

32

RX111 Group

Renesas Promotional Board Tutorial Manual

RENESAS MCU RX Family / RX100 Series

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corporation without notice. Please review the latest information published by Renesas Electronics Corporation through various means, including the Renesas Electronics Corporation website (http://www.renesas.com).

Renesas Electronics www.renesas.com

Rev. 1.00 Jul 2013

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Disclaimer

By using this Renesas Promotional Board (RPB), the user accepts the following terms:

The RPB is not guaranteed to be error free, and the entire risk as to the results and performance of the RPB is assumed by the User. The RPB is provided by Renesas on an "as is" basis without warranty of any kind whether express or implied, including but not limited to the implied warranties of satisfactory quality, fitness for a particular purpose, title and non-infringement of intellectual property rights with regard to the RPB. Renesas expressly disclaims all such warranties. Renesas or its affiliates shall in no event be liable for any loss of profit, loss of data, loss of contract, loss of business, damage to reputation or goodwill, any economic loss, any reprogramming or recall costs (whether the foregoing losses are direct or indirect) nor shall Renesas or its affiliates be liable for any other direct or indirect special, incidental or consequential damages arising out of or in relation to the use of this RPB, even if Renesas or its affiliates have been advised of the possibility of such damages.

Precautions

The following precautions should be observed when operating any RPB product:

This Renesas Promotional Board is only intended for use in a laboratory environment under ambient temperature and humidity conditions. A safe separation distance should be used between this and any sensitive equipment. Its use outside the laboratory, classroom, study area or similar such area invalidates conformity with the protection requirements of the Electromagnetic Compatibility Directive and could lead to prosecution.

The product generates, uses, and can radiate radio frequency energy and may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment causes harmful interference to radio or television reception, which can be determined by turning the equipment off or on, you are encouraged to try to correct the interference by one or more of the following measures;

- ensure attached cables do not lie across the equipment
- reorient the receiving antenna
- increase the distance between the equipment and the receiver
- connect the equipment into an outlet on a circuit different from that which the receiver is connected
- power down the equipment when not in use
- consult the dealer or an experienced radio/TV technician for help NOTE: It is recommended that wherever
 possible shielded interface cables are used.

The product is potentially susceptible to certain EMC phenomena. To mitigate against them it is recommended that the following measures be undertaken;

- The user is advised that mobile phones should not be used within 10m of the product when in use.
- The user is advised to take ESD precautions when handling the equipment.

The Renesas Starter Kit does not represent an ideal reference design for an end product and does not fulfil the regulatory standards for an end product.

How to Use This Manual

1. Purpose and Target Readers

This manual is designed to provide the user with an understanding of the RPB hardware functionality, and electrical characteristics. It is intended for users evaluating this microcontroller platform and using this promotional board.

The manual comprises of an overview of the capabilities of the product, but does not intend to be a guide to embedded programming or hardware design.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of the manual for details.

The following documents apply to the RX111 Group and this board. Make sure to refer to the latest versions of these documents. The newest versions of the documents listed may be obtained from the Renesas Electronics Web site.

Document Type	Description	Document Title	Document No.
Tutorial Manual	Describes the RPB hardware, sample software and capabilities.	RPBRX111 Tutorial Manual	R20UT2699EG
Quick Start Guide	Provides simple instructions to setup the RPB and run the first sample, on a single A4 sheet.	RPBRX111 Quick Start Guide	R20UT2700EG
Design Manual	Layout diagrams and Bill of Materials (BoM) for the RPB.	RPBRX111 Design Manual	R20UT2698EG
Schematics	Full detail circuit schematics of the RPB.	RPBRX111 Schematics	R20UT2697EG
Hardware Manual	Provides technical details of the RX111 microcontroller.	RX111 Group Hardware Manual	R01UH0365EJ

2. List of Abbreviations and Acronyms

Abbreviation	Full Form
ADC	Analog-to-Digital Converter
EMC	Electromagnetic Compatibility
ESD	Electrostatic Discharge
GUI	Graphical User Interface
IRQ	Interrupt Request
LED	Light Emitting Diode
MCU	Micro-controller Unit
MOSFET	Metal Oxide Semiconductor Field Effect Transistor
n/a	Not applicable
NC	Not connected
J-Link OB	J-Link On-board debugger
PC	Personal Computer
PLL	Phase Locked Loop
ROM	Read Only Memory
RPB	Renesas Promotional Board
RSK	Renesas Starter Kit
UART	Universal Asynchronous Receiver/Transmitter
USB	Universal Serial Bus

Table of Contents

1. Ov	erview	.7
1.1	Purpose	.7
1.2	Features	.7
1.3	Package Contents	.7
2. Ha	rdware Components	.8
2.1	User Switches, Potentiometer and LEDs	.9
2.2	USB Connectors	.9
2.3	Expansion Headers	.9
2.4	Power Supply	11
2.5	On-board Debugger	11
2.6	Current Measurement	11
2.7	Low Power Current Measurement Instructions	12
3. De	bugging with e ² studio1	5
3.1	Introduction	15
3.2	Starting e ² studio and Importing Sample Code	15
3.3	Build Configurations and Debug Sessions	17
3.4	Reviewing the Sample Code	20
4. De	monstration GUI2	23
5. Co	de Development2	25
5.1	Overview	25
5.2	Compiler Restrictions	25
5.3	Mode Support	25
5.4	Debugging Support	25
5.5	Address Space	26
6. Tro	publeshooting2	27
7. Ad	ditional Information2	28

RENESAS

RPBRX111

RENESAS PROMOTIONAL BOARD

1. Overview

1.1 Purpose

This RPB is a promotional board for Renesas microcontrollers. This manual describes the technical details of the RPB hardware, how to get started debugging and analysing the sample code and to use the demonstration GUI to evaluate the low power capabilities of the device.

