
表紙

Rev.1.10 Dec 2023

16-Bit Single-Chip Microcontrollers

16

U
ser s M

anual

RL78 Family

Flash Self-Programming Library Type 01
Japanese Release

Installer name: RENESAS_RL78_FSL_T01_xVxx

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

© 2023 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of
these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or
other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims
any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is
inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not
limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products
are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury,
injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety
design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging
degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered trademarks
are the property of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement

tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be

touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on
The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in

a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level

at which resetting is specified.

3. Input of signal during power-off state
Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements.

Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins
Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals
After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced

with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (Max.)

and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level

is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses
Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products
Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of

internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

HOW TO USE THIS MANUAL

Readers This manual is intended for user engineers who wish to understand the functions of the

Flash Self-Programming Library Type 01 for the RL78 microcontrollers and design and
develop application systems and programs for these devices.

 Refer to the following list for the target MCUs.

 Self-Programming Library (Japanese Release) and Supported MCUs (R20UT2861XJxxxx)

RL78 Family Self RAM list of Flash Self Programming Library (R20UT2944)

Purpose This manual is intended to give users an understanding of the methods (described in the

Organization below) for using flash self-programming library Type 01 to rewrite the code
flash memories.

Organization This user’s manual is separated into the following parts:

• Overview
• Programming Environment
• Interrupts During Execution of Flash Self-programming
• Security Setting
• Boot Swap Function
• Flash Self-Programming Function

How to Read This Manual It is assumed that the readers of this manual have general knowledge of electrical

engineering, logic circuits, and microcontrollers.
• To gain a general understanding of functions:
 → Read this manual in the order of the CONTENTS.
• To know details of the RL78 Microcontroller instructions:
 → Refer to CHAPTER 6 FLASH FUNCTION.

Conventions Data significance: Higher digits on the left and lower digits on the right
 Active low representations: ××× (overscore over pin and signal name)
 Note: Footnote for item marked with Note in the text
 Caution: Information requiring particular attention
 Remark: Supplementary information
 Numerical representations: Binary ... ×××× or ××××B
 Decimal ... ××××
 Hexadecimal ... ××××H or ‘0x’xxxx

All trademarks and registered trademarks are the property of their respective owners.
EEPROM is a trademark of Renesas Electronics Corporation.

Index-1

CONTENTS

CHAPTER 1 OVERVIEW .. 1

1. 1 Overview ... 1
1. 2 Calling Flash Self-Programming Library ... 3

CHAPTER 2 PROGRAMMING ENVIRONMENT .. 9

2. 1 Hardware Environment ... 9
2. 1. 1 Initialization ... 12
2. 1. 2 Blocks .. 12
2. 1. 3 Processing time of flash self-programming ... 14

2. 2 Software Environment .. 24
2. 2. 1 Self-RAM ... 28
2. 2. 2 Register bank .. 28
2. 2. 3 Stack and data buffer .. 29
2. 2. 4 Flash self-programming library ... 30
2. 2. 5 Program area .. 30
2. 2. 6 ROMization of programs ... 30

2. 3 Cautions on Programming Environment ... 31

CHAPTER 3 INTERRUPTS DURING EXECUTION OF
FLASH SELF-PROGRAMMING ... 34

3. 1 Overview ... 34
3. 2 Interrupts During Execution of Flash Self-Programming .. 34
3. 3 Cautions on Interrupts .. 35

CHAPTER 4 SECURITY SETTINGS ... 36

4. 1 Security Flags ... 36
4. 2 Flash Shield Window Function ... 36

CHAPTER 5 BOOT SWAP FUNCTION ... 37

5. 1 Overview ... 37
5. 2 Boot Swap Function .. 37
5. 3 Boot Swapping Procedure .. 38
5. 4 Cautions on Boot Swapping ... 43

CHAPTER 6 FLASH FUNCTIONS .. 44

6. 1 Types of Flash Functions .. 44
6. 2 Segments of Flash Functions ... 45
6. 3 Interrupts and BGO (Background Operation) ... 47
6. 4 Status Check Mode .. 48

6. 4. 1 Status Check User Mode ... 50
6. 5 Pausing of Flash Self-Programming ... 52
6. 6 List of Data Types and Return Values .. 54

Index-2

6. 7 Description of Flash Functions ... 56
FSL_Init .. 57
FSL_Open .. 60
FSL_Close ... 61
FSL_PrepareFunctions .. 62
FSL_PrepareExtFunctions ... 63
FSL_ChangeInterruptTable ... 64
FSL_RestoreInterruptTable ... 66
FSL_BlankCheck ... 68
FSL_Erase ... 70
FSL_IVerify .. 72
FSL_Write .. 74
FSL_GetSecurityFlags ... 77
FSL_GetBootFlag .. 79
FSL_GetSwapState ... 81
FSL_GetBlockEndAddr .. 83
FSL_GetFlashShieldWindow ... 85
FSL_SwapBootCluster ... 87
FSL_SwapActiveBootCluster ... 90
FSL_InvertBootFlag ... 92
FSL_SetBlockEraseProtectFlag .. 94
FSL_SetWriteProtectFlag .. 96
FSL_SetBootClusterProtectFlag .. 98
FSL_SetFlashShieldWindow.. 100
FSL_StatusCheck .. 103
FSL_StandBy ... 105
FSL_WakeUp ... 107
FSL_ForceReset .. 109
FSL_GetVersionString ... 110

APPENDIX A REVISION HISTORY .. 112

A. 1 Major Revisions in This Edition .. 112
A. 2 Revision History of Preceding Editions .. 113

RL78 Family CHAPTER 1 OVERVIEW
Flash Self-Programming Library Type 01
RL78 Family

Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 1 of 114
Dec 26, 2023

R01US0050EJ0110
Rev.1.10

Dec 26, 2023

CHAPTER 1 OVERVIEW

1. 1 Overview

The flash self-programming library is software to rewrite data in the code flash memory with the firmware

installed on the RL78 microcontroller.

The content of the code flash memory can be rewritten by calling the flash self-programming library from the

user program, which can significantly shorten the software development period.

Use this Flash Self-Programming Library User's Manual along with the manual of the target device.

Terms The meanings of the terms used in this manual are described below.

 Flash self-programming

Write operation to the code flash memory by the user program itself.

 Flash self-programming library

Library for code flash memory operation with the functions provided by the RL78 microcontroller.

Operation to the data flash memory cannot be done.

 Flash environment

State in which operation to the code flash memory is available. There are restrictions different from those in

the execution of normal programs. Operation to the data flash memory cannot be done.

 Block number

Number indicating a block of flash memory. Operation unit for erasure, blank check, and verification (internal

verification).

 Boot cluster

Boot area used for boot swapping. For the availability of the boot swap function, refer to the user's manual of

the target RL78 microcontroller.

 Internal verification

To check if the signal level of the flash memory cell is appropriate after writing to the flash memory. If an error

is detected in internal verification, the device is determined as failed. However, if data erasure, data writing,

and internal verification are performed and completed normally after the internal verification error, the device is

determined as normal.

 FSL

Abbreviation of "Flash Self-Programming Library."

 FSW

Abbreviation of "Flash Shield Window."

 Flash function

Function comprising the flash self-programming library.

RL78 Family CHAPTER 1 OVERVIEW
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 2 of 114
Dec 26, 2023

 Sequencer

The RL78 microcontroller has a dedicated circuit for controlling the flash memory. In this document, this circuit

is called the "sequencer."

 BGO (background operation)

State in which rewriting of the flash memory can be done while operating the user program by letting the

sequencer to control the flash memory.

 Status check

When the sequencer is used, the processing to check the state of the sequencer (state of control for the flash

memory) with the program controlling the flash memory is required. In this document, the processing to check

the state of the sequencer is called "status checking."

 ROMization (program)

In flash self-programming of the RL78 microcontroller, user programs and flash self-programming library need

to be allocated in the RAM to perform the processing depending on the control method. In this document,

allocating the program for operating on the RAM in the code flash memory to use it is called "ROMization."

To perform ROMization, the functions such as the development tools need to be used.

 EEPROM emulation library

Software library that provides the function to store data in the installed flash memory like an EEPROM.

 Data flash library

Software library to perform operation to the data flash memory.

RL78 Family CHAPTER 1 OVERVIEW
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 3 of 114
Dec 26, 2023

1. 2 Calling Flash Self-Programming Library

To perform flash self-programming, the initialization processing for flash self-programming and the functions

corresponding to the functions used need to be executed from the user program in the C language or assembly

language.

In Flash Self-Programming Library Type 01, the code flash memory cannot be referred to while it is being

rewritten. Therefore, some segments of the flash self-programming library or the user program need to be

allocated on the RAM depending on the usage.

Figure 1-1 shows the state transition diagram of flash self-programming. Figure 1-2 shows an example of the

code flash memory rewriting flow by using the flash self-programming library. Figure 1-3 shows an example of

the code flash memory rewriting flow during background operation (BGO).

uninitialized

closed

FSL_Init() destroy RAM data

opened

FSL_Open() FSL_Close()

standby

FSL_Wakeup() *FSL_Erase Only

FSL_StandBy()

extprepared prepaerdBusy

FSL_StandBy()

FSL_Wakeup()

FSL_BlankCheck
FSL_Erase
FSL_IVerify
FSL_Write
FSL_StatusCheck

Status: OK

Status: ERROR

FSL_Get***
FSL_ForceReset

FSL_PrepareFunctions
FSL_PrepareExtFunctions
FSL_ChangeInterruptTable
FSL_RestoreInterruptTable

FSL_SwapActiveBootCluster
FSL_InvertBootFlag
FSL_Set***

Status: OK

Status: ERROR

Reset or Power ON

Sequencer busy

Sequencer Control

FSL_SwapBootCluster
FSL_ForceReset

return

FSL_SwapBootCluster

uninitialized

closed

FSL_Init() destroy RAM data

opened

FSL_Open() FSL_Close()

standby

FSL_Wakeup() *FSL_Erase Only

FSL_StandBy()

extprepared prepaerdBusy

FSL_StandBy()

FSL_Wakeup()

FSL_BlankCheck
FSL_Erase
FSL_IVerify
FSL_Write
FSL_StatusCheck

Status: OK

Status: ERROR

FSL_Get***
FSL_ForceReset

FSL_PrepareFunctions
FSL_PrepareExtFunctions
FSL_ChangeInterruptTable
FSL_RestoreInterruptTable

FSL_SwapActiveBootCluster
FSL_InvertBootFlag
FSL_Set***

Status: OK

Status: ERROR

Reset or Power ON

Sequencer busy

Sequencer Control

FSL_SwapBootCluster
FSL_ForceReset

return

FSL_SwapBootCluster

Figure 1-1. State Transition Diagram of Flash Self-Programming

RL78 Family CHAPTER 1 OVERVIEW
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 4 of 114
Dec 26, 2023

[Overview of the state transition diagram]

To operate the code flash memory by using the flash self-programming library, the provided functions need to be

executed sequentially to perform processing.

(1) uninitialized

State at Power ON and Reset. A transition to this state occurs also when the EEPROM emulation library or

the data flash library is executed.

(2) closed

State in which the FSL_Init() function has been executed and the data to execute the flash self-programming

has been initialized (operation to the code flash memory is stopped). To execute the EEPROM emulation

library, the data flash library, STOP mode, or HALT mode after operating flash self-programming, execute

FSL_Close from the opened state to make a transition to this state.

(3) opened

State in which the FSL_Open() function has been executed from the closed state and flash

self-programming can be executed. This state is called the "flash environment." In the period from the

execution of FSL_Close to the transition to the closed state, the EEPROM emulation library, the data flash

library, STOP mode, or HALT mode cannot be executed.

(4) prepared

State in which the FSL_PrepareFunctions() function has been executed from the opened state and

operations to the code flash memory such as writing, and erasure are enabled.

(5) extprepared

State in which the FSL_PrepareFunctions() and FSL_PrepareExtFunctions() function have been executed

from the opened state in that order and rewriting of the security flag and boot swap processing can be

executed.

(6) busy

State in which the specified processing is being executed. The resulting transition may change depending

on the executed function and end state.

(7) sequencer busy

State in which the specified processing is being executed with the sequencer. The code flash memory

cannot be referred to while the sequencer is being used. The resulting transition may change depending

on the executed function and end state.

(8) standby

State in which flash self-programming is paused by the FSL_StandBy function. Flash self-programming

can be restarted by using the FSL_WakeUp function. When a pause occurred during the execution of the

FSL_Erase function, the processing of the FSL_Erase function is restarted.

RL78 Family CHAPTER 1 OVERVIEW
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 5 of 114
Dec 26, 2023

FSL_Init

Start flash self-programming

End flash self-programming

FSL_Open

<1>

FSL_PrepareFunctions

Normal completion?

Yes

No

Use an interrupt?

Yes

No

FSL_ChangeInterruptTable

FSL_BlankCheck

Status check

Normal completion FSL_Erase

Status check

Normal completion

Error

FSL_Write

Status check

Normal completion

Error

FSL_IVerify

FSL_RestorInterruptTable

FSL_Close

<2>

<3>

<4>

<5>

<6>

<8>

<10>

<7>

<9>

* When rewriting the code flash memory is
performed in status check internal mode.

Changed the interrupt destination?

Yes

No

Pre-processing

Ending processing

Processing end

Blank check error Other error

Status check

Normal completion

Error

Figure 1-2. Example of Flow of Flash Self-Programming (Rewriting of Code Flash Memory)

RL78 Family CHAPTER 1 OVERVIEW
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 6 of 114
Dec 26, 2023

FSL_BlankCheck

Status check

Normal completion

Blank check error

FSL_Erase

Error

FSL_Write

FSL_IVerify

<5>

<6>

<8>

<7>

Status check
Error

FSL_StatusCheck<11>

Normal completion

Error

In execution

FSL_StatusCheck<11>

Status check

Status check

Error

Normal completion

Error

In execution

FSL_StatusCheck<11>

Status check

Status check

* When rewriting of the code flash memory is
performed in status check user mode.

Error

Processing complete

FSL_StatusCheck<11>

Status check

Status check

For preprocessing and end processing, refer to Figure 1-2.

In execution

In execution

In execution

In execution

In execution

In execution

FSL_BlankCheck

Status check

Normal completion

Blank check error

FSL_Erase

Error

FSL_Write

FSL_IVerify

<5>

<6>

<8>

<7>

Status check
Error

FSL_StatusCheck<11>

Normal completion

Error

In execution

FSL_StatusCheck<11>

Status check

Status check

Error

Normal completion

Error

In execution

FSL_StatusCheck<11>

Status check

Status check

* When rewriting of the code flash memory is
performed in status check user mode.

Error

Processing complete

FSL_StatusCheck<11>

Status check

Status check

For preprocessing and end processing, refer to Figure 1-2.

In execution

In execution

In execution

In execution

In execution

In execution

Figure 1-3. Example of Flow of Code Flash Memory Rewriting During Background Operation

RL78 Family CHAPTER 1 OVERVIEW
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 7 of 114
Dec 26, 2023

<1> Initializing the RAM used for flash self-programming

The FSL_Init function is called to initialize the RAM used for flash self-programming and to set the

parameters required for the operation.

<2> Starting the flash environment

The FSL_Open function is called to make flash self-programming available.

<3> Preparation processing

The FSL_PrepareFunctions function is called to prepare the functions used for flash self-programming. To

use extension functions, the FSL_PrepareExtFunctions function must also be called.

For details of the FSL_PrepareFunctions function and FSL_PrepareExtFunctions function, refer to CHAPTER

6 FLASH FUNCTIONS.

<4> Changing interrupt reception to the RAM

When an interrupt is required during the execution of flash self-programming, the FSL_ChangeInterruptTable

function is called to change the interrupt destination from the ROM to RAM.

<5> Blank checking of the specified block (1-Kbyte)

The FSL_BlankCheck function is called to perform a blank check of the specified block (1-Kbyte) (check that

the block is ready to be written to).

<6> Erasing the specified block (1-Kbyte)

The FSL_Erase function is called to erase the specified block (1-Kbyte).

<7> Writing 1 word to 64 words (4 bytes to 256 bytes) data to the specified address

The FSL_Write function is called to write 1 word to 64 words (4 bytes to 256 bytes) data to the specified

address.

If writing to the specified block cannot be completed at one time, the FSL_Write function is executed multiple

times to complete writing all data to the specified block before a transition to the next processing. Data can be

written only to blank or erased blocks; data cannot be written again (overwritten) to an area that has been

written to.

<8> Verification (internal verification) of the specified block (1-Kbyte)

The FSL_IVerify function is called for verification (internal verification) of the specified block (1-Kbyte).

Note: Internal verification checks if the signal levels of the flash memory cells are correct. It does not compare

data.

<9> Changing interrupt reception back to the ROM

If the interrupt destination was changed to the RAM in <4>, the FSL_RestoreInterruptTable function is called

to change the interrupt reception destination back to the ROM.

RL78 Family CHAPTER 1 OVERVIEW
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 8 of 114
Dec 26, 2023

<10> Ending the flash environment

The FSL_Close function is called to end flash self-programming. The FSL_Close function should be

executed when all writing processing is completed or when flash self-programming should be terminated.

<11> Status checking

When the status check user mode is used, status checking must be performed until the control of the code

flash memory is finished.

Remark 1 word = 4 bytes

RL78 Family CHAPTER 2 PROGRAMMING ENVIRONMENT
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 9 of 114
Dec 26, 2023

CHAPTER 2 PROGRAMMING ENVIRONMENT

This chapter describes the hardware environment and software environment required to rewrite the code flash

memory using the flash self-programming library.

2. 1 Hardware Environment

Flash self-programming of the RL78 microcontroller uses the sequencer to control rewriting of the flash memory.

During the control of the sequencer, the code flash memory cannot be referred to. Therefore, if the user program

needs to be operated during sequencer control such as an interruptNote, some segments of the flash

self-programming library and the user program must be allocated in the RAM to control erasure and writing to the

code flash memory or setting of the security flag. If it is not necessary to operate the user program during

sequencer control, the flash self-programming library and user program can be allocated on the ROM for

operation.

Figure 2-1 shows the state during a rewrite of the code flash memory. Figure 2-2 and Figure 2-3 show

examples of execution of flash functions for rewriting of the code flash memory.

Internal RAM

Internal ROM
The inernal ROM cannot be referred to

during code flash memory control
(interrupt reception cannot be done).

Normal vector interrupts cannot be received
while code flash memory is being controlled.

Interrupts during code flash
memory control can be handled
only on the RAM.
*Dedicated interrupt processing
for the RAM is required in addition
to interrupt processing for the
ROM.

BGO (background operation)
during code flash memory
control can be handled only
on the RAM.

×

Figure 2-1. State during Rewrite of Code Flash Memory

Note. Some RL78 microcontrollers do not support an interrupt during the execution of flash self-programming.

Refer to the user’s manual of the target RL78 microcontroller to see whether the RL78 microcontroller to be

used supports an interrupt during the execution of the flash self-programming.

RL78 Family CHAPTER 2 PROGRAMMING ENVIRONMENT
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 10 of 114
Dec 26, 2023

 After a request of the desired processing execution is made to the sequencer of the RL78 microcontroller, the

control is immediately returned to the user program. Because the sequencer controls the code flash memory, the

user program can operate during the rewrite of the code flash memory. This is called BGO (background

operation). To use this mode, select the status check user mode when initializing the Flash Self-Programming

Library Type 01.

However, the code flash memory cannot be referred to while the sequencer is controlling the code flash memory.

Therefore, the user program that operates during code flash memory operation, the branch destination of the

interrupt, the interrupt processing, and some segments of the flash self-programming library need to be allocated

on the RAM.

For the result of the control of the code flash memory, the status check function (FSL_StatusCheck function)

must be called from the user program to check the control state of the code flash memory.

Call

Sequencer Library User program

Execute

On going

Code flash memory
cannot be referred to
during this period.

Ret (BUSY)

Call

Execute

On going

Ret (BUSY)

Call

Execute

Finish

Ret (OK)

Figure 2-2. Example 1 Rewrite Control of Flash (When User Program Operates during Rewrite)

RL78 Family CHAPTER 2 PROGRAMMING ENVIRONMENT
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 11 of 114
Dec 26, 2023

 After a request of the desired processing execution is made to the sequencer of the RL78 microcontroller, the

control is not returned to the user program until the corresponding processing of the sequencer is completed.

Because the control returns to the user program after the control of the code flash memory is completed, the user

program and flash self-programming can be allocated on the ROM. To use this mode, select the status check

internal mode when initializing the Flash Self-Programming Library Type 01.

 However, if it is required to receive an interrupt during the control of the code flash memory, the branch

destination of the interrupt and interrupt processing must be allocated on the RAM. If they are allocated on the

ROM, part of the flash functions cannot be used. For details of the flash functions, refer to CHAPTER 6 FLASH

FUNCTIONS.

Call

Ret

Sequencer Library User program

Execute

On going

Execute

On going

Execute

Finish

Code flash memory
cannot be referred to
during this period.

Figure 2-3. Example 2 Rewrite Control of Flash (When User Program Does Not Operate during Rewrite)

RL78 Family CHAPTER 2 PROGRAMMING ENVIRONMENT
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 12 of 114
Dec 26, 2023

2. 1. 1 Initialization
When rewriting the code flash memory by using the flash self-programming library, make the following

settings.

(1) Starting high-speed on-chip oscillator

During use of the flash self-programming library, keep the high-speed on-chip oscillator running. When

the high-speed on-chip oscillator is stopped, start it before using the flash self-programming library.

(2) Setting CPU operating frequencyNote 1

In order to calculate the timing in the flash self-programming library, set the CPU operating frequency at

initialization. See the description of the FSL_Init() function for the method for setting the CPU operating

frequency.

(3) Setting flash memory programming modeNote 2

In order to set the flash memory programming mode for erasing or writing, either of the flash memory

programming modes shown below should be specified when initializing the flash self-programming library.

See the description of the FSL_Init() function for the settings of the flash memory programming modes.

- Full speed mode

- Wide voltage mode

Notes 1. The CPU operating frequency is used as a parameter for the calculation of internal timing in the flash

self-programming library. This setting does not affect the CPU operating frequency. This is not the
operating frequency for the high-speed on-chip oscillator.

 2. For details of the flash memory programming mode, see the target RL78 microcontroller user’s
manual.

2. 1. 2 Blocks
The flash memory of the RL78 microcontroller is divided into 1 Kbyte blocks. In flash self-programming,

erasure processing, blank check processing, and verification (internal verification) processing are performed for

the code flash memory in the units of the blocks. To call these flash self-programming library functions, specify

a block number.

