

RL78 Family

 EEPROM Emulation Library Pack02

Japanese Release

Installer name: RENESAS_RL78_EEL-FDL_T02_PACK02_xVxx.exe

Rev.1.10 Apr 2024

16-Bit Single-Chip Microcontroller

16

All information contained in these materials, including products and product specifications,

represents information on the product at the time of publication and is subject to change by

Renesas Electronics Corporation without notice. Please review the latest information published

by Renesas Electronics Corporation through various means, including the Renesas Electronics

Corporation website (http://www.renesas.com).

16

© 2024 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of
these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or
other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims
any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is
inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not
limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products
are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury,
injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety
design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging
degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered trademarks
are the property of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement

tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be

touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on
The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in

a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level

at which resetting is specified.

3. Input of signal during power-off state
Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements.

Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins
Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals
After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced

with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (Max.)

and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level

is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses
Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products
Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of

internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

How to Use This Manual

Target Readers This manual is intended for users who wish to understand the features of the RL78

family microcontrollers EEPROM Emulation Library Pack 02 and to use the library in
designing and developing application systems.

 Refer to the following list for the target MCUs.

"Self-Programming Library (Japanese Release) and Supported MCUs"

(R20UT2861XJxxxx)

"RL78 Family Self RAM list of Flash Self Programming Library" (R20UT2944)

Purpose This manual is intended to give users understanding of how to use EEPROM

Emulation Library Pack 02 to rewrite the flash data memory in RL78 family
microcontrollers (i.e. write constant data by the application).

Organization The RL78 Family EEPROM Emulation Library Pack 02 user’s manual is separated

into the following parts:
• Overview of EEPROM Emulation
• Using EEPORM Emulation
• EEPROM Emulation Function

How to Read This Manual It is assumed that the readers of this manual have general knowledge of electrical
engineering, logic circuits, and microcontrollers.
• To gain a general understanding of features

-> Read this manual in order of the table of contents.
• For details on the functions of the library

-> Refer to chapter 5, User Interface, of this user’s manual.

Conventions Data significance: Higher-order digits to the left and lower-order digits to the right
 Active low representations: xxx (overscore over pin and signal name)
 Note: Footnote for item marked with Note in the text.
 Caution: Information requiring particular attention
 Remark: Supplementary information
 Numeral representation: Binary ... xxxx or xxxxB
 Decimal ... xxxx
 Hexadecimal ... xxxxH or 0xXXXX

All trademarks and registered trademarks are the property of their respective owners.

EEPROM is a registered trademark of Renesas Electronics Corporation.

<R>

RL78 Family
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Index-1
Apr. 22, 2024

Contents

Chapter 1 Overview ... 1
1. 1 Outline .. 1
1. 2 Target Compilers .. 1
1. 3 Definition of Terms ... 1

Chapter 2 EEPROM Emulation ... 3
2. 1 Specifications of EEPROM Emulation .. 3
2. 2 Outline of Functions ... 3
2. 3 EEL Architecture ... 5

2. 3. 1 System Structure .. 5
2. 3. 2 EEL Pool .. 5
2. 3. 3 Structure of EEL Block ... 7
2. 3. 4 EEL Block Header ... 8
2. 3. 5 Structure of Stored Data .. 9
2. 3. 6 EEL Block Overview ... 10

Chapter 3 EEL Functional Specifications ... 11
3.1 EEL Functions/Commands of the EEL_Execute Function .. 11

3. 1. 1 EEL_CMD_STARTUP Command [Startup Processing] ... 11
3. 1. 2 EEL_CMD_SHUTDOWN Command [Shutdown Processing].................................. 11
3. 1. 3 EEL_CMD_REFRESH Command [Refresh Processing] .. 11
3. 1. 4 EEL_CMD_FORMAT Command [Format Processing] ... 12
3. 1. 5 EEL_CMD_WRITE Command [Write Processing] .. 12
3. 1. 6 EEL_CMD_READ Command [Read Processing] ... 12
3. 1. 7 EEL_CMD_VERIFY Command [Verify Processing] ... 12

3. 2 State Transitions ... 13
3. 3 Basic Flowchart .. 15
3. 4 Command Operation Flowchart .. 17
3. 5 BGO (Back Ground Operation) Function ... 18

Chapter 4 Using EEPROM Emulation .. 19
4. 1 Caution Points .. 19
4. 2 Number of Stored User Data Items and Total User Data Size .. 22
4. 3 Initial Values to be Set by User ... 23

Chapter 5 User Interface ... 26
5. 1 Request Structure (eel_request_t) Settings... 26

5.1.1 User Write Access .. 27
5.1.2 User Read Access .. 28

5. 2 EEL Function Calls ... 29
5. 3 Data Types ... 29
5. 4 EEL Functions ... 30

Chapter 6 Software Resources and Processing Time ... 50
6. 1 Processing Time ... 50

RL78 Family
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Index-2
Apr. 22, 2024

6. 2 Software Resources ... 52
6. 2. 1 Sections ... 54

Appendix A Revision History .. 55
A.1 Major Revisions in This Edition ... 55
A.2 Revision History of Previous Editions .. 56

RL78 Family Chapter 1 Overview
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 1 of 58
Apr. 22, 2024

Chapter 1 Overview

1. 1 Outline

EEPROM emulation is a feature used to store data in the on-board flash memory in the same way as EEPROM.

During EEPROM emulation, the data flash library and EEPROM emulation library are used, and the data flash

memory is written to and read from.

The data flash library is a software library used to perform operations on the data flash memory. The EEPROM

emulation library is a software library used to execute EEPROM emulation from a user-created program. The data

flash library and EEPROM emulation library are placed in the code flash memory for use.

The EEPROM emulation library is free software to rewrite the data flash through the user program.

In this user’s manual, processing of the EEPROM emulation library includes processing of the data flash library.

Be sure to use this user’s manual together with the release note supplied with the package of this EEPROM

emulation library and the user’s manual for the target device.

1. 2 Target Compilers

The Renesas CA78K0R, CC-RL and LLVM compilers are the target compilers for the product covered by this

user’s manual. The CA78K0R, CC-RL and LLVM compilers are respectively abbreviated as CA78, CCRL and LLVM.

1. 3 Definition of Terms

The terms used in this manual are defined below.

• Pack

"Pack" is an identification name representing an EEPROM emulation library type. Use the pack corresponding to

your device.

• EEL

An abbreviation of the EEPROM emulation library.

In this user’s manual, the RL78 EEPROM emulation library Pack02 is hereafter referred to as EEL.

• FDL

An abbreviation of the data flash library.

• FSL

An abbreviation of the flash self programming library.

<R>

RL78 Family Chapter 1 Overview
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 2 of 58
Apr. 22, 2024

• EEL function

A generic term for the functions offered by the EEL.

• FDL function

A generic term for the functions offered by the FDL.

• FSL function

A generic term for the functions offered by the FSL.

• Block number

A number which identifies a block of flash memory.

• EEL Blocks

An abbreviation of blocks that the EEPROM emulation library accesses. In this user’s manual, EEPROM emulation

blocks are hereafter referred to as EEL blocks.

• CF

 Code flash memory

• DF

Data flash memory

RL78 Family Chapter 2 EEPROM Emulation
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 3 of 58
Apr. 22, 2024

Chapter 2 EEPROM Emulation

2. 1 Specifications of EEPROM Emulation

By calling the EEL function provided by the EEL from a user-created program, use is possible without the

awareness of data flash memory operations.

For the EEL, an one-bye identifier (data ID: 1 to 64) is assigned by the user for each data item, and reading and

writing using any unit from 1 to 255 bytes are possible on an assigned identifier basis. (The EEL can handle up to 64

identifiers.)

Note that three or more continuous block areas of data flash memory (recommended) Note are used to store the

data. These blocks are called EEL blocks. Data written by EEPROM emulation is divided into reference data and

user-specified data, and the reference data is written to the target blocks from the lower block address, while the user

data is written from the higher block address.

Note: At least two blocks are necessary for EEPROM emulation. When two blocks are specified, if a write error

occurs even once, only reading of normally written data is possible but writing is no longer possible. After

that, the two target blocks must be formatted when the EEL is used to write data. Written data is erased

completely. Since a contingency (such as voltage drop) may occur in the system, we recommend that you

specify at least three blocks.

2. 2 Outline of Functions

The EEL provides basic read/write functions having the following features.

• Up to 64 data items settable

• A data size of 1 to 255 bytes settable

• Supporting the back ground operation (BGO)

• Consumption of memory for management data

(10 bytes per EEL block and 2 bytes per EEL block write data)

• Restoration by EEL_CMD_REFRESH when execution is stopped by a CPU reset while EEL_CMD_WRITE
or EEL_CMD_REFRESH is running

• Block rotation (averaging data flash use frequency)

Table 2-1 shows the range of settings when the EEL functions are used.

<R>

RL78 Family Chapter 2 EEPROM Emulation
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 4 of 58
Apr. 22, 2024

Table 2-1 Range of Settings when the EEL Functions are Used

Item Range

User data length 1 to 255

Amount of stored user data Note 1 1 to 64

Data ID range 1 to 64
(The numbers assigned are from 1 to 64 in the order of
registration, and the selection of settings is not possible.)

Number of EEPROM emulation blocks Note 2 3 to 255

Recommended user data size Note 1 1014/2 bytes

Note 1: The total size of user data must be within 1/2 of each block when all user data are written to an EEL block.

Therefore, the range used for the number of stored user data items differs depending on the size of the

stored user data. It is also necessary to consider the size of the reference data provided for each data item

for management use when determining the total size. For details about the number of stored user data

items and total size, see "4.2 Number of Stored User data items and total user data size".

Note 2: EEL blocks cannot be set more than maximum number of blocks of on-board data flash memory.

<R>

RL78 Family Chapter 2 EEPROM Emulation
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 5 of 58
Apr. 22, 2024

2. 3 EEL Architecture

This chapter describes the EEL architecture required for the user to rewrite data flash memory (the EEL pool) by

using the EEL.

2. 3. 1 System Structure
The EEL offers interface for accessing the data flash area defined by the user. The arrows shown in the Figure 2-1

below indicate the flow of processing.

Figure 2-1 System Structure

2. 3. 2 EEL Pool
The EEL pool is a user-defined data flash area that is accessible by the EEL. The user program can access the

data flash only by using this EEL pool in the data flash via the EEL. The EEL pool size must be specified with the

number of blocks in the data flash of the target device. For the procedure to specify the number of blocks, see section

"4.3 Initial Values to be Set by User".

The EEL pool is divided into 1024-byte blocks. Each block has a state which indicates the current usage of the

block.

Table 2-2 States of the EEL Blocks

State Description

Active Only a single EEL block is active at a time to store defined data. The active block circulates in

data flash blocks allocated in the EEL pool.

Invalid No data is stored in invalid blocks. EEL blocks are marked as invalid by the EEL or become invalid

in the case of erasure blocks.

Excluded If functional operation failed and possibility of a data flash failure is clarified, the EEL excludes the

relevant block and the block is no longer used for EEPROM emulation.

Before using the EEL, the FDL must

be initialized.

