-
»
D
ﬁ—
7
<
Q
-
-
QL

LENESANS

RIGOOPX

Real-Time Operating System
User's Manual: Coding

Target Device
RX Family with MPU (Memory Protection Unit)

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics
WWwWw.renesas.com Rev.1.01 Sep 2013

10.

11.

12.

Notice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you
or third parties arising from the use of these circuits, software, or information.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of
third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No
license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of
Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration,
modification, copy or otherwise misappropriation of Renesas Electronics product.

Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The
recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property
damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas
Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any
application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred
by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas
Electronics.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas
Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and
malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation
of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by
you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility
of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and
regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive.
Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws
and regulations.

Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use
Renesas Electronics products or technology described in this document for any purpose relating to military applications or use
by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas
Electronics products or technology described in this document, you should comply with the applicable export control laws and
regulations and follow the procedures required by such laws and regulations.

It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise
places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this
document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of
unauthorized use of Renesas Electronics products.

This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document
or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(2012.4)

Readers

Purpose

Organization

How to Read This Manual

How

This manual is intended for users who design and develop application system using RX

MCU family.

This manual is intended for users to understand the functions of real-time OS “RI600PX”

to Use This Manual

manufactured by Renesas Electronics, described the organaization listed below.

This manual can be broadly divided into the following units.

CHAPTER 1
CHAPTER 2
CHAPTER 3
CHAPTER 4
CHAPTER §
CHAPTER 6
CHAPTER 7
CHAPTER 8
CHAPTER 9
CHAPTER 10
CHAPTER 11
CHAPTER 12
CHAPTER 13
CHAPTER 14
CHAPTER 15
CHAPTER 16
CHAPTER 17
CHAPTER 18
CHAPTER 19
CHAPTER 20
CHAPTER 21
CHAPTER 22
APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

OVERVIEW

SYSTEM BUILDING

MEMORY PROTECTION FUNCTIONS

TASK MANAGEMENT FUNCTIONS

TASK DEPENDENT SYNCHRONIZATION FUNCTIONS
TASK EXCEPTION HANDLING FUNCTIONS
SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

MEMORY POOL MANAGEMENT FUNCTIONS
TIME MANAGEMENT FUNCTIONS
SYSTEM STATE MANAGEMENT FUNCTIONS
INTERRUPT MANAGEMENT FUNCTIONS
SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS
OBJECT RESET FUNCTIONS
SYSTEM DOWN
SCHEDULING FUNCTION
SYSTEM INITIALIZATION
DATA TYPES AND MACROS
SERVICE CALLS
SYSTEM CONFIGURATION FILE
CONFIGURATOR cfg600px
TABLE GENARATION UTILITY mkritblpx
WINDOW REFERENCE
FLOATING-POINT OPERATION FUNCTION
DSP FUNCTION
STACK SIZE ESTIMATION

It is assumed that the readers of this manual have general knowledge in the fields of

electrical engineering, logic circuits, microcomputers, C language, and assemblers.

To understand the hardware functions of the RX MCU
-> Refer to the User's Manual of each product.

Conventions Data significance: Higher digits on the left and lower digits on the right

Note: Footnote for item marked with Note in the text
Caution: Information requiring particular attention
Remark: Supplementary information

Numeric representation: Decimal ... XXXX

Hexadecimal ... OxXXXXX
Prefixes indicating power of 2 (address space and memory capacity):

K (kilo) 2'0-=1024

M (mega) 220 = 10242
up4(data): A value in which data is rounded up to the multiple of 4.
down(data): A integer part of data.

Related Documents The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

Document Name

Document No.

Start R20UTO751E
RI Series

Message R20UT0756E

Coding This document
RI600PX

Debug R20UT0950E

Caution The related documents listed above are subject to change without

notice. Be sure to use the latest edition of each document when

designing.

All trademarks or registered trademarks in this document are the property of their respective owners.

TABLE OF CONTENTS

CHAPTER 1 OVERVIEW ... 14

1.1 Outline ... 14
1.1.1 Real-time OS ... 14
1.1.2 Multi-task OS ... 14
1.1.3 Memory protection function ... 14

CHAPTER 2 SYSTEM BUILDING ... 15

2.1 Outline ... 15

2.2 Coding Processing Programs ... 16

2.3 Coding System Configuration File ... 16
2.4 Coding User-Own Coding Module ... 17
2.5 Creating Load Module ... 18

2.6 Build Options ... 23

2.6.1 Service call information files and “-ri600_preinit_mrc” compiler option ...

2.6.2 Compiler option for the boot processing file ... 24
2.6.3 Kernel library ... 25

2.6.4 Arrangement of section ... 26

2.6.5 Initialized data section ... 29

CHAPTER 3 MEMORY PROTECTION FUNCTIONS ... 30

3.1 Outline ... 30

3.2 Domain, Memory object, Access permission vector ... 30

3.3 Restriction in the Number of Memory Objects ... 32

3.4 Trusted Domain ... 32

3.5 Change Access Permission ... 32

3.6 Protection of User Stack ... 32

3.7 Check Access Permission ... 33

3.8 Processor Mode ... 33

3.9 Enable MPU (Memory Protection Unit) ... 33

3.10 Access Exception Handler (_RI_sys_access_exception()) ... 34
3.10.1 User-Own Coding Module ... 34

3.11 Design of Memory Map ... 36

3.11.1 The Restrictions regarding the Address of Memory Objects ...

3.11.2 Area That Should Be the Inside of Memory Objects ... 36
3.11.3 Area That Should Be the Outside of Memory Objects ... 37

CHAPTER 4 TASK MANAGEMENT FUNCTIONS ... 38

4.1 Outline ... 38

4.2 Tasks ... 38
4.2.1 Task state ... 38
4.2.2 Task priority ... 40

36

23

4.3

4.2.3 Basic form of tasks ... 41

4.2.4 Internal processing of task ... 42

4.2.5 Processor mode of task ... 42
Create Task ... 43

4.4 Delete Task ... 45
4.5 Activate Task ... 46

4.6
4.7

4.8
4.9

4.5.1 Activate task with queuing ... 46
4.5.2 Activate task without queuing ... 47
Cancel Task Activation Requests ... 48
Terminate Task ... 49
4.7.1 Terminate invoking task ... 49
4.7.2 Terminate Another task ... 50
Change Task Priority ... 51
Reference Task Priority ... 52

4.10 Reference Task State ... 53

5.1

4.10.1 Reference task state ... 53
4.10.2 Reference task state (simplified version) ... 54

CHAPTER 5 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS ...
Outline ... 55
Put Task to Sleep ... 55

5.2

5.3
5.4
5.5
5.6
5.7

5.8
5.9

5.2.1 Waiting forever ... 55

5.2.2 With time-out ... 56
Wake-up Task ... 57
Cancel Task Wake-up Requests ... 58
Forcibly Release Task from Waiting ... 59
Suspend Task ... 60
Resume Suspended Task ... 61

5.7.1 Resume suspended task ... 61

5.7.2 Forcibly resume suspended task ... 62
Delay Task ... 63
Differences Between Sleep with Time-out and Delay ... 64

CHAPTER 6 TASK EXCEPTION HANDLING FUNCTIONS ... 65

6.1
6.2

6.3
6.4
6.5
6.6
6.7
6.8

CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS ...

Outline ... 65
Task Exception Handling Routines ... 66
6.2.1 Basic form of task exception handling routines ... 66
6.2.2 Internal processing of task exception handling routine ... 67
6.2.3 The starting conditions of task exception handling routines ... 68
Define Task Exception Handling Routine ... 69
Cancel a Definition of Task Exception Handling Routine ... 70
Request Task Exception ... 71
Disable and Enable Task Exception ... 72
Reference Task Exception Disabled State ... 73
Reference Task Exception State ... 74

55

75

7.1 Outline ... 75
7.2 Semaphores ... 75
7.2.1 Create semaphore ... 76
7.2.2 Delete semaphore ... 77
7.2.3 Acquire semaphore resource ... 78
7.2.4 Release semaphore resource ... 81
7.2.5 Reference semaphore state ... 82
Eventflags 83
7.3.1 Create eventflag ... 84
7.3.2 Delete Eventflag ... 85
7.3.3 Set eventflag ... 86
7.3.4 Clear eventflag ... 87
7.3.5 Check bit pattern ... 88
7.3.6 Reference eventflag state ... 93
Data Queues 94
7.4.1 Create data queue ... 95
7.4.2 Delete data queue ... 96
7.4.3 Send to data queue ... 97
7.4.4 Forced send to data queue ... 102
7.4.5 Receive from data queue ... 103
7.4.6 Reference data queue state ... 108
Mailboxes 109
7.5.1 Messages ... 109
7.5.2 Create mailbox ... 111
7.5.3 Delete mailbox ... 112
7.5.4 Send to mailbox ... 113
7.5.5 Receive from mailbox ... 114
7.5.6 Reference mailbox state ... 117

CHAPTER 8 EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS ...
118

8.1 Outline ... 118

8.2 Mutexes ... 118
8.2.1 Priority inversion problem ... 119
8.2.2 Current priority and base priority ... 119
8.2.3 Simplified priority ceiling protocol ... 119
8.2.4 Differences from semaphores ... 120
8.2.5 Create mutex ... 121
8.2.6 Delete mutex ... 122
8.2.7 Lock mutex ... 123
8.2.8 Unlock mutex ... 128
8.2.9 Reference mutex state ... 129

Message Buffers 130

8.3.1 Create message buffer ... 131
8.3.2 Delete message buffer ... 132
8.3.3 Send to message buffer ... 133
8.3.4 Receive from message buffer ... 138
8.3.5 Reference message buffer state ... 143

CHAPTER 9 MEMORY POOL MANAGEMENT FUNCTIONS ... 144

9.1 Outline ... 144
Fixed-Sized Memory Pools 145
9.2.1 Create fixed-sized memory pool ... 145
9.2.2 Delete fixed-sized memory pool ... 147
9.2.3 Acquire fixed-sized memory block ... 148
9.2.4 Release fixed-sized memory block ... 153
9.2.5 Reference fixed-sized memory pool state ... 154
Variable-Sized Memory Pools 155
9.3.1 Size of Variable-sized memory block ... 155
9.3.2 Create variable-sized memory pool ... 156
9.3.3 Delete variable-sized memory pool ... 157
9.3.4 Acquire variable-sized memory block ... 158
9.3.5 Release variable-sized memory block ... 163
9.3.6 Reference variable-sized memory pool state ... 164

CHAPTER 10 TIME MANAGEMENT FUNCTIONS ... 165

10.1 Outline ... 165
10.2 System Time ... 165
10.2.1 Base clock timer interrupt ... 165
10.2.2 Base clock interval ... 165
10.3 Timer Operations ... 166
10.4 Delay Task ... 166
10.5 Time-out ... 166
10.6 Cyclic Handlers ... 167
10.6.1 Basic form of cyclic handler ... 167
10.6.2 Processing in cyclic handler ... 168
10.6.3 Create cyclic handler ... 169
10.6.4 Delete cyclic handler ... 170
10.6.5 Start cyclic handler operation ... 171
10.6.6 Stop cyclic handler operation ... 173
10.6.7 Reference cyclic handler state ... 174
10.7 Alarm Handlers ... 175
10.7.1 Basic form of alarm handler ... 175
10.7.2 Processing in alarm handler ... 176
10.7.3 Create alarm handler ... 177
10.7.4 Delete alarm handler ... 178
10.7.5 Start alarm handler operation ... 179
10.7.6 Stop alarm handler operation ... 180
10.7.7 Reference Alarm Handler State ... 181
10.8 System Time ... 182
10.8.1 Set system time ... 182
10.8.2 Reference system time ... 183
10.9 Base Clock Timer Initialization Routine (_RI_init_cmt_knli()) ... 184
10.9.1 User-own cording module ... 184

CHAPTER 11 SYSTEM STATE MANAGEMENT FUNCTIONS ... 186

11.1 Outline ... 186

11.2 Rotate Task Precedence ... 186

11.3 Reference Task ID in the RUNNING State ... 188
11.4 Lock and Unlock the CPU ... 189

11.5 Reference CPU Locked State ... 191

11.6 Disable and Enable Dispatching ... 192

11.7 Reference Dispatching Disabled State ... 193
11.8 Reference Context Type ... 194

11.9 Reference Dispatch Pending State ... 195

CHAPTER 12 INTERRUPT MANAGEMENT FUNCTIONS ... 196

12.1 Interrupt Type ... 196
12.2 Fast Interrupt of the RX-MCU ... 196
12.3 CPU Exception ... 196
12.4 Base Clock Timer Interrupt ... 197
12.5 Multiple Interrupts ... 197
12.6 Interrupt Handlers ... 198
12.6.1 Basic form of interrupt handlers ... 198
12.6.2 Register interrupt handler ... 199
12.7 Maskable Interrupt Acknowledgement Status in Processing Programs ... 199
12.8 Prohibit Maskable Interrupts ... 200
12.8.1 Move to the CPU locked state by using loc_cpu, iloc_cpu ... 200
12.8.2 Change PSW.IPL by using chg_ims, ichg_ims ... 200
12.8.3 Change PSW.l and PSW.IPL directly (only for handlers) ... 200

CHAPTER 13 SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS ... 201

13.1 Outline ... 201
13.2 Reference Version Information ... 201

CHAPTER 14 OBJECT RESET FUNCTIONS ... 202

14.1 Outline ... 202

14.2 Reset Data Queue ... 202

14.3 Reset Mailbox ... 203

14.4 Reset Message Buffer ... 204

14.5 Reset Fixed-sized Memory Pool ... 205
14.6 Reset Variable-sized Memory Pool ... 206

CHAPTER 15 SYSTEM DOWN ... 207

15.1 Outline ... 207

15.2 User-Own Coding Module ... 207
15.2.1 System down routine (_RI_sys_dwn__()) ... 207
15.2.2 Parameters of system down routine ... 208

CHAPTER 16 SCHEDULING FUNCTION ... 212

16.1 Outline ... 212
16.2 Processing Unit and Precedence ... 212
16.3 Task Drive Method ... 212
16.4 Task Scheduling Method ... 213
16.4.1 Ready queue ... 213
16.5 Task Scheduling Lock Function ... 214
16.6 Idling ... 215
16.7 Task Scheduling in Non-Tasks ... 215

CHAPTER 17 SYSTEM INITIALIZATION ... 216

17.1 Outline ... 216
17.2 Boot Processing File (User-Own Coding Module) ... 217
17.2.1 Boot processing function (PowerON_Reset_PC()) ... 217
17.2.2 Include kernel_ram.h and kernel_rom.h ... 218
17.2.3 Compiler option for boot processing file ... 218
17.2.4 Example of the boot processing file ... 219
17.3 Kernel Initialization Module (vsta_knl, ivsta_knl) ... 221
17.4 Section Initialization Function (_INITSCT()) ... 222
17.4.1 Section information file (User-Own Coding Module) ... 223
17.5 Registers in Fixed Vector Table / Exception Vector Table ... 225

CHAPTER 18 DATA TYPES AND MACROS ... 226

18.1 Data Types ... 226
18.2 Constant macros ... 227
18.3 Function Macros ... 232
18.3.1 Macros for Error Code ... 232
18.3.2 Macros for Data Queue ... 232
18.3.3 Macros for Fixed-sized Memory Pool ... 232
18.3.4 Macros for Domain ... 232
18.3.5 Access permission ... 233

CHAPTER 19 SERVICE CALLS ... 234

19.1 Outline ... 234
19.1.1 Method for calling service calls ... 235
19.2 Explanation of Service Call ... 236

Task management functions 238

Task dependent synchronization functions 262

Task exception handling functions 280

Synchronization and communication functions (semaphores) 290
Synchronization and communication functions (eventflags) 303
Synchronization and communication functions (data queues) 319
Synchronization and communication functions (mailboxes) 339
Extended synchronization and communication functions (mutexes) 353
Extended synchronization and communication functions (message buffers) 368
Memory pool management functions (fixed—sized memory pools) 389
Memory pool management functions (variable-sized memory pools) 404

Time management functions 419

System state management functions 440
Interrupt management functions 457

System configuration management functions 461
Object reset functions 464

Memory object management functions 470

CHAPTER 20 SYSTEM CONFIGURATION FILE ... 481

20.1 Outline ... 481
20.2 Default System Configuration File ... 482
20.3 Configuration Information (static API) ... 482

System Information (system) 483

Note Concerning system. context 486
20.5.1 Note concerning FPU and DSP ... 486

20.5.2 Relationship with the compiler options “fint_register”, “base” and “pid” ... 488

Base Clock Interrupt Information (clock) 489

Maximum ID (maxdefine) 491

Domain Definition (domain[]) 497

Memory Object Definition (memory_object[]) 498

Task Information (task[]) 500

Semaphore Information (semaphorel]) 504

Eventflag Information (flag[]) 506

Data Queue Information (dataqueue[]) 508

Mailbox Information (mailbox[]) 510

Mutex Information (mutex[]) 512

Message Buffer Information (message buffer[]) 513

Fixed-sized Memory Pool Information (memorypooll]) 515
Variable—sized Memory Pool Information (variable_memorypool[]) 517
Cyclic Handler Information (cyclic_hand[]) 519

Alarm Handler Information (alarm_handl[]) 522

Relocatable Vector Information (interrupt_vector[]) 524

Fixed Vector/Exception Vector Information (interrupt_fvector[]) 527

RAM Capacity Estimation 530
20.23.1 BRI_RAM and RRI_RAM section ... 530

20.23.2 BURI_HEAP section ... 533
20.23.3 SURI_STACK section ... 533
20.23.4 Sl section ... 533

Description Examples 534

CHAPTER 21 CONFIGURATOR cfg600px ... 539

21.1 Outline ... 539

21.2 Start cfg600px ... 540
21.2.1 Start cfg600px from command line ... 540
21.2.2 Start cfg600px from CubeSuite+ ... 540

CHAPTER 22 TABLE GENARATION UTILITY mkritblpx ... 541

22.1 Outline ... 541
22.2 Start mkritblpx ... 542
22.2.1 Start mkritblpx from command line ... 542

22.2.2 Start mkritblpx from CubeSuite+ ... 542
22.3 Notes ... 542

APPENDIX A WINDOW REFERENCE ... 543

A.1 Description ... 543

APPENDIX B FLOATING-POINT OPERATION FUNCTION ... 557

B.1 When Using Floating-point Arithmetic Instructions in Tasks and Task Exception Handling
Routines ... 557

B.2 When Using Floating-point Arithmetic Instructions in Handlers ... 557

APPENDIX C DSP FUNCTION ... 558

C.1 When Using DSP Instructions in Tasks and Task Exception Handling Routines ... 558
C.2 When Using DSP Instructions in Handlers ... 558

APPENDIX D STACK SIZE ESTIMATION ... 559

D.1 Types of Stack ... 559

D.2 Call Walker ... 559

D.3 User Stack Size Estimation ... 560
D.4 System Stack Size Estimation ... 561

RI600PX CHAPTER 1 OVERVIEW

CHAPTER 1 OVERVIEW

1.1 Outline

The RIGO0PX is a built-in real-time, multi-task OS that provides a highly efficient real-time, multi-task environment to
increases the application range of processor control units.

The RI600PX is a high-speed, compact OS capable of being stored in and run from the ROM of a target system.

The RIG00PX is based on the nITRON4.0 specification. Furthermore, the RIGOOPX supports the memory protection func-
tion specified by nITRON4.0 protection extension.

1.11 Real-time OS

Control equipment demands systems that can rapidly respond to events occurring both internal and external to the
equipment. Conventional systems have utilized simple interrupt handling as a means of satisfying this demand. As control
equipment has become more powerful, however, it has proved difficult for systems to satisfy these requirements by means
of simple interrupt handling alone.

In other words, the task of managing the order in which internal and external events are processed has become
increasingly difficult as systems have increased in complexity and programs have become larger.

Real-time OS has been designed to overcome this problem.

The main purpose of a real-time OS is to respond to internal and external events rapidly and execute programs in the
optimum order.

1.1.2 Multi-task OS

A “task” is the minimum unit in which a program can be executed by an OS. “Multi-task” is the name given to the mode of
operation in which a single processor processes multiple tasks concurrently.

Actually, the processor can handle no more than one program (instruction) at a time. But, by switching the processor’s
attention to individual tasks on a regular basis (at a certain timing) it appears that the tasks are being processed
simultaneously.

A multi-task OS enables the parallel processing of tasks by switching the tasks to be executed as determined by the
system.

One important purpose of a multi-task OS is to improve the throughput of the overall system through the parallel
processing of multiple tasks.

113 Memory protection function

1) High-reliability system
To reduce a possibility of being unable to detect program glitches when debugging the program and causing a
trouble in the market after the system has been shipped from the factory, this OS assures the system of high
reliability.
If memory data destruction occurs especially in a memory area in which the OS, etc. are stored, the system may
produce a dangerous condition by, for example, operating erratically. However, since this OS is free of memory data
corruptions, the system can continue operating normally, and is therefore assured of high system reliability.

2) Debug assistance
In systems without memory protection, a corruption of memory content by an illegal pointer behavior, etc. generally
is not noticed until it actually comes to the surface as a trouble symptom. The cause of the trouble can only be
identified by analyzing emulator's trace data, which requires a large amount of time. The RIB00PX can detect a bug
when an illegal memory access is committed, enabling the debugging efficiency to be greatly increased.

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 14 of 565
Sep 20, 2013

RI600PX CHAPTER 2 SYSTEM BUILDING

CHAPTER 2 SYSTEM BUILDING

This chapter describes how to build a system (load module) that uses the functions provided by the RIGOOPX.

21 Outline

System building consists in the creation of a load module using the files (kernel library, etc.) installed on the user
development environment (host machine) from the RIG00PX's supply media.
Figure 2-1 shows the procedure of system building.

Figure 2-1 Example of System Building

SYSTEM CONFIGURATION User-own Library Files
FILE Coding Module - Kernel Library

- Standard Library
CONFIGURATOR
cfg600px

Processing Programs

- Runtime Library
etc.

Information Files

C C Compiler / Assembler)

Object Files Service call Information Files

¥
TABLE GENARATION
UTILITY mkritblpx

Table File

()

Load Module

The RI600PX provides a sample program with the files necessary for generating a load module.
The sample programs are stored in the following folder. The source files are stored in “appli” sub-folder.

<ri_sample> = <CubeSuite+_root>\SampleProjects\RX\device_name_RI600PX

- <CubeSuite+_root>

Indicates the installation folder of CubeSuite+.
The default folder is “C:\Program Files\Renesas Electronics\CubeSuite+\".

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 15 of 565
Sep 20, 2013

RI600PX CHAPTER 2 SYSTEM BUILDING

- SampleProjects
Indicates the sample project folder of CubeSuite+.

- RX
Indicates the sample project folder of RX MCU.

- device_name_RI600PX
Indicates the sample project folder of the RIGOOPX. The project file is stored in this folder.

device_name: Indicates the device name which the sample is provided.

2.2 Coding Processing Programs

Code the processing that should be implemented in the system.
In the RIGOOPX, the processing program is classified into the following five types, in accordance with the types and
purposes of the processing that should be implemented.

- Tasks
A task is processing program that is not executed unless it is explicitly manipulated via service calls provided by the
RI600PX, unlike other processing programs (interrupt handler, cyclic handler and alarm handler).

- Task Exception Handling Routines
When task exception is requested to a task, the task exception handling routine defined for the task is invoked. The
requested exception code is passed to the task exception handling routine.

- Cyclic Handlers
The cyclic handler is a routine started for every specified cycle time.
The RIBOOPX handles the cyclic handler as a “non-task (module independent from tasks)”. Therefore, even if a task
with the highest priority in the system is being executed, the processing is suspended when a specified activation
cycle has come, and the control is passed to the cyclic handler.

- Alarm Handlers
The alarm handler is a routine started only once after the specified time.
The RIBOOPX handles the alarm handler as a “non-task (module independent from tasks)”. Therefore, even if a task
with the highest priority in the system is being executed, the processing is suspended when a specified activation
cycle has come, and the control is passed to the cyclic handler.

- Interrupt Handlers
The interrupt handler is a routine started when an interrupt occurs.
The RI600PX handles the interrupt handler as a “non-task (module independent from tasks)”. Therefore, even if a
task with the highest priority in the system is being executed, the processing is suspended when an interrupt occurs,
and the control is passed to the interrupt handler.

Note For details about the processing programs, refer to “CHAPTER 4 TASK MANAGEMENT FUNCTIONS”,

‘CHAPTER 6 TASK EXCEPTION HANDLING FUNCTIONS”, “CHAPTER 10 TIME MANAGEMENT
FUNCTIONS”, “CHAPTER 12 INTERRUPT MANAGEMENT FUNCTIONS”.

2.3 Coding System Configuration File

Code the SYSTEM CONFIGURATION FILE required for creating information files that contain data to be provided for the
RIG00PX.

Note For details about the system configuration file, refer to “CHAPTER 20 SYSTEM CONFIGURATION FILE”.

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 16 of 565
Sep 20, 2013

RI600PX CHAPTER 2 SYSTEM BUILDING

24 Coding User-Own Coding Module

- MEMORY PROTECTION FUNCTIONS

- Access Exception Handler (_RI_sys_access_exception())
The access exception handler will be invoked when a task or task exception handling routine accesses the
memory that has not been permitted.

TIME MANAGEMENT FUNCTIONS

- Base Clock Timer Initialization Routine (_RI_init_cmt_knl())
The base clock timer initialization routine is called at starting the RIGOOPX.

SYSTEM DOWN

- System down routine (_RI_sys_dwn__())
The system down routine is called when the system down occurs.

SYSTEM INITIALIZATION

- Boot processing file
For details, refer to “17.2 Boot Processing File (User-Own Coding Module)”.

- Section information file (User-Own Coding Module)
Informations for uninitialized data sections and initialized data sections are defined in the section information file.

R20UT0964EJ0101 Rev.1.01 IQENESAS Page 17 of 565
Sep 20, 2013

RI600PX CHAPTER 2 SYSTEM BUILDING

2.5 Creating Load Module

Run a build on CubeSuite+ for files created in sections from “2.2 Coding Processing Programs” to “2.4 Coding User-Own
Coding Module”, and library files provided by the RIGOOPX and C compiler package, to create a load module.

1) Create or load a project
Create a new project, or load an existing one.

Note See “RI Series Real-Time Operating System User's Manual: Start”, “CubeSuite+ Integrated Development
Environment User's Manual: Start” and the Release Notes of this product for details about creating a new
project or loading an existing one.

2) Set a build target project
When making settings for or running a build, set the active project.
If there is no subproject, the project is always active.

Note See “CubeSuite+ Integrated Development Environment User's Manual: RX Build” for details about setting
the active project.

3) Confirm the version

Select the Realtime OS node on the project tree to open the Property panel.
Confirm the version of RIGOOPX to be used in the [Kernel version] property on the [RIGOOPX] tab.

Figure 2-2 Property Panel: [RIGOOPX] Tab

7\3 RIGOOFH Property -+

5 Version nformation [Show varisble properties. |
kernel werzion | W1.01.00
Ih=tall folder C:¥Program Files¥Renesas Electronics¥CubeSuite+¥RIGO0PX
Endian Little endian

Kernel version
Thig iz the version of the RISO0FH 1o be uzed in thiz project.

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 18 of 565
Sep 20, 2013

RI600PX CHAPTER 2 SYSTEM BUILDING

4) Set build target files
For the project, add or remove build target files and update the dependencies.

Note See “CubeSuite+ Integrated Development Environment User's Manual: RX Build” for details about adding
or removing build target files for the project and updating the dependencies.

The following lists the files required for creating a load module.

Source files created in “2.2 Coding Processing Programs”

- Processing programs (tasks, cyclic handlers, alarm handlers, interrupt handlers)

System configuration file created in “2.3 Coding System Configuration File”
- SYSTEM CONFIGURATION FILE

Note Specify “cfg” as the extension of the system configuration file name. If the extension is different, “cfg” is
automatically added (for example, if you designate “aaa.c” as a file name, the file is named as
“aaa.c.cfg”).

Source files created in “2.4 Coding User-Own Coding Module”

- User-own coding module (system down routine, boot processing)

- Library files provided by the RIGOOPX
- Kernel library (refer to “2.6.3 Kernel library”)

Library files provided by the C compiler package

- Standard library, runtime library, etc.

Note 1 If the system configuration file is added to the Project Tree panel, the Realtime OS generated files node is
appeared.
The following information files are appeared under the Realtime OS generated files node. However, these
files are not generated at this point in time.

- System information header file (kernel_id.h)
- Service call definition file (kernel_sysint.h)

- ROM definition file (kernel_rom.h)

- RAM definition file (kernel_ram.h)

- System definition file (ri600.inc)

- CMT timer definition file (ri_cmt.h)

- Table file (ritable.src)

R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 19 of 565
Sep 20, 2013

RI600PX

CHAPTER 2 SYSTEM BUILDING

Figure 2-3 Project Tree Panel

Project Tree

RIGO0 P | i

A GO-F¥ (Build Taal)
4 RIGO0PY (Realtime OS)
e ¥ Simulatar {Debug Toaol)

g
,:" Program fnalvzer {Analyze Tool)

=3 File

-1 | rezet

.....] dbsctc

..... {:_vl’ resetprgec
[_]__ kerne!

..... ‘-'ﬂ ACCESE_BXC.C

..... 7 zamplecfe

=) Realtime OS esnerated files
..... & Lernelsysinth

..... &l kermelidh

..... u kernel_romh

..... u kernel_ramh

..... 88 ric00.inc

..... &l ricmth

.
----- 880 ritable src

I REFEEI07C:FN (Micracantroller)

Note 2 When replacing the system configuration file, first remove the added system configuration file from the
project, then add another one again.

Note 3

Although it is possible to add more than one system configuration files to a project, only the first file added

is enabled. Note that if you remove the enabled file from the project, the remaining additional files will not
be enabled; you must therefore add them again.

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS

Page 20 of 565

RI600PX CHAPTER 2 SYSTEM BUILDING

5) Set the output of Realtime OS generation files

Select the system configuration file on the project tree to open the Property panel.
On the [System Configuration File Related Information] tab, set the output of realtime OS generation files, etc.

Figure 2-4 Property Panel: [System Configuration File Related Information] Tab

7 =zamplecfe Property -+
B Realtime 05 Generation Files

Generate files Yes(lt updates the files when the cofe file is changed)

Output folder %BuildMode Mamek

Service Call Definition File name kernel_gvzinth

Svstem Information Header File name kernel_idh

ROM Definition File name kernel_romh

Fab Definition File name kernel_ramh

Svztem Definition File name rig00 in

CMT Timer Definition File name ri_cmth

Table File name ritable zrc

B Gonfigurator Start Settne
When undefined interrupt iz eenerated, the interruption v Yes(-10)
The making situation of the file that the configuratar ger Yes(-\)
IJzer options
B Service Gall Information File
The path that contains the service call information file | The path that contains the service call information file[0]

Generate files

Select whather to make a Realtime 05 Generation Filez which iz output from a gvstem configuration file. Thiz file includes
information of svstem initialization.

'\ System Configuration File Related Information | /{ Filz Infarmation / -

6) Specify the output of a load module file
Set the output of a load module file as the product of the build.

Note See “CubeSuite+ Integrated Development Environment User's Manual: RX Build” for details about
specifying the output of a load module file.

7) Set build options
Set the options for the compiler, assembler, linker, and the like.
Please be sure to refer to “2.6 Build Options”.

Note See “CubeSuite+ Integrated Development Environment User's Manual: RX Build” for details about setting
build options.

R20UT0964EJ0101 Rev.1.01 IQENESAS Page 21 of 565
Sep 20, 2013

RI600PX CHAPTER 2 SYSTEM BUILDING

8) Run a build
Run a build to create a load module.

Note

See “CubeSuite+ Integrated Development Environment User's Manual: RX Build” for details about running
a build.

Figure 2-5 Project Tree Panel (After Running Build)

Project Tree

----- I REFEEI0TCxFM (Microcontraller)
..... A, GC-Re{ (Build Taol)
..... 4 RIS0OPX (Realtime OS)
----- il Ry Simulator (Debue Toal)
----- 1 Program finalyzer (Analyze Tool)
- File

ﬂ Build tool generated files
E| reset

=L 1] kernel

..... ﬂ ACCESE BT
..... ‘-’ﬂ init_cmt o

..... ‘-'ﬂ syadnn =

..... ‘-’ﬂ handler o

..... ‘-’ﬂ COMMON G

o samplecte

=&l Realtime OS5 eenerated files
..... u kernel_zvzinth

..... h-| kernelidh

..... u kernelromh

..... u kernelramh

..... ind] viB00 inc

..... u ri_cmth

..... 51,"'1 titable sro

9) Save the project

Save the setting information of the project to the project file.

Note

See “CubeSuite+ Integrated Development Environment User's Manual: Start” for details about saving the
project.

R20UT0964EJ0101 Rev.1.01 IQEN ESNS Page 22 of 565
Sep 20, 2013

RI600PX CHAPTER 2 SYSTEM BUILDING

2.6 Build Options

This section explains the build options that should be especially noted.

2.6.1 Service call information files and “-ri600_preinit_mrc” compiler option

The service call information file (mrc files) are generated to the same folder as object files at compilation of the source files
that includes kernel.h file.

The name of service calls used in the source files are outputted in the mrc files. It is necessary to input all files to the table
generation utility mkritblpx. If there is a leaking in the input file, service call modules that application uses might not be
linked. In this case, the system down will occur when the service call is issued.

On the other hand, if the mrc files which are generated in the past and which is invalid in now are input to the mkritblpx, the
service call modules that are not used in the application may be linked. In this case, there is no problem in the operation of
the RIGOOPX but the module size uselessly grows.

Specify “-ri600_preinit_mrc” compiler option for the source file that includes kernel.h file even if this option is not specified,
there is no problem in the operation of the RIGOOPX but the service call module that is not used in the application may be
linked.

When application libraries are used, the mrc files that is generated at compilation of the library source should be inputted
to the mkritblpx. If this way is difficult for you, make mrc file where name of using service calls is described (see belows),
and input the mrc file to the mkritblpx.

Note, the system down will occur when the service call that is not linked is called.

sta tsk
snd_mbx
rcv_mbx
prcv_mbx

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 23 of 565
Sep 20, 2013

RI600PX CHAPTER 2 SYSTEM BUILDING

2.6.2 Compiler option for the boot processing file

It is necessary to set “-nostuff’ option for the boot processing file (“resetprg.c” in the sample project) like a mention in
“17.2.3 Compiler option for boot processing file”. If not, the RIBOOPX does not work correctly.

To set “-nostuff” option only for the boot processing file, please set any of the following in the [Individual Compile Options]
tab of [Property] panel for the boot processing file. To set “-nostuff’ option for all, please set any of the following in the
[Compiler Options] tab of [Property] panel for [CC-RX (Build Tool)].

1) Setin the [Object] category
Like Figure 2-6, set “Yes” in [Allocates uninitialized variables to 4-byte boundary alignment sections], [Allocates
initialized variables to 4-byte boundary alignment sections] and [Allocates const qualified variables to 4-byte
boundary alignment sections].

Figure 2-6 [Object] category

Property =
&| RG10_RIGO0VAc Property BB
4 Object -
Output file tvpe Object module file{-output=obj)

Ohject file name
Outputs debugeing information es(-debug)

Section name of program area F
Section name of constant area C
Section name of initialized data area]
Section name of uninitialized data area B
Section name of literal area L

Wiy

Section name of switch statement branch table area

Allocatez uninitialized variables to 4-byte boundary alienment zections [=]
Allocates initialized variables to 4-byte boundary alisnment sections Yes{-nostuff=D)}

fllocates const qualified variables to d4-bwte boundary alienment zections Yes{—nostuff=C)

Allocates switch statement branch tables to d-byte boundary alisnment zections Mo w7

Allocates uninitialized variables to #-byte boundary alienment sections

. Build Settings ,s Individual Compile Options(C) _,{f File Information f -

2) Setin the [Others] category
Like Figure 2-7, add “-nostuff” to [Other additional options].

Figure 2-7 [Others] category

Property =
&| RG10_RIGO0VAc Property BB
Dutput preprocessed source file Mo -
> MISHA G rule check
4 Others
Outputs the copyright MNof-nologo)
Dutputs the cross reference information Yes(-Horef)
» Commands executed before compile proceszing Commands executed before compile processing[0]
> Commands executed after compile processing Commands executed after compile I:uru:u:essing[[l]

I Other additional options —rib00_preinit_mrc —nostuff [Z]l_I
= Command line Command el 14) &
Other additional options
. Build Settings ,s Individual Compile Options(C) _,{f File Information f -
R20UT0964EJ0101 Rev.1.01 IQENESAS Page 24 of 565

Sep 20, 2013

RI600PX CHAPTER 2 SYSTEM BUILDING

2.6.3 Kernel library

The kernel libraries are stored in the folders described in Table 2-1. Note, CubeSuite+ links the appropriate kernel library
automatically, you need not consider the kernel libraries.

Table 2-1 Kernel libraries

Compiler version
Folder corresponding to the | Corresponding CPU core | File name Description
library

ri600lit.lib For little endian

1 | <ri_root>\library\rxv1 | V1.02.01 or later RXv1 architecture
ri600big.lib | For big endian

RXv1 architecture and ri600lit.lib For little endian

RXv2 architecture

2 | <ri_root>\library\rxv2 | V2.01.00 or later
ri600big.lib | For big endian

Note 1 <ri_root> indicates the installation folder of RIGOOPX.
The default folder is “C:\Program Files\Renesas Electronics\CubeSuite+\RI600PX".

Note 2 The kernel described in item-2 of Table 2-1 is linked when compiler V2.01.00 or later is used. In the case of
others, the kernel library described in item-1 of Table 2-1 is linked.

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 25 of 565
Sep 20, 2013

RI600PX CHAPTER 2 SYSTEM BUILDING

2.6.4 Arrangement of section

1) Naming convention of sections
In order to arrange sections to suitable memory objects, defining the naming convention of sections like the follow-
ing examples is recommended.

- The 1st character : Section type

- P :Program area
- C: Constant area
- B : Uninitialized data area

D : Initialized data area (ROM)

- R : Variables area for initialized data (RAM) (generated by linker)

W : Switch statement branch table area (generated by compiler)

L : Literal area (generated by compiler)

- The 2nd character or subsequent ones

- RI*: Reserved by the RIGOOPX
This area is never accessed from user mode (= task context).

- U* : Memory object or user stack
This area is accessed from user mode (= task context).

- S*: Excluding the above-mentioned
This area is never accessed from user mode (= task context).

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 26 of 565
Sep 20, 2013

RI600PX

CHAPTER 2 SYSTEM BUILDING

2) RIBO0PX sections

Table 2-2 shows RI600PX sections.
The application must not use the RIGOOPX except SURI_STACK and BURI_HEAP.

Table 2-2 RI600PX sections

Section name Attribute Bgundary ROM/RAM Description
alignment
PRI_KERNEL CODE 1 ROM/RAM | RIBOOPX program
CRI_ROM ROMDATA 4 ROM/RAM | RIBO0PX constant
DRI_ROM ROMDATA 4 ROM/RAM | RIBO0PX initialized data (ROM)
Fixed vector table/Exception vector
table
FIX_INTERRUPT_VECTOR | ROMDATA 4 ROM Refer to
“FIX_INTERRUPT_VECTOR
section”
INTERRUPT_VECTOR ROMDATA 4 ROM/RAM | Relocatable vector table (1kB)
Sl DATA 4 RAM System stack
SURI_STACK DATA 4 RAM Default section for user stack area
- RIBOOPX variable
- Data queue area created by the
BRI RAM DATA 4 RAM system configuration file
B - Message buffer area created by
the system configuration file
(when the section is omitted)
RRI_RAM DATA 4 RAM RI600PX initialized data (RAM)

- Fixed-sized memory pool area
created by the system
configuration file (when the
section is omitted)

BURI HEAP DATA 4 RAM - variable-sized memory pool
- area created by the system
configuration file (when the
section is omitted)
Usually, this section should be
arranged to memory object.
R20UT0964EJ0101 Rev.1.01 .IEN ESNS Page 27 of 565

Sep 20, 2013

RI600PX CHAPTER 2 SYSTEM BUILDING

3) FIX_INTERRUPT_VECTOR section

The configurator cfg600px generates fixed vector table/exception vector table as FIX_INTERRUPT_VECTOR sec-
tion according to the contents of definitions of “interrupt_fvector[]” in the system configuration file.

- At the time of RXv1 architecture use
In the RXv1 architecture, fixed vector table is being fixed to address OxFFFFFF80. It is necessary to arrange the
FIX_INTERRUPT_VECTOR section at address OxFFFFFF80.
When the FIX_INTERRUPT_VECTOR section is not arranged to address OxFFFFFF80, RIGOOPX does not
operate correctly.

- At the time of RXv2 architecture use
In the RXv2 architecture, the name of fixed vector table is changed into exception vector table, and can set up the
start address by EXTB register. The initial value of EXTB register at the time of reset is OxFFFFFF80, it is same
as fixed interrupt vector table in RXv1 architecture.
Usually, please arrange the FIX_INTERRUPT_VECTOR section to address OxFFFFFF80.
When the FIX_INTERRUPT_VECTOR section is not arranged to address OxFFFFFF80, “interrupt_fvector[31]”
(reset vector) in the system configuration file is ignored. Please generate the reset vector (address
OxFFFFFFFC) by the user side. And initialize EXTB register to the start address of FIX_INTERRUPT_VECTOR
section in Boot processing function (PowerON_Reset_PC())

4) “aligned_section” linker option
The “aligned_section” linker option must be specified for following sections.

- The section specified as “memory_object[].start_address” in the system configuration file
- The section specified as “task[].stack_section” in the system configuration file
- SURI_STACK section

5) Attention concerning L and W section
The L section is literal area, and the W section is switch statement branch table area. These section are generated
by the compiler.
The name of these section cannot be changed by using “#pragma section” directive.
Please note it as follows when a function executes as a task and the L and W section may be generated by compil-
ing the source file.

A') All functions in the source file executes only as tasks which belong to same domain
Especially, there are no points of concern. The L and W section should be a memory object to be able to
read from the domain.

B) Functions in the source file executes as tasks which belong to separate domains
Because a different name cannot be given to literal area and switch table area of each function, it is
impossible to divide these area to separate memory object. Therefore, separate functions in order to the
domain at running to individual source file and apply (A), or the L and W section should be a memory object
to be able to read from all domain.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 28 of 565
Sep 20, 2013

RI600PX CHAPTER 2 SYSTEM BUILDING

2.6.5 Initialized data section

About sections described in DTBL of the Section information file (User-Own Coding Module), it is necessary to perform
setting to map sections placed on ROM to sections placed on RAM by using “-rom” linker option. Set [Link Options] tab of
[Property] panel for [CC-RX (Build Tool)] like Figure 2-8.

Figure 2-8 ROM to RAM mapped section

Property =
4y TC-FX Property E]
4 Section -
Section start address SLBRI_RAM_RRI_RAMB5.B5_1.B5_2.H
> The specified section that outputs externally defined svmbols to the file The zpecified section that outputz external
> Section alignment Section alignment[9]
]| FOM to RAM mapped section
[nn] L=F.
[n1] D_1=F_1
[n2] D_2=R_2
[n3] DRI FCOM=FRI_RAM
[n4] DE=R3
[nA] DE_1=R5_1
(0] D5_2=R5_2
[n7] DU_MASTERDOM=FL_MASTERDOM
[n&] DU_MASTERDOM_1=RU_MASTERDOM_1
[n9] DU_MASTERDOM_2=RU_MASTERDOM_2
[10] DU_Daor_A=RU_DOM_&
[11] DU_Daord_A_1=RU_DoOM_A_1
[12] DU_Daord_A_2=FU_Dikd_A_2 L
[13] DU_DoM_B=RU_DOM_B I
[14] DU_DoM_B_1=RU_DoOM_B_1
[18] DU_DorM_B_2=FU_DoM_B_2
[18] DU_SH=RIJ_5H
[17] DU_SH 1=RU_SH_1 B
[18] DU_SH_ 2=RU_SH_2
> Yerdy
ROM to RAM mapped section
Specifies BOM to RAM mapped section in the format of “<RBOM section namerx=<RAM section name>", one per line.
Thiz option corresponds to the —Rom option.

, Common Optio... | Compile Options /| Assemble Opti...), Link Options / Hex Output Op... /| Library Genera... / =

Note In sample projects provided by RIGO0PX, it is already set up that the “DRI_ROM” section of RI600PX is
mapped to “RRI_RAM” section.

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 29 of 565
Sep 20, 2013

RI600PX CHAPTER 3 MEMORY PROTECTION FUNCTIONS

CHAPTER 3 MEMORY PROTECTION FUNCTIONS

This chapter describes the memory protection functions performed by the RIGOOPX.

3.1 Outline

The RI600PX achieves following memory access protection function by using MPU (Memory Protection Unit) found in
MCU. Note, handlers can access all address space.

1) Detection of illegal access by tasks and task exception handling routines
Tasks and task exception handling routines can access only permitted memory objects. The access exception
handler will be invoked if a task or task exception handling routine access the area that has not been permitted.

2) Protection of user stack area
The user stack area of each task is inaccessible from other tasks. The access exception handler will be invoked if
an user stack overflows or a task accesses an user stack for another task.

3) Detection of illegal access by the RIGO0OPX
Some service calls receives pointers as argument. The RIGO0PX inspects whether the invoking task can access to
the area indicated by the pointer. The service call returns E_MACYV error when the invoking task does not have the
access permission to the area.
And some service calls saves the context registers of the invoking task. If the user stack will overflow at the time,
the service call returns E_MACYV error.
This feature is available only for service calls issued from task context.

3.2 Domain, Memory object, Access permission vector

The memory protection function is achieved by controlling the following.

- Who
- To where

- What access is permitted

The one that corresponds to “Who” is domain. Tasks and task exception handling routines belong to either of domain
without fail. Domains are distinguished by domain ID with the value from 1 to 15. Domains is generated statically by the
system configuration file.

The one that corresponds to “To where” is memory object, and the one that corresponds to “What access is permitted” is
access permission vector.

Usually, memory objects are registered statically by the system configuration file. Memory objects can be registered
dynamically by using ata_mem service call and unregistered by using det_mem service call. The start address of a
memory object must be 16-bytes boundary, and the size must be multiple of 16.

Access permission vector represents whether tasks that belong to each domain can access (operand-read, operand-write,
execution access) to the memory object.

The access exception handler will be invoked if a task accesses to the memory object that has not been permitted, or a
task accesses other than memory objects and user stack for itself.

On the other hand, in handlers (interrupt handlers, cyclic handlers, alarm handlers and access exception handler), there is
no concept of belonging domain. Handlers can access all address space.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 30 of 565
Sep 20, 2013

RI600PX CHAPTER 3 MEMORY PROTECTION FUNCTIONS

Figure 3-1 Summary of Memory Protection

Task-X that Task-Y that Task-Z that
belongs to belongs to belongs to Kernel,
Address space domain #1 domain #1 domain #2 handlers
Access
Memory object A gng;/stSr:Zn dg?nC;ci)r: Permitted Permitted Prohibited
#1 is permitted.
Access
. ermission vector .
Memory object B E : Permitted
=Only the domain Prohibited
#2 is permitted.
Prohibited
l].clos:et;sstka_ ();1(Permitted
Prohibited Permitted
User stack .
Permitted
5 for task-Y
2
i)
o
g User stack
o .
£ for task-Z Permitted
£
5 Prohibited
z
Prohibited
Code and data for
k:”‘g: e Prohibited
andlers,
I/O area, etc.

Table 3-1 shows the operation concerning memory objects.

Table 3-1 The operation concerning memory objects

Static (system

Operation configuration file) Dynamic (service call)
Registration memory_object[] ata_mem
Unregistration - det_mem
Change access permission - sac_mem

Check access permission

(Other than memory object can be checked.) . vprb_mem
Refer to state - ref_mem
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 31 of 565

Sep 20, 2013

RI600PX CHAPTER 3 MEMORY PROTECTION FUNCTIONS

3.3 Restriction in the Number of Memory Objects

The number of memory objects to which either of access (operand-read, operand-write and execution access) has been
permitted by a certain domain is seven or less. Please design memory map with careful attention to this. The E_OACV
error is detected when this restriction are no longer filled by ata_mem or sac_mem.

3.4 Trusted Domain

In the system which does not support protection mechanism other than memory protection, for example, the possibility of
the following illegal accesses can be considered.

1) The task-A with malice does not have access permission for the memory object-M.

2) The coder wrote the source code for Task-A to create and start the task-B that belongs to the domain which has
access permission for the memory object-M.

3) The illegal access is not detected if the task-B accesses the memory object-M.

To prevent such illegal access, the RIBOOPX supports “trusted domain”. The following service calls that gives the change
to the composition of software can be called only from tasks that belongs to trusted domain. The E_OACV error is
detected when a tasks that does not belong to trusted domain calls either of these service calls.

- cre_77?, acre_?7?, del_?7??, def_tex, ata_mem, det_mem, sac_mem

3.5 Change Access Permission

The access permission for a memory object can be changed dynamically by using sac_mem.
For instance, the following example showcases the requirement to change the access permission.

In this example, it is required download application into memory that belongs to another domain and execute the
application as a task .

1) Register the area for downloading as a memory object (ata_mem). At this time, specify to permit access the
memory object from the domain-A that the task to download belongs to. Afterwards, download to the memory
object area.

2) After downloading, set to be able to access the memory object from the domain-B (sac_mem). And create and
start the downloaded code as the task that belongs to the domain-B.

3.6 Protection of User Stack

The user stack of each task can be accessed only by the task. The access exception handler will be invoked if the user
stack overflows or a task accesses the user stack for another task.

When service call invoked from task uses user stack, the RIGOOPX inspects whether stack pointer points in the range of
the user stack for invoking task. If not, the error E_MACYV is returned.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 32 of 565
Sep 20, 2013

RI600PX CHAPTER 3 MEMORY PROTECTION FUNCTIONS

3.7 Check Access Permission
In the program called from two or more domains, there is a scene that the program wants to judge whether the program

can access the memory. In such a case, vprb_mem service call is useful. The vprb_mem inspects whether the specified
task can do the specified access to the specified memory area.

3.8 Processor Mode

The memory protection by MPU (Memory Protection Unit) is effective only at user mode.
In the RIGOOPX system, task context executes in user mode, and non-task context executes in supervisor mode.

3.9 Enable MPU (Memory Protection Unit)

The RI600PX enables MPU at initiation (vsta_knl, ivsta_knl). Do not disable MPU after the RIGO0OPX has been initialized.
If the MPU is disabled, the system operation cannot be guaranteed.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 33 of 565
Sep 20, 2013

RI600PX CHAPTER 3 MEMORY PROTECTION FUNCTIONS

3.10 Access Exception Handler (_RI_sys_access_exception())

The access exception handler will be invoked when a task or task exception handling routine accesses the memory that
has not been permitted. For such situation, the access exception handler can either remove the factor of illegal access

and return to normal program execution or be used for debug purposes.

3.10.1 User-Own Coding Module

The access exception handler must be implemented as user-own coding module.

Note The source file for the access exception handler provided by the RIGOOPX as a sample file is “access_exc.c”.

- Basic form of access exception handler
The following shows the basic form of access exception handler.

#include "kernel.h" // Provided by RI600PX
#include "kernel id.h" // Generated by cfg600px

NNV,
// Access exception handler

L1777 7077707007777 77777777777 7777 7777777777777777777
void RI sys access exception(UW pc ,UW psw, UW sts, UW addr);
void RI sys access_exception(UW pc ,UW psw, UW sts, UW addr)

Note The function name of access exception handler is “_RI_sys_access_exception”.

- Parameters
1/0 Parameters Register Description
I UW pc; R1 The instruction address that causes access exception
I UW psw; R2 The PSW value at access exception
Factor of access exception
uUw sts; R3 Value of MPESTS register in the MPU (Memory Protection Unit)) is
passed.
In the case of operand access error, the accessed address (= Value of
UW addr, R4 MPDEA register in the MPU) is passed.
In the case of execution access error, the addr is indeterminate.
- Stack

The access exception handler uses the system stack.

- Service call
The access exception handler can issue service calls whose “Useful range” is “Non-task”.

R20UT0964EJ0101 Rev.1.01 .ZENESAS
Sep 20, 2013

Page 34 of 565

RI600PX CHAPTER 3 MEMORY PROTECTION FUNCTIONS

- PSW register when processing is started

Table 3-2 PSW Register When Access Exception Handler is Started

Bit Value Note
I 0 All interrupts are masked.
IPL Same before exception Do npt lower IPL more than the start of pro-
cessing.
PM 0 Supervisor mode
U 0 System stack
C,ZS,0 Undefined
Others 0
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 35 of 565

Sep 20, 2013

RI600PX CHAPTER 3 MEMORY PROTECTION FUNCTIONS

3.11 Design of Memory Map

This section explains information required for a design of memory map.

3.11.1 The Restrictions regarding the Address of Memory Objects

The start address of memory objects must be 16-bytes boundary, and the size must be multiple of 16.

When a memory object is registered by the static API “memory_object[]” in the system configuration file, the start address
can be specified by absolute address value or section name.

To specify I/O register area, absolute address value should be used.

When specifying section name, the start section and end section of the memory object should be specified. In this case,
the sections must be arranged as assumption at linking. For example, specify “aligned_section” linker-option for the sec-
tion specified for “start of memory object” (memory_object[].start_address) because the start address of memory object
must be 16-bytes boundary.

And the size of memory objects must be multiple of 16. In other words, the termination address of memory object must be
multiple of 16 + 15. But, the end section (specified for memory_object[].end_address) does not necessary become just like
that. When the termination address of the end section is not multiple of 16 + 15, the area from the termination address + 1
to next multiple of 16 + 15 is also treated with a part of the memory object. Therefore, don’t arrange any sections in the
range from the termination address + 1 to next multiple of 16 + 15.

- Example
When specifying “CU_DOM1” for “memory_object[].end_address” and the termination address of CU_DOM?1 section
is OXFFFF1003, do not arrange any sections from OxFFFF1004 to OxFFFF100F. To achieve this requirement, specify
“aligned_section” linker option to the section which follows “CU_DOM1”.

3.11.2 Area That Should Be the Inside of Memory Objects

1) Areathatis accessed by tasks
Tasks can access only memory objects to which the permission is appropriately set except it's own user stack.
Therefore, it is necessary that program sections, constant sections, uninitialized data sections and initialized data
sections accessed by tasks should be allocated to the inside of memory objects. Moreover, when the task accesses
I/0O area, the 1/0O area should be the inside of memory objects.

2) Message area handled by mailbox
The message must be generated in the memory objects that both transmitting task and receiving task can access.
However, the management table exists in the top of message area. The system operation cannot be guaranteed if
the management table is destroyed. For this reason, data queue or message buffer is recommended for message
communication.

3) Fixed-sized and variable-sized memory pool area
The memory pool area should be the inside of memory object which can be accessed by tasks that use memory
blocks.
However, the RIGOOPX generates management tables in the memory pool area. The system operation cannot be
guaranteed if the management table is destroyed.

- A fixed-sized memory pool is created by the system configuration file
The fixed-sized memory pool area is generated in the section indicated by “memorypool[].section”. When
“memorypool[].section” is omitted, the fixed-sized memory pool area is generated in the “BURI_HEAP” section.

- A fixed-sized memory pool is created by cre_mpf or acre_mpf
Application should acquire the fixed-sized memory pool area, and specify the start address for cre_mpf or
acre_mpf.

- A variable-sized memory pool is created by the system configuration file
The variable-sized memory pool area is generated in the section indicated by
“variable_memorypool[].mpl_section”. When “variable_memorypool[].mpl_section” is omitted, the variable-sized
memory pool area is generated in the “BURI_HEAP” section.

- A variable-sized memory pool is created by cre_mpl or acre_mpl
Application should acquire the variable-sized memory pool area, and specify the start address for cre_mpl or
acre_mpl.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 36 of 565
Sep 20, 2013

RI600PX CHAPTER 3 MEMORY PROTECTION FUNCTIONS

3.11.3 Area That Should Be the Outside of Memory Objects

1) All the RIGOOPX sections except BURI_HEAP
The RIGO0PX sections except BURI_HEAP should be allocated to the outside of memory objects because these
sections are accessed only by the RIGOOPX. Refer to “2.6.4 Arrangement of section” for the RIGOOPX sections.

2) User stack area for tasks
The user stack area for tasks should be outside of memory objects. The correct system operation cannot be
guaranteed if the user stack area overwraps with either all user stacks and memory objects.

- Atask is created by the system configuration file
The user stack area is generated in the section indicated by “task[].stack_section”. When “task[].stack_section” is
omitted, the user stack area is generated in the “SURI_STACK” section.

- Atask is created by cre_tsk or acre_tsk
Application should acquire the user stack area, and specify the start address for cre_tsk or acre_tsk.

3) Data queue area
The data queue area should be outside of memory objects. The correct system operation cannot be guaranteed if
the data queue area overwraps with either all user stacks and memory objects.

- A data queue is created by the system configuration file
The data queue area is generated in the “BRI_RAM” section of the RIGOOPX.

- A data queue is created by cre_dtq or acre_dtq
Application should acquire the data queue area, and specify the start address for cre_dtq or acre_dtq.

4) Message buffer area
The message buffer area should be outside of memory objects. The correct system operation cannot be
guaranteed if the message buffer area overwraps with either all user stacks and memory objects.

- A message buffer is created by the system configuration file
The message buffer area is generated in the “BRI_RAM” section of the RIGOOPX.

- A message buffer is created by cre_mbf or acre_mbf
Application should acquire the message buffer area, and specify the start address for cre_mbf or acre_mbf.

5) Fixed-sized memory pool management area
The fixed-sized memory pool management area should be outside of memory objects. The correct system
operation cannot be guaranteed if the fixed-sized memory pool management area overwraps with either all user
stacks and memory objects.

- A fixed-sized memory pool is created by the system configuration file
The data queue area is generated in the “BRI_RAM” section of the RIGOOPX.