The boot clusterNote is the area provided to prevent the user program from being unable to boot up due to

destruction of the vector table data or program basic functions caused by an instantaneous power interruption or

resetting during a rewrite while the area including the vector area is being rewritten. For details, refer to

CHAPTER 5 BOOT SWAP FUNCTIONNote.

Figure 2-4 shows block numbers and boot clusters.

Note To use this function, the RL78 microcontroller supporting the boot swap function is required.

To find if your RL78 microcontroller supports the boot swap function, refer to the user's manual of the

target RL78 microcontroller.

RL78 Family CHAPTER 2 PROGRAMMING ENVIRONMENT
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 13 of 114
Dec 26, 2023

Block 31

Block 30

Block 29

Block 27

Block 28

Block 26

Block 25

Block 24

Block 23

Block 22

Block 21

Block 20

Block 19

Block 18

Block 17

Block 15

Block 16

Block 14

Block 13

Block 12

Block 11

Block 10

Block 9

Block 8

Block 7

Block 6

Block 5

Block 4

Block 3

Block 2

Block 1

Block 0

Figure 2-4. Example of Block Numbers and Boot Clusters

 (RL78/G13: When Code Flash Memory is 32 Kbytes)

07C00H

07800H

07400H

07000H

06C00H

06800H

06400H

06000H

05C00H

05800H

05400H

05000H

04C00H

04800H

04400H

04000H

03C00H

03800H

03400H

03000H

02C00H

02800H

02400H

02000H

01C00H

01800H

01400H

01000H

00C00H

00800H

00400H

00000H

07FFFH

01FFFH

Boot cluster 0

00FFFH

00000H

On-chip debug security ID
setting area 10 bytes

Option byte

CALLT table 64 bytes

Vector table 128 bytes

Program area

Boot cluster 1

00080H
0007FH
00000H

000C0H

000CDH
000C4H
000C3H

00FFFH

000CEH

000BFH

01000H

01FFFH

Boot swap
target area

RL78 Family CHAPTER 2 PROGRAMMING ENVIRONMENT
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 14 of 114
Dec 26, 2023

2. 1. 3 Processing time of flash self-programming
This section describes the time required to process the Flash Self-Programming Library Type 01 functions.

The number of clock cycles required to execute flash functions differs depending on whether the flash functions

are allocated to the internal ROM area (flash memory) or they are allocated to the internal RAM area. When

the functions are executed in the RAM, the processing time may increase to a maximum of double the time

needed when they are executed in the ROM.

This section shows the processing time when the FSL_RCD segment is executed in the RAM and the other

segments are executed in the ROM. For each segment of flash functions, see Table 6-2 Segment List of Flash

Functions.

(1) Flash self-programming library function processing time in status check user mode

The flash self-programming library function processing time is the time required from when a user-created

program calls a flash function until the processing ends and control returns to the user-created program. The

flash function processing time differs depending on the status check mode.

This section shows the flash function processing time in the status check user mode.

Figure 2-5. Overview of Flash Self-Programming Library Function Processing Time

in Status Check User Mode

User Program FSL

FSL_Write

Status = BUSY

FSL_StatusCheck

Status = BUSY

FSL_StatusCheck

Status = BUSY

FSL_StatusCheck

Status = OK

Function Processing Time

RL78 Family CHAPTER 2 PROGRAMMING ENVIRONMENT
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 15 of 114
Dec 26, 2023

Table 2-1. Flash Function Processing Time in Status Check User Mode (Full Speed Mode)

Remark fCLK: CPU operating frequency (For example, when using a 20 MHz clock, fCLK is 20.)

FSL_Functions Max. (μs)

FSL_Init 5021 / fCLK

FSL_Open 10 / fCLK

FSL_Close 10 / fCLK

FSL_PrepareFunctions 2484 / fCLK

FSL_PrepareExtFunctions 1259 / fCLK

FSL_ChangeInterruptTable 253 / fCLK

FSL_RestoreInterruptTable 229 / fCLK

FSL_BlankCheck 2069 / fCLK + 30

FSL_Erase 2192 / fCLK+ 30

FSL_IVerify 2097 / fCLK + 30

FSL_Write 2451 / fCLK + 30

FSL_GetSecurityFlags 331 / fCLK

FSL_GetBootFlag 328 / fCLK

FSL_GetSwapState 206 / fCLK

FSL_GetBlockEndAddr 368 / fCLK

FSL_GetFlashShieldWindow 307 / fCLK

FSL_SwapBootCluster 419 / fCLK + 32

FSL_SwapActiveBootCluster 2316 / fCLK + 30

FSL_InvertBootFlag 2341 / fCLK + 30

FSL_SetBlockEraseProtectFlag 2347 / fCLK + 30

FSL_SetWriteProtectFlag 2346 / fCLK+ 30

FSL_SetBootClusterProtectFlag 2347 / fCLK + 30

FSL_SetFlashShieldWindow 2141 / fCLK + 30

FSL_StatusCheck 1135 / fCLK + 50

FSL_StandBy

Erase 935 / fCLK + 31

Other than Erase
(when FSL_SetXXX are supported)

140367 / fCLK + 513844

Other than Erase
(when FSL_SetXXX are not supported)

76101 / fCLK + 35952

FSL_WakeUp
Suspended Erase 2144 / fCLK + 30

Other than Erase 148 / fCLK

FSL_ForceReset 

FSL_GetVersionString 10 / fCLK

RL78 Family CHAPTER 2 PROGRAMMING ENVIRONMENT
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 16 of 114
Dec 26, 2023

Table 2-2. Flash Function Processing Time in Status Check User Mode (Wide Voltage Mode)

FSL_Functions Max. (μs)

FSL_Init 5021 / fCLK

FSL_Open 10 / fCLK

FSL_Close 10 / fCLK

FSL_PrepareFunctions 2484 / fCLK

FSL_PrepareExtFunctions 1259 / fCLK

FSL_ChangeInterruptTable 253 / fCLK

FSL_RestoreInterruptTable 229 / fCLK

FSL_BlankCheck 2068 / fCLK + 30

FSL_Erase 2192 / fCLK + 30

FSL_IVerify 2097 / fCLK + 30

FSL_Write 2451 / fCLK + 30

FSL_GetSecurityFlags 331 / fCLK

FSL_GetBootFlag 328 / fCLK

FSL_GetSwapState 206 / fCLK

FSL_GetBlockEndAddr 368 / fCLK

FSL_GetFlashShieldWindow 307 / fCLK

FSL_SwapBootCluster 419 / fCLK + 32

FSL_SwapActiveBootCluster 2316 / fCLK + 30

FSL_InvertBootFlag 2341 / fCLK + 30

FSL_SetBlockEraseProtectFlag 2347 / fCLK + 30

FSL_SetWriteProtectFlag 2346 / fCLK + 30

FSL_SetBootClusterProtectFlag 2347 / fCLK + 30

FSL_SetFlashShieldWindow 2141 / fCLK + 30

FSL_StatusCheck 1135 / fCLK + 50

FSL_StandBy

Erase 935 / fCLK + 44

Other than Erase
(when FSL_SetXXX are supported)

123274 / fCLK + 538046

Other than Erase
(when FSL_SetXXX are not supported)

73221 / fCLK + 69488

FSL_WakeUp
Suspended Erase 2144 / fCLK + 30

Other than Erase 148 / fCLK

FSL_ForceReset 

FSL_GetVersionString 10 / fCLK

Remark fCLK: CPU operating frequency (For example, when using a 20 MHz clock, fCLK is 20.)

RL78 Family CHAPTER 2 PROGRAMMING ENVIRONMENT
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 17 of 114
Dec 26, 2023

(2) Flash self-programming library function processing time in status check internal mode

This section shows the flash function processing time in the status check internal mode.

Figure 2-6. Overview of Flash Function Processing Time in Status Check Internal Mode

User program FSL

FSL_Write

Status = OK

Flash function processing time

Min. – Max.

RL78 Family CHAPTER 2 PROGRAMMING ENVIRONMENT
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 18 of 114
Dec 26, 2023

Table 2-3. Flash Function Processing Time in Status Check Internal Mode (Full Speed Mode)

FSL_Functions Min. (μs) Max. (μs)

FSL_Init  5021 / fCLK

FSL_Open  10 / fCLK

FSL_Close  10 / fCLK

FSL_PrepareFunctions  2484 / fCLK

FSL_PrepareExtFunctions  1259 / fCLK

FSL_ChangeInterruptTable  253 / fCLK

FSL_RestoreInterruptTable  229 / fCLK

FSL_BlankCheck 3302 / fCLK + 84 4833 / fCLK + 164

FSL_Erase 4877 / fCLK + 163 73339 / fCLK + 255366

FSL_IVerify  10474 / fCLK + 1107

FSL_Write 3121 / fCLK + 66
+ (595 / fCLK + 60) × W

3121 / fCLK + 66
+ (1153 / fCLK + 561) × W

FSL_GetSecurityFlags  331 / fCLK

FSL_GetBootFlag  328 / fCLK

FSL_GetSwapState  206 / fCLK

FSL_GetBlockEndAddr  368 / fCLK

FSL_GetFlashShieldWindow  307 / fCLK

FSL_SwapBootCluster  419 / fCLK + 32

FSL_SwapActiveBootCluster 1938 / fCLK + 50 141314 / fCLK + 513862

FSL_InvertBootFlag 1565 / fCLK + 18 140940 / fCLK + 513830

FSL_SetBlockEraseProtectFlag 1571 / fCLK + 18 140946 / fCLK + 513830

FSL_SetWriteProtectFlag 1569 / fCLK + 18 140945 / fCLK + 513830

FSL_SetBootClusterProtectFlag 1571 / fCLK + 18 140946 / fCLK + 513830

FSL_SetFlashShieldWindow 1356 / fCLK + 18 140739 / fCLK + 513830

FSL_StatusCheck  

FSL_StandBy  

FSL_WakeUp  

FSL_ForceReset  

FSL_GetVersionString  10 / fCLK

Remarks 1. fCLK: CPU operating frequency (For example, when using a 20 MHz clock, fCLK is 20.)

2. W: The number of words to be written (1 word = 4 bytes)

 (For example, when specifying 2 words = 8 bytes, W is 2.)

RL78 Family CHAPTER 2 PROGRAMMING ENVIRONMENT
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 19 of 114
Dec 26, 2023

Table 2-4. Flash Function Processing Time in Status Check Internal Mode (Wide Voltage Mode)

FSL_Functions Min. (μs) Max. (μs)

FSL_Init  5021 / fCLK

FSL_Open  10 / fCLK

FSL_Close  10 / fCLK

FSL_PrepareFunctions  2484 / fCLK

FSL_PrepareExtFunctions  1259 / fCLK

FSL_ChangeInterruptTable  253 / fCLK

FSL_RestoreInterruptTable  229 / fCLK

FSL_BlankCheck 3298 / fCLK + 124 4574 / fCLK + 401

FSL_Erase 4675 / fCLK + 401 64468 / fCLK + 266193

FSL_IVerify  7659 / fCLK + 7534

FSL_Write
3121 / fCLK + 66
+ (591 / fCLK + 112) × W

3121 / fCLK+ 66
+ (1108 / fCLK + 1085) × W

FSL_GetSecurityFlags  331 / fCLK

FSL_GetBootFlag  328 / fCLK

FSL_GetSwapState  206 / fCLK

FSL_GetBlockEndAddr  368 / fCLK

FSL_GetFlashShieldWindow  307 / fCLK

FSL_SwapBootCluster  419 / fCLK + 32

FSL_SwapActiveBootCluster 1938 / fCLK + 50 124221 / fCLK + 538064

FSL_InvertBootFlag 1565 / fCLK + 18 123847 / fCLK + 538032

FSL_SetBlockEraseProtectFlag 1571 / fCLK + 18 123853 / fCLK + 538032

FSL_SetWriteProtectFlag 1569 / fCLK + 18 123852 / fCLK + 538032

FSL_SetBootClusterProtectFlag 1571 / fCLK + 18 123853 / fCLK + 538032

FSL_SetFlashShieldWindow 1356 / fCLK + 18 123646 / fCLK + 538032

FSL_StatusCheck  

FSL_StandBy  

FSL_WakeUp  

FSL_ForceReset  

FSL_GetVersionString  10 / fCLK

Remarks 1. fCLK: CPU operating frequency (For example, when using a 20 MHz clock, fCLK is 20.)

2. W: The number of words to be written (1 word = 4 bytes)

 (For example, when specifying 2 words = 8 bytes, W is 2.)

RL78 Family CHAPTER 2 PROGRAMMING ENVIRONMENT
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 20 of 114
Dec 26, 2023

(3) Recommended interval of FSL_StatusCheck (status check)

The FSL_StatusCheck function is used to check the status in the status check user mode. However, correct

results cannot be obtained if the FSL_StatusCheck function is executed before control by the sequencer

finishes. Therefore, spacing each process executed by each flash function by a specific time is useful to

enhance the efficiency of status checking. In addition, because a write process using the FSL_Write function

must be triggered by status check processing every 4-byte, the status must be checked each time 4-byte is

written.

When writing 12 bytes in the status check user mode, the sequencer writes data in a 4-byte unit. Therefore,

when 4-byte is written, the FSL_StatusCheck function must trigger the next write. If the FSL_StatusCheck

function is not executed while there are still bytes to be written, the next write does not start, and thus the write

process does not end.

Figure 2-7. Overview of Interval for Checking Status When Using FSL_Write (When Writing 12 bytes)

User program FSL

FSL_Write

Status = BUSY

FSL_StatusCheck

Status = BUSY

FSL_StatusCheck

Status = BUSY

FSL_StatusCheck

Status = OK

Call interval

Call interval

Call interval

Write trigger

Write trigger

Write trigger

4-byte write

4-byte write

4-byte write

2nd write ends

1st write ends

3rd write ends

RL78 Family CHAPTER 2 PROGRAMMING ENVIRONMENT
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 21 of 114
Dec 26, 2023

When a process is executed by a function other than FSL_Write in the status check user mode, the

sequencer is in the busy state until all processes end. A trigger by the FSL_StatusCheck function is therefore

not required.

Figure 2-8. Overview of Interval for Checking Status When Using a Function Other Than FSL_Write

(When Erasing Flash Memory)

User program FSL

FSL_Erase

Status = BUSY

FSL_StatusCheck

Status = OK

Call interval

Erase trigger

1-block erase

Erase ends

No call for FSL_StatusCheck

RL78 Family CHAPTER 2 PROGRAMMING ENVIRONMENT
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 22 of 114
Dec 26, 2023

Table 2-5. Recommended Interval of Status Check in Status Check User Mode (Full Speed Mode)

Remark fCLK: CPU operating frequency (For example, when using a 20 MHz clock, fCLK is 20.)

Note The value shown for the FSL_Write function indicates the recommended interval per 4-byte.

FSL_Functions Call Interval (μs)

FSL_Init 

FSL_Open 

FSL_Close 

FSL_PrepareFunctions 

FSL_PrepareExtFunctions 

FSL_ChangeInterruptTable 

FSL_RestoreInterruptTable 

FSL_BlankCheck 1569 / fCLK + 98

FSL_Erase
When block is blanked 1490 / fCLK + 97

When block is not blanked 3092 / fCLK + 6471

FSL_IVerify 7181 / fCLK + 1041

FSL_WriteNote 72 / fCLK + 60

FSL_GetSecurityFlags 

FSL_GetBootFlag 

FSL_GetSwapState 

FSL_GetBlockEndAddr 

FSL_GetFlashShieldWindow 

FSL_SwapBootCluster 

FSL_SwapActiveBootCluster

6431 / fCLK + 7053

FSL_InvertBootFlag

FSL_SetBlockEraseProtectFlag

FSL_SetWriteProtectFlag

FSL_SetBootClusterProtectFlag

FSL_SetFlashShieldWindow

FSL_StatusCheck 

FSL_StandBy 

FSL_WakeUp
When block is blanked 1490 / fCLK + 97

When block is not blanked 3092 / fCLK + 6471

FSL_ForceReset 

FSL_GetVersionString 

RL78 Family CHAPTER 2 PROGRAMMING ENVIRONMENT
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 23 of 114
Dec 26, 2023

Table 2-6. Recommended Interval of Status Check in Status Check User Mode (Wide Voltage Mode)

Remark fCLK: CPU operating frequency (For example, when using a 20 MHz clock, fCLK is 20.)

Note The value shown for the FSL_Write function indicates the recommended interval per 4-byte.

FSL_Functions Call Interval (μs)

FSL_Init 

FSL_Open 

FSL_Close 

FSL_PrepareFunctions 

FSL_PrepareExtFunctions 

FSL_ChangeInterruptTable 

FSL_RestoreInterruptTable 

FSL_BlankCheck 1310 / fCLK + 335

FSL_Erase
When block is blanked 1289 / fCLK + 335

When block is not blanked 2689 / fCLK + 6959

FSL_IVerify 4366 / fCLK + 7468

FSL_WriteNote 67 / fCLK + 112

FSL_GetSecurityFlags 

FSL_GetBootFlag 

FSL_GetSwapState 

FSL_GetBlockEndAddr 

FSL_GetFlashShieldWindow 

FSL_SwapBootCluster 

FSL_SwapActiveBootCluster

5728 / fCLK + 8445

FSL_InvertBootFlag

FSL_SetBlockEraseProtectFlag

FSL_SetWriteProtectFlag

FSL_SetBootClusterProtectFlag

FSL_SetFlashShieldWindow

FSL_StatusCheck 

FSL_StandBy 

FSL_WakeUp
When block is blanked 1289 / fCLK + 335

When block is not blanked 2689 / fCLK + 6959

FSL_ForceReset 

FSL_GetVersionString 

RL78 Family CHAPTER 2 PROGRAMMING ENVIRONMENT
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 24 of 114
Dec 26, 2023

2. 2 Software Environment

Because the flash self-programming library program needs to be allocated to a user-created program area,

the size of the program code will be consumed in the program area.

To run the flash self-programming library, the CPU, stack, and data buffer are used.

Flash Self-Programming Library Type 01 has three versions: one is for the CA78K0R compiler (V2.20) and

the other is for the CC-RL compiler (V2.21) and the LLVM compiler (V2.21). In some tables below, the library for

the CA78K0R compiler (V2.20) is abbreviated to CA78 and that for the CC-RL compiler (V2.21) is abbreviated

to CCRL and that for the LLVM compiler (V2.21) is abbreviated to LLVM.

Tables 2-7 lists the software resources requiredNote1, 2, and Figures 2-9 and 2-10 show examples of

arrangement in RAM.

Table 2-7. Software Resources Used by Flash Self-Programming Library Type 01

Notes: 1. For devices not shown in the RL78 Family Self RAM list of Flash Self Programming Library (R20UT2944),

contact your Renesas sales agency.

2. The R5F10266 product does not support the self-programming function.

3. An area used as the working area by the flash self-programming library is called self-RAM in this manual and

the Release Note. The self-RAM requires no user settings because it is an area that is not mapped and

automatically used at execution of the flash self-programming library (previous data is discarded). When the

flash self-programming library is not used, the self-RAM can be used as a normal RAM space.

4. The data buffer is used as the working area for flash self-programming library internal processing or the

 area where the data to be set is allocated by the FSL_Write function. The required size depends on the

function to be used.

Item
Size (byte)

Restrictions on Allocation and UsageNotes1,2
CA78

CCRL
LLVM

Self-RAMNote3 0 to 1024Note3 0 to 1024Note3

The self-RAM area used by RL78 Family Flash
Self-Programming Library Type 01 differs depending on the
device. For details, refer to "RL78 Family Self RAM list of Flash
Self Programming Library(R20UT2944)".

Stack (see Table 2-8) 46 max. 50 max.

Can be allocated to a RAM area other than the self-RAM and the
area from FFE20H to FFEFFH

Data buffer Note4
(see Table 2-9)

1 to 256 1 to 256

Arguments of library
functions

0 to 8 0 to 8

Library size
(see Tables 2-10
and 2-11)

ROM: 1,252 max. ROM: 1,294 max. Can be allocated to a program area other than the self-RAM and
the area from FFE20H to FFEFFH

RAM: 0 to 447 RAM: 0 to 468 Can be allocated to a program area other than the self-RAM, the
area from FFE20H to FFEFFH, and the internal ROM.

<R>

<R>

RL78 Family CHAPTER 2 PROGRAMMING ENVIRONMENT
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 25 of 114
Dec 26, 2023

No allocation restriction

Area whose usage is prohibited
(Self-RAM)

SADDR areaGeneral-purpose registers 32 bytes

FEEFFH
FEF00H

Mirror

Special function register (SFR)

FFE1FH

FF2FFH
FF300H

FFE20H

FFEFFH

Area damaged when the Flash Self-Programming
Library is used

Area where RAM (stack, data buffer, etc.) used by
the Flash Self-Programming Library cannot be
allocated

RAM
4 Kbytes

Figure 2-9 Example 1 of Arrangement in RAM Including Self-RAM

 (RL78/G13: product with 4 Kbytes RAM and 64 Kbytes ROM)

SADDR area

No allocation restriction

General-purpose registers 32 bytes

Mirror

Special function register (SFR)

FFE1FH

FF700H

FFE20H

FFEFFH Area where RAM (stack, data buffer, etc.) used by
the Flash Self-Programming Library cannot be
allocated

RAM
2 Kbytes

FF6FFH

Figure 2-10 Example 2 of Arrangement in RAM without Self-RAM

 (RL78/G13: product with 2 Kbytes RAM and 32 Kbytes ROM)

RL78 Family CHAPTER 2 PROGRAMMING ENVIRONMENT
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 26 of 114
Dec 26, 2023

Table 2-8. Stack Size Used by Flash Functions

Function Name
byte

Function Name
byte

CA78
CCRL
LLVM CA78

CCRL
LLVM

FSL_Init 40 44 FSL_GetBlockEndAddr 36 40

FSL_Open 0 2 FSL_GetFlashShieldWindow 46 50

FSL_Close 0 2 FSL_SwapBootCluster 38 40

FSL_PrepareFunctions 10 12 FSL_SwapActiveBootCluster 42 46

FSL_PrepareExtFunctions 10 12 FSL_InvertBootFlag 42 46

FSL_ChangeInterruptTable 30 32 FSL_SetBlockEraseProtectFlag 42 46

FSL_RestoreInterruptTable 30 32 FSL_SetWriteProtectFlag 42 46

FSL_BlankCheck 42 46 FSL_SetBootClusterProtectFlag 42 46

FSL_Erase 42 46 FSL_SetFlashShieldWindow 42 46

FSL_IVerify 42 46 FSL_StatusCheck 30 34

FSL_Write 42 46 FSL_StandBy 30 34

FSL_GetSecurityFlags 46 50 FSL_WakeUp 42 46

FSL_GetBootFlag 46 50 FSL_ForceReset 0 2

FSL_GetSwapState 36 40 FSL_GetVersionString 0 2

Note Each size does not include the stack size used by the caller to call the FSL function.

