RLENESANS

19sM

7
<
Q
S
-
QO

RZ/T1 Group

UNet3/SNMP User’'s Manual

- RZ/T1

All information of mention is things at the time of this document publication, and Renesas
Electronics may change the product or specifications that are listed in this document without

a notice. Please confirm the latest information such as shown by website of Renesas

Document number : RO1US0202EJ0200
Issue date : Nov 1, 2020

Renesas Electronics
www.renesas.com q r m

http://www.renesas.com/

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the
operation of semiconductor products and application examples. You are fully responsible for the incorporation of these
circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for
any losses incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas
Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for
any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property
rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this
document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other
intellectual property rights of Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in
part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such
alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality".
The recommended applications for each Renesas Electronics product depends on the product's quality grade, as
indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and
visual equipment; home electronic appliances; machine tools; personal electronic equipment; and
industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster
systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a
direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may
cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality
grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas
Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for
any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for
which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas
Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage
range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no
liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified
ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products
have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to
implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire
in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including
but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any
other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate
the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all
applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation,
the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your
noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use
Renesas Electronics products or technology described in this document for any purpose relating to military applications
or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the
Renesas Electronics products or technology described in this document, you should comply with the applicable export
control laws and regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or
otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set
forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a
result of unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of
Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its
majority-owned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Instructions for the use of product

In this section, the precautions are described for over whole of CMOS device.
Please refer to this manual about individual precaution.
When there is a mention unlike the text of this manual, a mention of the text takes first priority

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in
the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, associated shoot-through
current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal
become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LS| are indeterminate and the states of register settings and pins are
undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins are not
guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not
guaranteed from the moment when power is supplied until the power reaches the level at which resetting has
been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
- The reserved addresses are provided for the possible future expansion of functions. Do not access these
addresses; the correct operation of LSl is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching

the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset,
ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a
clock signal produced with an external resonator (or by an external oscillator) while program execution is in
progress, wait until the target clock signal is stable.

Arm® and Cortex® are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere.

All rights reserved.

Ethernet is a registered trademark of Fuji Xerox Co., Ltd.

IEEE is a registered trademark of the Institute of Electrical and Electronics Engineers Inc.

TRON is an acronym for "The Real-time Operation system Nucleus".

ITRON is an acronym for "Industrial TRON".

pITRON is an acronym for "Micro Industrial TRON".

TRON, ITRON, and pITRON do not refer to any specific product or products.

Additionally all product names and service names in this document are a trademark or a registered trademark which
belongs to the respective owners.

How to Use This Manual

1. Objective and Target Users

This manual was written to explain the functions and the usage of the BSD interface library to the target users, i.e.
those who will be using this library software in the design of application systems. Target users are expected to
understand the fundamentals of the programming language and microcomputers.

When using this software, take all points to note into account. Points to note are given in their contexts and at the
final part of each section, and in the section giving usage notes.

The list of revisions is a summary of major points of revision or addition for earlier versions. It does not cover all
revised items. For details on the revised points, see the actual locations in the manual.

All trademarks and registered trademarks are the property of their respective owners.

1.

Contents

3T T 10T o T N 7
11 RESTFICHIONS .. 8

SPeCficatioN OULIINGeuiiiiiiii e s e s saa s e s s e e ees 9
2.1 Y 01Tl o714 [o o - U 9
2.2 Y0 o] o Yol gt =T M\ 1= B | @ o] [T ot o RR 10
2.3 Updating Data in MIB ODJECESccicciieeieiiee ettt e etee e s tre e e e iae e e s s ate e e esasaeeeentaeeeennseeesnnnseeasnnes 15
2.4 GENETATING IMIB TrEES ... et aa s aaaaaasannsssssssnnnsssnnsnsnnnnnnnnnnnnnnnnnn 17
2.5 Vendor-Specific MIB and Callback FUNCEIONccvviiieiiieccieee ettt ettt e 19

Outline of the SErUCTUIE......cciiiiiiiiiiiiiiiiir s 20
31 FIlE STIUCTUIE .. ettt s s st s s e sae e saeesaeesas 20
3.2 LI DTAEIES . e e e s st st e e s s he e s s he e e ne e saeesreesneesneenns 21

3.3 Module StrUCIUrE OVEIVIEWc.c.ciiiiiieeccee e 22
3.3.1 Task for Receiving SNMP Packets and Sending RESPONSES.......cuuveeeeiiieeeeiiiee et evee e eeere e 23
3.3.2 Task for COUNTING RUNNING TIME...uuiiiiiiiee e eciteecereeeeeite e e et eeeesaaeeesetaeeeseabeeeessseeesesseeesnnsseeennans 24
333 I T (e TR =T o o [T g Y I T LSRN 24

CONFIGUITNG RESOUICES ...cceuueerirenererennertreesereensneereesseeseenssessssssessssnssssssnssessssnssssesnsssssssnssesssnssessanassesssnne 25
41 (O 2T TU ol =TT 25
4.1.1 LISt Of OS RESOUICESeuviiutieiiieieeieet ettt ettt ettt ettt et e bt et et e bt e bt e bt e bt e b e e b e e b e e s e e seeneenrees 25
4.1.2 CONTIGUIING OS RESOUICES....cccvveeeeeirieeeireeeeeireeeeetreeeeetseeeeeesseeeeeseeeseassesesasseeessssesesessseeesaseeeesssresenns 27
4.2 NETWOIK RESOUICES. ...ttt sttt st sttt sae e st st sae e sate s bt e sbe e s bt e sbeesbeesbeesbeesmeesneennes 28
4.2.1 UDP SOCKELS ...ttt e 28
4.2.2 CONFIGUIING UDP SOCKELS ...ceeierieeeciieie ettt ettt ettt ettt e e st e e e ete e e s ettt e e e sneeeeseabaeeesnnsaeeesnseneesenseneeans 29

CoNFigUIINGTRE SNIVMIPcuueiiieiceirieeetttenereeteneeteenseeeeenssessenssesesensssesanssssssnssssesnssessesnssesssnssessennssesasnne 31
5.1 BaSiC S tiNGS .o, 31
5.1.1 (@70 T Y 7= {0 T T o= o VI 111V | RS 33
5.1.2 CONFIGUIING TNE IMIIB-I1 ...ttt e et e e eetr e e e e tae e e e etbeeeeeasaeeeesseeesensseeesnsaeeeenrenennn 36
5.1.3 Configuring the Operating SYSTEM......cccuuiii i e e e e e e e rre e e s rea e e e e naeeeens 36
5.1.4 EXamples of IMPIemMENTATION.ccuvii ittt e et eeetre e e eeabaeeeseabeeeesnseeeeensreeenas 37
5.2 CONTIGUINING IMIANGEELS ..veeeeitveeeeeieeeeeeteeeeeitreeeeeteeeeeetbeeeeebaeeesesbeeeessseeesastseeesassesesssseeesassaeeesnssesesesreeesns 39
53 CoNfigUIING COMMUNITIESueiiieiiieeccieee et e et e e e ee e e et e e e e tte e e eeateee e sseeeeesaseaeesanreeeesnssneesansenenans 40
54 Configuring Destinations for SENAING GENEIIC TraPS ..vveeiecreeeeieireeeeeireeeeetreeeeereeeeeirreeeeeareeeeeerreeesereeeeens 41
5.5 Configuring Standard Callbacks for Vendor’s Private MIB...........ccoccueeiiiiieerccieee e ceee e evee e enee e 42

Configuring Vendor-SPecific IMIIBS...........eeeeeeiiiiiiiinniieeeiiiiiieeeeeeeinsssssseeeesssssssssssseseesssssssssssssseeeess 43
6.1 Configuring the System Group Of the IMIB-ll.........ccocuviiiiiiiiie et eere e e eerreeeeereeeeenraeeean 43
6.2 Configuring Vendor's Private IMIBSccccuiie ettt eere e e re e e e etaee e s saaa e e s eanaaeeeennaeeesnnaeeans 45
6.2.1 V1D I Yo Te [@ o T T=Tot 1 5 L3PPSO 46
6.2.2 IMIB TDIES ..ttt ettt b e bt et b e e bt et et e s b e sbeeat et e s bt ebe et ebesbeebe et e besbeeaeenean 48

6.2.3 (011D o =Y N 49

6.2.4 (0] 1=t a =1 o LTS SPPN 49

6.2.5 DAt TabIE ..ttt et s bt ettt e et e e st e e s be e s be e e bt e e ateesateeeree s 53
6.2.6 Callback FUNCEION Tabl@ ...c..uiiiiiieiie ettt sttt st st e e 54
6.3 Configuring Variable Vendor-Specific Private MIBSccviiiciiieicciiee ettt e e eeve e e e vane e 56
6.3.1 Disabling Variable EXtENAEA IMIIBSuuiiiiiiieciiieeee e e et e e e e e eecte e e e e e e eeaaaeeeeeessesnnssseeeeeessennnnnns 56
6.3.2 MIB Tables for Variable EXtended MIB TrEESc.eeeiiiirieiiiee ettt sttt s s s e e 56
6.3.3 Resources for Nodes in Variable Extended MIB Trees.......coocueiiueeriiienieeniee ettt 57

L a T =T =T TN 59
7.1 LISt Of FUNCHIONS ...ttt ettt bt ae e e st e e st e e s bt e sbee e beeesabeesabeesabeesneeeans 59
7.2 SPECITICATION Of FUNCLIONSviiiiciiieeceieee ettt ettt ce e e et e e e eetbeeeeetreeeeeabaaeeeaseeeeensseeesnseeeeesreeeens 60
7.3 CallDACK FUNCLIONS ..ttt ettt sttt e bt e e at e e st e e sabe e s bt e e bt e e sabeesabeesabeeeaneeenaees 74

7.4 Functions for Variable Vendor-Specific EXteNded MIBS...........ceeiecieeeieiiiee e cteee e e eee e e 81

ENESANS

RZ/T1 Group RO1US0202EJ0200

; Rev.2.00

MNet3/SNMP User’s Manual Nov 1, 2020
1. Introduction

The uNet3-SNMP is software which provides an SNMP agent role for the uNet3 TCP/IP protocol stack. This software
responds to GetRequest or other packets sent from the manager as shown in the figure below. Also, it is capable of
sending notifications such as traps to the manager. Using this software allows monitoring of the state of incorporated
devices (agents) which are connected to the Ethernet through an SNMP manager.

{ SNMP manager (Windows/Unix)
Get Port Port
Request
GetNext Get
Request Response
GetBUIk Trap
Request
Set Inform
Request
\ 4
Port Port I
161 161
pUNet3-SNMP pNet3-SNMP
agent agent
MIB
(management MIB
information base)

Figure 1.1 SNMP Manager and Agents

This software is for use with the pNet3 (TCP/IP protocol stack) which supports the SNMP protocol.

R01US0202EJ0200 Rev.2.00 RENESAS Page 7 of 85
Nov 1, 2020

RZ/T1 Group 1. Introduction

1.1 Restrictions

The restrictions are given below.

e This system supports part of the MIB-II objects of SNMP but not all of them. For details, see Section 2.2,
Supported MIB-II Objects.

e The data types available for vendor-specific MIB objects are integer, counter (32), gauge (32), time ticks, IP
address, and octet string (character string). Other types are not supported.

e This system does not support interfaces with PPP (point-to-point protocol) but with Ethernet.
e This system supports agents on multiple network devices (LAN ports, up to sixteen).
e This system does not support IPv6.

e Vendor-specific traps can be sent by calling the snd_trp function. The variable bindings added to a trap are specified
as fixed vendor-specific MIB objects, which will have been generated when the system was initialized, but not as
variable MIB objects, which are added while the system is running.

R01US0202EJ0200 Rev.2.00 RENESAS Page 8 of 85
Nov 1, 2020

RZ/T1 Group 2. Specification Outline

2. Specification Outline

The outline of the specifications of this system is described here.

2.1 Specifications

The specifications of this system are shown below.

Table 2.1 Specifications

Item Content Remark
Role in SNMP Agent Does not work as a manager.
Supported SNMP versions SNMPv1 and SNMPv2c SNMPv3 is not supported.
Supported IP versions IPv4
Supported MIBs MIB-II System group Supported*!

Interfaces group

Address translation group

IP group
ICMP group
TCP group
UDP group
EGP group Not supported
Transmission group Not supported
SNMP group Supported*!
The enterprises group in the private subtree The vendor-specific extended MIB
Supported traps Generic trap Supports the traps listed below;
coldStart(0),
warmsStart(1),
linkDown(2),
linkUp(3), and
authenticationFailure(4).
Extended trap enterpriseSpecific(6)
(vendor-specific trap)
Others Function used for enabling and disabling generictraps ~ Function name: ena_trp/dis_trp
Function used for issuing extended traps Function name: snd_trp

Note 1. Part of the MIB-Il objects of each group are supported but not all of them. For details on unsupported objects, see the next
section.

R01US0202EJ0200 Rev.2.00 RENESAS Page 9 of 85
Nov 1, 2020

RZ/T1 Group 2. Specification Outline

2.2 Supported MIB-II Objects

This system supports part of the MIB-II objects but not all of them. Supported objects in each group are listed in the
table below. The cells in gray show the objects which do not reflect data immediately. The shortest interval at which
those objects are updated is every 100 milliseconds. Details on updating data in objects are described in the next
section. Note that inaccessible objects such as tcpConnTable and tcpConnEntry are omitted from the table below.

Table 2.2 Supported MIB-Il Objects (1/5)

Group Name Supported Object Restrictions

System group sysDescr Objects with IDs greater than
- that of sysServices are not
sysObjectlD supported.

sysUpTime

sysContact

sysName

sysLocation

sysServices

Interfaces group ifNumber The device number of uNet3 (up to 16) Up to sixteen network
r——— interfaces are supported.
ifTable

ifEntry

ifindex

ifDescr

ifType

ifMtu

ifSpeed
ifPhysAddress

ifAdminStatus The value should always be 1.
Only read access is allowed (not read-
write). Link states of the network cannot be
changed through the SNMP manager.

ifOperStatus

ifLastChanges

iflnOctets Whether these objects are supported or not
ifinUcastPkts depends on the_ implementation of the
Ethernet driver in use.

iflnNUcastPkts o The Ethernet driver for the AM335x
supports these objects. However, their

ifinDiscards

- values are the sum of those for ports 1
ifinErrors and 2 of the Ethernet controller as the
iflnUnknownProtos driver does not provide per-port statistical
: information.

ifOutOctets o For details on other drivers that are
ifOutUcastPkts available, refer to the documentation for
- the given driver (uNet3_XXX_ETH.txt).
ifOutNUcastPkts

ifOutDiscards

ifOutErrors

ifOutQLen The value should always be 0.

ifSpecific The value should always be “0.0”.

Address translation atlflndex

group atPhysAddress
atNetAddress
R01US0202EJ0200 Rev.2.00 IQEN ESNS Page 10 of 85

Nov 1, 2020

RZ/T1 Group

2. Specification Outline

Table 2.2

Supported MIB-II Objects (2 / 5)

Group Name Supported Object Restrictions
IP group ipForwarding The value should always be 2 Objects with IDs greater than
(notForwarding). that of ipRoutingDiscards are
Only read access is allowed (not read-write). not supported.
ipDefaultTTL Only read access is allowed (not read-write). Thf object;p?outeTable s
The values cannot be modified through the notsupported.
SNMP manager.
ipInReceives

ipinHdrErrors

ipInAddrErrors

ipForwDatagrams

iplnUnknownProtos

ipInDiscards

ipInDelivers

ipOutRequests

ipOutDiscards

ipOutNoRoutes

ipReasmTimeout

ipReasmReqds

ipPReasmOKs

ipReasmFails

ipFragOKs

ipFragFails

ipFragCreates

ipAdEntAddr

ipAdEntIfindex

ipAdEntNetMask

ipAdEntBcastAddr

ipAdEntReasmMaxSize

These objects are generated when the
system starts up and will not be deleted even
at link down, for example.

ipNetToMedialflndex

ipNetToMediaPhysAddress

ipNetToMediaNetAddress

ipNetToMediaType

ipRoutingDiscards

Only read access is allowed (not read-write).
The values cannot be modified through the
SNMP manager.

R0O1US0202EJ0200 Rev.2.00

Nov 1, 2020

RENESAS

Page 11 of 85

RZ/T1 Group 2. Specification Outline

Table 2.2 Supported MIB-II Objects (3 / 5)

Group Name Supported Object Restrictions

ICMP group icmplnMsgs Objects with IDs greater than
that of
icmpOutAddrMaskReps are
icmplnDestUnreachs not supported.

icmplInErrors

icmpInTimeExcds

icmplnParmProbs

icmplnSrcQuenchs

icmplnRedirects

icmplnEchos

icmplnEchoReps

icmpInTimestamps

icmpInTimestampReps

icmplnAddrMasks

icmplnAddrMaskReps

icmpOutMsgs

icmpOutErrors

icmpOutDestUnreachs

icmpOutTimeExcds

icmpOutParmProbs

icmpOutSrcQuenchs

icmpOutRedirects

icmpOutEchos

icmpOutEchoReps

icmpOutTimestamps

icmpOutTimestampReps
icmpOutAddrMasks
icmpOutAddrMaskReps

R01US0202EJ0200 Rev.2.00 RENESAS Page 12 of 85
Nov 1, 2020

RZ/T1 Group

2. Specification Outline

Table 2.2

Supported MIB-Il Objects (4 / 5)

Group Name

Supported Object

Restrictions

TCP group

tcpRtoAlgorithm

tcpRtoMin

tcpRtoMax

tcpMaxConn

tcpActiveOpens

tcpPassiveOpens

tcpAttemptFails

tcpEstabResets

tcpCurrEstab

tcplnSegs

tcpOutSegs

tcpRetransSegs

tcpConnState

Only read access is allowed (not read-write).
The values cannot be modified through the
SNMP manager. For example, you cannot
rewrite tcpConnState with deleteTCB.

tcpConnLocalAddress

tcpConnLocalPort

tcpConnRemAddress

tcpConnRemPort

tcpInErrs

tcpOutRsts

Objects with IDs greater than
that of tcpOutRsts are not
supported.

UDP group

udplnDatagrams

udpNoPorts

udplnErrors

udpOutDatagrams

udpLocalAddress

udpLocalPort

Objects with IDs greater than
that of udpLocalPort are not
supported.