1.2 Features

This RPB provides the following features:

- Renesas microcontroller programming
- User code debugging
- User circuitry such as switches, LEDs and a potentiometer
- USB Host/Function connectivity
- Board-wide low power design for energy harvesting applications
- MCU current measurement

This product is not intended or supported for user solution development, and is designed solely for demonstration and evaluation. A Renesas Starter Kit (RSK) for the RX111 is available from your Renesas distributor.

1.3 Package Contents

- MCU current measurement
- YRPBRX111 Board
- USB Type A / Mini-B cable
- Potentiometer shaft to adjust the potentiometer voltage
- Mini DVD containing all the software, tools and documentation needed to quickly start evaluating the product.

2. Hardware Components

Figure 2-1 below shows the top and bottom component layouts of the board.

Component placement diagrams and the circuit routing can be found in the Design Manual.

2.1 User Switches, Potentiometer and LEDs

Two user switches (SW1 and SW2) and a potentiometer (RV1) are provided for direct user input to the board. The switches are connected to interrupt (IRQ) pins and the potentiometer to an ADC input on the RX111 device and are used to control several of the sample applications. The potentiometer and switch pins are described in Table 2-1 below.

Reference	Function	MCU	
		Signal (Port)	Pin
SW1	Connects to an IRQ input for user controls.	PB1_IRQ4_SW1 (PB1)	37
SW2	Connects to an IRQ input for user controls.	PE3_IRQ3_SW3 (PE3)	48
RV1	Connects to an ADC channel for analog input.	P40_ADPOT (P40, AN000)	60

Table 2-1 Switch and Potentiometer Connections

Four user LEDs are also included as described in Table 2-2 below.

LED	Colour	Function MCU		U
			Port	Pin
LED0	Green	User operated LED.	P05	64
LED1	Orange	User operated LED.	P41	58
LED2	Red	User operated LED.	PB7	33
LED3	Red	User operated LED.	PB6	34

Table 2-2 LED Connections

In order to use the LEDs and switches, the IDLE_VCC power rail must be activated, along with the POT_VCC power rail to operate the potentiometer (see section 2.4 for more information).

2.2 USB Connectors

Two USB connectors are included on the top of the RPB, CN1 and CN2, and connected to the USB pins on the RX111 (the USB connector on the bottom, CN8, is for the on-board debugger).

CN1 allows the board to be used as a USB peripheral along with providing power to the board (for other power supply options, see section 2.4).

CN2 can be used to connect USB peripherals such as flash drives, and the board will act as the host device. In order to operate as a host device, the IDLE_VCC power rail must be activated, and the bus switch IC4 must be enabled by driving MCU port P55 (pin 25) low (see the board schematics for more information).

2.3 Expansion Headers

Expansion headers provide access to spare MCU pins and further information about pin assignments may be found on page 5 of the board schematics. Some expansion pins are not available by default and require changes to 0Ω surface mount link resistors. Table 2-3 below shows the configuration changes available, by showing the path of a signal from the MCU on the left to a board function or header pin on the right. Default configuration is shown in **bold**, **blue text**.

Signal Name	M	MCU Exclusive function				Header connection		
	Port	Pin	Purpose	Fit	Remove	Header Pin	ĿĬ	Remove
PC5_SCK1	PC5	29	PMOD-4	R106	R114	CN5-5	R114	R106
P15_RXD1	P15	19	PMOD-3	R108	R111	CN5-6	R111	R108
PC7_TXD1	PC7	27	PMOD-2	R105	R115	CN5-7	R115	R105
PA0_LDOEN	PA0	45	IC2-3 (LDO Enable)	R61	R110	CN6-3	R110	R61
PE1_AN009_TXD12	PE1	50	CN7-2	R118	R103	CN4-4	R118	R103
PE2_AN010_VSUP	PE2	49	Supply voltage monitor	R154, R155	R156	CN4-5	R156	R154, R155
PE7_AN015_VCAP	PE7	52	Supercapacitor voltage monitor	R52, R56	R104	CN4-6	R104	R52, R56

Table 2-3 Expansion header link resistor configuration

In addition the board includes space for pull-up resistors on every MCU I/O pin, as shown on page 2 of the schematic, which are not used by any of the sample code but may be fitted by the user is needed.

A Digilent PmodTM compatible connector can be fitted and used to interface with a variety of external peripherals, including the RSK Pmod display (not included in this kit). Some samples will use the display if connected. It will be necessary to fit a suitable 12-pin right-angle header, similar to Samtec SSW-106-02-T-D-RA, to make use of the Pmod connector. The pinout of the Pmod connector is shown in Table 2-4.

Pin	Function	Pin	Function
1	CS#	7	INT
2	TXD/MOSI	8	RESET
3	RXD/MISO	9	GPIO
4	SCK	10	GPIO
5	GND	11	GND
6	VCC	12	VCC

 Table 2-4 Pmod Connector Pinout

This board is not compatible with 5V-only Pmods and cannot supply 5V power, nor tolerate 5V logic input from an external peripheral.

