

RX850V4 Ver. 4.41
Real-Time Operating System

Coding for CubeSuite Ver.1.20

User’s Manual

Target Tool
 RX850V4 Ver.4.41

Printed in Japan

Document No. U20044EJ1V0UM00 (1st edition)
Date Published February 2010

© NEC Electronics Corporation 2010

User’s Manual U20044EJ1V0UM 2

[MEMO]

User’s Manual U20044EJ1V0UM 3

SUMMARY OF CONTENTS

CHAPTER 1 OVERVIEW ... 17

CHAPTER 2 SYSTEM CONSTRUCTION ... 18

CHAPTER 3 TASK MANAGEMENT FUNCTIONS .. 30

CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS 45

CHAPTER 5 TASK EXCEPTION HANDLING FUNCTIONS 55

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 62

CHAPTER 7 EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS
96

CHAPTER 8 MEMORY POOL MANAGEMENT FUNCTIONS 103

CHAPTER 9 TIME MANAGEMENT FUNCTIONS ... 117

CHAPTER 10 SYSTEM STATE MANAGEMENT FUNCTIONS 126

CHAPTER 11 INTERRUPT MANAGEMENT FUNCTIONS ... 140

CHAPTER 12 SERVICE CALL MANAGEMENT FUNCTIONS 157

CHAPTER 13 SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS 160

CHAPTER 14 SCHEDULER .. 166

CHAPTER 15 SYSTEM INITIALIZATION ROUTINE ... 171

CHAPTER 16 DATA MACROS .. 175

CHAPTER 17 SERVICE CALLS .. 196

CHAPTER 18 SYSTEM CONFIGURATION FILE ... 329

CHAPTER 19 CONFIGURATOR CF850V4 ... 362

APPENDIX A WINDOW REFERENCE ... 368

APPENDIX B FLOATING-POINT OPERATION FUNCTION [CX] 384

APPENDIX C INDEX ... 385

User’s Manual U20044EJ1V0UM 4

Windows, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in

the United States and/or other countries.

TRON is the abbreviation of "The Real-time Operating system Nucleus."

ITRON is the abbreviation of "Industrial TRON."

μ ITRON is the abbreviation of "Micro Industrial TRON."

TRON, ITRON, and μ ITRON do not refer to any specific product or products.

The μ ITRON4.0 Specification is an open real-time kernel specification developed by TRON Association.

The μ ITRON4.0 Specification document can be obtained from the TRON Association web site

(http://www.assoc.tron.org/).
The copyright of the μ ITRON4.0 Specification document belongs to TRON Association.

User’s Manual U20044EJ1V0UM 5

• The information in this document is current as of February, 2010. The information is subject to change without notice. For

actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date

specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an

NEC Electronics sales representative for availability and additional information.

• No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC

Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.

• NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of

third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the

use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual

property rights of NEC Electronics or others.

• Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in

semiconductor product operation and application examples. The incorporation of these circuits, software and information in

the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no

responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and

information.

• While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree

and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property

or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient

safety measures in their design, such as redundancy, fire-containment and anti-failure features.

• NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific". The

"Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality

assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its

quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in

a particular application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual

equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-

crime systems, safety equipment and medical equipment (not specifically designed for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and

medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data

sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics,

they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a

given application.

(Note 1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned

subsidiaries.

(Note 2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined

above).

(M8E0909E)

User’s Manual U20044EJ1V0UM 6

[MEMO]

User’s Manual U20044EJ1V0UM 7

INTRODUCTION

Readers This manual is intended for users who design and develop application systems using

V850 microcontrollers products.

Purpose This manual is intended for users to understand the functions of RX850V4 described

the organization listed below.

Organization This manual consists of the following major sections.

 • OVERVIEW

• SYSTEM CONSTRUCTION

• TASK MANAGEMENT FUNCTIONS

• TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

• TASK EXCEPTION HANDLING FUNCTIONS

• SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

• EXTENDED SYNCHRONIZATION AND COMMUNICATION

• MEMORY POOL MANAGEMENT FUNCTIONS

• TIME MANAGEMENT FUNCTIONS

• SYSTEM STATE MANAGEMENT FUNCTIONS

• INTERRUPT MANAGEMENT FUNCTIONS

• SERVICE CALL MANAGEMENT FUNCTIONS

• SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS

• SCHEDULER

• SYSTEM INITIALIZATION ROUTINE

• DATA MACROS

• SERVICE CALLS

• SYSTEM CONFIGURATION FILE

• CONFIGURATOR CF850V4

How to read this manual It is assumed that the readers of this manual have general knowledge in the fields of

electrical engineering, logic circuits, microcontrollers, C language, and assemblers.

 To understand the hardware functions of the V850 microcontrollers

 → Refer to the User’s Manual Hardware of each product.

 To understand the instruction functions of the V850 microcontrollers

 → Refer to the V850ES Architecture User’s Manual (U15943E) or V850E1

 Architecture User’s Manual (U14559E).

User’s Manual U20044EJ1V0UM 8

Conventions Data significance: Higher digits on the left and lower digits on the right

 Note: Footnote for item marked with Note in the text

 Caution: Information requiring particular attention

 Remark: Supplementary information

 Numerical representation: Binary...XXXX or XXXXB

 Decimal...XXXX

 Hexadecimal...0xXXXX

 Prefixes indicating power of 2 (address space and memory capacity):

 K (kilo) 210 = 1024

 M (mega) 220 = 10242

Related Documents Refer to the documents listed below when using this manual.

 The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

Documents related to development tools (User’s Manuals)

Document Name Document No.

Start for CubeSuite for Ver.1.20 U20041E RX Series

Message for CubeSuite for Ver.1.20 U20042E

Coding for CubeSuite for Ver.1.20 This document

Debug for CubeSuite for Ver.1.20 U20045E

Analysis for CubeSuite U19439E

RX850V4 Ver.4.41

Internal Structure for CubeSuite for Ver.1.20 U20046E

Start U19809E

Analysis U19816E

Programming U19390E

Message U19810E

Coding for CX compiler U19811E

Build for CX compiler U19812E

V850 Coding U19383E

V850 Build U19386E

V850 Debug U19815E

CubeSuite

Integrated Development Environment

V850 Design U20184E

Caution The related documents listed above are subject to change without notice. Be sure to use

the latest edition of each document when designing.

User’s Manual U20044EJ1V0UM 9

CONTENTS

CHAPTER 1 OVERVIEW .. 17
1.1 Outline .. 17

1.1.1 Real-time OS ... 17
1.1.2 Multi-task OS ... 17

CHAPTER 2 SYSTEM CONSTRUCTION .. 18
2.1 Outline .. 18

2.2 Coding of Target-Dependent Module ... 20
2.2.1 Creating target-dependent module library ... 21

2.3 Coding Processing Programs ... 22

2.4 Coding System Configuration File .. 23

2.5 Coding User-Own Coding Module .. 24

2.6 Coding Directive File ... 25

2.7 Creating Load Module .. 26

CHAPTER 3 TASK MANAGEMENT FUNCTIONS ... 30
3.1 Outline .. 30

3.2 Tasks .. 30
3.2.1 Task state .. 30
3.2.2 Task priority ... 32
3.2.3 Basic form of tasks .. 32
3.2.4 Internal processing of task ... 33

3.3 Creat Task .. 34

3.4 Activate Task .. 34
3.4.1 Queuing an activation request ... 34
3.4.2 Not queuing an activation request ... 35

3.5 Cancel Task Activation Requests ... 36

3.6 Terminate Task ... 37
3.6.1 Terminate invoking task ... 37
3.6.2 Terminate task ... 38

3.7 Change Task Priority .. 39

3.8 Reference Task Priority .. 40

3.9 Reference Task State ... 41
3.9.1 Reference task state .. 41
3.9.2 Reference task state (simplified version) ... 42

3.10 Target-Dependent Module .. 43
3.10.1 Post-overflow processing .. 43

3.11 Memory Saving ... 44
3.11.1 Restricted task ... 44
3.11.2 Disable preempt .. 44

CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS 45
4.1 Outline .. 45

4.2 Put Task to Sleep ... 45
4.2.1 Waiting forever .. 45
4.2.2 With timeout ... 46

4.3 Wakeup Task .. 47

4.4 Cancel Task Wakeup Requests ... 48

10 User’s Manual U20044EJ1V0UM

4.5 Release Task from Waiting ... 49

4.6 Suspend Task ... 50

4.7 Resume Suspended Task .. 51
4.7.1 Resume suspended task ... 51
4.7.2 Forcibly resume suspended task ... 52

4.8 Delay Task .. 53

4.9 Differences Between Wakeup Wait with Timeout and Time Elapse Wait ... 54

CHAPTER 5 TASK EXCEPTION HANDLING FUNCTIONS .. 55
5.1 Outline .. 55

5.2 Task Exception Handling Routines ... 55
5.2.1 Basic form of task exception handling routines ... 55
5.2.2 Internal processing of task exception handling routine .. 56

5.3 Define Task Exception Handling Routine ... 56

5.4 Raise Task Exception Handling Routine .. 57

5.5 Disabling and Enabling Activation of Task Exception Handling Routines .. 58

5.6 Reference Task Exception Handling Disable/Enable State .. 60

5.7 Reference Detailed Information of Task Exception Handling Routine .. 61

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 62
6.1 Outline .. 62

6.2 Semaphores ... 62
6.2.1 Create semaphore ... 62
6.2.2 Acquire semaphore resource .. 63
6.2.3 Release semaphore resource ... 66
6.2.4 Reference semaphore state .. 67

6.3 Eventflags ... 68
6.3.1 Create eventflag .. 68
6.3.2 Set eventflag .. 69
6.3.3 Clear eventflag .. 70
6.3.4 Wait for eventflag ... 71
6.3.5 Reference eventflag state .. 76

6.4 Data Queues ... 77
6.4.1 Create data queue ... 77
6.4.2 Send to data queue ... 78
6.4.3 Forced send to data queue .. 82
6.4.4 Receive from data queue .. 83
6.4.5 Reference data queue state .. 88

6.5 Mailboxes .. 89
6.5.1 Messages .. 89
6.5.2 Create mailbox .. 90
6.5.3 Send to mailbox ... 91
6.5.4 Receive from mailbox .. 92
6.5.5 Reference mailbox state .. 95

CHAPTER 7 EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 96
7.1 Outline .. 96

7.2 Mutexes .. 96
7.2.1 Differences from semaphores ... 96
7.2.2 Create mutex ... 97
7.2.3 Lock mutex .. 98
7.2.4 Unlock mutex ... 101
7.2.5 Reference mutex state .. 102

User’s Manual U20044EJ1V0UM 11

CHAPTER 8 MEMORY POOL MANAGEMENT FUNCTIONS ... 103
8.1 Outline .. 103

8.2 Fixed-Sized Memory Pools ... 104
8.2.1 Create fixed-sized memory pool .. 104
8.2.2 Acquire fixed-sized memory block ... 105
8.2.3 Release fixed-sized memory block .. 108
8.2.4 Reference fixed-sized memory pool state ... 109

8.3 Variable-Sized Memory Pools .. 110
8.3.1 Create variable-sized memory pool ... 110
8.3.2 Acquire variable-sized memory block .. 111
8.3.3 Release variable-sized memory block ... 115
8.3.4 Reference variable-sized memory pool state .. 116

CHAPTER 9 TIME MANAGEMENT FUNCTIONS .. 117
9.1 Outline .. 117

9.2 System Time ... 117
9.2.1 Base clock timer interrupt .. 117
9.2.2 Base clock interval ... 117

9.3 Timer Operations .. 118
9.3.1 Delayed task wakeup .. 118
9.3.2 Timeout .. 118
9.3.3 Cyclic handlers .. 118
9.3.4 Create cyclic handler ... 119

9.4 Set System Time .. 120

9.5 Reference System Time ... 121

9.6 Start Cyclic Handler Operation ... 122

9.7 Stop Cyclic Handler Operation ... 124

9.8 Reference Cyclic Handler State .. 125

CHAPTER 10 SYSTEM STATE MANAGEMENT FUNCTIONS ... 126
10.1 Outline .. 126

10.2 Rotate Task Precedence .. 126

10.3 Forced Scheduler Activation ... 128

10.4 Reference Task ID in the RUNNING State ... 129

10.5 Lock the CPU .. 130

10.6 Unlock the CPU .. 132

10.7 Reference CPU State ... 134

10.8 Disable Dispatching .. 135

10.9 Enable Dispatching ... 136

10.10 Reference Dispatching State .. 137

10.11 Reference Contexts .. 138

10.12 Reference Dispatch Pending State ... 139

CHAPTER 11 INTERRUPT MANAGEMENT FUNCTIONS .. 140
11.1 Outline .. 140

11.2 Target-Dependent Module .. 140
11.2.1 Service call "dis_int" .. 140
11.2.2 Service call "ena_int" ... 142
11.2.3 Interrupt mask setting processing (overwrite setting) .. 143
11.2.4 Interrupt mask setting processing (OR setting) ... 144
11.2.5 Interrupt mask acquire processing .. 145

12 User’s Manual U20044EJ1V0UM

11.3 User-Own Coding Module .. 146
11.3.1 Interrupt entry processing .. 146

11.4 Interrupt Handlers ... 147
11.4.1 Basic form of interrupt handlers ... 147
11.4.2 Internal processing of interrupt handler ... 147
11.4.3 Define interrupt handler ... 148

11.5 Directly Activated Interrupt Handlers .. 148

11.6 Maskable Interrupt Acknowledgement Status in Processing Programs ... 149

11.7 Disable Interrupt ... 150

11.8 Enable Interrupt .. 152

11.9 Change Interrupt Mask ... 154

11.10 Reference Interrupt Mask ... 155

11.11 Non-Maskable Interrupts .. 156

11.12 Base Clock Timer Interrupts ... 156

11.13 Multiple Interrupts ... 156

CHAPTER 12 SERVICE CALL MANAGEMENT FUNCTIONS ... 157
12.1 Outline .. 157

12.2 Extended Service Call Routines ... 157
12.2.1 Basic form extended service call routines ... 157
12.2.2 Internal processing of extended service call routine .. 158

12.3 Define Extended Service Call Routine .. 158

12.4 Invoke Extended Service Call Routine ... 159

CHAPTER 13 SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS 160
13.1 Outline .. 160

13.2 User-Own Coding Module .. 160
13.2.1 CPU exception entry processing ... 160
13.2.2 Initialization routine .. 162
13.2.3 Define initialization routine ... 163

13.3 CPU Exception Handlers .. 164
13.3.1 Basic form of CPU exception handlers .. 164
13.3.2 Internal processing of CPU exception handler .. 165

13.4 Define CPU Exception Handler .. 165

CHAPTER 14 SCHEDULER ... 166
14.1 Outline .. 166

14.2 Drive Method .. 166

14.3 Scheduling Method ... 166
14.3.1 Ready queue ... 167

14.4 Scheduling Lock Function ... 168

14.5 Idle Routine ... 169
14.5.1 Basic form of idle routine ... 169
14.5.2 Internal processong of idle routine .. 169

14.6 Define Idle Routine ... 170

14.7 Scheduling in Non-Tasks .. 170

CHAPTER 15 SYSTEM INITIALIZATION ROUTINE .. 171
15.1 Outline .. 171

15.2 User-Own Coding Module .. 172
15.2.1 Boot processing ... 172

User’s Manual U20044EJ1V0UM 13

15.3 Kernel Initialization Module ... 173

CHAPTER 16 DATA MACROS ... 175
16.1 Data Types ... 175

16.2 Packet Formats ... 177
16.2.1 Task state packet .. 177
16.2.2 Task state packet (simplified version) ... 179
16.2.3 Task exception handling routine state packet ... 180
16.2.4 Semaphore state packet .. 181
16.2.5 Eventflag state packet ... 182
16.2.6 Data queue state packet .. 183
16.2.7 Message packet .. 184
16.2.8 Mailbox state packet .. 185
16.2.9 Mutex state packet .. 186
16.2.10 Fixed-sized memory pool state packet .. 187
16.2.11 Variable-sized memory pool state packet .. 188
16.2.12 System time packet ... 189
16.2.13 Cyclic handler state packet .. 190

16.3 Data Macros ... 191
16.3.1 Current state .. 191
16.3.2 Processing program attributes ... 192
16.3.3 Management object attributes ... 192
16.3.4 Service call operating modes .. 193
16.3.5 Return value .. 193
16.3.6 Kernel configuration constants .. 194

16.4 Conditional Compile Macro ... 195

CHAPTER 17 SERVICE CALLS ... 196
17.1 Outline .. 196

17.1.1 Call service call .. 197
17.2 Explanation of Service Call ... 198

17.2.1 Task management functions ... 200
17.2.2 Task dependent synchronization functions ... 215
17.2.3 Task exception handling functions .. 228
17.2.4 Synchronization and communication functions (semaphores) .. 236
17.2.5 Synchronization and communication functions (eventflags) .. 244
17.2.6 Synchronization and communication functions (data queues) .. 254
17.2.7 Synchronization and communication functions (mailboxes) .. 267
17.2.8 Extended synchronization and communication functions (mutexes) ... 277
17.2.9 Memory pool management functions (fixed-sized memory pools) .. 285
17.2.10 Memory pool management functions (variable-sized memory pools) ... 293
17.2.11 Time management functions ... 303
17.2.12 System state management functions .. 309
17.2.13 Interrupt management functions .. 322
17.2.14 Service call management functions ... 327

CHAPTER 18 SYSTEM CONFIGURATION FILE ... 329
18.1 Outline .. 329

18.2 Configuration Information ... 331
18.2.1 Cautions .. 332

18.3 Declarative Information ... 333
18.3.1 Header file declaration ... 333

18.4 System Information ... 334
18.4.1 RX series information .. 334
18.4.2 Basic information ... 335
18.4.3 Initial FPSR register information .. 337
18.4.4 Memory area information ... 338

14 User’s Manual U20044EJ1V0UM

18.5 Static API Information ... 339
18.5.1 Task information .. 339
18.5.2 Task exception handling routine information ... 341
18.5.3 Semaphore information ... 342
18.5.4 Eventflag information ... 343
18.5.5 Data queue information ... 344
18.5.6 Mailbox information ... 345
18.5.7 Mutex information .. 346
18.5.8 Fixed-sized memory pool information .. 347
18.5.9 Variable-sized memory pool information ... 348
18.5.10 Cyclic handler information ... 349
18.5.11 Interrupt handler information ... 350
18.5.12 CPU exception handler information ... 351
18.5.13 Extended service call routine information .. 352
18.5.14 Initialization routine information ... 353
18.5.15 Idle routine information .. 354

18.6 Memory Capacity Estimation .. 355
18.6.1 .rx_control section ... 355
18.6.2 .rx_info section .. 356
18.6.3 .rx_memory section/user-defined section .. 357
18.6.4 .rx_text section .. 360

18.7 Description Examples ... 361

CHAPTER 19 CONFIGURATOR CF850V4 .. 362
19.1 Outline .. 362

19.2 Activation Method ... 363
19.2.1 Activating from command line ... 363
19.2.2 Activating from CubeSuite ... 365
19.2.3 Command file .. 366
19.2.4 Command input examples ... 367

APPENDIX A WINDOW REFERENCE ... 368
A.1 Description .. 368

APPENDIX B FLOATING-POINT OPERATION FUNCTION [CX] 384

APPENDIX C INDEX ... 385

User’s Manual U20044EJ1V0UM 15

LIST OF FIGURES

Figure 2-1 Example of System Construction ..18
Figure 2-2 Property Panel: [RX850V4] Tab ..26
Figure 2-3 Project Tree Panel (After Adding sys.cfg) ...27
Figure 2-4 Property Panel: [System Configuration File Related Information] Tab ...28
Figure 2-5 Project Tree Panel (After Running Build) ..29
Figure 3-1 Task State ...30
Figure 6-1 Processing Flow (Semaphore) ..62
Figure 6-2 Processing Flow (Eventflag) ...68
Figure 6-3 Processing Flow (Data Queue) ...77
Figure 6-4 Processing Flow (Mailbox) ..89
Figure 7-1 Processing Flow (Mutex) ..96
Figure 9-1 TA_PHS Attribute: Specified ...122
Figure 9-2 TA_PHS Attribute: Not Specified ..122
Figure 10-1 Rotate Task Precedence ..126
Figure 10-2 Lock the CPU ..130
Figure 10-3 Unlock the CPU ..132
Figure 10-4 Disable Dispatching ..135
Figure 10-5 Enable Dispatching ...136
Figure 11-1 Processing Flow (Interrupt Handler) ...147
Figure 11-2 Disabling Acknowledgment of Maskable Interrupt ..150
Figure 11-3 Enabling Acknowledgment of Maskable Interrupt ...152
Figure 11-4 Multiple Interrupts ...156
Figure 13-1 Processing Flow (Initialization Routine) ..162
Figure 13-2 Processing Flow (CPU Exception Handler) ..164
Figure 14-1 Implementation of Scheduling Method (Priority Level Method or FCFS Method)167
Figure 14-2 Scheduling Lock Function ...168
Figure 14-3 Scheduling in Non-Tasks ..170
Figure 15-1 Processing Flow (System Initialization) ..171
Figure 18-1 System Configuration File Description Format ...332
Figure 18-2 Example of System Configuration File ..361
Figure 19-1 Example of Command File Description ...366

16 User’s Manual U20044EJ1V0UM

LIST OF TABLES

Table 3-1 WAITING State ...31
Table 4-1 Differences Between Wakeup Wait with Timeout and Time Elapse Wait ...54
Table 11-1 Maskable Interrupt Acknowledgement Status upon Processing Program Startup149
Table 16-1 Data Types ..175
Table 16-2 Current State ...191
Table 16-3 Processing Program Attributes ...192
Table 16-4 Management Object Attributes ...192
Table 16-5 Service Call Operating Modes ..193
Table 16-6 Return Value ...193
Table 16-7 Priority Range ...194
Table 16-8 Version Information ...194
Table 16-9 Maximum Queuing Count ...194
Table 16-10 Number of Bits in Bit Patterns ...194
Table 16-11 Base Clock Interval ...194
Table 16-12 Conditional Compile Macro ...195
Table 17-1 Task Management Functions ..200
Table 17-2 Task Dependent Synchronization Functions ..215
Table 17-3 Task Exception Handling Functions ..228
Table 17-4 Synchronization and Communication Functions (Semaphores) ...236
Table 17-5 Synchronization and Communication Functions (Eventflags) ...244
Table 17-6 Synchronization and Communication Functions (Data Queues) ..254
Table 17-7 Synchronization and Communication Functions (Mailboxes) ...267
Table 17-8 Extended Synchronization and Communication Functions (Mutexes) ..277
Table 17-9 Memory Pool Management Functions (Fixed-Sized Memory Pools) ..285
Table 17-10 Memory Pool Management Functions (Variable-Sized Memory Pools) ...293
Table 17-11 Time Management Functions ...303
Table 17-12 System State Management Functions ..309
Table 17-13 Interrupt Management Functions ..322
Table 17-14 Service Call Management Functions ..327
Table 18-1 .rx_control Section Size Calculation Method ..355
Table 18-2 .rx_info Section Size Calculation Method ...356
Table 18-3 Context Area of Interrupt Handler (frmsz) ...357
Table 18-4 Context Area of a Task (Preempt Acknowledge Status: non TA_DISPREEMPT) (ctxsz)358
Table 18-5 Context Area of a Task (Preempt Acknowledge Status: TA_DISPREEMPT) (ctxsz)358
Table A-1 List of Window/Panels ...368
Table B-1 Startup Register Values of Each Processing Program ...384

CHAPTER 1 OVERVIEW

User’s Manual U20044EJ1V0UM 17

CHAPTER 1 OVERVIEW

1.1 Outline
The RX850V4 is a built-in real-time, multi-task OS that provides a highly efficient real-time, multi-task environment to

increases the application range of processor control units.
The RX850V4 is a high-speed, compact OS capable of being stored in and run from the ROM of a target system.

1.1.1 Real-time OS
Control equipment demands systems that can rapidly respond to events occurring both internal and external to the

equipment. Conventional systems have utilized simple interrupt handling as a means of satisfying this demand. As control
equipment has become more powerful, however, it has proved difficult for systems to satisfy these requirements by means
of simple interrupt handling alone.

In other words, the task of managing the order in which internal and external events are processed has become
increasingly difficult as systems have increased in complexity and programs have become larger.

Real-time OS has been designed to overcome this problem.
The main purpose of a real-time OS is to respond to internal and external events rapidly and execute programs in the

optimum order.

1.1.2 Multi-task OS
A "task" is the minimum unit in which a program can be executed by an OS. "Mult-task" is the name given to the mode

of operation in which a single processor processes multiple tasks concurrently.
Actually, the processor can handle no more than one program (instruction) at a time. But, by switching the processor’s

attention to individual tasks on a regular basis (at a certain timing) it appears that the tasks are being processed
simultaneously.

A multi-task OS enables the parallel processing of tasks by switching the tasks to be executed as determined by the
system.

One important purpose of a multi-task OS is to improve the throughput of the overall system through the parallel
processing of multiple tasks.

CHAPTER 2 SYSTEM CONSTRUCTION

18 User’s Manual U20044EJ1V0UM

CHAPTER 2 SYSTEM CONSTRUCTION

This chapter describes how to build a system (load module) that uses the functions provided by the RX850V4.

2.1 Outline
System building consists in the creation of a load module using the files (kernel library, etc.) installed on the user

development environment (host machine) from the RX850V4's supply media.
The following shows the procedure for organizing the system.

Figure 2-1 Example of System Construction

The RX850V4 provides a sample program with the files necessary for generating a load module.
The sample programs are stored in the following folder.

<rx_sample>=<CubeSuite_root>\SampleProjects\V850\device_nameΔtypeΔ(compiler_name)ΔVx.xx\appli

- <CubeSuite_root>
Indicates the installation folder of CubeSuite.
The default folder is “C:\Program Files\NEC Electronics CubeSuite\CubeSuite\.

System Configuration File

Information Files

Target-Dependent Module
Processing Programs

Directive File

Configurator

Linker

C compiler / Assembler

Archiver (CA850) / Librarian (CX)

Object Files

Load Module

Target-Dependent Module Library

Library Files
- Kernel Library
- Stabdard Library
- Runtime Library
erc.

User-own Coding Module

CHAPTER 2 SYSTEM CONSTRUCTION

User’s Manual U20044EJ1V0UM 19

- SampleProjects
Indicates the sample project folder of CubeSuite.

- V850
Indicates the sample project folder of V850.

- device_nameΔtypeΔ(compiler_name)ΔVx.xx
Indicates the sample project folder of the RX850V4.

device_name: Indicates the device name which the sample is provided.
But since the "/" character cannot be used in folder names, any "/" characters in the device name
are replaced with the "_" character.

Δ: Indicates a space.

type: Indicates the type of the sample program.

compiler_name: Indicates the compiler package name (CA850 or CX).

Vx.xx: Indicates the version of the sample project of the RX850V4.

- appli
Indicates the folder which the sample program provided by the RX850V4 is stored.

CHAPTER 2 SYSTEM CONSTRUCTION

20 User’s Manual U20044EJ1V0UM

2.2 Coding of Target-Dependent Module
To support various execution environments, the RX850V4 extracts hardware-dependent processing that is required to

execute processing as target-dependent modules. This enhances portability for various execution environments and
facilitates customization as well.

The following lists the target-dependent modules extracted for each function.

- TASK MANAGEMENT FUNCTIONS

- Post-overflow processing
A routine dedicated to post-overflow processing (function name: _kernel_stk_overflow), which is extracted as a
target-dependent module, for executing post processing when a stack required by the RX850V4 or the
processing program to perform execution overflows. It is called from the RX850V4 when a stack overflows.

- INTERRUPT MANAGEMENT FUNCTIONS

- Service call "dis_int"
A routine dedicated to maskable interrupt acknowledge processing (function name: _kernel_usr_dis_int), which
is extracted as a target-dependent module, for disabling acknowledgment of maskable interrupt. It is called when
service call dis_int is issued from the processing program.

- Service call "ena_int"
A routine dedicated to maskable interrupt acknowledge processing (function name: _kernel_usr_ena_int), which
is extracted as a target-dependent module, for enabling acknowledgment of maskable interrupt. It is called when
service call ena_int is issued from the processing program.

- Interrupt mask setting processing (overwrite setting)
A routine dedicated to interrupt mask pattern processing (function name: _kernel_usr_set_intmsk), which is
extracted as a target-dependent module, for setting the interrupt mask pattern specified by the relevant user-own
function parameter to the interrupt control register xxICn or interrupt mask flag xxMKn of the interrupt mask
register IMRm. It is called when service call unl_cpu, iunl_cpu, chg_ims, or ichg_ims is issued from the
processing program.

- Interrupt mask setting processing (OR setting)
A routine dedicated to interrupt mask pattern processing (function name: _kernel_usr_msk_intmsk), which is
extracted as a target-dependent module, for ORing the interrupt mask pattern specified by the relevant user-own
function parameter and the CPU interrupt mask pattern (the values of interrupt control register xxICn or interrupt
mask flag xxMKn of the interrupt mask register IMRm) and storing the result to the interrupt mask flag xxMKn of
the target register. It is called when service call loc_cpu or iloc_cpu is issued from the processing program.

- Interrupt mask acquire processing
A routine dedicated to interrupt mask pattern acquire processing (function name: _kernel_usr_get_intmsk), which
is extracted as a target-dependent module, for storing the CPU interrupt mask pattern (the values of interrupt
control register xxICn or interrupt mask flag xxMKn of the interrupt mask register IMRm) into the area specified
by the relevant user-own function parameter. It is called when service call loc_cpu, iloc_cpu, get_ims, or iget_ims
is issued from the processing program.

Note For details on the target-dependent modules, refer to "CHAPTER 3 TASK MANAGEMENT FUNCTIONS" and
"CHAPTER 11 INTERRUPT MANAGEMENT FUNCTIONS".

CHAPTER 2 SYSTEM CONSTRUCTION

User’s Manual U20044EJ1V0UM 21

2.2.1 Creating target-dependent module library
Execute the C compiler, assembler and archiver (CA850) / C compiler, assembler and librarian (CX) for C source and

assembler source files created in "2.2 Coding of Target-Dependent Module" to generate library files (target-dependent
module libraries).

The following lists the files required for generating target-dependent module libraries.

- Post-overflow processing

- Service call "dis_int"

- Service call "ena_int"

- Interrupt mask setting processing (overwrite setting)

- Interrupt mask setting processing (OR setting)

- Interrupt mask acquire processing

Note See “CubeSuite V850 Build User's Manual” for details about the C compiler, assembler and archiver (CA850).
See “CubeSuite Build for CX Compiler User's Manual” for details about the C compiler, assembler and librarian
(CX).

CHAPTER 2 SYSTEM CONSTRUCTION

22 User’s Manual U20044EJ1V0UM

2.3 Coding Processing Programs
Code the processing that should be implemented in the system.
In the RX850V4, the processing program is classified into the following seven types, in accordance with the types and

purposes of the processing that should be implemented.

- Tasks
A task is processing program that is not executed unless it is explicitly manipulated via service calls provided by the
RX850V4, unlike other processing programs (cyclic handler, interrupt handler, etc.).

- Task Exception Handling Routines
The task exception handling routine is a routine dedicated to task exception handling, and is activated when a task
exception handling request is issued.
The RX850V4 positions task exception handling routines as extensions of the task for which a task exception
handling request is issued. A task exception handling routine is therefore activated when the task for which a task
exception handling request is issued moves to the RUNNING state.

- Cyclic handlers
The cyclic handler is a routine dedicated to cycle processing that is activated periodically at a constant interval
(activation cycle).
The RX850V4 handles the cyclic handler as a "non-task (module independent from tasks)". Therefore, even if a task
with the highest priority in the system is being executed, the processing is suspended when a specified activation
cycle has come, and the control is passed to the cyclic handler.

- Interrupt Handlers
The interrupt handler is a routine dedicated to interrupt servicing that is activated when an interrupt occurs.
The RX850V4 handles the interrupt handler as a "non-task (module independent from tasks)". Therefore, even if a
task with the highest priority in the system is being executed, the processing is suspended when an interrupt occurs,
and the control is passed to the interrupt handler.
When an interrupt occurs, unlike "Directly Activated Interrupt Handlers", an interrupt handler is executed via interrupt
preprocessing (such as saving/restoring registers and switching stacks) provided by the RX850V4. This simplifies the
processing compared to the processing of "Directly Activated Interrupt Handlers".

- Directly Activated Interrupt Handlers
The directly activated interrupt handler is a routine dedicated to interrupt servicing that is activated when an interrupt
occurs.
The RX850V4 handles the directly activated interrupt handler as a "non-task (module independent from tasks)".
Therefore, even if a task with the highest priority in the system is being executed, the processing is suspended when
an interrupt occurs, and the control is passed to the directly activated interrupt handler.
When an interrupt occurs, unlike "Interrupt Handlers", a directly activated interrupt handler is called from the handler
address to which the CPU forcibly passes the control, without RX850V4 intervention. This achieves a response which
is almost the maximum level for the hardware.

- Extended Service Call Routines
This is a routine to which user-defined functions are registered in the RX850V4, and will never be executed unless it
is called explicitly, using service calls provided by the RX850V4.
The RX850V4 positions extended service call routines as extensions of the processing program that called the
extended service call routine.

- CPU Exception Handlers
The CPU exception handler is a routine dedicated to CPU exception servicing that is activated when a CPU exception
occurs.
The RX850V4 handles the CPU exception handler as a "non-task (module independent from tasks)". Therefore, even
if a task with the highest priority in the system is being executed, the processing is suspended when a CPU exception
occurs, and the control is passed to the CPU exception handler.

Note For details about the processing programs, refer to "CHAPTER 3 TASK MANAGEMENT FUNCTIONS",
"CHAPTER 5 TASK EXCEPTION HANDLING FUNCTIONS", "CHAPTER 9 TIME MANAGEMENT
FUNCTIONS", "CHAPTER 11 INTERRUPT MANAGEMENT FUNCTIONS", "CHAPTER 12 SERVICE CALL
MANAGEMENT FUNCTIONS", "CHAPTER 13 SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS".

CHAPTER 2 SYSTEM CONSTRUCTION

User’s Manual U20044EJ1V0UM 23

2.4 Coding System Configuration File
Code the SYSTEM CONFIGURATION FILE required for creating information files (system information table file, system

information header file, entry file) that contain data to be provided for the RX850V4.

Note For details about the system configuration file, refer to "CHAPTER 18 SYSTEM CONFIGURATION FILE".

CHAPTER 2 SYSTEM CONSTRUCTION

24 User’s Manual U20044EJ1V0UM

2.5 Coding User-Own Coding Module
To support various execution environments, the RX850V4 extracts hardware-dependent processing that is required to

execute processing as user-own coding modules, and provides it as sample source files. This enhances portability for
various execution environments and facilitates customization as well.

The following lists the user-own coding modules extracted for each function.

- INTERRUPT MANAGEMENT FUNCTIONS

- Interrupt entry processing
A routine dedicated to entry processing that is extracted as a user-own coding module to assign instructions to
branch to relevant processing (such as interrupt preprocessing or Directly Activated Interrupt Handlers), to the
handler address to which the CPU forcibly passes the control when an interrupt occurs.
Interrupt entry processing for interrupt handlers defined in Interrupt handler information during configuration is
included in the entry file created by executing the configurator for the system configuration file created during
configuration. If customization of interrupt entry processing is unnecessary, use of the relevant entry file therefore
makes coding of interrupt entry processing unnecessary.

- SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS

- CPU exception entry processing
A routine dedicated to entry processing that is extracted as a user-own coding module to assign instructions to
branch to relevant processing (such as CPU exception preprocessing or Boot processing), to the handler
address to which the CPU forcibly passes the control when a CPU exception occurs.
CPU exception handling for CPU exception handlers defined in CPU exception handler information during
configuration is included in the entry file created by executing the configurator for the system configuration file
created during configuration. If customization of CPU exception entry processing is unnecessary, use of the
relevant entry file therefore makes coding of CPU exception entry processing unnecessary.

- Initialization routine
A routine dedicated to initialization processing that is extracted as a user-own coding module to initialize the
hardware dependent on the user execution environment (such as the peripheral controller), and is called from the
Kernel Initialization Module.

- SCHEDULER

- Idle Routine
A routine dedicated to idle processing that is extracted from the SCHEDULER as a user-own coding module to
utilize the standby function provided by the CPU (to achieve the low-power consumption system), and is called
from the scheduler when there no longer remains a task subject to scheduling by the RX850V4 (task in the
RUNNING or READY state) in the system.

- SYSTEM INITIALIZATION ROUTINE

- Boot processing
A routine dedicated to initialization processing that is extracted as a user-own coding module to initialize the
minimum required hardware for the RX850V4 to perform processing, and is called from CPU exception entry
processing.

Note For details about the user-own coding module, refer to "CHAPTER 11 INTERRUPT MANAGEMENT
FUNCTIONS", "CHAPTER 13 SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS", "CHAPTER 14
SCHEDULER", "CHAPTER 15 SYSTEM INITIALIZATION ROUTINE".

CHAPTER 2 SYSTEM CONSTRUCTION

User’s Manual U20044EJ1V0UM 25

2.6 Coding Directive File
Code the directive file used by the user to fix the address allocation done by the linker. In the RX850V4, the allocation

destinations (section names) of management objects modularized for each function are specified.

Note 1 See CubeSuite V850 Coding / CubeSuite Coding for CX Compiler User's Manual for details about link directive
files.

Note 2 The RX850V4 prescribes the destination (section names) to which objects modularized in function units are to
be allocated. The prescribed section names must therefore be defined in link directive files.
The following table lists the segment names prescribed in the RX850V4.

Section
Name

Section
Attribute

Section
Type ROM/RAM Description

.rx_text RX PROGBITS ROM/RAM

Area where the RX850V4's core
processing part and main processing part
of service calls provided by the RX850V4
are to be allocated.

.rx_info R PROGBITS ROM/RAM

Area where initial information items related
to OS resources that do not change
dynamically are allocated as system
information tables.

.rx_memory RW NOBITS RAM

Area where the system stack, the task
stack, data queue, fixed-sized memory
pool and variable-sized memory pool are
to be allocated.

.rx_control RW NOBITS RAM
Area where the management objects
(system control block, task control bock,
etc.) are to be allocated.

CHAPTER 2 SYSTEM CONSTRUCTION

26 User’s Manual U20044EJ1V0UM

2.7 Creating Load Module
Run a build on CubeSuite for files created in sections from "2.2 Coding of Target-Dependent Module" to "2.6 Coding

Directive File", and library files provided by the RX850V4 and C compiler package, to create a load module.

1) Create or load a project
Create a new project, or load an existing one.

Note 1 See RX Series Start User's Manual or CubeSuite Start User's Manual for details about creating a new
project or loading an existing one.

Note 2 If you create a project in an environment with multiple versions of RX850V4 installed, the most recent
version of RX850V4 will be used.
See "Set the version of RX850V4" to change the version of the RX850V4 to use.

2) Set a build target project
When making settings for or running a build, set the active project.
If there is no subproject, the project is always active.

Note See CubeSuite V850 Build / CubeSuite Build for CX Compiler User's Manual for details about setting the
active project.

3) Set the version of RX850V4
Select the Realtime OS node on the project tree to open the Property panel.
Select the version of RX850V4 to be used in the [Kernel version] property on the [RX850V4] tab.
When the project is created, [Always latest version which was installed] is selected by default.

Figure 2-2 Property Panel: [RX850V4] Tab

Note Note that V850E2M devices are supported by RX850V4 versions 4.30 and later.
If you have selected a version earlier than 4.30 in this property, and you open a project specifying a
V850E2M device, then the version selection will be returned to the previous selection.

4) Set build target files
For the project, add or remove build target files and update the dependencies.

Note See CubeSuite V850 Build / CubeSuite Build for CX Compiler User's Manual for details about adding or
removing build target files for the project and updating the dependencies.

The following lists the files required for creating a load module.

- Library files created in "2.2.1 Creating target-dependent module library"

- Target-dependent module library

- C/assembly language source files created in "2.3 Coding Processing Programs"

- Processing programs (tasks, task exception handling routines, cyclic handlers, interrupt handlers, directly
activated interrupt handlers, extended service call routines, CPU exception handlers)

CHAPTER 2 SYSTEM CONSTRUCTION

User’s Manual U20044EJ1V0UM 27

- System configuration file created in "2.4 Coding System Configuration File"

- SYSTEM CONFIGURATION FILE

Note Specify "cfg" as the extention of the system configuration file name.If the extension is different, "cfg" is
automatically added (for example, if you designate "aaa.c" as a file name, the file is named as
"aaa.c.cfg").

- C/assembly language source files created in "2.5 Coding User-Own Coding Module"

- User-own coding module (initialization routine, idle routine, boot processing)

- Link directive file created in "2.6 Coding Directive File"

- Link directive file

- Library files provided by the RX850V4

- Kernel library

- Library files provided by the C compiler package

- Standard library, runtime library, etc.

Note 1 If the system configuration file is added to the Project Tree panel, the Realtime OS generated files node is
appeared.
The following information files are appeared under the Realtime OS generated files node. However, these
files are not generated at this point in time.

- System information table file

- System information header file

- Entry file

Figure 2-3 Project Tree Panel (After Adding sys.cfg)

CHAPTER 2 SYSTEM CONSTRUCTION

28 User’s Manual U20044EJ1V0UM

Note 2 When replacing the system configuration file, first remove the added system configuration file from the
project, then add another one again.

Note 3 Although it is possible to add more than one system configuration files to a project, only the first file added
is enabled. Note that if you remove the enabled file from the project, the remaining additional files will not
be enabled; you must therefore add them again.

5) Set the output of information files
Select the system configuration file on the project tree to open the Property panel.
On the [System Configuration File Related Information] tab, set the output of information files (system information
table file, system information header file, and entry file).

Figure 2-4 Property Panel: [System Configuration File Related Information] Tab

6) Specify the output of a load module file
Set the output of a load module file as the product of the build.

Note See CubeSuite V850 Build / CubeSuite Build for CX Compiler User's Manual for details about specifying
the output of a load module file.

7) Set build options
Set the options for the compiler, assembler, linker, and the like.

Note See CubeSuite V850 Build / CubeSuite Build for CX Compiler User's Manual for details about setting build
options.

8) Run a build
Run a build to create a load module.

Note See CubeSuite V850 Build / CubeSuite Build for CX Compiler User's Manual for details about runnig a
build.

CHAPTER 2 SYSTEM CONSTRUCTION

User’s Manual U20044EJ1V0UM 29

Figure 2-5 Project Tree Panel (After Running Build)

9) Save the project
Save the setting information of the project to the project file.

Note See CubeSuite Start User's Manual for details about saving the project.

CHAPTER 3 TASK MANAGEMENT FUNCTIONS

30 User’s Manual U20044EJ1V0UM

CHAPTER 3 TASK MANAGEMENT FUNCTIONS

This chapter describes the task management functions performed by the RX850V4.

3.1 Outline
The task management functions provided by the RX850V4 include a function to reference task statuses such as

priorities and detailed task information, in addition to a function to manipulate task statuses such as generation, activation
and termination of tasks.

3.2 Tasks
A task is processing program that is not executed unless it is explicitly manipulated via service calls provided by the

RX850V4, unlike other processing programs (cyclic handler and interrupt handler), and is called from the scheduler.
The RX850V4 manages the states in which each task may enter and tasks themselves, by using management objects

(task management blocks) corresponding to tasks one-to-one.

Note The execution environment information required for a task's execution is called "task context". During task
execution switching, the task context of the task currently under execution by the RX850V4 is saved and the
task context of the next task to be executed is loaded.

3.2.1 Task state
Tasks enter various states according to the acquisition status for the OS resources required for task execution and the

occurrence/non-occurrence of various events. In this process, the current state of each task must be checked and
managed by the RX850V4.

The RX850V4 classifies task states into the following six types.

Figure 3-1 Task State

WAITING state

WAITING-SUSPENDED state

SUSPENDED state

DORMANT state

RUNNING stateREADY state

CHAPTER 3 TASK MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 31

1) DORMANT state
State of a task that is not active, or the state entered by a task whose processing has ended.
A task in the DORMANT state, while being under management of the RX850V4, is not subject to RX850V4
scheduling.

2) READY state
State of a task for which the preparations required for processing execution have been completed, but since another
task with a higher priority level or a task with the same priority level is currently being processed, the task is waiting
to be given the CPU's use right.

3) RUNNING state
State of a task that has acquired the CPU use right and is currently being processed.
Only one task can be in the running state at one time in the entire system.

4) WAITING state
State in which processing execution has been suspended because conditions required for execution are not
satisfied.
Resumption of processing from the WAITING state starts from the point where the processing execution was
suspended. The value of information required for resumption (such as task context) immediately before suspension
is therefore restored.
In the RX850V4, the WAITING state is classified into the following ten types according to their required conditions
and managed.

Table 3-1 WAITING State

5) SUSPENDED state
State in which processing execution has been suspended forcibly.
Resumption of processing from the SUSPENDED state starts from the point where the processing execution was
suspended. The value of information required for resumption (such as task context) immediately before suspension
is therefore restored.

WAITING State Description

Sleeping state
A task enters this state if the counter for the task (registering the
number of times the wakeup request has been issued) indicates 0x0
upon the issuance of a slp_tsk or tslp_tsk.

Delayed state A task enters this state upon the issuance of a dly_tsk.

WAITING state for a semaphore
resource

A task enters this state if it cannot acquire a resource from the
relevant semaphore upon the issuance of a wai_sem or twai_sem.

WAITING state for an eventflag A task enters this state if a relevant eventflag does not satisfy a
predetermined condition upon the issuance of a wai_flg or twai_flg.

Sending WAITING state for a
data queue

A task enters this state if cannot send a data to the relevant data
queue upon the issuance of a snd_dtq or tsnd_dtq.

Receiving WAITING state for a
data queue

A task enters this state if cannot receive a data from the relevant
data queue upon the issuance of a rcv_dtq or trcv_dtq.

Receiving WAITING state for a
mailbox

A task enters this state if cannot receive a message from the
relevant mailbox upon the issuance of a rcv_mbx or trcv_mbx.

WAITING state for a mutex A task enters this state if cannot lock the relevant mutex upon the
issuance of a loc_mtx or tloc_mtx.

WAITING state for a fixed-sized
memory block

A task enters this state if it cannot acquire a fixed-sized memory
block from the relevant fixed-sized memory pool upon the issuance
of a get_mpf or tget_mpf.

WAITING state for a variable-
sized memory block

A task enters this state if it cannot acquire a variable-sized memory
block from the relevant variable-sized memory pool upon the
issuance of a get_mpl or tget_mpl.

CHAPTER 3 TASK MANAGEMENT FUNCTIONS

32 User’s Manual U20044EJ1V0UM

6) WAITING-SUSPENDED state
State in which the WAITING and SUSPENDED states are combined.
A task enters the SUSPENDED state when the WAITING state is cancelled, or enters the WAITING state when the
SUSPENDED state is cancelled.

3.2.2 Task priority
A priority level that determines the order in which that task will be processed in relation to the other tasks is assigned to

each task.
As a result, in the RX850V4, the task that has the highest priority level of all the tasks that have entered an executable

state (RUNNING state or READY state) is selected and given the CPU use right.
In the RX850V4, the following two types of priorities are used for management purposes.

- Initial priority
Priority set when a task is created.
Therefore, the priority level of a task (priority level referenced by the scheduler) immediately after it moves from the
DORMANT state to the READY state is the initial priority.

- Current priority
Priority referenced by the RX850V4 when it performs a manipulation (task scheduling, queuing tasks to a wait queue
in the order of priority, or priority level inheritance) when a task is activated.

Note 1 In the RX850V4, a task having a smaller priority number is given a higher priority.

Note 2 The priority range that can be specified in a system can be defined in Basic information (Maximum priority:
maxpri) when creating a system configuration file.

3.2.3 Basic form of tasks
When coding a task, use a void function with one VP_INT argument (any function name is fine).
The extended information specified with Task information, or the start code specified when sta_tsk or ista_tsk is issued,

is set for the exinf argument.
The following shows the basic form of tasks in C.

Note 1 If a task moves from the DORMANT state to the READY state by issuing sta_tsk or ista_tsk, the start code
specified when issuing sta_tsk or ista_tsk is set to the exinf argument.

Note 2 When the return instruction is issued in a task, the same processing as ext_tsk is performed.

Note 3 For details about the extended information, refer to "3.4 Activate Task".

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 /* */

 ext_tsk (); /*Terminate invoking task*/
}

CHAPTER 3 TASK MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 33

3.2.4 Internal processing of task
In the RX850V4, original dispatch processing (task scheduling) is executed during task switching.
Therefore, note the following points when coding tasks.

- Coding method
Code tasks using C or assembly language.
When coding in C, they can be coded in the same manner as ordinary functions coded.
When coding in assembly language, code them according to the calling rules prescribed in the compiler used.

- Stack switching
When switching tasks, the RX850V4 performs switching to the task specified in Task information.

- Service call issuance
Service calls that can be issued in tasks are limited to the service calls that can be issued from tasks.

- Acknowledgment of maskable interrupts (the ID flag of PSW)
When processing is started (a task changes from DORMANT to RUNNING status, and control transitions to the task
process), the maskable-interrupt acknowledgement status differs depending on the initial interrupt status set in the
Task information attributes.
It is possible to change the maskable interrupt acknowledgement status from inside a process. The changed status is
not passed on when control shifts to the processing program after the task process ends (the task status changes
from RUNNING to DORMANT).
When a process resumes (a task status changes from RUNNING to READY, WAITING, WAITING-SUSPENDED, or
SUSPENDED, and then back to RUNNING, and control shifts to the task), the maskable interrupt acknowledgement
status is returned to the status it had before it was stopped.

Note For details on the valid issuance range of each service call, refer to Table 17-1 to Table 17-14.

CHAPTER 3 TASK MANAGEMENT FUNCTIONS

34 User’s Manual U20044EJ1V0UM

3.3 Creat Task
In the RX850V4, the method of creating a task is limited to "static creation".
Tasks therefore cannot be created dynamically using a method such as issuing a service call from a processing

program.
Static task creation means defining of tasks using static API "CRE_TSK" in the system configuration file.
For details about the static API "CRE_TSK", refer to "18.5.1 Task information".

3.4 Activate Task
The RX850V4 provides two types of interfaces for task activation: queuing an activation request queuing and not

queuing an activation request.
In the RX850V4, extended information specified in Task information during configuration and the value specified for the

second parameter stacd when service call sta_tsk or ista_tsk is issued are called "extended information".

3.4.1 Queuing an activation request
A task (queuing an activation request) is activated by issuing the following service call from the processing program.

- act_tsk, iact_tsk
These service calls move a task specified by parameter tskid from the DORMANT state to the READY state.
As a result, the target task is queued at the end on the ready queue corresponding to the initial priority and becomes
subject to scheduling by the RX850V4.
If the target task has been moved to a state other than the DORMANT state when this service call is issued, this
service call does not move the state but increments the activation request counter (by added 0x1 to the wakeup
request counter).
The following describes an example for coding this service call.

Note 1 The activation request counter managed by the RX850V4 is configured in 7-bit widths. If the number of
activation requests exceeds the maximum count value 127 as a result of issuing this service call, the counter
manipulation processing is therefore not performed but "E_QOVR" is returned.

Note 2 Extended information specified in Task information is passed to the task activated by issuing these service
calls.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/

 /* */

 act_tsk (tskid); /*Avtivate task (queues an activation request)*/

 /* */
}

CHAPTER 3 TASK MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 35

3.4.2 Not queuing an activation request
A task (not queuing an activation request) is activated by issuing the following service call from the processing program.

- sta_tsk, ista_tsk
These service calls move a task specified by parameter tskid from the DORMANT state to the READY state.
As a result, the target task is queued at the end on the ready queue corresponding to the initial priority and becomes
subject to scheduling by the RX850V4.
This service call does not perform queuing of activation requests. If the target task is in a state other than the
DORMANT state, the status manipulation processing for the target task is therefore not performed but "E_OBJ" is
returned.
Specify for parameter stacd the extended information transferred to the target task.
The following describes an example for coding this service call.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/
 VP_INT stacd = 123; /*Declares and initializes variable*/

 /* */

 sta_tsk (tskid, stacd); /*Activate task (does not queue an activation */
 /*request)*/

 /* */
}

CHAPTER 3 TASK MANAGEMENT FUNCTIONS

36 User’s Manual U20044EJ1V0UM

3.5 Cancel Task Activation Requests
An activation request is cancelled by issuing the following service call from the processing program.

- can_act, ican_act
This service call cancels all of the activation requests queued to the task specified by parameter tskid (sets the
activation request counter to 0x0).
When this service call is terminated normally, the number of cancelled activation requests is returned.
The following describes an example for coding this service call.

Note This service call does not perform status manipulation processing but performs the setting of activation
request counter. Therefore, the task does not move from a state such as the READY state to the DORMANT
state.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER_UINT ercd; /*Declares variable*/
 ID tskid = 8; /*Declares and initializes variable*/

 /* */

 ercd = can_act (tskid); /*Cancel task activation requests*/

 if (ercd >= 0x0) {
 /* */ /*Normal termination processing*/
 }

 /* */
}

CHAPTER 3 TASK MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 37

3.6 Terminate Task

3.6.1 Terminate invoking task
An invoking task is terminated by issuing the following service call from the processing program.

- ext_tsk
This service call moves an invoking task from the RUNNING state to the DORMANT state.
As a result, the invoking task is unlinked from the ready queue and excluded from the RX850V4 scheduling subject.
If an activation request has been queued to the invoking task (the activation request counter is not set to 0x0) when
this service call is issued, this service call moves the task from the RUNNING state to the DORMANT state,
decrements the wakeup request counter (by subtracting 0x1 from the wakeup request counter), and then moves the
task from the DORMANT state to the READY state.
The following describes an example for coding this service call.

Note 1 When moving a task from the RUNNING state to the DORMANT state, this service call initializes the
following information to values that are set during task creation.

- Priority (current priority)

- Wakeup request count

- Suspension count

- Interrupt status

If an invoking task has locked a mutex, the locked state is released at the same time (processing equivalent
to unl_mtx).

Note 2 When the return instruction is issued in a task, the same processing as ext_tsk is performed.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 /* */

 ext_tsk (); /*Terminate invoking task*/
}

CHAPTER 3 TASK MANAGEMENT FUNCTIONS

38 User’s Manual U20044EJ1V0UM

3.6.2 Terminate task
Other tasks are forcibly terminated by issuing the following service call from the processing program.

- ter_tsk
This service call forcibly moves a task specified by parameter tskid to the DORMANT state.
As a result, the target task is excluded from the RX850V4 scheduling subject.
If an activation request has been queued to the target task (the activation request counter is not set to 0x0) when this
service call is issued, this service call moves the task to the DORMANT state, decrements the wakeup request
counter (by subtracting 0x1 from the wakeup request counter), and then moves the task from the DORMANT state to
the READY state.
The following describes an example for coding this service call.

Note When moving a task to the DORMANT state, this service call initializes the following information to values
that are set during task creation.

- Priority (current priority)

- Wakeup request count

- Suspension count

- Interrupt status

If the target task has locked a mutex, the locked state is released at the same time (processing equivalent to
unl_mtx).

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/

 /* */

 ter_tsk (tskid); /*Terminate task*/

 /* */
}

CHAPTER 3 TASK MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 39

3.7 Change Task Priority
The priority is changed by issuing the following service call from the processing program.

- chg_pri, ichg_pri
These service calls change the priority of the task specified by parameter tskid (current priority) to a value specified by
parameter tskpri.
If the target task is in the RUNNING or READY state after this service call is issued, this service call re-queues the
task at the end of the ready queue corresponding to the priority specified by parameter tskpri, following priority
change processing.
The following describes an example for coding this service call.

Note When the target task is queued to a wait queue in the order of priority, the wait order may change due to
issuance of this service call.

Example When three tasks (task A: priority level 10, task B: priority level 11, task C: priority level 12) are
queued to the semaphore wait queue in the order of priority, and the priority level of task B is
changed from 11 to 9, the wait order will be changed as follows.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/
 PRI tskpri = 9; /*Declares and initializes variable*/

 /* */

 chg_pri (tskid, tskpri); /*Change task priority*/

 /* */
}

Task CSemaphore Task ATask B

chg_pri (Task B, 9);

Priority: 9 Priority: 10 Priority: 12

Task C
Semaphore

Task BTask A
Priority: 10 Priority: 11 Priority: 12

Task C
Priority: 12

CHAPTER 3 TASK MANAGEMENT FUNCTIONS

40 User’s Manual U20044EJ1V0UM

3.8 Reference Task Priority
A task priority is referenced by issuing the following service call from the processing program.

- get_pri, iget_pri
Stores current priority of the task specified by parameter tskid in the area specified by parameter p_tskpri.
The following describes an example for coding this service call.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/
 PRI p_tskpri; /*Declares variable*/

 /* */

 get_pri (tskid, &p_tskpri); /*Reference task priority*/

 /* */
}

CHAPTER 3 TASK MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 41

3.9 Reference Task State

3.9.1 Reference task state
A task status is referenced by issuing the following service call from the processing program.

- ref_tsk, iref_tsk
Stores task state packet (current state, current priority, etc.) of the task specified by parameter tskid in the area
specified by parameter pk_rtsk.
The following describes an example for coding this service call.

Note For details about the task state packet, refer to "16.2.1 Task state packet".

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/
 T_RTSK pk_rtsk; /*Declares data structure*/
 STAT tskstat; /*Declares variable*/
 PRI tskpri; /*Declares variable*/
 STAT tskwait; /*Declares variable*/
 ID wobjid; /*Declares variable*/
 TMO lefttmo; /*Declares variable*/
 UINT actcnt; /*Declares variable*/
 UINT wupcnt; /*Declares variable*/
 UINT suscnt; /*Declares variable*/
 ATR tskatr; /*Declares variable*/
 PRI itskpri; /*Declares variable*/

 /* */

 ref_tsk (tskid, &pk_rtsk); /*Reference task state*/

 tskstat = pk_rtsk.tskstat; /*Reference current state*/
 tskpri = pk_rtsk.tskpri; /*Reference current priority*/
 tskwait = pk_rtsk.tskwait; /*Reference reason for waiting*/
 wobjid = pk_rtsk.wobjid; /*Reference object ID number for which the */
 /*task is waiting*/
 lefttmo = pk_rtsk.lefttmo; /*Reference remaining time until timeout*/
 actcnt = pk_rtsk.actcnt; /*Reference activation request count*/
 wupcnt = pk_rtsk.wupcnt; /*Reference wakeup request count*/
 suscnt = pk_rtsk.suscnt; /*Reference suspension count*/
 tskatr = pk_rtsk.tskatr; /*Reference attribute*/
 itskpri = pk_rtsk.itskpri; /*Reference initial priority*/

 /* */
}

CHAPTER 3 TASK MANAGEMENT FUNCTIONS

42 User’s Manual U20044EJ1V0UM

3.9.2 Reference task state (simplified version)
A task status (simplified version) is referenced by issuing the following service call from the processing program.

- ref_tst, iref_tst
Stores task state packet (current state, reason for waiting) of the task specified by parameter tskid in the area
specified by parameter pk_rtst.
Used for referencing only the current state and reason for wait among task information.
Response becomes faster than using ref_tsk or iref_tsk because only a few information items are acquired.
The following describes an example for coding this service call.

Note For details about the task state packet (simplified version), refer to "16.2.2 Task state packet (simplified
version)".

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/
 T_RTST pk_rtst; /*Declares data structure*/
 STAT tskstat; /*Declares variable*/
 STAT tskwait; /*Declares variable*/

 /* */

 ref_tst (tskid, &pk_rtst); /*Reference task state (simplified version)*/

 tskstat = pk_rtst.tskstat; /*Reference current state*/
 tskwait = pk_rtst.tskwait; /*Reference reason for waiting*/

 /* */
}

CHAPTER 3 TASK MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 43

3.10 Target-Dependent Module
To support various execution environments, the RX850V4 extracts processing performed when a stack required by the

RX850V4 or the processing program to perform execution overflows, from the memory pool management function, as a
target-dependent module. This prevents inadvertent program loops in the system caused by a stack overflow.

Note The RX850V4 checks the stack overflow only when TA_ON (overflow is checked) is defined in Basic
information during configuration.