R0O1US0202EJ0200 Rev.2.00

Nov 1, 2020

RENESAS

Page 13 of 85

RZ/T1 Group

2. Specification Outline

Table 2.2

Supported MIB-II Objects (5/ 5)

Group Name Supported Object Restrictions
SNMP group snmplnPkts Objects with IDs greater than
that of
snmpOutPkts

snmplnBadVersions

snmplinBadCommunityNames

snmplnBadCommunityUses

snmpInASNParseErrs

snmpInTooBigs

snmplnNoSuchNames

snmplnBadValues

snmplinReadOnlys

snmpInGenErrs

snmplnTotalReqVars

snmplnTotalSetVars

snmplnGetRequests

snmpinGetNexts

snmplnSetRequests

snmplnGetResponses

snmplinTraps

snmpOutTooBigs

snmpOutNoSuchNames

snmpOutBadValues

snmpOutGenErrs

snmpOutGetRequests

snmpOutGetNexts

snmpOutSetRequests

snmpOutGetResponses

snmpOutTraps

snmpEnableAuthenTraps

Only read access is allowed (not read-write).
The values cannot be modified through the

SNMP manager.

snmpEnableAuthenTraps are
not supported.

R0O1US0202EJ0200 Rev.2.00

Nov 1, 2020

RENESAS

Page 14 of 85

RZ/T1 Group 2. Specification Outline

2.3 Updating Data in MIB Objects

The timing of updating MIB objects is described here. The MIB objects are held in the TCP/IP protocol stack, for
which the shortest interval of updating the objects is every 100 milliseconds, as described in the previous section, and
in the SNMP module, for which the objects are updated immediately (Figure 2.1).

As shown in the figure, the objects in the interfaces group that are related to link states are, as exceptions, updated
immediately by a callback. On reception of a callback which signifies the detection of linkage, the SNMP module
returns a linkUp trap (if this is enabled) in response.

On the other hand, the data in the TCP/IP protocol stack are updated at regular intervals in order to prevent the
transmission rate from decreasing. Updating of the objects, for which the shortest interval is every 100 milliseconds, is
based on the timer task in the protocol stack, which runs every 100 milliseconds.

Users can adjust an interval by setting a desired value in millisecond (in multiples of 100) in the macro
CFG_STS _UPD_RES for configuring the protocol stack. The value of this sample program (net_cfg.h) is set to two
seconds as explained below;

E.g., if you want an interval of 100 milliseconds, define CFG_STS _UPD_RES with the value 100.

— Sample/*** SNMP/net_cfg.c — (the configuration file for the protocol stack)

#defineCFG_STS UPD_RES 2000 /* 2 seconds */
R01US0202EJ0200 Rev.2.00 RENESAS Page 15 of 85

Nov 1, 2020

RZ/T1 Group 2. Specification Outline

Immediately updated by a callback
TCP/IP protocol stack ifSpeed

ifOperStatus

Updated every 100 milliseconds
(the shortest interval)

MIB

A\ 4

AT group
Interfaces group [ifOperStatus...]
IP group
ICMP group
TCP group
UDP group

SNMP module
L Updated immediately J
—> MIB
System group
Interfaces group [ifNumber...ifAdminStatus] |«
SNMP group
Figure 2.1 Updating Data in the MIB-Il Objects
R01US0202EJ0200 Rev.2.00 .QEN ESNS Page 16 of 85

Nov 1, 2020

RZ/T1 Group 2. Specification Outline

24 Generating MIB Trees

Users are generally required to generate an MIB tree to implement SNMP in their systems. In this system, a tree (two-
way list) is generated in memory (RAM) when the system is initialized. The tree needs the OIDs of individual objects

(such as “1.3.6.1.2.1.1.1”), which take the form of numerals separated by ““.” (dot) in this system. For example, a
vendor- specific private MIB object with the OID “1.3.6.1.4.1.1234.1.1” is configured as follows (highlighted in gray).

/* The prefix for the MIB OID (add a dot at the end) */
const VB snmp mib_ven pre 1[]=1.3.6.1.4.1.1234.”; /* Prefix OID */

/* The MIB OIDs following the prefix (add “.0” at the end) */

const VB snmp _mib 1234 1 1[]=“1.1.0"; /*Descr (1.3.6.1.4.1.1234.1.1) */
const VB snmp_mib 1234 1 2[]=1.2.0"; /* Version (1.3.6.1.4.1.1234.1.2) */
const VB snmp_mib_1234 1 3[]=“1.3.0"; /* Status (1.3.6.1.4.1.1234.1.3) */
const VB snmp _mib 1234 1 4[]=%1.4.0”; /* User name (1.3.6.1.4.1.1234.1.4) */

As shown above, in the configuration of vendor-specific private MIBs, users need to include the information in the form
of the OID strings, data types of individual objects, and their initial values in the C-language source file.

This system reads the OID strings in the source file and form a tree of MIB on memory when the system is initialized,
as shown in Figure 2.2. The MIB-II tree includes objects associated with TCP or UDP sockets. These objects (nodes in
the tree) are generated and deleted as users generate and delete the corresponding sockets in their applications. This
means that the generated MIB-II tree is modified while data are being processed.

A tree of vendor-specific extended (private) MIB is also generated when the system is initialized. The user cannot
change the vendor's MIB objects that are generated at this time. However, some of the objects can be added and
deleted by calling the functions add val mib nod and del val mib nod, respectively. Furthermore, the number of
nodes to be used in the MIB tree is only figured out after it has been generated, which means that the user cannot tell
how much memory will be used in advance. Therefore, the function for initializing this system (snmp_ini) is
configured to return the number of nodes (amount of memory) needed to generate a tree for debugging. Note that the
number of nodes returned by the function does not include those added as vendor-specific MIB nodes by calling the
add_val mib_nod function.

R01US0202EJ0200 Rev.2.00 RENESAS Page 17 of 85
Nov 1, 2020

RZ/T1 Group

2. Specification Outline

Node

A TCP socket is generated

(cre_soc (IP_PROTO_TCP, node);

Node
(tcpConnState)

1.3.6.1.4.1.1234.1.1

A node will be added

Vendor's
MIB

Nodes can be added or deleted
(add_val_mib_nod or del val_mib_nod)

Figure 2.2 MIB Tree

R01US0202EJ0200 Rev.2.00
Nov 1, 2020

RENESAS

Page 18 of 85

RZ/T1 Group 2. Specification Outline

25 Vendor-Specific MIB and Callback Function

Values for the objects of a vendor-specific private MIB are changed in two ways. One way is to obtain the target value by
calling the get mib_obj or get val mib_obj function and change it by calling the set mib_obj or set_val mib_obj
function from a user task (process 1 in Figure 2.3). The other way is to change the value in the callback function issued
by the receiving task in the system, in response to packets such as GetRequest from the manager (process 2 in Figure
2.3). With the latter approach, when this system receives GetRequest from the manager, for example, the user can
change the argument of the callback function to be returned to the desired value and exit the function. Then, the system
returns the callback with the new value to the manager.

In summary, if you want to change the value in an object of a vendor-specific private MIB at any time, use the functions
get_mib_obj (or get val mib_obj) and set_mib_obj (or set_val _mib_obj) and if you want to change the value on
reception of a request from the manager, use a callback function.

Note that these functions cannot be issued by the callback function. Change the value of the argument cbk_dat->buf in
the way stated in the description of the callback function.

Get/Set
User application task get_mib_obj()
set_mib_obj() Process 1
User-defined callback function Vendor’s
apl_snmp_cbk() private MIB

Process 2

Receiving task in SNMP
snmp_rcv_tsk()

Get Get
Request Response
|
Get
Next/Bulk
Request
|
Set
Request
v
(SNMP manager j
Figure 2.3 Vendor-Specific MIB and Callback Functions
R01US0202EJ0200 Rev.2.00 .QEN ESNS Page 19 of 85

Nov 1, 2020

RZ/T1 Group 2. Specification Outline

3. Outline of the Structure

31 File Structure

The installer of this system copies the files to the pC3/Compact/SNMP folder (for the compact version of the operating
system) or the pC3Std/SNMP folder (for the standard version of the operating system). The file structure of the system is

shown below.
Table 3.1 File Structure
Folder File Name Description
SNMP/doc uNet3 SNMP.txt Update history
uNet3_SNMAUsersGuide.pdf User’s guide
SNMP/inc (header file) snmp.h User-defined functions
snmp_ber.h BER (basic encoding rules) of ASN.1 (Abstract
Syntax Notation One)
snmp_def.h Internal definition
snmp_lib.h For creating libraries
snmp_mac.h Macros for configuration
snmp_mib.h Macros for defining MIB-II IDs
snmp_net.h Fixed values for MIB-II
SNMP/src (source file) snmp.c User-defined functions and functions for tasks
snmp_ber.c Encoding and decoding in BER
snmp_mib.c For processing the MIB tree
snmp_mib_dat.c Data in MIB-II
snmp_tcp.c For TCP/IP protocol stack
SNMP/lib/ (library) SNMP[processor name, etc.].* Libraries

(excluding snmp_mib_dat.c)

[processor name)/ Project file for building libraries
SNMP[processor name, etc.].
[extension of the project]

An application which uses the API functions of this system requires snmp.h among its files of source code. The other
header files are for use in the system or in the user’s configuration files (snmp_cfg.c, snmp _mib_cfg.c). Build and link
the string library for the TCP/IP protocol stack (Network/NetApp/net strlib.c) and the snmp_mib_dat.c file when
creating the application.

The source files composing the library of this system do not include snmp_mib_dat.c because this file contains variable
data (sysDescr of MIB-II for defining the name and version identifier of the device, for example). Therefore, the user
will need to create this file. Building a library requires the operating system, the TCP/IP protocol stack, and the header
file of the string library for the protocol stack (Network/NetApp/net_strlib.h).

To use this system, settings are required by using the files listed in the table below. These files are included in the folders
for the sample program. For example, the configuration files are included in the Sample/EVMAM3358.SNMP folder for
the Cortex-A8 (AM335x).

R01US0202EJ0200 Rev.2.00 RENESAS Page 20 of 85
Nov 1, 2020

RZ/T1 Group

2. Specification Outline

Table 3.2 Configuration Files

File Name Content
snmp_cfg.h Macros used for configuring the SNMP
snmp_cfg.c Variables for configuring the SNMP

snmp_mib_cfg.h

Macros used for configuring the vendor’s private MIB

snmp_mib_cfg.c

Variables for configuring the vendor’s private MIB

3.2 Libraries

The libraries of this system are built by using the same compiler options as for the operating systems and the TCP/IP

protocol stack. For example, this system, when used with a Cortex-A8 (AM335x), includes four libraries representing

the four combinations of the Arm and Thumb states and whether VFP is or is not present. Each file name starts with

“SNMP”, followed by the same strings as those of the operating systems or the protocol stack.

[Code Composer Studio]

Arm/Thumb Endian VFP Library Name
Arm Little — SNMPcortexal.lib
Thumb Little — SNMPcortexatl.lib
Arm Little VFPv3 SNMPcortexafl.lib
Thumb Little VFPv3 SNMPcortexaftl.lib

The libraries are built into this system without including debugging information. The libraries having already been

built in this way means that this system cannot be traced by a debugger. If you want to trace the source code of this

system, rebuild the library with debugging information.

R01US0202EJ0200 Rev.2.00
Nov 1, 2020

RENESAS

Page 21 of 85

RZ/T1 Group 2. Specification Outline

3.3 Module Structure Overview

This section describes major structures of the modules used in this system. Three tasks are provided in this system and
the functions of these tasks are implemented in the snmp.c file as shown below.

Table 3.3 Tasks

Number Function for Each Task Description

1 snmp_rcv_tsk Receive SNMP packets and send responses
snmp_tim_tsk Count running time

3 snmp_trp_tsk Send traps and InformRequest packets

This system also requires memory area where the MIB (MIB-II and vendor-specific private MIB) information are to be
stored. The TCP/IP protocol stack also sums up data for the MIB-II and updates this area. Behavior of each task is
described from the next section.

R01US0202EJ0200 Rev.2.00 RENESAS Page 22 of 85
Nov 1, 2020

RZ/T1 Group 2. Specification Outline

3.3.1 Task for Receiving SNMP Packets and Sending Responses

This task receives SNMP packets and sends response packets. The task waits for incoming SNMP packets at port 161
as UDP by issuing the rcv_soc command of the uNet3 stack, and, on receiving data, it returns a response to the
manager from the same port by issuing the snd_soc command of pNet3.

For example, when this task receives a packet such as GetRequest, it refers to the data in the relevant MIB and
generates a response packet based on the SNMP specifications. These packets are generated by encoding or decoding
the data based on the BER (basic encoding rules) of ASN.1. An authenticationFailure trap may be returned (from the
task for sending traps) if the community string of the received packet does not match that set by the user.

When this task receives a packet such as SetRequest, it updates the value in the relevant MIB object.

[User application]

| 4

Get/Set
get_mib_obj()
set_mib_obj()

Trap/Inform
snd_trp()

v

~ N

P Vendor’s
€ »| private MIB

Receiving task in SNMP
snmp_rcv_tsk()

Get Get MIB-II
Request Response

Get
Next/Bulk
Request
|
Set
Request

TCP/IP protocol stack

Port
161

v

Dynamic Port
port 162

[SNMP manager J

Figure 3.1 Task for Receiving and Responding Packets and MIBs

R01US0202EJ0200 Rev.2.00 RENESAS Page 23 of 85
Nov 1, 2020

RZ/T1 Group 2. Specification Outline

3.3.2 Task for Counting Running Time

This task obtains a value which indicates how much time has passed since power was supplied to the device. The
obtained value is stored in the object “sysUpTime” in the system group. The value is obtained by using the service call
API, get tim (get system time). After waking up within an interval such that the value of the thirty-two lower-order
bits of the returned system time value does not overflow, this task converts the returned value into the running time of
the SNMP and stores it in the relevant MIB object. As a whole, the execution time of this task is very short.

Do not use the set_tim command to change the system time while this task is running.

3.3.3 Task for Sending Traps

This task sends traps and InformRequest packets. There are two types of traps, generic traps and vendor-specific traps.
The user can enable and disable generic traps by using the configuration macros or the API functions.

When a vendor-specific trap is to be sent, the user’s application task issues a call of the snd_trp function. Once the task
sends a message to the destination, it waits until completion of the transmission of the trap, which is the time when
uNet3 has finished sending the trap by snd _soc (UDP transmission).

When this task sends an InformRequest packet, it waits until receiving a response packet (rcv_soc) from the destination.
This task is not needed for operations which do not use traps and InformRequest packets.

R01US0202EJ0200 Rev.2.00 RENESAS Page 24 of 85
Nov 1, 2020

RZ/T1 Group 4. Configuring Resources

4. Configuring Resources

This section describes the resources for the operating systems and network.

4.1 OS Resources

411 List of OS Resources

The operating system resources used in this system are listed in the table below. Among the resources, task 3, semaphore
2, event flag 2, and mailbox (ID_xxx_TRP) (those highlighted in gray in the table) are not needed for operations which
do not use traps. The callback functions in the system are issued by calling the snmp rcv_tsk function of task 1. If the
callback includes processing that uses a large amount of stack space, ensure that the amount of stack for task 1 is large
enough to cover this.

The table of resources is automatically generated in the standard version of the operating system. For the compact
version, users are required to configure the resources listed in Table 4.1 by the configurator provided with the
operating system.

Table 4.1 List of OS Resources (1/2)

No. Resource Settings (Default or Sample Value) Content

1 Task 1 Defined ID name ID_SNMP_TSK_RCV Receiving SNMP packets
and sending the response
Function name of the task snmp_rcv_tsk packets
Initial value for the priority level 6
Extended information None
Executable state None
Restrictions on the task None
Stack size 1024 or greater (e.g. 1536)
(local stack)
2 Task 2 Defined ID name ID_SNMP_TSK_TIM Counting running time
Function name of the task snmp_tim_tsk
Initial value for the priority level 6
Extended information None
Executable state None
Restrictions on the task None
Stack size 512 (local stack)
3 Task 3 Defined ID name ID_SNMP_TSK_TRP Sending traps and
Function name of the task snmp_trp_tsk InformRequest packets
Initial value for the priority level 6
Extended information None
Executable state None
Restrictions on the task None
Stack size 1024 (local stack)
4 Semaphore 1 Defined ID name ID_SNMP_SEM_MIB Excluding other MIBs
Initial value for the number of 1
resources

Maximum number of the resources 1

Attribute

TA_TFIFO

R01US0202EJ0200 Rev.2.00
Nov 1, 2020

RENESAS

Page 25 of 85

RZ/T1 Group

4. Configuring Resources

Table 4.1 List of OS Resources (2 / 2)

No. Resource Settings (Default or Sample Value) Content

5 Semaphore 2 Defined ID name ID SNMP_SEM TRP Excluding other trap
Initial value for the number of 1 resources
resources
Maximum number of the resources 1
Attribute TA_TFIFO

6 Event flag 1 Defined ID name ID_ SNMP_FLG_STS State of the task
Initial value 0x0
Queueing of tasks to be executed TA_TFIFO
To permit multiple tasks to wait TA_WMUL
Clear the flag None

7 Event flag 2 Defined ID name ID_SNMP_FLG_TRP State of handling a trap
Initial value 0x0
Queueing of tasks to be executed TA_TFIFO
To permit multiple tasks to wait TA_WMUL
Clear the flag None

8 Mailbox Defined ID name ID_ SNMP_MBX TRP Sending a command block of

Queueing of tasks to be executed

TA_TFIFO

Message queueing

TA_MFIFO

a trap

R01US0202EJ0200 Rev.2.00
Nov 1, 2020

RENESAS

Page 26 of 85

RZ/T1 Group 4. Configuring Resources

41.2 Configuring OS Resources

Specific variables are required for configuring the resources for the operating system. In this system, the variables
have been already implemented in the sample program file snmp_cfg.c.