Table 2-9. Data Buffer Size Used by Flash Functions

Function Name byte Function Name byte
FSL_Init 0 FSL_GetBlockEndAddr 4
FSL_Open 0 FSL_GetFlashShieldWindow 4
FSL_Close 0 FSL_SwapBootCluster 0
FSL_PrepareFunctions 0 FSL_SwapActiveBootCluster 0
FSL_PrepareExtFunctions 0 FSL_InvertBootFlag 0
FSL_ChangeInterruptTable 0 FSL_SetBlockEraseProtectFlag 0
FSL_RestoreInterruptTable 0 FSL_SetWriteProtectFlag 0
FSL_BlankCheck 0 FSL_SetBootClusterProtectFlag 0
FSL_Erase 0 FSL_SetFlashShieldWindow 4
FSL_IVerify 0 FSL_StatusCheck 0
FSL_WriteNote 4 to 256 FSL_StandBy 0
FSL_GetSecurityFlags 2 FSL_WakeUp 0
FSL_GetBootFlag 1 FSL_ForceReset 0
FSL_GetSwapState 1 FSL_GetVersionString 0

Note The FSL_Write function requires an amount of memory equal to the data to be written (in words).

 For example, when writing 2 words (1 word = 4 bytes), the required amount of memory is: 2 × 4 = 8 bytes

<R>

RL78 Family CHAPTER 2 PROGRAMMING ENVIRONMENT
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 27 of 114
Dec 26, 2023

Flash Self-Programming Library Code Size

(1) Code size when allocating all functions to ROM

Table 2-10 shows the code size required when all flash self-programming library functions are allocated to

ROM. Allocating the code to RAM is not required, but usage restrictions will prevent some functions being

used if all functions are allocated to ROM. For details, see 6.2 Segments of Flash Functions.

Table 2-10. Code Size When Allocating All Functions to ROM

Conditions
CA78K0R compiler (V2.20)

CC-RL compiler (V2.21)
LLVM compiler (V2.21)

RAM Size (byte) ROM Size (byte) RAM Size (byte) ROM Size (byte)

Code size when all functions are
registered
* Some functions cannot be used.

0 1,252 0 1294

Code size when all the following
functions are used:
• FSL_Init
• FSL_Open
• FSL_Close
• FSL_PrepareFunctions
• FSL_BlankCheck
• FSL_Erase
• FSL_IVerify
• FSL_Write
• FSL_StatusCheck

0 500 0 502

(2) Code size when allocating some functions to RAM (when using BGO)

Table 2-11 shows the code size required when using the background operation (BGO) feature during flash

self-programming. When using the BGO feature, the FSL_RCD segment must be allocated to RAM. To

copy the FSL_RCD segment to RAM, the program must be ROMized. Therefore, an additional ROM

capacity equivalent to the FSL_RCD segment size is required.

<R>

RL78 Family CHAPTER 2 PROGRAMMING ENVIRONMENT
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 28 of 114
Dec 26, 2023

Table 2-11. Code Size When Allocating Some Functions to RAM

Conditions CA78K0R compiler (V2.20) CC-RL compiler (V2.21)
LLVM compiler (V2.21)

RAM Size (byte) ROM Size (byte) RAM Size (byte) ROM Size (byte)

Code size when all functions are
registered

447 (FSL_RCD) 805 + size of program
that must be
ROMized (447)

468 (FSL_RCD) 826 + size of program
that must be
ROMized (468)

Code size when all the following
functions are used:
• FSL_Init
• FSL_Open
• FSL_Close
• FSL_PrepareFunctions
• FSL_BlankCheck
• FSL_Erase
• FSL_IVerify
• FSL_Write
• FSL_StatusCheck

66 (FSL_RCD) 434 + size of program
that must be
ROMized (66)

88 (FSL_RCD) 502 + size of program
that must be
ROMized (88)

Remark The above table only describes the code size of the flash self-programming library. When using BGO,

the user-created program must be allocated to RAM, and therefore a RAM capacity equivalent to the

user-created program is also required. Moreover, a RAM capacity equivalent to the program ROMized

and copied to RAM is required. For details about ROMization, see user's manual of the development

tools to be used.

2. 2. 1 Self-RAM
The flash self-programming library may use a RAM area of 1 Kbyte as the working area. This area is called

the "self-RAM." The data used in the self-RAM is defined within the library, so no user definition is required.

When a flash self-programming library function is called, the data in the self-RAM area is rewritten.

The self-RAM area used for flash self-programming varies depending on the microcontroller, and the user

RAM may be used in some devices. In such a device, the user needs to allocate the self-RAM area to the user

RAM; be sure to allocate the self-RAM area at linkage. (In the CA78K0R compiler, the self-RAM area can be

specified in the link directive file. In the CC-RL compiler, leave a space unallocated to any section so that the

area can automatically be used as the self-RAM area. In the LLVM compiler, the self-RAM area can be specified

in the linker script file.)

For the settings in the link directive file, refer to the section "Defining the Internal RAM Area" in the Release

Note.

2. 2. 2 Register bank
The flash self-programming library uses the general registers, ES/CS registers, SP, and PSW of the register

bank selected by the user.

<R>

<R>

RL78 Family CHAPTER 2 PROGRAMMING ENVIRONMENT
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 29 of 114
Dec 26, 2023

2. 2. 3 Stack and data buffer
The flash self-programming library uses the sequencer to write to the code flash memory, but it uses the CPU

for pre-setting and control. Therefore, to use the flash self-programming library, the stack specified by the user

program is also required.

Remark To allocate the stack and data buffer to the user-specified addresses, use the link directive in the

CA78K0R compiler, make section allocation settings through a linker option in the CC-RL compiler or

use the linker script file in the LLVM compiler.

 Stack

In addition to the stack used by the user program, the stack space required for flash functions must be

reserved in advance, and they must be allocated so that the RAM used by the user will not be destroyed in

stack processing during flash self-programming operation. The available range for stack specification is

the internal RAM excluding the self-RAM and addresses FFE20H-FFEFFH.

 Data buffer

The data buffer is used as the working area used for flash self-programming library internal processing or

the area where the data to be set is allocated in the FSL_Write function.

The available range for the start address of the data buffer is the internal RAM excluding the self-RAM and

addresses FFE20H-FFEFFH., as in the stack.

<R>

RL78 Family CHAPTER 2 PROGRAMMING ENVIRONMENT
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 30 of 114
Dec 26, 2023

2. 2. 4 Flash self-programming library
Not all the flash functions are linked. Only the flash functions to be used are linkedNote.

 Memory allocation of the flash self-programming library

Segments are assigned to the functions and variables used in the flash self-programming library. Areas

used in the flash self-programming library can be specified at the specific locations.

For details, refer to 6.2 Segments of Flash Functions, or refer to the document "Release note" attached

to the installer.

Note For the assembly language, delete unnecessary flash functions from the include file to link only the

functions to be used.

2. 2. 5 Program area
This is the area in which the flash self-programming library and the user program using the flash

self-programming library are allocated.

In flash self-programming of the RL78 microcontroller, the user program can operate during rewriting of the

code flash memory because the code flash memory is rewritten by using the sequencer (background operation).

However, the program allocated in the code flash memory cannot be referred to during rewriting of the code

flash memory, so some segments used by the user program and flash functions need to be allocated on the

RAM depending on usage.

For details, refer to the sections of CHAPTER 6 FLASH FUNCTIONS.

2. 2. 6 ROMization of programs
To allocate the user program and library using flash self-programming on the RAM, the target program must

be ROMized and allocated to the code flash memory, and the program must be copied to the RAM before it is

used in flash self-programming.

For the ROMization function of the program allocated on the RAM, refer to the user's manual attached to the

development tool used.

RL78 Family CHAPTER 2 PROGRAMMING ENVIRONMENT
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 31 of 114
Dec 26, 2023

2. 3 Cautions on Programming Environment

(1) Do not execute the EEPROM emulation library or data flash library during the execution of flash

self-programming. When using the EEPROM emulation library or data flash library, always execute up to

FSL_Close to close the flash self-programming library.

When using the flash self-programming library after the execution of the EEPROM emulation library or data flash

library, the flash self-programming processing must be started from the initialization function (FSL_Init).

(2) Do not execute the STOP or HALT instruction during the execution of flash self-programming. If the STOP or

HALT instruction needs to be executed, pause flash self-programming with the FSL_StandBy function, or

execute processing up to the FSL_Close function to close flash self-programming.

(3) The watchdog timer does not stop during the execution of self-programming. In the status check internal mode,

do not make the watchdog timer interrupt interval shorter than the execution time of FSL_SetXXX,

FSL_SwapActiveBootCluster, and FSL_InvertBootFlag.

(4) The code flash memory cannot be read during code flash memory operation by flash self-programming.

(5) Do not allocate the data buffer (arguments) or stack used in the flash function to an area starting from address

0xFFE20 (0xFE20).

(6) When using the data transfer controller (DTC) during the execution of flash self-programming, do not allocate the

RAM area used by the DTC to the self-RAM or an area starting from address FFE20H(FE20H).

(7) Do not destroy the RAM area (including self-RAM) used by flash self-programming until flash self-programming

is complete.

(8) Do not execute a flash function within interrupt processing. The flash function does not support nested

execution of functions. If a flash function is executed within interrupt processing, operation cannot be

guaranteed.

(9) When executing flash self-programming on the operating system, do not execute flash functions from multiple

tasks. The flash function does not support multiple executions of functions. If a flash function is executed in

multiple tasks, operation cannot be guaranteed.

(10) Before starting flash self-programming, the high-speed on-chip oscillator needs to be started. (The RL78

microcontroller hardware uses it during flash programming.)

RL78 Family CHAPTER 2 PROGRAMMING ENVIRONMENT
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 32 of 114
Dec 26, 2023

(11) Note the following regarding the operating frequency of the CPU and the operating frequency value set with the

initialization function (FSL_Init).

- When a frequency below 4 MHzNote is used as the operating frequency of the CPU, 1 MHz, 2 MHz, or 3 MHz

can be used (a frequency such as 1.5 MHz that is not an integer value cannot be used). Also, set an integer

value such as 1, 2, or 3 as the operating frequency value with the initialization function.

- When 4 MHzNote or a higher frequency is used as the operating frequency of the CPU, a frequency with decimal

places can be used. However, set a rounded up integer value as the operating frequency with the

initialization function (FSL_Init).

(Example: For 4.5 MHz, set "5" with the initialization function.)

- This operating frequency is not the frequency of the high-speed on-chip oscillator (when the high-speed

on-chip oscillator is not used to generate the operating frequency of the CPU).

Note For the range of the maximum operating frequency of the CPU, refer to the user's manual of the target

RL78 microcontroller.

(12) Initialize the arguments (RAM) that are used by the flash self-programming library functions. When they are not

initialized, a RAM parity error is detected and the RL78 microcontroller might be reset.

 For a RAM parity error, refer to the user’s manual of the target RL78 microcontroller.

(13) In the code flash memory, only an area in the blank state or the area that has been erased can be written to. An

area that has been written cannot be rewritten (overwritten) unless it has been erased. When rewriting is

performed without erasing data, the code flash memory might be damaged.

(14) The R5F10266 product cannot use the flash self-programming function.

(15) Some RL78 microcontrollers do not support an interrupt during the execution of flash self-programming. Refer

to the user’s manual of the target RL78 microcontroller to see whether the RL78 microcontroller to be used

supports an interrupt during the execution of the flash self-programming.

(16) Some RL78 microcontrollers do not support the boot swap function. Refer to the user’s manual of the target

RL78 microcontroller to see whether the RL78 microcontroller to be used supports the boot swap function.

(17) Some RL78 microcontrollers do not support the security setting function by the flash self-programming. Refer

to the user’s manual of the target RL78 microcontroller to see whether the RL78 microcontroller to be used

supports the security setting function by the flash self-programming.

(18) Do not arrange the segments FSL_BCD and FSL_BECD in the final address at a 64 Kbytes boundary (?FFFEH

to ?FFFFH) when using the flash self-programming library. (This applies only to V2.20 and older versions of flash

self-programming library; it does not apply to V2.21 and later versions because the issue regarding this

restriction has been resolved.)

RL78 Family CHAPTER 2 PROGRAMMING ENVIRONMENT
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 33 of 114
Dec 26, 2023

(19) Each segment (FSL_FCD, FSL_FECD, FSL_RCD, FSL_BCD, or FSL_BECD) of the Flash Self-Programming

Library for the CC-RL compiler for the RL78 family cannot be allocated to extend across the 64 Kbytes boundary.

Be sure to allocate segments so that they do not extend across the 64 Kbytes boundary.

(20) When using an assembler of the CC-RL compiler from Renesas Electronics, the hexadecimal prefix

representation (0x..) cannot be mixed together with the suffix representation (..H). Specify the representation

method by editing the symbol definition in fsl.inc to match the user environment.

fsl.inc

 ; FSL_INC_BASE_NUMBER_SUFFIX .SET 1

When symbol "FSL_INC_BASE_NUMBER_SUFFIX" is not defined (initial state), the prefix representation will be

selected.

fsl.inc

 FSL_INC_BASE_NUMBER_SUFFIX .SET 1

When symbol "FSL_INC_BASE_NUMBER_SUFFIX" is defined, the suffix representation will be selected.

RL78 Family CHAPTER 3 INTERRUPTS DURING EXECUTION OF FLASH SELF-PROGRAMMING
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 34 of 114
Dec 26, 2023

CHAPTER 3 INTERRUPTS DURING EXECUTION OF FLASH
SELF-PROGRAMMING

3. 1 Overview

Interrupt processing can be used even in the flash environment stateNote. However, when the code flash

memory is controlled, the interrupt vector of a normal user application cannot be used. The interrupt vector needs

to be set to the RAM by using the interrupt vector change function (FSL_ChangeInterruptTable). Also, the

interrupt routine needs to be allocated on the RAM. After the setting, execution branches to one vector on the

RAM when any interrupt occurs. Therefore, if there are multiple interrupt sources for which you want to execute

different processing, the interrupt sources need to be identified.

To restore the interrupt to the original vector state after the completion of the rewrite of the code flash memory,

use the interrupt vector restoration function (FSL_RestoreInterruptTable) to restore the interrupt destination to the

original state.

Note. Some RL78 microcontrollers do not support an interrupt during the execution of flash self-programming.

 Refer to the user’s manual of the target RL78 microcontroller to see whether the RL78 microcontroller to

be used supports an interrupt during the execution of the flash self-programming.

3. 2 Interrupts During Execution of Flash Self-Programming

Interrupts during code flash memory control cannot be received through the normal interrupt vector because the

code flash memory cannot be referred to. Therefore, to receive interrupts, they need to be received on the RAM.

Address of the RAM specified as the interrupt
destination = Beginning address of the interrupt
function allocated

After the interrupt destination is changed to the
RAM, all interrupts branch to the same address.
For the details of interrupt, the user needs to
check the interrupt flag.
*No vector table is created automatically.

Interrupt processing for the RAM

Code flash memory
is being controlled

(cannot be referred to)

× Interrupts on the ROM cannot be received because the
ROM cannot be used during the code flash memory is
being controlled.

Code flash memory

On-chip RAM ・

・

Normal interrupt vector

Address of the RAM specified as the interrupt
destination = Beginning address of the interrupt
function allocated

After the interrupt destination is changed to the
RAM, all interrupts branch to the same address.
For the details of interrupt, the user needs to
check the interrupt flag.
*No vector table is created automatically.

Interrupt processing for the RAM

Code flash memory
is being controlled

(cannot be referred to)

× Interrupts on the ROM cannot be received because the
ROM cannot be used during the code flash memory is
being controlled.

Code flash memory

On-chip RAM ・

・

Normal interrupt vector

Figure 3-1. Interrupts During Execution of Flash Self-Programming

RL78 Family CHAPTER 3 INTERRUPTS DURING EXECUTION OF FLASH SELF-PROGRAMMING
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 35 of 114
Dec 26, 2023

3. 3 Cautions on Interrupts

- When changing the interrupt vector with the interrupt vector change function in the application, disable

interrupts from the start to the end of the switching procedure.

- Do not specify a value over FFE20H as the changed destination of the interrupt vector address.

- Access to the code flash memory area is prohibited in interrupt processing during the execution of flash

self-programming.

- The execution of flash functions is prohibited in interrupt processing.

- Save and restore the registers used in interrupt processing.

- The interrupt source can be determined by referring to SFR (interrupt request flag IF) when an interrupt

occurs on the RAM. After the determination, clear the interrupt request flag (set to 0).

- The response time for interrupt processing on the RAM increases by a maximum of 20 clock cycles compared

to the normal interrupt response time.

- To restore the original interrupt vector after the interrupt destination is changed with the interrupt vector

change function, the interrupt vector restoration function must be executed. If the interrupt vector restoration

function is not executed, the interrupt destination will remain changed even when flash self-programming is

finished.

- When a reset is done after the interrupt destination is changed with the interrupt vector change function, the

system starts up with the interrupt destination recovered.

- Some RL78 microcontrollers do not support an interrupt during the execution of flash self-programming.

 Refer to the user’s manual of the target RL78 microcontroller to see whether the RL78 microcontroller to be

used supports an interrupt during the execution of the flash self-programming.

RL78 Family CHAPTER 4 SECURITY SETTINGS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 36 of 114
Dec 26, 2023

CHAPTER 4 SECURITY SETTINGS

The security function that prohibits rewriting of the user program written in the code flash memory is supported to

prevent falsification of programs by a third party.

For details of security settings, refer to the manual of the target device.

Note. Some RL78 microcontrollers do not support the security setting function provided by the flash

self-programming.

 Refer to the user’s manual of the target RL78 microcontroller to see whether the RL78 microcontroller to

be used supports the security setting function by the flash self-programming.

4. 1 Security Flags

The flash self-programming library has functions to set the security flags (for details of the API of the functions,

refer to CHAPTER 6 FLASH FUNCTION).

Functions setting the security flag Description

FSL_SetBlockEraseProtectFlag Sets the block erasure protection flag to protected.

FSL_SetWriteProtectFlag Sets the write protection flag to protected.

FSL_SetBootClusterProtectFlag Sets the boot area (boot cluster 0) rewrite protection flag to protected.

4. 2 Flash Shield Window Function

One of the security functions that can be used during the execution of flash self-programming is the flash shield

window function. The flash shield window function is a security function that prohibits writing and erasure outside

the specified window range only during the execution of flash self-programming. The window range can be set by

specifying the start block and end block. The areas other than the window range are write-protected and

erasure-protected during the execution of flash self-programming.

Function setting the flash shield window Description

FSL_SetFlashShieldWindow Sets the flash shield window.

RL78 Family CHAPTER 5 BOOT SWAP FUNCTION
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 37 of 114
Dec 26, 2023

CHAPTER 5 BOOT SWAP FUNCTION

5. 1 Overview

When rewriting fails due to an instantaneous power interruption or resetting caused by an external factor while

the area in which the vector table data, program basic functions, and the flash self-programming library are

allocated is being rewritten, the data being rewritten is destroyed, so restart or rewrite of the user program due to

the subsequent reset cannot be done. The boot swap function avoids this situationNote.

Note To use this function, the RL78 microcontroller supporting the boot swap function is required. To find if

your RL78 microcontroller supports the boot swap function, refer to the user's manual of the target RL78

microcontroller.

5. 2 Boot Swap Function

The boot swap function replaces the boot program area Boot Cluster 0Note with the boot swap target area Boot

Cluster 1Note.

Before performing rewrite processing, a new boot program is written to Boot Cluster 1 in advance. Boot Cluster

1 and Boot Cluster 0 are swapped to make Boot Cluster 1 the boot program area.

As a result, the program operates normally because booting is done from Boot Cluster 1 in the next reset start

even when an instantaneous power interruption occurs during rewriting of the boot program area. After that,

erasure or write processing to Boot Cluster 0 can be performed if necessary.

Note Boot Cluster 0: Boot program area

Boot Cluster 1: Boot swap target area

RL78 Family CHAPTER 5 BOOT SWAP FUNCTION
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 38 of 114
Dec 26, 2023

5. 3 Boot Swapping Procedure

Figure 5-1 shows an example of the flow of boot swapping using the flash self-programming library.

Start boot swap

FSL_Erase

<1>

FSL_Write

Normal completion?

Yes

No

Normal completion?

Yes

No

FSL_IVerify

<2>

<3>

<4>

Pre-processing

FSL_InvertBootFlag<6>

Normal completion?

Yes

No

FSL_GetSecuriｔyFlags<5>

Rewritable?

Yes

No

Normal completion?

Yes

No

<7> Reset

Rewrite Cluster 0?

Yes

No

Pre-processing<9>

FSL_Erase<10>

FSL_Write

Normal completion?

Yes

No

Normal completion?

Yes

No

FSL_IVerify

<11>

<12>

Normal completion?

Yes

No

End boot swapping

Ending processing<13>

<8>

A

A

Start boot swap

FSL_Erase

<1>

FSL_Write

Normal completion?

Yes

No

Normal completion?

Yes

No

FSL_IVerify

<2>

<3>

<4>

Pre-processing

FSL_InvertBootFlag<6>

Normal completion?

Yes

No

FSL_GetSecuriｔyFlags<5>

Rewritable?

Yes

No

Normal completion?

Yes

No

<7> Reset

Rewrite Cluster 0?

Yes

No

Pre-processing<9>

FSL_Erase<10>

FSL_Write

Normal completion?

Yes

No

Normal completion?

Yes

No

FSL_IVerify

<11>

<12>

Normal completion?

Yes

No

End boot swapping

Ending processing<13>

<8>

A

A

Figure 5-1. Example of Flow of Boot Swapping

RL78 Family CHAPTER 5 BOOT SWAP FUNCTION
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 39 of 114
Dec 26, 2023

<1> Preprocessing

Boot swap preprocessing

- Setting of the software environment (reserving data buffer, etc.)