(FDL_Init and FDL_Open function)

 Code flash memory

User program

EEL

FDL

Data flash memory

(EEL pool)

<R>

RL78 Family Chapter 2 EEPROM Emulation
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 6 of 58
Apr. 22, 2024

Figure 2-2 shows an example of pool configuration for a device with 8-KB data flash memory.

When no writable area is remaining in the active block (block 1 in the example) and data can no longer be stored

(failure in write command), a new active block is selected in a cyclic manner and the current valid data set is copied

to this new active block. This process is referred to as refresh. After the EEL_CMD_REFRESH command is executed,

the previous active block becomes invalid and only a single active block exists. Excluded blocks (like block 7 in the

example) are ignored during this process and not considered as candidates for the selection of the next active block.

Figure 2-2 EEL pool structure

The overall life cycle of a block in the EEL pool is shown in Figure 2-3. During normal operation, the block switches

between active and invalid state. When an error occurs during an access to the EEL block, the error EEL block is

marked as excluded. This block will not enter the lifecycle again. However, the user can try to restore the block by a

format of the complete pool which also erases all existing data content.

Figure 2-3 Life cycle of an EEL block

invalid
block

active
block

excluded
block

AI X

format

physical
block

0

physical
block

1

physical
block

2

physical
block

3

physical
block

4

physical
block

5

physical
block

6

physical
block

7

EEL
block

0

Data Flash Memory

EEL pool

EEL
block

1

EEL
block

2

EEL
block

3

EEL
block

4

A I Xactive block invalid block excluded block

AI I I I

EEL
block

5

EEL
block

6

EEL
block

7

I I X

RL78 Family Chapter 2 EEPROM Emulation
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 7 of 58
Apr. 22, 2024

The EEL pool has the four states shown below.

Table 2-3 States of the EEL Pool

State Description

Pool operational This is the usual case during EEL operation. All commands are available and can be executed.

Pool full Free space for data write is insufficient in the active block in use. This state indicates that a

refresh needs to be executed.

Pool exhausted No continuously usable EEL block is left. (At least two blocks that are not excluded are

necessary for EEL operations.)

Pool inconsistent There is a mismatch in the pool state and the data structure in the EEL block does not match the

user-set data structure. The EEL block is in the undefined state (e.g. no active block is present).

2. 3. 3 Structure of EEL Block
The detailed block structure used by the EEL is shown in Figure 2-4. In general, an EEL block is divided into three

utilized areas: the block header, the reference area, and the data area.

Figure 2-4 EEL Block Structure (Example of RL78/G13 Data Flash Block 0)

Table 2-4 Configuration of Each EEL Block

Name Description

Block header The block header contains all block status information needed for the block management

within the EEL-pool. It has a fixed size of 8 bytes.

Reference area The reference area contains reference data which are required for the management of data.

When data are written, this area expands in the direction of higher addresses.

Data area The data area contains user data. When data are written, this area expands in the direction

of lower addresses.

Block header

Reference area

Separator (erased 2 bytes)

Erased area

(all bytes 0xFF)

Data area

0xF1000

0xF13FF

Toward the
higher address

Toward the
lower address

RL78 Family Chapter 2 EEPROM Emulation
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 8 of 58
Apr. 22, 2024

Between reference area and data area, there is an erased area. With each EEL data update (i.e. the data is

written), this area is reduced successively. However, at least 2 bytes of space always remain between reference area

and data area for management and separation of these areas. This is indicated by the separator in Figure 2-4.

The EEL block header is detailed in section "2.3.4 EEL Block Header", while the structure of data stored in the

reference and data area are described in section "2.3.5 Structure of Stored Data".

2. 3. 4 EEL Block Header
The structure of the block header is depicted in Figure 2-5. It is composed of 8 bytes, four of which are reserved for

the system.

Figure 2-5 Structure of EEL Block Header

The block status flags start at the beginning of the block and include the A flag, B flag, I flag, and X flag, each of

which is 1 byte, for a total of 4 bytes of data. The combination of flags indicates the EEL block status.

Figure 2-5 shows the placement status of flags, and Table 2-5 shows the combination status of flags.

Table 2-5 Overviews of Block Status Flags

Block Status Flag
State Description

A Flag B Flag I Flag X Flag

0x01 0xFE 0xFF 0xFF

Active

Currently used block
After the EEL_CMD_REFRESH command is executed,
the A flag of a new active block is set to 0x02.

0x02 0xFD 0xFF 0xFF
Currently used block
After the EEL_CMD_REFRESH command is executed,
the A flag of a new active block is set to 0x03.

0x03 0xFC 0xFF 0xFF
Currently used block
After the EEL_CMD_REFRESH command is executed,
the A flag of a new active block is set to 0x01.

Data other than
the above 0xFF 0xFF

Invalid Invalid block

--
other
than
0xFF

0xFF

-- --
other
than
0xFF

Excluded Excluded block

N

Reserved

0x00

0x00

Reserved

0xFF -　N

A

-

X

I

B

-

Reserved-

Reserved-

0x0000

0x0001

0x0002

0x0003

0x0004

0x0005

0x0006

0x0007

relative byte
index within

block

RL78 Family Chapter 2 EEPROM Emulation
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 9 of 58
Apr. 22, 2024

2. 3. 5 Structure of Stored Data
The structure of stored data when user data is written to an EEL block is shown in the figure below. A data is

composed of three parts: the start-of-record (SoR) field and the end-of-record (EoR) field and the data field. The EEL

descriptor table can be used to set data for use in the EEL. Each data is referred to by an identification number (ID)

and can have a size between 1 and 255 bytes. (The exact specification of the format of the EEL descriptor can be

found in section "4.3 Initial Values to be Set by User".)

Each time data is written, stored data increase in the EEL block and multiple units of stored data exist in the EEL

block, but only the most recent stored data is referenced.

SoR and EoR build up the so-called reference data which is required for the management of the data. The

reference data and user data values are stored in different sections of the active block, namely the reference area

and the data area, respectively. Figure 2-6 shows the overview of the entire structure of stored data.

Figure 2-6 Structure of Stored Data

Table 2-6 Description of Each Field of Data Area

Name Description

SoR field

(Start of Record)

The 1 byte SoR field contains the ID of data. This field indicates the start of write processing.

Data IDs 0x00 and 0xFF are not used to avoid patterns of erased cells.

EoR field

(End of Record)

The 1 byte EoR field contains a 0xFF - data ID value.

This field indicates successful end of write processing. If writing does not end normally due

to a device reset or other reasons, the corresponding stored data is ignored by the EEL.

Data field The data field contains the user data. The size of user data is 1 to 255 bytes. When data of 2

bytes or more is stored, the smallest address of the data is allocated to the smallest address

of the data field (as shown in Figure 2-7).

Data is written to the EEL block in the order of SoR -> data field -> EoR. If write processing does not end

successfully, the immediately previous data becomes valid.

Note 1: The total size of the reference data consumed by each stored data is 2 bytes. This should be considered

when evaluating the free space in a block before writing the data through the EEL_GetSpace function.

Note 2: No checksum is added to user data. If a checksum is needed, add it to user data and check through the

user program.

ID

Data

0xFF -　ID
Reference data in EEL block
reference area

SoR

EoR

0x0000

Data size - 1

Data field in EEL block
data area

RL78 Family Chapter 2 EEPROM Emulation
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 10 of 58
Apr. 22, 2024

2. 3. 6 EEL Block Overview
Figure 2-7 shows an example of an EEL block that contains multiple units of stored data:

• Data ID 0x01 with size = 0x04

• Data ID 0x02 with size = 0x01

• Data ID 0x03 is defined but not written here.

• Data ID 0x04 with size = 0x02

The data have been written in the sequence ID 0x01 -> ID 0x04 -> ID 0x02.

In this example, the data with ID 0x03 has not been written yet.

Figure 2-7 Example of an Active EEL Block

SoR à ID = 0x04

SoR à ID = 0x01

SoR à ID = 0x02

A = 0x02

Erased area

 (all bytes 0xFF)

DATA (ID = 0x01) [0]

DATA (ID = 0x04) [1]

DATA (ID = 0x02) [0]

Reference
area

Data area

Separator (erased 2 bytes)

B = 0xFD

I = 0xFF

X = 0xFF

Reserved

Reserved

Reserved

Reserved

0x0000

0x0001

0x0002

0x0003

0x0004

0x0005

0x0006

0x0007

EoR à ~ID = 0xFE

EoR à ~ID = 0xFB

EoR à ~ID = 0xFD

0x0008

0x0009

0x000A

0x000B

0x000C

0x000D

0x000E

0x000F

DATA (ID = 0x01) [1]

DATA (ID = 0x01) [2]

DATA (ID = 0x01) [3]0x03FF

DATA (ID = 0x04) [0]

0x03FE

0x03FD

0x03FC

0x03FB

0x03FA

0x03F9

0x03F8

…
…
…
…
…
…
…
…
…

Block header

Relative byte
 index within

 block

RL78 Family Chapter 3 EEL Functional Specifications
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 11 of 58
Apr. 22, 2024

Chapter 3 EEL Functional Specifications

This chapter describes the functional specifications of the EEL required for the user to execute EEPROM

emulation.

3.1 EEL Functions/Commands of the EEL_Execute Function

The table below summarizes the EEL functions offered by the EEL.

Table 3-1 EEL Functions

EEL function name Functional overview

FDL_Init Initializes the FDL.

FDL_Open Preparation processing of FDL

FDL_Close End processing of FDL

EEL_Init Initializes the EEL

EEL_Open Preparation processing of EEL

EEL_Close End processing of EEL

EEL_Execute Manipulates data flash memory with commands.

Commands : EEL_CMD_STARTUP

EEL_CMD_WRITE

EEL_CMD_READ

EEL_CMD_REFRESH

EEL_CMD_VERIFY

EEL_CMD_FORMAT

EEL_CMD_SHUTDOWN

EEL_Handler Controls the EEL while it is running.

EEL_GetSpace Checks free space in the EEL block

EEL_GetVersionString Obtains EEL version information.

With the EEL_Execute function, the following commands can be executed.

3. 1. 1 EEL_CMD_STARTUP Command [Startup Processing]
Check the block state and set the system to the EEPROM emulation start state (started).

3. 1. 2 EEL_CMD_SHUTDOWN Command [Shutdown Processing]
Set the EEPROM emulation operation to the stopped state (opened).

3. 1. 3 EEL_CMD_REFRESH Command [Refresh Processing]
Copy the latest stored data from the active block (copy source block) to the next block (copy destination block) in

the EEL pool after the erase processing. This makes the copy destination block active.

RL78 Family Chapter 3 EEL Functional Specifications
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 12 of 58
Apr. 22, 2024

3. 1. 4 EEL_CMD_FORMAT Command [Format Processing]
Initialize (erase) everything, including the data recorded in the EEL blocks. Be sure to use this command before

using EEPROM emulation for the first time.

3. 1. 5 EEL_CMD_WRITE Command [Write Processing]
Write the specified data to an EEL block.

3. 1. 6 EEL_CMD_READ Command [Read Processing]
Read the specified data from an EEL block.