Configuration of the resources for the compact version of the operating system is as follows:

Declare the variable for the structure T_SNMP_CFG_OS as “snmp_cfg_os”. Assign the ID of each resource which is
set by the configurator to the corresponding variables and initialize each of them. This system uses the values read
from these variables (assigned to the ROM area).

const T_SNMP_CFG_OS snmp_cfg_os ={

ID_SNMP_TSK_RCV, /*task 1*/
ID_SNMP_TSK_TIM, [*task 2%/
ID_SNMP_TSK_TRP, /* task 3*/
ID_SNMP_SEM_MIB, /* semaphore 1 */
ID_SNMP_SEM_TRP, /* semaphore 2 */
ID_SNMP_FLG_STS, /* eventflag 1 */
ID_SNMP_FLG_TRP, I* eventflag 2 */
ID_SNMP_MBX_TRP, /* mailbox */

Configuration of the resources for the standard version of the operating system (such as the Cortex-A8 (AM335x)) is
as follows:

The variables representing the information for generating resources are implemented in the snmp_cfg.c file as shown
below. The resources for the operating system is automatically generated using these variables.

const T_CTSK snmp_cfg_os_tsk_rcv = {TA_HLNG, 0, (FP)snmp_rcv_tsk, TSK_RCV_PRI, TSK_RCV_STK, 0, 0};
const T_CTSK snmp_cfg_os_tsk_tim ={TA_HLNG, 0, (FP)snmp_tim_tsk, TSK_TIM_PRI, TSK_TIM_STK, 0, 0}; const
T_CTSKsnmp_cfg_os_tsk_trp ={TA_HLNG, 0, (FP)snmp_trp_tsk, TSK_TRP_PRI, TSK_TRP_STK, 0, 0}; const
T_CSEM snmp_cfg_os_sem_mib = {TA_TFIFO, 1, 1, 0};

(Omitted)

The priority level and the stack size of individual tasks are configured by the configurator for the compact version of the
operating system, or use the macros in the snmp_cfg.h for the standard version of the operating system, as described in
Section 5.

R01US0202EJ0200 Rev.2.00 RENESAS Page 27 of 85
Nov 1, 2020

RZ/T1 Group

4. Configuring Resources

4.2 Network Resources

421 UDP Sockets

This system uses UDP sockets on the network. How to make the settings for UDP sockets is described below. Socket 1
is for receiving and transmitting messages such as GetRequest. Socket 2 is for sending traps and InformRequest

packets. These sockets are required for each LAN port that is to be used.

The table of resources is automatically generated in the standard version of the operating system. For the compact

version, users are required to configure the sockets listed in Table 4.2 by the configurator.

Table 4.2 List of Network Resources

1 UDP socket 1 Defined ID name

ID_SNMP_UDP_SOCn (n=1, 2,3, ...) UDP socket for receiving

Interface binding

and transmitting messages
Ethernet O (network device to be used)

IP version number IPv4
Protocol ubDP
Local port 161

Timeout value for snd_soc 2000
Timeout value for rcv_soc 2000

2 UDP socket 2 Defined ID name

ID_SNMP_UDP_TRP_SOCn (n=1, 2, 3,...) UDP socket for sending

Interface binding Ethernet 0 (network device to be used) traps
IP version number IPv4
Protocol UDP
Local port PORT_ANY(0) (optional)
Timeout value for snd_soc 2000
Timeout value for rcv_soc 2000
R01US0202EJ0200 Rev.2.00 REN ESNS Page 28 of 85

Nov 1, 2020

RZ/T1 Group 4. Configuring Resources

422 Configuring UDP Sockets

In this system, users can limit the number of network devices (LAN ports) to be used with SNMP. For example, the user
can configure the target device with four LAN ports such that port 1 is for messages and traps for SNMP, ports 2 and 4
exclusively for traps, and port 3 for uses other than SNMP.

UDP socket

LAN Port 1 T

e le—>
SNMP Trap)—}
—

[{SNMP Messag

(
L
(LAN Port 2]
(
\

SNMP Trap
-
LAN Port 3)
.
(]
LAN Port 4
\ r SNMP Trap l—-}

Figure 4.1 Example of Device Usage with SNMP

In making the settings for the network devices to be used, an array variable is declared in the structure
T SNMP CFG NET as “snmp_cfg net”. The variable has been already implemented in the snmp_cfg.c file. Declare
the variable as const, and assign it to the ROM area. This structure contains the following variables.

/* Network configuration */

typedef structt_snmp_cfg_net {

UH dev_num; /* Network device number (1...65535) */
ID id_udp_soc; /* UDP socket (ID_SNMP_UDP_SOCx)*/
IDid_trp_soc; /* UDP socket for trap (ID_SNMP_UDP_TRP_SOCx) */

}T_SNMP_CFG_NET,;

No. Type Variable Name Description
1 UH dev_num The network device number (from 1)
2 ID id_udp_soc Compact version:

Specify the ID of UDP socket 1 when a port is to be used.
Specify 0 when no ports are to be used.
Standard version:
Specify 1 when a port is to be used.
Specify 0 when no ports are to be used.

3 ID id_trp_soc Compact version:
Specify the ID of UDP socket 2 when a port is to be used.
Specify 0 when no ports are to be used.
Standard version:

Specify 1 when a port is to be used.
Specify 0 when no ports are to be used.

R01US0202EJ0200 Rev.2.00 RENESAS Page 29 of 85
Nov 1, 2020

RZ/T1 Group 4. Configuring Resources

An example of implementation when a network device is configured as shown in Figure 4.1 is given below.

Use the configurator to create the socket IDs for the compact version in the way stated in Table 4.2.

#define CFG_SNMP_NET_USE_CNT 3

/* Compact version */
const T_SNMP_CFG_NET snmp_cfg_net{CFG_SNMP_NET_USE_CNT] ={

{1U,ID_SNMP_UDP_SOCH, ID_SNMP_UDP_TRP_SOC1},
{2u, 0, ID_SNMP_UDP_TRP_SOC2},
{au, 0, ID_SNMP_UDP_TRP_SOC3}

/* Standard OS */
const T_SNMP_CFG_NET snmp_cfg_net{CFG_SNMP_NET_USE_CNT] ={
{10, 1, 1},

{2U, 0, 1},
{4U, 0, 1}
k
R01US0202EJ0200 Rev.2.00 RENESAS Page 30 of 85

Nov 1, 2020

RZ/T1 Group

5. Configuring the SNMP

5. Configuring the SNMP

Implement the configuration macros for this system in the files snmp_cfg.h and snmp_cfg.c. Implement the identifier
macro described in Section 5.1, Basic Settings in the snmp_cfg.h file and the configuration variables described from

the subsequent sections in the snmp_cfg.c file.

5.1 Basic Settings

The macros defined in the file snmp_cfg.h are shown in the table below. The macros for “OS and network” in this table

are not used for the compact version of the operating system. Instead, the user needs to set the priority level and the stack

size for individual tasks by the configurator.

Table 5.1 List of Configuration Macros (1/2)
Category Macro Definition Example Value Description
SNMP CFG_SNMP_NET_DEV_CNT 1 The number of network devices (LAN ports) to be used

in the target device.
Set a value between 1 and 16.

CFG_SNMP_NET_USE_CNT

The number of network devices (LAN ports) for use in
receiving and transmitting SNMP messages.
Set a value between 1 and 16.

CFG_SNMP_MAX_SOC_CNT CFG_NET_SOC_ The maximum number of the TCP and UDP sockets to
MAX be generated in the uNet3, which is set in net_cfg.h.
CFG_SNMP_MAX_TCP_CNT CFG_NET_TCP_ The maximum number of the TCP sockets to be
MAX generated in the pNet3, which is set in net_cfg.h.

CFG_SNMP_MAX_ARP_CNT

CFG_NET_ARP_
MAX

The number of entries in the ARP table to be used in the
MNet3, which is set in net_cfg.h.

CFG_SNMP_MAX_TRP_CNT

12

The maximum number of traps to be sent and responses
to InformRequest packets to be received within the
system at the same time.

Set 0 if generic traps and InformRequest packets are not
to be used.

CFG_SNMP_VEN_TRP_CNT

The number of traps and InformRequest packets which
can be transmitted at the same time by calling the
snd_trp function.

Set a value between 0 and 32.

Set 0 if the snd_trp function is not to be used.

CFG_SNMP_MSG_VAR_CNT

32

The maximum number of the variable-bindings to be
added to the SNMP packet.
Set an integer value greater than or equal to 4.

CFG_SNMP_MIB_NOD_CNT

800

The maximum number of the nodes in the MIB tree.

CFG_SNMP_MAX_MIB_DEP

32

The maximum depth of nodes in the MIB tree, in other
words, the maximum number of the dotted strings of the
object ID.

CFG_SNMP_MIB_DAT_LEN

(64 +1)

The maximum amount of data allowed in an MIB object
in bytes, including the terminating null character.

CFG_SNMP_GEN_TRP_ENA

TRP_ALL_BIT

Enables and disables the generic traps when the system
is initialized.

CFG_SNMP_MAX_OID_DEP

10

The maximum depth of an MIB object of type OID (the
number of dots)

R01US0202EJ0200 Rev.2.00
Nov 1, 2020

RENESAS

Page 31 of 85

RZ/T1 Group

5. Configuring the SNMP

Table 5.1 List of Configuration Macros (2 / 2)
Category Macro Definition Example Value Description
MIB-II CFG_SNMP_MIB2_IF_ENA 1 Enables (1) and disables (0) the interfaces group.
CFG_SNMP_MIB2_AT_ENA 1 Enables (1) and disables (0) the address translation
group.
CFG_SNMP_MIB2_IP_ENA 1 Enables (1) and disables (0) the IP group.
CFG_SNMP_MIB2_ICMP_ENA 1 Enables (1) and disables (0) the ICMP group.
CFG_SNMP_MIB2_TCP_ENA 1 Enables (1) and disables (0) the TCP group.
CFG_SNMP_MIB2_UDP_ENA 1 Enables (1) and disables (0) the UDP group.
CFG_SNMP_MIB2_SNMP_ENA 1 Enables (1) and disables (0) the SNMP group.
OS and network ~ TSK_RCV_PRI 6 Priority level For task 1 (receiving SNMP
packets)
TSK_TIM_PRI 6 For task 2 (counting running
times)
TSK_TRP_PRI 6 For task 3 (sending traps)
TSK_RCV_STK 1024 Stack sizes in bytes For task 1 (receiving SNMP
packets)
TSK_TIM_STK 512 For task 2 (counting running
times)
TSK_TRP_STK 1024 For task 3 (sending traps)
CFG_SNMP_RCV_MSG_LEN 2048 The maximum size of receiving SNMP message in bytes.

CFG_SNMP_SND_MSG_LEN

CFG_SNMP_RCV_ The maximum size of sending SNMP message in bytes.

MSG_LEN

R0O1US0202EJ0200 Rev.2.00

Nov 1, 2020

RENESAS

Page 32 of 85

RZ/T1 Group 5. Configuring the SNMP

5.1.1 Configuring the SNMP

CFG_SNMP_NET_DEV_CNT

This macro is used to specify the number of network devices to be used in the target device, in other words, the
number of LAN ports. Up to sixteen network devices can be set. For example, setting this macro to 2 allows MIB
objects in the interfaces group and the ipAddrTable (in the IP group) to provide information from two ports. Set the
same value for the macro as that of the macro CFG_NET DEV _MAX in net cfg.h.

CFG_SNMP_NET_USE_CNT

This macro is used to specify the number of network devices (LAN ports) to be used with the SNMP. Up to sixteen
devices can be set. For example, set the value of the macro to 1 when SNMP messages are to be transmitted
through a single port, regardless of the number of LAN ports in the target device.

CFG_SNMP_MAX_SOC_CNT

This macro is used to specify the value representing the maximum number of the TCP and UDP sockets to be
generated in the pNet3.

CFG_SNMP_MAX_TCP_CNT

This macro is used to specify the maximum number of the TCP sockets to be generated in the uNet3.

CFG_SNMP_MAX_ARP_CNT

This macro is used to specify the number of entries in the ARP table to be used in the uNet3.

The values for these three macros above should be same as each of those defined in the configuration file of the
uNet3 (net cfg.h), in other words, the values in CFG_NET SOC _MAX, CFG NET TCP MAX, and
CFG_NET_ARP MAX.

CFG_SNMP_MAX_TRP_CNT

This macro is used to specify the maximum number of traps which can be transmitted within the system at the same
time. The number specified by the macro is that of the resources to be used for sending generic traps and receiving
responses to InformRequest packets. Set 0 if generic traps and InformRequest packets for use by the snd_trp
function are not to be used. The maximum number of the resources for traps, which are used internally, is
estimated as follows.

x = the number of destinations for sending the traps specified in snmp_cfg_trp
y = the number of managers specified by snmp_cfg mgr or currently connecting to the device
z = the number of InformRequest packets sent from multiple tasks at the same time by calling the function snd_trp

CFG_SNMP_MAX_TRP _CNT= {(x *2) +y+z} *2to 4

The resources required for x in issuing the generic trap (1) cold/warmStart and (2) linkUp are doubled because
these traps may be used at the same time. The amount of resources required for issuing the
authenticationFailure trap is expressed by y. Sending InformRequest packets by calling the snd_trp function
requires the amount of resources represented by z in order to receive response packets.

However, the value expressed by x may be insufficient if linkUp and linkDown continuously occur multiple times
for the Ethernet link due to errors. The value expressed by z may also be increased by the number of times that
InformRequest packets are resent, depending on the specification. Therefore, set values that are sufficient for such
situations, such as two to four times the ideal required values for the whole.

R01US0202EJ0200 Rev.2.00 REN ESNS Page 33 of 85
Nov 1, 2020

RZ/T1 Group 5. Configuring the SNMP

CFG_SNMP_VEN_TRP_CNT

This macro is used to specify the maximum number of traps and InformRequest packets sent from multiple tasks at
the same time due to calls of the snd_trp function. If InformRequest packets are to be issued, add the maximum
value to the CFG_SNMP MAX TRP CNT as well as to this macro. Set a value between 0 and 32. Set 0 if the
snd_trp function is not to be used.

CFG_SNMP_MSG_VAR_CNT

This macro is used to specify the value representing the maximum number of variable-bindings contained in a
SNMP packet to be received or transmitted. Set an integer value greater than or equal to 4.

This system returns the error code “tooBig” to the destination if the received v1 packets contain more variable-
bindings than specified in this macro.

CFG_SNMP_MIB_NOD_CNT

This macro is used to specify the number of nodes in the MIB tree, which is only figured out after it is generated by
the snmp_ini function. Accordingly, check if the snmp _ini function is terminating normally by setting a value
greater than the expected one in this macro. If the value set in this macro is smaller than it should be, the snmp_ini
function returns the error code E NOMEM. After successful execution of the snmp _ini function, the value
indicating the number of nodes for the newly generated MIB tree is stored in the buffer pointed to by the argument
of the function. The user needs to set this value (that is the number of nodes) in this macro.

However, the snmp _ini function does not return the number of nodes in the vendor-specific extended MIB trees
which have been added while the system is running. The user is required to calculate the number of nodes needed
when adding objects to the MIB by calling the add_val _mib_nod function, and to add the value thus obtained to
the macro CFG_SNMP_MIB NOD_ CNT.

CFG_SNMP_MAX_MIB_DEP

This macro is used to specify the maximum depth of the tree, consisting of the MIB-II and the vendor-specific MIB.
For example, if an OID of the vendor-specific MIB tree is set as “1.3.6.1.4.1.1234.1.2.3.4.5.6.7”, which is
composed of fourteen strings, the value to be set in this macro definition is 14. In other words, set the number of
the dotted strings of the OID in this macro.

CFG_SNMP_MIB_DAT_LEN

This macro is used to specify the maximum amount of data allowed in an MIB object in bytes. The SNMP
specification allows four-byte integer data or 65,535 characters (bytes) of octet string data. The memory used for
these values can be reduced, for example, by limiting the number of characters in the string to 64 in sysDescr
(defining names of the hardware and software) in the system group of the MIB. In summary, this macro is
especially designed to specify the maximum string size. Note that the size includes a terminating null character. For
example, set 65 to this macro for the data with the maximum number of characters as 64.

However, the maximum size of each object is specified by macro definitions, for example, the maximum number of
characters in the string for sysDescr in the system group is specified by CFG_SNMP MIB SYS DESCR LEN in
the snmp_mib_cfg.h file. This means that the value for this macro should be same or greater than the maximum
amount of data specified in each object. The error code E BOVR is returned from the function snmp _ini if the
value for this macro is smaller than the maximum values specified in each macro.

R01US0202EJ0200 Rev.2.00 REN ESNS Page 34 of 85
Nov 1, 2020

RZ/T1 Group 5. Configuring the SNMP

CFG_SNMP_GEN_TRP_ENA

This macro is used to specify the generic traps to be enabled when the system is initialized. An example of
implementation is given below. Specify 0x00 for disabling all traps.

/* enabling all traps */
#define CFG_SNMP_GEN_TRP _ENA TRP_ALL BIT

/* enabling coldStart and linkUp */
#defineCFG_SNMP GEN TRP ENA (COLD STA BIT|LINK UP BIT)

The macros used for enabling each trap are shown below.

Table 5.2 Macros for Setting Generic Traps

Number Macro Trap Name Remark
1 COLD_STA BIT coldStart

2 WARM_STA_BIT warmStart

3 LINK_DOWN_BIT linkDown

4 LINK_UP_BIT linkUp

5 AUTH_FAIL_BIT authenticationFailure

6 EPG_LOSS BIT egpNeighborLoss Not supported
7 TRP_ALL_BIT All traps

This system sends a coldStart trap when the function snmp_ena (enabling this system) is issued the first time and sends
a warmStart trap when the function is issued the second and subsequent times.

CFG_SNMP_MAX_OID_DEP

This macro is used to define the maximum number of layers of OIDs that can be set in the vendor-specific MIB of
the object identifier (OID) type. A value longer than that specified in this macro cannot be set for MIB objects of
the OID type; in other words, the value indicates the maximum number of dots (“.”) for OIDs. The value of an
MIB object is represented by a string that includes dots. Therefore, its maximum length is the number of
characters specified in CFG_SNMP MAX OID DEP*6, including a null terminator. The maximum number of
each node is 65,536 (5 digits).

The maximum amount of data allowed in an MIB object of the string type is specified in
CFG_SNMP MIB DAT LEN. For that reason, even if the number of OID elements does not reach the value of
CFG_SNMP MAX OID DEDP, the values of strings which exceed the length specified by
CFG_SNMP_MIB DAT LEN cannot be stored.

R01US0202EJ0200 Rev.2.00 REN ESNS Page 35 of 85
Nov 1, 2020

RZ/T1 Group 5. Configuring the SNMP

51.2 Configuring the MIB-I

CFG_SNMP_MIB2 *** ENA isused to enable and disable individual groups in the MIB-II. For example, setting
CFG_SNMP_MIB2 SNMP_ENA to 0 disables the SNMP group. Although it reduces memory usage in the system by
eliminating the part occupied by the given group, when the manager requests a value from an MIB object in the SNMP
group, this system returns an error indicating that the relevant MIB entry does not exist.