- Initialization of flash self-programming (execution of the FSL_Init function)

- Start of the flash environment (execution of the FSL_Open function)

- Preparation processing of the flash function (execution of the FSL_PrepareFunctions function)

- Preparation processing of the flash function (extension function) (execution of the

FSL_PrepareExtFunctions function)

- RAM expansion processing of the ROMization code if the rewrite program is ROMized

<2> Erasure of Boot Cluster 1

All blocks in Boot Cluster 1 are erased by calling the FSL_Erase function.

Remark The FSL_Erase function performs erasure in units of blocks.

Normal operation mode

Erase

Boot
cluster 0

Vector table

CALLT table

Option byte

On-chip debug security ID
setting area

Boot
cluster 1

Program area

Program area

Boot
cluster 0

Vector table

CALLT table

Option byte

On-chip debug security ID
setting area

Boot
cluster 1

Program area

Erase

Boot
cluster 0

Vector table

CALLT table

Option byte

On-chip debug security ID
setting area

Boot
cluster 1

Program area

Program area

Boot
cluster 0

Vector table

CALLT table

Option byte

On-chip debug security ID
setting area

Boot
cluster 1

Program area

RL78 Family CHAPTER 5 BOOT SWAP FUNCTION
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 40 of 114
Dec 26, 2023

<3> Copying of the new boot program to Boot Cluster 1

A new boot program (the program you want to allocate as the boot program area after boot swap processing) is

written to Boot Cluster 1 by calling the FSL_Write function.

Remark The FSL_Write function performs writing in units of words (1 word = 4 bytes, up to 64 words (256

bytes))

A new boot program is downloaded to the internal
ROM via the external interface (three-wire SIO,
UART, etc.) and written sequentially.

Writing of a
new boot programAlready erased

Boot
cluster 0

Vector table

CALLT table

Option byte

On-chip debug security ID
setting area

Boot
cluster 1

Program area

Boot
cluster 0

Vector table

CALLT table

Option byte

On-chip debug security ID
setting area

Boot
cluster 1

Program area

On-chip RAM

Writing of a
new boot programAlready erased

Boot
cluster 0

Vector table

CALLT table

Option byte

On-chip debug security ID
setting area

Boot
cluster 1

Program area

Boot
cluster 0

Vector table

CALLT table

Option byte

On-chip debug security ID
setting area

Boot
cluster 1

Program area

On-chip RAM

<4> Verification of Boot Cluster 1

All blocks of Boot Cluster 1 to which writing has been done are verified by calling the FSL_IVerify function.

Remark The FSL_IVerify function performs verification in units of blocks.

<5> Confirmation of the boot swap bit (recommended)

The security flag information is obtained by calling the FSL_GetSecurityFlags function. Check that the boot

area (Boot Cluster 0) rewrite protection flag is 1 (permitted).

Remark If the (Boot Cluster 0) rewrite protection flag is 0 (protected), an error occurs when the

FSL_InvertBootFlag function is called in <6>.

RL78 Family CHAPTER 5 BOOT SWAP FUNCTION
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 41 of 114
Dec 26, 2023

<6> Setting of the boot swap bit

Switching of the boot flag is performed by executing the FSL_InvertBootFlag function.

<7> Occurrence of an event

When a reset is generated, Boot Cluster 1 becomes the boot program area.

New boot program

New boot program

Boot
cluster 0

Vector table

CALLT table

Option byte

On-chip debug security ID
setting area

Boot
cluster 1

Program area

Boot
cluster 1

Boot
cluster 0

Vector table

CALLT table

Option byte

On-chip debug security ID
setting area

Program area

New boot program

New boot program

Boot
cluster 0

Vector table

CALLT table

Option byte

On-chip debug security ID
setting area

Boot
cluster 1

Program area

Boot
cluster 1

Boot
cluster 0

Vector table

CALLT table

Option byte

On-chip debug security ID
setting area

Program area

<8> Ending of swap processing (Boot Cluster 1)

Swap processing for Boot Cluster 1 is finished after steps <2> to <7>.

If Boot Cluster 0 does not have to be rewritten, terminate processing.

If Boot Cluster 0 has to be rewritten, perform the processing of <9> and on.

<9> Preprocessing

The same processing as <1> is performed.

RL78 Family CHAPTER 5 BOOT SWAP FUNCTION
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 42 of 114
Dec 26, 2023

<10> Erasure of Boot Cluster 0

All blocks of Boot Cluster 0 are erased by calling the FSL_Erase function.

New boot programNew boot program
Boot

cluster 1

Boot
cluster 0

Boot
cluster 1

Boot
cluster 0

Vector table

CALLT table

Option byte

On-chip debug security ID
setting area

Program area

Erase

New boot programNew boot program
Boot

cluster 1

Boot
cluster 0

Boot
cluster 1

Boot
cluster 0

Vector table

CALLT table

Option byte

On-chip debug security ID
setting area

Program area

Erase

<11> Writing of the new program to Boot Cluster 0

The content of the new program is written to Boot Cluster 0 by calling the FSL_Write function.

New boot programNew boot program

New programAlready erased

Boot
cluster 1

Boot
cluster 0

Boot
cluster 1

Boot
cluster 0

New boot programNew boot program

New programAlready erased

Boot
cluster 1

Boot
cluster 0

Boot
cluster 1

Boot
cluster 0

RL78 Family CHAPTER 5 BOOT SWAP FUNCTION
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 43 of 114
Dec 26, 2023

<12> Verification of Boot Cluster 0

All blocks of Boot Cluster 0 to which writing has been done are verified by calling the FSL_IVerify function.

<13> End processing

As the end processing of boot swapping, the FSL_Close function is called.

5. 4 Cautions on Boot Swapping

- Boot swapping cannot be executed when the boot area (Boot Cluster 0) rewrite protection flag is set to 0

(protected).

- After a function for boot swapping is executed, control returns to the area from which the function was called.

Therefore, the program that calls boot swap functions must not be stored in either Boot Cluster 0 or 1.

 Remark Applicable function: FSL_SwapBootCluster and FSL_SwapActiveBootCluster

- Specific cautions should be taken for each flash function providing the boot swap function. For details, refer

to CHAPTER 6 FLASH FUNCTIONS.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 44 of 115
Dec 26, 2023

CHAPTER 6 FLASH FUNCTIONS

This chapter describes the details of the flash functions (functions in the flash self-programming library).

6. 1 Types of Flash Functions

The flash self-programming library consists of the following flash functions.

Table 6-1. List of Flash Functions

Function name Description Basic

functionNote

Function

for G11Note

FSL_Init Initialization of the flash self-programming environment ○ ○

FSL_Open Starting of the flash environment (start declaration of flash self-programming) ○ ○

FSL_Close Ending of the flash environment (end declaration of flash self-programming) ○ ○

FSL_PrepareFunctions Preparation processing for flash functions ○ ○

FSL_PrepareExtFunctions Preparation processing for flash functions (extension functions) - ○

FSL_ChangeInterruptTable Interrupt vector change processing (changing the interrupt destination from ROM to RAM) - -

FSL_RestoreInterruptTable Interrupt vector restoration processing (changing the interrupt destination from RAM to ROM) - -

FSL_BlankCheck Blank checking of the specified block ○ ○

FSL_Erase Erasure of the specified block. ○ ○

FSL_IVerify Verification (internal verification) of the specified block ○ ○

FSL_Write Writing of 1 word to 64 words data into the specified address (1 word=4 bytes) ○ ○

FSL_GetSecurityFlags Acquisition of security information - -

FSL_GetBootFlag Acquisition of boot flag information - ○

FSL_GetSwapState Acquisition of swap information - ○

FSL_GetBlockEndAddr Acquisition of the final address of the specified block - -

FSL_GetFlashShieldWindow Acquisition of the start block number and end block number of the flash shield window - ○

FSL_SwapBootCluster Execution of boot swapping and jumping to the registered address of the reset vector - ○

FSL_SwapActiveBootCluster Inverting of the current value of the boot flag and execution of boot swapping - -

FSL_InvertBootFlag Inverting of the current value of the boot flag - ○

FSL_SetBlockEraseProtectFlag Setting of the block erasure protection flag to protected - -

FSL_SetWriteProtectFlag Setting of the write protection flag to protected - -

FSL_SetBootClusterProtectFlag Setting of the boot area (boot cluster 0) rewrite protection flag to protected - -

FSL_SetFlashShieldWindow Setting of the start block and end block of the flash shield window - ○

FSL_StatusCheck Status check processing ○ -

FSL_StandBy Pause processing of flash self-programming - -

FSL_WakeUp Restart processing of flash self-programming - -

FSL_ForceReset Resetting of the microcontroller in use - ○

FSL_GetVersionString Version acquisition processing of the flash self-programming library - -

Note For the RL78/G12, L12, and G1G groups, only basic functions are supported and the other functions are not

supported. For the RL78/G11 group, only the status check internal mode is supported as the status check mode.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 45 of 115
Dec 26, 2023

<R>

<R>

6. 2 Segments of Flash Functions

The codes of the flash functions are divided into some groups and must be allocated to specified areas. These

groups are used as segments for memory allocation in the CA78K0R compiler. They are used as sections in the

CC-RL compiler and the LLVM compiler.

The segments (sections) are classified as follows.

• FSL_FCD: A group of functions that initialize the environment. They can be allocated to the ROM or RAM.

• FSL_FECD: A group of functions that read security information, etc. They can be allocated to the ROM or

RAM.

• FSL_RCD: A group of functions required to rewrite the flash. They can be allocated to the RAM. There

are some usage restrictions
Note

 when they are allocated to the ROM.

• FSL_BCD: Area used by the FSL_PrepareFunctions function. They can be allocated to the ROM or RAM.

• FSL_BECD: Area used by the FSL_PrepareExtFunctions function. They can be allocated to the ROM or

RAM.

When using the flash self-programming library for the CC-RL compiler or the LLVM compiler, read "segment" as

"section" in the following descriptions.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 46 of 115
Dec 26, 2023

Table 6-2. List of Flash Function Segments

Function name Segment name ROM allocation RAM allocation

FSL_Init FSL_FCD ○ ○

FSL_Open FSL_FCD ○ ○

FSL_Close FSL_FCD ○ ○

FSL_PrepareFunctions FSL_FCD / FSL_BCD ○ ○

FSL_PrepareExtFunctions FSL_FCD / FSL_BECD ○ ○

FSL_ChangeInterruptTable FSL_FCD ○ ○

FSL_RestoreInterruptTable FSL_FCD ○ ○

FSL_BlankCheck FSL_RCD △Note ○

FSL_Erase FSL_RCD △Note ○

FSL_IVerify FSL_RCD △Note ○

FSL_Write FSL_RCD △Note ○

FSL_GetSecurityFlags FSL_FECD ○ ○

FSL_GetBootFlag FSL_FECD ○ ○

FSL_GetSwapState FSL_FECD ○ ○

FSL_GetBlockEndAddr FSL_FECD ○ ○

FSL_GetFlashShieldWindow FSL_FECD ○ ○

FSL_SwapBootCluster FSL_RCD △Note ○

FSL_SwapActiveBootCluster FSL_RCD × ○

FSL_InvertBootFlag FSL_RCD △Note ○

FSL_SetBlockEraseProtectFlag FSL_RCD △Note ○

FSL_SetWriteProtectFlag FSL_RCD △Note ○

FSL_SetBootClusterProtectFlag FSL_RCD △Note ○

FSL_SetFlashShieldWindow FSL_RCD △Note ○

FSL_StatusCheck FSL_RCD △Note ○

FSL_StandBy FSL_RCD △Note ○

FSL_WakeUp FSL_RCD △Note ○

FSL_ForceReset FSL_RCD △Note ○

FSL_GetVersionString FSL_FCD ○ ○

Note There are the following usage restrictions when they are allocated to the ROM.
• Do not use the FSL_SwapActiveBootCluster() function.
• Set the status check mode to the status check internal mode with the FSL_Init() function.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 47 of 115
Dec 26, 2023

6. 3 Interrupts and BGO (Background Operation)

The flash functions can be divided into processing that does not use the sequencer and processing that uses the

sequencer, and they differ in the interrupt reception methods. For the processing that uses the sequencer, BGO

(background operation) can be performed.

The following table shows a list of the flash functions with the presence of sequencer control and their interrupt

reception areas.

Table 6-3. List of Interrupt Reception Areas and BGO of Flash Functions

Function name Sequencer control
Interrupt

receptionNote1
BGO function

FSL_Init

No

ROM: Allowed

RAM: Allowed
No

FSL_Open

FSL_Close

FSL_PrepareFunctions

FSL_PrepareExtFunctions

FSL_ChangeInterruptTable
Not allowed

FSL_RestoreInterruptTable

FSL_BlankCheck

Yes
ROM: Not allowed

RAM: Allowed

Yes

Only on the RAMNote2

FSL_Erase

FSL_IVerify

FSL_Write

FSL_GetSecurityFlags

No

ROM: Allowed

RAM: Allowed No

FSL_GetBootFlag

FSL_GetSwapState

FSL_GetBlockEndAddr

FSL_GetFlashShieldWindow

FSL_SwapBootCluster Not allowed

FSL_SwapActiveBootCluster

Yes
ROM: Not allowed

RAM: Allowed

Yes

Only on the RAMNote2

FSL_InvertBootFlag

FSL_SetBlockEraseProtectFlag

FSL_SetWriteProtectFlag

FSL_SetBootClusterProtectFlag

FSL_SetFlashShieldWindow

FSL_StatusCheckNote3

No

FSL_StandByNote3

FSL_WakeUpNote3

FSL_ForceReset
No

ROM: Allowed

RAM: Allowed FSL_GetVersionString

Notes 1. Whether or not interrupt reception during the execution of the function or during sequencer
control is allowed
 ROM: Normal vector interrupt; RAM: Interrupt on the RAM

 2. To execute BGO, the user program and part of the library must be allocated on the RAM.
 3. This function does not have the BGO function because it checks the state of the sequencer

or stops and restarts the sequencer control during block erasure.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 48 of 115
Dec 26, 2023

6. 4 Status Check Mode

For the functions that can perform background operation by using the sequencer, a status check must be

performed to check the control state of the code flash memory.

There are the following two status check modes, which can be set with the FSL_Init() function. They have

different status check methods.

• Status check user modeNote

After the control setting of the sequencer is done by the flash function, execution returns to the user

program. The user needs to check the status of the sequencer with the status check function

(FSL_StatusCheck), but the user program can operate until the sequencer processing is completed. The

user programs and interrupt program to operate during sequencer control need to be allocated on the

RAM.

• Status check internal modeNote

Execution does not return to the user program until the status of the sequencer is checked with the flash

function and the sequencer processing is completed. To process interrupts during the execution of the

function (during sequencer control), the interrupt program needs to be allocated on the RAM.

Writing
processing
* ROM cannot
be referred to

Example 2: Writing in the status check internal mode

Function executed

Function end

User Library

It doesn't return during
the write, but control is
easy.
Interrupts must be
received by the RAM
until the processing is
complete as in the user
mode.

Writing
processing
* ROM cannot
be referred to

Example 1: Writing in the status check user mode

Function executed

Function closed

User Library

Because it returns
immediately, other
processing can be executed.
However, the ROM cannot
be referred to until writing is
complete.
Also, the status must be
checked until it is complete.

Status check

Status check

Status check

The user can check
completion here.

Writing
processing
* ROM cannot
be referred to

Example 2: Writing in the status check internal mode

Function executed

Function end

User Library

It doesn't return during
the write, but control is
easy.
Interrupts must be
received by the RAM
until the processing is
complete as in the user
mode.

Writing
processing
* ROM cannot
be referred to

Example 1: Writing in the status check user mode

Function executed

Function closed

User Library

Because it returns
immediately, other
processing can be executed.
However, the ROM cannot
be referred to until writing is
complete.
Also, the status must be
checked until it is complete.

Status check

Status check

Status check

The user can check
completion here.

Figure 6-1 Example of Status Check Mode

Note Only the status check internal mode can be used for the segment (FSL_RCD) of some flash functions
with restrictions on the allocation on the ROM or when the user program is allocated on the ROM.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 49 of 115
Dec 26, 2023

Table 6-4. List of Status Checking of Flash Functions

Function name Sequencer control Status check

FSL_Init

No Not required

FSL_Open

FSL_Close

FSL_PrepareFunctions

FSL_PrepareExtFunctions

FSL_ChangeInterruptTable

FSL_RestoreInterruptTable

FSL_BlankCheck

Yes Required
FSL_Erase

FSL_IVerify

FSL_Write

FSL_GetSecurityFlags

No Not required

FSL_GetBootFlag

FSL_GetSwapState

FSL_GetBlockEndAddr

FSL_GetFlashShieldWindow

FSL_SwapBootCluster

FSL_SwapActiveBootCluster

Yes

Required

FSL_InvertBootFlag

FSL_SetBlockEraseProtectFlag

FSL_SetWriteProtectFlag

FSL_SetBootClusterProtectFlag

FSL_SetFlashShieldWindow

FSL_StatusCheckNote1

Not required

FSL_StandByNote1

FSL_WakeUpNote1,2

FSL_ForceReset
No

FSL_GetVersionString

Notes 1. The processing of this function does not require status checking because it is the function to perform
status checking or the function to stop or restart the sequencer control during block erasure.

 2. To restart the block erasure processing (FSL_Erase), status checking is required to check the erasure
state of the block.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 50 of 115
Dec 26, 2023

6. 4. 1 Status Check User Mode
In the status check user mode, the back ground operation (BGO) can be performed on the RAM. The

operation examples of each procedure are shown in the following figure.

Figure 6-2 Example 1 of Status Check User Mode (FSL_Write: When writing 12 bytes data)

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 51 of 115
Dec 26, 2023

FSL_Erase function
executed

Other processes can be
executed because the function
results are immediately returned.
However, the status should be
verified until the functions are
executed.

FSL_StatusCheck
function executed

End of
processing

Sequencer
executingFSL_StatusCheck

function ended
(Return value：

FSL_BUSY)

FSL_StatusCheck
function executed

FSL_StatusCheck
function ended
(Return value：

FSL_OK)

FSL_Erase function
ended

(Return value：
FSL_BUSY)

User Library
FSL_Erase function

executed

Other processes can be
executed because the function
results are immediately returned.
However, the status should be
verified until the functions are
executed.

FSL_StatusCheck
function executed

End of
processing

Sequencer
executingFSL_StatusCheck

function ended
(Return value：

FSL_BUSY)

FSL_StatusCheck
function executed

FSL_StatusCheck
function ended
(Return value：

FSL_OK)

FSL_Erase function
ended

(Return value：
FSL_BUSY)

User Library

Figure 6-3 Example 2 of Status Check User Mode (Other than FSL_Write)

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 52 of 115
Dec 26, 2023

6. 5 Pausing of Flash Self-Programming

When you need to pause the sequencer control during block erasure while the flash function is being executed

in the status check user mode, the stand-by function (FSL_StandBy) can be used to pause the erasure processing

to put flash self-programming to the pause state. When the stand-by function is executed in a state other than

block erasure state, it waits until the previous processing is completed, and makes a transition to the pause state

after the completion.

When a transition to the pause state occurs, the code flash memory cannot be controlled. To return from the

pause state, the wakeup function (FSL_WakeUp) needs to be executed. If the block erasure is suspended, the

pause state is released to restart the block erasure. In other cases, only the pause state is released.

Erasure
processing
* ROM cannot
be referred to

Erasure executed

Function closed

User Library

A transition to the pause
state occurs after waiting
for the completion of
processing.
* A transition to the
pause state occurs
immediately if no waiting
is required.

Pause state
* ROM can be
referred to

Pause instruction

End of
processing

Pause state

Pause released

Restart instruction

Status check

Status check

Erasure
processing
restarted
* ROM cannot
be referred

Start of
processing

Writing
processing
* ROM cannot
be referred to

Writing executed

Function closed

User Library

Pause instruction

End of
processing

Pause state

Pause released

Start of
processing

Pause state
* ROM can be
referred to

Example 2: Pause processing during writing (other than erasure) processingExample 1: Pause processing during erasure processing

Restart instruction

Erasure
processing
* ROM cannot
be referred to

Erasure executed

Function closed

User Library

A transition to the pause
state occurs after waiting
for the completion of
processing.
* A transition to the
pause state occurs
immediately if no waiting
is required.

Pause state
* ROM can be
referred to

Pause instruction

End of
processing

Pause state

Pause released

Restart instruction

Status check

Status check

Erasure
processing
restarted
* ROM cannot
be referred

Start of
processing

Writing
processing
* ROM cannot
be referred to

Writing executed

Function closed

User Library

Pause instruction

End of
processing

Pause state

Pause released

Start of
processing

Pause state
* ROM can be
referred to

Example 2: Pause processing during writing (other than erasure) processingExample 1: Pause processing during erasure processing

Restart instruction

Figure 6-4 Example of Pausing of Flash Self-Programming

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 53 of 115
Dec 26, 2023

Table 6-5. List of Execution States of Stand-by Function

Function name Sequencer control State when the stand-by function is executed

FSL_Init

No Not available

FSL_Open

FSL_Close

FSL_PrepareFunctions

FSL_PrepareExtFunctions

FSL_ChangeInterruptTable

FSL_RestoreInterruptTable

FSL_BlankCheck

Yes

Waits until the processing is completed,

and makes a transition to the pause state.

FSL_Erase Pauses the erasure processing, and

makes a transition to the pause state.

FSL_IVerify Waits until the processing is completes,

and makes a transition to the pause state. FSL_Write

FSL_GetSecurityFlags

No Not available

FSL_GetBootFlag

FSL_GetSwapState

FSL_GetBlockEndAddr

FSL_GetFlashShieldWindow

FSL_SwapBootCluster

FSL_SwapActiveBootCluster

Yes

Waits until the processing is completed, and makes

a transition to the pause state.

FSL_InvertBootFlag

FSL_SetBlockEraseProtectFlag

FSL_SetWriteProtectFlag

FSL_SetBootClusterProtectFlag

FSL_SetFlashShieldWindow

FSL_StatusCheck

Not available

FSL_StandBy

FSL_WakeUp

FSL_ForceReset

No FSL_GetVersionString

Flash function idle state Makes a transition to the pause state.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 54 of 115
Dec 26, 2023

6. 6 List of Data Types and Return Values

The data types are as follows

Table 6-6. List of Data Types

Definition Data type Description

fsl_u08 unsigned char 1-byte (8-bit) unsigned integer

fsl_u16 unsigned int 2-byte (16-bit) unsigned integer

fsl_u32 unsigned long int 4-byte (32-bit) unsigned integer

The meaning of each return value is as follows.