- A fixed-sized memory pool is created by cre_mpf or acre_mpf
Application should acquire the fixed-sized memory pool management area, and specify the start address for
cre_mpf or acre_mpf.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 37 of 565
Sep 20, 2013

RI600PX CHAPTER 4 TASK MANAGEMENT FUNCTIONS

CHAPTER 4 TASK MANAGEMENT FUNCTIONS

This chapter describes the task management functions performed by the RIGO0PX.

4.1 Outline

The task management functions provided by the RIGOOPX include a function to reference task statuses such as priorities
and detailed task information, in addition to a function to manipulate task statuses such as generation, activation and
termination of tasks.

4.2 Tasks

A task is processing program that is not executed unless it is explicitly manipulated via service calls provided by the
RI600PX, unlike other processing programs (interrupt handler, cyclic handler and alarm handler), and is called from the
scheduler.

Note The execution environment information required for a task's execution is called “task context”. During task
execution switching, the task context of the task currently under execution by the RI600PX is saved and the
task context of the next task to be executed is loaded.

421 Task state

Tasks enter various states according to the acquisition status for the OS resources required for task execution and the
occurrence/non-occurrence of various events. In this process, the current state of each task must be checked and
managed by the RIGOOPX.

The RIG00PX classifies task states into the following seven types.

Figure 4-1 Task State

READY state X RUNNING state

A A A

A

WAITING state

y

WAITING-SUSPENDED state

SUSPENDED state

T

DORMANT state

A A

v

Non-existent state

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 38 of 565
Sep 20, 2013

RI600PX CHAPTER 4 TASK MANAGEMENT FUNCTIONS

1) Non-existent state
The task has not been registered in the RIGOOPX. This is a virtual state.

2) DORMANT state

State of a task that is not active, or the state entered by a task whose processing has ended.
A task in the DORMANT state, while being under management of the RIGOOPX, is not subject to RIGOOPX
scheduling.

3) READY state

State of a task for which the preparations required for processing execution have been completed, but since another
task with a higher priority level or a task with the same priority level is currently being processed, the task is waiting
to be given the CPU's use right.

4) RUNNING state

State of a task that has acquired the CPU use right and is currently being processed.
Only one task can be in the running state at one time in the entire system.

5) WAITING state

State in which processing execution has been suspended because conditions required for execution are not
satisfied.

Resumption of processing from the WAITING state starts from the point where the processing execution was
suspended. The value of information required for resumption (such as task context) immediately before suspension
is therefore restored.

In the RIGOOPX, the WAITING state is classified into the following 12 types according to their required conditions and
managed.

Table 4-1 WAITING State

WAITING State Service Calls

Sleeping state slp_tsk or tslp_tsk

Delayed state dly_tsk.

WAITING state for a semaphore resource
WAITING state for an eventflag
Sending WAITING state for a data queue

wai_sem or twai_sem

wai_flg or twai_flg

snd_dtq or tsnd_dtq

Receiving WAITING state for a data queue rcv_dtq or trcv_dtq.

Receiving WAITING state for a mailbox
WAITING state for a mutex

rcv_mbx or trcv_mbx.

loc_mtx or tloc_mtx.

Sending WAITING state for a message buffer

snd_mbf or tsnd_mbf

Receiving WAITING state for a message buffer

rcv_mbf or trcv_mbf

WAITING state for a fixed-sized memory block

get_mpf or tget_ mpf.

WAITING state for a variable-sized memory block

get_mpl or tget_mpl.

6)

7)

SUSPENDED state

State in which processing execution has been suspended forcibly.

Resumption of processing from the SUSPENDED state starts from the point where the processing execution was
suspended. The value of information required for resumption (such as task context) immediately before suspension
is therefore restored.

WAITING-SUSPENDED state

State in which the WAITING and SUSPENDED states are combined.
A task enters the SUSPENDED state when the WAITING state is cancelled, or enters the WAITING state when the
SUSPENDED state is cancelled.

R20UT0964EJ0101 Rev.1.01

REN ESNS Page 39 of 565

Sep 20, 2013

RI600PX CHAPTER 4 TASK MANAGEMENT FUNCTIONS

4.2.2 Task priority

A priority level that determines the order in which that task will be processed in relation to the other tasks is assigned to
each task.

As a result, in the RIGOOPX, the task that has the highest priority level of all the tasks that have entered an executable
state (RUNNING state or READY state) is selected and given the CPU use right.

In the RIBOOPX, the following two types of priorities are used for management purposes.

- Current priority
The RI600PX performs the following processing according to current priority.

- Task scheduling (Refer to “16.4 Task Scheduling Method”)
- Queuing tasks to a wait queue in the order of priority

Note The current priority immediately after it moves from the DORMANT state to the READY state is specified at
creating the task.

- Base priority
Unless mutex is used, the base priority is the same as the current priority. When using mutex, refer to “8.2.2 Current
priority and base priority”.

Note 1 In the RIGOOPX, a task having a smaller priority number is given a higher priority.

Note 2 The priority range that can be specified in a system can be defined by Maximum task priority (priority) in
System Information (system)) when creating a system configuration file.

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 40 of 565
Sep 20, 2013

RI600PX CHAPTER 4 TASK MANAGEMENT FUNCTIONS

4.2.3 Basic form of tasks

The following shows the basic form of tasks.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 4%*/

void Taskl (VP_INT exinf); /*Refer to note 4%/

void Taskl (VP _INT exinf)
{

ext tsk (); /*Terminate invoking task*/

Note 1 The following information is passed to exinf.

How to activate exinf
TA_ACT attribute is specified at the task creation Extended information specified at the task cre-
act_tsk or iact_tsk ation.
sta_tsk or ista_tsk Start code (stacd) specified by sta_tsk orista_tsk

Note 2 When the return instruction is issued in a task, the same processing as ext_tsk is performed.
Note 3 For details about the extended information, refer to “4.5 Activate Task”.

Note 4 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IQENESAS Page 41 of 565
Sep 20, 2013

RI600PX CHAPTER 4 TASK MANAGEMENT FUNCTIONS

4.2.4 Internal processing of task

In the RIBOOPX, original dispatch processing (task scheduling) is executed during task switching.
Therefore, note the following points when coding tasks.

- Stack
Tasks use user stacks that are defined in Task Information (task[]), cre_tsk or acre_tsk.

- Service call
Tasks can issue service calls whose “Useful range” is “Task”.

- PSW register when processing is started

Table 4-2 PSW Register When Task Processing is Started

Bit Value Note

All interrupts are acceptable.

IPL 0

PM 1 User mode
U 1 User stack
C,zZS,0 Undefined

Others 0

- FPSW register when processing is started
When setting of Task context register (context) in System Information (system) includes “FPSW”, the FPSW when
processing is started is shown in Table 4-3. The FPSW when processing is undefined in other cases.

Table 4-3 FPSW Register When Task Processing is Started

Compiler options
Value
-round -denormalize

off (default) 0x00000100 (Only DN bit is 1.)
nearest (default)

on 0

off (default) 0x00000101 (Only DN bit and RM bit are 1.)
zero

on 1 (Only RM bit is 1.)

425 Processor mode of task

The processor mode at the time of task execution is always user mode. It is impossible to execute a task in the supervisor
mode.

Processing to execute in the supervisor mode should be implemented as an interrupt handler for INT instruction.

For example, the WAIT instruction, that changes the CPU to the power saving mode, is privilege instruction. The WAIT
instruction should execute in the supervisor mode.

Note, INT #1 to #8 are reserved by the RIGO0PX, application cannot use INT #1 to #8.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 42 of 565
Sep 20, 2013

RI600PX CHAPTER 4 TASK MANAGEMENT FUNCTIONS

4.3 Create Task

Tasks are created by one of the following methods.

1) Creation by the system configuration file
The static API “task[]” described in the system configuration file creates a task.
Refer to “20.10 Task Information (task[])” for the details of “task[]”.

2) Creation by cre_tsk or acre_tsk
The cre_tsk creates a task with task ID indicated by parameter fskid according to the content of parameter pk_ctsk.
The acre_tsk creates a task according to the content of parameter pk_ctsk, and returns the created task ID.
The information specified is shown below.

- Task attribute (tskatr)
The following informations are specified as tskatr.

- The domain to which the task belongs
Refer to “3.2 Domain, Memory object, Access permission vector” for the details of the domain.

- Specification started after creation (TA_ACT attribute)
When the TA_ACT attribute is specified, the created task makes a transition to the READY state. When
the TA_ACT attribute is not specified, the created task makes a transition to the DORMANT state.

- Extended information (exinf)

Task start address (task)

Task initial priority (itskpri)
- User stack size (stksz), Start address of user stack (stk)
The user stack area must satisfy the following.

- The start address must be 16-bytes boundary.

- The size must be multiple of 16.

- The user stack area must not overwrap with either all user stacks and all memory objects.

These service calls can be called from tasks that belong to Trusted Domain.
The following describes an example for coding acre_tsk as a representative.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 43 of 565
Sep 20, 2013

RI600PX CHAPTER 4 TASK MANAGEMENT FUNCTIONS
#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/

{

extern void TaskZ2 (VP_INT exinf);
#pragma section B SU_STACK2 /*Section for user stack area*/

#define STKSZ2 256 /*The user stack size must be multiple of 16.*/
static UW Stack2[STKSZ2/sizeof (UW)]; /*User stack area*/
#pragma section

fpragma task Taskl /*Refer to note*/
void Taskl (VP_INT exinf); /*Refer to note*/
void Taskl (VP _INT exinf)

ER ID tskid; /*Declares variable*/
T CTSK pk ctsk = { /*Declares and initializes variable*/
TA DOM (1) |TA ACT, /*Task attribute (tskatr)*/
0, /*Extended information (exinf)*/
(FP) Task2, /*Task start address (task)*/
1, /*Task initial priority (itskpri)*/
STKSZ2, /*User stack size (stksz)*/
(VP) StackZ2 /*Start address of user stack (stk)*/
}i
J* e .. */

tskid = acre tsk (&pk ctsk); /*Creates task*/

/*It is necessary to locate 1l6-byte boundary*/
/*address at linking.*/

/* .. */
}
Note These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".
R20UT0964EJ0101 Rev.1.01 IQEN ESNS Page 44 of 565

Sep 20, 2013

RI600PX CHAPTER 4 TASK MANAGEMENT FUNCTIONS

44 Delete Task

Tasks are deleted by one of the following methods.

1) Delete invoking task by exd_tsk
The exd_tsk terminates the invoking task normally and deletes the task.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note*/

void Taskl (VP_INT exinf); /*Refer to note*/

void Taskl (VP_INT exinf)
{

exd tsk (); /*Terminate and delete invoking task*/

Note 1 When the invoking task has locked mutexes, the locked state are released at the same time (processing
equivalent to unl_mtx).

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

2) Delete another task by del_tsk
The del_tsk deletes the task in the DORMANT state indicated by parameter tskid.
This service call can be called from tasks that belong to Trusted Domain.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note*/

void Taskl (VP_INT exinf); /*Refer to note*/

void Taskl (VP_INT exinf)

ID tskid = 8; /*Declares and initializes variable*/
/* e . */
del tsk (tskid); /*Delete other task*/

Note These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 45 of 565
Sep 20, 2013

RI600PX CHAPTER 4 TASK MANAGEMENT FUNCTIONS

4.5 Activate Task

The RI600PX provides two types of interfaces for task activation: queuing an activation request queuing and not queuing
an activation request.

4.5.1 Activate task with queuing

A task (queuing an activation request) is activated by issuing the following service call from the processing program.

- act_tsk, iact_tsk
These service calls move the task specified by parameter tskid from the DORMANT state to the READY state.
As a result, the target task is queued at the end on the ready queue corresponding to the initial priority and becomes
subject to scheduling by the RIGOOPX.
If the target task has been moved to a state other than the DORMANT state when this service call is issued, this
service call does not move the state but increments the activation request counter (by added 1 to the activation
request counter).
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 3*/

void Taskl (VP_INT exinf); /*Refer to note 3*/

void Taskl (VP_INT exinf)
{

D tskid = 8; /*Declares and initializes variable*/

J* . */

act tsk (tskid); /*Activate task (queues an activation request)*/
J* .. */

Note 1 The activation request counter managed by the RI600PX is configured in 8-bit widths. If the number of
activation requests exceeds the maximum count value 255 as a result of issuing this service call, the counter
manipulation processing is therefore not performed but “E_QOVR” is returned.

Note 2 Extended information specified at creating the task is passed to the task activated by issuing these service
calls.

Note 3 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 46 of 565
Sep 20, 2013

RI600PX CHAPTER 4 TASK MANAGEMENT FUNCTIONS

4.5.2 Activate task without queuing

A task (not queuing an activation request) is activated by issuing the following service call from the processing program.

- sta_tsk, ista_tsk
These service calls move the task specified by parameter tskid from the DORMANT state to the READY state.
As a result, the target task is queued at the end on the ready queue corresponding to the initial priority and becomes
subject to scheduling by the RIGOOPX.
This service call does not perform queuing of activation requests. If the target task is in a state other than the
DORMANT state, the status manipulation processing for the target task is therefore not performed but “E_OBJ” is
returned.
Specify for parameter stacd the extended information transferred to the target task.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note*/

void Taskl (VP_INT exinf); /*Refer to note*/

void Taskl (VP_INT exinf)
{

ID tskid = 8; /*Declares and initializes variable*/

VP _INT stacd = 123; /*Declares and initializes variable*/

J* .. */

sta tsk (tskid, stacd); /*Activate task (does not queue an activation */

/*request) */

Note These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 47 of 565
Sep 20, 2013

RI600PX CHAPTER 4 TASK MANAGEMENT FUNCTIONS

4.6 Cancel Task Activation Requests

An activation request is cancelled by issuing the following service call from the processing program.

- can_act, ican_act
This service call cancels all of the activation requests queued to the task specified by parameter tskid (sets the
activation request counter to 0).
When this service call is terminated normally, the number of cancelled activation requests is returned.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 2*/

void Taskl (VP _INT exinf); /*Refer to note 2*/

void Taskl (VP_INT exinf)
{

ER _UINT ercd; /*Declares variable*/

D tskid = 8; /*Declares and initializes variable*/
J* . */

ercd = can_act (tskid); /*Cancel task activation requests*/

if (ercd >= 0) {
/* .. */ /*Normal termination processing*/

Note 1 This service call does not perform status manipulation processing but performs the setting of activation
request counter. Therefore, the task does not move from a state such as the READY state to the DORMANT
state.

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 48 of 565
Sep 20, 2013

RI600PX CHAPTER 4 TASK MANAGEMENT FUNCTIONS

4.7 Terminate Task

4.71 Terminate invoking task

The invoking task is terminated by issuing the following service call from the processing program.

- ext_tsk
This service call moves the invoking task from the RUNNING state to the DORMANT state.
As a result, the invoking task is unlinked from the ready queue and excluded from the RIGOOPX scheduling subject.
If an activation request has been queued to the invoking task (the activation request counter > 0) when this service
call is issued, this service call moves the task from the RUNNING state to the DORMANT state, decrements the
wake-up request counter (by subtracting 1 from the activation request counter), and then moves the task from the
DORMANT state to the READY state.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 3*/

void Taskl (VP _INT exinf); /*Refer to note 3*/

void Taskl (VP _INT exinf)

ext tsk (); /*Terminate invoking task*/

Note 1 When the invoking task has locked mutexes, the locked state are released at the same time (processing
equivalent to unl_mtx).

Note 2 When the return instruction is issued in a task, the same processing as ext_tsk is performed.

Note 3 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h”.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 49 of 565
Sep 20, 2013

RI600PX CHAPTER 4 TASK MANAGEMENT FUNCTIONS

4.7.2 Terminate Another task

- ter_tsk
This service call forcibly moves the task specified by parameter tskid to the DORMANT state.
As a result, the target task is excluded from the RIGOOPX scheduling subject.
If an activation request has been queued to the target task (the activation request counter > 0) when this service call
is issued, this service call moves the task to the DORMANT state, decrements the activation request counter (by
subtracting 1 from the wake-up request counter), and then moves the task from the DORMANT state to the READY
state.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 2*/

void Taskl (VP _INT exinf); /*Refer to note 2*/

void Taskl (VP_INT exinf)
{

ID tskid = 8; /*Declares and initializes variable*/
JF e . */

ter tsk (tskid); /*Terminate task*/

J* ... */

Note 1 When the target task has locked mutexes, the locked state are released at the same time (processing
equivalent to unl_mtx).

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 50 of 565
Sep 20, 2013

RI600PX CHAPTER 4 TASK MANAGEMENT FUNCTIONS

4.8 Change Task Priority

The priority is changed by issuing the following service call from the processing program.

- chg_pri, ichg_pri
This service call changes the base priority of the task specified by parameter tskid to a value specified by parameter
tskpri.
The changed base priority is effective until the task terminates or this servie call is issued. When next the task is
activated, the base priority is the initial priority which is specified at the task creation.
This service call also changes the current priority of the target task to a value specified by parameter tskpri. However,
the current priority is not changed when the target task has locked mutexes.
If the target task has locked mutexes or is waiting for mutex to be locked and if tskpri is higher than the ceiling priority
of either of the mutexes, this service call returns “E_ILUSE”".
When the current priority is changed, the following state variations are generated.

1) When the target task is in the RUNNING or READY state.
This service call re-queues the task at the end of the ready queue corresponding to the priority specified by
parameter tskpri.

2) When the target task is queued to a wait queue of the object with TA_TPRI or TA_CEILING attribute.
This service call re-queues the task to the wait queue corresponding to the priority specified by parameter tskpri.
When two or more tasks of same current priority as this service call re-queues the target task at the end among
their tasks.

Example When three tasks (task A: priority level 10, task B: priority level 11, task C: priority level 12) are
queued to the semaphore wait queue in the order of priority, and the priority level of task B is
changed from 11 to 9, the wait order will be changed as follows.

S h || TaskA || TaskB | | TaskC
emaphore Priority: 10 Priority: 11 Priority: 12
l chg_pri (Task B, 9/
s h | | TaskB || Task A | | TaskC
emaphore Priority: 9 Priority: 10 Priority: 12

The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 2*/

void Taskl (VP_INT exinf); /*Refer to note 2*/

void Taskl (VP_INT exinf)
{

ID tskid = 8; /*Declares and initializes variable*/
PRI tskpri = 9; /*Declares and initializes variable*/
V2 */

chg pri (tskid, tskpri); /*Change task priority*/

/F e */

Note 1 For current priority and base priority, refer to “8.2.2 Current priority and base priority”.

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 51 of 565
Sep 20, 2013

RI600PX CHAPTER 4 TASK MANAGEMENT FUNCTIONS

49 Reference Task Priority

A task priority is referenced by issuing the following service call from the processing program.

- get pri, iget_pri
Stores current priority of the task specified by parameter tskid in the area specified by parameter p_tskpri.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 2*/

void Taskl (VP_INT exinf); /*Refer to note 2%/

void Taskl (VP _INT exinf)
{

ID tskid = 8; /*Declares and initializes variable*/
PRI p_tskpri; /*Declares variable*/

VN */

get pri (tskid, &p tskpri); /*Reference task priority*/

[e */

Note 1 For current priority and base priority, refer to “8.2.2 Current priority and base priority”.

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 52 of 565
Sep 20, 2013

RI600PX CHAPTER 4 TASK MANAGEMENT FUNCTIONS

410 Reference Task State

4.10.1 Reference task state

A task status is referenced by issuing the following service call from the processing program.

- ref_tsk, iref_tsk
Stores task state packet (current state, current priority, etc.) of the task specified by parameter fskid in the area
specified by parameter pk_rtsk.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 2*/
void Taskl (VP_INT exinf); /*Refer to note 2%/
void Taskl (VP _INT exinf)
{
ID tskid = 8; /*Declares and initializes variable*/
T RTSK pk rtsk; /*Declares data structure*/
STAT tskstat; /*Declares variable*/
PRI tskpri; /*Declares variable*/
PRI tskbpri; /*Declares variable*/
STAT tskwait; /*Declares variable*/
ID wobjid; /*Declares variable*/
TMO lefttmo; /*Declares variable*/
UINT actent; /*Declares variable*/
UINT wupcnt; /*Declares variable*/
UINT suscnt; /*Declares variable*/
V2 */
ref tsk (tskid, &pk rtsk); /*Reference task state*/
tskstat = pk rtsk.tskstat; /*Reference current state*/
tskpri = pk rtsk.tskpri; /*Reference current priority*/
tskbpri = pk rtsk.tskbpri; /*Reference base priority*/
tskwait = pk rtsk.tskwait; /*Reference reason for waiting*/
wobjid = pk rtsk.wobjid; /*Reference object ID number for which the */
/*task is waiting*/
lefttmo = pk rtsk.lefttmo; /*Reference remaining time until time-out*/
actcnt = pk rtsk.actcnt; /*Reference activation request count*/
wupcnt = pk rtsk.wupcnt; /*Reference wake-up request count*/
suscnt = pk rtsk.suscnt; /*Reference suspension count*/
/. */
}
Note 1 For details about the task state packet, refer to “[Task state packet: T_RTSK]".

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 53 of 565

RI600PX CHAPTER 4 TASK MANAGEMENT FUNCTIONS

4.10.2 Reference task state (simplified version)

A task status (simplified version) is referenced by issuing the following service call from the processing program.

- ref _tst, iref _tst
Stores task state packet (current state, reason for waiting) of the task specified by parameter tskid in the area
specified by parameter pk_rtst.
Used for referencing only the current state and reason for wait among task information.
Response becomes faster than using ref_tsk or iref tsk because only a few information items are acquired.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 2*/
void Taskl (VP_INT exinf); /*Refer to note 2*/
void Taskl (VP _INT exinf)
{
ID tskid = 8; /*Declares and initializes variable*/
T RTST pk rtst; /*Declares data structure*/
STAT tskstat; /*Declares variable*/
STAT tskwait; /*Declares variable*/
J* .. */
ref tst (tskid, &pk rtst); /*Reference task state (simplified version)*/
tskstat = pk rtst.tskstat; /*Reference current state*/
tskwait = pk rtst.tskwait; /*Reference reason for waiting*/
/* e */
}

Note 1 For details about the task state packet (simplified version), refer to “ [Task state packet (simplified version):
T_RTSTY".

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 54 of 565
Sep 20, 2013

RI600PX CHAPTER 5 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

CHAPTER 5 TASK DEPENDENT SYNCHRONIZATION
FUNCTIONS

This chapter describes the task dependent synchronization functions performed by the RIGO0PX.

5.1 Outline

The RI600PX provides several task-dependent synchronization functions.

5.2 Put Task to Sleep

5.21 Waiting forever

A task is moved to the sleeping state (waiting forever) by issuing the following service call from the processing program.

- slp_tsk
This service call moves the invoking task from the RUNNING state to the WAITING state (sleeping state).
If a wake-up request has been queued to the target task (the wake-up request counter > 0) when this service call is
issued, this service call does not move the state but decrements the wake-up request counter (by subtracting 1 from
the wake-up request counter).
The sleeping state is cancelled in the following cases.

Sleeping State Cancel Operation Return Value
A wake-up request was issued as a result of issuing wup_ tsk. E_OK
A wake-up request was issued as a result of issuing iwup_ tsk. E_OK
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task TasklI /*Refer to note*/
void Taskl (VP_INT exinf); /*Refer to notex/
void Taskl (VP_INT exinf)
{
ER ercd; /*Declares variable*/
J* e */
ercd = slp tsk (); /*Put task to sleep*/
if (ercd == E OK) {
/F . */ /*Normal termination processing*/
} else if (ercd == E RLWAI) {
/F e */ /*Forced termination processing*/
}
J* ... */
}
R20UT0964EJ0101 Rev.1.01 IZENESAS Page 55 of 565

Sep 20, 2013

RI600PX

CHAPTER 5 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

Note

5.2.2

These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

With time-out

A task is moved to the sleeping state (with time-out) by issuing the following service call from the processing program.

- tslp_tsk
This service call moves the invoking task from the RUNNING state to the WAITING state with time-out(sleeping

state).

As a result, the invoking task is unlinked from the ready queue and excluded from the RIGOOPX scheduling subject.
If a wake-up request has been queued to the target task (the wake-up request counter > 0) when this service call is
issued, this service call does not move the state but decrements the wake-up request counter (by subtracting 1 from

the wake-up request counter).
The sleeping state is cancelled in the following cases.

Sleeping State Cancel Operation Return Value
A wake-up request was issued as a result of issuing wup_ tsk. E_OK
A wake-up request was issued as a result of issuing iwup_tsk. E_OK
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
The time specified by tmout has elapsed. E_TMOUT

The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 2*/
void Taskl (VP_INT exinf); /*Refer to note 2%/
void Taskl (VP _INT exinf)
{
ER ercd; /*Declares variable*/
TMO tmout = 3600; /*Declares and initializes variable*/
VA */
ercd = tslp tsk (tmout); /*Put task to sleep*/
if (ercd == E _OK) {
JF e ... */ /*Normal termination processing*/
} else if (ercd == E_RLWAI) {
/e */ /*Forced termination processing*/
} else if (ercd == E_TMOUT) ({
/e */ /*Time-out processing*/
}
VN */
}
Note 1 When TMO_FEVR is specified for wait time tmout, processing equivalent to slp_tsk will be executed.

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the

cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01

REN ESNS Page 56 of 565

Sep 20, 2013

RI600PX

CHAPTER 5 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

5.3 Wake-up Task

A task is woken up by issuing the following service call from the processing program.

- wup_tsk, iwup_tsk

These service calls cancel the WAITING state (sleeping state) of the task specified by parameter tskid.
As a result, the target task is moved from the sleeping state to the READY state, or from the WAITING-SUSPENDED
state to the SUSPENDED state.
If the target task is in a state other than the sleeping state when this service call is issued, this service call does not
move the state but increments the wake-up request counter (by added 1 to the wake-up request counter).
The following describes an example for coding these service calls.

#pragma task TasklI

{
ID tskid =

wup tsk (tskid);

#include "kernel.h"
#include "kernel

id.h"

void Taskl (VP_INT exinf);
void Taskl (VP_INT exinf)

87

/*Standard header file definition*/
/*Header file generated by cfg600px*/
/*Refer to note 2%/

/*Refer to note 2*/

/*Declares and initializes variable*/

/*Wake-up task*/

Note 1 The wake-up request counter managed by the RIGOOPX is configured in 8-bit widths. If the number of wake-
up requests exceeds the maximum count value 255 as a result of issuing this service call, the counter

manipulation processing is therefore not performed but “E_QOVR” is returned.

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS

Page 57 of 565

RI600PX CHAPTER 5 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

5.4 Cancel Task Wake-up Requests

A wake-up request is cancelled by issuing the following service call from the processing program.

- can_wup, ican_wup
These service calls cancel all of the wake-up requests queued to the task specified by parameter tskid (the wake-up
request counter is set to 0).
When this service call is terminated normally, the number of cancelled wake-up requests is returned.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note*/

void Taskl (VP_INT exinf); /*Refer to note*/

void Taskl (VP_INT exinf)
{

ER _UINT ercd; /*Declares variable*/

ID tskid = 8; /*Declares and initializes variable*/
V2 */

ercd = can_wup (tskid); /*Cancel task wake-up requests*/

if (ercd >= 0) {
/F e .. */ /*Normal termination processing*/

}

Note These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 58 of 565
Sep 20, 2013

RI600PX CHAPTER 5 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

5.5 Forcibly Release Task from Waiting

The WAITING state is forcibly cancelled by issuing the following service call from the processing program.

- rel_wai, irel_wai
These service calls forcibly cancel the WAITING state of the task specified by parameter tskid.
As a result, the target task unlinked from the wait queue and is moved from the WAITING state to the READY state, or
from the WAITING-SUSPENDED state to the SUSPENDED state.
“E_RLWAI” is returned from the service call that triggered the move to the WAITING state (slp_tsk, wai_sem, or the
like) to the task whose WAITING state is cancelled by this service call.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 3*/

void Taskl (VP_INT exinf); /*Refer to note 3%/

void Taskl (VP_INT exinf)
{

ID tskid = 8; /*Declares and initializes variable*/
J* . */

rel wai (tskid); /*Release task from waiting*/

J* e . */

Note 1 This service call does not perform queuing of forced cancellation requests. If the target task is in a state
other than the WAITING or WAITING-SUSPENDED state, “E_OBJ” is returned.

Note 2 The SUSPENDED state is not cancelled by these service calls.

Note 3 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 59 of 565
Sep 20, 2013

RI600PX CHAPTER 5 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

5.6 Suspend Task

A task is moved to the SUSPENDED state by issuing the following service call from the processing program.

- sus_tsk, isus_tsk
These service calls move the target task specified by parameter tskid from the RUNNING state to the SUSPENDED
state, from the READY state to the SUSPENDED state, or from the WAITING state to the WAITING-SUSPENDED
state.
If the target task has moved to the SUSPENDED or WAITING-SUSPENDED state when this service call is issued,
these service calls return E_QOVR.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task TasklI /*Refer to note*/

void Taskl (VP_INT exinf); /*Refer to note*/

void Taskl (VP_INT exinf)
{

ID tskid = 8; /*Declares and initializes variable*/
J* . */

sus tsk (tskid); /*Suspend task*/

J* e . */

Note These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 60 of 565
Sep 20, 2013

RI600PX CHAPTER 5 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

5.7 Resume Suspended Task

5.71 Resume suspended task

The SUSPENDED state is cancelled by issuing the following service call from the processing program.

- rsm_tsk, irsm_tsk
These service calls move the target task specified by parameter tskid from the SUSPENDED state to the READY
state, or from the WAITING-SUSPENDED state to the WAITING state.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task TasklI /*Refer to note 3*/

void Taskl (VP_INT exinf); /*Refer to note 3%/

void Taskl (VP_INT exinf)
{

ID tskid = 8; /*Declares and initializes variable*/
J* e . */

rsm_tsk (tskid); /*Resume suspended task*/

J* e */

Note 1 This service call does not perform queuing of cancellation requests. If the target task is in a state other than
the SUSPENDED or WAITING-SUSPENDED state, “E_OBJ” is therefore returned.

Note 2 The RIG00PX does not support queing of suspend request. The behavior of the frsm_tsk and ifrsm_tsk, that
can release from the SUSPENDED state even if suspend request has been queued, are same as rsm_tsk
and irsm_tsk.

Note 3 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 61 of 565
Sep 20, 2013

RI600PX CHAPTER 5 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

5.7.2 Forcibly resume suspended task

The SUSPENDED state is forcibly cancelled by issuing the following service calls from the processing program.

- frsm_tsk, ifrsm_tsk
These service calls move the target task specified by parameter tskid from the SUSPENDED state to the READY
state, or from the WAITING-SUSPENDED state to the WAITING state.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 3*/

void Taskl (VP_INT exinf); /*Refer to note 3*/

void Taskl (VP _INT exinf)
{

ID tskid = 8; /*Declares and initializes variable*/
J* .. */

frsm tsk (tskid); /*Forcibly resume suspended task*/
/e */

Note 1 This service call does not perform queuing of cancellation requests. If the target task is in a state other than
the SUSPENDED or WAITING-SUSPENDED state, “E_OBJ” is returned.

Note 2 The RI600PX does not support queing of suspend request. Therefore, the behavior of these service calls
are same as rsm_tsk and irsm_tsk.

Note 3 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 62 of 565
Sep 20, 2013

RI600PX CHAPTER 5 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

5.8 Delay Task

A task is moved to the delayed state by issuing the following service call from the processing program.

- dly_tsk
This service call moves the invoking task from the RUNNING state to the WAITING state (delayed state).
As a result, the invoking task is unlinked from the ready queue and excluded from the RIGOOPX scheduling subject.
The delayed state is cancelled in the following cases.

Delayed State Cancel Operation Return Value
Delay time specified by parameter dlytim has elapsed. E_OK
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 2%*/
void Taskl (VP_INT exinf); /*Refer to note 2%/
void Taskl (VP_INT exinf)
{
ER ercd; /*Declares variable*/
RELTIM dlytim = 3600; /*Declares and initializes variable*/
J* e */
ercd = dly tsk (dlytim); /*Delay task*/
if (ercd == E OK) {
/F e */ /*Normal termination processing*/
} else if (ercd == E RLWAI) ({
J* ... */ /*Forced termination processing*/
}
JF . */
}

Note 1 When 0 is specified as dlytim, the delay time is up to next base clock interrupt generation.

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 63 of 565
Sep 20, 2013

RI600PX CHAPTER 5 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

5.9 Differences Between Sleep with Time-out and Delay

There are diffrences between “Sleep with time-out (5.2.2 With time-out)” and “Delay (5.8 Delay Task)” as shown in Table
5-1.

Table 5-1 Differences Between “Sleep with time-out” and “Delay”

Sleep with time-out Delay
Service call that causes status change | tslp_tsk dly_tsk
Return value when time has elapsed E_TMOUT E_OK
Operation when wup_tsk or iwup_tsk Queues the wake-up request (time
g Wake-up o
is issued elapse wait is not cancelled).
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 64 of 565

Sep 20, 2013

RI600PX CHAPTER 6 TASK EXCEPTION HANDLING FUNCTIONS

CHAPTER 6 TASK EXCEPTION HANDLING FUNCTIONS

This chapter describes the task exception handling functions performed by the RIGOOPX.

6.1 Outline

When task exception is requested to a task, the task exception handling routine defined for the task is invoked. The
requested exception code is passed to the task exception handling routine.

By this function, exception handling in a task can be implemented easily.

The following shows the service calls as the task exception handling functions.

Table 6-1 Task Exception Handling Functions

Service Call Function Useful Range

def_tex Define task exception handling routine Task

ras_tex Raise task exception Task

iras_tex Raise task exception Non-task

dis_tex Disable task exception Task

ena_tex Enable task exception Task

sns_tex Reference task exception disabled state Task, Non-task
ref_tex Reference task exception state Task

iref_tex Reference task exception state Non-task

R20UT0964EJ0101 Rev.1.01 RENESAS Page 65 of 565

Sep 20, 2013

RI600PX CHAPTER 6 TASK EXCEPTION HANDLING FUNCTIONS

6.2 Task Exception Handling Routines

Exception handling according to the requested exception code should be implemented in a task exception handling rou-
tine.

6.2.1 Basic form of task exception handling routines

The following shows the basic form of ask exception handling routines.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma taskexception Texrtnl /*Refer to note 3*/

void Texrtnl (TEXPTN texptn, VP _INT exinf); /*Refer to note 3*/

void Texrtnl (TEXPTN texptn, VP _INT exinf)
{

Note 1 The accepted exception code is passed to texptn.
Note 2 The extend information defined at creating the task is passed to exinf.

Note 3 These statements are unnecessary for the task exception handling routine which is created by the system con-
figuration file because the cfg600px generates these statement into the “kernel_id.h”.

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 66 of 565
Sep 20, 2013

RI600PX CHAPTER 6 TASK EXCEPTION HANDLING FUNCTIONS

6.2.2 Internal processing of task exception handling routine

- Stack
Task exception handling routines use user stacks for the task.

- Service call
Tasks can issue service calls whose “Useful range” is “task”.

- PSW register when processing is started

Table 6-2 PSW Register When Task Exception Handling Routine Processing is Started

Bit Value Note

1

Same as IPL in the task just before the

IPL task exception handling routine starts.

PM 1 User mode
U 1 User stack
C,ZS,0 Undefined

Others 0

- FPSW register when processing is started
When setting of Task context register (context) in System Information (system) includes “FPSW”, the FPSW when
processing is started is shown in Table 6-3. The FPSW when processing is undefined in other cases.

Table 6-3 FPSW Register When Task Processing is Started

Compiler options
Value
-round -denormalize

off (default) 0x00000100 (Only DN bitis 1.)

nearest (default)
on 0
off (default) 0x00000101 (Only DN bit and RM bit are 1.)

zero
on 1 (Only RM bit is 1.)

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 67 of 565

Sep 20, 2013

RI600PX

CHAPTER 6 TASK EXCEPTION HANDLING FUNCTIONS

6.2.3 The starting conditions of task exception handling routines

When all the following conditions are fulfilled about a task which is scheduled according to “16.4 Task Scheduling
Method”, the RIGOOPX starts the task exception handling routine in stead of the task itself. When the task exception han-
dling routine is finished, execution of the task itself is resumed.

Table 6-4 The Starting Conditions of Task Exception Handling Routines

No. Value
1 The task is in the task exception enabled state.
2 The pending exception code of the task is not 0.

The exception code is represented by TEXPTN type bit pattern.
When task exception is requested by ras_tex or iras_tex, the pending exception code for the corresponded task is
renewed to the logical add with specified exception code.
Tasks are in one of the state of task exception disabled state or task exception enabled state. Inmediately after starting
tasks, the task is in task exception disabled state. And the task is in task exception disabled state while the task exception
handling routine is not defined. When ena_tex is called, the invoking task enters in task exception enabled state. When
dis_tex is called, the invoking task enters in task exception disabled state.
When the task exception handling routine is started, the task enters in task exception disabled state. When the task excep-
tion handling routine is finished, the task enters in task exception enabled state.

Table 6-5 Operations to Disable Task Exception

No. Operating Target task
1 Activate Task Activated task
2 dis_tex Invoking task
3 Starting of task exception handling routine Concerned task
4 Canqel a Definition of Task Exception Handling Concerned task

Routine

Table 6-6 Operations to Enable Task Exception

No. Operating Target task
1 ena_tex Invoking task
2 Finishing of task exception handling routine Concerned task

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 68 of 565

RI600PX

CHAPTER 6 TASK EXCEPTION HANDLING FUNCTIONS

6.3

Task exception handling routines are defined by one of the following methods.

Define Task Exception Handling Routine

1) Definition by the system configuration file

The task exception handling routine can be defined by the static API “task[]”, which creates a task, described in the

system configuration file.
Refer to “20.10 Task Information (task[])” for the details of “task][]”.

Definition by def tex

The def_tex defines a task exception handling routine for the task indicated by parameter tskid according to the

content of parameter pk_dtex.
The information specified is shown below.

- Task exception handling routine attribute (texatr)
Only TA_HLNG can be specified as texatr.

- Task exception handling routine start address (texrtn)

This service call can be called from tasks that belong to Trusted Domain.
The following describes an example for coding def_tex.

/*Standard header file definition*/
/*Header file generated by cfg600px*/

"kernel.h"
"kernel id.h"

#include
#include

extern void Texrtnl (TEXPTN texptn, VP _INT exinf);

T DTEX pk dtex = {

TA HLNG,
(FP) Texrtnl

#pragma task Taskl /*Refer to note*/
void Taskl (VP_INT exinf); /*Refer to note*/
void Taskl (VP _INT exinf)
{
ER ercd; /*Declares variable*/
ID tskid = TSK_SELF; /*Declares and initializes variable*/

/*Declares
/*Task exception
/*Start address

(texrtn) */

and initializes variable*/
handling routine attribute (texatr)*/

ercd = def tex (tskid, &pk dtex); /*Define task exception handling routine*/
[* e . */

Note
cfg600px generates these statement into the “kernel_id.h".

These statements are unnecessary for the task which is created by the system configuration file because the

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS

Page 69 of 565

RI600PX CHAPTER 6 TASK EXCEPTION HANDLING FUNCTIONS

6.4 Cancel a Definition of Task Exception Handling Routine

When NULL is specified as parameter pk_dtex in the def_tex, the def_tex cancels a definition of the task exception han-
dling routine for the task indicated by parameter tskid.

The def_tex can be called from tasks that belong to Trusted Domain.

The following describes an example for coding to cancel the a definition of the task exception handling routine by using
def_tex.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note*/

void Taskl (VP_INT exinf); /*Refer to note*/

void Taskl (VP _INT exinf)
{

ER ercd; /*Declares variable*/
ID tskid = TSK_SELF; /*Declares and initializes variable*/
J* .. */

ercd = def tex (tskid, (T_DTEX *)NULL); /*Cancel a definition*/

Note These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 70 of 565
Sep 20, 2013

RI600PX

CHAPTER 6 TASK EXCEPTION HANDLING FUNCTIONS

6.5 Request Task Exception

- ras_tex, iras_tex

These service calls requests task exception handling for the task indicated by parameter tskid. The task pending

exception code for the task is ORed with the value indicated by parameter rasptn.

When all the conditions described in “6.2.3 The starting conditions of task exception handling routines” are fulfilled by

this service call, the RIGOOPX starts the task exception handling routine.
The following describes an example for coding this service call.

void Taskl
{

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note*/

void Taskl (VP_INT exinf); /*Refer to note*/

(VP_INT exinf)

ID tskid = 8; /*Declares and initializes variable*/
TEXPTN rasptn = 0x00000001UL; /*Declares and initializes variable*/
J* ... */

ras tex (tskid, rasptn); /*Request task exception*/

/* ... */

Note These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IQENESAS Page 71 of 565

Sep 20, 2013

RI600PX CHAPTER 6 TASK EXCEPTION HANDLING FUNCTIONS

6.6 Disable and Enable Task Exception

The dis_tex disables task exception for the invoking task, and the ena_tex enables task exception for the invoking task.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note*/

void Taskl (VP_INT exinf); /*Refer to note*/

void Taskl (VP _INT exinf)
{

/* e */

ena_tex (); /*Disable task exception*/
/e */ /*Task exception enabled state*/
dis tex (); /*Enable task exception*/
V2 */

Note These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IQEN ESNS Page 72 of 565
Sep 20, 2013

RI600PX CHAPTER 6 TASK EXCEPTION HANDLING FUNCTIONS

6.7 Reference Task Exception Disabled State

It may be necessary to refer to task exception disabled state for the task of a calling agency in functions that are called
from two or more tasks and handlers. In this case, sns_tex is useful.

- sns_tex
This service call returns TRUE when the task in the RUNNING state is in the task exception disabled state, and when
other, this service call returns FALSE.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
void CommonFunc (void);
void CommonFunc (void)
{

BOOL ctx; /*Declares variable*/

BOOL tex; /*Declares variable*/

J* e . */

ctx = sns_ctx (); /*Reference context type*/

if (ctx == TRUE) {

/e */ /*Processing for non-task context*/
/F .. */
} else if (ctx == FALSE) {
J* .. */ /*Processing for task context*/
/e */
tex = sns tex (); /*Reference task exception disabled state*/
if (tex == TRUE) {
/e */ /*The invoking task is in the task*/
J* e . */ /*exception disabled state.*/
} else if (tex == FALSE) {
/* e */ /*The invoking task is in the task*/
/e */ /*exception enabled state.*/
}
}
/F e x/
}
R20UT0964EJ0101 Rev.1.01 IZENESAS Page 73 of 565

Sep 20, 2013

RI600PX CHAPTER 6 TASK EXCEPTION HANDLING FUNCTIONS

6.8 Reference Task Exception State

- ref_tex, iref_tex
Stores task exception state packet of the task specified by parameter tskid in the area specified by parameter pk_rtex.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 2%*/
void Taskl (VP_INT exinf); /*Refer to note 2%/
void Taskl (VP _INT exinf)
{
ID tskid = 8; /*Declares and initializes variable*/
T RTEX pk rtex; /*Declares data structure*/
STAT texstat; /*Declares variable*/
TEXPTN texptn; /*Declares variable*/
V2 */
ref tex (tskid, &pk rtex); /*Reference task exception state*/
texstat = pk rtex.texstat; /*Reference task exception handling state*/
texptn = pk rtex.texptn; /*Reference pending exception code*/
V2 */
}

Note 1 For details about the task exception state packet, refer to “[Task exception state packet: T_RTEX]".

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IQEN ESNS Page 74 of 565
Sep 20, 2013

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

CHAPTER 7 SYNCHRONIZATION AND COMMUNICA-
TION FUNCTIONS

This chapter describes the synchronization and communication functions performed by the RIGOOPX.

71 Outline

The synchronization and communication functions of the RIBOOPX consist of Semaphores, Eventflags, Data Queues, and
Mailboxes that are provided as means for realizing exclusive control, queuing, and communication among tasks.

7.2 Semaphores

In the RIBOOPX, non-negative number counting semaphores are provided as a means (exclusive control function) for
preventing contention for limited resources (hardware devices, library function, etc.) arising from the required conditions of
simultaneously running tasks.

The following shows a processing flow when using a semaphore.

Figure 7-1 Processing Flow (Semaphore)

Task

_T Acquire semaphore resource

Exclusive control period

i Release semaphore resource

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 75 of 565
Sep 20, 2013

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

7.21 Create semaphore

Semaphores are created by one of the following methods.

1) Creation by the system configuration file
The static API “semaphore[]” described in the system configuration file creates a semaphore.
Refer to “20.11 Semaphore Information (semaphore[])” for the details of “semaphore]]”.

2) Creation by cre_sem or acre_sem
The cre_sem creates a semaphore with semaphore ID indicated by parameter semid according to the content of

parameter pk_csem.
The acre_sem creates a semaphore according to the content of parameter pk_csem, and returns the created

semaphore ID.
The information specified is shown below.

- Semaphore attribute (sematr)
The following informations are specified as sematr.

- The order of task wait queue (FIFO order or task current priority order)
- Initial semaphore count (isemcnt)

- Maximum semaphore count (maxsem)

These service calls can be called from tasks that belong to Trusted Domain.
The following describes an example for coding acre_sem as a representative.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note*/

void Taskl (VP_INT exinf); /*Refer to note*/

void Taskl (VP_INT exinf)
{

ER semid; /*Declares variable*/
T CSEM pk csem = { /*Declares and initializes variable*/
TA TFIFO, /*Semaphore attribute (sematr)*/
1, /*Initial semaphore count (isemcnt)*/
0 /*Maximum semaphore count (maxsem)*/
}i
J* ... */

semid = acre sem (&pk csem); /*Create semaphore/

Note These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 76 of 565
Sep 20, 2013

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

7.2.2 Delete semaphore

- del_sem
This service call deletes the semaphore specified by parameter semid.

When there are waiting tasks for the target semaphore by using wai_sem or twai_sem, this service call cancels the

WAITING state of the tasks and returns E_DLT as a return value of the wai_sem or twai_sem.
This service call can be called from tasks that belong to Trusted Domain.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note*/

void Taskl (VP_INT exinf); /*Refer to note*/

void Taskl (VP_INT exinf)
{

ID semid = 8; /*Declares and initializes variable*/
J* ... */

ercd = del sem (semid); /*Delete semaphore*/

/* ... */

Note These statements are unnecessary for the task which is created by the system configuration file because the

cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QENESAS
Sep 20, 2013

Page 77 of 565

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

7.2.3 Acquire semaphore resource

A resource is acquired (waiting forever, polling, or with time-out) by issuing the following service call from the processing
program.

- wai_sem (Wait)
- pol_sem, ipol_sem (Polling)

- twai_sem (Wait with time-out)

- wai_sem (Wait)
This service call acquires a resource from the semaphore specified by parameter semid (subtracts 1 from the
semaphore counter).
When no resources are acquired from the target semaphore when this service call is issued (no available resources
exist), this service call does not acquire resources but queues the invoking task to the target semaphore wait queue
and moves it from the RUNNING state to the WAITING state (resource acquisition wait state).
The WAITING state for a semaphore resource is cancelled in the following cases.

WAITING State for a Semaphore Resource Cancel Operation Return Value
The resource was released to the target semaphore as a result of issuing sig_sem. E_OK
The resource was released to the target semaphore as a result of issuing isig_sem. E_OK
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
Forced release from waiting (accept del_sem while waiting). E_DLT

The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 2*/
void Taskl (VP_INT exinf); /*Refer to note 2%/
void Taskl (VP_INT exinf)
{
ER ercd; /*Declares variable*/
D semid = 1; /*Declares and initializes variable*/
J* e e */
ercd = wail sem (semid); /*Acquire semaphore resource*/
if (ercd == E _OK) {
JF e ... */ /*Normal termination processing*/
sig sem (semid); /*Release semaphore resource*/
} else if (ercd == E RLWAI) ({
J* ... */ /*Forced termination processing*/
}
JF e . */
}

Note 1 Invoking tasks are queued to the target semaphore wait queue in the order defined at creating the sema-
phore (FIFO order or current priority order).

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 78 of 565
Sep 20, 2013

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

- pol_sem, ipol_sem (Polling)
These service calls acquire a resource from the semaphore specified by parameter semid (subtracts 1 from the
semaphore counter).
If a resource could not be acquired from the target semaphore (semaphore counter is set to 0) when these service
calls are issued, the counter manipulation processing is not performed but “E_TMOUT” is returned.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task TasklI /*Refer to note*/
void Taskl (VP_INT exinf); /*Refer to note*/
void Taskl (VP _INT exinf)
{
ER ercd; /*Declares variable*/
ID semid = 1; /*Declares and initializes variable*/
JF .. */
ercd = pol sem (semid); /*Acquire semaphore resource*/
if (ercd == E _OK) {
JF e . */ /*Polling success processing*/
sig sem (semid); /*Release semaphore resource*/
} else if (ercd == E TMOUT) {
[e */ /*Polling failure processing*/
}
JF .. */
}

Note These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 79 of 565
Sep 20, 2013

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

- twai_sem (Wait with time-out)
This service call acquires a resource from the semaphore specified by parameter semid (subtracts 1 from the
semaphore counter).
If no resources are acquired from the target semaphore when service call is issued this (no available resources exist),
this service call does not acquire resources but queues the invoking task to the target semaphore wait queue and
moves it from the RUNNING state to the WAITING state with time-out (resource acquisition wait state).
The WAITING state for a semaphore resource is cancelled in the following cases.

WAITING State for a Semaphore Resource Cancel Operation Return Value
The resource was released to the target semaphore as a result of issuing sig_sem. E_OK
The resource was released to the target semaphore as a result of issuing isig_sem. E OK
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
The time specified by tmout has elapsed. E_TMOUT
Forced release from waiting (accept del_sem while waiting). E_DLT

The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 3*/
void Taskl (VP_INT exinf); /*Refer to note 3*/
void Taskl (VP_INT exinf)
{
ER ercd; /*Declares variable*/
ID semid = 1; /*Declares and initializes variable*/
TMO tmout = 3600; /*Declares and initializes variable*/
J* e ... */
ercd = twal sem (semid, tmout); /*Acquire semaphore resource*/
if (ercd == E OK) {
JF e .. */ /*Normal termination processing*/
sig sem (semid); /*Release semaphore resource*/
} else if (ercd == E RLWAI) ({
[.. */ /*Forced termination processing*/
} else if (ercd == E_TMOUT) {
JF e ... */ /*Time-out processing*/
}
J* . */
}

Note 1 Invoking tasks are queued to the target semaphore wait queue in the order defined at creating the sema-
phore (FIFO order or current priority order).

Note 2 TMO_FEVR is specified for wait time tmout, processing equivalent to wai_sem will be executed. When
TMO_POL is specified, processing equivalent to pol_sem will be executed.

Note 3 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 80 of 565
Sep 20, 2013

RI600PX

CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

7.24

Release semaphore resource

A resource is released by issuing the following service call from the processing program.

- sig_sem, isig_sem

These service calls releases the resource to the semaphore specified by parameter semid (adds 1 to the semaphore

counter).

If a task is queued in the wait queue of the target semaphore when this service call is issued, the counter
manipulation processing is not performed but the resource is passed to the relevant task (first task of wait queue).
As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (WAITING state
for a semaphore resource) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.
The following describes an example for coding these service calls.

#include "kernel.h"
#include "kernel id.h"
#pragma task TasklI

void Taskl (VP_INT exinf);
void Taskl (VP_INT exinf)
{

ER ercd;
1D semid = 1;
/.. */

ercd = wal sem (semid);

if (ercd == E OK) {
J* . */
sig sem (semid);

} else if (ercd == E_RLWAI)
J* e . */

}

/* .. */

/*Standard header file definition*/
/*Header file generated by cfg600px*/
/*Refer to note 2%/

/*Refer to note 2*/

/*Declares variable*/
/*Declares and initializes variable*/

/*Acquire semaphore resource*/

/*Normal termination processing*/

/*Release semaphore resource*/
{

/*Forced termination processing*/

Note 1

With the RIGOOPX, the maximum possible number of semaphore resources (maximum resource count) is

defined during configuration. If the number of resources exceeds the specified maximum resource count,
this service call therefore does not release the acquired resources (addition to the semaphore counter value)

but returns E_QOVR.
Note 2

cfg600px generates these statement into the “kernel_id.h".

These statements are unnecessary for the task which is created by the system configuration file because the

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS

Page 81 of 565

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

7.2.5 Reference semaphore state

A semaphore status is referenced by issuing the following service call from the processing program.

- ref_sem, iref_sem
Stores semaphore state packet (ID number of the task at the head of the wait queue, current resource count, etc.) of
the semaphore specified by parameter semid in the area specified by parameter pk_rsem.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 2*/
void Taskl (VP_INT exinf); /*Refer to note 2*/
void Taskl (VP _INT exinf)
{
ID semid = 1; /*Declares and initializes variable*/
T RSEM pk rsem; /*Declares variable*/
ID wtskid; /*Declares variable*/
UINT semcnt; /*Declares variable*/
V2 */
ref sem (semid, &pk rsem); /*Reference semaphore state*/
wtskid = pk rsem.wtskid; /*Reference ID number of the task at the */
/*head of the wait queue*/
semcnt = pk rsem.semcnt; /*Reference current resource count*/
VP */
}

Note 1 For details about the semaphore state packet, refer to “{[Semaphore state packet: T_RSEM]".

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h”.

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 82 of 565
Sep 20, 2013

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

7.3 Eventflags

The RI600PX provides 32-bit eventflags as a queuing function for tasks, such as keeping the tasks waiting for execution,
until the results of the execution of a given processing program are output.
The following shows a processing flow when using an eventflag.

Figure 7-2 Processing Flow (Eventflag)

Task A Task B
Priority: High Priority: Low

Check bit pattern - — — — — —

¥

Queuing period

AL ________ Set eventflag

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 83 of 565
Sep 20, 2013

RI600PX

CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

7.3.1

Create eventflag

Eventflags are created by one of the following methods.

1)

Creation by the system configuration file
The static API “flag[]” described in the system configuration file creates a eventflag.

Refer to “20.12 Eventflag Information (flag[])” for the details of “flag[]”.

Creation by cre_flg or acre_flg
The cre_flg creates a eventflag with eventflag ID indicated by parameter figid according to the content of parameter

pk_cflg.
The acre_flg creates a eventflag according to the content of parameter pk_cflg, and returns the created eventflag

!I'Dh.e information specified is shown below.
- Eventflag attribute (flgatr)
The following informations are specified as flgatr.
- The order of task wait queue (FIFO order or task current priority order)
- Whether multiple task can wait on the event flag.
- Whether the bit pattern of the event flag is cleared to 0 when a task is released from the WAITING state,

- Initial bit pattern (iflgptn)

These service calls can be called from tasks that belong to Trusted Domain.
The following describes an example for coding acre_flg as a representative.

/*Standard header file definition*/

#include "kernel.h"

#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note*/

void Taskl (VP_INT exinf); /*Refer to note*/

void Taskl (VP_INT exinf)
{

ER flgid; /*Declares variable*/

T CFLG pk cflg = { /*Declares and initializes variable*/
TA TFIFO|TA WSGL|TA CLR, /*Eventflag attribute (flgatr)*/
0UL /*Initial bit pattern (iflgptn)*/

bi

V2 */

flgid = acre flg (&pk cflg); /*Create eventflag/

V2 */

Note These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 84 of 565
Sep 20, 2013

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

7.3.2 Delete Eventflag

- del_flg
This service call deletes the eventflag specified by parameter flgid.

When there are waiting tasks for the target eventflag by using wai_flg or twai_flg, this service call cancels the WAIT-

ING state of the tasks and returns E_DLT as a return value of the wai_flg or twai_flg.
This service call can be called from tasks that belong to Trusted Domain.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note*/

void Taskl (VP_INT exinf); /*Refer to note*/

void Taskl (VP_INT exinf)
{

ID flgid = 8; /*Declares and initializes variable*/

ercd = del flg (flgid); /*Delete semaphore*/

Note These statements are unnecessary for the task which is created by the system configuration file because the

cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QENESAS
Sep 20, 2013

Page 85 of 565

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

7.3.3 Set eventflag

A bit pattern is set by issuing the following service call from the processing program.

- set flg, iset_flg

These service calls set the result of ORing the bit pattern of the eventflag specified by parameter flgid and the bit
pattern specified by parameter setptn as the bit pattern of the target eventflag.

After that, these service calls evaluate whether the wait condition of the tasks in the wait queue is satisfied. This
evaluation is done in order of the wait queue. If the wait condition is satisfied, the relevant task is unlinked from the
wait queue at the same time as bit pattern setting processing. As a result, the relevant task is moved from the
WAITING state (WAITING state for an eventflag) to the READY state, or from the WAITING-SUSPENDED state to the
SUSPENDED state. At this time, the bit pattern of the target event flag is cleared to 0 and this service call finishes
processing if the TA_CLR attribute is specified for the target eventflag.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task TasklI /*Refer to note*/

void Taskl (VP_INT exinf); /*Refer to note*/

void Taskl (VP_INT exinf)
{

ID flgid = 1; /*Declares and initializes variable*/
FLGPTN setptn = 0x00000001UL; /*Declares and initializes variable*/

/* .. */
set flg (flgid, setptn); /*Set eventflag*/
/e */

Note These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 86 of 565
Sep 20, 2013

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

7.3.4 Clear eventflag

A bit pattern is cleared by issuing the following service call from the processing program.

- clr_flg, iclr_flg
This service call sets the result of ANDing the bit pattern set to the eventflag specified by parameter flgid and the bit
pattern specified by parameter clrptn as the bit pattern of the target eventflag.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note*/

void Taskl (VP_INT exinf); /*Refer to note*/

void Taskl (VP _INT exinf)
{

ID flgid = 1; /*Declares and initializes variable*/
FLGPTN clrptn = OXFFFFFFFEUL; /*Declares and initializes variable*/

/F */
clr flg (flgid, clrptn); /*Clear eventflag*/
/*F e */

Note These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 87 of 565
Sep 20, 2013

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

7.3.5 Check bit pattern

A bit pattern is checked (waiting forever, polling, or with time-out) by issuing the following service call from the processing
program.