51.3 Configuring the Operating System

TSK_*** PRI specifies priority levels of individual tasks in this system. The default value for those of the tasks in the
TCP/IP protocol stack is four, which is specified in the macro DEF_ NET TSK PRI innet cfg.h, and the priority level
for the tasks in this system should be set to a value lower than that (six).

TSK_ *** STK specifies the stack size for the tasks in this system in bytes. For example, TSK_RCV_STK is used for
specifying the stack size of the receiving task (shown in Figure 2.3). Given that the receiving task issues a user-
defined callback function, if the callback includes a process that uses a large amount of stack space, the value for this
macro should be large enough to cover this. Users are not required to change other values except for the receiving
task.

CFG_SNMP_RCV_MSG LEN and CFG_SNMP_SND MSG_LEN are used for specifying the maximum size of the
SNMP messages to be received or transmitted in bytes. When this system calls the rcv_soc function (reception of UDP
packets) to receive an SNMP message, the size of the buffer where the message will be stored will have been set as an
argument for the function by using the value in CFG_SNMP_RCV_MSG_LEN. Note that this system always stores
the message as a whole. If the reception of a message longer than the size given by this macro is attempted, the
message is discarded and there is no response to the manager. In CFG_SNMP_SND MSG LEN, specify the size of
the buffer where transmission messages are held. Generally, set the same value as the macro for reception.

R01US0202EJ0200 Rev.2.00 REN ESNS Page 36 of 85
Nov 1, 2020

RZ/T1 Group 5. Configuring the SNMP

5.1.4 Examples of Implementation

Examples of implementation for the basic settings are shown below.

/* The number of network devices (LAN ports) */

#defineCFG_SNMP_NET_DEV_CNT 2 /* Number of network devices */

/* The number of network devices to be used with SNMP */

#defineCFG_SNMP_NET_USE_CNT 1 /* Number of network devices for SNMP */
/* The maximum number of network sockets and TCP sockets (same as the values in net_cfg.h) */

#include "net_cfg.h"

#define CFG_SNMP_MAX_SOC_CNT CFG_NET_SOC_MAX
#define CFG_SNMP_MAX_TCP_CNT CFG_NET_TCP_MAX
#define CFG_SNMP_MAX_ARP_CNT CFG_NET_ARP_MAX

/* The maximum number of traps and InformRequest packets which are transmitted at the same time (0 means no traps will be used)*/
#define CFG_SNMP_MAX_TRP_CNT 12 /* Number of traps at any time (0 or 1...32) */
/* The maximum number of variable bindings to be added to the SNMP packet */
#defineCFG_SNMP_MSG_VAR_CNT 32 /* Maximum number of variable bindings */
/* The maximum number of nodes in the MIB tree */
#defineCFG_SNMP_MIB_NOD_CNT 680 /* Number of nodes in the MIB tree */
/* The maximum depth of the nodes in the MIB tree (the maximum number of the strings of the OID) */
#define CFG_SNMP_MAX_MIB_DEP 32 /* Maximum depth of the MIB tree */
/* The maximum amount of data allowed in an MIB object.
The maximum length of octet string data specified by using DESCR_LEN in the snmp_mib_cfg.c, including the terminating null character */
#defineCFG_SNMP_MIB_DAT_LEN (64 +1) /* Maximum size of the MIB data */
/* The maximum depth of an MIB object of the object identifier (OID) type */
#define CFG_SNMP_MAX_OID_DEP 10 /* Maximum number of OID objects as MIB data */
/* Generic trap enabled */
/* Specify the generic traps to be sent */
/* TRP_ALL_BIT specifies all traps (no transmission of traps when the link is down) */

#define CFG_SNMP_GEN_TRP_ENA TRP_ALL BIT

/* MIB2 group selector */
/* Enabling (1) or disabling (0) each group of MIB 2 */

#define CFG_SNMP_MIB2_IF_ENA 1 /* Interfaces (1.3.6.1.2.1.2)*/
#define CFG_SNMP_MIB2_AT_ENA 1 /* Address trans (1.3.6.1.2.1.3)*/
#define CFG_SNMP_MIB2_IP_ENA 1 /*1P (1.3.6.1.2.1.4)*/
#define CFG_SNMP_MIB2_ICMP_ENA 1 /*ICMP (1.3.6.1.2.1.5)*/
#define CFG_SNMP_MIB2_TCP_ENA 1 /*TCP (1.3.6.1.2.1.6) */
#define CFG_SNMP_MIB2_UDP_ENA 1 /* UDP (1.3.6.1.2.1.7)*/
#define CFG_SNMP_MIB2_SNMP_ENA 1 /* SNMP (1.3.6.1.2.1.11)*/
[* Task priority */

/* Priority levels of the SNMP tasks for the standard version of the operating systems are as below */

/* Priority levels of the SNMP tasks for the compact version of the operating systems are specified by the configurator */

#define TSK_RCV_PRI 6 /* Receive task */
#define TSK_TIM_PRI 6 /* Timer task */
#define TSK_TRP_PRI 6 /* Trap task */
R01US0202EJ0200 Rev.2.00 RENESANAS Page 37 of 85

Nov 1, 2020

RZ/T1 Group 5. Configuring the SNMP

/* Task stack size */

#define TSK_RCV_STK 1024 /* Receive task (byte) */
#define TSK_TIM_STK 512 /* Timer task (byte) */
#define TSK_TRP_STK 1024 /* Trap task (byte) */

/* Maximum size of an SNMP message (4-byte aligned) */

/* The maximum size of an SNMP message to be received or transmitted */

#define CFG_SNMP_RCV_MSG_LEN 2048 /* Message can receive */
#defineCFG_SNMP_SND_MSG_LEN CFG_SNMP_RCV_MSG_LEN /* Message can send*/
R01US0202EJ0200 Rev.2.00 RENESANAS Page 38 of 85

Nov 1, 2020

RZ/T1 Group 5. Configuring the SNMP

5.2 Configuring Managers

This section describes how to designate managers. The user can select which managers to allow as the source of SNMP
messages. [f an SNMP packet from a manager other than the selected ones is received, this system discards the packet on
reception. It is also possible to receive all SNMP packets without limiting the source managers.

To select managers, declare the array variable in the T SNMP CFG_MGR structure as “snmp_cfg mgr”. This structure
contains the following variable.

/* Manager */
typedef structt_snmp_cfg_mgr {

T_NODE* nod; /* Remote node */
}T_SNMP_CFG_MGCR,;

Number Type Variable Name Description

1 T_NODE nod The network device number of the manager (from 1) to allow
receiving messages from and its IP address.
For T_NODE, specify 0 in “port” and IP_VER4 in “ver”.

Examples of implementation are given below. Add a null character at the end to terminate the array.

static T_NODE snmp_cfg_mgr_nod_1 = {0/*port*/, IP_VER4, 1, 0xc0a8016¢€};
/* 0xc0a8016e = 192.168.1.110 */
static T_NODE snmp_cfg_mgr_nod_2 = {0/*port*/, IP_VER4, 1, 0xc0a80165};
/* 0xc0a80165 = 192.168.1.101 */
static T_NODE snmp_cfg_mgr_nod_3 = {0/*port*/, IP_VER4, 2, 0xac100065};
/* 0xac100065 = 172.16.0.101 */
T_SNMP_CFG_MGR snmp_cfg_mgr[] ={
{&snmp_cfg_mgr_nod_1},
{&snmp_cfg_mgr_nod_2},
{&snmp_cfg_mgr_nod_3}, /* Add a null character at the end */
0

This is an example of receiving SNMP packets from all the managers. Set an empty value in the variable as shown below.

/* Receive SNMP packets from all managers (managers not specified) */
T_SNMP_CFG_MGR snmp_cfg_mgr[] = {
0

R01US0202EJ0200 Rev.2.00 REN ESNS Page 39 of 85
Nov 1, 2020

RZ/T1 Group 5. Configuring the SNMP

5.3 Configuring Communities

This section describes how to configure communities. Declare the array variable in the structure T SNMP_CFG_COM
as “snmp_cfg com”. This structure contains the following variables.

/* Community */
typedef struct t_snmp_cfg_com {
VB* str; /* Community strings */
UB sts; /* Access status */
}T_SNMP_CFG_COM,;

Number Type Variable Name Description
1 VB* str A string which represents the community name
2 uB sts Access mode

STS_RO: read only
STS_RW: readable and writable

An example of implementation is given below. Configuring multiple communities is possible. Add a null character at the
end to terminate the array.

static VB snmp_cfg_com_ro[] = "public"; /* Read only */

static VB snmp_cfg_com_rw[] = "private"; /* Read and write */

T_SNMP_CFG_COM snmp_cfg_com[] ={
{snmp_cfg_com_ro, STS_RO},
{snmp_cfg_com_rw, STS_RW},

{0, 0}

R01US0202EJ0200 Rev.2.00 REN ESNS Page 40 of 85
Nov 1, 2020

RZ/T1 Group 5. Configuring the SNMP

54 Configuring Destinations for Sending Generic Traps

This section describes how to configure destinations for sending generic traps. Declare the array variable in the structure
T SNMP CFG_TRP as “snmp_cfg trp”. This structure contains the following variables.

/* Trap */

typedef struct t_snmp_cfg_trp {
VB* str; /* Community strings */
T_NODE* nod; /* Remote node */
UB ver; /* Protocol version */
IDid; /* 1D (Reserve) */

}T_SNMP_CFG_TRP;

Number Type Variable Name Description

1 vVB* str A string which represents the community name of the
destination for sending traps.

2 T_NODE* nod The network device number of the destination (from 1) and its
IP address.
For T_NODE, specify 0 in “port” and IP_VER4 in “ver”.

3 uB ver The version number of the trap

Version 1: SNMP_VER_V1
Version 2¢c: SNMP_VER V2C

4 ID id Always set 0 for the current version numbers.

An example of implementation is given below. Add a null character at the end to terminate the array.

static VB snmp_cfg_trp_com_1[] = "public";
static VB snmp_cfg_trp_com_2[] = "public";
static VB snmp_cfg_trp_com_3[] = "public";
static T_NODE snmp_cfg_trp_nod_1 = {0/*port*/, IP_VER4, 1, 0xc0a8016e};

/* 0xc0a8016e = 192.168.1.110 */
static T_NODE snmp_cfg_trp_nod_2 = {0/*port*/, IP_VER4, 1, 0xc0a80165};

/* 0xc0a80165 = 192.168.1.101 */
static T_NODE snmp_cfg_trp_nod_3 = {0/*port*/, IP_VER4, 2, 0xac100065};

/* 0xac100065 = 172.16.0.101 */

T_SNMP_CFG_TRP snmp_cfg_trp[] ={
{snmp_cfg_trp_com_1, &nmp_cfg_trp_nod_1, SNMP_VER_V2C, 0},
{snmp_cfg_trp_com_2, &snmp_cfg_trp_nod_2, SNMP_VER_V1, 0},
{snmp_cfg_trp_com_3, &nmp_cfg_trp_nod_3, SNMP_VER_V2C, 0},
{0, 0,0, 0} /* For termination */

The configuration described here applies to generic traps which are sent within this system such as coldStart and
linkUp. Destinations for vendor’s traps, which users send by calling the API function snd_trp, are specified in the

respective arguments.

R01US0202EJ0200 Rev.2.00 REN ESNS Page 41 of 85
Nov 1, 2020

RZ/T1 Group 5. Configuring the SNMP

5.5 Configuring Standard Callbacks for Vendor’s Private MIB

This section describes how to configure the standard callback functions for the vendor’s private MIB (Figure 2.3).
Declare the array variable in the structure T SNMP_CFG_CBK as “snmp_cfg cbk”. This structure contains the
following variable.

/* Callback functions */
typedef structt_snmp_cfg_cbk {

ER (*fnc)(T_SNMP_CFG_CBK_DAT*);
}T_SNMP_CFG_CBK;

Number Type/Variable Name Description
1 ER (*fnc)(T_SNMP_CFG_CBK_DAT*) A pointer to the standard callback function

Examples of implementation are given below. Only a single function may be recorded. Add a null character at the end
to terminate the array.

extern ERapl_snmp_cbk_0(T_SNMP_CFG_CBK_DAT*);
T_SNMP_CFG_CBK snmp_cfg_cbk[] = {
apl_snmp_cbk_0,
0

This is an example of implementation when callback function is not used. Set an empty value for the variable as
shown below.

T_SNMP_CFG_CBK snmp_cfg_cbk[] =
{0

The configuration described here applies to the standard callback function. In addition to the standard callbacks, users
can configure multiple callback functions for individual vendor-specific extended MIB objects. The standard callback
function is not issued for objects for which a separate callback function has been set. See the subsequent sections for
how to set the callback functions for each object.

The callback functions for objects in the system group issue the standard callback function.

R01US0202EJ0200 Rev.2.00 REN ESNS Page 42 of 85
Nov 1, 2020

RZ/T1 Group 6. Configuring Vendor-Specific MIBs

6. Configuring Vendor-Specific MIBs

This section describes how to configure the vendor-dependent MIBs. The system group of the MIB-II is macro-defined
in the configuration file snmp mib_cfg.h. Vendor-specific extended MIBs are configured by setting variables in the
configuration file snmp _mib_cfg.c.

6.1 Configuring the System Group of the MIB-II

This section describes how to configure the system group of the MIB-II. This group contains objects such as sysDescr
(defining the name and version identifier of the hardware and software) and sysObjectID (vendor’s object ID). Define
values for these objects in the configuration file snmp mib_cfg.h by using the macro definitions listed below.

Table 6.1 Macros for Configuring the System Group
Target Macro Definition Example Value Description
System group CFG_SNMP_MIB_SYS_DESCR_LEN (32+1) The maximum number of characters allowed in
sysDescr including a null terminator.
CFG_SNMP_MIB_SYS_DESCR "HW:Ver.1.0.0 sysDescr (1.3.6.1.2.1.1.1)
SW:Ver.1.0.0" The name and version identifier of the
hardware and software.
CFG_SNMP_MIB_SYS_OBJECTID_LEN (32 + 1) The maximum number of characters allowed in
sysObijectID including a null terminator.
CFG_SNMP_MIB_SYS_OBJECTID "1.3.6.1.4.1.1234" sysObjectID (1.3.6.1.2.1.1.2)
The vendor’s object ID
(the ID of the enterprise field of the trap (v1))
CFG_SNMP_MIB_SYS_CONTACT_LEN (32 +1) The maximum number of characters allowed in
sysContact including a null terminator.
CFG_SNMP_MIB_SYS_CONTACT "Email address" sysContact (1.3.6.1.2.1.1.4)
The contact of the device manager (e-mail
address)
CFG_SNMP_MIB_SYS_NAME_LEN (32 +1) The maximum number of characters allowed in
sysName including a null terminator.
CFG_SNMP_MIB_SYS_NAME "System name" sysName (1.3.6.1.2.1.1.5)
Domain name of the device
CFG_SNMP_MIB_SYS_LOCATION_LEN (32 +1) The maximum number of characters allowed in
sysLocation including a null terminator.
CFG_SNMP_MIB_SYS_LOCATION "First floor" sysLocation (1.3.6.1.2.1.1.6)
Physical location of the device
CFG_SNMP_MIB_SYS_SERVICES 64 sysServices (1.3.6.1.2.1.1.7)
A value which indicates the set of services that
this device may potentially offer.
R01US0202EJ0200 Rev.2.00 - z ENESAS Page 43 of 85

Nov 1, 2020

RZ/T1 Group 6. Configuring Vendor-Specific MIBs

An example of implementation is given below.

/* System sysDescr (1.3.6.1.2.1.1.1) */

/* The name and version identifier of the hardware and software */

#define CFG_SNMP_MIB_SYS_DESCR_LEN 32+ 1) /* The maximum length including a terminating null character */
#define CFG_SNMP_MIB_SYS_DESCR "HW:Ver.1.0.0 SW:Ver.1.0.0"

/* System sysObjectID (1.3.6.1.2.1.1.2) */

/* Vendor's Object ID */

/* sysObjectID in the system group of the MIB and the enterprise field of the trap (v1) */
#define CFG_SNMP_MIB_SYS_OBJECTID_LEN (32+1)

#define CFG_SNMP_MIB_SYS_OBJECTID "1.3.6.1.4.1.1234"

/* System sysContact (1.3.6.1.2.1.1.4) */

/* Contact of the device manager (e-mail address) */

#define CFG_SNMP_MIB_SYS_CONTACT_LEN (32+1)
#define CFG_SNMP_MIB_SYS_CONTACT "Email address"

/* System sysName (1.3.6.1.2.1.1.5) */

/* Domain name of the device */

#define CFG_SNMP_MIB_SYS_NAME_LEN 32+1)

#define CFG_SNMP_MIB_SYS_NAME "Evaluation board"

/* System sysLocation (1.3.6.1.2.1.1.6) */

/* Physical location of the device */

#define CFG_SNMP_MIB_SYS_LOCATION_LEN (32+1)
#define CFG_SNMP_MIB_SYS_LOCATION "First floor"

/* System sysServices (1.3.6.1.2.1.1.7) */

/* A value which indicates the set of services that this device may potentially offer */

#define CFG_SNMP_MIB_SYS_SERVICES 64 /* Application layer */
RO1US0202EJ0200 Rev.2.00 RENESAS Page 44 of 85

Nov 1, 2020

RZ/T1 Group

6. Configuring Vendor-Specific MIBs

6.2 Configuring Vendor’s Private MIBs

Users can add vendor-specific extended MIBs in the enterprises group under the private subtree of the MIB tree. This

section describes how to configure the extended MIBs.