Table 6-7. List of Return Values

Definition Return

value

Description

FSL_OK 0x00 Normal completion

FSL_ERR_PARAMETER 0x05 Parameter error

- The specified parameter has an error.

FSL_ERR_PROTECTION 0x10 Protect error

- The target area is protected.

FSL_ERR_ERASE 0x1A Erasure error

- Erasure of the target area failed.

FSL_ERR_BLANKCHECK 0x1B Blank check error

- The target area is not in the blank state.

FSL_ERR_IVERIFY 0x1B Internal verification error

- An error occurred during internal verification processing of the

target area.

FSL_ERR_WRITE 0x1C Writing error

- Writing to the target area failed.

FSL_ERR_FLOW 0x1F Flow error

- The processing of the flash function executed immediately

before has not been completed.

- The prerequisite defined in presetting is violated.

- Flash self-programming is in the pause state.

FSL_IDLE 0x30 Idle state

- Flash self-programming is not executed.

FSL_SUSPEND 0x43 Pause state

- Flash self-programming is paused.

FSL_BUSY 0xFF Execution start of the flash function or the flash function in

execution

- The function of the flash function is in execution.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 55 of 115
Dec 26, 2023

<R>

<R>

The general register used to pass a return value differs between the RENESAS CA78K0R, the RENESAS

CC-RL and the LLVM compilers.

The return value and the general register used in each compiler are as follows.

Table 6-8. List of Return Values Used in Each Compiler

Development tool
Return value

C language Assembly language

RENESAS CA78K0R compiler fsl_u08 C(General-purpose register)

RENESAS CC-RL compiler fsl_u08 A(General-purpose register)

LLVM compiler fsl_u08 A(General-purpose register)

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 56 of 115
Dec 26, 2023

6. 7 Description of Flash Functions

The flash functions are described in the following format.

Flash function name

[Overview]

Describes the function overview of this function.

[Format]

<C language>

Describes the format to call this function from a user program written in the C language.

<Assembler>

Describes the format to call this function from a user program written in the assembly language.

Note Header file for assembly language (fsl.inc) are provided only for the CA78K0R compiler and the CC-RL

compiler. When using assembly language with the LLVM compiler, refer to "fsl.inc" for the CC-RL compiler to

create a header file that defines the status code returned by the FSL function.

[Presetting]

Describes the presetting of this function.

[Function]

Describes the function details and cautions of this function.

[Register State After Call]

Describes the register state after this function is called.

[Argument]

Describes the argument of this function.

[Return Value]

Describes the return values from this function.

[Flow] (FSL_SwapBootCluster() function only)

Describes the internal flow of this function.

[Operation Example] (FSL_ChangeInterruptTable() and FSL_RestoreInterruptTable() functions only)

Describes operation examples for using this function.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 57 of 115
Dec 26, 2023

<R>

FSL_Init

[Overview]

Initialization of the flash self-programming environment

[Format]

<C language>

RENESAS CA78K0R compiler
fsl_u08 FSL_Init(__far fsl_descriptor_t* descriptor_pstr)

RENESAS CC-RL compiler
fsl_u08 __far FSL_Init(const __far fsl_descriptor_t* descriptor_pstr)

LLVM compiler
fsl_u08 __far FSL_Init(const __far fsl_descriptor_t* descriptor_pstr)

 __attribute__ ((section ("FSL_FCD")))

<Assembler>
CALL !_FSL_Init or CALL !!_FSL_Init

Remark Call with "!" when the flash self-programming library is allocated at 00000H-0FFFFH, or call with "!!"

otherwise.

[Presetting]

 The flash self-programming library, data flash library, the program used to operate the data flash memory, and

EEPROM emulation library are not executed or have been ended.

 The high-speed on-chip oscillator is running.

[Function]

 Reserves and initializes the self-RAM used for flash self-programming. If a self-RAMNote1 exists, do not use it

until flash self-programming is finished.

 Define the flash memory programming mode Note2 for flash self-programming in the argument

fsl_flash_voltage_u08.

0x00: Full-speed mode

Other than above: Wide voltage mode

 Set the operating frequency of the CPU in the argument fsl_u08 fsl_frequency_u08. The set value is used for

the calculation of timing data in the flash self-programming library.Note3

For the value of the operating frequency of the CPU (fsl_frequency_u08), note the following.

- When a frequency below 4 MHzNote4 is used as the operating frequency of the RL78 microcontroller, 1 MHz,

2 MHz, or 3 MHz can be used (a frequency such as 1.5 MHz that is not an integer value cannot be used).

Set an integer value such as 1, 2, or 3 as the operating frequency value with the initialization function.

- When a frequency equal to or over 4 MHzNote4 is used as the operating frequency of the RL78

microcontroller, a frequency with decimal places can be used. However, set a rounded up integer value as

the operating frequency with the initialization function (FSL_Init).

(Example: For 4.5 MHz, set "5" with the initialization function.)

- This operating frequency is not the frequency of the high-speed on-chip oscillator.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 58 of 115
Dec 26, 2023

<R>

<R>

 Set the status check mode in the argument fsl_auto_status_check_u08.Note5 For differences between the

status check user mode and status check internal mode, refer to 2.1 Hardware Environment or 6.4 Status

Check Mode.

0x00: Status check user mode

Other than above: Status check internal mode

Notes 1.For the self-RAM, refer to the document "Release note" attached to the installer, or refer to the user's

manual of the target RL78 microcontroller.
 2. For details of the flash memory programming mode, refer to the user's manual of the target RL78

microcontroller.
 3. This is a required parameter for timing calculation in the flash self-programming library. This setting does

not change the operating frequency of the RL78 microcontroller.
 4. For the range of the operating frequency, refer to the user's manual of the target RL78 microcontroller.
 5. When allocating the FSL_RCD segment on the ROM, always use it in the status check internal mode.

[Register State After Call]

Development tool Return value Destructed register

RENESAS CA78K0R compiler C(General-purpose register) -

RENESAS CC-RL compiler A(General-purpose register) -

LLVM compiler A(General-purpose register) -

[Argument]

Definition of argument

Argument Description

__far fsl_descriptor_t* descriptor_pstr Initial setting value of the Flash Self-Programming Library Type 01

(flash memory programming mode, CPU frequency, status check mode)

Definition of __far fsl_descriptor_t*

Development tool C language (Structure definition) Assembly language (Example of definition)

RENESAS CA78K0R compiler typedef struct {
fsl_u08 fsl_flash_voltage_u08;
fsl_u08 fsl_frequency_u08;
fsl_u08 fsl_auto_status_check_u08;

} fsl_descriptor_t;

fsl_descriptor_str:
 DB fsl_flash_voltage_u08
 DB fsl_frequency_u08
 DB fsl_auto_status_check_u08

RENESAS CC-RL compiler typedef struct {
fsl_u08 fsl_flash_voltage_u08;
fsl_u08 fsl_frequency_u08;
fsl_u08 fsl_auto_status_check_u08;

} fsl_descriptor_t;

fsl_descriptor_str:
 .DB fsl_flash_voltage_u08
 .DB fsl_frequency_u08
 .DB fsl_auto_status_check_u08

LLVM compiler typedef struct {
fsl_u08 fsl_flash_voltage_u08;
fsl_u08 fsl_frequency_u08;
fsl_u08 fsl_auto_status_check_u08;

} fsl_descriptor_t;

Check the compiler specifications.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 59 of 115
Dec 26, 2023

<R>

Parameters in __far fsl_descriptor_t*

Argument Description

fsl_u08 fsl_flash_voltage_u08 Setting of the flash memory programming mode

fsl_u08 fsl_frequency_u08 CPU frequency during the execution of flash self-programming

fsl_u08 fsl_auto_status_check_u08 Setting of the status check mode

Contents of argument settings

Development tool
Argument Type/Register

C language Assembly language

RENESAS CA78K0R compiler __far fsl_descriptor_t *descriptor_pstr AX(0-15), C(16-23)

The start address of the variable (24 bits)

RENESAS CC-RL compiler const __far fsl_descriptor_t *descriptor_pstr DE(0-15), A(16-23)

The start address of the variable (24 bits)

LLVM compiler const __far fsl_descriptor_t *descriptor_pstr DE(0-15), A(16-23)

The start address of the variable (24 bits)

[Return Value]

State Description

0x00(FSL_OK) Normal completion

- Initial setting is complete.

0x05(FSL_ ERR_PARAMETER) Parameter error

- The frequency value is outside the allowable setting range.

- The high-speed on-chip oscillator is not running.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 60 of 115
Dec 26, 2023

<R>

FSL_Open

[Overview]

Start declaration of flash self-programming (starting of the flash environment)

[Format]

<C language>

RENESAS CA78K0R compiler
void FSL_Open(void)

RENESAS CC-RL compiler

void __far FSL_Open(void)

LLVM compiler

void __far FSL_Open(void) __attribute__ ((section ("FSL_FCD")))

<Assembler>
CALL !_FSL_Open or CALL !!_FSL_Open

Remark Call with "!" when the flash self-programming library is allocated at 00000H-0FFFFH, or call with "!!"

otherwise.

[Presetting]

Before the execution of this function, the FSL_Init function must be completed normally.

[Function]

Performs start declaration of flash self-programming (starting of the flash environment). Call this function in the

beginning of flash self-programming operation.

[Register State After Call]

The registers are not destructed.

[Argument]

None

[Return Value]

None

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 61 of 115
Dec 26, 2023

<R>

FSL_Close

[Overview]

End declaration of flash self-programming (ending of the flash environment)

[Format]

<C language>

RENESAS CA78K0R compiler
void FSL_Close(void)

RENESAS CC-RL compiler
void __far FSL_Close(void)

LLVM compiler
void __far FSL_Close(void) __attribute__ ((section ("FSL_FCD")))

<Assembler>
CALL !_FSL_Close or CALL !!_FSL_Close

Remark Call with "!" when the flash self-programming library is allocated at 00000H-0FFFFH, or call with "!!"

otherwise.

[Presetting]

Before the execution of this function, after FSL_Init function is completed normally, FSL_Open function must make

execution complete.

[Function]

Performs end declaration of flash self-programming (ending of the flash environment). It ends write operation to

the code flash memory and returns execution to the normal operation mode.

[Register State After Call]

The registers are not destructed.

[Argument]

None

[Return Value]

None

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 62 of 115
Dec 26, 2023

<R>

FSL_PrepareFunctions

[Overview]

Preparation for use of the flash functions (standard rewrite functions) requiring execution in RAM

[Format]

<C language>

RENESAS CA78K0R compiler
void FSL_PrepareFunctions(void)

RENESAS CC-RL compiler
void __far FSL_PrepareFunctions(void)

LLVM compiler
void __far FSL_PrepareFunctions(void) __attribute__ ((section ("FSL_FCD")))

<Assembler>
CALL !_FSL_PrepareFunctions or CALL !!_FSL_PrepareFunctions

Remark Call with "!" when the flash self-programming library is allocated at 00000H-0FFFFH, or call with "!!"

otherwise.

[Presetting]

Before the execution of this function, after FSL_Init function is completed normally, FSL_Open function must make

execution complete.

[Function]

Prepares the following functions for use.

• FSL_BlankCheck

• FSL_Erase

• FSL_Write

• FSL_IVerify

• FSL_StatusCheck

• FSL_StandBy

• FSL_WakeUp

[Register State After Call]

The registers are not destructed.

[Argument]

None

[Return Value]

None

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 63 of 115
Dec 26, 2023

<R>

FSL_PrepareExtFunctions

[Overview]

Preparation for use of the flash functions (extension functions) requiring execution in RAM

[Format]

<C language>

RENESAS CA78K0R compiler
void FSL_PrepareExtFunctions(void)

RENESAS CC-RL compiler
void __far FSL_PrepareExtFunctions(void)

LLVM compiler
void __far FSL_PrepareExtFunctions(void) __attribute__ ((section ("FSL_FCD")))

<Assembler>
CALL !_FSL_PrepareExtFunctions or CALL !!_FSL_PrepareExtFunctions

Remark Call with "!" when the flash self-programming library is allocated at 00000H-0FFFFH, or call with "!!"

otherwise.

[Presetting]

Before the execution of this function, after FSL_Init function is completed normally, FSL_Open function must make

execution complete.

[Function]

Prepares the following functions for use.

• FSL_SwapBootCluster

• FSL_SwapActiveBootCluster

• FSL_InvertBootFlag

• FSL_SetBlockEraseProtectFlag

• FSL_SetWriteProtectFlag

• FSL_SetBootClusterProtectFlag

• FSL_SetFlashShieldWindow

[Register State After Call]

The registers are not destructed.

[Argument]

None

[Return Value]

None

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 64 of 115
Dec 26, 2023

<R>

FSL_ChangeInterruptTable

[Overview]

Changing of all interrupt destinations to the specified addresses on the RAM

[Format]

<C language>

RENESAS CA78K0R compiler
void FSL_ChangeInterruptTable(fsl_u16 fsl_interrupt_destination_u16)

RENESAS CC-RL compiler
void __far FSL_ChangeInterruptTable(fsl_u16 fsl_interrupt_destination_u16)

LLVM compiler
void __far FSL_ChangeInterruptTable(fsl_u16 fsl_interrupt_destination_u16)

 __attribute__ ((section ("FSL_FCD")))

<Assembler>
CALL !_FSL_ChangeInterruptTable or CALL !!_FSL_ChangeInterruptTable

Remark Call with "!" when the flash self-programming library is allocated at 00000H-0FFFFH, or call with "!!"

otherwise.

[Presetting]

None

[Function]

Changes the destinations of all interrupt functions to the specified addresses on the RAM. After the execution of

this function, when an interrupt occurs, execution goes to the address on the RAM specified with this function

instead of jumping to the interrupt table.

Cautions 1. The type of the interrupt must be determined by the user by checking the interrupt flag. Because the

type of the interrupt must be determined by the user after the execution of this function, the interrupt
flag will not be cleared automatically. The user must clear the flag after determining the type of the
interrupt.

 2. Do not specify a RAM address in the area that has restrictions on usage during the execution of flash
self-programming. The flash function may not operate correctly.

 3. The interrupt change destination cannot be set to the ROM side (only the address range of FxxxxH
can be specified).

 4. When the interrupt destination is changed with this function, the interrupt destination remains changed
even after flash self-programming until the interrupt destination is restored with the
FSL_RestoreInterruptTable() function or a reset is performed.

 5. When changing the interrupt destination to the RAM with this function, disable interrupts from the start
to end of the processing.

[Register State After Call]

The registers are not destructed.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 65 of 115
Dec 26, 2023

EI

DI

FSL_ChangeInterruptTable()

Start interrupt destination
change processing

End interrupt destination
change processing

<R>

[Argument]

Definition of argument

Argument Description

fsl_u16 fsl_interrupt_destination_u16
RAM address of the interrupt destination (lower 16 bits: FxxxxH) *Upper bits are not

required.

Contents of argument settings

Development tool
Argument Type/Register

C language Assembly language

RENESAS CA78K0R compiler fsl_u16 fsl_interrupt_destination_u16 AX(0-15):

RAM address (lower 16 bits)

RENESAS CC-RL compiler fsl_u16 fsl_interrupt_destination_u16 AX(0-15):

RAM address (lower 16 bits)

LLVM compiler fsl_u16 fsl_interrupt_destination_u16 AX(0-15):

RAM address (lower 16 bits)

[Return Value]

None

[Operation Example]

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 66 of 115
Dec 26, 2023

<R>

FSL_RestoreInterruptTable

[Overview]

Restoration of the interrupt destination changed to the RAM to the standard interrupt vector table

[Format]

<C language>

RENESAS CA78K0R compiler
void FSL_RestoreInterruptTable(void)

RENESAS CC-RL compiler
void __far FSL_RestoreInterruptTable(void)

LLVM compiler
void __far FSL_RestoreInterruptTable(void) __attribute__ ((section ("FSL_FCD")))

<Assembler>
CALL !_FSL_RestoreInterruptTable or CALL !!_FSL_RestoreInterruptTable

Remark Call with "!" when the flash self-programming library is allocated at 00000H-0FFFFH, or call with "!!"

otherwise.

[Presetting]

None

[Function]

Restores the interrupt destination changed to the RAM to the standard interrupt vector table.

Cautions 1. If the interrupt destination is changed with the FSL_ChangeInterruptTable() function, the interrupt

destination remains changed even after flash self-programming until a reset is performed unless the
interrupt destination is restored with this function.

 2. When changing the interrupt destination to the standard interrupt vector with this function, disable
interrupts from the start to end of the processing.

[Register State After Call]

The registers are not destructed.

[Argument]

None

[Return Value]

None

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 67 of 115
Dec 26, 2023

EI

DI

FSL_RestoreInterruptTable()

Start interrupt destination
change processing

End interrupt destination
change processing

 [Operation Example]

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 68 of 115
Dec 26, 2023

<R>

FSL_BlankCheck

[Overview]

Blank checking of the specified block

[Format]

<C language>

RENESAS CA78K0R compiler
fsl_u08 FSL_BlankCheck(fsl_u16 block_u16)

RENESAS CC-RL compiler
fsl_u08 __far FSL_BlankCheck(fsl_u16 block_u16)

LLVM compiler
fsl_u08 __far FSL_BlankCheck(fsl_u16 block_u16)

 __attribute__ ((section ("FSL_RCD")))

<Assembler>
CALL !_FSL_BlankCheck or CALL !!_FSL_BlankCheck

Remark Call with "!" when the flash self-programming library is allocated at 00000H-0FFFFH, or call with "!!"

otherwise.

[Presetting]

Before the execution of this function, after FSL_Init function is completed normally, FSL_Open function and

FSL_PrepareFunctions function must make execution complete. Also, when an interrupt must be received before

the processing is completed, use the FSL_ChangeInterruptTable function to change the interrupt destination to the

RAM.

[Function]

Checks that the code flash memory of the specified block is in the erasure level.

(The erasure level check cannot be done in checking of 0xFF with data read.)

In case of an error, execute the FSL_Erase function.

If the execution of the FSL_Erase function is completed normally, no blank checking is required.

If the specified block number does not exist, a parameter error (0x05) is returned.

Caution If both (1) and (2) below are satisfied, this function can be allocated on the internal ROM for use.
(1) The status check mode is set to the status check internal mode with the FSL_Init function.

(2) "Do not use interrupts" or "disable interrupts on the internal ROM" until the processing of this
function is completed (the reception of interrupts on the RAM is permitted).

Remarks 1. The FSL_BlankCheck function checks if the cell of the code flash memory satisfies the erasure

level with a sufficient margin. A blank check error does not indicate any problem in the code flash

memory, but perform erasure processing before writing after the blank check error.

 2. A blank check is performed only for one block. To perform blank checking of multiple blocks, call

this function multiple times.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 69 of 115
Dec 26, 2023

<R>

<R>

[Register State After Call]

Development tool Return value Destructed register

RENESAS CA78K0R compiler C(General-purpose register) -

RENESAS CC-RL compiler A(General-purpose register) -

LLVM compiler A(General-purpose register) -

[Argument]

Definition of argument

Argument Description

block_u16 Block number of the block to be blank-checked

Contents of argument settings

Development tool
Argument Type/Register

C language Assembly language

RENESAS CA78K0R compiler fsl_u16 block_u16 AX(0-15): Block number (16 bits)

RENESAS CC-RL compiler fsl_u16 block_u16 AX(0-15): Block number (16 bits)

LLVM compiler fsl_u16 block_u16 AX(0-15): Block number (16 bits)

[Return Value]

State Description

0x00(FSL_OK) Normal completionNote1

- The specified block is in the blank state.

0x05(FSL_ERR_PARAMETER) Parameter error

- The specification of the block number is outside the allowable setting range.

0x1B(FSL_ERR_BLANKCHECK) Blank check errorNote1

- The specified block is not in the blank state.

0x1F(FSL_ERR_FLOW) Flow error

- The processing of the flash function executed immediately before has not been

completed.Note2

- The prerequisite defined in presetting is violated.

- Flash self-programming is in the pause state.Note2

0xFF(FSL_BUSY) Execution start of this functionNote2

- The execution of this function has been started.

(Check the execution state with the FSL_StatusCheck function.)

Notes 1. Only in the status check internal mode.
 2. Only in the status check user mode.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 70 of 115
Dec 26, 2023

<R>

<R>

FSL_Erase

[Overview]

Erasure of the specified block

[Format]

<C language>

RENESAS CA78K0R compiler
fsl_u08 FSL_Erase(fsl_u16 block_u16)

RENESAS CC-RL compiler
fsl_u08 __far FSL_Erase(fsl_u16 block_u16)

LLVM compiler
fsl_u08 __far FSL_Erase(fsl_u16 block_u16) __attribute__ ((section ("FSL_RCD")))

<Assembler>
CALL !_FSL_Erase or CALL !!_FSL_Erase

Remark Call with "!" when the flash self-programming library is allocated at 00000H-0FFFFH, or call with "!!"

otherwise.

[Presetting]

Before the execution of this function, after FSL_Init function is completed normally, FSL_Open function and

FSL_PrepareFunctions function must make execution complete. Also, when an interrupt must be received before

the processing is completed, use the FSL_ChangeInterruptTable function to change the interrupt destination to the

RAM.

[Function]

Erases (0xFF) the content of the code flash memory in the specified block.

Caution If both (1) and (2) below are satisfied, this function can be allocated on the internal ROM for use.
(1) The status check mode is set to the status check internal mode with the FSL_Init function.

(2) "Do not use interrupts" or "disable interrupts on the internal ROM" until the processing of this
function is completed (the reception of interrupts on the RAM is permitted).

Remark Erasure is performed only for one block. To erase multiple blocks, call this function multiple times.

[Register State After Call]

Development tool Return value Destructed register

RENESAS CA78K0R compiler C(General-purpose register) -

RENESAS CC-RL compiler A(General-purpose register) -

LLVM compiler A(General-purpose register) -

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 71 of 115
Dec 26, 2023

<R>

[Argument]

Definition of argument

Argument Description

block_u16 Block number of the block to be erased

Contents of argument settings

Development tool
Argument Type/Register

C language Assembly language

RENESAS CA78K0R compiler fsl_u16 block_u16 AX(0-15): Block number (16 bits)

RENESAS CC-RL compiler fsl_u16 block_u16 AX(0-15): Block number (16 bits)

LLVM compiler fsl_u16 block_u16 AX(0-15): Block number (16 bits)

[Return Value]

State Description

0x00(FSL_OK) Normal completionNote1

0x05(FSL_ERR_PARAMETER) Parameter error

- The specification of the block number is outside the allowable setting range.