3.10.1 Post-overflow processing
This is a routine dedicated to post-overflow processing, which is extracted as a target-dependent module, for executing

post processing when a stack required by the RX850V4 or the processing program to perform execution overflows. It is
called from the RX850V4 when a stack overflows.

- Basic form of post-overflow processing
Code post-overflow processing by using the void type function (function name: _kernel_stk_overflow) that has two
INT type arguments.
The "value of stack pointer sp when a stack overflow is detected" is set to argument r6, and the "value of program
counter pc when a stack overflow is detected" is set to argument r7.
The following shows the basic form of coding post-overflow processing in assembly language.

- Processing performed during post-overflow processing
Post-overflow processing is a routine dedicated to post processing, which is extracted as a target-dependent module,
for executing post processing when a stack required by the RX850V4 or the processing program to perform execution
overflows. Therefore, note the following points when coding post-overflow processing.

- Coding method
Code post-overflow processing using C or assembly language.
When coding in C, they can be coded in the same manner as ordinary functions coded.
When coding in assembly language, code them according to the calling rules prescribed in the compiler used.

- Stack switching
The RX850V4 does not perform the processing related to stack switching when passing control to post-overflow
processing.
When using the system stack specified in Basic information, the code regarding stack switching must therefore
be written in post-overflow processing.

- Service call issuance
Issuance of service calls is prohibited during post-overflow processing because the normal operation cannot be
guaranteed.

The following lists processing that should be executed in post-overflow processing.

- Post-processing that handles stack overflows

Note The detailed operations (such as reset) that should be coded as post-overflow processing depends on the
user system.

#include <kernel.h> /*Standard header file definition*/

 .text
 .align 0x4
 .globl __kernel_stk_overflow
__kernel_stk_overflow :

 /* */

.halt_loop :
 jbr .halt_loop

CHAPTER 3 TASK MANAGEMENT FUNCTIONS

44 User’s Manual U20044EJ1V0UM

3.11 Memory Saving
The RX850V4 provides two kinds of methods (Restricted task and Disable preempt) for reducing the task stack size

required by tasks to perform processing.

3.11.1 Restricted task
When estimating a task stack size, usually the maximum consumption size is estimated as the size for securing the

memory. When the maximum size is not consumed in actuality, however, there are unused areas in the secured spaces.
The restricted task can be used to utilize such unused areas.

With tasks for which attribute TA_RSTR is defined in Task information in the created system configuration file, the total
size of the unused task stack area can be reduced dynamically.

3.11.2 Disable preempt
In the RX850V4, preempt acknowledge status attribute TA_DISPREEMPT can be defined in Task information when

creating a system configuration file.
The task for which this attribute is defined performs the operation that continues processing by ignoring the scheduling

request issued from a non-task, so a management area of 24 to 44 bytes can be reduced per task.

CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

User’s Manual U20044EJ1V0UM 45

CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION
FUNCTIONS

This chapter describes the task dependent synchronization functions performed by the RX850V4.

4.1 Outline
The RX850V4 provides several task-dependent synchronization functions.

4.2 Put Task to Sleep

4.2.1 Waiting forever
A task is moved to the sleeping state (waiting forever) by issuing the following service call from the processing program.

- slp_tsk
As a result, the invoking task is unlinked from the ready queue and excluded from the RX850V4 scheduling subject.
If a wakeup request has been queued to the target task (the wakeup request counter is not set to 0x0) when this
service call is issued, this service call does not move the state but decrements the wakeup request counter (by
subtracting 0x1 from the wakeup request counter).
The sleeping state is cancelled in the following cases, and then moved to the READY state.

The following describes an example for coding this service call.

Sleeping State Cancel Operation Return Value

A wakeup request was issued as a result of issuing wup_tsk. E_OK

A wakeup request was issued as a result of issuing iwup_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#include <kernel.h> /*Standard header file definition*/
#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/

 /* */

 ercd = slp_tsk (); /*Put task to sleep (waiting forever)*/

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
｝

CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

46 User’s Manual U20044EJ1V0UM

4.2.2 With timeout
A task is moved to the sleeping state (with timeout) by issuing the following service call from the processing program.

- tslp_tsk
This service call moves an invoking task from the RUNNING state to the WAITING state (sleeping state).
As a result, the invoking task is unlinked from the ready queue and excluded from the RX850V4 scheduling subject.
If a wakeup request has been queued to the target task (the wakeup request counter is not set to 0x0) when this
service call is issued, this service call does not move the state but decrements the wakeup request counter (by
subtracting 0x1 from the wakeup request counter).
The sleeping state is cancelled in the following cases, and then moved to the READY state.

The following describes an example for coding this service call.

Note When TMO_FEVR is specified for wait time tmout, processing equivalent to slp_tsk will be executed.

Sleeping State Cancel Operation Return Value

A wakeup request was issued as a result of issuing wup_tsk. E_OK

A wakeup request was issued as a result of issuing iwup_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /* */

 ercd = tslp_tsk (tmout); /*Put task to sleep (with timeout)*/

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Timeout processing*/
 }

 /* */
}

CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

User’s Manual U20044EJ1V0UM 47

4.3 Wakeup Task
A task is woken up by issuing the following service call from the processing program.

- wup_tsk, iwup_tsk
These service calls cancel the WAITING state (sleeping state) of the task specified by parameter tskid.
As a result, the target task is moved from the sleeping state to the READY state, or from the WAITING-SUSPENDED
state to the SUSPENDED state.
If the target task is in a state other than the sleeping state when this service call is issued, this service call does not
move the state but increments the wakeup request counter (by added 0x1 to the wakeup request counter).
The following describes an example for coding this service call.

Note The wakeup request counter managed by the RX850V4 is configured in 7-bit widths. If the number of
wakeup requests exceeds the maximum count value 127 as a result of issuing this service call, the counter
manipulation processing is therefore not performed but "E_QOVR" is returned.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/

 /* */

 wup_tsk (tskid); /*Wakeup task*/

 /* */
}

CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

48 User’s Manual U20044EJ1V0UM

4.4 Cancel Task Wakeup Requests
A wakeup request is cancelled by issuing the following service call from the processing program.

- can_wup, ican_wup
These service calls cancel all of the wakeup requests queued to the task specified by parameter tskid (the wakeup
request counter is set to 0x0).
When this service call is terminated normally, the number of cancelled wakeup requests is returned.
The following describes an example for coding this service call.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER_UINT ercd; /*Declares variable*/
 ID tskid = 8; /*Declares and initializes variable*/

 /* */

 ercd = can_wup (tskid); /*Cancel task wakeup requests*/

 if (ercd >= 0x0) {
 /* */ /*Normal termination processing*/
 }

 /* */
}

CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

User’s Manual U20044EJ1V0UM 49

4.5 Release Task from Waiting
The WAITING state is forcibly cancelled by issuing the following service call from the processing program.

- rel_wai, irel_wai
These service calls forcibly cancel the WAITING state of the task specified by parameter tskid.
As a result, the target task unlinked from the wait queue and is moved from the WAITING state to the READY state,
or from the WAITING-SUSPENDED state to the SUSPENDED state.
"E_RLWAI" is returned from the service call that triggered the move to the WAITING state (slp_tsk, wai_sem, or the
like) to the task whose WAITING state is cancelled by this service call.
The following describes an example for coding this service call.

Note 1 This service call does not perform queuing of forced cancellation requests. If the target task is in a state
other than the WAITING or WAITING-SUSPENDED state, "E_OBJ" is returned.

Note 2 The SUSPENDED state is not cancelled by these service calls.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/

 /* */

 rel_wai (tskid); /*Release task from waiting*/

 /* */
}

CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

50 User’s Manual U20044EJ1V0UM

4.6 Suspend Task
A task is moved to the SUSPENDED state by issuing the following service call from the processing program.

- sus_tsk, isus_tsk
These service calls add 0x1 to the suspend request counter for the task specified by parameter tskid, and then move
the target task from the RUNNING state to the SUSPENDED state, from the READY state to the SUSPENDED state,
or from the WAITING state to the WAITING-SUSPENDED state.
If the target task has moved to the SUSPENDED or WAITING-SUSPENDED state when this service call is issued,
the counter manipulation processing is not performed but only the suspend request counter increment processing is
executed.
The following describes an example for coding this service call.

Note The suspend request counter managed by the RX850V4 is configured in 7-bit widths. If the number of
suspend requests exceeds the maximum count value 127 as a result of issuing this service call, the counter
manipulation processing is therefore not performed but "E_QOVR" is returned.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/

 /* */

 sus_tsk (tskid); /*Suspend task*/

 /* */
}

CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

User’s Manual U20044EJ1V0UM 51

4.7 Resume Suspended Task

4.7.1 Resume suspended task
The SUSPENDED state is cancelled by issuing the following service call from the processing program.

- rsm_tsk, irsm_tsk
This service call subtracts 0x1 from the suspend request counter for the task specified by parameter tskid, and then
cancels the SUSPENDED state of the target task.
As a result, the target task is moved from the SUSPENDED state to the READY state, or from the WAITING-
SUSPENDED state to the WAITING state.
If a suspend request is queued (subtraction result is other than 0x0) when this service call is issued, the counter
manipulation processing is not performed but only the suspend request counter decrement processing is executed.
The following describes an example for coding this service call.

Note This service call does not perform queuing of cancellation requests. If the target task is in a state other than
the SUSPENDED or WAITING-SUSPENDED state, "E_OBJ" is therefore returned.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/

 /* */

 rsm_tsk (tskid); /*Resume suspended task*/

 /* */
}

CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

52 User’s Manual U20044EJ1V0UM

4.7.2 Forcibly resume suspended task
The SUSPENDED state is forcibly cancelled by issuing the following service calls from the processing program.

- frsm_tsk, ifrsm_tsk
These service calls cancel all of the suspend requests issued for the task specified by parameter tskid (by setting the
suspend request counter to 0x0). As a result, the target task moves from the SUSPENDED state to the READY state,
or from the WAITING-SUSPENDED state to the WAITING state.
The following describes an example for coding this service call.

Note This service call does not perform queuing of cancellation requests. If the target task is in a state other than
the SUSPENDED or WAITING-SUSPENDED state, "E_OBJ" is therefore returned.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/

 /* */

 frsm_tsk (tskid); /*Forcibly resume suspended task*/

 /* */
}

CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

User’s Manual U20044EJ1V0UM 53

4.8 Delay Task
A task is moved to the delayed state by issuing the following service call from the processing program.

- dly_tsk
This service call moves the invoking task from the RUNNING state to the WAITING state (delayed state).
As a result, the invoking task is unlinked from the ready queue and excluded from the RX850V4 scheduling subject.
The delayed state is cancelled in the following cases, and then moved to the READY state.

The following describes an example for coding this service call.

Delayed State Cancel Operation Return Value

Delay time specified by parameter dlytim has elapsed. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 RELTIM dlytim = 3600; /*Declares and initializes variable*/

 /* */

 ercd = dly_tsk (dlytim); /*Delay task*/

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

54 User’s Manual U20044EJ1V0UM

4.9 Differences Between Wakeup Wait with Timeout and Time Elapse
Wait

Wakeup waits with timeout and time elapse waits differ on the following points.

Table 4-1 Differences Between Wakeup Wait with Timeout and Time Elapse Wait

Wakeup Wait with Timeout Time Elapse Wait

Service call that causes status change tslp_tsk dly_tsk

Return value when timed out E_TMOUT E_OK

Operation when wup_tsk or iwup_tsk
is issued Wakeup Queues the wakeup request (time

elapse wait is not cancelled).

CHAPTER 5 TASK EXCEPTION HANDLING FUNCTIONS

User’s Manual U20044EJ1V0UM 55

CHAPTER 5 TASK EXCEPTION HANDLING FUNCTIONS

This chapter describes the task exception handling functions performed by the RX850V4.

5.1 Outline
The task exception handling functions of the RX850V4 include a function related to the task exception handling routine

that is activated when a task exception handling request is issued (function for manipulating or referencing the task
exception handling routine status).

5.2 Task Exception Handling Routines
The task exception handling routine is a routine dedicated to task exception handling, and is activated when a task

exception handling request is issued.
The RX850V4 positions task exception handling routines as extensions of the task for which a task exception handling

request is issued. A task exception handling routine is therefore activated when the task for which a task exception
handling request is issued moves to the RUNNING state.

The RX850V4 manages the states in which each task exception handling routine may enter and task exception handling
routines themselves, by using management objects (task exception handling routines contained in task management
blocks) corresponding to task exception handling routines one-to-one.

Note Task exception handling is enabled when a task exception handling routine is activated.

5.2.1 Basic form of task exception handling routines
Code task exception handling routines by using the void type function that has one TEXPTN type argument and one

VP_INT type argument.
The "task exception code specified when a task exception handling request (ras_tex or iras_tex) is issued" is set to

argument rasptn, and "extended information specified in Task information" is set to argument exinf.
The following shows the basic form of task exception handling routines in C.

Note A task exception handling routine is activated when the task for which a task exception handling request was
issued moves to the RUNNING state. Due to this, the task exception handling request may be issued multiple
times from when the first task exception handling request is issued until the task exception handling routine is
activated.
To handle such a case, the RX850V4 sets "OR of all the task exception codes" issued from when the first task
exception handling request is issued until the task exception handling routine is activated, to argument rasptn
of the task exception handling routine.

#include <kernel.h> /*Standard header file definition*/

void texrtn (TEXPTN rasptn, VP_INT exinf)
{
 /* */

 return; /*Terminate task exception handling routine*/
}

CHAPTER 5 TASK EXCEPTION HANDLING FUNCTIONS

56 User’s Manual U20044EJ1V0UM

5.2.2 Internal processing of task exception handling routine
The RX850V4 executes the original task exception pre-processing when passing control from the task for which a task

exception handling request was issued to a task exception handling routine, as well as the original task exception post-
processing when returning control from the task exception handling routine to the task.

Therefore, note the following points when coding task exception handling routines.

- Coding method
Code task exception handling routines using C or assembly language.
When coding in C, they can be coded in the same manner as ordinary functions coded.
When coding in assembly language, code them according to the calling rules prescribed in the compiler used.

- Stack switching
The RX850V4 positions task exception handling routines as extensions of the task for which a task exception
handling request is issued. When passing control to a task exception handling routine, stack switching processing is
therefore not performed.

- Service call issuance
The RX850V4 positions task exception handling routines as extensions of the task for which a task exception
handling request is issued. In task exception handling routines, therefore, only "service calls that can be issued in the
task" can be issued.

Note For details on the valid issuance range of each service call, refer to Table 17-1 to Table 17-14.

- Acknowledgment of maskable interrupts (the ID flag of PSW)
When the process starts, the maskable interrupt acknowledgement status is inherited from the task status
corresponding to the task exception handling routine.
It is possible to change the maskable interrupt acknowledgement status from inside a process. The changed status is
passed on to the task corresponding to the task exception handling routine.

5.3 Define Task Exception Handling Routine
The RX850V4 supports the static registration of task exception handling routines only. They cannot be registered

dynamically by issuing a service call from the processing program.
Static task exception handling routine registration means defining of task exception handling routines using static API

"DEF_TEX" in the system configuration file.
For details about the static API "DEF_TEX", refer to "18.5.2 Task exception handling routine information".

Note Task exception handling routines cannot be registered as restricted tasks.

CHAPTER 5 TASK EXCEPTION HANDLING FUNCTIONS

User’s Manual U20044EJ1V0UM 57

5.4 Raise Task Exception Handling Routine
A task exception handling routine is activated by issuing the following service call from the processing program.

- ras_tex, iras_tex
These service calls issue a task exception handling request for the task specified by parameter tskid. As a result, the
task exception handling routine registered to the target task is activated when the target task moves to the RUNNING
state.
For parameter rasptn, specify the task exception code to be passed to the target task exception handling routine. The
target task exception handling routine can then be manipulatable by handling the task exception code as a function
parameter.
The following describes an example for coding this service call.

Note These service calls do not perform queuing of task exception handling requests. If a task exception handling
request is issued multiple times before a task exception handling routine is activated (from when a task
exception handling request is issued until the target task moves to the RUNNING state), the task exception
handling request will not be issued after the second and later issuance of these service calls, but the task
exception code is just held pending (OR of task exception codes).

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/
 TEXPTN rasptn = 123; /*Declares and initializes variable*/

 /* */

 ras_tex (tskid, rasptn); /*Raise task exception handling routine*/

 /* */
}

CHAPTER 5 TASK EXCEPTION HANDLING FUNCTIONS

58 User’s Manual U20044EJ1V0UM

5.5 Disabling and Enabling Activation of Task Exception Handling
Routines

Activation of task exception handling routines is disabled or enabled by issuing the following service call from the
processing program.

- dis_tex
This service call moves a task exception handling routine, which is registered to an invoking task, from the enabled
state to disabled state. As a result, the target task exception handling routine is excluded from the activation targets of
the RX850V4 from when this service call is issued until ena_tex is issued.
If a task exception handling request (ras_tex or iras_tex) is issued from when this service call is issued until ena_tex
is issued, the RX850V4 only performs processing such as acknowledgment of task exception handling requests and
the actual activation processing is delayed until the target task exception handling routine moves to the task exception
handling enabled state.
The following describes an example for coding this service call.

Note 1 This service call does not perform queuing of disable requests. If the target task exception handling routine
has been moved to the task exception handling disabled state, therefore, no processing is performed but it is
not handled as an error.

Note 2 In the RX850V4, task exception handling is disabled when a task is activated.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 /* */

 dis_tex (); /*Disable task exceptions*/

 /* */ /*Task exception disable state*/

 ena_tex (); /*Enable task exceptions*/

 /* */ /*Task exception enable state*/
}

CHAPTER 5 TASK EXCEPTION HANDLING FUNCTIONS

User’s Manual U20044EJ1V0UM 59

- ena_tex
This service call moves a task exception handling routine, which is registered to an invoking task, from the disabled
state to enabled state. As a result, the target task exception handling routine becomes the activation target of the
RX850V4.
If a task exception handling request (ras_tex or iras_tex) is issued from when dis_tex is issued until this service call is
issued, the RX850V4 only performs processing such as acknowledgment of task exception handling requests and the
actual activation processing is delayed until the target task exception handling routine moves to the task exception
handling enabled state.
The following describes an example for coding this service call.

Note This service call does not perform queuing of activation requests. If the target task exception handling
routine has been moved to the task exception handling enabled state, therefore, no processing is performed
but it is not handled as an error.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 /* */

 dis_tex (); /*Disable task exceptions*/

 /* */ /*Task exception disable state*/

 ena_tex (); /*Enable task exceptions*/

 /* */ /*Task exception enable state*/
}

CHAPTER 5 TASK EXCEPTION HANDLING FUNCTIONS

60 User’s Manual U20044EJ1V0UM

5.6 Reference Task Exception Handling Disable/Enable State
The task exception handling disable/enable state can be referenced by issuing the following service call from the

processing program.

- sns_tex
This service call acquires the state (task exception handling disabled/enabled state) of the task exception handling
routine registered to the task that is in the RUNNING state when this service call is issued.
The state of the task exception handling routine is returned.
The following describes an example for coding this service call.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 BOOL ercd; /*Declares variable*/

 /* */

 ercd = sns_tex (); /*Reference task exception handling state*/

 if (ercd == TRUE) {
 /* */ /*Task exception disable state*/
 } else if (ercd == FALSE) {
 /* */ /*Task exception enable state*/
 }

 /* */
}

CHAPTER 5 TASK EXCEPTION HANDLING FUNCTIONS

User’s Manual U20044EJ1V0UM 61

5.7 Reference Detailed Information of Task Exception Handling Rou-
tine

The detailed information of a task exception handling routine is referenced by issuing the following service call from the
processing program.

- ref_tex, iref_tex
These service calls store the detailed information (current status, pending exception code, etc.) of the task exception
handling routine registered to the task specified by parameter tskid into the area specified by parameter pk_rtex.
E_OBJ is returned if no task exception handling routines are registered to the specified task.
The following describes an example for coding this service call.

Note For details about the task exception handling routine state packet, refer to "16.2.3 Task exception handling
routine state packet".

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/
 T_RTEX pk_rtex; /*Declares data structure*/
 STAT texstat; /*Declares variable*/
 TEXPTN pndptn; /*Declares variable*/
 ATR texatr; /*Declares variable*/

 /* */

 ref_tex (tskid, &pk_rtex); /*Reference task exception handling state*/

 texstat = pk_rtex.texstat; /*Reference current state*/
 pndptn = pk_rtex.pndptn; /*Reference pending exception code*/
 texatr = pk_rtex.texatr; /*Reference attribute*/

 /* */
}

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

62 User’s Manual U20044EJ1V0UM

CHAPTER 6 SYNCHRONIZATION AND COMMUNICA-
TION FUNCTIONS

This chapter describes the synchronization and communication functions performed by the RX850V4.

6.1 Outline
The synchronization and communication functions of the RX850V4 consist of Semaphores, Eventflags, Data Queues,

and Mailboxes that are provided as means for realizing exclusive control, queuing, and communication among tasks.

6.2 Semaphores
In the RX850V4, non-negative number counting semaphores are provided as a means (exclusive control function) for

preventing contention for limited resources (hardware devices, library function, etc.) arising from the required conditions of
simultaneously running tasks.

The following shows a processing flow when using a semaphore.

Figure 6-1 Processing Flow (Semaphore)

6.2.1 Create semaphore
In the RX850V4, the method of creating a semaphore is limited to "static creation".
Semaphores therefore cannot be created dynamically using a method such as issuing a service call from a processing

program.
Static semaphore creation means defining of semaphores using static API "CRE_SEM" in the system configuration file.
For details about the static API "CRE_SEM", refer to "18.5.3 Semaphore information".

Task

Exclusive control period

Acquire semaphore resource

Release semaphore resource

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

User’s Manual U20044EJ1V0UM 63

6.2.2 Acquire semaphore resource
A resource is acquired (waiting forever, polling, or with timeout) by issuing the following service call from the processing

program.

- wai_sem
This service call acquires a resource from the semaphore specified by parameter semid (subtracts 0x1 from the
semaphore counter).
If no resources are acquired from the target semaphore when this service call is issued (no available resources exist),
this service call does not acquire resources but queues the invoking task to the target semaphore wait queue and
moves it from the RUNNING state to the WAITING state (resource acquisition wait state).
The WAITING state for a semaphore resource is cancelled in the following cases, and then moved to the READY
state.

The following describes an example for coding this service call.

Note Invoking tasks are queued to the target semaphore wait queue in the order defined during configuration
(FIFO order or priority order).

WAITING State for a Semaphore Resource Cancel Operation Return Value

The resource was returned to the target semaphore as a result of issuing sig_sem. E_OK

The resource was returned to the target semaphore as a result of issuing isig_sem. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID semid = 1; /*Declares and initializes variable*/

 /* */

 ercd = wai_sem (semid); /*Acquire semaphore resource (waiting forever)*/

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

64 User’s Manual U20044EJ1V0UM

- pol_sem, ipol_sem
This service call acquires a resource from the semaphore specified by parameter semid (subtracts 0x1 from the
semaphore counter).
If a resource could not be acquired from the target semaphore (semaphore counter is set to 0x0) when this service
call is issued, the counter manipulation processing is not performed but "E_TMOUT" is returned.
The following describes an example for coding this service call.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID semid = 1; /*Declares and initializes variable*/

 /* */

 ercd = pol_sem (semid); /*Acquire semaphore resource (polling)*/

 if (ercd == E_OK) {
 /* */ /*Polling success processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Polling failure processing*/
 }

 /* */
}

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

User’s Manual U20044EJ1V0UM 65

- twai_sem
This service call acquires a resource from the semaphore specified by parameter semid (subtracts 0x1 from the
semaphore counter).
If no resources are acquired from the target semaphore when service call is issued this (no available resources exist),
this service call does not acquire resources but queues the invoking task to the target semaphore wait queue and
moves it from the RUNNING state to the WAITING state with timeout (resource acquisition wait state).
The WAITING state for a semaphore resource is cancelled in the following cases, and then moved to the READY
state.

The following describes an example for coding this service call.

Note 1 Invoking tasks are queued to the target semaphore wait queue in the order defined during configuration
(FIFO order or priority order).

Note 2 TMO_FEVR is specified for wait time tmout, processing equivalent to wai_sem will be executed. When
TMO_POL is specified, processing equivalent to pol_sem /ipol_sem will be executed.

WAITING State for a Semaphore Resource Cancel Operation Return Value

The resource was returned to the target semaphore as a result of issuing sig_sem. E_OK

The resource was returned to the target semaphore as a result of issuing isig_sem. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID semid = 1; /*Declares and initializes variable*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /* */

 ercd = twai_sem (semid, tmout); /*Acquire semaphore resource (with timeout)*/

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Timeout processing*/
 }

 /* */
}

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

66 User’s Manual U20044EJ1V0UM

6.2.3 Release semaphore resource
A resource is returned by issuing the following service call from the processing program.

- sig_sem, isig_sem
These service calls return the resource to the semaphore specified by parameter semid (adds 0x1 to the semaphore
counter).
If a task is queued in the wait queue of the target semaphore when this service call is issued, the counter
manipulation processing is not performed but the resource is passed to the relevant task (first task of wait queue).
As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (WAITING state
for a semaphore resource) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.
The following describes an example for coding this service call.

Note With the RX850V4, the maximum possible number of semaphore resources (maximum resource count) is
defined during configuration. If the number of resources exceeds the specified maximum resource count,
this service call therefore does not return the acquired resources (addition to the semaphore counter value)
but returns E_QOVR.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ID semid = 1; /*Declares and initializes variable*/

 /* */

 sig_sem (semid); /*Release semaphore resource*/

 /* */
}

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

User’s Manual U20044EJ1V0UM 67

6.2.4 Reference semaphore state
A semaphore status is referenced by issuing the following service call from the processing program.

- ref_sem, iref_sem
Stores semaphore state packet (ID number of the task at the head of the wait queue, current resource count, etc.) of
the semaphore specified by parameter semid in the area specified by parameter pk_rsem.
The following describes an example for coding this service call.

Note For details about the semaphore state packet, refer to "16.2.4 Semaphore state packet".

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ID semid = 1; /*Declares and initializes variable*/
 T_RSEM pk_rsem; /*Declares data structure*/
 ID wtskid; /*Declares variable*/
 UINT semcnt; /*Declares variable*/
 ATR sematr; /*Declares variable*/
 UINT maxsem; /*Declares variable*/

 /* */

 ref_sem (semid, &pk_rsem); /*Reference semaphore state*/

 wtskid = pk_rsem.wtskid; /*Reference ID number of the task at the */
 /*head of the wait queue*/
 semcnt = pk_rsem.semcnt; /*Reference current resource count*/
 sematr = pk_rsem.sematr; /*Reference attribute*/
 maxsem = pk_rsem.maxsem; /*Reference maximum resource count*/

 /* */
}

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

68 User’s Manual U20044EJ1V0UM

6.3 Eventflags
The RX850V4 provides 32-bit eventflags as a queuing function for tasks, such as keeping the tasks waiting for

execution, until the results of the execution of a given processing program are output.
The following shows a processing flow when using an eventflag.

Figure 6-2 Processing Flow (Eventflag)

6.3.1 Create eventflag
In the RX850V4, the method of creating an eventflag is limited to "static creation".
Eventflags therefore cannot be created dynamically using a method such as issuing a service call from a processing

program.
Static event flag creation means defining of event flags using static API "CRE_FLG" in the system configuration file.
For details about the static API "CRE_FLG", refer to "18.5.4 Eventflag information".

Wait for eventflag

Set eventflag

Task A
Priority: High

Task B
Priority: Low

Queuing period

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

User’s Manual U20044EJ1V0UM 69

6.3.2 Set eventflag
 bit pattern is set by issuing the following service call from the processing program.

- set_flg, iset_flg
These service calls set the result of ORing the bit pattern of the eventflag specified by parameter flgid and the bit
pattern specified by parameter setptn as the bit pattern of the target eventflag.
If the required condition of the task queued to the target eventflag wait queue is satisfied when this service call is
issued, the relevant task is unlinked from the wait queue at the same time as bit pattern setting processing.
As a result, the relevant task is moved from the WAITING state (WAITING state for an eventflag) to the READY state,
or from the WAITING-SUSPENDED state to the SUSPENDED state.
The following describes an example for coding this service call.

Note If the bit pattern set to the target eventflag is B'1100 and the bit pattern specified by parameter setptn is
B'1010 when this service call is issued, the bit pattern of the target eventflag is set to B'1110.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ID flgid = 1; /*Declares and initializes variable*/
 FLGPTN setptn = 10; /*Declares and initializes variable*/

 /* */

 set_flg (flgid, setptn); /*Set eventflag*/

 /* */
}

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

70 User’s Manual U20044EJ1V0UM

6.3.3 Clear eventflag
A bit pattern is cleared by issuing the following service call from the processing program.

- clr_flg, iclr_flg
This service call sets the result of ANDing the bit pattern set to the eventflag specified by parameter flgid and the bit
pattern specified by parameter clrptn as the bit pattern of the target eventflag.
The following describes an example for coding this service call.

Note If the bit pattern set to the target eventflag is B'1100 and the bit pattern specified by parameter clrptn is
B'1010 when this service call is issued, the bit pattern of the target eventflag is set to B'1110.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ID flgid = 1; /*Declares and initializes variable*/
 FLGPTN clrptn = 10; /*Declares and initializes variable*/

 /* */

 clr_flg (flgid, clrptn); /*Clear eventflag*/

 /* */
}

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

User’s Manual U20044EJ1V0UM 71

6.3.4 Wait for eventflag
A bit pattern is checked (waiting forever, polling, or with timeout) by issuing the following service call from the

processing program.

- wai_flg
This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the
required condition specified by parameter wfmode are set to the eventflag specified by parameter flgid.
If a bit pattern that satisfies the required condition has been set for the target eventflag, the bit pattern of the target
eventflag is stored in the area specified by parameter p_flgptn.
If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued, the
invoking task is queued to the target eventflag wait queue.
As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the
WAITING state (WAITING state for an eventflag).
The WAITING state for an eventflag is cancelled in the following cases, and then moved to the READY state.

The following shows the specification format of required condition wfmode.

- wfmode = TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

- wfmode = TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

The following describes an example for coding this service call.

WAITING State for an Eventflag Cancel Operation Return Value

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing set_flg. E_OK

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing iset_flg. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID flgid = 1; /*Declares and initializes variable*/
 FLGPTN waiptn = 14; /*Declares and initializes variable*/
 MODE wfmode = TWF_ANDW; /*Declares and initializes variable*/
 FLGPTN p_flgptn; /*Declares variable*/

 /* */

 /*Wait for eventflag (waiting forever)*/
 ercd = wai_flg (flgid, waiptn, wfmode, &p_flgptn);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
｝

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

72 User’s Manual U20044EJ1V0UM

Note 1 With the RX850V4, whether to enable queuing of multiple tasks to the event flag wait queue is defined
during configuration. If this service call is issued for the event flag (TW_WSGL attribute) to which a wait task
is queued, therefore, "E_ILUSE" is returned regardless of whether the required condition is immediately
satisfied.

TA_WSGL: Only one task is allowed to be in the WAITING state for the eventflag.
TA_WMUL: Multiple tasks are allowed to be in the WAITING state for the eventflag.

Note 2 Invoking tasks are queued to the target event flag (TA_WMUL attribute) wait queue in the order defined
during configuration (FIFO order or priority order).

Note 3 The RX850V4 performs bit pattern clear processing (0x0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

Note 4 If the WAITING state for an eventflag is forcibly released by issuing rel_wai or irel_wai, the contents of the
area specified by parameter p_flgptn will be undefined.

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

User’s Manual U20044EJ1V0UM 73

- pol_flg, ipol_flg
This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the
required condition specified by parameter wfmode are set to the eventflag specified by parameter flgid.
If the bit pattern that satisfies the required condition has been set to the target eventflag, the bit pattern of the target
eventflag is stored in the area specified by parameter p_flgptn.
If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued,
"E_TMOUT" is returned.
The following shows the specification format of required condition wfmode.

- wfmode = TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

- wfmode = TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

The following describes an example for coding this service call.

Note 1 With the RX850V4, whether to enable queuing of multiple tasks to the event flag wait queue is defined
during configuration. If this service call is issued for the event flag (TW_WSGL attribute) to which a wait task
is queued, therefore, "E_ILUSE" is returned regardless of whether the required condition is immediately
satisfied.

TA_WSGL: Only one task is allowed to be in the WAITING state for the eventflag.
TA_WMUL: Multiple tasks are allowed to be in the WAITING state for the eventflag.

Note 2 The RX850V4 performs bit pattern clear processing (0x0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

Note 3 If the bit pattern of the target event flag does not satisfy the required condition when this service call is
issued, the contents in the area specified by parameter p_flgptn become undefined.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID flgid = 1; /*Declares and initializes variable*/
 FLGPTN waiptn = 14; /*Declares and initializes variable*/
 MODE wfmode = TWF_ANDW; /*Declares and initializes variable*/
 FLGPTN p_flgptn; /*Declares variable*/

 /* */

 /*Wait for eventflag (polling)*/
 ercd = pol_flg (flgid, waiptn, wfmode, &p_flgptn);

 if (ercd == E_OK) {
 /* */ /*Polling success processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Polling failure processing*/
 }

 /* */
}

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

74 User’s Manual U20044EJ1V0UM

- twai_flg
This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the
required condition specified by parameter wfmode are set to the eventflag specified by parameter flgid.
If a bit pattern that satisfies the required condition has been set for the target eventflag, the bit pattern of the target
eventflag is stored in the area specified by parameter p_flgptn.
If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued, the
invoking task is queued to the target eventflag wait queue.
As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the
WAITING state (WAITING state for an eventflag).
The WAITING state for an eventflag is cancelled in the following cases, and then moved to the READY state.

The following shows the specification format of required condition wfmode.

- wfmode = TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

- wfmode = TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

The following describes an example for coding this service call.

WAITING State for an Eventflag Cancel Operation Return Value

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing set_flg. E_OK

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing iset_flg. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID flgid = 1; /*Declares and initializes variable*/
 FLGPTN waiptn = 14; /*Declares and initializes variable*/
 MODE wfmode = TWF_ANDW; /*Declares and initializes variable*/
 FLGPTN p_flgptn; /*Declares variable*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /* */

 /*Wait for eventflag (with timeout)*/
 ercd = twai_flg (flgid, waiptn, wfmode, &p_flgptn, tmout);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Timeout processing*/
 }

 /* */
}

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

User’s Manual U20044EJ1V0UM 75

Note 1 With the RX850V4, whether to enable queuing of multiple tasks to the event flag wait queue is defined
during configuration. If this service call is issued for the event flag (TW_WSGL attribute) to which a wait task
is queued, therefore, "E_ILUSE" is returned regardless of whether the required condition is immediately
satisfied.

TA_WSGL: Only one task is allowed to be in the WAITING state for the eventflag.
TA_WMUL: Multiple tasks are allowed to be in the WAITING state for the eventflag.

Note 2 Invoking tasks are queued to the target event flag (TA_WMUL attribute) wait queue in the order defined
during configuration (FIFO order or priority order).

Note 3 The RX850V4 performs bit pattern clear processing (0x0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

Note 4 If the event flag wait state is cancelled because rel_wai or irel_wai was issued or the wait time elapsed, the
contents in the area specified by parameter p_flgptn become undefined.

Note 5 TMO_FEVR is specified for wait time tmout, processing equivalent to wai_flg will be executed. When
TMO_POL is specified, processing equivalent to pol_flg /ipol_flg will be executed.

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

76 User’s Manual U20044EJ1V0UM

6.3.5 Reference eventflag state
An eventflag status is referenced by issuing the following service call from the processing program.

- ref_flg, iref_flg
Stores eventflag state packet (ID number of the task at the head of the wait queue, current bit pattern, etc.) of the
eventflag specified by parameter flgid in the area specified by parameter pk_rflg.
The following describes an example for coding this service call.

Note For details about the eventflag state packet, refer to "16.2.5 Eventflag state packet".

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ID flgid = 1; /*Declares and initializes variable*/
 T_RFLG pk_rflg; /*Declares data structure*/
 ID wtskid; /*Declares variable*/
 FLGPTN flgptn; /*Declares variable*/
 ATR flgatr; /*Declares variable*/

 /* */

 ref_flg (flgid, &pk_rflg); /*Reference eventflag state*/

 wtskid = pk_rflg.wtskid; /*Reference ID number of the task at the */
 /*head of the wait queue*/
 flgptn = pk_rflg.flgptn; /*Reference current bit pattern*/
 flgatr = pk_rflg.flgatr; /*Reference attribute*/

 /* */
}

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

User’s Manual U20044EJ1V0UM 77

6.4 Data Queues
Multitask processing requires the inter-task communication function (data transfer function) that reports the processing

result of a task to another task. The RX850V4 therefore provides the data queues that have the data queue area in which
data read/write is enabled for transferring the prescribed size of data.

The following shows a processing flow when using a data queue.

Figure 6-3 Processing Flow (Data Queue)

Note Data units of 4 bytes are transmitted or received at a time.

6.4.1 Create data queue
In the RX850V4, the method of creating a deta queue is limited to "static creation".
Data queues therefore cannot be created dynamically using a method such as issuing a service call from a processing

program.
Static data queue creation means defining of data queues using static API "CRE_DTQ" in the system configuration file.
For details about the static API "CRE_DTQ", refer to "18.5.5 Data queue information".

Task A
Priority: High

Task B
Priority: Low

Reception wait period

Receive from data queue

Send to data queue

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

78 User’s Manual U20044EJ1V0UM

6.4.2 Send to data queue
A data is transmitted by issuing the following service call from the processing program.

- snd_dtq
This service call writes data specified by parameter data to the data queue area of the data queue specified by
parameter dtqid.
If there is no available space for writing data in the data queue area of the target data queue when this service call is
issued, this service call does not write data but queues the invoking task to the transmission wait queue of the target
data queue and moves it from the RUNNING state to the WAITING state (data transmission wait state).
The sending WAITING state for a data queue is cancelled in the following cases, and then moved to the READY
state.

If a task has been queued to the reception wait queue of the target data queue when this service call is issued, this
service call does not write data but transfers the data to the task. As a result, the task is unlinked from the reception
wait queue and moves from the WAITING state (data reception wait state) to the READY state, or from the WAITING-
SUSPENDED state to the SUSPENDED state.
The following describes an example for coding this service call.

Note 1 Data is written to the data queue area of the target data queue in the order of the data transmission request.

Note 2 Invoking tasks are queued to the transmission wait queue of the target data queue in the order defined
during configuration (FIFO order or priority order).

Sending WAITING State for a Data Queue Cancel Operation Return Value

Available space was secured in the data queue area of the target data queue as a result of
issuing rcv_dtq. E_OK

Available space was secured in the data queue area of the target data queue as a result of
issuing prcv_dtq. E_OK

Available space was secured in the data queue area of the target data queue as a result of
issuing iprcv_dtq. E_OK

Available space was secured in the data queue area of the target data queue as a result of
issuing trcv_dtq. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID dtqid = 1; /*Declares and initializes variable*/
 VP_INT data = 123; /*Declares and initializes variable*/

 /* */

 ercd = snd_dtq (dtqid, data); /*Send to data queue (waiting forever)*/

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

User’s Manual U20044EJ1V0UM 79

- psnd_dtq, ipsnd_dtq
These service calls write data specified by parameter data to the data queue area of the data queue specified by
parameter dtqid.
If there is no available space for writing data in the data queue area of the target data queue when either of these
service calls is issued, data is not written but E_TMOUT is returned.
If a task has been queued to the reception wait queue of the target data queue when this service call is issued, this
service call does not write data but transfers the data to the task. As a result, the task is unlinked from the reception
wait queue and moves from the WAITING state (data reception wait state) to the READY state, or from the WAITING-
SUSPENDED state to the SUSPENDED state.
The following describes an example for coding this service call.

Note Data is written to the data queue area of the target data queue in the order of the data transmission request.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID dtqid = 1; /*Declares and initializes variable*/
 VP_INT data = 123; /*Declares and initializes variable*/

 /* */

 /*Send to data queue (polling)*/
 ercd = psnd_dtq (dtqid, data);

 if (ercd == E_OK) {
 /* */ /*Polling success processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Polling failure processing*/
 }

 /* */
}

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

80 User’s Manual U20044EJ1V0UM

- tsnd_dtq
This service call writes data specified by parameter data to the data queue area of the data queue specified by
parameter dtqid.
If there is no available space for writing data in the data queue area of the target data queue when this service call is
issued, the service call does not write data but queues the invoking task to the transmission wait queue of the target
data queue and moves it from the RUNNING state to the WAITING state with time (data transmission wait state).
The sending WAITING state for a data queue is cancelled in the following cases, and then moved to the READY
state.

If a task has been queued to the reception wait queue of the target data queue when this service call is issued, this
service call does not write data but transfers the data to the task. As a result, the task is unlinked from the reception
wait queue and moves from the WAITING state (data reception wait state) to the READY state, or from the WAITING-
SUSPENDED state to the SUSPENDED state.
The following describes an example for coding this service call.

Note 1 Data is written to the data queue area of the target data queue in the order of the data transmission request.

Note 2 Invoking tasks are queued to the transmission wait queue of the target data queue in the order defined
during configuration (FIFO order or priority order).

Sending WAITING State for a Data Queue Cancel Operation Return Value

An available space was secured in the data queue area of the target data queue as a result
of issuing rcv_dtq. E_OK

An available space was secured in the data queue area of the target data queue as a result
of issuing prcv_dtq. E_OK

An available space was secured in the data queue area of the target data queue as a result
of issuing iprcv_dtq. E_OK

An available space was secured in the data queue area of the target data queue as a result
of issuing trcv_dtq. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID dtqid = 1; /*Declares and initializes variable*/
 VP_INT data = 123; /*Declares and initializes variable*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /* */

 /*Send to data queue (with timeout)*/
 ercd = tsnd_dtq (dtqid, data, tmout);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Timeout processing*/
 }

 /* */
}

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

User’s Manual U20044EJ1V0UM 81

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to snd_dtq will be executed. When
TMO_POL is specified, processing equivalent to psnd_dtq /ipsnd_dtq will be executed.

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

82 User’s Manual U20044EJ1V0UM

6.4.3 Forced send to data queue
Data is forcibly transmitted by issuing the following service call from the processing program.

- fsnd_dtq, ifsnd_dtq
These service calls write data specified by parameter data to the data queue area of the data queue specified by
parameter dtqid.
If there is no available space for writing data in the data queue area of the target data queue when either of these
service calls is issued, the service call overwrites data to the area with the oldest data that was written.
If a task has been queued to the reception wait queue of the target data queue when this service call is issued, this
service call does not write data but transfers the data to the task. As a result, the task is unlinked from the reception
wait queue and moves from the WAITING state (data reception wait state) to the READY state, or from the WAITING-
SUSPENDED state to the SUSPENDED state.
The following describes an example for coding this service call.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ID dtqid = 1; /*Declares and initializes variable*/
 VP_INT data = 123; /*Declares and initializes variable*/

 /* */

 fsnd_dtq (dtqid, data); /*Forced send to data queue*/

 /* */
}

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

User’s Manual U20044EJ1V0UM 83

6.4.4 Receive from data queue
A data is received (waiting forever, polling, or with timeout) by issuing the following service call from the processing

program.

- rcv_dtq
This service call reads data in the data queue area of the data queue specified by parameter dtqid and stores it to the
area specified by parameter p_data.
If no data could be read from the data queue area of the target data queue (no data has been written to the data
queue area) when this service call is issued, the service call does not read data but queues the invoking task to the
reception wait queue of the target data queue and moves it from the RUNNING state to the WAITING state (data
reception wait state).
The receiving WAITING state for a data queue is cancelled in the following cases, and then moved to the READY
state.

The following describes an example for coding this service call.

Receiving WAITING State for a Data Queue Cancel Operation Return Value

Data was written to the data queue area of the target data queue as a result of issuing
snd_dtq. E_OK

Data was written to the data queue area of the target data queue as a result of issuing
psnd_dtq. E_OK

Data was written to the data queue area of the target data queue as a result of issuing
ipsnd_dtq. E_OK

Data was written to the data queue area of the target data queue as a result of issuing
tsnd_dtq. E_OK

Data was written to the data queue area of the target data queue as a result of issuing
fsnd_dtq. E_OK

Data was written to the data queue area of the target data queue as a result of issuing
ifsnd_dtq. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID dtqid = 1; /*Declares and initializes variable*/
 VP_INT p_data; /*Declares variable*/

 /* */

 /*Receive from data queue (waiting forever)*/
 ercd = rcv_dtq (dtqid, &p_data);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

84 User’s Manual U20044EJ1V0UM

Note 1 Invoking tasks are queued to the reception wait queue of the target data queue in the order of the data
reception request.

Note 2 If the receiving WAITING state for a data queue is forcibly released by issuing rel_wai or irel_wai, the
contents of the area specified by parameter p_data will be undefined.

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

User’s Manual U20044EJ1V0UM 85

- prcv_dtq, iprcv_dtq
These service calls read data in the data queue area of the data queue specified by parameter dtqid and stores it to
the area specified by parameter p_data.
If no data could be read from the data queue area of the target data queue (no data has been written to the data
queue area) when either of these service calls is issued, the service call does not read data but E_TMOUT is
returned.
The following describes an example for coding this service call.

Note If no data could be read from the data queue area of the target data queue (no data has been written to the
data queue area) when either of these service calls is issued, the contents in the area specified by
parameter p_data become undefined.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID dtqid = 1; /*Declares and initializes variable*/
 VP_INT p_data; /*Declares variable*/

 /* */

 /*Receive from data queue (polling)*/
 ercd = prcv_dtq (dtqid, &p_data);

 if (ercd == E_OK) {
 /* */ /*Polling success processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Polling failure processing*/
 }

 /* */
}

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

86 User’s Manual U20044EJ1V0UM

- trcv_dtq
This service call reads data in the data queue area of the data queue specified by parameter dtqid and stores it to the
area specified by parameter p_data.
If no data could be read from the data queue area of the target data queue (no data has been written to the data
queue area) when this service call is issued, the service call does not read data but queues the invoking task to the
reception wait queue of the target data queue and moves it from the RUNNING state to the WAITING state with time
out (data reception wait state).
The receiving WAITING state for a data queue is cancelled in the following cases, and then moved to the READY
state.

The following describes an example for coding this service call.

Receiving WAITING State for a Data Queue Cancel Operation Return Value

Data was written to the data queue area of the target data queue as a result of issuing
snd_dtq. E_OK

Data was written to the data queue area of the target data queue as a result of issuing
psnd_dtq. E_OK

Data was written to the data queue area of the target data queue as a result of issuing
ipsnd_dtq. E_OK

Data was written to the data queue area of the target data queue as a result of issuing
tsnd_dtq. E_OK

Data was written to the data queue area of the target data queue as a result of issuing
fsnd_dtq. E_OK

Data was written to the data queue area of the target data queue as a result of issuing
ifsnd_dtq. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID dtqid = 1; /*Declares and initializes variable*/
 VP_INT p_data; /*Declares variable*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /* */

 /*Receive from data queue (with timeout)*/
 ercd = trcv_dtq (dtqid, &p_data, tmout);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Timeout processing*/
 }

 /* */
}

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

User’s Manual U20044EJ1V0UM 87

Note 1 Invoking tasks are queued to the reception wait queue of the target data queue in the order of the data
reception request.

Note 2 If the data reception wait state is cancelled because rel_wai or irel_wai was issued or the wait time elapsed,
the contents in the area specified by parameter p_data become undefined.

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to rcv_dtq will be executed. When
TMO_POL is specified, processing equivalent to prcv_dtq /iprcv_dtq will be executed.

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

88 User’s Manual U20044EJ1V0UM

6.4.5 Reference data queue state
A data queue status is referenced by issuing the following service call from the processing program.

- ref_dtq, iref_dtq
These service calls store the detailed information of the data queue (existence of waiting tasks, number of data
elements in the data queue, etc.) specified by parameter dtqid into the area specified by parameter pk_rdtq.
The following describes an example for coding this service call.

Note For details about the data queue state packet, refer to "16.2.6 Data queue state packet".

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ID dtqid = 1; /*Declares and initializes variable*/
 T_RDTQ pk_rdtq; /*Declares data structure*/
 ID stskid; /*Declares variable*/
 ID rtskid; /*Declares variable*/
 UINT sdtqcnt; /*Declares variable*/
 ATR dtqatr; /*Declares variable*/
 UINT dtqcnt; /*Declares variable*/

 /* */

 ref_dtq (dtqid, &pk_rdtq); /*Reference data queue state*/

 stskid = pk_rdtq.stskid; /*Acquires existence of tasks waiting for */
 /*data transmission*/
 rtskid = pk_rdtq.rtskid; /*Acquires existence of tasks waiting for */
 /*data reception*/
 sdtqcnt = pk_rdtq.sdtqcnt; /*Reference the number of data elements in */
 /*data queue*/
 dtqatr = pk_rdtq.dtqatr; /*Reference attribute*/
 dtqcnt = pk_rdtq.dtqcnt; /*Referene data count*/

 /* */
}

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

User’s Manual U20044EJ1V0UM 89

6.5 Mailboxes
The RX850V4 provides a mailbox, as a communication function between tasks, that hands over the execution result of

a given processing program to another processing program.
The following shows a processing flow when using a mailbox

Figure 6-4 Processing Flow (Mailbox)

6.5.1 Messages
The information exchanged among processing programs via the mailbox is called "messages".
Messages can be transmitted to any processing program via the mailbox, but it should be noted that, in the case of the

synchronization and communication functions of the RX850V4, only the start address of the message is handed over to
the receiving processing program, but the message contents are not copied to a separate area.

- Securement of memory area
In the case of the RX850V4, it is recommended to use the memory area secured by issuing service calls such as
get_mpf and get_mpl for messages.

Note The RX850V4 uses the message start area as a link area during queuing to the wait queue for mailbox
messages. Therefore, if the memory area for messages is secured from other than the memory area
controlled by the RX850V4, it must be secured from 4-byte aligned addresses.

- Basic form of messages
In the RX850V4, the message contents and length are prescribed as follows, according to the attributes of the
mailbox to be used.

- When using a mailbox with the TA_MFIFO attribute
The contents and length past the first 4 bytes of a message (system reserved area msgnext) are not restricted in
particular in the RX850V4.
Therefore, the contents and length past the first 4 bytes are prescribed among the processing programs that
exchange data using the mailbox with the TA_MFIFO attribute.
The following shows the basic form of coding TA_MFIFO attribute messages in C.

[Message packet for TA_MFIFO attribute]

typedef struct t_msg {
 struct t_msg *msgnext; /*Reserved for future use*/
} T_MSG;

Receive from mailbox

Send to mailbox

Reception wait period

Task A
Priority: High Priority: Low

Task B

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

90 User’s Manual U20044EJ1V0UM

- When using a mailbox with the TA_MPRI attribute
The contents and length past the first 8 bytes of a message (system reserved area msgque, priority level msgpri)
are not restricted in particular in the RX850V4.
Therefore, the contents and length past the first 8 bytes are prescribed among the processing programs that
exchange data using the mailbox with the TA_MPRI attribute.
The following shows the basic form of coding TA_MPRI attribute messages in C.

[Message packet for TA_MPRI attribute]

Note 1 In the RX850V4, a message having a smaller priority number is given a higher priority.

Note 2 Values that can be specified as the message priority level are limited to the range defined in Mailbox
information (Maximum message priority: maxmpri) when the system configuration file is created.

Note 3 For details about the message packet, refer to "16.2.7 Message packet".

6.5.2 Create mailbox
In the RX850V4, the method of creating a mailbox is limited to "static creation".
Mailboxes therefore cannot be created dynamically using a method such as issuing a service call from a processing

program.
Static mailbox creation means defining of mailboxes using static API "CRE_MBX" in the system configuration file.
For details about the static API "CRE_MBX", refer to "18.5.5 Data queue information".

typedef struct t_msg_pri {
 struct t_msg msgque; /*Reserved for future use*/
 PRI msgpri; /*Message priority*/
} T_MSG_PRI;

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

User’s Manual U20044EJ1V0UM 91

6.5.3 Send to mailbox
A message is transmitted by issuing the following service call from the processing program.

- snd_mbx, isnd_mbx
This service call transmits the message specified by parameter pk_msg to the mailbox specified by parameter mbxid
(queues the message in the wait queue).
If a task is queued to the target mailbox wait queue when this service call is issued, the message is not queued but
handed over to the relevant task (first task of the wait queue).
As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (receiving
WAITING state for a mailbox) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED
state.
The following describes an example for coding this service call.

Note 1 Messages are queued to the target mailbox wait queue in the order defined by queuing method during
configuration (FIFO order or priority order).

Note 2 With the RX850V4 mailbox, only the start address of the message is handed over to the receiving
processing program, but the message contents are not copied to a separate area. The message contents
can therefore be rewritten even after this service call is issued.

Note 3 For details about the message packet, refer to "16.2.7 Message packet".

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ID mbxid = 1; /*Declares and initializes variable*/
 T_MSG_PRI *pk_msg; /*Declares data structure*/

 /* */

 /* */ /*Secures memory area (for message)*/

 /* */ /*Creats message (contents)*/

 pk_msg->msgpri = 8; /*Initializes data structure*/

 /*Send to mailbox*/
 snd_mbx (mbxid, (T_MSG *) pk_msg);

 /* */
}

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

92 User’s Manual U20044EJ1V0UM

6.5.4 Receive from mailbox
A message is received (infinite wait, polling, or with timeout) by issuing the following service call from the processing

program.

- rcv_mbx
This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in
the area specified by parameter ppk_msg.
If no message could be received from the target mailbox (no messages were queued to the wait queue) when this
service call is issued, this service call does not receive messages but queues the invoking task to the target mailbox
wait queue and moves it from the RUNNING state to the WAITING state (message reception wait state).
The receiving WAITING state for a mailbox is cancelled in the following cases, and then moved to the READY state.

The following describes an example for coding this service call.

Note 1 Invoking tasks are queued to the target mailbox wait queue in the order defined during configuration (FIFO
order or priority order).

Note 2 If the receiving WAITING state for a mailbox is forcibly released by issuing rel_wai or irel_wai, the contents
of the area specified by parameter ppk_msg will be undefined.

Note 3 For details about the message packet, refer to "16.2.7 Message packet".

Receiving WAITING State for a Mailbox Cancel Operation Return Value

A message was transmitted to the target mailbox as a result of issuing snd_mbx. E_OK

A message was transmitted to the target mailbox as a result of issuing isnd_mbx. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mbxid = 1; /*Declares and initializes variable*/
 T_MSG *ppk_msg; /*Declares data structure*/

 /* */

 /*Receive from mailbox*/
 ercd = rcv_mbx (mbxid, &ppk_msg);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

User’s Manual U20044EJ1V0UM 93

- prcv_mbx, iprcv_mbx
This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in
the area specified by parameter ppk_msg.
If the message could not be received from the target mailbox (no messages were queued in the wait queue) when this
service call is issued, message reception processing is not executed but "E_TMOUT" is returned.
The following describes an example for coding this service call.

Note 1 If no message could be received from the target mailbox (no messages were queued to the wait queue)
when this service call is issued, the contents in the area specified by parameter ppk_msg become
undefined.

Note 2 For details about the message packet, refer to "16.2.7 Message packet".

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mbxid = 1; /*Declares and initializes variable*/
 T_MSG *ppk_msg; /*Declares data structure*/

 /* */

 /*Receive from mailbox (polling)*/
 ercd = prcv_mbx (mbxid, &ppk_msg);

 if (ercd == E_OK) {
 /* */ /*Polling success processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Polling failure processing*/
 }

 /* */
}

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

94 User’s Manual U20044EJ1V0UM

- trcv_mbx
This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in
the area specified by parameter ppk_msg.
If no message could be received from the target mailbox (no messages were queued to the wait queue) when this
service call is issued, this service call does not receive messages but queues the invoking task to the target mailbox
wait queue and moves it from the RUNNING state to the WAITING state with timeout (message reception wait state).
The receiving WAITING state for a mailbox is cancelled in the following cases, and then moved to the READY state.

The following describes an example for coding this service call.

Note 1 Invoking tasks are queued to the target mailbox wait queue in the order defined during configuration (FIFO
order or priority order).

Note 2 If the message reception wait state is cancelled because rel_wai or irel_wai was issued or the wait time
elapsed, the contents in the area specified by parameter ppk_msg become undefined.

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to rcv_mbx will be executed. When
TMO_POL is specified, processing equivalent to prcv_mbx /iprcv_mbx will be executed.

Note 4 For details about the message packet, refer to "16.2.7 Message packet".

Receiving WAITING State for a Mailbox Cancel Operation Return Value

A message was transmitted to the target mailbox as a result of issuing snd_mbx. E_OK

A message was transmitted to the target mailbox as a result of issuing isnd_mbx. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mbxid = 1; /*Declares and initializes variable*/
 T_MSG *ppk_msg; /*Declares data structure*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /* */

 /*Receive from mailbox (with timeout)*/
 ercd = trcv_mbx (mbxid, &ppk_msg, tmout);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Timeout processing*/
 }

 /* */
}

CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

User’s Manual U20044EJ1V0UM 95

6.5.5 Reference mailbox state
A mailbox status is referenced by issuing the following service call from the processing program.

- ref_mbx, iref_mbx
Stores mailbox state packet (ID number of the task at the head of the wait queue, start address of the message
packet at the head of the wait queue) of the mailbox specified by parameter mbxid in the area specified by parameter
pk_rmbx.
The following describes an example for coding this service call.

Note For details about the mailbox state packet, refer to "16.2.8 Mailbox state packet".

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ID mbxid = 1; /*Declares and initializes variable*/
 T_RMBX pk_rmbx; /*Declares data structure*/
 ID wtskid; /*Declares variable*/
 T_MSG *pk_msg; /*Declares data structure*/
 ATR mbxatr; /*Declares variable*/

 /* */

 ref_mbx (mbxid, &pk_rmbx); /*Reference mailbox state*/

 wtskid = pk_rmbx.wtskid; /*Reference ID number of the task at the */
 /*head of the wait queue*/
 pk_msg = pk_rmbx.pk_msg; /*Reference start address of the message */
 /*packet at the head of the wait queue*/
 mbxatr = pk_rmbx.mbxatr; /*Reference attribute*/

 /* */
}

CHAPTER 7 EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

96 User’s Manual U20044EJ1V0UM

CHAPTER 7 EXTENDED SYNCHRONIZATION AND
COMMUNICATION FUNCTIONS

This chapter describes the extended synchronization and communication functions performed by the RX850V4.

7.1 Outline
The RX850V4 provides Mutexes as the extended synchronization and communication function for implementing

exclusive control between tasks.

7.2 Mutexes
Multitask processing requires the function to prevent contentions on using the limited number of resources (A/D

converter, coprocessor, files, or the like) simultaneously by tasks operating in parallel (exclusive control function). To
resolve such problems, the RX850V4 therefore provides "mutexes".

The following shows a processing flow when using a mutex.
The mutexes provided in the RX850V4 do not support the priority inheritance protocol and priority ceiling protocol but

only support the FIFO order and priority order.

Figure 7-1 Processing Flow (Mutex)

7.2.1 Differences from semaphores
Since the mutexes of the RX850V4 do not support the priority inheritance protocol and priority ceiling protocol, so it

operates similarly to semaphores (binary semaphore) whose the maximum resource count is 1, but they differ in the
following points.

- A locked mutex can be unlocked (equivalent to returning of resources) only by the task that locked the mutex
--> Semaphores can return resources via any task and handler.

- Unlocking is automatically performed when a task that locked the mutex is terminated (ext_tsk or ter_tsk)
--> Semaphores do not return resources automatically, so they end with resources acquired.

- Semaphores can manage multiple resources (the maximum resource count can be assigned), but the maximum
number of resources assigned to a mutex is fixed to 1.

Task

Exclusive control period

Lock mutex

Unlock mutex

CHAPTER 7 EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

User’s Manual U20044EJ1V0UM 97

7.2.2 Create mutex
In the RX850V4, the method of creating a mutex is limited to "static creation".
Mutexes therefore cannot be created dynamically using a method such as issuing a service call from a processing

program.
Static mutex creation means defining of mutexes using static API "CRE_MTX" in the system configuration file.
For details about the static API "CRE_MTX", refer to "18.5.7 Mutex information".