3. 1. 7 EEL_CMD_VERIFY Command [Verify Processing]
Perform verification (internal verification) to check signal levels of the active block.

RL78 Family Chapter 3 EEL Functional Specifications
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 13 of 58
Apr. 22, 2024

3. 2 State Transitions

To use EEPROM emulation from a user-created program, it is necessary to initialize the EEL and execute

functions that perform operations such as reading and writing on EEL blocks. Figure 3-1 shows the overall state

transitions, and Figure 3-2 shows an operation flow for using basic features. When using EEPROM emulation,

incorporate EEPROM emulation into user-created programs by following this flow.

FDL_Init()
 ↓
FDL_Open()
　　 ↓
EEL_Init()

closed

FDL_Close()

EEL_Open() EEL_Close()

opened

Format executing
busy

Startup executing
busy

EEL_CMD_FORMAT

EEL_CMD_STARTUP
status:OK
status:ERROR

started

status:OK
 ERROR Verify

EEL_CMD_FORMAT

EEPROM command executing
busy

EEL_CMD_WRITE
EEL_CMD_READ
EEL_CMD_REFRESH
EEL_CMD_VERIFY

status:OK
status:ERROR

EEL_CMD_SHUTDOWN

status:ERROR

EEL_CMD_STARTUP

 Reset or Power ON uninitialized

exhausted

EEPROM command executing
busy

EEL_CMD_READ
EEL_CMD_VERIFY

status:OK
status:ERROR

status:
ERROR
POOL_EXHAUSTED

status:
ERROR
POOL_EXHAUSTED

EEL_CMD_SHUTDOWN

Figure 3-1 State Transitions Diagram

Note 1: In case where discontinuing the execution of the EEL is urgent, the EEL_Close function can be called

from any state. Continuing by calling the FDL_Close function enables the initialization of hardware that

controls the flash memory and halting the EEL. In cases where restoring the EEL to its initial state is

urgent, the EEL_Init function can be called from any state only when an EEL function is not being

executed. However, since such urgent processing is only required in abnormal situations, the EEL may

operate in an unpredictable way. In normal situations, we recommend executing the functions in accord

with the state transition diagram.

Note 2: Once the EEL_CMD_FORMAT command has started running, execute the EEL_Handler function to

check for its completion.

<R>

RL78 Family Chapter 3 EEL Functional Specifications
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 14 of 58
Apr. 22, 2024

[Overview of state transitions diagram]

To use EEL to manipulate the data flash memory, it is necessary to execute the provided functions in order to

advance the processing.

(1) uninitialized

This is the state after turning the power on or resetting.

(2) closed

This is the state in which the data to perform EEPROM emulation is initialized by executing the FDL_Init,

FDL_Open, and EEL_Init functions (no ongoing operation to the data flash memory).

 To execute FSL, STOP mode, or HALT mode processing after executing EEPROM emulation, execute

EEL_Close in the opened state to switch to the closed state.

(3) opened

This state is switched to by executing EEL_Open in the closed state and makes it possible to perform

operations on the data flash memory. It is not possible to execute FSL, STOP mode, or HALT mode

processing until EEL_Close is executed and the system switches to the closed state.

(4) started

This state is switched to by executing the EEL_CMD_STARTUP command in the opened state and makes

it possible to execute EEPROM emulation. Writes and reads that use EEPROM emulation are performed in

this state.

(5) exhausted

This state is made from the opened or started state when continuously usable EEL blocks have been

exhausted during command execution. In this state, only EEL_CMD_READ, EEL_CMD_VERIFY, and

EEL_CMD_SHUTDOWN commands are executable.

(6) busy

This is the state used when executing a specified command. The state that is switched to differ depending

on which command is executed and how it terminates.

RL78 Family Chapter 3 EEL Functional Specifications
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 15 of 58
Apr. 22, 2024

3. 3 Basic Flowchart

Figure 3-2 below shows the basic procedure to perform read and write operations for the data flash by using the

EEL.

Figure 3-2 Basic Flowchart of EEL

Note 1: When using the EEPROM emulation for the first time, be sure to execute the EEL_CMD_FORMAT command.

Note 2: Error processing is omitted in the above flowchart.

Start

End

(2) FDL_Open function

(11) FDL_Close function

(3) EEL_Init function

(10) EEL_Close function

(4) EEL_Open function

(5) EEL_Execute function

EEL_CMD_STARTUP

(6) EEL_Execute function

EEL_CMD_WRITE

(7) EEL_Execute function

EEL_CMD_READ

(9) EEL_Execute function

EEL_CMD_SHUTDOWN

(1) FDL_Init function

EEL_ERR_POOL_FULL?

(8) EEL_Execute function

EEL_CMD_REFRESH

Yes

No

RL78 Family Chapter 3 EEL Functional Specifications
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 16 of 58
Apr. 22, 2024

[Overview of basic operation flow]

(1) FDL initialization processing (FDL_Init)

Because it is necessary to initialize the FDL parameters (RAM) if using the EEL to access the data flash memory,

the FDL_Init function must be executed in advance. If FSL processing was executed after this initialization

finished, the initialization processing must be re-executed.

(2) FDL preparation processing (FDL_Open)

Set the data flash control register (DFLCTL) to the state where accessing the data flash memory is permitted

(DFLEN = 1).

(3) EEL initialization processing (EEL_Init)

Initialize the parameters (RAM) used by the EEL.

(4) EEPROM emulation preparation processing (EEL_Open)

Set the data flash memory to a state (opened) for which control is enabled to execute EEPROM emulation.

(5) EEPROM emulation execution start processing (EEL_Execute: EEL_CMD_STARTUP command)

Set the system to a state (started) in which EEPROM emulation can be executed.

(6) EEPROM emulation data write processing (EEL_Execute: EEL_CMD_WRITE command)

Write the specified data to an EEL block.

(7) EEPROM emulation data read processing (EEL_Execute: EEL_CMD_READ command)

Read the specified data from an EEL block.

(8) EEPROM emulation refresh processing (EEL_Execute: EEL_CMD_REFRESH command)

The latest stored data is copied from the active block (copy source block) to the next block (copy destination

block) in the EEL pool after the erase processing. This makes the copy destination block active.

(9) EEPROM emulation execution stop processing (EEL_Execute: EEL_CMD_SHUTDOWN command)

 Set the EEPROM emulation operation to the stopped state (opened).

(10) EEPROM emulation end processing (EEL_Close)

Set the data flash memory to a state (closed) for which control is disabled to stop EEPROM emulation.

(11) FDL end processing (FDL_Close)

Set the data flash control register (DFLCTL) to the state where accessing the data flash memory is inhibited

(DFLEN = 0).

RL78 Family Chapter 3 EEL Functional Specifications
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 17 of 58
Apr. 22, 2024

3. 4 Command Operation Flowchart

The figure below shows the basic procedure to perform read and write operations for data flash by using the EEL.

Figure 3-3 Command Operation Flowchart

(1) EEL_Execute function

Perform operations for data flash memory.

(2) Busy state check

Check status_enu of the request structure (eel_request_t). When status_enu is EEL_BUSY, continue the data

flash operation. If the value of status_enu is other than EEL_BUSY, check the final state.

(3) EEL_Handler function

Control the EEL while it is running. By repeating the execution of the EEL_Handler function, continue the data

flash operation.

(4) Final state check

If the final state is EEL_OK, the operation ends normally. Otherwise, it will be terminated with an error.

(1) EEL_Execute function

Start

Error Normal end

Not busy

Busy

Normal end

Abnormal end
(4) Final state check

(2) Busy state check (3) EEL_Handler function

RL78 Family Chapter 3 EEL Functional Specifications
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 18 of 58
Apr. 22, 2024

3. 5 BGO (Back Ground Operation) Function

The EEL_Execute function starts command processing and then immediately returns the control to the user

program. This allows the user program to run during the data flash operation and so is called back ground operation

(BGO).

The first round of processing of a command for writing data to or reading data from for the data flash memory is

executed by calling the EEL_Execute function, and the second and later rounds are executed by calling the

EEL_Handler function. For this reason, the EEL_Handler function must be called several times. For the processing to

handle hardware divided into multiple devices, since other processing is suspended from the completion of

processing until the next trigger, successive calls of the EEL_Handler function over a long interval will extend the

overall processing time.

To see if the processing requested from the EEL_Execute function has been successfully completed, call the

EEL_Handler function from the user program and check the status of ongoing processing.

The EEL_CMD_SHUTDOWN command does not require calling of the EEL_Handler function. However, we

recommend that you follow the command operation flowchart shown in Figure 3-3.

RL78 Family Chapter 4 Using EEPROM Emulation
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 19 of 58
Apr. 22, 2024

Chapter 4 Using EEPROM Emulation

EEPROM emulation can store a maximum of 64 Note data items each consisting of 1 to 255 bytes in the flash

memory by using three or more blocks (recommended) of flash memory.

EEPROM emulation can be executed by incorporating the EEL into a user-created program and executing that

program.

Note: For details about the number of user data items that can be stored, see "4.2 Number of Stored User Data

Items and Total User Data Size".

4. 1 Caution Points

EEPROM emulation is achieved by using a feature for manipulating the on-board microcontroller data flash

memory. Therefore, it is necessary to note the following

Table 4-1 Points for Caution (1/3)

No Caution Points

1 All EEL code and constants must be placed in the same 64-KB flash block such that EEL code and

constants do not extend across a 64-KB boundary.

2 Initialization by the FDL_Init function must be performed before the FDL_Open, FDL_Close, or any EEL

function is executed.

3 The EEL must be initialized by the EEL_Init function before any EEL function is executed.

4 The data flash memory cannot be read during data flash memory operation by the EEL.

5 Do not execute STOP mode or HALT mode processing while the EEPROM emulation is being used.

If it is necessary to execute STOP mode or HALT mode processing, be sure to execute all of the

processing up to and including the EEL_Close function and FDL_Close function to finish EEPROM

emulation.

6 The watchdog timer does not stop during execution of the EEL.

7 The request structure (eel_request_t) must be placed at an even address.

8 Do not destroy the request structure (eel_request_t) during command execution.

9 Initialize the argument (RAM) that is used by the EEPROM emulation library function. When not initialized,

a RAM parity error is detected and the RL78 microcontroller might be reset. For a RAM parity error, refer to

the "User’s Manual: Hardware" of the target RL78 microcontroller.

10 All members of the request structure (eel_request_t) must be initialized once before a command is

executed. If any unused member exists in the request structure (eel_request_t), set a desired value for the

member. If any member is not initialized, the RL78 microcontroller may be reset due to a RAM parity error.

For details, see the "User’s Manual: Hardware" for the RL78 microcontroller in use.

11 The EEL does not support multitask execution. Do not execute the EEL functions during interrupt

processing.

<R>

RL78 Family Chapter 4 Using EEPROM Emulation
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 20 of 58
Apr. 22, 2024

Table 4-2 Points for Caution (2/3)

No Caution Points

12 After the FDL_Close and EEL_Close functions have been executed, the requested command and ongoing

command stop and cannot be resumed. Before calling the FDL_Close and EEL_Close functions, finish all

ongoing commands.