0x10(FSL_ERR_PROTECTION) Protect error

- The specified block is included in the boot area, and the boot area rewrite

permission flag is set to protected.

- The specified block is outside the FSW setting area.

0x1A(FSL_ERR_ERASE) Erasure errorNote1

- An error occurred during erasure processing.

0x1F(FSL_ERR_FLOW) Flow error

- The processing of the flash function executed immediately before has not been

completed.Note2

- The prerequisite defined in presetting is violated.

- Flash self-programming is in the pause state.Note2

0xFF(FSL_BUSY) Execution start of this functionNote2

- The execution of this function has been started.

(Check the execution state with the FSL_StatusCheck function.)

Notes 1. Only in the status check internal mode.
 2. Only in the status check user mode.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 72 of 115
Dec 26, 2023

<R>

FSL_IVerify

[Overview]

Verification (internal verification) of the specified block

[Format]

<C language>

RENESAS CA78K0R compiler
fsl_u08 FSL_IVerify(fsl_u16 block_u16)

RENESAS CC-RL compiler
fsl_u08 __far FSL_IVerify(fsl_u16 block_u16)

LLVM compiler
fsl_u08 __far FSL_IVerify(fsl_u16 block_u16) __attribute__ ((section ("FSL_RCD")))

Assembler>
CALL !_FSL_IVerify or CALL !!_FSL_IVerify

Remark Call with "!" when the flash self-programming library is allocated at 00000H-0FFFFH, or call with "!!"

otherwise.

[Presetting]

Before the execution of this function, after FSL_Init function is completed normally, FSL_Open function and

FSL_PrepareFunctions function must make execution complete. Also, when an interrupt must be received before

the processing is completed, use the FSL_ChangeInterruptTable function to change the interrupt destination to the

RAM.

[Function]

Performs verification to check the write level in the specified block.

The verification checks if the data written to the code flash memory of the specified block is in the erasure level

(data "1") or write level (data "0").

In case of an error, execute the FSL_Erase function, and then perform writing with FSL_Write again.

If the specified block number does not exist, a parameter error (0x05) is returned.

Cautions 1. After data is written, if no verification (internal verification) is done for the block including the range to

which data is written, the written data is not guaranteed.

 2. When data erasure, data write, and internal verification are performed and completed normally after
an internal verification error, the device is determined as normal.

 3. If both (1) and (2) below are satisfied, this function can be allocated on the internal ROM for use.

(1) The status check mode is set to the status check internal mode with the FSL_Init function.

(2) "Do not use interrupts" or "disable interrupts on the internal ROM" until the processing of this
function is completed (the reception of interrupts on the RAM is permitted).

Remark Verification is performed only for one block. To perform verification of multiple blocks, call this

function multiple times.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 73 of 115
Dec 26, 2023

<R>

<R>

[Register State After Call]

Development tool Return value Destructed register

RENESAS CA78K0R compiler C(General-purpose register) -

RENESAS CC-RL compiler A(General-purpose register) -

LLVM compiler A(General-purpose register) -

[Argument]

Definition of argument

Argument Description

block_u16 Block number to be verified

Contents of argument settings

Development tool
Argument Type/Register

C language Assembly language

RENESAS CA78K0R compiler fsl_u16 block_u16 AX(0-15): Block number (16 bits)

RENESAS CC-RL compiler fsl_u16 block_u16 AX(0-15): Block number (16 bits)

LLVM compiler fsl_u16 block_u16 AX(0-15): Block number (16 bits)

[Return Value]

State Description

0x00(FSL_OK) Normal completionNote1

0x05(FSL_ERR_PARAMETER) Parameter error

- The specification of the block number is outside the allowable setting range.

0x1B(FSL_ERR_IVERIFY) Verification (internal verification) errorNote1

- An error occurred during verification (internal verification) processing.

0x1F(FSL_ERR_FLOW) Flow error

- The processing of the flash function executed immediately before has not been

completed.Note2

- The prerequisite defined in presetting is violated.

- Flash self-programming is in the pause state.Note2

0xFF(FSL_BUSY) Execution start of this functionNote2

- The execution of this function has been started.

(Check the execution state with the FSL_StatusCheck function.)

Notes 1. Only in the status check internal mode.
 2. Only in the status check user mode.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 74 of 115
Dec 26, 2023

<R>

FSL_Write

[Overview]

Writing of 1 word to 64 words data into the specified address (1 word = 4 bytes)

[Format]

<C language>

RENESAS CA78K0R compiler
fsl_u08 FSL_Write (__near fsl_write_t* write_pstr)

RENESAS CC-RL compiler
fsl_u08 __far FSL_Write (__near fsl_write_t* write_pstr)

LLVM compiler
fsl_u08 __far FSL_Write(__near fsl_write_t* write_pstr)

 __attribute__ ((section ("FSL_RCD")))

<Assembler>
CALL !_FSL_Write or CALL !!_FSL_Write

Remark Call with "!" when the flash self-programming library is allocated at 00000H-0FFFFH, or call with "!!"

otherwise.

[Presetting]

• Before the execution of this function, after FSL_Init function is completed normally, FSL_Open function and

FSL_PrepareFunctions function must make execution complete. Also, when an interrupt must be received

before the processing is completed, use the FSL_ChangeInterruptTable function to change the interrupt

destination to the RAM.

• Before calling this function, save the data to be written to the code flash memory in the data buffer.

[Function]

Writes to the code flash memory at the specified address.

After writing to a block, always execute FSL_IVerify for the block.

Execute the FSL_Write function only to an erased block.

Up to 256 bytes (in units of 4 bytes) of data can be written at once.

In the following cases (the specified word count or address is outside of the allowable setting range), a parameter

error (0x05) is returned.

Word count check

• 0 words

• 65 words or more

Address check

• Not in units of 4 bytes from the start address

• The write end address exceeds the final address of the code flash memory.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 75 of 115
Dec 26, 2023

<R>

<R>

Notes 1. After writing data, execute verification (internal verification) of the block including the range to which data

is written. Otherwise, the written data is not guaranteed.
 2. If both (1) and (2) below are satisfied, this function can be allocated on the internal ROM for use.

(1) The status check mode is set to the status check internal mode with the FSL_Init function.

(2) "Do not use interrupts" or "disable interrupts on the internal ROM" until the processing of this
function is completed (the reception of interrupts on the RAM is permitted).

Remark To write data larger than 256 bytes, call this function multiple times.

[Register State After Call]

Development tool Return value Destructed register

RENESAS CA78K0R compiler C(General-purpose register) -

RENESAS CC-RL compiler A(General-purpose register) -

LLVM compiler A(General-purpose register) -

[Argument]

Definition of argument

Argument Description

__near fsl_write_t* write_pstr Write data storage settings

(Data buffer address, write destination address, and write size)

Definition of fsl_write_t

Development tool C language (Structure definition) Assembly language (Example of definition)

RENESAS CA78K0R compiler typedef struct {
fsl_u08 __near *fsl_data_buffer_p_u08;
fsl_u32 fsl_destination_address_u32;
fsl_u08 fsl_word_count_u08;

} fsl_write_t;

fsl_write_str :
fsl_data_buffer_p_u08: DS 2
fsl_destination_address_u32: DS 2
fsl_word_count_u08: DS 1

RENESAS CC-RL compiler typedef struct {
fsl_u08 __near *fsl_data_buffer_p_u08;
fsl_u32 fsl_destination_address_u32;
fsl_u08 fsl_word_count_u08;

} fsl_write_t;

fsl_write_str :
fsl_data_buffer_p_u08: .DS 2
fsl_destination_address_u32: .DS 2
fsl_word_count_u08 : .DS 1

LLVM compiler typedef struct {
fsl_u08 __near *fsl_data_buffer_p_u08;
fsl_u32 fsl_destination_address_u32;
fsl_u08 fsl_word_count_u08;

} fsl_write_t;

Check the compiler specifications.

Contents of fsl_write_t

Argument Description

fsl_u08 __near *fsl_data_buffer_p_u08 Start address of the buffer area where data to write is input (16 bits)

fsl_u32 fsl_destination_address_u32 Start address of the destination (32 bits)

fsl_u08 fsl_word_count_u08 Data count to write (1 to 64: in words)

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 76 of 115
Dec 26, 2023

<R>

Contents of argument settings

Development tool
Argument Type/Register

C language Assembly language

RENESAS CA78K0R compiler __near fsl_write_t* write_pstr AX(0-15):

The start address of the variable (16 bits)

RENESAS CC-RL compiler __near fsl_write_t* write_pstr AX(0-15):

The start address of the variable (16 bits)

LLVM compiler __near fsl_write_t* write_pstr AX(0-15):

The start address of the variable (16 bits)

[Return Value]

State Description

0x00(FSL_OK) Normal completionNote1

0x05(FSL_ERR_PARAMETER) Parameter error

- The start address is not a multiple of 1 word (4 bytes).

- The written data count is 0.

- The written data count exceeds 64 words.

- The write end address (start address + (written data count × 4 bytes)) exceeds the

code flash memory area.

0x10(FSL_ERR_PROTECTION) Protect error

- The specified range includes the boot area, and the boot area rewrite permission flag

is set to protected.

- The specified block is outside the FSW setting area.

0x1C(FSL_ERR_WRITE) Writing errorNote1

- An error occurred during write processing.

0x1F(FSL_ERR_FLOW) Flow error

- The processing of the flash function executed immediately before has not been

completed.Note2

- The prerequisite defined in presetting is violated.

- Flash self-programming is in the pause state.Note2

0xFF(FSL_BUSY) Execution start of this functionNote2

- The execution of this function has been started.

(Check the execution state with the FSL_StatusCheck function.)

Notes 1. Only in the status check internal mode.
 2. Only in the status check user mode.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 77 of 115
Dec 26, 2023

<R>

<R>

FSL_GetSecurityFlags

[Overview]

Acquisition of security information

[Format]

<C language>

RENESAS CA78K0R compiler
fsl_u08 FSL_GetSecurityFlags(fsl_u08 __near *data_destination_pu08)

RENESAS CC-RL compiler
fsl_u08 __far FSL_GetSecurityFlags(fsl_u08 __near *data_destination_pu08)

LLVM compiler
fsl_u08 __far FSL_GetSecurityFlags(fsl_u08 __near *data_destination_pu08)

 __attribute__ ((section ("FSL_FECD")))

<Assembler>
CALL !_FSL_GetSecurityFlags or CALL !!_FSL_GetSecurityFlags

Remark Call with "!" when the flash self-programming library is allocated at 00000H-0FFFFH, or call with "!!"

otherwise.

[Presetting]

Before the execution of this function, after FSL_Init function is completed normally, FSL_Open function must make

execution complete.

[Function]

Obtains the security flag information and inputs the value to the data storage buffer specified in the argument.

[Register State After Call]

Development tool Return value Destructed register

RENESAS CA78K0R compiler C(General-purpose register) -

RENESAS CC-RL compiler A(General-purpose register) -

LLVM compiler A(General-purpose register) -

 [Argument]

Definition of argument

Argument Description

fsl_u08 __near *data_destination_pu08 Data storage buffer

- Reserve a 1-byte data buffer.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 78 of 115
Dec 26, 2023

<R>

Contents of argument settings

Development tool
Argument Type/Register

C language Assembly language

RENESAS CA78K0R compiler __near *data_destination_pu08 AX(0-15):

The start address of the data buffer (16 bits)

RENESAS CC-RL compiler __near *data_destination_pu08 AX(0-15):

The start address of the data buffer (16 bits)

LLVM compiler __near *data_destination_pu08 AX(0-15):

The start address of the data buffer (16 bits)

[Return Value]

State Description

0x00(FSL_OK) Normal completion

0x1F(FSL_ERR_FLOW) Flow error

- The processing of the flash function executed immediately before has not

been completed.Note

- The prerequisite defined in presetting is violated.

- Flash self-programming is in the pause state.Note

Note Only in the status check user mode.

Security bit information

The security bit information is written to the data storage buffer (data_destination_pu08) passed in the argument.

data_destination_pu08 Description

bit 1: 0b000000X0 Boot area rewrite protection flag (0: Protected, 1: Permitted)

bit 2: 0b00000X00 Block erasure protection flag (0: Protected, 1: Permitted)

bit 4: 0b000X0000 Write protection flag (0: Protected, 1: Permitted)

Other bits 1

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 79 of 115
Dec 26, 2023

<R>

<R>

FSL_GetBootFlag

[Overview]

Acquisition of boot flag information

[Format]

<C language>

RENESAS CA78K0R compiler
fsl_u08 FSL_GetBootFlag(fsl_u08 __near *data_destination_pu08)

RENESAS CC-RL compiler
fsl_u08 __far FSL_GetBootFlag(fsl_u08 __near *data_destination_pu08)

LLVM compiler
fsl_u08 __far FSL_GetBootFlag(fsl_u08 __near *data_destination_pu08)

 __attribute__ ((section ("FSL_FECD")))

<Assembler>
CALL !_FSL_GetBootFlag or CALL !!_FSL_GetBootFlag

Remark Call with "!" when the flash self-programming library is allocated at 00000H-0FFFFH, or call with "!!"

otherwise.

[Presetting]

Before the execution of this function, after FSL_Init function is completed normally, FSL_Open function must make

execution complete.

[Function]

Obtains the boot cluster flag information and inputs the value to the data storage buffer specified in the argument.

[Register State After Call]

Development tool Return value Destructed register

RENESAS CA78K0R compiler C(General-purpose register) -

RENESAS CC-RL compiler A(General-purpose register) -

LLVM compiler A(General-purpose register) -

 [Argument]

Definition of argument

Argument Description

fsl_u08 __near *data_destination_pu08 Data storage buffer

- Reserve a 1-byte data buffer.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 80 of 115
Dec 26, 2023

<R>

Contents of argument settings

Development tool
Argument Type/Register

C language Assembly language

RENESAS CA78K0R compiler __near *data_destination_pu08 AX(0-15):

The start address of the data buffer (16 bits)

RENESAS CC-RL compiler __near *data_destination_pu08 AX(0-15):

The start address of the data buffer (16 bits)

LLVM compiler __near *data_destination_pu08 AX(0-15):

The start address of the data buffer (16 bits)

[Return Value]

[

State Description

0x00(FSL_OK) Normal completion

0x1F(FSL_ERR_FLOW) Flow error

- The processing of the flash function executed immediately before has not been

completed.Note

- The prerequisite defined in presetting is violated.

- Flash self-programming is in the pause state.Note

Note Only in the status check user mode.

Boot flag information

The boot flag information is written to the data storage buffer (data_destination_pu08) passed in the argument.

data_destination_pu08 Description

0x00 Starts up with Boot Cluster 0 as the boot area (from 0000H) after a reset.

0x01 Starts up with Boot Cluster 1 as the boot area (from 0000H) after a reset.

Remark For the swap state of the boot area before the reset, refer to the section on the FSL_GetSwapState

function.

Example RL78/G13: The boot area size (one cluster) is 4KB.

RL78/F13: The boot area size (one cluster) is 8KB.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 81 of 115
Dec 26, 2023

<R>

<R>

FSL_GetSwapState

[Overview]

Acquisition of the swap state

[Format]

<C language>

RENESAS CA78K0R compiler
fsl_u08 FSL_GetSwapState(fsl_u08 __near *data_destination_pu08)

RENESAS CC-RL compiler
fsl_u08 __far FSL_GetSwapState(fsl_u08 __near *data_destination_pu08)

LLVM compiler
fsl_u08 __far FSL_GetSwapState(fsl_u08 __near *data_destination_pu08)

 __attribute__ ((section ("FSL_FECD")))

<Assembler>
CALL !_FSL_GetSwapState or CALL !!_FSL_GetSwapState

Remark Call with "!" when the flash self-programming library is allocated at 00000H-0FFFFH, or call with "!!"
otherwise.

[Presetting]

 Before the execution of this function, after FSL_Init function is completed normally, FSL_Open function must

make execution complete.

[Function]

Obtains the current boot cluster swap state and inputs the value to the data storage buffer specified in the

argument.

[Register State After Call]

Development tool Return value Destructed register

RENESAS CA78K0R compiler C(General-purpose register) -

RENESAS CC-RL compiler A(General-purpose register) -

LLVM compiler A(General-purpose register) -

 [Argument]

Definition of argument

Argument Description

fsl_u08 __near *data_destination_pu08 Data storage buffer

- Reserve a 1-byte data buffer.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 82 of 115
Dec 26, 2023

<R>

Contents of argument settings

Development tool
Argument Type/Register

C language Assembly language

RENESAS CA78K0R compiler __near *data_destination_pu08 AX(0-15):

The start address of the data buffer (16 bits)

RENESAS CC-RL compiler __near *data_destination_pu08 AX(0-15):

The start address of the data buffer (16 bits)

LLVM compiler __near *data_destination_pu08 AX(0-15):

The start address of the data buffer (16 bits)

[Return Value]

State Description

0x00(FSL_OK) Normal completion

0x1F(FSL_ERR_FLOW) Flow error

- The processing of the flash function executed immediately before has not been

completed.Note

- The prerequisite defined in presetting is violated.

- Flash self-programming is in the pause state.Note

Note Only in the status check user mode.

Boot swap status

The boot swap information is written to the data storage buffer (data_destination_pu08) passed in the argument.

data_destination_pu08 Description

0x00 The current boot area (The area from 0000H) is Boot Cluster 0.

0x01 The current boot area (The area from 0000H) is Boot Cluster 1.

Remark For the status of the boot area after the reset, refer to the section on the FSL_GetBootFlag function.

Example RL78/G13: The boot area size (one cluster) is 4KB.

RL78/F13: The boot area size (one cluster) is 8KB.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 83 of 115
Dec 26, 2023

<R>

<R>

FSL_GetBlockEndAddr

[Overview]

Acquisition of the final address of the specified block

[Format]

<C language>

RENESAS CA78K0R compiler
fsl_u08 FSL_GetBlockEndAddr(__near fsl_getblockendaddr_t* getblockendaddr_pstr)

RENESAS CC-RL compiler
fsl_u08 __far FSL_GetBlockEndAddr(__near fsl_getblockendaddr_t*

getblockendaddr_pstr)

LLVM compiler
fsl_u08 __far FSL_GetBlockEndAddr(__near fsl_getblockendaddr_t*
 getblockendaddr_pstr) __attribute__ ((section ("FSL_FECD")));

<Assembler>
CALL !_FSL_GetBlockEndAddr or CALL !!_FSL_GetBlockEndAddr

Remark Call with "!" when the flash self-programming library is allocated at 00000H-0FFFFH, or call with "!!"

otherwise.

[Presetting]

Before the execution of this function, after FSL_Init function is completed normally, FSL_Open function must make

execution complete.

[Function]

Obtains the final address of the block specified in the argument and inputs the value to the data storage buffer.

[Register State After Call]

Development tool Return value Destructed register

RENESAS CA78K0R compiler C(General-purpose register) -

RENESAS CC-RL compiler A(General-purpose register) -

LLVM compiler A(General-purpose register) -

 [Argument]

Definition of argument

Argument Description

__near fsl_getblockendaddr_t*

getblockendaddr_pstr

The pointer to the structure which obtains the end address of the specified block.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 84 of 115
Dec 26, 2023

<R>

<R>

Definition of fsl_getblockendaddr_t

Development tool C language (Structure definition) Assembly language (Example of definition)

RENESAS CA78K0R compiler typedef struct {
fsl_u32 fsl_destination_address_u32;
fsl_u16 fsl_block_u16

} fsl_getblockendaddr_t;

fsl_getblockendaddr_str:

fsl_destination_address_u32: DS 4
fsl_block_u16: DS 2

RENESAS CC-RL compiler typedef struct {
fsl_u32 fsl_destination_address_u32;
fsl_u16 fsl_block_u16

} fsl_getblockendaddr_t;

fsl_getblockendaddr_str:

fsl_destination_address_u32: .DS 4
fsl_block_u16: .DS 2

LLVM compiler typedef struct {
fsl_u32 fsl_destination_address_u32;
fsl_u16 fsl_block_u16

} fsl_getblockendaddr_t;

Check the compiler specifications.

Contents of fsl_getblockendaddr_t

Argument Description

fsl_u32 fsl_destination_address_u32 End address storage buffer :Output

- Reserve a 4-byte data buffer.

fsl_u16 fsl_block_u16 Block number :Input

Contents of argument settings

Development tool
Argument Type/Register

C language Assembly language

RENESAS CA78K0R compiler __near fsl_getblockendaddr_t*

getblockendaddr_pstr

AX(0-15):

The start address of the variable (16 bits)

RENESAS CC-RL compiler __near fsl_getblockendaddr_t*

getblockendaddr_pstr

AX(0-15):

The start address of the variable (16 bits)

LLVM compiler __near fsl_getblockendaddr_t*

getblockendaddr_pstr

AX(0-15):

The start address of the variable (16 bits)

[Return Value]

State Description

0x00(FSL_OK) Normal completion

0x05(FSL_ ERR_PARAMETER) Parameter error

- The specification of the block number is outside the allowable setting range.

0x1F(FSL_ERR_FLOW) Flow error

- The processing of the flash function executed immediately before has not

been completed.Note

- The prerequisite defined in presetting is violated.

- Flash self-programming is in the pause state.Note

Note Only in the status check user mode.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 85 of 115
Dec 26, 2023

<R>

<R>

FSL_GetFlashShieldWindow

[Overview]

Acquisition of the start block number and end block number of the flash shield window

[Format]

<C language>

RENESAS CA78K0R compiler
fsl_u08 FSL_GetFlashShieldWindow(__near fsl_fsw_t* getfsw_pstr);

RENESAS CC-RL compiler
fsl_u08 __far FSL_GetFlashShieldWindow(__near fsl_fsw_t* getfsw_pstr);

LLVM compiler
fsl_u08 __far FSL_GetFlashShieldWindow(__near fsl_fsw_t* getfsw_pstr)

 __attribute__ ((section ("FSL_FECD")))

<Assembler>
CALL !_FSL_GetFlashShieldWindow or CALL !!_FSL_GetFlashShieldWindow

Remark Call with "!" when the flash self-programming library is allocated at 00000H-0FFFFH, or call with "!!"

otherwise.

[Presetting]

Before the execution of this function, after FSL_Init function is completed normally, FSL_Open function must make

execution complete.