CHAPTER 7 EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

98 User’s Manual U20044EJ1V0UM

7.2.3 Lock mutex
Mutexes can be locked by issuing the following service call from the processing program.

- loc_mtx
This service call locks the mutex specified by parameter mtxid.
If the target mutex could not be locked (another task has been locked) when this service call is issued, this service call
queues the invoking task to the target mutex wait queue and moves it from the RUNNING state to the WAITING state
(mutex wait state).
The WAITING state for a mutex is cancelled in the following cases, and then moved to the READY state.

The following describes an example for coding this service call.

Note 1 Invoking tasks are queued to the target mutex wait queue in the order defined during configuration (FIFO
order or priority order).

Note 2 In the RX850V4, E_ILUSE is returned if this service call is re-issued for the mutex that has been locked by
the invoking task (multiple-locking of mutex).

WAITING State for a Mutex Cancel Operation Return Value

The locked state of the target mutex was cancelled as a result of issuing unl_mtx. E_OK

The locked state of the target mutex was cancelled as a result of issuing ext_tsk. E_OK

The locked state of the target mutex was cancelled as a result of issuing ter_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mtxid = 8; /*Declares and initializes variable*/

 /* */

 ercd = loc_mtx (mtxid); /*Lock mutex (waiting forever)*/

 if (ercd == E_OK) {
 /* */ /*Locked state*/

 unl_mtx (mtxid); /*Unlock mutex*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

CHAPTER 7 EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

User’s Manual U20044EJ1V0UM 99

- ploc_mtx
This service call locks the mutex specified by parameter mtxid.
If the target mutex could not be locked (another task has been locked) when this service call is issued but E_TMOUT
is returned.
The following describes an example for coding this service call.

Note In the RX850V4, E_ILUSE is returned if this service call is re-issued for the mutex that has been locked by
the invoking task (multiple-locking of mutex).

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mtxid = 8; /*Declares and initializes variable*/

 /* */

 ercd = ploc_mtx (mtxid); /*Lock mutex (polling)*/

 if (ercd == E_OK) {
 /* */ /*Polling success processing*/

 unl_mtx (mtxid); /*Unlock mutex*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Polling failure processing*/
 }

 /* */
}

CHAPTER 7 EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

100 User’s Manual U20044EJ1V0UM

- tloc_mtx
This service call locks the mutex specified by parameter mtxid.
If the target mutex could not be locked (another task has been locked) when this service call is issued, this service call
queues the invoking task to the target mutex wait queue and moves it from the RUNNING state to the WAITING state
with timeout (mutex wait state).
The WAITING state for a mutex is cancelled in the following cases, and then moved to the READY state.

The following describes an example for coding this service call.

Note 1 Invoking tasks are queued to the target mutex wait queue in the order defined during configuration (FIFO
order or priority order).

Note 2 In the RX850V4, E_ILUSE is returned if this service call is re-issued for the mutex that has been locked by
the invoking task (multiple-locking of mutex).

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to loc_mtx will be executed. When
TMO_POL is specified, processing equivalent to ploc_mtx will be executed.

WAITING State for a Mutex Cancel Operation Return Value

The locked state of the target mutex was cancelled as a result of issuing unl_mtx. E_OK

The locked state of the target mutex was cancelled as a result of issuing ext_tsk. E_OK

The locked state of the target mutex was cancelled as a result of issuing ter_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mtxid = 8; /*Declares and initializes variable*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /* */

 ercd = tloc_mtx (mtxid, tmout); /*Lock mutex (with timeout)*/

 if (ercd == E_OK) {
 /* */ /*Locked state*/

 unl_mtx (mtxid); /*Unlock mutex*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Timeout processing*/
 }

 /* */
}

CHAPTER 7 EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

User’s Manual U20044EJ1V0UM 101

7.2.4 Unlock mutex
The mutex locked state can be cancelled by issuing the following service call from the processing program.

- unl_mtx
This service call unlocks the locked mutex specified by parameter mtxid.
If a task has been queued to the target mutex wait queue when this service call is issued, mutex lock processing is
performed by the task (the first task in the wait queue) immediately after mutex unlock processing.
As a result, the task is unlinked from the wait queue and moves from the WAITING state (mutex wait state) to the
READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.
The following describes an example for coding this service call.

Note A locked mutex can be unlocked only by the task that locked the mutex.
If this service call is issued for a mutex that was not locked by an invoking task, no processing is performed
but E_ILUSE is returned.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mtxid = 8; /*Declares and initializes variable*/

 /* */

 ercd = loc_mtx (mtxid); /*Lock mutex*/

 if (ercd == E_OK) {
 /* */ /*Locked state*/

 unl_mtx (mtxid); /*Unlock mutex*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

CHAPTER 7 EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

102 User’s Manual U20044EJ1V0UM

7.2.5 Reference mutex state
A mutex status is referenced by issuing the following service call from the processing program.

- ref_mtx, iref_mtx
The service calls store the detailed information of the mutex specified by parameter mtxid (existence of locked
mutexes, waiting tasks, etc.) into the area specified by parameter pk_rmtx.
The following describes an example for coding this service call.

Note For details about the mutex state packet, refer to "16.2.9 Mutex state packet".

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ID mtxid = 1; /*Declares and initializes variable*/
 T_RMTX pk_rmtx; /*Declares data structure*/
 ID htskid; /*Declares variable*/
 ID wtskid; /*Declares variable*/
 ATR mtxatr; /*Declares variable*/

 /* */

 ref_mtx (mbxid, &pk_rmtx); /*Reference mutex state*/

 htskid = pk_rmtx.htskid; /*Acquires existence of locked mutexes*/
 wtskid = pk_rmtx.wtskid; /*Reference ID number of the task at the */
 /*head of the wait queue*/
 mtxatr = pk_rmtx.mtxatr; /*Reference attribute*/

 /* */
}

CHAPTER 8 MEMORY POOL MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 103

CHAPTER 8 MEMORY POOL MANAGEMENT FUNC-
TIONS

This chapter describes the memory pool management functions performed by the RX850V4.

8.1 Outline
The statically secured memory areas in the Kernel Initialization Module are subject to management by the memory pool

management functions of the RX850V4.
The RX850V4 provides a function to reference the memory area status, including the detailed information of fixed/

variable-size memory pools, as well as a function to dynamically manipulate the memory area, including acquisition/
release of fixed/variable-size memory blocks, by releasing a part of the memory area statically secured/initialized as
"Fixed-Sized Memory Pools", or "Variable-Sized Memory Pools".

CHAPTER 8 MEMORY POOL MANAGEMENT FUNCTIONS

104 User’s Manual U20044EJ1V0UM

8.2 Fixed-Sized Memory Pools
When a dynamic memory manipulation request is issued from a processing program in the RX850V4, the fixed-sized

memory pool is provided as a usable memory area.
Dynamic memory manipulation of the fixed-size memory pool is executed in fixed size memory block units.

8.2.1 Create fixed-sized memory pool
In the RX850V4, the method of creating a fixed-sized memory pool is limited to "static creation".
Fixed-sized memory pools therefore cannot be created dynamically using a method such as issuing a service call from

a processing program.
Static fixed-size memory pool creation means defining of fixed-size memory pools using static API "CRE_MPF" in the

system configuration file.
For details about the static API "CRE_MPF", refer to "18.5.8 Fixed-sized memory pool information".

CHAPTER 8 MEMORY POOL MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 105

8.2.2 Acquire fixed-sized memory block
A fixed-sized memory block is acquired (waiting forever, polling, or with timeout) by issuing the following service call

from the processing program.

- get_mpf
This service call acquires the fixed-sized memory block from the fixed-sized memory pool specified by parameter
mpfid and stores the start address in the area specified by parameter p_blk.
If no fixed-size memory blocks could be acquired from the target fixed-size memory pool (no available fixed-size
memory blocks exist) when this service call is issued, this service call does not acquire the fixed-size memory block
but queues the invoking task to the target fixed-size memory pool wait queue and moves it from the RUNNING state
to the WAITING state (fixed-size memory block acquisition wait state).
The WAITING state for a fixed-sized memory block is cancelled in the following cases, and then moved to the READY
state.

The following describes an example for coding this service call.

Note 1 Invoking tasks are queued to the target fixed-size memory pool wait queue in the order defined during
configuration (FIFO order or priority order).

Note 2 If the fixed-size memory block acquisition wait state is cancelled because rel_wai or irel_wai was issued, the
contents in the area specified by parameter p_blk become undefined.

WAITING State for a Fixed-sized Memory Block Cancel Operation Return Value

A fixed-sized memory block was returned to the target fixed-sized memory pool as a result of
issuing rel_mpf. E_OK

A fixed-sized memory block was returned to the target fixed-sized memory pool as a result of
issuing irel_mpf. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mpfid = 1; /*Declares and initializes variable*/
 VP p_blk; /*Declares variable*/

 /* */

 ercd = get_mpf (mpfid, &p_blk); /*Acquire fixed-sized memory block */
 /*(waiting forever)*/

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/

 rel_mpf (mpfid, p_blk); /*Release fixed-sized memory block*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

CHAPTER 8 MEMORY POOL MANAGEMENT FUNCTIONS

106 User’s Manual U20044EJ1V0UM

- pget_mpf, ipget_mpf
This service call acquires the fixed-sized memory block from the fixed-sized memory pool specified by parameter
mpfid and stores the start address in the area specified by parameter p_blk.
If a fixed-sized memory block could not be acquired from the target fixed-sized memory pool (no available fixed-sized
memory blocks exist) when this service call is issued, fixed-sized memory block acquisition processing is not
performed but "E_TMOUT" is returned.
The following describes an example for coding this service call.

Note If no fixed-size memory blocks could be acquired from the target fixed-size memory pool (no available fixed-
size memory blocks exist) when this service call is issued, the contents in the area specified by parameter
p_blk become undefined.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mpfid = 1; /*Declares and initializes variable*/
 VP p_blk; /*Declares variable*/

 /* */

 /*Acquire fixed-sized memory block (polling)*/
 ercd = pget_mpf (mpfid, &p_blk);

 if (ercd == E_OK) {
 /* */ /*Polling success processing*/

 rel_mpf (mpfid, p_blk); /*Release fixed-sized memory block*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Polling failure processing*/
 }

 /* */
}

CHAPTER 8 MEMORY POOL MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 107

- tget_mpf
This service call acquires the fixed-sized memory block from the fixed-sized memory pool specified by parameter
mpfid and stores the start address in the area specified by parameter p_blk.
If no fixed-size memory blocks could be acquired from the target fixed-size memory pool (no available fixed-size
memory blocks exist) when this service call is issued, this service call does not acquire the fixed-size memory block
but queues the invoking task to the target fixed-size memory pool wait queue and moves it from the RUNNING state
to the WAITING state with timeout (fixed-size memory block acquisition wait state).
The WAITING state for a fixed-sized memory block is cancelled in the following cases, and then moved to the READY
state.

The following describes an example for coding this service call.

Note 1 Invoking tasks are queued to the target fixed-size memory pool wait queue in the order defined during
configuration (FIFO order or priority order).

Note 2 If the fixed-size memory block acquisition wait state is cancelled because rel_wai or irel_wai was issued or
the wait time elapsed, the contents in the area specified by parameter p_blk become undefined.

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to get_mpf will be executed. When
TMO_POL is specified, processing equivalent to pget_mpf /ipget_mpf will be executed.

WAITING State for a Fixed-sized Memory Block Cancel Operation Return Value

A fixed-sized memory block was returned to the target fixed-sized memory pool as a result of
issuing rel_mpf. E_OK

A fixed-sized memory block was returned to the target fixed-sized memory pool as a result of
issuing irel_mpf. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mpfid = 1; /*Declares and initializes variable*/
 VP p_blk; /*Declares variable*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /* */
 /*Acquire fixed-sized memory block*/
 /*(with timeout)*/
 ercd = tget_mpf (mpfid, &p_blk, tmout);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/

 rel_mpf (mpfid, p_blk); /*Release fixed-sized memory block*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Timeout processing*/
 }

 /* */
}

CHAPTER 8 MEMORY POOL MANAGEMENT FUNCTIONS

108 User’s Manual U20044EJ1V0UM

8.2.3 Release fixed-sized memory block
A fixed-sized memory block is returned by issuing the following service call from the processing program.

- rel_mpf, irel_mpf
This service call returns the fixed-sized memory block specified by parameter blk to the fixed-sized memory pool
specified by parameter mpfid.
If a task is queued to the target fixed-sized memory pool wait queue when this service call is issued, fixed-sized
memory block return processing is not performed but fixed-sized memory blocks are returned to the relevant task
(first task of wait queue).
As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (WAITING state
for a fixed-sized memory block) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED
state.
The following describes an example for coding this service call.

Note 1 The RX850V4 does not perform memory clear processing when returning the acquired fixed-size memory
block. The contents of the returned fixed-size memory block are therefore undefined.

Note 2 When returning fixed-size memory blocks, be sure to issue either of these service calls for the acquired
fixed-size memory pools. If the service call is issued for another fixed-size memory pool, no error results but
the operation is not guaranteed after that.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mpfid = 1; /*Declares and initializes variable*/
 VP blk; /*Declares variable*/

 /* */

 ercd = get_mpf (mpfid, &blk); /*Acquire fixed-sized memory block */
 /*(waiting forever)*/

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/

 rel_mpf (mpfid, blk); /*Release fixed-sized memory block*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

CHAPTER 8 MEMORY POOL MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 109

8.2.4 Reference fixed-sized memory pool state
A fixed-sized memory pool status is referenced by issuing the following service call from the processing program.

- ref_mpf, iref_mpf
Stores fixed-sized memory pool state packet (ID number of the task at the head of the wait queue, number of free
memory blocks, etc.) of the fixed-sized memory pool specified by parameter mpfid in the area specified by parameter
pk_rmpf.
The following describes an example for coding this service call.

Note For details about the fixed-sized memory pool state packet, refer to "16.2.10 Fixed-sized memory pool state
packet".

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ID mpfid = 1; /*Declares and initializes variable*/
 T_RMPF pk_rmpf; /*Declares data structure*/
 ID wtskid; /*Declares variable*/
 UINT fblkcnt; /*Declares variable*/
 ATR mpfatr; /*Declares variable*/

 /* */

 ref_mpf (mpfid, &pk_rmpf); /*Reference fixed-sized memory pool state*/

 wtskid = pk_rmpf.wtskid; /*Reference ID number of the task at the */
 /*head of the wait queue*/
 fblkcnt = pk_rmpf.fblkcnt; /*Reference number of free memory blocks*/
 mpfatr = pk_rmpf.mpfatr; /*Reference attribute*/

 /* */
}

CHAPTER 8 MEMORY POOL MANAGEMENT FUNCTIONS

110 User’s Manual U20044EJ1V0UM

8.3 Variable-Sized Memory Pools
When a dynamic memory manipulation request is issued from a processing program in the RX850V4, the variable-sized

memory pool is provided as a usable memory area.
Dynamic memory manipulation for variable-size memory pools is performed in the units of the specified variable-size

memory block size.

8.3.1 Create variable-sized memory pool
In the RX850V4, the method of creating a variable-sized memory pool is limited to "static creation".
Variable-sized memory pools therefore cannot be created dynamically using a method such as issuing a service call

from a processing program.
Static variable-size memory pool creation means defining of variable-size memory pools using static API "CRE_MPL" in

the system configuration file.
For details about the static API "CRE_MPL", refer to "18.5.9 Variable-sized memory pool information".

CHAPTER 8 MEMORY POOL MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 111

8.3.2 Acquire variable-sized memory block
A variable-sized memory block is acquired (waiting forever, polling, or with timeout) by issuing the following service call

from the processing program.

- get_mpl
This service call acquires a variable-size memory block of the size specified by parameter blksz from the variable-size
memory pool specified by parameter mplid, and stores its start address into the area specified by parameter p_blk.
If no variable-size memory blocks could be acquired from the target variable-size memory pool (no successive areas
equivalent to the requested size were available) when this service call is issued, this service call does not acquire
variable-size memory blocks but queues the invoking task to the target variable-size memory pool wait queue and
moves it from the RUNNING state to the WAITING state (variable-size memory block acquisition wait state).
The WAITING state for a variable-sized memory block is cancelled in the following cases, and then moved to the
READY state.

The following describes an example for coding this service call.

Note 1 The RX850V4 acquires variable-size memory blocks in the unit of "integral multiple of 4". If a value other
than an integral multiple of 4 is specified for parameter blksz, it is rounded up to be an integral multiple of 4.

Note 2 Invoking tasks are queued to the target variable-size memory pool wait queue in the order defined during
configuration (FIFO order or priority order).

Note 3 If the variable-size memory block acquisition wait state is cancelled because rel_wai or irel_wai was issued,
the contents in the area specified by parameter p_blk become undefined.

WAITING State for a Variable-sized Memory Block Cancel Operation Return Value

The variable-size memory block that satisfies the requested size was returned to the target
variable-size memory pool as a result of issuing rel_mpl. E_OK

The variable-size memory block that satisfies the requested size was returned to the target
variable-size memory pool as a result of issuing irel_mpl. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#include <kernel.h> /*Standard header file definition*/
#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mplid = 1; /*Declares and initializes variable*/
 UINT blksz = 256; /*Declares and initializes variable*/
 VP p_blk; /*Declares variable*/

 /* */
 /*Acquire variable-sized memory block */
 /*(waiting forever)*/
 ercd = get_mpl (mplid, blksz, &p_blk);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/

 rel_mpl (mplid, p_blk); /*Release variable-sized memory block*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

CHAPTER 8 MEMORY POOL MANAGEMENT FUNCTIONS

112 User’s Manual U20044EJ1V0UM

- pget_mpl, ipget_mpl
This service call acquires a variable-size memory block of the size specified by parameter blksz from the variable-size
memory pool specified by parameter mplid, and stores its start address into the area specified by parameter p_blk.
If no variable-size memory blocks could be acquired from the target variable-size memory pool (no successive areas
equivalent to the requested size were available) when this service call is issued, this service call does not acquire
variable-size memory block but returns E_TMOUT.
The following describes an example for coding this service call.

Note 1 The RX850V4 acquires variable-size memory blocks in the unit of "integral multiple of 4". If a value other
than an integral multiple of 4 is specified for parameter blksz, it is rounded up to be an integral multiple of 4.

Note 2 If no variable-size memory blocks could be acquired from the target variable-size memory pool (no
successive areas equivalent to the requested size were available) when this service call is issued, the
contents in the area specified by parameter p_blk become undefined.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mplid = 1; /*Declares and initializes variable*/
 UINT blksz = 256; /*Declares and initializes variable*/
 VP p_blk; /*Declares variable*/

 /* */

 /*Acquire variable-sized memory block*/
 /*(polling)*/
 ercd = pget_mpl (mplid, blksz, &p_blk);

 if (ercd == E_OK) {
 /* */ /*Polling success processing*/

 rel_mpl (mplid, p_blk); /*Release variable-sized memory block*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Polling failure processing*/
 }

 /* */
}

CHAPTER 8 MEMORY POOL MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 113

- tget_mpl
This service call acquires a variable-size memory block of the size specified by parameter blksz from the variable-size
memory pool specified by parameter mplid, and stores its start address into the area specified by parameter p_blk.
If no variable-size memory blocks could be acquired from the target variable-size memory pool (no successive areas
equivalent to the requested size were available) when this service call is issued, this service call does not acquire
variable-size memory blocks but queues the invoking task to the target variable-size memory pool wait queue and
moves it from the RUNNING state to the WAITING state with timeout (variable-size memory block acquisition wait
state).
The WAITING state for a variable-sized memory block is cancelled in the following cases, and then moved to the
READY state.

The following describes an example for coding this service call.

Note 1 The RX850V4 acquires variable-size memory blocks in the unit of "integral multiple of 4". If a value other
than an integral multiple of 4 is specified for parameter blksz, it is rounded up to be an integral multiple of 4.

Note 2 Invoking tasks are queued to the target variable-size memory pool wait queue in the order defined during
configuration (FIFO order or priority order).

WAITING State for a Variable-sized Memory Block Cancel Operation Return Value

The variable-size memory block that satisfies the requested size was returned to the target
variable-size memory pool as a result of issuing rel_mpl. E_OK

The variable-size memory block that satisfies the requested size was returned to the target
variable-size memory pool as a result of issuing irel_mpl. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void
task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mplid = 1; /*Declares and initializes variable*/
 UINT blksz = 256; /*Declares and initializes variable*/
 VP p_blk; /*Declares variable*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /* */

 /*Acquire variable-sized memory block*/
 /*(with timeout)*/
 ercd = tget_mpl (mplid, blksz, &p_blk, tmout);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/

 rel_mpl (mplid, p_blk ; /*Release variable-sized memory block*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Timeout processing*/
 }

 /* */
}

CHAPTER 8 MEMORY POOL MANAGEMENT FUNCTIONS

114 User’s Manual U20044EJ1V0UM

Note 3 If the variable-size memory block acquisition wait state is cancelled because rel_wai or irel_wai was issued
or the wait time elapsed, the contents in the area specified by parameter p_blk become undefined.

Note 4 TMO_FEVR is specified for wait time tmout, processing equivalent to get_mpl will be executed. When
TMO_POL is specified, processing equivalent to pget_mpl /ipget_mpl will be executed.

CHAPTER 8 MEMORY POOL MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 115

8.3.3 Release variable-sized memory block
A variable-sized memory block is returned by issuing the following service call from the processing program.

- rel_mpl, irel_mpl
This service call returns the variable-sized memory block specified by parameter blk to the variable-sized memory
pool specified by parameter mplid.
After returning the variable-size memory blocks, these service calls check the tasks queued to the target variable-size
memory pool wait queue from the top, and assigns the memory if the size of memory requested by the wait queue is
available. This operation continues until no tasks queued to the wait queue remain or no memory space is available.
As a result, the task that acquired the memory is unlinked from the queue and moved from the WAITING state
(variable-size memory block acquisition wait state) to the READY state, or from the WAITING-SUSPENDED state to
the SUSPENDED state.
The following describes an example for coding this service call.

Note 1 The RX850V4 does not perform memory clear processing when returning the acquired variable-size
memory block. The contents of the returned variable-size memory block are therefore undefined.

Note 2 When returning variable-size memory blocks, be sure to issue either of these service calls for the acquired
variable-size memory pools. If the service call is issued for another variable-size memory pool, no error
results but the operation is not guaranteed after that.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mplid = 1; /*Declares and initializes variable*/
 UINT blksz = 256; /*Declares and initializes variable*/
 VP blk; /*Declares variable*/

 /* */

 /*Acquire variable-sized memory block*/
 ercd = get_mpl (mplid, blksz, &blk);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/

 rel_mpl (mplid, blk); /*Release variable-sized memory block*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

CHAPTER 8 MEMORY POOL MANAGEMENT FUNCTIONS

116 User’s Manual U20044EJ1V0UM

8.3.4 Reference variable-sized memory pool state
A variable-sized memory pool status is referenced by issuing the following service call from the processing program.

- ref_mpl, iref_mpl
These service calls store the detailed information (ID number of the task at the head of the wait queue, total size of
free memory blocks, etc.) of the variable-size memory pool specified by parameter mplid into the area specified by
parameter pk_rmpl.
The following describes an example for coding this service call.

Note For details about the variable-sized memory pool state packet, refer to "16.2.11 Variable-sized memory pool
state packet".

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ID mplid = 1; /*Declares and initializes variable*/
 T_RMPL pk_rmpl; /*Declares data structure*/
 ID wtskid; /*Declares variable*/
 SIZE fmplsz; /*Declares variable*/
 UINT fblksz; /*Declares variable*/
 ATR mplatr; /*Declares variable*/

 /* */

 ref_mpl (mplid, &pk_rmpl); /*Reference variable-sized memory pool state*/

 wtskid = pk_rmpl.wtskid; /*Reference ID number of the task at the */
 /*head of the wait queue*/
 fmplsz = pk_rmpl.fmplsz; /*Reference total size of free memory blocks*/
 fblksz = pk_rmpl.fblksz; /*Reference maximum memory block size*/
 mplatr = pk_rmpl.mplatr; /*Reference attribute*/

 /* */
}

CHAPTER 9 TIME MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 117

CHAPTER 9 TIME MANAGEMENT FUNCTIONS

This chapter describes the time management functions performed by the RX850V4.

9.1 Outline
The RX850V4's time management function provides methods to implement time-related processing (Timer Operations:

Delayed task wakeup, Timeout, Cyclic handlers) by using base clock timer interrupts that occur at constant intervals, as
well as a function to manipulate and reference the system time.

9.2 System Time
The system time is a time used by the RX850V4 for performing time management (unit: msec).
After initialization by the Kernel Initialization Module, the system time is updated based on the base clock cycle defined

in Basic information (Base clock interval: clkcyc) when creating a system configuration file.

9.2.1 Base clock timer interrupt
To realize the time management function, the RX850V4 uses interrupts that occur at constant intervals (base clock

timer interrupts).
When a base clock timer interrupt occurs, processing related to the RX850V4 time (system time update, task timeout/

delay, cyclic handler activation, etc.) is executed.
The sources for base clock timer interrupts can be specified in Basic information CLK_INTNO in the system

configuration file.
For details about the basic information "CLK_INTNO", refer to "18.4.2 Basic information".
The RX850V4 does not initialize hardware to generate base clock timer interrupts, so it must be coded by the user.
Initialize the hardware used by Boot processing or Initialization routine and cancel the interrupt masking.

Note Base clock timer interrupt processes are triggered by base clock timer interrupts, but ISPRn (bit corresponding
to priority n of the base clock timer interrupt) in that process is set to 0. Consequently, if the base clock timer
interrupt itself, or an interrupt with lower priority than the base clock timer interrupt, is sent during a base clock
timer interrupt process, then it will be acknowledged.

9.2.2 Base clock interval
In the RX850V4, service call parameters for time specification are specified in msec units.
If is desirable to set 1 msec for the occurrence interval of base clock timer interrupts, but it may be difficult depending on

the target system performance (processing capability, required time resolution, or the like).
In such a case, the occurrence interval of base clock timer interrupt can be specified in Basic information DEF_TIM in

the system configuration file.
For details about the basic information "DEF_TIM", refer to "18.4.2 Basic information".
By specifying the base clock cycle, processing regards that the time equivalent to the base clock cycle elapses during a

base clock timer interrupt.
An integer value larger than 1 can be specified for the base clock cycle. Floating-point values such as 2.5 cannot be

specified.

CHAPTER 9 TIME MANAGEMENT FUNCTIONS

118 User’s Manual U20044EJ1V0UM

9.3 Timer Operations
The RX850V4's timer operation function provides Delayed task wakeup, Timeout and Cyclic handlers, as the method for

realizing time-dependent processing.

9.3.1 Delayed task wakeup
Delayed wakeup the operation that makes the invoking task transit from the RUNNING state to the WAITING state

during the interval until a given length of time has elapsed, and makes that task move from the WAITING state to the
READY state once the given length of time has elapsed.

Delayed wakeup is implemented by issuing the following service call from the processing program.

dly_tsk

9.3.2 Timeout
Timeout is the operation that makes the target task move from the RUNNING state to the WAITING state during the

interval until a given length of time has elapsed if the required condition issued from a task is not immediately satisfied,
and makes that task move from the WAITING state to the READY state regardless of whether the required condition is
satisfied once the given length of time has elapsed.

A timeout is implemented by issuing the following service call from the processing program.

tslp_tsk, twai_sem, twai_flg, tsnd_dtq, trcv_dtq, trcv_mbx, tloc_mtx, tget_mpf, tget_mpl

9.3.3 Cyclic handlers
The cyclic handler is a routine dedicated to cycle processing that is activated periodically at a constant interval

(activation cycle).
The RX850V4 handles the cyclic handler as a "non-task (module independent from tasks)". Therefore, even if a task with
the highest priority in the system is being executed, the processing is suspended when a specified activation cycle has
come, and the control is passed to the cyclic handler.

The RX850V4 manages the states in which each cyclic handler may enter and cyclic handlers themselves, by using
management objects (cyclic handler control blocks) corresponding to cyclic handlers one-to-one.

- Basic form of cyclic handlers
When coding a cyclic handler, use a void function with one VP_INT argument (any function name is fine).
The extended information specified with Cyclic handler information is set for the exinf argument.
The following shows the basic form of cyclic handlers in C.

#include <kernel.h> /*Standard header file definition*/

void cychdr (VP_INT exinf)
{
 /* */

 return; /*Terminate cyclic handler*/
}

CHAPTER 9 TIME MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 119

- Coding method
Code cyclic handlers using C or assembly language.
When coding in C, they can be coded in the same manner as void type functions coded.
When coding in assembly language, code them according to the calling rules prescribed in the compiler used.

- Stack switching
The RX850V4 switches to the system stack specified in Basic information when passing control to a cyclic handler,
and switches to the relevant stack when returning control to the processing program for which a base clock timer
interrupt occurred. Therefore, the system stack is used during cyclic handler processing.

- Service call issuance
The RX850V4 handles the cyclic handler as a "non-task".
Service calls that can be issued in cyclic handlers are limited to the service calls that can be issued from non-tasks.

Note 1 If a service call (isig_sem, iset_flg, etc.) accompanying dispatch processing (task scheduling processing) is
issued in order to quickly complete the processing in the cyclic handler during the interval until the
processing in the cyclic handler ends, the RX850V4 executes only processing such as queue manipulation,
counter manipulation, etc., and the actual dispatch processing is delayed until a return instruction is issued
by the cyclic handler, upon which the actual dispatch processing is performed in batch.

Note 2 For details on the valid issuance range of each service call, refer to Table 17-1 to Table 17-14.

- Acknowledgment of maskable interrupts (the ID flag of PSW)
When the handler starts, the acknowledgement of maskable interrupts is enabled (PSW ID flag is 0).
It is possible to change the maskable interrupt acknowledgement status from inside a process. The changed status is
not passed on when control shifts to the processing program after the task process ends.

Note 1 Cyclic handlers are triggered by base clock timer interrupts, but ISPRn (bit corresponding to priority n of the
base clock timer interrupt) in that process is set to 0. Consequently, if the base clock timer interrupt itself or
an interrupt with lower priority than the base clock timer interrupt is sent during a cyclic handler process, then
it will be acknowledged.

Note 2 When a base clock timer interrupt is acknowledged in a cyclic handler, and the cycle time of that cyclic
handler has elapsed, then multiple instances of that cyclic handler will be running simultaneously.

Note 3 It is not possible to completely disable the acknowledgement of maskable interrupts from within a cyclic
handler. Although it is possible to disable the acknowledgement of maskable interrupts after the cyclic
handler starts by setting the PSW ID flag to 1, it is possible that maskable interrupts will be acknowledged
between the time the cyclic handler starts and the acknowledgement of maskable interrupts is disabled.

9.3.4 Create cyclic handler
In the RX850V4, the method of creating a cyclic handler is limited to "static creation".
Cyclic handlers therefore cannot be created dynamically using a method such as issuing a service call from a

processing program.
Static cyclic handler creation means defining of cyclic handlers using static API "CRE_CYC" in the system configuration

file.
For details about the static API "CRE_CYC", refer to "18.5.10 Cyclic handler information".

CHAPTER 9 TIME MANAGEMENT FUNCTIONS

120 User’s Manual U20044EJ1V0UM

9.4 Set System Time
The system time can be set by issuing the following service call from the processing program.

- set_tim, iset_tim
These service calls change the RX850V4 system time (unit: msec) to the time specified by parameter p_systim.
The following describes an example for coding this service call.

Note For details about the system time packet, refer to "16.2.12 System time packet".

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 SYSTIM p_systim; /*Declares data structure*/

 p_systim.ltime = 3600; /*Initializes data structure*/
 p_systim.utime = 0; /*Initializes data structure*/

 /* */

 set_tim (&p_systim); /*Set system time*/

 /* */
}

CHAPTER 9 TIME MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 121

9.5 Reference System Time
The system time can be referenced by issuing the following service call from the processing program.

- get_tim, iget_tim
These service calls store the RX850V4 system time (unit: msec) into the area specified by parameter p_systim.
The following describes an example for coding this service call.

Note 1 The RX850V4 ignores the numeric values that cannot be expressed as the system time (values overflowed
from the 48-bit width).

Note 2 For details about the system time packet, refer to "16.2.12 System time packet".

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 SYSTIM p_systim; /*Declares data structure*/
 UW ltime; /*Declares variable*/
 UH utime; /*Declares variable*/

 /* */

 get_tim (&p_systim); /*Reference System Time*/

 ltime = p_systim.ltime; /*Acquirer system time (lower 32 bits)*/
 utime = p_systim.utime; /*Acquirer system time (higher 16 bits)*/

 /* */
}

CHAPTER 9 TIME MANAGEMENT FUNCTIONS

122 User’s Manual U20044EJ1V0UM

9.6 Start Cyclic Handler Operation
Moving to the operational state (STA state) is implemented by issuing the following service call from the processing

program.

- sta_cyc, ista_cyc
This service call moves the cyclic handler specified by parameter cycid from the non-operational state (STP state) to
operational state (STA state).
As a result, the target cyclic handler is handled as an activation target of the RX850V4.
The relative interval from when either of this service call is issued until the first activation request is issued varies
depending on whether the TA_PHS attribute is specified for the target cyclic handler during configuration.

- If the TA_PHS attribute is specified
The target cyclic handler activation timing is set based on the activation phases (initial activation phase cycphs
and activation cycle cyctim) defined during configuration.
If the target cyclic handler has already been started, however, no processing is performed even if this service call
is issued, but it is not handled as an error.
The following shows a cyclic handler activation timing image.

Figure 9-1 TA_PHS Attribute: Specified

- If the TA_PHS attribute is not specified
The target cyclic handler activation timing is set based on the activation phase (activation cycle cyctim) when this
service call is issued.
This setting is performed regardless of the operating status of the target cyclic handler.
The following shows a cyclic handler activation timing image.

Figure 9-2 TA_PHS Attribute: Not Specified

The following describes an example for coding this service call.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ID cycid = 1; /*Declares and initializes variable*/

 /* */

cycphs cyctim cyctim cyctim

Generation processing completed

Start Start Start Start

Start cyclic handler operation Start cyclic handler operation

cycphs cyctim cyctim cyctim

Generation processing completed

cyctim cyctim

Start
cyctim cyctim

Start Start

Start cyclic handler operation Start cyclic handler operation

CHAPTER 9 TIME MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 123

 sta_cyc (cycid); /*Start cyclic handler operation*/

 /* */
}

CHAPTER 9 TIME MANAGEMENT FUNCTIONS

124 User’s Manual U20044EJ1V0UM

9.7 Stop Cyclic Handler Operation
Moving to the non-operational state (STP state) is implemented by issuing the following service call from the processing

program.

- stp_cyc, istp_cyc
This service call moves the cyclic handler specified by parameter cycid from the operational state (STA state) to non-
operational state (STP state).
As a result, the target cyclic handler is excluded from activation targets of the RX850V4 until issuance of sta_cyc or
ista_cyc.
The following describes an example for coding this service call.

Note This service call does not perform queuing of stop requests. If the target cyclic handler has been moved to
the non-operational state (STP state), therefore, no processing is performed but it is not handled as an error.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ID cycid = 1; /*Declares and initializes variable*/

 /* */

 stp_cyc (cycid); /*Stop cyclic handler operation*/

 /* */
}

CHAPTER 9 TIME MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 125

9.8 Reference Cyclic Handler State
A cyclic handler status by issuing the following service call from the processing program.

- ref_cyc, iref_cyc
Stores cyclic handler state packet (current state, time left before the next activation, etc.) of the cyclic handler
specified by parameter cycid in the area specified by parameter pk_rcyc.
The following describes an example for coding this service call.

Note For details about the cyclic handler state packet, refer to "16.2.13 Cyclic handler state packet".

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ID cycid = 1; /*Declares and initializes variable*/
 T_RCYC pk_rcyc; /*Declares data structure*/
 STAT cycstat; /*Declares variable*/
 RELTIM lefttim; /*Declares variable*/
 ATR cycatr; /*Declares variable*/
 RELTIM cyctim; /*Declares variable*/
 RELTIM cycphs; /*Declares variable*/

 /* */

 ref_cyc (cycid, &pk_rcyc); /*Reference cyclic handler state*/

 cycstat = pk_rcyc.cycstat; /*Reference current state*/
 lefttim = pk_rcyc.lefttim; /*Reference time left before the next */
 /*activation*/
 cycatr = pk_rcyc.cycatr; /*Reference attribute*/
 cyctim = pk_rcyc.cyctim; /*Reference activation cycle*/
 cycphs = pk_rcyc.cycphs; /*Reference activation phase*/

 /* */
}

CHAPTER 10 SYSTEM STATE MANAGEMENT FUNCTIONS

126 User’s Manual U20044EJ1V0UM

CHAPTER 10 SYSTEM STATE MANAGEMENT FUNC-
TIONS

This chapter describes the system management functions performed by the RX850V4.

10.1 Outline
The RX850V4's system status management function provides functions for referencing the system status such as the

context type and CPU lock status, as well as functions for manipulating the system status sych as ready queue rotation,
scheduler activation, or the like.

10.2 Rotate Task Precedence
A ready queue is rotated by issuing the following service call from the processing program.

- rot_rdq, irot_rdq
This service call re-queues the first task of the ready queue corresponding to the priority specified by parameter tskpri
to the end of the queue to change the task execution order explicitly.
The following shows the status transition when this service call is used.

Figure 10-1 Rotate Task Precedence

Task A
RUNNING state

Task B
READY state

Task C
READY state

Ready queue

tskpri
tskpri + 1

tskpri - 1

1

maxtpri

Task B
RUNNING state

Task C
READY state

Task A
READY statetskpri

tskpri + 1

tskpri - 1

1

maxtpri

Ready queue

Rotate task precedence

CHAPTER 10 SYSTEM STATE MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 127

The following describes an example for coding this service call.

Note 1 This service call does not perform queuing of rotation requests. If no task is queued to the ready queue
corresponding to the relevant priority, therefore, no processing is performed but it is not handled as an error.

Note 2 Round-robin scheduling can be implemented by issuing this service call via a cyclic handler in a constant
cycle.

Note 3 The ready queue is a hash table that uses priority as the key, and tasks that have entered an executable
state (READY state or RUNNING state) are queued in FIFO order.
Therefore, the scheduler realizes the RX850V4's scheduling system by executing task detection processing
from the highest priority level of the ready queue upon activation, and upon detection of queued tasks, giving
the CPU use right to the first task of the proper priority level.

#include <kernel.h> /*Standard header file definition*/

void cychdr (VP_INT exinf)
{
 PRI tskpri = 8; /*Declares and initializes variable*/

 /* */

 irot_rdq (tskpri); /*Rotate task precedence*/

 /* */

 return; /*Terminate cyclic handler*/
}

CHAPTER 10 SYSTEM STATE MANAGEMENT FUNCTIONS

128 User’s Manual U20044EJ1V0UM

10.3 Forced Scheduler Activation
The scheduler can be forcibly activated by issuing the following service call from the processing program.

- vsta_sch
This service call explicitly forces the RX850V4 scheduler to activate. If a scheduling request has been kept pending,
task switching may therefore occur.
The following describes an example for coding this service call.

Note The RX850V4 provides this service call as a function to activate a scheduler from a task for which preempt
acknowledge status disable is defined during configuration.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{

 /* */

 vsta_sch (); /*Forced scheduler*/

 /* */
}

CHAPTER 10 SYSTEM STATE MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 129

10.4 Reference Task ID in the RUNNING State
A RUNNING-state task is referenced by issuing the following service call from the processing program.

- get_tid, iget_tid
These service calls store the ID of a task in the RUNNING state in the area specified by parameter p_tskid.
The following describes an example for coding this service call.

Note This service call stores TSK_NONE in the area specified by parameter p_tskid if no tasks that have entered
the RUNNING state exist (all tasks in the IDLE state).

#include <kernel.h> /*Standard header file definition*/

void inthdr (void)
{
 ID p_tskid; /*Declares variable*/

 /* */

 iget_tid (&p_tskid); /*Reference task ID in the RUNNING state*/

 /* */

 return; /*Terminate interrupt handler*/
}

CHAPTER 10 SYSTEM STATE MANAGEMENT FUNCTIONS

130 User’s Manual U20044EJ1V0UM

10.5 Lock the CPU
A task is moved to the CPU locked state by issuing the following service call from the processing program.

- loc_cpu, iloc_cpu
These service calls change the system status type to the CPU locked state.
As a result, maskable interrupt acknowledgment processing is prohibited during the interval from this service call is
issued until unl_cpu or iunl_cpu is issued, and service call issuance is also restricted.
The service calls that can be issued in the CPU locked state are limited to the one listed below.

If a maskable interrupt is created during this period, the RX850V4 delays transition to the relevant interrupt
processing (interrupt handler) until either unl_cpu or iunl_cpu is issued.
The following shows a processing flow when using this service call.

Figure 10-2 Lock the CPU

Service Call Function

sns_tex Reference task exception handling state.

loc_cpu, iloc_cpu Lock the CPU.

unl_cpu, iunl_cpu Unlock the CPU.

sns_loc Reference CPU state.

sns_dsp Reference dispatching state.

sns_ctx Reference contexts.

sns_dpn Reference dispatch pending state.

Task

return

Interrupt

Interrupt handler

Suppressed period

Lock the CPU

Unlock the CPU

CHAPTER 10 SYSTEM STATE MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 131

The following describes an example for coding this service call.

Note 1 The internal processing (interrupt mask setting processing and interrupt mask acquire processing)
performed by this service call depends on the user execution environment, so it is extracted as a target-
dependent module and provided as sample source files.
In sample source files, manipulation for the interrupt control register xxICn and the interrupt mask flag
xxMKn of the interrupt mask register IMRm is coded as interrupt mask setting processing or interrupt mask
acquire processing.

<rx_sample>\src\usr_getmsk.c, usr_intmsk.c

Note 2 The CPU locked state changed by issuing this service call must be cancelled before the processing program
that issued this service call ends.

Note 3 This service call does not perform queuing of lock requests. If the system is in the CPU locked state,
therefore, no processing is performed but it is not handled as an error.

Note 4 The RX850V4 realizes the TIME MANAGEMENT FUNCTIONS by using base clock timer interrupts that
occur at constant intervals. If acknowledgment of the relevant base clock timer interrupt is disabled by
issuing this service call, the TIME MANAGEMENT FUNCTIONS may no longer operate normally.

Note 5 If this service call or a service call other than sns_xxx is issued from when this service call is issued until
unl_cpu or iunl_cpu is issued, the RX850V4 returns E_CTX.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 /* */

 loc_cpu (); /*Lock the CPU*/

 /* */ /*CPU locked state*/

 unl_cpu (); /*Unlock the CPU*/

 /* */
}

CHAPTER 10 SYSTEM STATE MANAGEMENT FUNCTIONS

132 User’s Manual U20044EJ1V0UM

10.6 Unlock the CPU
The CPU locked state is cancelled by issuing the following service call from the processing program.

- unl_cpu, iunl_cpu
These service calls change the system status to the CPU unlocked state.
As a result, acknowledge processing of maskable interrupts prohibited through issuance of either loc_cpu or iloc_cpu
is enabled, and the restriction on service call issuance is released.
If a maskable interrupt is created during the interval from when either loc_cpu or iloc_cpu is issued until this service
call is issued, the RX850V4 delays transition to the relevant interrupt processing (interrupt handler) until this service
call is issued.
The following shows a processing flow when using this service call.

Figure 10-3 Unlock the CPU

The following describes an example for coding this service call.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 /* */

 loc_cpu (); /*Lock the CPU*/

 /* */ /*CPU locked state*/

 unl_cpu (); /*Unlock the CPU*/

 /* */
}

Task

return

Interrupt

Interrupt handler

Suppressed peiod

Lock the CPU

Unlock the CPU

CHAPTER 10 SYSTEM STATE MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 133

Note 1 The internal processing (interrupt mask setting processing) performed by this service call depends on the
user execution environment, so it is extracted as a target-dependent module and provided as sample source
files.
In sample source files, manipulation for the interrupt control register xxICn and the interrupt mask flag
xxMKn of the interrupt mask register IMRm is coded as interrupt mask setting processing.

<rx_sample>\src\usr_setmsk.c

Note 2 This service call does not perform queuing of cancellation requests. If the system is in the CPU unlocked
state, therefore, no processing is performed but it is not handled as an error.

Note 3 This service call does not cancel the dispatch disabled state that was set by issuing dis_dsp. If the system
status before the CPU locked state is entered was the dispatch disabled state, the system status becomes
the dispatch disabled state after this service call is issued.

Note 4 This service call does not enable acknowledgment of the maskable interrupts that has been disabled by
issuing dis_int. If the system status before the CPU locked state is entered was the maskable interrupt
acknowledgment enabled state, acknowledgment of maskable interrupts is disabled after this service call is
issued.

Note 5 If a service call other than loc_cpu, iloc_cpu and sns_xxx is issued from when loc_cpu or iloc_cpu is issued
until this service call is issued, the RX850V4 returns E_CTX.

CHAPTER 10 SYSTEM STATE MANAGEMENT FUNCTIONS

134 User’s Manual U20044EJ1V0UM

10.7 Reference CPU State
The CPU locked state is referenced by issuing the following service call from the processing program.

- sns_loc
This service call acquires the system status type when this service call is issued (CPU locked state or CPU unlocked
state).
When this service call is terminated normally, the acquired system state type (TRUE: CPU locked state, FALSE: CPU
unlocked state) is returned.
The following describes an example for coding this service call.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 BOOL ercd; /*Declares variable*/

 /* */

 ercd = sns_loc (); /*Reference CPU state*/

 if (ercd == TRUE) {
 /* */ /*CPU locked state*/
 } else if (ercd == FALSE) {
 /* */ /*CPU unlocked state*/
 }

 /* */
}

CHAPTER 10 SYSTEM STATE MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 135

10.8 Disable Dispatching
A task is moved to the dispatch disabled state by issuing the following service call from the processing program.

- dis_dsp
This service call changes the system status to the dispatch disabled state.
As a result, dispatch processing (task scheduling) is disabled from when this service call is issued until ena_dsp is
issued.
If a service call (chg_pri, sig_sem, etc.) accompanying dispatch processing is issued during the interval from when
this service call is issued until ena_dsp is issued, the RX850V4 executes only processing such as queue
manipulation, counter manipulation, etc., and the actual dispatch processing is delayed until ena_dsp is issued, upon
which the actual dispatch processing is performed in batch.
The following shows a processing flow when using this service call.

Figure 10-4 Disable Dispatching

The following describes an example for coding this service call.

Note 1 The dispatch disabled state changed by issuing this service call must be cancelled before the task that
issued this service call moves to the DORMANT state.

Note 2 This service call does not perform queuing of disable requests. If the system is in the dispatch disabled
state, therefore, no processing is performed but it is not handled as an error.

Note 3 If a service call (such as wai_sem, wai_flg) that may move the status of an invoking task is issued from when
this service call is issued until ena_dsp is issued, the RX850V4 returns E_CTX regardless of whether the
required condition is immediately satisfied.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 /* */

 dis_dsp (); /*Disable dispatching*/

 /* */ /*Dispatching disabled state*/

 ena_dsp (); /*Enable dispatching*/

 /* */
}

Release semaphore resource

Acquire semaphore resource

Disable Dispatching

Enable Dispatching

Task A
Priority: High

Task B
Priority: Low

Suppressed period

CHAPTER 10 SYSTEM STATE MANAGEMENT FUNCTIONS

136 User’s Manual U20044EJ1V0UM

10.9 Enable Dispatching
The dispatch disabled state is cancelled by issuing the following service call from the processing program.

- ena_dsp
This service call changes the system status to the dispatch enabled state.
As a result, dispatch processing (task scheduling) that has been disabled by issuing dis_dsp is enabled.
If a service call (chg_pri, sig_sem, etc.) accompanying dispatch processing is issued during the interval from when
dis_dsp is issued until this service call is issued, the RX850V4 executes only processing such as queue manipulation,
counter manipulation, etc., and the actual dispatch processing is delayed until this service call is issued, upon which
the actual dispatch processing is performed in batch.
The following shows a processing flow when using this service call.

Figure 10-5 Enable Dispatching

The following describes an example for coding this service call.

Note 1 This service call does not perform queuing of enable requests. If the system is in the dispatch enabled state,
therefore, no processing is performed but it is not handled as an error.

Note 2 If a service call (such as wai_sem, wai_flg) that may move the status of an invoking task is issued from when
dis_dsp is issued until this service call is issued, the RX850V4 returns E_CTX regardless of whether the
required condition is immediately satisfied.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 /* */

 dis_dsp (); /*Disable dispatching*/

 /* */ /*Dispatching disabled state*/

 ena_dsp (); /*Enable dispatching*/

 /* */
}

Release semaphore resource

Acquire semaphore resource

Disable Dispatching

Enable Dispatching

Task A
Priority: High

Task B
Priority: Low

Suppressed period

CHAPTER 10 SYSTEM STATE MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 137

10.10 Reference Dispatching State
The dispatch disabled state is referenced by issuing the following service call from the processing program.

- sns_dsp
This service call acquires the system status type when this service call is issued (dispatch disabled state or dispatch
enabled state).
When this service call is terminated normally, the acquired system state type (TRUE: dispatch disabled state, FALSE:
dispatch enabled state) is returned.
The following describes an example for coding this service call.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 BOOL ercd; /*Declares variable*/

 /* */

 ercd = sns_dsp (); /*Reference dispatching state*/

 if (ercd == TRUE) {
 /* */ /*Dispatching disabled state*/
 } else if (ercd == FALSE) {
 /* */ /*Dispatching enabled state*/
 }

 /* */
}

CHAPTER 10 SYSTEM STATE MANAGEMENT FUNCTIONS

138 User’s Manual U20044EJ1V0UM

10.11 Reference Contexts
The context type is referenced by issuing the following service call from the processing program.

- sns_ctx
This service call acquires the context type of the processing program that issued this service call (non-task context or
task context).
When this service call is terminated normally, the acquired context type (TRUE: non-task context, FALSE: task
context) is returned.
The following describes an example for coding this service call.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 BOOL ercd; /*Declares variable*/

 /* */

 ercd = sns_ctx (); /*Reference contexts*/

 if (ercd == TRUE) {
 /* */ /*Non-task contexts*/
 } else if (ercd == FALSE) {
 /* */ /*Task contexts*/
 }

 /* */
}

CHAPTER 10 SYSTEM STATE MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 139

10.12 Reference Dispatch Pending State
The dispatch pending state is referenced by issuing the following service call from the processing program.

- sns_dpn
This service call acquires the system status type when this service call is issued (whether in dispatch pending state or
not).
When this service call is terminated normally, the acquired system state type (TRUE: dispatch pending state, FALSE:
dispatch not-pending state) is returned.
The following describes an example for coding this service call.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 BOOL ercd; /*Declares variable*/

 /* */

 ercd = sns_dpn (); /*Reference dispatch pending state*/

 if (ercd == TRUE) {
 /* */ /*Dispatch pending state*/
 } else if (ercd == FALSE) {
 /* */ /*Other state*/
 }

 /* */
}

CHAPTER 11 INTERRUPT MANAGEMENT FUNCTIONS

140 User’s Manual U20044EJ1V0UM

CHAPTER 11 INTERRUPT MANAGEMENT FUNCTIONS

This chapter describes the interrupt management functions performed by the RX850V4.

11.1 Outline
The RX850V4 provides as interrupt management functions related to the interrupt handlers activated when an interrupt

(maskable interrupt, software interrupt, reset interrupt) is occurred.

11.2 Target-Dependent Module
To support various execution environments, the RX850V4 extracts from the interrupt management functions the

hardware-dependent processing (Service call "dis_int", Service call "ena_int", Interrupt mask setting processing (overwrite
setting), Interrupt mask setting processing (OR setting), Interrupt mask acquire processing) that is required to execute
processing, as a target-dependent module. This enhances portability for various execution environments and facilitates
customization as well.

11.2.1 Service call "dis_int"
This is a routine dedicated to maskable interrupt acknowledge processing, which is extracted as a target-dependent

module, for disabling acknowledgment of maskable interrupt. It is called when service call dis_int is issued from the
processing program.

- Basic form of service call "dis_int"
Code service call dis_int by using the void type function (function name: _kernel_usr_dis_int) that has one INTNO
type argument.
The "exception code corresponding to the maskable interrupt for which acknowledgment is to be disabled" is set to
argument intno.
The following shows the basic form of service call “dis_int“ in C.

- Internal processing of service call "dis_int"
Service call dis_int is a routine dedicated to maskable interrupt acknowledge processing, which is extracted as a
target-dependent module, for disabling acknowledgment of maskable interrupt.
Therefore, note the following points when coding service call “dis_int“.

- Coding method
Code service call "dis_int" using C or assembly language.
When coding in C, they can be coded in the same manner as ordinary functions coded.
When coding in assembly language, code them according to the calling rules prescribed in the compiler used.

- Stack switching
The RX850V4 does not perform the processing related to stack switching when passing control to service call
dis_int. When using the system stack specified in Basic information, the code regarding stack switching must
therefore be written in service call dis_int.

#include <kernel.h> /*Standard header file definition*/

void _kernel_usr_dis_int (INTNO intno)
{
 /* */

 return; /*Terminate service call "dis_int"*/
}

CHAPTER 11 INTERRUPT MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 141

- Service call issuance
To quickly complete processing for manipulating the maskable interrupt acknowledgment status, issuance of
service calls is prohibited during processing of service call dis_int.

The following lists processing that should be executed in service call "dis_int".

- Manipulation of the interrupt control register xxICn or the interrupt mask flag xxMKn of the interrupt mask register
IMRm to disable acknowledgment of a maskable interrupt corresponding to the exception code

- Returning control to the processing program that issued service call dis_int

CHAPTER 11 INTERRUPT MANAGEMENT FUNCTIONS

142 User’s Manual U20044EJ1V0UM

11.2.2 Service call "ena_int"
This is a routine dedicated to maskable interrupt acknowledge processing, which is extracted as a target-dependent

module, for enabling acknowledgment of maskable interrupt. It is called when service call ena_int is issued from the
processing program.

- Basic form of service call "ena_int"
Code service call ena_int by using the void type function (function name: _kernel_usr_ena_int) that has one INTNO
type argument.
The "exception code corresponding to the maskable interrupt for which acknowledgment is to be enabled" is set to
argument intno.
The following shows the basic form of service call “ena_int“ in C.

- Internal processing of service call "ena_int"
Service call ena_int is a routine dedicated to maskable interrupt acknowledge processing, which is extracted as a
target-dependent module, for enabling acknowledgment of maskable interrupt.
Therefore, note the following points when coding service call “ena_int“.

- Coding method
Code service call "ena_int" using C or assembly language.
When coding in C, they can be coded in the same manner as ordinary functions coded.
When coding in assembly language, code them according to the calling rules prescribed in the compiler used.

- Stack switching
The RX850V4 does not perform the processing related to stack switching when passing control to service call
ena_int. When using the system stack specified in Basic information, the code regarding stack switching must
therefore be written in service call ena_int.

- Service call issuance
To quickly complete processing for manipulating the maskable interrupt acknowledgment status, issuance of
service calls is prohibited during processing of service call ena_int.

The following lists processing that should be executed in service call "ena_int".

- Manipulation of the interrupt control register xxICn or the interrupt mask flag xxMKn of the interrupt mask register
IMRm to enable acknowledgment of a maskable interrupt corresponding to the exception code

- Returning control to the processing program that issued service call ena_int

#include <kernel.h> /*Standard header file definition*/

void _kernel_usr_ena_int (INTNO intno)
{
 /* */

 return; /*Terminate service call "ena_int"*/
}

CHAPTER 11 INTERRUPT MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 143

11.2.3 Interrupt mask setting processing (overwrite setting)
This is a routine dedicated to interrupt mask pattern processing, which is extracted as a target-dependent module, for

setting the interrupt mask pattern specified by the relevant user-own function parameter to the interrupt control register
xxICn or interrupt mask flag xxMKn of the interrupt mask register IMRm. It is called when service call unl_cpu, iunl_cpu,
chg_ims, or ichg_ims is issued from the processing program.

- Basic form of interrupt mask setting processing (overwrite setting)
Code interrupt mask setting processing (overwrite setting) by using the void type function (function name:
_kernel_usr_set_intmsk) that has one VP type argument.
The pointer that indicates the area where the interrupt mask pattern to be set is stored is set to argument p_intms.
The following shows the basic form of coding interrupt mask setting processing (overwrite setting) in C.

- Processing performed during interrupt mask setting processing (overwrite setting)
This is routine dedicated to interrupt mask pattern processing, which is extracted as a target-dependent module, for
setting the interrupt mask pattern specified by a parameter to the interrupt control register xxICn or interrupt mask flag
xxMKn of the interrupt mask register IMRm. It is called when service call unl_cpu, iunl_cpu, chg_ims, or ichg_ims is
issued from the processing program. Therefore, note the following points when coding interrupt mask setting
processing (overwrite setting).

- Coding method
Code interrupt mask setting processing (overwrite setting) using C or assembly language.
When coding in C, they can be coded in the same manner as ordinary functions coded.
When coding in assembly language, code them according to the calling rules prescribed in the compiler used.

- Stack switching
The RX850V4 does not perform the processing related to stack switching when passing control to interrupt mask
setting processing (overwrite setting). When using the system stack specified in Basic information, the code
regarding stack switching must therefore be written in interrupt mask setting processing (overwrite setting).

- Service call issuance
To quickly complete processing for setting the interrupt mask pattern, issuance of service calls is prohibited
during interrupt mask setting processing (overwrite setting).

The following lists processing that should be executed in interrupt mask setting processing (overwrite setting).

- Interrupt mask pattern setting extracted as a target-dependent module to set the interrupt mask pattern specified
by the parameter to the interrupt control register xxICn or the interrupt mask flag xxMKn of the interrupt mask
register IMRm

- Returning control to the processing program that called interrupt mask setting processing (overwrite setting)

#include <kernel.h> /*Standard header file definition*/

void _kernel_usr_set_intmsk (VP p_intms)
{
 /* */ /*Interrupt mask setting processing */
 /*(overwrite setting)*/

 return;
}

CHAPTER 11 INTERRUPT MANAGEMENT FUNCTIONS

144 User’s Manual U20044EJ1V0UM

11.2.4 Interrupt mask setting processing (OR setting)
This is routine dedicated to interrupt mask pattern processing, which is extracted as a target-dependent module, for

ORing the interrupt mask pattern specified by the relevant user-own function parameter and the CPU interrupt mask
pattern (the values of interrupt control register xxICn or interrupt mask flag xxMKn of the interrupt mask register IMRm)
and storing the result to the interrupt mask flag xxMKn of the target register. It is called when service call loc_cpu or
iloc_cpu is issued from the processing program.

- Basic form of interrupt mask setting processing (OR setting)
Code interrupt mask setting processing (OR setting) by using the void type function (function name:
_kernel_usr_msk_intmsk) that has one VP type argument.
The pointer that indicates the area where the interrupt mask pattern to be set is stored is set to argument p_intms.
The following shows the basic form of coding interrupt mask setting processing (overwrite setting) in C.

- Processing performed during interrupt mask setting processing (OR setting)
This is routine dedicated to interrupt mask pattern processing, which is extracted as a target-dependent module, for
ORing the interrupt mask pattern specified by the relevant user-own function parameter and the CPU interrupt mask
pattern (the values of interrupt control register xxICn or interrupt mask flag xxMKn of the interrupt mask register
IMRm) and storing the result to the interrupt mask flag xxMKn of the target register. It is called when service call
loc_cpu or iloc_cpu is issued from the processing program. Therefore, note the following points when coding interrupt
mask setting processing (OR setting).

- Coding method
Code interrupt mask setting processing (OR setting) using C or assembly language.
When coding in C, they can be coded in the same manner as ordinary functions coded.
When coding in assembly language, code them according to the calling rules prescribed in the compiler used.

- Stack switching
The RX850V4 does not perform the processing related to stack switching when passing control to interrupt mask
setting processing (OR setting). When using the system stack specified in Basic information, the code regarding
stack switching must therefore be written in interrupt mask setting processing (OR setting).

- Service call issuance
To quickly complete processing for setting the interrupt mask pattern, issuance of service calls is prohibited
during interrupt mask setting processing (OR setting).

The following lists processing that should be executed in interrupt mask setting processing (OR setting).