Header CN7 connects to a Cymbet Energy Harvesting evaluation kit (CBC-EVAL-09. This connector provides two-way communication with the Energy Processor for monitoring, as well as the power supply. The pinout of the energy harvesting connector is shown in Table 2-5. MCU port PA0 (pin 45) should be driven low to activate the power supply from the external harvesting kit, and disable the linear voltage regulator IC2.

Pin	Function
1	RXD
2	TXD
3	NC
4	GND
5	VCC (input)

Table 2-5 CN7 Energy Harvesting Connector Pinout

2.4 Power Supply

Power for the RPB can be supplied from either USB connector CN1 or CN8, along with a supercapacitor or an energy harvesting evaluation kit connected to CN7. The board will use 5V USB power by default, falling back to the supercapacitor (boosted to 5V by a DC-DC converter) if this is unavailable and finally using the 3.6V energy harvesting board if connected. The power supply options, limitations and the order power sources are used if several are available are summarised in Table 2-6 below.

Power Source	Input Voltage	5V?	3.3V?	J-Link Debugger?	Priority
J-Link USB (CN8)	5V	Y	Υ	Υ	1
USB Function (CN1)	5V	Y	Υ	N (Power off)	1
Supercapacitor (C18)	Up to 5V	Y	Υ	N (Power off)	2
Energy Harvesting (CN7)	3.6V	Ν	Y (at 3.6V)	N (Power off)	3
E1 Connector	3.3V	N	Y	N (Power off)	4

Table 2-6 Power Supply Options

Table 2-7 describes the MCU pins used for monitoring the power supply and shutting down board components for board current reduction.

Signal Name	MCU		Purpose
	Port	Pin	
P16_CHARGE_EN	P16	18	Drive low to activate charging the supercapacitor.
PE4_IDLE_EN	PE4	47	Drive low to power up the IDLE_VCC rail (LEDs, switches, etc)
P03_POT_EN	P03	1	Drive low to power up the POT_VCC rail (potentiometer bias voltage)
P55_VBUS_EN	P55	25	Drive low to enable IC4 and operate USB host power supply (IC7)
PE2_AN010_VSUP	PE2	49	Measure the board supply voltage using ADC channel AN010.
PE7_AN015_VCAP	PE7	52	Measure the supercapacitor voltage using ADC channel AN015.

Table 2-7 Power supply control pins

Note: Charging the supercapacitor while using it to power the board will rapidly deplete the capacitor.

2.5 On-board Debugger

A SEGGER J-Link OB debugger is fitted on the bottom side of the RPB and can be used to debug the RX111 MCU with e² studio. For instructions to use the debugging features in e² studio, refer to section 3.

The J-Link debugger is enabled by default (JP2 not fitted). Fitting JP2 will disable the J-Link debugger and is useful for reducing the supply current sourced through the USB connector CN-8.

2.6 Current Measurement

The debugger hardware incorporates a current measurement feature which can measure the current used by the RX111 MCU in various operating modes, which can be accessed and plotted using the 'GUIDemo' sample (see section 4).

It is also possible to measure MCU current by removing R64 and fitting a multimeter across JP1. The current measurement circuit on the board will affect current readings taken with a multimeter, so the current measurement circuit should be disabled by setting switch SW3 to the OFF position. In this case the LowPowerDemo sample project should be used to perform the measurements. For detailed instructions please refer to section 2.7.

Note: Ammeter readings taken while running the demo GUI will not be accurate due to interactions between the GUI and the current measurement circuit on the RPBRX111. If Ammeter readings are required disable the current measurement

circuit by setting switch SW3 to the OFF position and use the LowPowerDemo sample project.

Note: Do not set SW3 to the centre position as this will disconnect the RX111 MCU power supply.

- The different power consumptions were measured under the peripheral states shown in the table below. An Agilent U1241B multi-meter (serial: MY51140128) was used to measure the power.
- The results obtained cannot be guaranteed to be exactly the same for each board; but should not be significantly different. It is good to note that the result can be affected by the test environment and the equipment used.
- Results are shown on the table below.

Clock Mode	Power Consumption						
•	NORMAL MODE	SLEEP MODE	DEEP SLEEP MODE	SOFTWARE STANDBY MODE			
HIGH SPEED	• ~4 mA	• ~1.2mA	• ~800 uA	• 0.4 uA			
MIDDLE SPEED	• ~2.3 mA	• ~600 uA	• ~500 uA (GUI)	• 0.4 uA			
LOW SPEED	• 5 uA	• 2.5 uA	• n/a	• n/a			

2.7 Low Power Current Measurement Instructions

The current consumption in various low power modes can be measured directly using an ammeter connected across JP1 and ensuring that R64 has been removed from the board.

Ensure that SW3 is in the OFF position for this measurement to disable the debugger connections otherwise the lowest power readings will not be possible.

Compile the Low Power Demo sample and download the sample code to the target. Press 'Resume' to run the code to ensure that the device is programmed. Stop the debugger, disconnect the target connection and then disconnect the USB cable.

Connect an ammeter across JP1 and select the mA range. Connect a mini-USB cable between CN8 and a PC. The LEDs (LED0 - LED3) will flash several times.

The demo provides a menu which is navigated by the potentiometer RV1 adjusting the illuminated LEDs, and selected by pressing SW1.