- wai_flg (Wait)
- pol_flg, ipol_flg (Polling)
- twai_flg (Wait with time-out)

- wai_flg (Wait)
This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the
required condition specified by parameter wfmode are set to the eventflag specified by parameter figid.
If a bit pattern that satisfies the required condition has been set for the target eventflag, the bit pattern of the target
eventflag is stored in the area specified by parameter p_flgptn.
If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued, the
invoking task is queued to the target eventflag wait queue.
As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the
WAITING state (WAITING state for an eventflag).
The WAITING state for an eventflag is cancelled in the following cases.

WAITING State for an Eventflag Cancel Operation Return Value

A bit pattern that satisfies the required condition was set to the target eventflag as a result of E OK

issuing set_flg. _

A bit pattern that satisfies the required condition was set to the target eventflag as a result of E OK

issuing iset_flg. -

Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
Forced release from waiting (accept del_flg while waiting). E_DLT

The following shows the specification format of required condition wfmode.

- wfmode = TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

- wfmode = TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

The following describes an example for coding this service call.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 88 of 565
Sep 20, 2013

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 4%*/

void Taskl (VP _INT exinf); /*Refer to note 4%/

void Taskl (VP_INT exinf)
{

ER ercd; /*Declares variable*/

ID flgid = 1; /*Declares and initializes variable*/
FLGPTN waiptn = 14; /*Declares and initializes variable*/
MODE wfmode = TWEF ANDW; /*Declares and initializes variable*/
FLGPTN p flgptn; /*Declares variable*/

VA */

/*Wait for eventflag*/
ercd = wai flg (flgid, waiptn, wfmode, &p flgptn);

if (ercd == E OK) {

JF e .. */ /*Normal termination processing*/
} else if (ercd == E RLWAI) {

V2 */ /*Forced termination processing*/
}
/e */

Note 1 When a task has already waited on the eventflag which has been created with TA_WSGL attribute (only one
task is allowed to be in the WAITING state for the eventflag), this service call returns E_ILUSE error.

Note 2 Invoking tasks are queued to the target event flag (TA_WMUL attribute) wait queue in the order defined at
creating the eventflag (FIFO order or current priority order).
However, when the TA_CLR attribute is not specified, the wait queue is managed in the FIFO order even if
the priority order is specified. This behavior falls outside nITRON4.0 specification.

Note 3 The RIGO0PX performs bit pattern clear processing (0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

Note 4 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 89 of 565
Sep 20, 2013

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

- pol_flg, ipol_flg (Polling)

This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the
required condition specified by parameter wfmode are set to the eventflag specified by parameter flgid.

If the bit pattern that satisfies the required condition has been set to the target eventflag, the bit pattern of the target
eventflag is stored in the area specified by parameter p_figptn.

If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued,
“E_TMOUT” is returned.

The following shows the specification format of required condition wimode.

- wfmode = TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

- wfmode = TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 3*/

void Taskl (VP_INT exinf); /*Refer to note 3%/

void Taskl (VP _INT exinf)
{

ER ercd; /*Declares variable*/

ID flgid = 1; /*Declares and initializes variable*/
FLGPTN waiptn = 14; /*Declares and initializes variable*/
MODE wfmode = TWF_ ANDW; /*Declares and initializes variable*/
FLGPTN p flgptn; /*Declares variable*/

J* . */

/*Wait for eventflag*/
ercd = pol flg (flgid, waiptn, wfmode, &p flgptn);

if (ercd == E OK) {

/F e */ /*Polling success processing*/
} else if (ercd == E_TMOUT) ({

J* ... */ /*Polling failure processing*/
}
VA */

Note 1 When a task has already waited on the eventflag which has been created with TA_WSGL attribute (only one
task is allowed to be in the WAITING state for the eventflag), this service call returns E_ILUSE error.

Note 2 The RI600PX performs bit pattern clear processing (0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

Note 3 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 90 of 565
Sep 20, 2013

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

- twai_flg (Wait with time-out)
This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the
required condition specified by parameter wfmode are set to the eventflag specified by parameter flgid.
If a bit pattern that satisfies the required condition has been set for the target eventflag, the bit pattern of the target
eventflag is stored in the area specified by parameter p_figptn.
If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued, the
invoking task is queued to the target eventflag wait queue.
As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the
WAITING state (WAITING state for an eventflag).
The WAITING state for an eventflag is cancelled in the following cases.

WAITING State for an Eventflag Cancel Operation Return Value
A bi? pattern that satisfies the required condition was set to the target eventflag as a result of E OK
issuing set_flg. _
A biF pa.ttern that satisfies the required condition was set to the target eventflag as a result of E OK
issuing iset_flg. -
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
The time specified by tmout has elapsed. E_TMOUT
Forced release from waiting (accept del_flg while waiting). E_DLT

The following shows the specification format of required condition wimode.

- wfmode = TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

- wfmode = TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

The following describes an example for coding this service call.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 91 of 565
Sep 20, 2013

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 5*/

void Taskl (VP _INT exinf); /*Refer to note 5*/

void Taskl (VP_INT exinf)
{

ER ercd; /*Declares variable*/

ID flgid = 1; /*Declares and initializes variable*/
FLGPTN waiptn = 14; /*Declares and initializes variable*/
MODE wfmode = TWEF ANDW; /*Declares and initializes variable*/
FLGPTN p flgptn; /*Declares variable*/

TMO tmout = 3600; /*Declares and initializes variable*/
JF e . */

/*Wait for eventflag*/
ercd = twai flg (flgid, waiptn, wfmode, &p flgptn, tmout);

if (ercd == E OK) {

V2 */ /*Normal termination processing*/
} else if (ercd == E_RLWAI) {

/F .. */ /*Forced termination processing*/
} else if (ercd == E_TMOUT) ({

/* e */ /*Time-out processing*/
}
V2 */

Note 1 When a task has already waited on the eventflag which has been created with TA_WSGL attribute (only one
task is allowed to be in the WAITING state for the eventflag), this service call returns E_ILUSE error.

Note 2 Invoking tasks are queued to the target event flag (TA_WMUL attribute) wait queue in the order defined at
creating the eventflag (FIFO order or current priority order).
However, when the TA_CLR attribute is not specified, the wait queue is managed in the FIFO order even if
the priority order is specified. This behavior falls outside LITRON4.0 specification.

Note 3 The RIGO0PX performs bit pattern clear processing (0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

Note 4 TMO_FEVR is specified for wait time tmout, processing equivalent to wai_flg will be executed. When
TMO_POL is specified, processing equivalent to pol_flg will be executed.

Note 5 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 92 of 565
Sep 20, 2013

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

7.3.6 Reference eventflag state

An eventflag status is referenced by issuing the following service call from the processing program.

- ref_flg, iref_flg
Stores eventflag state packet (ID number of the task at the head of the wait queue, current bit pattern, etc.) of the
eventflag specified by parameter figid in the area specified by parameter pk_rflg.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 2*/
void Taskl (VP_INT exinf); /*Refer to note 2%/
void Taskl (VP _INT exinf)
{
ID flgid = 1; /*Declares and initializes variable*/
T RFLG pk rflg; /*Declares data structure*/
ID wtskid; /*Declares variable*/
FLGPTN flgptn; /*Declares variable*/
V2 */
ref flg (flgid, &pk rflg); /*Reference eventflag state*/
wtskid = pk rflg.wtskid; /*Reference ID number of the task at the */
/*head of the wait queue*/
flgptn = pk rflg.flgptn; /*Reference current bit pattern*/
[e */
}

Note 1 For details about the eventflag state packet, refer to “[Eventflag state packet: T_RFLG]".

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 93 of 565
Sep 20, 2013

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

7.4 Data Queues

Multitask processing requires the inter-task communication function (data transfer function) that reports the processing
result of a task to another task. The RI6G00PX therefore provides the data queues for transferring the prescribed size of

data.
The following shows a processing flow when using a data queue.

Figure 7-3 Processing Flow (Data Queue)

Task A Task B
Priority: High Priority: Low

T Receive from data queue - — —

Reception wait period

AL ________ Send to data queue

Note Data units of 4 bytes are transmitted or received at a time.

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 94 of 565
Sep 20, 2013

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

7.4.
Data

1)

1 Create data queue

queues are created by one of the following methods.

Creation by the system configuration file
The static API “data_queue[]” described in the system configuration file creates a data queue.
Refer to “20.13 Data Queue Information (dataqueue[])” for the details of “data_queue[]”.

Creation by cre_dtq or acre_dtq

The cre_dtq creates a data queue with data queue ID indicated by parameter dtqid according to the content of
parameter pk_cdlq.

The acre_dtq creates a data queue according to the content of parameter pk_cdtq, and returns the created data
queue ID.

The information specified is shown below.

- Data queue attribute (dtqatr)
The following informations are specified as dtqatr.

- The order of task wait queue for sending (FIFO order or task current priority order)

- Capacity of the data queue area (dtqcnt), Start address of the data queue area (dfq)
The TSZ_DTQ(dtgcnt) bytes area from the address indicated by parameter dtq is used for the data queue
area. Refer to “18.3.2 Macros for Data Queue” for details of TSZ_DTQ macro.
The data queue area should be generated to the area other than memory objects and user stacks.

These service calls can be called from tasks that belong to Trusted Domain.
The following describes an example for coding acre_dtq as a representative.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#define DTQCNT 10 /*Capacity of the data queue area*/

/* (the number of data elements) */

#pragma section B BRI_RAM /*Section for the data queue area*/
static UW dtg areal TSZ DTQ(dtgcnt)/sizeof (UW)]; /*Data queue area*/
#pragma section

#pragma task Taskl /*Refer to note*/
void Taskl (VP _INT exinf); /*Refer to note*/
void Taskl (VP_INT exinf)

{

ER dtqgid; /*Declares variable*/
T CDTQ pk cdtg = { /*Declares and initializes variable*/
TA TFIFO, /*Data queue attribute (dtgatr)*/
DTQCNT, /*Capacity of the data queue area (dtgcnt) */
(VP)dtg area /*Start address of the data queue area (dtqg)*/
}i
JF e */

dtgid = acre dtg (&pk cdtg); /*Create data queue/

Note These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 95 of 565

Sep 2

0, 2013

RI600PX

CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

7.4.2

- del_dtq

Delete data queue

This service call deletes the data queue specified by parameter dftqid.
When there are waiting tasks for the target data queue by using snd_dtq, tsnd_dtq, rcv_dtq or trcv_dtq, this service

call cancels the WAITING
trev_dtq.

state of the tasks and returns E_DLT as a return value of the snd_dtq, tsnd_dtq, rcv_dtq or

This service call can be called from tasks that belong to Trusted Domain.
The following describes an example for coding this service call.

#include
#include

void Taskl
void Taskl

ID

"kernel.h"
"kernel id.h"

#pragma task Taskl

(VP_INT exinf);
(VP_INT exinf)

dtgid = 8;

del dtg (dtgid);

/*Declares and initializes variable*/

/*Delete data queue*/

/*Standard header file definition*/
/*Header file generated by cfg600px*/
/*Refer to note*/

/*Refer to note*/

Note
cfg600px generates these statement into the “kernel_id.h".

These statements are unnecessary for the task which is created by the system configuration file because the

R20UT0964EJ0101 Rev.1.01

KENESAS
Sep 20, 2013 /{

Page 96 of 565

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

7.4.3 Send to data queue

A data is transmitted by issuing the following service call from the processing program.
- snd_dtqg (Wait)
- psnd_dtq, ipsnd_dtq (Polling)
- tsnd_dtqg (Wait with time-out)

- snd_dtq (Wait)
This service call processes as follows according to the situation of the data queue specified by the parameter dfqid.

- There is a task in the reception wait queue.
This service call transfers the data specified by parameter data to the task in the top of the reception wait
queue. As a result, the task is unlinked from the reception wait queue and moves from the WAITING state
(data reception wait state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED
state.

- There is no task neither in the reception wait queue and transmission wait queue and there is available space
in the data queue.
This service call stores the data specified by parameter data to the data queue.

- There is no task neither in the reception wait queue and transmission wait queue and there is no available
space in the data queue, or there is a task in the transmission wait queue.
This service call queues the invoking task to the transmission wait queue of the target data queue and moves it
from the RUNNING state to the WAITING state (data transmission wait state).
The sending WAITING state for a data queue is cancelled in the following cases.

Sending WAITING State for a Data Queue Cancel Operation Return Value
Available space was secured in the data queue area as a result of issuing rcv_dtq. E_OK
Available space was secured in the data queue area as a result of issuing prcv_dtq. E_OK
Available space was secured in the data queue area as a result of issuing iprcv_dtqg. E OK
Available space was secured in the data queue area as a result of issuing trcv_dtq. E OK
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
The data queue is reset as a result of issuing vrst_dtq. EV_RST
Forced release from waiting (accept del_dtq while waiting). E_DLT

The following describes an example for coding this service call.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 97 of 565
Sep 20, 2013

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 3*/

void Taskl (VP_INT exinf); /*Refer to note 3*/

void Taskl (VP_INT exinf)
{

ER ercd; /*Declares variable*/

ID dtgid = 1; /*Declares and initializes variable*/
VP _INT data = 123; /*Declares and initializes variable*/
/* . */

ercd = snd dtg (dtgid, data); /*Send to data queue*/

if (ercd == E OK) {

/F e */ /*Normal termination processing*/
} else if (ercd == E_RLWAI) {

J* ... */ /*Forced termination processing*/
}
V2 */

Note 1 Data is written to the data queue area in the order of the data transmission request.

Note 2 Invoking tasks are queued to the transmission wait queue of the target data queue in the order defined at
creating the data queue (FIFO order or current priority order).

Note 3 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 98 of 565
Sep 20, 2013

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

- psnd_dtq, ipsnd_dtqg (Polling)
These service calls process as follows according to the situation of the data queue specified by the parameter dtqid.

- There is a task in the reception wait queue.
These service calls transfer the data specified by parameter data to the task in the top of the reception wait
queue. As a result, the task is unlinked from the reception wait queue and moves from the WAITING state
(data reception wait state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED
state.

- There is no task neither in the reception wait queue and transmission wait queue and there is available space
in the data queue.
These service calls store the data specified by parameter data to the data queue.

- There is no task neither in the reception wait queue and transmission wait queue and there is no available
space in the data queue, or there is a task in the transmission wait queue.
These service calls return “E_TMOUT".

The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 2*/

void Taskl (VP _INT exinf); /*Refer to note 2%/

void Taskl (VP_INT exinf)
{

ER ercd; /*Declares variable*/

ID dtgid = 1; /*Declares and initializes variable*/
VP_INT data = 123; /*Declares and initializes variable*/
J* ... */

ercd = psnd dtg (dtgid, data); /*Send to data queue*

if (ercd == E OK) {

/F e . */ /*Polling success processing*/
} else if (ercd == E TMOUT) ({

[e */ /*Polling failure processing*/
}
VA */

Note 1 Data is written to the data queue area in the order of the data transmission request.

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 99 of 565
Sep 20, 2013

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

- tsnd_dtq (Wait with time-out)
This service call processes as follows according to the situation of the data queue specified by the parameter dfqid.

- There is a task in the reception wait queue.
This service call transfers the data specified by parameter data to the task in the top of the reception wait
queue. As a result, the task is unlinked from the reception wait queue and moves from the WAITING state
(data reception wait state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED
state.

- There is no task neither in the reception wait queue and transmission wait queue and there is available space
in the data queue.
This service call stores the data specified by parameter data to the data queue.

- There is no task neither in the reception wait queue and transmission wait queue and there is no available
space in the data queue, or there is a task in the transmission wait queue.
This service call queues the invoking task to the transmission wait queue of the target data queue and moves it
from the RUNNING state to the WAITING state with time (data transmission wait state).
The sending WAITING state for a data queue is cancelled in the following cases.

Sending WAITING State for a Data Queue Cancel Operation Return Value

Available space was secured in the data queue area as a result of issuing rcv_dtq. E_OK
Available space was secured in the data queue area as a result of issuing prcv_dtq. E_OK
Available space was secured in the data queue area as a result of issuing iprcv_dtq. E OK
Available space was secured in the data queue area as a result of issuing trcv_dtq. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The data queue is reset as a result of issuing vrst_dtq. EV_RST

The time specified by tmout has elapsed. E_TMOUT
Forced release from waiting (accept del_dtq while waiting). E_DLT

The following describes an example for coding this service call.

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 100 of 565
Sep 20, 2013

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 4%*/

void Taskl (VP_INT exinf); /*Refer to note 4%/

void Taskl (VP_INT exinf)
{

ER ercd; /*Declares variable*/

ID dtgid = 1; /*Declares and initializes variable*/
VP_INT data = 123; /*Declares and initializes variable*/
TMO tmout = 3600; /*Declares and initializes variable*/
J* .. */

/*Send to data queue*/
ercd = tsnd dtg (dtgid, data, tmout);

if (ercd == E OK) {

JF . */ /*Normal termination processing*/
} else if (ercd == E RLWAI) {

/F e .. */ /*Forced termination processing*/
} else if (ercd == E TMOUT) {

/F .. */ /*Time-out processing*/
}
Y/ */

Note 1 Data is written to the data queue area in the order of the data transmission request.

Note 2 Invoking tasks are queued to the transmission wait queue of the target data queue in the order defined at
creating the data queue (FIFO order or current priority order).

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to snd_dtq will be executed. When
TMO_POL is specified, processing equivalent to psnd_dtq will be executed.

Note 4 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 101 of 565
Sep 20, 2013

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

7.4.4 Forced send to data queue

Data is forcibly transmitted by issuing the following service call from the processing program.

- fsnd_dtq, ifsnd_dtq
This service call processes as follows according to the situation of the data queue specified by the parameter dfqid.

- There is a task in the reception wait queue.
This service call transfers the data specified by parameter data to the task in the top of the reception wait
queue. As a result, the task is unlinked from the reception wait queue and moves from the WAITING state
(data reception wait state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED
state.

- There is no task neither in the reception wait queue and transmission wait queue.
This service call stores the data specified by parameter data to the data queue.
If there is no available space in the data queue, this service call deletes the oldest data in the data queue
before storing the data specified by data to the data queue.

The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 2%*/

void Taskl (VP _INT exinf); /*Refer to note 2%/

void Taskl (VP_INT exinf)
{

ID dtgid = 1; /*Declares and initializes variable*/
VP_INT data = 123; /*Declares and initializes variable*/
V2 */

fsnd dtg (dtgid, data); /*Forced send to data queue*/

/*F e */

Note 1 Data is written to the data queue area in the order of the data transmission request.

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 102 of 565
Sep 20, 2013

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

7.4.5 Receive from data queue

A data is received (waiting forever, polling, or with time-out) by issuing the following service call from the processing
program.

- rcv_dtg (Wait)
- prev_dtq, iprcv_dtq (Polling)
- trcv_dtg (Wait with time-out)

- rcv_dtg (Wait)
This service call processes as follows according to the situation of the data queue specified by the parameter dfqid.

- There is a data in the data queue.
This service call takes out the oldest data from the data queue and stores the data to the area specified by
p_data.
When there is a task in the transmission wait queue, this service call stores the data sent by the task in the top
of the transmission wait queue and moves it from the WAITING state (data transmission wait state) to the
READY state.

- There is no data in the data queue and there is a task in the transmission wait queue.
This service call stores the data specified by the task in the top of the transmission wait queue to the area
specified by p_data. As a result, the task is unlinked from the transmission wait queue and moves from the
WAITING state (data transmission wait state) to the READY state, or from the WAITING-SUSPENDED state to
the SUSPENDED state.
Note, this situation is caused only when the capacity of the data queue is 0.

- There is no data in the data queue and there is no task in the transmission wait queue.
This service call queues the invoking task to the reception wait queue of the target data queue and moves it
from the RUNNING state to the WAITING state (data reception wait state).
The receiving WAITING state for a data queue is cancelled in the following cases.

Receiving WAITING State for a Data Queue Cancel Operation Return Value
Data was sent to the data queue area as a result of issuing snd_dtq. E_OK
Data was sent to the data queue area as a result of issuing psnd_diq. E_OK
Data was sent to the data queue area as a result of issuing ipsnd_dtq. E_OK
Data was sent to the data queue area as a result of issuing tsnd_dtq. E_OK
Data was sent to the data queue area as a result of issuing fsnd_dtqg. E OK
Data was sent to the data queue area as a result of issuing ifsnd_dtq. E_OK
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
Forced release from waiting (accept del_dtq while waiting). E_DLT

The following describes an example for coding this service call.

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 103 of 565
Sep 20, 2013

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
fpragma task Taskl /*Refer to note 2%*/

void Taskl (VP_INT exinf); /*Refer to note 2%/

void Taskl (VP_INT exinf)
{

ER ercd; /*Declares variable*/

ID dtgid = 1; /*Declares and initializes variable*/
VP _INT p data; /*Declares variable*/

/e */

/*Receive from data queue*/
ercd = rcv dtg (dtgid, é&p data);

if (ercd == E OK) {

JF ... */ /*Normal termination processing*/
} else if (ercd == E_RLWAI) {

JF e .. */ /*Forced termination processing*/
}
V2 */

Note 1 Invoking tasks are queued to the reception wait queue of the target data queue in the order of the data
reception request.

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 104 of 565
Sep 20, 2013

RI600PX

CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

- prev_dtq, iprev_dtqg (Polling)
These service calls process as follows according to the situation of the data queue specified by the parameter dtqid.

- There is a data in the data queue.
This service call takes out the oldest data from the data queue and stores the data to the area specified by

p_data.

When there is a task in the transmission wait queue, this service call stores the data sent by the task in the top
of the transmission wait queue and moves it from the WAITING state (data transmission wait state) to the

READY state.

- There is no data in the data queue and there is a task in the transmission wait queue.
These service calls store the data specified by the task in the top of the transmission wait queue to the area
specified by p_data. As a result, the task is unlinked from the transmission wait queue and moves from the
WAITING state (data transmission wait state) to the READY state, or from the WAITING-SUSPENDED state to
the SUSPENDED state.
Note, this situation is caused only when the capacity of the data queue is 0.

- There is no data in the data queue and there is no task in the transmission wait queue.
These service calls return “E_ TMOUT”.

The following describes an example for coding these service calls.

{

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task TasklI /*Refer to note*/

void Taskl (VP_INT exinf); /*Refer to note*/
void Taskl (VP _INT exinf)

ER ercd; /*Declares variable*/

ID dtgid = 1; /*Declares and initializes variable*/
VP_INT p data; /*Declares variable*/

/F e */

ercd = prcv dtg (dtgid, &p data);

if (ercd == E OK) {

JF e .. */ /*Polling success processing*/
} else if (ercd == E _TMOUT) {

/e */ /*Polling failure processing*/
}
VN */

/*Receive from data queue*/

Note These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

REN ESNS Page 105 of 565

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

- trev_dtg (Wait with time-out)
This service call processes as follows according to the situation of the data queue specified by the parameter dfqid.

- There is a data in the data queue.
This service call takes out the oldest data from the data queue and stores the data to the area specified by
p_data.
When there is a task in the transmission wait queue, this service call stores the data sent by the task in the top
of the transmission wait queue and moves it from the WAITING state (data transmission wait state) to the
READY state.

- There is no data in the data queue and there is a task in the transmission wait queue.
This service call stores the data specified by the task in the top of the transmission wait queue to the area
specified by p_data. As a result, the task is unlinked from the transmission wait queue and moves from the
WAITING state (data transmission wait state) to the READY state, or from the WAITING-SUSPENDED state to
the SUSPENDED state.
Note, this situation is caused only when the capacity of the data queue is 0.

- There is no data in the data queue and there is no task in the transmission wait queue.
This service call queues the invoking task to the reception wait queue of the target data queue and moves it
from the RUNNING state to the WAITING state with time (data reception wait state).
The receiving WAITING state for a data queue is cancelled in the following cases.

Receiving WAITING State for a Data Queue Cancel Operation Return Value
Data was sent to the data queue area as a result of issuing snd_dtg. E OK
Data was sent to the data queue area as a result of issuing psnd_dtq. E_OK
Data was sent to the data queue area as a result of issuing ipsnd_dtq. E_OK
Data was sent to the data queue area as a result of issuing tsnd_dtq. E_OK
Data was sent to the data queue area as a result of issuing fsnd_dtq. E_OK
Data was sent to the data queue area as a result of issuing ifsnd_dtg. E_OK
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
The time specified by tmout has elapsed. E_TMOUT
Forced release from waiting (accept del_dtq while waiting). E_DLT

The following describes an example for coding this service call.

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 106 of 565
Sep 20, 2013

RI600PX

CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 3*/
void Taskl (VP_INT exinf); /*Refer to note 3*/
void Taskl (VP_INT exinf)
{
ER ercd; /*Declares variable*/
ID dtgid = 1; /*Declares and initializes variable*/
VP _INT p data; /*Declares variable*/
TMO tmout = 3600; /*Declares and initializes variable*/
JF . */
/*Receive from data queue*/
ercd = trcv dtg (dtgid, &p data, tmout);
if (ercd == E OK) {
/F e */ /*Normal termination processing*/
} else if (ercd == E_RLWAI) {
V2 */ /*Forced termination processing*/
} else if (ercd == E TMOUT) {
/* e */ /*Time-out processing*/
}
J* ... */
}

Note 1

Invoking tasks are queued to the reception wait queue of the target data queue in the order of the data

reception request.

Note 2

TMO_FEVR is specified for wait time tmout, processing equivalent to rcv_dtq will be executed. When

TMO_POL is specified, processing equivalent to prcv_dtq will be executed.

Note 3

These statements are unnecessary for the task which is created by the system configuration file because the

cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS Page 107 of 565

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

7.4.6 Reference data queue state

A data queue status is referenced by issuing the following service call from the processing program.

- ref_dtq, iref_dtq
These service calls store the detailed information of the data queue (existence of waiting tasks, number of data
elements in the data queue, etc.) specified by parameter dfqid into the area specified by parameter pk_rdtq.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 2*/

void Taskl (VP_INT exinf); /*Refer to note 2%/

void Taskl (VP _INT exinf)
{

ID dtgid = 1; /*Declares and initializes variable*/

T RDTQ pk rdtg; /*Declares data structure*/

ID stskid; /*Declares variable*/

ID rtskid; /*Declares variable*/

UINT sdtgcent; /*Declares variable*/

/F e */

ref dtg (dtgid, &pk rdtq); /*Reference data queue state*/

stskid = pk rdtqg.stskid; /*Acquires existence of tasks waiting for */
/*data transmission*/

rtskid = pk rdtqg.rtskid; /*Acquires existence of tasks waiting for */
/*data reception*/

sdtgcent = pk rdtg.sdtgent; /*Reference the number of data elements in */

/*data queue*/

Note 1 For details about the data queue state packet, refer to “[Data queue state packet: T_RDTQ]".

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h”".

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 108 of 565
Sep 20, 2013

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

7.5 Mailboxes

Multitask processing requires the inter-task communication function (message transfer function) that reports the
processing result of a task to another task. The RI6O00PX therefore provides the mailbox for transferring the start address
of a message written in the shared memory area.

The following shows a processing flow when using a mailbox.

Figure 7-4 Processing Flow (Mailbox)

Task A Task B
Priority: High Priority: Low

_f Receive from mailbox - — — —

Reception wait period

AL ________ Send to mailbox

7.51 Messages

The information exchanged among processing programs via the mailbox is called “messages”.

Messages can be transmitted to any processing program via the mailbox, but it should be noted that, in the case of the
synchronization and communication functions of the RIGOOPX, only the start address of the message is handed over to the
receiving processing program, but the message contents are not copied to a separate area.

- Message area
The message must be generated in the memory objects that both transmitting task and receiving task can access.
However, the management table exists in the top of message area. The system operation cannot be guaranteed if the
management table is destroyed. For this reason, data queue or message buffer is recommended for message
communication.

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 109 of 565
Sep 20, 2013

RI600PX

CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

- Basic form of messages
In the RIGOOPX, the message contents and length are prescribed as follows, according to the attributes of the mailbox

to be used.

- When using a mailbox with the TA_MFIFO attribute

The message must be started from the T_MSG structure. This area is used by the kernel. The use message
should be arranged following the T_MSG structure.

The length of the message is prescribed among the processing programs that exchange data using the mailbox.
The following shows the basic form of coding TA_MFIFO attribute messages.

[Message packet for TA_MFIFO attribute]

/* T _MSG structure, which is defined in the kernel.h*/
typedef struct {

VP msghead; /*RI600PX management area*/
} T _MSG;

/* Message structure defined by user*/

typedef struct {
T MSG t _msg; /*T_MSG structure*/
B datal[8]; /*User message*/

} USER_MSG;

When using a mailbox with the TA_MPRI attribute

The message must be started from the T_MSG_PRI structure. The T_MSG_PRI.msgque is used by the kernel.
The message priority should be set to T_MSG_PRIl.msgpri.

The length of the message is prescribed among the processing programs that exchange data using the mailbox.
The following shows the basic form of coding TA_MPRI attribute messages.

[Message packet for TA_MPRI attribute]

/* T _MSG structure, which is defined in the kernel.h*/
typedef struct {

VP msghead; /*RI600PX management area*/
} T _MSG;

/* T _MSG_ PRI structure, which is defined in the kernel.h*/
typedef struct ({

T MSG msgque; /*Message header*/

PRI msgpri; /*Message priority*/
} T MSG_PRI;

/* Message structure defined by user*/

typedef struct {
T MSG_PRI t msg; /*T_MSG_PRI structure*/
B datal8]; /*User message*/

} USER_MSG;

Note 1 In the RIGOOPX, a message having a smaller priority number is given a higher priority.

Note 2 Values that can be specified as the message priority level are limited to the range defined by Maximum
message priority (max_pri) in Mailbox Information (mailbox[])) when the system configuration file is
created.

R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 110 of 565
Sep 20, 2013

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

7.5.2 Create mailbox

Mailboxes are created by one of the following methods.

1) Creation by the system configuration file
The static API “mailbox[]” described in the system configuration file creates a mailbox.
Refer to “20.14 Mailbox Information (mailbox[])” for the details of “mailbox[]”.

2) Creation by cre_mbx or acre_mbx
The cre_mbx creates a mailbox with mailbox ID indicated by parameter mbxid according to the content of parame-

ter pk_cmbx.
The acre_mbx creates a mailbox according to the content of parameter pk_cmbx, and returns the created mailbox

ID.
The information specified is shown below.

- Mailbox attribute (mbxatr)
The following informations are specified as mbxatr.

- The order of task wait queue (FIFO order or task current priority order)

- The order of message queue (FIFO order or message priority order)

- Maximum message priority (maxmpri)

These service calls can be called from tasks that belong to Trusted Domain.
The following describes an example for coding acre_mbx as a representative.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note*/

void Taskl (VP_INT exinf); /*Refer to note*/

void Taskl (VP _INT exinf)
{

ER mbxid; /*Declares variable*/

T CMBX pk cmbx = { /*Declares and initializes variable*/
TA TFIFO|TA MFIFO, /*Mailbox attribute (mbxatr)*/
1, /*Maximum message priority (maxmpri)*/
0 /*Reserved (mprihd)*/

bi

/* ... */

mbxid = acre mbx (&pk cmbx); /*Create mailbox/

J* .. */

Note These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IQENESAS Page 111 of 565
Sep 20, 2013

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

7.5.3 Delete mailbox

- del_mbx
This service call deletes the mailbox specified by parameter mbxid.

When there are waiting tasks for the target mailbox by using rcv_mbx or trcv_mbx, this service call cancels the WAIT-

ING state of the tasks and returns E_DLT as a return value of the rcv_mbx or trcv_mbx.
This service call can be called from tasks that belong to Trusted Domain.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note*/

void Taskl (VP_INT exinf); /*Refer to note*/

void Taskl (VP_INT exinf)
{

ID mbxid = 8; /*Declares and initializes variable*/
J* . */

ercd = del_mbx (mbxid); /*Delete semaphore*/

/* ... */

Note These statements are unnecessary for the task which is created by the system configuration file because the

cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QENESAS
Sep 20, 2013

Page 112 of 565

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

7.5.4 Send to mailbox

A message is transmitted by issuing the following service call from the processing program.

- snd_mbx, isnd_mbx
This service call transmits the message specified by parameter pk_msg to the mailbox specified by parameter mbxid
(queues the message in the wait queue).
If a task is queued to the target mailbox wait queue when this service call is issued, the message is not queued but
handed over to the relevant task (first task of the wait queue).
As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (receiving
WAITING state for a mailbox) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED
state.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 3*/

void Taskl (VP_INT exinf); /*Refer to note 3*/

void Taskl (VP_INT exinf)
{

ID mbxid = 1; /*Declares and initializes variable*/
T MSG PRI *pk msg; /*Declares data structure*/

J* . */

/* .. */ /*Secures memory area (for message)*/
pk msg = ... /* and set the pointer to pk msg*/

[e */ /*Creates message (contents)*/

pk _msg->msgpri = 8; /*Initializes data structure*/

/*Send to mailbox*/
snd mbx (mbxid, (T _MSG *) pk msg);

Note 1 Messages are queued to the target mailbox in the order defined by queuing method during configuration
(FIFO order or message priority order).

Note 2 For details about the message packet T_MSG and T_MSG_PRI, refer to “7.5.1 Messages”.

Note 3 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 113 of 565
Sep 20, 2013

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

7.5.5 Receive from mailbox

A message is received (infinite wait, polling, or with time-out) by issuing the following service call from the processing
program.

- rcv_mbx (Wait)
- prcv_mbyx, iprcv_mbx (Polling)

- trcv_mbx (Wait with time-out)

- rcv_mbx (Wait)
This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in
the area specified by parameter ppk_msg.
If no message could be received from the target mailbox (no messages were queued to the wait queue) when this
service call is issued, this service call does not receive messages but queues the invoking task to the target mailbox
wait queue and moves it from the RUNNING state to the WAITING state (message reception wait state).
The receiving WAITING state for a mailbox is cancelled in the following cases.

Receiving WAITING State for a Mailbox Cancel Operation Return Value
A message was transmitted to the target mailbox as a result of issuing snd_mbx. E_OK
A message was transmitted to the target mailbox as a result of issuing isnd_mbx. E_OK
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
Forced release from waiting (accept del_mbx while waiting). E_DLT

The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 3*/

void Taskl (VP_INT exinf); /*Refer to note 3*/

void Taskl (VP_INT exinf)
{

ER ercd; /*Declares variable*/

ID mbxid = 1; /*Declares and initializes variable*/
T MSG *ppk msg; /*Declares data structure*/

J* . */

/*Receive from mailbox*/
ercd = rcv mbx (mbxid, &ppk msg);

if (ercd == E OK) {

/F . */ /*Normal termination processing*/
} else if (ercd == E_RLWAI) {

J* . */ /*Forced termination processing*/
}
V2 */

Note 1 Invoking tasks are queued to the target mailbox wait queue in the order defined at creating the mailbox
(FIFO order or current priority order).

Note 2 For details about the message packet T_MSG and T_MSG_PRI, refer to “7.5.1 Messages”.

Note 3 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 RENESAS Page 114 of 565
Sep 20, 2013

RI600PX

CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

- prcv_mbyx, iprcv_mbx (Polling)
This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in
the area specified by parameter ppk_msg.
If the message could not be received from the target mailbox (no messages were queued in the wait queue) when this
service call is issued, message reception processing is not executed but “E_TMOUT” is returned.
The following describes an example for coding these service calls.

#include
#include

} else if

}

"kernel.h"
"kernel id.h"
#pragma task Taskl

void Taskl (VP_INT exinf); /*Refer to note 2%/
void Taskl (VP_INT exinf)
{
ER ercd; /*Declares variable*/
ID mbxid = 1; /*Declares and initializes variable*/
T MSG *ppk msg; /*Declares data structure*/
JF e . */

ercd = prcv mbx

if (ercd == E OK) {

/F ..
(ercd == E_TMOUT) ({
/F e,

/*Standard header file definition*/
/*Header file generated by cfg600px*/
/*Refer to note 2*/

/*Receive from mailbox*/

(mbxid, &ppk msg);

*/ /*Polling success processing*/

*/ /*Polling failure processing*/

Note 1

For details about the message packet T_MSG and T_MSG_PRI, refer to “7.5.1 Messages”.

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

REN ESNS Page 115 of 565

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

- trcv_mbx (Wait with time-out)

This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in

the area specified by parameter ppk_msg.

If no message could be received from the target mailbox (no messages were queued to the wait queue) when this
service call is issued, this service call does not receive messages but queues the invoking task to the target mailbox
wait queue and moves it from the RUNNING state to the WAITING state with time-out (message reception wait state).

The receiving WAITING state for a mailbox is cancelled in the following cases.

Receiving WAITING State for a Mailbox Cancel Operation Return Value
A message was transmitted to the target mailbox as a result of issuing snd_mbx. E_OK
A message was transmitted to the target mailbox as a result of issuing isnd_mbx. E_OK
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
The time specified by tmout has elapsed. E_TMOUT
Forced release from waiting (accept del_mbx while waiting). E_DLT

The following describes an example for coding this service call.

#include "kernel.h"
#include "kernel id.h"
#pragma task Taskl

void Taskl (VP_INT exinf);
void Taskl (VP _INT exinf)
{

/*Refer to note 4%*/
/*Refer to note 4%*/

/*Receive from mailbox*/
ercd = trcv mbx (mbxid, &ppk msg, tmout);

/*Standard header file definition*/
/*Header file generated by cfg600px*/

ER ercd; /*Declares variable*/

1D mbxid = 1; /*Declares and initializes variable*/
T MSG *ppk msg; /*Declares data structure*/

TMO tmout = 3600; /*Declares and initializes variable*/
J* e */

if (ercd == E OK) {

/F e .. */ /*Normal termination processing*/
} else if (ercd == E RLWAI) {

/F e */ /*Forced termination processing*/
} else if (ercd == E_TMOUT) {

/F e .. */ /*Time-out processing*/
}
/2 */

Note 1 Invoking tasks are queued to the target mailbox wait queue in the order defined at creating the mailbox

Note 2

Note 3
Note 4

(FIFO order or current priority order).

TMO_FEVR is specified for wait time tmout, processing equivalent to rcv._mbx will be executed. When
TMO_POL is specified, processing equivalent to prcv_mbx will be executed.

For details about the message packet T_MSG and T_MSG_PRI, refer to “7.5.1 Messages”.

These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01

ENESAS
Sep 20, 2013 -2

Page 116 of 565

RI600PX CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

7.5.6 Reference mailbox state

A mailbox status is referenced by issuing the following service call from the processing program.

- ref_mbx, iref_mbx
Stores mailbox state packet (ID number of the task at the head of the wait queue, start address of the message packet
at the head of the wait queue) of the mailbox specified by parameter mbxid in the area specified by parameter
pk_rmbx.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 2*/

void Taskl (VP_INT exinf); /*Refer to note 2%/

void Taskl (VP_INT exinf)
{

ID mbxid = 1; /*Declares and initializes variable*/

T RMBX pk rmbx; /*Declares data structure*/

ID wtskid; /*Declares variable*/

T MSG *pk msg; /*Declares data structure*/

V2 */

ref mbx (mbxid, &pk rmbx); /*Reference mailbox state*/

wtskid = pk rmbx.wtskid; /*Reference ID number of the task at the */
/*head of the wait queue*/

pk msg = pk rmbx.pk msg; /*Reference start address of the message */

/*packet at the head of the wait queue*/

Note 1 For details about the mailbox state packet, refer to “[Mailbox state packet: T_RMBX]”.

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IQENESAS Page 117 of 565
Sep 20, 2013

CHAPTER 8 EXTENDED SYNCHRONIZATION AND COMMUNICATION
RI600PX FUNCTIONS

CHAPTER 8 EXTENDED SYNCHRONIZATION AND
COMMUNICATION FUNCTIONS

This chapter describes the extended synchronization and communication functions performed by the RIGOOPX.

8.1 Outline

The extended synchronization and communication function of the RIGOOPX provides Mutexes for implementing exclusive
control between tasks, and Message Buffers for transferring messages of he arbitrary size by copying the message.

8.2 Mutexes

Multitask processing requires the function to prevent contentions on using the limited number of resources (A/D converter,
coprocessor, files, or the like) simultaneously by tasks operating in parallel (exclusive control function). To resolve such
problems, the RIGO0PX therefore provides “mutexes”.

The following shows a processing flow when using a mutex.

The mutexes provided in the RIGO0OPX supports the priority ceiling protocol.

Figure 8-1 Processing Flow (Mutex)

Task

—f Lock mutex

Exclusive control period

AL Unlock mutex

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 118 of 565
Sep 20, 2013

CHAPTER 8 EXTENDED SYNCHRONIZATION AND COMMUNICATION
RI600PX FUNCTIONS

8.21 Priority inversion problem

When a semaphore is used for exclusive control of a resource, a problem called priority inversion may arise. This refers to
the situation where a task that is not using a resource delays the execution of a task requesting the resource.

Figure 8-2 illustrates this problem. In this figure, tasks A and C are using the same resource, which task B does not use.
Task A attempts to acquire a semaphore so that it can use the resource but enters the WAITING state because task C is
already using the resource. Task B has a priority higher than task C and lower than task A. Thus, if task B is executed
before task C has released the semaphore, release of the semaphore is delayed by the execution of task B. This also
delays acquisition of the semaphore by task A. From the viewpoint of task A, a lower-priority task that is not even
competing for the resource gets priority over task A.

To avoid this problem, use a mutex instead of a semaphore.

Figure 8-2 Priority Inversion Problem

Failed to acquire the semaphore, Time taken for task A to acquire the semaphore

and enter to WAITING state depends on the execution time of task B. Acquire the
\ & —___——1 semaphore
Task A |- rmmmmeeeenn- ‘I-I-l -lu-ll-l"—----

'\ !
| Enter to WAITING state |

|
| |
-------------- I === - 4----!—--------
Task B | A
|
|
|

Low ¢— Priority—p» High

Task C |me—— - - - - - * E;
7

L
[:
Acquire the Task A is executed Task B is executed Release the Time
semaphore for some reason. for some reason. semaphore

I : The semaphore has been acquired in this period.

8.2.2 Current priority and base priority

A task has two priority levels: base priority and current priority. Tasks are scheduled according to current priority.

While a task does not have a mutex locked, its current priority is always the same as its base priority.

When a task locks a mutex, only its current priority is raised to the ceiling priority of the mutex.

When priority-changing service call chg_pri or ichg_pri is issued, both the base priority and current priority are changed if
the specified task does not have a mutex locked. When the specified task locks a mutex, only the base priority is changed.
When the specified task has a mutex locked or is waiting to lock a mutex, these service calls returns “E_ILUSE” if a priority
higher than the ceiling priority of the mutex is specified.

The current priority can be checked through service call get_pri or iget_pri. And both the current priority and base priority
can be referred by ref _tsk or iref_tsk.

8.2.3 Simplified priority ceiling protocol

Original behavior of the priority ceiling protocol is to make the current priority of the task to the highest ceiling priority of
mutexes which are locked by the task. This behavior is achieved by controlling the current priority of the task as follows.

- When a task locks a mutex, changes the current priority of the task to the highest ceiling priority of mutexes which
are locked by the task.

- When a task unlocks a mutex, chan th rrent priority of the task to the highest ceiling priority of mutex
which continues to be locked by the task. When there is no mutex locked by the task after unlock, returns the
current priority of the task to the base priority.

However, the RIGOOPX adopts simplified priority ceiling protocol because of reducing overhead. Therefore, the underlined
part is not processed.

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 119 of 565
Sep 20, 2013

CHAPTER 8 EXTENDED SYNCHRONIZATION AND COMMUNICATION
RI600PX FUNCTIONS

8.2.4 Differences from semaphores

The mutex operates similarly to semaphores (binary semaphore) whose the maximum resource count is 1, but they differ
in the following points.

- The current priority of the task which locks a mutex raises to the ceiling priority of the mutex until the task unlocks the
mutex. As a result, the priority inversion problem is evaded.

--> The current priority is not changed by using semaphore.

- A locked mutex can be unlocked (equivalent to returning of resources) only by the task that locked the mutex
--> Semaphores can return resources via any task and handler.

- Unlocking is automatically performed when a task that locked the mutex is terminated (ext_tsk or ter_tsk)
--> Semaphores do not return resources automatically, so they end with resources acquired.

- Semaphores can manage multiple resources (the maximum resource count can be assigned), but the maximum
number of resources assigned to a mutex is fixed to 1.

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 120 of 565
Sep 20, 2013

CHAPTER 8 EXTENDED SYNCHRONIZATION AND COMMUNICATION
RI600PX FUNCTIONS

8.2.5 Create mutex

Mutexes are created by one of the following methods.

1) Creation by the system configuration file
The static API “mutex[]” described in the system configuration file creates a mutex.
Refer to “20.15 Mutex Information (mutex(])” for the details of “mutex[]”.

2) Creation by cre_mtx or acre_mix
The cre_mtx creates a mutex with mutex ID indicated by parameter mtxid according to the content of parameter

pk_cmix.
The acre_mtx creates a mutex according to the content of parameter pk_cmtx, and returns the created mutex ID.

The information specified is shown below.

- Mutex attribute (mtxatr)
Only TA_CEILING (Priority ceiling protocol) can be specified for mtxatr.
Note, task wait queue is managed in task current priority order.

- Ceiling priority (ceilpri)

These service calls can be called from tasks that belong to Trusted Domain.
The following describes an example for coding acre_mtx as a representative.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note*/

void Taskl (VP_INT exinf); /*Refer to note*/

void Taskl (VP_INT exinf)
{

ER mtxid; /*Declares variable*/

T CMTX pk cmtx = { /*Declares and initializes variable*/
TA CEILING, /*Mutex attribute (mtxatr)*/
1 /*Ceiling priority (ceilpri)*/

}i

JF e . */

mtxid = acre mtx (&pk cmtx); /*Create mutex/

JF .. */

Note These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 RENESAS Page 121 of 565
Sep 20, 2013

RI600PX

CHAPTER 8 EXTENDED SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

8.2.6

Delete mutex

- del_mtx
This service call deletes the mutex specified by parameter mtxid.

When e

ither of task locks the target mutex, the lock by the task is cancelled. As a result, the current task priority of the

task is returned to the base priority when there is no mutex being locked by the task. The task is not notified that the
mutex has been deleted. If an attempt is later made to unlock the mutex by using unl_mtx, an error E_NOEXS is
returned.

When there are waiting tasks for the target mutex by using loc_mtx or tloc_mitx, this service call cancels the WAITING

state of

the tasks and returns E_DLT as a return value of the loc_mtx or tloc_mtx.

This service call can be called from tasks that belong to Trusted Domain.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note*/
void Taskl (VP_INT exinf); /*Refer to note*/
void Taskl (VP_INT exinf)
{
ID mtxid = 8; /*Declares and initializes variable*/
/.. */
ercd = del mtx (mtxid); /*Delete semaphore*/
JF e . */

Note These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 122 of 565

Sep 20, 2013

CHAPTER 8 EXTENDED SYNCHRONIZATION AND COMMUNICATION
RI600PX FUNCTIONS

8.2.7 Lock mutex

Mutexes can be locked by issuing the following service call from the processing program.
- loc_mtx (Wait)
- ploc_mtx (Polling)

- tloc_mtx (Wait with time-out)

- loc_mix (Wait)
This service call locks the mutex specified by parameter mixid.
If the target mutex could not be locked (another task has been locked) when this service call is issued, this service call
queues the invoking task to the target mutex wait queue and moves it from the RUNNING state to the WAITING state
(mutex wait state).
The WAITING state for a mutex is cancelled in the following cases.

WAITING State for a Mutex Cancel Operation Return Value
The locked state of the target mutex was cancelled as a result of issuing unl_mtx. E_OK
The locked state of the target mutex was cancelled as a result of issuing ext_tsk. E_OK
The locked state of the target mutex was cancelled as a result of issuing exd_tsk. E_OK
The locked state of the target mutex was cancelled as a result of issuing ter_tsk. E_OK
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
Forced release from waiting (accept del_mtx while waiting). E_DLT

When the mutex is locked, this service call changes the current priority of the invoking task to the ceiling priority of the
target mutex. However, this service call does not change the current priority when the invoking task has locked other
mutexes and the ceiling priority of the target mutex is lower than or equal to the ceiling priority of the locked mutexes.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task TasklI /*Refer to note 3*/
void Taskl (VP_INT exinf); /*Refer to note 3%/
void Taskl (VP_INT exinf)
{
ER ercd; /*Declares variable*/
ID mtxid = 8; /*Declares and initializes variable*/
J* .. */
ercd = loc mtx (mtxid); /*Lock mutex*/
if (ercd == E OK) {
J* ... */ /*Locked state*/
unl mtx (mtxid); /*Unlock mutex*/
} else if (ercd == E_RLWAI) {
/F . */ /*Forced termination processing*/
}
J* ... */
}
R20UT0964EJ0101 Rev.1.01 IZENESAS Page 123 of 565

Sep 20, 2013

CHAPTER 8 EXTENDED SYNCHRONIZATION AND COMMUNICATION
RI600PX FUNCTIONS

Note 1 Invoking tasks are queued to the target mutex wait queue in the priority order. Among tasks with the same
priority, they are queued in FIFO order.

Note 2 This service call returns “E_ILUSE” if this service call is re-issued for the mutex that has been locked by the
invoking task (multiple-locking of mutex).

Note 3 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IQENESAS Page 124 of 565
Sep 20, 2013

CHAPTER 8 EXTENDED SYNCHRONIZATION AND COMMUNICATION
RI600PX FUNCTIONS

- ploc_mtx (Polling)
This service call locks the mutex specified by parameter mixid.
If the target mutex could not be locked (another task has been locked) when this service call is issued but
“E_TMOUT” is returned.
When the mutex is locked, this service call changes the current priority of the invoking task to the ceiling priority of the
target mutex. However, the this service call does not change the current priority when the invoking task has locked
other mutexes and the ceiling priority of the target mutex is lower than or equal to the ceiling priority of the locked
mutexes.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 2*/
void Taskl (VP_INT exinf); /*Refer to note 2%/
void Taskl (VP_INT exinf)
{
ER ercd; /*Declares variable*/
ID mtxid = 8; /*Declares and initializes variable*/
/F e */
ercd = ploc mtx (mtxid); /*Lock mutex*/
if (ercd == E OK) {
/F e . */ /*Polling success processing*/
unl mtx (mtxid); /*Unlock mutex*/
} else if (ercd == E_TMOUT) ({
JF e .. */ /*Polling failure processing*/
}
/F . */
}

Note 1 This service call returns “E_ILUSE” if this service call is re-issued for the mutex that has been locked by the
invoking task (multiple-locking of mutex).

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 125 of 565
Sep 20, 2013

CHAPTER 8 EXTENDED SYNCHRONIZATION AND COMMUNICATION

RI600PX

FUNCTIONS

- tloc_mtx (Wait with time-out)
This service call locks the mutex specified by parameter mixid.

If the target mutex could not be locked (another task has been locked) when this service call is issued, this service call
queues the invoking task to the target mutex wait queue and moves it from the RUNNING state to the WAITING state

with time-out (mutex wait state).
The WAITING state for a mutex is cancelled in the following cases.

WAITING State for a Mutex Cancel Operation Return Value

The locked state of the target mutex was cancelled as a result of issuing unl_mtx. E_OK

The locked state of the target mutex was cancelled as a result of issuing ext_tsk. E_OK

The locked state of the target mutex was cancelled as a result of issuing exd_tsk. E_OK

The locked state of the target mutex was cancelled as a result of issuing ter_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The time specified by tmout has elapsed. E_TMOUT
Forced release from waiting (accept del_mtx while waiting). E_DLT

When the mutex is locked, this service call changes the current priority of the invoking task to the ceiling priority of the
target mutex. However, the this service call does not change the current priority when the invoking task has locked
other mutexes and the ceiling priority of the target mutex is lower than or equal to the ceiling priority of the locked

mutexes.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 4*/
void Taskl (VP_INT exinf); /*Refer to note 4*/
void Taskl (VP_INT exinf)
{
ER ercd; /*Declares variable*/
ID mtxid = 8; /*Declares and initializes variable*/
TMO tmout = 3600; /*Declares and initializes variable*/
J* .. */
ercd = tloc mtx (mtxid, tmout); /*Lock mutex*/
if (ercd == E OK) {
J* ... */ /*Locked state*/
unl mtx (mtxid); /*Unlock mutex*/
} else if (ercd == E_RLWAI) {
[F e . */ /*Forced termination processing*/
} else if (ercd == E TMOUT) {
/F .. */ /*Time-out processing*/
}
J* .. */
}

Note 1 Invoking tasks are queued to the target mutex wait queue in the priority order. Among tasks with the same

priority, they are queued in FIFO order.

Note 2 This service call returns “E_ILUSE” if this service call is re-issued for the mutex that has been locked by the

invoking task (multiple-locking of mutex).

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to loc_mtx will be executed. When

TMO_POL is specified, processing equivalent to ploc_mtx will be executed.

R20UT0964EJ0101 Rev.1.01 .ZENESAS
Sep 20, 2013

Page 126 of 565

CHAPTER 8 EXTENDED SYNCHRONIZATION AND COMMUNICATION
RI600PX FUNCTIONS

Note 4 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IQENESAS Page 127 of 565
Sep 20, 2013

CHAPTER 8 EXTENDED SYNCHRONIZATION AND COMMUNICATION
RI600PX FUNCTIONS

8.2.8 Unlock mutex

The mutex locked state can be cancelled by issuing the following service call from the processing program.

- unl_mtx
This service call unlocks the locked mutex specified by parameter mtxid.
If a task has been queued to the target mutex wait queue when this service call is issued, mutex lock processing is
performed by the task (the first task in the wait queue) immediately after mutex unlock processing.
As a result, the task is unlinked from the wait queue and moves from the WAITING state (mutex wait state) to the
READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state. And this service call changes the
current priority of the task to the ceiling priority of the target mutex. However, this service call does not change the
current priority when the task has locked other mutexes and the ceiling priority of the target mutex is lower than or
equal to the ceiling priority of the locked mutexes.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 3*/

void Taskl (VP_INT exinf); /*Refer to note 3*/

void Taskl (VP _INT exinf)
{

ER ercd; /*Declares variable*/

ID mtxid = 8; /*Declares and initializes variable*/
J* ... */

ercd = loc mtx (mtxid); /*Lock mutex*/

if (ercd == E _OK) {

J* .. */ /*Locked state*/

unl mtx (mtxid); /*Unlock mutex*/
} else if (ercd == E RLWAI) {

/F e . */ /*Forced termination processing*/
}
J* e .. */

Note 1 A locked mutex can be unlocked only by the task that locked the mutex.
If this service call is issued for a mutex that was not locked by the invoking task, no processing is performed
but “E_ILUSE” is returned.

Note 2 When terminating a task, the mutexes which are locked by the terminated task are unlocked.

Note 3 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 128 of 565
Sep 20, 2013

CHAPTER 8 EXTENDED SYNCHRONIZATION AND COMMUNICATION
RI600PX FUNCTIONS

8.29 Reference mutex state

A mutex status is referenced by issuing the following service call from the processing program.

- ref_mtx,
This service call stores the detailed information of the mutex specified by parameter mixid (existence of locked
mutexes, waiting tasks, etc.) into the area specified by parameter pk_rmix.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 2*/

void Taskl (VP_INT exinf); /*Refer to note 2%/

void Taskl (VP _INT exinf)
{

ID mtxid = 1; /*Declares and initializes variable*/

T RMTX pk rmtx; /*Declares data structure*/

ID htskid; /*Declares variable*/

ID wtskid; /*Declares variable*/

V2 */

ref mtx (mbxid, &pk rmtx); /*Reference mutex state*/

htskid = pk rmtx.htskid; /*Acquires existence of locked mutexes*/
wtskid = pk rmtx.wtskid; /*Reference ID number of the task at the */

/*head of the wait queue*/

Note 1 For details about the mutex state packet, refer to “[Mutex state packet: T_RMTX]".

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 129 of 565
Sep 20, 2013

CHAPTER 8 EXTENDED SYNCHRONIZATION AND COMMUNICATION
RI600PX FUNCTIONS

8.3 Message Buffers

Multitask processing requires the inter-task communication function (message transfer function) that reports the
processing result of a task to another task. The RI600PX therefore provides the message buffers for copying and
transferring the arbitrary size of message.

The following shows a processing flow when using a message buffer.

Figure 8-3 Processing Flow (Message buffer)

Task A Task B
Priority: High Priority: Low
T Receive from message buffer - — —

Reception wait period

]

Send to message buffer

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 130 of 565
Sep 20, 2013

CHAPTER 8 EXTENDED SYNCHRONIZATION AND COMMUNICATION
RI600PX FUNCTIONS

8.3.1 Create message buffer

Message buffers are created by one of the following methods.

1) Creation by the system configuration file
The static API “message_buffer[]” described in the system configuration file creates a message buffer.
Refer to “20.16 Message Buffer Information (message_buffer[])” for the details of “message_buffer[]".

2) Creation by cre_mbf or acre_mbf
The cre_mbf creates a message buffer with message buffer ID indicated by parameter mbfid according to the

content of parameter pk_cmbf.
The acre_mbf creates a message buffer according to the content of parameter pk_cmbf, and returns the created

message buffer ID.
The information specified is shown below.

- Message buffer attribute (mbfatr)
Only TA_TFIFO (the order of task wait queue for sending is managed by FIFO order.) can be specified for

mbfatr.
- Maximum message size (maxmsz)

- Size of the message buffer area (mbfsz), Start address of the message buffer area (mbf)
The message buffer area should be generated to the area other than memory objects and user stacks.

These service calls can be called from tasks that belong to Trusted Domain.
The following describes an example for coding acre_mbf as a representative.