- ORing of the interrupt mask pattern specified by the parameter and the CPU interrupt mask pattern (value of
interrupt control register xxICn or interrupt mask flag xxMKn of interrupt mask register IMRm) and storing the
result to the interrupt mask flag xxMKn of the target register

- Returning control to the processing program that called interrupt mask setting processing (OR setting)

#include <kernel.h> /*Standard header file definition*/

void _kernel_usr_msk_intmsk (VP p_intms)
{
 /* */ /*Interrupt mask setting processing */
 /*(OR setting)*/

 return;
}

CHAPTER 11 INTERRUPT MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 145

11.2.5 Interrupt mask acquire processing
This is a routine dedicated to interrupt mask pattern acquire processing, which is extracted as a target-dependent

module, for storing the CPU interrupt mask pattern (the values of interrupt control register xxICn or interrupt mask flag
xxMKn of the interrupt mask register IMRm) into the area specified by the relevant user-own function parameter. It is
called when service call loc_cpu, iloc_cpu, get_ims, or iget_ims is issued from the processing program.

- Basic form of interrupt mask acquire processing
Code interrupt mask acquire processing by using the void type function (function name: _kernel_usr_get_intmsk) that
has one VP type argument.
The pointer that indicates the area where the acquired interrupt mask pattern is stored is set to argument p_intms.
The following shows the basic form of coding interrupt mask acquire processing in C.

- Processing performed during interrupt mask acquire processing
This is a routine dedicated to interrupt mask pattern acquire processing, which is extracted as a target-dependent
module, for storing the CPU interrupt mask pattern (the values of interrupt control register xxICn or interrupt mask flag
xxMKn of the interrupt mask register IMRm) into the area specified by the relevant user-own function parameter. It is
called when service call loc_cpu, iloc_cpu, get_ims, or iget_ims is issued from the processing program. Therefore,
note the following points when coding interrupt mask acquire processing.

- Coding method
Code interrupt mask acquire processing using C or assembly language.
When coding in C, they can be coded in the same manner as ordinary functions coded.
When coding in assembly language, code them according to the calling rules prescribed in the compiler used.

- Stack switching
The RX850V4 does not perform the processing related to stack switching when passing control to interrupt mask
acquire processing. When using the system stack specified in Basic information, the code regarding stack
switching must therefore be written in interrupt mask acquire processing.

- Service call issuance
To quickly complete processing for acquiring the interrupt mask pattern, issuance of service calls is prohibited
during interrupt mask acquire processing.

The following lists processing that should be executed in interrupt mask acquire processing.

- Storing the CPU interrupt mask pattern (value of interrupt control register xxICn or interrupt mask flag xxMKn of
interrupt mask register IMRm) into the area specified by the parameter

- Returning control to the processing program that called interrupt mask acquire processing

#include <kernel.h> /*Standard header file definition*/

void _kernel_usr_get_intmsk (VP p_intms)
{
 /* */ /*Interrupt mask acquire processing*/

 return;
}

CHAPTER 11 INTERRUPT MANAGEMENT FUNCTIONS

146 User’s Manual U20044EJ1V0UM

11.3 User-Own Coding Module
To support various execution environments, the RX850V4 extracts from the interrupt management functions the

hardware-dependent processing (Interrupt entry processing) that is required to execute processing, as a user-own coding
module. This enhances portability for various execution environments and facilitates customization as well.

11.3.1 Interrupt entry processing
Interrupt entry processing is a routine dedicated to entry processing that is extracted as a user-own coding module to

assign instructions to branch to relevant processing (such as interrupt preprocessing or Directly Activated Interrupt
Handlers), to the handler address to which the CPU forcibly passes the control when an interrupt occurs.

Interrupt entry processing for interrupt handlers defined in Interrupt handler information during configuration is included
in the entry file created by executing the configurator for the system configuration file created during configuration. If
customization of interrupt entry processing is unnecessary, use of the relevant entry file therefore makes coding of
interrupt entry processing unnecessary.

- Basic form of interrupt entry processing
When coding an interrupt entry processing, assign processing to branch to the relevant processing (interrupt
preprocessing, Directly Activated Interrupt Handlers, etc.) to the handler address.
The following shows the basic form of interrupt entry processing in assembly.

- Internal processing of interrupt entry processing
Interrupt entry processing is a routine dedicated to entry processing that is called without RX850V4 intervention when
an interrupt occurs.
Therefore, note the following points when coding interrupt entry processing.

- Coding method
Code it in assembly language according to the calling rules prescribed in the compiler used.

- Stack switching
There is no stack that requires switching before executing interrupt entry processing. Coding regarding stack
switching is therefore not required in interrupt entry processing.

- Service call issuance
To achieve faster response for the processing corresponding to an interrupt occurred (Interrupt Handlers, Directly
Activated Interrupt Handlers, etc.), issuance of service calls is prohibited during interrupt entry processing.

The following lists processing that should be executed in interrupt entry processing.

- Setting of handler address

- Passing control to the relevant processing (interrupt preprocessing, Directly Activated Interrupt Handlers, etc.)

 --Processing to branch to interrupt preprocessing
 .section "sec_nam" --Handler address setting
 jr __kernel_int_entry --Branch to interrupt preprocessing

 --Processing to branch to directly activated interrupt handler
 .section "sec_nam" --Handler address setting
 jr _inthdr --Jump to directly activated interrupt handler

CHAPTER 11 INTERRUPT MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 147

11.4 Interrupt Handlers
The interrupt handler is a routine dedicated to interrupt servicing that is activated when an interrupt occurs.
The RX850V4 handles the interrupt handler as a non-task (module independent from tasks). Therefore, even if a task

with the highest priority in the system is being executed, the processing is suspended when an interrupt occurs, and the
control is passed to the interrupt handler.

The RX850V4 manages the states in which each interrupt handler may enter and interrupt handlers themselves, by
using management objects (interrupt handler control blocks) corresponding to interrupt handlers one-to-one.

The followinf shows a processing flow from when an interrupt occurs until the control is passed to the interrupt handler.

Figure 11-1 Processing Flow (Interrupt Handler)

11.4.1 Basic form of interrupt handlers
Code interrupt handlers by using the void type function that has no arguments.
The following shows the basic form of interrupt handlers in C.

11.4.2 Internal processing of interrupt handler
The RX850V4 executes "original pre-processing" when passing control to the interrupt handler, as well as "original post-

processing" when regaining control from the interrupt handler.
Therefore, note the following points when coding interrupt handlers.

- Coding method
Code interrupt handlers using C or assembly language.
When coding in C, they can be coded in the same manner as ordinary functions coded.
When coding in assembly language, code them according to the calling rules prescribed in the compiler used.

- Stack switching
The RX850V4 switches to the system stack specified in Basic information when passing control to an interrupt
handler, and switches to the relevant stack when returning control to the processing program for which a base clock
timer interrupt occurred. Coding regarding stack switching is therefore not required in interrupt handler processing.

- Service call issuance
The RX850V4 handles the interrupt handler as a "non-task".
Service calls that can be issued in interrupt handlers are limited to the service calls that can be issued from non-tasks.

Note 1 If a service call (isig_sem, iset_flg, etc.) accompanying dispatch processing (task scheduling processing) is
issued in order to quickly complete the processing in the interrupt handler during the interval until the
processing in the interrupt handler ends, the RX850V4 executes only processing such as queue
manipulation, counter manipulation, etc., and the actual dispatch processing is delayed until a return

#include <kernel.h> /*Standard header file definition*/

void inthdr (void)
{
 /* */

 return; /*Terminate interrupt handler*/
}

Interrupt

Interrupt entry processing Interrupt HandlersInterrupt preprocessing

CHAPTER 11 INTERRUPT MANAGEMENT FUNCTIONS

148 User’s Manual U20044EJ1V0UM

instruction is issued by the interrupt handler, upon which the actual dispatch processing is performed in
batch.

Note 2 For details on the valid issuance range of each service call, refer to Table 17-1 to Table 17-14.

- Acknowledgment of maskable interrupts (the ID flag of PSW)
When the handler starts, the acknowledgement of maskable interrupts is disabled (PSW ID flag is 1).
It is possible to change the maskable interrupt acknowledgement status from inside a process. The changed status is
not passed on when control shifts to the processing program after the task process ends.

Note When the process starts, ISPRn (bit corresponding to priority n of the interrupt) is 1.
When the process ends, ISPRn is cleared to 0.

11.4.3 Define interrupt handler
The RX850V4 supports the static registration of interrupt handlers only. They cannot be registered dynamically by

issuing a service call from the processing program.
Static interrupt handler registration means defining of interrupt handlers using static API "DEF_INH" in the system

configuration file.
For details about the static API "DEF_INH", refer to "18.5.11 Interrupt handler information".

11.5 Directly Activated Interrupt Handlers
The RX850V4 does not affect the operation of directly activated interrupt handlers.
The usage of directly activated interrupt handlers is the same as that of interrupts when no real-time OS, such as the

RX850V4, is used.
No service calls can be issued from directly activated interrupt handlers.
The stack is not switched when a directly activated interrupt handler is activated, so the stack that has been used since

an interrupt occurred is used as is.
To determine the size of all the task stacks and system stacks, allowances for the size used by directly activated

interrupt handlers must therefore be made.

CHAPTER 11 INTERRUPT MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 149

11.6 Maskable Interrupt Acknowledgement Status in Processing
Programs

The maskable interrupt acknowledgement status of V850 microcontrollers depends on the values of PSW.ID, xxMKn,
and ISPRn. See your hardware manual for details.

- PSW.ID
The ID flag of the program status word register (PSW).
Stores all maskable interrupt acknowledgement statuses.
0 means that all maskable interrupt acknowledgement is enabled. 1 means that all maskable interrupt
acknowledgement is disabled.
The initial status is determined separately for each processing program. See Table 11-1 for details.
It is possible to change this from within an RX850V4 processing program using an EI command, DI command, or the
like.

Table 11-1 Maskable Interrupt Acknowledgement Status upon Processing Program Startup

Note The status set by the user in PSW.ID before the task starts is the initial interrupt status set in the task-
information attributes. If maskable interrupts are enabled, it will be 0, and if they are disabled, it will be 1.

- xxMKn
This is the value of the Interrupt mask flag (xxMKn) of the interrupt control register (xxICn) assigned to each interrupt.
It stores each maskable interrupt acknowledgement status.
0 means that maskable interrupt acknowledgement is enabled. 1 means that maskable interrupt acknowledgement is
disabled.
This can be changed from within an RX850V4 processing program by such means as invoking the service calls
dis_int, ena_int, chg_ims, loc_cpu, unl_cpu.
The initial status setting must be coded in a system initialization process (e.g. boot handler or initialization routine).
The value of xxMKn cannot be manipulated while a processing program is running.

- ISPRn
This is the bit corresponding to interrupt priority level n of the in-service priority register (ISPR). It stores the priority
level of the maskable interrupt being acknowledged.
A value of 0 means that an interrupt request signals with priority n is not being acknowledged; 1 means that one is.
A bit value of 1 corresponds only to interrupt priority level n of the processing program that triggered the start of the
maskable interrupt (interrupt handler or directly activated interrupt handler). The value cannot be changed from within
a processing program.

Note Cyclic handlers are triggered by base clock timer interrupts, but ISPRn (bit corresponding to priority n of the
base clock timer interrupt) in that process is set to 0. Consequently, if the base clock timer interrupt itself or
an interrupt with lower priority than the base clock timer interrupt is sent during a cyclic handler process, then
it will be acknowledged.

Processing Program PSW.ID

Task Status set by user

Task exception handling routine Status from before startup passed on

Cyclic handler 0

Interrupt Handler 1

Directly Activated Interrupt Handler 1

Extended Service Call Routine Status from before startup passed on

CPU Exception Handler 1

Initialization Routine 1

Idle Routine 0

CHAPTER 11 INTERRUPT MANAGEMENT FUNCTIONS

150 User’s Manual U20044EJ1V0UM

11.7 Disable Interrupt
Acknowledgment of maskable interrupts is disabled by issuing the following service call from the processing program.

- dis_int
This service call disables acknowledgment of maskable interrupts corresponding to the exception code specified by
parameter intno.
If a maskable interrupt corresponding to the exception code specified by parameter intno occurs from when this
service call is issued until ena_int is issued, the RX850V4 delays branching to the relevant interrupt servicing
(interrupt handler) until ena_int is issued.
The following shows a processing flow when acknowledgment of maskable interrupts is disabled.

Figure 11-2 Disabling Acknowledgment of Maskable Interrupt

The following describes an example for coding this service call.

Note 1 The processing performed by this service call depends on the user execution environment, so it is extracted
as a target-dependent module and provided as sample source files.
In sample source files, manipulation for the interrupt control register xxICn and the interrupt mask flag
xxMKn of the interrupt mask register IMRm is coded as processing to disable acknowledgment of maskable
interrupt.

<rx_sample>\src\usr_disint.c

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 INTNO intno = 0x80; /*Declares and initializes variable*/

 /* */

 dis_int (intno); /*Disable interrupt*/

 /* */ /*Acknowledgment disabled*/

 ena_int (intno); /*Enable interrupt*/

 /* */ /*Acknowledgment enabled*/
}

Disable Interrupt

Enable Interrupt

Task

return

Interrupt

Interrupt handler

Delayed period

CHAPTER 11 INTERRUPT MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 151

Note 2 This service call does not perform queuing of disable requests. If this service call has already been issued
and acknowledgment of the corresponding maskable interrupt has been disabled, therefore, no processing
is performed but it is not handled as an error.

Note 3 The RX850V4 realizes the TIME MANAGEMENT FUNCTIONS by using base clock timer interrupts that
occur at constant intervals. If acknowledgment of the relevant base clock timer interrupt is disabled by
issuing this service call, the TIME MANAGEMENT FUNCTIONS may no longer operate normally.

CHAPTER 11 INTERRUPT MANAGEMENT FUNCTIONS

152 User’s Manual U20044EJ1V0UM

11.8 Enable Interrupt
Acknowledgment of maskable interrupts is enabled by issuing the following service call from the processing program.

- ena_int
This service call enables acknowledgment of maskable interrupts corresponding to the exception code specified by
parameter intno.
If a maskable interrupt corresponding to the exception code specified by parameter intno occurs from when dis_int is
issued until this service call is issued, the RX850V4 delays branching to the relevant interrupt servicing (interrupt
handler) until this service call is issued.
The following shows a processing flow when acknowledgment of maskable interrupts is enabled.

Figure 11-3 Enabling Acknowledgment of Maskable Interrupt

The following describes an example for coding this service call.

Note 1 The processing performed by this service call depends on the user execution environment, so it is extracted
as a target-dependent module and provided as sample source files.
In sample source files, manipulation for the interrupt control register xxICn and the interrupt mask flag
xxMKn of the interrupt mask register IMRm is coded as processing to enable acknowledgment of maskable
interrupt.

<rx_sample>\src\usr_enaint.c

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 INTNO intno = 0x80; /*Declares and initializes variable*/

 /* */

 dis_int (intno); /*Disable interrupt*/

 /* */ /*Acknowledgment disabled*/

 ena_int (intno); /*Enable interrupt*/

 /* */ /*Acknowledgment enabled*/
}

Disable Interrupt

Enable Interrupt

Task

return

Interrupt

Interrupt handler

Delayed period

CHAPTER 11 INTERRUPT MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 153

Note 2 This service call does not perform queuing of enable requests. If this service call has already been issued
and acknowledgment of the corresponding maskable interrupt has been enabled, therefore, no processing is
performed but it is not handled as an error.

CHAPTER 11 INTERRUPT MANAGEMENT FUNCTIONS

154 User’s Manual U20044EJ1V0UM

11.9 Change Interrupt Mask
The interrupt mask pattern can be changed by issuing the following service call from the processing program.

- chg_ims, ichg_ims
These service calls change the CPU interrupt mask pattern (value of interrupt control register xxICn or interrupt mask
flag xxMKn of interrupt mask register IMRm) to the state specified by parameter p_intms.
The following shows the meaning of values to be set (interrupt mask flag) to the area specified by p_intms.

0: Acknowledgment of maskable interrupts is enabled
1: Acknowledgment of maskable interrupts is disabled

The following describes an example for coding this service call.

Note 1 The internal processing (interrupt mask setting processing) performed by this service call depends on the
user execution environment, so it is extracted as a target-dependent module and provided as sample source
files.

<rx_sample>\src\usr_setmsk.c

Note 2 The RX850V4 realizes the TIME MANAGEMENT FUNCTIONS by using base clock timer interrupts that
occur at constant intervals. If acknowledgment of the relevant base clock timer interrupt is disabled by
issuing this service call, the TIME MANAGEMENT FUNCTIONS may no longer operate normally.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 UH intms[0x3]; /*Declares variable*/
 UH *p_intms; /*Declares variable*/

 intms[0x0] = 0x0000; /*Initializes variable*/
 intms[0x1] = 0x1014; /*Initializes variable*/
 intms[0x2] = 0x0021; /*Initializes variable*/
 p_intms = intms; /*Initializes variable*/

 /* */

 chg_ims (p_intms); /*Change interrupt mask*/

 /* */
}

CHAPTER 11 INTERRUPT MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 155

11.10 Reference Interrupt Mask
The interrupt mask pattern can be referenced by issuing the following service call from the processing program.

- get_ims, iget_ims
These service calls store the CPU interrupt mask pattern (value of interrupt control register xxICn or interrupt mask
flag xxMKn of interrupt mask register IMRm) into the area specified by parameter p_intms.
The following shows the meaning of values to be stored (interrupt mask flag) into the area specified by p_intms.

0: Acknowledgment of maskable interrupts is enabled
1: Acknowledgment of maskable interrupts is disabled

The following describes an example for coding this service call.

Note The internal processing (interrupt mask acquire processing) performed by this service call depends on the
user execution environment, so it is extracted as a target-dependent module and provided as sample source
files.

<rx_sample>\src\usr_getmsk.c

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 UH p_intms[0x3]; /*Declares variable*/

 /* */

 get_ims (p_intms); /*Reference interrupt mask*/

 /* */
}

CHAPTER 11 INTERRUPT MANAGEMENT FUNCTIONS

156 User’s Manual U20044EJ1V0UM

11.11 Non-Maskable Interrupts
Non-maskable interrupts are not subject to interrupt priority orders, so they are acknowledged prior to all kinds of

identifiable interrupts. In addition, they are acknowledged even when the interrupts are disabled (by setting the ID flag of
the program status word PSW to 1) in the CPU. That is, non-maskable interrupts are acknowledged even if the RX850V4
status is moved to the CPU locked state or maskable interrupt disabled state.

Note Interrupt handlers for non-maskable interrupts are exclude from the management targets of the RX850V4.
Issuance of service calls is therefore prohibited in interrupt handlers for non-maskable interrupts.

11.12 Base Clock Timer Interrupts
The RX850V4 realizes the TIME MANAGEMENT FUNCTIONS by using base clock timer interrupts that occur at

constant intervals.
If a base clock timer interrupt occurs, The RX850V4's time management interrupt handler is activated and executes

time-related processing (system time update, delayed wakeup/timeout of task, cyclic handler activation, etc.).

Note If acknowledgment of the relevant base clock timer interrupt is disabled by issuing loc_cpu, iloc_cpu or dis_int,
the TIME MANAGEMENT FUNCTIONS may no longer operate normally.

11.13 Multiple Interrupts
In the RX850V4, occurrence of an interrupt in an interrupt handler is called "multiple interrupts".
Execution of interrupt handler is started in the interrupt disabled state (the ID flag of the program status word PSW is set

to 1). To generate multiple interrupts, processing to cancel the interrupt disabled state (such as issuing of EI instruction)
must therefore be coded in the interrupt handler explicitly.

The following shows a processing flow when multiple interrupts occur.

Figure 11-4 Multiple Interrupts

Task Interrupt handler A

return

Interrupt handler B

return

Interrupt

Interrupt

Calling EI instruction

Calling DI instruction

CHAPTER 12 SERVICE CALL MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 157

CHAPTER 12 SERVICE CALL MANAGEMENT FUNC-
TIONS

This chapter describes the service call management functions performed by the RX850V4.

12.1 Outline
The RX850V4's service call management function provides the function for manipulating the extended service call

routine status, such as registering and calling of extended service call routines.

12.2 Extended Service Call Routines
This is a routine to which user-defined functions are registered in the RX850V4, and will never be executed unless it is

called explicitly, using service calls provided by the RX850V4.
The RX850V4 positions extended service call routines as extensions of the processing program that called the

extended service call routine.
The RX850V4 manages interrupt handlers themselves, by using management objects (extended service call routine

control blocks) corresponding to extended service call routines one-to-one.

12.2.1 Basic form extended service call routines
Code extended service call routines by using the ER_UINT type argument that has three VP_INT type arguments.
Transferred data specified when a call request (cal_svc or ical_svc) is issued is set to arguments par1, par2, and par3.
The following shows the basic form of extended service call routines in C.

#include <kernel.h> /*Standard header file definition*/

ER_UINT svcrtn (VP_INT par1, VP_INT par2, VP_INT par3)
{
 /* */

 return (ER_UINT ercd); /*Terminate extended service call routine*/
}

CHAPTER 12 SERVICE CALL MANAGEMENT FUNCTIONS

158 User’s Manual U20044EJ1V0UM

12.2.2 Internal processing of extended service call routine
The RX850V4 executes the original extended service call routine pre-processing when passing control from the

processing program that issued a call request to an extended service call routine, as well as the original extended service
call routine post-processing when returning control from the extended service call routine to the processing program.

Therefore, note the following points when coding extended service call routines.

- Coding method
Code extended service call routines using C or assembly language.
When coding in C, they can be coded in the same manner as ordinary functions coded.
When coding in assembly language, code them according to the calling rules prescribed in the compiler used.

- Stack switching
The RX850V4 positions extended service call routines as extensions of the processing program that called the
extended service call routine. When passing control to an extended service call routine, stack switching processing is
therefore not performed.

- Service call issuance
The RX850V4 positions extended service call routines as extensions of the processing program that called the
extended service call routine. Service calls that can be issued in extended service call routines depend on the type
(task or non-task) of the processing program that called the extended service call routine.

Note For details on the valid issuance range of each service call, refer to Table 17-1 to Table 17-14.

- Acknowledgment of maskable interrupts (the ID flag of PSW)
The maskable interrupt acknowledgement status depends on the processing program that called the extended
service call routine.
Upon startup, the maskable interrupt acknowledgement status is inherited from the processing program that called
the extended service call routine.
It is possible to change the maskable interrupt acknowledgement status from inside a process. After the process
ends, the changed status is maintained when control returns to the processing program that called the extended
service call routine.

12.3 Define Extended Service Call Routine
The RX850V4 supports the static registration of extended service call routines only. They cannot be registered

dynamically by issuing a service call from the processing program.
Static extended service call routine registration means defining of extended service call routines using static API

"CRE_SVC" in the system configuration file.
For details about the static API "DEF_SVC", refer to "18.5.13 Extended service call routine information".

CHAPTER 12 SERVICE CALL MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 159

12.4 Invoke Extended Service Call Routine
Extended service call routines can be called by issuing the following service call from the processing program.

- cal_svc, ical_svc
These service calls call the extended service call routine specified by parameter fncd.
The following describes an example for coding this service call.

Note Extended service call routines that can be called using this service call are the routines whose transferred
data total is less than four.

#include <kernel.h> /*Standard header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{
 ER_UINT ercd; /*Declares variable*/
 FN fncd = 1; /*Declares and initializes variable*/
 VP_INT par1 = 123; /*Declares and initializes variable*/
 VP_INT par2 = 456; /*Declares and initializes variable*/
 VP_INT par3 = 789; /*Declares and initializes variable*/

 /* */

 /*Invoke extended service call routine*/
 ercd = cal_svc (fncd, par1, par2, par3);

 if (ercd != E_RSFN) {
 /* */ /*Normal termination processing*/
 }

 /* */
}

CHAPTER 13 SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS

160 User’s Manual U20044EJ1V0UM

CHAPTER 13 SYSTEM CONFIGURATION MANAGE-
MENT FUNCTIONS

This chapter describes the system configuration management functions performed by the RX850V4.

13.1 Outline
The RX850V4 provides as system configuration management functions related to the CPU exception handlers activated

when a CPU exception is occurred.

13.2 User-Own Coding Module
To support various execution environments, the RX850V4 extracts from the system management functions the

hardware-dependent processing (CPU exception entry processing, Initialization routine) that is required to execute
processing, as a user-own coding module. This enhances portability for various execution environments and facilitates
customization as well.

13.2.1 CPU exception entry processing
A routine dedicated to entry processing that is extracted as a user-own coding module to assign instructions to branch

to relevant processing (such as CPU exception preprocessing or Boot processing), to the handler address to which the
CPU forcibly passes the control when a CPU exception occurs.

CPU exception handling for CPU exception handlers defined in CPU exception handler information during configuration
is included in the entry file created by executing the configurator for the system configuration file created during
configuration. If customization of CPU exception entry processing is unnecessary, use of the relevant entry file therefore
makes coding of CPU exception entry processing unnecessary.

- Basic form of CPU exception entry processing
When coding a CPU exception entry processing, assign processing to branch to the relevant processing (CPU
exception preprocessing, Boot processing, etc.) to the handler address.
The following shows the basic form of CPU exception entry processing in assembly.

- Internal processing of CPU exception entry processing
CPU exception entry processing is a routine dedicated to entry processing that is called without RX850V4 interven-
tion when a CPU exception occurs.
Therefore, note the following points when coding CPU exception entry processing.

- Coding method
Code it in assembly language according to the calling rules prescribed in the compiler used.

- Stack switching
There is no stack that requires switching before executing CPU exception entry processing. Coding regarding
stack switching is therefore not required in CPU exception entry processing.

- Service call issuance
To achieve faster response for the processing corresponding to a CPU exception occurred (Boot processing,
CPU Exception Handlers, etc.), issuance of service calls is prohibited during CPU exception entry processing.

 -- Processing braches to CPU exception preprocessing
 .section "sec_nam" --Handler address setting
 jr __kernel_exc_entry --Branch to CPU exception preprocessing

 --Processing branches to Boot processing
 .section "sec_nam" --Handler address setting
 jr __boot --Branch to Boot processing

CHAPTER 13 SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 161

The following lists processing that should be executed in CPU exception entry processing.

- Setting of handler address

- External label declaration

- Passing control to the relevant processing (Boot processing, CPU Exception Handlers, etc.)

CHAPTER 13 SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS

162 User’s Manual U20044EJ1V0UM

13.2.2 Initialization routine
The initialization routine is a routine dedicated to initialization processing that is extracted as a user-own coding module

to initialize the hardware dependent on the user execution environment (such as the peripheral controller), and is called
from the Kernel Initialization Module.

The RX850V4 manages the states in which each initialization routine may enter and initialization routines themselves,
by using management objects (initialization routine control blocks) corresponding to initialization routines one-to-one.

The following shows a processing flow from when a reset interrupt occurs until the control is passed to the task.

Figure 13-1 Processing Flow (Initialization Routine)

- Basic form of initialization routines
Code initialization routines by using the void type function that has one VP_INT type argument.
Extended information specified in Initialization routine information is set to argument exinf.
The following shows the basic form of initialization routine in C.

#include <kernel.h> /*Standard header file definition*/

void inirtn (VP_INT exinf)
{
 /* */

 return; /*Terminate initialization routine*/
}

Reset interrupt

Boot processing

Kernel Initialization Module

Initialization routine

SCHEDULER Tasks

CPU exception entry processing

CHAPTER 13 SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 163

- Internal processing of initialization routine
The RX850V4 executes the original initialization routine pre-processing when passing control from the Kernel
Initialization Module to an initialization routine, as well as the original initialization routine post-processing when
returning control from the initialization routine to the Kernel Initialization Module.
Therefore, note the following points when coding initialization routines.

- Coding method
Code initialization routines using C or assembly language.
When coding in C, they can be coded in the same manner as ordinary functions coded.
When coding in assembly language, code them according to the calling rules prescribed in the compiler used.

- Stack switching
The RX850V4 switches to the system stack specified in Basic information when passing control to an initialization
routine, and switches to the relevant stack when returning control to the Kernel Initialization Module. Coding
regarding stack switching is therefore not required in initialization routines.

- Service call issuance
The RX850V4 positions initialization routines as tasks. In initialization routines, therefore, only "service calls that
can be issued in the task, except for service calls that may cause status change" can be issued.

Note For details on the valid issuance range of each service call, refer to Table 17-1 to Table 17-14.

The following lists processing that should be executed in initialization routine.

- Initialization of internal units

- Initialization of peripheral controllers

- Copying of ROM area data to RAM area

- Returning of control to Kernel Initialization Module

Note To initialize hardware used by the RX850V4 for time management (such as timers and controllers), the
setting must be made so as to generate base clock timer interrupts at the interval of Base clock interval:
clkcyc, defined in Basic information when creating a system configuration file.

- Acknowledgment of maskable interrupts (the ID flag of PSW)
When a process starts, maskable interrupt acknowledgement is disabled (PSW ID flag set to 1).
It is not possible to change the maskable interrupt acknowledgement status from within the process. If it is changed,
subsequent behavior is not guaranteed.

13.2.3 Define initialization routine
The RX850V4 supports the static registration of initialization routines only. They cannot be registered dynamically by

issuing a service call from the processing program.
Static initialization routine registration means defining of initialization routines using static API "ATT_INI" in the system

configuration file.
For details about the static API "ATT_INI", refer to "18.5.14 Initialization routine information".

CHAPTER 13 SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS

164 User’s Manual U20044EJ1V0UM

13.3 CPU Exception Handlers
The RX850V4 handles the CPU exception handler as a non-task (module independent from tasks). Therefore, even if a

task with the highest priority in the system is being executed, the processing is suspended when a CPU exception occurs,
and the control is passed to the CPU exception handler.

The RX850V4 manages the states in which each CPU exception handler may enter and CPU exception handlers
themselves, by using management objects (CPU exception handler control blocks) corresponding to CPU exception
handlers one-to-one.

The following shows a processing from when a CPU exception occurs until the control is passed to a CPU exception
handler.

Figure 13-2 Processing Flow (CPU Exception Handler)

13.3.1 Basic form of CPU exception handlers
Code CPU exception handlers by using the void type function that has no arguments.
The following shows the basic form of CPU exception handlers in C.

#include <kernel.h> /*Standard header file definition*/

void exchdr (void)
{
 /* */

 return; /*Terminate CPU exception handler*/
}

CPU exception

CPU Exception HandlersCPU exception entry processing CPU exception preprocessing

CHAPTER 13 SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS

User’s Manual U20044EJ1V0UM 165

13.3.2 Internal processing of CPU exception handler
The RX850V4 executes "original pre-processing" when passing control to the CPU exception handler, as well as

"original post-processing" when regaining control from the CPU exception handler.
Therefore, note the following points when coding CPU exception handlers.

- Coding method
Code CPU exception handlers using C or assembly language.
When coding in C, they can be coded in the same manner as ordinary functions coded.
When coding in assembly language, code them according to the calling rules prescribed in the compiler used.

- Stack switching
The RX850V4 switches to the system stack specified in Basic information when passing control to a CPU exception
handler, and switches to the relevant stack when returning control to the processing program for which a CPU
exception occurred. Coding regarding stack switching is therefore not required in CPU exception handler processing.

- Service call issuance
The RX850V4 handles the CPU exception handler as a "non-task".
Service calls that can be issued in CPU exception handlers are limited to the service calls that can be issued from
non-tasks.

Note 1 If a service call (isig_sem, iset_flg, etc.) accompanying dispatch processing (task scheduling processing) is
issued in order to quickly complete the processing in the CPU exception handler during the interval until the
processing in the CPU exception handler ends, the RX850V4 executes only processing such as queue
manipulation and the actual dispatch processing is delayed until a return instruction is issued, upon which
the actual dispatch processing is performed in batch.
The RX850V4 supports the static registration of CPU exception handlers only. They cannot be registered
dynamically by issuing a service call from the processing program.
Static CPU exception handler registration means defining of CPU exception handlers using static API
"DEF_EXC" in the system configuration file.

Note 2 For details on the valid issuance range of each service call, refer to Table 17-1 to Table 17-14.

- Acknowledgment of maskabel interrupts (the ID flag of PSW)
When the handler starts, the acknowledgement of maskable interrupts is disabled (PSW ID flag is 1).
It is not possible to change the maskable interrupt acknowledgement status from inside a process.

13.4 Define CPU Exception Handler
Static ready queue creation means defining of ready queues using static API "CRE_PRI" in the system configuration

file.
For details about the static API "DEF_EXC", refer to "18.5.12 CPU exception handler information".

CHAPTER 14 SCHEDULER

166 User’s Manual U20044EJ1V0UM

CHAPTER 14 SCHEDULER

This chapter describes the scheduler of the RX850V4.

14.1 Outline
The scheduling functions provided by the RX850V4 consist of functions manage/decide the order in which tasks are

executed by monitoring the transition states of dynamically changing tasks, so that the CPU use right is given to the
optimum task.

14.2 Drive Method
The RX850V4 employs the Event-driven system in which the scheduler is activated when an event (trigger) occurs.

- Event-driven system
Under the event-driven system of the RX850V4, the scheduler is activated upon occurrence of the events listed below
and dispatch processing (task scheduling processing) is executed.

- Issuance of service call that may cause task state transition

- Issuance of instruction for returning from non-task (cyclic handler, interrupt handler, etc.)

- Occurrence of clock interrupt used when achieving TIME MANAGEMENT FUNCTIONS

- vsta_sch issuance

14.3 Scheduling Method
As task scheduling methods, the RX850V4 employs the Priority level method, which uses the priority level defined for

each task, and the FCFS method, which uses the time elapsed from the point when a task becomes subject to RX850V4
scheduling.

- Priority level method
A task with the highest priority level is selected from among all the tasks that have entered an executable state
(RUNNING state or READY state), and given the CPU use right.

- FCFS method
The same priority level can be defined for multiple tasks in the RX850V4. Therefore, multiple tasks with the highest
priority level, which is used as the criterion for task selection under the Priority level method, may exist
simultaneously.
To remedy this, dispatch processing (task scheduling processing) is executed on a first come first served (FCFS)
basis, and the task for which the longest interval of time has elapsed since it entered an executable state (READY
state) is selected as the task to which the CPU use right is granted.

CHAPTER 14 SCHEDULER

User’s Manual U20044EJ1V0UM 167

14.3.1 Ready queue
The RX850V4 uses a "ready queue" to implement task scheduling.
The ready queue is a hash table that uses priority as the key, and tasks that have entered an executable state (READY

state or RUNNING state) are queued in FIFO order. Therefore, the scheduler realizes the RX850V4's scheduling method
(priority level or FCFS) by executing task detection processing from the highest priority level of the ready queue upon
activation, and upon detection of queued tasks, giving the CPU use right to the first task of the proper priority level.

The following shows the case where multiple tasks are queued to a ready queue.

Figure 14-1 Implementation of Scheduling Method (Priority Level Method or FCFS Method)

- Create ready queue
In the RX850V4, the method of creating a ready queue is limited to "static creation”.
Ready queues therefore cannot be created dynamically using a method such as issuing a service call from a
processing program.
Static ready queue creation means defining of maximum priority using static API "MAX_PRI" in the system
configuration file.
For details about the basic information "MAX_PRI", refer to "18.4.2 Basic information".

Priority: High

Task A
RUNNING state

Task B
READY state

Task C
READY state

Ready queue

Priority: Low

tskpri
tskpri + 1

tskpri - 1

tskpri + n
tskpri + n + 1

tskpri + n - 1

1

maxtpri

CHAPTER 14 SCHEDULER

168 User’s Manual U20044EJ1V0UM

14.4 Scheduling Lock Function
The RX850V4 provides the scheduling lock function for manipulating the scheduler status explicitly from the processing

program and disabling/enabling dispatch processing.
The following shows a processing flow when using the scheduling lock function.

Figure 14-2 Scheduling Lock Function

The scheduling lock function can be implemented by issuing the following service call from the processing program.

loc_cpu, iloc_cpu, unl_cpu, iunl_cpu, dis_dsp, ena_dsp

Task A
Priority: High

Task B
Priority: Low

return

Interrupt

Interrupt handler

Delayed period

Lock the CPU

Unlock the CPU

Delayed period

Release semaphore resource

Disable Dispatching

Enable Dispatching

Acquire semaphore resource

CHAPTER 14 SCHEDULER

User’s Manual U20044EJ1V0UM 169

14.5 Idle Routine
The idle routine is a routine dedicated to idle processing that is extracted as a user-own coding module to utilize the

standby function provided by the CPU (to achieve the low-power consumption system), and is called from the scheduler
when there no longer remains a task subject to scheduling by the RX850V4 (task in the RUNNING or READY state) in the
system.

The RX850V4 manages the states in which each idle routine may enter and idle routines themselves, by using
management objects (idle routine control blocks) corresponding to idle routines one-to-one.

14.5.1 Basic form of idle routine
Code idle routines by using the void type function that has no arguments.
The following shows the basic form of idle routine in C.

14.5.2 Internal processong of idle routine
The RX850V4 executes "original pre-processing" when passing control to the idle routine, as well as "original post-

processing" when regaining control from the idle routine.
Therefore, note the following points when coding idle routines.

- Coding method
Code idle routines using C or assembly language.
When coding in C, they can be coded in the same manner as ordinary functions coded.
When coding in assembly language, code them according to the calling rules prescribed in the compiler used.

- Stack switching
The RX850V4 switches to the system stack specified in Basic information when passing control to an idle routine.
Coding regarding stack switching is therefore not required in idle routines.

- Service call issuance
The RX850V4 prohibits issuance of service calls in idle routines.

- Acknowledgment of maskable interrupts (the ID flag of PSW)
When a process starts, maskable interrupt acknowledgement is enabled (PSW ID flag set to 0).
It is possible to change the maskable interrupt acknowledgement status from within the process.
After the process terminates, the maskable interrupt acknowledgement status is not inherited by subsequent
processes.

- Processing loop
After the idle routine's process terminates, the routine is resumed from the beginning. When the routine is resumed, it
does not inherit the status of the previous idle routine (stack pointer and maskable interrupt acknowledgement
status).

The following lists processing that should be executed in idle routines.

- Effective use of standby function provided by the CPU

#include <kernel.h> /*Standard header file definition*/

void idlrtn (void)
{
 /* */

 return; /*Terminate idle routine*/
}

CHAPTER 14 SCHEDULER

170 User’s Manual U20044EJ1V0UM

14.6 Define Idle Routine
The RX850V4 supports the static registration of idle routines only. They cannot be registered dynamically by issuing a

service call from the processing program.
Static idle routine registration means defining of idle routines using static API "VATT_IDL" in the system configuration

file.
For details about the static API "VATT_IDL", refer to "18.5.15 Idle routine information".

Note If Idle routine information is not defined, the default idle routine (function name: _kernel_default_idlrtn) is
registered during configuration.

14.7 Scheduling in Non-Tasks
If a service call (isig_sem, iset_flg, etc.) accompanying dispatch processing (task scheduling processing) is issued in

order to quickly complete the processing in the non-task (cyclic handler, interrupt handler, etc.) during the interval until the
processing in the non-task ends, the RX850V4 executes only processing such as queue manipulation and the actual
dispatch processing is delayed until a return instruction is issued, upon which the actual dispatch processing is performed
in batch.

The following shows a processing flow when a service call accompanying dispatch processing is issued in a non-task.

Figure 14-3 Scheduling in Non-Tasks

Task A
Priority: High

Task B
Priority: Low

Delayed period

Non-task

return

Interrupt

Release semaphore resource

Acquire semaphore resource

CHAPTER 15 SYSTEM INITIALIZATION ROUTINE

User’s Manual U20044EJ1V0UM 171

CHAPTER 15 SYSTEM INITIALIZATION ROUTINE

This chapter describes the system initialization routine performed by the RX850V4.

15.1 Outline
The system initialization routine of the RX850V4 provides system initialization processing, which is required from the

reset interrupt output until control is passed to the task.
The following shows a processing flow from when a reset interrupt occurs until the control is passed to the task.

Figure 15-1 Processing Flow (System Initialization)

Reset interrupt

Boot processing

Kernel Initialization Module

Initialization routine

SCHEDULER Tasks

CPU exception entry processing

CHAPTER 15 SYSTEM INITIALIZATION ROUTINE

172 User’s Manual U20044EJ1V0UM

15.2 User-Own Coding Module
To support various execution environments, the RX850V4 extracts from the system initialization processing the

hardware-dependent processing (Boot processing) that is required to execute processing, as a user-own coding module.
This enhances portability for various execution environments and facilitates customization as well.

15.2.1 Boot processing
This is a routine dedicated to initialization processing that is extracted as a user-own coding module to initialize the

minimum required hardware for the RX850V4 to perform processing, and is called from CPU exception entry processing.

- Basic form of boot processing
Code boot processing by using the void type function that has no arguments.
The following shows the basic form of boot processing in assembly.

- Internal processing of boot processing
Boot processing is a routine dedicated to initialization processing that is called from CPU exception entry processing,
without RX850V4 intervention.
Therefore, note the following points when coding boot processing.

- Coding method
Code boot processing using C or assembly language.
When coding in C, they can be coded in the same manner as ordinary functions coded.
When coding in assembly language, code them according to the calling rules prescribed in the compiler used.

- Stack switching
Setting of stack pointer SP is not executed at the point when control is passed to boot processing.
To use a boot processing dedicated stack, setting of stack pointer SP must therefore be coded at the beginning
of the boot processing.

- Service call issuance
Execution of the Kernel Initialization Module is not performed when boot processing is started. Issuance of
service calls is therefore prohibited during boot processing.

The following lists processing that should be executed in boot processing.

- Setting of global pointer GP and text pointer TP

- Setting of element pointer EP

- Setting stack pointer SP

- Initialization of internal units and peripheral controllers

- Initialization of memory area without initial value

- Setting the start address of the system information table (SIT) to r6

- Passing of control to Kernel Initialization Module

Note 1 Global pointer gp, text pointer tp and element pointer ep must be set at the beginning of boot processing.
Setting of stack pointer sp is required only when it uses the boot processing stack during boot processing.

Note 2 Set the data section base address to element pointer ep.

#include <kernel.h> /*Standard header file definition*/

 .text
 .align 0x4
 .globl __boot
__boot :
 .extern __kernel_sit

 /* */

 mov #__kernel_sit, r6 /*SIT start address setting*/
 jarl __kernel_start, lp /*Jump to Kernel Initialization Module*/

CHAPTER 15 SYSTEM INITIALIZATION ROUTINE

User’s Manual U20044EJ1V0UM 173

15.3 Kernel Initialization Module
The kernel initialization module is a dedicated initialization processing routine provided for initializing the minimum

required software for the RX850V4 to perform processing, and is called from Boot processing.
The following processing is executed in the kernel initialization module.

- Securement and initialization of management areas

- Management objects
System information table
System base table
Ready queue
Interrupt mask information table
Interrupt mask control table
Kernel initialization routine information table
Kernel common routine information block
version information block
task information block
Basic task control block
Extended task control block
Task exception handling routine control block
Semaphore information block
Semaphore control block
Eventflag information block
Eventflag control block
Data queue information block
Data queue control block
Mailbox information block
Mailbox control block
Mutex information block
Mutex control block
Fixed-sized memory pool information block
Fixed-sized memory pool control block
Variable-sized memory pool information block
Variable-sized memory pool control block
Cyclic handler information block
Cyclic handler control block
Exztended service call routine information block
Interrupt handler information block
Interrupt handler ID table
Initialization routine information block
Idle routine information block

- Stack
System stack
Task stack

- Buffer
Data queue

- Memory pool
Fixed-sized memory pool
Variable-sized memory pool

- Initializing system time

- Registering timer handler

- Registering initialization routine

- Registering idle routine

- Calling of initialization routine

- Passing of control to scheduler

CHAPTER 15 SYSTEM INITIALIZATION ROUTINE

174 User’s Manual U20044EJ1V0UM

Note The kernel initialization module is included in system initialization processing provided by the RX850V4. The
user is therefore not required to code the kernel initialization module.
If the kernel initialization module is terminated abnormally, the values shown below will be set to register LP.

Macro Value Meaning

E_CFG_VER 1 version number is invalid.

E_CFG_CPU 2 processor type is invalid.

E_CFG_CC 3 The C compiler package type is invalid.

E_CFG_REG 4 register mode is invalid.

E_CFG_NOMEM 5 Insufficient memory

CHAPTER 16 DATA MACROS

User’s Manual U20044EJ1V0UM 175

CHAPTER 16 DATA MACROS

This chapter describes the data types, data structures and macros, which are used when issuing service calls provided
by the RX850V4.

The definition of the macro and data structures is performed by each header file stored in <rx_root>\inc850.

Note <rx_root> indicates the installaion folder of RX850V4.
The default folder is “C:\Program Files\NEC Electronics CubeSuite\CubeSuite\RX850V4\Vx.xx.

16.1 Data Types
The Following lists the data types of parameters specified when issuing a service call.
Macro definition of the data type is performed by header file <rx_root>\inc850\rx850v4\types.h, which is called from

ITRON general definitions header file <rx_root>\inc850\itron.h.

Table 16-1 Data Types

Macro Data Type Description

B signed char Signed 8-bit integer

H signed short Signed 16-bit integer

W signed long Signed 32-bit integer

UB unsigned char Unsigned 8-bit integer

UH unsigned short Unsigned 16-bit integer

UW unsigned long Unsigned 32-bit integer

VB signed char 8-bit value with unknown data type

VH signed short 16-bit value with unknown data type

VW signed long 32-bit value with unknown data type

VP void * Pointer to unknown data type

FP void (*) Processing unit start address (pointer to a function)

INT signed int Signed 32-bit integer

UINT unsigned int Unsigned 32-bit integer

BOOL signed long Boolean value (TRUE or FALSE)

FN signed short Function code

ER signed long Error code

ID signed short Object ID number

ATR unsigned short Object attribute

STAT unsigned short Object state

MODE unsigned short Service call operational mode

PRI signed short Priority

SIZE unsigned long Memory area size (in bytes)

TMO signed long Timeout (in millisecond)

RELTIM unsigned long Relative time (in millisecond)

VP_INT signed int Pointer to unknown data type, or signed 32-bit integer

ER_BOOL signed long Error code, or boolean value (TRUE or FALSE)

ER_ID signed long Error code, or object ID number

CHAPTER 16 DATA MACROS

176 User’s Manual U20044EJ1V0UM

ER_UINT signed int Error code, or signed 32-bit integer

TEXPTN unsigned int Task exception code, or pending exception code

FLGPTN unsigned int Bit pattern

INTNO unsigned short Exception code

EXCNO unsigned short Exception code

Macro Data Type Description

CHAPTER 16 DATA MACROS

User’s Manual U20044EJ1V0UM 177

16.2 Packet Formats
This section explains the data structures (task state packet, semaphore state packet, or the like) used when issuing a

service call provided by the RX850V4.

16.2.1 Task state packet
The following shows task state packet T_RTSK used when issuing ref_tsk or iref_tsk.
Definition of task state packet T_RTSK is performed by header file <rx_root>\inc850\rx850v4\packet.h, which is called

from standard header file <rx_root>\inc850\kernel.h.

The following shows details on task state packet T_RTSK.

- tskstat
Stores the current state.

TTS_RUN: RUNNING state
TTS_RDY: READY state
TTS_WAI: WAITING state
TTS_SUS: SUSPENDED state
TTS_WAS: WAITING-SUSPENDED state
TTS_DMT: DORMANT state

- tskpri
Stores the current priority.

- tskbpri
System-reserved area.

- tskwait
Stores the reason for waiting.

TTW_SLP: Sleeping state
TTW_DLY: Delayed state
TTW_SEM: WAITING state for a semaphore resource
TTW_FLG: WAITING state for an eventflag
TTW_SDTQ: Sending WAITING state for a data queue
TTW_RDTQ: Receiving WAITING state for a data queue
TTW_MBX: Receiving WAITING state for a mailbox
TTW_MTX: WAITING state for a mutex
TTW_MPF: WAITING state for a fixed-sized memory block
TTW_MPL: WAITING state for a variable-sized memory block

- wobjid
Stores the object ID number for which the task waiting.

typedef struct t_rtsk {
 STAT tskstat; /*Current state*/
 PRI tskpri; /*Current priority*/
 PRI tskbpri; /*Reserved for future use*/
 STAT tskwait; /*Reason for waiting*/
 ID wobjid; /*Object ID number for which the task waiting*/
 TMO lefttmo; /*Remaining time until timeout*/
 UINT actcnt; /*Activation request count*/
 UINT wupcnt; /*Wakeup request count*/
 UINT suscnt; /*Suspension count*/
 ATR tskatr; /*Attribute*/
 PRI itskpri; /*Initial priority*/
 ID memid; /*Reserved for future use*/
} T_RTSK;

CHAPTER 16 DATA MACROS

178 User’s Manual U20044EJ1V0UM

- lefttmo
Stores the remaining time until timeout (in millisecond).

- actcnt
Stores the activation request count.

- wupcnt
Stores the wakeup request count.

- suscnt
Stores the suspension count.

- tskatr
Stores the attribute (coding languag, initial activation state, etc.).

Coding languag (bit 0)
TA_HLNG: Start a task through a C language interface.
TA_ASM: Start a task through an assembly language interface.

Initial activation state (bit 1)
TA_ACT: Task is activated after the creation.

Task type (bit 2)
TA_RSTR: Restricted task

Initial preemption state (bit 14)
TA_DISPREEMPT: Preemption is disabled at task activation.

Initial interrupt state (bit 15)
TA_ENAINT: All interrupts are enabled at task activation.
TA_DISINT: All interrupts are disabled at task activation.

[Structure of tskatr]

- itskpri
Stores the initial priority.

- memid
System-reserved area.

0121415

TA_DISPREEMPT

TA_ACT
TA_ENAINT
TA_DISINT : 1

TA_HLNG : 0
TA_ASM : 1

: 1

TA_RSTR : 1

: 1

: 0

CHAPTER 16 DATA MACROS

User’s Manual U20044EJ1V0UM 179

16.2.2 Task state packet (simplified version)
The following shows task state packet (simplified version) T_RTST used when issuing ref_tst or iref_tst.
Definition of task state packet (simplified version) T_RTST is performed by header file

<rx_root>\inc850\rx850v4\packet.h, which is called from standard header file <rx_root>\inc850\kernel.h.

The following shows details on task state packet (simplified version) T_RTST.

- tskstat
Stores the current state.

TTS_RUN: RUNNING state
TTS_RDY: READY state
TTS_WAI: WAITING state
TTS_SUS: SUSPENDED state
TTS_WAS: WAITING-SUSPENDED state
TTS_DMT: DORMANT state

- tskwait
Stores the reason for waiting.

TTW_SLP: Sleeping state
TTW_DLY: Delayed state
TTW_SEM: WAITING state for a semaphore resource
TTW_FLG: WAITING state for an eventflag
TTW_SDTQ: Sending WAITING state for a data queue
TTW_RDTQ: Receiving WAITING state for a data queue
TTW_MBX: Receiving WAITING state for a mailbox
TTW_MTX: WAITING state for a mutex
TTW_MPF: WAITING state for a fixed-sized memory block
TTW_MPL: WAITING state for a variable-sized memory block

typedef struct t_rtst {
 STAT tskstat; /*Current state*/
 STAT tskwait; /*Reason for waiting*/
} T_RTST;

CHAPTER 16 DATA MACROS

180 User’s Manual U20044EJ1V0UM

16.2.3 Task exception handling routine state packet
The following shows task exception handling routine state packet T_RTEX used when issuing ref_tex or iref_tex.
Definition of task exception handling routine state packet T_RTEX is performed by header file

<rx_root>\inc850\rx850v4\packet.h, which is called from standard header file <rx_root>\inc850\kernel.h.

The following shows details on task exception handling routine state packet T_RTEX.

- texstat
Stores the current state.

TTEX_ENA: Task exception enable state
TTEX_DIS: Task exception disable state

- pndptn
Stores the pending exception code.
The pending exception code means the result of pending processing (OR of task exception codes) performed if
multiple task exception handling requests are issued from when an exception handling request is issued by ras_tex or
iras_tex until the target task moves to the RUNNING state.

Note 0x0 is stored if no exception handling request has been issued by ras_tex or iras_tex.

- texatr
Stores the attribute (coding languag).

Coding languag (bit 0)
TA_HLNG: Start a task exception handling routine through a C language interface.
TA_ASM: Start a task exception handling routine through an assembly language interface.

[Structure of texatr]

typedef struct t_rtex {
 STAT texstat; /*Current state*/
 TEXPTN pndptn; /*Pending exception code*/
 ATR texatr; /*Attribute*/
} T_RTEX;

015

TA_HLNG : 0
TA_ASM : 1

CHAPTER 16 DATA MACROS

User’s Manual U20044EJ1V0UM 181

16.2.4 Semaphore state packet
The following shows semaphore state packet T_RSEM used when issuing ref_sem or iref_sem.
Definition of semaphore state packet T_RSEM is performed by header file <rx_root>\inc850\rx850v4\packet.h, which is

called from standard header file <rx_root>\inc850\kernel.h.

The following shows details on semaphore state packet T_RSEM.

- wtskid
Stores whether a task is queued to the semaphore wait queue.

TSK_NONE: No applicable task
Value: ID number of the task at the head of the wait queue

- semcnt
Stores the current resource count.

- sematr
Stores the attribute (queuing method).

Task queuing method (bit 0)
TA_TFIFO: Task wait queue is in FIFO order.
TA_TPRI: Task wait queue is in task priority order.

[Structure of sematr]

- maxsem
Stores the maximum resource count.

typedef struct t_rsem {
 ID wtskid; /*Existence of waiting task*/
 UINT semcnt; /*Current resource count*/
 ATR sematr; /*Attribute*/
 UINT maxsem; /*Maximum resource count*/
} T_RSEM;

015

TA_TFIFO : 0
TA_TPRI : 1

CHAPTER 16 DATA MACROS

182 User’s Manual U20044EJ1V0UM

16.2.5 Eventflag state packet
The following shows eventflag state packet T_RFLG used when issuing ref_flg or iref_flg.
Definition of eventflag state packet T_RFLG is performed by header file <rx_root>\inc850\rx850v4\packet.h, which is

called from standard header file <rx_root>\inc850\kernel.h.

The following shows details on eventflag state packet T_RFLG.

- wtskid
Stores whether a task is queued to the event flag wait queue.

TSK_NONE: No applicable task
Value: ID number of the task at the head of the wait queue

- flgptn
Stores the Current bit pattern.

- flgatr
Stores the attribute (queuing method, queuing count, etc.).

Task queuing method (bit 0)
TA_TFIFO: Task wait queue is in FIFO order.
TA_TPRI: Task wait queue is in task priority order.

Queuing count (bit 1)
TA_WSGL: Only one task is allowed to be in the WAITING state for the eventflag.
TA_WMUL: Multiple tasks are allowed to be in the WAITING state for the eventflag.

Bit pattern clear (bit 2)
TA_CLR: Bit pattern is cleared when a task is released from the WAITING state for eventflag.

[Structure of flgatr]

typedef struct t_rflg {
 ID wtskid; /*Existence of waiting task*/
 FLGPTN flgptn; /*Current bit pattern*/
 ATR flgatr; /*Attribute*/
} T_RFLG;

015

TA_TFIFO : 0
TA_TPRI : 1

TA_WSGL : 0
TA_WMUL : 1

TA_CLR : 1

12

CHAPTER 16 DATA MACROS

User’s Manual U20044EJ1V0UM 183

16.2.6 Data queue state packet
The following shows data queue state packet T_RDTQ used when issuing ref_dtq or iref_dtq.
Definition of data queue state packet T_RDTQ is performed by header file <rx_root>\inc850\rx850v4\packet.h, which is

called from standard header file <rx_root>\inc850\kernel.h.

The following shows details on data queue state packet T_RDTQ.

- stskid
Stores whether a task is queued to the transmission wait queue of the data queue.

TSK_NONE: No applicable task
Value: ID number of the task at the head of the wait queue

- rtskid
Stores whether a task is queued to the reception wait queue of the data queue.

TSK_NONE: No applicable task
Value: ID number of the task at the head of the wait queue

- sdtqcnt
Stores the number of data elements in data queue.

- dtqatr
Stores the attribute (queuing method).

Task queuing method (bit 0)
TA_TFIFO: Task wait queue is in FIFO order.
TA_TPRI: Task wait queue is in task priority order.

[Structure of dtqatr]

- dtqcnt
Stores the data count.

- memid
System-reserved area.

typedef struct t_rdtq {
 ID stskid; /*Existence of tasks waiting for data transmission*/
 ID rtskid; /*Existence of tasks waiting for data reception*/
 UINT sdtqcnt; /*number of data elements in the data queue*/
 ATR dtqatr; /*Attribute*/
 UINT dtqcnt; /*Data count*/
 ID memid; /*Reserved for future use*/
} T_RDTQ;

015

TA_TFIFO : 0
TA_TPRI : 1

CHAPTER 16 DATA MACROS

184 User’s Manual U20044EJ1V0UM

16.2.7 Message packet
The following shows message packet T_MSG/T_MSG_PRI used when issuing snd_mbx, isnd_mbx, rcv_mbx,

prcv_mbx, iprcv_mbx or trcv_mbx.
Definition of message packet T_MSG/T_MSG_PRI is performed by header file <rx_root>\inc850\rx850v4\packet.h,

which is called from standard header file <rx_root>\inc850\kernel.h.

[Message packet for TA_MFIFO attribute]

[Message packet for TA_MPRI attribute]

The following shows details on message packet T_RTSK/T_MSG_PRI.

- msgnext, msgque
System-reserved area.

- msgpri
Stores the message priority.

Note 1 In the RX850V4, a message having a smaller priority number is given a higher priority.

Note 2 Values that can be specified as the message priority level are limited to the range defined in Mailbox
information (Maximum message priority: maxmpri) when the system configuration file is created.

typedef struct t_msg {
 struct t_msg *msgnext; /*Reserved for future use*/
} T_MSG;

typedef struct t_msg_pri {
 struct t_msg msgque; /*Reserved for future use*/
 PRI msgpri; /*Message priority*/
} T_MSG_PRI;

CHAPTER 16 DATA MACROS

User’s Manual U20044EJ1V0UM 185

16.2.8 Mailbox state packet
The following shows mailbox state packet T_RMBX used when issuing ref_mbx or iref_mbx.
Definition of mailbox state packet T_RMBX is performed by header file <rx_root>\inc850\rx850v4\packet.h, which is

called from standard header file <rx_root>\inc850\kernel.h.

The following shows details on mailbox state packet T_RMBX.

- wtskid
Stores whether a task is queued to the mailbox wait queue.

TSK_NONE: No applicable task
Value: ID number of the task at the head of the wait queue

- pk_msg
Stores whether a message is queued to the mailbox wait queue.

NULL: No applicable message
Value: Start address of the message packet at the head of the wait queue

- mbxatr
Stores the attribute (queuing method).

Task queuing method (bit 0)
TA_TFIFO: Task wait queue is in FIFO order.
TA_TPRI: Task wait queue is in task priority order.

Message queuing method (bit 1)
TA_MFIFO: Message wait queue is in FIFO order.
TA_MPRI: Message wait queue is in message priority order.

[Structure of mbxatr]

typedef struct t_rmbx {
 ID wtskid; /*Existence of waiting task*/
 T_MSG *pk_msg; /*Existence of waiting message*/
 ATR mbxatr; /*Attribute*/
} T_RMBX;

TA_TFIFO

0115

TA_TPRI

TA_MFIFO
TA_MPRI

: 0
: 1

: 0
: 1

CHAPTER 16 DATA MACROS

186 User’s Manual U20044EJ1V0UM

16.2.9 Mutex state packet
The following shows mutex state packet T_RMTX used when issuing ref_mtx or iref_mtx.
Definition of mutex state packet T_RMTX is performed by header file <rx_root>\inc850\rx850v4\packet.h, which is

called from standard header file <rx_root>\inc850\kernel.h.

The following shows details on mutex state packet T_RMTX.

- htskid
Stores whether a task that is locking a mutex exists.

TSK_NONE: No applicable task
Value: ID number of the task locking the mutex

- wtskid
Stores whether a task is queued to the mutex wait queue.

TSK_NONE: No applicable task
Value: ID number of the task at the head of the wait queue

- mtxatr
Stores the attribute (queuing method).

Task queuing method (bit 0 to 1)
TA_TFIFO: Task wait queue is in FIFO order.
TA_TPRI: Task wait queue is in task priority order.