The structure of the extended MIBs described in this section is shown below. This part of the MIB is generated when

the system is initialized (at the time of issuing the snmp _ini function) and cannot be changed after its generation.

o private
n enterprises

Vendor's
MIB ID: 0

Object ID: 0 1 2. o

Vendor's
MIB ID: 1

0601010
Disk
e

o e tabl

(D (@) @ &) (3

#1 #2 #200 #551

TO@®® 5y
FO®® Yy

@ “0” is added at the
end of the OID

@ “.0” is not added at
the end of the OID

O @ @ &)

Figure 6.1 Example of Implementing Vendor’s Extended MIBs

R0O1US0202EJ0200 Rev.2.00

1KENESAS
Nov 1, 2020 /{

Page 45 of 85

RZ/T1 Group 6. Configuring Vendor-Specific MIBs

6.2.1 MIB IDs and Object IDs

In general, an object of an MIB is represented by numerals separated by “.” (dot) such as “1.3.6.1.4.1.1234.1.1”. In
this system, however, the objects are recognized by using ID codes (16-bit values of type UH). If, as shown in Figure
6.1, the MIB tree is split into two groups with OIDs “1.3.6.1.4.1.1234.%” and “1.3.6.1.4.1.5678.*”, an MIB ID (8-bit
value of UB type) is applied to each group.

In configuration of an extended MIB tree, (1) declare the MIB table in the figure below in an array and then, (2)
declare the object table, (3) the data table, and (4) the callback function table in the table (1). Here, the index for the
table (1) (index to the array) selects an 8-bit MIB ID and the index for table (2) (index to the array) selects an object
ID.

R01US0202EJ0200 Rev.2.00 REN ESNS Page 46 of 85
Nov 1, 2020

RZ/T1 Group 6. Configuring Vendor-Specific MIBs

(1) Vendor’'s MIB table

T_SNMP_MIB_TBL snmp_mib_ven= {
/* Prefix OID Data Callback

e T ®

{snmp_mib_ven_pre_0, snmp_mib_ven_obj_0, snmp_mib_ven_dat_0, snmp_mib_ven_cbk_0, 0},
{snmp_mib_ven_pre_1, snmp_mib_ven_obj_1, snmp_mib_ven_dat_1, snmp_mib_ven_cbk_1, 0},

Reserve */
/*MIB 0 */
/*MIB 1%

v

Vendor’'s
MIB ID
0

Vendor’s
MIB ID
1
Obj.ID Obj.ID Obj.ID Obj.ID Obj.ID Obj.ID Obj.ID Obj. D
0 1 2 3 4 5 6 7
(Object IDs)
(' (2 Objecttableinthe MIB)
const T_SNMP_MIB snmp_mib_ven_obj_00= {
/* OID Length Type Access */
{snmp_mib_1234_1.1, DES_LEN, TYP_OCT_STR, STS_RO} /* Descr */
{snmp_mib_1234_1.2, LEN_INT TYP_INT, STS RO) /* Version */
{snmp_mib_1234_1. /* User name */
{snmp_mib_1234_[1.4, IéP * Time ticks */
gsnmp_mib_1234_ .5, 3%@%b #%mw Bm J* Status */
snmp_mib_1234_1> /* IP_address */
{snmp_mib_1234 T sSNMP_MIB_DAT snmp_mib_ven_dat_00I= {
ﬁ(s)nzp6n8|b6;234 (VP)snmp_mib_ven_descr, /* Descr */
. T (VP)100, /* Version */
% (VP)snmp_mib_ven_user_name, /* User name */
(VP)2192481; 2 T K-(6:05:24-84)-2+
(VP)1, a((4) Callback functVOBta!ab‘Ie inthe MIB object
(VP)0xcOa /* 1P address */
(VP)O,
(VP)4294 | const T_SNMP_CFG_CBK snmp_mib_ven_cbk 0=
Y { CBK_NONE, /* Descr */
CBK_NONE, /* Version */
CBK_NONE, /* User name */
apl_snmp_cbk_0, /* Time ticks (6:05:24.81) */
apl_snmp_cbk_0, /* Status */
apl_snmp_cbk_0, /* IP address (192.168.1.103) */
apl_snmp_cbk_0, /* Counter [0..4294967295] */
apl_snmp_cbk_0, /* Gauge [0..4294967295] */
s
Figure 6.2 Configuration of Vendor’s Extended MIBs

MIB IDs and object IDs are used for recognizing the target object by the API functions and callback functions of this
system with the variable names “mib_id”and “obj id”. The capacity of individual MIB IDs and object IDs is 8 bits and
16 bits, respectively. One MIB table can contain up to 254 groups and one object table can contain up to 65,534 objects.

An extended MIB is configured by declaring the array variable in the configuration file snmp mib_cfg.c. The array
variables for the MIB table ((1) in the figure on the previous page) and the data table (buffer, (3) in the figure) are
assigned to the RAM area because values to the variables are to be changed. Other array variables are assigned to the

ROM area. Implementation of array variables are described in the subsequent sections.

R01US0202EJ0200 Rev.2.00 RENESAS
Nov 1, 2020

Page 47 of 85

RZ/T1 Group

6. Configuring Vendor-Specific MIBs

6.2.2 MIB Tables

The extended MIB is split into two groups in Figure 6.1. The MIB IDs are 0 for the group with the OID
“1.3.6.1.4.1.1234.*” and 1 for the other with the OID “1.3.6.1.4.1.5678.*”. At the beginning of the configuration, specify
pointers to the variables which will configure the objects at the group level. Declare the array variable in the
T SNMP MIB TBL structure as “snmp_mib_ven”. This structure contains the following variables.

/* Vendor MIB table */

typedef struct t_snmp_mib_tbl {
const VB* pre;
const T_SNMP_MIB* mib;
T_SNMP_MIB_DAT* dat;
T_SNMP_CFG_CBK* cbk;
UH cnt;

} T_SNMP_MIB_TBL;

/* Prefix */
/* Objects */
/* Data */

/* Callback functions */

/* Predefined */

Number Type

Variable Name

Description

1 const VB* pre A pointer to the prefix (strings) of the MIB OID.
2 const T_SNMP_MIB* mib A pointer to the configuration variable for the T_SNMP_MIB struc-
ture (MIB OID, size, type, access restriction)
T_SNMP_MIB_DAT* dat A pointer to the T_SNMP_MIB_DAT structure (object data)
T_SNMP_CFG_CBK* cbk A pointer to the configuration variable for the T_SNMP_CFG_CBK
structure (callback function for each object).
Set 0x00 if a callback function is not to be set.
5 UH cnt Predefined variable (used inside this system)

An example of implementation is given below. Two groups are configured in this example. Up to 254 MIB groups can
be configured in the snmp mib_ven structure. Add a null character at the end to terminate the array.

/* Vendor MIB table */

/* The table of vendor-specific MIB groups (add {0, 0, O, 0, 0} at the end) */
T_SNMP_MIB_TBL snmp_mib_ven[] = {

[* Prefix OID

Data

Callback Reserve */

{snmp_mib_ven_pre_0, snmp_mib_ven_obj_0, snmp_mib_ven_dat_0, 0x00, 0},

{snmp_mib_ven_pre_1, snmp_mib_ven_obj_1, snmp_mib_ven_dat_1, snmp_mib_ven_cbk_1, 0},

{0,0,0,0, 0}

The subsequent section describes how to configure the variables to the T SNMP MIB TBL structure.

R01US0202EJ0200 Rev.2.00
Nov 1, 2020

RENESAS

Page 48 of 85

RZ/T1 Group 6. Configuring Vendor-Specific MIBs

6.2.3 OID Prefix

This section describes how to configure the variable “pre” of the T SNMP_ MIB_ TBL structure. Specify the pointer to
the prefix (strings) of an OID in pre. Here, the prefix means the common header of the dotted strings of OIDs. In the
following example, there are two sub-groups in the enterprises group under the private subtree, one with the OID
“1.3.6.1.4.1.1234.*” and the other with the OID “1.3.6.1.4.1.5678.*”. Declare the prefixes and set them in the variable
pre as follows. Add a dot at the end of each string of the prefix.

/* Prefix of the MIB OID (add a dot at the end) */
const VB snmp_mib_ven_pre_0[] ="1.3.6.1.4.1.1234."; /* Prefix OID (MIB 0) */
const VB snmp_mib_ven_pre_1[] ="1.3.6.1.4.1.5678."; /* Prefix OID (MIB 1) */

const T_SNMP_MIB_TBL snmp_mib_ven[] = {
/* Prefix OID Data Callback Reserve */
{snmp_mib_ven_pre_0, snmp_mib_ven_obj_0, snmp_mib_ven_dat_0, 0x00, 0},
{snmp_mib_ven_pre_1, snmp_mib_ven_obj_1, snmp_mib_ven_dat_1, snmp_mib_ven_cbk_1, 0},
{0,0,0,0, 0}

6.2.4 Object Table

This section describes how to configure the variable “mib” in the T SNMP_MIB_TBL structure. Specify the pointer to
the variable for the T SNMP_MIB structure in mib, which are, the OID string following the prefix, the maximum
amount of data for the object, data type, and access mode. This structure contains the following variables.

/* MIB object */
typedef struct t_snmp_mib {

const VB* str; /* Object string */
UH len; /* Size (byte) */
UB typ; /* Type */
UB acs; /* Access */
} T_SNMP_MIB;
Number Type Variable Name Description
1 const VB* str A string of numerals separated by a dot for the OID following the
prefix of the object
UH len The maximum amount of data for the object in bytes
uB typ Data type of the object
uB acs Access mode of the object
R01US0202EJ0200 Rev.2.00 REN ESANS Page 49 of 85

Nov 1, 2020

RZ/T1 Group

6. Configuring Vendor-Specific MIBs

In the variable “typ” (data type of the object) of this structure, set values by using the macros below.

Table 6.2 Data Types of Objects
Number Macro Size (len) in bytes Description Remark
1 TYP_NONE 4 Type is not defined For the Entry object in the
table
TYP_INT 4 Integer 32 bits
3 TYP_OCT_STR 1to Octet string Character string
CFG_SNMP_MIB_DAT_LEN
4 TYP_SEQ 4 SEQUENCE For the Table object
5 TYP_IP_ADR 4 IP address 32 bits (for IPv4)
6 TYP_CNT 4 Counter 32 bits
7 TYP_GAUGE 4 Gauge 32 bits
8 TYP_TIM_TIC 4 Time ticks 32 bits
9 TYP_OBJ_ID 6 to String representing an OID Character string

CFG_SNMP_MIB_DAT LEN

In the variable “acs” (access mode) of this structure, set values by using the macros below.

Table 6.3 Access Mode of Objects
Number Macro Description Remark
1 STS_NO Reference not allowed The object is not-accessible.
This is used only for the Table and Entry objects.
STS_RO Read only
STS_WO Write only
STS_RW Readable and writable

In the variable “str” of this structure, specify the OID string following the prefix, which was specified in the previous

section.

An example of implementation for the group with the prefix “1.3.6.1.4.1.1234.*” is given below. Here, only the OID

strings following the prefix are declared. Add “.0” (instance identifier) at the end of the each string if the target object

is not in the table.

const VB snmp_mib_ven_pre_0[] ="1.3.6.1.4.1.1234.";

/* OID of MIB 0 (add ".0" at the end) */

* Prefix OID (MIB 0) */

const VB snmp_mib_1234_1_1[] ="1.1.0";
const VB snmp_mib_1234_1_2[] ="1.2.0";
const VB snmp_mib_1234_1_3[] = "1.3.0";

/* Descr (1.3.6.1.4.1.1234.1.1) */
(1.3.6.1.4.1.1234.1.2) */

(1.3.6.1.4.1.1234.1.3) */

/* Version

/* User name

const VB snmp_mib_1234_1_4[] ="1.4.0"; /* Time ticks (1.3.6.1.4.1.1234.1.4) */
... (the rest are omitted)
R01US0202EJ0200 Rev.2.00 - z ENESANS Page 50 of 85

Nov 1, 2020

RZ/T1 Group 6. Configuring Vendor-Specific MIBs

An example of implementation for the group with the prefix “1.3.6.1.4.1.5678.*” is given below. The objects “disk table”
and “memory table” are tables. The disk table contains the ifIndex objects with the values 1, 2, 200, and 551. The
memory table contains the ifIndex objects with values 0 and 1. In configuration of the t snmp_mib.str structure, if the
object to be configured is not in a table, “.0” is added to the OID. If the object to be configured is a table, do not add
".0" to the OIDs of entries and their lower-order objects (the circles in gray in Figure 6.1). Furthermore, in
configuration of a table, start (from the smaller node number in the array) by substituting the value of entry, and then
set the value of the lower-order objects following the entry.

/* OID of MIB 1 (add “.0” at the end) */

/* However, “.0” is not added to the OIDs of entry and the lower-order objects if the object is a table*/

const VB snmp_mib_5678_1_1[] ="1.1.0"; /* Descr (1.3.6.1.4.1.5678.1.1) */
const VB snmp_mib_5678_1_2[] ="1.2.0"; /* Version (1.3.6.1.4.1.5678.1.2)*/
const VB snmp_mib_5678_1_3[] ="1.3.0"; /* Status (1.3.6.1.4.1.5678.1.3) */
const VB snmp_mib_5678_1_8][] ="1.8.0"; /* Disk (1.3.6.1.4.1.5678.1.8) */
const VB snmp_mib_5678_1_8_1[] ="1.8.1.0"; /* Disk number (1.3.6.1.4.1.5678.1.8.1)*/
const VB snmp_mib_5678_1_8_2[] ="1.8.2.0"; /* Disk table (1.3.6.1.4.1.5678.1.8.2) */

/* The beginning of the entry table (“.0” is not added) */

const VB snmp_mib_5678_1_8_2 1[] ="1.8.2.1"; /* Disk entry (1.3.6.1.4.1.5678.1.8.2.1)*/
const VB snmp_mib_5678_1_8_2_1_1_1]] ="1.8.2.1.1.1"; /* Disk #1 iflndex (1.3.6.1.4.1.5678.1.8.2.1.1.1)
const VB snmp_mib_5678 1 8 2 1 1 2] ="1.8.2.1.1.2"; /* Disk #2 ifindex (1.3.6.1.4.1.5678.1.8.2.1.1.2)/
constVB snmp_mib_5678 1 8 2 1 1 200[] ="1.8.2.1.1.200"; /*Disk#200 ifindex ~ (1.3.6.1.4.1.5678.1.8.2.1.1.200)*/
constVB snmp_mib_5678_1.8 2 1_1_551]] ="1.8.2.1.1.551"; /*Disk#551 ifindex (1.3.6.1.4.1.5678.1.8.2.1.1.551)*/

... (the rest are omitted)

In the variable “len” of this structure, set the maximum amount of data of the object in bytes. Set four in this variable
except for the following case; the data type of the object is TYP_ OCT_STR or TYP_OBJ_ID (a character string), as
shown in Table 6.2. In this case, set the maximum size for the strings including the terminating null character. For
example, if the value in “len” is (32 + 1), the maximum length of strings allowed in response to the SetRequest packet
from the manager is thirty-two characters. Note that the value in “len” cannot exceed the value specified in the macro
CFG_SNMP_MIB_DAT LEN (the maximum amount of data of the object), which is described in Section 5.1, Basic
Settings.

An example of implementation of the T SNMP_MIB structure is given below. Add a null character at the end
to terminate the array. The index of these arrays (0 to 7) represent the object IDs (obj_id).

R01US0202EJ0200 Rev.2.00 REN ESNS Page 51 of 85
Nov 1, 2020

RZ/T1 Group

6. Configuring Vendor-Specific MIBs

#define LEN_INT

/* Vendor Descr */
#define DESCR_LEN
/* User name */

#define USER_LEN

/* Object identifier */
#define OIDSTR_LEN

/*MIB 0¥/

(16 +1)

(32+1)

(60)

/* Data length of the data types INT, CNT, GAUGE, and IP_ADR */

/* The maximum length of the strings including a terminating null character. */

/* The maximum length of the strings representing OIDs (including dots and terminating null characters). */

/* Configuration of the vendor-specific MIB (add {0, 0, 0, 0} at the end) */
const T_SNMP_MIB snmp_mib_ven_obj_0[] = {

/* OID

{snmp_mib_1234_1_1,
{snmp_mib_1234_1_2,
{snmp_mib_1234_1_3,
{snmp_mib_1234_1_4,
{snmp_mib_1234_1_5,
{snmp_mib_1234_1_86,
{snmp_mib_1234_1_7,
{snmp_mib_1234_1_8,
{snmp_mib_1234_1_9,
{0, 0,0, 0}

Length Type Access */
DESCR_LEN, TYP_OCT_STR, STS_RO},
DESCR_LEN, TYP_OCT_STR, STS_RO},
USER_LEN, TYP_OCT_STR, STS_RW},

/* Descr */

[* Version */

/* User name */
/* Time ticks */
/* Status */

/* IP address */
/* Counter */

/* Gauge */

/* Identifier*/

R0O1US0202EJ0200 Rev.2.00

Nov 1, 2020

LEN_INT, TYP_TIM_TIC, STS_RW},
LEN_INT, TYP_INT, STS_RW},
LEN_INT, TYP_IP_ADR, STS_RW},
LEN_INT, TYP_CNT, STS_RO},
LEN_INT, TYP_GAUGE, STS_RO},
OIDSTR_LEN, TYP_OBJ_ID, STS_RO},
RENESAS

Page 52 of 85

RZ/T1 Group 6. Configuring Vendor-Specific MIBs

6.2.5 Data Table

This section describes how to configure the variable “dat” in the T SNMP_MIB_TBL structure. Specify the buffer for
the object data with an initial value in “dat”. The data are stored in an array variable of the T SNMP_MIB_DAT type,
with its VP (void*) being converted to a new name.

/* MIB data or data pointer */

typedef VP T_SNMP_MIB_DAT;

An example of implementation is given below.

If the data type is TYP_OCT STR or TYP _OBJ ID (a character string), convert the pointer to the beginning of the
buffer where the string is stored to the VP type before setting in the array of the T SNMP_MIB_DAT type. The buffer
for the strings needs to be large enough to allocate the maximum amount of data specified in the variable “len” of the
T SNMP_ MIB structure.

If the data type is other than character strings such as four bytes of type TYP_INT, convert the initial value of the data
into the VP type and set it in the array.

Declare a buffer for strings with an access mode other than read-only and the array variable of the T SNMP_MIB DAT
type in the RAM area. These variables hold the pointers to the buffers where the object data are to be stored and may be
overwritten while data are being processed. The array variables do not need a terminating null character at the end.