#include "kernel.h" /*Standard header file definition*/

#include "kernel id.h" /*Header file generated by cfg600px*/

#define MAX MSGSZ 64 /*Maximum message size (in bytes)*/

#define MBFSZ 256 /*Size of the message buffer area (in bytes)*/
#pragma section B BRI_RAM /*Section for the message buffer area*/

static UW mbf area[MBFSZ/sizeof (UW)]; /*Message buffer area*/
#pragma section

#pragma task Taskl /*Refer to note*/
void Taskl (VP_INT exinf); /*Refer to note*/
void Taskl (VP_INT exinf)

{

ER mbfid; /*Declares variable*/
T CMBF pk cmbf = { /*Declares and initializes variable*/
TA TFIFO, /*Message buffer attribute (mbfatr)*/
MAX MSGSZ, /*Maximum message size (in bytes) (maxmsz)*/
MBFSZ, /*Size of the message buffer area (in bytes) (mbfsz)*/
(VP)mbf area /*Start address of the message buffer area (mbf)*/
bi
/e */

mbfid = acre mbf (&pk cmbf); /*Create message buffer/

Note These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 131 of 565
Sep 20, 2013

CHAPTER 8 EXTENDED SYNCHRONIZATION AND COMMUNICATION

RI600PX

FUNCTIONS

8.3.2 Delete message buffer

- del_mbf
This service call deletes the message buffer specified by parameter mbfid.

When there are waiting tasks for the target message buffer by using snd_mbf, tsnd_mbf, rcv_mbf or trcv_mbf, this
service call cancels the WAITING state of the tasks and returns E_DLT as a return value of the snd_mbf, tsnd_mbf,

rcv_mbf or trcv_mbf.
This service call can be called from tasks that belong to Trusted Domain.
The following describes an example for coding this service call.

#include
#include

void Taskl
void Taskl

"kernel.h"
"kernel id.h"

#pragma task Taskl

(VP_INT exinf);
(VP_INT exinf)

/*Standard header file definition*/
/*Header file generated by cfg600px*/
/*Refer to note*/

/*Refer to note*/

D mbfid = 8; /*Declares and initializes variable*/

(mbfid); /*Delete data queue*/

Note
cfg600px generates these statement into the “kernel_id.h".

These statements are unnecessary for the task which is created by the system configuration file because the

R20UT0964EJ0101 Rev.1.01

KENESAS
Sep 20, 2013 /{

Page 132 of 565

CHAPTER 8 EXTENDED SYNCHRONIZATION AND COMMUNICATION
RI600PX FUNCTIONS

8.3.3 Send to message buffer

A message is transmitted by issuing the following service call from the processing program.
- snd_mbf (Wait)
- psnd_mbf, ipsnd_mbf (Polling)
- tsnd_mbf (Wait with time-out)

- snd_mbf (Wait)
This service call processes as follows according to the situation of the message buffer specified by the parameter

mbfid.
- There is a task in the reception wait queue.
This service call transfers the message specified by parameter msg to the task in the top of the reception wait
queue. As a result, the task is unlinked from the reception wait queue and moves from the WAITING state
(message reception wait state) to the READY state, or from the WAITING-SUSPENDED state to the
SUSPENDED state.
- There is no task neither in the reception wait queue and transmission wait queue and there is available space
in the message bulffer.
This service call stores the message specified by parameter msg to the message buffer. As a result, the size of
available space in the target message buffer decreases by the amount calculated by the following expression.
The amount of decrease = up4(msgsz) + VTSZ_MBFTBL
- There is no task neither in the reception wait queue and transmission wait queue and there is no available
space in the message buffer, or there is a task in the transmission wait queue.
This service call queues the invoking task to the transmission wait queue of the target message buffer and
moves it from the RUNNING state to the WAITING state (message transmission wait state).
The sending WAITING state for a message buffer is cancelled in the following cases.
Sending WAITING State for a Message Buffer Cancel Operation Return Value
Available space was secured in the message buffer area as a result of issuing rcv_mbf. E_OK
Available space was secured in the message buffer area as a result of issuing prcv_mbf. E_OK
Available space was secured in the message buffer area as a result of issuing trcv_mbf. E_OK

The task at the top of the transmission wait queue was forcedly released from waiting by fol-
lowing either.

- Forced release from waiting (accept rel_wai while waiting).

E_OK
- Forced release from waiting (accept irel_wai while waiting). -
- Forced release from waiting (accept ter_tsk while waiting).
- The time specified by tmout for tsnd_mbf has elapsed.
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
The message buffer is reset as a result of issuing vrst_mbf. EV_RST
Forced release from waiting (accept del_mbf while waiting). E_DLT
The following describes an example for coding this service call.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 133 of 565

Sep 20, 2013

CHAPTER 8 EXTENDED SYNCHRONIZATION AND COMMUNICATION

RI600PX FUNCTIONS
#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 3*/
void Taskl (VP_INT exinf); /*Refer to note 3*/

void Taskl (VP_INT exinf)
{

ER ercd; /*Declares variable*/

ID mbfid = 1; /*Declares and initializes variable*/
B msgl]l = {1,2,3}; /*Declares and initializes variable*/
UINT msgsz = sizeof(msg); /*Declares and initializes variable*/
/... */

ercd = snd mbf (mbfid, (VP)msg, msgsz); /*Send to message buffer*/

if (ercd == E OK) {

J* ... */ /*Normal termination processing*/
} else if (ercd == E RLWAI) {

JF e . */ /*Forced termination processing*/
}
V2 */

Note 1 Message is written to the message buffer area in the order of the message transmission request.
Note 2 Invoking tasks are queued to the transmission wait queue of the target message buffer in the FIFO order.

Note 3 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 134 of 565
Sep 20, 2013

CHAPTER 8 EXTENDED SYNCHRONIZATION AND COMMUNICATION
RI600PX FUNCTIONS

- psnd_mbf, ipsnd_mbf (Polling)
This service call processes as follows according to the situation of the message buffer specified by the parameter
mbfid.

- There is a task in the reception wait queue.
This service call transfers the message specified by parameter msg to the task in the top of the reception wait
queue. As a result, the task is unlinked from the reception wait queue and moves from the WAITING state
(message reception wait state) to the READY state, or from the WAITING-SUSPENDED state to the
SUSPENDED state.

- There is no task neither in the reception wait queue and transmission wait queue and there is available space
in the message buffer.
This service call stores the message specified by parameter msg to the message buffer. As a result, the size of
available space in the target message buffer decreases by the amount calculated by the following expression.

The amount of decrease = up4(msgsz) + VTSZ_MBFTBL

- There is no task neither in the reception wait queue and transmission wait queue and there is no available
space in the message buffer, or there is a task in the transmission wait queue.
This service call returns “E_TMOUT”.

The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task TasklI /*Refer to note 2*/

void Taskl (VP_INT exinf); /*Refer to note 2%/

void Taskl (VP _INT exinf)
{

ER ercd; /*Declares variable*/

ID mbfid = 1; /*Declares and initializes variable*/
B msg(] = {1,2,3}; /*Declares and initializes variable*/
UINT msgsz = sizeof(msg); /*Declares and initializes variable*/
J* . */

ercd = psnd mbf (mbfid, (VP)msg, msgsz); /*Send to message buffer*/

if (ercd == E OK) {

VA */ /*Polling success processing*/
} else if (ercd == E_TMOUT) {

/e */ /*Polling failure processing*/
}
/* i */

Note 1 Message is written to the message buffer area in the order of the message transmission request.

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 135 of 565
Sep 20, 2013

CHAPTER 8 EXTENDED SYNCHRONIZATION AND COMMUNICATION
RI600PX FUNCTIONS

- tsnd_mbf (Wait with time-out)
This service call processes as follows according to the situation of the message buffer specified by the parameter

mbfid.
- There is a task in the reception wait queue.
This service call transfers the message specified by parameter msg to the task in the top of the reception wait
queue. As a result, the task is unlinked from the reception wait queue and moves from the WAITING state
(message reception wait state) to the READY state, or from the WAITING-SUSPENDED state to the
SUSPENDED state.
- There is no task neither in the reception wait queue and transmission wait queue and there is available space
in the message bulffer.
This service call stores the message specified by parameter msg to the message buffer. As a result, the size of
available space in the target message buffer decreases by the amount calculated by the following expression.
The amount of decrease = up4(msgsz) + VTSZ_MBFTBL
- There is no task neither in the reception wait queue and transmission wait queue and there is no available
space in the message buffer, or there is a task in the transmission wait queue.
This service call queues the invoking task to the transmission wait queue of the target message buffer and
moves it from the RUNNING state to the WAITING state with time (message transmission wait state).
The sending WAITING state for a message buffer is cancelled in the following cases.
Sending WAITING State for a Message Buffer Cancel Operation Return Value
Available space was secured in the message buffer area as a result of issuing rcv_mbf. E_OK
Available space was secured in the message buffer area as a result of issuing prcv_mbf. E_OK
Available space was secured in the message buffer area as a result of issuing trcv_mbf. E_OK
The task at the top of the transmission wait queue was forcedly released from waiting by fol-
lowing either.
- Forced release from waiting (accept rel_wai while waiting). E OK
- Forced release from waiting (accept irel_wai while waiting). -
- Forced release from waiting (accept ter_tsk while waiting).
- The time specified by tmout for tsnd_mbf has elapsed.
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
The message buffer is reset as a result of issuing vrst_mbf. EV_RST
The time specified by tmout has elapsed. E_TMOUT
Forced release from waiting (accept del_mbf while waiting). E_DLT
The following describes an example for coding this service call.
R20UT0964EJ0101 Rev.1.01 RENESAS Page 136 of 565

Sep 20, 2013

CHAPTER 8 EXTENDED SYNCHRONIZATION AND COMMUNICATION

RI600PX FUNCTIONS
#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 4%*/
void Taskl (VP_INT exinf); /*Refer to note 4*/

void Taskl (VP_INT exinf)
{

ER ercd; /*Declares variable*/

ID mbfid = 1; /*Declares and initializes variable*/
B msgl] = {1,2,3}; /*Declares and initializes variable*/
TMO tmout = 3600; /*Declares and initializes variable*/
J* .. */

ercd = tsnd mbf (mbfid, (VP)msg, msgsz, tmout); /*Send to message buffer*/

if (ercd == E OK) {

JF . */ /*Normal termination processing*/
} else if (ercd == E_RLWAI) {

JF e .. */ /*Forced termination processing*/
} else if (ercd == E TMOUT) {

/F .. */ /*Time-out processing*/
}
/* e */

Note 1 Message is written to the message buffer area in the order of the message transmission request.
Note 2 Invoking tasks are queued to the transmission wait queue of the target message buffer in the FIFO order.

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to snd_mbf will be executed. When
TMO_POL is specified, processing equivalent to psnd_mbf will be executed.

Note 4 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 137 of 565
Sep 20, 2013

CHAPTER 8 EXTENDED SYNCHRONIZATION AND COMMUNICATION
RI600PX FUNCTIONS

8.3.4 Receive from message buffer

A message is received (waiting forever, polling, or with time-out) by issuing the following service call from the processing
program.

- rcv_mbf (Wait)
- prcv_mbf (Polling)
- trcv_mbf (Wait with time-out)

- rcv_mbf (Wait)
This service call processes as follows according to the situation of the message buffer specified by the parameter

mbfid.
- There is a message in the message buffer.
This service call takes out the oldest message from the message buffer and stores the message to the area
specified by msg and return the size of the message. As a result, the size of available space in the target mes-
sage buffer increases by the amount calculated by the following expression.
The amount of increase = up4(Return value) + VTSZ_MBFTBL
In addition, this service call repeats the following processing until task in the transmission wait queue is lost or
it becomes impossible to store the message in the message buffer.

- When there is a task in the transmission wait queue and there is available space in the message buffer
for the message specified by the task in the top of the transmission wait queue, the task is unlinked from
the transmission wait queue and moves from the WAITING state (message transmission wait state) to
the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state. As a result, the
size of available space in the target message buffer decreases by the amount calculated by the follow-
ing expression.

The amount of decrease =up4(The message size sent by the task) + VTSZ_MBFTBL
- There is no message in the message buffer and there is a task in the transmission wait queue.
This service call stores the message specified by the task in the top of the transmission wait queue to the area
pointed by the parameter msg. As a result, the task is unlinked from the transmission wait queue and moves
from the WAITING state (message transmission wait state) to the READY state, or from the WAITING-
SUSPENDED state to the SUSPENDED state.
Note, this situation is caused only when the size of the message buffer is 0.
- There is no message in the message buffer and there is no task in the transmission wait queue.
This service call queues the invoking task to the reception wait queue of the target message buffer and moves
it from the RUNNING state to the WAITING state (message reception wait state).
The receiving WAITING state for a message buffer is cancelled in the following cases.
Receiving WAITING State for a Message Buffer Cancel Operation Return Value
Message was sent to the message buffer area as a result of issuing snd_mbf. E_OK
Message was sent to the message buffer area as a result of issuing psnd_mbf. E_OK
Message was sent to the message buffer area as a result of issuing ipsnd_mbf. E_OK
Message was sent to the message buffer area as a result of issuing tsnd_mbf. E_OK
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
Forced release from waiting (accept del_mbf while waiting). E_DLT

The following describes an example for coding this service call.

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 138 of 565
Sep 20, 2013

CHAPTER 8 EXTENDED SYNCHRONIZATION AND COMMUNICATION

RI600PX FUNCTIONS
#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 3*/
void Taskl (VP_INT exinf); /*Refer to note 3*/

void Taskl (VP_INT exinf)
{

ER ercd; /*Declares variable*/

ID mbfid = 1; /*Declares and initializes variable*/

B msg[l6]; /*Declares variable (maximum message size) */
J* . */

ercd = rcv_mbf (mbfid, (VP)msg); /*Receive from message buffer */

if (ercd == E OK) {

/F e .. */ /*Normal termination processing*/
} else if (ercd == E RLWAI) {

/F e */ /*Forced termination processing*/
}
VN */

Note 1 The maximum message size is defined at creating the message buffer. The size of the area pointed by msg
requires at least the maximum message size.

Note 2 Invoking tasks are queued to the reception wait queue of the target message buffer in the order of the
message reception request.

Note 3 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 139 of 565
Sep 20, 2013

CHAPTER 8 EXTENDED SYNCHRONIZATION AND COMMUNICATION
RI600PX FUNCTIONS

- prcv_mbf (Polling)
This service call processes as follows according to the situation of the message buffer specified by the parameter
mbfid.

- There is a message in the message bulffer.
This service call takes out the oldest message from the message buffer and stores the message to the area
specified by msg and return the size of the message. As a result, the size of available space in the target mes-
sage buffer increases by the amount calculated by the following expression.

The amount of increase = up4(Return value) + VTSZ_MBFTBL

In addition, this service call repeats the following processing until task in the transmission wait queue is lost or
it becomes impossible to store the message in the message buffer.

- When there is a task in the transmission wait queue and there is available space in the message buffer
for the message specified by the task in the top of the transmission wait queue, the task is unlinked from
the transmission wait queue and moves from the WAITING state (message transmission wait state) to
the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state. As a result, the
size of available space in the target message buffer decreases by the amount calculated by the follow-
ing expression.

The amount of decrease =up4(The message size sent by the task) + VTSZ_MBFTBL

- There is no message in the message buffer and there is a task in the transmission wait queue.
This service call stores the message specified by the task in the top of the transmission wait queue to the area
pointed by the parameter msg. As a result, the task is unlinked from the transmission wait queue and moves
from the WAITING state (message transmission wait state) to the READY state, or from the WAITING-
SUSPENDED state to the SUSPENDED state.
Note, this situation is caused only when the size of the message buffer is 0.

- There is no message in the message buffer and there is no task in the transmission wait queue.
This service call returns “E_TMOUT”.

The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task TasklI /*Refer to note 2*/

void Taskl (VP_INT exinf); /*Refer to note 2*/

void Taskl (VP_INT exinf)
{

ER ercd; /*Declares variable*/

ID mbfid = 1; /*Declares and initializes variable*/

B msg[l6]; /*Declares variable (maximum message size)*/
J* e */

ercd = prcv_mbf (mbfid, (VP)msg); /*Receive from message buffer */

if (ercd == E OK) {

/F . */ /*Polling success processing*/
} else if (ercd == E_TMOUT) {

/* e */ /*Polling failure processing*/
}
/2 */

Note 1 The maximum message size is defined at creating the message buffer. The size of the area pointed by msg
requires at least the maximum message size.

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 140 of 565
Sep 20, 2013

CHAPTER 8 EXTENDED SYNCHRONIZATION AND COMMUNICATION
RI600PX FUNCTIONS

- trcv_mbf (Wait with time-out)
This service call processes as follows according to the situation of the message buffer specified by the parameter
mbfid.

- There is a message in the message bulffer.
This service call takes out the oldest message from the message buffer and stores the message to the area
specified by msg and return the size of the message. As a result, the size of available space in the target mes-
sage buffer increases by the amount calculated by the following expression.

The amount of increase = up4(Return value) + VTSZ_MBFTBL

In addition, this service call repeats the following processing until task in the transmission wait queue is lost or
it becomes impossible to store the message in the message buffer.

- When there is a task in the transmission wait queue and there is available space in the message buffer
for the message specified by the task in the top of the transmission wait queue, the task is unlinked from
the transmission wait queue and moves from the WAITING state (message transmission wait state) to
the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state. As a result, the
size of available space in the target message buffer decreases by the amount calculated by the follow-
ing expression.

The amount of decrease =up4(The message size sent by the task) + VTSZ_MBFTBL

- There is no message in the message buffer and there is a task in the transmission wait queue.
This service call stores the message specified by the task in the top of the transmission wait queue to the area
pointed by the parameter msg. As a result, the task is unlinked from the transmission wait queue and moves
from the WAITING state (message transmission wait state) to the READY state, or from the WAITING-
SUSPENDED state to the SUSPENDED state.
Note, this situation is caused only when the size of the message buffer is 0.

- There is no message in the message buffer and there is no task in the transmission wait queue.
This service call queues the invoking task to the reception wait queue of the target message buffer and moves
it from the RUNNING state to the WAITING state with time (message reception wait state).
The receiving WAITING state for a message buffer is cancelled in the following cases.

Receiving WAITING State for a Message Buffer Cancel Operation Return Value

Message was sent to the message buffer area as a result of issuing snd_mbf. E_OK

Message was sent to the message buffer area as a result of issuing psnd_mbf. E_OK

Message was sent to the message buffer area as a result of issuing ipsnd_mbf. E_OK

Message was sent to the message buffer area as a result of issuing tsnd_mbf. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The time specified by tmout has elapsed. E_TMOUT

Forced release from waiting (accept del_mbf while waiting). E_DLT

The following describes an example for coding this service call.

R20UT0964EJ0101 Rev.1.01 RENESAS Page 141 of 565
Sep 20, 2013

CHAPTER 8 EXTENDED SYNCHRONIZATION AND COMMUNICATION

RI600PX FUNCTIONS
#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 4%*/
void Taskl (VP _INT exinf); /*Refer to note 4%/
void Taskl (VP_INT exinf)
{
ER ercd; /*Declares variable*/
ID mbfid = 1; /*Declares and initializes variable*/
B msg[1l6]; /*Declares variable (maximum message size) */
TMO tmout = 3600; /*Declares and initializes variable*/
J* .. */

ercd = trcv mbf (mbfid, (VP)msg, tmout); /*Receive from message buffer */

if (ercd == E OK) {
/F e . */ /*Normal termination processing*/

} else if (ercd == E_RLWAI) {
/* e . */ /*Forced termination processing*/

} else if (ercd == E TMOUT) {
/e */ /*Time-out processing*/

}

/* ... */

}
Note 1 The maximum message size is defined at creating the message buffer. The size of the area pointed by msg

Note 2

Note 3

Note 4

requires at least the maximum message size.

Invoking tasks are queued to the reception wait queue of the target message buffer in the order of the
message reception request.

TMO_FEVR is specified for wait time tmout, processing equivalent to rcv_mbf will be executed. When
TMO_POL is specified, processing equivalent to prcv_mbf will be executed.

These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IQENESAS Page 142 of 565
Sep 20, 2013

CHAPTER 8 EXTENDED SYNCHRONIZATION AND COMMUNICATION
RI600PX FUNCTIONS

8.3.5 Reference message buffer state

A message buffer status is referenced by issuing the following service call from the processing program.

- ref_mbf, iref_mbf
These service calls store the detailed information of the message buffer (existence of waiting tasks, available buffer
size, etc.) specified by parameter mbfid into the area specified by parameter pk_rmbf.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 2*/
void Taskl (VP_INT exinf); /*Refer to note 2%/
void Taskl (VP _INT exinf)
{
ID mbfid = 1; /*Declares and initializes variable*/
T RMBF pk rmbf; /*Declares message structure*/
ID stskid; /*Declares variable*/
ID rtskid; /*Declares variable*/
UINT smsgcnt; /*Declares variable*/
SIZE fmbfsz; /*Declares variable*/
J* ... */
ref mbf (mbfid, &pk rmbf); /*Reference message buffer state*/
stskid = pk rmbf.stskid; /*Acquires existence of tasks waiting for */
/*message transmission*/
rtskid = pk rmbf.rtskid; /*Acquires existence of tasks waiting for */
/*message reception*/
smsgcnt = pk rmbf.smsgcnt; /*Acquires the number of message in */
/*message buffer*/
fmbfsz = pk rmbf.fmbfsz; /*Acquires the available buffer size */
JF e . */
}

Note 1 For details about the message buffer state packet, refer to “[Message buffer state packet: T_RMBF]”.

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 143 of 565
Sep 20, 2013

RI600PX CHAPTER 9 MEMORY POOL MANAGEMENT FUNCTIONS

CHAPTER 9 MEMORY POOL MANAGEMENT FUNC-
TIONS

This chapter describes the memory pool management functions performed by the RIGOOPX.

9.1 Outline

The RI600PX provides “Fixed-Sized Memory Pools” and “Variable-Sized Memory Pools” as dynamic memory allocation
function.

In the fixed-sized memory pool, the size of memory that can use is fixation, but the over-head to acquire/release memory
is short.

On the other hand, in the variable-sized memory pool, memory of the arbitrary size can be used, but the over-head to
acquire/release memory is longer than the fixed-sized memory pool. And fragmentation of the memory pool area may
occur.

R20UT0964EJ0101 Rev.1.01 RENESAS Page 144 of 565
Sep 20, 2013

RI600PX CHAPTER 9 MEMORY POOL MANAGEMENT FUNCTIONS

9.2 Fixed-Sized Memory Pools

When a dynamic memory manipulation request is issued from a processing program in the RI600PX, the fixed-sized
memory pool is provided as a usable memory area.
Dynamic memory manipulation of the fixed-size memory pool is executed in fixed size memory block units.

9.21 Create fixed-sized memory pool

Fixed-sized memory pools are created by one of the following methods.

1) Creation by the system configuration file
The static APl “memorypool[]” described in the system configuration file creates a fixed-sized memory pool.
Refer to “20.17 Fixed-sized Memory Pool Information (memorypool[])” for the details of “memorypool[]”.

2) Creation by cre_mpf or acre_mpf
The cre_mpf creates a fixed-sized memory pool with fixed-sized memory pool ID indicated by parameter mpfid
according to the content of parameter pk_cmpf.
The acre_mpf creates a fixed-sized memory pool according to the content of parameter pk_cmpf, and returns the
created fixed-sized memory pool ID.
The information specified is shown below.

- Fixed-sized memory pool attribute (mpfatr)
The following informations are specified as mpfatr.

- The order of task wait queue (FIFO order or task current priority order)

- Total number of memory blocks (blkcnt), memory block size (blksz), Start address of the fixed-sized memory
pool area (mpf)
The TSZ_MPF(blkcnt, blksz) bytes area from the address indicated by parameter mpf is used for the fixed-
sized memory pool area. Refer to “18.3.3 Macros for Fixed-sized Memory Pool” for details of TSZ_MPF
macro.
The fixed-sized memory pool area should be in the memory object to be able to access by tasks which uses
memory blocks.

- Start address of the fixed-sized memory pool management area (mpfmb)
The TSZ_MPFMB(blkcnt, blksz) bytes area from the address indicated by parameter mpfmb is used for the
fixed-sized memory pool management area. Refer to “18.3.3 Macros for Fixed-sized Memory Pool” for details
of TVSZ_MPFMB macro.
The fixed-sized memory pool management area should be generated to the area other than memory objects
and user stacks.

These service calls can be called from tasks that belong to Trusted Domain.
The following describes an example for coding acre_mpf as a representative.

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 145 of 565
Sep 20, 2013

RI600PX CHAPTER 9 MEMORY POOL MANAGEMENT FUNCTIONS
#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#define BLKCNT 32 /*Total number of memory blocks*/
#define BLKSZ 16 /*Memory block size (in bytes)*/
#pragma section B BU_SH /*Section for the fixed-sized memory pool area*/

{

static UW mpf areal TSZ MPF (BLKCNT, BLKSZ)/sizeof (UW) 1;

#pragma section B BRI_RAM

static UW mpfmb areal TSZ MPFMB (BLKCNT, BLKSZ)/sizeof (UW)];
#pragma section

#pragma task Taskl /*Refer to note*/
void Taskl (VP_INT exinf); /*Refer to note*/
void Taskl (VP_INT exinf)

/*Fixed-sized memory pool area*/

/* Section for the fixed-sized memory pool management area*/

/*Fixed-sized memory pool management area*/

ER mpfid; /*Declares variable*/
T CMPF pk cmpf = { /*Declares and initializes variable*/
TA TFIFO, /*Fixed-sized memory pool attribute (mpfatr)*/
BLKCNT, /*Total number of memory blocks (blkcnt)*/
BLKSZ, /*Memory block size (in bytes) (blksz)*/
(VP) mpf area, /*Start address of the fixed-sized memory pool area (mpf)*/

/*Start address of the fixed-sized memory pool management area (mpfmb)*/
(VP)mpfmb area

/e */
mpfid = acre mpf (&pk cmpf); /*Create fixed-sized memory pool/
/e */

Note These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 146 of 565

Sep 20, 2013

RI600PX

CHAPTER 9 MEMORY POOL MANAGEMENT FUNCTIONS

9.2.2 Delete fixed-sized memory pool

- del_mpf
This service call deletes the fixed-sized memory pool specified by parameter mpfid.

When there are waiting tasks for the target fixed-sized memory pool by using get_mpf or tget_mpf, this service call

cancels the WAITING state of the tasks and returns E_DLT as a return value of the get_mpf or tget_ mpf.
This service call can be called from tasks that belong to Trusted Domain.
The following describes an example for coding this service call.

/*Standard header file definition*/
/*Header file generated by cfg600px*/
/*Refer to note*/

/*Refer to note*/

#include "kernel.h"
#include "kernel id.h"
#pragma task Taskl

void Taskl (VP _INT exinf);
void Taskl (VP_INT exinf)

{

/*Declares and initializes variable*/

ID mpfid = 8;

ercd = del mpf (mpfid); /*Delete fixed-sized memory pool*/

Note
cfg600px generates these statement into the “kernel_id.h".

These statements are unnecessary for the task which is created by the system configuration file because the

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS Page 147 of 565

RI600PX CHAPTER 9 MEMORY POOL MANAGEMENT FUNCTIONS

9.2.3 Acquire fixed-sized memory block

A fixed-sized memory block is acquired (waiting forever, polling, or with time-out) by issuing the following service call from
the processing program.

- get_mpf (Wait)
- pget_mpf, ipget_mpf (Polling)

- tget_mpf (Wait with time-out)
The RI600PX does not perform memory clear processing when a fixed-sized memory block is acquired. The contents of
the acquired fixed-size memory block are therefore undefined.

- get_mpf (Wait)
This service call acquires the fixed-sized memory block from the fixed-sized memory pool specified by parameter
mpfid and stores the start address in the area specified by parameter p_blk.
If no fixed-size memory blocks could be acquired from the target fixed-size memory pool (no available fixed-size
memory blocks exist) when this service call is issued, this service call does not acquire the fixed-size memory block
but queues the invoking task to the target fixed-size memory pool wait queue and moves it from the RUNNING state
to the WAITING state (fixed-size memory block acquisition wait state).
The WAITING state for a fixed-sized memory block is cancelled in the following cases.

WAITING State for a Fixed-sized Memory Block Cancel Operation Return Value
A fixed-sized memory block was returned to the target fixed-sized memory pool as a result of E OK
issuing rel_mpf. _
A fixed-sized memory block was returned to the target fixed-sized memory pool as a result of E OK
issuing irel_mpf. _
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
The fixed-sized memory pool is reset as a result of issuing vrst._mpf. EV_RST
Forced release from waiting (accept del_mpf while waiting). E_DLT
The following describes an example for coding this service call.
#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 4%*/
void Taskl (VP_INT exinf); /*Refer to note 4%/
void Taskl (VP_INT exinf)
{
ER ercd; /*Declares variable*/
D mpfid = 1; /*Declares and initializes variable*/
VP p_blk; /*Declares variable*/
/i */

ercd = get mpf (mpfid, &p blk); /*Acquire fixed-sized memory block */

if (ercd == E OK) {
J* e */ /*Normal termination processing*/
rel mpf (mpfid, p blk); /*Release fixed-sized memory block*/

} else if (ercd == E RLWAI) {
/F e . */ /*Forced termination processing*/

}

/e */

}
R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 148 of 565

Sep 20, 2013

RI600PX CHAPTER 9 MEMORY POOL MANAGEMENT FUNCTIONS

Note 1 Invoking tasks are queued to the target fixed-size memory pool wait queue in the order defined at creating
the fixed-sized memory pool (FIFO order or current priority order).

Note 2 The contents of the block are undefined.

Note 3 The alignment number of memory block is 1. Please perform the following, in order to enlarge the alignment
number of memory blocks.

- Specify the memory block size to a multiple of the desired alignment number at creating the fixed-sized
memory pool.

- Make the start address of the fixed-sized memory pool area into the address of the desired alignment
number.

Note 4 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 149 of 565
Sep 20, 2013

RI600PX CHAPTER 9 MEMORY POOL MANAGEMENT FUNCTIONS

- pget_mpf, ipget_mpf (Polling)
This service call acquires the fixed-sized memory block from the fixed-sized memory pool specified by parameter
mpfid and stores the start address in the area specified by parameter p_blk.
If a fixed-sized memory block could not be acquired from the target fixed-sized memory pool (no available fixed-sized
memory blocks exist) when this service call is issued, fixed-sized memory block acquisition processing is not
performed but “E_TMOUT” is returned.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 3*/

void Taskl (VP_INT exinf); /*Refer to note 3*/

void Taskl (VP _INT exinf)
{

ER ercd; /*Declares variable*/

ID mpfid = 1; /*Declares and initializes variable*/
VP p_blk; /*Declares variable*/

V2 */

/*Acquire fixed-sized memory block */
ercd = pget mpf (mpfid, &p blk);

if (ercd == E OK) {
V2 */ /*Polling success processing*/
rel mpf (mpfid, p blk); /*Release fixed-sized memory block*/
} else if (ercd == E_TMOUT) ({
JF e .. */ /*Polling failure processing*/
}
/2 */

Note 1 The contents of the block are undefined.

Note 2 The alignment number of memory block is 1. Please perform the following, in order to enlarge the alignment
number of memory blocks.

- Specify the memory block size to a multiple of the desired alignment number at creating the fixed-sized
memory pool.

- Make the start address of the fixed-sized memory pool area into the address of the desired alignment
number.

Note 3 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 150 of 565
Sep 20, 2013

RI600PX CHAPTER 9 MEMORY POOL MANAGEMENT FUNCTIONS

- tget_mpf (Wait with time-out)
This service call acquires the fixed-sized memory block from the fixed-sized memory pool specified by parameter
mpfid and stores the start address in the area specified by parameter p_blk.
If no fixed-size memory blocks could be acquired from the target fixed-size memory pool (no available fixed-size
memory blocks exist) when this service call is issued, this service call does not acquire the fixed-size memory block
but queues the invoking task to the target fixed-size memory pool wait queue and moves it from the RUNNING state
to the WAITING state with time-out (fixed-size memory block acquisition wait state).
The WAITING state for a fixed-sized memory block is cancelled in the following cases.

WAITING State for a Fixed-sized Memory Block Cancel Operation Return Value
A fix'ed-sized memory block was returned to the target fixed-sized memory pool as a result of E OK
issuing rel_mpf. _
A fix-ed—_sized memory block was returned to the target fixed-sized memory pool as a result of E OK
issuing irel_mpf. _
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
The fixed-sized memory pool is reset as a result of issuing vrst_mpf. EV_RST
The time specified by tmout has elapsed. E_TMOUT
Forced release from waiting (accept del_mpf while waiting). E_DLT

The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task TasklI /*Refer to note 5*/
void Taskl (VP_INT exinf); /*Refer to note 5*/
void Taskl (VP_INT exinf)
{
ER ercd; /*Declares variable*/
ID mpfid = 1; /*Declares and initializes variable*/
VP p blk; /*Declares variable*/
TMO tmout = 3600; /*Declares and initializes variable*/
V2 */
/*Acquire fixed-sized memory block*/
ercd = tget mpf (mpfid, &p blk, tmout);
if (ercd == E _OK) {
JF e . */ /*Normal termination processing*/
rel mpf (mpfid, p blk); /*Release fixed-sized memory block*/
} else if (ercd == E_RLWAI) {
/F . */ /*Forced termination processing*/
} else if (ercd == E_TMOUT) ({
JF e .. */ /*Time-out processing*/
}
/2 */
}
Note 1 Invoking tasks are queued to the target fixed-size memory pool wait queue in the order defined at creating

the fixed-sized memory pool (FIFO order or current priority order).

Note 2 The contents of the block are undefined.

R20UT0964EJ0101 Rev.1.01

ENESAS
Sep 20, 2013 -2

Page 151 of 565

RI600PX CHAPTER 9 MEMORY POOL MANAGEMENT FUNCTIONS

Note 3 The alignment number of memory block is 1. Please perform the following, in order to enlarge the alignment
number of memory blocks.

- Specify the memory block size to a multiple of the desired alignment number at creating the fixed-sized
memory pool.

- Make the start address of the fixed-sized memory pool area into the address of the desired alignment
number.

Note 4 TMO_FEVR is specified for wait time tmout, processing equivalent to get_mpf will be executed. When
TMO_POL is specified, processing equivalent to pget_mpf will be executed.

Note 5 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 152 of 565
Sep 20, 2013

RI600PX CHAPTER 9 MEMORY POOL MANAGEMENT FUNCTIONS

9.24 Release fixed-sized memory block

A fixed-sized memory block is returned by issuing the following service call from the processing program.

- rel_mpf, irel_mpf
This service call returns the fixed-sized memory block specified by parameter blk to the fixed-sized memory pool
specified by parameter mpfid.
If a task is queued to the target fixed-sized memory pool wait queue when this service call is issued, fixed-sized
memory block return processing is not performed but fixed-sized memory blocks are returned to the relevant task
(first task of wait queue).
As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (WAITING state
for a fixed-sized memory block) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED
state.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note*/

void Taskl (VP_INT exinf); /*Refer to note*/

void Taskl (VP _INT exinf)
{

ER ercd; /*Declares variable*/

ID mpfid = 1; /*Declares and initializes variable*/
VP blk; /*Declares variable*/

J* e . */

ercd = get mpf (mpfid, &blk); /*Acquire fixed-sized memory block */
/* (waiting forever) */

if (ercd == E OK) {
/F e . */ /*Normal termination processing*/
rel mpf (mpfid, blk); /*Release fixed-sized memory block*/
} else if (ercd == E_RLWAI) {
/F e */ /*Forced termination processing*/
}
[e */

Note These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 153 of 565
Sep 20, 2013

RI600PX CHAPTER 9 MEMORY POOL MANAGEMENT FUNCTIONS

9.2.5 Reference fixed-sized memory pool state

A fixed-sized memory pool status is referenced by issuing the following service call from the processing program.

- ref_mpf, iref_mpf
Stores fixed-sized memory pool state packet (ID number of the task at the head of the wait queue, number of free
memory blocks, etc.) of the fixed-sized memory pool specified by parameter mpfid in the area specified by parameter
pk_rmpf.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 2*/
void Taskl (VP_INT exinf); /*Refer to note 2%/
void Taskl (VP_INT exinf)
{
ID mpfid = 1; /*Declares and initializes variable*/
T RMPF pk rmpf; /*Declares data structure*/
ID wtskid; /*Declares variable*/
UINT fblkent; /*Declares variable*/
/* e */
ref mpf (mpfid, &pk rmpf); /*Reference fixed-sized memory pool state*/
wtskid = pk rmpf.wtskid; /*Reference ID number of the task at the */
/*head of the wait queue*/
fblkcnt = pk rmpf.fblkent; /*Reference number of free memory blocks*/
/* e */
}

Note 1 For details about the fixed-sized memory pool state packet, refer to “[Fixed-sized memory pool state packet:
T_RMPF]".

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 154 of 565
Sep 20, 2013

RI600PX CHAPTER 9 MEMORY POOL MANAGEMENT FUNCTIONS

9.3

When a dynamic memory manipulation request is issued from a processing program in the RIGOOPX, the variable-sized
memory pool is provided as a usable memory area.

Dynamic memory manipulation for variable-size memory pools is performed in the units of the specified variable-size
memory block size.

Variable-Sized Memory Pools

9.3.1

In the current implementation of the RIGOOPX, the size of the variable-sized memory block to be acquired is selected from
12 (in maximum) kinds of variations. This variations are selected from 24 kinds of inside decided beforehand according to
the maximum memory block size that is defined at creating the variable-sized memory pool. Table 9-1 shows variation of
memory block size. Note, this behavior may be changed in the future version.

Size of Variable-sized memory block

Table 9-1 Variation of memory block size

No Size of memory block Example-1 Example-1
’ (Hexadecimal) max_memsize = 0x100 max_memsize = 0x20000
1 12 (0xC) Used -
2 36 (0x24) Used -
3 84 (0x54) Used Used
4 180 (0xB4) Used Used
5 372 (0x174) - Used
6 756 (0x2F4) - Used
7 1524 (0x5F4) - Used
8 3060 (0xBF4) - Used
9 6132 (0x17F4) - Used
10 12276 (0x2FF4) - Used
11 24564 (0x5FF4) - Used
12 49140 (0xBFF4) - Used
13 98292 (0x17FF4) - Used
14 196596 (0x2FFF4) - Used
15 393204 (Ox5FFF4) - -
16 786420 (OxBFFF4) - -
17 1572852 (0x17FFF4) - -
18 3145716 (Ox2FFFF4) - -
19 6291444 (Ox5FFFF4) - -
20 12582900 (OxBFFFF4) - -
21 25165812 (0x17FFFF4) - -
22 50331636 (0x2FFFFF4) - -
23 100663284 (Ox5FFFFF4) - -
24 201326580 (0OxBFFFFF4) - -
R20UT0964EJ0101 Rev.1.01 ;{ENESAS Page 155 of 565

Sep 20, 2013

RI600PX

9.3.2

Create variable-sized memory pool

Variable-sized memory pools are created by one of the following methods.

1)

Creation by the system configuration file

The static API “variable_memorypool[]” described in the system configuration file creates a variable-sized memory
pool.

Refer to “20.18 Variable-sized Memory Pool Information (variable_memorypool[])” for the details of
“variable_memorypool[]”.

Creation by cre_mpl or acre_mpl

The cre_mpl creates a variable-sized memory pool with variable-sized memory pool ID indicated by parameter
mplid according to the content of parameter pk_cmpl.

The acre_mpl creates a variable-sized memory pool according to the content of parameter pk_cmpl, and returns
the created variable-sized memory pool ID.

The information specified is shown below.

- Variable-sized memory pool attribute (mplatr)
Only TA_TFIFO (the order of task wait queue is managed by FIFO order.) can be specified for mplatr.

- Size of variable-sized memory pool area (mplsz), Start address of the variable-sized memory pool area (mpl)
The start adderess of the variable-sized memory pool area must be 4-bytes boundary.
The variable-sized memory pool area should be in the memory object to be able to access by tasks which uses
memory blocks.

- Maximum memory block size (maxblksz)
Specify the maximum memory block size for maxblksz. For details, refer to “9.3.1 Size of Variable-sized
memory block”.

These service calls can be called from tasks that belong to Trusted Domain.
The following describes an example for coding acre_mpl as a representative.

#include "kernel.h" /*Standard header file definition*/

#include "kernel id.h" /*Header file generated by cfg600px*/

#define MPLSZ 1024 /*Size of variable-sized memory pool area (in bytes)*/
#define MAXBLKSZ 128 /*Maximum memory block size (in bytes)*/

#pragma section B BU_SH /*Section for the variable-sized memory pool area*/

static UW mpl areal MPLSZ/sizeof (UW)]; /*Variable-sized memory pool area*/
#pragma section

#pragma task Taskl /*Refer to note*/
void Taskl (VP_INT exinf); /*Refer to note*/
void Taskl (VP_INT exinf)

{
ER mplid; /*Declares variable*/
T CMPF pk cmpl = { /*Declares and initializes variable*/
TA TFIFO, /*Variable-sized memory pool attribute (mplatr)*/
MPLSZ, /*Size of variable-sized memory pool area (in bytes) (mplsz)*/
(VP)mpl area,/*Start address of the variable-sized memory pool area (mpl)*/

MAXBLKLSZ /*Maximum memory block size (in bytes) (maxblksz)*/

VP */
mplid = acre mpl (&pk cmpf); /*Create variable-sized memory pool/
/e */

N

ote These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 156 of 565

Sep 20,

2013

CHAPTER 9 MEMORY POOL MANAGEMENT FUNCTIONS

RI600PX

CHAPTER 9 MEMORY POOL MANAGEMENT FUNCTIONS

9.3.3 Delete variable-sized memory pool

- del_mpl
This service call deletes the variable-sized memory pool specified by parameter mplid.

When there are waiting tasks for the target variable-sized memory pool by using get_mpl or tget_mpl, this service call

cancels the WAITING state of the tasks and returns E_DLT as a return value of the get_mpl or tget_mpl.
This service call can be called from tasks that belong to Trusted Domain.
The following describes an example for coding this service call.

/*Standard header file definition*/
/*Header file generated by cfg600px*/
/*Refer to note*/

/*Refer to note*/

#include "kernel.h"
#include "kernel id.h"
#pragma task Taskl

void Taskl (VP _INT exinf);
void Taskl (VP_INT exinf)

{

/*Declares and initializes variable*/

ID mplid = 8;

ercd = del mpl (mplid); /*Delete variable-sized memory pool*/

Note
cfg600px generates these statement into the “kernel_id.h".

These statements are unnecessary for the task which is created by the system configuration file because the

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS Page 157 of 565

RI600PX CHAPTER 9 MEMORY POOL MANAGEMENT FUNCTIONS

9.3.4 Acquire variable-sized memory block

A variable-sized memory block is acquired (waiting forever, polling, or with time-out) by issuing the following service call
from the processing program.

- get_mpl (Wait)
- pget_mpl, ipget_mpl (Polling)

- tget_mpl (Wait with time-out)
The RI600PX does not perform memory clear processing when a variable-sized memory block is acquired. The contents
of the acquired variable-size memory block are therefore undefined.

- get_mpl (Wait)
This service call acquires a variable-size memory block of the size specified by parameter blksz from the variable-size
memory pool specified by parameter mplid, and stores its start address into the area specified by parameter p_blk.
If no variable-size memory blocks could be acquired from the target variable-size memory pool (no successive areas
equivalent to the requested size were available) when this service call is issued, this service call does not acquire
variable-size memory blocks but queues the invoking task to the target variable-size memory pool wait queue and
moves it from the RUNNING state to the WAITING state (variable-size memory block acquisition wait state).
The WAITING state for a variable-sized memory block is cancelled in the following cases.

WAITING State for a Variable-sized Memory Block Cancel Operation Return Value

Thg variaple-size memory block that sat.isfie's the requested size was returned to the target E OK
variable-size memory pool as a result of issuing rel_mpl. -
The task at the top of the transmission wait queue was forcedly released from waiting by fol-
lowing either.

- Forced release from waiting (accept rel_wai while waiting).

- Forced release from waiting (accept irel_wai while waiting). E_OK

- Forced release from waiting (accept ter_tsk while waiting).

- The time specified by tmout for tget_mpl has elapsed.
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
The variable-sized memory pool is reset as a result of issuing vrst_mpl. EV_RST
Forced release from waiting (accept del_mpl while waiting). E_DLT

The following describes an example for coding this service call.
R20UT0964EJ0101 Rev.1.01 RENESAS Page 158 of 565

Sep 20, 2013

RI600PX CHAPTER 9 MEMORY POOL MANAGEMENT FUNCTIONS

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 5*/

void Taskl (VP_INT exinf); /*Refer to note 5*/

void Taskl (VP_INT exinf)
{

ER ercd; /*Declares variable*/

ID mplid = 1; /*Declares and initializes variable*/
UINT blksz = 256; /*Declares and initializes variable*/
VP p_blk; /*Declares variable*/

J* .. */

/*Acquire variable-sized memory block */
ercd = get mpl (mplid, blksz, &p blk);

if (ercd == E OK) {
JF . */ /*Normal termination processing*/
rel mpl (mplid, p blk); /*Release variable-sized memory block*/
} else if (ercd == E RLWAI) {
/F e . */ /*Forced termination processing*/
}
/* e */

Note 1 For the size of the memory block, refer to “9.3.1 Size of Variable-sized memory block”.
Note 2 Invoking tasks are queued to the target variable-size memory pool wait queue in the FIFO order.
Note 3 The contents of the block are undefined.

Note 4 The alignment number of memory blocks changes with creation method of the variable-sized memory pool.

- Created by system configuration file
The alignment number is 1. To enlarge the alignment number to 4, specify unique section to Section name
assigned to the memory pool area (mpl_section) in Variable-sized Memory Pool Information
(variable_memorypool[]) and locate the section to 4-bytes boundary address when linking.

- Created by cre_mpl or acre_mpl
The alignment number is 4.

Note 5 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 159 of 565
Sep 20, 2013

RI600PX CHAPTER 9 MEMORY POOL MANAGEMENT FUNCTIONS

- pget_mpl, ipget._mpl (Polling)
This service call acquires a variable-size memory block of the size specified by parameter blksz from the variable-size
memory pool specified by parameter mplid, and stores its start address into the area specified by parameter p_blk.
If no variable-size memory blocks could be acquired from the target variable-size memory pool (no successive areas
equivalent to the requested size were available) when this service call is issued, this service call does not acquire
variable-size memory block but returns “E_TMOUT".
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 4*/

void Taskl (VP_INT exinf); /*Refer to note 4%/

void Taskl (VP _INT exinf)
{

ER ercd; /*Declares variable*/

ID mplid = 1; /*Declares and initializes variable*/
UINT blksz = 256; /*Declares and initializes variable*/
VP p_blk; /*Declares variable*/

/F e */

/*Acquire variable-sized memory block*/
ercd = pget mpl (mplid, blksz, &p blk);

if (ercd == E OK) {

/* e */ /*Polling success processing*/

rel mpl (mplid, p blk); /*Release variable-sized memory block*/
} else if (ercd == E _TMOUT) {

/e */ /*Polling failure processing*/
}
/* e, */

Note 1 For the size of the memory block, refer to “9.3.1 Size of Variable-sized memory block”.
Note 2 The contents of the block are undefined.
Note 3 The alignment number of memory blocks changes with creation method of the variable-sized memory pool.

- Created by system configuration file
The alignment number is 1. To enlarge the alignment number to 4, specify unique section to Section name
assigned to the memory pool area (mpl_section) in Variable-sized Memory Pool Information
(variable_memorypool[]) and locate the section to 4-bytes boundary address when linking.

- Created by cre_mpl or acre_mpl
The alignment number is 4.

Note 4 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 160 of 565
Sep 20, 2013

RI600PX CHAPTER 9 MEMORY POOL MANAGEMENT FUNCTIONS

- tget_mpl (Wait with time-out)
This service call acquires a variable-size memory block of the size specified by parameter blksz from the variable-size
memory pool specified by parameter mplid, and stores its start address into the area specified by parameter p_blk.
If no variable-size memory blocks could be acquired from the target variable-size memory pool (no successive areas
equivalent to the requested size were available) when this service call is issued, this service call does not acquire
variable-size memory blocks but queues the invoking task to the target variable-size memory pool wait queue and
moves it from the RUNNING state to the WAITING state with time-out (variable-size memory block acquisition wait
state).
The WAITING state for a variable-sized memory block is cancelled in the following cases.

WAITING State for a Variable-sized Memory Block Cancel Operation Return Value

Thg variaple-size memory block that sat.isfie's the requested size was returned to the target E OK
variable-size memory pool as a result of issuing rel_mpl. -
The task at the top of the transmission wait queue was forcedly released from waiting by fol-
lowing either.

- Forced release from waiting (accept rel_wai while waiting).

- Forced release from waiting (accept irel_wai while waiting). E_OK

- Forced release from waiting (accept ter_tsk while waiting).

- The time specified by tmout for tget_mpl has elapsed.
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
The variable-sized memory pool is reset as a result of issuing vrst_mpl. EV_RST
The time specified by tmout has elapsed. E_TMOUT
Forced release from waiting (accept del_mpl while waiting). E_DLT

The following describes an example for coding this service call.
R20UT0964EJ0101 Rev.1.01 RENESAS Page 161 of 565

Sep 20, 2013

RI600PX CHAPTER 9 MEMORY POOL MANAGEMENT FUNCTIONS
#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 4%*/
void Taskl (VP _INT exinf); /*Refer to note 4%/

{

void Taskl (VP_INT exinf)

ER ercd; /*Declares variable*/

ID mplid = 1; /*Declares and initializes variable*/
UINT blksz = 256; /*Declares and initializes variable*/
VP p_blk; /*Declares variable*/

TMO tmout = 3600; /*Declares and initializes variable*/
J* .. */

/*Acquire variable-sized memory block*/
ercd = tget mpl (mplid, blksz, &p blk, tmout);

if (ercd == E OK) {

[F e . */ /*Normal termination processing*/
rel mpl (mplid, p blk ; /*Release variable-sized memory block*/
} else if (ercd == E_RLWAI) {
/F e */ /*Forced termination processing*/
} else if (ercd == E_TMOUT) ({
J* ... */ /*Time-out processing*/
}
V2 */

Note 1
Note 2
Note 3
Note 4

Note 5

Note 6

For the size of the memory block, refer to “9.3.1 Size of Variable-sized memory block”.
Invoking tasks are queued to the target variable-size memory pool wait queue in the FIFO order.
The contents of the block are undefined.

The alignment number of memory blocks changes with creation method of the variable-sized memory pool.

Created by system configuration file

The alignment number is 1. To enlarge the alignment number to 4, specify unique section to Section name
assigned to the memory pool area (mpl_section) in Variable-sized Memory Pool Information
(variable_memorypool[]) and locate the section to 4-bytes boundary address when linking.

Created by cre_mpl or acre_mpl
The alignment number is 4.

TMO_FEVR is specified for wait time tmout, processing equivalent to get_mpl will be executed. When
TMO_POL is specified, processing equivalent to pget_mpl will be executed.

These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 162 of 565
Sep 20, 2013

RI600PX

CHAPTER 9 MEMORY POOL MANAGEMENT FUNCTIONS

9.3.5 Release variable-sized memory block

A variable-sized memory block is returned by issuing the following service call from the processing program.

- rel_mpl

This service call returns the variable-sized memory block specified by parameter blk to the variable-sized memory

pool specified by parameter mplid.

After returning the variable-size memory blocks, these service calls check the tasks queued to the target variable-size
memory pool wait queue from the top, and assigns the memory if the size of memory requested by the wait queue is
available. This operation continues until no tasks queued to the wait queue remain or no memory space is available.
As a result, the task that acquired the memory is unlinked from the queue and moved from the WAITING state
(variable-size memory block acquisition wait state) to the READY state, or from the WAITING-SUSPENDED state to

the SUSPENDED state.

The following describes an example for coding these service calls.

#include "kernel.h"
#include "kernel id.h"
#pragma task Taskl

void Taskl (VP_INT exinf);
void Taskl (VP_INT exinf)
{

ER ercd;

ID mplid = 1;
UINT blksz = 256;
VP blk;
/e */

ercd = get mpl (mplid, blksz, &blk);

if (ercd == E OK) {
V2 */ /*Normal termination processing*/
rel mpl (mplid, blk); /*Release variable-sized memory block*/
} else if (ercd == E_RLWAI) {
JF e . */ /*Forced termination processing*/
}
/* e */

/*Standard header file definition*/
/*Header file generated by cfg600px*/
/*Refer to note 2%*/

/*Refer to note 2*/

/*Declares variable*/
/*Declares and initializes variable*/
/*Declares and initializes variable*/
/*Declares variable*/

/*Acquire variable-sized memory block*/

Note 1 The RIG00PX do only simple error detection for blk. If blk is illegal and the error is not detected, the operation

is not guaranteed after that.

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS Page 163 of 565

RI600PX CHAPTER 9 MEMORY POOL MANAGEMENT FUNCTIONS

9.3.6 Reference variable-sized memory pool state

A variable-sized memory pool status is referenced by issuing the following service call from the processing program.

- ref_mpl, iref_mpl
These service calls store the detailed information (ID number of the task at the head of the wait queue, total size of
free memory blocks, etc.) of the variable-size memory pool specified by parameter mplid into the area specified by
parameter pk_rmpl.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 2*/
void Taskl (VP_INT exinf); /*Refer to note 2%/
void Taskl (VP_INT exinf)
{
ID mplid = 1; /*Declares and initializes variable*/
T RMPL pk rmpl; /*Declares data structure*/
ID wtskid; /*Declares variable*/
SIZE fmplsz; /*Declares variable*/
UINT fblksz; /*Declares variable*/
/* e */
ref mpl (mplid, &pk rmpl); /*Reference variable-sized memory pool state*/
wtskid = pk rmpl.wtskid; /*Reference ID number of the task at the */
/*head of the wait queue*/
fmplsz = pk rmpl.fmplsz; /*Reference total size of free memory blocks*/
fblksz = pk _rmpl.fblksz; /*Reference maximum memory block size*/
/2 */
}

Note 1 For details about the variable-sized memory pool state packet, refer to “[Variable-sized memory pool state
packet: T_RMPL]".

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 164 of 565
Sep 20, 2013

RI600PX CHAPTER 10 TIME MANAGEMENT FUNCTIONS

CHAPTER 10 TIME MANAGEMENT FUNCTIONS

This chapter describes the time management functions performed by the RIGO0PX.

10.1 Outline

The RI600PX's time management function provides methods to implement time-related processing (Timer Operations:
Delay Task, Time-out, Cyclic Handlers, Alarm Handlers and System Time) by using base clock timer interrupts that occur
at constant intervals, as well as a function to manipulate and reference the system time.

10.2 System Time

The system time is a time used by the RIGO0PX for performing time management (in millisecond).

After initialization to 0 by the Kernel Initialization Module (vsta_knl, ivsta_knl), the system time is updated based on the
base clock interval defined by Denominator of base clock interval time (tic_deno) and Denominator of base clock interval
time (tic_deno) in System Information (system) when creating a system configuration file.

10.2.1 Base clock timer interrupt

To realize the time management function, the RIGOOPX uses interrupts that occur at constant intervals (base clock timer
interrupts).

When a base clock timer interrupt occurs, processing related to the RIBOOPX time (system time update, task time-out/
delay, cyclic handler activation, alarm handler activation, etc.) is executed.

Basically, either of channel 0-3 of the compare match timer (CMT) implemented in the MCU is used for base clock time.
The channel number is specified by Selection of timer channel for base clock (timer)in Base Clock Interrupt Information
(clock). in the system configuration file.

The hardware initialization to generate base clock timer interrupt is separated as user-own coding module. For details,
refer to “10.9 Base Clock Timer Initialization Routine (_RI_init_cmt_knl())”

10.2.2 Base clock interval

In the RIGOOPX, service call parameters for time specification are specified in msec units.

It is desirable to set 1 msec for the occurrence interval of base clock timer interrupts, but it may be difficult depending on
the target system performance (processing capability, required time resolution, or the like).

In such a case, the occurrence interval of base clock timer interrupt can be specified by Denominator of base clock interval
time (tic_deno) and Denominator of base clock interval time (tic_deno) in System Information (system) when creating a
system configuration file.

By specifying the base clock interval, processing regards that the time equivalent to the base clock interval elapses during
a base clock timer interrupt.

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 165 of 565
Sep 20, 2013

RI600PX CHAPTER 10 TIME MANAGEMENT FUNCTIONS

10.3 Timer Operations

The RI600PX's timer operation function provides Delay Task, Time-out, Cyclic Handlers, Alarm Handlers and System
Time,as the method for realizing time-dependent processing.

10.4 Delay Task

Delayed task that makes the invoking task transit from the RUNNING state to the WAITING state during the interval until a
given length of time has elapsed, and makes that task move from the WAITING state to the READY state once the given
length of time has elapsed.

Delayed wake-up is implemented by issuing the following service call from the processing program.

dly_tsk

10.5 Time-out

Time-out is the operation that makes the target task move from the RUNNING state to the WAITING state during the
interval until a given length of time has elapsed if the required condition issued from a task is not immediately satisfied,
and makes that task move from the WAITING state to the READY state regardless of whether the required condition is
satisfied once the given length of time has elapsed.

A time-out is implemented by issuing the following service call from the processing program.

tslp_tsk, twai_sem, twai_flg, tsnd_dtq, trcv_dtq, trcv_mbx, tloc_mtx, tsnd_mbf, trcv_mbf, tget_mpf, tget_mpl

R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 166 of 565
Sep 20, 2013

RI600PX CHAPTER 10 TIME MANAGEMENT FUNCTIONS

10.6 Cyclic Handlers

The cyclic handler is a routine dedicated to cycle processing that is activated periodically at a constant interval (activation
cycle).

The RI600PX handles the cyclic handler as a “non-task (module independent from tasks)”. Therefore, even if a task with
the highest priority in the system is being executed, the processing is suspended when a specified activation cycle has
come, and the control is passed to the cyclic handler.

10.6.1 Basic form of cyclic handler

The following shows the basic form of cyclic handlers. The extended information defined at creating the cyclic handler is
passed to the exinf.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma cychandler Cychdrl /*Refer to note*/

void Cychdrl (VP_INT exinf);
void Cychdrl (VP _INT exinf)

return; /*Terminate cyclic handler*/

Note These statements are unnecessary for the cyclic handler which is created by the system configuration file
because the cfg600px generates these statement into the “kernel_id.h”.