[Structure of mtxatr]

- ceilpri
System-reserved area.

typedef struct t_rmtx {
 ID htskid; /*Existence of locked mutex*/
 ID wtskid; /*Existence of waiting task*/
 ATR mtxatr; /*Attribute*/
 PRI ceilpri; /*Reserved for future use*/
} T_RMTX;

015

TA_TFIFO : 00
TA_TPRI : 01

1

CHAPTER 16 DATA MACROS

User’s Manual U20044EJ1V0UM 187

16.2.10 Fixed-sized memory pool state packet
The following shows fixed-sized memory pool state packet T_RMPF used when issuing ref_mpf or iref_mpf.
Definition of fixed-sized memory pool state packet T_RMPF is performed by header file

<rx_root>\inc850\rx850v4\packet.h, which is called from standard header file <rx_root>\inc850\kernel.h.

The following shows details on fixed-sized memory pool state packet T_RMPF.

- wtskid
Stores whether a task is queued to the fixed-size memory pool.

TSK_NONE: No applicable task
Value: ID number of the task at the head of the wait queue

- fblkcnt
Stores the number of free memory blocks.

- mpfatr
Stores the attribute (queuing method).

Task queuing method (bit 0)
TA_TFIFO: Task wait queue is in FIFO order.
TA_TPRI: Task wait queue is in task priority order.

[Structure of mpfatr]

- memid
System-reserved area.

typedef struct t_rmpf {
 ID wtskid; /*Existence of waiting task*/
 UINT fblkcnt; /*Number of free memory blocks*/
 ATR mpfatr; /*Attribute*/
 ID memid; /*Reserved for future use*/
} T_RMPF;

015

TA_TFIFO : 0
TA_TPRI : 1

CHAPTER 16 DATA MACROS

188 User’s Manual U20044EJ1V0UM

16.2.11 Variable-sized memory pool state packet
The following shows variable-sized memory pool state packet T_RMPL used when issuing ref_mpl or iref_mpl.
Definition of variable-sized memory pool state packet T_RMPL is performed by header file

<rx_root>\inc850\rx850v4\packet.h, which is called from standard header file <rx_root>\inc850\kernel.h.

The following shows details on variable-sized memory pool state packet T_RMPL.

- wtskid
Stores whether a task is queued to the variable-size memory pool wait queue.

TSK_NONE: No applicable task
Value: ID number of the task at the head of the wait queue

- fmplsz
Stores the total size of free memory blocks (in bytes).

- fblksz
Stores the maximum memory block size available (in bytes).

- mplatr
Stores the attribute (queuing method).

Task queuing method (bit 0)
TA_TFIFO: Task wait queue is in FIFO order.
TA_TPRI: Task wait queue is in task priority order.

[Structure of mplatr]

- memid
System-reserved area.

typedef struct t_rmpl {
 ID wtskid; /*Existence of waiting task*/
 SIZE fmplsz; /*Total size of free memory blocks*/
 UINT fblksz; /*Maximum memory block size available*/
 ATR mplatr; /*Attribute*/
 ID memid; /*Reserved for future use*/
} T_RMPL;

015

TA_TFIFO : 0
TA_TPRI : 1

CHAPTER 16 DATA MACROS

User’s Manual U20044EJ1V0UM 189

16.2.12 System time packet
The following shows system time packet SYSTIM used when issuing set_tim, iset_tim, get_tim or iget_tim.
Definition of system time packet SYSTIM is performed by header file <rx_root>\inc850\rx850v4\packet.h, which is called

from standard header file <rx_root>\inc850\kernel.h.

The following shows details on system time packet SYSTIM.

- ltime
Stores the system time (lower 32 bits).

- utime
Stores the system time (higher 16 bits).

typedef struct t_systim {
 UW ltime; /*System time (lower 32 bits)*/
 UH utime; /*System time (higher 16 bits)*/
} SYSTIM;

CHAPTER 16 DATA MACROS

190 User’s Manual U20044EJ1V0UM

16.2.13 Cyclic handler state packet
The following shows cyclic handler state packet T_RCYC used when issuing ref_cyc or iref_cyc.
Definition of cyclic handler state packet T_RCYC is performed by header file <rx_root>\inc850\rx850v4\packet.h, which

is called from standard header file <rx_root>\inc850\kernel.h.

The following shows details on cyclic handler state packet T_RCYC.

- cycstat
Store the current state.

TCYC_STP: Non-operational state
TCYC_STA: Operational state

- lefttim
Stores the time left before the next activation (in millisecond).

- cycatr
Stores the attribute (coding languag, initial activation state, etc.).

Coding languag (bit 0)
TA_HLNG: Start a cyclic handler through a C language interface.
TA_ASM: Start a cyclic handler through an assembly language interface.

Initial activation state (bit 1)
TA_STA: Cyclic handlers is in an operational state after the creation.

Existence of saved activation phases (bit 2)
TA_PHS: Cyclic handler is activated preserving the activation phase.

[Structure of cycatr]

- cyctim
Stores the activation cycle (in millisecond).

- cycphs
Stores the activation phase (in millisecond).
In the RX850V4, the initial activation phase means the relative interval from when generation of s cyclic handler is
completed until the first activation request is issued.

typedef struct t_rcyc {
 STAT cycstat; /*Current state*/
 RELTIM lefttim; /*Time left before the next activation*/
 ATR cycatr; /*Attribute*/
 RELTIM cyctim; /*Activation cycle*/
 RELTIM cycphs; /*Activation phase*/
} T_RCYC;

015 1

TA_STA

TA_PHS

: 1

: 1

2

TA_HLNG : 0
TA_ASM : 1

CHAPTER 16 DATA MACROS

User’s Manual U20044EJ1V0UM 191

16.3 Data Macros
This section explains the data macros (for current state, processing program attributes, or the like) used when issuing a

service call provided by the RX850V4.

16.3.1 Current state
The following lists the management object current states acquired by issuing service calls (ref_tsk, ref_sem, or the like).
Macro definition of the current state is performed by header file <rx_root>\inc850\rx850v4\option.h, which is called from

ITRON general definitions header file <rx_root>\inc850\itron.h.

Table 16-2 Current State

Macro Value Description

TTS_RUN 0x01 RUNNING state

TTS_RDY 0x02 READY state

TTS_WAI 0x04 WAITING state

TTS_SUS 0x08 SUSPENDED state

TTS_WAS 0x0c WAITING-SUSPENDED state

TTS_DMT 0x10 DORMANT state

TTEX_ENA 0x00 Task exception enable state

TTEX_DIS 0x01 Task exception disable state

TCYC_STP 0x00 Non-operational state

TCYC_STA 0x01 Operational state

TTW_SLP 0x0001 Sleeping state

TTW_DLY 0x0002 Delayed state

TTW_SEM 0x0004 WAITING state for a semaphore resource

TTW_FLG 0x0008 WAITING state for an eventflag

TTW_SDTQ 0x0010 Sending WAITING state for a data queue

TTW_RDTQ 0x0020 Receiving WAITING state for a data queue

TTW_MBX 0x0040 Receiving WAITING state for a mailbox

TTW_MTX 0x0080 WAITING state for a mutex

TTW_MPF 0x2000 WAITING state for a fixed-sized memory pool

TTW_MPL 0x4000 WAITING state for a variable-sized memory pool

TSK_NONE 0 No applicable task

CHAPTER 16 DATA MACROS

192 User’s Manual U20044EJ1V0UM

16.3.2 Processing program attributes
The following lists the processing program attributes acquired by issuing service calls (ref_tsk, ref_cyc, or the like).
Macro definition of attributes is performed by header file<rx_root>\inc850\rx850v4\option.h, which is called from ITRON

general definitions header file <rx_root>\inc850\itron.h.

Table 16-3 Processing Program Attributes

16.3.3 Management object attributes
The following lists the management object attributes acquired by issuing service calls (ref_sem, ref_flg, or the like).
Macro definition of attributes is performed by header file<rx_root>\inc850\rx850v4\option.h, which is called from ITRON

general definitions header file <rx_root>\inc850\itron.h.

Table 16-4 Management Object Attributes

Macro Value Description

TA_HLNG 0x0000 Start a processing unit through a C language interface.

TA_ASM 0x0001 Start a processing unit through an assembly language
interface.

TA_ACT 0x0002 Task is activated after the creation.

TA_RSTR 0x0004 Restricted task.

TA_DISPREEMPT 0x4000 Preemption is disabled at task activation.

TA_ENAINT 0x0000 All interrupts are enabled at task activation.

TA_DISINT 0x8000 All interrupts are disabled at task activation.

TA_STA 0x0002 Cyclic handlers is in an operational state after the cre-
ation.

TA_PHS 0x0004 Cyclic handler is activated preserving the activation
phase.

Macro Value Description

TA_TFIFO 0x0000 Task wait queue is in FIFO order.

TA_TPRI 0x0001 Task wait queue is in task priority order.

TA_WSGL 0x0000 Only one task is allowed to be in the WAITING state for
the eventflag.

TA_WMUL 0x0002 Multiple tasks are allowed to be in the WAITING state for
the eventflag.

TA_CLR 0x0004 Bit pattern is cleared when a task is released from the
WAITING state for eventflag.

TA_MFIFO 0x0000 Message wait queue is in FIFO order.

TA_MPRI 0x0002 Message wait queue is in message priority order.

CHAPTER 16 DATA MACROS

User’s Manual U20044EJ1V0UM 193

16.3.4 Service call operating modes
The following lists the service call operating modes used when issuing service calls (act_tsk, wup_tsk, or the like).
Macro definition of operating modes is performed by header file<rx_root>\inc850\rx850v4\option.h, which is called from

ITRON general definitions header file <rx_root>\inc850\itron.h.

Table 16-5 Service Call Operating Modes

16.3.5 Return value
The following lists the values returned from service calls.
Macro definition of the return value is performed by header file <rx_root>\inc850\rx850v4\errcd.h,option.h, which is

called from standard header file <rx_root>\inc850\kernel.h.

Table 16-6 Return Value

Macro Value Description

TSK_SELF 0 Invoking task

TPRI_INI 0 Initial priority

TMO_FEVR -1 Waiting forever

TMO_POL 0 Polling

TWF_ANDW 0x00 AND waiting condition

TWF_ORW 0x01 OR waiting condition

TPRI_SELF 0 Current priority of the Invoking task

Macro Value Description

E_OK 0 Normal completion

E_NOSPT -9 Unsupportted function

E_RSFN -10 Invalid function code

E_RSATR -11 Invalid attribute

E_PAR -17 Parameter error

E_ID -18 Invalid ID number

E_CTX -25 Context error.

E_ILUSE -28 Illegal service call use

E_NOMEM -33 Insufficient memory

E_OBJ -41 Object state error

E_NOEXS -42 Non-existent object

E_QOVR -43 Queue overflow

E_RLWAI -49 Forced release from the WAITING state

E_TMOUT -50 Polling failure or timeout

FALSE 0 False

TRUE 1 True

CHAPTER 16 DATA MACROS

194 User’s Manual U20044EJ1V0UM

16.3.6 Kernel configuration constants
The configuration constants are listed below.
The macro definitions of the configuration constants are made in the header file

<rx_root>\inc850\rx850v4\component.h, which is called from <rx_root>\inc850\itron.h. Note, however, that some
numerical values with variable macro definitions are defined in the system information header file, in accordance with the
settings in the system configuration file.

Table 16-7 Priority Range

Table 16-8 Version Information

Table 16-9 Maximum Queuing Count

Table 16-10 Number of Bits in Bit Patterns

Table 16-11 Base Clock Interval

Macro Value Description

TMIN_TPRI 1 Minimum task priority

TMAX_TPRI variable Maximum task priority

TMIN_MPRI 1 Minimum message priority

TMAX_MPRI 0x7ffff(32767) Maximum message priority

Macro Value Description

TKERNEL_MAKER 0x0117 Kernel maker code

TKERNEL_PRID 0x2230 Identfication number of kernel

TKERNEL_SPVER 0x5401 Version number of the ITRON Specification

TKERNEL_PRVER 0x0430 Version number of the kernel

Macro Value Description

TMAX_ACTCNT 127 Maximum task activation request count

TMAX_WUPCNT 127 Maximum task wakeup request count

TMAX_SUSCNT 127 Maximum suspension count

Macro Value Description

TBIT_TEXPTN 32 Number of bits in the task exception code

TBIT_FLGPTN 32 Number of bits in the an eventflag

Macro Value Description

TIC_NUME variable base clock interval numerator

TIC_DENO 1 base clock interval denominator

CHAPTER 16 DATA MACROS

User’s Manual U20044EJ1V0UM 195

16.4 Conditional Compile Macro
The header file of the RX850V4 is conditionally compiled by the following macros.
Define macros (compiler's activation option -D, or the like) according to the use environment.

Table 16-12 Conditional Compile Macro

Classification Macro Description

C compiler package __nec__ The CA850/CX is used.

CPU type

__v850__ V850 core

__v850e__ V850ES/V850E1/V850E2 core

__v850e2m__ V850E2M core

Register mode

__r22__ 22-register mode

__r26__ 26-register mode

__r32__ 32-regiter mode

CHAPTER 17 SERVICE CALLS

196 User’s Manual U20044EJ1V0UM

CHAPTER 17 SERVICE CALLS

This chapter describes the service calls supported by the RX850V4.

17.1 Outline
The service calls provided by the RX850V4 are service routines provided for indirectly manipulating the resources

(tasks, semaphores, etc.) managed by the RX850V4 from a processing program.
The service calls provided by the RX850V4 are listed below by management module.

- Task management functions

act_tsk, iact_tsk, can_act, ican_act, sta_tsk, ista_tsk, ext_tsk, ter_tsk, chg_pri, ichg_pri, get_pri, iget_pri, ref_tsk,
iref_tsk, ref_tst, iref_tst

- Task dependent synchronization functions

slp_tsk, tslp_tsk, wup_tsk, iwup_tsk, can_wup, ican_wup, rel_wai, irel_wai, sus_tsk, isus_tsk, rsm_tsk, irsm_tsk,
frsm_tsk, ifrsm_tsk, dly_tsk

- Task exception handling functions

ras_tex, iras_tex, dis_tex, ena_tex, sns_tex, ref_tex, iref_tex

- Synchronization and communication functions (semaphores)

wai_sem, pol_sem, ipol_sem, twai_sem, sig_sem, isig_sem, ref_sem, iref_sem

- Synchronization and communication functions (eventflags)

set_flg, iset_flg, clr_flg, iclr_flg, wai_flg, pol_flg, ipol_flg, twai_flg, ref_flg, iref_flg

- Synchronization and communication functions (data queues)

snd_dtq, psnd_dtq, ipsnd_dtq, tsnd_dtq, fsnd_dtq, ifsnd_dtq, rcv_dtq, prcv_dtq, iprcv_dtq, trcv_dtq, ref_dtq, iref_dtq

- Synchronization and communication functions (mailboxes)

snd_mbx, isnd_mbx, rcv_mbx, prcv_mbx, iprcv_mbx, trcv_mbx, ref_mbx, iref_mbx

- Extended synchronization and communication functions (mutexes)

loc_mtx, ploc_mtx, tloc_mtx, unl_mtx, ref_mtx, iref_mtx

- Memory pool management functions (fixed-sized memory pools)

get_mpf, pget_mpf, ipget_mpf, tget_mpf, rel_mpf, irel_mpf, ref_mpf, iref_mpf

- Memory pool management functions (variable-sized memory pools)

get_mpl, pget_mpl, ipget_mpl, tget_mpl, rel_mpl, irel_mpl, ref_mpl, iref_mpl

- Time management functions

set_tim, iset_tim, get_tim, iget_tim, sta_cyc, ista_cyc, stp_cyc, istp_cyc, ref_cyc, iref_cyc

- System state management functions

rot_rdq, irot_rdq, vsta_sch, get_tid, iget_tid, loc_cpu, iloc_cpu, unl_cpu, iunl_cpu, sns_loc, dis_dsp, ena_dsp,
sns_dsp, sns_ctx, sns_dpn

- Interrupt management functions

dis_int, ena_int, chg_ims, ichg_ims, get_ims, iget_ims

- Service call management functions

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 197

cal_svc, ical_svc

17.1.1 Call service call
The method for calling service calls from processing programs coded either in C or assembly language is described

below.

- C language
By calling using the same method as for normal C functions, service call parameters are handed over to the RX850V4
as arguments and the relevant processing is executed.

- Assembly language
When issuing a service call from a processing program coded in assembly language, set parameters and the return
address according to the calling rules prescribed in the C compiler used as the development environment and call the
function using the jarl instruction; the service call parameters are then transferred to the RX850V4 as arguments and
the relevant processing will be executed.

Note To call the service calls provided by the RX850V4 from a processing program, the header files listed below
must be coded (include processing).

kernel.h: Standard header file

CHAPTER 17 SERVICE CALLS

198 User’s Manual U20044EJ1V0UM

17.2 Explanation of Service Call
The following explains the service calls supported by the RX850V4, in the format shown below.

Outline

DescriptionParameterI/O

C format

Explanation

1)

2)

3)

4)

5)

6) Return value

Parameter(s)

DescriptionValueMacro

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 199

1) Name
Indicates the name of the service call.

2) Outline
Outlines the functions of the service call.

3) C format
Indicates the format to be used when describing a service call to be issued in C language.

4) Parameter(s)
Service call parameters are explained in the following format.

A) Parameter classification
 I: Parameter input to RX850V4.
O: Parameter output from RX850V4.

B) Parameter data type

C) Description of parameter

5) Explanation
Explains the function of a service call.

6) Return value
Indicates a service call's return value using a macro and value.

A) Macro of return value

B) Value of return value

C) Description of return value

I/O Parameter Description

A B C

Macro Value Description

A B C

CHAPTER 17 SERVICE CALLS

200 User’s Manual U20044EJ1V0UM

17.2.1 Task management functions
The following shows the service calls provided by the RX850V4 as the task management functions.

Table 17-1 Task Management Functions

Service Call Function Origin of Service Call

act_tsk Activate task (queues an activation request) Task, Restricted task, Non-task,
Initialization routine

iact_tsk Activate task (queues an activation request) Task, Restricted task, Non-task,
Initialization routine

can_act Cancel task activation requests Task, Restricted task, Non-task,
Initialization routine

ican_act Cancel task activation requests Task, Restricted task, Non-task,
Initialization routine

sta_tsk Activate task (does not queue an activation request) Task, Restricted task, Non-task,
Initialization routine

ista_tsk Activate task (does not queue an activation request) Task, Restricted task, Non-task,
Initialization routine

ext_tsk Terminate invoking task Task, Restricted task

ter_tsk Terminate task Task, Restricted task, Initializa-
tion routine

chg_pri Change task priority Task, Restricted task, Non-task,
Initialization routine

ichg_pri Change task priority Task, Restricted task, Non-task,
Initialization routine

get_pri Reference task priority Task, Restricted task, Non-task,
Initialization routine

iget_pri Reference task priority Task, Restricted task, Non-task,
Initialization routine

ref_tsk Reference task state Task, Restricted task, Non-task,
Initialization routine

iref_tsk Reference task state Task, Restricted task, Non-task,
Initialization routine

ref_tst Reference task state (simplified version) Task, Restricted task, Non-task,
Initialization routine

iref_tst Reference task state (simplified version) Task, Restricted task, Non-task,
Initialization routine

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 201

act_tsk
iact_tsk

Outline
Activate task (queues an activation request).

C format
ER act_tsk (ID tskid);
ER iact_tsk (ID tskid);

Parameter(s)

Explanation
These service calls move a task specified by parameter tskid from the DORMANT state to the READY state.
As a result, the target task is queued at the end on the ready queue corresponding to the initial priority and becomes

subject to scheduling by the RX850V4.
If the target task has been moved to a state other than the DORMANT state when this service call is issued, this service

call does not move the state but increments the activation request counter (by added 0x1 to the wakeup request counter).

Note 1 The activation request counter managed by the RX850V4 is configured in 7-bit widths. If the number of
activation requests exceeds the maximum count value 127 as a result of issuing this service call, the counter
manipulation processing is therefore not performed but "E_QOVR" is returned.

Note 2 Extended information specified in Task information is passed to the task activated by issuing these service
calls.

Return value

I/O Parameter Description

I ID tskid;

ID number of the task to be activated.

TSK_SELF: Invoking task.
Value: ID number of the task to be activated.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

- When this service call was issued from a non-task, TSK_SELF was
specified tskid.

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified task is not registered.

CHAPTER 17 SERVICE CALLS

202 User’s Manual U20044EJ1V0UM

E_QOVR -43
Queue overflow.

- Activation request count exceeded 127.

Macro Value Description

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 203

can_act
ican_act

Outline
Cancel task activation requests.

C format
ER_UINT can_act (ID tskid);
ER_UINT ican_act (ID tskid);

Parameter(s)

Explanation
This service call cancels all of the activation requests queued to the task specified by parameter tskid (sets the

activation request counter to 0x0).
When this service call is terminated normally, the number of cancelled activation requests is returned.

Note This service call does not perform status manipulation processing but performs the setting of activation request
counter. Therefore, the task does not move from a state such as the READY state to the DORMANT state.

Return value

I/O Parameter Description

I ID tskid;

ID number of the task for cancelling activation requests.

TSK_SELF: Invoking task.
Value: ID number of the task for cancelling activation requests.

Macro Value Description

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

- When this service call was issued from a non-task, TSK_SELF was specified
tskid.

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified task is not registered.

- 0

Normal completion.

- Activation request count is 0.

- Specified task is in the DORMANT state.

Positive value - Normal completion (activation request count).

CHAPTER 17 SERVICE CALLS

204 User’s Manual U20044EJ1V0UM

sta_tsk
ista_tsk

Outline
Activate task (does not queue an activation request).

C format
ER sta_tsk (ID tskid, VP_INT stacd);
ER ista_tsk (ID tskid, VP_INT stacd);

Parameter(s)

Explanation
These service calls move a task specified by parameter tskid from the DORMANT state to the READY state.
As a result, the target task is queued at the end on the ready queue corresponding to the initial priority and becomes

subject to scheduling by the RX850V4.
This service call does not perform queuing of activation requests. If the target task is in a state other than the

DORMANT state, the status manipulation processing for the target task is therefore not performed but "E_OBJ" is returned
Specify for parameter stacd the extended information transferred to the target task.

Return value

I/O Parameter Description

I ID tskid; ID number of the task to be activated.

I VP_INT stacd; Start code (extended information) of the task.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_OBJ -41
Object state error

- Specified task is not in the DORMANT state.

E_NOEXS -42
Non-existent object.

- Specified task is not registered.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 205

ext_tsk

Outline
Terminate invoking task.

C format
void ext_tsk (void);

Parameter(s)
None.

Explanation
This service call moves an invoking task from the RUNNING state to the DORMANT state.
As a result, the invoking task is unlinked from the ready queue and excluded from the RX850V4 scheduling subject.
If an activation request has been queued to the invoking task (the activation request counter is not set to 0x0) when this

service call is issued, this service call moves the task from the RUNNING state to the DORMANT state, decrements the
wakeup request counter (by subtracting 0x1 from the wakeup request counter), and then moves the task from the
DORMANT state to the READY state.

Note 1 When moving a task from the RUNNING state to the DORMANT state, this service call initializes the following
information to values that are set during task creation.

- Current priority

- Wakeup request count

- Suspension count

- interrupt state

If an invoking task has locked a mutex, the locked state is released at the same time (processing equivalent to
unl_mtx).

Note 2 When the return instruction is issued in a task, the same processing as ext_tsk is performed.

Return value
None.

CHAPTER 17 SERVICE CALLS

206 User’s Manual U20044EJ1V0UM

ter_tsk

Outline
Terminate task.

C format
ER ter_tsk (ID tskid);

Parameter(s)

Explanation
This service call forcibly moves a task specified by parameter tskid to the DORMANT state.
As a result, the target task is excluded from the RX850V4 scheduling subject.
If an activation request has been queued to the target task (the activation request counter is not set to 0x0) when this

service call is issued, this service call moves the task to the DORMANT state, decrements the wakeup request counter (by
subtracting 0x1 from the wakeup request counter), and then moves the task from the DORMANT state to the READY
state.

Note When moving a task to the DORMANT state, this service call initializes the following information to values that
are set during task creation.

- Current priority

- Wakeup request count

- Suspension count

- Interrupt state

If the target task has locked a mutex, the locked state is released at the same time (processing equivalent to
unl_mtx).

Return value

I/O Parameter Description

I ID tskid; ID number of the task to be terminated.

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 207

E_ILUSE -28
Illegal service call use.

- Specified task is an invoking task.

E_OBJ -41
Object state error.

- Specified task is in the DORMANT state.

E_NOEXS -42
Non-existent object.

- Specified task is not registered.

Macro Value Description

CHAPTER 17 SERVICE CALLS

208 User’s Manual U20044EJ1V0UM

chg_pri
ichg_pri

Outline
Change task priority.

C format
ER chg_pri (ID tskid, PRI tskpri);
ER ichg_pri (ID tskid, PRI tskpri);

Parameter(s)

Explanation
These service calls change the priority of the task specified by parameter tskid (current priority) to a value specified by

parameter tskpri.
If the target task is in the RUNNING or READY state after this service call is issued, this service call re-queues the task

at the end of the ready queue corresponding to the priority specified by parameter tskpri, following priority change
processing.

Note When the target task is queued to a wait queue in the order of priority, the wait order may change due to
issuance of this service call.

Example When three tasks (task A: priority level 10, task B: priority level 11, task C: priority level 12) are
queued to the semaphore wait queue in the order of priority, and the priority level of task B is
changed from 11 to 9, the wait order will be changed as follows.

I/O Parameter Description

I ID tskid;

ID number of the task whose priority is to be changed.

TSK_SELF: Invoking task.
Value: ID number of the task whose priority is to be changed.

I PRI tskpri;

New base priority of the task.

TPRI_INI: Initial priority.
Value: New base priority.

Task CSemaphore Task ATask B

chg_pri (Task B, 9);

Priority: 9 Priority: 10 Priority: 12

Task CSemaphore Task BTask A
Priority: 10 Priority: 11 Priority: 12

Task C
Priority: 12

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 209

Return value

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

E_PAR -17

Parameter error.

- tskpri < 0x0

- tskpri > Maximum priority

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

- When this service call was issued from a non-task, TSK_SELF was specified
tskid.

E_CTX -25
Context error.

- This service call was issued int the CPU locked state.

E_OBJ -41
Object state error.

- Specified task is in the DORMANT state.

E_NOEXS -42
Non-existent object.

- Specified task is not registered.

CHAPTER 17 SERVICE CALLS

210 User’s Manual U20044EJ1V0UM

get_pri
iget_pri

Outline
Reference task priority.

C format
ER get_pri (ID tskid, PRI *p_tskpri);
ER iget_pri (ID tskid, PRI *p_tskpri);

Parameter(s)

Explanation
Stores current priority of the task specified by parameter tskid in the area specified by parameter p_tskpri.

Return value

I/O Parameter Description

I ID tskid;

ID number of the task to reference.

TSK_SELF: Invoking task.
Value: ID number of the task to reference.

O PRI *p_tskpri; Current priority of specified task.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

- When this service call was issued from a non-task, TSK_SELF was specified
tskid.

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_OBJ -41
Object state error.

- Specified task is in the DORMANT state.

E_NOEXS -42
Non-existent object.

- Specified task is not registered.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 211

ref_tsk
iref_tsk

Outline
Reference task state.

C format
ER ref_tsk (ID tskid, T_RTSK *pk_rtsk);
ER iref_tsk (ID tskid, T_RTSK *pk_rtsk);

Parameter(s)

[Task state packet: T_RTSK]

Explanation
Stores task state packet (current state, current priority, etc.) of the task specified by parameter tskid in the area specified

by parameter pk_rtsk.

Note For details about the task state packet, refer to "16.2.1 Task state packet".

I/O Parameter Description

I ID tskid;

ID number of the task to referenced.

TSK_SELF: Invoking task.
Value: ID number of the task to referenced.

O T_RTSK *pk_rtsk; Pointer to the packet returning the task state.

typedef struct t_rtsk {
 STAT tskstat; /*Current state*/
 PRI tskpri; /*Current priority*/
 PRI tskbpri; /*Reserved for future use*/
 STAT tskwait; /*Reason for waiting*/
 ID wobjid; /*Object ID number for which the task is waiting*/
 TMO lefttmo; /*Remaining time until timeout*/
 UINT actcnt; /*Activation request count*/
 UINT wupcnt; /*Wakeup request count*/
 UINT suscnt; /*Suspension count*/
 ATR tskatr; /*Attribute*/
 PRI itskpri; /*Initial priority*/
 ID memid; /*Reserved for future use*/
} T_RTSK;

CHAPTER 17 SERVICE CALLS

212 User’s Manual U20044EJ1V0UM

Return value

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

- When this service call was issued from a non-task, TSK_SELF was specified
tskid.

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-Existent object.

- Specified task is not registered.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 213

ref_tst
iref_tst

Outline
Reference task state (simplified version).

C format
ER ref_tst (ID tskid, T_RTST *pk_rtst);
ER iref_tst (ID tskid, T_RTST *pk_rtst);

Parameter(s)

[Task state packet (simplified version): T_RTST]

Explanation
Stores task state packet (current state, reason for waiting) of the task specified by parameter tskid in the area specified

by parameter pk_rtst.
Used for referencing only the current state and reason for wait among task information.
Response becomes faster than using ref_tsk or iref_tsk because only a few information items are acquired.

Note For details about the task state packet (simplified version), refer to "16.2.2 Task state packet (simplified
version)".

Return value

I/O Parameter Description

I ID tskid;

ID number of the task to be referenced.

TSK_SELF: Invoking task.
Value: ID number of the task to be referenced.

O T_RTST *pk_rtst; Pointer to the packet returning the task state.

typedef struct t_rtst {
 STAT tskstat; /*Current state*/
 STAT tskwait; /*Reason for waiting*/
} T_RTST;

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

- When this service call was issued from a non-task, TSK_SELF was specified
tskid.

CHAPTER 17 SERVICE CALLS

214 User’s Manual U20044EJ1V0UM

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified task is not registered.

Macro Value Description

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 215

17.2.2 Task dependent synchronization functions
The following shows the service calls provided by the RX850V4 as the task dependent synchronization functions.

Table 17-2 Task Dependent Synchronization Functions

Service Call Function Origin of Service Call

slp_tsk Put task to sleep (waiting forever) Task

tslp_tsk Put task to sleep (with timeout) Task

wup_tsk Wakeup task Task, Restricted task, Non-task,
Initialization routine

iwup_tsk Wakeup task Task, Restricted task, Non-task,
Initialization routine

can_wup Cancel task wakeup requests Task, Restricted task, Non-task,
Initialization routine

ican_wup Cancel task wakeup requests Task, Restricted task, Non-task,
Initialization routine

rel_wai Release task from waiting Task, Restricted task, Non-task,
Initialization routine

irel_wai Release task from waiting Task, Restricted task, Non-task,
Initialization routine

sus_tsk Suspend task Task, Restricted task, Non-task,
Initialization routine

isus_tsk Suspend task Task, Restricted task, Non-task,
Initialization routine

rsm_tsk Resume suspended task Task, Restricted task, Non-task,
Initialization routine

irsm_tsk Resume suspended task Task, Restricted task, Non-task,
Initialization routine

frsm_tsk Forcibly resume suspended task Task, Restricted task, Non-task,
Initialization routine

ifrsm_tsk Forcibly resume suspended task Task, Restricted task, Non-task,
Initialization routine

dly_tsk Delay task Task

CHAPTER 17 SERVICE CALLS

216 User’s Manual U20044EJ1V0UM

slp_tsk

Outline
Put task to sleep (waiting forever).

C format
ER slp_tsk (void);

Parameter(s)
None.

Explanation
As a result, the invoking task is unlinked from the ready queue and excluded from the RX850V4 scheduling subject.
If a wakeup request has been queued to the target task (the wakeup request counter is not set to 0x0) when this service

call is issued, this service call does not move the state but decrements the wakeup request counter (by subtracting 0x1
from the wakeup request counter).

The sleeping state is cancelled in the following cases, and then moved to the READY state.

Return value

Sleeping State Cancel Operation Return Value

A wakeup request was issued as a result of issuing wup_tsk. E_OK

A wakeup request was issued as a result of issuing iwup_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 217

tslp_tsk

Outline
Put task to sleep (with timeout).

C format
ER tslp_tsk (TMO tmout);

Parameter(s)

Explanation
This service call moves an invoking task from the RUNNING state to the WAITING state (sleeping state).
As a result, the invoking task is unlinked from the ready queue and excluded from the RX850V4 scheduling subject.
If a wakeup request has been queued to the target task (the wakeup request counter is not set to 0x0) when this service

call is issued, this service call does not move the state but decrements the wakeup request counter (by subtracting 0x1
from the wakeup request counter).

The sleeping state is cancelled in the following cases, and then moved to the READY state.

Note When TMO_FEVR is specified for wait time tmout, processing equivalent to slp_tsk will be executed.

Return value

I/O Parameter Description

I TMO tmout;

Specified timeout (in millisecond).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified timeout.

Sleeping State Cancel Operation Return Value

A wakeup request was issued as a result of issuing wup_tsk. E_OK

A wakeup request was issued as a result of issuing iwup_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

E_PAR -17
Parameter error.

- tmout < TMO_FEVR

CHAPTER 17 SERVICE CALLS

218 User’s Manual U20044EJ1V0UM

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

E_TMOUT -50
Timeout.

- Polling failure or timeout.

Macro Value Description

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 219

wup_tsk
iwup_tsk

Outline
Wakeup task.

C format
ER wup_tsk (ID tskid);
ER iwup_tsk (ID tskid);

Parameter(s)

Explanation
These service calls cancel the WAITING state (sleeping state) of the task specified by parameter tskid.
As a result, the target task is moved from the sleeping state to the READY state, or from the WAITING-SUSPENDED

state to the SUSPENDED state.
If the target task is in a state other than the sleeping state when this service call is issued, this service call does not

move the state but increments the wakeup request counter (by added 0x1 to the wakeup request counter).

Note The wakeup request counter managed by the RX850V4 is configured in 7-bit widths. If the number of wakeup
requests exceeds the maximum count value 127 as a result of issuing this service call, the counter
manipulation processing is therefore not performed but "E_QOVR" is returned.

Return value

I/O Parameter Description

I ID tskid;

ID number of the task to be woken up.

TSK_SELF: Invoking task.
Value: ID number of the task to be woken up.

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

- When this service call was issued from a non-task, TSK_SELF was specified
tskid.

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_OBJ -41
Object state error.

- Specified task is in the DORMANT state.

CHAPTER 17 SERVICE CALLS

220 User’s Manual U20044EJ1V0UM

E_NOEXS -42
Non-existent object.

- Specified task is not registered.

E_QOVR -43
Queue overflow.

- Wakeup request count exceeded 127.

Macro Value Description

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 221

can_wup
ican_wup

Outline
Cancel task wakeup requests.

C format
ER_UINT can_wup (ID tskid);
ER_UINT ican_wup (ID tskid);

Parameter(s)

Explanation
These service calls cancel all of the wakeup requests queued to the task specified by parameter tskid (the wakeup

request counter is set to 0x0).
When this service call is terminated normally, the number of cancelled wakeup requests is returned.

Return value

I/O Parameter Description

I ID tskid;

ID number of the task for cancelling wakeup requests.

TSK_SELF: Invoking task.
Value: ID number of the task for cancelling wakeup requests.

Macro Value Description

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

- When this service call was issued from a non-task, TSK_SELF was specified
tskid.

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_OBJ -41
Object state error.

- Specified task is in the DORMANT state.

E_NOEXS -42
Non-existent object.

- Specified task is not registered.

- - Normal completion (wakeup request count).

CHAPTER 17 SERVICE CALLS

222 User’s Manual U20044EJ1V0UM

rel_wai
irel_wai

Outline
Release task from waiting.

C format
ER rel_wai (ID tskid);
ER irel_wai (ID tskid);

Parameter(s)

Explanation
These service calls forcibly cancel the WAITING state of the task specified by parameter tskid.
As a result, the target task unlinked from the wait queue and is moved from the WAITING state to the READY state, or

from the WAITING-SUSPENDED state to the SUSPENDED state.
"E_RLWAI" is returned from the service call that triggered the move to the WAITING state (slp_tsk, wai_sem, or the like)

to the task whose WAITING state is cancelled by this service call.

Note 1 This service call does not perform queuing of forced cancellation requests. If the target task is in a state other
than the WAITING or WAITING-SUSPENDED state, "E_OBJ" is returned.

Note 2 The SUSPENDED state is not cancelled by these service calls.

Return value

I/O Parameter Description

I ID tskid; ID number of the task to be released from waiting.

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_OBJ -41
Object state error.

- Specified task is neither in the WAITING state nor WAITING-SUSPENDED
state.

E_NOEXS -42
Non-existent object.

- Specified task is not registered.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 223

sus_tsk
isus_tsk

Outline
Suspend task.

C format
ER sus_tsk (ID tskid);
ER isus_tsk (ID tskid);

Parameter(s)

Explanation
These service calls add 0x1 to the suspend request counter for the task specified by parameter tskid, and then move the

target task from the RUNNING state to the SUSPENDED state, from the READY state to the SUSPENDED state, or from
the WAITING state to the WAITING-SUSPENDED state.

If the target task has moved to the SUSPENDED or WAITING-SUSPENDED state when this service call is issued, the
counter manipulation processing is not performed but only the suspend request counter increment processing is executed.

Note The suspend request counter managed by the RX850V4 is configured in 7-bit widths. If the number of suspend
requests exceeds the maximum count value 127 as a result of issuing this service call, the counter
manipulation processing is therefore not performed but "E_QOVR" is returned.

Return value

I/O Parameter Description

I ID tskid;

ID number of the task to be suspended.

TSK_SELF: Invoking task.
Value: ID number of the task to be suspended.

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

- When this service call was issued from a non-task, TSK_SELF was specified
tskid.

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- When this service call was issued in the dispatching disabled state, invoking
task was specified tskid.

CHAPTER 17 SERVICE CALLS

224 User’s Manual U20044EJ1V0UM

E_OBJ -41
Object state error.

- Specified task is in the DORMANT state.

E_NOEXS -42
Non-existent object.

- Specified task is not registered.

E_QOVR -43
Queue overflow.

- Suspension count exceeded 127.

Macro Value Description

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 225

rsm_tsk
irsm_tsk

Outline
Resume suspended task.

C format
ER rsm_tsk (ID tskid);
ER irsm_tsk (ID tskid);

Parameter(s)

Explanation
This service call subtracts 0x1 from the suspend request counter for the task specified by parameter tskid, and then

cancels the SUSPENDED state of the target task.
As a result, the target task is moved from the SUSPENDED state to the READY state, or from the WAITING-

SUSPENDED state to the WAITING state.
If a suspend request is queued (subtraction result is other than 0x0) when this service call is issued, the counter

manipulation processing is not performed but only the suspend request counter decrement processing is executed.

Note This service call does not perform queuing of cancellation requests. If the target task is in a state other than the
SUSPENDED or WAITING-SUSPENDED state, "E_OBJ" is therefore returned.

Return value

I/O Parameter Description

I ID tskid; ID number of the task to be resumed.

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_OBJ -41
Object state error.

- Specified task is neither in the SUSPENDED state nor WAITING-
SUSPENDED state.

E_NOEXS -42
Non-existent object.

- Specified task is not registered.

CHAPTER 17 SERVICE CALLS

226 User’s Manual U20044EJ1V0UM

frsm_tsk
ifrsm_tsk

Outline
Forcibly resume suspended task.

C format
ER frsm_tsk (ID tskid);
ER ifrsm_tsk (ID tskid);

Parameter(s)

Explanation
These service calls cancel all of the suspend requests issued for the task specified by parameter tskid (by setting the

suspend request counter to 0x0). As a result, the target task moves from the SUSPENDED state to the READY state, or
from the WAITING-SUSPENDED state to the WAITING state.

Note This service call does not perform queuing of cancellation requests. If the target task is in a state other than the
SUSPENDED or WAITING-SUSPENDED state, "E_OBJ" is therefore returned.

Return value

I/O Parameter Description

I ID tskid; ID number of the task to be resumed.

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_OBJ -41
Object state error.

- Specified task is neither in the SUSPENDED state nor WAITING-
SUSPENDED state.

E_NOEXS -42
Non-existent object.

- Specified task is not registered.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 227

dly_tsk

Outline
Delay task.

C format
ER dly_tsk (RELTIM dlytim);

Parameter(s)

Explanation
This service call moves the invoking task from the RUNNING state to the WAITING state (delayed state).
As a result, the invoking task is unlinked from the ready queue and excluded from the RX850V4 scheduling subject.
The delayed state is cancelled in the following cases, and then moved to the READY state.

Return value

I/O Parameter Description

I RELTIM dlytim; Amount of time to delay the invoking task (in millisecond).

Delayed State Cancel Operation Return Value

Delay time specified by parameter dlytim has elapsed. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

CHAPTER 17 SERVICE CALLS

228 User’s Manual U20044EJ1V0UM

17.2.3 Task exception handling functions
The following shows the service calls provided by the RX850V4 as the task exception handling functions.

Table 17-3 Task Exception Handling Functions

Service Call Function Origin of Service Call

ras_tex Raise task exception handling Task, Restricted task, Non-task,
Initialization routine

iras_tex Raise task exception handling Task, Restricted task, Non-task,
Initialization routine

dis_tex Disable task exceptions Task

ena_tex Enable task exceptions Task

sns_tex Reference task exception handling state Task, Restricted task, Non-task,
Initialization routine

ref_tex Reference task exception handling state Task, Restricted task, Non-task,
Initialization routine

iref_tex Reference task exception handling state Task, Restricted task, Non-task,
Initialization routine

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 229

ras_tex
iras_tex

Outline
Raise task exception handling.

C format
ER ras_tex (ID tskid, TEXPTN rasptn);
ER iras_tex (ID tskid, TEXPTN rasptn);

Parameter(s)

Explanation
These service calls issue a task exception handling request for the task specified by parameter tskid. As a result, the

task exception handling routine registered to the target task is activated when the target task moves to the RUNNING
state.

For parameter rasptn, specify the task exception code to be passed to the target task exception handling routine. The
target task exception handling routine can then be manipulatable by handling the task exception code as a function
parameter.

Note These service calls do not perform queuing of task exception handling requests. If a task exception handling
request is issued multiple times before a task exception handling routine is activated (from when a task
exception handling request is issued until the target task moves to the RUNNING state), the task exception
handling request will not be issued after the second and later issuance of these service calls, but the task
exception code is just held pending (OR of task exception codes).

Return value

I/O Parameter Description

I ID tskid;

ID number of the task requested.

TSK_SELF: Invoking task.
Value: ID number of the task requested.

I TEXPTN rasptn; Task exception code to be requested.

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

E_PAR -17
Parameter error.

- rasptn = 0x0

CHAPTER 17 SERVICE CALLS

230 User’s Manual U20044EJ1V0UM

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

- When this service call was issued from a non-task, TSK_SELF was specified
tskid.

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_OBJ -41

Ojbect state error.

- Specified task is in the DORMANT state.

- Task exception handling routine is not defined.

E_NOEXS -42
Non-existent object.

- Specified task is not registered.

Macro Value Description

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 231

dis_tex

Outline
Disable task exceptions.

C format
ER dis_tex (void);

Parameter(s)
None.

Explanation
This service call moves a task exception handling routine, which is registered to an invoking task, from the enabled state

to disabled state. As a result, the target task exception handling routine is excluded from the activation targets of the
RX850V4 from when this service call is issued until ena_tex is issued.

If a task exception handling request (ras_tex or iras_tex) is issued from when this service call is issued until ena_tex is
issued, the RX850V4 only performs processing such as acknowledgment of task exception handling requests and the
actual activation processing is delayed until the target task exception handling routine moves to the task exception
handling enabled state.

Note 1 This service call does not perform queuing of disable requests. If the target task exception handling routine has
been moved to the task exception handling disabled state, therefore, no processing is performed but it is not
handled as an error.

Note 2 In the RX850V4, task exception handling is disabled when a task is activated.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

E_OBJ -41
Object state error.

- Task exception handling routine is not defined.

CHAPTER 17 SERVICE CALLS

232 User’s Manual U20044EJ1V0UM

ena_tex

Outline
Enable task exceptions.

C format
ER ena_tex (void);

Parameter(s)
None.

Explanation
This service call moves a task exception handling routine, which is registered to an invoking task, from the disabled

state to enabled state. As a result, the target task exception handling routine becomes the activation target of the
RX850V4.

If a task exception handling request (ras_tex or iras_tex) is issued from when dis_tex is issued until this service call is
issued, the RX850V4 only performs processing such as acknowledgment of task exception handling requests and the
actual activation processing is delayed until the target task exception handling routine moves to the task exception
handling enabled state.

Note This service call does not perform queuing of activation requests. If the target task exception handling routine
has been moved to the task exception handling enabled state, therefore, no processing is performed but it is
not handled as an error.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

E_OBJ -41
Object state error.

- Task exception handling routine is not defined.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 233

sns_tex

Outline
Reference task exception handling state.

C format
BOOL sns_tex (void);

Parameter(s)
None.

Explanation
This service call acquires the state (task exception handling disabled/enabled state) of the task exception handling

routine registered to the task that is in the RUNNING state when this service call is issued.
The state of the task exception handling routine is returned.

Return value

Macro Value Description

TRUE 1

Normal completion.

- Task exception disable state

- No tasks in the RUNNING state exist.

- No task exception handling routines are registered to a task in the RUNNING
state.

FALSE 0
Normal completion.

- Task exception enable state

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

CHAPTER 17 SERVICE CALLS

234 User’s Manual U20044EJ1V0UM

ref_tex
iref_tex

Outline
Reference task exception handling state.

C format
ER ref_tex (ID tskid, T_RTEX *pk_rtex);
ER iref_tex (ID tskid, T_RTEX *pk_rtex);

Parameter(s)

[Task exception handling routine state packet: T_RTEX]

Explanation
These service calls store the detailed information (current status, pending exception code, etc.) of the task exception

handling routine registered to the task specified by parameter tskid into the area specified by parameter pk_rtex.
E_OBJ is returned if no task exception handling routines are registered to the specified task.

Note For details about the task exception handling routine state packet, refer to "16.2.3 Task exception handling
routine state packet".

Return value

I/O Parameter Description

I ID tskid;

ID number of the task to be referenced.

TSK_SELF: Invoking task.
Value: ID number of the task to be referenced.

O T_RTEX *pk_rtex; Pointer to the packet returning the task exception handling state.

typedef struct t_rtex {
 STAT texstat; /*Current state*/
 TEXPTN pndptn; /*Pending exception code*/
 ATR texatr; /*Attribute*/
} T_RTEX;

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 235

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

- When this service call was issued from a non-task, TSK_SELF was specified
tskid.

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_OBJ -41

Object state error.

- Specified task is in the DORMANT state.

- Task exception handling routine is not defined.

E_NOEXS -42
Non-existent object.

- Specified task is not registered.

Macro Value Description

CHAPTER 17 SERVICE CALLS

236 User’s Manual U20044EJ1V0UM

17.2.4 Synchronization and communication functions (semaphores)
The following shows the service calls provided by the RX850V4 as the synchronization and communication functions

(semaphores).

Table 17-4 Synchronization and Communication Functions (Semaphores)

Service Call Function Origin of Service Call

wai_sem Acquire semaphore resource (waiting forever) Task

pol_sem Acquire semaphore resource (polling) Task, Restricted task, Non-task,
Initialization routine

ipol_sem Acquire semaphore resource (polling) Task, Restricted task, Non-task,
Initialization routine

twai_sem Acquire semaphore resource (with timeout) Task

sig_sem Release semaphore resource Task, Restricted task, Non-task,
Initialization routine

isig_sem Release semaphore resource Task, Restricted task, Non-task,
Initialization routine

ref_sem Reference semaphore state Task, Restricted task, Non-task,
Initialization routine

iref_sem Reference semaphore state Task, Restricted task, Non-task,
Initialization routine

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 237

wai_sem

Outline
Acquire semaphore resource (waiting forever).

C format
ER wai_sem (ID semid);

Parameter(s)

Explanation
This service call acquires a resource from the semaphore specified by parameter semid (subtracts 0x1 from the

semaphore counter).
If no resources are acquired from the target semaphore when this service call is issued (no available resources exist),

this service call does not acquire resources but queues the invoking task to the target semaphore wait queue and moves it
from the RUNNING state to the WAITING state (resource acquisition wait state).

The WAITING state for a semaphore resource is cancelled in the following cases, and then moved to the READY state.

Note Invoking tasks are queued to the target semaphore wait queue in the order defined during configuration (FIFO
order or priority order).

Return value

I/O Parameter Description

I ID semid; ID number of the semaphore from which resource is acquired.

WAITING State for a Semaphore Resource Cancel Operation Return Value

The resource was returned to the target semaphore as a result of issuing sig_sem. E_OK

The resource was returned to the target semaphore as a result of issuing isig_sem. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

E_ID -18

Invalid ID number.

- semid < 0x0

- semid > Maximum ID number

CHAPTER 17 SERVICE CALLS

238 User’s Manual U20044EJ1V0UM

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_NOEXS -42
Non-existent object.

- Specified semaphore is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

Macro Value Description

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 239

pol_sem
ipol_sem

Outline
Acquire semaphore resource (polling).

C fomrat
ER pol_sem (ID semid);
ER isem_sem (ID semid);

Parameter(s)

Explanation
This service call acquires a resource from the semaphore specified by parameter semid (subtracts 0x1 from the

semaphore counter).
If a resource could not be acquired from the target semaphore (semaphore counter is set to 0x0) when this service call

is issued, the counter manipulation processing is not performed but "E_TMOUT" is returned.

Return value

I/O Parameter Description

I ID semid; ID number of the semaphore from which resource is acquired.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- semid < 0x0

- semid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified semaphore is not registered.

E_TMOUT -50
Polling failure.

- The resource counter of the target semaphore is 0x0.

CHAPTER 17 SERVICE CALLS

240 User’s Manual U20044EJ1V0UM

twai_sem

Outline
Acquire semaphore resource (with timeout).

C format
ER twai_sem (ID semid, TMO tmout);

Parameter(s)

Explanation
This service call acquires a resource from the semaphore specified by parameter semid (subtracts 0x1 from the

semaphore counter).
If no resources are acquired from the target semaphore when service call is issued this (no available resources exist),

this service call does not acquire resources but queues the invoking task to the target semaphore wait queue and moves it
from the RUNNING state to the WAITING state with timeout (resource acquisition wait state).

The WAITING state for a semaphore resource is cancelled in the following cases, and then moved to the READY state.

Note 1 Invoking tasks are queued to the target semaphore wait queue in the order defined during configuration (FIFO
order or priority order).

Note 2 TMO_FEVR is specified for wait time tmout, processing equivalent to wai_sem will be executed. When
TMO_POL is specified, processing equivalent to pol_sem /ipol_sem will be executed.

Return value

I/O Parameter Description

I ID semid; ID number of the semaphore from which resource is acquired.

I TMO tmout;

Specified timeout (in millisecond).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified timeout.

WAITING State for a Semaphore Resource Cancel Operation Return Value

The resource was returned to the target semaphore as a result of issuing sig_sem. E_OK

The resource was returned to the target semaphore as a result of issuing isig_sem. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 241

E_PAR -17
Parameter error.

- tmout < TMO_FEVR

E_ID -18

Invalid ID number.

- semid < 0x0

- semid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_NOEXS -42
Non-existent object.

- Specified semaphore is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

E_TMOUT -50
Timeout.

- Polling failure or timeout.

Macro Value Description

CHAPTER 17 SERVICE CALLS

242 User’s Manual U20044EJ1V0UM

sig_sem
isig_sem

Outline
Release semaphore resource.

C format
ER sig_sem (ID semid);
ER isig_sem (ID semid);

Parameter(s)

Explanation
These service calls return the resource to the semaphore specified by parameter semid (adds 0x1 to the semaphore

counter).
If a task is queued in the wait queue of the target semaphore when this service call is issued, the counter manipulation

processing is not performed but the resource is passed to the relevant task (first task of wait queue).
As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (WAITING state for

a semaphore resource) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

Note With the RX850V4, the maximum possible number of semaphore resources (maximum resource count) is
defined during configuration. If the number of resources exceeds the specified maximum resource count, this
service call therefore does not return the acquired resources (addition to the semaphore counter value) but
returns E_QOVR.

Return value

I/O Parameter Description

I ID semid; ID number of the semaphore to which resource is released.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- semid < 0x0

- semid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified semaphore is not registered.

E_QOVR -43
Queue overflow.

- Resource count exceeded maximum resource count.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 243

ref_sem
iref_sem

Outline
Reference semaphore state.

C format
ER ref_sem (ID semid, T_RSEM *pk_rsem);
ER iref_sem (ID semid, T_RSEM *pk_rsem);

Parameter(s)

[Semaphore state packet: T_RSEM]

Explanation
Stores semaphore state packet (ID number of the task at the head of the wait queue, current resource count, etc.) of the

semaphore specified by parameter semid in the area specified by parameter pk_rsem.

Note For details about the semaphore state packet, refer to "16.2.4 Semaphore state packet".

Return value

I/O Parameter Description

I ID semid; ID number of the semaphore to be referenced.

O T_RSEM *pk_rsem; Pointer to the packet returning the semaphore state.

typedef struct t_rsem {
 ID wtskid; /*Existence of waiting task*/
 UINT semcnt; /*Current resource count*/
 ATR sematr; /*Attribute*/
 UINT maxsem; /*Maximum resource count*/
} T_RSEM;

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- semid < 0x0

- semid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified semaphore is not registered.

CHAPTER 17 SERVICE CALLS

244 User’s Manual U20044EJ1V0UM

17.2.5 Synchronization and communication functions (eventflags)
The following shows the service calls provided by the RX850V4 as the synchronization and communication functions

(eventflags).

Table 17-5 Synchronization and Communication Functions (Eventflags)

Service Call Function Origin of Service Call

set_flg Set eventflag Task, Restricted task, Non-task,
Initialization routine

iset_flg Set eventflag Task, Restricted task, Non-task,
Initialization routine

clr_flg Clear eventflag Task, Restricted task, Non-task,
Initialization routine

iclr_flg Clear eventflag Task, Restricted task, Non-task,
Initialization routine

wai_flg Wait for eventflag (waiting forever) Task

pol_flg Wait for eventflag (polling) Task, Restricted task, Non-task,
Initialization routine

ipol_flg Wait for eventflag (polling) Task, Restricted task, Non-task,
Initialization routine

twai_flg Wait for eventflag (with timeout) Task

ref_flg Reference eventflag state Task, Restricted task, Non-task,
Initialization routine

iref_flg Reference eventflag state Task, Restricted task, Non-task,
Initialization routine

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 245

set_flg
iset_flg

Outline
Set eventflag.

C format
ER set_flg (ID flgid, FLGPTN setptn);
ER iset_flg (ID flgid, FLGPTN setptn);

Parameter(s)

Explanation
These service calls set the result of ORing the bit pattern of the eventflag specified by parameter flgid and the bit pattern

specified by parameter setptn as the bit pattern of the target eventflag.
If the required condition of the task queued to the target eventflag wait queue is satisfied when this service call is issued,

the relevant task is unlinked from the wait queue at the same time as bit pattern setting processing.
As a result, the relevant task is moved from the WAITING state (WAITING state for an eventflag) to the READY state, or

from the WAITING-SUSPENDED state to the SUSPENDED state.

Note If the bit pattern set to the target eventflag is B'1100 and the bit pattern specified by parameter setptn is B'1010
when this service call is issued, the bit pattern of the target eventflag is set to B'1110.

Return value

I/O Parameter Description

I ID flgid; ID number of the eventflag to be set.

I FLGPTN setptn; Bit pattern to set.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- flgid < 0x0

- flgid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified eventflag is not registered.

CHAPTER 17 SERVICE CALLS

246 User’s Manual U20044EJ1V0UM

clr_flg
iclr_flg

Outline
Clear eventflag.

C fomrat
ER clr_flg (ID flgid, FLGPTN clrptn);
ER iclr_flg (ID flgid, FLGPTN clrptn);

Parameter(s)

Explanation
This service call sets the result of ANDing the bit pattern set to the eventflag specified by parameter flgid and the bit

pattern specified by parameter clrptn as the bit pattern of the target eventflag.

Note If the bit pattern set to the target eventflag is B'1100 and the bit pattern specified by parameter clrptn is B'1010
when this service call is issued, the bit pattern of the target eventflag is set to B'1110.

Return value

I/O Parameter Description

I ID flgid; ID number of the eventflag to be cleared.

I FLGPTN clrptn; Bit pattern to clear.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- flgid < 0x0

- flgid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified eventflag is not registered.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 247

wai_flg

Outline
Wait for eventflag (waiting forever).

C format
ER wai_flg (ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);

Parameter(s)

Explanation
This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the

required condition specified by parameter wfmode are set to the eventflag specified by parameter flgid.
If a bit pattern that satisfies the required condition has been set for the target eventflag, the bit pattern of the target

eventflag is stored in the area specified by parameter p_flgptn.
If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued, the

invoking task is queued to the target eventflag wait queue.
As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the WAITING

state (WAITING state for an eventflag).
The WAITING state for an eventflag is cancelled in the following cases, and then moved to the READY state.

The following shows the specification format of required condition wfmode.

- wfmode = TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

- wfmode = TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

I/O Parameter Description

I ID flgid; ID number of the eventflag to wait for.

I FLGPTN waiptn; Wait bit pattern.

I MODE wfmode;

Wait mode.

TWF_ANDW: AND waiting condition.
TWF_ORW: OR waiting condition.

O FLGPTN *p_flgptn; Bit pattern causing a task to be released from waiting.

WAITING State for an Eventflag Cancel Operation Return Value

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing set_flg. E_OK

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing iset_flg. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

CHAPTER 17 SERVICE CALLS

248 User’s Manual U20044EJ1V0UM

Note 1 With the RX850V4, whether to enable queuing of multiple tasks to the event flag wait queue is defined during
configuration. If this service call is issued for the event flag (TW_WSGL attribute) to which a wait task is
queued, therefore, "E_ILUSE" is returned regardless of whether the required condition is immediately satisfied.

TA_WSGL: Only one task is allowed to be in the WAITING state for the eventflag.
TA_WMUL: Multiple tasks are allowed to be in the WAITING state for the eventflag.

Note 2 Invoking tasks are queued to the target event flag (TA_WMUL attribute) wait queue in the order defined during
configuration (FIFO order or priority order).

Note 3 The RX850V4 performs bit pattern clear processing (0x0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

Note 4 If the WAITING state for an eventflag is forcibly released by issuing rel_wai or irel_wai, the contents of the area
specified by parameter p_flgptn will be undefined.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

E_PAR -17

Parameter error.

- waiptn = 0x0

- wfmode is invalid.

E_ID -18

Invalid ID number.

- flgid < 0x0

- flgid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_ILUSE -28
Illegal service call use.

- There is already a task waiting for an eventflag with the TA_WSGL attribute.

E_NOEXS -42
Non-existent object.

- Specified eventflag is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 249

pol_flg
ipol_flg

Outline
Wait for eventflag (polling).

C format
ER pol_flg (ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);
ER ipol_flg (ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);

Parameter(s)

Explanation
This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the

required condition specified by parameter wfmode are set to the eventflag specified by parameter flgid.
If the bit pattern that satisfies the required condition has been set to the target eventflag, the bit pattern of the target

eventflag is stored in the area specified by parameter p_flgptn.
If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued,

"E_TMOUT" is returned.
The following shows the specification format of required condition wfmode.

- wfmode = TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

- wfmode = TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

Note 1 With the RX850V4, whether to enable queuing of multiple tasks to the event flag wait queue is defined during
configuration. If this service call is issued for the event flag (TW_WSGL attribute) to which a wait task is
queued, therefore, "E_ILUSE" is returned regardless of whether the required condition is immediately satisfied.

TA_WSGL: Only one task is allowed to be in the WAITING state for the eventflag.
TA_WMUL: Multiple tasks are allowed to be in the WAITING state for the eventflag.

Note 2 The RX850V4 performs bit pattern clear processing (0x0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

Note 3 If the bit pattern of the target event flag does not satisfy the required condition when this service call is issued,
the contents in the area specified by parameter p_flgptn become undefined.

I/O Parameter Description

I ID flgid; ID number of the eventflag to wait for.

I FLGPTN waiptn; Wait bit pattern.

I MODE wfmode;

Wait mode.

TWF_ANDW: AND waiting condition.
TWF_ORW: OR waiting condition.

O FLGPTN *p_flgptn; Bit pattern causing a task to be released from waiting.

CHAPTER 17 SERVICE CALLS

250 User’s Manual U20044EJ1V0UM

Return value

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17

Parameter error.