Select a menu item based on the following list by adjusting potentiometer RV1 then pressing SW1 to select. The corresponding value will be displayed on LEDs using binary as shown in the table below:

Menu	LED Settings			
User Interface	LED2	LED1	LED0	
(0) RTC_MENU *	OFF	OFF	OFF	
(1) SUB_32k Clock Mode	OFF	OFF	ON	
(2) LOCO_4M Clock Mode	OFF	ON	OFF	
(3) HOCO_32M Clock Mode	OFF	ON	ON	
(4) SW_SLEEP Clock Mode	ON	OFF	OFF	
(5) DP_SLEEP Clock Mode	ON	OFF	ON	
(6) SW_STBY Clock Mode	ON	ON	OFF	

* The following table is valid only if option "RTC_MENU" was selected. In this case the user should select a value for the RTC options from the table below.

Menu	LED Settings		
RTC_MENU	LED0*	LED1*	LED2*
(1) Output RTC	OFF	OFF	ON
(2) Reset RTC	OFF	ON	OFF
(3) Start RTC	OFF	ON	ON
(4) Stop RTC	ON	OFF	OFF

* Please note the LED Settings in this table are reversed.

All other selections are for a clock mode. LED0 will flash the selected number of times to confirm the selection. The menu operation will return to the main menu for the selection of a clock mode.

After selection of a clock mode select the CPU load option in the same way by making a selection from the table below

Menu	LED Settings		
RTC_MENU	LED2	LED1	LED0
(1) CPU_MIN	OFF	OFF	ON
(2) CPU_TYP	OFF	ON	OFF
(3) CPU_MAX	OFF	ON	ON

LED1 will flash the selected number of times to confirm the selection.

At this point the CPU enters a full power loop in the selected mode. LED2 will be lit. At this point observe the MCU current to show what the operational current is.

Press SW1 to put the CPU into the selected low power mode and again observe the MCU current measurement. At this point the low power mode has been activated.

For the SUB_32k and SW_STBY modes the current will be in the order of micro Amps so it may be necessary at this point to switch the ammeter into the uA range.

Caution: In most Ammeters selection a very low current range introduces a larger series resistance which will produce a significant voltage drop once the current returns to the mA range. Some low cost meters may disconnect the processor current while changing modes. This can cause the CPU to be reset and prevent the correct measurement. In this case you can fit a jumper link across JP1 while changing range on the multi-meter.

To exit the low power mode and restart, return the Ammeter to the mA range to avoid any possible overload of the meter and press the reset switch.

3. Debugging with e² studio

3.1 Introduction

e² studio is an open source integrated development tool that allows the user to write, compile, program and debug a software product on many of the Renesas microcontrollers.

e² Workspace Launcher

Select a workspace

e2studio stores your projects in a folder called a workspace. Choose a workspace folder to use for this session.

3.2 Starting e² studio and Importing Sample Code

- Start e² studio by selecting it from the Start Menu. The first dialog box to appear will be the Workspace Launcher.
- Click 'Browse' and select a suitable location to store your workspace, using the 'Create New Folder' option as necessary. Click 'OK'
- Click 'Yes' when presented with the 'Administrator Privilege' dialog box.

• The e² studio welcome splash screen will appear. Click the 'Go to the workbench' arrow button on the far right (circled in the screenshot opposite).

RENESAS

• Once the environment has initialised, right click in the 'Project Explorer' window and select 'Import...'

 The Import dialog box will now show. Expand the 'General' folder icon, and select 'Existing Projects into Workspace', then click 'Next'.

e ² Import	
Select Create new projects from an archive file or directory.	Ľ
Select an import source:	
type filter text	
 ➢ General ➢ Archive File ➢ File System ☆ HEW Project □, Preferences ▷ ▷ C/C++ ▷ ▷ CVS ▷ ▷ Run/Debug ▷ ▷ Team 	
(P) < Back Next > Finish	Cancel

RPBRX111

• Choose 'Select archive file' and browse to the following file:

C:\Renesas\Workspace\RPB\RX111\ Sample Projects\LowPowerFileCopy.zip

• Click 'Finish' on the import dialog box to import the project.

2 Import				
Import Projects Select a directory to sear	ch for existing Eclipse projects.			
 Select roo<u>t</u> directory: Select <u>a</u>rchive file: <u>P</u>rojects: 	C:\Renesas\Workspace\RPB\RPBRX111\LowPov	B <u>r</u> owse Browse		
Image: Composition of the component of the				
 ✓ Copy projects into wo Working sets ☐ Add project to work Working sets: 	vrkspace ing sets	S <u>e</u> lect		
?	< <u>B</u> ack <u>N</u> ext > <u>Finish</u>	Cancel		

3.3 Build Configurations and Debug Sessions

3.3.1 Build Configuration

The e² studio workspace will be created with two build configurations: 'HardwareDebug' and 'Release'.

Release

This build mode has optimisation turned on, and provides little debug information. The C code execution may appear to be out of order, due to the way compiler optimises the code. This build configuration is intended for final ROM-programmable code.

HardwareDebug

This build mode has all optimisation turned off, and provides full debug information. This is the best configuration to use whilst developing code as C code execution will be linear.

• Click the top level 'LowPowerFileCopy' folder and then go to the arrow next to the build button (hammer icon), and select the 'HardwareDebug' option.