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 167 of 565
Sep 20, 2013

RI600PX CHAPTER 10 TIME MANAGEMENT FUNCTIONS

10.6.2 Processing in cyclic handler

- Stack
A cyclic handler uses the system stack.

- Service call
The RI600PX handles the cyclic handler as a “non-task”.
The cyclic handler can issue service calls whose “Useful range” is “Non-task”.

Note If a service call (isig_sem, iset_flg, etc.) which causes dispatch processing (task scheduling processing) is
issued in order to quickly complete the processing in the cyclic handler during the interval until the
processing in the cyclic handler ends, the RIGOOPX executes only processing such as queue manipulation,
counter manipulation, etc., and the actual dispatch processing is delayed until a return instruction is issued
by the cyclic handler, upon which the actual dispatch processing is performed in batch.

PSW register when processing is started

Table 10-1 PSW Register When Cyclic Handler is Started

Bit Value Note
I 1
IPL Base clock interrupt priority level (IPL) Do npt lower IPL. more than the start of pro-
cessing.
PM 0 Supervisor mode
U 0 System stack
C,Z2S,0 Undefined
Others 0
R20UT0964EJ0101 Rev.1.01 .IENESAS Page 168 of 565

Sep 20, 2013

RI600PX CHAPTER 10 TIME MANAGEMENT FUNCTIONS

10.6.3 Create cyclic handler

Cyclic handlers are created by one of the following methods.

1) Creation by the system configuration file
The static API “cyclic_hand[]” described in the system configuration file creates a cyclic handler.
Refer to “20.19 Cyclic Handler Information (cyclic_hand[])” for the details of “cyclic_hand[]".

2) Creation by cre_cyc or acre_cyc
The cre_cyc creates a cyclic handler with cyclic handler ID indicated by parameter cycid according to the content of
parameter pk_ccyc.
The acre_cyc creates a cyclic handler according to the content of parameter pk_ccyc, and returns the created
cyclic handler ID.
The information specified is shown below.

- Cyclic handler attribute (cycatr)
The following informations are specified as cycatr.

- Whether the cyclic handler is in the operational state. (TA_STA attribute)
- Whether the activation phase is saved. (TA_PHS attribute)

- Extended information (exinf)

Cyclic handler start address (cychdr)

- Activation cycle (cyctim)

Activation phase (cycphs)

These service calls can be called from tasks that belong to Trusted Domain.
The following describes an example for coding acre_cyc as a representative.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/

extern void Cychdrl (VP _INT exinf);

#pragma task Taskl /*Refer to note*/
void Taskl (VP_INT exinf); /*Refer to note*/
void Taskl (VP _INT exinf)

{

ER cycid; /*Declares variable*/

T CCYC pk ccyc = { /*Declares and initializes variable*/
TA STA, /*Cyclic handler attribute (cycatr)*/
0, /*Extended information (exinf) */
(FP) Cychdrl, /*Start address (cychdr) */
10, /*Activation cycle (cyctim) */
2 /*Activation phase (cycphs)*/

}i

/* e . */

cycid = acre cyc (&pk ccyc); /*Create cyclic handler/

/* e */

Note These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 169 of 565
Sep 20, 2013

RI600PX CHAPTER 10 TIME MANAGEMENT FUNCTIONS

10.6.4 Delete cyclic handler

- del_cyc
This service call deletes the cyclic handler specified by parameter cycid.
This service call can be called from tasks that belong to Trusted Domain.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task TasklI /*Refer to note*/

void Taskl (VP_INT exinf); /*Refer to note*/

void Taskl (VP_INT exinf)

ID cycid = 8; /*Declares and initializes variable*/

ercd = del cyc (cycid); /*Delete cyclic handler*/

Note These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 170 of 565
Sep 20, 2013

RI600PX CHAPTER 10 TIME MANAGEMENT FUNCTIONS

10.6.5 Start cyclic handler operation

Moving to the operational state (STA state) is implemented by issuing the following service call from the processing
program.

- sta_cyc, ista_cyc
This service call moves the cyclic handler specified by parameter cycid from the non-operational state (STP state) to
operational state (STA state).
As a result, the target cyclic handler is handled as an activation target of the RIGOOPX.
The relative interval from when either of this service call is issued until the first activation request is issued varies
depending on whether the TA_PHS attribute (phsatr) is specified for the target cyclic handler during configuration.

- If the TA_PHS attribute is specified
The target cyclic handler activation timing is set up based on the activation phases and activation cycle.
If the target cyclic handler has already been in operational state, however, no processing is performed even if this
service call is issued, but it is not handled as an error.
The following shows a cyclic handler activation timing image.

Figure 10-1 TA_PHS Attribute: Specified

Start Start Start Start
phs_counter$ interval_counter ¥ interval_counter £ interval_counter $

L Start cyclic handler operation L Stop cyclic handler operation

Generation processing completed (vsta_knl, ivsta_knl)

- If the TA_PHS attribute is not specified
The target cyclic handler activation timing is set up according to the activation cycle on the basis of the call time

of this service call.
This setting is performed regardless of the operating status of the target cyclic handler.

The following shows a cyclic handler activation timing image.

Figure 10-2 TA_PHS Attribute: Not Specified

Start Start Start
| interval _counter $ interval _counter $ o

| interval_counter interval _counter
[I I

Iphs_counl‘erI interval _counter | interval_counter | interval_counter |

L Start cyclic handler operation L Stop cyclic handler operation

Generation processing completed (vsta_knl, ivsta_knl)

R20UT0964EJ0101 Rev.1.01 RENESAS Page 171 of 565
Sep 20, 2013

RI600PX CHAPTER 10 TIME MANAGEMENT FUNCTIONS

The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task TasklI /*Refer to note*/

void Taskl (VP_INT exinf); /*Refer to note*/

void Taskl (VP _INT exinf)
{

ID cycid = 1; /*Declares and initializes variable*/
J* ... */

sta cyc (cycid); /*Start cyclic handler operation*/

/F e */

Note These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h”.

R20UT0964EJ0101 Rev.1.01 IQENESAS Page 172 of 565
Sep 20, 2013

RI600PX CHAPTER 10 TIME MANAGEMENT FUNCTIONS

10.6.6 Stop cyclic handler operation

Moving to the non-operational state (STP state) is implemented by issuing the following service call from the processing
program.

- stp_cyc, istp_cyc
This service call moves the cyclic handler specified by parameter cycid from the operational state (STA state) to non-
operational state (STP state).
As a result, the target cyclic handler is excluded from activation targets of the RIGO0OPX until issuance of sta_cyc or
ista_cyc.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 2*/

void Taskl (VP _INT exinf); /*Refer to note 2%/

void Taskl (VP_INT exinf)
{

ID cycid = 1; /*Declares and initializes variable*/
V2 */

stp_cyc (cycid); /*Stop cyclic handler operation*/

/*F */

Note 1 This service call does not perform queuing of stop requests. If the target cyclic handler has been moved to
the non-operational state (STP state), therefore, no processing is performed but it is not handled as an error.

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h”".

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 173 of 565
Sep 20, 2013

RI600PX CHAPTER 10 TIME MANAGEMENT FUNCTIONS

10.6.7 Reference cyclic handler state

A cyclic handler status by issuing the following service call from the processing program.

- ref_cyc, iref_cyc
Stores cyclic handler state packet (current state, time until the next activation, etc.) of the cyclic handler specified by
parameter cycid in the area specified by parameter pk_rcyc.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 2*/

void Taskl (VP_INT exinf); /*Refer to note 2%/

void Taskl (VP _INT exinf)
{

ID cycid = 1; /*Declares and initializes variable*/

T RCYC pk rcyc; /*Declares data structure*/

STAT cycstat; /*Declares variable*/

RELTIM lIefttim; /*Declares variable*/

/* e */

ref cyc (cycid, &pk rcyc); /*Reference cyclic handler state*/
cycstat = pk rcyc.cycstat; /*Reference current state*/

lefttim = pk rcyc.lefttim; /*Reference time left before the next */

/*activation*/

Note 1 For details about the cyclic handler state packet, refer to “[Cyclic handler state packet: T_RCYC]".

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IQENESAS Page 174 of 565
Sep 20, 2013

RI600PX CHAPTER 10 TIME MANAGEMENT FUNCTIONS

10.7 Alarm Handlers

The alarm handler is a routine started when the specified time passes.

The RIGO0PX handles the alarm handler as a “non-task (module independent from tasks)”. Therefore, even if a task with
the highest priority in the system is being executed, the processing is suspended when a specified time has elapsed, and
the control is passed to the alarm handler.

10.7.1 Basic form of alarm handler

The following shows the basic form of alarm handlers. The extended information defined at creating the alarm handler is
passed to the exinf.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma alarmhand Almhdrl /*Refer to note*/

void Almhdrl (VP_INT exinf); /*Refer to note*/

void Almhdrl (VP_INT exinf)

return; /*Terminate alarm handler*/

Note These statements are unnecessary for the alarm handler which is created by the system configuration file
because the cfg600px generates these statement into the “kernel_id.h”.

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 175 of 565
Sep 20, 2013

RI600PX CHAPTER 10 TIME MANAGEMENT FUNCTIONS

10.7.2 Processing in alarm handler

- Stack
A alarm handler uses the system stack.

- Service call
The RI600PX handles the alarm handler as a “non-task”.
The alarm handler can issue service calls whose “Useful range” is “Non-task”.

Note If a service call (isig_sem, iset_flg, etc.) which causes dispatch processing (task scheduling processing) is
issued in order to quickly complete the processing in the alarm handler during the interval until the
processing in the alarm handler ends, the RIGOOPX executes only processing such as queue manipulation,
counter manipulation, etc., and the actual dispatch processing is delayed until a return instruction is issued
by the alarm handler, upon which the actual dispatch processing is performed in batch.

PSW register when processing is started

Table 10-2 PSW Register When Alarm Handler is Started)

Bit Value Note
I 1
IPL Base clock interrupt priority level (IPL) Do npt lower IPL. more than the start of pro-
cessing.
PM 0 Supervisor mode
U 0 System stack
C,Z2S,0 Undefined
Others 0
R20UT0964EJ0101 Rev.1.01 .IENESAS Page 176 of 565

Sep 20, 2013

RI600PX CHAPTER 10 TIME MANAGEMENT FUNCTIONS

10.7.3 Create alarm handler

Cyclic handlers are created by one of the following methods.

1) Creation by the system configuration file
The static API “alarm_hand[]” described in the system configuration file creates a cyclic handler.
Refer to “20.20 Alarm Handler Information (alarm_handl[])” for the details of “alarm_hand[]".

2) Creation by cre_alm or acre_alm
The cre_alm creates a cyclic handler with alarm handler ID indicated by parameter almid according to the content
of parameter pk_calm.
The acre_cyc creates a alarm handler according to the content of parameter pk_calm, and returns the created
alarm handler ID.
The information specified is shown below.

- Alarm handler attribute (almatr)
Only TA_HLNG can be specified for almatr.

- Extended information (exinf)

- Alarm handler start address (a/mhdr)

These service calls can be called from tasks that belong to Trusted Domain.
The following describes an example for coding acre_alm as a representative.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/

extern void Almhdrl (VP _INT exinf);

#pragma task Taskl /*Refer to note*/
void Taskl (VP _INT exinf); /*Refer to note*/
void Taskl (VP_INT exinf)

{

ER almid; /*Declares variable*/

T CALM pk calm = { /*Declares and initializes variable*/
TA HLNG, /*Alarm handler attribute (cycatr)*/
0, /*Extended information (exinf)*/
(FP) Almhdrl /*Start address (almhdr) */

}i

J* e e */

almid = acre alm (&pk calm); /*Create alarm handler/

Note These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IQENESAS Page 177 of 565
Sep 20, 2013

RI600PX CHAPTER 10 TIME MANAGEMENT FUNCTIONS

10.7.4 Delete alarm handler

- del_alm
This service call deletes the alarm handler specified by parameter almid.
This service call can be called from tasks that belong to Trusted Domain.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task TasklI /*Refer to note*/

void Taskl (VP_INT exinf); /*Refer to note*/

void Taskl (VP_INT exinf)
{

D almid = 8; /*Declares and initializes variable*/
/* . */

ercd = del alm (almid); /*Delete alarm handler*/

JF e . */

Note These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h”.

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 178 of 565
Sep 20, 2013

RI600PX CHAPTER 10 TIME MANAGEMENT FUNCTIONS

10.7.5 Start alarm handler operation

Moving to the operational state (STA state) is implemented by issuing the following service call from the processing
program.

- sta_alm, ista_alm
This service call sets the activation time of the alarm handler specified by almid in almtim (msec), and moves the
alarm handler from the non-operational state (STP state) to operational state (STA state).
As a result, the target alarm handler is handled as an activation target of the RIGO0OPX.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 3*/

void Taskl (VP_INT exinf); /*Refer to note 3*/

void Taskl (VP_INT exinf)
{

D almid = 1; /*Declares and initializes variable*/
/e . */

sta alm (almid); /*Start alarm handler operation*/

J* .. */

Note 1 When 0 is specified for almtim, the alarm handler will start at the next base clock interruption.

Note 2 When the target alarm handler has already started (STA state), this service call sets the activation time of the
target alarm handler in almtim (msec) after canceling the activation time.

Note 3 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 179 of 565
Sep 20, 2013

RI600PX CHAPTER 10 TIME MANAGEMENT FUNCTIONS

10.7.6 Stop alarm handler operation

Moving to the non-operational state (STP state) is implemented by issuing the following service call from the processing
program.

- stp_alm, istp_alm
This service call moves the alarm handler specified by parameter cycid from the operational state (STA state) to non-
operational state (STP state).
As a result, the target alarm handler is excluded from activation targets of the RIGOOPX until issuance of sta_alm or
ista_alm.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 2*/

void Taskl (VP_INT exinf); /*Refer to note 2%/

void Taskl (VP_INT exinf)
{

ID almid = 1; /*Declares and initializes variable*/
JF . */

stp alm (almid); /*Stop alarm handler operation*/

J* e .. */

Note 1 This service call does not perform queuing of stop requests. If the target alarm handler has been moved to
the non-operational state (STP state), therefore, no processing is performed but it is not handled as an error.

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 180 of 565
Sep 20, 2013

RI600PX CHAPTER 10 TIME MANAGEMENT FUNCTIONS

10.7.7 Reference Alarm Handler State

A alarm handler status by issuing the following service call from the processing program.

- ref_alm, iref_alm
Stores alarm handler state packet (current state, time until the next activation, etc.) of the alarm handler specified by
parameter cycid in the area specified by parameter pk_rcyc.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 2*/
void Taskl (VP_INT exinf); /*Refer to note 2%/
void Taskl (VP _INT exinf)
{
ID almid = 1; /*Declares and initializes variable*/
T RALM pk ralm; /*Declares data structure*/
STAT almstat; /*Declares variable*/
RELTIM lefttim; /*Declares variable*/
/F e */
ref alm (almid, &pk ralm); /*Reference alarm handler state*/
almstat = pk ralm.almstat; /*Reference current state*/
lefttim = pk ralm.lefttim; /*Reference time left */
/F e */
}

Note 1 For details about the alarm handler state packet, refer to “[Alarm handler state packet: T_RALM]".

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 181 of 565
Sep 20, 2013

RI600PX

CHAPTER 10 TIME MANAGEMENT FUNCTIONS

10.8 System Time

10.8.1

Set system time

The system time can be set by issuing the following service call from the processing program.
Note that even if the system time is changed, the actual time at which the time management requests made before that
(e.g., task time-outs, task delay by dly_tsk, cyclic handlers, and alarm handlers) are generated will not change.

- set_tim, iset_tim
These service calls change the system time (unit: msec) to the time specified by parameter p_systim.
The following describes an example for coding these service calls.

{

#include "kernel.h"
#include "kernel id.h"
#pragma task Taskl

void Taskl (VP_INT exinf);
void Taskl (VP_INT exinf)

SYSTIM p systim;

p_systim.ltime
p_systim.utime

0;

3600;

/*Standard header file definition*/
/*Header file generated by cfg600px*/
/*Refer to note 2*/

/*Refer to note 2*/

/*Declares data structure*/

/*Initializes data structure*/
/*Initializes data structure*/

/*Set system time*/

Note 1

For details about the system time packet SYSTIM, refer to “[System time packet: SYSTIM]".

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01

Sep 20, 201

3

RENESAS Page 182 of 565

RI600PX CHAPTER 10 TIME MANAGEMENT FUNCTIONS

10.8.2 Reference system time
The system time can be referenced by issuing the following service call from the processing program.
- get_tim, iget_tim

These service calls store the system time (unit: msec) into the area specified by parameter p_systim.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task TasklI /*Refer to note 2*/

void Taskl (VP_INT exinf); /*Refer to note 2%/

void Taskl (VP_INT exinf)
{

SYSTIM p systim; /*Declares data structure*/

uw 1time; /*Declares variable*/

UH utime; /*Declares variable*/

[.. */

get tim (&p systim); /*Reference System Time*/

ltime = p systim.ltime; /*Acquirer system time (lower 32 bits)*/
utime = p systim.utime; /*Acquirer system time (higher 16 bits)*/
V2 */

Note 1 For details about the system time packet SYSTIM, refer to “[System time packet: SYSTIM]".

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 183 of 565
Sep 20, 2013

RI600PX CHAPTER 10 TIME MANAGEMENT FUNCTIONS

10.9 Base Clock Timer Initialization Routine (_RI_init_cmt_knl())

10.9.1 User-own cording module

The base clock timer initialization routine must be implemented as user-own coding module.

Note The source file for the base clock timer initialization routine provided by the RIGO0PX as a sample file is
“init_cmt.c”.

- Basic form of base clock timer initialization routine
The following shows the basic form of base clock timer initialization routine.

#include "kernel.h" // Provided by RI600PX
#include "kernel id.h" // Generated by cfg600px
#if (((_RI_CLOCK TIMER) >=0) && ((RI CLOCK TIMER) <= 3))
#include "ri cmt.h"

#endif

L1177 077 0707707777077 00 7770077707777 77 70777777777777177771777

// Timer initialize call-back

L1177 1007700770770 7 0777077077770 770707777777777

void RI init cmt knl(void);

void RI init cmt knl (void)

{

#if (((_RI_CLOCK TIMER) >=0) && ((RI_CLOCK TIMER) <= 3))
~RI init cmt();

#endif

}

Note The function name of the base clock timer initialization routine is “_RI_init_cmt_knl".

- Description
The base clock timer initialization routine is called by vsta_knl and ivsta_knl.
The “ RI_CLOCK_TIMER” is macro generated in “kernel_id.h” by the cfg600px. The definition value for
“ RI_CLOCK_TIMER” is depend on Selection of timer channel for base clock (timer) in the system configuration file.
Details are shown below.

clock.timer “_RI_CLOCK_TIMER” definition value
“CMTO” 0
“CMT1” 1
“CMT2” 2
“CMT3” 3
“OTHER” Ox7FFFFFFF
“NOTIMER” -1

When “CMTO0”, “CMT1”, “CMT2” or “CMT3” is specified for “clock.timer”, the cfg600px generates the inline-function
“void _RIL_init_cmt(void)” for initializing the base clock timer. The _RI_init_cmt_knl() should be implemented only to
call _RIL init_cmt().

When “OTHER” is specified for “clock.timer”, the application must implement _RI_init_cmt_knl().

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 184 of 565
Sep 20, 2013

RI600PX CHAPTER 10 TIME MANAGEMENT FUNCTIONS

When “NOTIMER” is specified for “clock.timer”, the _RI_init_cmt_knl() should be implemented so that nothing may be
processed.

- Stack
The base clock timer initialization routine uses the system stack.

- Service call
The base clock timer initialization routine can issue service calls whose “Useful range” is “Non-task”.

- PSW register when processing is started

Table 10-3 PSW Register When Base Clock Timer Initialization Routine is Started

Bit Value Note
I 1
IPL Kernel interrupt mask level (system_IPL) Do npt lower IPL. more than the start of pro-
cessing.
PM 0 Supervisor mode
U 0 System stack
C,ZS,0 Undefined
Others 0
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 185 of 565

Sep 20, 2013

RI600PX CHAPTER 11 SYSTEM STATE MANAGEMENT FUNCTIONS

CHAPTER 11 SYSTEM STATE MANAGEMENT FUNC-

TIONS

This chapter describes the system management functions performed by the RIGO0OPX.

11.1 Outline

The RIB00PX's system status management function provides functions for referencing the system status such as the
context type and CPU lock status, as well as functions for manipulating the system status such as ready queue rotation,

scheduler activation, or the like.

Note, refer to “CHAPTER 15 SYSTEM DOWN?” for system down (vsys_dwn, ivsys_dwn) and refer to “CHAPTER 17

SYSTEM INITIALIZATION” for starting of the RIGOOPX (vsta_knl, ivsta_knl).

11.2 Rotate Task Precedence

Task precedence is rotated by issuing the following service call from the processing program.

- rot_rdq, irot_rdq

This service call re-queues the first task of the ready queue corresponding to the priority specified by parameter tskpri

to the end of the queue to change the task execution order explicitly.
The following shows the status transition when this service call is used.

Figure 11-1 Rotate Task Precedence

Ready queue

1

tskpri - 1
tskori Task A Task B Task C
Skpri RUNNING state READY state READY state
tskpri + 1
| |
TMAX_TPRI
i Rotate task precedence
Ready queue
1
| |
tskpri - 1
tskori Task B Task C Task A
SKpri RUNNING state READY state READY state
tskpri + 1
| |
TMAX_TPRI
R20UT0964EJ0101 Rev.1.01 .IENESAS Page 186 of 565

Sep 20, 2013

RI600PX CHAPTER 11 SYSTEM STATE MANAGEMENT FUNCTIONS

The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma cychandler Cychdrl /*refer to note 5*/
void Cychdrl (VP_INT exinf); /*refer to note 5%*/
void Cychdrl (VP_INT exinf) /*Cyclic handler*/
{
PRI tskpri = 8; /*Declares and initializes variable*/
V2 */
irot rdq (tskpri); /*Rotate task precedence*/
V2 */
return; /*Terminate cyclic handler*/
}

Note 1 This service call does not perform queuing of rotation requests. If no task is queued to the ready queue
corresponding to the relevant priority, therefore, no processing is performed but it is not handled as an error.

Note 2 Round-robin scheduling can be implemented by issuing this service call via a cyclic handler in a constant
cycle.

Note 3 The ready queue is a hash table that uses priority as the key, and tasks that have entered an executable
state (READY state or RUNNING state) are queued in FIFO order.
Therefore, the scheduler realizes the RIG00PX's scheduling system by executing task detection processing
from the highest priority level of the ready queue upon activation, and upon detection of queued tasks, giving
the CPU use right to the first task of the proper priority level.

Note 4 When TPRI_SELF is specified as tskpri, the base priority of the invoking task is applied as the target priority
of this service call.
As for a task which has locked mutexes, the current priority might be different from the base priority. In this
case, even if the task issues this servie call specifying TPRI_SELF as parameter tskpri, the ready queue of
the current priority that the invoking task belongs cannot be changed.

Note 5 These statements are unnecessary for the cyclic handler which is created by the system configuration file
because the cfg600px generates these statement into the “kernel_id.h”.

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 187 of 565
Sep 20, 2013

RI600PX CHAPTER 11 SYSTEM STATE MANAGEMENT FUNCTIONS

11.3 Reference Task ID in the RUNNING State

A RUNNING-state task is referenced by issuing the following service call from the processing program.

- get_tid, iget_tid
These service calls store the ID of a task in the RUNNING state in the area specified by parameter p_tskid.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
void Inthdr (void) /*Interrupt handler*/
{
ID p_tskid; /*Declares variable*/
V2 */
iget tid (&p_tskid); /*Reference task ID in the RUNNING state*/
VN */
return; /*Terminate interrupt handler*/
}

Note This service call stores TSK_NONE in the area specified by parameter p_tskid if no tasks that have entered
the RUNNING state exist.

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 188 of 565
Sep 20, 2013

RI600PX

CHAPTER 11 SYSTEM STATE MANAGEMENT FUNCTIONS

11.4 Lock and Unlock the CPU

In the CPU locked state, the task scheduling is prohibited, and kernel interrupts are masked. Therefore, exclusive pro-
cessing can be achieved for all processing programs except non-kernel interrupt handlers.
The following service calls moves to the CPU locked state.

- loc_cpu, iloc_cpu

These service calls transit the system to the CPU locked state.
The service calls that can be issued in the CPU locked state are limited to the one listed below.

Service Call that can be issued

Function

Terminate invoking task. (This service call transit the system to the

ext_tsk CPU unlocked state.)

oxd tsk Terminate and delete invoking task. (This service call transit the sys-
- tem to the CPU unlocked state.)

sns_tex Reference task exception disabled state

loc_cpu, iloc_cpu

Lock the CPU.

unl_cpu, iunl_cpu

Unlock the CPU.

sns_loc Reference CPU state.

sns_dsp Reference dispatching state.
sns_ctx Reference contexts.

sns_dpn Reference dispatch pending state.

vsys_dwn, ivsys_dwn

System down

The following service calls and ext_tsk and exd_tsk release from the CPU locked state.

- unl_cpu, iunl_cpu

These service calls transit the system to the CPU unlocked state.

The following shows a processing flow when using the CPU locked state.

Figure 11-2 Lock the CPU

Task Interrupt handler

i a l Lock the CPU

Suppressed period

l UnlocktheCPU - — — — —

R20UT0964EJ0101 Rev.1.01 .ZENESAS
Sep 20, 2013

Page 189 of 565

RI600PX CHAPTER 11 SYSTEM STATE MANAGEMENT FUNCTIONS

The following describes an example for coding “lock the CPU” and “unlock the CPU”.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 7*/

void Taskl (VP_INT exinf); /*Refer to note 7%/

void Taskl (VP_INT exinf)
{

/* e */

loc cpu (); /*Lock the CPU*/
/e */ /*CPU locked state*/
unl cpu (); /*Unlock the CPU*/
/* i */

Note 1 The CPU locked state changed by issuing loc_cpu or iloc_cpu must be cancelled before the processing
program that issued this service call ends.

Note 2 The loc_cpu and iloc_cpu do not perform queuing of lock requests. If the system is in the CPU locked state,
therefore, no processing is performed but it is not handled as an error.

Note 3 The unl_cpu and iunl_cpu do not perform queuing of unlock requests. If the system is in the CPU unlocked
state, therefore, no processing is performed but it is not handled as an error

Note 4 The unl_cpu and iunl_cpu do not cancel the dispatching disabled state that was set by issuing dis_dsp.

Note 5 The base clock interrupt is masked during the CPU locked state. Therefore, time handled by the TIME
MANAGEMENT FUNCTIONS may be delayed if the period of the CPU locked state becomes long.

Note 6 For kernel interrupts, refer to “12.1 Interrupt Type”.

Note 7 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 190 of 565
Sep 20, 2013

RI600PX CHAPTER 11 SYSTEM STATE MANAGEMENT FUNCTIONS

11.5 Reference CPU Locked State

It may be necessary to refer to current CPU locked state in functions that are called from two or more tasks and handlers.
In this case, sns_loc is useful.

- sns_loc
This service call examines whether the system is in the CPU locked state or not. This service call returns TRUE when
the system is in the CPU locked state, and return FALSE when the system is in the CPU unlocked state.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
void CommonFunc (void);
void CommonFunc (void)
{
BOOL ercd; /*Declares variable*/
JF e e */
ercd = sns_loc (); /*Reference CPU state*/
if (ercd == TRUE) {
J* .. */ /*CPU locked state*/
} else if (ercd == FALSE) {
J* ... */ /*CPU unlocked state*/
}
J* .. */
}
R20UT0964EJ0101 Rev.1.01 IZENESAS Page 191 of 565

Sep 20, 2013

RI600PX CHAPTER 11 SYSTEM STATE MANAGEMENT FUNCTIONS

11.6 Disable and Enable Dispatching

In the dispatching disabled state, the task scheduling is prohibited. Therefore, exclusive processing can be achieved for all
tasks.

The following service call moves to the dispatching disabled state. And also when PSW.IPL is changed to other than 0 by
using chg_ims, the system shifts to the dispatching disabled state.

- dis_dsp
This service call transits the system to the dispatching disabled state.

The dispatching disabled state is cancelled by the following service call, ext_tsk, exd_tsk and chg_ims that changes
PSW.IPL to 0.

- ena_dsp
This service call transits the system to the dispatching enabled state.

The following shows a processing flow when using the dispatching disabled state.
Figure 11-3 Disable Dispatching

Task A Task B
Priority: High Priority: Low

Acquire semaphore resource - — o

Disable dispatching

Release semaphore resource

¥

Suppressed period

AL ________ Enable dispatching

The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task TasklI /*Refer to note 5%*/

void Taskl (VP_INT exinf); /*Refer to note 5%/

void Taskl (VP _INT exinf)
{

/* e */

dis dsp ()7 /*Disable dispatching*/
/e */ /*Dispatching disabled state*/
ena dsp (); /*Enable dispatching*/
/e */

Note 1 The dispatching disabled state must be cancelled before the task that issued dis_dsp moves to the
DORMANT state.

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 192 of 565
Sep 20, 2013

RI600PX

CHAPTER 11 SYSTEM STATE MANAGEMENT FUNCTIONS

Note 2

Note 3

Note 4

Note 5

The dis_dsp does not perform queuing of lock requests. If the system is in the dispatching disabled state,
therefore, no processing is performed but it is not handled as an error.

The ena_dsp does not perform queuing of unlock requests. If the system is in the dispatching enabled state,
therefore, no processing is performed but it is not handled as an error

If a service call (such as wai_sem, wai_flg) that may move the status of the invoking task is issued while the
dispatching disabled state, that service call returns E_CTX regardless of whether the required condition is
immediately satisfied.

These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

11.7 Reference Dispatching Disabled State

It may be necessary to refer to current dispatching disabled state in functions that are called from two or more tasks . In
this case, sns_dsp is useful.

- sns_dsp
This service call examines whether the system is in the dispatching disabled state or not. This service call returns

TRUE when the system is in the dispatching disabled state, and return FALSE when the system is in the dispatching
enabled state.

The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
void CommonFunc (void);
void CommonFunc (void)
{
BOOL ercd; /*Declares variable*/
J* .. */
ercd = sns_dsp (); /*Reference dispatching state*/
if (ercd == TRUE) {
JF ... */ /*Dispatching disabled state*/
} else if (ercd == FALSE) {
JF e .. */ /*Dispatching enabled state*/
}
/F e */
}
R20UT0964EJ0101 Rev.1.01 IZENESAS Page 193 of 565

Sep 20, 2013

RI600PX CHAPTER 11 SYSTEM STATE MANAGEMENT FUNCTIONS

11.8 Reference Context Type

It may be necessary to refer to current context type in functions that are called from two or more tasks and handlers. In this
case, sns_ctx is useful.

- sns_ctx
This service call examines the context type of the processing program that issues this service call. This service call
returns TRUE when the processing program is non-task context, and return FALSE when the processing program is
task context.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/

void CommonFunc (void);
void CommonFunc (void)

{

BOOL ercd; /*Declares variable*/
/e */
ercd = sns ctx (); /*Reference context type*/

if (ercd == TRUE) {

JF e */ /*Non-task contexts*/
} else if (ercd == FALSE) {
J* ... */ /*Task contexts*/
}
J* ... */
}
R20UT0964EJ0101 Rev.1.01 IZENESAS Page 194 of 565

Sep 20, 2013

RI600PX CHAPTER 11 SYSTEM STATE MANAGEMENT FUNCTIONS

11.9 Reference Dispatch Pending State

The state to fill either the following is called dispatch pending state.
- Dispatching disabled state
- CPU locked state
- PSW.IPL > 0, such as handlers

It may be necessary to refer to current dispatch pending state in functions that are called from two or more tasks and han-
dlers. In this case, sns_dpn is useful.

- sns_dpn
This service call examines whether the system is in the dispatch pending state or not. This service call returns TRUE
when the system is in the dispatch pending state, and return FALSE when the system is not in the dispatch pending
state.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
void CommonFunc (void);
void CommonFunc (void)
{
BOOL ercd; /*Declares variable*/
/* e */
ercd = sns dpn (); /*Reference dispatch pending state*/
if (ercd == TRUE) {
/e */ /*Dispatch pending state*/
} else if (ercd == FALSE) {
/X . */ /*Other state*/
}
JF e . */
}
R20UT0964EJ0101 Rev.1.01 IZENESAS Page 195 of 565

Sep 20, 2013

RI600PX CHAPTER 12 INTERRUPT MANAGEMENT FUNCTIONS

CHAPTER 12 INTERRUPT MANAGEMENT FUNCTIONS

This chapter describes the interrupt management functions performed by the RIGO0PX.

12.1 Interrupt Type

Interrupts are classified into kernel interrupt and non-kernel interrupt.

- Kernel interrupt
An interrupt whose interrupt priority level is lower than or equal to the kernel interrupt mask level is called the kernel
interrupt.
A kernel interrupt handler can issue service calls.
Note, however, that handling of kernel interrupts generated during kernel processing may be delayed until the inter-
rupts become acceptable.

- Non-kernel interrupt
An interrupt whose interrupt priority level is higher than the kernel interrupt mask level is called the non-kernel
interrupt. The non-maskable interrupt is classified into non-kernel interrupt.
A non-kernel interrupt handler must not issue service calls.
Non-kernel interrupts generated during service-call processing are immediately accepted whether or not kernel
processing is in progress.

Note The kernel interrupt mask level id defined by Kernel interrupt mask level (system_IPL) in System Information
(system).

12.2 Fast Interrupt of the RX-MCU

The RX-MCU supports the “fast interrupt” function. Only one interrupt source can be made the fast interrupt. The fast
interrupt is handled as the one that has interrupt priority level 15. To use the fast interrupt function, make sure there is only
one interrupt source that is assigned interrupt priority level 15.

For the fast interrupt function to be used in the RIGOOPX; it is necessary that the interrupt concerned be handled as an
non-kernel interrupt. In other words, the kernel interrupt mask level must be set to 14 or below.

And “os_int = NO;” and “pragma_switch = F;” are required for interrupt_vector[] definition.

And the FINTV register of the RX-MCU must be initialized to the start address of the handler in the Boot processing
function (PowerON_Reset_PC()).

12.3 CPU Exception

The following CPU exceptions are handled as non-kernel interrupt.

Unconditional trap (INT, BRK instruction)
Note, INT #1 to #8 are reserved by the RIGOOPX.

Undefined instruction exception

Privileged instruction exception

Floating-point exception

On the other hand, the access exception handler is handled as kernel interrupt.

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 196 of 565
Sep 20, 2013

RI600PX CHAPTER 12 INTERRUPT MANAGEMENT FUNCTIONS

12.4 Base Clock Timer Interrupt

The TIME MANAGEMENT FUNCTIONS is realized by using base clock timer interrupts that occur at constant intervals.
When the base clock timer interrupt occurs, The RIGO00PX's time management interrupt handler is activated and executes
time-related processing (system time update, delayed wake-up/time-out of task, cyclic handler activation, etc.).

12.5 Multiple Interrupts

In the RIBOOPX, occurrence of an interrupt in an interrupt handler is called “multiple interrupts”.
It can be set whether each interrupt handler for relocatable vector permits multiple interrupts. For details, refer to “20.21
Relocatable Vector Information (interrupt_vector(])”.

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 197 of 565
Sep 20, 2013

RI600PX CHAPTER 12 INTERRUPT MANAGEMENT FUNCTIONS

12.6 Interrupt Handlers

The interrupt handler is a routine dedicated to interrupt servicing that is activated when an interrupt occurs.

The RI600PX handles the interrupt handler as a non-task (module independent from tasks). Therefore, even if a task with
the highest priority in the system is being executed, the processing is suspended when an interrupt occurs, and the control
is passed to the interrupt handler.

12.6.1 Basic form of interrupt handlers

The following shows the basic form of interrupt handlers.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/

vold Inthdrl (void)

return; /*Terminate interrupt handler*/

Note The cfg600px outputs the prototype declaration and #pragma interrupt directive for the handler function to
kernel_id.h.

- Stack
A interrupt handler uses the system stack.

- Service call
The RIGOOPX handles the interrupt handler as a “non-task”.
The kernel interrupt handler can issue service calls whose “Useful range” is “Non-task”.
No service call can be issued in non-kernel interrupt handler.

Note If a service call (isig_sem, iset_flg, etc.) which causes dispatch processing (task scheduling processing) is
issued in order to quickly complete the processing in the interrupt handler during the interval until the
processing in the interrupt handler ends, the RIG00PX executes only processing such as queue
manipulation, counter manipulation, etc., and the actual dispatch processing is delayed until a return
instruction is issued by the interrupt handler, upon which the actual dispatch processing is performed in
batch.

- PSW register when processing is started

Table 12-1 PSW Register When Interrupt Handler is Started

Bit Value Note

- “pragma_switch = E”: 1
- Other cases: 0

IPL - Interrupt: Interrupt priority level Do not lower IPL more than the start of pro-
- CPU exception: Same before exception cessing.

PM 0 Supervisor mode

U 0 System stack

C,ZS,0 Undefined

Others 0

R20UT0964EJ0101 Rev.1.01 RENESAS Page 198 of 565

Sep 20, 2013

RI600PX CHAPTER 12 INTERRUPT MANAGEMENT FUNCTIONS

12.6.2 Register interrupt handler

The RIGO0PX supports the static registration of interrupt handlers only. They cannot be registered dynamically by issuing a
service call from the processing program.

Static interrupt handler registration means defining of interrupt handlers using static API “interrupt_vector([]” (relocatable
vector) and “interrupt_fvector(]” (fixed vector/exception vector) in the system configuration file.

For details about the static API “interrupt_vector[]”, refer to “20.21 Relocatable Vector Information (interrupt_vector[])”,
and for details about the static API “interrupt_fvector[]”, refer to “20.22 Fixed Vector/Exception Vector Information
(interrupt_fvector(])”.

12.7 Maskable Interrupt Acknowledgement Status in Processing

Programs
The maskable interrupt acknowledgement status of RX-MCU depends on the values of PSW.I and PSW.IPL. See the

hardware manual for details.
The initial status is determined separately for each processing program. See Table 12-2 for details.

Table 12-2 Maskable Interrupt Acknowledgement Status upon Processing Program Startup

Processing Program PSW.I PSW.IPL

Task 1 0

Same as IPL in the task just before the task

Task exception handling routine 1 exception handling routine starts.

Cyclic handler, Alarm handler 1 Base clock interrupt priority level (IPL)
- “pragma_switch = E”: 1 - Interrupt: Interrupt priority level
Interrupt Handler
- Other cases: 0 - CPU exception: Same before exception
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 199 of 565

Sep 20, 2013

RI600PX CHAPTER 12 INTERRUPT MANAGEMENT FUNCTIONS

12.8 Prohibit Maskable Interrupts

There is the following as a method of prohibiting maskable interrupts.
- Move to the CPU locked state by using loc_cpu, iloc_cpu
- Change PSW.IPL by using chg_ims, ichg_ims
- Change PSW.I and PSW.IPL directly (only for handlers)

12.8.1 Move to the CPU locked state by using loc_cpu, iloc_cpu

In the CPU locked state, PSW.IPL is changed to the Kernel interrupt mask level (system_I|PL). Therefore, only kernel inter-
rupts are prohibited in the CPU locked state.
Note, in the CPU locked state, service call issuance is restricted. For details, refer to “11.4 Lock and Unlock the CPU”.

12.8.2 Change PSW.IPL by using chg_ims, ichg_ims

The PSW.IPL can be changed to arbitrary value by using chg_ims, ichg_ims.

When a task changes PSW.IPL to other than 0 by using chg_ims, the system is moved to the dispatching disabled state.
When a task returns PSW.IPL to 0, the system returns to the dispatching enabled state.

Do not issue ena_dsp while a task changes PSW.IPL to other than 0 by using chg_ims. If issuing ena_dsp, the system
moves to the dispatching enabled state. If task dispatching occurs, PSW is changed for the dispatched task. Therefore
PSW.IPL may be lowered without intending it.

The handlers must not lower PSW.IPL more than it starts.

12.8.3 Change PSW.I and PSW.IPL directly (only for handlers)

The handlers can change PSW.I and PSW.IPL directly. This method is faster than ichg_ims.

The handlers must not lower PSW.IPL more than it starts.

Note, the compiler provides following intrinsic functions for operating PSW. See CubeSuite+ RX Build User's Manual for
details about intrinsic functions.

set_ipl(): Change PSW.IPL
get_ipl(): Refer to PSW.IPL
set_psw(): Change PSW
get_psw(): Refer to PSW

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 200 of 565
Sep 20, 2013

RI600PX CHAPTER 13 SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS

CHAPTER 13 SYSTEM CONFIGURATION MANAGE-
MENT FUNCTIONS

This chapter describes the system configuration management functions performed by the RIGO0OPX.

13.1 Outline

The RI600PX's system configuration management function provides the function to reference the version information.

13.2 Reference Version Information

The version information can be referenced by issuing the following service call from the processing program.

- ref_ver, iref_ver
These service calls store the version information into the area specified by parameter pk_rver.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 2*/

void Taskl (VP_INT exinf); /*Refer to note 2%/

void Taskl (VP_INT exinf)
{

T RVER pk rver; /*Declares data structure*/

UH maker; /*Declares variable*/

UH prid; /*Declares variable*/

/F e */

ref ver (&pk rver); /*Reference version information/

maker = pk rver.maker; /*Acquirer system time (lower 32 bits)*/
prid = pk rver.prid; /*Acquirer system time (higher 16 bits)*/
JF e . */

Note 1 For details about the version information packet T_RVER, refer to “[\Version information packet: T_RVER]".

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 201 of 565
Sep 20, 2013

RI600PX CHAPTER 14 OBJECT RESET FUNCTIONS

CHAPTER 14 OBJECT RESET FUNCTIONS

This chapter describes the object reset functions performed by the RIGOOPX.

14.1 Outline

The object reset function returns Data Queues, Mailboxes, Message Buffers, Fixed-Sized Memory Pools and Variable-
Sized Memory Pools to the initial state. The object reset function falls outside pnITRON4.0 specification.

14.2 Reset Data Queue

A data queue is reset by issuing the following service call from the processing program.

- vrst_dtq
This service call reset the data queue specified by parameter dtqid.
The data having been accumulated by the data queue area are annulled. The tasks to wait to send data to the target
data queue are released from the WAITING state, and EV_RST is returned as a return value for the tasks.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 2%*/

void Taskl (VP_INT exinf); /*Refer to note 2%/

void Taskl (VP_INT exinf)
{

ER ercd; /*Declares variable*/
ID dtgid = 1; /*Declares and initializes variable*/
J* i */

ercd = vrst dtg (dtgid); /*Reset data queue*/

Note 1 In this service call, the tasks to wait to receive data do not released from the WAITING state.

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 202 of 565
Sep 20, 2013

RI600PX CHAPTER 14 OBJECT RESET FUNCTIONS

14.3 Reset Mailbox

A mailbox is reset by issuing the following service call from the processing program.

- vrst_mbx
This service call reset the mailbox specified by parameter mbxid.
The messages having been accumulated by the mailbox come off from the management of the RIGOOPX.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 2*/

void Taskl (VP_INT exinf); /*Refer to note 2%/

void Taskl (VP_INT exinf)
{

ER ercd; /*Declares variable*/
D mbxid = 1; /*Declares and initializes variable*/
JF e . */

ercd = vrst mbx (mbxid) ; /*Reset mailbox*/

Note 1 In this service call, the tasks to wait to receive message do not released from the WAITING state.

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 203 of 565
Sep 20, 2013

RI600PX CHAPTER 14 OBJECT RESET FUNCTIONS

14.4 Reset Message Buffer

A message buffer is reset by issuing the following service call from the processing program.

- vrst_mbf
This service call reset the message buffer specified by parameter mbfid.
The messages having been accumulated by the message buffer area are annulled. The tasks to wait to send mes-
sage to the target message buffer are released from the WAITING state, and EV_RST is returned as a return value
for the tasks.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task Taskl /*Refer to note 2*/

void Taskl (VP_INT exinf); /*Refer to note 2%/

void Taskl (VP_INT exinf)
{

ER ercd; /*Declares variable*/
ID mbfid = 1; /*Declares and initializes variable*/
JF e */

ercd = vrst mbf (mbfid); /*Reset message buffer*/

Note 1 In this service call, the tasks to wait to receive message do not released from the WAITING state.

Note 2 These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 204 of 565
Sep 20, 2013

RI600PX CHAPTER 14 OBJECT RESET FUNCTIONS

14.5 Reset Fixed-sized Memory Pool

A fixed-sized memory pool is reset by issuing the following service call from the processing program.

- vrst_mpf
This service call reset the fixed-sized memory pool specified by parameter mpfid.
The tasks to wait to get memory block from the target fixed-sized memory pool are released from the WAITING state,
and EV_RST is returned as a return value for the tasks.
All fixed-sized memory blocks that had already been acquired are returned to the target fixed-sized memory pool.
Therefore, do not access those fixed-sized memory blocks after issuing this service call.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/
#pragma task TasklI /*Refer to note*/

void Taskl (VP_INT exinf); /*Refer to note*/

void Taskl (VP_INT exinf)
{

ER ercd; /*Declares variable*/
ID mpfid = 1; /*Declares and initializes variable*/
/. */

ercd = vrst mpf (mpfid); /*Reset fixed-sized memory pool*/

Note These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 205 of 565
Sep 20, 2013

RI600PX

CHAPTER 14 OBJECT RESET FUNCTIONS

14.6 Reset Variable-sized Memory Pool

A variable-sized memory pool is reset by issuing the following service call from the processing program.

- vrst_mpl

This service call reset the variable-sized memory pool specified by parameter mpfid. The tasks to wait to get memory
block from the target variable-sized memory pool are released from the WAITING state, and EV_RST is returned as a

return value for the tasks.

All variable-sized memory blocks that had already been acquired are returned to the target variable-sized memory
pool. Therefore, do not access those variable-sized memory blocks after issuing this service call.
The following describes an example for coding this service call.

#include "kernel.h"
#include "kernel id.h"
#pragma task Taskl

void Taskl (VP_INT exinf);
void Taskl (VP_INT exinf)
{

ER ercd;
1D mplid = 1;
/.. */

ercd = vrst mpl (mplid);

if (ercd == E OK) {

/*Standard header file definition*/
/*Header file generated by cfg600px*/
/*Refer to note*/

/*Refer to note*/

/*Declares variable*/
/*Declares and initializes variable*/

/*Reset variable-sized memory pool*/

Note These statements are unnecessary for the task which is created by the system configuration file because the
cfg600px generates these statement into the “kernel_id.h".

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS Page 206 of 565

RI600PX CHAPTER 15 SYSTEM DOWN

CHAPTER 15 SYSTEM DOWN

This chapter describes the system down functions performed by the RIGOOPX.

15.1 Outline

When the event that cannot be recovered while the RIGOOPX is operating occurs, the system down is caused and the sys-
tem down routine is invoked.

15.2 User-Own Coding Module

The system down routine must be implemented as user-own coding module.

Note The source file for the system down routine provided by the RIBOOPX as a sample file is “sysdwn.c”.

15.2.1 System down routine (_RI_sys_dwn__())

The following shows the basic form of the system down routine. The system down routine must not return.

#include "kernel.h" /*Standard header file definition*/
#include "kernel id.h" /*Header file generated by cfg600px*/

void RI sys dwn (W type, VW infl, VW inf2, VW inf3); /*Prototype declaration*/

void RI sys dwn (W type, VW infl, VW inf2, VW inf3)

Note The function name of the system down routine is “_RI_sys_dwn___

- Stack
The system down routine uses the system stack.

- Service call
The system down routine must not issue service calls.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 207 of 565
Sep 20, 2013

RI600PX CHAPTER 15 SYSTEM DOWN

- PSW register when processing is started

Table 15-1 PSW Register When System Down Routine is Started

Bit Value Note

I 0

- type < 0 : Undefined .
IPL Do not lower IPL more than the start of processing.
- type >= 0 : Same before system down

PM 0 Supervisor mode
U 0 System stack
C,ZS,0 undefined

Others 0

15.2.2 Parameters of system down routine

- type == -1 (Error when a kernel interrupt handler ends)

Table 15-2 Parameters of System Down Routine (type == -1)

inf1 inf2 inf3 Description
2 undefined PSW.PM == 1 (user mode) when a kernel interrupt
handler ends.
E_CTX (-25) 3 undefined F’SW.IPL > kernel interrupt mask level when a kernel
interrupt handler ends.
' The system is in the CPU locked state when a kernel
5 undefined .
interrupt handler ends.
E_MACV (-26) 12 undefined Stack pointer points for the interrupted task points out
of user stack for the task.
- type == -2 (Error in ext_tsk)

Table 15-3 Parameters of System Down Routine (fype == -2)

inf1 inf2 inf3 Description
1 undefined The ext_tsk is called in the non-task context.
E_CTX(-25) . The ext_tsk is called in the state “PSW.IPL > Kernel
4 undefined . p
interrupt mask level”.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 208 of 565
Sep 20, 2013

RI600PX

CHAPTER 15 SYSTEM DOWN

- type == -3 (Unlinked service call issued)

Table 15-4 Parameters of System Down Routine (fype == -3)

inf1

inf2

inf3

Description

E_NOSPT (-9)

undefined

undefined

Unlinked service call is issued.

Note

Refer to “2.6.1 Service call information files and “-ri600_preinit_mrc” compiler option”.

- type == -4 (Error at returning from task exception handling routine)

Table 15-5 Parameters of System Down Routine (fype == -4)

inf1 inf2 inf3 Description
7 undefined A task exception handling routine returns in the state
“PSW.IPL > Kernel interrupt mask level”.
E_CTX (-25) 8 undefined A task exception handling routine returns in the CPU
locked state.
9 undefined A task exception handling routine returns in the non-

task context.

- type

== -5 (Error in exd_tsk)

Table 15-6 Parameters of System Down Routine (type == -5)

Sep 20, 2013

inf1 inf2 inf3 Description
) The exd_tsk is called in the state “PSW.IPL > Kernel
10 undefined . .
E_CTX (-25) interrupt mask level”.
11 undefined The exd_tsk is called in the non-task context.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 209 of 565

RI600PX

CHAPTER 15 SYSTEM DOWN

- type == -6 (Error in vsta_knl and ivsta_knl)

Table 15-7 Parameters of System Down Routine (fype == -6)

inf1 inf2 inf3

Description

E_PAR (-17) undefined

15

E_OBJ (-41) undefined

E_OACV (-27) undefined

Error regarding to
registration of
memory object
(memory_object(])

1) Start address is not 16-bytes boundary.

2) Bit15 of either acptn1, acptn2 or acptn3
is 1.

3) acptn1 == acptn2 == acptn3 ==

4) Bits corresponded to the domain ID that
is larger than the maximum domain ID
(VTMAX_DOMAIN) of either acptnt,
acptn2 or acptn3 is 1.

5) Start address > termination address

Multiple memory object with the same
address are registered.

The number of memory objects from which
the access is permitted to one domain
exceeds 7.

E_PAR(-17) | 16 | undefined

Error regarding to
task creation
(task[])

The “termination address of user stack + 1” is
not 16-bytes boundary.

- type == -16 (Undefined relocatable vector interrupt)

Table 15-8 Parameters of System Down Routine (type == -16)

inf1

inf2 inf3

- “-U” option is not specified for cfg600px
Undefined

- “-U” option is specified for cfg600px
Vector number

PC, which is pushed to | PSW, which is pushed
the stack by CPU’s | to the stack by CPU’s
interrupt operation interrupt operation

- type == -17 (Undefined fixed vector/exception vector interrupt)

Table 15-9 Parameters of System Down Routine (type == -17)

inf1

inf2 inf3

- “-U” option is not specified for cfg600px
Undefined

PC, which is pushed to | PSW, which is pushed
the stack by CPU’s | to the stack by CPU’s

- "-U” option is specified for cfg600px interrupt operation interrupt operation
Vector number
R20UT0964EJ0101 Rev.1.01 IZENESAS Page 210 of 565

Sep 20, 2013

RI600PX

CHAPTER 15 SYSTEM DOWN

- type > 0 (Issuing vsys_dwn, ivsys_dwn from application))
0 and a negative type value is reserved by the RIGOOPX. When calling vsys_dwn, ivsys_dwn from application, use

positive type value.

Table 15-10 Parameters of System Down Routine (type > 0)

inf1

inf2

inf3

Value specified for vsys_dwn, ivsys_dwn

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS

Page 211 of 565

RI600PX CHAPTER 16 SCHEDULING FUNCTION

CHAPTER 16 SCHEDULING FUNCTION

This chapter describes the scheduler of the RIGO0OPX.

16.1 Outline

The scheduling functions provided by the RIGO0PX consist of functions manage/decide the order in which tasks are
executed by monitoring the transition states of dynamically changing tasks, so that the CPU use right is given to the
optimum task.

16.2 Processing Unit and Precedence

An application program is executed in the following processing units.
- Task (including task exception handling routine)

- Interrupt handler

Cyclic handler

- Alarm handler

Access exception handler

The various processing units are processed in the following order of precedence.
1) Interrupt handlers, cyclic handlers, alarm handlers
2) Access exception handler
3) Scheduler
4) Tasks (including task exception handling routines)

The “scheduler” is the RIBOOPX’s processing that schedules running task and dispatches to the task.

Since interrupt handler, cyclic handlers, alarm handlers and access exception handler have higher precedence than the
scheduler, no tasks and no task exception handling routines are executed while these handlers are executing. (Refer to
“16.7 Task Scheduling in Non-Tasks”).

The precedence of an interrupt handler becomes higher when the interrupt level is higher.

The precedence of a cyclic handler and alarm handler is the same as the interrupt handler which interrupt level is same as
the base clock timer interrupt.

The order of precedence for tasks depends on the current priority of the tasks.

16.3 Task Drive Method

The RI600PX employs the Event-driven system in which the scheduler is activated when an event (trigger) occurs.

- Event-driven system

Under the event-driven system of the RIGOOPX, the scheduler is activated upon occurrence of the events listed below
and dispatch processing (task scheduling processing) is executed.

- Issuance of service call that may cause task state transition
- Issuance of instruction for returning from non-task (cyclic handler, interrupt handler, etc.)
- Occurrence of base clock interrupt used when achieving TIME MANAGEMENT FUNCTIONS

R20UT0964EJ0101 Rev.1.01 RENESAS Page 212 of 565
Sep 20, 2013

RI600PX CHAPTER 16 SCHEDULING FUNCTION

16.4 Task Scheduling Method

As task scheduling methods, the RIGOOPX employs the Priority level method, which uses the priority level defined for each
task, and the FCFS method, which uses the time elapsed from the point when a task becomes target to RIGO0PX
scheduling.

- Priority level method

A task with the highest current priority is selected from among all the tasks that have entered an executable state
(RUNNING state or READY state), and given the CPU use right.

- FCFS method

When two or more “task with the highest priority level” exist, the scheduling target task can not be decided only by the
Priority level method. In this case, the RIGO0OPX decides the scheduling target task by first come first served (FCFS)
method. Concretely, the task that enters to executable state (READY state) earliest among them, and given the CPU
use right.

16.4.1 Ready queue

The RI600PX uses a “ready queue” to implement task scheduling.

The ready queue is a hash table that uses priority as the key, and tasks that have entered an executable state (READY
state or RUNNING state) are queued in FIFO order. Therefore, the scheduler realizes the RIGO0PX's scheduling method
(priority level or FCFS) by executing task detection processing from the highest priority level of the ready queue upon
activation, and upon detection of queued tasks, giving the CPU use right to the first task of the proper priority level.

The following shows the case where multiple tasks are queued to a ready queue.

Figure 16-1 Implementation of Scheduling Method (Priority Level Method or FCFS Method)

Ready queue
Priority: High]

T

tskpri - 1
ori Task A Task B
tskpri RUNNING state READY state
tskpri + 1
| |
tskpri+ n -1
tskori + Task C
SKpri + n READY state

tskpri+ n + 1

l | |

maxtpri

Priority: Low

- Create ready queue
In the RIBOOPX, the method of creating a ready queue is limited to “static creation”.
Ready queues therefore cannot be created dynamically using a method such as issuing a service call from a
processing program.
Static ready queue creation means defining of Maximum task priority (priority) in System Information (system) in the
system configuration file.

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 213 of 565
Sep 20, 2013

RI600PX CHAPTER 16 SCHEDULING FUNCTION

16.5 Task Scheduling Lock Function

The RI600PX provides the scheduling lock function for manipulating the scheduler status explicitly from the processing

program and disabling/enabling dispatch processing.
The following shows a processing flow when using the scheduling lock function.

Figure 16-2 Scheduling Lock Function

Task A Task B Interrupt handler
Priority: High Priority: Low

Acquire semaphore resource - — -

w Lock the CPU

Delayed period

AL UnlocktheCPU - — — — —

Disable dispatching

Release semaphore resource

x

Delayed period

AL _________ Enable dispatching

For details, refer to “11.4 Lock and Unlock the CPU” and “11.6 Disable and Enable Dispatching”.

R20UT0964EJ0101 Rev.1.01 IQENESAS Page 214 of 565
Sep 20, 2013

RI600PX CHAPTER 16 SCHEDULING FUNCTION

16.6 Idling

When there is no RUNNING or READY task, the RIGOOPX enters an endless loop and waits for interrupts.

16.7 Task Scheduling in Non-Tasks

If processing of non-tasks starts, any tasks will not be performed until non-task processing is completed, since the prece-
dence of non-task (interrupt handler, cyclic handler, alarm handler and access exception handler) is higher than task as
shown in “16.2 Processing Unit and Precedence”.

The following shows a example when a service call accompanying dispatch processing is issued in non-tasks. In this
example, when the interrupt handler issues iwup_tsk, the Task A whose priority is higher than the task B is released from
the WAITING state, but processing of the interrupt handler is continued at this time, without performing the task A yet.
When processing of the interrupt handler is completed, the scheduler is started, and as a result, the task A is performed.