/* Vendor Descr */
static const VB snmp_mib_ven_descr[DESCR_LEN] =
{ "Vendor MIB"

[* User name */
static VB snmp_mib_ven_user_name[USER_LEN] =

{ "User name"

/* Object identifier */

#define OIDSTR_LEN (60)

static VB snmp_mib_ven_obj_id[OIDSTR_LEN] =
{ "1.22.333.4444.55555.6.7.8.9.10"

/*MIB 0 data */

/* Buffer where the vendor-specific MIB data are stored */

T_SNMP_MIB_DAT snmp_mib_ven_dat_0[] = {
(VP)snmp_mib_ven_descr, /* Descr strings */
(VP)snmp_mib_ven_ver, /* Version */

(VP)snmp_mib_ven_user_name, /* User name strings */

(VP)2192481, /* Time ticks (6:05:24.81) */
(VP), /* Status */
(VP)0xc0a80167, /* IP address (192.168.1.103) */
(VP)O, /* Counter [0..4294967295] */
(VP)10, /* Gauge [0..4294967295] */
(VP)snmp_mib_ven_obj_id /* Identifier */
2
RO1US0202EJ0200 Rev.2.00 RENESAS Page 53 of 85

Nov 1, 2020

RZ/T1 Group

6.2.6

This section describes how to configure the variable “cbk” of the T SNMP_MIB_TBL structure, in other words, how
to configure the callback function to each object.

Callback Function Table

As described in Section 2.5, Vendor-Specific MIB and Callback Function, this system issues an user-defined
callback function in response to the request to the vendor-specific extended MIB object from the manager. In addition
to the standard callback function described in Section 5.5, Configuring Standard Callbacks for Vendor’s Private

6. Configuring Vendor-Specific MIBs

MIB, users can configure callback functions for individual objects.

Vendor's
MIB ID: 0
Vendor's
MIB ID: 1
T_SNMP_CFG_CBK snmp_cfg_cbk[] ={
apl_snmp_cbk_0,
0
h .
Standard callback function
const T_SNMP_MIB_TBL snmp_mib_ven[] ={
/* Prefix (e]]n] Data Callback Reserve */
{pre_0, ven_0 dat 0 0x00, 0}, /*MIBOY
{pre_1, ven_1 dat_1 cbk_1, 0}, /*MIB1%
{0,0,0,0,0}
h
Callback function for an MIB object
canst T_SNMP_CFG_CBK cbk_1[] ={
CBK_NONE, /* Descr (CBK_NONE: callback function is not issued)
GCBK_NONE, /* Version */
CBK_NONE, /* Status */
CBK_NONE, /* Disk #551 size */
(Omitted)
apl_snmp_cbk_1, /* Disk #1 free */
apl_snmp_cbk_1, /* Disk #2 free */
apl_snmp_cbk_1, /* Disk #200 free */
apl_snmp_cbk_1, /* Disk #551 free */
apl_snmp_cbk 0, /*Gauge 1*/
I3
Figure 6.3 Standard Callback Function and Callback Function for Each Object

R01US0202EJ0200 Rev.2.00
Nov 1, 2020

RENESAS

Page 54 of 85

RZ/T1 Group

6. Configuring Vendor-Specific MIBs

Here, how to switch the standard callback function and the callback function for each object is described. In an

example of implementation, the group with the OID “1.3.6.1.4.1.1234.*” is configured to issue standard callback
functions and the other with the OID “1.3.6.1.4.1.5678.*” is configured to issue a callback function to each object.
The mode of callback is judged by the value in cbk of the T SNMP_MIB_TBL structure (Figure 6.3). The value 0x00
(null) in cbk is for the default callback function and other values in cbk are for callback functions for individual
objects, specified in the array variables ofthe T SNMP_CFG_CBK structure.

How to declare the array variable to this structure is shown in the example below. Note that no callback function is issued

to the relevant object if the element value in the array variable is 0x00 (null). At this time, no standard callback is issued

as well. This array variable does not need a terminating null character at the end.

#define CBK_NONE

0x00

/* Callback function not defined */

const T_SNMP_CFG_CBK snmp_mib_ven_cbk_1[] = {

CBK_NONE,
CBK_NONE,
CBK_NONE,
(Omitted)
CBK_NONE,
CBK_NONE,
CBK_NONE,
apl_snmp_cbk_1,
apl_snmp_cbk_1,
apl_snmp_cbk_1,
(Omitted)
apl_snmp_cbk_0,
}

/* Descr
/* Version

/* Status */

/* Disk #2
/* Disk #200
/* Disk #551
/* Disk #1
/* Disk #2
/* Disk #200

/* Gauge 2 */

(No callback functions are issued at all) */

(No standard callback functions are issued as well) */

size */
size */
size */
free (The callback function for the object is apl_snmp_cbk_1) */
free */

free */

R01US0202EJ0200 Rev.2.00
Nov 1, 2020

RENESAS Page 55 of 85

RZ/T1 Group 6. Configuring Vendor-Specific MIBs

6.3 Configuring Variable Vendor-Specific Private MIBs

The previous section described how to configure the vendor-specific extended MIB trees which are generated when the
system is initialized (fixed vendor-specific MIB). On the other hand, this section describes how to configure the
vendor- specific MIB trees which can be added and deleted while the system is running (variable vendor-specific
MIB).

6.3.1 Disabling Variable Extended MIBs

If changes to a vendor-specific extended MIB tree will not be required while the system is running, declare the array
variable as shown below. In this case, the user cannot use the functions add _val mib_nod, del val mib_nod,
get val mib_obj,andset val mib obj.

T_SNMP_MIB_TBL snmp_mib_ven_val[] ={ /* No changes are to be made to the vendor-specific MIB tree */
{0, 0,0, 0, 0} /* For termination */

6.3.2 MIB Tables for Variable Extended MIB Trees

The settings for the variable extended MIB trees are made in the same way as those for the fixed extended MIB trees
(as described in Section 6.2). However, the names used for variables within the array variable differ (for variable MIB

trees, " val" is appended to the end).

Table Fixed MIB Variable MIB

MIB table snmp_mib_ven snmp_mib_ven_val
Object snmp_mib_ven_obj snmp_mib_ven_obj_val
Data snmp_mib_ven_dat snmp_mib_ven_dat_val
Callback function snmp_mib_ven_cbk snmp_mib_ven_cbk_val

Make sure to declare the variable name of the MIB table snmp_mib_ven val as it is. Other variable names can be
changed. The arguments of the functions add val mib nod and del val mib nod include val mib_id (MIB ID) and
val _obj_id (object ID), which are the IDs of data specified in the configuration variable snmp mib_ven val.

In general, direct changes to the contents of configuration variables in the array by users are not possible, but there are
exceptions. The customizable settings are the OID strings in the variable extended MIB trees and the values for data in
T SNMP MIB DAT, as shown in Figure 6.4. Users can directly change these values before a node is added by calling
the add_val mib_nod function. However, the value cannot be changed after a node has been added. If a change is
required, start by calling the del val mib_nod function to delete the node. Note that the number of elements in the
array T SNMP_ MIB DAT cannot be changed.

For example, if the OID at the end of the nodes to be added is not yet clear, set a tentative OID such as
"1.3.6.1.4.1.5678.1.8.2.1.1.xxx", as shown in Figure 6.4. The value of the OID can be changed, for example

from ”xxx” to 77017, immediately before the node is added by calling the add_val mib_nod function. After the node
is added, the corresponding element of T_SNMP_MIB_DAT should be changed by using the set_val mib_obj
function.

R01US0202EJ0200 Rev.2.00 REN ESNS Page 56 of 85
Nov 1, 2020

RZ/T1 Group

6. Configuring Vendor-Specific MIBs

6.3.3 Resources for Nodes in Variable Extended MIB Trees

Adding nodes to the vendor-specific extended MIB trees by calling the add_val mib_nod function requires resources

(RAM). Here, nodes are represented as circles in Figure 6.4. In the figure, an object with the OID

"1.3.6.1.4.1.5678.1.8.2.1.1.552" is to be added to the table in which only a single new variable node (552) is to be
generated. The other nodes are the fixed MIB nodes that were generated when the system is initialized.

private
enterprises

: Fixed nodes

Q : Variable nodes

Vendor's
MIB ID: 1

: Resource nodes

Configurations that can be changed

VB snmp_mib_5678_1_9_1[] =1.9.1.0%

add_val _mib._ d(0, 2, 0);
val_mib_nod(0, 2, 0) T_SNMP_MIB_DAT snmp_mib_ven_dat_val] =

b

8.2.1.1.xxx";

A { (VP)512, /* Disk #552 index */
(VP)O, /* Disk #xxx index */
(VP)snmp_mib_ven_val_str, ~ /* String data */

8.2.1.1.552"; /* Disk #552 ifl
/* Disk #xxx iflndex */

/* String data */

Index */

Configurations that cannot be changed

const T_SNMP_MIB snmp_mib_ven_obj_val] ={
add_val_mib_nod(0, 1, 0) ; * oID Length Type Acce'sls

T_SNMP_MIB_TBL snmp_mib_ven_valll ={
I* Prefix fell3) Data

{0.0,0,0, 0}
%

{snmp_mib_5678_1_8_2_1_1_552, LEN_INT, ~ TYP_INT,
< {snmp_mib_5678_1_8_2_1_1_xxx, LEN_INT, TYP_INT,
{snmp_mib_5678 _1_
| {0.0.00
%
#2 #200 #551 add_val_mib_nod(0, 0, 0); <¢—

const VB snmp_mib_ven_pre_1[] = "1.3.6.1.4.1.5678.% /* Prefix OID (MIB 1) */

STS_RO},
STS_RO},

DESCR_LEN, TYP_OCT_STR, STS_RO},

Caftback

{snmp_mib_ven_pre_1, snmp_mib_ven_obj_val, snmp_mib_ven_dat_val, 0, 0},

1* Disk #552 ifindex */
1* Disk #xxx ifindex*/
1* descr */

Figure 6.4 Adding Extended MIB Objects

R01US0202EJ0200 Rev.2.00 RENESAS
Nov 1, 2020

Page 57 of 85

RZ/T1 Group 6. Configuring Vendor-Specific MIBs

Next, an object with the OID "1.3.6.1.4.1.5678.1.9.1.0" is also to be added, requiring the resources for two nodes,
specifically the variable node (1) and the resource node (0 at the end of the string) in the figure above. The last
character of the OID string "1.3.6.1.4.1.5678.1.9.1.0" is 0, which means that the object is not a table. In this case, the 0
at the end is also required as a resource node. In MIB trees in general, terminating nodes with the value 0 are not
shown. In this system, however, resources are internally consumed for the 0 at the end as a node.

The user is required to investigate the total number of nodes required to be added by calling the add val mib nod
function. In Figure 6.4, four nodes are to be added, so this number of nodes (four) should have been added to the
configuration macro CFG_SNMP MIB NOD CNT.

The function add val mib_ nod returns the number of nodes to be added to the user as the third argument. This value
can be used to calculate the total number of nodes to be added.

R01US0202EJ0200 Rev.2.00 :{EN ESNS Page 58 of 85
Nov 1, 2020

RZ/T1 Group

7. Interfaces

7. Interfaces

This section describes how to use the API functions of this system and their callback functions.

7.1 List of Functions

This system provides the following functions.

Category Function Name Description
Initialization snmp_ini Initialize the system
snmp_ext Exit the system
snmp_ena Enable the system
snmp_dis Disable the system
Management information get_mib_obj Read data from a vendor’s MIB object
set_mib_obj Write data to a vendor’s MIB object
Trap ena_trp Enable generic traps
dis_trp Disable generic traps
snd_trp Send vendor-specific traps

Variable vendor-specific extended
MIB

add_val_mib_nod

Add nodes to the MIB tree

del_val_mib_nod

Delete nodes to the MIB tree

get_val_mib_obj

Read data from a variable MIB object

set_val_mib_obj

Write data to a variable MIB object

Use an API function (set_ mib_obj or set val mib obj) or a callback function to rewrite the data in a vendor-specific

MIB object. If the user directly rewrites the data in an object declared in the snmp_mib_cfg.c file, the system may

return a half-written value to the manager. Directly rewriting the data in the objects is still possible if the system has

not been initialized yet.

R01US0202EJ0200 Rev.2.00
Nov 1, 2020

RENESAS

Page 59 of 85

RZ/T1 Group 7. Interfaces

7.2 Specification of Functions

Details on the functions used in this system are described in this section.

snmp_ini (initialization)
Format

ER snmp_ini (UH* mib nod cnt)

Parameters

UH* mib_nod_cnt A pointer to the variable where the number of nodes in the
MIB tree is stored.

Returned value

ER ercd E_OK for a normal termination or an error code.

Error codes

E_PAR An error in the configuration file
E_NOMEM Insufficient memory (insufficient number of nodes in the MIB tree)
E_BOVR Maximum amount of data for the object is small.
E_SYS Sufficient resources of the operating system and network have not been allocated.
E_OBJ Other error
Description

This function is used for initializing this system. Issue this function before using this system, following
initialization (net_ini) of the TCP/IP protocol stack.

This function handles the initialization of internal variables, initialization of internal buffers, generation of OS
resources (except for the compact version of the operating system), generation of the MIB tree, and generation of
network sockets.

Once the MIB tree is generated, this function returns the value for the number of nodes to be used in the tree in the
mib_nod cnt argument. Users are required to obtain this value and set it to the macro
CFG_SNMP_MIB NOD CNT in the basic settings. If this value is not necessary, specify 0x00 (null) in the
mib_nod cnt argument.

The error code E_PAR is returned for an error in the configuration files (xxx_cfg.h and xxx_cfg.c). The error code
E _NOMEM is returned if the value in CFG_SNMP_ MIB NOD CNT is too small to create an MIB tree. The error
code E BOVR is returned if the value of CFG_SNMP MIB DAT LEN is small. When the error code E_ SYS is
returned as the error code in the standard version of the operating system, review the maximum amount of
resources available for the operating system (in general, the value tskpri_max in the function main()).

R01US0202EJ0200 Rev.2.00 REN ESNS Page 60 of 85
Nov 1, 2020

RZ/T1 Group 7. Interfaces

snmp_ext (exit)
Format

ER snmp ext (void)

Parameters

None

Returned value
ER ercd E_OK for a normal termination

Error codes

E OBJ The system has not been disabled (snmp_dis has not been issued).

Description

This function causes a normal termination of the system. Disable the system by calling the snmp_dis function
before calling this function. The generated resources are freed by the function, except for that for the compact
version of the operating system. When the system is initialized (snmp_ini) and enabled (snmp_ena) again after
issuing this function, it sends a coldStart trap.

R01US0202EJ0200 Rev.2.00 REN ESNS Page 61 of 85
Nov 1, 2020

RZ/T1 Group 7. Interfaces

snmp_ena (enable)
Format

ER snmp ena(void)

Parameters

None

Returned value

ER ercd E_OK for a normal termination or the error code.

Error codes

E_SYS Failure in awakening the task
E_OBJ The system is not initialized (snmp_ini is not issued) or some other type of error has
occurred.
Description

This function enables the system and wakes up the tasks in the system. This function receives SNMP packets while a
task is running. This function sends a coldStart trap when it is issued the first time and sends a warmStart trap the
second and subsequent times. However, if the Ethernet port has not been connected when the function is called, a
coldStart trap or a warmStart trap will be sent upon completion of the connection.

The error code E_OBJ is returned if this function is issued before the system is initialized (snmp_ini).

R01US0202EJ0200 Rev.2.00 REN ESNS Page 62 of 85
Nov 1, 2020

RZ/T1 Group 7. Interfaces

snmp_dis (disable)
Format

ER snmp dis(void)

Parameters

None

Returned value

ER ercd E_OK for a normal termination or the error code.

Error codes
E _SYS Failure in terminating the task

E_OBJ The system has not been enabled (snmp_ena has not been issued) or some other type of
error has occurred.

Description

This function disables the system and terminates the tasks in the system. It may take up to three seconds to
terminate all the tasks in this function.

The error code E_OBJ is returned if this function is issued before the system is enabled (snmp_ena).

R01US0202EJ0200 Rev.2.00 REN ESNS Page 63 of 85
Nov 1, 2020

RZ/T1 Group 7. Interfaces

get_mib_obj (read data from a vendor’s MIB object)

Format

ER get mib obj (VP buf, UH* len, UH mib id, UH obj id)

Parameters
VP buf A pointer to the buffer where data will be stored
UH* len Size of the buffer and data (in bytes)
UH mib_id MIB ID
UH obj_id Object ID

Returned value

ER ercd E_OK for a normal termination or the error code.

Error codes

E_PAR Argument error
E_NOSPT The data type is not supported.
E BOVR Insufficient buffer length
E OBJ Other error
Description

This function reads values from the vendor-specific MIB objects specified in the arguments mib_id and obj_id and
stores them in the buf argument. Buffer size for the data is specified in the len argument in bytes.

The error code E BOVR is returned for insufficient buffer ("buf") size. In this case, the len argument with the value
for necessary buffer size is returned. This system also returns len with the value for the read data size in a successful
reading process. The content in the buffer (buf) is undefined in the case of an error.

The area pointed to by buf (the size is set by len) should be at least four bytes when the type of the data is integer,
counter (32), gauge (32), time ticks, or IP address (4-byte value). When the type of the data is octet string or object
ID (a character string), the area pointed to by buf should be large enough to allocate the number of strings to be
obtained (without including the terminating null character). In this case, the string stored in the buf does not need a
null character (\0) at the end.

R01US0202EJ0200 Rev.2.00 REN ESNS Page 64 of 85
Nov 1, 2020

RZ/T1 Group

7. Interfaces

An example of implementation is given below.

#define MAX_STR_LEN 32 /* Maximum string buffer size */
#define MAX_DAT_LEN 32 /* Maximum buffer size */

static UW apl_str_buf[MAX_STR_LEN / sizeof(UW)];
static UW apl_dat_buf[MAX_DAT_LEN / sizeof(UW)];

VB* str;
UW* dat;
UH len;
UH mib_id;
UH obj_id;

str=(VB*)apl_str_buf;
dat = apl_dat_buf;
len = MAX_DAT_LEN;

mib_id = 0;

obj_id =2;

ercd = get_mib_obj(dat, &len, mib_id, obj_id);
if (ercd == E_OK) {

if (snmp_mib_ven[mib_id].mib[obj_id].typ == TYP_OCT_STR |

snmp_mib_ven[mib_id].mib[obj_id].typ ==TYP_OBJ_ID) {

/* TYP_OCT_STR (a character string) */

((VB*)dat)[len] = "\0"; /* add a null string before printf */

printf((const VB*)dat);

} else if (snmp_mib_ven[mib_id].mib[obj_id].typ == TYP_IP_ADR) {

/* TYP_IP_ADR (four-byte IP address) */
ip_ntoa(str, *dat);
printf(str);

}else{

/* TYP_INT, TYP_CNT, TYP_GAUGE, TYP_TIM_TIC (four-byte value) */

printf("0x%x", *dat);

R01US0202EJ0200 Rev.2.00
Nov 1, 2020

RENESAS

Page 65 of 85

RZ/T1 Group 7. Interfaces

set_mib_obj (write data to a vendor's MIB object)

Format

ER set mib obj (VP buf, UH len, UH mib id, UH obj id)

Parameters
VP buf A pointer to the buffer where data is stored.
UH len Size of the data in bytes
UH mib_id MIB ID
UH obj_id Object ID

Returned value

ER ercd E_OK for a normal termination or the error code.