 4	•	۰	•		参	•	0	•	9	
✓ 1 HardwareDebug						1				
2 Release					t					

• e² studio will now build the code.

3.3.2 Debug Configuration

 Click the arrow next to the debug button (bug icon).
 Select 'Debug Configurations'.

莎

- The 'Debug Configurations' dialog box will appear. Click the small arrow next to the 'Renesas GDB Hardware Debugging' option.
- The debug configurations for each project will appear. Select the entry for the 'LowPowerFileCopy' project.

- The debug configurations control page will then show for the project. Change the main tab to 'Debugger' and then select 'Connection Settings' on the secondary tab bar that appears.
- There is no need to change the debugger settings as they are preconfigured with the project, however feel free to review the settings provided.

Click the 'Debug' button to continue.
 e² studio will now connect to the debugger and download the code to the target.

2 Debug Configurations

Create, manage, and run configurations

[1] 🗮 🗮 🖃 🎽 ▼	Configure launch settings fro
type filter text	📑 - Press the 'New' button
C/C++ Application	📄 - Press the 'Duplicate' bu
C/C++ Attach to Application	💢 - Press the 'Delete' butto
C* Custom Debug	🔆 🔆 - Press the 'Filter' buttor
C Debug-only	- Edit or view an existing
c GDB Hardware Debugging دونه GHS Local C/C++ Launch	
E HEW Debugging	Configure launch perspective
🐞 Renesas GDB Hardware Attach	
🔰 🕟 📴 Renesas GDB Hardware Debuggir	
💽 Renesas GDB Simulator Debuggir	

] Main 🐝 Debugger 🗼 Startup 🔲 Co Debug hardware: Segger JLink 🔹 Target	mmon 🎼 Source) Device: R5F51115
GDB Settings Connection Settings Debug	Tool Settings
⊿ Clock	
Main Clock Source	EXTAL -
Extal Frequency[MHz]	12.0000
Permit Clock Source Change On Writ	in Yes 👻
Connection with Target Board	
Connection Type	Fine
JTag Clock Frequency[MHz]	16.5 -
Fine Baud Rate[Mbps]	2.00 -
CPU Operating Mode	
Register Setting	Single Chip 👻
Mode pin	Single-chip mode 🚽
Communication Mode	
Mode	Debug Mode 👻
Execute The User Program After Endi	ng No 👻
⊿ Flash	
ID Code	FFFFFFFFFFFFFFFFFFFFFFFFFFFFF

- After downloading the code a dialog box will appear asking if you would like to switch to the 'Debug perspective'. Click 'Remember my decision' to prevent this dialog box from appearing in future, then click 'Yes'
- e² studio will load the new perspective, which is optimised for debugging.
- To change back to the default 'C/C++' perspective, from the menu bar select Window > Open Perspective > Other
- The 'Open Perspective' dialog box will appear. Click on the desired perspective to select it then 'OK'.

 Alternatively, click on the button with the double arrow in the top right corner of the screen, as shown opposite, and select the 'C/C++' option that appears.

ОK

Cancel

	😭 🏇 Renesas D	»
Ec	C/C++	

3.3.3 Running the Demo

- Each sample includes a Description.txt file detailing the sample's operation and any configuration required.
- Once the code has been downloaded, click 'Resume' to run the code to the main function, then click the 'Resume' button again to run the rest of the code.
- It is recommended that you run the sample once before continuing with this tutorial. Detailed instructions for operation of the sample are given in the Description.txt file. Note however that the USB cable should not be unplugged from CN8 as this will disable the debugger.

3.4 Reviewing the Sample Code

This section will give a brief overview of some of the demo code and describe basic debugging functionality using e² studio. For more information on the USB Host library that the demo is built around, review the USB HMSC application note (R01AN0624EJ) available from the Renesas website.

3.4.1 **Program Initialisation**

Before the main program can run, the microcontroller must be configured. The following parts of the tutorial program are used for initialising the RPB device so that the main function can execute correctly. The initialisation code is run every time the device is reset via the reset switch or from a power cycle.

- Intially the microcontroller will start in the PowerON_Reset_PC() function, from which the initialisation and main functions are called.
- Click the 'Step Over' button (or press [F6] twice) to step to the usb_cpu_mcu_initialize() line.
- Click the 'Step Into' button (or press [F5]) to enter the function.
- This function configures the oscillators and clock dividers. A summary of the clock speeds may be found in the function comments.
- The user can step through this initialisation code by clicking the 'Step Over' icon, but for the purpose of this manual it will be skipped.
- Click the 'Resume' button (or press [F8]), to run the code up to the main function.