Figure 16-3 Scheduling in Non-Tasks

Non-task

Task A Task B (Interrupt handler)
Priority: High Priority: Low P

Wait for a phenomenon
(slp_tsk)

eS|

(Released from
_T' WAITING state) -&------------------—--—-—~-

Notify a phenomenon
(iwup_tsk)

Delayed period

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 215 of 565
Sep 20, 2013

RI600PX CHAPTER 17 SYSTEM INITIALIZATION

CHAPTER 17 SYSTEM INITIALIZATION

This chapter describes the system initialization routine performed by the RIGOOPX.

17.1 Outline

The following shows a processing flow from when a reset interrupt occurs until the control is passed to the task.

Reset interrupt

Reset vector

Figure 17-1 Processing Flow (System Initialization)

v

Section Initialization

Boot processing function Function (_INITSCT())

(PowerON_Reset_PC()) b

Kernel Initialization Module
(vsta_knl, ivsta_knl)

Base Clock Timer Initialization
Routine (_RI_init_cmt_knl())

A\ 4

}

SCHEDULING FUNCTION
Scheduler

Tasks

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 216 of 565
Sep 20, 2013

RI600PX CHAPTER 17 SYSTEM INITIALIZATION

17.2 Boot Processing File (User-Own Coding Module)

The following should be described in the boot processing file.

1) Boot processing function (PowerON_Reset PC())
2) Include kernel_ram.h and kernel_rom.h

Note The boot processing file which is provided by the RIGOOPX as a sample file is “resetprg.c”.

17.2.1 Boot processing function (PowerON_Reset_PC())

The boot processing function is the program registered in the reset vector, and is executed in supervisor mode. Generally,
following processing are required in the boot processing function.

- Initialize the processor and hardwares
If using Fast Interrupt of the RX-MCU, initialize the FINTV register to the start address of the fast interrupt handler.

- Initialize C/C++ runtime environment (Initialize sections, etc.)
- Start the RIGOO0PX (call vsta_knl or ivsta_knl)
- Basic form of boot processing function
The boot processing function should be implemented as “void PowerON_Reset PC(void)”. When the name of the

boot processing function is other, it is necessary to define the function name to “interrupt_fvector[31]” in the system
configuration file.

Note For the details of the details of the static API “interrupt_fvector[]”, refer to “20.22 Fixed Vector/Exception Vector
Information (interrupt_fvector(])”.

- The points of concern about the boot processing function

- Stack
Describe #pragma entry directive to be shown below. Thereby, the object code which sets the stack pointer (ISP) as
the system stack at the head of the boot processing function is generated.

#pragma entry PowerON Reset PC

- PSW register
Keep the status that all interrupts are prohibited and in the supervisor mode until calling the Kernel Initialization
Module (vsta_knl, ivsta_knl). This status is satisfied just behind CPU reset (PSW.1=0, PSW.PM=0). Generally, the
boot processing function should not change the PSW.

- EXTB register (RXv2 architecture)
Initialize EXTB register to the start address of FIX_INTERRUPT_VECTOR section if needed. Please refer to
“FIX_INTERRUPT_VECTOR section” in section 2.6.4.

- Service call
Since the boot processing function is executed before executing of Kernel Initialization Module (vsta_knl, ivsta_knl),
service calls except vsta_knl and ivsta_knl must not be called from the boot processing function.

R20UT0964EJ0101 Rev.1.01 RENESAS Page 217 of 565
Sep 20, 2013

RI600PX CHAPTER 17 SYSTEM INITIALIZATION

17.2.2 Include kernel_ram.h and kernel_rom.h

The boot processing file must include “kernel_ram.h” and “kernel_rom.h”, which are generated by the cfg600px, in this
order.

17.2.3 Compiler option for boot processing file

The following compiler options are required for the boot processing file.

- “lang=c” or “lang=c99”
- “-nostuff’
- Suitable “-isa” or “-cpu”

Note Compiler option "-isa" is supported by the compiler CC-RX V2.01 or later.

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 218 of 565
Sep 20, 2013

RI600PX

CHAPTER 17 SYSTEM INITIALIZATION

17.2.4 Example of the boot processing file

#include <machine.h>

#include < h c lib.h>

//#include <stddef.h> //
//#include <stdlib.h> //
#include "typedefine.h" //
#include "kernel.h" //
#include "kernel id.h" //
#ifdef cplusplus

extern "C" {

#endif

void PowerON Reset PC(void);
#ifdef cplusplus

}

#endif

//
//
//
//
// extern
// #ifdef
// '}

// #endif

#ifdef
extern
#endif
extern

__cplusplus
"c" {

void INIT IOLIB(void);

void CLOSEALL (void);
__cplusplus

#define FPSW init 0x00000000

// extern void srand(UINT); // Remove
// extern SBYTE * slptr; // Remove
// #ifdef cplusplus

// extern "C" {

// #endif

// extern void HardwareSetup (void) ;

// #ifdef cplusplus

/)

// #endif

// #ifdef cplusplus

// extern "C" {

// #endif

// extern void _CALL INIT (void);

// extern void _CALL END(void);

// #ifdef cplusplus

// 0}

// #endif

// Use SIM I/0

// FPSW bit base pattern

// Use Hardware Setup

// Remove the comment when you use global class object
// Sections CSINIT and CSEND will be generated

Remove the comment when you use errno
Remove the comment when you use rand()
Define Types

Provided by RI600PX

Generated by cfg600px

the comment when you use rand()
the comment when you use strtok()

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS

Page 219 of 565

RI600PX CHAPTER 17 SYSTEM INITIALIZATION

[0 7777777777777 7777777777 77777777777777777777777777
// Section definition
[1117177777077
#pragma section P PS

#pragma section B BS

#pragma section C CS

#pragma section D DS

#pragma entry PowerON Reset PC

11770777777 777
// Boot processing

NNV,
void PowerON Reset PC(void)

{

#ifdef ROZ // Initialize FPSW
#define ROUND 0x00000001 // Let FPSW RMbits=01 (round to zero)
#else
#define ROUND 0x00000000 // Let FPSW RMbits=00 (round to nearest)
#endif
#ifdef _ DOFF
#define DENOM 0x00000100 // Let FPSW DNbit=1 (denormal as =zero)
#else
#define DENOM 0x00000000 // Let FPSW DNbit=0 (denormal as 1is)
#endif
// set_extb(_ sectop ("FIX_ INTERRUPT VECTOR"));// Initialize EXTB register
// (only for RXv2 arch.)
set fpsw(FPSW_init | ROUND | _DENOM);
_INITSCT(); // Initialize Sections
// _INIT IOLIB(); // Use SIM I/0
// errno=0; // Remove the comment when you use errno
// srand((_UINT)1); // Remove the comment when you use rand()
// _slptr=NULL; // Remove the comment when you use strtok()
// HardwareSetup () ; // Use Hardware Setup
nop () ;

// set_fintv(<handler address>); // Initialize FINTV register
// _CALL INIT(); // Remove the comment when you use global class object

vsta _knl(); // Start RI600PX
// Never return from vsta_ knl

// _CLOSEALL() ; // Use SIM I/0
// _CALL END(); // Remove the comment when you use global class object
brk();

}

L1777 777777770777
// RI600PX system data
[11177777070777

#include "kernel ram.h" // generated by cfg600px
#include "kernel rom.h" // generated by cfg600px
R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 220 of 565

Sep 20, 2013

RI600PX CHAPTER 17 SYSTEM INITIALIZATION

17.3 Kernel Initialization Module (vsta_knl, ivsta_knl)

The kernel initialization module is executed by calling vsta_knl, ivsta_knl. Generally, vsta_knl, ivsta_knl is called from the
Boot processing function (PowerON_Reset PC()).
The following processing is executed in the kernel initialization module.

1) Initialize ISP register to the end address of Sl section + 1

2) Initialize INTB register to the start address of the relocatable vector table (INTERRUPT_VECTOR section). The
relocatable vector table is generated by the cfg600px.

3) Initialize the system time to 0.

4) Create various object which are defined in the system configuration file. If an error is detected in this process, the
system will be down.

5) Initialize MPU (Memory Protection Unit).
6) Initialize base clock timer (call Base Clock Timer Initialization Routine (_RI_init_cmt_knl()))

7) Pass control to scheduler

R20UT0964EJ0101 Rev.1.01 IQENESAS Page 221 of 565
Sep 20, 2013

RI600PX CHAPTER 17 SYSTEM INITIALIZATION

17.4 Section Initialization Function (_INITSCT())

The section initialization function “_INITSCT()” called from Boot processing function (PowerON_Reset_PC()) is provided
by the compiler. The _INITSCT() clears the uninitialized data section to 0 and initializes the initialized data section in order
to the tables described in the Section information file (User-Own Coding Module).

The user needs to write the sections to be initialized to the tables for section initialization (DTBL and BTBL) in the section
information file. The section address operator is used to set the start and end addresses of the sections used by the
_INITSCT(). Section names in the section initialization tables are declared, using C$BSEC for uninitialized data areas, and
C$DSEC for initialized data areas.

Initialized sections written in DTBL must be mapped from ROM to RAM by using “-rom” linker option. For details, refer to
“2.6.5 Initialized data section”.

Note See “CubeSuite+ Integrated Development Environment User's Manual: RX Coding” for details of the
_INITSCTY().

R20UT0964EJ0101 Rev.1.01 IQENESAS Page 222 of 565
Sep 20, 2013

RI600PX CHAPTER 17 SYSTEM INITIALIZATION

17.4.1 Section information file (User-Own Coding Module)

The section information file should be implemented as user-own coding module.
The example of the section information file is shown below.

Note The section information file which is provided by the RIGOOPX as a sample file is “dbsct.c”.

#include "typedefine.h"
#pragma unpack

#pragma section C C$DSEC
extern const struct {

_UBYTE *rom s; /* Start address of the initialized data section in ROM */
_UBYTE *rom e; /* End address of the initialized data section in ROM */
_UBYTE *ram s; /* Start address of the initialized data section in RAM */
} DTBL[] = {
sectop("D"), _ secend("D"), _ sectop("R") },
__sectop("D_2"), secend("D 2"), sectop("R 2") },
__sectop("D 1"), secend("D 1"), sectop("R 1") 1},
sectop("DS"), _ secend("DS"), sectop("RS") 1},

{ (
{ (
{ (
{ ()
{ _sectop("DS 2"), _ secend("DS 2"), _ sectop("RS 2") 1},
{ sectop("DS 1"), secend("DS 1"), _ sectop("RS 1") 1},
{ sectop("DU SH"), secend("DU SH"), _ sectop("RU SH") },
{ sectop("DU SH 2"), secend("DU SH 2"), sectop("RU SH 2") },
{ ("DU_SH 1"), secend ("DU SH 1"), sectop("RU_SH 1") 1},
{ ("DU MASTERDOM") __secend("DU_MASTERDOM"),
___sectop ("RU_MASTERDOM") 1},
{ _ sectop("DU MASTERDOM 2"), _ secend("DU MASTERDOM 2"),
__sectop ("RU_MASTERDOM 2") 1},
{ _ sectop("DU MASTERDOM 1"), secend("DU MASTERDOM 1"),
__sectop ("RU MASTERDOM 1") 1},
__sectop("DU DOM A"), secend("DU DOM A"), sectop("RU DOM A") 1},
__sectop("DU DOM A 2"), secend("DU DOM A 2"), sectop("RU DOM A 2") },
__sectop("DU _DOM A 1"), secend("DU DOM A 1"), _ sectop("RU DOM A 1") 1},
(
(
(

___sectop
__sectop

__sectop("DU DOM B"), secend("DU DOM B"), sectop ("RU_DOM B") 1},
__sectop("DU DOM B 2"), secend("DU DOM B 2"), sectop("RU DOM B 2") },
__sectop("DU DOM B 1"), secend("DU DOM B 1"), sectop("RU DOM B 1") }

e T PPN

)}z

#pragma section C CS$SBSEC
extern const struct ({

_UBYTE *b_s; /* Start address of non-initialized data section */
_UBYTE *b_e; /* End address of non-initialized data section */
} _BTBLI] = {
{ sectop("B"), _ secend("B") },
{ sectop("B 2"), _ secend("B 2") 1},
{ sectop("B_1"), _ secend("B_1") 1},
{ sectop("BS"), _ secend("BS") },
{ sectop("BS 2"), _ secend("BS 2") },
{ sectop("BS 1"), _ secend("BS 1") 1},
R20UT0964EJ0101 Rev.1.01 RENESAS Page 223 of 565

Sep 20, 2013

RI600PX CHAPTER 17 SYSTEM INITIALIZATION

{ sectop("BU SH"), _ secend("BU_SH") },

{ sectop("BU SH 2"), secend("BU SH 2") },

{ sectop("BU SH 1"), secend("BU SH 1") 1},

{ _ sectop ("DU MASTERDOM"), secend("DU MASTERDOM"),

__sectop ("RU MASTERDOM") 1},
{ _ sectop("DU MASTERDOM 2"), secend("DU MASTERDOM 2"),
__sectop ("RU _MASTERDOM 2") 1},
{ _ sectop("DU MASTERDOM 1"), _ secend("DU MASTERDOM 1"),
_ sectop ("RU MASTERDOM 1") 1},
{ sectop("DU DOM A"), secend("DU DOM A"), sectop("RU DOM A") 1},
{ _ sectop("DU DOM A 2"), secend("DU DOM A 2"), sectop("RU DOM A 2") 1},
{ sectop("DU DOM A 1"), secend("DU DOM A 1"), sectop("RU DOM A 1") },
{ sectop("DU DOM B"), secend("DU DOM B"), sectop ("RU_DOM B") 1},
{ ("DU DOM B 2"), _ secend("DU DOM B 2"), sectop("RU DOM B 2") },
{ ("DU DOM B 1"), secend("DU DOM B 1"), sectop("RU DOM B 1") }

__sectop
__sectop

}i

#pragma section C C$BSEC
extern const struct {

_UBYTE *b_s; /* Start address of non-initialized data section */
_UBYTE *b_e; /* End address of non-initialized data section */
} BTBL[] = {

), __secend("B")

2"), _ secend("B_

-~ 1"), secend("B_
__secend("BS"

, _ secend("BS 2") 1},

, __secend("BS 1") 1},

'), _ secend("BU SH") },

{ _ sectop("
{ _ sectop("
{ sectop("
{ sectop("BS"),
{ sectop("BS 2"
{ sectop("BS 1
{ sectop("BU SH

{ _ sectop("BU_SH 2"), secend("BU SH 2") },
{ sectop("BU SH 1"), secend("BU_SH_l") b,
{

{

{

{

{

{
{

{

{

("B
("B_
("B

(

(

(

(

(

(
__sectop ("BU_MASTERDOM"), secend("BU MASTERDOM") },

(

(

(

(

(

(

(

(

}
2")
1" 1y
) by

(/)

)
")

__sectop ("BU MASTERDOM 2"), secend("BU MASTERDOM 2") 1},
__sectop ("BU MASTERDOM 1"), secend("BU MASTERDOM 1") },
~_sectop("BU DOM A"), secend("BU DOM A") 1},
__sectop("BU DOM A 2"), _ secend("BU DOM A 2") 1},
__sectop("BU DOM A 1"), secend("BU DOM A 1") 1},
__sectop("BU DOM B"), secend("BU DOM B") },
__sectop("BU DOM B 2"), secend("BU DOM B 2") 1},
__sectop("BU DOM B 1"), secend("BU DOM B 1") }
}i

#pragma section

/*
** CTBL prevents excessive output of L1100 messages when linking.
** Even if CTBL is deleted, the operation of the program does not change.

*/

_UBYTE * const CTBL[] = {
__sectop("C_1"), __sectop("C_Z"), __sectop("C"),
__sectop("W_1"), sectop("W_Z"), __sectop ("W"),

(
__sectop("CU MASTERDOM 1"), sectop("CU MASTERDOM 2"),

__sectop("CU MASTERDOM"),

~_sectop("CU DOM A 1"), sectop("CU DOM A 2"), sectop("CU DOM A"),
__sectop("CU DOM B 1"), sectop("CU DOM B 2"), sectop("CU DOM B"),
__sectop("WU _SH 1"), sectop("WU SH 2"), sectop("WU_SH"),

__sectop ("LU _SH"),

__sectop("CU SH 1"), sectop("CU SH 2"), _ sectop("CU_SH"),
__sectop("Cs 1"), sectop("Cs 2"), sectop("CS"), _ sectop("P")

}i

#pragma packoption

R20UT0964EJ0101 Rev.1.01 IQENESAS Page 224 of 565
Sep 20, 2013

RI600PX CHAPTER 17 SYSTEM INITIALIZATION

17.5 Registers in Fixed Vector Table / Exception Vector Table

For some MCUs, the endian select register, ID code protection on connection of the on-chip debugger, etc. are assigned in
the address from OxFFFFFF80 to OxFFFFFFBF in fixed vector table (RXv1 architecture) / exception vector table (RXv2
architecture). To set up such registers, describe “interrupt_fvector[]” in the system configuration file. For details, refer to
“20.22 Fixed Vector/Exception Vector Information (interrupt_fvector[])”.

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 225 of 565
Sep 20, 2013

RI600PX CHAPTER 18 DATA TYPES AND MACROS

CHAPTER 18 DATA TYPES AND MACROS

This chapter describes the data types and macros, which are used when issuing service calls provided by the RIGOOPX.

Note <ri_root> indicates the installation folder of RIGOOPX.
The default folder is “C:\Program Files\Renesas Electronics\CubeSuite+\RI600PX".

18.1 Data Types

The Following lists the data types of parameters specified when issuing a service call.
Macro definition of the data type is performed by <ri_root>\in600\kernel.h, or <ri_root>\inc600\itron.h that is included by
kernel.h.

Table 18-1 Data Types

Macro Data Type Description
B signed char Signed 8-bit integer
H signed short Signed 16-bit integer
w signed long Signed 32-bit integer
D signed long long Signed 64-bit integer
UB unsigned char Unsigned 8-bit integer
UH unsigned short Unsigned 16-bit integer
uw unsigned long Unsigned 32-bit integer
ub unsigned long long Unsigned 64-bit integer
VB signed char 8-bit value with unknown data type
VH signed short 16-bit value with unknown data type
VW signed long 32-bit value with unknown data type
VD signed long long 64-bit value with unknown data type
VP void * Pointer to unknown data type
FP void (*) Processing unit start address (pointer to a function)
INT signed long Signed 32-bit integer
UINT unsigned long Unsigned 32-bit integer
BOOL signed long Boolean value (TRUE or FALSE)
ER signed long Error code
ID signed short Object ID
ATR unsigned short Object attribute
STAT unsigned short Object state
MODE unsigned short Service call operational mode
PRI signed short Priority for tasks or messages
SIZE unsigned long Memory area size (in bytes)
TMO signed long Time-out (in millisecond)
RELTIM unsigned long Relative time (in millisecond)

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS

Page 226 of 565

RI600PX CHAPTER 18 DATA TYPES AND MACROS

Macro Data Type Description

VP_INT signed long Pointer to unknown data type, or signed 32-bit integer

ER_ID signed long Error code, or object ID

ER_UINT signed long Error code, or signed 32-bit integer

ER_BOOL signed long Error code, or signed 32-bit integer

ACPTN unsigned short Access permission pattern

FLGPTN unsigned long Bit pattern of eventflag

IMASK unsigned short Interrupt mask level

TEXPTN unsigned long Task exception code

18.2 Constant macros

The following lists the constant macros.
The constant macros are defined by either of following header files.

- <ri_root>\inc600\kernel.h
- <ri_root>\inc600\itron.h, which s included by kernel.h

- System information header file kernel_id.h, which is generated by the cfg600px.
The contents of this file is changed according to the system configuration file.

Table 18-2 Constant Macros

Clazz:lca- Macro Definition Where Description
NULL 0 itron.h Null pointer
TRUE 1 itron.h True
General
FALSE 0 itron.h False
E_OK 0 itron.h Normal completion

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

REN ESNS Page 227 of 565

RI600PX CHAPTER 18 DATA TYPES AND MACROS

Clazil:ca- Macro Definition Where Description
TA_NULL 0 itron.h Object attribute unspecified
TA_HLNG 0x0000 kernel.h High-level language interface
TA_TFIFO 0x0000 kernel.h Task wait queue in FIFO order
Task wait queue is managed in task
TA_TPRI 0x0001 kernel h cgrrent priority ordgr. .Among tasks
with the same priority, they are
queued in FIFO order.
TA_MFIFO 0x0000 kernel.h Message queue in FIFO order
Message queue is managed in mes-
TA_MPRI 0x0002 kernel.h sage priority order. Among messages
- with the same priority, they are
Attribute queued in FIFO order.
TA_ACT 0x0002 kernel.h Task is activated after creation
TA WSGL 0x0000 kernel.h Do not allow multiple tasks to wait for
_ eventflag
TA WMUL 0x0002 kernel.h Allow multiple tasks to wait for
- eventflag
Clear eventflag when freed from
TA_CLR 0x0004 kernel.h WAITING state
TA_CEILING 0x0003 kernel.h Priority ceiling protocol
TA STA 0x0002 kernel.h Create cyclic hander in operational
_ state
TA_PHS 0x0004 kernel.h Save cyclic hander phase
TMO_POL 0 itron.h Polling
Time-out
TMO_FEVR -1 itron.h Waiting forever
Operation TWF_ANDW 0x0000 kernel.h Eventflag AND wait
mode TWF_ORW 0x0001 kernel.h Eventflag OR wait
Task TTEX_ENA 0x0000 kernel.h Task exception enabled state
exception | TTEX DIS 0x0001 kernel.h Task exception disabled state
R20UT0964EJ0101 Rev.1.01 .IENESAS Page 228 of 565

Sep 20, 2013

RI600PX

CHAPTER 18 DATA TYPES AND MACROS

Cla:[s;zl:ca- Macro Definition Where Description
TTS_RUN 0x0001 kernel.h RUNNING state
TTS_RDY 0x0002 kernel.h READY state
TTS_WAI 0x0004 kernel.h WAITING state
TTS_SUS 0x0008 kernel.h SUSPENDED state
TTS_WAS 0x000C kernel.h WAITING-SUSPENDED state
TTS _DMT 0x0010 kernel.h DORMANT state
TTW_SLP 0x0001 kernel.h Sleeping state
TTW_DLY 0x0002 kernel.h Delayed state
TTW SEM 0x0004 kernel.h Waiting state for a semaphore
- resource
TTW_FLG 0x0008 kernel.h Waiting state for an eventflag
TTW_SDTQ 0x0010 kernel h Sending waiting state for a data
queue
TTW_RDTQ 0x0020 kernel.h Receiving waiting state for a data
Object queue
state TTW_MBX 0x0040 kernel.h Receiving waiting state for a mailbox
TTW_MTX 0x0080 kernel.h Waiting state for a mutex
TTW_SMBF 0x0100 kernel h Sending waiting state for a message
buffer
TTW RMBE 0x0200 kernel.h Receiving waiting state for a
- message buffer
TTW MPE 0x2000 kernel.h Waiting state for a fixed-sized
- memory block
TTW_MPL 0x4000 kernel.h Waiting state for a variable-sized
memory block
TCYC STP 0x0000 kernel.h Cyclic handler in non-operational
- state
TCYC_STA 0x0001 kernel.h Cyclic handler in operational state
TALM STP 0x0000 kernel h Alarm handler in non-operational
- state
TALM_STA 0x0001 kernel.h Alarm handler in operational state
TSK_SELF 0 kernel.h Specify invoking task
TSK_NONE 0 kernel.h No relevant task
Others
TPRI_SELF 0 kernel.h Specify base priority of invoking task
TPRI_INI 0 kernel.h Specify initial priority
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 229 of 565

Sep 20, 2013

RI600PX

CHAPTER 18 DATA TYPES AND MACROS

Cla:[s;zl:ca- Macro Definition Where Description
TMIN_TPRI 1 kernel.h Minimum task priority
TMAX_TPRI system.priority kernel_id.h | Maximum task priority
TMIN_MPRI 1 kernel.h Minimum message priority
TMAX_MPRI system.message_pri kernel_id.h | Maximum message priority
TKERNEL_MAKER | 0x011B kernel.h Kernel maker code
TKERNEL_PRID 0x0004 kernel.h Identification number of the kernel
TKERNEL_SPVER | 0x5403 kernel.h Version number of the ITRON
specification
TKERNEL_PRVER | 0x0120 kernel.h Version number of the kernel
TMAX_ACTCNT 255 kernel.h Maximum number of queued task
- activation requests
TMAX_WUPCNT 255 kernel.h Maximum number of queued task
wake-up requests
TMAX SUSCNT 1 kernel.h Maxnmur_n number of nested task
- suspension requests
TBIT_FLGPTN 32 kernel.h Number of bits in an eventflag
TBIT_TEXPTN 32 kernel.h Number of bits in task exception code
TIC_NUME system.tic_nume kernel_id.h | Numerator of base clock interval
TIC_DENO system.tic_deno kernel_id.h | Denominator of base clock interval
Kernel Maximum value of the maximum
configura- TMAX_MAXSEM 65535 kernel.h semaphore resource count
tion
VTMAX_DOMAIN Refer to Note 1 kernel_id.h | Maximum domain ID
VTMAX_TSK Refer to Note 1 kernel_id.h | Maximum task ID
VTMAX_SEM Refer to Note 1 kernel_id.h | Maximum semaphore ID
VTMAX_FLG Refer to Note 1 kernel_id.h | Maximum eventflag ID
VTMAX_DTQ Refer to Note 1 kernel_id.h | Maximum data queue ID
VTMAX_MBX Refer to Note 1 kernel_id.h | Maximum mailbox ID
VTMAX_MTX Refer to Note 1 kernel_id.h | Maximum mutex ID
VTMAX_MBF Refer to Note 1 kernel_id.h | Maximum message buffer ID
VTMAX_MPF Refer to Note 1 kernel_id.h | Maximum fixed-sized memory pool ID
VTMAX_MPL Refer to Note 1 kernel_id.h | Maximum - variable-sized - memory
pool ID
VTMAX_CYH Refer to Note 1 kernel_id.h | Maximum cyclic handler ID
VTMAX_ALH Refer to Note 1 kernel_id.h | Maximum alarm handler ID
VTSZ MBFTBL 4 kernel.h Size of message t_)uffers message
management table (in bytes)
VTMAX_AREASIZE | 0x10000000 kernel.h g/'y"’t‘:g“m size of various areas (in
VTKNL_LVL system.system_|PL kernel_id.h | Kernel interrupt mask level
VTIM_LVL clock.IPL kernel_id.h | Base clock interrupt level
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 230 of 565

Sep 20, 2013

RI600PX

CHAPTER 18 DATA TYPES AND MACROS

Clazzlrtlca- Macro Definition Where Description
E_SYS -5 itron.h System error
E_NOSPT -9 itron.h Unsupported function
E_RSFN -10 itron.h Reserved function code
E_RSATR -11 itron.h Reserved attribute
E_PAR -17 itron.h Parameter error
E ID -18 itron.h Invalid ID number
E_CTX -25 itron.h Context error
E_MACV -26 itron.h Memory access violation
E_OACV -27 itron.h Object access violation
E_ILUSE -28 itron.h lllegal use of service call
Error code | E NOMEM -33 itron.h Insufficient memory
E_NOID -34 itron.h No ID number available
E_OBJ -41 itron.h Object state error
E_NOEXS -42 itron.h Non-existent object
E_QOVR -43 itron.h Queuing overflow
E_RLWAI -49 itron.h Forced release from WAITING state
E_TMOUT -50 itron.h Polling failure of time-out
E_DLT -51 itron.h Waiting object deleted
E_CLS -52 itron.h Waiting object state changed
EV RST 197 itron.h Rgleased from WAITING state by the
- object reset
TDOM_SELF 0 kernel.h Domain that invoking task belongs
TACP_SHARED ((Mu << kernel h Access p:armssmnl pattern t"hat
(VTMAX_DOMAIN)) -1) represents “all domain can access
Access permission vector that
(e SHARED priet e s
TACT_SRW TACP_SHARED, kernel.h expecution) alie ermit?ed for aI]
TACP_SHARED} Hon P
domains
Refer to Note 2.
Protection —
extension Access permission vector thgt
represents “operand-read access is
{TACP_SHARED, permitted for all domains, and oper-
TACT_SRO 0, kernel.h and-write access and execution
TACP_SHARED} access are not permitted for all
domains”
Refer to Note 2.
TPM_READ 1 kernel.h Operand-read access
TPM_WRITE 2 kernel.h Operand-write access
TPM_EXEC 4 kernel.h Execution access

Note 1

Refer to “20.7 Maximum ID (maxdefine)”.

Note 2 These macros can be describe only at the right of an initial assignment statement.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 231 of 565

RI600PX CHAPTER 18 DATA TYPES AND MACROS

18.3 Function Macros

The following lists the function macros.
The function macros are defined by either of following header files.

- <ri_root>\inc600\kernel.h

- <ri_root>\inc600\itron.h, which s included by kernel.h

18.3.1 Macros for Error Code

1) ERMERCD (ER ercd)
Return the main error code of ercd.

2) ERSERCD (ER ercd)
Return sub error code of ercd.

3) ERERCD (ER mercd, ER sercd)
Return the error code from the main error code indicated by mercd and sub error code indicated by sercd.

Note In the error code returned from the RI600PX, all sub error code is -1, and all main error code is same as the
value described in Table 18-2.

18.3.2 Macros for Data Queue

1) SIZE TSZ_DTQ (UINT dtqcnt)
Returns the size of a data queue area in which the dtgcnt number of data items can be stored. (in bytes)

18.3.3 Macros for Fixed-sized Memory Pool

1) SIZE TSZ_MPF (UINT blkcnt, UINT blksz)
Returns the size of a fixed-sized memory pool from which blkcnt number of blksz-byte memory blocks can be
acquired. (in bytes)

2) SIZE TSZ_MPFMB (UINT blkent, UINT blksz)
Returns the size of the management area required for a fixed-sized memory pool from which blkent number of
blksz-byte memory blocks can be acquired. (in bytes)

18.3.4 Macros for Domain

1) ATR TA_DOM (ID domid)
Returns attribute which represents to belong to the domain indicated by domid. This macro is used for bit7-4 of
tskatr (task attribute) at task creation.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 232 of 565
Sep 20, 2013

RI600PX CHAPTER 18 DATA TYPES AND MACROS

18.3.5 Access permission

1) ACPTN TACP (ID domid)
Returns access permission pattern that represents “only the domain indicated by domid can access”.

2) ACVCT TACT_PRW (ID domid)

Returns access permission vector that represents “all types of access (operand-read, operand-write, execution) are
permitted only for the domain indicated by domid”.

3) ACVCT TACT_PRO (ID domid)

Returns access permission vector that represents “operand-wirte access is not permitted for all domain, operand-
read and execution access are permitted only for the domain indicated by domid’.

4) ACVCT TACT_SRPW (ID domid')

Returns access permission vector that represents “operand-read and execution access are permitted for all domain,
operand-write access is permitted only for the domain indicated by domid”.

R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 233 of 565
Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

CHAPTER 19 SERVICE CALLS

This chapter describes the service calls supported by the RIGOOPX.

19.1 Outline

The service calls provided by the RIGOOPX are service routines provided for indirectly manipulating the resources (tasks,
semaphores, etc.) managed by the RIGOOPX from a processing program.
The service calls provided by the RIGOOPX are listed below by management module.

Task management functions

cre_tsk acre_tsk del_tsk act_tsk
iact_tsk can_act ican_act sta_tsk
ista_tsk ext_tsk exd_tsk ter_tsk
chg_pri ichg_pri get_pri iget_pri
ref_tsk iref_tsk ref _tst iref_tst

- Task dependent synchronization functions

slp_tsk tslp_tsk wup_tsk iwup_tsk
can_wup ican_wup rel_wai irel_wai
sus_tsk isus_tsk rsm_tsk irsm_tsk
frsm_tsk ifrsm_tsk dly_tsk

- Task exception handling functions

def_tex ras_tex iras_tex dis_tex
ena_tex sns_tex ref_tex iref_tex

- Synchronization and communication functions (semaphores)

cre_sem acre_sem del_sem wai_sem
pol_sem ipol_sem twai_sem sig_sem
isig_sem ref_sem iref_sem

- Synchronization and communication functions (eventflags)

cre_flg acre_flg del_flg set_flg
iset_flg clr_flg iclr_flg wai_flg
pol_flg ipol_flg twai_flg ref_flg

iref_flg

- Synchronization and communication functions (data queues)

cre_dtq acre_dtq del_dtq snd_dtq
psnd_dtq ipsnd_dtq tsnd_dtq fsnd_dtq
ifsnd_dtq rcv_dtq prcv_dtq iprev_dtq
trcv_dtq ref_dtq iref_dtq

- Synchronization and communication functions (mailboxes)

cre_mbx acre_mbx del_mbx snd_mbx
isnd_mbx rcv_mbx prcv_mbx iprcv_mbx
trcv_mbx ref_mbx iref_mbx

- Extended synchronization and communication functions (mutexes)

cre_mtx acre_mtx del_mtx loc_mtx
ploc_mtx tloc_mtx unl_mtx ref_mtx
R20UT0964EJ0101 Rev.1.01 - zEN ESNS Page 234 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

Extended synchronization and communication functions (message buffers)

cre_mbf acre_mbf del_mbf snd_mbf
psnd_mbf ipsnd_mbf tsnd_mbf rcv_mbf
prcv_mbf trcv_mbf ref_mbf iref_mbf

- Memory pool management functions (fixed-sized memory pools)

cre_mpf acre_mpf del_mpf get_mpf
pget_mpf ipget_mpf tget._mpf rel_mpf
irel_mpf ref_mpf iref_mpf

- Memory pool management functions (variable-sized memory pools)

cre_mpl acre_mpl del_mpl get_mpl
pget_mpl ipget_mpl tget_mpl rel_mpl
ref_mpl iref_mpl

- Time management functions

set_tim iset_tim get_tim iget_tim
cre_cyc acre_cyc del_cyc sta_cyc

ista_cyc stp_cyc istp_cyc ref_cyc

iref_cyc cre_alm acre_alm del_alm
sta_alm ista_alm stp_alm istp_alm
ref_alm iref_alm

- System state management functions

rot_rdq irot_rdq get_tid iget_tid
loc_cpu iloc_cpu unl_cpu iunl_cpu
dis_dsp ena_dsp sns_ctx sns_loc
sns_dsp sns_dpn vsys_dwn ivsys_dwn
vsta_knl ivsta_knl

- Interrupt management functions

chg_ims ichg_ims get_ims iget_ims

- System configuration management functions

ref_ver iref_ver

- Object reset functions
vrst_dtq vrst_mbx vrst_mbf vrst_mpf
vrst_mpl

- Memory object management functions

ata_mem det_mem sac_mem vprb_mem
ref_mem

19.1.1 Method for calling service calls
The service calls can be calls by the same way as normal C-language function.
Note To call the service calls provided by the RIBOOPX from a processing program, the header files listed below
must be coded (include processing).
kernel.h: Standard header file

kernel_id.h System information header file, which is generated by the cfg600px

R20UT0964EJ0101 Rev.1.01 RENESAS Page 235 of 565
Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

19.2 Explanation of Service Call

The following explains the service calls supported by the RIGOOPX, in the format shown below.

R

2) — Outline

4) —> Parameter(s)

110 Parameter Description

5) — Explanation

6) —» Return value

Macro Value Description

R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 236 of 565
Sep 20, 2013

RI600PX CHAPTER 19

SERVICE CALLS

1)

2)

3)

4)

6)

Name
Indicates the name of the service call.

Outline
Outlines the functions of the service call.

C format
Indicates the format to be used when describing a service call to be issued in C language.

Parameter(s)
Service call parameters are explained in the following format.

I/O Parameter Description

A B]

A') Parameter classification

I: Parameter input to RIGOOPX.
O: Parameter output from RIGO0PX.

B) Parameter data type

C) Description of parameter

Explanation
Explains the function of a service call.

Return value
Indicates a service call's return value using a macro and value.

Macro Value Description

A B C

A') Macro of return value
B) Value of return value

C) Description of return value

R20UT0964EJ0101 Rev.1.01 .QENESAS
Sep 20, 2013

Page 237 of 565

RI600PX CHAPTER 19 SERVICE CALLS

19.2.1 Task management functions

The following shows the service calls provided by the RIGO0PX as the task management functions.

Table 19-1 Task Management Functions

Service Call Function Useful Range
cre_tsk Create task Task
acre_tsk Create task (automatic ID assignment) Task
del_tsk Delete task Task
act_tsk Activate task (queues an activation request) Task
iact_tsk Activate task (queues an activation request) Non-task
can_act Cancel task activation requests Task
ican_act Cancel task activation requests Non-task
sta_tsk Activate task (does not queue an activation request) Task
ista_tsk Activate task (does not queue an activation request) Non-task
ext_tsk Terminate invoking task Task
exd_tsk Terminate and delete invoking task Task
ter_tsk Terminate task Task
chg_pri Change task priority Task
ichg_pri Change task priority Non-task
get_pri Reference task current priority Task
iget_pri Reference task current priority Non-task
ref_tsk Reference task state Task
iref_tsk Reference task state Non-task
ref_tst Reference task state (simplified version) Task
iref_tst Reference task state (simplified version) Non-task

R20UT0964EJ0101 Rev.1.01 RENESAS Page 238 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

cre_tsk
acre_tsk

Outline

Create task.

C format

ER cre tsk (ID tskid, T CTSK *pk ctsk);
ER ID acre tsk (T CTSK *pk ctsk);

Parameter(s)
I/0 Parameter Description
| 1D tskid; ID number of the task.
| T CTSK *pk ctsk; Pointer to the packet containing the task creation information.

[Task creation information packet : T_CTSK]

typedef struct t ctsk {

ATR tskatr; /*Task attribute*/
VP _INT exinf; /*Extended information*/
FP task; /*Task start address*/
PRI itskpri; /*Task initial priority*/
SIZE stksz; /*User stack size (in bytes)*/
VP stk; /*Start address of user stack*/
} T CTSK;
Explanation

This service call can be called from tasks that belong to Trusted Domain.

The cre_tsk creates a task with task ID indicated by tskid according to the content of pk_ctsk. The acre_tsk creates a task
according to the content of pk_ctsk, and returns the created task ID.

The processing performed at task creation is shown in Table 19-2.

Table 19-2 Processing Performed at Task Creation

No. Content of processing
1 Clears the number of queued activation requests.
2 Resets the task state so that the task exception handling routine is not defined.

1) Task attribute (tskatr)
The following are specified for tskatr.

tskatr := (TA HLNG | [TA ACT] | [TA DOM (domid)])
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 239 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

The bit position of tskatr is shown as follows.

bit15 ~ bit8 bit7 | bit6 | bits | bitd | bit3 | bit2 bit1 bit0
Domain ID
0 (TA_DOM(domid)) 0 0 TA_ACT :1 TA_HLNG : 0

- TA_HLNG (= 0x0000)
Only C-language is supported for task description language.

- TA_ACT (= 0x0002)
When the TA_ACT attribute is specified, the created task makes a transition to the READY state. The processing
performed at task activation is shown in Table 19-3. When the TA_ACT attribute is not specified, the created task
makes a transition to the DORMANT state.

- TA_DOM(domid)
The created task belong to the domain indicated by domid. When 0 is specified for domid or TA_DOM(domid) is
not specified, the created task belongs to the domain that the invoking task belong to.

Note For detail of TA_DOM macro, refer to “18.3.4 Macros for Domain”.

Extended information (exinf)

When the task is activated by TA_ACT attribute, act_tsk or iact_tsk, exinf is passed to the task as argument. And

exinfis passed to the task exception handling routine. The exinf can be widely used by the user, for example, to set
information concerning the task.

Task start address (task)
Specify the task start address for task.

Task initial priority (itskpri)
Specify initial priority of the task for itskpri. Ranges of the value that can be specified are from 1 to TMAX_TPRI.

User stack size (stksz), Start address of user stack (stk)

The application acquires user stack area, and specifies the start address for stk and the size for stksz.
The user stack area must satisfy the following.

A') The stk must be 16-bytes boundary. If not, error E_PAR is returned.
B) The stksz must be multiple of 16. If not, error E_PAR is returned.

C) The user stack area must not overwrap with either all user stacks and all memory objects. If not, an error is
not detected and correct system operation cannot be guaranteed.

Note The nITRON4.0 specification defines the function that the kernel allocates user stack area when NULL
is specified for stk. But RIBOOPX does not support this function.

Return value

Macro Value Description
- Positive Normal completion of acre_tsk. (Created task ID)
value
E_OK 0 Normal completion of cre_tsk.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 240 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

Macro Value Description

Reserved attribute

E_RSATR -1 - Either bit0, bit2, bit3 or bit8-15 in tskatris 1.
- VTMAX_DOMAIN < (Value of bit4-7 of tskatr)

Parameter error.
- pk_ctsk == NULL
- task == NULL
- itskpri< 0
- TMAX_TPRI < itskpri
- stk is not 16-bytes boundary.

E_PAR 17

- stksz is not multiple of 16.

- Stksz < (lower bound value described in Table 20-8
- VTMAX_AREASIZE < stksz

- Stk + stksz > 0x100000000

Invalid ID number. (only for cre_tsk)
E_ID -18 - tskid<0
- tskid > VTMAX_TSK

Context error.

- This service call was issued in the CPU locked state.

E_CTX -25 - This service call was issued from non-task.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
E_MACV 26 - Stack pointer points out of user stack for invoking task.
- The operand-read access to the area indicated by pk ctsk has not been
permitted to the invoking task.
Object access violation.
E_OACV -27
- The invoking task does not belong to trusted domain.
Insufficient memory.
E_NOMEM -33
- stk == NULL
E_NOID -34 No ID number available.(only for acre_tsk)
Object state error. (only for cre_tsk)
E_OBJ -41
- The task specified by tskid exists.
R20UT0964EJ0101 Rev.1.01 IIENESAS Page 241 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

del_tsk

Outline

Delete task.

C format

ER del tsk (ID tskid);

Parameter(s)

I/0 Parameter Description

| ID tskid; ID number of the task.

Explanation

This service call can be called from tasks that belong to Trusted Domain.
This service call deletes the task indicated by tskid.

Return value

Macro Value Description

E_OK 0 Normal completion.

Invalid ID number.
E_ID -18 - tskid <0
- tskid > VTMAX_TSK

Context error.
- This service call was issued in the CPU locked state.

E_CTX -25 - This service call was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask

level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Object access violation.
E_OACV -27
- The invoking task does not belong to trusted domain.
Object state error.
E_OBJ -41
- Specified task is not in the DORMANT state.
Non-existent object.
E_NOEXS -42
- The task specified by tskid does not exist.
R20UT0964EJ0101 Rev.1.01 .IENESAS Page 242 of 565

Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

act_tsk
lact_tsk

Outline

Activate task (queues an activation request).

C format
ER act tsk (ID tskid);
ER iact tsk (ID tskid);
Parameter(s)
I/0 Parameter Description
ID number of the task.
1D tskid; TSK_SELF: Invoking task.
Value: ID number of the task.
Explanation

These service calls move the task specified by parameter tskid from the DORMANT state to the READY state.
As a result, the target task is queued at the end on the ready queue corresponding to the initial priority and becomes

subject to scheduling by the RIGOOPX.
At this time, the following processing is done.

Table 19-3 Processing Performed at Task Activation

No.

Content of processing

—

Initializes the task's base priority and current priority.

Clears the number of queued wake-up requests.

Clears the number of nested suspension count.

Clears pending exception code.

a|l | OIDN

Disables task exception

If the target task has been moved to a state other than the DORMANT state when this service call is issued, this service
call does not move the state but increments the activation request counter (by added 1 to the activation request counter).

Note 1

Note 2

The activation request counter managed by the RI600PX is configured in 8-bit widths. If the number of
activation requests exceeds the maximum count value 255 as a result of issuing this service call, the counter
manipulation processing is therefore not performed but “E_QOVR” is returned.

Extended information specified at creating the task is passed to the task activated by issuing these service

calls.

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

REN ESNS Page 243 of 565

RI600PX CHAPTER 19 SERVICE CALLS

Return value

Macro Value Description
E_OK 0 Normal completion.
Invalid ID number.
- id <
E D 18 tskid <0
- tskid > VTMAX_TSK
- When iact_tsk was issued from a non-task, TSK_SELF was specified for tskid.
Context error.
- This service call was issued in the CPU locked state.
E_CTX 25 - The iact_tsk was issued from task.
- The act_tsk was issued from non-task.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation. (only for act_tsk)
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Non-existent object.
E_NOEXS -42
- The task specified by tskid does not exist.
Queuing overflow.
E_QOVR -43
- Activation request count exceeded 255.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 244 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

can_act
ican_act

Outline

Cancel task activation requests.

C format

ER UINT can_act (ID tskid);
ER UINT ican act (ID tskid);

Parameter(s)
I/0 Parameter Description
ID number of the task.
I | 1D tskid; TSK_SELF: Invoking task.
Value: ID number of the task.
Explanation

This service call cancels all of the activation requests queued to the task specified by parameter tskid (sets the activation

request counter to 0).
When this service call is terminated normally, the number of cancelled activation requests is returned.

Note This service call does not perform status manipulation processing but performs the setting of activation request
counter. Therefore, the task does not move from a state such as the READY state to the DORMANT state.

Return value

Macro Value Description
- Positive Normal completion (activation request count).
value
Normal completion.
- 0 - Activation request count is 0.
- Specified task is in the DORMANT state.
Invalid ID number.
- tskid<0
E_ID -18 - tskid > VTMAX_TSK
- When the iact_tsk was issued from a non-task, TSK_SELF was specified for
tskid.
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 245 of 565

Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

Macro Value Description
Context error.
- This service call was issued in the CPU locked state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
E_CTX -25 level”.

Note When the ican_act is issued from task or the can_act is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.

Non-existent object.

E_NOEXS -42
- The task specified by tskid does not exist.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

REN ESNS Page 246 of 565

RI600PX

CHAPTER 19 SERVICE CALLS

sta_tsk
ista_tsk

Outline

Activate task (does not queue an activation request).

C format
ER sta tsk (ID tskid, VP _INT stacd);
ER ista tsk (ID tskid, VP_INT stacd);
Parameter(s)
I/0 Parameter Description
| ID tskid; ID number of the task.
I VP_INT stacd; Start code of the task.
Explanation

These service calls move the task specified by parameter tskid from the DORMANT state to the READY state.

As a result, the target task is queued at the end on the ready queue corresponding to the initial priority and becomes
subject to scheduling by the RIGOOPX.

At this time, processing described in Table 19-3 is done.

These service calls do not perform queuing of activation requests. If the target task is in a state other than the DORMANT
state, the status manipulation processing for the target task is therefore not performed but “E_OBJ” is returned.

The stacd is passed to the target task.

Return value

Macro Value Description
E OK 0 Normal completion.
Invalid ID number.
E_ID -18 - tskid <0
- tskid > VTMAX_TSK
Context error.
- This service call was issued in the CPU locked state.
E_CTX 25 - The ista_tsk was issued from task.
- The sta_tsk was issued from non-task.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

REN ESNS Page 247 of 565

RIG00PX CHAPTER 19 SERVICE CALLS
Macro Value Description
Memory access violation. (only for sta_tsk)
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Object state error
E_OBJ -41
- Specified task is not in the DORMANT state.
Non-existent object.
E_NOEXS -42
- The task specified by tskid does not exist.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 248 of 565

RI600PX CHAPTER 19 SERVICE CALLS

ext_tsk

Outline

Terminate invoking task.

C format

void ext tsk (void);

Parameter(s)

None.

Explanation

This service call moves the invoking task from the RUNNING state to the DORMANT state.
As a result, the invoking task is unlinked from the ready queue and excluded from the RIGOOPX scheduling subject.
At this time, the following processing is done.

Table 19-4 Processing Performed at Task Termination

No. Content of processing

Unlocks the mutexes which are locked by the terminated task. (processing equivalent to unl_mtx
will be executed)

The CPU locked state and dispatching disabled state is cancelled.

If an activation request has been queued to the invoking task (the activation request counter > 0) when this service call is
issued, this service call moves the task from the RUNNING state to the DORMANT state, decrements the activation
request counter (by subtracting 1 from the activation request counter), and then moves the task from the DORMANT state
to the READY state. At this time, processing described in Table 19-3 is done.

This service call does not return. In the following cases, this service call causes SYSTEM DOWN.

- This service call was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask level”

Note 1 When the return instruction is issued in the task entry function, the same processing as ext_tsk is performed.

Note 2 This service call does not have the function to automatically free the resources except the mutex hitherto
occupied by the task (e.g., semaphores and memory blocks). Make sure the task frees these resources before
it terminates

Return value

None.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 249 of 565
Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

exd_tsk

Outline

Terminate and delete invoking task.

C format

void exd tsk (void);

Parameter(s)

None.

Explanation

This service call terminates the invoking task normally and deletes the task.

The processing performed at task termination is shown in Table 19-4.

The CPU locked state and dispatching disabled state is cancelled.

This service call does not return. In the following cases, this service call causes SYSTEM DOWN.

- This service call was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask level”

Note This service call does not have the function to automatically free the resources except the mutex hitherto
occupied by the task (e.g., semaphores and memory blocks). Make sure the task frees these resources before
it terminates

Return value

None.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 250 of 565
Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

ter_tsk

Outline

Terminate task.

C format
ER ter tsk (ID tskid);
Parameter(s)
I/0 Parameter Description
| 1D tskid; ID number of the task.
Explanation

This service call forcibly moves the task specified by parameter tskid to the DORMANT state.

As a result, the target task is excluded from the RIGOOPX scheduling subject.

At this time, processing described in Table 19-4 is done.

If an activation request has been queued to the target task (the activation request counter > 0) when this service call is
issued, this service call moves the task to the DORMANT state, decrements the activation request counter (by subtracting
1 from the activation request counter), and then moves the task from the DORMANT state to the READY state. At this
time, processing described in Table 19-3 is done.

Note This service call does not have the function to automatically free the resources except the mutex hitherto
occupied by the task (e.g., semaphores and memory blocks). Make sure the task frees these resources before
it terminates

Return value

Macro Value Description

E_OK 0 Normal completion.

Invalid ID number.
E_ID -18 - tskid<0
- tskid > VTMAX_TSK

Context error.

- This service call was issued in the CPU locked state.

E_CTX -25 - This service call was issued from non-task.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 251 of 565

Sep 20, 2013

RIG00PX CHAPTER 19 SERVICE CALLS
Macro Value Description
lllegal service call use.
E_ILUSE -28
- Specified task is the invoking task.
Object state error.
E_OBJ -41
- Specified task is in the DORMANT state.
Non-existent object.
E_NOEXS -42
- The task specified by tskid does not exist.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 252 of 565

RIG00PX CHAPTER 19 SERVICE CALLS
chg_pri
ichg_pri
Outline
Change task priority.
C format
ER chg pri (ID tskid, PRI tskpri);
ER ichg pri (ID tskid, PRI tskpri);
Parameter(s)
I/0 Parameter Description
ID number of the task.
I | 1D tskid; TSK_SELF: Invoking task.
Value: ID number of the task.
New base priority of the task.
I | PRI tskpri; TPRI_INI: Initial priority.
Value: New base priority of the task.
Explanation

This service call changes the base priority of the task specified by parameter tskid to a value specified by parameter

tskpri.

The changed base priority is effective until the task terminates or this service call is issued. When next the task is acti-
vated, the base priority is the initial priority which is specified at the task creation.
This service call also changes the current priority of the target task to a value specified by parameter tskpri. However, the
current priority is not changed when the target task has locked mutexes.
If the target task has locked mutexes or is waiting for mutex to be locked and if tskpri is higher than the ceiling priority of
either of the mutexes, this service call returns “E_ILUSE”.

When the current priority is changed, the following state variations are generated.

1) When the target task is in the RUNNING or READY state.
This service call re-queues the task at the end of the ready queue corresponding to the priority specified by

parameter tskpri.

2) When the target task is queued to a wait queue of the object with TA_TPRI or TA_CEILING attribute.
This service call re-queues the task to the wait queue corresponding to the priority specified by parameter tskpri.
When two or more tasks of same current priority as tskpri, this service call re-queues the target task at the end

among their tasks.

Example When three tasks (task A: priority level 10, task B: priority level 11, task C: priority level 12) are
queued to the semaphore wait queue in the order of priority, and the priority level of task B is
changed from 11 to 9, the wait order will be changed as follows.

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS

Page 253 of 565

RI600PX CHAPTER 19 SERVICE CALLS

s h || TaskA || TaskB | | TaskC
emaphore Priority: 10 Priority: 11 Priority: 12
l chg_pri (Task B, 9/
s hore —— Task B || TaskA | | TaskC
emaphore Priority: 9 Priority: 10 Priority: 12

Note For current priority and base priority, refer to “8.2.2 Current priority and base priority”.

Return value

Macro Value Description
E_OK 0 Normal completion.
Parameter error.
E_PAR -17 - tskpri< 0
- tskpri> TMAX_TPRI
Invalid ID number.
E D 18 - tskid<0
- tskid > VTMAX_TSK
- When ichg_pri was issued from a non-task, TSK_SELF was specified for tskid.
Context error.
- This service call was issued in the CPU locked state.
E_CTX 25 - The ichg_pri was issued from task.
- The chg_pri was issued from non-task.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation. (only for chg_pri)
E_MACV -26
- Stack pointer points out of user stack for invoking task.
lllegal use of service call.
E_ILUSE -28 - tskpri < The ceiling priority of the mutex locked by the target task.
- tskpri < The ceiling priority of the mutex by which the target task waits for lock.
Object state error.
E_OBJ -41
- Specified task is in the DORMANT state.
Non-existent object.
E_NOEXS -42
- The task specified by tskid does not exist.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 254 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

get_pri
iget_pri

Outline

Reference task current priority.

C format
ER get pri (ID tskid, PRI *p tskpri);
ER iget pri (ID tskid, PRI *p tskpri);
Parameter(s)
I/0 Parameter Description
ID number of the task.
I | 1D tskid; TSK_SELF: Invoking task.
Value: ID number of the task.
o PRI *p tskpri; Pointer to the area returning the current priority of the task.
Explanation

This service call stores the current priority of the task specified by parameter tskid in the area specified by parameter
p_tskpri.

Note For current priority and base priority, refer to “8.2.2 Current priority and base priority”.

Return value

Macro Value Description
E_OK 0 Normal completion.
Parameter error.
E_PAR -17
- p_tskpri== NULL
Invalid ID number.
- tskid<0
E_ID -18 - tskid > VTMAX_TSK
- When this service call was issued from a non-task, TSK_SELF was specified
for tskid.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 255 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

Macro Value Description

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
E_CTX -25 level”.

Note When the iget_pri is issued from task or the get_pri is issued from non-task,
the context error is not detected and normal operation of the system is not
guaranteed.

Memory access violation. (only for get_pri)

E_MACV -26 - The operand-write access to the area indicated by p_tskpri has not been
permitted to the invoking task.
Object state error.
E_OBJ -41
- Specified task is in the DORMANT state.
Non-existent object.
E_NOEXS -42
- The task specified by tskid does not exist.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 256 of 565

Sep 20, 2013

RIG00PX CHAPTER 19 SERVICE CALLS
ref_tsk
iref_tsk
Outline
Reference task state.
C format
ER ref tsk (ID tskid, T RTSK *pk rtsk);
ER iref tsk (ID tskid, T RTSK *pk rtsk);
Parameter(s)
I/0 Parameter Description
ID number of the task.
1D tskid; TSK_SELF: Invoking task.
Value: ID number of the task.
@) T RTSK *pk rtsk; Pointer to the packet returning the task state.

[Task state packet: T_RTSK]

typedef struct t rtsk {

STAT
PRI
PRI
STAT
D
TMO
UINT
UINT
UINT
} T RTSK;

Explanation

tskstat;
tskpri;
tskbpri;
tskwait;
wobjid;
lefttmo;
actcnt;
wupcnt;
suscnt;

/*Current state*/
/*Current priority*/
/*Base priority*/
/*Reason for waiting*/

/*0Object ID number for which the task is waiting*/

/*Remaining time until time-out*/
/*Activation request count*/
/*Wake-up request count*/
/*Suspension count*/

Stores task state packet (current state, current priority, etc.) of the task specified by parameter tskid in the area specified
by parameter pk_rtsk.

- tskstat

Stores the current state.

TTS_RUN:
TTS_RDY:
TTS_WAI:

TTS_SUS:
TTS_WAS:
TTS_DMT:

RUNNING state

READY state

WAITING state

SUSPENDED state
WAITING-SUSPENDED state
DORMANT state

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 257 of 565

RI600PX CHAPTER 19 SERVICE CALLS

- tskpri
Stores the current priority.
The tskpri is effective only when the tskstat is other than TTS_DMT.

- tskbpri
Stores the base priority.
The tskbpri is effective only when the tskstat is other than TTS_DMT.

- tskwait
Stores the reason for waiting.
The tskwait is effective only when the tskstatis TTS_WAI or TTS_WAS.

TTW_SLP: Sleeping state caused by slp_tsk or tslp_tsk

TTW_DLY: Delayed state caused by dly tsk

TTW_SEM: WAITING state for a semaphore resource caused by wai_sem or twai_sem

TTW_FLG: WAITING state for an eventflag caused by wai_flg or twai_flg

TTW_SDTQ: Sending WAITING state for a data queue caused by snd_dtq or tsnd_dtq

TTW_RDTQ: Receiving WAITING state for a data queue caused by rcv_dtq or trcv_dtq

TTW_MBX: Receiving WAITING state for a mailbox caused by rcv_mbx or trcv_mbx

TTW_MTX: WAITING state for a mutex caused by loc_mtx or tloc_mix

TTW_SMBF: Sending WAITING state for a message buffer caused by snd_mbf or tsnd_mbf

TTW_RMBF: Receiving WAITING state for a message buffer caused by rcv_mbf or trcv_mbf

TTW_MPF: WAITING state for a fixed-sized memory block caused by get _mpf or tget_mpf

TTW_MPL: WAITING state for a variable-sized memory block caused by get_mpl or tget_mpl
- wobjid

Stores the object (such as semaphore, eventflag, etc.) ID number for which the task waiting.
The wobjid is effective only when the tskwait is TTW_SEM or TTW_FLG or TTW_SDTQ or TTW_RDTQ or
TTW_MBX or TTW_MTX or TTW_SMBF or TTW_RMBF or TTW_MPF or TTW_MPL.