Error codes

E_PAR Argument error

E_NOSPT The data type is not supported.

E OBJ Data overflow or underflow, or other error
Description

This function writes values from the buf argument to the vendor-specific MIB objects specified in the arguments
mib_id and obj_id. Buffer size for the data is specified in the len argument in bytes. The error code E_ OBJ is
returned if the buffer overflows or underflows.

The value of len should be 4 when the type of the data is integer, counter (32), gauge (32), time ticks, or IP
address (4-byte value).

When the type of the object data is octet string or object ID (a character string), specify the number of characters in
the string of the data (without including the terminating null character) in the len argument. In this case, the string
to be stored in buf does not need a null character (\0) at the end.

Note that this function also updates data in objects for which only read access is allowed.

R01US0202EJ0200 Rev.2.00 REN ESNS Page 66 of 85
Nov 1, 2020

RZ/T1 Group 7. Interfaces

An example of implementation is given below.

#define MAX_STR_LEN 32 /* Maximum string buffer size */
static UW apl_str_buf[MAX_STR_LEN / sizeof(UW)];

VB* str;
UW dat;
UH len;
UH mib_id;
UH obj_id;

str=(VB*)apl_str_buf;

mib_id = 0;
obj_id =2;

if (snmp_mib_ven[mib_id].mib[obj_id].typ == TYP_OCT_STR||
snmp_mib_ven[mib_id].mib[obj_id].typ == TYP_OBJ_ID){
/* TYP_OCT_STR (a character string) */
strcpy(str, "test1234");
len = strlen(str);
ercd = set_mib_obij(str, len, mib_id, obj_id);
} else if (snmp_mib_ven[mib_id].mib[obj_id].typ == TYP_IP_ADR) {
/* TYP_IP_ADR (four-byte IP address) */
dat = 0xCOA80167;
ercd = set_mib_obj(&dat, 4, mib_id, obj_id);
}else {
/* TYP_INT, TYP_CNT, TYP_GAUGE, TYP_TIM_TIC (four-byte integer value) */
dat = 1234;
ercd = set_mib_obj(&dat, 4, mib_id, obj_id);

R01US0202EJ0200 Rev.2.00 REN ESNS Page 67 of 85
Nov 1, 2020

RZ/T1 Group 7. Interfaces

ena_trp (enable generic traps)

Format

ER ena trp(UH trp bit)

Parameters

UH trp_bit The macro for the generic trap

Returned value

ER ercd E_OK for a normal termination or the error code.

Error codes

E OBJ Other error

Description

This function enables generic traps used in this system. Specify the macro or macros for the trap to be enabled in
the argumenttrp bit.

Trap Number Identifier (Macro) Value Trap Name

0 COLD_STA BIT 0x0001 coldStart

1 WARM_STA_BIT 0x0002 warmsStart

2 Unsupported — linkDown

3 LINK_UP_BIT 0x0008 linkUp

4 AUTH_FAIL_BIT 0x0010 authenticationFailure
5 Unsupported — egpNeighborLoss

— TRP_ALL_BIT 0x003f Al traps

An example of implementation is given below.

/* enabling coldStart and linkUp */
ercd = ena_trp(COLD_STA_BIT | LINK_UP_BIT);

R01US0202EJ0200 Rev.2.00 REN ESNS Page 68 of 85
Nov 1, 2020

RZ/T1 Group 7. Interfaces

dis_trp (disable generic traps)

Format

ER dis trp(UH trp bit)

Parameters

UH trp_bit The macro for the generic trap

Returned value

ER ercd E_OK for a normal termination or the error code.

Error codes

E OBJ Other error

Description

This function disables generic traps used in this system. Specify the macro or macros for the trap to be disabled in
the argument trp_bit.

Trap Number Identifier (Macro) Value Trap Name

0 COLD_STA BIT 0x0001 coldStart

1 WARM_STA_BIT 0x0002 warmsStart

2 Unsupported — linkDown

3 LINK_UP_BIT 0x0008 linkUp

4 AUTH_FAIL_BIT 0x0010 authenticationFailure
5 Unsupported — egpNeighborLoss

— TRP_ALL_BIT 0x003f Al traps

An example of implementation is given below.

/* disabling warmStart and linkUp */
ercd = dis_trp(WARM_STA_BIT | LINK_UP_BIT);

R01US0202EJ0200 Rev.2.00 REN ESNS Page 69 of 85
Nov 1, 2020

RZ/T1 Group 7. Interfaces
snd_trp (send vendor-specific traps)
Format
ER snd trp(T NODE* nod, T SNMP TRP* trp, TMO tmo)
Parameters
T_NODE* nod A pointer to the transmission destination node
T_SNMP_TRP* trp A pointer to the command of the trap
TMO tmo Time until expiration of the monitoring period (in milliseconds)
Returned value
ER ercd E_OK for a normal termination or the error code.

Error codes

E_PAR An invalid parameter was specified.
E_QOVR Insufficient resources for a new trap (CFG_SNMP_MAX_TRP_CNT)
E_TMOUT Timeout
E OBJ Other error
Description

This function sends a vendor-specific trap or InformRequest packet to a particular destination. In the transmission

of traps, once this function generates a trap packet, it waits until transmission of the trap by the UDP is completed.

In transmission of InformRequest packets, once this function sends the notification to the destination, it waits until

the response packet is received.

Designate the destination of transmission in the nod argument including its IP address but not the port (nod.port)

because the system specifies it (port 162).

Specify the value for timeout in the tmo argument, which is the timeout period for a socket attempting to send a
trap (snd_soc). Specify the pointer to the variable for the T SNMP_TRP structure in the trp argument according to

the following table for variables.

Number Type Variable Name Content
1 uB ver The macro for the version number of the protocol:
SNMP_VER_V1: for v1
SNMP_VER_V2C: for v2c
VB* com The string which represents the community name
UH flg Option flag
4 VB* ent_oid The string which represents the OID for the enterprise (for v1).
The string which represents the OID for snmpTrapOID (for v2c)
5 INT gen_trp The value which represents a generic trap (only for v1)
Always set TRP_ENT_SPEC.
6 INT spc_trp The value which represents a vendor-specific trap (only for V1)
7 UH tmo Timeout value (msec) (in sending InformRequest packets)
8 UH rty_cnt The number of retrials (in sending InformRequest packets)
9 VP var_oid The object ID or IDs of the variable binding or bindings to be added
10 UH var_cnt The number of variable binding or bindings to be added
R01US0202EJ0200 Rev.2.00 - z ENESAS Page 70 of 85

Nov 1, 2020

RZ/T1 Group 7. Interfaces

Specify the version number of the protocol for the trap in the ver argument, SNMP_VER V1 for vl and
SNMP_ VER V2C for v2c. Specify the community name where the trap is to be sent in the com argument. Specify the
options associated with trap transmission in the flg argument by using the macro below. Set 0x00 in the flag to select
transmission of a trap.

Number Identifier (Macro) Description

1 TRP_INF_ENA Send an InformRequest packet instead of a trap

For v1 traps, specify the string of the enterprise OID, for example, “1.3.6.1.4.1.1234”, in the argument ent_oid.
Specifying 0x00 (null) in this argument uses the OID string which was specified by the configuration macro
CFG_SNMP_MIB SYS OBJECTID in the snmp mib_cfg.h file. For v2c traps, specify the second variable binding, the
OID string for snmpTrapOID in the argument ent oid.

vl traps uses values in the variables gen_trp and spc_trp. Specify the macro TRP_ENT SPEC (6) in gen_trp and the
number which indicates the detailed trap information in spc_trp.

In transmission of traps, the error code E TMOUT is returned if, for example, the destination device does not yet exist
after the timeout period specified for snd_soc (argument tmo) has elapsed.

Values in the variables trp.tmo (1000 or a multiple of 1000) and trp.rty_cnt are used to send InformRequest packets.
trp.tmo is the time until timeout expiration and trp.rty_cnt is the number the times sending of an InformRequest packet
is retried. If there is no response from the destination after the time set in trp.tmo has elapsed, the InformRequest
packet is resent the number of times set in trp.rty_cnt. If the value in trp.rty cnt is 0, the InformRequest packet is not
resent. Note that detection of timeout in the sending of InformRequest packets proceeds every second (1000 ms), so
the value in trp.tmo should be 1000 or a multiple of 1000, for example, 4000 (four seconds). In transmission of
InformRequest packets, this function waits until the response packet from the destination device is received. The error
code E TMOUT is returned if there is no response from the destination after the timeout period has elapsed.

In some cases, however, the timeout period may not be as specified. If processing to send a trap by a task in use for
traps proceeds, since there is a wait for the processing to be completed, the waiting time will be longer than specified.

Specify the variable bindings to be added to a trap in the variables var_oid and var_cnt. If there are no variable
bindings to be added, specify 0 and 0x00 in vat cnt and var_oid, respectively. If there is one variable binding to be
added, specify 0 in vat _cnt and convert the MIB ID and object ID of the fixed vendor-specific MIB, which were
generated when the system was initialized, to the VP type and then substitute the result into var_oid. When converting
the MIB ID and object ID, set the former in the sixteen higher-order bits and the latter in the sixteen lower-order bits.

A configuration macro is provided in the header file snmp.h as follows.

#define SNMP_TRP_VAR_ID(x,y) ((VP)((UH)(x) & 0x00ff) << 16 | (UH)(y)))

Note that variable vendor-specific MIB objects, which are added while the system is running, cannot be specified in
var_oid.

If two or more variable bindings are to be added, specify the number of targets in var_cnt and the pointer to the array of
their IDs in var_oid in the VP type. In other words, set the MIB IDs and object IDs of the variable bindings in an array of
the VP type and then set the pointer to the array in var_oid (Figure 7.1)

R01US0202EJ0200 Rev.2.00 REN ESNS Page 71 of 85
Nov 1, 2020

RZ/T1 Group

7. Interfaces

snd_trp(&nod, trp, 400);

Ve
There are no variable bindings to be added.

trp.var_cnt = 0;
trp.var_oid = 0x00;

fThere is one variable binding to be added.

mib_id = 0;
obj_id=2;

trp.var_cnt = 0;
S trp.var_oid = TRP_VAR_ID(mib_id, obj_id);

e
There are two or more variable bindings to be added.

mib_id = 0;
obj_id=2;

trp.var_cnt = 3;
trp.var_oid = apl_var_id;

Array of IDs in the VP type

VP apl_var_id[3];

apl_var_id[0] = TRP_VAR_ID(mib_id, obj_id);

apl_var_id[1] = TRP_VAR_ID(mib_id, obj_id + 1);
apl_var_id[2] = TRP_VAR_ID(mib_id, obj_id + 2);

Figure 7.1 Adding Variable-Bindings to a Trap

An example of implementation for sending a v1 trap is given below.

T_SNMP_TRP trp;

memset(&trp, 0, sizeof(trp));

trp.ver = SNMP_VER_V1; /* The trap version is v1 */

trp.com = "public"; /* Community name */

trp.gen_trp = TRP_ENT_SPEC; * Vendor-specific trap (fixed value) */
trp.spc_trp = 1234; /* Detailed trap information (any integer value) */

ercd = snd_trp(nod, trp, TRP_TMO);

/* If the value in trp.ent_oid is 0, that of

CFG_SNMP_MIB_SYS_OBJECTID (in snmp_mib_cfg.h) is used as the enterprise OID */

/* If the values in trp.var_cnt and trp.var_oid are 0, no variable bindings will be added */

An example of implementation for sending a v2c trap is given below.

memset(&trp, 0, sizeof(trp));

trp.ver= SNMP_VER_V2C; /* The trap version is v2c */
trp.com = "public"; /* Community name */
trp.ent_oid ="1.3.6.1.4.1.1234.1.2"; /* snmpTrapOID vendor’s private MIB */

ercd = snd_trp(nod, trp, TRP_TMO);

/* If the values in trp.var_cnt and trp.var_oid are 0, there are no variable-bindings to be added */

RO1US0202EJ0200 Rev.2.00 RENESAS

Nov 1, 2020

Page 72 of 85

RZ/T1 Group 7. Interfaces

An example of implementation for sending a v1 trap with one variable binding is given below.

memset(&trp, 0, sizeof(trp));

trp.ver = SNMP_VER_V1;

trp.com = "public";

trp.gen_trp = TRP_ENT_SPEC;
trp.spc_trp = 1234;

trp.ent_oid ="1.3.6.1.4.1.9876.1234";
trp.var_cnt=0;

trp.var_oid = TRP_VAR_ID(0, 2);
ercd = snd_trp(nod, trp, TRP_TMO);

VP apl_var_id[8];

memset(&trp, 0, sizeof(trp));

trp.ver = SNMP_VER_V2C;
trp.com = "public";

trp.ent_oid ="1.3.6.1.4.1.1234.1.2";
trp.var_cnt = 3;

apl_var_id[0] = TRP_VAR_ID(0, 2);
apl_var_id[1] = TRP_VAR_ID(1, 5);
apl_var_id[2] = TRP_VAR_ID(1, 6);
trp.var_oid = apl_var_id;

ercd = snd_trp(nod, trp, TRP_TMO);

memset(&trp, 0, sizeof(trp));
trp.ver= SNMP_VER_V2C;
trp.com = "public";

trp.ent_oid ="1.3.6.1.4.1.1234.1.2";
trp.flg = TRP_INF_ENA,;

trp.tmo = 4000;

trp.rty_cnt = 4;

ercd = snd_trp(&nod, &trp, TRP_TMO);

/* The trap version is v1 */

/* Community name */

/* Vendor-specific trap (fixed value) */

/* Detailed trap information (any value) */

/* Set the enterprise OID strings */

/* The number of variable bindings to be added to a trap (set 0 if there is one) */

/* The IDs of the variable bindings to be added */

An example of implementation for sending a v2c trap with three variable bindings is given below.

/* Variable binding ID */

/* The trap version is v2¢ */

/* Community name */

/* snmpTrapOID vendor-specific MIB */

/* The number of variable bindings to be added to the trap */
/* Element 2 of snmp_mib_ven_0 */

/* Element 5 of snmp_mib_ven_1*/

/* Element 6 of snmp_mib_ven_1*/

/* Array of the IDs of the variable bindings */

An example of implementation for sending an InformRequest packet is given below.

/* The trap version is v2¢ */

/* Community name */

/* snmpTrapOID vendor-specific MIB */

/* Select an InformRequest packet instead of a trap */

/* Timeout for sending an InformRequest packet (msec) */

/* The number of times sending of the InformRequest packet is retried */

/* Send to the server specified in nod */

R01US0202EJ0200 Rev.2.00
Nov 1, 2020

RENESAS

Page 73 of 85

RZ/T1 Group 7. Interfaces

7.3 Callback Functions

This section describes the specification of callback function provided in this system. This system issues callback
functions in response to the reception of packets GetRequest, GetNextRequest, GetBulkRequest, and SetRequest to
the vendor-specific private MIB objects from the manager.

The argument of this callback functions is shown below.

Format

ER fnc (T SNMP CFG CBK DAT* cbk dat)

Parameters

T_SNMP_CFG_CBK_DAT* cbk_dat A pointer to the variable of the structure for callback.

Returned value

ER ercd E_OK for a normal termination or the error code.

Error codes

E_OBJ An error occurred.

The cbk_dat argument is a pointer to the variable for the T SNMP_CFG CBK DAT structure, which was declared in
this system. This structure contains the following variables.

Number Type Variable Name Description

1 UH req A macro which defines the type of SNMP request, as listed below.

For fixed vendor MIB objects:
SNMP_REQ_GET : GetRequest, GetNext Request,
GetBulkRequest
SNMP_REQ_SET : SetRequest

For the system rouE of the standard MIB:
SNMIX_RE _SET_SYS: SetRequest

For variable vendor MIB objects:
SNMP_REQ_GET_VAL: GetRequest, GetNext Request,

GetBulkRequest

SNMP_REQ_SET VAL: SetRequest

2 UH mib_id Vendor's MIB ID

3 UH obj_id Vendor’s object ID

4 UH typ A macro which defines the type of data in the object.
5 VP buf The buffer where data are stored.

6 UH dat_len Data size in bytes

7 UH buf_len Buffer size in bytes

(valid only when the value in req is SNMP_REQ_GET)

The req variable indicates the type of the request from the manager. In other words, for fixed vendor-specific MIB
objects, the value is SNMP_REQ_GET for GetRequest, GetNextRequest, or GetBulkRequest and SNMP_REQ_SET
for SetRequest. For variable vendor-specific MIB objects, which were added while the system was running, the value
is SNMP REQ GET VAL or SNMP _REQ SET VAL. For standard MIB objects in the system group, the value is
SNMP_REQ SET SYS for SetRequest.

R01US0202EJ0200 Rev.2.00 REN ESNS Page 74 of 85
Nov 1, 2020

RZ/T1 Group

7. Interfaces

The variables mib_id and obj_id indicate the vendor-specific MIB ID and object ID, respectively. For details on ID, see

Section 6.2.1, MIB IDs and Object IDs.

For callbacks to objects in the system group, the value of mib_id is 0, and that of obj_id is 3 (sysContact), 4

(sysName), or 5 (sysLocation). The user can judge which object has received the SetRequest packet from the value

substituted into obj_id. The values are macro-defined in the header file snmp mib.h as listed below.

#define SNMP_MIB2 SYS CONTACT 3 /* sysContact */
#define SNMP_MIB2_ SYS_NAME 4 /* sysName */
#define SNMP_MIB2_SYS_ LOCATION 5 /* sysLocation */

The typ variable indicates the type of the object data by using the macros listed below.