		_
0	Þ	

	75 0 76	void PowerON_Reset_PC(void)				
	77	<pre>set_intb(sectop("C\$VECT"));</pre>				
	79	/* MCU initialized */				
÷	80	usb_cpu_mcu_initialize();				
	81					
	82	_INITSCT();	// Initialize Sections			
	3370	/**************************************	*******			
	338	Function Name : usb_cpu_mcu_ir	nitialize			
	339	Description : MCU Initialize	2			
	340	Anguments : void				
	341	Return value : void				
	342	*****	**************			
	3430	void usb_cpu_mcu_initialize(void	1)			
	344	i (* Destast vasistas *(
	240	SYSTEM DDCD WODD - OWAEOD	/* Dootort off */			
1	340	STSTEM. PRCK. WORD - WAR505;	7 PROLECE OFF 7			
	348	/* Main clock Oscillator cor	trol register */			
	349	SYSTEM, MOSCCR, BIT, MOSTP = 0	/* Main clock oscil			
	350		, ,			
	351	/* Main clock Oscillator wai	it control register */			
	352	SYSTEM. MOSCWTCR. BIT. MSTS = 0	0x06; /* 32768 state */			
	353					
	354	/* Sub clock Oscillator cont	rol register */			
	355	SYSTEM.SOSCCR.BIT.SOSTP = 1;	/* Sub clock Oscill			
	356					
	357	/* Start PLL <u>Controler</u> */				
	358	/* PLL control register */				
	359	SYSTEM. PLLCR. BIT. PLIDIV = 1;	/* 1/2(6MHz) */			
	360	SYSTEM. PLLCR. BIT. STC = 0x01;	/* x8(6MHZ*8 = 48MH:			
	362	/* PLL control register? */				
	363	SYSTEM, PLICE2, BTT, PLIEN = 1	/* PLL enable */			
	364	STSTERT CCCC2. DITTICLEN = 1	,) ite endore ;			
	365	/* Clock select ICLK=24MH7/F	CLKB=24MHz/PCLKD=24MHz/FCLK			
	366	SYSTEM. SCKCR. LONG = 0x210001	101:			
	367		•			

For further details regarding hardware configuration, please refer to the RX111 Group Hardware Manual.

It is possible that line numbers for source code illustrated in this document do not match exactly with that in the actual source files. It is also possible that the source address of instructions illustrated in this manual differ from those in user code compiled from the same source.

RENESAS

3.4.2 **Main Functions**

This section will look at the program code called from within the main() function, and how it works.

Double-click in the left-hand column to set a breakpoint on the 'while (1)' line inside the main function. This will be used later in the tutorial.

Note: The alternative to the above method requires reverting back to the default 'C/C++' perspective.

Whilst in the C/C++ perspective, set the mouse cursor on the instruction, then from the menu bar select Run > Toggle Breakpoint.

- Click 'Step Into' (or press [F5]) to enter the usb_hmsc_task_start() function.
- Select the usb_cpu_target_init() function call and press [F3] (or right-click and 'Open Declaration'. select The usb_cpu_target_init() function will open.

- First select and then right-click on the line 'CHARGE_ENABLE_PDR = 0x1u'and select 'Run to Line' to execute the program up to this point. The board LEDs and voltage measurement ADC inputs will be configured.
- The following lines set the supercapacitor charge enable pin into open-drain mode and drives it low to charge the capacitor. The LEDs and USB bus switch are also activated. For more information hardware on configuration, see section 2.
- In the 'Outline' view on the right-handside. click on the function 'Excep_CMT1_CMI1'
- Set a breakpoint on the first line in the function.
- Click the 'Step Return' button (or press [F7]) to run to the end of the current function and return to the caller.

Jul 09, 2013

Click the 'Resume' button to continue running the code.

_P

RENESAS

[🔁] Outline 🔀 눱 Project Expl $\overline{\nabla}$ 🖃 📲 😿 💊 💿 并 0 usb_cpu_usb_interrupt(void) : vo 🔺 usb_cpu_usb_resume_interrupt(v 0 0 usb_cpu_irq0_interrupt(void) : vo 0 usb_cpu_irq0_interrupt_enable(vi 0 usb_cpu_periodic_disable(void) : 0 usb_cpu_periodic_enable(void) : Excep_CMT1_CMI1(void) : void 0 usb_cpu_DmaintInit(void) : void

: Periodic timer interrupt handler

#pragma interrupt (Excep_CMT1_CMI1(vect=VECT_CMT1_CMI1))

Refactor

Declarations

References

Search Text

Easy Shell

=>T

media and writes a file.

Make Targets

Run to Line

: Process the application state machine

Resource Configurations

1064 void Excep_CMT1_CMI1 (void)

Description

Return value

Arguments

{

}

1059

1060

1061

1062 1063

1065 { 1066

31067

1068

1069

10700

1071

1072 1073

1074 1075

1076

1077

1078

1079

1080

1081

1082

167

20168⊖

169

171

172

173

174

175

176

177

178

179

180

327

328

333

334

335

336

337

338

339

340

341 342

343 3440

245

}

329 Argument

330 Return

331 ****

-{

1700

1058 Function Name : Excep CMT1 CMI1

: void

: void

S12AD.ADCSR.BIT.ADST = 0x1;

/* Do nothing */

/* Read the ADC voltage */

/* Switch off all LEDs */

usb_cpu_led_set_data(0x00u);

/* Sample main loop

if(R_usb_cstd_S

R_usb_hstd_H

R_usb_hstd_M

usb hmsc Tasl

usb_hmsc_Str

*mess:

err;

res;

*mes;

addr:

file:

file_rw_cnt;

/* Check for incoming application messages. */
err = R_USB_RCV_MSG(USB_HMSCSMP_MBX, (usb_msg_t**))

326 Function Name : usb_hmsc_SampleAplTask

: none

: none

while(1)

ł

}

/* <u>cof</u> main() */

332 void usb_hmsc_SampleAplTask(void)

if(err != USB_E_OK)

usb_tskinfo_t

usb_tskinfo_t

usb_er_t

uint16_t

uint16_t

FTI

FRESULT

{

3

Description

/* Read the 5V rail voltage */

/* Start another ADC conversion */

/* Wait for conversion to complete */

uint16_t supercap_voltage = S12AD.ADDR15;

uint16_t supply_voltage = S12AD.ADDR10;

while (0x1 == S12AD.ADCSR.BIT.ADST)