13 Before using the EEPROM emulation library, always close the FSL. Also, do not run the FSL while the

EEPROM emulation library is being used. When using the FSL, be sure to execute all of the processing up

to and including the EEL_Close function and FDL_Close function to finish EEPROM emulation.

When using EEPROM emulation after executing FSL processing, it is necessary to start processing from

the initializing function (the FDL_Init function).

14 Before starting the EEPROM emulation, be sure to start up the high-speed on-chip oscillator first. The

high-speed on-chip oscillator must also be activated when using the external clock.

15 In address above 0xFFE20 (0xFE20), do not place data buffer (argument) or stack which is used by

EEL and FDL functions.

16 When using data transfer controller (DTC) during EEPROM emulation, do not place RAM area used by

DTC in self-RAM and in address above 0xFFE20 (0xFE20).

17 Until EEPROM emulation is finished, do not corrupt RAM area (including self-RAM) used by EEPROM

emulation.

18 No checksum is added to user data. If a checksum is needed, add it to user data and check through the

user program.

19 When the FDL descriptor or EEL descriptor is changed, the EEPROM emulation can no longer be

executed. In that case, the EEL pool must be formatted by the EEL_CMD_FORMAT command in addition

to initialization of FDL and EEL. When adding data, however, the EEPROM emulation can be continuously

executed.

20 Do not operate the data flash control register (DFLCTL) during execution of the EEL.

21 To use the data flash memory for EEPROM emulation, it is necessary to execute the EEL_CMD_FORMAT

command upon first starting up to initialize the data flash memory and make it usable as EEPROM

emulation blocks.

22 It is recommended that at least three blocks be provided in the data flash memory to use the EEL.

23 Do not destroy EEL blocks by the user program that uses other EELs or FDLs.

24 The EEL does not support multitask execution. When executing an EEL function on the OS, do not execute

in from two or more tasks.

25 About an operating frequency of RL78 microcontrollers and an operating frequency value set by the

initializing function (FDL_Init), be aware of the following points:

- When using a frequency lower than 4 MHz as an operating frequency of RL78 microcontrollers, only 1

MHz, 2 MHz and 3 MHz can be used (frequencies other than integer values like a 1.5 MHz cannot be

used). Also, set an integer value 1, 2, or 3 to the operating frequency value set by the initializing function.

- When using a frequency of 4 MHz or higher Note as an operating frequency of RL78 microcontrollers, a

certain frequency can be used as an operating frequency of RL78 microcontrollers.

- This operating frequency is not the frequency of the high-speed on-chip oscillator.

Note: For a maximum frequency, see the target RL78 microcontroller "User’s Manual: Hardware".

RL78 Family Chapter 4 Using EEPROM Emulation
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 21 of 58
Apr. 22, 2024

 Table 4-3 Points for Caution (3/3)

No Caution Points

26 When using an assembler of the CC-RL compiler from Renesas Electronics, the hexadecimal prefix

representation (0x..) cannot be mixed together with the suffix representation (..H). Specify the

representation method by editing the symbol definition in eel_types.inc to match the user environment.

eel_types.inc

;__EEL_TYPES_INC_BASE_NUMBER_SUFFIX .SET 1

When symbol "__EEL_TYPES_INC_BASE_NUMBER_SUFFIX" is not defined (initial state), the prefix

representation will be selected.

eel_types.inc

__EEL_TYPES_INC_BASE_NUMBER_SUFFIX .SET 1

When symbol "__EEL_TYPES_INC_BASE_NUMBER_SUFFIX" is defined, the suffix representation will be

selected.

<R>

RL78 Family Chapter 4 Using EEPROM Emulation
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 22 of 58
Apr. 22, 2024

4. 2 Number of Stored User Data Items and Total User Data Size

The total size of user data that can be used in the EEPROM emulation is limited. The size required for writing all user data

to an EEL block must be within 1/2 of the block. Therefore, the number of stored data items that can be used differs

depending on the size of user data that is actually stored. The following shows how to calculate the size that can be used

when actually writing user data, as well as the total user data size.

[Maximum usable size of one block that can be used to write the user data]
Size of one block of data flash memory: 1024 bytes

Size required for EEPROM emulation block management: 8 bytes

Free space necessary as termination information (separator): 2 bytes

Maximum usable size of one block = 1024 bytes - 8 bytes - 2 bytes = 1014 bytes

[Maximum size and recommended size]
Data must be held in one block. Therefore, the maximum size is the maximum usable size of one block but the following

relational expression should be met. To enable all data to be updated at least once, we recommend that the data be within the

half size of the maximum usable size of one block.

Maximum size = the basic total user data size + maximum data size + 2 ≤ 1014

(Assumed that the largest data can be updated once after all data have been written.)

Recommended size = 1014 / 2

(Assumed that all data can be updated once after all data have been written.)

[Calculating the size for writing each user data item] Note
Size of each written user data item = data size + reference data size (2 bytes)

Note: For details, see 2.3.5 Structure of Stored Data.

[Calculating the basic total user data size]
Basic total size = (user data 1 + 2) + (user data 2 + 2) ... + (user data n + 2)

RL78 Family Chapter 4 Using EEPROM Emulation
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 23 of 58
Apr. 22, 2024

4. 3 Initial Values to be Set by User

As the initial values for the EEL, be sure to set the items indicated below. In addition, before executing the EEL, be sure to

execute the high-speed on-chip oscillator. The high-speed on-chip oscillator must also be activated when using the external

clock.

・Number of stored data items, and data size of the identifier (data ID)

<Data flash library user include file (fdl_descriptor.h)> Notes 1, 2

<EEPROM emulation library user include file (eel_descriptor.h)> Notes 1, 2

<EEPROM emulation library user program file (eel_descriptor.c)> Note 2

Note 1: The macros that are being used are parameters which are common to the whole EEL, so any changes

should only be to numerical values.

Note 2: After initializing the EEPROM emulation blocks (after executing the EEL_CMD_FORMAT command), do

not change the values. If the values are changed, reinitialize the EEL blocks (by executing the

EEL_CMD_FORMAT command).

 __far const eel_u08 eel_descriptor[EEL_VAR_NO+2] =

{

 (eel_u08)(EEL_VAR_NO), /* variable count */ ¥

(eel_u08)(sizeof(type_A)), /* id=1 */ ¥

 (eel_u08)(sizeof(type_B)), /* id=2 */ ¥

 (eel_u08)(sizeof(type_C)), /* id=3 */ ¥

 (eel_u08)(sizeof(type_D)), /* id=4 */ ¥

 (eel_u08)(sizeof(type_E)), /* id=5 */ ¥

 (eel_u08)(sizeof(type_F)), /* id=6 */ ¥

 (eel_u08)(sizeof(type_X)), /* id=7 */ ¥

 (eel_u08)(sizeof(type_Z)), /* id=8 */ ¥

(eel_u08)(0x00), /* zero terminator */ ¥

};

: (6) Data size of the identifier (data ID)

<R>

#define FDL_SYSTEM_FREQUENCY 32000000

#define FDL_WIDE_VOLTAGE_MODE

#define FDL_POOL_BLOCKS 0

#define EEL_POOL_BLOCKS 4

#define EEL_VAR_NO 8

: (1) Operating frequency

: (2) Flash memory programming mode

: (3) FDL pool size

: (4) EEL pool size

: (5) Number of stored data items

RL78 Family Chapter 4 Using EEPROM Emulation
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 24 of 58
Apr. 22, 2024

(1) Operating frequency

Set an operating frequency which is used in RL78 microcontrollers. Note 1

The setting value is set to the FDL_Init frequency parameter by the following expressions (The frequency is

calculated by raising its decimals. The result calculated omits its decimals.).

Setting value of FDL_Init operating frequency = ((FDL_SYSTEM_FREQUENCY + 999999) / 1000000)

Ex.1: When FDL_SYSTEM_FREQUENCY is 20000000 (20 MHz),

((20000000 + 999999) / 10000000) = 20.999999 = 20

Ex.2: When FDL_SYSTEM_FREQUENCY is 4500000 (4.5 MHz),

((4500000 + 999999) / 10000000) = 5.499999 = 5

Ex.3: When FDL_SYSTEM_FREQUENCY is 5000001 (5.000001 MHz),

((5000001 + 999999) / 10000000) = 6.000000 = 6

Note 1: This setting is a value required to control data flash memory. This setting does not change the

operating frequency of RL78 microcontrollers. In addition, this operating frequency is not the

frequency of the high-speed on-chip oscillator.

(2) Flash memory programming mode Note 2

Set the flash memory programming mode of data flash memory. Note 3

When FDL_WIDE_VOLTAGE_MODE is not defined: Full-speed mode

When FDL_WIDE_VOLTAGE_MODE is defined: Wide voltage mode

Note 2: The FDL_WIDE_VOLTAGE_MODE is commented out and not defined in the initial setting. To use

RL78 microcontrollers in the wide voltage mode, cancel the comment-out to define the mode.

Note 3: For details of the flash memory programming mode, see the corresponding RL78 microcontrollers

user’s manual.

(3) FDL pool size

Specify 0.

(4) EEL pool size Note 4

The number of blocks in the data flash memory of the target device must be specified as the number of

blocks in the EEL pool.

Note 4: Specify 3 (3 blocks) or a greater value (recommended).

(5) Number of stored data items

Specify the number of data items to be used in the EEPROM emulation. A value of 1 to 64 can be set.

<R>

RL78 Family Chapter 4 Using EEPROM Emulation
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 25 of 58
Apr. 22, 2024

(6) Data size of each data identifier (data ID)

A table to define the data size of each identifier is provided below. This is called an EEL descriptor table.

The EEL can only add identifiers while the program is running. Data to be written must be registered in the

EEL descriptor table in advance.

__far const eel_u08 eel_descriptor [Number of stored data items + 2]

EEL_VAR_NO

Byte size of data ID1

Byte size of data ID2

Byte size of data ID3

Byte size of data ID4

Byte size of data ID5

Byte size of data ID6

Byte size of data ID7

Byte size of data ID8

0x00

Figure 4-1 EEL Descriptor Table (When there are eight different data items)

・EEL_VAR_NO

User-specified number of data items used in the EEL

・Byte size of data IDx

User-specified size of user data (in bytes)

・Termination area (0x00)

Specify 0 as the termination information.

RL78 Family Chapter 5 User Interface
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 26 of 58
Apr. 22, 2024

Chapter 5 User Interface

5. 1 Request Structure (eel_request_t) Settings

Basic operations such as reading from and writing to the data flash memory are performed by a single function.

The function transfers commands and data ID to the EEL via the request structure (eel_request_t). Furthermore, the

EEL state and error information are acquired via the request structure (eel_request_t).

In subsequent sections, write access to the request structure (eel_request_t) from the user is called user write

access, and read access to it from the user is called user read access.

Figure 5-1 Request Structure (eel_request_t)

EEL

User Program

address_pu08

identifier_u08

command_enu

status_enu

User read access

User write access

RL78 Family Chapter 5 User Interface
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 27 of 58
Apr. 22, 2024

The request structure (eel_request_t) is defined in the eel_types.h file. It should not be changed by the user.