- waiptn = 0x0

- wfmode is invalid.

E_ID -18

Invalid ID number.

- flgid < 0x0

- flgid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_ILUSE -28
Illegal service call use.

- There is already a task waiting for an eventflag with the TA_WSGL attribute.

E_NOEXS -42
Non-existent object.

- Specified eventflag is not registered.

E_TMOUT -50
Polling failure.

- The bit pattern of the target eventflag does not satisfy the wait condition.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 251

twai_flg

Outline
Wait for eventflag (with timeout).

C format
ER twai_flg (ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn, TMO tmout);

Parameter(s)

Explanation
This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the

required condition specified by parameter wfmode are set to the eventflag specified by parameter flgid.
If a bit pattern that satisfies the required condition has been set for the target eventflag, the bit pattern of the target

eventflag is stored in the area specified by parameter p_flgptn.
If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued, the

invoking task is queued to the target eventflag wait queue.
As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the WAITING

state (WAITING state for an eventflag).
The WAITING state for an eventflag is cancelled in the following cases, and then moved to the READY state.

I/O Parameter Description

I ID flgid; ID number of the eventflag to wait for.

I FLGPTN waiptn; Wait bit pattern.

I MODE wfmode;

Wait mode.

TWF_ANDW: AND waiting condition.
TWF_ORW: OR waiting condition.

O FLGPTN *p_flgptn; Bit pattern causing a task to be released from waiting.

I TMO tmout;

Specified timeout (in millisecond).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified timeout.

WAITING State for an Eventflag Cancel Operation Return Value

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing set_flg. E_OK

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing iset_flg. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

CHAPTER 17 SERVICE CALLS

252 User’s Manual U20044EJ1V0UM

The following shows the specification format of required condition wfmode.

- wfmode = TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

- wfmode = TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

Note 1 With the RX850V4, whether to enable queuing of multiple tasks to the event flag wait queue is defined during
configuration. If this service call is issued for the event flag (TW_WSGL attribute) to which a wait task is
queued, therefore, "E_ILUSE" is returned regardless of whether the required condition is immediately satisfied.

TA_WSGL: Only one task is allowed to be in the WAITING state for the eventflag.
TA_WMUL: Multiple tasks are allowed to be in the WAITING state for the eventflag.

Note 2 Invoking tasks are queued to the target event flag (TA_WMUL attribute) wait queue in the order defined during
configuration (FIFO order or priority order).

Note 3 The RX850V4 performs bit pattern clear processing (0x0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

Note 4 If the event flag wait state is cancelled because rel_wai or irel_wai was issued or the wait time elapsed, the
contents in the area specified by parameter p_flgptn become undefined.

Note 5 TMO_FEVR is specified for wait time tmout, processing equivalent to wai_flg will be executed. When
TMO_POL is specified, processing equivalent to pol_flg /ipol_flg will be executed.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

E_PAR -17

Parameter error.

- waiptn = 0x0

- wfmode is invalid.

- tmout < TMO_FEVR

E_ID -18

Invalid ID number.

- flgid < 0x0

- flgid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_ILUSE -28
Illegal service call use.

- There is already a task waiting for an eventflag with the TA_WSGL attribute.

E_NOEXS -42
Non-existent object.

- Specified eventflag is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

E_TMOUT -50
Timeout.

- Polling failure or timeout.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 253

ref_flg
iref_flg

Outline
Reference eventflag state.

C format
ER ref_flg (ID flgid, T_RFLG *pk_rflg);
ER iref_flg (ID flgid, T_RFLG *pk_rflg);

Parameter(s)

[Eventflag state packet: T_RFLG]

Explanation
Stores eventflag state packet (ID number of the task at the head of the wait queue, current bit pattern, etc.) of the event-

flag specified by parameter flgid in the area specified by parameter pk_rflg.

Note For details about the eventflag state packet, refer to "16.2.5 Eventflag state packet".

Return value

I/O Parameter Description

I ID flgid; ID number of the eventflag to be referenced.

O T_RFLG *pk_rflg; Pointer to the packet returning the eventflag state.

typedef struct t_rflg {
 ID wtskid; /*Existence of waiting task*/
 FLGPTN flgptn; /*Current bit pattern*/
 ATR flgatr; /*Attribute*/
} T_RFLG;

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- flgid < 0x0

- flgid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified eventflag is not registered.

CHAPTER 17 SERVICE CALLS

254 User’s Manual U20044EJ1V0UM

17.2.6 Synchronization and communication functions (data queues)
The following shows the service calls provided by the RX850V4 as the synchronization and communication functions

(data queues).

Table 17-6 Synchronization and Communication Functions (Data Queues)

Service Call Function Origin of Service Call

snd_dtq Send to data queue (waiting forever) Task

psnd_dtq Send to data queue (polling) Task, Restricted task, Non-task,
Initialization routine

ipsnd_dtq Send to data queue (polling) Task, Restricted task, Non-task,
Initialization routine

tsnd_dtq Send to data queue (with timeout) Task

fsnd_dtq Forced send to data queue Task, Restricted task, Non-task,
Initialization routine

ifsnd_dtq Forced send to data queue Task, Restricted task, Non-task,
Initialization routine

rcv_dtq Receive from data queue (waiting forever) Task

prcv_dtq Receive from data queue (polling) Task, Restricted task, Non-task,
Initialization routine

iprcv_dtq Receive from data queue (polling) Task, Restricted task, Non-task,
Initialization routine

trcv_dtq Receive from data queue (with timeout) Task

ref_dtq Reference data queue state Task, Restricted task, Non-task,
Initialization routine

iref_dtq Reference data queue state Task, Restricted task, Non-task,
Initialization routine

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 255

snd_dtq

Outline
Send to data queue (waiting forever).

C format
ER snd_dtq (ID dtqid, VP_INT data);

Parameter(s)

Explanation
This service call writes data specified by parameter data to the data queue area of the data queue specified by

parameter dtqid.
If there is no available space for writing data in the data queue area of the target data queue when this service call is

issued, this service call does not write data but queues the invoking task to the transmission wait queue of the target data
queue and moves it from the RUNNING state to the WAITING state (data transmission wait state).

The sending WAITING state for a data queue is cancelled in the following cases, and then moved to the READY state.

If a task has been queued to the reception wait queue of the target data queue when this service call is issued, this
service call does not write data but transfers the data to the task. As a result, the task is unlinked from the reception wait
queue and moves from the WAITING state (data reception wait state) to the READY state, or from the WAITING-
SUSPENDED state to the SUSPENDED state.

Note 1 Data is written to the data queue area of the target data queue in the order of the data transmission request.

Note 2 Invoking tasks are queued to the transmission wait queue of the target data queue in the order defined during
configuration (FIFO order or priority order).

I/O Parameter Description

I ID dtqid; ID number of the data queue to which the data element is sent.

I VP_INT data; Data element to be sent to the data queue.

Sending WAITING State for a Data Queue Cancel Operation Return Value

Available space was secured in the data queue area of the target data queue as a result of
issuing rcv_dtq. E_OK

Available space was secured in the data queue area of the target data queue as a result of
issuing prcv_dtq. E_OK

Available space was secured in the data queue area of the target data queue as a result of
issuing iprcv_dtq. E_OK

Available space was secured in the data queue area of the target data queue as a result of
issuing trcv_dtq. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

CHAPTER 17 SERVICE CALLS

256 User’s Manual U20044EJ1V0UM

Return value

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

E_ID -18

Invalid ID number.

- dtqid < 0x0

- dtqid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_NOEXS -42
Non-existent object.

- Specified data queue is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 257

psnd_dtq
ipsnd_dtq

Outline
Send to data queue (polling).

C format
ER psnd_dtq (ID dtqid, VP_INT data);
ER ipsnd_dtq (ID dtqid, VP_INT data);

Parameter(s)

Explanation
These service calls write data specified by parameter data to the data queue area of the data queue specified by

parameter dtqid.
If there is no available space for writing data in the data queue area of the target data queue when either of these

service calls is issued, data is not written but E_TMOUT is returned.
If a task has been queued to the reception wait queue of the target data queue when this service call is issued, this

service call does not write data but transfers the data to the task. As a result, the task is unlinked from the reception wait
queue and moves from the WAITING state (data reception wait state) to the READY state, or from the WAITING-
SUSPENDED state to the SUSPENDED state.

Note Data is written to the data queue area of the target data queue in the order of the data transmission request.

Return value

I/O Parameter Description

I ID dtqid; ID number of the data queue to which the data element is sent.

I VP_INT data; Data element to be sent to the data queue.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- dtqid < 0x0

- dtqid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified data queue is not registered.

E_TMOUT -50
Polling failure.

- There is no space in the target data queue.

CHAPTER 17 SERVICE CALLS

258 User’s Manual U20044EJ1V0UM

tsnd_dtq

Outline
Send to data queue (with timeout).

C format
ER tsnd_dtq (ID dtqid, VP_INT data, TMO tmout);

Parameter(s)

Explanation
This service call writes data specified by parameter data to the data queue area of the data queue specified by

parameter dtqid.
If there is no available space for writing data in the data queue area of the target data queue when this service call is

issued, the service call does not write data but queues the invoking task to the transmission wait queue of the target data
queue and moves it from the RUNNING state to the WAITING state with time (data transmission wait state).

The sending WAITING state for a data queue is cancelled in the following cases, and then moved to the READY state.

If a task has been queued to the reception wait queue of the target data queue when this service call is issued, this
service call does not write data but transfers the data to the task. As a result, the task is unlinked from the reception wait
queue and moves from the WAITING state (data reception wait state) to the READY state, or from the WAITING-
SUSPENDED state to the SUSPENDED state.

Note 1 Data is written to the data queue area of the target data queue in the order of the data transmission request.

I/O Parameter Description

I ID dtqid; ID number of the data queue to which the data element is sent.

I VP_INT data; Data element to be sent to the data queue.

I TMO tmout;

Specified timeout (in millisecond).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified timeout.

Sending WAITING State for a Data Queue Cancel Operation Return Value

An available space was secured in the data queue area of the target data queue as a result of
issuing rcv_dtq. E_OK

An available space was secured in the data queue area of the target data queue as a result of
issuing prcv_dtq. E_OK

An available space was secured in the data queue area of the target data queue as a result of
issuing iprcv_dtq. E_OK

An available space was secured in the data queue area of the target data queue as a result of
issuing trcv_dtq. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 259

Note 2 Invoking tasks are queued to the transmission wait queue of the target data queue in the order defined during
configuration (FIFO order or priority order).

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to snd_dtq will be executed. When
TMO_POL is specified, processing equivalent to psnd_dtq /ipsnd_dtq will be executed.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

E_PAR -17
Parameter error.

- tmout < TMO_FEVR

E_ID -18

Invalid ID number.

- dtqid < 0x0

- dtqid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_NOEXS -42
Non-existent object.

- Specified data queue is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

E_TMOUT -50
Timeout.

- Polling failure or timeout.

CHAPTER 17 SERVICE CALLS

260 User’s Manual U20044EJ1V0UM

fsnd_dtq
ifsnd_dtq

Outline
Forced send to data queue.

C format
ER fsnd_dtq (ID dtqid, VP_INT data);
ER ifsnd_dtq (ID dtqid, VP_INT data);

Parameter(s)

Explanation
These service calls write data specified by parameter data to the data queue area of the data queue specified by

parameter dtqid.
If there is no available space for writing data in the data queue area of the target data queue when either of these

service calls is issued, the service call overwrites data to the area with the oldest data that was written.
If a task has been queued to the reception wait queue of the target data queue when this service call is issued, this

service call does not write data but transfers the data to the task. As a result, the task is unlinked from the reception wait
queue and moves from the WAITING state (data reception wait state) to the READY state, or from the WAITING-
SUSPENDED state to the SUSPENDED state.

Return value

I/O Parameter Description

I ID dtqid; ID number of the data queue to which the data element is sent.

I VP_INT data; Data element to be sent to the data queue.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- dtqid < 0x0

- dtqid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_ILUSE -28
Illegal service call use.

- The capacity of the data queue area is 0.

E_NOEXS -42
Non-existent object.

- Specified data queue is not registered.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 261

rcv_dtq

Outline
Receive from data queue (waiting forever).

C format
ER rcv_dtq (ID dtqid, VP_INT *p_data);

Parameter(s)

Explanation
This service call reads data in the data queue area of the data queue specified by parameter dtqid and stores it to the

area specified by parameter p_data.
If no data could be read from the data queue area of the target data queue (no data has been written to the data queue

area) when this service call is issued, the service call does not read data but queues the invoking task to the reception wait
queue of the target data queue and moves it from the RUNNING state to the WAITING state (data reception wait state).

The receiving WAITING state for a data queue is cancelled in the following cases, and then moved to the READY state.

Note 1 Invoking tasks are queued to the reception wait queue of the target data queue in the order of the data
reception request.

Note 2 If the receiving

Note 3 for a data queue is forcibly released by issuing rel_wai or irel_wai, the contents of the area specified by param-
eter p_data will be undefined.

I/O Parameter Description

I ID dtqid; ID number of the data queue from which a data element is received.

O VP_INT *p_data; Data element received from the data queue.

Receiving WAITING State for a Data Queue Cancel Operation Return Value

Data was written to the data queue area of the target data queue as a result of issuing snd_dtq. E_OK

Data was written to the data queue area of the target data queue as a result of issuing
psnd_dtq. E_OK

Data was written to the data queue area of the target data queue as a result of issuing
ipsnd_dtq. E_OK

Data was written to the data queue area of the target data queue as a result of issuing tsnd_dtq. E_OK

Data was written to the data queue area of the target data queue as a result of issuing fsnd_dtq. E_OK

Data was written to the data queue area of the target data queue as a result of issuing
ifsnd_dtq. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

CHAPTER 17 SERVICE CALLS

262 User’s Manual U20044EJ1V0UM

Return value

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

E_ID -18

Invalid ID number.

- dtqid < 0x0

- dtqid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_NOEXS -42
Non-existent object.

- Specified data queue is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 263

prcv_dtq
iprcv_dtq

Outline
Receive from data queue (polling).

C format
ER prcv_dtq (ID dtqid, VP_INT *p_data);
ER iprcv_dtq (ID dtqid, VP_INT *p_data);

Parameter(s)

Explanation(s)
These service calls read data in the data queue area of the data queue specified by parameter dtqid and stores it to the

area specified by parameter p_data.
If no data could be read from the data queue area of the target data queue (no data has been written to the data queue

area) when either of these service calls is issued, the service call does not read data but E_TMOUT is returned.

Note If no data could be read from the data queue area of the target data queue (no data has been written to the
data queue area) when either of these service calls is issued, the contents in the area specified by parameter
p_data become undefined.

Return value

I/O Parameter Description

I ID dtqid; ID number of the data queue from which a data element is received.

O VP_INT *p_data; Data element received from the data queue.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- dtqid < 0x0

- dtqid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified data queue is not registered.

E_TMOUT -50
Polling failure.

- No data exists in the target data queue.

CHAPTER 17 SERVICE CALLS

264 User’s Manual U20044EJ1V0UM

trcv_dtq

Outline
Receive from data queue (with timeout).

C format
ER trcv_dtq (ID dtqid, VP_INT *p_data, TMO tmout);

Parameter(s)

Explanation
This service call reads data in the data queue area of the data queue specified by parameter dtqid and stores it to the

area specified by parameter p_data.
If no data could be read from the data queue area of the target data queue (no data has been written to the data queue

area) when this service call is issued, the service call does not read data but queues the invoking task to the reception wait
queue of the target data queue and moves it from the RUNNING state to the WAITING state with time out (data reception
wait state).

The receiving WAITING state for a data queue is cancelled in the following cases, and then moved to the READY state.

Note 1 Invoking tasks are queued to the reception wait queue of the target data queue in the order of the data
reception request.

Note 2 If the data reception wait state is cancelled because rel_wai or irel_wai was issued or the wait time elapsed,
the contents in the area specified by parameter p_data become undefined.

I/O Parameter Description

I ID dtqid; ID number of the data queue from which a data element is received.

O VP_INT *p_data; Data element received from the data queue.

I TMO tmout;

Specified timeout (in millisecond).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified timeout.

Receiving WAITING State for a Data Queue Cancel Operation Return Value

Data was written to the data queue area of the target data queue as a result of issuing snd_dtq. E_OK

Data was written to the data queue area of the target data queue as a result of issuing
psnd_dtq. E_OK

Data was written to the data queue area of the target data queue as a result of issuing
ipsnd_dtq. E_OK

Data was written to the data queue area of the target data queue as a result of issuing tsnd_dtq. E_OK

Data was written to the data queue area of the target data queue as a result of issuing fsnd_dtq. E_OK

Data was written to the data queue area of the target data queue as a result of issuing
ifsnd_dtq. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 265

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to rcv_dtq will be executed. When
TMO_POL is specified, processing equivalent to prcv_dtq /iprcv_dtq will be executed.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

E_PAR -17
Parameter error.

- tmout < TMO_FEVR

E_ID -18

Invalid ID number.

- dtqid < 0x0

- dtqid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_NOEXS -42
Non-existent object.

- Specified data queue is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

E_TMOUT -50
Timeout.

- Polling failure or timeout.

CHAPTER 17 SERVICE CALLS

266 User’s Manual U20044EJ1V0UM

ref_dtq
iref_dtq

Outline
Reference data queue state.

C format
ER ref_dtq (ID dtqid, T_RDTQ *pk_rdtq);
ER iref_dtq (ID dtqid, T_RDTQ *pk_rdtq);

Parameter(s)

[Data queue state packet: T_RDTQ]

Explanation
These service calls store the detailed information of the data queue (existence of waiting tasks, number of data

elements in the data queue, etc.) specified by parameter dtqid into the area specified by parameter pk_rdtq.

Note For details about the data queue state packet, refer to "16.2.6 Data queue state packet".

Return value

I/O Parameter Description

I ID dtqid; ID number of the data queue to be referenced.

O T_RDTQ *pk_rdtq; Pointer to the packet returning the data queue state.

typedef struct t_rdtq {
 ID stskid; /*Existence of tasks waiting for data transmission*/
 ID rtskid; /*Existence of tasks waiting for data reception*/
 UINT sdtqcnt; /*Number of data elements in data queue*/
 ATR dtqatr; /*Attribute*/
 UINT dtqcnt; /*Data count*/
 ID memid; /*Reserved for future use*/
} T_RDTQ;

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- dtqid < 0x0

- dtqid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified data queue is not registered.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 267

17.2.7 Synchronization and communication functions (mailboxes)
The following shows the service calls provided by the RX850V4 as the syncronization and communication functions

(mailboxes).

Table 17-7 Synchronization and Communication Functions (Mailboxes)

Service Call Function Origin of Service Call

snd_mbx Send to mailbox Task, Restricted task, Non-task,
Initialization routine

isnd_mbx Send to mailbox Task, Restricted task, Non-task,
Initialization routine

rcv_mbx Receive from mailbox (waiting forever) Task

prcv_mbx Receive from mailbox (polling) Task, Restricted task, Non-task,
Initialization routine

iprcv_mbx Receive from mailbox (polling) Task, Restricted task, Non-task,
Initialization routine

trcv_mbx Receive from mailbox (with timeout) Task

ref_mbx Reference mailbox state Task, Restricted task, Non-task,
Initialization routine

iref_mbx Reference mailbox state Task, Restricted task, Non-task,
Initialization routine

CHAPTER 17 SERVICE CALLS

268 User’s Manual U20044EJ1V0UM

snd_mbx
isnd_mbx

Outline
Send to mailbox.

C format
ER snd_mbx (ID mbxid, T_MSG *pk_msg);
ER isnd_mbx (ID mbxid, T_MSG *pk_msg);

Parameter(s)

[Message packet: T_MSG]

[Message packet: T_MSG_PRI]

Explanation
This service call transmits the message specified by parameter pk_msg to the mailbox specified by parameter mbxid

(queues the message in the wait queue).
If a task is queued to the target mailbox wait queue when this service call is issued, the message is not queued but

handed over to the relevant task (first task of the wait queue).
As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (receiving WAITING

state for a mailbox) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

Note 1 Messages are queued to the target mailbox wait queue in the order defined by queuing method during
configuration (FIFO order or priority order).

Note 2 With the RX850V4 mailbox, only the start address of the message is handed over to the receiving processing
program, but the message contents are not copied to a separate area. The message contents can therefore be
rewritten even after this service call is issued.

Note 3 For details about the message packet, refer to "16.2.7 Message packet".

I/O Parameter Description

I ID mbxid; ID number of the mailbox to which the message is sent.

I T_MSG *pk_msg; Start address of the message packet to be sent to the mailbox.

typedef struct t_msg {
 struct t_msg *msgnext; /*Reserved for future use*/
} T_MSG;

typedef struct t_msg_pri {
 struct t_msg msgque; /*Reserved for future use*/
 PRI msgpri; /*Message priority*/
} T_MSG_PRI;

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 269

Return value

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17

Parameter error.

- msgpri < 0x0

- msgpri > Maximum message priority

E_ID -18

Invalid ID number.

- mbxid < 0x0

- mbxid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified mailbox is not registered.

CHAPTER 17 SERVICE CALLS

270 User’s Manual　U20044EJ1V0UM

rcv_mbx

Outline
Receive from mailbox (waiting forever).

C format
ER rcv_mbx (ID mbxid, T_MSG **ppk_msg);

Parameter(s)

[Message packet: T_MSG]

[Message packet: T_MSG_PRI]

Explanation
This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in the

area specified by parameter ppk_msg.
If no message could be received from the target mailbox (no messages were queued to the wait queue) when this

service call is issued, this service call does not receive messages but queues the invoking task to the target mailbox wait
queue and moves it from the RUNNING state to the WAITING state (message reception wait state).

The receiving WAITING state for a mailbox is cancelled in the following cases, and then moved to the READY state.

Note 1 Invoking tasks are queued to the target mailbox wait queue in the order defined during configuration (FIFO
order or priority order).

Note 2 If the receiving WAITING state for a mailbox is forcibly released by issuing rel_wai or irel_wai, the contents of
the area specified by parameter ppk_msg will be undefined.

I/O Parameter Description

I ID mbxid; ID number of the mailbox from which a message is received.

O T_MSG **ppk_msg; Start address of the message packet received from the mailbox.

typedef struct t_msg {
 struct t_msg *msgnext; /*Reserved for future use*/
} T_MSG;

typedef struct t_msg_pri {
 struct t_msg msgque; /*Reserved for future use*/
 PRI msgpri; /*Message priority*/
} T_MSG_PRI;

Receiving WAITING State for a Mailbox Cancel Operation Return Value

A message was transmitted to the target mailbox as a result of issuing snd_mbx. E_OK

A message was transmitted to the target mailbox as a result of issuing isnd_mbx. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

CHAPTER 17 SERVICE CALLS

User’s Manual　U20044EJ1V0UM 271

Note 3 For details about the message packet, refer to "16.2.7 Message packet".

Return value

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

E_ID -18

Invalid ID number.

- mbxid < 0x0

- mbxid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_NOEXS -42
Non-existent object.

- Specified mailbox is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

CHAPTER 17 SERVICE CALLS

272 User’s Manual U20044EJ1V0UM

prcv_mbx
iprcv_mbx

Outline
Receive from mailbox (polling).

C format
ER prcv_mbx (ID mbxid, T_MSG **ppk_msg);
ER iprcv_mbx (ID mbxid, T_MSG **ppk_msg);

Parameter(s)

[Message packet: T_MSG]

[Message packet: T_MSG_PRI]

Explanation
This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in the

area specified by parameter ppk_msg.
If the message could not be received from the target mailbox (no messages were queued in the wait queue) when this

service call is issued, message reception processing is not executed but "E_TMOUT" is returned.

Note 1 If no message could be received from the target mailbox (no messages were queued to the wait queue) when
this service call is issued, the contents in the area specified by parameter ppk_msg become undefined.

Note 2 For details about the message packet, refer to "16.2.7 Message packet".

I/O Parameter Description

I ID mbxid; ID number of the mailbox from which a message is received.

O T_MSG **ppk_msg; Start address of the message packet received from the mailbox.

typedef struct t_msg {
 struct t_msg *msgnext; /*Reserved for future use*/
} T_MSG;

typedef struct t_msg_pri {
 struct t_msg msgque; /*Reserved for future use*/
 PRI msgpri; /*Message priority*/
} T_MSG_PRI;

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 273

Return value

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mbxid < 0x0

- mbxid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified mailbox is not registered.

E_TMOUT -50
Polling failure.

- No message exists in the target mailbox.

CHAPTER 17 SERVICE CALLS

274 User’s Manual U20044EJ1V0UM

trcv_mbx

Outline
Receive from mailbox (with timeout).

C format
ER trcv_mbx (ID mbxid, T_MSG **ppk_msg, TMO tmout);

Parameter(s)

[Message packet: T_MSG]

[Message packet: T_MSG_PRI]

Explanation
This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in the

area specified by parameter ppk_msg.
If no message could be received from the target mailbox (no messages were queued to the wait queue) when this

service call is issued, this service call does not receive messages but queues the invoking task to the target mailbox wait
queue and moves it from the RUNNING state to the WAITING state with timeout (message reception wait state).

The receiving WAITING state for a mailbox is cancelled in the following cases, and then moved to the READY state.

I/O Parameter Description

I ID mbxid; ID number of the mailbox from which a message is received.

O T_MSG **ppk_msg; Start address of the message packet received from the mailbox.

I TMO tmout;

Specified timeout (in millisecond).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified timeout.

typedef struct t_msg {
 struct t_msg *msgnext; /*Reserved for future use*/
} T_MSG;

typedef struct t_msg_pri {
 struct t_msg msgque; /*Reserved for future use*/
 PRI msgpri; /*Message priority*/
} T_MSG_PRI;

Receiving WAITING State for a Mailbox Cancel Operation Return Value

A message was transmitted to the target mailbox as a result of issuing snd_mbx. E_OK

A message was transmitted to the target mailbox as a result of issuing isnd_mbx. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 275

Note 1 Invoking tasks are queued to the target mailbox wait queue in the order defined during configuration (FIFO
order or priority order).

Note 2 If the message reception wait state is cancelled because rel_wai or irel_wai was issued or the wait time
elapsed, the contents in the area specified by parameter ppk_msg become undefined.

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to rcv_mbx will be executed. When
TMO_POL is specified, processing equivalent to prcv_mbx /iprcv_mbx will be executed.

Note 4 For details about the message packet, refer to "16.2.7 Message packet".

Return value

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

E_PAR -17
Parameter error.

- tmout < TMO_FEVR

E_ID -18

Invalid ID number.

- mbxid < 0x0

- mbxid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_NOEXS -42
Non-existent object.

- Specified mailbox is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

E_TMOUT -50
Timeout.

- Polling failure or timeout.

CHAPTER 17 SERVICE CALLS

276 User’s Manual U20044EJ1V0UM

ref_mbx
iref_mbx

Outline
Reference mailbox state.

C format
ER ref_mbx (ID mbxid, T_RMBX *pk_rmbx);
ER iref_mbx (ID mbxid, T_RMBX *pk_rmbx);

Parameter(s)

[Mailbox state packet: T_RMBX]

Explanation
Stores mailbox state packet (ID number of the task at the head of the wait queue, start address of the message packet

at the head of the wait queue) of the mailbox specified by parameter mbxid in the area specified by parameter pk_rmbx.

Note For details about the mailbox state packet, refer to "16.2.8 Mailbox state packet".

Return value

I/O Parameter Description

I ID mbxid; ID number of the mailbox to be referenced.

O T_RMBX *pk_rmbx; Pointer to the packet returning the mailbox state.

typedef struct t_rmbx {
 ID wtskid; /*Existence of waiting task*/
 T_MSG *pk_msg; /*Existence of waiting message*/
 ATR mbxatr; /*Attribute*/
} T_RMBX;

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mbxid < 0x0

- mbxid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified mailbox is not registered.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 277

17.2.8 Extended synchronization and communication functions (mutexes)
The following shows the service calls provided by the RX850V4 as the extended synchronization and communication

functions (mutexes).

Table 17-8 Extended Synchronization and Communication Functions (Mutexes)

Service Call Function Origin of Service Call

loc_mtx Lock mutex (waiting forever) Task

ploc_mtx Lock mutex (polling) Task, Restricted task

tloc_mtx Lock mutex (with timeout) Task

unl_mtx Unlock mutex Task, Restricted task

ref_mtx Reference mutex state Task, Restricted task, Non-task,
Initialization routine

iref_mtx Reference mutex state Task, Restricted task, Non-task,
Initialization routine

CHAPTER 17 SERVICE CALLS

278 User’s Manual U20044EJ1V0UM

loc_mtx

Outline
Lock mutex (waiting forever).

C format
ER loc_mtx (ID mtxid);

Parameter(s)

Explanation
This service call locks the mutex specified by parameter mtxid.
If the target mutex could not be locked (another task has been locked) when this service call is issued, this service call

queues the invoking task to the target mutex wait queue and moves it from the RUNNING state to the WAITING state
(mutex wait state).

The WAITING state for a mutex is cancelled in the following cases, and then moved to the READY state.

Note 1 Invoking tasks are queued to the target mutex wait queue in the order defined during configuration (FIFO order
or priority order).

Note 2 In the RX850V4, E_ILUSE is returned if this service call is re-issued for the mutex that has been locked by the
invoking task (multiple-locking of mutex).

Return value

I/O Parameter Description

I ID mtxid; ID number of the mutex to be locked.

WAITING State for a Mutex Cancel Operation Return Value

The locked state of the target mutex was cancelled as a result of issuing unl_mtx. E_OK

The locked state of the target mutex was cancelled as a result of issuing ext_tsk. E_OK

The locked state of the target mutex was cancelled as a result of issuing ter_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

E_ID -18

IInvalid ID number.

- mtxid < 0x0

- mtxid > Maximum ID number

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 279

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_ILUSE -28
Illegal service call use.

- Multiple locking of a mutex.

E_NOEXS -42
Non-existent object.

- Specified mutex is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

Macro Value Description

CHAPTER 17 SERVICE CALLS

280 User’s Manual U20044EJ1V0UM

ploc_mtx

Outline
Lock mutex (polling).

C format
ER ploc_mtx (ID mtxid);

Parameter(s)

Explanation
This service call locks the mutex specified by parameter mtxid.
If the target mutex could not be locked (another task has been locked) when this service call is issued but E_TMOUT is

returned.

Note In the RX850V4, E_ILUSE is returned if this service call is re-issued for the mutex that has been locked by the
invoking task (multiple-locking of mutex).

Return value

I/O Parameter Description

I ID mtxid; ID number of the mutex to be locked.

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

E_ID -18

Invalid ID number.

- mtxid < 0x0

- mtxid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

E_ILUSE -28
Illegal service call use.

- Multiple locking of a mutex.

E_NOEXS -42
Non-existent object.

- Specified mutex is not registered.

E_TMOUT -50
Polling failure.

- The target mutex has been locked by another task.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 281

tloc_mtx

Outline
Lock mutex (with timeout).

C format
ER tloc_mtx (ID mtxid, TMO tmout);

Parameter(s)

Explanation
This service call locks the mutex specified by parameter mtxid.
If the target mutex could not be locked (another task has been locked) when this service call is issued, this service call

queues the invoking task to the target mutex wait queue and moves it from the RUNNING state to the WAITING state with
timeout (mutex wait state).

The WAITING state for a mutex is cancelled in the following cases, and then moved to the READY state.

Note 1 Invoking tasks are queued to the target mutex wait queue in the order defined during configuration (FIFO order
or priority order).

Note 2 In the RX850V4, E_ILUSE is returned if this service call is re-issued for the mutex that has been locked by the
invoking task (multiple-locking of mutex).

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to loc_mtx will be executed. When
TMO_POL is specified, processing equivalent to ploc_mtx will be executed.

I/O Parameter Description

I ID mtxid; ID number of the mutex to be locked.

I TMO tmout;

Specified timeout (in millisecond).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified timeout.

WAITING State for a Mutex Cancel Operation Return Value

The locked state of the target mutex was cancelled as a result of issuing unl_mtx. E_OK

The locked state of the target mutex was cancelled as a result of issuing ext_tsk. E_OK

The locked state of the target mutex was cancelled as a result of issuing ter_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

CHAPTER 17 SERVICE CALLS

282 User’s Manual U20044EJ1V0UM

Return value

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

E_PAR -17
Parameter error.

- tmout < TMO_FEVR

E_ID -18

Invalid ID number.

- mtxid < 0x0

- mtxid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_ILUSE -28
Illegal service call use.

- Multiple locking of a mutex.

E_NOEXS -42
Non-existent object.

- Specified mutex is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

E_TMOUT -50
Timeout.

- Polling failure or timeout.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 283

unl_mtx

Outline
Unlock mutex.

C format
ER unl_mtx (ID mtxid);

Parameter(s)

Explanation
This service call unlocks the locked mutex specified by parameter mtxid.
If a task has been queued to the target mutex wait queue when this service call is issued, mutex lock processing is

performed by the task (the first task in the wait queue) immediately after mutex unlock processing.
As a result, the task is unlinked from the wait queue and moves from the WAITING state (mutex wait state) to the

READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

Note A locked mutex can be unlocked only by the task that locked the mutex.
If this service call is issued for a mutex that was not locked by an invoking task, no processing is performed but
E_ILUSE is returned.

Return value

I/O Parameter Description

I ID mtxid; ID number of the mutex to be unlocked.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mtxid < 0x0

- mtxid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

E_ILUSE -28

Illegal service call use.

- Multiple unlocking of a mutex.

- The invoking task does not have the specified mutex locked.

E_NOEXS -42
Non-existent object.

- Specified mutex is not registered.

CHAPTER 17 SERVICE CALLS

284 User’s Manual U20044EJ1V0UM

ref_mtx
iref_mtx

Outline
Reference mutex state.

C format
ER ref_mtx (ID mtxid, T_RMTX *pk_rmtx);
ER iref_mtx (ID mtxid, T_RMTX *pk_rmtx);

Parameter(s)

[Mutex state packet: T_RMTX]

Explanation
The service calls store the detailed information of the mutex specified by parameter mtxid (existence of locked mutexes,

waiting tasks, etc.) into the area specified by parameter pk_rmtx.

Note For details about the mutex state packet, refer to "16.2.9 Mutex state packet".

Return value

I/O Parameter Description

I ID mtxid; ID number of the mutex to be referenced.

O T_RMTX *pk_rmtx; Pointer to the packet returning the mutex state.

typedef struct t_rmtx {
 ID htskid; /*Existence of locked mutex*/
 ID wtskid; /*Existence of waiting task*/
 ATR mtxatr; /*Attribute*/
 PRI ceilpri; /*Reserved for future use*/
} T_RMTX;

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mtxid < 0x0

- mtxid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified mutex is not registered.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 285

17.2.9 Memory pool management functions (fixed-sized memory pools)
The following shows the service calls provided by the RX850V4 as the memory pool management functions (fixed-sized

memory pools).

Table 17-9 Memory Pool Management Functions (Fixed-Sized Memory Pools)

Service Call Function Origin of Service Call

get_mpf Acquire fixed-sized memory block (waiting forever) Task

pget_mpf Acquire fixed-sized memory block (polling) Task, Restricted task, Non-task,
Initialization routine

ipget_mpf Acquire fixed-sized memory block (polling) Task, Restricted task, Non-task,
Initialization routine

tget_mpf Acquire fixed-sized memory block (with timeout) Task

rel_mpf Release fixed-sized memory block Task, Restricted task, Non-task,
Initialization routine

irel_mpf Release fixed-sized memory block Task, Restricted task, Non-task,
Initialization routine

ref_mpf Reference fixed-sized memory pool state Task, Restricted task, Non-task,
Initialization routine

iref_mpf Reference fixed-sized memory pool state Task, Restricted task, Non-task,
Initialization routine

CHAPTER 17 SERVICE CALLS

286 User’s Manual U20044EJ1V0UM

get_mpf

Outline
Acquire fixed-sized memory block (waiting forever).

C format
ER get_mpf (ID mpfid, VP *p_blk);

Parameter(s)

Explanation
This service call acquires the fixed-sized memory block from the fixed-sized memory pool specified by parameter mpfid

and stores the start address in the area specified by parameter p_blk.
If no fixed-size memory blocks could be acquired from the target fixed-size memory pool (no available fixed-size

memory blocks exist) when this service call is issued, this service call does not acquire the fixed-size memory block but
queues the invoking task to the target fixed-size memory pool wait queue and moves it from the RUNNING state to the
WAITING state (fixed-size memory block acquisition wait state).

The WAITING state for a fixed-sized memory block is cancelled in the following cases, and then moved to the READY
state.

Note 1 Invoking tasks are queued to the target fixed-size memory pool wait queue in the order defined during
configuration (FIFO order or priority order).

Note 2 If the fixed-size memory block acquisition wait state is cancelled because rel_wai or irel_wai was issued, the
contents in the area specified by parameter p_blk become undefined.

Return value

I/O Parameter Description

I ID mpfid;
ID number of the fixed-sized memory pool from which a memory block
is acquired.

O VP *p_blk; Start address of the acquired memory block.

WAITING State for a Fixed-sized Memory Block Cancel Operation Return Value

A fixed-sized memory block was returned to the target fixed-sized memory pool as a result of
issuing rel_mpf. E_OK

A fixed-sized memory block was returned to the target fixed-sized memory pool as a result of
issuing irel_mpf. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 287

E_ID -18

Invalid ID number.

- mpfid < 0x0

- mpfid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_NOEXS -42
Non-existent object.

- Specified fixed-sized memory pool is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

Macro Value Description

CHAPTER 17 SERVICE CALLS

288 User’s Manual U20044EJ1V0UM

pget_mpf
ipget_mpf

Outline
Acquire fixed-sized memory block (polling).

C format
ER pget_mpf (ID mpfid, VP *p_blk);
ER ipget_mpf (ID mpfid, VP *p_blk);

Parameter(s)

Explanation
This service call acquires the fixed-sized memory block from the fixed-sized memory pool specified by parameter mpfid

and stores the start address in the area specified by parameter p_blk.
If a fixed-sized memory block could not be acquired from the target fixed-sized memory pool (no available fixed-sized

memory blocks exist) when this service call is issued, fixed-sized memory block acquisition processing is not performed
but "E_TMOUT" is returned.

Note If no fixed-size memory blocks could be acquired from the target fixed-size memory pool (no available fixed-
size memory blocks exist) when this service call is issued, the contents in the area specified by parameter
p_blk become undefined.

Return value

I/O Parameter Description

I ID mpfid;
ID number of the fixed-sized memory pool from which a memory block
is acquired.

O VP *p_blk; Start address of the acquired memory block.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mpfid < 0x0

- mpfid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified fixed-sized memory pool is not registered.

E_TMOUT -50
Polling failure.

- There is no free memory block in the target fixed-sized memory pool.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 289

tget_mpf

Outline
Acquire fixed-sized memory block (with timeout).

C format
ER tget_mpf (ID mpfid, VP *p_blk, TMO tmout);

Parameter(s)

Explanation
This service call acquires the fixed-sized memory block from the fixed-sized memory pool specified by parameter mpfid

and stores the start address in the area specified by parameter p_blk.
If no fixed-size memory blocks could be acquired from the target fixed-size memory pool (no available fixed-size

memory blocks exist) when this service call is issued, this service call does not acquire the fixed-size memory block but
queues the invoking task to the target fixed-size memory pool wait queue and moves it from the RUNNING state to the
WAITING state with timeout (fixed-size memory block acquisition wait state).

The WAITING state for a fixed-sized memory block is cancelled in the following cases, and then moved to the READY
state.

Note 1 Invoking tasks are queued to the target fixed-size memory pool wait queue in the order defined during
configuration (FIFO order or priority order).

Note 2 If the fixed-size memory block acquisition wait state is cancelled because rel_wai or irel_wai was issued or the
wait time elapsed, the contents in the area specified by parameter p_blk become undefined.

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to get_mpf will be executed. When
TMO_POL is specified, processing equivalent to pget_mpf /ipget_mpf will be executed.

I/O Parameter Description

I ID mpfid;
ID number of the fixed-sized memory pool from which a memory block
is acquired.

O VP *p_blk; Start address of the acquired memory block.

I TMO tmout;

Specified timeout (in millisecond).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified timeout.

WAITING State for a Fixed-sized Memory Block Cancel Operation Return Value

A fixed-sized memory block was returned to the target fixed-sized memory pool as a result of
issuing rel_mpf. E_OK

A fixed-sized memory block was returned to the target fixed-sized memory pool as a result of
issuing irel_mpf. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

CHAPTER 17 SERVICE CALLS

290 User’s Manual U20044EJ1V0UM

Return value

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

E_PAR -17
Parameter error.

- tmout < TMO_FEVR

E_ID -18

Invalid ID number.

- mpfid < 0x0

- mpfid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_NOEXS -42
Non-existent object.

- Specified fixed-sized memory pool is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

E_TMOUT -50
Timeout.

- Polling failure or timeout.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 291

rel_mpf
irel_mpf

Outline
Release fixed-sized memory block.

C format
ER rel_mpf (ID mpfid, VP blk);
ER irel_mpf (ID mpfid, VP blk);

Parameter(s)

Explanation
This service call returns the fixed-sized memory block specified by parameter blk to the fixed-sized memory pool

specified by parameter mpfid.
If a task is queued to the target fixed-sized memory pool wait queue when this service call is issued, fixed-sized memory

block return processing is not performed but fixed-sized memory blocks are returned to the relevant task (first task of wait
queue).

As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (WAITING state for
a fixed-sized memory block) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

Note 1 The RX850V4 does not perform memory clear processing when returning the acquired fixed-size memory
block. The contents of the returned fixed-size memory block are therefore undefined.

Note 2 When returning fixed-size memory blocks, be sure to issue either of these service calls for the acquired fixed-
size memory pools. If the service call is issued for another fixed-size memory pool, no error results but the
operation is not guaranteed after that.

Return value

I/O Parameter Description

I ID mpfid;
ID number of the fixed-sized memory pool to which the memory block is
released.

I VP blk; Start address of the memory block to be released.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mpfid < 0x0

- mpfid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified fixed-sized memory pool is not registered.

CHAPTER 17 SERVICE CALLS

292 User’s Manual U20044EJ1V0UM

ref_mpf
iref_mpf

Outline
Reference fixed-sized memory pool state.

C format
ER ref_mpf (ID mpfid, T_RMPF *pk_rmpf);
ER iref_mpf (ID mpfid, T_RMPF *pk_rmpf);

Parameter(s)

[Fixed-sized memory pool state packet: T_RMPF]

Explanation
Stores fixed-sized memory pool state packet (ID number of the task at the head of the wait queue, number of free mem-

ory blocks, etc.) of the fixed-sized memory pool specified by parameter mpfid in the area specified by parameter pk_rmpf.

Note For details about the fixed-sized memory pool state packet, refer to "16.2.10 Fixed-sized memory pool state
packet".

Return value

I/O Parameter Description

I ID mpfid; ID number of the fixed-sized memory pool to be referenced.

O T_RMPF *pk_rmpf; Pointer to the packet returning the fixed-sized memory pool state.

typedef struct t_rmpf {
 ID wtskid; /*Existence of waiting task*/
 UINT fblkcnt; /*Number of free memory blocks*/
 ATR mpfatr; /*Attribute*/
 ID memid; /*Reserved for future use*/
} T_RMPF;

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mpfid < 0x0

- mpfid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified fixed-sized memory pool is not registered.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 293

17.2.10 Memory pool management functions (variable-sized memory pools)
The following shows the service calls provided by the RX850V4 as the memory pool management functions (variable-

sized memory pools).

Table 17-10 Memory Pool Management Functions (Variable-Sized Memory Pools)

Service Call Function Origin of Service Call

get_mpl Acquire variable-sized memory block (waiting forever) Task

pget_mpl Acquire variable-sized memory block (polling) Task, Restricted task, Non-task,
Initialization routine

ipget_mpl Acquire variable-sized memory block (polling) Task, Restricted task, Non-task,
Initialization routine

tget_mpl Acquire variable-sized memory block (with timeout) Task

rel_mpl Release variable-sized memory block Task, Restricted task, Non-task,
Initialization routine

irel_mpl Release variable-sized memory block Task, Restricted task, Non-task,
Initialization routine

ref_mpl Reference variable-sized memory pool state Task, Restricted task, Non-task,
Initialization routine

iref_mpl Reference variable-sized memory pool state Task, Restricted task, Non-task,
Initialization routine

CHAPTER 17 SERVICE CALLS

294 User’s Manual U20044EJ1V0UM

get_mpl

Outline
Acquire variable-sized memory block (waiting forever).

C format
ER get_mpl (ID mplid, UINT blksz, VP *p_blk);

Parameter(s)

Explanation
This service call acquires a variable-size memory block of the size specified by parameter blksz from the variable-size

memory pool specified by parameter mplid, and stores its start address into the area specified by parameter p_blk.
If no variable-size memory blocks could be acquired from the target variable-size memory pool (no successive areas

equivalent to the requested size were available) when this service call is issued, this service call does not acquire variable-
size memory blocks but queues the invoking task to the target variable-size memory pool wait queue and moves it from
the RUNNING state to the WAITING state (variable-size memory block acquisition wait state).

The WAITING state for a variable-sized memory block is cancelled in the following cases, and then moved to the
READY state

Note 1 The RX850V4 acquires variable-size memory blocks in the unit of "integral multiple of 4". If a value other than
an integral multiple of 4 is specified for parameter blksz, it is rounded up to be an integral multiple of 4.

Note 2 Invoking tasks are queued to the target variable-size memory pool wait queue in the order defined during
configuration (FIFO order or priority order).

Note 3 If the variable-size memory block acquisition wait state is cancelled because rel_wai or irel_wai was issued,
the contents in the area specified by parameter p_blk become undefined.

I/O Parameter Description

I ID mplid;
ID number of the variable-sized memory pool from which a memory
block is acquired.

I UINT blksz; Memory block size to be acquired (in bytes).

O VP *p_blk; Start address of the acquired memory block.

WAITING State for a Variable-sized Memory Block Cancel Operation Return Value

The variable-size memory block that satisfies the requested size was returned to the target
variable-size memory pool as a result of issuing rel_mpl. E_OK

The variable-size memory block that satisfies the requested size was returned to the target
variable-size memory pool as a result of issuing irel_mpl. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 295

Return value

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

E_PAR -17

Parameter error.

- blksz = 0x0

- blksz > 0x7fffffff

E_ID -18

Invalid ID number.

- mplid < 0x0

- mplid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_NOEXS -42
Non-existent object.

- Specified variable-sized memory pool is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

CHAPTER 17 SERVICE CALLS

296 User’s Manual U20044EJ1V0UM

pget_mpl
ipget_mpl

Outline
Acquire variable-sized memory block (polling).

C format
ER pget_mpl (ID mplid, UINT blksz, VP *p_blk);
ER ipget_mpl (ID mplid, UINT blksz, VP *p_blk);

Parameter(s)

Explanation
This service call acquires a variable-size memory block of the size specified by parameter blksz from the variable-size

memory pool specified by parameter mplid, and stores its start address into the area specified by parameter p_blk.
If no variable-size memory blocks could be acquired from the target variable-size memory pool (no successive areas

equivalent to the requested size were available) when this service call is issued, this service call does not acquire variable-
size memory block but returns E_TMOUT.

Note 1 The RX850V4 acquires variable-size memory blocks in the unit of "integral multiple of 4". If a value other than
an integral multiple of 4 is specified for parameter blksz, it is rounded up to be an integral multiple of 4.

Note 2 If no variable-size memory blocks could be acquired from the target variable-size memory pool (no successive
areas equivalent to the requested size were available) when this service call is issued, the contents in the area
specified by parameter p_blk become undefined.

Return value

I/O Parameter Description

I ID mplid;
ID number of the variable-sized memory pool from which a memory
block is acquired.

I UINT blksz; Memory block size to be acquired (in bytes).

O VP *p_blk; Start address of the acquired memory block.

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17

Parameter error.

- blksz = 0x0

- blksz > 0x7fffffff

E_ID -18

Invalid ID number.

- mplid < 0x0

- mplid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 297

E_NOEXS -42
Non-existent object.

- Specified variable-sized memory pool is not registered.

E_TMOUT -50
Polling failure.

- No successive areas equivalent to the requested size were available in the
target variable-size memory pool.

Macro Value Description

CHAPTER 17 SERVICE CALLS

298 User’s Manual U20044EJ1V0UM

tget_mpl

Outline
Acquire variable-sized memory block (with timeout).

C format
ER tget_mpl (ID mplid, UINT blksz, VP *p_blk, TMO tmout);

Parameter(s)

Explanation
This service call acquires a variable-size memory block of the size specified by parameter blksz from the variable-size

memory pool specified by parameter mplid, and stores its start address into the area specified by parameter p_blk.
If no variable-size memory blocks could be acquired from the target variable-size memory pool (no successive areas

equivalent to the requested size were available) when this service call is issued, this service call does not acquire variable-
size memory blocks but queues the invoking task to the target variable-size memory pool wait queue and moves it from
the RUNNING state to the WAITING state with timeout (variable-size memory block acquisition wait state).

The WAITING state for a variable-sized memory block is cancelled in the following cases, and then moved to the
READY state.

Note 1 The RX850V4 acquires variable-size memory blocks in the unit of "integral multiple of 4". If a value other than
an integral multiple of 4 is specified for parameter blksz, it is rounded up to be an integral multiple of 4.

Note 2 Invoking tasks are queued to the target variable-size memory pool wait queue in the order defined during
configuration (FIFO order or priority order).

Note 3 If the variable-size memory block acquisition wait state is cancelled because rel_wai or irel_wai was issued or
the wait time elapsed, the contents in the area specified by parameter p_blk become undefined.

I/O Parameter Description

I ID mplid;
ID number of the variable-sized memory pool from which a memory
block is acquired.

I UINT blksz; Memory block size to be acquired (in bytes).

O VP *p_blk; Start address of the acquired memory block.

I TMO tmout;

Specified timeout (in millisecond).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified timeout.

WAITING State for a Variable-sized Memory Block Cancel Operation Return Value

The variable-size memory block that satisfies the requested size was returned to the target
variable-size memory pool as a result of issuing rel_mpl. E_OK

The variable-size memory block that satisfies the requested size was returned to the target
variable-size memory pool as a result of issuing irel_mpl. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 299

Note 4 TMO_FEVR is specified for wait time tmout, processing equivalent to get_mpl will be executed. When
TMO_POL is specified, processing equivalent to pget_mpl /ipget_mpl will be executed.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_NOSPT -9
Unsupportted function.

- Specified task is a restricted task.

E_PAR -17

Parameter error.

- blksz = 0x0

- blksz > 0x7fffffff

- tmout < TMO_FEVR

E_ID -18

Invalid ID number.

- mplid < 0x0

- mplid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_NOEXS -42
Non-existent object.

- Specified variable-sized memory pool is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

E_TMOUT -50
Timeout.

- Polling failure or timeout.

CHAPTER 17 SERVICE CALLS

300 User’s Manual U20044EJ1V0UM

rel_mpl
irel_mpl

Outline
Release variable-sized memory block.

C format
ER rel_mpl (ID mplid, VP blk);
ER irel_mpl (ID mplid, VP blk);

Parameter(s)

Explanation
This service call returns the variable-sized memory block specified by parameter blk to the variable-sized memory pool

specified by parameter mplid.
After returning the variable-size memory blocks, these service calls check the tasks queued to the target variable-size

memory pool wait queue from the top, and assigns the memory if the size of memory requested by the wait queue is
available. This operation continues until no tasks queued to the wait queue remain or no memory space is available. As a
result, the task that acquired the memory is unlinked from the queue and moved from the WAITING state (variable-size
memory block acquisition wait state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED
state.

Note 1 The RX850V4 does not perform memory clear processing when returning the acquired variable-size memory
block. The contents of the returned variable-size memory block are therefore undefined.

Note 2 When returning variable-size memory blocks, be sure to issue either of these service calls for the acquired
variable-size memory pools. If the service call is issued for another variable-size memory pool, no error results
but the operation is not guaranteed after that.

Return value

I/O Parameter Description

I ID mplid;
ID number of the variable-sized memory pool to which the memory
block is released.

I VP blk; Start address of memory block to be released.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mplid < 0x0

- mplid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified variable-sized memory pool is not registered.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 301

ref_mpl
iref_mpl

Outline
Reference variable-sized memory pool state.

C format
ER ref_mpl (ID mplid, T_RMPL *pk_rmpl);
ER iref_mpl (ID mplid, T_RMPL *pk_rmpl);

Parameter(s)

[Variable-sized memory pool state packet: T_RMPL]

Explanation
These service calls store the detailed information (ID number of the task at the head of the wait queue, total size of free

memory blocks, etc.) of the variable-size memory pool specified by parameter mplid into the area specified by parameter
pk_rmpl.

Note For details about the variable-sized memory pool state packet, refer to "16.2.11 Variable-sized memory pool
state packet".

Return value

I/O Parameter Description

I ID mplid; ID number of the variable-sized memory pool to be referenced.

O T_RMPL *pk_rmpl; Pointer to the packet returning the variable-sized memory pool state.

typedef struct t_rmpl {
 ID wtskid; /*Existence of waiting task*/
 SIZE fmplsz; /*Total size of free memory blocks*/
 UINT fblksz; /*Maximum memory blocK size available*/
 ATR mplatr; /*Attribute*/
 ID memid; /*Reserved for future use*/
} T_RMPL;

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mplid < 0x0

- mplid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

CHAPTER 17 SERVICE CALLS

302 User’s Manual U20044EJ1V0UM

E_NOEXS -42
Non-existent object.

- Specified variable-sized memory pool is not registered.

Macro Value Description

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 303

17.2.11 Time management functions
The following shows the service calls provided by the RX850V4 as the time management functions.

Table 17-11 Time Management Functions

Service Call Function Origin of Service Call

set_tim Set system time Task, Restricted task, Non-task,
Initialization routine

iset_tim Set system time Task, Restricted task, Non-task,
Initialization routine

get_tim Reference system time Task, Restricted task, Non-task,
Initialization routine

iget_tim Reference system time Task, Restricted task, Non-task,
Initialization routine

sta_cyc Start cyclic handler operation Task, Restricted task, Non-task,
Initialization routine

ista_cyc Start cyclic handler operation Task, Restricted task, Non-task,
Initialization routine

stp_cyc Stop cyclic handler operation Task, Restricted task, Non-task,
Initialization routine

istp_cyc Stop cyclic handler operation Task, Restricted task, Non-task,
Initialization routine

ref_cyc Reference cyclic handler state Task, Restricted task, Non-task,
Initialization routine

iref_cyc Reference cyclic handler state Task, Restricted task, Non-task,
Initialization routine

CHAPTER 17 SERVICE CALLS

304 User’s Manual U20044EJ1V0UM

set_tim
iset_tim

Outline
Set system time.

C format
ER set_tim (SYSTIM *p_systim);
ER iset_tim (SYSTIM *p_systim);

Parameter(s)

[System time packet: SYSTIM]

Explanation
These service calls change the RX850V4 system time (unit: msec) to the time specified by parameter p_systim.

Note For details about the system time packet, refer to "16.2.12 System time packet".

Return value

I/O Parameter Description

I SYSTIM *p_systim; Time to set as system time.

typedef struct t_systim {
 UW ltime; /*System time (lower 32 bits)*/
 UH utime; /*System time (higher 16 bits)*/
} SYSTIM;

Macro Value Description

E_OK 0 Normal completion.

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 305

get_tim
iget_tim

Outline
Reference system time.

C format
ER get_tim (SYSTIM *p_systim);
ER iget_tim (SYSTIM *p_systim);

Parameter(s)

[System time packet: SYSTIM]

Explanation
These service calls store the RX850V4 system time (unit: msec) into the area specified by parameter p_systim.

Note 1 The RX850V4 ignores the numeric values that cannot be expressed as the system time (values overflowed
from the 48-bit width).

Note 2 For details about the system time packet, refer to "16.2.12 System time packet".

Return value

I/O Parameter Description

O SYSTIM *p_systim; Current system time.

typedef struct t_systim {
 UW ltime; /*System time (lower 32 bits)*/
 UH utime; /*System time (higher 16 bits)*/
} SYSTIM;

Macro Value Description

E_OK 0 Normal completion.

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

CHAPTER 17 SERVICE CALLS

306 User’s Manual U20044EJ1V0UM

sta_cyc
ista_cyc

Outline
Start cyclic handler operation.

C format
ER sta_cyc (ID cycid);
ER ista_cyc (ID cycid);

Parameter(s)

Explanation
This service call moves the cyclic handler specified by parameter cycid from the non-operational state (STP state) to

operational state (STA state).
As a result, the target cyclic handler is handled as an activation target of the RX850V4.
The relative interval from when either of this service call is issued until the first activation request is issued varies

depending on whether the TA_PHS attribute is specified for the target cyclic handler during configuration.

- If the TA_PHS attribute is specified
The target cyclic handler activation timing is set based on the activation phases (initial activation phase cycphs and
activation cycle cyctim) defined during configuration.
If the target cyclic handler has already been started, however, no processing is performed even if this service call is
issued, but it is not handled as an error.

- If the TA_PHS attribute is not specified
The target cyclic handler activation timing is set based on the activation phase (activation cycle cyctim) when this
service call is issued.
This setting is performed regardless of the operating status of the target cyclic handler.

Return value

I/O Parameter Description

I ID cycid; ID number of the cyclic handler operation to be started.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- cycid < 0x0

- cycid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified cyclic handler is not registered.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 307

stp_cyc
istp_cyc

Outline
Stop cyclic handler operation.

C format
ER stp_cyc (ID cycid);
ER istp_cyc (ID cycid);

Parameter(s)

Explanation
This service call moves the cyclic handler specified by parameter cycid from the operational state (STA state) to non-

operational state (STP state).
As a result, the target cyclic handler is excluded from activation targets of the RX850V4 until issuance of sta_cyc or

ista_cyc.

Note This service call does not perform queuing of stop requests. If the target cyclic handler has been moved to the
non-operational state (STP state), therefore, no processing is performed but it is not handled as an error.

Return value

I/O Parameter Description

I ID cycid; ID number of the cyclic handler operation to be stopped.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- cycid < 0x0

- cycid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified cyclic handler is not registered.

CHAPTER 17 SERVICE CALLS

308 User’s Manual U20044EJ1V0UM

ref_cyc
iref_cyc

Outline
Reference cyclic handler state.

C format
ER ref_cyc (ID cycid, T_RCYC *pk_rcyc);
ER iref_cyc (ID cycid, T_RCYC *pk_rcyc);

Parameter(s)

[Cyclic handler state packet: T_RCYC]

Explanation
Stores cyclic handler state packet (current state, time left before the next activation, etc.) of the cyclic handler specified

by parameter cycid in the area specified by parameter pk_rcyc.

Note For details about the cyclic handler state packet, refer to "16.2.13 Cyclic handler state packet".

Return value

I/O Parameter Description

I ID cycid; ID number of the cyclic handler to be referenced.

O T_RCYC *pk_rcyc; Pointer to the packet returning the cyclic handler state.

typedef struct t_rcyc {
 STAT cycstat; /*Current state*/
 RELTIM lefttim; /*Time left before the next activation*/
 ATR cycatr; /*Attribute*/
 RELTIM cyctim; /*Activation cycle*/
 RELTIM cycphs; /*Activation phase*/
} T_RCYC;

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- cycid < 0x0

- cycid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified cyclic handler is not registered.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 309

17.2.12 System state management functions
The following shows the service calls provided by the RX850V4 as the system state management functions.

Table 17-12 System State Management Functions

Service Call Function Origin of Service Call

rot_rdq Rotate task precedence Task, Restricted task, Non-task,
Initialization routine

irot_rdq Rotate task precedence Task, Restricted task, Non-task,
Initialization routine

vsta_sch Forced scheduler activation Task, Restricted task

get_tid Reference task ID in the RUNNING state Task, Restricted task, Non-task,
Initialization routine

iget_tid Reference task ID in the RUNNING state Task, Restricted task, Non-task,
Initialization routine

loc_cpu Lock the CPU Task, Restricted task, Non-task

iloc_cpu Lock the CPU Task, Restricted task, Non-task

unl_cpu Unlock the CPU Task, Restricted task, Non-task

iunl_cpu Unlock the CPU Task, Restricted task, Non-task

sns_loc Reference CPU state Task, Restricted task, Non-task,
Initialization routine

dis_dsp Disable dispatching Task, Restricted task

ena_dsp Enable dispatching Task, Restricted task

sns_dsp Reference dispatching state Task, Restricted task, Non-task,
Initialization routine

sns_ctx Reference contexts Task, Restricted task, Non-task,
Initialization routine

sns_dpn Reference dispatching pending state Task, Restricted task, Non-task,
Initialization routine

CHAPTER 17 SERVICE CALLS

310 User’s Manual U20044EJ1V0UM

rot_rdq
irot_rdq

Outline
Rotate task precedence.