- Execution will stop on the breakpoint at the start of 'Excep_CMT1_CMI1()'. This is an interrupt handler for a periodic timer started in the 'usb_cpu_target_init()' function.
- This function reads the power supply and supercapacitor voltages, and uses these values to enable/disable charging when the external power supply is connected/disconnected, and to operate the LEDs and display the current charge state.
- Remove the breakpoint by doubleclicking the blue circle in the left-hand column.
- Click the 'Resume' button to continue running the code. The microcontroller will enter a low power sleep state.
- Plug in a USB memory stick. An interrupt will wake the microcontroller and execution will stop at the breakpoint in the main function.
- Select and then right-click on the function 'usb_hmsc_SampleAplTask()' and click the 'Run to Line' menu option. Click 'Step In' to enter the function.
- This function checks for incoming application messages, and processes them to mount the USB memory stick, copy a file and then unmount it, before entering software standby mode.
- Click 'Resume' to copy the file and complete the sample.

• Click the 'Suspend' button to halt program execution. This is the extent of the tutorial code.

4. Demonstration GUI

A 'GUIDemo' sample is included in the sample set, and connects to an application running on a PC to control the RX111 operating mode and measure power usage of the device. This section will describe how to use the GUI to demonstrate the low-power characteristics of the microcontroller.

- First, follow the steps in sections 3.2 and 3.3, substituting 'GUIDemo' for 'LowPowerFileCopy' to prepare the sample code in e² studio and download it to the board.
- Once this process has completed, stop the debugger in e² studio and power cycle the board.
- Launch the demo GUI, either by double-clicking the 'YRPBRX111 Demo' desktop shortcut or using the Start menu.
- The demo GUI should start with the 'Home' tab active as shown oppsoite. Click 'Connect' to connect with the RPB.
- After a few seconds the message in the status bar at the bottom of the window will change to show the RTC time reading from the RPB and the red circle in the bottom-right corner will go green.
- Use the 'Sync' button to set the RPBRX111 RTC with the host computer system time.
- A monitoring console to show communication between the PC and the RPB can be opened by clicking the arrow in the window corner.
- Click on the 'Power Measurement' tab.
- This tab accesses the current measurement circuit on the RPB, and displays current measurements taken from the MCU.
- Click the 'Start' button to begin taking measurements. Data will appear on the graph, with time on the horizontal axis and current (in µA) on the vertical. The axis will scale automatically.

🕞 Renesas Elec	R Renesas Electronics: RX111 Low Power Demonstrator					
🛲 Home	Power Measurement	E Low Power				
0.1	·	······································	MCLL Current (uA)			
			Start			
			Class			
			Snaps <u>h</u> ot: 0.00			
0.0	1 2	3 4	5			

- Click on the 'Low Power' tab.
- This tab provides controls to change the speed mode (and clock source) of the RX111 MCU, along with access to sleep modes.
- By default, the system clock uses the 12MHz crystal oscillator and the PLL circuit.
- In middle-speed mode the high-speed on-chip oscillator (HOCO) will be selected as the clock source and the crystal oscillator shut down.

Renesas Electronics: RX111 Low Power Demonstrator	
Reasurement Es Low	/ Power
Low Power Modes Switch the RX111 operating mode and dock source: Middle-speed Mode Put the RX111 into Low-speed Operation Mode and use the sub-clock: Enable Low-speed Mode	Sleep Mode Put the RXX111 into Sleep mode: Sleep Put the RX111 into Deep Sleep mode: Deep Sleep Put the RX111 into Software Standby mode: Software Standby
RTC Time: 2013/08/01 16:13:37	θ 🕨

- In low-speed mode the 32.768kHz subclock will be selected as the clock source and all other clocks will be disabled. Note that when low-speed mode is selected, it is not possible to put the RX111 into any of the sleep modes.
- Switch back to the 'Power Measurement' tab after changing clock source to observe the effect on the MCU current. It may be necessary to stop, clear, and restart the graph when using sleep modes, as the reduction in current is significant.

5. Code Development

5.1 Overview

For all code debugging using Renesas software tools, the RPB board must be connected to a PC via a USB cable plugged in to the on-board debugger (connector CN8).

The on-board debugger can only be used with the RX111 on the RPB, and is not designed for user system development. A Renesas Starter Kit is available for this device which contains an E1 debugger for use with user hardware.

5.2 Compiler Restrictions

The compiler supplied with this RPB is fully functional for a period of 60 days from first use. After the first 60 days of use have expired, the compiler will default to a maximum of 128k code and data. To use the compiler with programs greater than this size you need to purchase the full tools from your distributor.

5.3 Mode Support

The RX111 microcontroller only supports single-chip operating mode.

5.4 Debugging Support

The on-board J-Link debugger supports a variety of debugging features, some of which are described in the 'AdvancedDebugDemo' sample provided. Further documentation is available from the SEGGER Microcontroller website.

It is also possible to debug the RX111 using a Renesas E1 Emulator, by fitting a 14-pin shrouded box header to the connector labelled 'E1' on the underside of the RPB. No other modification is necessary however the J-Link OB and E1 should not be used at the same time.