[Function]

Obtains the start block and end block of the flash shield window and inputs the values to the data storage buffers

fsl_start_block_u16 (start block) and fsl_end_block_u16 (end block) specified in the arguments, respectively.

[Register State After Call]

Development tool Return value Destructed register

RENESAS CA78K0R compiler C(General-purpose register) -

RENESAS CC-RL compiler A(General-purpose register) -

LLVM compiler A(General-purpose register) -

 [Argument]

Definition of argument

Argument Description

__near fsl_fsw_t* getfsw_pstr Variable for obtaining FSW settings

(FSW start block number and end block number)

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 86 of 115
Dec 26, 2023

<R>

<R>

Definition of fsl_fsw_t

Development tool C language (Structure definition) Assembly language (Example of definition)

RENESAS CA78K0R compiler typedef struct {
fsl_u16 fsl_start_block_u16;
fsl_u16 fsl_end_block_u16;

} fsl_fsw_t;

getfsw_pstr:
fsl_start_block_u16: DS 2
fsl_end_block_u16 : DS 2

RENESAS CC-RL compiler typedef struct {
fsl_u16 fsl_start_block_u16;
fsl_u16 fsl_end_block_u16;

} fsl_fsw_t

getfsw_pstr:
fsl_start_block_u16: .DS 2

fsl_end_block_u16 : .DS 2

LLVM compiler typedef struct {
fsl_u16 fsl_start_block_u16;
fsl_u16 fsl_end_block_u16;

} fsl_fsw_t

Check the compiler specifications.

Contents of __near fsl_fsw_t

Argument Description

fsl_u16 fsl_start_block_u16; FSW start block storage buffer

- Reserve a 2-byte data buffer.

fsl_u16 fsl_end_block_u16; FSW end block storage buffer

- Reserve a 2-byte data buffer.

Contents of argument settings

Development tool
Argument Type/Register

C language Assembly language

RENESAS CA78K0R compiler __near fsl_fsw_t* getfsw_pstr AX(0-15):

The start address of the variable (16 bits)

RENESAS CC-RL compiler __near fsl_fsw_t* getfsw_pstr AX(0-15):

The start address of the variable (16 bits)

LLVM compiler __near fsl_fsw_t* getfsw_pstr AX(0-15):

The start address of the variable (16 bits)

[Return Value]

State Description

0x00(FSL_OK) Normal completion

0x1F(FSL_ERR_FLOW) Flow error

- The processing of the flash function executed immediately before has not been

completed.Note

- The prerequisite defined in presetting is violated.

- Flash self-programming is in the pause state.Note

Note Only in the status check user mode.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 87 of 115
Dec 26, 2023

<R>

FSL_SwapBootCluster

[Overview]

Execution of boot swapping and jumping to the address registered in the reset vector in the swapped area

[Format]

<C language>

RENESAS CA78K0R compiler
fsl_u08 FSL_SwapBootCluster(void)

RENESAS CC-RL compiler
fsl_u08 __far FSL_SwapBootCluster(void)

LLVM compiler
fsl_u08 __far FSL_SwapBootCluster(void) __attribute__ ((section ("FSL_RCD")))

<Assembler>
CALL !_FSL_SwapBootCluster or CALL !!_FSL_SwapBootCluster

Remark Call with "!" when the flash self-programming library is allocated at 00000H-0FFFFH, or call with "!!"

otherwise.

[Presetting]

Before the execution of this function, after FSL_Init function is completed normally, FSL_Open function and

FSL_PrepareExtFunctions function must make execution complete. Also, when an interrupt must be received

before the processing is completed, use the FSL_ChangeInterruptTable function to change the interrupt

destination to the RAM.

[Function]

Disables interrupts (DI) and performs swapping of the boot clusters immediately after the execution of the function.

Execution moves to the address registered to the reset vector in the swapped area (unlike the reset function of the

RL78 microcontroller, program execution is started only from the reset vector address).

Cautions 1. Do not execute this function in an RL78 microcontroller that does not support boot swapping.

 2. Before the execution of swapping, always write the setting information required for operation after
swapping such as the option byte setting to the swap destination area.

 3. When this function is executed normally, the code written after this function is not executed because
execution moves to the address registered in the reset vector in the swapped boot cluster.

 4. This function does not invert the boot flag. When a reset is performed, the boot cluster enters the
state according to the boot flag setting.

 5. When the FSL_ChangeInterruptTable function is executed with the interrupt destination changed,
interrupt processing will go to the area changed by the FSL_ChangeInterruptTable function even after
moving to the address registered in the reset vector. To move to the address registered in the
restored reset vector, execute the FSL_RestoreInterruptTable function to restore the interrupt
destination before executing this function.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 88 of 115
Dec 26, 2023

<R>

 6. If both (1) and (2) below are satisfied, this function can be allocated on the internal ROM for use.

(1) The status check mode is set to the status check internal mode with the FSL_Init function.

(2) "Do not use interrupts" or "disable interrupts on the internal ROM" until the processing of this
function is completed (the reception of interrupts on the RAM is permitted).

 7. The FSL_SwapBootCluster function execute exchange for the boot cluster 0 and the boot cluster 1.
Do not locate the user program, data, and the flash self-programming library required for
programming on a boot cluster.

[Register State After Call]

Development tool Return value Destructed register

RENESAS CA78K0R compiler C(General-purpose register) -

RENESAS CC-RL compiler A(General-purpose register) -

LLVM compiler A(General-purpose register) -

 [Argument]

None

[Return Value]

State Description

0x10(FSL_ERR_PROTECTION) Protect error

- Boot swapping was attempted in the boot area rewrite-protected state.

0x1F(FSL_ERR_FLOW) Flow error

- The processing of the flash function executed immediately before has not

been completed.Note

- The prerequisite defined in presetting is violated.

- Flash self-programming is in the pause state.Note

Note Only in the status check user mode.

Remark For normal completion, the return value cannot be checked.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 89 of 115
Dec 26, 2023

[Flow]

Swap processing of the boot cluster

Read the reset vector

Jump to the registered address
of the reset vector

Function return

YES

NO

PUSH PSW

POP PSW End the flash environment

DI

Error?

 FSL_SwapBootCluster

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 90 of 115
Dec 26, 2023

<R>

FSL_SwapActiveBootCluster

[Overview]

Inverting of the current value of the boot flag and execution of boot swapping

[Format]

<C language>

RENESAS CA78K0R compiler
fsl_u08 FSL_SwapActiveBootCluster(void)

RENESAS CC-RL compiler
fsl_u08 __far FSL_SwapActiveBootCluster(void)

LLVM compiler
fsl_u08 __far FSL_SwapActiveBootCluster(void) __attribute__ ((section ("FSL_RCD")))

<Assembler>
CALL !_FSL_SwapActiveBootCluster or CALL !!_FSL_SwapActiveBootCluster

Remark Call with "!" when the flash self-programming library is allocated at 00000H-0FFFFH, or call with "!!"

otherwise.

[Presetting]

Before the execution of this function, after FSL_Init function is completed normally, FSL_Open function and
FSL_PrepareExtFunctions function must make execution complete. Also, when an interrupt must be received
before the processing is completed, use the FSL_ChangeInterruptTable function to change the interrupt
destination to the RAM.

[Function]
When this function is executed, the current value of the boot flag is inverted, and boot clusters are swapped.

Cautions 1. Do not execute this function in an RL78 microcontroller that does not support boot swapping.

 2. Before the execution of swapping, always write the setting information required for operation after
swapping such as the option byte setting to the swap destination area.

 3. The boot clusters are swapped without a reset. Do not allocate the user program, data, or flash
self-programming library required for rewriting in the boot cluster. If it is required to refer to the
program or data in the boot cluster after the execution of this function, use it with considering that the
boot clusters are swapped.

 4. This function cannot be executed from the ROM. To use this function, allocate the FSL_RCD
segment on the RAM.

 5. After the execution of this function, the interrupt vector on the ROM is also changed. To use interrupt
processing on the ROM before and after the execution, use it with considering that the interrupt vector
on the ROM switches during operation.

 6. When this function is used, the functions contained in the FSL_RCD segment cannot be allocated on
the ROM for use.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 91 of 115
Dec 26, 2023

<R>

[Register State After Call]

Development tool Return value Destructed register

RENESAS CA78K0R compiler C(General-purpose register) -

RENESAS CC-RL compiler A(General-purpose register) -

LLVM compiler A(General-purpose register) -

 [Argument]

None

[Return Value]

State Description

0x00(FSL_OK) Normal completionNote1

0x10(FSL_ERR_PROTECTION) Protect error

- Changing of the flag from protected to permitted was attempted.

- Changing of the boot area switching flag was attempted in the boot area

rewrite-protected state.

0x1A(FSL_ERR_ERASE) Erasure errorNote1

- An error occurred during erasure processing.

0x1B(FSL_ERR_IVERIFY) Internal verification errorNote1

- An error occurred during verification (internal verification) processing.

0x1C(FSL_ERR_WRITE) Writing errorNote1

- An error occurred during write processing.

0x1F(FSL_ERR_FLOW) Flow error

- The processing of the flash function executed immediately before has not been

completed.Note2

- The prerequisite defined in presetting is violated.

- Flash self-programming is in the pause state.Note2

0xFF(FSL_BUSY) Execution start of this functionNote2

- The execution of this function has been started.

(Check the execution state with the FSL_StatusCheck function.)

Notes 1. Only in the status check internal mode.
 2. Only in the status check user mode.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 92 of 115
Dec 26, 2023

<R>

FSL_InvertBootFlag

[Overview]

Inverting of the current value of the boot flag

[Format]

<C language>

RENESAS CA78K0R compiler
fsl_u08 FSL_InvertBootFlag(void)

RENESAS CC-RL compiler
fsl_u08 __far FSL_InvertBootFlag(void)

LLVM compiler
fsl_u08 __far FSL_InvertBootFlag(void) __attribute__ ((section ("FSL_RCD")))

<Assembler>
CALL !_FSL_InvertBootFlag or CALL !!_FSL_InvertBootFlag

Remark Call with "!" when the flash self-programming library is allocated at 00000H-0FFFFH, or call with "!!"

otherwise.

[Presetting]

Before the execution of this function, after FSL_Init function is completed normally, FSL_Open function and

FSL_PrepareExtFunctions function must make execution complete. Also, when an interrupt must be received

before the processing is completed, use the FSL_ChangeInterruptTable function to change the interrupt

destination to the RAM.

[Function]

Inverts the current value of the boot flag. After a reset, the boot cluster enters the state according to the boot flag

setting.

Cautions 1. Do not execute this function in an RL78 microcontroller that does not support boot swapping.

 2. The boot cluster is not inverted upon execution of this function.

 3. If both (1) and (2) below are satisfied, this function can be allocated on the internal ROM for use.

(1) The status check mode is set to the status check internal mode with the FSL_Init function.

(2) "Do not use interrupts" or "disable interrupts on the internal ROM" until the processing of this
function is completed (the reception of interrupts on the RAM is permitted).

[Register State After Call]

Development tool Return value Destructed register

RENESAS CA78K0R compiler C(General-purpose register) -

RENESAS CC-RL compiler A(General-purpose register) -

LLVM compiler A(General-purpose register) -

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 93 of 115
Dec 26, 2023

 [Argument]

None

[Return Value]

State Description

0x00(FSL_OK) Normal completionNote1

0x10(FSL_ERR_PROTECTION) Protect error

- Changing of the flag from protected to permitted was attempted.

- Changing of the boot area switching flag was attempted in the boot area

rewrite-protected state.

0x1A(FSL_ERR_ERASE) Erasure errorNote1

- An error occurred during erasure processing.

0x1B(FSL_ERR_IVERIFY) Internal verification errorNote1

- An error occurred during verification (internal verification) processing.

0x1C(FSL_ERR_WRITE) Writing errorNote1

- An error occurred during write processing.

0x1F(FSL_ERR_FLOW) Flow error

- The processing of the flash function executed immediately before has not been

completed.Note2

- The prerequisite defined in presetting is violated.

- Flash self-programming is in the pause state.Note2

0xFF(FSL_BUSY) Execution start of this functionNote2

- The execution of this function has been started.

(Check the execution state with the FSL_StatusCheck function.)

Notes 1. Only in the status check internal mode.
 2. Only in the status check user mode.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 94 of 115
Dec 26, 2023

<R>

<R>

FSL_SetBlockEraseProtectFlag

[Overview]

Setting of the block erasure protection flag to protected

[Format]

<C language>

RENESAS CA78K0R compiler
fsl_u08 FSL_SetBlockEraseProtectFlag(void)

RENESAS CC-RL compiler
fsl_u08 __far FSL_SetBlockEraseProtectFlag(void)

LLVM compiler
Fsl_u08 __far FSL_SetBlockEraseProtectFlag(void)

 __attribute__ ((section ("FSL_RCD")))

<Assembler>
CALL !_FSL_SetBlockEraseProtectFlag or CALL !!_FSL_SetBlockEraseProtectFlag

Remark Call with "!" when the flash self-programming library is allocated at 00000H-0FFFFH, or call with "!!"

otherwise.

[Presetting]

Before the execution of this function, after FSL_Init function is completed normally, FSL_Open function and

FSL_PrepareExtFunctions function must make execution complete. Also, when an interrupt must be received

before the processing is completed, use the FSL_ChangeInterruptTable function to change the interrupt

destination to the RAM.

[Function]

Sets the block erasure protection flag to protected. Block erasure for the device by the programmer cannot be

done.

Caution If both (1) and (2) below are satisfied, this function can be allocated on the internal ROM for use.
(1) The status check mode is set to the status check internal mode with the FSL_Init function.

(2) "Do not use interrupts" or "disable interrupts on the internal ROM" until the processing of this
function is completed (the reception of interrupts on the RAM is permitted).

[Register State After Call]

Development tool Return value Destructed register

RENESAS CA78K0R compiler C(General-purpose register) -

RENESAS CC-RL compiler A(General-purpose register) -

LLVM compiler A(General-purpose register) -

 [Argument]

None

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 95 of 115
Dec 26, 2023

[Return Value]

State Description

0x00(FSL_OK) Normal completionNote1

0x1A(FSL_ERR_ERASE) Erasure errorNote1

- An error occurred during erasure processing.

0x1B(FSL_ERR_IVERIFY) Internal verification errorNote1

- An error occurred during verification (internal verification) processing.

0x1C(FSL_ERR_WRITE) Writing errorNote1

- An error occurred during write processing.

0x1F(FSL_ERR_FLOW) Flow error

- The processing of the flash function executed immediately before has not been

completed.Note2

- The prerequisite defined in presetting is violated.

- Flash self-programming is in the pause state.Note2

0xFF(FSL_BUSY) Execution start of this functionNote2

- The execution of this function has been started.

(Check the execution state with the FSL_StatusCheck function.)

Notes 1. Only in the status check internal mode.
 2. Only in the status check user mode.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 96 of 115
Dec 26, 2023

<R>

<R>

FSL_SetWriteProtectFlag

[Overview]

Setting of the write protection flag to protected

[Format]

<C language>

RENESAS CA78K0R compiler
fsl_u08 FSL_SetWriteProtectFlag(void)

RENESAS CC-RL compiler
fsl_u08 __far FSL_SetWriteProtectFlag(void)

LLVM compiler
fsl_u08 __far FSL_SetWriteProtectFlag(void) __attribute__ ((section ("FSL_RCD")))

<Assembler>
CALL !_FSL_SetWriteProtectFlag or CALL !!_FSL_SetWriteProtectFlag

Remark Call with "!" when the flash self-programming library is allocated at 00000H-0FFFFH, or call with "!!"

otherwise.

[Presetting]

Before the execution of this function, after FSL_Init function is completed normally, FSL_Open function and

FSL_PrepareExtFunctions function must make execution complete. Also, when an interrupt must be received

before the processing is completed, use the FSL_ChangeInterruptTable function to change the interrupt

destination to the RAM.

[Function]

Sets the write protection flag to protected. When it is set to protected, writing to the device by the programmer

cannot be done.

Caution If both (1) and (2) below are satisfied, this function can be allocated on the internal ROM for use.
(1) The status check mode is set to the status check internal mode with the FSL_Init function.

(2) "Do not use interrupts" or "disable interrupts on the internal ROM" until the processing of this
function is completed (the reception of interrupts on the RAM is permitted).

[Register State After Call]

Development tool Return value Destructed register

RENESAS CA78K0R compiler C(General-purpose register) -

RENESAS CC-RL compiler A(General-purpose register) -

LLVM compiler A(General-purpose register) -

 [Argument]

None

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 97 of 115
Dec 26, 2023

[Return Value]

State Description

0x00(FSL_OK) Normal completionNote1

0x1A(FSL_ERR_ERASE) Erasure errorNote1

- An error occurred during erasure processing.

0x1B(FSL_ERR_IVERIFY) Internal verification errorNote1

- An error occurred during verification (internal verification) processing.

0x1C(FSL_ERR_WRITE) Writing errorNote1

- An error occurred during write processing.

0x1F(FSL_ERR_FLOW) Flow error

- The processing of the flash function executed immediately before has not been

completed.Note2

- The prerequisite defined in presetting is violated.

- Flash self-programming is in the pause state.Note2

0xFF(FSL_BUSY) Execution start of this functionNote2

- The execution of this function has been started.

(Check the execution state with the FSL_StatusCheck function.)

Notes 1. Only in the status check internal mode.
 2. Only in the status check user mode.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 98 of 115
Dec 26, 2023

<R>

<R>

FSL_SetBootClusterProtectFlag

[Overview]

Setting of the boot area rewrite protection flag to protected

[Format]

<C language>

RENESAS CA78K0R compiler
fsl_u08 FSL_SetBootClusterProtectFlag(void)

RENESAS CC-RL compiler
fsl_u08 __far FSL_SetBootClusterProtectFlag(void)

LLVM compiler
fsl_u08 __far FSL_SetBootClusterProtectFlag(void)

 __attribute__ ((section ("FSL_RCD")))

<Assembler>
CALL !_FSL_SetBootClusterProtectFlag or CALL !!_FSL_SetBootClusterProtectFlag

Remark Call with "!" when the flash self-programming library is allocated at 00000H-0FFFFH, or call with "!!"

otherwise.

[Presetting]

Before the execution of this function, after FSL_Init function is completed normally, FSL_Open function and

FSL_PrepareExtFunctions function must make execution complete. Also, when an interrupt must be received

before the processing is completed, use the FSL_ChangeInterruptTable function to change the interrupt

destination to the RAM.

[Function]

Sets the boot area rewrite protection flag to protected. When it is set to protected, swapping, erasure, and writing

to the boot cluster cannot be done.

Caution If both (1) and (2) below are satisfied, this function can be allocated on the internal ROM for use.
(1) The status check mode is set to the status check internal mode with the FSL_Init function.

(2) "Do not use interrupts" or "disable interrupts on the internal ROM" until the processing of this
function is completed (the reception of interrupts on the RAM is permitted).

[Register State After Call]

Development tool Return value Destructed register

RENESAS CA78K0R compiler C(General-purpose register) -

RENESAS CC-RL compiler A(General-purpose register) -

LLVM compiler A(General-purpose register) -

 [Argument]

None

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 99 of 115
Dec 26, 2023

[Return Value]

State Description

0x00(FSL_OK) Normal completionNote1

0x1A(FSL_ERR_ERASE) Erasure errorNote1

- An error occurred during erasure processing.

0x1B(FSL_ERR_IVERIFY) Internal verification errorNote1

- An error occurred during verification (internal verification) processing.

0x1C(FSL_ERR_WRITE) Writing errorNote1

- An error occurred during write processing.

0x1F(FSL_ERR_FLOW) Flow error

- The processing of the flash function executed immediately before has not been

completed.Note2

- The prerequisite defined in presetting is violated.

- Flash self-programming is in the pause state.Note2

0xFF(FSL_BUSY) Execution start of this functionNote2

- The execution of this function has been started.

(Check the execution state with the FSL_StatusCheck function.)

Notes 1. Only in the status check internal mode.
 2. Only in the status check user mode.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 100 of 115
Dec 26, 2023

<R>

FSL_SetFlashShieldWindow

[Overview]

Setting of the flash shield window

[Format]

<C language>

RENESAS CA78K0R compiler
fsl_u08 FSL_SetFlashShieldWindow(__near fsl_fsw_t* setfsw_pstr)

RENESAS CC-RL compiler
fsl_u08 __far FSL_SetFlashShieldWindow(__near fsl_fsw_t* setfsw_pstr)

LLVM compiler
fsl_u08 __far FSL_SetFlashShieldWindow(__near fsl_fsw_t* setfsw_pstr)

 __attribute__ ((section ("FSL_RCD")))

<Assembler>
CALL !_FSL_SetFlashShieldWindow or CALL !!_FSL_SetFlashShieldWindow

Remark Call with "!" when the flash self-programming library is allocated at 00000H-0FFFFH, or call with "!!"

otherwise.

[Presetting]

Before the execution of this function, after FSL_Init function is completed normally, FSL_Open function,

FSL_PrepareFunctions function and FSL_PrepareExtFunctions function must make execution complete. Also,

when an interrupt must be received before the processing is completed, use the FSL_ChangeInterruptTable

function to change the interrupt destination to the RAM.

[Function]

Sets the flash shield window.

Caution If both (1) and (2) below are satisfied, this function can be allocated on the internal ROM for use.
(1) The status check mode is set to the status check internal mode with the FSL_Init function.

(2) "Do not use interrupts" or "disable interrupts on the internal ROM" until the processing of this
function is completed (the reception of interrupts on the RAM is permitted).

Remark The flash shield window function is incorporated as a security function used during the execution of

flash self-programming.

During the execution of flash self-programming, writing and erasure are permitted in the code flash

memory in the range specified as the window, but prohibited in the code flash memory outside the

specified range. However, during on-board/off-board programming, writing and erasure are

permitted even in the code flash memory outside the range specified as the window. When the

range specified as the window and the rewrite-protected area of Boot Cluster 0 overlap, rewrite

protection of Boot Cluster 0 has precedence.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 101 of 115
Dec 26, 2023

<R>

<R>

<R>

[Register State After Call]

Development tool Return value Destructed register

RENESAS CA78K0R compiler C(General-purpose register) -

RENESAS CC-RL compiler A(General-purpose register) -

LLVM compiler A(General-purpose register) -

[Argument]

Definition of argument

Argument Description

__near fsl_fsw_t* setfsw_pstr Variable for FSW setting

(FSW start block number and end block number)

Definition of __near fsl_fsw_t

Development tool C language (Structure definition) Assembly language (Example of definition)

RENESAS CA78K0R compiler typedef struct {
fsl_u16 fsl_start_block_u16;
fsl_u16 fsl_end_block_u16;

} fsl_fsw_t;

fsl_fsw_str:
fsl_start_block_u16: DS 2
fsl_end_block_u16 : DS 2

RENESAS CC-RL compiler typedef struct {
fsl_u16 fsl_start_block_u16;
fsl_u16 fsl_end_block_u16;

} fsl_fsw_t;

fsl_fsw_str:
fsl_start_block_u16: .DS 2
fsl_end_block_u16 : .DS 2

LLVM compiler typedef struct {
fsl_u16 fsl_start_block_u16;
fsl_u16 fsl_end_block_u16;

} fsl_fsw_t;

Check the compiler specifications.