 [Definition of the request structure (eel_request_t)]

Development
 Tool C Language (Structure Definition) Assembly Language (Example of definition)

RENESAS
CA78K0R
compiler

typedef struct
{ _request_pstr:

__near eel_u08* address_pu08; _address_pu08: DS 2
eel_u08 identifier_u08; _identifier_u08: DS 1
eel_command_t command_enu; _command_enu: DS 1
eel_status_t status_enu; _status_enu: DS 1

} eel_request_t;

RENESAS
CC-RL
compiler

typedef struct
{ _request_pstr:

__near eel_u08* address_pu08; _address_pu08: .DS 2
eel_u08 identifier_u08; _identifier_u08: .DS 1
eel_command_t command_enu; _command_enu: .DS 1
eel_status_t status_enu; _status_enu: .DS 1

} eel_request_t;

LLVM
compiler

typedef struct Check the compiler specifications.
{
__near eel_u08* address_pu08;
eel_u08 identifier_u08;
eel_command_t command_enu;
eel_status_t status_enu;
} eel_request_t;

Figure 5-2 Alignment of Variables of the Request Structure (eel_request_t)

Note: The request structure (eel_request_t) must be placed at an even address.

5.1.1 User Write Access
(1) address_pu08

Specify the start address of the data buffer used for EEL_CMD_WRITE command and EEL_CMD_READ

command execution.

Associated command (macro name) Setting

EEL_CMD_WRITE Start address of the data buffer Note 1

EEL_CMD_READ Start address of the data buffer Note 2

Note 1: Buffer which contains data written by the user

Note 2: Buffer which contains data read from the data flash memory

__near eel_u08* address_pu08

eel_u08 identifier_u08 eel_command_t command_enu

eel_status_t status_enu

 Bit 0 Bit 15

<R>

RL78 Family Chapter 5 User Interface
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 28 of 58
Apr. 22, 2024

(2) identifier_u08

Specify the data ID used for each command. For more information about how to do this, see the description of

the EEL_Execute function in section "5.4 EEL Functions".

Associated command (macro name) Setting

EEL_CMD_WRITE ID of write data

EEL_CMD_READ ID of read data

(3) command_enu

Commands to be set in the common executable function.

Associated command (macro name) Description

EEL_CMD_STARTUP Startup processing

EEL_CMD_WRITE Write processing

EEL_CMD_READ Read processing

EEL_CMD_REFRESH Refresh processing

EEL_CMD_VERIFY Verify processing

EEL_CMD_FORMAT Format processing

EEL_CMD_SHUTDOWN Shutdown processing

5.1.2 User Read Access
- status_enu

EEL status and error information. For information about the status and errors which might occur during

execution of the functions, see the description of the EEL_Execute function in section "5.4 EEL Functions".

RL78 Family Chapter 5 User Interface
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 29 of 58
Apr. 22, 2024

5. 2 EEL Function Calls

This section describes how to call the EEL functions from a user program written in C or assembly language.

- C language

When an EEL function is called from a user program in C language in the same way as a normal C function is

called, the EEL function’s parameters are passed to the EEL as arguments and the required processing is

performed.

- Assembly language

Before calling an EEL function from a user program in assembly language, take necessary procedures (such as

setting parameters or return addresses) based on the function-calling rules for the C compiler package used by the

user as a development environment. The EEL function’s parameters are passed to the EEL as arguments and the

required processing is performed.

Remarks 1: To call the EEL functions offered by the EEL from a user program, you should define the following

standard header file and include it in that program:

C language

fdl.h: FDL header file

fdl_types.h: FDL definition setting header file

eel.h: EEL header file

eel_types.h: EEL definition setting header file

Assembly language

fdl.inc: FDL header file

eel.inc: EEL header file

eel_types.inc: EEL definition setting header file

2: If an EEL function other than EEL_Init is called before EEL_Init is called, the correct operation is not

guaranteed.

3: If an EEL function other than FDL_Init is called before FDL_Init is called, the correct operation is not

guaranteed.

4: The assembly language files for the LLVM compiler are not included in this product.

5. 3 Data Types

Below are the data types of the parameters to be specified for calling the EEL functions offered by the EEL.

Macro name Description

eel_u08 Unsigned 8-bit integers (unsigned char)

eel_u16 Unsigned 16-bit integers (unsigned short)

eel_u32 Unsigned 32-bit integers (unsigned long)

<R>

RL78 Family Chapter 5 User Interface
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 30 of 58
Apr. 22, 2024

5. 4 EEL Functions

The subsequent sections describe the EEL functions offered by the EEL. These functions appear in the following

format.

Name

 [Function]

Describes the function overview of this function.

 [Format]

<C language>

Describes the format for calling the given function from a user program written in the C language for compilation by

the Renesas CA78K0R, Renesas CC-RL or LLVM compiler.

<Assembler>

Describes the format to call this function from a user program written in the assembly language.

[Pre-conditions]

Describes the precondition of this function.

[Post-conditions]

Describes the post condition of this function.

[Cautions]

Describes the cautions of this function.

[Register status after calling this function]

Describes the register status after this function is called.

The general-purpose registers and registers to be corrupted which are used for the return values differ according to

whether the Renesas CA78K0R, Renesas CC-RL or LLVM compiler is in use.

[Arguments]

Describes the argument of this function.

Definitions of registers and arguments which are used in the assembly language may differ according to whether the

Renesas CA78K0R, Renesas CC-RL or LLVM compiler is in use.

[Return values]

Describes the return values from this function.

<R>

<R>

<R>

RL78 Family Chapter 5 User Interface
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 31 of 58
Apr. 22, 2024

FDL_Init

[Function]

FDL initialization processing

[Format]
<C language>
Renesas CA78K0R compiler

fdl_status_t __far FDL_Init(const __far fdl_descriptor_t* descriptor_pstr)

Renesas CC-RL compiler
fdl_status_t __far FDL_Init(const __far fdl_descriptor_t* descriptor_pstr)

LLVM compiler
fdl_status_t __far FDL_Init(const __far fdl_descriptor_t* descriptor_pstr)
 __attribute__ ((section ("FDL_CODE")))

<Assembler>

CALL !FDL_Init or CALL !!FDL_Init

Remark Call this function with "!" if you are placing the FDL at 00000H to 0FFFFH or with "!!" otherwise.

[Pre-conditions]

1. The FSL and EEL processing must be either not executing or finished.

2. The high-speed on-chip oscillator has been started up.

[Post-conditions]

Execute the FDL_Open function.

[Cautions]

1. Be sure to execute this function when starting EEPROM emulation to make it possible to start accessing the

data flash memory.

2. This function is mutually exclusive with the FSL. Before executing this function, be sure to end FSL. Also,

never use any FSL functions during EEPROM emulation.

3. To use FSL after this function is executed, the RAM must be reinitialized, so always execute this function

when restarting the EEL.

4. To execute this function again, always be sure to end EEL.

5. The descriptor table used for this function cannot be modified. Be sure to use a defined descriptor table.

[Register status after calling this function]

Development Tool Registers Used for Return Value Destructed Registers

Renesas CA78K0R compiler C (General-purpose register) AX, BC

Renesas CC-RL compiler A (General-purpose register) X, BC, DE, HL

LLVM compiler A (General-purpose register) X, BC, DE, HL

<R>

<R>

<R>

RL78 Family Chapter 5 User Interface
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 32 of 58
Apr. 22, 2024

[Arguments]

descriptor_pstr: Pointer to the descriptor table

For details of "descriptor table", refer to the description of “<Data flash library user include file (fdl_descriptor.h)>”

in "4.3 Initial Values to be Set by User".

Contents of Argument Settings

Development Tool C Language Assembly Language (Register)
RENESAS
CA78K0R compiler

const __far fdl_descriptor_t* descriptor_pstr AX (0 to 15), C (16 to 23):
The start address of the structure
argument (24 bits)

RENESAS
CC-RL compiler

const __far fdl_descriptor_t* descriptor_pstr DE (0 to 15), A (16 to 23):
The start address of the structure
argument (24 bits)

LLVM compiler const __far fdl_descriptor_t* descriptor_pstr DE (0 to 15), A (16 to 23):
The start address of the structure
argument (24 bits)

[Return values]

Type Symbol Definition Description

fdl_status_t FDL_OK Normal end

FDL_ERR_CONFIGURATION Initialization error. The setting is incorrect. Or
high-speed on-chip oscillator does not run. Make sure
that the defined data has not been changed and the
high-speed on-chip oscillator has been started up.

<R>

RL78 Family Chapter 5 User Interface
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 33 of 58
Apr. 22, 2024

FDL_Open

[Function]
FDL preparation processing

Set the data flash control register (DFLCTL) to the state where accessing the data flash memory is permitted

(DFLEN = 1).

[Format]

<C language>
Renesas CA78K0R compiler

void __far FDL_Open(void)

Renesas CC-RL compiler
void __far FDL_Open(void)

LLVM compiler
void __far FDL_Open(void) __attribute__ ((section ("FDL_CODE")))

<Assembler>

CALL !FDL_Open or CALL !!FDL_Open

Remark Call this function with "!" if you are placing the FDL at 00000H to 0FFFFH or with "!!" otherwise.

[Pre-conditions]

The FDL_Init function must have finisehed normally.

[Post-conditions]

Execute the EEL_Init function.

[Cautions]

None

[Register status after calling this function]

Development Tool Registers Used for Return Value Destructed Registers

Renesas CA78K0R compiler None None

Renesas CC-RL compiler None AX

LLVM compiler None AX

[Arguments]

None

[Return values]

None

<R>

<R>

<R>

RL78 Family Chapter 5 User Interface
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 34 of 58
Apr. 22, 2024

FDL_Close

[Function]

FDL end processing

Set the data flash control register (DFLCTL) to the state where access to the data flash memory is inhibited

(DFLEN = 0). All ongoing EEL processing stop.

[Format]

<C language>

Renesas CA78K0R compiler
void __far FDL_Close(void)

Renesas CC-RL compiler
void __far FDL_Close(void)

LLVM compiler
void __far FDL_Close(void) __attribute__ ((section ("FDL_CODE")))

<Assembler>

CALL !FDL_Close or CALL !!FDL_Close

Remark Call this function with "!" if you are placing the FDL at 00000H to 0FFFFH or with "!!" otherwise.

[Pre-conditions]

The FDL_Init, FDL_Open, EEL_Init, EEL_Open, and EEL_Close functions must have finished normally.

[Post-conditions]

None

[Cautions]

None

[Register status after calling this function]

Development Tool Registers Used for Return Value Destructed Registers

Renesas CA78K0R compiler None None

Renesas CC-RL compiler None C

LLVM compiler None C

[Arguments]

None

[Return values]

None

<R>

<R>

<R>

RL78 Family Chapter 5 User Interface
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 35 of 58
Apr. 22, 2024

EEL_Init

[Function]
Processing to initialize the RAM used for EEPROM emulation

[Format]

<C language>

Renesas CA78K0R compiler
eel_status_t __far EEL_Init (void)

Renesas CC-RL compiler
eel_status_t __far EEL_Init (void)

LLVM compiler
eel_status_t __far EEL_Init (void) __attribute__ ((section ("EEL_CODE")))

<Assembler>

CALL !EEL_Init or CALL !!EEL_Init
Remark Call this function with "!" if you are placing the EEL at 00000H to 0FFFFH or with "!!" otherwise.