C fomrat
ER rot_rdq (PRI tskpri);
ER irot_rdq (PRI tskpri);

Parameter(s)

Explanation
This service call re-queues the first task of the ready queue corresponding to the priority specified by parameter tskpri to

the end of the queue to change the task execution order explicitly.

Note 1 This service call does not perform queuing of rotation requests. If no task is queued to the ready queue
corresponding to the relevant priority, therefore, no processing is performed but it is not handled as an error.

Note 2 Round-robin scheduling can be implemented by issuing this service call via a cyclic handler in a constant
cycle.

Note 3 The ready queue is a hash table that uses priority as the key, and tasks that have entered an executable state
(READY state or RUNNING state) are queued in FIFO order.
Therefore, the scheduler realizes the RX850V4's scheduling system by executing task detection processing
from the highest priority level of the ready queue upon activation, and upon detection of queued tasks, giving
the CPU use right to the first task of the proper priority level.

Return value

I/O Parameter Description

I PRI tskpri;

Priority of the tasks whose precedence is rotated.

TPRI_SELF: Current priority of the invoking task.
Value: Priority of the tasks whose precedence is rotated.

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17

Parameter error.

- tskpri < 0x0

- tskpri > Maximum priority

- When this service call was issued from a non-task, TPRI_SELF was specified
tskpri.

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 311

vsta_sch

Outline
Forced scheduler activation.

C format
ER vsta_sch (void);

Parameter(s)
None.

Explanation
This service call explicitly forces the RX850V4 scheduler to activate. If a scheduling request has been kept pending,

task switching may therefore occur.

Note The RX850V4 provides this service call as a function to activate a scheduler from a task for which preempt
acknowledge status disable is defined during configuration.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

CHAPTER 17 SERVICE CALLS

312 User’s Manual U20044EJ1V0UM

get_tid
iget_tid

Outline
Reference task ID in the RUNNING state.

C format
ER get_tid (ID *p_tskid);
ER iget_tid (ID *p_tskid);

Parameter(s)

Explanation
These service calls store the ID of a task in the RUNNING state in the area specified by parameter p_tskid.

Note This service call stores TSK_NONE in the area specified by parameter p_tskid if no tasks that have entered the
RUNNING state exist (all tasks in the IDLE state).

Return value

I/O Parameter Description

O ID *p_tskid; ID number of the task in the RUNNING state.

Macro Value Description

E_OK 0 Normal completion.

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 313

loc_cpu
iloc_cpu

Outline
Lock the CPU.

C format
ER loc_cpu (void);
ER iloc_cpu (void);

Parameter(s)
None.

Explanation
These service calls change the system status type to the CPU locked state.
As a result, maskable interrupt acknowledgment processing is prohibited during the interval from this service call is

issued until unl_cpu or iunl_cpu is issued, and service call issuance is also restricted.
The service calls that can be issued in the CPU locked state are limited to the one listed below.

If a maskable interrupt is created during this period, the RX850V4 delays transition to the relevant interrupt processing
(interrupt handler) until either unl_cpu or iunl_cpu is issued.

Note 1 The internal processing (interrupt mask setting processing and interrupt mask acquire processing) performed
by this service call depends on the user execution environment, so it is extracted as a target-dependent
module and provided as sample source files.
In sample source files, manipulation for the interrupt control register xxICn and the interrupt mask flag xxMKn
of the interrupt mask register IMRm is coded as interrupt mask setting processing or interrupt mask acquire
processing.

<rx_sample>\src\usr_getmsk.c, usr_intmsk.c

Note 2 The CPU locked state changed by issuing this service call must be cancelled before the processing program
that issued this service call ends.

Note 3 This service call does not perform queuing of lock requests. If the system is in the CPU locked state, therefore,
no processing is performed but it is not handled as an error.

Note 4 The RX850V4 realizes the TIME MANAGEMENT FUNCTIONS by using base clock timer interrupts that occur
at constant intervals. If acknowledgment of the relevant base clock timer interrupt is disabled by issuing this
service call, the TIME MANAGEMENT FUNCTIONS may no longer operate normally.

Service Call Function

sns_tex Reference task exception handling state.

loc_cpu, iloc_cpu Lock the CPU.

unl_cpu, iunl_cpu Unlock the CPU.

sns_loc Reference CPU state.

sns_dsp Reference dispatching state.

sns_ctx Reference contexts.

sns_dpn Reference dispatch pending state.

CHAPTER 17 SERVICE CALLS

314 User’s Manual U20044EJ1V0UM

Note 5 If this service call or a service call other than sns_xxx is issued from when this service call is issued until
unl_cpu or iunl_cpu is issued, the RX850V4 returns E_CTX.

Return value

Macro Value Description

E_OK 0 Normal completion.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 315

unl_cpu
iunl_cpu

Outline
Unlock the CPU.

C format
ER unl_cpu (void);
ER iunl_cpu (void);

Parameter(s)
None.

Explanation
These service calls change the system status to the CPU unlocked state.
As a result, acknowledge processing of maskable interrupts prohibited through issuance of either loc_cpu or iloc_cpu is

enabled, and the restriction on service call issuance is released.
If a maskable interrupt is created during the interval from when either loc_cpu or iloc_cpu is issued until this service call

is issued, the RX850V4 delays transition to the relevant interrupt processing (interrupt handler) until this service call is
issued.

Note 1 The internal processing (interrupt mask setting processing) performed by this service call depends on the user
execution environment, so it is extracted as a target-dependent module and provided as sample source files.
In sample source files, manipulation for the interrupt control register xxICn and the interrupt mask flag xxMKn
of the interrupt mask register IMRm is coded as interrupt mask setting processing.

<rx_sample>\src\usr_setmsk.c

Note 2 This service call does not perform queuing of cancellation requests. If the system is in the CPU unlocked state,
therefore, no processing is performed but it is not handled as an error.

Note 3 This service call does not cancel the dispatch disabled state that was set by issuing dis_dsp. If the system
status before the CPU locked state is entered was the dispatch disabled state, the system status becomes the
dispatch disabled state after this service call is issued.

Note 4 This service call does not enable acknowledgment of the maskable interrupts that has been disabled by
issuing dis_int. If the system status before the CPU locked state is entered was the maskable interrupt
acknowledgment enabled state, acknowledgment of maskable interrupts is disabled after this service call is
issued.

Note 5 If a service call other than loc_cpu, iloc_cpu and sns_xxx is issued from when loc_cpu or iloc_cpu is issued
until this service call is issued, the RX850V4 returns E_CTX.

Return value

Macro Value Description

E_OK 0 Normal completion.

CHAPTER 17 SERVICE CALLS

316 User’s Manual U20044EJ1V0UM

sns_loc

Outline
Reference CPU state.

C format
BOOL sns_loc (void);

Parameter(s)
None.

Explanation
This service call acquires the system status type when this service call is issued (CPU locked state or CPU unlocked

state).
When this service call is terminated normally, the acquired system state type (TRUE: CPU locked state, FALSE: CPU

unlocked state) is returned.

Return value

Macro Value Description

TRUE 1 Normal completion (CPU locked state).

FALSE 0 Normal completion (CPU unlocked state).

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 317

dis_dsp

Outline
Disable dispatching.

C format
ER dis_dsp (void);

Parameter(s)
None.

Explanation
This service call changes the system status to the dispatch disabled state.
As a result, dispatch processing (task scheduling) is disabled from when this service call is issued until ena_dsp is

issued.
If a service call (chg_pri, sig_sem, etc.) accompanying dispatch processing is issued during the interval from when this

service call is issued until ena_dsp is issued, the RX850V4 executes only processing such as queue manipulation,
counter manipulation, etc., and the actual dispatch processing is delayed until ena_dsp is issued, upon which the actual
dispatch processing is performed in batch.

Note 1 The dispatch disabled state changed by issuing this service call must be cancelled before the task that issued
this service call moves to the DORMANT state.

Note 2 This service call does not perform queuing of disable requests. If the system is in the dispatch disabled state,
therefore, no processing is performed but it is not handled as an error.

Note 3 If a service call (such as wai_sem, wai_flg) that may move the status of an invoking task is issued from when
this service call is issued until ena_dsp is issued, the RX850V4 returns E_CTX regardless of whether the
required condition is immediately satisfied.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

CHAPTER 17 SERVICE CALLS

318 User’s Manual U20044EJ1V0UM

ena_dsp

Outline
Enable dispatching.

C format
ER ena_dsp (void);

Parameter(s)
None.

Explanation
This service call changes the system status to the dispatch enabled state.
As a result, dispatch processing (task scheduling) that has been disabled by issuing dis_dsp is enabled.
If a service call (chg_pri, sig_sem, etc.) accompanying dispatch processing is issued during the interval from when

dis_dsp is issued until this service call is issued, the RX850V4 executes only processing such as queue manipulation,
counter manipulation, etc., and the actual dispatch processing is delayed until this service call is issued, upon which the
actual dispatch processing is performed in batch.

Note 1 This service call does not perform queuing of enable requests. If the system is in the dispatch enabled state,
therefore, no processing is performed but it is not handled as an error.

Note 2 If a service call (such as wai_sem, wai_flg) that may move the status of an invoking task is issued from when
dis_dsp is issued until this service call is issued, the RX850V4 returns E_CTX regardless of whether the
required condition is immediately satisfied.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 319

sns_dsp

Outline
Reference dispatching state.

C format
BOOL sns_dsp (void);

Parameter(s)
None.

Explanation
This service call acquires the system status type when this service call is issued (dispatch disabled state or dispatch

enabled state).
When this service call is terminated normally, the acquired system state type (TRUE: dispatch disabled state, FALSE:

dispatch enabled state) is returned.

Return value

Macro Value Description

TRUE 1 Normal completion (dispatching disabled state).

FALSE 0 Normal completion (dispatching enabled state).

CHAPTER 17 SERVICE CALLS

320 User’s Manual U20044EJ1V0UM

sns_ctx

Outline
Reference contexts.

C format
BOOL sns_ctx (void);

Parameter(s)
None.

Explanation
This service call acquires the context type of the processing program that issued this service call (non-task context or

task context).
When this service call is terminated normally, the acquired context type (TRUE: non-task context, FALSE: task context)

is returned.

Return value

Macro Value Description

TRUE 1 Normal completion (non-task contexts).

FALSE 0 Normal completion (task contexts).

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 321

sns_dpn

Outline
Reference dispatch pending state.

C format
BOOL sns_dpn (void);

Parameter(s)
None.

Explanation
This service call acquires the system status type when this service call is issued (whether in dispatch pending state or

not).
When this service call is terminated normally, the acquired system state type (TRUE: dispatch pending state, FALSE:

dispatch not-pending state) is returned.

Return value

Macro Value Description

TRUE 1 Normal completion. (dispatch pending state)

FALSE 0 Normal completion. (any other states)

CHAPTER 17 SERVICE CALLS

322 User’s Manual U20044EJ1V0UM

17.2.13 Interrupt management functions
The following shows the service calls provided by the RX850V4 as the interrupt management functions.

Table 17-13 Interrupt Management Functions

Service Call Function Origin of Service Call

dis_int Disable interrupt Task, Restricted task, Non-task,
Initialization routine

ena_int Enable interrupt Task, Restricted task, Non-task,
Initialization routine

chg_ims Change interrupt mask Task, Restricted task, Non-task,
Initialization routine

ichg_ims Change interrupt mask Task, Restricted task, Non-task,
Initialization routine

get_ims Reference interrupt mask Task, Restricted task, Non-task,
Initialization routine

iget_ims Reference interrupt mask Task, Restricted task, Non-task,
Initialization routine

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 323

dis_int

Outline
Disable interrupt.

C format
ER dis_int (INTNO intno);

Parameter(s)

Explanation
This service call disables acknowledgment of maskable interrupts corresponding to the exception code specified by

parameter intno.
If a maskable interrupt corresponding to the exception code specified by parameter intno occurs from when this service

call is issued until ena_int is issued, the RX850V4 delays branching to the relevant interrupt servicing (interrupt handler)
until ena_int is issued.

Note 1 The processing performed by this service call depends on the user execution environment, so it is extracted as
a target-dependent module and provided as sample source files.
In sample source files, manipulation for the interrupt control register xxICn and the interrupt mask flag xxMKn
of the interrupt mask register IMRm is coded as processing to disable acknowledgment of maskable interrupt.

<rx_sample>\src\usr_disint.c

Note 2 This service call does not perform queuing of disable requests. If this service call has already been issued and
acknowledgment of the corresponding maskable interrupt has been disabled, therefore, no processing is
performed but it is not handled as an error.

Note 3 The RX850V4 realizes the TIME MANAGEMENT FUNCTIONS by using base clock timer interrupts that occur
at constant intervals. If acknowledgment of the relevant base clock timer interrupt is disabled by issuing this
service call, the TIME MANAGEMENT FUNCTIONS may no longer operate normally.

Return value

I/O Parameter Description

I INTNO intno; Exception code to be disabled.

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17
Parameter error.

- intno is invalid.

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

CHAPTER 17 SERVICE CALLS

324 User’s Manual U20044EJ1V0UM

ena_int

Outline
Enable interrupt.

C format
ER ena_int (INTNO intno);

Parameter(s)

Explanation
This service call enables acknowledgment of maskable interrupts corresponding to the exception code specified by

parameter intno.
If a maskable interrupt corresponding to the exception code specified by parameter intno occurs from when dis_int is

issued until this service call is issued, the RX850V4 delays branching to the relevant interrupt servicing (interrupt handler)
until this service call is issued.

Note 1 The processing performed by this service call depends on the user execution environment, so it is extracted as
a target-dependent module and provided as sample source files.
In sample source files, manipulation for the interrupt control register xxICn and the interrupt mask flag xxMKn
of the interrupt mask register IMRm is coded as processing to enable acknowledgment of maskable interrupt.

<rx_sample>\src\usr_enaint.c

Note 2 This service call does not perform queuing of enable requests. If this service call has already been issued and
acknowledgment of the corresponding maskable interrupt has been enabled, therefore, no processing is
performed but it is not handled as an error.

Return value

I/O Parameter Description

I INTNO intno; Exception code to be enabled.

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17
Parameter error.

- intno is invalid.

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 325

chg_ims
ichg_ims

Outline
Change interrupt mask.

C format
ER chg_ims (UH *p_intms);
ER ichg_ims (UH *p_intms);

Parameter(s)

Explanation
These service calls change the CPU interrupt mask pattern (value of interrupt control register xxICn or interrupt mask

flag xxMKn of interrupt mask register IMRm) to the state specified by parameter p_intms.
The following shows the meaning of values to be set (interrupt mask flag) to the area specified by p_intms.

0: Acknowledgment of maskable interrupts is enabled
1: Acknowledgment of maskable interrupts is disabled

Note 1 The internal processing (interrupt mask setting processing) performed by this service call depends on the user
execution environment, so it is extracted as a target-dependent module and provided as sample source files.

<rx_sample>\src\usr_setmsk.c

Note 2 The RX850V4 realizes the TIME MANAGEMENT FUNCTIONS by using base clock timer interrupts that occur
at constant intervals. If acknowledgment of the relevant base clock timer interrupt is disabled by issuing this
service call, the TIME MANAGEMENT FUNCTIONS may no longer operate normally.

Return value

I/O Parameter Description

I UH *p_intms; Interrupt mask desired.

Macro Value Description

E_OK 0 Normal completion.

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

CHAPTER 17 SERVICE CALLS

326 User’s Manual U20044EJ1V0UM

get_ims
iget_ims

Outline
Reference interrupt mask.

C format
ER get_ims (UH *p_intms);
ER iget_ims (UH *p_intms);

Parameter(s)

Explanation
These service calls store the CPU interrupt mask pattern (value of interrupt control register xxICn or interrupt mask flag

xxMKn of interrupt mask register IMRm) into the area specified by parameter p_intms.
The following shows the meaning of values to be stored (interrupt mask flag) into the area specified by p_intms.

0: Acknowledgment of maskable interrupts is enabled
1: Acknowledgment of maskable interrupts is disabled

Note The internal processing (interrupt mask acquire processing) performed by this service call depends on the user
execution environment, so it is extracted as a target-dependent module and provided as sample source files.

<rx_sample>\src\usr_getmsk.c

Return value

I/O Parameter Description

O UH *p_intms; Current interrupt mask.

Macro Value Description

E_OK 0 Normal completion.

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

CHAPTER 17 SERVICE CALLS

User’s Manual U20044EJ1V0UM 327

17.2.14 Service call management functions
The following shows the service calls provided by the RX850V4 as the service call management functions.

Table 17-14 Service Call Management Functions

Service Call Function Origin of Service Call

cal_svc Invoke extended service call routine Task, Restricted task, Non-task,
Initialization routine

ical_svc Invoke extended service call routine Task, Restricted task, Non-task,
Initialization routine

CHAPTER 17 SERVICE CALLS

328 User’s Manual U20044EJ1V0UM

cal_svc
ical_svc

Outline
Invoke extended service call routine.

C format
ER_UINT cal_svc (FN fncd, VP_INT par1, VP_INT par2, VP_INT par3);
ER_UINT ical_svc (FN fncd, VP_INT par1, VP_INT par2, VP_INT par3);

Parameter(s)

Explanation
These service calls call the extended service call routine specified by parameter fncd.

Note Extended service call routines that can be called using this service call are the routines whose transferred data
total is less than four.

Return value

I/O Parameter Description

I FN fncd; Function code of the extended service call routine to be invoked.

I VP_INT par1; The first parameter of the extended service call routine.

I VP_INT par2; The second parameter of the extended service call routine.

I VP_INT par3; The third parameter of the extended service call routine.

Macro Value Description

E_RSFN -10

Invalid function code.

- fncd ≦ 0x0

- fncd ＞ 0xff

- Specified extended service call routine is not registered.

- - Normal completion (the extended service call routine's return value).

CHAPTER 18 SYSTEM CONFIGURATION FILE

User’s Manual U20044EJ1V0UM 329

CHAPTER 18 SYSTEM CONFIGURATION FILE

This chapter explains the coding method of the system configuration file required to output information files (system
information table file, system information header file and entry file) that contain data to be provided for the RX850V4.

18.1 Outline
The following shows the notation method of system configuration files.

- Character code
Create the system configuration file using ASCII code.
The CF850V4 distinguishes lower cases "a to z" and upper cases "A to Z".

Note For japanese language coding, Shit-JIS codes can be used only for comments.

- Comment
In a system configuration file, parts between /* and */ and parts from two successive slashes (//) to the line end are
regarded as comments.

- Numeric
In a system configuration file, words starting with a numeric value (0 to 9) are regarded as numeric values.
The CFV850V4 distinguishes numeric values as follows.

Octal: Words starting with 0
Decimal: Words starting with a value other than 0
Hexadecimal: Words starting with 0x or 0X

Note Unless specified otherwise, the range of values that can be specified as numeric values are limited from 0x0
to 0xffffffff.

- Symbol name
In a system configuration file, words starting with an alphabetic character, "a to z, A to Z", or underscore "_" are
regarded as symbol names.
Describing a symbol name in the format "symbol name + offset" is also possible, but the offset must be a constant
expression.
The following shows examples of describing symbol names.
The CF850V4 distinguishes between symbol names and other names based on the context in the system
configuration file.

[Correct]
 func + 0x80000 // func name
 symbol + 0x90 * 80 // symbol name
 symbol + BASE // data macro

[Incorrect]
 (func + 0x8000) // The start character is illegal.
 0x8000 + func // The start character is illegal.
 BASE + func // Data macro BASE is handled as a symbol name.
 func * 0x8000 // It is not the format of offset.

Note Up to 4,095 characters can be specified for symbol names, including offset and spaces.

- Name
In a system configuration file, words starting with an alphabetic character, "a to z, A to Z", or underscore "_" are
regarded as names.
The CF850V4 distinguishes between symbol names and other names based on the context in the system
configuration file.

Note Up to 255 characters can be specified for names.

- Preprocessing directives
The following preprocessing directives can be coded in a system configuration file.

#define, #elif, #else, #endif, #if, #ifdef, #ifndef, #include, #undef

CHAPTER 18 SYSTEM CONFIGURATION FILE

330 User’s Manual U20044EJ1V0UM

- Keywords
The words shown below are reserved by the CFV850V4 as keywords.
Using these words for any other purpose specified is therefore prohibited.

ATT_INI, CLK_INTNO, CPU_TYPE, CRE_CYC, CRE_DTQ, CRE_FLG, CRE_MBX, CRE_MPF, CRE_MPL,
CRE_MTX, CRE_SEM, CRE_TSK, DEF_EXC, DEF_INH, DEF_SVC, DEF_TEX, DEF_TIM, INCLUDE, INT_STK,
MAX_CYC, MAX_DTQ, MAX_FLG, MAX_INT, MAX_MBX, MAX_MPF, MAX_MPL, MAX_MTX, MAX_PRI,
MAX_SEM, MAX_SVC, MAX_TSK, MEM_AREA, NULL, r22, r26, r32, REG_MODE, RX_SERIES, SERVICECALL,
SIZE_AUTO, STK_CHK, SYS_STK, TA_ACT, TA_ASM, TA_CLR, TA_DISINT, TA_DISPREEMPT, TA_ENAINT,
TA_HLNG, TA_MFIFO, TA_MPRI, TA_OFF, TA_ON, TA_PHS, TA_RSTR, TA_STA, TA_TFIFO, TA_TPRI,
TA_WMUL, TA_WSGL, TBIT_FLGPTN, TBIT_TEXPTN, TIC_DENO, TIC_NUME, TKERNEL_MAKER,
TKERNEL_PRID, TKERNEL_PRVER, TKERNEL_SPVER, TMAX_ACTCNT, TMAX_MPRI, TMAX_SEMCNT,
TMAX_SUSCNT, TMAX_TPRI, TMAX_WUPCNT, TMIN_MPRI, TMIN_TPRI, TSZ_DTQ, TSZ_MBF, TSZ_MPF,
TSZ_MPL, TSZ_MPROHD, V850, V850ES, V850E1, V850E2, VATT_IDL, VDEF_RTN

Note In addition to the above words, service call names (such as act_tsk, slp_tsk, ras_tex) and words starting with
kernel are reserved as keywords in the CF850V4.

CHAPTER 18 SYSTEM CONFIGURATION FILE

User’s Manual U20044EJ1V0UM 331

18.2 Configuration Information
The configuration information that is described in a system configuration file is divided into the following three main

types.

- Declarative Information
Data related to a header file (header file name) in which data macro entities used in the system configuration file are
defined.

- Header file declaration

- System Information
Data related to OS resources (such as real-time OS name, processor type) required for the RX850V4 to operate.

- RX series information

- Basic information

- Initial FPSR register information

- Memory area information

- Static API Information
Data related to management objects (such as task and task exception handling routine) used in the system.

- Task information

- Task exception handling routine information

- Semaphore information

- Eventflag information

- Data queue information

- Mailbox information

- Mutex information

- Fixed-sized memory pool information

- Variable-sized memory pool information

- Cyclic handler information

- Interrupt handler information

- CPU exception handler information

- Extended service call routine information

- Initialization routine information

- Idle routine information

CHAPTER 18 SYSTEM CONFIGURATION FILE

332 User’s Manual U20044EJ1V0UM

18.2.1 Cautions
In the system configuration file, describe the system configuration information (Declarative Information, System

Information, Static API Information) in the following order.

1) Declarative Information description

2) System Information description

3) Static API Information description

System Information and Static API Information can be coded in any order.
The following illustrates how the system configuration file is described.

Figure 18-1 System Configuration File Description Format

-- Declarative Information (Header file declaration) description
/* */

-- System Information (RX series information, etc.) description
/* */

-- Static API Information (Task information, etc.) description
/* */

CHAPTER 18 SYSTEM CONFIGURATION FILE

User’s Manual U20044EJ1V0UM 333

18.3 Declarative Information
The following describes the format that must be observed when describing the declarative information in the system

configuration file.
The GOTHIC-FONT characters in following descriptions are the reserved words, and italic face characters are the

portion that the user must write the relevant numeric value, symbol name, or keyword.

18.3.1 Header file declaration
The header file declaration defines file name: filename.
The number of definable header file declaration items is not restricted.
The following shows the header file declaration format.

The items constituting the header file declaration are as follows.

1) file name: filename
Reflects the header file declaration specified in h_file into the system information header file output by the
CF850V4.
As a result, macro definitions in filename can be referenced from a file in which the system information header file
output by the CF850V4 is included.

Note If <sample.h> is specified in h_file, the header file definition (include processing) is output as:

#include <sample.h>

If \"sample.h\" is specified in h_file, the header file definition (include processing) is output as:

#include "sample.h"

to the system information header file.

INCLUDE ("filename");

CHAPTER 18 SYSTEM CONFIGURATION FILE

334 User’s Manual U20044EJ1V0UM

18.4 System Information
The following describes the format that must be observed when describing the system information in the system

configuration file.
The GOTHIC-FONT characters in following descriptions are the reserved words, and italic face characters are the

portion that the user must write the relevant numeric value, symbol name, or keyword.
Items enclosed by square brackets "[]" can be omitted.

18.4.1 RX series information
The RX series information defines Real-time OS name: rtos_name, Version number: rtos_ver.
Only one information item can be defined as RX series information.
The following shows the RX series information format.

The items constituting the RX series information are as follows.

1) Real-time OS name: rtos_name
Specifies the real-time OS name.
The keyword that can be specified for rtos_name is RX850V4.

2) Version number: rtos_ver
Specifies the version number for RX850V4.
A value from V420 to V499 can be specified for rtos_ver.

RX_SERIES (rtos_name, rtos_ver);

CHAPTER 18 SYSTEM CONFIGURATION FILE

User’s Manual U20044EJ1V0UM 335

18.4.2 Basic information
The basic information defines Processor type: cpu, Register mode: register, Base clock interval: clkcyc, Clock timer

exception code: intno, System stack size: stksz, Whether to check stack: flg, Maximum priority: maxpri, Maximum number
of interrupt handlers: maxinh, Maximum value of exception code: maxint.

Only one information item can be defined as basic information.
The following shows the basic information format.

The items constituting the basic information are as follows.

1) Processor type: cpu
Specifies the type for a CPU.
The keyword that can be specified for cpu is V850ES, V850E1, V850E2 or V850E2M.

V850ES: V850ES core
V850E1: V850E1 core
V850E2: V850E2 core
V850E2M: V850E2M core

If omitted "V850E1" is specified as the target device processor type.

2) Register mode: register
Specifies the register mode.
The keyword that can be specified for register is r22, r26 or r32.

r22: 22-register mode
r26: 26-register mode
r32: 32-register mode

If omitted "r32" is specified as the register mode type of kernel library librxc.a that is linked during system
configuration.

Note If -regxx is specified as the CF850V4 activation option, definition of reg_mode is ignored and the
CF850V4 activation option is handled as valid information.

3) Base clock interval: clkcyc
Specifies the base clock interval (in millisecond) of the timer to be used.
A value from 0x1 to 0xffff can be specified for clkcyc.

If omitted "0x1msec" is specified as the base clock cycle of the RX850V4.

Note The base clock cycle means the occurrence interval of base clock timer interrupt tim_intno, which is
required for implementing the TIME MANAGEMENT FUNCTIONS provided by the RX850V4. To
initialize hardware used by the RX850V4 for time management (such as timers and controllers), the
setting must therefore be made so as to generate base clock timer interrupts at the interval defined with
tim_base.

4) Clock timer exception code: intno
Specifies the exception code for a clock timer.
Only interrupt source names prescribed in the device file and 16-byte boundary values can be specified.
If an interrupt source name is specified for intno, the CF850V4 activation option -cpu Δ name must be specified.

[CPU_TYPE (cpu);]
[REG_MODE (register);]
[DEF_TIM (clkcyc);]
CLK_INTNO (intno);
SYS_STK (stksz);
[STK_CHK (flg);]
[MAX_PRI (maxpri);]
MAX_INT (maxinh, maxint);

CHAPTER 18 SYSTEM CONFIGURATION FILE

336 User’s Manual U20044EJ1V0UM

5) System stack size: stksz
Specifies the system stack size (in bytes).
A value from 0x0 to 0x7ffffffc (aligned to a 4-byte boundary) can be specified for stksz.

Note 1 For expressions to calculate the system stack size, refer to "18.6 Memory Capacity Estimation".

Note 2 The memory area for system stack is secured from the ".rx_memory section".

Note 3 The stack size that is actually secured is calculated as the specified stack size plus "20 + frmsz (size of
context area of interrupt handler)". Refer to “Table 18-3“ about frmsz.

6) Whether to check stack: flg
Specifies whether to check the stack overflows before the RX850V4 starts processing.
The keyword that can be specified for flg is TA_ON or TA_OFF.

TA_ON: Overflow is checked
TA_OFF: Overflow not checked

Note Overflow is not checked by default.

7) Maximum priority: maxpri
Specifies the maximum priority of the task.
A value from 0x1 to 0x20 can be specified for maxpri.

If omitted "0x20" is specified as the maximum task priority.

8) Maximum number of interrupt handlers: maxinh, Maximum value of exception code: maxint
Specifies the maximum number of interrupt handlers to be registered and the maximum number of exception codes
possessed by the target CPU.
Only values from 0x0 to 0xff can be specified for maxinh, and values from 0x80 to 0x1060 can be specified for
maxint.

Note Specify for maxinh the total number of interrupt handlers defined in Interrupt handler information.

CHAPTER 18 SYSTEM CONFIGURATION FILE

User’s Manual U20044EJ1V0UM 337

18.4.3 Initial FPSR register information
The initial FPSR register information defines Initial FPSR register information for the "floating-point operation setting/

status register FPSR" when a processing program (e.g. task, cyclic handler, or interrupt handler) is started.
The following shows the initial FPSR register information format.

The items constituting the initial FPSR register information are as follows.

1) Initial FPSR register value: fpsr
Specifies the FPSR value when a processing program is started.
Note that the allowable range of the fpsr setting is limited to "0x0 to 0xffffffff".
Behavior is not guaranteed, however, if the value is set outside the range allowed by the hardware. See your
hardware documentation for the specific values.

If omitted The initial FPSR register value will be "0x00020000".

Caution This item is only enabled if a V850E2M device is specified. This item will be ignored if a different device
is specified.

[DEF_FPSR (fpsr);]

CHAPTER 18 SYSTEM CONFIGURATION FILE

338 User’s Manual U20044EJ1V0UM

18.4.4 Memory area information
The memory area information defines Memory area name:mem_area, Memory area size:memsz for a memory area.
Only values from 0x0 to 0xff can be defined as the number of memory area information items (one for each section).
The following shows the memory area information format.

The items constituting the memory area information are as follows.

1) Memory area name:mem_area
Specifies the name of the memory area used for management objects.
Only the section-name (defined in link directive file) .mem_area from which a dot is excluded can be specified for
mem_area.

Note See CubeSuite V850 Coding / CubeSuite Coding for CX Compiler User's Manual for details about link
directive files.

2) Memory area size:memsz
Specifies the size of the memory area used for management objects (unit: bytes).
Only 4-byte boundary values from 0x0 to 0x7ffffffc, or "SIZE_AUTO" can be specified for memsz.

SIZE_AUTO: Total size of management objects defined in Basic information, Task information, etc.

Note For expressions to calculate the memory area size, refer to "18.6 Memory Capacity Estimation".

MEM_AREA (mem_area, memsz);

CHAPTER 18 SYSTEM CONFIGURATION FILE

User’s Manual U20044EJ1V0UM 339

18.5 Static API Information
The following describes the format that must be observed when describing the static API information in the system

configuration file.
The GOTHIC-FONT characters in following descriptions are the reserved words, and italic face characters are the

portion that the user must write the relevant numeric value, symbol name, or keyword.
Items enclosed by square brackets "[]" can be omitted.

18.5.1 Task information
The task information defines ID number: tskid, Attribute: tskatr, Extended information: exinf, Start address: task, Initial

priority: itskpri, Task stack size: stksz, memory area name: mem_area, Reserved for future use: stk for a task.
The number of items that can be defined as task information is limited to one for each ID number.
The following shows the task information format.

The items constituting the task information are as follows.

1) ID number: tskid
Specifies the ID number for a task.
A value from 0x1 to 0xff, or a name, can be specified for tskid.

Note When a name is specified, the CF850V4 automatically assigns an ID number.
The CF850V4 outputs the relationship between a name and an ID number to the system information
header file in the following format:

#define tskid value

2) Attribute: tskatr
Specifies the attribute for a task.
The keyword that can be specified for tskatr is TA_HLNG, TA_ASM, TA_ACT, TA_RSTR, TA_DISPREEMPT,
TA_ENAINT and TA_DISINT.

[Coding language]
TA_HLNG: Start a task through a C language interface.
TA_ASM: Start a task through an assembly language interface.

[Initial activation state]
TA_ACT: Task is activated after the creation.

[Task type]
TA_RSTR: Restricted task

[Initial preemption state]
TA_DISPREEMPT: Preemption is disabled at task activation.

[Initial interrupt state]
TA_ENAINT: All interrupts are enabled at task activation.
TA_DISINT: All interrupts are disabled at task activation.

Note 1 If specification of TA_ACT is omitted, the DORMANT state is specified as the initial activation state.

Note 2 If specification of TA_RSTR is omitted, the normal task is specified as the task type.

Note 3 If specification of TA_DISPREEMPT is omitted, the preempt acknowledge is enabled when a task moves
from the DORMANT state to the READY state.

Note 4 If specification of TA_ENAINT and TA_DISINT is omitted, interrupts are enabled in the initial state when a
task moves from the DORMANT state to the READY state.

3) Extended information: exinf
Specifies the extended information for a task.
A value from 0x0 to 0xffffffff, or a symbol name, can be specified for exinf.

Note The target task can be manipulated by handling the extended information as if it were a function
parameter.

CRE_TSK (tskid, { tskatr, exinf, task, itskpri, stksz[:mem_area], stk });

CHAPTER 18 SYSTEM CONFIGURATION FILE

340 User’s Manual U20044EJ1V0UM

4) Start address: task
Specifies the start address for a task.
A value from 0x0 to 0xfffffffe (aligned to a 2-byte boundary), or a symbol name, can be specified for task.

5) Initial priority: itskpri
Specifies the initial priority for a task.
A value from 0x1 to 0x20 (not greater than maxpri) can be specified for itskpri.

6) Task stack size: stksz, memory area name: mem_area
Specifies the task stack size (unit: bytes) and the name of the memory area secured for the task stack.
Only 4-byte boundary values from 0x0 to 0x7ffffffc can be specified for stksz, and only memory area name
mem_area defined in Memory area information" can be specified for mem_area.

Note 1 For expressions to calculate the stack size, refer to "18.6 Memory Capacity Estimation".

Note 2 If specification of mem_area is omitted, the task stack is allocated to the .rx_memory section.

Note 3 The stack size that is actually secured is calculated as the specified stack size plus "20 + ctxsz (size of
context area of interrupt handler)". See Table 18-4 and Table 18-5 for details about ctxsz.

7) Reserved for future use: stk
System-reserved area.
Values that can be specified for stk are limited to NULL characters.

CHAPTER 18 SYSTEM CONFIGURATION FILE

User’s Manual U20044EJ1V0UM 341

18.5.2 Task exception handling routine information
The task exception handling routine information defines ID number: tskid, Attribute: texatr, Start address: texrtn for a

task exception handling routine.
The number of items that can be defined as task exception handling routine information is limited to one for each ID

number.
The following shows the task exception handling routine information format.

The items constituting the task exception handling routine information are as follows.

1) ID number: tskid
Specifies the ID number for a target task.
A value from 0x1 to 0xff, or a task name, can be specified for tskid.

2) Attribute: texatr
Specifies the language used to describe a task exception handling routine.
The keyword that can be specified for texatr is TA_HLNG or TA_ASM.

TA_HLNG: Start a task exception handling routine through a C language interface.
TA_ASM: Start a task exception handling routine through an assembly language interface.

3) Start address: texrtn
Specifies the start address for a task exception handling routine.
A value from 0x0 to 0xfffffffe (aligned to a 2-byte boundary), or a symbol name, can be specified for texrtn.

DEF_TEX (tskid, { texatr, texrtn });

CHAPTER 18 SYSTEM CONFIGURATION FILE

342 User’s Manual U20044EJ1V0UM

18.5.3 Semaphore information
The semaphore information defines ID number: semid, Attribute: sematr, Initial resource count: isemcnt, Maximum

resource count: maxsem for a semaphore.
The number of items that can be defined as semaphore information is limited to one for each ID number.
The following shows the semaphore information format.

The items constituting the semaphore information are as follows.

1) ID number: semid
Specifies the ID number for a semaphore.
A value from 0x1 to 0xff, or a name, can be specified for semid.

Note When a name is specified, the CF850V4 automatically assigns an ID number.
The CF850V4 outputs the relationship between a name and an ID number to the system information
header file in the following format:

#define semid value

2) Attribute: sematr
Specifies the task queuing method for a semaphore.
The keyword that can be specified for sematr is TA_TFIFO or TA_TPRI.

TA_TFIFO: Task wait queue is in FIFO order.
TA_TPRI: Task wait queue is in task priority order.

3) Initial resource count: isemcnt
Specifies the initial resource count for a semaphore.
A value from 0x0 to 0xffff (not greater than maxsem) can be specified for isemcnt.

4) Maximum resource count: maxsem
Specifies the maximum resource count for a semaphore.
A value from 0x1 to 0xffff can be specified for maxsem.

CRE_SEM (semid, { sematr, isemcnt, maxsem });

CHAPTER 18 SYSTEM CONFIGURATION FILE

User’s Manual U20044EJ1V0UM 343

18.5.4 Eventflag information
The eventflag information defines ID number: flgid, Attribute: flgatr, Initial bit pattern: iflgptn for an eventflag.
The number of items that can be defined as eventflag information is limited to one for each ID number.
The following shows the eventflag information format.

The items constituting the eventflag information are as follows.

1) ID number: flgid
Specifies the ID number for an eventflag.
A value from 0x1 to 0xff, or a name, can be specified for flgid.

Note When a name is specified, the CF850V4 automatically assigns an ID number.
The CF850V4 outputs the relationship between a name and an ID number to the system information
header file in the following format:

#define flgid value

2) Attribute: flgatr
Specifies the attribute for an eventflag.
The keyword that can be specified for flgatr is TA_TFIFO, TA_TPRI, TA_WSGL, TA_WMUL and TA_CLR.

[Task queuing method]
TA_TFIFO: Task wait queue is in FIFO order.
TA_TPRI: Task wait queue is in task priority order.

[Queuing count]
TA_WSGL: Only one task is allowed to be in the WAITING state for the eventflag.
TA_WMUL: Multiple tasks are allowed to be in the WAITING state for the eventflag.

[Bit pattern clear]
TA_CLR: Bit pattern is cleared when a task is released from the WAITING state for eventflag.

Note 1 If specification of TA_TFIFO and TA_TPRI is omitted, tasks are queued in the order of bit pattern checking.

Note 2 If specification of TA_CLR is omitted, "not clear bit patterns if the required condition is satisfied" is set.

3) Initial bit pattern: iflgptn
Specifies the initial bit pattern for an eventflag.
A value from 0x0 to 0xffffffff can be specifies for iflgptn.

CRE_FLG (flgid, { flgatr, iflgptn });

CHAPTER 18 SYSTEM CONFIGURATION FILE

344 User’s Manual U20044EJ1V0UM

18.5.5 Data queue information
The data queue information defines ID number: dtqid, Attribute: dtqatr, Data count: dtqcnt, memory area name:

mem_area, Reserved for future use: dtq for a data queue.
The number of items that can be defined as data queue information is limited to one for each ID number.
The following shows the data queue information format.

The items constituting the data queue information are as follows.

1) ID number: dtqid
Specifies the ID number for a data queue.
A value from 0x1 to 0xff, or a name, can be specified for dtqid.

Note When a name is specified, the CF850V4 automatically assigns an ID number.
The CF850V4 outputs the relationship between a name and an ID number to the system information
header file in the following format:

#define dtqid value

2) Attribute: dtqatr
Specifies the task queuing method for a data queue.
The keyword that can be specified for dtqatr is TA_TFIFO or TA_TPRI.

TA_TFIFO: Task wait queue is in FIFO order.
TA_TPRI: Task wait queue is in task priority order.

3) Data count: dtqcnt, memory area name: mem_area
Specifies the maximum number of data units that can be queued to the data queue area of a data queue, and the
name of the memory area secured for the data queue area.
Only values from 0x0 to 0xff can be specified for dtqcnt, and only memory area name mem_area defined in
Memory area information" can be specified for mem_area.

Note If specification of mem_area is omitted, the data queue is allocated to the .rx_memory section.

4) Reserved for future use: dtq
System-reserved area.
Values that can be specified for dtq are limited to NULL characters.

CRE_DTQ (dtqid, { dtqatr, dtqcnt[:mem_area], dtq });

CHAPTER 18 SYSTEM CONFIGURATION FILE

User’s Manual U20044EJ1V0UM 345

18.5.6 Mailbox information
The mailbox information defines ID number: mbxid, Attribute: mbxatr, Maximum message priority: maxmpri, Reserved

for future use: mprihd for a mailbox.
The number of items that can be defined as mailbox information is limited to one for each ID number.
The following shows the mailbox information format.

The items constituting the mailbox information are as follows.

1) ID number: mbxid
Specifies the ID number for a mailbox.
A value from 0x1 to 0xff, or a name, can be specified for mbxid.

Note When a name is specified, the CF850V4 automatically assigns an ID number.
The CF850V4 outputs the relationship between a name and an ID number to the system information
header file in the following format:

#define mbxid value

2) Attribute: mbxatr
Specifies the attribute for a mailbox.
The keyword that can be specified for mbxatr is TA_TFIFO, TA_TPRI, TA_MFIFO and TA_MPRI.

[Task queuing method]
TA_TFIFO: Task wait queue is in FIFO order.
TA_TPRI: Task wait queue is in task priority order.

[Message queuing method]
TA_MFIFO: Message wait queue is in FIFO order.
TA_MPRI: Message wait queue is in message priority order.

3) Maximum message priority: maxmpri
Specifies the maximum message priority for a mailbox.
A value from 0x1 to 0x7fff can be specified for maxmpri.

Note maxmpri is valid only when TA_MPRI is specified for mqueue.
It is invalid when TA_MFIFO is specified for mqueue.

4) Reserved for future use: mprihd
System-reserved area.
Values that can be specified for mprihd are limited to NULL characters.

CRE_MBX (mbxid, { mbxatr, maxmpri, mprihd });

CHAPTER 18 SYSTEM CONFIGURATION FILE

346 User’s Manual U20044EJ1V0UM

18.5.7 Mutex information
The mutex information defines ID number: mtxid, Attribute: mtxatr, Reserved for future use: ceilpri for a mutex.
The number of items that can be defined as mutex information is limited to one for each ID number.
The following shows the mutex information format.

The items constituting the mutex information are as follows.

1) ID number: mtxid
Specifies the ID number for a mutex.
A value from 0x1 to 0xff, or a name, can be specified for mtxid.

Note When a name is specified, the CF850V4 automatically assigns an ID number.
The CF850V4 outputs the relationship between a name and an ID number to the system information
header file in the following format:

#define mtxid value

2) Attribute: mtxatr
Specifies the task queuing method for a mutex.
The keyword that can be specified for mtxatr is TA_TFIFO or TA_TPRI.

TA_TFIFO: Task wait queue is in FIFO order.
TA_TPRI: Task wait queue is in task priority order.

3) Reserved for future use: ceilpri
System-reserved area.
Only values from "0x1 to maximum task priority maxtpri defined in Basic information" can be specified for ceilpri.

CRE_MTX (mtxid, { mtxatr, ceilpri });

CHAPTER 18 SYSTEM CONFIGURATION FILE

User’s Manual U20044EJ1V0UM 347

18.5.8 Fixed-sized memory pool information
The fixed-sized memory pool information defines ID number: mpfid, Attribute: mpfatr, Block count: blkcnt, Basic block

size: blksz, memory area name: mem_area, Reserved for future use: mpf for a fixed-sized memory pool.
The number of items that can be defined as fixed-sized memory pool information is limited to one for each ID number.
The following shows the fixed-sized memory pool information format.

The items constituting the fixed-sized memory pool information are as follows.

1) ID number: mpfid
Specifies the ID number for a fixed-sized memory pool.
A value from 0x1 to 0xff, or a name, can be specified for mpfid.

Note When a name is specified, the CF850V4 automatically assigns an ID number.
The CF850V4 outputs the relationship between a name and an ID number to the system information
header file in the following format:

#define mpfid value

2) Attribute: mpfatr
Specifies the task queuing method for a fixed-sized memory pool.
The keyword that can be specified for mpfatr is TA_TFIFO or TA_TPRI.

TA_TFIFO: Task wait queue is in FIFO order.
TA_TPRI: Task wait queue is in task priority order.

3) Block count: blkcnt
Specifies the block count for a fixed-sized memory pool.
A value from 0x1 to 0x7fff can be specified for blkcnt.

4) Basic block size: blksz, memory area name: mem_area
Specifies the size per block (unit: bytes) and the name of the memory area secured for the fixed-size memory pool.
Only 4-byte boundary values from 0x1 to 0x7ffffffc can be specified for blksz, and only memory area name
sec_area defined in Memory area information" can be specified for mem_area.

Note If specification of mem_area is omitted, the fixed-sized memory pool is allocated to the .rx_memory sec-
tion.

5) Reserved for future use: mpf
System-reserved area.
Values that can be specified for mpl are limited to NULL characters.

CRE_MPF (mpfid, { mpfatr, blkcnt, blksz[:mem_area], mpf });

CHAPTER 18 SYSTEM CONFIGURATION FILE

348 User’s Manual U20044EJ1V0UM

18.5.9 Variable-sized memory pool information
The variable-sized memory pool information defines ID number: mplid, Attribute: mplatr, Pool size: mplsz, memory area

name: mem_area, Reserved for future use: mpl for a variable-sized memory pool.
The number of items that can be defined as variable-sized memory pool information is limited to one for each ID

number.
The following shows the variable-sized memory pool information format.

The items constituting the variable-sized memory pool information are as follows.

1) ID number: mplid
Specifies the ID number for a variable-sized memory pool.
A value from 0x1 to 0xff, or a name, can be specified for mplid.

Note When a name is specified, the CF850V4 automatically assigns an ID number.
The CF850V4 outputs the relationship between a name and an ID number to the system information
header file in the following format:

#define mplid value

2) Attribute: mplatr
Specifies the task queuing method for a variable-sized memory pool.
The keyword that can be specified for mplatr is TA_TFIFO or TA_TPRI.

TA_TFIFO: Task wait queue is in FIFO order.
TA_TPRI: Task wait queue is in task priority order.

3) Pool size: mplsz, memory area name: mem_area
Specifies the variable-size memory pool size (unit: bytes) and the name of the memory area secured for the
variable-size memory pool.
Only 4-byte boundary values from 0x1 to 0x7ffffffc can be specified for mplsz, and only memory area name
sec_area defined in Memory area information" can be specified for mem_area.

Note If specification of mem_area is omitted, the variable-sized memory pool is allocated to the .rx_memory
section.

4) Reserved for future use: mpl
System-reserved area.
Values that can be specified for mpl are limited to NULL characters.

CRE_MPL (mplid, { mplatr, mplsz[:mem_area], mpl });

CHAPTER 18 SYSTEM CONFIGURATION FILE

User’s Manual U20044EJ1V0UM 349

18.5.10 Cyclic handler information
The cyclic handler information defines ID number: cycid, Attribute: cycatr, Extended information: exinf, Start address:

cychdr, Activation cycle: cyctim, Activation phase: cycphs for a cyclic handler.
The number of items that can be defined as cycic handler information is limited to one for each ID number.
The following shows the cyclic handler information format.

The items constituting the cyclic handler information are as follows.

1) ID number: cycid
Specifies the ID number for a cyclic handler.
A value from 0x1 to 0xff, or a name, can be specified for cycid.

Note When a name is specified, the CF850V4 automatically assigns an ID number.
The CF850V4 outputs the relationship between a name and an ID number to the system information
header file in the following format:

#define cycid value

2) Attribute: cycatr
Specifies the attribute for a cyclic handler.
The keywords that can be specified for cycatr are TA_HLNG, TA_ASM, TA_STA and TA_PHS.

[Coding languag]
TA_HLNG: Start a cyclic handler through a C language interface.
TA_ASM: Start a cyclic handler through an assembly language interface.

[Initial activation state]
TA_STA: Cyclic handlers is in an operational state after the creation.

[Activation phase]
TA_PHS: Cyclic handler is activated preserving the activation phase.

Note 1 If specification of TA_STA is omitted, the initial activation state is set to "non-operational state".

Note 2 If specification of TA_PHS is omitted, no activation phase items are saved.

3) Extended information: exinf
Specifies the extended information for a cyclic handler.
A value from 0x0 to 0xffffffff, or a symbol name, can be specified for exinf.

Note The target cyclic handler can be manipulated by handling the extended information as if it were a function
parameter.

4) Start address: cychdr
Specifies the start address for a cyclic handler.
A value from 0x0 to 0xfffffffe (aligned to a 2-byte boundary), or a symbol name, can be specified for cychdr.

5) Activation cycle: cyctim
Specifies the activation cycle (in millisecond) for a cyclic handler.
A value from 0x1 to 0x7fffffff (aligned to ‘clkcyc’ multiple values) can be specified for cyctim.

Note If a value other than an integral multiple of the base clock cycle defined in Basic information is specified for
cyctim, the CF850V4 assumes that an integral multiple is specified and performs processing.

6) Activation phase: cycphs
Specifies the activation phase (in millisecond) for a cyclic handler.
A value from 0x1 to 0x7fffffff (aligned to ‘clkcyc’ multiple values) can be specified for cycphs.

Note 1 In the RX850V4, the initial activation phase means the relative interval from when generation of s cyclic
handler is completed until the first activation request is issued.

Note 2 If a value other than an integral multiple of the base clock cycle defined in Basic information is specified for
cycphs, the CF850V4 assumes that an integral multiple is specified and performs processing.

CRE_CYC (cycid, { cycatr, exinf, cychdr, cyctim, cycphs });

CHAPTER 18 SYSTEM CONFIGURATION FILE

350 User’s Manual U20044EJ1V0UM

18.5.11 Interrupt handler information
The interrupt handler information defines Exception code: inhno, Attribute: inhatr, Start address: inthdr for an interrupt

handler information.
The number of items that can be defined as interrupt handler information is limited to one for each exception code.
The following shows the interrupt handler information format.

The items constituting the interrupt handler information are as follows.

1) Exception code: inhno
Specifies the exception code for an interrupt handler.
A value from 0x80 to the maximum value of an exception code (aligned to 0x10 multiple values), or an interrupt
source name, can be specified for inhno.

2) Attribute: inhatr
Specifies the language used to describe an interrupt handler.
The keyword that can be specified for inhatr is TA_HLNG or TA_ASM.

TA_HLNG: Start an interrupt handler through a C language interface.
TA_ASM: Start an interrupt handler through an assembly language interface.

3) Start address: inthdr
Specifies the start address for an interrupt handler.
A value from 0x0 to 0xfffffffe (aligned to a 2-byte boundary), or a symbol name, can be specified for inthdr.

DEF_INH (inhno, { inhatr, inthdr });

CHAPTER 18 SYSTEM CONFIGURATION FILE

User’s Manual U20044EJ1V0UM 351

18.5.12 CPU exception handler information
The CPU exception handler information defines Exception code: excno, Attribute: excatr, Start address: exchdr for a

CPU exception handler.
The number of items that can be defined as CPU exception handler information is limited to one for each exception

code.
The following shows the CPU exception handler information format.

The items constituting the CPU exception handler information are as follows.

1) Exception code: excno
Specifies the exception code for a CPU exception handler.
A value from 0x0 to 0x70 (aligned to 0x10 multiple values), or an interrupt source name, can be specified for excno.

Note Even when registering a CPU exception handler for exception codes that are not a 16-byte boundary
value like software exceptions (TRAP0n:0x4n, TRAP1n:0x5n), be sure to set a 16-byte boundary value,
as shown below.

TRAP0n --> 0x40
TRAP1n --> 0x50

2) Attribute: excatr
Specifies the language used to describe a CPU exception handler.
The keyword that can be specified for excatr is TA_HLNG or TA_ASM.

TA_HLNG: Start a CPU exception handler through a C language interface.
TA_ASM: Start a CPU exception handler through an assembly language interface.

3) Start address: exchdr
Specifies the start address for a CPU exception handler.
A value from 0x0 to 0xfffffffe (aligned to a 2-byte boundary), or a symbol name, can be specified for exchdr.

DEF_EXC (excno, { excatr, exchdr });

CHAPTER 18 SYSTEM CONFIGURATION FILE

352 User’s Manual U20044EJ1V0UM

18.5.13 Extended service call routine information
The extended service call routine information defines Function code: fncd, Attribute: svcatr, Start address: svcrtn for an

extended service call routine.
The number of items that can be defined as extended service call routine information is limited to one for each function

code.
The following shows the extended service call routine information format.

The items constituting the extended service call routine information are as follows.

1) Function code: fncd
Specifies the function code for an extended service call routine.
A value from 0x1 to 0xff can be specified for fncd.

2) Attribute: svcatr
Specifies the language used to describe an extended service call routine.
The keyword that can be specified for svcatr is TA_HLNG or TA_ASM.

TA_HLNG: Start an extended service call routine through a C language interface.
TA_ASM: Start an extended service call routine through an assembly language interface.

3) Start address: svcrtn
Specifies the start address for an extended service call routine.
A value from 0x0 to 0xfffffffe (aligned to a 2-byte boundary), or a symbol name, can be specified for svcrtn.

DEF_SVC (fncd, { svcatr, svcrtn });

CHAPTER 18 SYSTEM CONFIGURATION FILE

User’s Manual U20044EJ1V0UM 353

18.5.14 Initialization routine information
The initialization routine information defines Attribute: iniatr, Extended information: exinf, Start address: inirtn for an

initialization routine.
The number of initialization routine information items that can be specified is defined as being within the range of 0 to

254.
The following shows the idle initialization routine information format.

The items constituting the initialization routine information are as follows.

1) Attribute: iniatr
Specifies the language used to describe an initialization routine.
The keyword that can be specified for iniatr is TA_HLNG or TA_ASM.

TA_HLNG: Start an initialization routine through a C language interface.
TA_ASM: Start an initialization routine through an assembly language interface.

2) Extended information: exinf
Specifies the extended information for an initialization routine.
A value from 0x0 to 0xffffffff, or a symbol name, can be specified for exinf.

Note The target initialization routine can be manipulated by handling the extended information as if it were a
function parameter.

3) Start address: inirtn
Specifies the start address for an initialization routine.
A value from 0x0 to 0xfffffffe (aligned to a 2-byte boundary), or a symbol name, can be specified for inirtn.

ATT_INI ({ initatr, exinf, inirtn });

CHAPTER 18 SYSTEM CONFIGURATION FILE

354 User’s Manual U20044EJ1V0UM

18.5.15 Idle routine information
The idle routine information defines Attribute: idlatr, Start address: idlrtn for an idle routine.
The number of idle routine information items that can be specified is defined as being within the range of 0 to 1.
The following shows the idle routine information format.

The items constituting the idle routine information are as follows.

1) Attribute: idlatr
Specifies the language used to describe an idle routine.
The keyword that can be specified for idlatr is TA_HLNG or TA_ASM.

TA_HLNG: Start an idle routine through a C language interface.
TA_ASM: Start an idle routine through an assembly language interface.

2) Start address: idlrtn
Specifies the start address for an idle routine.
A value from 0x0 to 0xfffffffe (aligned to a 2-byte boundary), or a symbol name, can be specified for idlrtn.

VATT_IDL ({ idlatr, idlrtn });

CHAPTER 18 SYSTEM CONFIGURATION FILE

User’s Manual U20044EJ1V0UM 355

18.6 Memory Capacity Estimation
Memory areas used and managed by the RX850V4 are broadly classified into five types of sections.

18.6.1 .rx_control section
This is the area to which management objects (such as a system management table and basic task management

blocks) required for the RX850V4 operation and for realizing functions provided by the RX850V4 are allocated.
The following shows the size calculation method for the data to be assigned to the .rx_control section (unit: bytes).

Table 18-1 .rx_control Section Size Calculation Method

Note Each keyword in the size calculation methods has the following meaning.

maxtpri: Priority range specified in Basic information
maxintno: Exception code range specified in Basic information

This also means the maximum exception code possessed by the target device if the used
device is specified via PM+ or by using the -cpu option with the CF850V4 executed from the
command line.

maxbtsk: Total number of Task information
maxttsk: Total amount of defined Task information (task type: non TA_RSTR)
maxtex: Total number of Task exception handling routine information
maxsem: Total number of Semaphore information
maxflg: Total number of Eventflag information
maxdtq: Total number of Data queue information
maxmbx: Total number of Mailbox information
maxmtx: Total number of Mutex information
maxmpf: Total number of Fixed-sized memory pool information
maxmpl: Total number of Variable-sized memory pool information
maxcyc: Total number of Cyclic handler information

Object Name Size Calculation Method (in bytes)

System base table 72

Ready queue align4 (maxtpri)

Interrupt mask control table align4 (align16 ((maxintno / 16) - 7) / 8)

Basic task control block 8 * maxbtsk

Extended task control block 24 * maxetsk

Task exception handling routine control block 8 * maxtex

Semaphore control block 8 * maxsem

Eventflag control block 8 * maxflg

Data Queue control block 8 * maxdtq

Mailbox control block 12 * maxmbx

Mutex control block 8 * maxmtx

Fixed-sized memory pool control block 8 * maxmpf

Variable-sized memory pool control block 8 * maxmpl

Cyclic handler control block 8 * maxcyc

CHAPTER 18 SYSTEM CONFIGURATION FILE

356 User’s Manual U20044EJ1V0UM

18.6.2 .rx_info section
This is the area to which data related to OS resources (such as base clock cycle and maximum task priority) required for

the RX850V4 operation and for realizing functions provided by the RX850V4 are allocated.
The following shows the size calculation method for the management objects to be assigned to the .rx_info section (unit:

bytes).

Table 18-2 .rx_info Section Size Calculation Method

Note Each keyword in the size calculation methods has the following meaning.

maxact: Total amount of defined Task information (initial activation state: TA_ACT)
maxsta: Total amount of defined Cyclic handler information (initial activation state: TA_STA)
maxintno: Exception code range specified in Basic information

This also means the maximum exception code possessed by the target device if the used
device is specified via PM+ or by using the -cpu option with the CF850V4 executed from the
command line.

maxtsk: Total number of Task information
maxsem: Total number of Semaphore information
maxflg: Total number of Eventflag information
maxdtq: Total number of Data queue information
maxmbx: Total number of Mailbox information
maxmtx: Total number of Mutex information
maxmpf: Total number of Fixed-sized memory pool information
maxmpl: Total number of Variable-sized memory pool information
maxcyc: Total number of Cyclic handler information
maxsvc: Total number of Extended service call routine information
maxint: Total number of Initialization routine information
maxini: Total number of Initialization routine information
maxmem: Total number of Memory area information

Object Name Size Calculation Method (in bytes)

System information table 208 (212 [V850E2M])

Activation task ID table align4 (maxact)

Activation cyclic handler ID table align4 (maxsta)

Interrupt mask information table align4 (align16 ((maxintno / 16) - 7) / 8)

Task information block 24 * maxtsk

Semaphore information block 8 * maxsem

Eventflag information block 8 * maxflg

Data queue information block 8 * maxdtq

Mailbox information block 4 * maxmbx

Mutex information block align4 (2 * maxmtx)

Fixed-sized memory pool information block 12 * maxmpf

Variable-sized memory pool information block 12 * maxmpl

Cyclic handler information block 20 * maxcyc

Extended service call routine information block 8 * maxsvc

Interrupt handler information block 8 * maxint

Interrupt handler ID table align4 ((maxintno / 16) + 1)

Initialization routine information block 12 * maxini

Idle routine information block 8

Memory area information block 8 * maxmem

CHAPTER 18 SYSTEM CONFIGURATION FILE

User’s Manual U20044EJ1V0UM 357

18.6.3 .rx_memory section/user-defined section
.rx_memory and user-defined sections are areas to which the memory area managed by the RX850V4 is allocated.