Contents of __near fsl_fsw_t

Argument Description

fsl_u16 fsl_start_block_u16;
FSW start block storage buffer

- Reserve a 2-byte data buffer.

fsl_u16 fsl_end_block_u16;
FSW end block storage buffer

- Reserve a 2-byte data buffer.

Contents of argument settings

Development tool
Argument Type/Register

C language Assembly language

RENESAS CA78K0R compiler __near fsl_fsw_t* setfsw_pstr AX(0-15):

The start address of the variable (16 bits)

RENESAS CC-RL compiler __near fsl_fsw_t* setfsw_pstr AX(0-15):

The start address of the variable (16 bits)

LLVM compiler __near fsl_fsw_t* setfsw_pstr AX(0-15):

The start address of the variable (16 bits)

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 102 of 115
Dec 26, 2023

[Return Value]

State Description

0x00(FSL_OK) Normal completionNote1

0x05(FSL_ERR_PARAMETER) Parameter error

- The specification of the block number is outside the allowable setting range.

0x1A(FSL_ERR_ERASE) Erasure errorNote1

- An error occurred during erasure processing.

0x1B(FSL_ERR_IVERIFY) Internal verification errorNote1

- An error occurred during verification (internal verification) processing.

0x1C(FSL_ERR_WRITE) Writing errorNote1

- An error occurred during write processing.

0x1F(FSL_ERR_FLOW) Flow error

- The processing of the flash function executed immediately before has not been

completed.Note2

- The prerequisite defined in presetting is violated.

- Flash self-programming is in the pause state.Note2

0xFF(FSL_BUSY) Execution start of this functionNote2

- The execution of this function has been started.

(Check the execution state with the FSL_StatusCheck function.)

Notes 1. Only in the status check internal mode.
 2. Only in the status check user mode.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 103 of 115
Dec 26, 2023

<R>

<R>

FSL_StatusCheck

[Overview]

Checking of the operation state of the flash function

[Format]

<C language>

RENESAS CA78K0R compiler
fsl_u08 FSL_StatusCheck(void)

RENESAS CC-RL compiler
fsl_u08 __far FSL_StatusCheck(void)

LLVM compiler
fsl_u08 __far FSL_StatusCheck(void) __attribute__ ((section ("FSL_RCD")))

<Assembler>
CALL !_FSL_StatusCheck or CALL !!_FSL_StatusCheck

Remark Call with "!" when the flash self-programming library is allocated at 00000H-0FFFFH, or call with "!!"

otherwise.

[Presetting]

• Before the execution of this function, after FSL_Init function is completed normally, FSL_Open function and

FSL_PrepareFunctions function must make execution complete. Also, when an interrupt must be received

before the processing is completed, use the FSL_ChangeInterruptTable function to change the interrupt

destination to the RAM.

• This function can be used only in the status check user mode.

[Function]

Checks the start, progress, and status of the flash function executed immediately before.

[Register State After Call]

Development tool Return value Destructed register

RENESAS CA78K0R compiler C(General-purpose register) -

RENESAS CC-RL compiler A(General-purpose register) -

LLVM compiler A(General-purpose register) -

 [Argument]

None

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 104 of 115
Dec 26, 2023

[Return Value]

State Description

0x00(FSL_OK) Normal completionNote

0x1A(FSL_ERR_ERASE) Erasure errorNote

- An error occurred during erasure processing.

0x1B(FSL_ERR_IVERIFY) Internal verification errorNote

- An error occurred during verification (internal verification) processing.

0x1B(FSL_ERR_BLANKCHECK) Blank check errorNote

- The specified block is not in the blank state.

0x1C(FSL_ERR_WRITE) Writing errorNote

- An error occurred during write processing.

0x1F(FSL_ERR_FLOW) Flow errorNote

- The prerequisite defined in presetting is violated.

- Flash self-programming is in the pause state.

0x30(FSL_ERR_IDLE) Non-execution errorNote

- No processing is in progress.

0xFF(FSL_BUSY) Flash function in executionNote

- The flash function is in execution.

Note Only in the status check user mode.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 105 of 115
Dec 26, 2023

<R>

<R>

FSL_StandBy

[Overview]

Suspension of erasure processing (FSL_Erase) and pausing of flash self-programming

[Format]

<C language>

RENESAS CA78K0R compiler
fsl_u08 FSL_StandBy(void)

RENESAS CC-RL compiler
fsl_u08 __far FSL_StandBy(void)

LLVM compiler
fsl_u08 __far FSL_StandBy(void) __attribute__ ((section ("FSL_RCD")))

<Assembler>
CALL !_FSL_StandBy or CALL !!_FSL_StandBy

Remark Call with "!" when the flash self-programming library is allocated at 00000H-0FFFFH, or call with "!!"

otherwise.

[Presetting]

• Before the execution of this function, after FSL_Init function is completed normally, FSL_Open function and

FSL_PrepareFunctions function must make execution complete.

• This function can be used only in the status check user mode.

[Function]

Suspends erasure processing (FSL_Erase) being executed, and holds the erasure processing (FSL_Erase) in the

pause state until FSL_WakeUp is executed.

When this function is executed, flash self-programming enters the pause state, and flash self-programming cannot

be executed until FSL_WakeUp is executed.

Cautions 1. During a pause of flash self-programming, the flash functions cannot be executed.

 To restart flash self-programming, the FSL_WakeUp function must be executed.

 2. A transition to the pause state occurs unless the return value is a flow error.

[Register State After Call]

Development tool Return value Destructed register

RENESAS CA78K0R compiler C(General-purpose register) -

RENESAS CC-RL compiler A(General-purpose register) -

LLVM compiler A(General-purpose register) -

 [Argument]

None

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 106 of 115
Dec 26, 2023

[Return Value]

State Description

0x00(FSL_OK) Normal completionNote1

0x1A(FSL_ERR_ERASE) Erasure errorNote1

- An error occurred during erasure processing before suspension.

0x1B(FSL_ERR_BLANKCHECK) Blank check errorNote1

- An error occurred during blank check processing before suspension.

0x1B(FSL_ERR_IVERIFY) Internal verification errorNote1

- An error occurred during verification (internal verification) processing before

suspension.

0x1C(FSL_ERR_WRITE) Writing errorNote1

- An error occurred during write processing before suspension.

0x1F(FSL_ERR_FLOW) Flow errorNote1 (does not result in the pause state)

- The prerequisite defined in presetting is violated.

- Flash self-programming is in the pause state.

0x30(FSL_ERR_IDLE) Non-execution errorNote1

- No processing is in progress.

0x43(FSL_SUSPEND) Pausing of the flash functionNote1, 2

- The processing of the flash function in execution is paused.

Notes 1. Only in the status check user mode.
 2. Only when erasure processing is paused.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 107 of 115
Dec 26, 2023

<R>

<R>

FSL_WakeUp

[Overview]

Canceling of the pause state to restart flash self-programming

[Format]

<C language>

RENESAS CA78K0R compiler
fsl_u08 FSL_WakeUp(void)

RENESAS CC-RL compiler
fsl_u08 __far FSL_WakeUp(void)

LLVM compiler
fsl_u08 __far FSL_WakeUp(void) __attribute__ ((section ("FSL_RCD")))

<Assembler>
CALL !_FSL_WakeUp or CALL !!_FSL_WakeUp

Remark Call with "!" when the flash self-programming library is allocated at 00000H-0FFFFH, or call with "!!"

otherwise.

[Presetting]

• Before the execution of this function, after FSL_Init function is completed normally, FSL_Open function and

FSL_PrepareFunctions function must make execution complete.

• This function can be used only in the status check user mode.

[Function]

Cancels the pause state and restarts flash self-programming. If block erasure processing is suspended, it is

restarted.

[Register State After Call]

Development tool Return value Destructed register

RENESAS CA78K0R compiler C(General-purpose register) -

RENESAS CC-RL compiler A(General-purpose register) -

LLVM compiler A(General-purpose register) -

[Argument]

None

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 108 of 115
Dec 26, 2023

[Return Value]

State Description

0x00(FSL_OK) Normal completionNote1

0x1A(FSL_ERR_ERASE) Erasure errorNote1

- An error occurred in the restarted erasure processing.

0x1F(FSL_ERR_FLOW) Flow errorNote1

- The prerequisite defined in presetting is violated.

- Flash self-programming is not in the pause state.

0xFF(FSL_BUSY) Restarting of the flash functionNote1, 2

- The execution of the flash function was restarted.

(Check the execution state with the FSL_StatusCheck function.)

Notes 1. Only in the status check user mode.
 2. Only when erasure processing is restarted.

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 109 of 115
Dec 26, 2023

<R>

FSL_ForceReset

[Overview]

Resetting of the RL78 microcontroller in use

[Format]

<C language>

RENESAS CA78K0R compiler
void FSL_ForceReset(void)

RENESAS CC-RL compiler
void __far FSL_ForceReset(void)

LLVM compiler
void __far FSL_ForceReset(void) __attribute__ ((section ("FSL_RCD")))

<Assembler>
CALL !_FSL_ForceReset or CALL !!_FSL_ForceReset

Remark Call with "!" when the flash self-programming library is allocated at 00000H-0FFFFH, or call with "!!"

otherwise.

[Presetting]

None

[Function]

Executes the command code of 0xFF to generate an internal reset of the RL78 microcontroller in use.

Cautions 1. The RL78 microcontroller in use is reset, so the code written after this function is not executed.

 2. When this function is executed while E1,E2,E2 emulator Lite,E20 or IECUBE® is being used, a break
occurs and processing stops.

 Normal operation cannot be done after the occurrence of a break. Execute a manual reset.

 3. For the internal reset with the command code of 0xFF (internal reset through an illegal instruction),
refer to the user's manual of the target RL78 microcontroller.

[Register State After Call]

The registers are not destructed.

[Argument]

None

[Return Value]

None

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 110 of 115
Dec 26, 2023

<R>

<R>

FSL_GetVersionString

[Overview]

Acquisition of the version of the flash self-programming library

[Format]

<C language>

RENESAS CA78K0R compiler
__far fsl_u08* FSL_GetVersionString(void)

RENESAS CC-RL compiler
__far fsl_u08* __far FSL_GetVersionString(void)

LLVM compiler
__far fsl_u08 * __far FSL_GetVersionString(void)

 __attribute__ ((section ("FSL_FCD")))

<Assembler>
CALL !_FSL_GetVersionString or CALL !!_FSL_GetVersionString

Remark Call with "!" when the flash self-programming library is allocated at 00000H-0FFFFH, or call with "!!"

otherwise.

[Presetting]

None

[Function]

Obtains the start address that holds the version information of the flash self-programming library.

[Register State After Call]

Development tool Return value Destructed register

RENESAS CA78K0R compiler BC(0-15), DE(16-31) -

RENESAS CC-RL compiler DE(0-15), A(16-23) -

LLVM compiler DE(0-15), A(16-23) -

 [Argument]

None

RL78 Family CHAPTER 6 FLASH FUNCTIONS
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 111 of 115
Dec 26, 2023

<R>

[Return Value]

Data type Description

__far fsl_u08* The version information storage start address of the flash self-programming library

(far area)

The version information of the flash self-programming library consists of ASCII characters.

Example: Flash Self-Programming Library Type 01

"SRL78T01LyyyzGVxxx"
Version information: Example:V221 → V2.21

Compiler information(5 or 6 characters): CA78K0R [ex:RyyyG]

CC-RL and LLVM

 [ex:LyyyzG]

Type No.(3 characters): : T01 -> Type 01

Supported device(4 characters) : RL78

Target library(1 character) : ‘S’ is FSL

RL78 Family APPENDIX A REVISION HISTORY
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 112 of 115
Dec 26, 2023

APPENDIX A REVISION HISTORY

A. 1 Major Revisions in This Edition

Page Description Classification
Throughout the document

- Added information on the flash self-programming library for the LLVM compiler. (b)

- Moved the title of the figure number from the top of the figure to the bottom. (c)
Chapter 2 Programming Environment

P24 Added explanation about the LLVM compiler.
Added software resources for the LLVM compiler in Table 2-7.

(c)

P26 Added stack size for the LLVM compiler in Table 2-8. (c)

P28 Added explanation for allocating the self-RAM area when using the LLVM compiler. (c)

P29 Added explanation about the LLVM compiler. (c)
Chapter 6 Flash Function

P45 Added explanation about the LLVM compiler. (c)

P55 Added explanation about the LLVM compiler. (c)

P56 Add "Note" in the description of <Assembler>. (c)

P44-P111 Added settings for the LLVM compiler return values, C language format and
argument definitions for each function.

(c)

Remark "Classification" in the above table classifies revisions as follows.

 (a): Error correction, (b): Addition/change of specifications, (c): Addition/change of description or note,

(d): Addition/change of package, part number, or management division,

(e): Addition/change of related documents

RL78 Family APPENDIX A REVISION HISTORY
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 113 of 115
Dec 26, 2023

A. 2 Revision History of Preceding Editions

Here is the revision history of the preceding editions. Chapter indicates the chapter of each edition.
Rev. Description Chapter

Rev.1.05 Correction of errors. Throughout
the document

The ZIP file name was changed to the installer name. Cover
The supported device was corrected. Chapter 6 Flash

Function Operation example：Function name was changed from
FSL_ChangeInterruptTable() to FSL_RestoreInterruptTable().
The emulator was added.

Rev. Description Chapter

Rev.1.04 The English translation was reviewed and corrected. Throughout
the document The user's manual of the flash self-programming library for CC-RL was integrated

into this manual.
Support of the RL78/G11 group microcontrollers was added.
In Table 2-5, the description of FSL_Erase Call Interval was corrected. Chapter 2 Programming

Environment A description regarding the supported compilers was added.
In Table 2-7, the software resources for the CC-RL compiler were added.
In Table 2-8, the stack sizes for the CC-RL compiler were added.

In Tables 2-10 and 2-11, the ROM and RAM sizes for the CC-RL compiler were
added.
The methods for allocating the self-RAM area and specifying desired addresses
in the CC-RL compiler were added.
A description regarding the start of the high-speed on-chip oscillator was added.

A description regarding operation frequency setting was added.

The applicable versions were added to the restriction on segment allocation.

The description that each segment must not extend across a 64-Kbyte boundary
was added.
The method for representing hexadecimal numbers in the assembler in the
Renesas CC-RL compiler package was added.
A restriction regarding allocation of the functions for boot swapping was added. Chapter 5 Boot Swap

Function

In Table 6-1, the functions supported for the RL78/G11 group microcontrollers
were added.

Chapter 6 Flash
Function

In note 1, the status check mode supported for the RL78/G11 group
microcontrollers were added.
The heading of section 6.2 was changed ("Section" was added).
The description regarding allocation to specified areas was reviewed and
corrected.
The return values from each library function in the CC-RL compiler were added
The C-language format for each library function in the CC-RL compiler was
added.
The definitions and descriptions of the arguments for each library function in the
CC-RL compiler were added.
The descriptions regarding the return values and arguments in each function
were corrected.
The descriptions regarding the boot area addresses were modified.
Caution 7 was added to the description of the FSL_SwapBootCluster function.

RL78 Family APPENDIX A REVISION HISTORY
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 114 of 115
Dec 26, 2023

Rev. Description Chapter

Rev.1.03 The corresponding ZIP file name and release version were added to the cover. Throughout
the document The target device descriptions were deleted.

References to the list of the target MCUs were added.

The term "voltage mode" was changed to "flash memory programming mode" for
consistency of terminology.

Various types of operating frequency described in the former version were unified
to the CPU operating frequency.

A description regarding boot cluster 0 was added to the boot area.

The FSL_IVerify state check processing was added to Figure 2-2. Chapter 1 Overview

A description of the case when flash functions are executed in the RAM was added. Chapter 2 Programming
Environment The formula for calculating the minimum time of FSL_BlankCheck was added.

In Table 2-4, the formula for calculating the processing time for each function was
corrected.

The resources used to run the flash self-programming library were corrected.

In Table 2-7, the description of the self-RAM area was changed.

In note 1 on Table 2-7, the inquiry about device specifications was changed.

The restriction on versions up to 2.10 was deleted from Figure 2-9.

A note was added to Table 2-8 Stack Size Used by Flash Functions.

The description of the self-RAM was reviewed and corrected.

The available range for stack and data buffer specifications was corrected.

In (3), the description of the functions that require special care regarding the
watchdog timer operation was reviewed and corrected.

In (18), note on the prohibition of 64KB boundary arrangement added.

In Table 6-1, the column of basic functions added and position and description of
note was changed.

Chapter 6 Flash
Function

The status check mode was corrected from the user mode to the internal mode (in
table titles, etc.).

RL78 Family APPENDIX A REVISION HISTORY
Flash Self-Programming Library Type 01

R01US0050EJ0110 Rev.1.10 Page 115 of 115
Dec 26, 2023

Rev. Description Chapter

Rev.1.02 The document on the data flash library, which was classified as the application note
(old version of R01AN0350), was changed to the user’s manual.

Throughout
the document

The corresponding installer and release version were added to the cover page.
Contents of the processing time and software resources were moved from the
usage note to this document. Accordingly, the reference destination described in
this document was also changed.
The supported device was added.
The notation of high-speed OCO was deleted to unify the notation of high-speed
on-chip oscillator.
The description of the operating frequency was unified to the CPU operating
frequency since individual descriptions had different notations.
The state transition from “prepared” to “extprepared” was added to figure 1-1. Chapter 1 Overview

Description on the FSL_PrepareFunctions function was added.

The names of functions were clearly stated in the overall description.

Notes on rewriting were added.

Notes on internal verification were added.

State when the FSL_Close function is executed was added.

Notes on the interrupt were added. Chapter 2 Programming
Environment Description of the mode selection was added to the example of controlling rewriting

of the flash memory.
Description of the initial setting was added
Items regarding the processing time were added (the description of the processing
time was moved from the usage note to this document).
Items regarding the resources were added (the description on the resources was
moved from the usage note to this document).
Note on the frequency of the high-speed on-chip oscillator was added.

Note on the RAM parity error was added.

Note on the writing was added.

Description of the non-supported product (R5F10266) was added.

Note on the interrupt was added.

Note on the boot swap function was added.

Note on the security setting was added.

Notes on the interrupt were added. Chapter 3 Interrupts
During Execution of
Flash
Self-Programming

Note on the security setting was added. Chapter 4 Security
Setting

Tables of defining structures and tables of parameter contents were added.
Descriptions were added to the sections for assembler in the field of settings
of arguments.

Chapter 6 Flash
Function

Note on the internal reset was added.

RL78 Microcontrollers User’s Manual: Flash Self-Programming Library Type 01

Publication Date: Rev.1.00 Mar 31, 2011
 Rev.1.05 Oct 31, 2018
 Rev.1.10 Dec 26, 2023

Published by: Renesas Electronics Corporation

RL78 Family
Flash Self-Programming Library Type 01

R01US0050EJ0110

	Cover
	Notice
	General Precautions in the Handling of Microprocessing Unit and MicrocontrollerUnit Products
	How to Use This Manual
	CONTENTS
	CHAPTER 1 OVERVIEW
	1. 1 Overview
	1. 2 Calling Flash Self-Programming Library

	CHAPTER 2 PROGRAMMING ENVIRONMENT
	2. 1 Hardware Environment
	2. 1. 1 Initialization
	2. 1. 2 Blocks
	2. 1. 3 Processing time of flash self-programming

	2. 2 Software Environment
	2. 2. 1 Self-RAM
	2. 2. 2 Register bank
	2. 2. 3 Stack and data buffer
	2. 2. 4 Flash self-programming library
	2. 2. 5 Program area
	2. 2. 6 ROMization of programs

	2. 3 Cautions on Programming Environment

	CHAPTER 3 INTERRUPTS DURING EXECUTION OF FLASH SELF-PROGRAMMING
	3. 1 Overview
	3. 2 Interrupts During Execution of Flash Self-Programming
	3. 3 Cautions on Interrupts

	CHAPTER 4 SECURITY SETTINGS
	4. 1 Security Flags
	4. 2 Flash Shield Window Function

	CHAPTER 5 BOOT SWAP FUNCTION
	5. 1 Overview
	5. 2 Boot Swap Function
	5. 3 Boot Swapping Procedure
	5. 4 Cautions on Boot Swapping

	CHAPTER 6 FLASH FUNCTIONS
	6. 1 Types of Flash Functions
	6. 2 Segments of Flash Functions
	6. 3 Interrupts and BGO (Background Operation)
	6. 4 Status Check Mode
	6. 4. 1 Status Check User Mode

	6. 5 Pausing of Flash Self-Programming
	6. 6 List of Data Types and Return Values
	6. 7 Description of Flash Functions
	FSL_Init
	FSL_Open
	FSL_Close
	FSL_PrepareFunctions
	FSL_PrepareExtFunctions
	FSL_ChangeInterruptTable
	FSL_RestoreInterruptTable
	FSL_BlankCheck
	FSL_Erase
	FSL_IVerify
	FSL_Write
	FSL_GetSecurityFlags
	FSL_GetBootFlag
	FSL_GetSwapState
	FSL_GetBlockEndAddr
	FSL_GetFlashShieldWindow
	FSL_SwapBootCluster
	FSL_SwapActiveBootCluster
	FSL_InvertBootFlag
	FSL_SetBlockEraseProtectFlag
	FSL_SetWriteProtectFlag
	FSL_SetBootClusterProtectFlag
	FSL _SetFlashShieldWindow
	FSL_StatusCheck
	FSL_StandBy
	FSL_WakeUp
	FSL_ForceReset
	FSL_GetVersionString

	APPENDIX A REVISION HISTORY
	A. 1 Major Revisions in This Edition
	A. 2 Revision History of Preceding Editions

	Colophon
	Back Cover