[Pre-conditions]

1. The FSL and the EEL processing must be either not executed or finished.

2. The FDL_Init and FDL_Open functions must have finished normally.

[Post-conditions]

Execute the EEL_Open function.

[Cautions]

1. Be sure to execute this function when starting EEPROM emulation to initialize the RAM to be used.

2. This function is mutually exclusive with FSL. Before executing this function, be sure to close FSL. Also, never

use any FSL functions during EEPROM emulation.

3. To use FSL after this function is executed, the RAM must be reinitialized, so always execute this function

when restarting EEL.

4. To execute this function again, always close EEL.

[Register status after calling this function]

Development Tool Registers Used for Return Value Destructed Registers

Renesas CA78K0R compiler C (General-purpose register) None

Renesas CC-RL compiler A (General-purpose register) X, BC, D, HL

LLVM compiler A (General-purpose register) X, BC, D, HL

[Arguments]

None

<R>

<R>

<R>

RL78 Family Chapter 5 User Interface
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 36 of 58
Apr. 22, 2024

[Return values]

Type Symbol Definition Description

eel_status_t EEL_OK Normal end

EEL_ERR_CONFIGURATION Initialization error. The EEL cannot be executed with the
values set by the FDL_Init and EEL_Init functions.
Check the current setting referring to section "4.3 Initial
Values to be Set by User".

RL78 Family Chapter 5 User Interface
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 37 of 58
Apr. 22, 2024

EEL_Open

[Function]

EEPROM emulation preparation processing

This function makes the EEPROM emulation executable.

[Format]

<C language>
Renesas CA78K0R compiler

void __far EEL_Open(void)

Renesas CC-RL compiler
void __far EEL_Open(void)

LLVM compiler
void __far EEL_Open(void) __attribute__ ((section ("EEL_CODE")))

<Assembler>

CALL !EEL_Open or CALL !!EEL_Open
Remark Call this function with "!" if you are placing the EEL at 00000H to 0FFFFH or with "!!" otherwise.

[Pre-conditions]

1. The FDL_Init, FDL_Open, and EEL_Init functions must have finished normally.

2. If EEPROM emulation was executed, the processing up to EEL_Close and FDL_Close functions must be

executed to stop the EEPROM emulation processing.

[Post-conditions]

None

[Cautions]

After the EEL_Open function is executed and the EEPROM emulation has been transitioned to the opened state,

the FSL cannot be executed. In addition, STOP mode and HALT mode cannot be executed. To execute the FSL,

STOP mode, or HALT mode, execute the EEL_Close and FDL_Close functions to transition the EEPROM

emulation to the uninitialized state.

[Register status after calling this function]

No registers are corrupted.

[Arguments]

None

[Return values]

None

<R>

<R>

RL78 Family Chapter 5 User Interface
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 38 of 58
Apr. 22, 2024

EEL_Close

[Function]

EEPROM emulation end processing

This function makes the EEPROM emulation unexecutable.

[Format]

<C language>
Renesas CA78K0R compiler

void __far EEL_Close(void)

Renesas CC-RL compiler
void __far EEL_Close(void)

LLVM compiler
void __far EEL_Close(void) __attribute__ ((section ("EEL_CODE")))

<Assembler>

CALL !EEL_Close or CALL !!EEL_Close

Remark Call this function with "!" if you are placing the EEL at 00000H to 0FFFFH or with "!!" otherwise.

[Pre-conditions]

If EEPROM emulation was executed, the EEL_CMD_SHUTDOWN command must be used to set EEPROM

emulation to the stopped state (the opened state).

[Post-conditions]

Execute the FDL_Close function to exit the EEPROM emulation.

[Cautions]

None

[Register status after calling this function]

Development Tool Registers Used for Return Value Destructed Registers

Renesas CA78K0R compiler None None

Renesas CC-RL compiler None A

LLVM compiler None A

[Arguments]

None

[Return values]

None

<R>

<R>

<R>

RL78 Family Chapter 5 User Interface
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 39 of 58
Apr. 22, 2024

EEL_Execute

[Function]

EEPROM emulation execution function

Each type of processing for performing EEPROM emulation operations is specified for this function as an

argument in the command format, and the processing is executed.

[Format]

<C language>
Renesas CA78K0R compiler

void __far EEL_Execute(__near eel_request_t* request_pstr)

Renesas CC-RL compiler
void __far EEL_Execute(__near eel_request_t* request_pstr)

LLVM compiler
void __far EEL_Execute(__near eel_request_t* request_pstr) __attribute__ ((section ("EEL_CODE")

<Assembler>

CALL !EEL_Execute or CALL !!EEL_Execute
Remark Call this function with "!" if you are placing the EEL at 00000H to 0FFFFH or with "!!" otherwise.

[Pre-conditions]

The FDL_Init, FDL_Open, EEL_Init, and EEL_Open functions must have finished normally.

[Post-conditions]

1. While status_enu of the request structure (eel_request_t) is EEL_BUSY, execute the EEL_Handler function

repeatedly.

2. The EEL_Execute function starts command processing and then immediately returns the control to the user

program. The command processing is continued by executing the EEL_Handler function. Therefore, the

EEL_Handler function must be executed continuously until the command processing is completed.

[Cautions]

None

[Register status after calling this function]

Development Tool Registers Used for Return Value Destructed Registers

Renesas CA78K0R compiler None AX

Renesas CC-RL compiler None AX, BC, DE, HL

LLVM compiler None AX, BC, DE, HL

<R>

<R>

<R>

RL78 Family Chapter 5 User Interface
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 40 of 58
Apr. 22, 2024

[Arguments]

request_pstr: Pointer to the request structure (eel_request_t)

Contents of Argument Settings

Development Tool C Language Assembly Language (Register)
RENESAS
CA78K0R compiler

__near eel_request_t* request_pstr AX (0 to 15)
The start address of the structure
argument (16 bits)

RENESAS
CC-RL compiler

__near eel_request_t* request_pstr AX (0 to 15)
The start address of the structure
argument (16 bits)

LLVM compiler __near eel_request_t* request_pstr AX (0 to 15)
The start address of the structure
argument (16 bits)

Details of eel_request_t

Member Type Description

eel_request_t.address_pu08 eel_u08 *
(near)

Pointer to the data buffer for storing write and read
data Note

eel_request_t.identifier_u08 eel_u08 Data ID number

eel_request_t.command_enu eel_command_t Command to be executed
Refer to "Execution Commands (eel_command_t)"
for details on each command

eel_request_t.status_enu eel_status_t Command execution status

Note: Specify this parameter only for a command that requires the parameter. Set up the data buffer size according

to the byte sizes of the write and read data.

<R>

RL78 Family Chapter 5 User Interface
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 41 of 58
Apr. 22, 2024

 Execution Commands (eel_command_t)

Command Description

EEL_CMD_STARTUP This command checks the block status and sets the system to the EEPROM
emulation start state (started). If two active blocks exist, the incorrect block is
changed to an invalid block.
Be sure to execute this command before executing commands other than the
EEL_CMD_FORMAT command and make sure that the command finishes
normally.

EEL_CMD_WRITE Note 1 This command writes the specified data to the EEL blocks.
* The following arguments must be specified prior to execution.
• address_pu08: Specifies the start address of the RAM area where the write
data is stored.
• identifier_u08: Specifies the data ID of the write data.

EEL_CMD_READ Note 1 This command reads the latest data from the EEPROM emulation blocks
corresponding to the specified data ID.
*The following arguments must be specified prior to execution.
• address_pu08: Specifies the start address of the RAM area where the read
data is stored.
• identifier_u08: Specifies the data ID of the read data.

EEL_CMD_VERIFY Notes 1, 2 This command performs internal verification to check signal levels of the active
block. This command verifies whether signal levels of flash memory cells are
appropriate or not.

EEL_CMD_REFRESH Notes 1, 3 This command copies the latest stored data from the active EEL block (copy
source block) to the next block (copy destination block) in the EEL pool after the
erase processing. This makes the copy destination block active.

EEL_CMD_FORMAT This command initializes (erases) everything, including the data recorded in the
EEL blocks. Be sure to issue this command before using EEPROM emulation
for the first time. Note that issuing this command is also necessary to initialize
all blocks if a malfunction occurs in an EEL block (such as a valid block
disappearing) or the values in the descriptor table (those which are fixed values
that cannot be changed) are modified.
Because EEPROM emulation switches to the stopped state (opened)
regardless of the results after the processing finishes, execute the
EEL_CMD_STARTUP command to continue using EEPROM emulation.

EEL_CMD_SHUTDOWN Note 1 This command sets EEPROM emulation to the stopped state (opened).

Notes 1. Do not execute this command until the EEL_CMD_STARTUP command has finished normally.

 2. This command is not used to perform processing for reading written data and compare it. To compare

written data, use the EEL_Execute (EEL_CMD_READ) function through the user program.

3. The erase processing is performed by executing the EEL_CMD_REFRESH command.

RL78 Family Chapter 5 User Interface
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 42 of 58
Apr. 22, 2024

Command Execution States of EEL_Execute/EEL_Handler (eel_status_t) (1/2)

Command Execution Status Category Description Corresponding Commands

EEL_OK Meaning Normal end

All commands
Cause None

Action to

be taken

None

EEL_BUSY Meaning A command is being executed.

All commands
Cause None

Action to

be taken

Keep calling the EEL_Handler function until the

status changes.

EEL_ERR_POOL_FULL

Meaning Pool full error

EEL_CMD_WRITE
Cause There is no area that can be used to write the data.

Action to

be taken

Execute the EEL_CMD_REFRESH command and

restart writing data.

EEL_ERR_INITIALIZATION Meaning Initialization error

All commands

Cause The FDL_Init, FDL_Open, EEL_Init, and

EEL_Open functions have not been finished

normally.

Action to

be taken

Normally finish the FDL_Init, FDL_Open, EEL_Init,

and EEL_Open functions.

EEL_ERR_ACCESS_LOCKED Meaning EEPROM emulation lock error
Commands other than

EEL_CMD_STARTUP and

EEL_CMD_FORMAT

Cause EEPROM emulation cannot be executed.

Action to

be taken

Make sure that the EEL_CMD_STARTUP

command has finished normally.

EEL_CMD_UNDEFINED Command error

A command that does not exist has been specified.

EEL_ERR_VERIFY Meaning When the EEL_CMD_STARTUP command was

executed:

An error occurred during the internal verification

processing for the block header or the finally

written data.

When the EEL_CMD_VERIFY command was

executed:

An error occurred during the internal verification

processing for the active block.

EEL_CMD_STARTUP

EEL_CMD_VERIFY

Cause Some signal levels of flash memory cells were not

appropriate.

Action to
be taken

Execute the EEL_CMD_REFRESH command.

EEL_ERR_PARAMETER Meaning Parameter error

All commands

Cause An incorrect command parameter has been

specified.
Action to
be taken

Check the specified parameter.