These sections are available to processing programs. Generally, all memory is allocated to the .rx_memory section, but
the user-defined section can be used if you want to split up this area. Define the user-defined section using "memory-area
information" during configuration.

The memory that can be allocated to each section differs, as shown below.

The .rx_memory section and user-defined section are divided into areas used by the suer, and RX850V4 management
areas for managing them. The sizes of the .rx_memory section/user-defined section are calculated as shown below.

Size of .rx_memory section = RX_SZ (.rx_memory section) + USR_SZ (.rx_memory section)

Size of user-defined section = RX_SZ (user-defined section) + USR_SZ (user-defined section)

- RX_SZ (.rx_memory section/user-defined section)
This is the size of the RX850V4 managed area in the .rx_memory section/user-defined section. It is calculated as
shown below.

RX_SZ = (20 + frmsz)

tsknum
 + Σctxsz k

k = 1

 + (4 * mplnum)

Note The expression “(20 + frmsz)“ in the formula above is required for the .rx_memory section, and not required
for the user-defined section.

frmsz: Context area where interrupt handler execution information is stored.
The value varies depending on the attribute, processor type, and register mode.
See Table 18-3.

ctxtsz: Context area where task execution information is stored.
Restricted tasks are not included in this number.
The value varies depending on the attribute, processor type, and register mode.
See Table 18-4 and Table 18-5.

tsknum: Total number of task defined in task information.
Restricted tasks are not included in this number.

mplnum: Number of variable-sized memory pool defined in variable-sized memory pool information.

Table 18-3 Context Area of Interrupt Handler (frmsz)

.rx_memory Section User-defined Section

System stack
Task stack
Data queue area
Fixed-sized memory pool
Variable-sized memory pool

Task stack
Data queue area
Fixed-sized memory pool
Variable-sized memory pool

Register Mode Context Area

22-register mode 60 (68 [V850E2M])

26-register mode 68 (76 [V850E2M])

32-register mode 80 (88 [V850E2M])

CHAPTER 18 SYSTEM CONFIGURATION FILE

358 User’s Manual U20044EJ1V0UM

Table 18-4 Context Area of a Task (Preempt Acknowledge Status: non TA_DISPREEMPT) (ctxsz)

Table 18-5 Context Area of a Task (Preempt Acknowledge Status: TA_DISPREEMPT) (ctxsz)

- USR_SZ (.rx_memory section/user-defined section)
This is the size of the area used by the user in the .rx_memory section/user-defined section. It is calculated as shown
below.

USR_SZ = align4(sys_stksz)

tsknum
 + Σalign4(stksz)k

k = 1

dtqnum
 + Σ(dtqcnt * 4)k

k = 1

mpfnum
 + Σ(align4(blksz)k * blkcnt)k

k = 1

mplnum
 + Σalign4(mplsz)k

k = 1

Note The expression “align4(sys_stksz)“ in the formula above is required for the .rx_memory section, and not
required for the user-defined section.

sys_stksz: System stack size defined in basic information.

tsknum: Total number of task defined in task information.
Restricted tasks are not included in this number.

stksz: Stack size of task defined in task information.

dtqnum: Total number of data defined in data queue information.

dtqcnt: Amount of data defined in data queue information.

mpfnum: Number of fixed-sized memory pool defined in fixed-sized memory pool information.

blksz: Block unit size defined in fixed-sized memory pool information.

blkcnt: Total number of memory blocks defined in fixed-sized memory pool information.

mplnum: Number of variable-sized memory pool defined in variable-sized memory pool information.

mplsz: Size of pool defined in variable-sized memory pool information.

Register Mode Context Area

22-register mode 88 (100 [V850E2M])

26-register mode 104 (116 [V850E2M])

32-register mode 128 (140 [V850E2M])

Register Mode Context Area

22-register mode 60 (68 [V850E2M])

26-register mode 68 (76 [V850E2M])

32-register mode 80 (88 [V850E2M])

CHAPTER 18 SYSTEM CONFIGURATION FILE

User’s Manual U20044EJ1V0UM 359

The values plugged into this expression are to be estimated by the user in accordance with the application.
The only exception to this is the estimation of sys_stksz, which is calculated as shown below based on the application
information.
We recommend setting a size somewhat larger than the size calculated here, for leeway.

Set sys_stksz to the largest of sys_stksz1, sys_stksz2, and sys_stksz3, below.

tskprinum
sys_stksz1 = Σ(align4(rstr_stksz_hi) + ctxsz)k

k = 1

intprinum
 + Σ(align4(intsz_hi) + frmsz)k

k = 1

sys_stksz2 = idlsz

sys_stksz3 = inisz_hi

tskprinum: Total number of task priorities defined in basic information.

rstr_stksz_hi: Largest task stack size of restricted tasks for task priority k.
A restricted task is a task defined in the task information (with task type TA_RSTR).
Task stack size is the stack size used by a task.
If there are no restricted tasks in task priority k, no calculation for task priority k is required.

ctxtsz: Context area where task execution information is stored.
The value varies depending on the attribute, processor type, and register mode.
See Table 18-4 and Table 18-5.

intprinum: Total number of interrupt priorities that the device has.

intsz_hi: Largest task stack size of interrupt handlers/cyclic handlers for task priority k.
A cyclic handler of interrupt priority k is the interrupt priority of the basic-clock timer interrupt defined in
the basic information.
If there are no interrupt handlers/cyclic handlersin interrupt priority k, no calculation for interrupt
priority k is required.

frmsz: Context area where interrupt handler execution information is stored.
The value varies depending on the attribute, processor type, and register mode.
See Table 18-3.

idlsz: Stack size used by the idle routine.

inisz_hi: Largest stack size in the initialization routine.

CHAPTER 18 SYSTEM CONFIGURATION FILE

360 User’s Manual U20044EJ1V0UM

18.6.4 .rx_text section
This is the area to which the RX850V4 main processing (kernel common module, kernel module) is allocated.
The following lists the memory areas to be allocated to the .rx_text section.

- Kernel common module
A core processing module of RX850V4, which provides the following functions.

‐SCHEDULER

‐SYSTEM INITIALIZATION ROUTINE (Kernel Initialization Module)

The kernel common module occupies a memory area of approximately 4 KB.

- Kernel module
A processing module of service calls provided by the RX850V4, which provides the following functions.

‐TASK MANAGEMENT FUNCTIONS

‐TASK DEPENDENT SYNCHRONIZATION FUNCTIONS
‐TASK EXCEPTION HANDLING FUNCTIONS
‐SYNCHRONIZATION AND COMMUNICATION FUNCTIONS (Semaphores, Eventflags, Data Queues,

Mailboxes)
‐EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS (Mutexes)
‐MEMORY POOL MANAGEMENT FUNCTIONS (Fixed-Sized Memory Pools, Variable-Sized Memory Pools)
‐TIME MANAGEMENT FUNCTIONS
‐SYSTEM STATE MANAGEMENT FUNCTIONS
‐INTERRUPT MANAGEMENT FUNCTIONS
‐SERVICE CALL MANAGEMENT FUNCTIONS
‐SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS

The kernel module occupies a memory area of approximately 1 KB to 21 KB, but the required memory capacity can
be reduced by setting restrictions on the type of service calls used in the system.

CHAPTER 18 SYSTEM CONFIGURATION FILE

User’s Manual U20044EJ1V0UM 361

18.7 Description Examples
The following describes an example for coding the system configuration file.

Figure 18-2 Example of System Configuration File

Note The RX850V4 provides sample source files for the system configuration file.

<rx_sample>\src\sys.cfg

-- Declarative Information description
INCLUDE (" \"kernel.h\" ");

-- System Information description
RX_SERIES (RX850V4, V430);

CPU_TYPE (V850E2M);
REG_MODE (r32);
DEF_TIM (0x1);
CLK_INTNO (0x80);
SYS_STK (0x1000);
STK_CHK (TA_OFF);
MAX_PRI (0x20);
MAX_INT (0x2, 0x1e);
DEF_FPSR (0x00020000);

MEM_AREA (usrmem, SIZE_AUTO);

-- Static API Information description
CRE_TSK (taskA, { TA_HLNG|TA_ACT|TA_DISINT, 0x1, taskA, 0x1, 0x800:usrmem, NULL });
CRE_TSK (taskB, { TA_HLNG|TA_ACT, 0x2, taskB, 0x1, 0x800:usrmem, NULL });

DEF_TEX (taskA, { TA_HLNG, texrtnA });
DEF_TEX (taskB, { TA_HLNG, texrtnB });

CRE_SEM (sem, { TA_TFIFO, 0x0, 0x1 });

CRE_FLG (flg, { TA_TFIFO|TA_WSGL|TA_CLR, 0x0 });

CRE_DTQ (dtq, { TA_TFIFO, 0xff:usrmem, NULL });

CRE_MBX (mbx, { TA_TFIFO|TA_MPRI, 0x7fff, NULL });

CRE_MPF (mpf, { TA_TFIFO, 0x7fff, 0x1:usrmem, NULL });

CRE_MPL (mpl, { TA_TFIFO, 0x8000:usrmem, NULL });

CRE_CYC (cyc, { TA_HLNG|TA_STA|TA_PHS, 0x1, cychdr, 0x100, 0x1000 });

DEF_INH (0x1c0, { TA_ASM, inthdr });

DEF_EXC (0x60, { TA_HLNG, exchdr });

ATT_INI ({ TA_ASM, 0x1, inirtn });

VATT_IDL ({ TA_HLNG, idlrtn });

CHAPTER 19 CONFIGURATOR CF850V4

362 User’s Manual U20044EJ1V0UM

CHAPTER 19 CONFIGURATOR CF850V4

This chapter explains configurator CF850V4, which is provided by the RX850V4 as a utility tool useful for system
construction.

19.1 Outline
To build systems (load module) that use functions provided by the RX850V4, the information storing data to be provided

for the RX850V4 is required.
Since information files are basically enumerations of data, it is possible to describe them with various editors.
Information files, however, do not excel in descriptiveness and readability; therefore substantial time and effort are

required when they are described.
To solve this problem, the RX850V4 provides a utility tool (configurator "CF850V4") that converts a system configuration

file which excels in descriptiveness and readability into information files.
The CF850V4 reads the system configuration file as a input file, and then outputs information files.
The information files output from the CF850V4 are explained below.

- System information table file
An information file that contains data related to OS resources (base clock interval, maximum priority, management
object, or the like) required by the RX850V4 to operate.

- System information header file
An information file that contains the correspondence between object names (task names, semaphore names, or the
like) described in the system configuration file and IDs.

- Entry file
A routine (Interrupt entry processing, CPU exception entry processing) dedicated to entry processing that holds
processing to branch to relevant processing (such as interrupt preprocessing or CPU exception preprocessing), for
the handler address to which the CPU forcibly passes the control when an interrupt or CPU exception occurs.

CHAPTER 19 CONFIGURATOR CF850V4

User’s Manual U20044EJ1V0UM 363

19.2 Activation Method

19.2.1 Activating from command line
The following is how to activate the CF850V4 from the command line.
Note that, in the examples below, "C>" indicates the command prompt, "D" indicates pressing of the space key, and

"<Enter>" indicates pressing of the enter key.
The activation options enclosed in "[]" can be omitted.

The details of each activation option are explained below:

- @cmd_file
Specifies the command file name to be input.

If omitted The activation options specified on the command line is valid.

Note For details about the command file, refer to "19.2.3 Command file".

- -cpu Δ name
Specifies type specification names of target device.

If omitted The processor type specified with Basic information is valid.
If this activation option is not specified, the CF850V4 does not load the device file. As a result, definitions
using interrupt source names defined in the device file can no longer be used in the system configuration
file.

- -devpath=path
Retrieves the device file corresponding to the target device specified with -cpu Δ name from the path folder.

If omitted The device file is retrieved for the current folder.

- -regxx
Specifies the output file format (register mode).
The keyword that can be specified for xx is 22, 26 or 32.

22: 22-register mode
26: 26-register mode
32: 32-register mode

If omitted The register mode specified with RX series information is valid.
If either this activation option or the register mode specification in RX series information is not specified,
The CF850V4 assumes "-reg32" to be specified as the register mode.

- -i Δ sitfile
Specify the output file name (system information table file name) while the CF850V4 is activated.

If omitted The CF850V4 assumes that the following activation option is specified, and performs processing.

-i Δ sit.s

Note 1 Specify the output file name sitfile within 255 characters including the path name.

Note 2 If this activation option is specified together with -ni, the CF850V4 handles -ni as the valid option.

- -d Δ includefile
Specify the output file name (system information header file name) while the CF850V4 is activated.

If omitted If omitted The CF850V4 assumes that -d Δ kernel_id.h is specified and performs processing.

Note 1 Specify the output file name includefile within 255 characters including the path name.

Note 2 If this activation option is specified together with -nd, the CF850V4 handles -nd as the valid option.

C> cf850v4.exe Δ [@cmd_file] Δ [-cpu Δ name] Δ [-devpath=path] Δ [-regxx] Δ [-i Δ sitfile] Δ [-d Δ includefile] Δ [-
e Δ entry] Δ [-ni] Δ [-nd] Δ [-ne] Δ [-t Δ tool] Δ [-T Δ compiler_path] Δ [-I Δ include_path] Δ [-np] Δ [-V] Δ [-help]
Δ file <Enter>

CHAPTER 19 CONFIGURATOR CF850V4

364 User’s Manual U20044EJ1V0UM

- -e Δ entry
Specify the output file name (entry file name) while the CF850V4 is activated.

If omitted The CF850V4 assumes that the following activation option is specified, and performs processing.

-e Δ entry.s

Note 1 Specify the output file name entry within 255 characters including the path name.

Note 2 If this activation option is specified together with -ne, the CF850V4 handles -ne as the valid option.

- -ni
Disables output of the system information table file.

If omitted The CF850V4 assumes that the following activation option is specified, and performs processing.

-i Δ sit.s

Note If this activation option is specified together with -i Δ sitfile, the CF850V4 handles this activation option as
the valid option.

- -nd
Disables output of the system information header file.

If omitted If omitted The CF850V4 assumes that -d Δ kernel_id is specified and performs processing.

Note If this activation option is specified together with -d Δ includefile, the CF850V4 handles this activation
option as the valid option.

- -ne
Disables output of the entry file.

If omitted The CF850V4 assumes that the following activation option is specified, and performs processing.

-e Δ entry.s

Note If this activation option is specified together with -e Δ entry, the CF850V4 handles this activation option as
the valid option.

- -t Δ tool
Specifies the type of the C compiler package used.
Only NECEL can be specified for tool as the keyword.

If omitted The CF850V4 assumes that -t Δ NECEL is specified and performs processing.

- -T Δ compiler_path
Specifies the command search path for the C preprocessor of the C compiler package specified by -t Δ tool.

If omitted The CF850V4 searches commands from a folder specified by environment variable (such as PATH).

Note Specify the command search path name compiler_path within 255 characters.

- -I Δ include_path
Specifies the folder name for searching Header file declaration described in input file file.

If omitted The CF850V4 starts searching from a folder where the input file specified by file is stored, the current
folder, default search target folder of the C compiler package specified by -t Δ tool in that order.

Note Specify the include path name include_path within 255 characters.

- -np
Disables C preprocessor activation when the CF850V4 finished the analysis for syntax included in the system
configuration file.

If omitted The CF850V4 activates the C preprocessor of the C compiler package specified by -t Δ tool.

- -V
Outputs version information for the CF850V4 to the standard output.

Note If this activation option is specified, the CF850V4 handles other activation options as invalid options and
suppresses outputting of information files.

CHAPTER 19 CONFIGURATOR CF850V4

User’s Manual U20044EJ1V0UM 365

- -help
Outputs the usage of the activation options for the CF850V4 to the standard output.

Note If this activation option is specified, the CF850V4 handles other activation options as invalid options and
suppresses outputting of information files.

- file
Specifies the system configuration file name to be input.

Note 1 Specify the input file name file within 255 characters including the path name.

Note 2 This input file name can be omitted only when -V or -help is specified.

19.2.2 Activating from CubeSuite
This is started when CubeSuite performs a build, in accordance with the setting on the Property panel, on the [System

Configuration File Related Information] tab.

CHAPTER 19 CONFIGURATOR CF850V4

366 User’s Manual U20044EJ1V0UM

19.2.3 Command file
The CF850V4 performs command file support from the objectives that eliminate specified probable activation option

character count restrictions in the command lines.
Description formats of the command file are described below.

1) Comment lines
Lines that start with # are treated as comment lines.

2) Activation options
When specifying -cpu, -i, -d, -t, -T or -I, use one line for -xxx and one line for parameters; two lines in total.
When specifying -devpath or -reg, -ni, -nd, -np, or file that has no parameters, use one line.

3) Maximum number of characters
Up to 4,096 characters per line can be coded in a command file.

A command file description example for the CA850 is shown below.
In this example, the following activation options are included.

Target processor name: UPD70F3742
Device file search folder: C:\Program Files\NEC Electronics

CubeSuite\CubeSuite\Device\V850\Devicefile
Register mode: r26
System information table file name: sit.s
System information header file name: kernel_id.h
C compiler package type: NECEL
Command search path for C compiler package: C:\Program Files\NEC Electronics

CubeSuite\CubeSuite\CA850\V3.43\bin
Header file declaration search folder: C:\Program Files\NEC Electronics

CubeSuite\CubeSuite\RX850V4\V4.30\inc850,
C:\Program Files\NEC Electronics
CubeSuite\CubeSuite\SampleProjects\V850ES_JG3 RX850V4
(CA850) V1.00\appli\include

Activation of C preprocessor: Activate
System configuration file name: sys.cfg

Figure 19-1 Example of Command File Description

Command File
-cpu f3742 -devpath="C:\Program Files\NEC Electronics
CubeSuite\CubeSuite\Device\V850\Devicefile" -reg26
-i sit.s -d kernel_id.h
-t NECEL -T "C:\Program Files\NEC Electronics CubeSuite\CubeSuite\CA850\V3.43\bin"
-I "C:\Program Files\NEC Electronics CubeSuite\CubeSuite\RX850V4\V4.30\inc850"
-I "C:\Program Files\NEC Electronics CubeSuite\CubeSuite\SampleProjects\V850ES_JG3
RX850V4 (CA850) V1.00\appli\include"
sys.cfg

CHAPTER 19 CONFIGURATOR CF850V4

User’s Manual U20044EJ1V0UM 367

19.2.4 Command input examples
The following shows CF850V4 command input examples.
In these examples, "C>" indicates the command prompt, "Δ" indicates the space key input, and "<Enter>" indicates the

ENTER key input.

1) System configuration file sys.cfg is loaded from the current folder, the device file corresponding to the device
specification name f3742 is loaded from C:\Program Files\NEC Electronics
CubeSuite\CubeSuite\Device\V850\Devicefile folder as an input file, and system information table file sit.s, system
information header file kernel_id.h and entry file entry.s are then output in the 26-register mode format.
Command search processing for the C preprocessor of the C compiler package specified by -t is performed in the
following order, and the relevant C preprocessor is activated when the CF850V4 finished the analysis for syntax
included in the system configuration file.

1. C:\Program Files\NEC Electronics CubeSuite\CubeSuite\CA850\V3.43\bin folder specified by -T

2. Folder specified by environment variables (such as PATH)

Include file search processing for the folder specified by -I is performed in the following order.

1. C:\Program Files\NEC Electronics CubeSuite\CubeSuite\RX850V4\V4.30\inc850 folder specified by -I

2. C:\Program Files\NEC Electronics CubeSuite\CubeSuite\SampleProjects\V850ES_JX3 RX850V4 (CA850)
V1.00\appli\include folder specified by -I

2) CF850V4 version information is output to the standard output.

3) Information related to the CF850V4 activation option (type, usage, or the like) is output to the standard output.

C> cf850v4.exe Δ -cpu Δ f3742 Δ -devpath="C:\Program Files\NEC Electronics
CubeSuite\CubeSuite\Device\V850\Devicefile" Δ-reg26 Δ -i Δ sit.s Δ -d Δ
kernel_id.h Δ -e Δ entry.s Δ -t Δ NECEL Δ -T Δ "C:\Program Files\NEC Electronics
CubeSuite\CubeSuite\CA850\V3.43\bin" Δ -I Δ "C:\Program Files\NEC Electronics
CubeSuite\CubeSuite\RX850V4\V4.30\inc850" Δ -I Δ "C:\Program Files\NEC
Electronics CubeSuite\CubeSuite\SampleProjects\V850ES_JX3 RX850V4 (CA850)
V1.00\appli\include" Δ sys.cfg <Enter>

C> cf850v4.exe Δ -V <Enter>

C> cf850v4.exe Δ -help <Enter>

　

368 User’s Manual U20044EJ1V0UM

APPENDIX A WINDOW REFERENCE

This appendix explains the window/panels that are used when the activation option for the CF850V4 is specified from
the integrated development environment platform CubeSuite.

A.1 Description
The following shows the list of window/panels.

Table A-1 List of Window/Panels

Window/Panel Name Function Description

Main window This is the first window to be open when CubeSuite is launched.

Project Tree panel This panel is used to display the project components in tree view.

Property panel
This panel is used to display the detailed information on the Realtime OS
node, system configuration file, or the like that is selected on the Project
Tree panel and change the settings of the information.

APPENDIX A WINDOW REFERENCE

User’s Manual U20044EJ1V0UM 369

Main window

Outline
This is the first window to be open when CubeSuite is launched.
This window is used to control the user program execution and open panels for the build process.

This window can be opened as follows:

- Select Windows® [start] -> [All programs] -> [NEC Electronics CubeSuite] -> [CubeSuite]

Display image

APPENDIX A WINDOW REFERENCE

370 User’s Manual U20044EJ1V0UM

Explanation of each area
1) Menu bar

Displays the menus relate to realtime OS.
Contents of each menu can be customized in the User Setting dialog box.

- [View]

2) Toolbar
Displays the buttons relate to realtime OS.
Buttons on the toolbar can be customized in the User Setting dialog box. You can also create a new toolbar in the
same dialog box.

- Realtime OS toolbar

3) Panel display area
The following panels are displayed in this area.

- Project Tree panel

- Property panel

- Output panel

See the each panel section for details of the contents of the display.

Note See CubeSuite V850 Build / CubeSuite Build for CX Compiler User's Manual for details about the Output
panel.

Realtime OS The [View] menu shows the cascading menu to start the tools of realtime
OS.

Resource Information Opens the Realtime OS Resource Information panel.
Note that this menu is disabled when the debug tool is not connected.

Performance Analyzer Opens the AZ850V4 window.
Note that this menu is disabled when the debug tool is not connected.

Opens the Realtime OS Resource Information panel.
Note that this button is disabled when the debug tool is not connected.

APPENDIX A WINDOW REFERENCE

User’s Manual U20044EJ1V0UM 371

Project Tree panel

Outline
This panel is used to display the project components such as Realtime OS node, system configuration file, etc. in tree

view.

This panel can be opened as follows:

- From the [View] menu, select [Project Tree].

Display image

APPENDIX A WINDOW REFERENCE

372 User’s Manual U20044EJ1V0UM

Explanation of each area
1) Project tree area

Project components are displayed in tree view with the following given node.

Context menu
1) When the Realtime OS node or Realtime OS generated files node is selected

2) When the system configuration file or an information file is selected

Node Description

RX850V4(Realtime OS)
(referred to as “realtime OS node”) Realtime OS to be used.

xxx.cfg System configuration file.

Realtime OS generated files
(referred to as “realtime OS generated files
node”)

The following information files appear directly below the
node created when a system configuration file is added.

- System information table file (.s)

- System information header file (.h)

- Entry file (.s)

This node and files displayed under this node cannot be
deleted directly.
This node and files displayed under this node will no longer
appear if you remove the system configuration file from the
project.

Property Displays the selected node's property on the Property panel.

Assemble

Assembles the selected assembler source file.
Note that this menu is only displayed when a system information table file or
an entry file is selected.
Note that this menu is disabled when the build tool is in operation.

Open Opens the selected file with the application corresponds to the file extension.
Note that this menu is disabled when multiple files are selected.

Open with Internal Editor... Opens the selected file with the Editor panel.
Note that this menu is disabled when multiple files are selected.

Open with Selected
Application...

Opens the Open with Program dialog box to open the selected file with the
designated application.
Note that this menu is disabled when multiple files are selected.

Open Folder with Explorer Opens the folder that contains the selected file with Explorer.

Add Shows the cascading menu to add files and category nodes to the project.

Add File... Opens the Add Existing File dialog box to add the selected file to the project.

Add New File... Opens the Add File dialog box to create a file with the selected file type and
add to the project.

Add New Category

Adds a new category node at the same level as the selected file. You can
rename the category.
This menu is disabled while the build tool is running, and if categories are
nested 20 levels.

Remove from Project
Removes the selected file from the project.
The file itself is not deleted from the file system.
Note that this menu is disabled when the build tool is in operation.

APPENDIX A WINDOW REFERENCE

User’s Manual U20044EJ1V0UM 373

Copy
Copies the selected file to the clipboard.
When the file name is in editing, the characters of the selection are copied to
the clipboard.

Paste This menu is always disabled.

Rename You can rename the selected file.
The actual file is also renamed.

Property Displays the selected file's property on the Property panel.

APPENDIX A WINDOW REFERENCE

374 User’s Manual U20044EJ1V0UM

 Property panel

Outline
This panel is used to display the detailed information on the Realtime OS node, system configuration file, or the like that

is selected on the Project Tree panel by every category and change the settings of the information.

This panel can be opened as follows:

- On the Project Tree panel, select the Realtime OS node, system configuration file, or the like, and then select the
[View] menu -> [Property] or the [Property] from the context menu.

Note When either one of the Realtime OS node, system configuration file, or the like on the Project Tree panel
while the Property panel is opened, the detailed information of the selected node is displayed.

Display image

Explanation of each area
1) Selected node area

Display the name of the selected node on the Project Tree panel.
When multiple nodes are selected, this area is blank.

2) Detailed information display/change area
In this area, the detailed information on the Realtime OS node, system configuration file, or the like that is selected
on the Project Tree panel is displayed by every category in the list. And the settings of the information can be
changed directly.
Mark indicates that all the items in the category are expanded. Mark indicates that all the items are
collapsed. You can expand/collapse the items by clicking these marks or double clicking the category name
See the section on each tab for the details of the display/setting in the category and its contents.

3) Property description area
Display the brief description of the categories and their contents selected in the detailed information display/change
area.

4) Tab selection area
Categories for the display of the detailed information are changed by selecting a tab.
In this panel, the following tabs are contained (see the section on each tab for the details of the display/setting on
the tab).

APPENDIX A WINDOW REFERENCE

User’s Manual U20044EJ1V0UM 375

- When the Realtime OS node is selected on the Project Tree panel

- [RX850V4] tab

- When the system configuration file is selected on the Project Tree panel

- [System Configuration File Related Information] tab

- [File Information] tab

- When the Realtime OS generated files node is selected on the Project Tree panel

- [Category Information] tab

- When the system information table file or entry file is selected on the Project Tree panel

- [Build Settings] tab

- [Individual Assemble Options] tab

- [File Information] tab

- When the system information header file is selected on the Project Tree panel

- [File Information] tab

Note1 See CubeSuite V850 Build / CubeSuite Build for CX Compiler User's Manual for details about the [File
Information] tab, [Category Information] tab, [Build Settings] tab, and [Individual Assemble Options] tab.

Note2 When multiple components are selected on the Project Tree panel, only the tab that is common to all the
components is displayed. If the value of the property is modified, that is taken effect to the selected
components all of which are common to all.

[Edit] menu (only available for the Project Tree panel)

Context menu

Undo Cancels the previous edit operation of the value of the property.

Cut While editing the value of the property, cuts the selected characters and copies
them to the clip board.

Copy Copies the selected characters of the property to the clip board.

Paste While editing the value of the property, inserts the contents of the clip board.

Delete While editing the value of the property, deletes the selected character string.

Select All While editing the value of the property, selects all the characters of the
selected property.

Undo Cancels the previous edit operation of the value of the property.

Cut While editing the value of the property, cuts the selected characters and copies
them to the clip board.

Copy Copies the selected characters of the property to the clip board.

Paste While editing the value of the property, inserts the contents of the clip board.

Delete While editing the value of the property, deletes the selected character string.

Select All While editing the value of the property, selects all the characters of the
selected property.

Reset to Default

Restores the configuration of the selected item to the default configuration of
the project.
For the [Individual Assemble Options] tab, restores to the configuration of the
general option.

APPENDIX A WINDOW REFERENCE

376 User’s Manual U20044EJ1V0UM

Reset All to Default

Restores all the configuration of the current tab to the default configuration of
the project.
For the [Individual Assemble Options] tab, restores to the configuration of the
general option.

APPENDIX A WINDOW REFERENCE

User’s Manual U20044EJ1V0UM 377

[RX850V4] tab

Outline
This tab shows the detailed information on RX850V4 to be used categorized by the following.

- Version Information

Display image

Explanation of each area
1) [Version Information]

The detailed information on the version of the RX850V4 are displayed.

Kernel version

Select the version of RX850V4 to be used.
When a project is created, [Always latest version which was installed] is selected
by default.
The version can be changed after the project is created.
Note that V850E2M devices are supported by RX850V4 versions 4.30 and later.
If you have selected a version earlier than 4.30 in this property, and you open a
project specifying a V850E2M device, then the version selection will be returned
to the previous selection.

Default Using RX850V4 version

How to change Changes not allowed

Restriction

Always latest version
which was installed

Uses the latest version in the installed
RX850V4 packages.

Versions of the
installed RX850V4
packages

Uses the selected version in the
RX850V4 package.

Latest Realtime OS
package version which
was installed

The version of the RX850V4 package to be used when [Always latest version
which was installed] is selected in the [Kernel version] property is displayed.
This property is displayed only when [Always latest version which was installed]
in the [Kernel version] property is selected.

Default The latest version of the installed RX850V4 packages

How to change Changes not allowed

APPENDIX A WINDOW REFERENCE

378 User’s Manual U20044EJ1V0UM

Install folder

Display the folder in which RX850V4 to be used is installed with the absolute
path.

Default The folder in which RX850V4 to be used is installed

How to change Changes not allowed

Register mode

Display the register mode set in the project.
Display the same value as the value of the [Select register mode] property of the
build tool.

Default The register mode selected in the property of the build tool

How to change Changes not allowed

APPENDIX A WINDOW REFERENCE

User’s Manual U20044EJ1V0UM 379

[System Configuration File Related Information] tab

Outline
This tab shows the detailed information on the using system configuration file categorized by the following and the

configuration can be changed.

- System information table file

- System information header file

- Entry file

- Run C preprocessor

Display image

APPENDIX A WINDOW REFERENCE

380 User’s Manual U20044EJ1V0UM

Explanation of each area
1) [System Information Table File]

The detailed information on the system information table file are displayed and the configuration can be changed.

Generate a file

Select whether to generate a system information table file and whether to update
the file when the system configuration file is changed.

Default Yes(It updates the file when the .cfg file is changed)(-i)

How to change Select from the drop-down list.

Restriction

Yes(It updates the file
when the .cfg file is
changed)(-i)

Generates a new system information
table file and displays it on the project
tree.
If the system configuration file is
changed when there is already a
system information table file, then the
system information table file is
updated.

Yes(It does not
update the file when
the .cfg file is
changed)(-ni)

Does not update the system
information table file when the system
configuration file is changed.
An error occurs during build if this
item is selected when the system
information table file does not exist.

No(It does not
register the file to the
project)(-ni)

Does not generate a system
information table file and does not
display it on the project tree.
If this item is selected when there is
already a system information table
file, then the file itself is not deleted.

Output folder

Specify the folder for outputting the system information table file.
If a relative path is specified, the reference point of the path is the project folder.
If an absolute path is specified, the reference point of the path is the project folder
(unless the drives are different).
The following macro name is available as an embedded macro.
%BuildModeName%: Replaces with the build mode name.
If this field is left blank, macro name "%BuildModeName%" will be displayed.
This property is not displayed when [No(It does not register the file that is added
to the project)(-ni)] in the [Generate a file] property is selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder
dialog box which appears when clicking the [...] button.

Restriction Up to 247 characters

File name

Specify the system information table file name.
If the file name is changed, the name of the file displayed on the project tree.
Use the extension ".s". If the extension is different or omitted, ".s" is
automatically added.
You cannot specify the same file name as the value of the [File name] property in
the [Entry File] category.
This property is not displayed when [No(It does not register the file that is added
to the project)(-ni)] in the [Generate a file] property is selected.

Default sit.s

How to change Directly enter to the text box.

Restriction Up to 259 characters

APPENDIX A WINDOW REFERENCE

User’s Manual U20044EJ1V0UM 381

2) [System Information Header File]
The detailed information on the system information header file are displayed and the configuration can be changed.

Generate a file

Select whether to generate a system information header file and whether to
update the file when the system configuration file is changed.

Default Yes(It updates the file when the .cfg file is changed)(-d)

How to change Select from the drop-down list.

Restriction

Yes(It updates the file
when the .cfg file is
changed)(-d)

Generates a system information
header file and displays it on the
project tree.
If the system configuration file is
changed when there is already a
system information header file, then
the system information header file is
updated.

Yes(It does not
update the file when
the .cfg file is
changed)(-nd)

Does not update the system
information header file when the
system configuration file is changed.
An error occurs during build if this
item is selected when the system
information header file does not exist.

No(It does not
register the file to the
project)(-nd)

Does not generate a system
information header file and does not
display it on the project tree.
If this item is selected when there is
already a system information header
file, then the file itself is not deleted.

Output folder

Specify the folder for outputting the system information header file.
If a relative path is specified, the reference point of the path is the project folder.
If an absolute path is specified, the reference point of the path is the project folder
(unless the drives are different).
The following macro name is available as an embedded macro.
%BuildModeName%: Replaces with the build mode name.
If this field is left blank, macro name "%BuildModeName%" will be displayed.
This property is not displayed when [No(It does not register the file that is added
to the project)(-nd)] in the [Generate a file] property is selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder
dialog box which appears when clicking the [...] button.

Restriction Up to 247 characters

File name

Specify the system information header file name.
If the file name is changed, the name of the file displayed on the project tree.
Use the extension ".h". If the extension is different or omitted, ".h" is
automatically added.
This property is not displayed when [No(It does not register the file that is added
to the project)(-nd)] in the [Generate a file] property is selected.

Default kernel_id.h

How to change Directly enter to the text box.

Restriction Up to 259 characters

APPENDIX A WINDOW REFERENCE

382 User’s Manual U20044EJ1V0UM

3) [Entry File]
The detailed information on the entry file are displayed and the configuration can be changed.

Generate a file

Select whether to generate an entry file and whether to update the file when the
system configuration file is changed.

Default Yes(It updates the file when the .cfg file is changed)(-e)

How to change Select from the drop-down list.

Restriction

Yes(It updates the file
when the .cfg file is
changed)(-e)

Generates an entry file and displays it
on the project tree.
If the system configuration file is
changed when there is already an
entry file, then the entry file is
updated.

Yes(It does not
update the file when
the .cfg file is
changed)(-ne)

Does not update the entry file when
the system configuration file is
changed.
An error occurs during build if this
item is selected when the entry file
does not exist.

No(It does not
register the file to the
project)(-ne)

Does not generate an entry file and
does not display it on the project tree.
If this item is selected when there is
already an entry file, then the file itself
is not deleted.

Output folder

Specify the folder for outputting the entry file.
If a relative path is specified, the reference point of the path is the project folder.
If an absolute path is specified, the reference point of the path is the project folder
(unless the drives are different).
The following macro name is available as an embedded macro.
%BuildModeName%: Replaces with the build mode name.
If this field is left blank, macro name "%BuildModeName%" will be displayed.
This property is not displayed when [No(It does not register the file that is added
to the project)(-ne)] in the [Generate a file] property is selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder
dialog box which appears when clicking the [...] button.

Restriction Up to 247 characters

File name

Specify the entry file.
If the file name is changed, the name of the file displayed on the project tree.
Use the extension ".s". If the extension is different or omitted, ".s" is
automatically added.
You cannot specify the same file name as the value of the [File name] property in
the [System Information Table File] category.
This property is not displayed when [No(It does not register the file that is added
to the project)(-ne)] in the [Generate a file] property is selected.

Default entry.s

How to change Directly enter to the text box.

Restriction Up to 259 characters

APPENDIX A WINDOW REFERENCE

User’s Manual U20044EJ1V0UM 383

4) [Run C Preprocessor]
The detailed information on starting the C preprocessor are displayed and the configuration can be changed.

Run C preprocessor

Select whether to start the C preprocessor for the system configuration file before
the configurator starts.
Select [Yes(-T)] when macro definitions are specified in the system configuration
file.

Default No(-np)

How to change Select from the drop-down list.

Restriction
Yes(-T)

Starts the C preprocessor.
The include paths set by the C compiler are
referenced when the C preprocessor starts.

No(-np) Does not start the C preprocessor.

　

384 User’s Manual U20044EJ1V0UM

APPENDIX B FLOATING-POINT OPERATION
FUNCTION [CX]

The CX version of the RX850V4 supports the floating-point operation function of the V850E2M core. This makes
floating-point operations available within processing programs (e.g. tasks, cyclic handlers, and interrupt handlers).

The RX850V4 manipulates the following floating-point operation registers: "Register bank selection register BSEL" and
"Floating-point configuration/status register FPSR". The user can change the settings from within processing programs as
needed by changing these values.

The values of BSEL and FPSR are essentially independent to each processing program, and are not inherited between
processing programs.

In the following cases, however, the values of BSEL and FPSR are inherited between processing programs.

- If a task exception handler routine is started from a task, the BSEL and FPSR values of the task are inherited by the
task exception handler routine. After the task exception handler routine terminates, the setting returns to the value it
had before the routine was started.

- The RX850V4 does not manipulate BSEL or FPSR when a directly activated interrupt handler or extended service call
routine starts or ends. For this reason, directly activated interrupt handlers and extended service call routines inherit
the values of BSEL and FPSR from before they were started, and any changes made from the processing program
remain unchanged after the processing program ends.

See the table below for the register values when each processing program is initially started.

Table B-1 Startup Register Values of Each Processing Program

Note 1 The BSEL setting of 00000000H indicates that the system register bank group number is the CPU function
group, and the bank number is the Main bank.

Note 2 If a task is suspended, the BSEL and FPSR values from before the suspension are restored when the task
resumes.

Note 3 If a task is suspended, the BSEL and FPSR values from before the suspension are restored when the task
resumes.

Processing Program Initial BSEL Value Initial FPSR Value

Task 00000000H User setting

Task exception handling routine Value prior to startup inherited Value prior to startup inherited

Cyclic handler 00000000H User setting

Interrupt Handler 00000000H User setting

Directly Activated Interrupt Handler Value prior to startup inherited Value prior to startup inherited

Extended Service Call Routine Value prior to startup inherited Value prior to startup inherited

CPU Exception Handler 00000000H User setting

Initialization Routine 00000000H User setting

Idle Routine 00000000H User setting

User’s Manual U20044EJ1V0UM 385

A
act_tsk ... 201

C
cal_svc .. 328
can_act .. 203
can_wup .. 221
chg_ims ... 325
chg_pri .. 208
clr_flg ... 246

D
data queues .. 77

fsnd_dtq ... 260
ifsnd_dtq .. 260
iprcv_dtq .. 263
ipsnd_dtq ... 257
iref_dtq ... 266
prcv_dtq ... 263
psnd_dtq .. 257
rcv_dtq ... 261
ref_dtq ... 266
snd_dtq .. 255
trcv_dtq .. 264
tsnd_dtq ... 258

dis_dsp .. 317
dis_int .. 323
dis_tex ... 231
dly_tsk ... 227

E
ena_dsp .. 318
ena_int .. 324
ena_tex ... 232
eventflags .. 68

clr_flg ... 246
iclr_flg .. 246
ipol_flg ... 249
iref_flg .. 253
iset_flg ... 245
pol_flg .. 249
ref_flg ... 253
set_flg .. 245
twai_flg .. 251
wai_flg ... 247

extended synchronization and communication functions ...
96

mutexes .. 96, 277
ext_tsk ... 205

F
fixed-sized memory pools .. 104

get_mpf .. 286
ipget_mpf ... 288
iref_mpf .. 292
irel_mpf .. 291
pget_mpf .. 288
ref_mpf ... 292
rel_mpf ... 291
tget_mpf ... 289

frsm_tsk ... 226
fsnd_dtq ... 260

G
get_ims .. 326
get_mpf .. 286
get_mpl .. 294
get_pri .. 210
get_tid .. 312
get_tim ... 305

I
iact_tsk ... 201
ical_svc .. 328
ican_act ... 203
ican_wup .. 221
ichg_ims ... 325
ichg_pri .. 208
iclr_flg .. 246
ifrsm_tsk .. 226
ifsnd_dtq .. 260
iget_ims ... 326
iget_pri ... 210
iget_tid ... 312
iget_tim .. 305
iloc_cpu .. 313
interrupt management functions 140, 322

chg_ims .. 325
dis_int ... 323
ena_int ... 324
get_ims ... 326
ichg_ims ... 325
iget_ims .. 326

ipget_mpf ... 288
ipget_mpl ... 296
ipol_flg ... 249
ipol_sem .. 239
iprcv_dtq .. 263
iprcv_mbx .. 272

APPENDIX C INDEX

386 User’s Manual U20044EJ1V0UM

ipsnd_dtq ... 257
iras_tex .. 229
iref_cyc .. 308
iref_dtq .. 266
iref_flg ... 253
iref_mbx .. 276
iref_mpf ... 292
iref_mpl ... 301
iref_mtx ... 284
iref_sem .. 243
iref_tex .. 234
iref_tsk ... 211
iref_tst ... 213
irel_mpf ... 291
irel_mpl .. 300
irel_wai .. 222
irot_rdq .. 310
irsm_tsk ... 225
iset_flg ... 245
iset_tim .. 304
isig_sem .. 242
isnd_mbx ... 268
ista_cyc ... 306
ista_tsk .. 204
istp_cyc ... 307
isus_tsk ... 223
iunl_cpu ... 315
iwup_tsk .. 219

L
loc_cpu .. 313
loc_mtx .. 278

M
mailboxes .. 89

iprcv_mbx .. 272
iref_mbx ... 276
isnd_mbx ... 268
prcv_mbx ... 272
rcv_mbx ... 270
ref_mbx .. 276
snd_mbx .. 268
trcv_mbx .. 274

Main window ... 369
memory pool management functions 103

fixed-sized memory pools 104, 285
variable-sized memory pools 110, 293

mutexes ... 96
iref_mtx .. 284
loc_mtx .. 278
ploc_mtx .. 280
ref_mtx ... 284
tloc_mtx ... 281

unl_mtx ... 283

P
pget_mpf .. 288
pget_mpl .. 296
ploc_mtx .. 280
pol_flg .. 249
pol_sem ... 239
prcv_dtq ... 263
prcv_mbx ... 272
Project Tree panel ... 371
Property panel ... 374
psnd_dtq .. 257

R
ras_tex ... 229
rcv_dtq ... 261
rcv_mbx ... 270
ref_cyc ... 308
ref_dtq .. 266
ref_flg ... 253
ref_mbx .. 276
ref_mpf ... 292
ref_mpl ... 301
ref_mtx ... 284
ref_sem .. 243
ref_tex .. 234
ref_tsk .. 211
ref_tst ... 213
rel_mpf ... 291
rel_mpl ... 300
rel_wai ... 222
rot_rdq ... 310
rsm_tsk .. 225
[RX850V4] tab ... 377

S
semaphores ... 62

ipol_sem ... 239
iref_sem ... 243
isig_sem ... 242
pol_sem .. 239
ref_sem .. 243
sig_sem .. 242
twai_sem .. 240
wai_sem ... 237

service call management functions 157, 327
cal_svc ... 328
ical_svc .. 328

set_flg .. 245
set_tim ... 304

User’s Manual U20044EJ1V0UM 387

sig_sem ... 242
slp_tsk ... 216
snd_dtq ... 255
snd_mbx .. 268
sns_dpn ... 321
sns_dsp ... 319
sns_loc .. 316
sns_tex .. 233
sta_cyc .. 306
sta_tsk ... 204
stp_cyc .. 307
sus_tsk .. 223
synchronization and communication functions 62

data queues .. 77, 254
eventflags ... 68, 244
mailboxes ... 89, 267
semaphores .. 62, 236

[System Configuration File Related Information] tab ... 379
system state management functions 126, 309

dis_dsp .. 317
ena_dsp ... 318
get_tid .. 312
iget_tid ... 312
iloc_cpu ... 313
irot_rdq .. 310
iunl_cpu ... 315
loc_cpu .. 313
rot_rdq ... 310
sns_dpn ... 321
sns_dsp ... 319
sns_loc .. 316
unl_cpu .. 315
vsta_sch .. 311

T
task dependent synchronization functions 45, 215

can_wup .. 221
dly_tsk ... 227
frsm_tsk ... 226
ican_wup ... 221
ifrsm_tsk .. 226
irel_wai .. 222
irsm_tsk ... 225
isus_tsk .. 223
iwup_tsk ... 219
rel_wai ... 222
rsm_tsk .. 225
slp_tsk ... 216
sus_tsk .. 223
tslp_tsk .. 217
wup_tsk ... 219

task exception handling functions 55, 228
dis_tex ... 231
ena_tex .. 232
iras_tex .. 229
iref_tex ... 234
ras_tex ... 229
ref_tex .. 234
sns_tex .. 233

task management functions 30, 200
act_tsk .. 201
can_act .. 203
chg_pri ... 208
ext_tsk .. 205
get_pri .. 210
iact_tsk ... 201
ican_act .. 203
ichg_pri ... 208
iget_pri ... 210
iref_tsk .. 211
iref_tst .. 213
ista_tsk ... 204
ref_tsk .. 211
ref_tst ... 213
sta_tsk .. 204
ter_tsk .. 206

ter_tsk .. 206
tget_mpf ... 289
tget_mpl ... 298
time management functions 117, 303

get_tim ... 305
iget_tim ... 305
iref_cyc ... 308
iset_tim ... 304
ista_cyc .. 306
istp_cyc .. 307
ref_cyc .. 308
set_tim .. 304
sta_cyc ... 306
stp_cyc ... 307

tloc_mtx ... 281
trcv_dtq .. 264
trcv_mbx .. 274
tslp_tsk ... 217
tsnd_dtq ... 258
twai_flg ... 251
twai_sem .. 240

U
unl_cpu .. 315
unl_mtx .. 283

V
variable-sized memory pools 110

get_mpl .. 294
ipget_mpl .. 296
iref_mpl .. 301
irel_mpl ... 300
pget_mpl .. 296
ref_mpl ... 301
rel_mpl ... 300
tget_mpl ... 298

vsta_sch ... 311

388 User’s Manual U20044EJ1V0UM

W
wai_flg ... 247
wai_sem .. 237
wup_tsk ... 219

Published by: NEC Electronics Corporation (http://www.necel.com/)

Contact: http://www.necel.com/support/

	COVER
	INTRODUCTION
	CHAPTER 1 OVERVIEW
	1.1 Outline
	1.1.1 Real-time OS
	1.1.2 Multi-task OS

	CHAPTER 2 SYSTEM CONSTRUCTION
	2.1 Outline
	2.2 Coding of Target-Dependent Module
	2.2.1 Creating target-dependent module library

	2.3 Coding Processing Programs
	2.4 Coding System Configuration File
	2.5 Coding User-Own Coding Module
	2.6 Coding Directive File
	2.7 Creating Load Module

	CHAPTER 3 TASK MANAGEMENT FUNCTIONS
	3.1 Outline
	3.2 Tasks
	3.2.1 Task state
	3.2.2 Task priority
	3.2.3 Basic form of tasks
	3.2.4 Internal processing of task

	3.3 Creat Task
	3.4 Activate Task
	3.4.1 Queuing an activation request
	3.4.2 Not queuing an activation request

	3.5 Cancel Task Activation Requests
	3.6 Terminate Task
	3.6.1 Terminate invoking task
	3.6.2 Terminate task

	3.7 Change Task Priority
	3.8 Reference Task Priority
	3.9 Reference Task State
	3.9.1 Reference task state
	3.9.2 Reference task state (simplified version)

	3.10 Target-Dependent Module
	3.10.1 Post-overflow processing

	3.11 Memory Saving
	3.11.1 Restricted task
	3.11.2 Disable preempt

	CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS
	4.1 Outline
	4.2 Put Task to Sleep
	4.2.1 Waiting forever
	4.2.2 With timeout

	4.3 Wakeup Task
	4.4 Cancel Task Wakeup Requests
	4.5 Release Task from Waiting
	4.6 Suspend Task
	4.7 Resume Suspended Task
	4.7.1 Resume suspended task
	4.7.2 Forcibly resume suspended task

	4.8 Delay Task
	4.9 Differences Between Wakeup Wait with Timeout and Time Elapse Wait

	CHAPTER 5 TASK EXCEPTION HANDLING FUNCTIONS
	5.1 Outline
	5.2 Task Exception Handling Routines
	5.2.1 Basic form of task exception handling routines
	5.2.2 Internal processing of task exception handling routine

	5.3 Define Task Exception Handling Routine
	5.4 Raise Task Exception Handling Routine
	5.5 Disabling and Enabling Activation of Task Exception Handling Routines
	5.6 Reference Task Exception Handling Disable/Enable State
	5.7 Reference Detailed Information of Task Exception Handling Routine

	CHAPTER 6 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS
	6.1 Outline
	6.2 Semaphores
	6.2.1 Create semaphore
	6.2.2 Acquire semaphore resource
	6.2.3 Release semaphore resource
	6.2.4 Reference semaphore state

	6.3 Eventflags
	6.3.1 Create eventflag
	6.3.2 Set eventflag
	6.3.3 Clear eventflag
	6.3.4 Wait for eventflag
	6.3.5 Reference eventflag state

	6.4 Data Queues
	6.4.1 Create data queue
	6.4.2 Send to data queue
	6.4.3 Forced send to data queue
	6.4.4 Receive from data queue
	6.4.5 Reference data queue state

	6.5 Mailboxes
	6.5.1 Messages
	6.5.2 Create mailbox
	6.5.3 Send to mailbox
	6.5.4 Receive from mailbox
	6.5.5 Reference mailbox state

	CHAPTER 7 EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS
	7.1 Outline
	7.2 Mutexes
	7.2.1 Differences from semaphores
	7.2.2 Create mutex
	7.2.3 Lock mutex
	7.2.4 Unlock mutex
	7.2.5 Reference mutex state

	CHAPTER 8 MEMORY POOL MANAGEMENT FUNCTIONS
	8.1 Outline
	8.2 Fixed-Sized Memory Pools
	8.2.1 Create fixed-sized memory pool
	8.2.2 Acquire fixed-sized memory block
	8.2.3 Release fixed-sized memory block
	8.2.4 Reference fixed-sized memory pool state

	8.3 Variable-Sized Memory Pools
	8.3.1 Create variable-sized memory pool
	8.3.2 Acquire variable-sized memory block
	8.3.3 Release variable-sized memory block
	8.3.4 Reference variable-sized memory pool state

	CHAPTER 9 TIME MANAGEMENT FUNCTIONS
	9.1 Outline
	9.2 System Time
	9.2.1 Base clock timer interrupt
	9.2.2 Base clock interval

	9.3 Timer Operations
	9.3.1 Delayed task wakeup
	9.3.2 Timeout
	9.3.3 Cyclic handlers
	9.3.4 Create cyclic handler

	9.4 Set System Time
	9.5 Reference System Time
	9.6 Start Cyclic Handler Operation
	9.7 Stop Cyclic Handler Operation
	9.8 Reference Cyclic Handler State

	CHAPTER 10 SYSTEM STATE MANAGEMENT FUNCTIONS
	10.1 Outline
	10.2 Rotate Task Precedence
	10.3 Forced Scheduler Activation
	10.4 Reference Task ID in the RUNNING State
	10.5 Lock the CPU
	10.6 Unlock the CPU
	10.7 Reference CPU State
	10.8 Disable Dispatching
	10.9 Enable Dispatching
	10.10 Reference Dispatching State
	10.11 Reference Contexts
	10.12 Reference Dispatch Pending State

	CHAPTER 11 INTERRUPT MANAGEMENT FUNCTIONS
	11.1 Outline
	11.2 Target-Dependent Module
	11.2.1 Service call "dis_int"
	11.2.2 Service call "ena_int"
	11.2.3 Interrupt mask setting processing (overwrite setting)
	11.2.4 Interrupt mask setting processing (OR setting)
	11.2.5 Interrupt mask acquire processing

	11.3 User-Own Coding Module
	11.3.1 Interrupt entry processing

	11.4 Interrupt Handlers
	11.4.1 Basic form of interrupt handlers
	11.4.2 Internal processing of interrupt handler
	11.4.3 Define interrupt handler

	11.5 Directly Activated Interrupt Handlers
	11.6 Maskable Interrupt Acknowledgement Status in Processing Programs
	11.7 Disable Interrupt
	11.8 Enable Interrupt
	11.9 Change Interrupt Mask
	11.10 Reference Interrupt Mask
	11.11 Non-Maskable Interrupts
	11.12 Base Clock Timer Interrupts
	11.13 Multiple Interrupts

	CHAPTER 12 SERVICE CALL MANAGEMENT FUNCTIONS
	12.1 Outline
	12.2 Extended Service Call Routines
	12.2.1 Basic form extended service call routines
	12.2.2 Internal processing of extended service call routine

	12.3 Define Extended Service Call Routine
	12.4 Invoke Extended Service Call Routine

	CHAPTER 13 SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS
	13.1 Outline
	13.2 User-Own Coding Module
	13.2.1 CPU exception entry processing
	13.2.2 Initialization routine
	13.2.3 Define initialization routine

	13.3 CPU Exception Handlers
	13.3.1 Basic form of CPU exception handlers
	13.3.2 Internal processing of CPU exception handler

	13.4 Define CPU Exception Handler

	CHAPTER 14 SCHEDULER
	14.1 Outline
	14.2 Drive Method
	14.3 Scheduling Method
	14.3.1 Ready queue

	14.4 Scheduling Lock Function
	14.5 Idle Routine
	14.5.1 Basic form of idle routine
	14.5.2 Internal processong of idle routine

	14.6 Define Idle Routine
	14.7 Scheduling in Non-Tasks

	CHAPTER 15 SYSTEM INITIALIZATION ROUTINE
	15.1 Outline
	15.2 User-Own Coding Module
	15.2.1 Boot processing

	15.3 Kernel Initialization Module

	CHAPTER 16 DATA MACROS
	16.1 Data Types
	16.2 Packet Formats
	16.2.1 Task state packet
	16.2.2 Task state packet (simplified version)
	16.2.3 Task exception handling routine state packet
	16.2.4 Semaphore state packet
	16.2.5 Eventflag state packet
	16.2.6 Data queue state packet
	16.2.7 Message packet
	16.2.8 Mailbox state packet
	16.2.9 Mutex state packet
	16.2.10 Fixed-sized memory pool state packet
	16.2.11 Variable-sized memory pool state packet
	16.2.12 System time packet
	16.2.13 Cyclic handler state packet

	16.3 Data Macros
	16.3.1 Current state
	16.3.2 Processing program attributes
	16.3.3 Management object attributes
	16.3.4 Service call operating modes
	16.3.5 Return value
	16.3.6 Kernel configuration constants

	16.4 Conditional Compile Macro

	CHAPTER 17 SERVICE CALLS
	17.1 Outline
	17.1.1 Call service call

	17.2 Explanation of Service Call
	17.2.1 Task management functions
	act_tsk
	iact_tsk
	can_act
	ican_act
	sta_tsk
	ista_tsk
	ext_tsk
	ter_tsk
	chg_pri
	ichg_pri
	get_pri
	iget_pri
	ref_tsk
	iref_tsk
	ref_tst
	iref_tst

	17.2.2 Task dependent synchronization functions
	slp_tsk
	tslp_tsk
	wup_tsk
	iwup_tsk
	can_wup
	ican_wup
	rel_wai
	irel_wai
	sus_tsk
	isus_tsk
	rsm_tsk
	irsm_tsk
	frsm_tsk
	ifrsm_tsk
	dly_tsk

	17.2.3 Task exception handling functions
	ras_tex
	iras_tex
	dis_tex
	ena_tex
	sns_tex
	ref_tex
	iref_tex

	17.2.4 Synchronization and communication functions (semaphores)
	wai_sem
	pol_sem
	ipol_sem
	twai_sem
	sig_sem
	isig_sem
	ref_sem
	iref_sem

	17.2.5 Synchronization and communication functions (eventflags)
	set_flg
	iset_flg
	clr_flg
	iclr_flg
	wai_flg
	pol_flg
	ipol_flg
	twai_flg
	ref_flg
	iref_flg

	17.2.6 Synchronization and communication functions (data queues)
	snd_dtq
	psnd_dtq
	ipsnd_dtq
	tsnd_dtq
	fsnd_dtq
	ifsnd_dtq
	rcv_dtq
	prcv_dtq
	iprcv_dtq
	trcv_dtq
	ref_dtq
	iref_dtq

	17.2.7 Synchronization and communication functions (mailboxes)
	snd_mbx
	isnd_mbx
	rcv_mbx
	prcv_mbx
	iprcv_mbx
	trcv_mbx
	ref_mbx
	iref_mbx

	17.2.8 Extended synchronization and communication functions (mutexes)
	loc_mtx
	ploc_mtx
	tloc_mtx
	unl_mtx
	ref_mtx
	iref_mtx

	17.2.9 Memory pool management functions (fixed-sized memory pools)
	get_mpf
	pget_mpf
	ipget_mpf
	tget_mpf
	rel_mpf
	irel_mpf
	ref_mpf
	iref_mpf

	17.2.10 Memory pool management functions (variable-sized memory pools)
	get_mpl
	pget_mpl
	ipget_mpl
	tget_mpl
	rel_mpl
	irel_mpl
	ref_mpl
	iref_mpl

	17.2.11 Time management functions
	set_tim
	iset_tim
	get_tim
	iget_tim
	sta_cyc
	ista_cyc
	stp_cyc
	istp_cyc
	ref_cyc
	iref_cyc

	17.2.12 System state management functions
	rot_rdq
	irot_rdq
	vsta_sch
	get_tid
	iget_tid
	loc_cpu
	iloc_cpu
	unl_cpu
	iunl_cpu
	sns_loc
	dis_dsp
	ena_dsp
	sns_dsp
	sns_ctx
	sns_dpn

	17.2.13 Interrupt management functions
	dis_int
	ena_int
	chg_ims
	ichg_ims
	get_ims
	iget_ims

	17.2.14 Service call management functions
	cal_svc
	ical_svc

	CHAPTER 18 SYSTEM CONFIGURATION FILE
	18.1 Outline
	18.2 Configuration Information
	18.2.1 Cautions

	18.3 Declarative Information
	18.3.1 Header file declaration

	18.4 System Information
	18.4.1 RX series information
	18.4.2 Basic information
	18.4.3 Initial FPSR register information
	18.4.4 Memory area information

	18.5 Static API Information
	18.5.1 Task information
	18.5.2 Task exception handling routine information
	18.5.3 Semaphore information
	18.5.4 Eventflag information
	18.5.5 Data queue information
	18.5.6 Mailbox information
	18.5.7 Mutex information
	18.5.8 Fixed-sized memory pool information
	18.5.9 Variable-sized memory pool information
	18.5.10 Cyclic handler information
	18.5.11 Interrupt handler information
	18.5.12 CPU exception handler information
	18.5.13 Extended service call routine information
	18.5.14 Initialization routine information
	18.5.15 Idle routine information

	18.6 Memory Capacity Estimation
	18.6.1 .rx_control section
	18.6.2 .rx_info section
	18.6.3 .rx_memory section/user-defined section
	18.6.4 .rx_text section

	18.7 Description Examples

	CHAPTER 19 CONFIGURATOR CF850V4
	19.1 Outline
	19.2 Activation Method
	19.2.1 Activating from command line
	19.2.2 Activating from CubeSuite
	19.2.3 Command file
	19.2.4 Command input examples

	APPENDIX A WINDOW REFERENCE
	A.1 Description
	Main window
	Project Tree panel
	Property panel
	[RX850V4] tab
	[System Configuration File Related Information] tab

	APPENDIX B FLOATING-POINT OPERATION FUNCTION [CX]
	APPENDIX C INDEX