5.5 Address Space

Figure 8-1 below details the address space of the MCU. This diagram is taken from the Hardware Manual version 0.2. The MCU fitted to the RPB has 32KB of ROM. For further details, refer to the RX111 Group Hardware Manual.

Note 1. The address space in boot mode is the same as the address space in single-chip mode. Note 2. The capacity of ROM/RAM differs depending on the products.

ROM (byte:	5)	RAM (bytes)	
Capacity	Address	Capacity	Address
128 K	FFFE 0000h to FFFF FFFFh	16 K	0000 0000h to 0000 3FFFh
96 K	FFFE 8000h to FFFF FFFFh	1	
64 K	FFFF 0000h to FFFF FFFFh	10 K	0000 0000h to 0000 27FFh
32 K	FFFF 8000h to FFFF FFFFh	1	
16 K	FFFF C000h to FFFF FFFFh	8 K	0000 0000h to 0000 1FFFh

Note: • See Table 1.3, List of Products, for the product type name.

Note 3. Reserved areas should not be accessed.

Figure 5-1: MCU Address Space Diagram

6. Troubleshooting

Can't Connect the J-Link Debugger to the RX111

Driving PA0_LDOEN low will turn off the Power Supply to the RX111. If this is done without supplying power through VCC_HARVEST on CN7 pin 5, then there will be no power applied to the RX111 and the J-Link debugger will not be able to communicate with the RX111.

To recover a board in this state either:

- 1. Supply 3.6V through VCC_HARVEST on CN7 pin 5, or
- 2. Remove R61 from the reverse side of the board as indicated below.

Figure 6-1: Location of R61

7. Additional Information

Technical Support

For details on how to use e^2 studio, refer to the help file by opening e^2 studio, then selecting Help > Help Contents from the menu bar.

Window	Help		
<u>c</u> - G	3	Welcome	
	0	Help Contents	
	%	Search	
		Dynamic Help	

Parts of the sample code provided with the RPBRX111 can be reproduced using the 'Application Leading Tool' (Applilet) code generator tool. Applilet4 is included on the DVD. Source files and functions generated by Applilet4 are prefixed with 'r_' and 'R_', respectively.

Applilet4 for the RX111 is a code generation tools to assist you in creating a template for a project that will assist you in initial configuration of the microcontroller. Applilet4 will be integrated into e2 studio with version 2.1. User's working with IAR tools will still need to you the stand-alone application to generate the base code project as the e2 studio built-in version will not generate code for IAR.

For information about the RX111 series microcontrollers refer to the RX111 Group Hardware Manual.

For information about the RX assembly language, refer to the RX Series Software Manual.

Technical Contact Details

Please refer to the contact details listed in section 10 of the "Quick Start Guide"

General information on Renesas Microcontrollers can be found on the Renesas website at: <u>http://www.renesas.com/</u>

Trademarks

All brand or product names used in this manual are trademarks or registered trademarks of their respective companies or organisations.

Copyright

This document may be, wholly or partially, subject to change without notice. All rights reserved. Duplication of this document, either in whole or part is prohibited without the written permission of Renesas Electronics Europe Limited.

© 2013 Renesas Electronics Europe Limited. All rights reserved.

- © 2013 Renesas Electronics Corporation. All rights reserved.
- © 2013 Renesas Solutions Corp. All rights reserved.

REVISION HISTORY	RPB RX111 Tutorial Manual

Rev.	Date	Description	
		Page	Summary
1.00	Jul 09, 2013		First Edition issued

Renesas Promotional Board Manual: Tutorial Manual

Publication Date: Rev. 1.00 Jul 09, 2013

Published by: Renesas Electronics Corporation

Renesas Electronics Corporation

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information.

http://www.renesas.com

Renesas Electronics America Inc.2880 Scott Bouleyard Santa Clara, CA 95050-2554, U.S.A.Tel: +1-408-588-6000, Fax: +1-408-588-6130Renesas Electronics Canada Limited1011 Nicholson Road, Newmarket, Ontario L3Y 9C3, CanadaTel: +1-905-898-5441, Fax: +1-905-898-3220Renesas Electronics Europe LimitedDukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.KTel: +44-1628-651-700, Fax: +44-1628-651-804Renesas Electronics Europe GmbHArcadiastrasse 10, 40472 Düsseldorf, GermanyTel: +49-211-65030, Fax: +49-211-6503-1327Renesas Electronics (China) Co., Ltd.Th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.ChinaTel: +49-21-4525-1155, Fax: +86-0-2452-7679Renesas Electronics (Shanghai) Co., Ltd.Unit 204, 205, AZIA Center, No. 1233 Luijazui Ring Rd., Pudong District, Shanghai 200120, ChinaTel: +86-1013, 16/F, Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong KongTel: +86-24175-9600, Fax: +862-2886-9022/0044Renesas Electronics Taiwan Co., Ltd.13F, No. 363, Fu Shing North Road, Taipei, TaiwanTel: +86-24175-9600, Fax: +862 24175-9670Renesas Electronics Taiwan Co., Ltd.13F, No. 363, Fu Shing North Road, Taipei, TaiwanTel: +86-24175-9600, Fax: +66-213-0300Renesas Electronics Korea Co., Ltd.10h: 96, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia10h: 906, Block B, Menara Amcorp, Amcorp, Tarde Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia<t

© 2013 Renesas Electronics Corporation. All rights reserved. Colophon 1.3

RX111 Group