RL78 Family Chapter 5 User Interface
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 43 of 58
Apr. 22, 2024

Command Execution States of EEL_Execute/EEL_Handler (eel_status_t) (2/2)

Command Execution Status Category Description Corresponding Commands

EEL_ERR_REJECTED Meaning Reject error

All commands
Cause A different command is being executed.

Action to
be taken

Call the EEL_Handler function to terminate the

ongoing command.

EEL_ERR_NO_INSTANCE Meaning No-write-data error

EEL_CMD_READ
Cause The specified identifier data has not been written.

Action to
be taken

Write data to the identifier specified using the

EEL_CMD_WRITE command.

EEL_ERR_POOL_INCONSISTENT Meaning EEL block inconsistency error

EEL_CMD_STARTUP

Cause An EEL block has the undefined state (such as

there are no active blocks).

Action to
be taken

Execute the EEL_CMD_FORMAT command to

initialize the EEL blocks.

EEL_ERR_POOL_EXHAUSTED Meaning EEL block exhaustion error

EEL_CMD_STARTUP

EEL_CMD_FORMAT

EEL_CMD_REFRESH

EEL_CMD_WRITE

Cause There are no more EEL blocks that can be used

to continue.

Action to
be taken

Stop EEPROM emulation.

You can try restoration by executing the

EEL_CMD_FORMAT command (erasing all

existing data) or read existing data.

EEL_ERR_INTERNAL

Meaning Internal error

Commands other than

EEL_CMD_SHUTDOWN

Cause An unexpected error has occurred.

Action to
be taken

Check the device state.

[Return values]

None

RL78 Family Chapter 5 User Interface
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 44 of 58
Apr. 22, 2024

EEL_Handler

[Function]

Continuous EEPROM emulation execution processing

This function is used to check for the completion of processing while allowing processing of EEPROM emulation

specified by the EEL_Execute function to continue.

[Format]

<C language>

Renesas CA78K0R compiler
void __far EEL_Handler(void)

Renesas CC-RL compiler
void __far EEL_Handler(void)

LLVM compiler
void __far EEL_Handler(void) __attribute__ ((section ("EEL_CODE")))

<Assembler>

CALL !EEL_Handler or CALL !!EEL_Handler
Remark Call this function with "!" if you are placing the EEL at 00000H to 0FFFFH or with "!!" otherwise.

[Pre-conditions]

1. The FDL_Init, FDL_Open, EEL_Init, and EEL_Open functions must have finished normally.

2. The EEL_Execute function should be executed Note, and status_enu of the request structure (eel_request_t)

should be EEL_BUSY.

Note: Execution of the EEL_CMD_SHUTDOWN command does not need execution of the EEL_Handler function.

However, we recommend that you follow the command operation flowchart shown in Figure 3-3.

[Post-conditions]

While status_enu of the request structure (eel_request_t) is EEL_BUSY, execute this function repeatedly. If the

EEL_Handler function is executed while no command is executed, status_enu of of the request structure

(eel_request_t) is not updated.

[Cautions]

The command execution status of the EEL_Handler function is set for the "eel_request_t* request" used as an

argument of the EEL_Execute function. Therefore, when using the EEL_Handler function, do not free the

"eel_request_t* request" variable. For the execution state of the command specified by the EEL_Handler function,

see the list of the Command Execution States of EEL_Execute/EEL_Handler (eel_status_t) .

[Register status after calling this function]

Development Tool Registers Used for Return Value Destructed Registers

Renesas CA78K0R compiler None None

Renesas CC-RL compiler None AX, BC, DE, HL

LLVM compiler None AX, BC, DE, HL

<R>

<R>

<R>

RL78 Family Chapter 5 User Interface
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 45 of 58
Apr. 22, 2024

[Arguments]

None

[Return values]

None

RL78 Family Chapter 5 User Interface
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 46 of 58
Apr. 22, 2024

EEL_GetSpace

[Function]

This obtains the free EEL block space.

[Format]

<C language>
Renesas CA78K0R compiler

eel_status_t __far EEL_GetSpace(__near eel_u16* space_pu16)

Renesas CC-RL compiler
eel_status_t __far EEL_GetSpace(__near eel_u16* space_pu16)

LLVM compiler
eel_status_t __far EEL_GetSpace(__near eel_u16* space_pu16)
 __attribute__ ((section ("EEL_CODE")))

<Assembler>

CALL !EEL_GetSpace or CALL !!EEL_GetSpace

Remark Call this function with "!" if you are placing the EEL at 00000H to 0FFFFH or with "!!" otherwise.

[Pre-conditions]

The FDL_Init, FDL_Open, EEL_Init, EEL_Open, and EEL_Execute (EEL_CMD_STARTUP command) functions

must have finished normally.

[Post-conditions]

None

[Cautions]

1. When the EEL pool has been exhausted, 0 is always returned to indicate that there is no free space.

2. When an error value is returned, the free space information remains unchanged.

[Register status after calling this function]

Development Tool Registers Used for Return Value Destructed Registers

Renesas CA78K0R compiler C (General-purpose register) AX

Renesas CC-RL compiler A (General-purpose register) X, C, HL

LLVM compiler A (General-purpose register) X, C, HL

[Arguments]

space_pu16: The address at which the free space information of the current active block is input.

<R>

<R>

<R>

<R>

RL78 Family Chapter 5 User Interface
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 47 of 58
Apr. 22, 2024

Contents of Argument Settings

Development Tool C Language Assembly Language (Register)
RENESAS
CA78K0R compiler

__near eel_u16* space_pu16 AX(0 to 15)
The start address of the argument
(16 bits)

RENESAS
CC-RL compiler

__near eel_u16* space_pu16 AX(0 to 15)
The start address of the argument
(16 bits)

LLVM compiler __near eel_u16* space_pu16 AX(0 to 15)
The start address of the argument
(16 bits)

[Return values]

Type Symbol Definition Description

eel_status_t EEL_OK Normal end

EEL_ERR_INITIALIZATION EEL_Init has not been executed.

EEL_ERR_ACCESS_LOCKED The EEL_CMD_STARTUP command has not finished normally.

EEL_ERR_REJECTED A command is being executed.

RL78 Family Chapter 5 User Interface
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 48 of 58
Apr. 22, 2024

EEL_GetVersionString

[Function]

This obtains the version information of the EEL.

[Format]

<C language>
Renesas CA78K0R compiler

__far eel_u08* __far EEL_GetVersionString(void)

Renesas CC-RL compiler
__far eel_u08* __far EEL_GetVersionString(void)

LLVM compiler
__far eel_u08* __far EEL_GetVersionString(void) __attribute__ ((section ("EEL_CODE")))

<Assembler>

CALL !EEL_GetVersionString or CALL !!EEL_GetVersionString

Remark Call this function with "!" if you are placing the EEL at 00000H to 0FFFFH or with "!!" otherwise.

[Pre-conditions]

None

[Post-conditions]

None

[Cautions]

None

[Register status after calling this function]

Development Tool Registers Used for Return Value Destructed Registers

Renesas CA78K0R compiler BC (0 to 15), DE (16 to 31) None

Renesas CC-RL compiler DE (0 to 15), A (16 to 23) None

LLVM compiler DE (0 to 15), A (16 to 23) None

[Arguments]

None

<R>

<R>

<R>

RL78 Family Chapter 5 User Interface
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 49 of 58
Apr. 22, 2024

[Return values]

Type Description

eel_u08*
(far)

The address at which the version information of the EEL is input (a 24-bit address area)
The version information of the EEL consists of ASCII characters.
Example: For EEPROM emulation library Pack02 V1.01 (ASCII code)

"ERL78T02RyyyGVxxx"

Version information: Example: V101 -> V1.01

Compiler information(5 or 6 characters) : CA78K0R [ex:RyyyG]

 : CC-RL and LLVM

 [ex:LyyyzG]

Type No.(3 characters) : Type02

Corresponding device(4 characters) : RL78

Target library(1 character) : EEL

<R>

RL78 Family Chapter 6 Software Resources and Processing Time
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 50 of 58
Apr. 22, 2024

Chapter 6 Software Resources and Processing Time

6. 1 Processing Time

This section describes the EEL processing time.

Figure 6-1 shows the concept of EEL function response time and total processing time. The total processing time in the

figure is the case of successful completion and does not include the processing time in the case of abnormal end (such as

incorrect input data or error). Delay time due to execution of the EEL_Handler function is not included either. If the

EEL_Handler function calling interval time is extended, the maximum total processing time may be exceeded.

Figure 6-1 Overview of Processing Time

User Program EEL

EEL_Execute

Status = BUSY

EEL_Handler

Status = BUSY

EEL_Handler

Status = BUSY

EEL_Handler

Status = OK

Response

 Time

 Total Processing Time

RL78 Family Chapter 6 Software Resources and Processing Time
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 51 of 58
Apr. 22, 2024

Table 6-1 EEL Function Response Time of EEPROM Emulation Library Pack02

Table 6-2 Total Processing Time of EEPROM Emulation Library Pack 02

Remarks fcpu: CPU/peripheral hardware clock frequency (for example, at 20 MHz, fcpu = 20)

Block Num: Number of EEPROM emulation blocks

Functions MAX time (Full Speed Mode) MAX time (Wide Voltage Mode)

FDL_Init 1199 / fcpu µs 1199 / fcpu µs

FDL_Open 27 / fcpu + 14 µs 27 / fcpu + 14 µs

FDL_Close 836 / fcpu + 444 µs 791 / fcpu + 969 µs

EEL_Init 3268 / fcpu µs 3268 / fcpu µs

EEL_Open 14 / fcpu µs 14 / fcpu µs

EEL_Close 17 / fcpu µs 17 / fcpu µs

EEL_GetSpace 47 / fcpu µs 47 / fcpu µs

EEL_GetVersionString 14 / fcpu µs 14 / fcpu µs

EEL_Execute 320 / fcpu µs 320 / fcpu µs

EEL_Handler 4582 / fcpu µs 4582 / fcpu µs

Functions MAX time (Full Speed Mode) MAX time (Wide Voltage Mode)

EEL_Execute / EEL_Handler

EEL_CMD_STARTUP (280530 + 235 * Block Num)

/ fcpu + 1612 µs

(277604 + 235 * Block Num)

/ fcpu + 8798 µs

EEL_CMD_FORMAT (67102 + 288981 * Block Num)

/ fcpu + (266627 * Block Num) µs

(67102 + 256218 * Block Num)

/ fcpu + (303359 * Block Num) µs

 EEL_CMD_REFRESH

1. Finished normally
5163828 / fcpu + 774424 µs 5072479 / fcpu + 1421917 µs

EEL_CMD_REFRESH

2. REFRESH processing

failed until Block Num - 1

(1554000 + 7538406 * (Block Num - 1))

/ fcpu + (1548404 * (Block Num - 1)) µs

(1554000 + 7355752 * (Block Num - 1))

/ fcpu + (2842866 * (Block Num - 1)) µs

EEL_CMD_VERIFY 30869 / fcpu + 4126 µs 19605 / fcpu + 29754 µs

EEL_CMD_WRITE 303387 / fcpu + 111858 µs 289240 / fcpu + 253342 µs

EEL_CMD_READ 5102 / fcpu µs 5102 / fcpu µs

EEL_CMD_SHUTDOWN 219 / fcpu µs 219 / fcpu µs

RL78 Family Chapter 6 Software Resources and Processing Time
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 52 of 58
Apr. 22, 2024

6. 2 Software Resources

In the EEL, program areas corresponding to parts of the library to be used, RAM areas for variables to be used in

the library, and RAM areas for work area (self-RAM) are used to assign an appropriate program to the user area.