- lefttmo
Stores the remaining time until time-out (in millisecond).
The TMO_FEVR is stored for waiting forever.
The lefttmo is effective only when the tskstat is TTS_WAI or TTS_WAS, and the tskwait is other than TTW_DLY.

Note The lefttmo is undefined when the tskwait is TTW_DLY.

- actent
Stores the activation request count.

- wupcnt
Stores the wake-up request count.
The wupcnt is effective only when the tskstat is other than TTS_DMT.

- suscnt
Stores the suspension count.
The suscnt is effective only when the tskstat is other than TTS_DMT.

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 258 of 565
Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

Return value

Macro Value Description

E_OK 0 Normal completion.

Parameter error.

- pk_rtsk == NULL

E_PAR 17

Invalid ID number.
- tskid <0
E_ID -18 - tskid > VTMAX_TSK

- When this service call was issued from a non-task, TSK_SELF was specified
for tskid.

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
E_CTX -25 level”.

Note When the iref_tsk is issued from task or the ref_tsk is issued from non-task,
the context error is not detected and normal operation of the system is not
guaranteed.

Memory access violation. (only for ref_tsk)

E_MACV -26 - The operand-write access to the area indicated by pk_ rtsk has not been

permitted to the invoking task.

Non-existent object.
E_NOEXS -42
- The task specified by tskid does not exist.

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 259 of 565
Sep 20, 2013

RI600PX CHAPTER 19

SERVICE CALLS

ref_tst
iref_tst

Outline

Reference task state (simplified version).

C format
ER ref tst (ID tskid, T RTST *pk rtst);
ER iref tst (ID tskid, T RTST *pk rtst);
Parameter(s)
I/0 Parameter Description
ID number of the task.
I | 1D tskid; TSK_SELF: Invoking task.
Value: ID number of the task.
@) T RTST *pk rtst; Pointer to the packet returning the task state.

[Task state packet (simplified version): T_RTST]

typedef struct t rtst {

STAT tskstat; /*Current state*/
STAT tskwait; /*Reason for waiting*/
} T RTST;

Explanation

Stores task state packet (current state, reason for waiting) of the task specified by parameter tskid in the area specified by

parameter pk_rtst.
Used for referencing only the current state and reason for wait among task information.

Response becomes faster than using ref_tsk or iref_tsk because only a few information items are acquired.

- tskstat
Stores the current state.

TTS_RUN: RUNNING state
TTS_RDY: READY state
TTS_WAI: WAITING state
TTS_SUS: SUSPENDED state
TTS_WAS: WAITING-SUSPENDED state
TTS_DMT: DORMANT state

- tskwait

Stores the reason for waiting.
The tskwait is effective only when the tskstatis TTS_WAI or TTS_WAS.

TTW_SLP: Sleeping state caused by slp_tsk or tslp_tsk
TTW_DLY: Delayed state caused by dly tsk
R20UT0964EJ0101 Rev.1.01 .IENESAS Page 260 of 565

Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

TTW_SEM:
TTW_FLG:

TTW_SDTQ:
TTW_RDTQ:

TTW_MBX:
TTW_MTX:

TTW_SMBF:
TTW_RMBF:

TTW_MPF:
TTW_MPL:

Return value

WAITING state for a semaphore resource caused by wai_sem or twai_sem
WAITING state for an eventflag caused by wai_flg or twai_flg

Sending WAITING state for a data queue caused by snd_dtq or tsnd_dtq
Receiving WAITING state for a data queue caused by rcv_dtq or trcv_dtq
Receiving WAITING state for a mailbox caused by rcv_mbx or trcv_mbx
WAITING state for a mutex caused by loc_mtx or tloc_mtx

Sending WAITING state for a message buffer caused by snd_mbf or tsnd_mbf
Receiving WAITING state for a message buffer caused by rcv_mbf or trcv._mbf
WAITING state for a fixed-sized memory block caused by get_mpf or tget_mpf
WAITING state for a variable-sized memory block caused by get_mpl or tget_mpl

Macro Value Description
E_OK 0 Normal completion.
Parameter error.
E_PAR -17
- pk_rtst == NULL
Invalid ID number.
- tskid<0
E_ID -18 - tskid > VTMAX_TSK
- When this service call was issued from a non-task, TSK_SELF was specified
for tskid.
Context error.
- This service call was issued in the CPU locked state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
E_CTX -25 level”.

Note When the iref_tst is issued from task or the ref tst is issued from non-task,
the context error is not detected and normal operation of the system is not
guaranteed.

Memory access violation. (only for ref_tst)

E_MACV -26 - The operand-write access to the area indicated by pk_rtst has not been
permitted to the invoking task.

Non-existent object.

E_NOEXS -42
- The task specified by tskid does not exist.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 261 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

19.2.2 Task dependent synchronization functions

The following shows the service calls provided by the RIGO0PX as the task dependent synchronization functions.

Table 19-5 Task Dependent Synchronization Functions

Service Call Function Useful Range
slp_tsk Put task to sleep (waiting forever) Task
tslp_tsk Put task to sleep (with time-out) Task
wup_tsk Wake-up task Task
iwup_tsk Wake-up task Non-task
can_wup Cancel task wake-up requests Task
ican_wup Cancel task wake-up requests Non-task
rel_wai Release task from waiting Task
irel_wai Release task from waiting Non-task
sus_tsk Suspend task Task
isus_tsk Suspend task Non-task
rsm_tsk Resume suspended task Task
irsm_tsk Resume suspended task Non-task
frsm_tsk Forcibly resume suspended task Task
ifrsm_tsk Forcibly resume suspended task Non-task
dly_tsk Delay task Task
R20UT0964EJ0101 Rev.1.01 RENESAS Page 262 of 565

Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

slp_tsk

Outline

Put task to sleep (waiting forever).

C format

ER slp tsk (void);

Parameter(s)

None.

Explanation

As a result, the invoking task is unlinked from the ready queue and excluded from the RIGO0PX scheduling subject.
If a wake-up request has been queued to the target task (the wake-up request counter > 0) when this service call is
issued, this service call does not move the state but decrements the wake-up request counter (by subtracting 1 from the

wake-up request counter).
The sleeping state is cancelled in the following cases.

Sleeping State Cancel Operation Return Value
A wake-up request was issued as a result of issuing wup_tsk. E_OK
A wake-up request was issued as a result of issuing iwup_ tsk. E_OK
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Return value

Macro Value Description
E_OK 0 Normal completion.
Context error.
- This service call was issued from a non-task.
E_CTX 25 - This service call was issued in the CPU locked state.
- This service call was issued in the dispatching disabled state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Forced release from the WAITING state.
E_RLWAI -49
- Accept rel_waifirel_wai while waiting.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 263 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

tslp_tsk

Outline

Put task to sleep (with time-out).

C format
ER tslp tsk (TMO tmout) ;
Parameter(s)
I/0 Parameter Description
Specified time-out (in millisecond).
I TMO tmout; TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified time-out.
Explanation

This service call moves the invoking task from the RUNNING state to the WAITING state (sleeping state).

As a result, the invoking task is unlinked from the ready queue and excluded from the RIGOOPX scheduling subject.

If a wake-up request has been queued to the target task (the wake-up request counter > 0) when this service call is
issued, this service call does not move the state but decrements the wake-up request counter (by subtracting 1 from the
wake-up request counter).

The sleeping state is cancelled in the following cases.

Sleeping State Cancel Operation Return Value
A wake-up request was issued as a result of issuing wup_tsk. E_OK
A wake-up request was issued as a result of issuing iwup_ tsk. E_OK
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
The time specified by tmout has elapsed. E_TMOUT

Note When TMO_FEVR is specified for wait time tmout, processing equivalent to slp_tsk will be executed.

Return value

Macro Value Description
E_OK 0 Normal completion.
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 264 of 565

Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

Macro

Value

Description

E_PAR

-17

Parameter error.

tmout < -1
tmout > (OX7FFFFFFF - TIC_NUME) / TIC_DENO

E_CTX

Context error.

This service call was issued from a non-task.
This service call was issued in the CPU locked state.
This service call was issued in the dispatching disabled state.

This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_MACV

Memory access violation.

Stack pointer points out of user stack for invoking task.

E_RLWAI

Forced release from the WAITING state.

Accept rel_wailirel_wai while waiting.

E_TMOUT

Polling failure or specified time has elapsed.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

REN ESNS Page 265 of 565

RI600PX CHAPTER 19 SERVICE CALLS

wup_tsk
iwup_tsk
Outline

Wake-up task.

C format
ER wup_tsk (ID tskid);
ER iwup tsk (ID tskid);
Parameter(s)
I/0 Parameter Description
ID number of the task.
| D tskid; TSK_SELF: Invoking task.
Value: ID number of the task.
Explanation

These service calls cancel the WAITING state (sleeping state) of the task specified by parameter tskid.

As a result, the target task is moved from the sleeping state to the READY state, or from the WAITING-SUSPENDED state
to the SUSPENDED state.

If the target task is in a state other than the sleeping state when this service call is issued, this service call does not move
the state but increments the wake-up request counter (by added 1 to the wake-up request counter).

Note The wake-up request counter managed by the RIGO0OPX is configured in 8-bit widths. If the number of wake-up

requests exceeds the maximum count value 255 as a result of issuing this service call, the counter
manipulation processing is therefore not performed but “E_QOVR” is returned.

Return value

Macro Value Description

E OK 0 Normal completion.

Invalid ID number.

- tskid<0
E_ID -18 - tskid > VTMAX_TSK
- When iwup_tsk was issued from a non-task, TSK_SELF was specified for
tskid.
R20UT0964EJ0101 Rev.1.01 .IENESAS Page 266 of 565

Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

Macro

Value

Description

E_CTX

Context error.

- This service call was issued in the CPU locked state.
- The iwup_tsk was issued from task.
- The wup_tsk was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_MACV

Memory access violation. (only for wup_tsk)

- Stack pointer points out of user stack for invoking task.

E_OBJ

Object state error.

- Specified task is in the DORMANT state.

E_NOEXS

Non-existent object.

- The task specified by tskid does not exist.

E_QOVR

Queuing overflow.

- Wake-up request count exceeded 255.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

REN ESNS Page 267 of 565

RI600PX

CHAPTER 19 SERVICE CALLS

can_wup
ican_wup

Outline

Cancel task wake-up requests.

C format

ER UINT can wup (ID tskid);
ER UINT ican wup (ID tskid);

Parameter(s)
I/0 Parameter Description
ID number of the task.
I | 1D tskid; TSK_SELF: Invoking task.
Value: ID number of the task.
Explanation

These service calls cancel all of the wake-up requests queued to the task specified by parameter tskid (the wake-up

request counter is set to 0), and return the number of cancelled wake-up requests.

Return value

Macro Value Description
- 0or Normal completion (wake-up request count)
more P preq '
Invalid ID number.
- tskid<0
E_ID -18 - tskid > VTMAX_TSK
- When this service call was issued from a non-task, TSK_SELF was specified
for tskid.
Context error.
- This service call was issued in the CPU locked state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
E_CTX -25 level”.

Note When the ican_wup is issued from task or the can_wup is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.

Object state error.

E_OBJ -41
- Specified task is in the DORMANT state.
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 268 of 565

Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

Macro

Value

Description

E_NOEXS

Non-existent object.

- The task specified by tskid does not exist.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 269 of 565

RI600PX

CHAPTER 19 SERVICE CALLS

rel_wai
irel_wai

Outline

Release task from waiting.

C format

ER rel wai (ID tskid);
ER irel wai (ID tskid);

Parameter(s)

/10 Parameter

Description

| ID tskid;

ID number of the task.

Explanation

These service calls forcibly cancel the WAITING state of the task specified by parameter tskid.

As a result, the target task unlinked from the wait queue and is moved from the WAITING state to the READY state, or
from the WAITING-SUSPENDED state to the SUSPENDED state.

“E_RLWAI” is returned from the service call that triggered the move to the WAITING state (slp_tsk, wai_sem, or the like) to
the task whose WAITING state is cancelled by this service call.

Note 1 These service calls do not perform queuing of forced cancelation requests. If the target task is neither in the
WAITING state nor WAITING-SUSPENDED state, “E_OBJ” is returned.

Note 2 The SUSPENDED state is not cancelled by these service calls.

Return value

Macro Value Description
E_OK 0 Normal completion.
Invalid ID number.
E_ID -18 - tskid <0
- tskid > VTMAX_TSK
Context error.
- This service call was issued in the CPU locked state.
E_CTX 25 - The irel_wai was issued from task.
- The rel_wai was issued from non-task.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

REN ESNS Page 270 of 565

RI600PX

CHAPTER 19 SERVICE CALLS

Macro Value Description
Memory access violation. (only for rel_wai)
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Object state error.
E_OBJ -41 - Specified task is neither in the WAITING state nor WAITING-SUSPENDED
state.
Non-existent object.
E_NOEXS -42
- The task specified by tskid does not exist.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

REN ESNS Page 271 of 565

RI600PX CHAPTER 19 SERVICE CALLS

sus_tsk
isus_tsk

Outline
Suspend task.

C format
ER sus_tsk (ID tskid);
ER isus_tsk (ID tskid);
Parameter(s)
I/0 Parameter Description
ID number of the task.
| D tskid; TSK_SELF: Invoking task.
Value: ID number of the task.
Explanation

These service calls move the task specified by parameter tskid from the RUNNING state to the SUSPENDED state, from
the READY state to the SUSPENDED state, or from the WAITING state to the WAITING-SUSPENDED state.

If the target task has moved to the SUSPENDED or WAITING-SUSPENDED state when this service call is issued, these
service calls return “E_QOVR".

Note In the RIGOOPX, the suspend request can not be nested.

Return value

Macro Value Description

E_OK 0 Normal completion.

Invalid ID number.
- tskid <0
E_ID -18 - tskid > VTMAX_TSK

- When this service call was issued from a non-task, TSK_SELF was specified
for tskid.

Context error.

- This service call was issued in the CPU locked state.
- The isus_tsk was issued from task.
E_CTX -25 - The sus_tsk was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

- The invoking task is specified in the dispatching disabled state.

R20UT0964EJ0101 Rev.1.01 RENESAS Page 272 of 565
Sep 20, 2013

RIG00PX CHAPTER 19 SERVICE CALLS
Macro Value Description
Memory access violation. (only for sus_tsk)
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Object state error.
E_OBJ 41 - Specified task is in the DORMANT state.
- Specified task is in the RUNNING state when isus_tsk is issued in the dis-
patching disabled state.
Non-existent object.
E_NOEXS -42
- The task specified by tskid does not exist.
Queuing overflow.
E_QOVR -43 - Specified task is neither in the SUSPENDED state nor WAITING-
SUSPENDED state.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

REN ESNS Page 273 of 565

RI600PX CHAPTER 19 SERVICE CALLS

rsm_tsk
irsm_tsk
Outline

Resume suspended task.

C format

ER rsm_tsk (ID tskid);
ER irsm tsk (ID tskid);

Parameter(s)

I/O Parameter Description

| ID tskid; ID number of the task.

Explanation

These service calls move the task specified by parameter tskid from the SUSPENDED state to the READY state, or from
the WAITING-SUSPENDED state to the WAITING state.

Note 1 These service calls do not perform queuing of forced cancelation requests. If the target task is neither in the
SUSPENDED state nor WAITING-SUSPENDED state, “E_OBJ” is returned.

Note 2 The RIG00PX does not support queuing of suspend request. The behavior of the frsm_tsk and ifrsm_tsk, that
can release from the SUSPENDED state even if suspend request has been queued, are same as rsm_isk and
irsm_tsk.

Return value

Macro Value Description

E_OK 0 Normal completion.

Invalid ID number.
E_ID -18 - tskid <0
- tskid > VTMAX_TSK

Context error.

- This service call was issued in the CPU locked state.
E_CTX 25 - The irsm_tsk was issued from task.
- The rsm_tsk was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask

level”.
Memory access violation. (only for rsm_tsk)
E_MACV -26
- Stack pointer points out of user stack for invoking task.
R20UT0964EJ0101 Rev.1.01 IQENESAS Page 274 of 565

Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

Macro Value Description
Object state error.
E_OBJ -41 - Specified task is neither in the SUSPENDED state nor WAITING-
SUSPENDED state.
Non-existent object.
E_NOEXS -42
- The task specified by tskid does not exist.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 275 of 565

RI600PX CHAPTER 19 SERVICE CALLS

frsm_tsk
ifrsm_tsk
Outline

Forcibly resume suspended task.

C format
ER frsm tsk (ID tskid);
ER ifrsm tsk (ID tskid);
Parameter(s)
I/0 Parameter Description
| 1D tskid; ID number of the task.
Explanation

These service calls cancel all of the suspend requests issued for the task specified by parameter tskid (by setting the
suspend request counter to 0). As a result, the target task moves from the SUSPENDED state to the READY state, or from
the WAITING-SUSPENDED state to the WAITING state.

Note 1 These service calls do not perform queuing of forced cancelation requests. If the target task is neither in the
SUSPENDED state nor WAITING-SUSPENDED state, “E_OBJ” is returned.

Note 2 The RI600PX does not support queuing of suspend request. Therefore, the behavior of these service calls are
same as rsm_tsk and irsm_tsk.

Return value

Macro Value Description

E_OK 0 Normal completion.

Invalid ID number.
E_ID -18 - tskid <0
- tskid > VTMAX_TSK

Context error.

- This service call was issued in the CPU locked state.
E_CTX 25 - The ifrsm_tsk was issued from task.
- The frsm_tsk was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask

level”.
Memory access violation. (only for frsm_tsk)
E_MACV -26
- Stack pointer points out of user stack for invoking task.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 276 of 565

Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

Macro Value Description
Object state error.
E_OBJ -41 - Specified task is neither in the SUSPENDED state nor WAITING-
SUSPENDED state.
Non-existent object.
E_NOEXS -42
- The task specified by tskid does not exist.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 277 of 565

RI600PX

CHAPTER 19 SERVICE CALLS

dly_tsk

Outline

Delay task.

C format

ER

Parameter(s)

dly tsk

(RELTIM dlytim);

1’0

Parameter

Description

RELTIM dlytim;

Amount of time to delay the invoking task (in millisecond).

Explanation

This service call moves the invoking task from the RUNNING state to the WAITING state (delayed state).
As a result, the invoking task is unlinked from the ready queue and excluded from the RIGO0OPX scheduling subject.
The delayed state is cancelled in the following cases.

Delayed State Cancel Operation Return Value
Delay time specified by parameter dlytim has elapsed. E_OK
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Note

Return value

When 0 is specified as dlytim, the delay time is up to next base clock interrupt generation.

Macro Value Description
E_OK 0 Normal completion.
Parameter error.
E_PAR -17
- dlytim > (Ox7FFFFFFF - TIC_NUME)/ TIC_DENO
Context error.
- This service call was issued from a non-task.
E_CTX 25 - This service call was issued in the CPU locked state.
- This service call was issued in the dispatching disabled state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

REN ESNS Page 278 of 565

RIG00PX CHAPTER 19 SERVICE CALLS
Macro Value Description
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Forced release from the WAITING state.
E_RLWAI -49
- Accept rel_wailirel_wai while waiting.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 279 of 565

RI600PX CHAPTER 19 SERVICE CALLS

19.2.3 Task exception handling functions

The following shows the service calls provided by the RIGO0PX as the task exception handling functions.

Table 19-6 Task Exception Handling Functions

Service Call Function Useful Range

def tex Define task exception handling routine Task

ras_tex Raise task exception Task

iras_tex Raise task exception Non-task

dis_tex Disable task exception Task

ena_tex Enable task exception Task

sns_tex Reference task exception disabled state Task, Non-task
ref tex Reference task exception state Task

iref_tex Reference task exception state Non-task

R20UT0964EJ0101 Rev.1.01 RENESAS Page 280 of 565

Sep 20, 2013

RIG00PX CHAPTER 19 SERVICE CALLS
def_tex
Outline
Define task exception handling routine.
C format
ER def tex (ID tskid, T DTEX *pk dtex);
Parameter(s)
I/0 Parameter Description
ID number of the task.
| 1D tskid; TSK_SELF: Invoking task.
Value: ID number of the task.
NULL: Cancel the definition of task exception handling routine.
| T DTEX *pk dtex; Other than NULL: Pointer to the packet containing the task exception
handling routine definition information.

[Task exception handling routine definition information packet : T_DTEX]

typedef struct

ATR
FP
} T DTEX;

Explanation

t dtex {
texatr;
texrtn;

This service call can be called from tasks that belong to Trusted Domain.
This service call defines a task exception handling routine for the task indicated by tskid according to the content of
pk_dtex. If a task exception handling routine has already been defined for the task, this service call updates the definition

contents.

/*Task exception handling routine attribute*/
/*Task exception handling routine start address*/

When NULL is specified for pk_dtex, the definition of the task exception handling routine for the task is cancelled. At this
time, the task pending exception code is cleared to 0, and the task exception handling is disabled.

1) Task ID (tskid)

Specify the task ID to define a task exception handling routine for tskid. Specifying tskid = TSK_SELF (=0) means

that the invoking task itself is specified.

2) Task exception handling routine attribute (texatr)
Only TA_HLNG can be specified for texatr.

- TA_HLNG (= 0x0000)
Only C-language is supported for task exception handling routine description language.

3) Task exception handling routine start address (texrtn)
Specify the task exception handling routine start address for texrtn.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 281 of 565

RI600PX

CHAPTER 19 SERVICE CALLS

Return value

Macro Value Description
E_OK 0 Normal completion.
Reserved attribute
E_RSATR -11
- texatr!'= TA_HLNG
Parameter error.
E_PAR -17
- pk_dtex '= NULL and texrtn == NULL
Invalid ID number.
E_ID -18 - tskid < 0
- tskid > VTMAX_TSK
Context error.
- This service call was issued in the CPU locked state.
E_CTX -25 - This service call was issued from non-task.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
E_MACV 26 - Stack pointer points out of user stack for invoking task.
- pk_dtex !'= NULL and the operand-read access to the area indicated by
pk_ctsk has not been permitted to the invoking task.
Object access violation.
E_OACV -27
- The invoking task does not belong to trusted domain.
Non-existent object.
E_NOEXS -42
- The task specified by tskid does not exist.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

REN ESNS Page 282 of 565

RI600PX CHAPTER 19 SERVICE CALLS

ras_tex
iras_tex

Outline

Raise task exception.

C format
ER ras_tex (ID tskid, TEXPTN rasptn);
ER iras tex (ID tskid, TEXPTN rasptn);
Parameter(s)
I/0 Parameter Description
ID number of the task.
I | 1D tskid; TSK_SELF: Invoking task.
Value: ID number of the task.
| TEXPTN rasptn; Task exception code to be requested.
Explanation

This service call requests task exception handling for the task indicated by tskid. The task pending exception code for the
task is ORed with the value indicated by rasptn.

When the conditions for starting task exception handling routine are satisfied, the task exception handling routine is
invoked. Please refer to “6.2.3 The starting conditions of task exception handling routines” for the conditions for starting
task exception handling routine.

When a task exception handling routine is invoked, the task pending exception code is cleared to 0, and the task exception
handling is disabled. The pending exception code before clear and extended information for the task are passed to the
task exception handling routine.

At the return from a task exception handling routine, the task exception is enabled, and the task restarts execution from
the point immediately before the start of the task exception handling routine.

When a task exception handling routine returns, the RIGOOPX saves context registers for the task to the user stack. If the
user stack is overflow, system goes down.

It is necessary to release from CPU locked state by the end of a task exception handling routine when shifting to the CPU
locked state in a task exception handling routine. If CPU is locked at the end of a task exception handling routine, system
goes down.

The interrupt priority level (PSW.IPL) before and after the start of a task exception handling routine is not changed. And
the interrupt priority level before and after the return from a task exception handling routine is not changed. When the inter-
rupt priority level at the end of a task exception handling routine is higher than the kernel interrupt mask level, system goes
down.

Return value

Macro Value Description
E OK 0 Normal completion.
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 283 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

Macro Value Description
Parameter error.
E_PAR -17
- rasptn ==
Invalid ID number.
- id <
E D 18 tskid <0
- tskid > VTMAX_TSK
- When iras_tex was issued from a non-task, TSK_SELF was specified for tskid.
Context error.
- This service call was issued in the CPU locked state.
E_CTX 25 - The iras_tex was issued from task.
- The ras_tex was issued from non-task.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation. (only for ras_tex)
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Object state error.
E_OBJ -41 - Specified task is neither in the WAITING state nor WAITING-SUSPENDED
state.
Non-existent object.
E_NOEXS -42
- The task specified by tskid does not exist.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 284 of 565

Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

dis_tex

Outline

Disable task exception.

C format

ER dis_tex

Parameter(s)

None.

Explanation

(void) ;

This service call disables task exception handling for the invoking task.

Return value

Macro Value Description
E_OK 0 Normal completion.
Context error.
- This service call was issued from a non-task.
E_CTX -25 - This service call was issued in the CPU locked state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Object state error.
E_OBJ -41
- A task exception handling routine is not defined for the invoking task.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

REN ESNS Page 285 of 565

RI600PX

CHAPTER 19 SERVICE CALLS

ena_tex

Outline

Enable task exception.

C format

ER ena_ tex

Parameter(s)

None.

Explanation

(void) ;

This service call enables task exception handling for the invoking task.

Return value

Macro Value Description
E_OK 0 Normal completion.
Context error.
- This service call was issued from a non-task.
E_CTX -25 - This service call was issued in the CPU locked state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Object state error.
E_OBJ -41
- A task exception handling routine is not defined for the invoking task.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS Page 286 of 565

RI600PX CHAPTER 19 SERVICE CALLS

sns_tex

Outline

Reference task exception disabled state.

C format

BOOL sns_tex (void);

Parameter(s)

None.

Explanation

This service call returns TRUE if the task in the RUNNING state is in the task exception disabled state, and otherwise
returns FALSE. Table 19-7 shows the details.

Table 19-7 Return value of sns_tex

Task in the Task exception handling Task exception disabled Return
RUNNING routine for the task in the state for the task in the value Note
state RUNNING state RUNNING state
Enabled state FALSE
Defined
Disabled state TRUE
Exist When task exception han-
Not defined Disabled state TRUg | diing routine is not defined,
task exception handling is
disabled.
Not exist - - TRUE
Return value
Macro Value Description
TRUE 1 Normal completion (task exception disabled state).
FALSE 0 Normal completion (task exception enabled state).
Context error.
E_CTX -25 - This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
R20UT0964EJ0101 Rev.1.01 .IENESAS Page 287 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

ref_tex
iref_tex

Outline

Reference task exception state.

C format
ER ref tex (ID tskid, T RTEX *pk rtex);
ER iref tex (ID tskid, T RTEX *pk rtex);
Parameter(s)
I/0 Parameter Description
ID number of the task.
| ID tskid; TSK_SELF: Invoking task.
Value: ID number of the task.
0] T RTEX *pk rtex; Pointer to the packet returning the task exception state.
[Task exception state packet: T_RTEX]
typedef struct t rtex {
STAT texstat; /*Task exception handling state*/
UINT pndptn; /*Pending exception code*/
} T RTEX;
Explanation

Stores task exception state of the task specified by parameter tskid in the area specified by parameter pk_rtex.

- tskstat
Stores task exception handling state.
TTEX_ENA: Task exception enabled state
TTEX_DIS: Task exception disabled state
- pndptn

Stores the pending exception code.

Return value

Macro Value Description
E_OK 0 Normal completion.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 288 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

Macro Value Description
Parameter error.
E_PAR -17
- pk_rtex == NULL
Invalid ID number.
- tskid<0
E_ID -18 - tskid > VTMAX_TSK
- When this service call was issued from a non-task, TSK_SELF was specified
for tskid.
Context error.
- This service call was issued in the CPU locked state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
E_CTX -25 level”.

Note When the iref_tex is issued from task or the ref_tex is issued from non-task,
the context error is not detected and normal operation of the system is not
guaranteed.

Memory access violation. (only for ref_tex)

E_MACV -26 - The operand-write access to the area indicated by pk rtex has not been
permitted to the invoking task.

Non-existent object.

E_NOEXS -42
- The task specified by tskid does not exist.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 289 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

19.2.4 Synchronization and communication functions (semaphores)

The following shows the service calls provided by the RIGOOPX as the synchronization and communication functions
(semaphores).

Table 19-8 Synchronization and Communication Functions (Semaphores)

Service Call Function Useful Range
cre_sem Create semaphore Task
acre_sem Create semaphore (automatic ID assignment) Task
del_sem Delete semaphore Task
wai_sem Acquire semaphore resource (waiting forever) Task
pol_sem Acquire semaphore resource (polling) Task
ipol_sem Acquire semaphore resource (polling) Non-task
twai_sem Acquire semaphore resource (with time-out) Task
sig_sem Release semaphore resource Task
isig_sem Release semaphore resource Non-task
ref_sem Reference semaphore state Task
iref_sem Reference semaphore state Non-task
R20UT0964EJ0101 Rev.1.01 RENESAS Page 290 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

cre_sem
acre_sem

Outline

Create semaphore.

C format

ER cre sem (ID semid, T CSEM *pk csem);
ER ID acre sem (T CSEM *pk csem);

Parameter(s)
I/0 Parameter Description
| D semid; ID number of the semaphore.
| T CSEM *pk csem; Pointer to the packet containing the semaphore creation information.

[Semaphore creation information packet : T_CSEM]

typedef struct t csem {

ATR sematr; /*Semaphore attribute*/
UINT isemcnt; /*Initial semaphore count*/
UINT maxsem; /*Maximum semaphore count*/
} T CSEM;
Explanation

This service call can be called from tasks that belong to Trusted Domain.
The cre_sem creates a semaphore with semaphore ID indicated by semid according to the content of pk_csem. The
acre_sem creates a semaphore according to the content of pk_csem, and returns the created semaphore ID.

1) Semaphore attribute (sematr)
The following are specified for sematr.

sematr := (TA TFIFO | TA TPRI)

- TA_TFIFO (= 0x0000)
Task wait queue is managed in FIFO order.

- TA_TPRI (= 0x0001)
Task wait queue is managed in task current priority order. Among tasks with the same priority, they are queued in
FIFO order.

2) Initial semaphore count (isemcnt)
Specify initial semaphore count within the range from 0 to maxsem.

3) Maximum semaphore count (maxsem)
Specify maximum semaphore count within the range from 1 to TMAX_MAXSEM (= 65535).

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 291 of 565
Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

Return value

Macro Value Description
- P\?:I'S;e Normal completion of acre_sem. (Created semaphore ID)
E _OK 0 Normal completion of cre_sem.
Reserved attribute
E_RSATR -11

- Either of bits in sematr except bit0 is 1.

Parameter error.
- pk_csem == NULL
E_PAR -17 - maxsem ==
- maxsem > TMAX_MAXSEM

- maxsem < jsemcnt

Invalid ID number. (only for cre_sem)
E_ID -18 - semid<0
- semid > VTMAX_SEM

Context error.

- This service call was issued in the CPU locked state.

E_CTX -25 - This service call was issued from non-task.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
E_MACV 26 - Stack pointer points out of user stack for invoking task.
- The operand-read access to the area indicated by pk csem has not been
permitted to the invoking task.
Object access violation.
E_OACV -27
- The invoking task does not belong to trusted domain.
E_NOID -34 No ID number available.(only for acre_sem)
Object state error. (only for cre_sem)
E_OBJ -41
- The semaphore specified by semid exists.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 292 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

del_sem

Outline

Delete semaphore.

C format
ER del sem (ID semid);
Parameter(s)
I/0 Parameter Description
| D semid; ID number of the semaphore.
Explanation

This service call can be called from tasks that belong to Trusted Domain.

This service call deletes the semaphore indicated by semid.

When there are waiting tasks for the target semaphore by using wai_sem or twai_sem, this service call cancels the WAIT-
ING state of the tasks and returns E_DLT as a return value of the wai_sem or twai_sem.

Return value

Macro Value Description

E_OK 0 Normal completion.

Invalid ID number.
E_ID -18 - semid<0
- semid > VTMAX_SEM

Context error.

- This service call was issued in the CPU locked state.
E_CTX -25 - This service call was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask

level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Object access violation.
E_OACV -27
- The invoking task does not belong to trusted domain.
Non-existent object.
E_NOEXS -42
- The semaphore specified by semid does not exist.
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 293 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

wai_sem

Outline

Acquire semaphore resource (waiting forever).

C format
ER wail sem (ID semid);
Parameter(s)
I/0 Parameter Description
| D semid; ID number of the semaphore.
Explanation

This service call acquires a resource from the semaphore specified by parameter semid (subtracts 1 from the semaphore
counter).

If no resources are acquired from the target semaphore when this service call is issued (no available resources exist), this
service call does not acquire resources but queues the invoking task to the target semaphore wait queue and moves it
from the RUNNING state to the WAITING state (resource acquisition wait state).

The WAITING state for a semaphore resource is cancelled in the following cases.

WAITING State for a Semaphore Resource Cancel Operation Return Value
The resource was released to the target semaphore as a result of issuing sig_sem. E_OK
The resource was released to the target semaphore as a result of issuing isig_sem. E_OK
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
Forced release from waiting (accept del_sem while waiting). E_DLT
Note Invoking tasks are queued to the target semaphore wait queue in the order specified at creating the sema-

phore (FIFO order or current priority order).

Return value

Macro Value Description

E OK 0 Normal completion.

Invalid ID number.
E_ID -18 - semid<0
- semid > VTMAX_SEM

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 294 of 565
Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

Macro Value Description
Context error.
- This service call was issued from a non-task.
E_CTX 25 - This service call was issued in the CPU locked state.
- This service call was issued in the dispatching disabled state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Non-existent object.
E_NOEXS -42
- The semaphore specified by semid does not exist.
Forced release from the WAITING state.
E_RLWAI -49
- Accept rel_wail/irel_wai while waiting.
Waiting object deleted.
E_DLT -51
- Accept del_sem while waiting.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

REN ESNS Page 295 of 565

RI600PX CHAPTER 19 SERVICE CALLS

pol_sem
ipol_sem

Outline

Acquire semaphore resource (polling).

C format

ER pol sem (ID semid);
ER isem sem (ID semid);

Parameter(s)

I/0 Parameter Description

| D semid; ID number of the semaphore.

Explanation

This service call acquires a resource from the semaphore specified by parameter semid (subtracts 1 from the semaphore
counter).

If a resource could not be acquired from the target semaphore (semaphore counter is set to 0) when this service call is
issued, the counter manipulation processing is not performed but “E_TMOUT” is returned.

Return value

Macro Value Description

E_OK 0 Normal completion.

Invalid ID number.
E_ID -18 - semid<0
- semid > VTMAX_SEM

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
E_CTX -25 level”.

Note When the ipol_sem is issued from task or the pol_sem is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.

Non-existent object.

E_NOEXS -42
- The semaphore specified by semid does not exist.
E_TMOUT -50 Polling failure.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 296 of 565

Sep 20, 2013

RI600PX

CHAPTER 19

SERVICE CALLS

twai_sem

Outline

Acquire semaphore resource (with time-out).

C format
ER twai sem (ID semid, TMO tmout);
Parameter(s)
I/0 Parameter Description
| D semid; ID number of the semaphore.
Specified time-out (in millisecond).
I T™MO tmout; TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified time-out.
Explanation

This service call acquires a resource from the semaphore specified by parameter semid (subtracts 1 from the semaphore

counter).

If no resources are acquired from the target semaphore when service call is issued this (no available resources exist), this
service call does not acquire resources but queues the invoking task to the target semaphore wait queue and moves it
from the RUNNING state to the WAITING state with time-out (resource acquisition wait state).
The WAITING state for a semaphore resource is cancelled in the following cases.

WAITING State for a Semaphore Resource Cancel Operation Return Value
The resource was released to the target semaphore as a result of issuing sig_sem. E OK
The resource was released to the target semaphore as a result of issuing isig_sem. E OK
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
The time specified by tmout has elapsed. E_TMOUT
Forced release from waiting (accept del_sem while waiting). E_DLT

Note 1

Note 2

Invoking tasks are queued to the target semaphore wait queue in the order specified at creating the sema-
phore (FIFO order or current priority order).

TMO_FEVR is specified for wait time fmout, processing equivalent to wai_sem will be executed. When
TMO_POL is specified, processing equivalent to pol_sem will be executed.

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS

Page 297 of 565

RI600PX

CHAPTER 19 SERVICE CALLS

Return value

Macro Value Description
E_OK 0 Normal completion.
Parameter error.
E_PAR -17 - tmout < -1
- tmout > (0Ox7FFFFFFF - TIC_NUME)/ TIC_DENO
Invalid ID number.
E_ID -18 - semid<0
- semid > VTMAX_SEM
Context error.
- This service call was issued from a non-task.
E_CTX 25 - This service call was issued in the CPU locked state.
- This service call was issued in the dispatching disabled state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Non-existent object.
E_NOEXS -42
- The semaphore specified by semid does not exist.
Forced release from the WAITING state.
E_RLWAI -49
- Accept rel_waifirel_wai while waiting.
E_TMOUT -50 Polling failure or specified time has elapsed.
Waiting object deleted.
E_DLT -51
- Accept del_sem while waiting.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS Page 298 of 565

RI600PX

CHAPTER 19 SERVICE CALLS

sig_sem
isig_sem

Outlin

e

Release semaphore resource.

C format

ER
ER

Parameter(s)

sig sem (ID semid);

isig _sem (ID semid);

1’0

Parameter

Description

ID

semid;

ID number of the semaphore.

Explanation

These service calls releases the resource to the semaphore specified by parameter semid (adds 1 to the semaphore

counter).

If a task is queued in the wait queue of the target semaphore when this service call is issued, the counter manipulation
processing is not performed but the resource is passed to the relevant task (first task of wait queue).

As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (WAITING state for a
semaphore resource) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

Note

Return value

With the RIG00PX, the maximum possible number of semaphore resources is defined at semaphore creation.
If the number of resources exceeds the maximum resource count, this service call therefore does not release
the acquired resources (addition to the semaphore counter value) but returns E_QOVR.

Macro Value Description
E OK 0 Normal completion.
Invalid ID number.
E_ID -18 - semid<0
- semid > VTMAX_SEM
Context error.
- This service call was issued in the CPU locked state.
E_CTX 25 - The isig_sem was issued from task.
- The sig_sem was issued from non-task.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS

Page 299 of 565

RIG00PX CHAPTER 19 SERVICE CALLS
Macro Value Description
Memory access violation. (only for sig_sem)
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Non-existent object.
E_NOEXS -42
- The semaphore specified by semid does not exist.
Queuing overflow.
E_QOVR -43
- Resource count exceeded the maximum resource count.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 300 of 565

RI600PX CHAPTER 19 SERVICE CALLS

ref_sem
iref_sem

Outline

Reference semaphore state.

C format
ER ref sem (ID semid, T RSEM *pk rsem);
ER iref sem (ID semid, T RSEM *pk rsem);
Parameter(s)
I/0 Parameter Description
| D semid; ID number of the semaphore.
@) T RSEM *pk rsem; Pointer to the packet returning the semaphore state.

[Semaphore state packet: T_RSEM]

typedef struct t rsem ({

ID wtskid; /*Existence of waiting task*/
UINT semcnt; /*Current resource count*/
} T RSEM;
Explanation

Stores semaphore state packet (ID number of the task at the head of the wait queue, current resource count, etc.) of the
semaphore specified by parameter semid in the area specified by parameter pk_rsem.

- wiskid
Stores whether a task is queued to the semaphore wait queue.
TSK_NONE: No applicable task
Value: ID number of the task at the head of the wait queue
- semcnt

Stores the current resource count.

Return value

Macro Value Description
E_OK 0 Normal completion.
Parameter error.
E_PAR -17
- pk_rsem == NULL
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 301 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

Macro Value Description

Invalid ID number.
E_ID -18 - semid<0
- semid > VTMAX_SEM

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
E_CTX -25 level”.

Note When the iref_sem is issued from task or the ref_sem is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.

Memory access violation. (only for ref_sem)

E_MACV -26 - The operand-write access to the area indicated by pk _rsem has not been
permitted to the invoking task.

Non-existent object.

E_NOEXS -42
- The semaphore specified by semid does not exist.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 302 of 565

Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

19.2.5 Synchronization and communication functions (eventflags)

The following shows the service calls provided by the RIGOOPX as the synchronization and communication functions

(eventflags).
Table 19-9 Synchronization and Communication Functions (Eventflags)
Service Call Function Useful Range
cre_flg Create eventflag Task
acre_flg Create eventflag (automatic ID assignment) Task
del_flg Delete eventflag Task
set_flg Set eventflag Task
iset_flg Set eventflag Non-task
clr_flg Clear eventflag Task
iclr_flg Clear eventflag Non-task
wai_flg Wait for eventflag (waiting forever) Task
pol_flg Wait for eventflag (polling) Task
ipol_flg Wait for eventflag (polling) Non-task
twai_flg Wait for eventflag (with time-out) Task
ref_flg Reference eventflag state Task
iref_flg Reference eventflag state Non-task

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 303 of 565

RI600PX

CHAPTER 19 SERVICE CALLS

cre_flg
acre_flg
Outline

Create eventflag.

C format
ER cre flg (ID flgid, T CFLG *pk cflg);
ER ID acre flg (T CFLG *pk cflg);
Parameter(s)
I/0 Parameter Description
| D flgid; ID number of the eventflag.
| T CFLG *pk cflg; Pointer to the packet containing the eventflag creation information.

[Eventflag creation information packet : T_CFLG]

typedef struct t cflg {
ATR flgatr; /*Eventflag attribute*/
FLGPTN iflgptn; /*Initial bit pattern*/
} T CFLG;
Explanation

This service call can be called from tasks that belong to Trusted Domain.

The cre_flg creates a eventflag with eventflag ID indicated by flgid according to the content of pk_cflg. The acre_flg
creates a eventflag according to the content of pk_cflg, and returns the created eventflag ID.

1) Eventflag attribute (flgatr)
The following are specified for figatr.

flgatr :=

- TA_TFIFO (= 0x0000)
Task wait queue is managed in FIFO order.

- TA_TPRI (= 0x0001)

((TA TFIFO || TA TPRI) | (TA WSGL

|| TA WMUL) |

[TA CLR])

Task wait queue is managed in task current priority order. Among tasks with the same priority, they are queued in

FIFO order.

When TA_CLR attribute is not specified, even if there is the TA_TPRI attribute specified, the queue is managed in
the same way as for the TA_TFIFO attribute. This behavior falls outside pITRON4.0 specification.

- TA_WSGL (= 0x0000)
Does not permit multiple tasks to wait for the eventflag.

- TA_WMUL (= 0x0002)
Permit multiple tasks to wait for the eventflag.

R20UT0964EJ0101 Rev.1.01

ENESAS
Sep 20, 2013 -2

Page 304 of 565

RI600PX CHAPTER 19 SERVICE CALLS

- TA_CLR (= 0x0004)
All the bits of the eventflag are cleared when wai_flg, pol_flg, ipol_flg or twai_flg ends normally.

2) Initial bit pattern (ifigptn)
Specify initial eventflag bit pattern.

Return value

Macro Value Description
- P\?:Ilﬂ\ée Normal completion of acre_flg. (Created eventflag ID)
E_OK 0 Normal completion of cre_flg.
Reserved attribute
E_RSATR -11
- Either of bits in flgatr except bit0, bit1 and bit2 is 1.
Parameter error.
E_PAR -17

- pk_cflg == NULL

Invalid ID number. (only for cre_flg)
E_ID -18 - flgid <0
- flgid > VTMAX_FLG

Context error.

- This service call was issued in the CPU locked state.

E_CTX -25 - This service call was issued from non-task.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
E_MACV 26 - Stack pointer points out of user stack for invoking task.
- The operand-read access to the area indicated by pk cflg has not been
permitted to the invoking task.
Object access violation.
E_OACV -27
- The invoking task does not belong to trusted domain.
E_NOID -34 No ID number available.(only for acre_flg)
Object state error. (only for cre_flg)
E_OBJ -41
- The eventflag specified by flgid exists.
R20UT0964EJ0101 Rev.1.01 .IENESAS Page 305 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

del_flg

Outline

Delete eventflag.

C format
ER del flg (ID flgid);
Parameter(s)
I/0 Parameter Description
| 1D flgid; ID number of the eventflag.
Explanation

This service call can be called from tasks that belong to Trusted Domain.

This service call deletes the eventflag indicated by flgid.

When there are waiting tasks for the target eventflag by using wai_flg or twai_flg, this service call cancels the WAITING
state of the tasks and returns E_DLT as a return value of the wai_flg or twai_flg.

Return value

Macro Value Description

E_OK 0 Normal completion.

Invalid ID number.
E_ID -18 - flgid<0
- flgid > VTMAX_FLG

Context error.

- This service call was issued in the CPU locked state.
E_CTX -25 - This service call was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask

level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Object access violation.
E_OACV -27
- The invoking task does not belong to trusted domain.
Non-existent object.
E_NOEXS -42
- The eventflag specified by figid does not exist.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 306 of 565

Sep 20, 2013

RIG00PX CHAPTER 19 SERVICE CALLS
set_flg
iset_flg
Outline
Set eventflag.
C format
ER set flg (ID flgid, FLGPTN setptn);
ER iset flg (ID flgid, FLGPTN setptn);
Parameter(s)
I/0 Parameter Description
| D flgid; ID number of the eventflag.
| FLGPTN setptn; Bit pattern to set.
Explanation

These service calls set the result of ORing the bit pattern of the eventflag specified by parameter flgid and the bit pattern
specified by parameter setptn as the bit pattern of the target eventflag.
After that, these service calls evaluate whether the wait condition of the tasks in the wait queue is satisfied. This evalua-
tion is done in order of the wait queue. If the wait condition is satisfied, the relevant task is unlinked from the wait queue at
the same time as bit pattern setting processing. As a result, the relevant task is moved from the WAITING state (WAITING
state for an eventflag) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state. At this
time, the bit pattern of the target event flag is cleared to 0 and this service call finishes processing if the TA_CLR attribute
is specified for the target eventflag.

Return value

Macro Value Description
E_OK 0 Normal completion.
Invalid ID number.
E_ID -18 - flgid<0
- figid > VTMAX_FLG
Context error.
- This service call was issued in the CPU locked state.
E_CTX 25 - The iset_flg was issued from task.
- The set_flg was issued from non-task.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
R20UT0964EJ0101 Rev.1.01 .IENESAS Page 307 of 565

Sep 20, 2013

RIG00PX CHAPTER 19 SERVICE CALLS
Macro Value Description
Memory access violation. (only for set_flg)
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Non-existent object.
E_NOEXS -42
- The eventflag specified by flgid does not exist.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 308 of 565

RIG00PX CHAPTER 19 SERVICE CALLS
cir_flg
iclr_flg
Outline
Clear eventflag.
C format
ER clr flg (ID flgid, FLGPTN clrptn);
ER iclr flg (ID flgid, FLGPTN clrptn);
Parameter(s)
I/0 Parameter Description
| D flgid; ID number of the eventflag.
| FLGPTN clrptn; Bit pattern to clear.
Explanation

This service call sets the result of ANDing the bit pattern set to the eventflag specified by parameter flgid and the bit
pattern specified by parameter clrptn as the bit pattern of the target eventflag.

Return value

Macro Value Description
E_OK 0 Normal completion.
Invalid ID number.
E_ID -18 - flgid<0
- figid > VTMAX_FLG
Context error.
- This service call was issued in the CPU locked state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
E_CTX -25
Note When the iclr_flg is issued from task or the clr_flg is issued from non-task,
the context error is not detected and normal operation of the system is not
guaranteed.
Non-existent object.
E_NOEXS -42
- The eventflag specified by flgid does not exist.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 309 of 565

RI600PX CHAPTER 19 SERVICE CALLS

wai_flg

Outline

Wait for eventflag (waiting forever).

C format
ER wai flg (ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p flgptn);
Parameter(s)
I/0 Parameter Description
| 1D flgid; ID number of the eventflag.
| FLGPTN waiptn; Wait bit pattern.
Wait mode.
|| MODE wfmode; TWF_ANDW: AND waiting condition.
TWF_ORW: OR waiting condition.
(0] FLGPIN *p flgptn; Bit pattern causing a task to be released from waiting.
Explanation

This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the required
condition specified by parameter wfmode are set to the eventflag specified by parameter flgid.

If a bit pattern that satisfies the required condition has been set for the target eventflag, the bit pattern of the target
eventflag is stored in the area specified by parameter p_flgptn.

If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued, the invoking
task is queued to the target eventflag wait queue.

As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the WAITING
state (WAITING state for an eventflag).

The WAITING state for an eventflag is cancelled in the following cases.

WAITING State for an Eventflag Cancel Operation Return Value

A bit pattern that satisfies the required condition was set to the target eventflag as a result of E OK

issuing set_flg. -

A bit pattern that satisfies the required condition was set to the target eventflag as a result of E OK

issuing iset_flg. -

Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
Forced release from waiting (accept del_flg while waiting). E_DLT

The following shows the specification format of required condition wfmode.

- wfmode == TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 310 of 565
Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

- wfmode == TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

Note 1 With the RIGOOPX, whether to enable queuing of multiple tasks to the event flag wait queue is defined at
eventflag creation. If this service call is issued for the event flag (TA_WSGL attribute) to which a wait task is
queued, therefore, “E_ILUSE” is returned regardless of whether the required condition is immediately satisfied.

TA_WSGL: Only one task is allowed to be in the WAITING state for the eventflag.
TA_WMUL: Multiple tasks are allowed to be in the WAITING state for the eventflag.

Note 2 Invoking tasks are queued to the target event flag (TA_WMUL attribute) wait queue in the order specified at
creating the eventflag (FIFO order or current priority order).
However, when the TA_CLR attribute is not specified, the wait queue is managed in the FIFO order even if the
priority order is specified. This behavior falls outside fITRON4.0 specification.

Note 3 The RIB00PX performs bit pattern clear processing (0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

Return value

Macro Value Description

E_OK 0 Normal completion.

Parameter error.

E_PAR 17 - waiptn ==
- wfmode is invalid.

- p_figptn == NULL

Invalid ID number.
E ID -18 - figid<0
- figid > VTMAX_FLG

Context error.

- This service call was issued from a non-task.
E_CTX 25 - This service call was issued in the CPU locked state.
- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Memory access violation.

E_MACV 26 - Stack pointer points out of user stack for invoking task.

- The operand-write access to the area indicated by p_figptn has not been
permitted to the invoking task.

lllegal use of service call.

E_ILUSE -28
- There is already a task waiting for an eventflag with the TA_WSGL attribute.
Non-existent object.
E_NOEXS -42
- The eventflag specified by flgid does not exist.
Forced release from the WAITING state.
E_RLWAI -49
- Accept rel_waifirel_wai while waiting.
Waiting object deleted.
E_DLT -51
- Accept del_flg while waiting.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 311 of 565

Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

pol_flg
ipol_flg

Outline

Wait for eventflag (polling).

C format
ER pol flg (ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p flgptn);
ER ipol flg (ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p flgptn);
Parameter(s)
I/0 Parameter Description
I D flgid; ID number of the eventflag.
| FLGPTN waiptn; Wait bit pattern.
Wait mode.

MODE wfmode;

TWF_ANDW: AND waiting condition.
TWF_ORW: OR waiting condition.

FLGPTN *p flgptn;

Bit pattern causing a task to be released from waiting.

Explanation

This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the required
condition specified by parameter wfmode are set to the eventflag specified by parameter figid.

If the bit pattern that satisfies the required condition has been set to the target eventflag, the bit pattern of the target
eventflag is stored in the area specified by parameter p_flgpin.

If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued, “E_TMOUT”

is returned.

The following shows the specification format of required condition wfmode.

- wfmode == TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

- wfmode == TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

Note 1

Note 2

With the RIGOOPX, whether to enable queuing of multiple tasks to the event flag wait queue is defined during
configuration. If this service call is issued for the event flag (TA_WSGL attribute) to which a wait task is
queued, therefore, “E_ILUSE” is returned regardless of whether the required condition is immediately satisfied.

TA_WSGL: Only one task is allowed to be in the WAITING state for the eventflag.

TA_WMUL: Multiple tasks are allowed to be in the WAITING state for the eventflag.
The RI600PX performs bit pattern clear processing (0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS Page 312 of 565

RI600PX CHAPTER 19 SERVICE CALLS

Return value

Macro Value Description

E_OK 0 Normal completion.

Parameter error.

E_PAR A7 - waiptn ==
- wfmode is invalid.

- p_flgptn == NULL

Invalid ID number.
E_ID -18 - flgid<0
- figid > VTMAX_FLG

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
E_CTX -25 level”.

Note When the ipol_flg is issued from task or the pol_flg is issued from non-task,
the context error is not detected and normal operation of the system is not
guaranteed.

Memory access violation. (only for pol_flg)

E_MACV -26 - The operand-write access to the area indicated by p_flgptn has not been
permitted to the invoking task.
lllegal use of service call.
E_ILUSE -28
- There is already a task waiting for an eventflag with the TA_WSGL attribute.
Non-existent object.
E_NOEXS -42
- The eventflag specified by figid does not exist.
E_TMOUT -50 Polling failure
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 313 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

twai_flg

Outline

Wait for eventflag (with time-out).

C format
ER twai flg (ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p flgptn, TMO tmout);
Parameter(s)
I/0 Parameter Description
| 1D flgid; ID number of the eventflag.
| FLGPTN waiptn; Wait bit pattern.
Wait mode.
|| MODE wfmode; TWF_ANDW: AND waiting condition.
TWF_ORW: OR waiting condition.
(0] FLGPTN *p flgptn; Bit pattern causing a task to be released from waiting.
Specified time-out (in millisecond).
I TMO tmout; TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified time-out.
Explanation

This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the required
condition specified by parameter wfmode are set to the eventflag specified by parameter flgid.

If a bit pattern that satisfies the required condition has been set for the target eventflag, the bit pattern of the target
eventflag is stored in the area specified by parameter p_figptn.

If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued, the invoking
task is queued to the target eventflag wait queue.

As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the WAITING
state (WAITING state for an eventflag).

The WAITING state for an eventflag is cancelled in the following cases.

WAITING State for an Eventflag Cancel Operation Return Value

A bift pattern that satisfies the required condition was set to the target eventflag as a result of E OK

issuing set_flg. _

A bift pa_ttern that satisfies the required condition was set to the target eventflag as a result of E OK

issuing iset_flg. -

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The time specified by tmout has elapsed. E_TMOUT
R20UT0964EJ0101 Rev.1.01 RENESAS Page 314 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

WAITING State for an Eventflag Cancel Operation Return Value

Forced release from waiting (accept del_flg while waiting). E_DLT

The following shows the specification format of required condition wfmode.

- wfmode == TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

- wfmode == TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

Note 1 With the RIBOOPX, whether to enable queuing of multiple tasks to the event flag wait queue is defined at
eventflag creation. If this service call is issued for the event flag (TA_WSGL attribute) to which a wait task is
queued, therefore, “E_ILUSE” is returned regardless of whether the required condition is immediately satisfied.

TA_WSGL: Only one task is allowed to be in the WAITING state for the eventflag.
TA_WMUL: Multiple tasks are allowed to be in the WAITING state for the eventflag.

Note 2 Invoking tasks are queued to the target event flag (TA_WMUL attribute) wait queue in the order specified at
creating the eventflag (FIFO order or current priority order).
However, when the TA_CLR attribute is not specified, the wait queue is managed in the FIFO order even if the
priority order is specified. This behavior falls outside nITRON4.0 specification.

Note 3 The RIB00PX performs bit pattern clear processing (0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

Note4 TMO_FEVR is specified for wait time tmout, processing equivalent to wai_flg will be executed. When
TMO_POL is specified, processing equivalent to pol_flg will be executed.

Return value

Macro Value Description

E_OK 0 Normal completion.

Parameter error.
- waiptn ==
- wfmode is invalid.
- p_flgptn == NULL
- tmout < -1
- tmout > (OX7TFFFFFFF - TIC_NUME)/ TIC_DENO

E_PAR 7

Invalid ID number.
E_ID -18 - figid < 0
- figid > VTMAX_FLG

Context error.

- This service call was issued from a non-task.
E_CTX 25 - This service call was issued in the CPU locked state.
- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 315 of 565
Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

Macro Value Description
Memory access violation.
E_MACV 26 - Stack pointer points out of user stack for invoking task.
- The operand-write access to the area indicated by p_flgptn has not been
permitted to the invoking task.
lllegal use of service call.
E_ILUSE -28
- There is already a task waiting for an eventflag with the TA_WSGL attribute.
Non-existent object.
E_NOEXS -42
- The eventflag specified by flgid does not exist.
Forced release from the WAITING state.
E_RLWAI -49
- Accept rel_waifirel_wai while waiting.
E_TMOUT -50 Polling failure or specified time has elapsed.
Waiting object deleted.
E_DLT -51
- Accept del_flg while waiting.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 316 of 565

Sep 20, 2013

RI600PX CHAPTER 19

SERVICE CALLS

ref_flg
iref_flg

Outline

Reference eventflag state.

C format
ER ref flg (ID flgid, T RFLG *pk rflg);
ER iref flg (ID flgid, T RFLG *pk rflg);
Parameter(s)
I/0 Parameter Description
| D flgid; ID number of the eventflag.
@) T RFLG *pk rflg; Pointer to the packet returning the eventflag state.

[Eventflag state packet: T_RFLG]

typedef struct t rflg {

ID wtskid; /*Existence of waiting task*/
FLGPTN flgptn; /*Current bit pattern*/
} T RFLG;
Explanation

Stores eventflag state packet (ID number of the task at the head of the wait queue, current bit pattern, etc.) of the eventflag

specified by parameter flgid in the area specified by parameter pk_rflg.