Number Macro Data Type Remark

1 TYP_INT Integer 32 bits

2 TYP_OCT_STR Octet string Strings

3 TYP_IP_ADR IP Address 32 bits (for IPv4)
4 TYP_CNT Counter 32 bits

5 TYP_GAUGE Gauge 32 bits

6 TYP_TIM_TIC Time ticks 32 bits

7 TYP_OBJ_ID Object identifier Strings

R0O1US0202EJ0200 Rev.2.00

Nov 1, 2020

RENESAS

Page 75 of 85

RZ/T1 Group 7. Interfaces

The buf variable for the callback function holds the object data. It holds the current object data if the value in the req
variable is SNMP_REQ GET(_ VAL) and the data in SetRequest specified by the manager if the value is
SNMP_REQ SET(_VAL).

The buf variable holds strings if the value in the typ variable is TYP_OCT_STR. In this case, a terminating null
character (\0) is added if the value in the req variable is SNMP_REQ GET(_VAL) and not added if the value is
SNMP_REQ SET(VAL).

The dat_len variable indicates the length of the data stored in buf. If the value in typ is other than TYP_ OCT_STR and
TYP_OBIJ _ID (character strings), the value in dat_len is four and the value in buf is four-byte data. If the value in typ
is a character string the value in dat_len is the length of the strings without a terminating null character.

The buf len variable indicates the size of the buffer area (buf). This variable is valid only when the value in req is
SNMP_REQ_GET(_VAL). If the value in typ is other than character strings, the value in buf len is 4. If the value in
typ is a character string, the value in buf len is the length of the strings which is allowed in buf, including a terminating
null character.

The value inreq is SNMP_REQ_GET(_VAL) when the receiving task receives a packet of GetRequest, GetNextRequest
or GetBulkRequest from the manager. At this time, the user can update the MIB object by setting a desired value in buf.
This system returns the given value to the manager. If the value in typ is other than character strings, set four-byte data in
buf. If the value in typ is a character string, copy the strings to buf. Always set the returned value of the callback function
asE OK.

The value inreq is SNMP_REQ_SET(_VAL) when the receiving task receives a SetRequest packet from the manager.
At this time, buf holds the data to be updated by the manager. The user can choose whether to accept the update, by
setting the returned value in the callback to E_OK for accepting and E_OBJ for refusing. This system does not update
the object data when E_OBJ is returned. In this case, the system returns an error code commitFailed to the manager.
While SNMP REQ SET(_VAL) is set in req, do not rewrite the values in buf and dat_len. Also, make sure that the
returned value in the callback function is E_ OK if a SetRequest packet was sent for the system group.

From here, details of the argument cbk dat->buf of the callback function are described. As in Figure 7.2, when a
GetRequest packet is sent, the data pointed by the argument cbk_dat->buf is the buffer for the MIB object which was
configured in the snmp mib_cfg.c file by the user.

R01US0202EJ0200 Rev.2.00 REN ESNS Page 76 of 85
Nov 1, 2020

RZ/T1 Group 7. Interfaces

—> [SNMP manager]
Get Buffer for the MIB object
Request
#define DESCR_LEN (32+1) /* The maximum number of characters in the string

including the null-terminator */
static const VB snmp_mib_ven_descr[DESCR_LEN] = [

: “Vendor MIg” A null-terminator is added
T MP_MIB snmp_mib_ven_dat_0[] ={
(VP)snmp_mib_ven_descr, /* Descr */
(VP)100, /* Version */
(VP)snmp_mib_ven_user_name, /* User name */
(VP)2192481, /* Time ticks (6:05:24:81) */
(VP)1, /* Status */
(VP)0xc0a80167, /* 1P address (192.168.1.103) */
(VP)O, /* Counter [0..4294967295] */
(VP) 94967295 /* Gauge [0..4294967295] */
{0,0,0,0,0}
Callback function / i

apl_snmp_cbk(cbk.dat->buf)

Value in typ: not a character string

UW* dat;
dat = (UW*)cbk_dat->buf;
*dat = 1234;

Value in typ: a character string

strepy ((char*)cbk_dat->buf, “test1234”);
cbk_dat->dat_len = strlen(“test1234”);
Figure 7.2 Callback Function for GetRequest

As shown above, the user can directly rewrite the buffer of the object in a callback function.

If the value in typ is other than character strings, buf holds a four-byte value of the current object. The user can change
this value to a desired one. If the value in typ is a character string, buf holds the strings of the current object including a
terminating null character. The user can change this value to a desired one.

The value of buf covers the maximum number of the characters in the string including the null-terminator for the
string. This makes it possible for the user to copy a new string to buf by using the function strcpy. It is also possible to
copy a string which does not include a terminating null character without using the function. When this system exits the
callback function, it adds a null-terminating character to the end of the string. The user is required to return dat_len
with the same value as was copied to buf (the length of the object string) to this system so that it can use the value in
dat_len when adding the null-character to terminate the string. Make sure that the new value does not exceed the buffer
size

(cbk_dat->buf len).

Figure 7.3 below shows the callback function for SetRequest. The value pointed by the cbk dat->buf argument of the
callback function is the internal variable and the content of buf should not be rewritten by the user.

R01US0202EJ0200 Rev.2.00 REN ESNS Page 77 of 85
Nov 1, 2020

RZ/T1 Group 7. Interfaces

—> [SNMP manager

-/

Set
Request

UDP reception packet

“test1234”
; A null-terminator is not added

apl_snmp_cbk(cbk.dat->buf)

N

[Callback function

l Allow the update

return_E_OK;

Not to allow the update
return_E_OBJ;

Figure 7.3 Callback Function for SetRequest

The buf variable holds the data to be updated by the manager. If the value in typ is a character string, a null-terminating
character is not added to the string in buf. This means that the user cannot use the function strcmp to compare strings.
Instead, use the function strncmp.

R01US0202EJ0200 Rev.2.00 :{EN ESNS Page 78 of 85
Nov 1, 2020

RZ/T1 Group

7. Interfaces

An example of implementation for GetRequest is given below.

UW* dat;

if (cbk_dat->req == SNMP_REQ_GET) {
/* Get request */
if (cbk_dat->mib_id == 0) {
/*MIBID 0*/
switch (cbk_dat->obj_id)
{ case 0:
/* If the data type is a character string */
len = strlen("New String");
if (len < cbk_dat->buf_len)
{ strcpy((char*)cbk_dat->buf, "New
String"); cbk_dat->dat_len =len;
}
/* Data to be written should not exceed the buffer size (cbk_dat->buf_len) */
/* Use strcpy and copy the “New String” to buf (terminating null characters can be added) */
break;
case 1:
/* If the data type is strings */
len = strlen(apl_new_str); /* apl_new_str[] = "New String 2" */
if (len < cbk_dat->buf_len){
str = (VB*)cbk_dat->buf;
for (i=0;i<len;i++) {
str[i] = apl_new_str[i];
}
cbk_dat->dat_len = len;
}
/* Use for loop and copy the strings to buf (terminating null characters can be omitted) */
break;
case 3:
/* If the data type is integer value*/
dat = (UW*)cbk_dat->buf;
dat+=1; / Aninteger value is added */

break;

return E_OK; /* E_OK is returned */

R01US0202EJ0200 Rev.2.00 RENESAS
Nov 1, 2020

Page 79 of 85

RZ/T1 Group 7. Interfaces

An example of implementation for SetRequest is given below.

ercd = E_OK;
if (cbk_dat->req == SNMP_REQ_SET) {
/* Set request */
if (cbk_dat->mib_id == 0) {
/*MIBID 0 */
switch (cbk_dat->obj_id)
{ case 4:
/* If the data type is strings */
len = strlen("root");

res = strncmp((const char*)cbk_dat->buf, "root", len);

if (res == 0){
ercd = E_OBJ; /¥ Updating of data is not allowed if the beginning is same as the string “root” */
}
/* Use strncmp to compare the strings because the strings in cbk_dat->buf does not have a terminating null character at the end */
break;
case 5:

/* The data type is IP address */
dat = (UW*)cbk_dat->buf;
if ((*dat & 0xffff0000) != 0xc0a80000) {
ercd = E_OBJ; /* Not to allow updating unless the IP address is 192.168.*.* */
}
break;
default:

break;

return ercd;

As shown in the examples above, the value of the cbk _dat->buf argument is altered to change the value for an object.
The functions set mib_obj and set val mib_obj cannot be issued by the callback function.

R01US0202EJ0200 Rev.2.00 REN ESNS Page 80 of 85
Nov 1, 2020

RZ/T1 Group 7. Interfaces

7.4 Functions for Variable Vendor-Specific Extended MIBs

This section describes functions associated with vendor-specific extended MIB objects, which can be added and deleted.
The arguments val mib id and val obj id in this section are IDs of data in the array variable snmp mib ven val
declared by the user, and differ from mib_id and obj_id in Section 7.2.

add val mib nod (add nodes to the MIB tree)

Format
ER add_val_mib_nod(UH val_mib_id, UH val_obj_id, UH* mib_nod_cnt)

Parameters
UH val_mib_id MIB ID
UH val_obj_id Object ID
UH* mib_nod_cnt The number of nodes used at the time of the addition

Returned value

ER Ercd E_OK for a normal termination or the error code.

Error codes

E_NOMEM Insufficient resources (memory) for the nodes
E_QOVR The nodes have already been added.
E TMOUT Raising a semaphore for exclusivity was not possible due to a timeout.
E OBJ Other error
Description

This function is used for adding a node, specified by the arguments val mib_id and val obj id, as a variable
vendor- specific extended MIB node to the MIB tree within the system. Specify the MIB ID in val mib_id and
the object ID in val_obj_id. If the function is successfully completed, the number of nodes which were used is set
in the mib_nod cnt argument. If the value is not required, specify NULL (0) as the value of mib_nod cnt.

The error code E_ QOVR s returned if the specified MIB node has already been added. The error code
E_NOMEM is returned if memory is insufficient to cover adding the nodes.

Do not change configuration data in relation to nodes added by this function (the values in snmp mib_ven_val),
except by deleting and re-adding the node.

Note that, when adding a table of nodes, add only the node for the entry to that part of the tree (1), and then add
lower- order objects following the entry as shown in Figure 7.4. In the figure, the value of the entry section
"*.5678.5.3.1" is added, and then the values of lower-order objects to make the overall value "*.5678.5.3.1.1.1"
and so on.

R01US0202EJ0200 Rev.2.00 REN ESNS Page 81 of 85
Nov 1, 2020

RZ/T1 Group

7. Interfaces

Vendor's
MIB ID: 1

(1) Entry

(2) del_val_mib_nod(x, x);

Figure 7.4 Adding a Table

R01US0202EJ0200 Rev.2.00
Nov 1, 2020

RENESAS

Page 82 of 85

RZ/T1 Group 7. Interfaces

del_val_mib_nod (delete nodes from the MIB tree)

Format
ER del_val_mib_nod(UH val_mib_id, UH val_obj_id)

Parameters
UH val_mib_id MIB ID
UH val_obj_id Object ID

Returned value

ER ercd E_OK for a normal termination or the error code.

Error codes

E_NOID The node to be deleted does not exist.
E TMOUT Raising a semaphore for exclusivity was not possible due to a timeout.
E OBJ Other error

Description

This function is used for deleting variable vendor-specific extended MIB nodes which were earlier added by calling
the add _val mib_nod function. Specify MIB ID in val_mib_id and object ID in val obj_id.

The error code E_NOID is returned if the specified MIB node does not exist.

In reverse order to the addition of a table of nodes in Figure 7.4, start by deleting the lower-order objects
following the entry. The user does not need to delete the node that is the entry (1) as it will be deleted once all the
lower-order objects have been deleted. For example, if the objects are deleted in the order "*.5678.5.3.1.1.1",
"*5678.5.3.1.1.2", and "*.5678.5.3.1.2.1" and then "*.5678.5.3.1.2.2", the entry "*.5678.5.3.1" will be deleted
simultaneously with the last object to be deleted. The user needs to delete table nodes preceding the entry.

R01US0202EJ0200 Rev.2.00 :{EN ESNS Page 83 of 85
Nov 1, 2020

RZ/T1 Group 7. Interfaces

get_val_mib_obj (read data from a variable vendor-specific MIB object)

Format

ER get_val_mib_obj(VP buf, UH* len, UH val_mib_id, UH val_obj_id)

Parameters
VP buf A pointer to the buffer where data will be stored
UH* len Size of the buffer and data (in bytes)
UH val_mib_id MIB ID
UH val_obj_id Object ID

Returned value

ER ercd E_OK for a normal termination or the error code.

Error codes

E_PAR Argument error
E_NOSPT The data type is not supported.
E_BOVR Insufficient buffer length
E_OBJ Other error

Description

This function reads values from the variable vendor-specific extended MIB objects specified in the arguments
val mib_id and val obj_id and stores them in the buf argument.

The specification of the function is same as that of get mib_obj.

R01US0202EJ0200 Rev.2.00 :{EN ESNS Page 84 of 85
Nov 1, 2020

RZ/T1 Group

7. Interfaces

set_val_mib_obj (write data to a variable vendor-specific MIB object)

Format

ER set_val_mib_obj(VP buf, UH len, UH val_mib_id, UH val_obj_id)

Parameters
VP buf A pointer to the buffer where data is stored
UH len Size of the data (in bytes)
UH val_mib_id MIB ID
UH val_obj_id Object ID
Returned value
ER ercd E_OK for a normal termination or the error code.

Error codes

E_PAR Argument error

E_NOSPT The data type is not supported.

E OBJ Data overflow or underflow, or other error
Description

This function writes values from the buf argument to the variable vendor-specific extended MIB objects specified

in the arguments val mib_id and val obj id.

The specification of the function is same as that of set mib_ob;.

R01US0202EJ0200 Rev.2.00
Nov 1, 2020

RENESAS

Page 85 of 85

REVISION HISTORY

RZ/T1 Group uNet3/SNMP

Description
Rev. | Date Page Summary
1.00 — First edition, issued
2.00 Nov. 1,2020 | 2. Specification Outline

10 Table 2.2 Supported MIB-II Objects: Description of interfaces group modified (number of
network interfaces changed from 2 to 16)
4. Configuring Resources
25, 26 Table 4.1 List of OS Resources, modified
5. Configuring the SNMP
31 5.1 Basic Settings, modified
36 5.1.1 Configuring the SNMP: CFG_SNMP_MAX_OID_DEP added
6. Configuring Vendor-Specific MIBs
46 to 47 6.2.1 MIB IDs and Object IDs: Description modified (changed to "the MIB table... are assigned
to the RAM area"), maximum number of elements in MIB table and object table corrected
(255/256 — 254 and 65536 — 65534)
48 6.2.2 MIB Tables: Description of predefined variable added, maximum number of elements in
MIB table corrected (255/256 — 254)
51 6.2.4 Object Table: Description added ("...in configuration of a table, start...by substituting the
value of entry..."), Data type TYP_OBJ_ID, added
50 to 53 6.2.5 Data Table: Data type TYP_OBJ_ID, added
56 to 58 6.3 Configuring Variable Vendor-Specific Private MIBs: Description added
7. Interfaces
60to 73 7.2 Specification of Functions, modified:
snmp_ini, snmp_ena, snmp_dis: error code E_SYS added;
snmp_ext: description added ("Disable the system by calling the snmp_dis function before
calling this function."), error code E_OBJ added;
snmp_ena: description added ("...if the Ethernet port has not been connected...sent upon
completion of the connection.");
get_mib_obj, set_mib_obj: argument type of obj_id corrected, description of error code
E_NOSPT modified;
set_mib_obj: argument type corrected
snd_trp: description about timeout added (including "...detection of timeout in the sending of
InformRequest packets proceeds every second (1000 ms)..."), error code E_QOVR added
741076 7.3 Callback Functions: SNMP_REQ_GET_VAL and SNMP_REQ_SET_VAL added to
description under variable req of the structure
811to 85 7.4 Functions for Variable Vendor-Specific Extended MIBs: Functions add_val_mib_nod,

del_val_mib_nod, get_val_mib_obj, and set_val_mib_obj, added; description of
del_val_mib_nod added ("The user does not need to delete the node that is the entry...");
argument type of set_val_mib_obj corrected

RZ/T1 Group User’'s Manual: uNet3/SNMP
Publication Date: Rev.1.00 Jul. 27, 2013
Rev.2.00 Nov. 1, 2020

Published by: Renesas Electronics Corporation

RZ/T1 Group User’'s Manual

HMNet3/SNMP

RENESAS

Renesas Electronics Corporation

R01UZ0063EJ0200

	1. Introduction
	1.1 Restrictions

	2. Specification Outline
	2.1 Specifications
	2.2 Supported MIB-II Objects
	2.3 Updating Data in MIB Objects
	2.4 Generating MIB Trees
	2.5 Vendor-Specific MIB and Callback Function

	3. Outline of the Structure
	3.1 File Structure
	3.2 Libraries
	3.3 Module Structure Overview

	3.3.1 Task for Receiving SNMP Packets and Sending Responses
	3.3.2 Task for Counting Running Time
	3.3.3 Task for Sending Traps

	4. Configuring Resources
	4.1 OS Resources
	4.1.1 List of OS Resources
	4.1.2 Configuring OS Resources
	4.2 Network Resources
	4.2.1 UDP Sockets
	4.2.2 Configuring UDP Sockets

	5. Configuring the SNMP
	5.1 Basic Settings
	5.1.1 Configuring the SNMP
	Configuring the MIB-II
	5.1.3 Configuring the Operating System
	5.1.4 Examples of Implementation
	5.2 Configuring Managers
	5.3 Configuring Communities
	5.4 Configuring Destinations for Sending Generic Traps
	5.5 Configuring Standard Callbacks for Vendor’s Private MIB

	6. Configuring Vendor-Specific MIBs
	6.1 Configuring the System Group of the MIB-II
	6.2 Configuring Vendor’s Private MIBs
	6.2.1 MIB IDs and Object IDs
	6.2.2 MIB Tables
	6.2.3 OID Prefix
	6.2.4 Object Table
	6.2.5 Data Table
	6.2.6 Callback Function Table
	6.3 Configuring Variable Vendor-Specific Private MIBs
	6.3.1 Disabling Variable Extended MIBs
	6.3.2 MIB Tables for Variable Extended MIB Trees
	6.3.3 Resources for Nodes in Variable Extended MIB Trees

	7. Interfaces
	7.1 List of Functions
	7.2 Specification of Functions
	7.3 Callback Functions
	7.4 Functions for Variable Vendor-Specific Extended MIBs