Also, since the FDL will be used, the EEL must have a separate area for use by the FDL.

The self-RAM area used for EEL varies depending on the microcontroller, and the user RAM may be used in

some devices. In such a device, the user needs to allocate the self-RAM area to the user RAM; be sure to allocate

the self-RAM area at linkage.

CA78K0R compiler: The area can be specified in the link directive file.

CC-RL compiler: The area can be specified without allocating a section.

LLVM compiler: The area can be specified in the linker script file.

For the method of specifying the area in the link directive file, refer to the section "Defining the On-Chip RAM

Area" in the release note.

Tables 6-3 and 6-4 list required software resources Notes 1, 2. Figures 6-2 and 6-3 show the images of allocating software

resources to the RAM.

Table 6-3 Software Resources Used by EEPROM Emulation Library Pack02 Ver. 1.01

Notes 1. For devices not shown in the RL78 Family Self RAM list of Flash Self Programming Library (R20UT2944),

contact your Renesas sales agency.

2. An area used as the working area by the EEL is called self-RAM in this manual and the release note. The

self-RAM requires no user setting because it is an area that is not mapped and automatically used at

execution of the EEL (previous data is discarded). When the EEL is not used, the self-RAM can be used as

a normal RAM space.

3. The data buffer is used as the working area for EEL internal processing or the area where the data to be set

is allocated in the EEL_Execute function. The required size depends on the function to be used.

Item
Size (Byte)

Area Used by EEPROM Emulation Library Pack02 Note 1
CA78K0R

CC-RL
LLVM

Self RAM Note 2 0 to 384 Note 2
Use of the self-RAM area by RL78 Family EEPROM Emulation Library Pack02
differs with the device. For details, refer to "RL78 Family Self RAM list of Flash
Self Programming Library (R20UT2944)".

Stack 80 64
Can be allocated to a RAM area other than the self-RAM and the area from
FFE20H to FFEFFH. Data buffer Note 3 1 to 255

Request structure 5

SADDR RAM work
area SADDR : 3 Can be allocated to a short-addressing RAM area.

Library size 3400

Can be allocated to a program area other than the self RAM and the area from
FFE20H to FFEFFH (ROM is recommended) Data table 3 to 66

Fixed-parameter area
(default) 14

EEL Blocks 3,072 or more
(at least 3blocks) Only data flash memory can be used.

<R>

<R>

RL78 Family Chapter 6 Software Resources and Processing Time
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 53 of 58
Apr. 22, 2024

Table 6-4 Data Buffer Size Used by EEL Functions

Note: An additional 5 bytes area is used by the request structure.

Figure 6-2 Example 1 of RAM Allocation with Self-RAM

(RL78/G13: product with 4 KB RAM and 64 KB ROM)

Figure 6-3 Example 2 of RAM Allocation without Self-RAM

(RL78/G13: product with 2 KB RAM and 32 KB ROM)

Function Name Byte Function Name Byte

FDL_Init 0 EEL_Close 0

FDL_Open 0 EEL_Execute Note 0 to 255

FDL_Close 0 EEL_Handler Note 0 to 255

EEL_Init 0 EEL_GetSpace 2

EEL_Open 0 EEL_GetVersionString 0

<R>

RL78 Family Chapter 6 Software Resources and Processing Time
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 54 of 58
Apr. 22, 2024

6. 2. 1 Sections
Functions, constants, and variables to be used are allocated to specified sections in the EEL and FDL.

The following table lists sections defined by the EEL and FDL.

Table 6-5 Sections Used in the EEL/FDL

Section name Description

FDL_CODE FDL’s code section that contains FDL programs.

FDL_SDAT FDL’s variable data section that contains variable data used in the FDL.

Place this section in the short addressing RAM area.

FDL_CNST FDL’s constant data section that contains constant data used in the FDL.

EEL_CODE EEL’s code section that contains EEL programs.

EEL_SDAT EEL’s variable data section that contains variable data used in the EEL.

Place this section in the short addressing RAM area.

EEL_CNST EEL’s constant data section that contains constant data used in the EEL.

RL78 Family Appendix A Revision History
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 55 of 58
Apr. 22, 2024

Appendix A Revision History

A.1 Major Revisions in This Edition

Page Description Classification

Throughout the document

−
The user's manual of the EEPROM Emulation library for CC-RL was integrated into this
manual.

(d)

− Added information about the EEPROM Emulation library for the LLVM compiler. (b)

−
A statement regarding reference to the RL78 Family Self RAM list of the target MCU was
added (see HOW TO USE THIS MANUAL).

(e)

− The English translation was reviewed and corrected. (a)

−
The term "voltage mode" was changed to "flash memory programming mode" for
consistency of terminology.

(d)

Chapter 1 Overview

p. 1
The contents of section "1.2 Target Devices", were moved to the description of the target
MCUs in How to Use This Manual.
The description in the new section "1.2 Target Compilers", was added.

(c)

Chapter 2 EEPROM Emulation

p. 3
The statements in Table 2-1 were added and those only relevant to EEL Pack 01 were
deleted.

(c)

p. 4 The title of Table 2-1 was added and the descriptions on EEL Pack 01 were deleted. (c)
p. 5 A title was added for Table 2-2. (c)

Chapter 3 EEL Functional Specifications
p. 13 Statements regarding urgent processing were added to Note 1. (c)

Chapter 4 Using EEPROM Emulation
p. 19 Item 1 in Table 4-1 was made more precise. (c)
p. 21 A cautionary note on using the CC-RL compiler was added to No. 26 in Table 4-1. (c)

Chapter 5 User Interface

p. 27
Statements on the assembly language code for the CA78K0R compiler, the C and assembly
languages of the CC-RL compiler and the C language code for the LLVM compiler were
added to "Definition of the request structure (eel_request_t)".

(c)

p. 29 Statements on differences between the CA78K0R and CC-RL compilers were added. (c)
p. 29 Added description of LLVM compiler to Remarks 4 (c)

p. 31 to p. 49
Statements on formats of the C language, register status after calling functions, and
arguments in the case of the CC-RL and LLVM compilers were added.

(c)

Chapter 6 Software Resources and Processing Time

p. 48
Statements on differences between the CA78K0R and CC-RL compilers were added.
Statements of the sizes of individual items for the CC-RL compiler were added and that of
the size of the self RAM was changed in Table 6-3.

(c)

p. 49
The address range of the area where usage is prohibited was corrected in Figure 6-2 to
reflect the change to the self-RAM area.

(c)

Remark: Symbols under "Classification" in the above table are used to classify revisions as follows.

(a): Correction of errors, (b): addition or change to specifications, (c): addition or change to descriptions or

notes, (d): addition or change to packages, part numbers, or management divisions, (e): addition or change

to related documents

RL78 Family Appendix A Revision History
EEPROM Emulation Library Pack02

R01US0068EJ0110 Rev.1.10 Page 56 of 58
Apr. 22, 2024

A.2 Revision History of Previous Editions

The following shows the revision history of the previous editions. The Chapter column indicates the chapter in the
edition.

Rev. No. Description Chapter
1.01 Statements of the target devices were deleted. Throughout

the document References to the list of target MCUs were added.
The description in section 2.2, Outline of Function, was changed. Chapter 2

EEPROM
Emulation

The description in table 2-1 was modified.
The description in figure 2-4 was changed.
The description in table 2-2 was changed.
The description of note 2 for figure 3-1 was changed. Chapter 3 EEL

Functional
Specifications

The description of section 3.5 was changed.

The description of execution commands was changed. Chapter 5 User
Interface The description of EEL_Handler was changed.

Items in table 6-1 were changed. Chapter 6
Software
Resources and
Processing
Time

Items in table 6-2 were changed.
The heading and items in table 6-3 were changed.
The description of the self-RAM area in table 6-3 was changed.
The inquiry about device specifications in note 1 for table 6-3 was changed.
The description of note 2 in table 6-3 was removed.
The description of note 4 in table 6-3 was removed.

Rev. No. Description Chapter

1.00 Newly created Throughout
the document

奥付

RL78 Family User’s Manual: EEPROM Emulation Library Pack 02

Publication Date: Rev.1.10 Apr 22, 2024

Published by: Renesas Electronics Corporation

RL78 Family
EEPROM Emulation Library Pack02

R01US0068EJ0110

	Cover
	Notice
	General Precautions in the Handling of Microprocessing Unit and MicrocontrollerUnit Products
	How to Use This Manual
	Contents
	Chapter 1 Overview
	1. 1　 Outline
	1. 2　 Target Compilers
	1. 3　 Definition of Terms

	Chapter 2 EEPROM Emulation
	2. 1　 Specifications of EEPROM Emulation
	2. 2　 Outline of Functions
	2. 3　 EEL Architecture
	2. 3. 1　 System Structure
	2. 3. 2　 EEL Pool
	2. 3. 3　 Structure of EEL Block
	2. 3. 4　 EEL Block Header
	2. 3. 5　 Structure of Stored Data
	2. 3. 6　 EEL Block Overview

	Chapter 3 EEL Functional Specifications
	3. 1 EEL Functions/Commands of the EEL_Execute Function
	3. 1. 1　 EEL_CMD_STARTUP Command [Startup Processing]
	3. 1. 2　 EEL_CMD_SHUTDOWN Command [Shutdown Processing]
	3. 1. 3　 EEL_CMD_REFRESH Command [Refresh Processing]
	3. 1. 4　 EEL_CMD_FORMAT Command [Format Processing]
	3. 1. 5　 EEL_CMD_WRITE Command [Write Processing]
	3. 1. 6　 EEL_CMD_READ Command [Read Processing]
	3. 1. 7　 EEL_CMD_VERIFY Command [Verify Processing]

	3. 2　 State Transitions
	3. 3　 Basic Flowchart
	3. 4　 Command Operation Flowchart
	3. 5　 BGO (Back Ground Operation) Function

	Chapter 4 Using EEPROM Emulation
	4. 1　 Caution Points
	4. 2　 Number of Stored User Data Items and Total User Data Size
	4. 3　 Initial Values to be Set by User

	Chapter 5 User Interface
	5. 1　 Request Structure (eel_request_t) Settings
	5.1.1 User Write Access
	5.1.2 User Read Access

	5. 2　 EEL Function Calls
	5. 3　 Data Types
	5. 4　 EEL Functions

	Chapter 6 Software Resources and Processing Time
	6. 1　 Processing Time
	6. 2　 Software Resources
	6. 2. 1　 Sections

	Appendix A Revision History
	A.1 Major Revisions in This Edition
	A.2 Revision History of Previous Editions

	Colophon
	Back Cover

