit number and the revision is the string of letters following the number.</td>
</tr>
<tr>
<td></td>
<td>• Provided CD-R (HS0005KCU01SR):</td>
</tr>
<tr>
<td></td>
<td>Version: V.</td>
</tr>
<tr>
<td></td>
<td>Shown as 'V.x.xx release' on the CD-R (x: numeral).</td>
</tr>
<tr>
<td></td>
<td>• SH7125 series debugging MCU board (HS7125EDB01H, HS7125EDB02H, or HS7124EDB01H):</td>
</tr>
<tr>
<td></td>
<td>Serial No.:</td>
</tr>
<tr>
<td></td>
<td>Revision:</td>
</tr>
<tr>
<td></td>
<td>These are impressed on the circuit board.</td>
</tr>
<tr>
<td></td>
<td>• Host computer in use:</td>
</tr>
<tr>
<td></td>
<td>Manufacturer:</td>
</tr>
<tr>
<td></td>
<td>Type number:</td>
</tr>
<tr>
<td></td>
<td>OS:</td>
</tr>
</tbody>
</table>
Item 4. Settings when the malfunction occurred

Enter the operational settings of the debugging MCU board.

1. **Power-selection switch:**
 - EXTERNAL or USER SYSTEM (circle either item).

2. **Clock-selection jumper:**
 - XTAL or USER CLK (circle either item).
 - Input clock: MHz

3. **User-system input signal enabling/disabling switches:**
 - UNMI: ENABLE or DISABLE (circle either item).
 - URES: ENABLE or DISABLE (circle either item).
 - UCON: ENABLE or DISABLE (circle either item).

4. **Operating frequency:** MHz

Item 5. Failure phenomenon

Item 6. Error in debugging

Item 7. The High-performance Embedded Workshop does not link-up with the debugging MCU board.

Content of the error message

For errors other than the above, fill in the box below.
SH7125 Series Debugging MCU Board
HS7125EDB01H, HS7125EDB02H, HS7124EDB01H
User’s Manual