- wiskid
Stores whether a task is queued to the event flag wait queue.
TSK_NONE: No applicable task
Value: ID number of the task at the head of the wait queue
- flgptn

Stores the current bit pattern.

Return value

Macro Value Description
E OK 0 Normal completion.
Parameter error.
E_PAR -17
- pk_rflg == NULL
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 317 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

Macro Value Description

Invalid ID number.
E_ID -18 - flgid< 0
- figid > VTMAX_FLG

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
E_CTX -25 level”.

Note When the iref_flg is issued from task or the ref_flg is issued from non-task,
the context error is not detected and normal operation of the system is not
guaranteed.

Memory access violation. (only for ref_flg)

E_MACV -26 - The operand-write access to the area indicated by pk rflg has not been
permitted to the invoking task.
Non-existent object.
E_NOEXS -42
- The eventflag specified by flgid does not exist.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 318 of 565

Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

19.2.6 Synchronization and communication functions (data queues)

The following shows the service calls provided by the RIGOOPX as the synchronization and communication functions (data

queues).
Table 19-10 Synchronization and Communication Functions (Data Queues)
Service Call Function Useful Range
cre_dtq Create data queue Task
acre_dtq Create data queue (automatic ID assignment) Task
del_dtq Delete data queue Task
snd_dtq Send to data queue (waiting forever) Task
psnd_dtq Send to data queue (polling) Task
ipsnd_dtq Send to data queue (polling) Non-task
tsnd_dtq Send to data queue (with time-out) Task
fsnd_dtq Forced send to data queue Task
ifsnd_dtq Forced send to data queue Non-task
rcv_dtq Receive from data queue (waiting forever) Task
prcv_dtq Receive from data queue (polling) Task
iprev_dtq Receive from data queue (polling) Non-task
trcv_dtq Receive from data queue (with time-out) Task
ref_dtq Reference data queue state Task
iref_dtq Reference data queue state Non-task

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 319 of 565

RI600PX CHAPTER 19 SERVICE CALLS

cre_dtq
acre_dtq

Outline

Create data queue.

C format

ER cre dtg (ID dtgid, T CDTQ *pk cdtqg);
ER ID acre dtg (T CDTQ *pk cdtqg);

Parameter(s)
I/0 Parameter Description
| D dtgid; ID number of the data queue.
| T CDTQ *pk cdtg; Pointer to the packet containing the data queue creation information.

[Data queue creation information packet : T_CDTQ]

typedef struct t cdtg {

ATR dtgatr; /*Data queue attribute*/
UINT dtgcnt; /*Capacity of the data queue area (the number of data elements)*/
VP dtqg; /*Start address of the data queue area*/
} T CDTQ;
Explanation

This service call can be called from tasks that belong to Trusted Domain.
The cre_dtq creates a data queue with data queue ID indicated by dtqgid according to the content of pk_cdtq. The acre_dtq
creates a data queue according to the content of pk_cdltq, and returns the created data queue ID.

1) Data queue attribute (dtqatr)
The following are specified for dtqatr.

dtgatr := (TA TFIFO || TA TPRI)

- TA_TFIFO (= 0x0000)
Task wait queue for sending is managed in FIFO order.

- TA_TPRI (= 0x0001)
Task wait queue for sending is managed in task current priority order. Among tasks with the same priority, they
are queued in FIFO order.

Note Task wait queue for receiving is managed in FIFO order.

2) Capacity of the data queue area (dtqcnt), Start address of the data queue area (dtq)
The application acquires TSZ_DTQ(dtqcnt) bytes of data queue area and specifies the start address for dtq.
It is also possible to specify 0 as dtgcnt. In this case, since data cannot be stored in the data queue, the data send-
ing task or data receiving task that has performed its operation first will enter the WAITING state. The WAITING

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 320 of 565
Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

state of that task is canceled when the task of another side has performed its operation. Thus, data sending tasks
and data receiving tasks are completely synchronized. Note, dtq is disregarded when dtqcnt is 0.

Note 1

Note 3

For details of TSZ_DTQ macro, refer to “18.3.2 Macros for Data Queue”.

Note 2 The RI600PX is not concerned of anything of the access permission to the data queue area. Usually,
the data queue area should be generated to the area other than memory objects and user stacks. When
the data queue area is generated in the memory object, a task with the operand-write access permis-
sion to the memory object might rewrite data queue area by mistake.

The nITRON4.0 specification defines the function that the kernel allocates data queue area when NULL
is specified for dtq. But RIGOOPX does not support this function.

Return value

Macro Value Description
- P\?:I'S;e Normal completion of acre_dtq. (Created data queue ID)
E_OK 0 Normal completion of cre_dtq.
Reserved attribute
E_RSATR -11
- Either of bits in dtgatr except bit0 is 1.
Parameter error.
E PAR 17 - pk_cdtq == NULL
- dtqcnt > 65535
- dtqent = 0 and dtqg + TSZ_DTQ(dtqcnt) > 0x100000000
Invalid ID number. (only for cre_dtq)
E_ID -18 - dtqid <0
- dtqid > VTMAX_DTQ
Context error.
- This service call was issued in the CPU locked state.
E_CTX -25 - This service call was issued from non-task.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
E_MACV 26 - Stack pointer points out of user stack for invoking task.
- The operand-read access to the area indicated by pk_cdtq has not been
permitted to the invoking task.
Object access violation.
E_OACV -27
- The invoking task does not belong to trusted domain.
Insufficient memory.
E_NOMEM -33
- dtqent = 0 and dfq == NULL
E_NOID -34 No ID number available.(only for acre_dtq)
Object state error. (only for cre_dtq)
E_OBJ -41
- The data queue specified by dfqid exists.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

REN ESNS Page 321 of 565

RI600PX CHAPTER 19 SERVICE CALLS

del_dtq

Outline

Delete data queue.

C format
ER del dtg (ID dtqgid);
Parameter(s)
I/0 Parameter Description
| D dtgid; ID number of the data queue.
Explanation

This service call can be called from tasks that belong to Trusted Domain.

This service call deletes the data queue indicated by dtqid.

When there are waiting tasks for the target data queue by using snd_dtq, tsnd_dtq, rcv_dtq or trcv_dtq, this service call
cancels the WAITING state of the tasks and returns E_DLT as a return value of the snd_dtq, tsnd_dtq, rcv_dtq or trcv_dtq.

Return value

Macro Value Description

E_OK 0 Normal completion.

Invalid ID number.
E_ID -18 - dtqid<0
- dtqid > VTMAX_DTQ

Context error.

- This service call was issued in the CPU locked state.
E_CTX -25 - This service call was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask

level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Object access violation.
E_OACV -27
- The invoking task does not belong to trusted domain.
Non-existent object.
E_NOEXS -42
- The data queue specified by dtgid does not exist.
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 322 of 565

Sep 20, 2013

RI600PX

CHAPTER 19

SERVICE CALLS

snd_dtq

Outline

Send to data queue (waiting forever).

C format
ER snd _dtqg (ID dtgid, VP_INT data);
Parameter(s)
I/0 Parameter Description
| D dtgid; ID number of the data queue.

VP _INT data;

Data element to be sent to the data queue.

Explanation

This service call processes as follows according to the situation of the data queue specified by the parameter dtqid.

- There is a task in the reception wait queue.
This service call transfers the data specified by parameter data to the task in the top of the reception wait queue. As
a result, the task is unlinked from the reception wait queue and moves from the WAITING state (data reception wait

state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

- There is no task neither in the reception wait queue and transmission wait queue and there is available space in the
data queue.
This service call stores the data specified by parameter data to the data queue.

- There is no task neither in the reception wait queue and transmission wait queue and there is no available space in
the data queue, or there is a task in the transmission wait queue.
This service call queues the invoking task to the transmission wait queue of the target data queue and moves it from
the RUNNING state to the WAITING state (data transmission wait state).

The sending WAITING state for a data queue is cancelled in the following cases.

Sending WAITING State for a Data Queue Cancel Operation Return Value
Available space was secured in the data queue area as a result of issuing rcv_dtq. E_OK
Available space was secured in the data queue area as a result of issuing prcv_dtqg. E OK
Available space was secured in the data queue area as a result of issuing iprcv_dtqg. E_OK
Available space was secured in the data queue area as a result of issuing trcv_dtq. E_OK
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
The data queue is reset as a result of issuingissuing vrst_dtq. EV_RST
Forced release from waiting (accept del_dtq while waiting). E_DLT

Note 1

Data is written to the data queue area in the order of the data transmission request.

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS

Page 323 of 565

RI600PX

CHAPTER 19 SERVICE CALLS

Note 2 Invoking tasks are queued to the transmission wait queue of the target data queue in the order specified at
creating the data queue (FIFO order or current priority order).

Return value

Macro Value Description
E_OK 0 Normal completion.
Invalid ID number.
E_ID -18 - dtqid <0
- dtqid > VTMAX_DTQ
Context error.
- This service call was issued from a non-task.
E_CTX 25 - This service call was issued in the CPU locked state.
- This service call was issued in the dispatching disabled state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Non-existent object.
E_NOEXS -42
- The data queue specified by dtgid does not exist.
Forced release from the WAITING state.
E_RLWAI -49
- Accept rel_wailirel_wai while waiting.
Waiting object deleted.
E_DLT -51
- Accept del_dtq while waiting.
EV_RST -127 Released from WAITING state by the object reset (vrst_dtq)

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

REN ESNS Page 324 of 565

RI600PX CHAPTER 19 SERVICE CALLS

psnd_dtq
ipsnd_dtq
Outline

Send to data queue (polling).

C format
ER psnd_dtqg (ID dtqgid, VP_INT data);
ER ipsnd dtg (ID dtgid, VP _INT data);
Parameter(s)
I/0 Parameter Description
| D dtgid; ID number of the data queue.
I VP_INT data; Data element to be sent to the data queue.
Explanation

These service calls process as follows according to the situation of the data queue specified by the parameter dtqid.

- There is a task in the reception wait queue.
These service calls transfer the data specified by parameter data to the task in the top of the reception wait queue. As
a result, the task is unlinked from the reception wait queue and moves from the WAITING state (data reception wait
state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

- There is no task neither in the reception wait queue and transmission wait queue and there is available space in the
data queue.
These service calls store the data specified by parameter data to the data queue.

- There is no task neither in the reception wait queue and transmission wait queue and there is no available space in
the data queue, or there is a task in the transmission wait queue.
These service calls return “E_TMOUT”.

Note Data is written to the data queue area of the target data queue in the order of the data transmission request.

Return value

Macro Value Description

E_OK 0 Normal completion.

Invalid ID number.
E_ID -18 - dtqid<0
- dtqid > VTMAX_DTQ

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 325 of 565
Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

Macro Value Description
Context error.
- This service call was issued in the CPU locked state.
E_CTX 25 - The ipsnd_dtq was issued from task.
- The psnd_dtq was issued from non-task.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation. (only for psnd_dtq)
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Non-existent object.
E_NOEXS -42
- The data queue specified by dtgid does not exist.
E_TMOUT -50 Polling failure.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS Page 326 of 565

RI600PX

CHAPTER 19

SERVICE CALLS

tsnd_dtq

Outline

Send to data queue (with time-out).

C format
ER tsnd dtg (ID dtgid, VP _INT data, TMO tmout):;
Parameter(s)
I/0 Parameter Description
| D dtgid; ID number of the data queue.
I VP INT data; Data element to be sent to the data queue.
Specified time-out (in millisecond).
I TMO tmout; TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified time-out.
Explanation

This service call processes as follows according to the situation of the data queue specified by the parameter dtqid.

- There is a task in the reception wait queue.
This service call transfers the data specified by parameter data to the task in the top of the reception wait queue. As
a result, the task is unlinked from the reception wait queue and moves from the WAITING state (data reception wait

state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

- There is no task neither in the reception wait queue and transmission wait queue and there is available space in the

data queue.

This service call stores the data specified by parameter data to the data queue.

- There is no task neither in the reception wait queue and transmission wait queue and there is no available space in
the data queue, or there is a task in the transmission wait queue.
This service call queues the invoking task to the transmission wait queue of the target data queue and moves it from
the RUNNING state to the WAITING state with time (data transmission wait state).
The sending WAITING state for a data queue is cancelled in the following cases.

Sending WAITING State for a Data Queue Cancel Operation Return Value
Available space was secured in the data queue area as a result of issuing rcv_dtq. E_OK
Available space was secured in the data queue area as a result of issuing prcv_dtq. E_OK
Available space was secured in the data queue area as a result of issuing iprcv_dtq. E_OK
Available space was secured in the data queue area as a result of issuing trcv_dtq. E OK
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
The data queue is reset as a result of issuing vrst_dtq. EV_RST

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 327 of 565

RI600PX

CHAPTER 19 SERVICE CALLS

Sending WAITING State for a Data Queue Cancel Operation

Return Value

The time specified by tmout has elapsed.

E_TMOUT

Forced release from waiting (accept del_dtq while waiting).

E_DLT

Note 1 Data is written to the data queue area of the target data queue in the order of the data transmission request.

Note 2 Invoking tasks are queued to the transmission wait queue of the target data queue in the order specified at

creating the data queue (FIFO order or current priority order).

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to snd_dtq will be executed. When

TMO_POL is specified, processing equivalent to psnd_dtg will be executed.

Return value

Macro Value Description
E_OK 0 Normal completion.
Parameter error.
E_PAR -17 - tmout < -1
- tmout > (OX7FFFFFFF - TIC_NUME)/ TIC_DENO
Invalid ID number.
E_ID -18 - dtqid<0
- dtqid > VTMAX_DTQ
Context error.
- This service call was issued from a non-task.
E_CTX 25 - This service call was issued in the CPU locked state.
- This service call was issued in the dispatching disabled state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Non-existent object.
E_NOEXS -42
- The data queue specified by dtgid does not exist.
Forced release from the WAITING state.
E_RLWAI -49
- Accept rel_waifirel_wai while waiting.
E_TMOUT -50 Polling failure or specified time has elapsed.
Waiting object deleted.
E_DLT -51
- Accept del_dtg while waiting.
EV_RST -127 Released from WAITING state by the object reset (vrst_dtq)

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS Page 328 of 565

RIG00PX CHAPTER 19 SERVICE CALLS
fsnd_dtq
ifsnd_dtq
Outline
Forced send to data queue.
C format
ER fsnd dtqg (ID dtqgid, VP_INT data);
ER ifsnd dtg (ID dtgid, VP _INT data);
Parameter(s)
I/0 Parameter Description
| D dtgid; ID number of the data queue.
I VP_INT data; Data element to be sent to the data queue.
Explanation

These service calls process as follows according to the situation of the data queue specified by the parameter dtqid.

- There is a task in the reception wait queue.
This service call transfers the data specified by parameter data to the task in the top of the reception wait queue. As
a result, the task is unlinked from the reception wait queue and moves from the WAITING state (data reception wait

state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

- There is no task neither in the reception wait queue and transmission wait queue.
This service call stores the data specified by parameter data to the data queue.
If there is no available space in the data queue, this service call deletes the oldest data in the data queue before
storing the data specified by data to the data queue.

Return value

Macro Value Description
E_OK 0 Normal completion.
Invalid ID number.
E_ID -18 - diqid<0
- dtqid > VTMAX_DTQ
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 329 of 565

Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

Macro

Value

Description

E_CTX

Context error.

- This service call was issued in the CPU locked state.
- The ifsnd_dtg was issued from task.
- The fsnd_dtq was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_MACV

Memory access violation. (only for fsnd_dtq)

- Stack pointer points out of user stack for invoking task.

E_ILUSE

lllegal use of service call.

- The capacity of the data queue area is 0.

E_NOEXS

Non-existent object.

- The data queue specified by dtgid does not exist.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS Page 330 of 565

RI600PX CHAPTER 19 SERVICE CALLS
rcv_dtq
Outline
Receive from data queue (waiting forever).
C format
ER rcv_dtg (ID dtgid, VP_INT *p data);
Parameter(s)
I/0 Parameter Description
| D dtgid; ID number of the data queue.
O | VP_INT *p data; Data element received from the data queue.
Explanation

This service call processes as follows according to the situation of the data queue specified by the parameter dtqid.

- There is a data in the data queue.

This service call takes out the oldest data from the data queue and stores the data to the area specified by p_data.
When there is a task in the transmission wait queue, this service call stores the data sent by the task in the top of the
transmission wait queue and moves it from the WAITING state (data transmission wait state) to the READY state.

- There is no data in the data queue and there is a task in the transmission wait queue.
This service call stores the data specified by the task in the top of the transmission wait queue to the area specified by
p_data. As a result, the task is unlinked from the transmission wait queue and moves from the WAITING state (data
transmission wait state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.
Note, this situation is caused only when the capacity of the data queue is 0.

- There is no data in the data queue and there is no task in the transmission wait queue.
This service call queues the invoking task to the reception wait queue of the target data queue and moves it from the
RUNNING state to the WAITING state (data reception wait state).

The receiving WAITING state for a data queue is cancelled in the following cases.

Receiving WAITING State for a Data Queue Cancel Operation Return Value
Data was sent to the data queue area as a result of issuing snd_dtq. E OK
Data was sent to the data queue area as a result of issuing psnd_diq. E_OK
Data was sent to the data queue area as a result of issuing ipsnd_dtq. E_OK
Data was sent to the data queue area as a result of issuing tsnd_dtq. E_OK
Data was sent to the data queue area as a result of issuing fsnd_dtq. E_OK
Data was sent to the data queue area as a result of issuing ifsnd_dtq. E_OK
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
Forced release from waiting (accept del_dtg while waiting). E_DLT

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS

Page 331 of 565

RI600PX CHAPTER 19 SERVICE CALLS

Note Invoking tasks are queued to the reception wait queue of the target data queue in the order of the data
reception request.

Return value

Macro Value Description

E_OK 0 Normal completion.

Parameter error.
E_PAR -17
- p_data == NULL

Invalid ID number.
E_ID -18 - dtqid <0
- dtgid > VTMAX_DTQ

Context error.

- This service call was issued from a non-task.
E_CTX 25 - This service call was issued in the CPU locked state.
- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Memory access violation.

E_MACV 26 - Stack pointer points out of user stack for invoking task.

- The operand-write access to the area indicated by p_dafa has not been
permitted to the invoking task.

Non-existent object.

E_NOEXS -42
- The data queue specified by dtgid does not exist.
Forced release from the WAITING state.
E_RLWAI -49
- Accept rel_waifirel_wai while waiting.
Waiting object deleted.
E_DLT -51
- Accept del_dtg while waiting.
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 332 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS
prcv_dtq
iprcv_dtq
Outline

Receive from data queue (polling).

C format
ER prcv_dtqg (ID dtgid, VP_INT *p data);
ER iprcv_dtg (ID dtgid, VP_INT *p data);
Parameter(s)
I/0 Parameter Description
| D dtgid; ID number of the data queue.
@) VP_INT *p data; Data element received from the data queue.

Explanation

These service calls process as follows according to the situation of the data queue specified by the parameter dtqid.

- There is a data in the data queue.
This service call takes out the oldest data from the data queue and stores the data to the area specified by p_data.
When there is a task in the transmission wait queue, this service call stores the data sent by the task in the top of the
transmission wait queue and moves it from the WAITING state (data transmission wait state) to the READY state.

- There is no data in the data queue and there is a task in the transmission wait queue.
These service calls store the data specified by the task in the top of the transmission wait queue to the area specified
by p_data. As a result, the task is unlinked from the transmission wait queue and moves from the WAITING state
(data transmission wait state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED

state.

Note, this situation is caused only when the capacity of the data queue is 0.

- There is no data in the data queue and there is no task in the transmission wait queue.

These service calls return “E_TMOUT".

Return value

Macro Value Description
E_OK 0 Normal completion.
Parameter error.
E_PAR -17
- p_data == NULL
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 333 of 565

Sep 20, 2013

RIG00PX CHAPTER 19 SERVICE CALLS
Macro Value Description
Invalid ID number.
E_ID -18 - dtqid<0
- dtqid > VTMAX_DTQ
Context error.
- This service call was issued in the CPU locked state.
E_CTX 25 - The iprcv_dtg was issued from task.
- The prcv_dtq was issued from non-task.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation. (only for prcv_dtq)
E_MACV 26 - Stack pointer points out of user stack for invoking task.
- The operand-write access to the area indicated by p_data has not been
permitted to the invoking task.
Non-existent object.
E_NOEXS -42
- The data queue specified by dtgid does not exist.
E_TMOUT -50 Polling failure.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 334 of 565

RI600PX CHAPTER 19 SERVICE CALLS
trcv_dtq
Outline
Receive from data queue (with time-out).
C format
ER trcv_dtg (ID dtqgid, VP _INT *p data, TMO tmout);
Parameter(s)
I/0 Parameter Description
| D dtgid; ID number of the data queue.
O | VP_INT *p data; Data element received from the data queue.
Specified time-out (in millisecond).
I TMO tmout; TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified time-out.
Explanation

This service call processes as follows according to the situation of the data queue specified by the parameter dtqid.

- There is a data in the data queue.

This service call takes out the oldest data from the data queue and stores the data to the area specified by p_data.
When there is a task in the transmission wait queue, this service call stores the data sent by the task in the top of the
transmission wait queue and moves it from the WAITING state (data transmission wait state) to the READY state.

- There is no data in the data queue and there is a task in the transmission wait queue.
This service call stores the data specified by the task in the top of the transmission wait queue to the area specified by
p_data. As a result, the task is unlinked from the transmission wait queue and moves from the WAITING state (data
transmission wait state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.
Note, this situation is caused only when the capacity of the data queue is 0.

- There is no data in the data queue and there is no task in the transmission wait queue.
This service call queues the invoking task to the reception wait queue of the target data queue and moves it from the
RUNNING state to the WAITING state with time (data reception wait state).

The receiving WAITING state for a data queue is cancelled in the following cases.

Receiving WAITING State for a Data Queue Cancel Operation Return Value
Data was sent to the data queue area as a result of issuing snd_dtq. E_OK
Data was sent to the data queue area as a result of issuing psnd_dtq. E OK
Data was sent to the data queue area as a result of issuing ipsnd_dtq. E_OK
Data was sent to the data queue area as a result of issuing tsnd_dtq. E_OK
Data was sent to the data queue area as a result of issuing fsnd_dtq. E_OK
Data was sent to the data queue area as a result of issuing ifsnd_dtq. E_OK
R20UT0964EJ0101 Rev.1.01 RENESAS Page 335 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

Receiving WAITING State for a Data Queue Cancel Operation Return Value
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
The time specified by tmout has elapsed. E_TMOUT
Forced release from waiting (accept del_dtq while waiting). E_DLT

Note 1 Invoking tasks are queued to the reception wait queue of the target data queue in the order of the data
reception request.

Note 2 TMO_FEVR is specified for wait time tmout, processing equivalent to rcv_dtq will be executed. When
TMO_POL is specified, processing equivalent to prcv_dtq will be executed.

Return value

Macro Value Description

E_OK 0 Normal completion.

Parameter error.

- p_data == NULL
- tmout < -1
- tmout > (Ox7FFFFFFF - TIC_NUME)/ TIC_DENO

E_PAR 17

Invalid ID number.
E_ID -18 - dtqid <0
- dtqid > VTMAX _DTQ

Context error.

- This service call was issued from a non-task.
E_CTX 25 - This service call was issued in the CPU locked state.
- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Memory access violation.

E_MACV 26 - Stack pointer points out of user stack for invoking task.

- The operand-write access to the area indicated by p_data has not been
permitted to the invoking task.

Non-existent object.

E_NOEXS -42
- The data queue specified by dtgid does not exist.
Forced release from the WAITING state.
E_RLWAI -49
- Accept rel_wail/irel_wai while waiting.
E_TMOUT -50 Polling failure or specified time has elapsed.
Waiting object deleted.
E_DLT -51
- Accept del_dtq while waiting.
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 336 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

ref_dtq
iref_dtq

Outline

Reference data queue state.

C format
ER ref dtg (ID dtgid, T RDTQ *pk rdtq);
ER iref dtg (ID dtgid, T RDTQ *pk rdtq);
Parameter(s)
I/0 Parameter Description
| D dtgid; ID number of the data queue.
o T RDTQ *pk rdtg; Pointer to the packet returning the data queue state.

[Data queue state packet: T_RDTQ]

typedef struct t rdtg {

ID stskid; /*Existence of tasks waiting for data transmission*/
ID rtskid; /*Existence of tasks waiting for data reception*/
UINT sdtgent; /*Number of data elements in data queue*/
} T _RDTQ;
Explanation

These service calls store the detailed information of the data queue (existence of waiting tasks, number of data elements
in the data queue, etc.) specified by parameter dfqid into the area specified by parameter pk_rdtq.

- Stskid
Stores whether a task is queued to the transmission wait queue of the data queue.
TSK_NONE: No applicable task
Value: ID number of the task at the head of the transmission wait queue
- riskid
Stores whether a task is queued to the reception wait queue of the data queue.
TSK_NONE: No applicable task
Value: ID number of the task at the head of the reception wait queue
- sdtqent

Stores the number of data elements in data queue.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 337 of 565
Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

Return value

Macro Value Description
E_OK 0 Normal completion.
Parameter error.
E_PAR -17
- pk_rdtq == NULL
Invalid ID number.
E_ID -18 - diqid<0
- dtqid > VTMAX_DTQ

Context error.

- This service call was issued in the CPU locked state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
E_CTX -25 level”.

Note When the iref_dtq is issued from task or the ref_dtq is issued from non-task,
the context error is not detected and normal operation of the system is not
guaranteed.

Memory access violation. (only for ref_dtq)

E_MACV -26 - The operand-write access to the area indicated by pk rdtq has not been
permitted to the invoking task.

Non-existent object.

E_NOEXS -42
- The data queue specified by dtgid does not exist.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS Page 338 of 565

RI600PX

CHAPTER 19 SERVICE CALLS

19.2.7 Synchronization and communication functions (mailboxes)

The following shows the service calls provided by the RIGOOPX as the synchronization and communication functions

(mailboxes).
Table 19-11 Synchronization and Communication Functions (Mailboxes)
Service Call Function Useful Range
cre_mbx Create mailbox Task
acre_mbx Create mailbox (automatic ID assignment) Task
del_mbx Delete mailbox Task
snd_mbx Send to mailbox Task
isnd_mbx Send to mailbox Non-task
rcv_mbx Receive from mailbox (waiting forever) Task
prcv_mbx Receive from mailbox (polling) Task
iprcv_mbx Receive from mailbox (polling) Non-task
trcv_mbx Receive from mailbox (with time-out) Task
ref_mbx Reference mailbox state Task
iref_mbx Reference mailbox state Non-task

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 339 of 565

RI600PX

CHAPTER 19 SERVICE CALLS

cre_mbx
acre_mbx

Outline

Create mailbox.

C format

ER cre mbx (ID mbxid, T CMBX *pk cmbx);

ER ID acre mbx (T CMBX *pk cmbx);

Parameter(s)

/10 Parameter

Description

| ID mbxid;

ID number of the mailbox.

| T CMBX *pk cmbx;

Pointer to the packet containing the mailbox creation information.

[Mailbox creation information packet : T_CMBX]

typedef struct t cmbx {

ATR mbxatr; /*Mailbox attribute*/
PRI maxmpri; /*Maximum message priority*/
VP mprihd; /*For future expansion*/
} T CMBX;
Explanation

This service call can be called from tasks that belong to Trusted Domain.

The cre_mbx creates a mailbox with mailbox ID indicated by mbxid according to the content of pk_cmbx. The acre_mbx
creates a mailbox according to the content of pk_cmbx, and returns the created mailbox ID.

1) Mailbox attribute (mbxatr)
The following are specified for mbxatr.

mbxatr := ((TA_TFIFO || TA TPRI) | (TA MFIFO || TA MPRI))

- TA_TFIFO (= 0x0000)
Task wait queue is managed in FIFO order.

- TA _TPRI (= 0x0001)

Task wait queue is managed in task current priority order. Among tasks with the same priority, they are queued in

FIFO order.

- TA_MFIFO (= 0x0000)
Message queue is managed in FIFO order.

- TA_MPRI (= 0x0002)

Message queue is managed in message priority order. Among messages with the same priority, they are queued

in FIFO order.

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS

Page 340 of 565

RI600PX CHAPTER 19 SERVICE CALLS

2) Maximum message priority (maxmpri)
When TA_MPRI is specified for mbxatr, the range of message priority which can be used is from 1 to maxmpri.
Ranges of the value that can be specified are from 1 to TMAX_MPRI.

3) mpdihd
The mprihd is for future expansion, and is only disregarded.

Return value

Macro Value Description
- P\?sllﬂge Normal completion of acre_mbx. (Created mailbox ID)

E_OK 0 Normal completion of cre_mbx.

Reserved attribute
E_RSATR -11
- Either of bits in mbxatr except bit0 and bit1 is 1.

Parameter error.
- pk_cmbx == NULL
E_PAR -17 - When TA_MPRI is specified
- maxmpri <=0
- maxmpri > TMAX_MPRI

Invalid ID number. (only for cre_mbx)
E_ID -18 - mbxid <0
- mbxid > VTMAX_MBX

Context error.

- This service call was issued in the CPU locked state.

E_CTX -25 - This service call was issued from non-task.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
E_MACV 26 - Stack pointer points out of user stack for invoking task.
- The operand-read access to the area indicated by pk cmbx has not been
permitted to the invoking task.
Object access violation.
E_OACV -27
- The invoking task does not belong to trusted domain.
E_NOID -34 No ID number available.(only for acre_mbx)
Object state error. (only for cre_mbx)
E_OBJ -41
- The mailbox specified by mbxid exists.
R20UT0964EJ0101 Rev.1.01 .IENESAS Page 341 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

del_mbx

Outline

Delete mailbox.

C format
ER del mbx (ID mbxid);
Parameter(s)
I/0 Parameter Description
| 1D mbxid; ID number of the mailbox.
Explanation

This service call can be called from tasks that belong to Trusted Domain.

This service call deletes the mailbox indicated by mbxid.

When there are waiting tasks for the target mailbox by using rcv_mbx or trcv_mbyx, this service call cancels the WAITING
state of the tasks and returns E_DLT as a return value of the rcv_mbx or trcv_mbx.

Return value

Macro Value Description

E_OK 0 Normal completion.

Invalid ID number.
E_ID -18 - mbxid<0
- mbxid > VTMAX_MBX

Context error.
- This service call was issued in the CPU locked state.

E_CTX -25 - This service call was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask

level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Object access violation.
E_OACV -27
- The invoking task does not belong to trusted domain.
Non-existent object.
E_NOEXS -42
- The mailbox specified by mbxid does not exist.
R20UT0964EJ0101 Rev.1.01 .IENESAS Page 342 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

snd_mbx
isnd_mbx

Outline

Send to mailbox.

C format
ER snd mbx (ID mbxid, T MSG *pk msg);
ER isnd mbx (ID mbxid, T MSG *pk msgq);
Parameter(s)
I/0 Parameter Description
I ID mbxid; ID number of the mailbox.
I T MSG *pk msg; Start address of the message packet to be sent to the mailbox.

[Message packet T_MSG for TA_MFIFO attribute]

typedef struct {
VP msghead; /*RI600PX management area*/
} T MSG;

[Message packet for T_MSG_PRI for TA_MPRI attribute]

typedef struct {
T MSG msgque; /*Message header*/
PRI msgpri; /*Message priority*/
} T MSG PRI;

Explanation

This service call transmits the message specified by parameter pk_msg to the mailbox specified by parameter mbxid
(queues the message in the wait queue).

If a task is queued to the target mailbox wait queue when this service call is issued, the message is not queued but
handed over to the relevant task (first task of the wait queue).

As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (receiving WAITING
state for a mailbox) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

Note 1 Messages are queued to the target mailbox message queue in the order specified at creating the mailbox
(FIFO order or message priority order).

Note 2 Do not modify transmitted message (the area indicated by pk_msg) until the message is received.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 343 of 565
Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

Return value

Macro

Value

Description

E_OK

Normal completion.

E_PAR

-17

Parameter error.
- pk_msg == NULL
- When the target mailbox has TA_MPRI attribute:
- msgpri<0
- msgpri > TMAX_MPRI

-18

Invalid ID number.

- mbxid<0
- mbxid > VTMAX_MBX

E_CTX

Context error.

- This service call was issued in the CPU locked state.
- The isnd_mbx was issued from task.
- The snd_mbx was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_MACV

Memory access violation. (only for snd_mbx)

- Stack pointer points out of user stack for invoking task.

- The operand-read and operand-write access to the message header area has
not been permitted to the invoking task.
Message header area:

- TA_MFIFO attribute : The T_MSG structure started from the address indi-
cated by pk_msg

- TA_MPRI attribute : The T_MSG_PRI structure started from the address
indicated by pk_msg

E_NOEXS

Non-existent object.

- The mailbox specified by mbxid does not exist.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

REN ESNS Page 344 of 565

RI600PX CHAPTER 19

SERVICE CALLS

rcv_mbx

Outline

Receive from mailbox (waiting forever).

C format
ER rcv_mbx (ID mbxid, T MSG **ppk msq);
Parameter(s)
I/O Parameter Description
| ID mbxid; ID number of the mailbox.
0 T MSG **ppk msg; Start address of the message packet received from the mailbox.

[Message packet T_MSG for TA_MFIFO attribute]

typedef struct {
VP msghead; /*RI600PX management area*/
} T _MSG;

[Message packet T_MSG_PRI for TA_MPRI attribute]

typedef struct {
T MSG msgque; /*Message header*/
PRI msgpri; /*Message priority*/
} T MSG PRI;

Explanation

This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in the

area specified by parameter ppk_msg.

If no message could be received from the target mailbox (no messages were queued to the wait queue) when this service
call is issued, this service call does not receive messages but queues the invoking task to the target mailbox wait queue

and moves it from the RUNNING state to the WAITING state (message reception wait state).
The receiving WAITING state for a mailbox is cancelled in the following cases.

Receiving WAITING State for a Mailbox Cancel Operation Return Value
A message was transmitted to the target mailbox as a result of issuing snd_mbx. E_OK
A message was transmitted to the target mailbox as a result of issuing isnd_mbx. E_OK
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
Forced release from waiting (accept del_mbx while waiting). E_DLT
R20UT0964EJ0101 Rev.1.01 RENESAS Page 345 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

Note Invoking tasks are queued to the target mailbox wait queue in the order specified at creating the mailbox (FIFO
order or current priority order).

Return value

Macro Value Description

E_OK 0 Normal completion.

parameter error.
E_PAR -17
- ppk_msg == NULL

Invalid ID number.
E_ID -18 - mbxid < 0
- mbxid > VTMAX_MBX

Context error.

- This service call was issued from a non-task.
E_CTX 25 - This service call was issued in the CPU locked state.
- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Memory access violation.

E_MACV 26 - Stack pointer points out of user stack for invoking task.

- The operand-write access to the area indicated by ppk _msg has not been
permitted to the invoking task.

Non-existent object.

E_NOEXS -42
- The mailbox specified by mbxid does not exist.
Forced release from the WAITING state.
E_RLWAI -49
- Accept rel_waifirel_wai while waiting.
Waiting object deleted.
E_DLT -51
- Accept del_mbx while waiting.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 346 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

prcv_mbx
iprcv_mbx
Outline

Receive from mailbox (polling).

C format
ER prcv_mbx (ID mbxid, T MSG **ppk msg);
ER iprcv _mbx (ID mbxid, T MSG **ppk msqg);
Parameter(s)
I/0 Parameter Description
| 1D mbxid; ID number of the mailbox.
@) T MSG **ppk msg; Start address of the message packet received from the mailbox.

[M[Message packet T_MSG for TA_MFIFO attribute]

typedef struct {
VP msghead; /*RI600PX management area*/
} T MSG;

[Message packet T_MSG_PRI for TA_MPRI attribute]

typedef struct {
T MSG msgque; /*Message header*/
PRI msgpri; /*Message priority*/
} T _MSG_PRI;

Explanation

This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in the
area specified by parameter ppk_msg.

If the message could not be received from the target mailbox (no messages were queued in the wait queue) when this
service call is issued, message reception processing is not executed but “E_TMOUT” is returned.

Return value

Macro Value Description
E_OK 0 Normal completion.
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 347 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

Macro Value Description

parameter error.
E_PAR -17
- ppk_msg == NULL

Invalid ID number.
E_ID -18 - mbxid<0
- mbxid > VTMAX_MBX

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
E_CTX -25 level”.

Note When the iprcv_mbx is issued from task or the prcv_mbx is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.

Memory access violation. (only for prcv_mbx)

E_MACV -26 - The operand-write access to the area indicated by ppk_msg has not been
permitted to the invoking task.

Non-existent object.

E_NOEXS -42
- The mailbox specified by mbxid does not exist.
E_TMOUT -50 Polling failure.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 348 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

trcv_mbx

Outline

Receive from mailbox (with time-out).

C format
ER trcv_mbx (ID mbxid, T MSG **ppk msg, TMO tmout);
Parameter(s)
I/0 Parameter Description
| 1D mbxid; ID number of the mailbox.
0 T MSG **ppk msg; Start address of the message packet received from the mailbox.
Specified time-out (in millisecond).
I TMO tmout; TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified time-out.
[Message packet: T_MSG]
typedef struct t msg {
struct t msg *msgnext; /*Reserved for future use*/
} T _MSG;
[Message packet: T_MSG_PRI]
typedef struct t msg pri {
struct t msg msgque; /*Reserved for future use*/
PRI msgpri; /*Message priority*/

} T MSG PRI;

Explanation

This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in the
area specified by parameter ppk_msg.

If no message could be received from the target mailbox (no messages were queued to the wait queue) when this service
call is issued, this service call does not receive messages but queues the invoking task to the target mailbox wait queue
and moves it from the RUNNING state to the WAITING state with time-out (message reception wait state).

The receiving WAITING state for a mailbox is cancelled in the following cases.

Receiving WAITING State for a Mailbox Cancel Operation Return Value
A message was transmitted to the target mailbox as a result of issuing snd_mbx. E_OK
A message was transmitted to the target mailbox as a result of issuing isnd_mbx. E_OK
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 349 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

Receiving WAITING State for a Mailbox Cancel Operation Return Value
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
The time specified by tmout has elapsed. E_TMOUT
Forced release from waiting (accept del_mbx while waiting). E_DLT

Note 1 Invoking tasks are queued to the target mailbox wait queue in the order specified at creating the mailbox (FIFO
order or current priority order).

Note 2 TMO_FEVR is specified for wait time tmout, processing equivalent to rcv_mbx will be executed. When
TMO_POL is specified, processing equivalent to prcv_mbx will be executed.

Return value

Macro Value Description

E_OK 0 Normal completion.

Parameter error.

E PAR 17 - ppk_msg == NULL
- tmout < -1

- tmout > (OxX7FFFFFFF - TIC_NUME)/ TIC_DENO

Invalid ID number.
E_ID -18 - mbxid<0
- mbxid > VTMAX_MBX

Context error.

- This service call was issued from a non-task.
E_CTX 25 - This service call was issued in the CPU locked state.
- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Memory access violation.

E_MACV 26 - Stack pointer points out of user stack for invoking task.

- The operand-write access to the area indicated by ppk_msg has not been
permitted to the invoking task.

Non-existent object.

E_NOEXS -42
- The mailbox specified by mbxid does not exist.
Forced release from the WAITING state.
E_RLWAI -49
- Accept rel_wailirel_wai while waiting.
E_TMOUT -50 Polling failure or specified time has elapsed.
Waiting object deleted.
E_DLT -51
- Accept del_mbx while waiting.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 350 of 565

Sep 20, 2013

RI600PX CHAPTER 19

SERVICE CALLS

ref_mbx
iref_mbx

Outline

Reference mailbox state.

C format
ER ref mbx (ID mbxid, T RMBX *pk rmbx);
ER iref mbx (ID mbxid, T RMBX *pk rmbx);
Parameter(s)
I/0 Parameter Description
I ID mbxid; ID number of the mailbox.
@) T RMBX *pk rmbx; Pointer to the packet returning the mailbox state.

[Mailbox state packet: T_RMBX]

typedef struct t rmbx {

ID wtskid; /*Existence of waiting task*/
T MSG *pk_msg; /*Existence of waiting message*/
} T RMBX;
Explanation

Stores mailbox state packet (ID number of the task at the head of the wait queue, start address of the message packet at
the head of the wait queue) of the mailbox specified by parameter mbxid in the area specified by parameter pk_rmbx.

- wiskid
Stores whether a task is queued to the mailbox wait queue.
TSK_NONE: No applicable task
Value: ID number of the task at the head of the wait queue
- pk_msg
Stores whether a message is queued to the mailbox wait queue.
NULL: No applicable message
Value: Start address of the message packet at the head of the wait queue

Return value

Macro Value Description
E_OK 0 Normal completion.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 351 of 565

Sep 20, 2013

RIG00PX CHAPTER 19 SERVICE CALLS
Macro Value Description
parameter error.
E_PAR -17
- pk_rmbx == NULL
Invalid ID number.
E_ID -18 - mbxid <0
- mbxid > VTMAX_MBX
Context error.
- This service call was issued in the CPU locked state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
E_CTX -25 level”.

Note When the iref_mbx is issued from task or the ref_mbx is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.

Memory access violation. (only for ref_mbx)

E_MACV -26 - The operand-write access to the area indicated by pk rmbx has not been
permitted to the invoking task.

Non-existent object.

E_NOEXS -42
- The mailbox specified by mbxid does not exist.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

REN ESNS Page 352 of 565

RI600PX CHAPTER 19 SERVICE CALLS

19.2.8 Extended synchronization and communication functions (mutexes)

The following shows the service calls provided by the RIGO0OPX as the extended synchronization and communication
functions (mutexes).

Table 19-12 Extended Synchronization and Communication Functions (Mutexes)

Service Call Function Useful Range
cre_mtx Create mutex Task
acre_mtx Create mutex (automatic ID assignment) Task
del_mtx Delete mutex Task
loc_mtx Lock mutex (waiting forever) Task
ploc_mtx Lock mutex (polling) Task
tloc_mtx Lock mutex (with time-out) Task
unl_mtx Unlock mutex Task
ref_mtx Reference mutex state Task
R20UT0964EJ0101 Rev.1.01 RENESAS Page 353 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

cre_mtx
acre_mtx

Outline

Create mutex.

C format

ER cre mtx (ID mtxid, T CMTX *pk cmtx);
ER ID acre mtx (T CMTX *pk cmtx);

Parameter(s)
I/0 Parameter Description
| 1D mtxid; ID number of the mutex.
| T CMTX *pk cmtx; Pointer to the packet containing the mutex creation information.

[Mutex creation information packet : T_CMTX]

typedef struct t cmtx {

ATR mtxatr; /*Mutex attribute*/

PRI ceilpri; /*Ceiling priority*/
} T _CMTX;
Explanation

This service call can be called from tasks that belong to Trusted Domain.
The cre_mtx creates a mutex with mutex ID indicated by mixid according to the content of pk_cmtx. The acre_mtx creates
a mutex according to the content of pk_cmtx, and returns the created mutex ID.

1) Mutex attribute (mtxatr)
Only TA_CEILING can be specified for mtxatr.

- TA_CEILING (= 0x0003)
Priority ceiling protocol
For details, refer to “8.2.3 Simplified priority ceiling protocol”.

Note Task wait queue is managed in task current priority order. Note, tasks of the same current priority are
managed in FIFO order.

2) Ceiling priority (ceilpri)
The current task priority of the task which locks a mutex rises to the ceilpri.
Ranges of the value that can be specified are from 1 to TMAX_TPRI.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 354 of 565
Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

Return value

Macro Value Description
- P\?:I'S;e Normal completion of acre_mtx. (Created mutex ID)
E_OK 0 Normal completion of cre_mtx.
Reserved attribute
E_RSATR -11
- mtxatr!= TA_CEILING.
Parameter error.
E_PAR 17 - pk_cmtx == NULL
- ceilpri<=0
- ceilpri > TMAX_TPRI
Invalid ID number. (only for cre_mtx)
E_ID -18 - mitxid <0
- mixid > VTMAX_MTX
Context error.
- This service call was issued in the CPU locked state.
E_CTX -25 - This service call was issued from non-task.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
E_MACV 26 - Stack pointer points out of user stack for invoking task.
- The operand-read access to the area indicated by pk cmitx has not been
permitted to the invoking task.
Object access violation.
E_OACV -27
- The invoking task does not belong to trusted domain.
E_NOID -34 No ID number available.(only for acre_mtx)
Object state error. (only for cre_mtx)
E_OBJ -41
- The mutex specified by mixid exists.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

REN ESNS Page 355 of 565

RI600PX CHAPTER 19 SERVICE CALLS

del_mtx

Outline

Delete mutex.

C format
ER del mtx (ID mtxid);
Parameter(s)
I/0 Parameter Description
| 1D mtxid; ID number of the mutex.
Explanation

This service call can be called from tasks that belong to Trusted Domain.

This service call deletes the mutex indicated by mixid.

When either of task locks the target mutex, the lock by the task is cancelled. As a result, the current task priority of the task
is returned to the base priority when there is no mutex being locked by the task. The task is not notified that the mutex has
been deleted. If an attempt is later made to unlock the mutex by using unl_mtx, an error E_NOEXS is returned.

When there are waiting tasks for the target mutex by using loc_mtx or tloc_mtx, this service call cancels the WAITING
state of the tasks and returns E_DLT as a return value of the loc_mtx or tloc_mix.

Return value

Macro Value Description

E_OK 0 Normal completion.

Invalid ID number.

E_ID -18 - mixid<0
- mitxid > VTMAX_MTX

Context error.

- This service call was issued in the CPU locked state.

E_CTX -25 - This service call was issued from non-task.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Object access violation.
E_OACV -27
- The invoking task does not belong to trusted domain.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 356 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

Macro Value Description
Non-existent object.
E_NOEXS -42
- The mutex specified by mixid does not exist.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 357 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

loc_mtx

Outline

Lock mutex (waiting forever).

C format
ER loc mtx (ID mtxid);
Parameter(s)
I/0 Parameter Description
| 1D mtxid; ID number of the mutex.
Explanation

This service call locks the mutex specified by parameter mtxid.

If the target mutex could not be locked (another task has been locked) when this service call is issued, this service call
queues the invoking task to the target mutex wait queue and moves it from the RUNNING state to the WAITING state
(mutex wait state).

The WAITING state for a mutex is cancelled in the following cases.

WAITING State for a Mutex Cancel Operation Return Value
The locked state of the target mutex was cancelled as a result of issuing unl_mtx. E_OK
The locked state of the target mutex was cancelled as a result of issuing ext_tsk. E_OK
The locked state of the target mutex was cancelled as a result of issuing exd_tsk. E_OK
The locked state of the target mutex was cancelled as a result of issuing ter_tsk. E_OK
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
Forced release from waiting (accept del_mtx while waiting). E_DLT

When the mutex is locked, this service call changes the current priority of the invoking task to the ceiling priority of the
target mutex. However, this service call does not change the current priority when the invoking task has locked other
mutexes and the ceiling priority of the target mutex is lower than or equal to the ceiling priority of the locked mutexes.

Note 1 Invoking tasks are queued to the target mutex wait queue in task current priority order. Among tasks with the
same priority, they are queued in FIFO order.

Note 2 This service call returns “E_ILUSE?” if this service call is re-issued for the mutex that has been locked by the
invoking task (multiple-locking of mutex).

R20UT0964EJ0101 Rev.1.01 RENESAS Page 358 of 565
Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

Return value

Macro Value Description

E_OK 0 Normal completion.

InvalidID number.
E_ID -18 - mixid<0
- mtxid > VTMAX_MTX

Context error.

- This service call was issued from a non-task.
E_CTX 25 - This service call was issued in the CPU locked state.
- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask

level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
lllegal use of service call.
E_ILUSE 28 - The invoking task has already locked the target mutex.
- Ceiling priority violation (the base priority of the invoking task < the ceiling pri-
ority of the target mutex)
Non-existent object.
E_NOEXS -42
- The mutex specified by mixid does not exist.
Forced release from the WAITING state.
E_RLWAI -49
- Accept rel_wailirel_wai while waiting.
Waiting object deleted.
E_DLT -51
- Accept del_mtx while waiting.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 359 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

ploc_mtx

Outline

Lock mutex (polling).

C format
ER ploc mtx (ID mtxid);
Parameter(s)
I/0 Parameter Description
| 1D mtxid; ID number of the mutex.
Explanation

This service call locks the mutex specified by parameter mtxid.

If the target mutex could not be locked (another task has been locked) when this service call is issued but “E_TMOUT” is
returned.

When the mutex is locked, this service call changes the current priority of the invoking task to the ceiling priority of the
target mutex. However, this service call does not change the current priority when the invoking task has locked other
mutexes and the ceiling priority of the target mutex is lower than or equal to the ceiling priority of the locked mutexes.

Note This service call returns “E_ILUSE” if this service call is re-issued for the mutex that has been locked by the
invoking task (multiple-locking of mutex).

Return value

Macro Value Description

E_OK 0 Normal completion.

Invalid ID number.
E_ID -18 - mixid<0
- mtxid > VTMAX_MTX

Context error.

- This service call was issued from a non-task.

E_CTX 25 - This service call was issued in the dispatching disabled state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 360 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

Macro Value Description

lllegal use of service call.

E_ILUSE 28 - The invoking task has already locked the target mutex.

- Ceiling priority violation (the base priority of the invoking task < the ceiling pri-
ority of the target mutex)

Non-existent object.

E_NOEXS -42
- The mutex specified by mixid does not exist.
E_TMOUT -50 Polling failure.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 361 of 565

Sep 20, 2013

RIG00PX CHAPTER 19 SERVICE CALLS
tloc_mtx
Outline
Lock mutex (with time-out).
C format
ER tloc mtx (ID mtxid, TMO tmout);
Parameter(s)
I/0 Parameter Description
| ID mtxid; ID number of the mutex.
Specified time-out (in millisecond).
I T™O tmout; TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified time-out.
Explanation

This service call locks the mutex specified by parameter mixid.
If the target mutex could not be locked (another task has been locked) when this service call is issued, this service call
queues the invoking task to the target mutex wait queue and moves it from the RUNNING state to the WAITING state with
time-out (mutex wait state).
The WAITING state for a mutex is cancelled in the following cases.

WAITING State for a Mutex Cancel Operation Return Value

The locked state of the target mutex was cancelled as a result of issuing unl_mtx. E_OK

The locked state of the target mutex was cancelled as a result of issuing ext_tsk. E_OK

The locked state of the target mutex was cancelled as a result of issuing exd_tsk. E_OK

The locked state of the target mutex was cancelled as a result of issuing ter_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The time specified by tmout has elapsed. E_TMOUT
Forced release from waiting (accept del_mtx while waiting). E_DLT

When the mutex is locked, this service call changes the current priority of the invoking task to the ceiling priority of the
target mutex. However, this service call does not change the current priority when the invoking task has locked other
mutexes and the ceiling priority of the target mutex is lower than or equal to the ceiling priority of the locked mutexes.

Note 1

Invoking tasks are queued to the target mutex wait queue in task current priority order. Among tasks with the
same priority, they are queued in FIFO order.

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS

Page 362 of 565

RI600PX CHAPTER 19 SERVICE CALLS

Note 2 This service call returns “E_ILUSE” if this service call is re-issued for the mutex that has been locked by the
invoking task (multiple-locking of mutex).

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to loc_mitx will be executed. When
TMO_POL is specified, processing equivalent to ploc_mtx will be executed.

Return value

Macro Value Description

E_OK 0 Normal completion.

Parameter error.
E_PAR -17 - tmout < -1
- tmout > (Ox7FFFFFFF - TIC_NUME)/ TIC_DENO

Invalid ID number.
E_ID -18 - mixid<0
- mtxid > VTMAX_MTX

Context error.

- This service call was issued from a non-task.
E_CTX 25 - This service call was issued in the CPU locked state.
- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask

level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
lllegal use of service call.
E_ILUSE 28 - The invoking task has already locked the target mutex.
- Ceiling priority violation (the base priority of the invoking task < the ceiling pri-
ority of the target mutex)
Non-existent object.
E_NOEXS -42
- The mutex specified by mixid does not exist.
Forced release from the WAITING state.
E_RLWAI -49
- Accept rel_wailirel_wai while waiting.
E_TMOUT -50 Polling failure or specified time has elapsed.
Waiting object deleted.
E_DLT -51
- Accept del_mtx while waiting.
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 363 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

unl_mtx

Outline

Unlock mutex.

C format
ER unl mtx (ID mtxid);
Parameter(s)
I/0 Parameter Description
| 1D mtxid; ID number of the mutex.
Explanation

This service call unlocks the locked mutex specified by parameter mtxid.

If a task has been queued to the target mutex wait queue when this service call is issued, mutex lock processing is
performed by the task (the first task in the wait queue) immediately after mutex unlock processing.

As a result, the task is unlinked from the wait queue and moves from the WAITING state (mutex wait state) to the READY
state, or from the WAITING-SUSPENDED state to the SUSPENDED state. And this service call changes the current
priority of the task to the ceiling priority of the target mutex. However, this service call does not change the current priority
when the task has locked other mutexes and the ceiling priority of the target mutex is lower than or equal to the ceiling
priority of the locked mutexes.

Note 1 A locked mutex can be unlocked only by the task that locked the mutex.
If this service call is issued for a mutex that was not locked by the invoking task, “E_ILUSE” is returned.

Note 2 When a task terminates, mutexes locked by the task are unlocked.

Return value

Macro Value Description

E_OK 0 Normal completion.

Invalid ID number.
E_ID -18 - mixid<0
- mtxid > VTMAX_MTX

Context error.

- This service call was issued from a non-task.

E_CTX -25 - This service call was issued in the CPU locked state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 364 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS
Macro Value Description
lllegal use of service call.
E_ILUSE -28
- The invoking task have not locked the target mutex.
Non-existent object.
E_NOEXS -42
- The mutex specified by mixid does not exist.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 365 of 565

RI600PX CHAPTER 19

SERVICE CALLS

ref_mtx

Outline

Reference mutex state.

C format
ER ref mtx (ID mtxid, T RMTX *pk rmtx);
Parameter(s)
I/O Parameter Description
I ID mtxid; ID number of the mutex.
O T RMTX *pk rmtx; Pointer to the packet returning the mutex state.

[Mutex state packet: T_RMTX]

typedef struct t rmtx {

ID htskid; /*Existence of locked mutex*/
ID wtskid; /*Existence of waiting task*/
} T RMTX;
Explanation

This service call stores the detailed information of the mutex specified by parameter mtxid (existence of locked mutexes,

waiting tasks, etc.) into the area specified by parameter pk_rmtx.

- htskid
Stores whether a task that is locking a mutex exists.
TSK_NONE: No applicable task
Value: ID number of the task locking the mutex
- wiskid
Stores whether a task is queued to the mutex wait queue.
TSK_NONE: No applicable task
Value: ID number of the task at the head of the wait queue

Return value

Macro Value Description
E_OK 0 Normal completion.
parameter error.
E_PAR -17
- pk_rmix == NULL
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 366 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS
Macro Value Description
Invalid ID number.
E_ID -18 - mixid <0
- mixid > VTMAX_MTX
Context error.
- This service call was issued from a non-task.
E_CTX -25 - This service call was issued in the CPU locked state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
E_MACV -26 - The operand-write access to the area indicated by pk_rmitx has not been
permitted to the invoking task
Non-existent object.
E_NOEXS -42
- The mutex specified by mixid does not exist.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

REN ESNS Page 367 of 565

RI600PX CHAPTER 19 SERVICE CALLS

19.2.9 Extended synchronization and communication functions (message buffers)

The following shows the service calls provided by the RIGO0OPX as the extended synchronization and communication
functions (message buffers).

Table 19-13 Extended Synchronization and Communication Functions (Message Buffers)

Service Call Function Useful Range
cre_mbf Create message buffer Task
acre_mbf Create message buffer (automatic ID assignment) Task
del_mbf Delete message buffer Task
snd_mbf Send to message buffer (waiting forever) Task
psnd_mbf Send to message buffer (polling) Task
ipsnd_mbf Send to message buffer (polling) Non-task
tsnd_mbf Send to message buffer (with time-out) Task
rcv_mbf Receive from message buffer (waiting forever) Task
prcv_mbf Receive from message buffer (polling) Task
trcv_mbf Receive from message buffer (with time-out) Task
ref_mbf Reference message buffer state Task
iref_mbf Reference message buffer state Non-task
R20UT0964EJ0101 Rev.1.01 RENESAS Page 368 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

cre_mbf
acre_mbf

Outline

Create message buffer.

C format

ER cre mbf (ID mbfid, T CMBF *pk cmbf);
ER ID acre mbf (T CMBF *pk cmbf);

Parameter(s)

I/0 Parameter Description

| 1D mbfid; ID number of the message buffer.

Pointer to the packet containing the message buffer creation informa-

| T CMBF *pk £; .
- pk_cmb tion.

[Message buffer creation information packet : T_CMBF]

typedef struct t cmbf ({

ATR mbfatr; /*Message buffer attribute*/
UINT maxmsz; /*Maximum message size (in bytes)*/
UINT mbfsz; /*Size of the message buffer area (in bytes)*/
VP mbf; /*Start address of the message buffer area*/
} T CMBF;
Explanation

This service call can be called from tasks that belong to Trusted Domain.
The cre_mbf creates a message buffer with message buffer ID indicated by mbfid according to the content of pk_cmbf.
The acre_mbf creates a message buffer according to the content of pk_cmbf, and returns the created message buffer ID.

1) Message buffer attribute (mbfatr)
Only TA_TFIFO can be specified for mbfatr.

- TA_TFIFO (= 0x0000)
Task wait queue for sending is managed in FIFO order.

Note Task wait queue for receiving is managed in FIFO order.

2) Maximum message size (maxmsz)
Specify the maximum size of message which can be sent to this message buffer. The size of the reception area
specified by rcv_mbf, prcv_mbf and trcv_mbf must be not less than maxmsz.

3) Size of the message buffer area (mbfsz), Start address of the message buffer area (mbf)
The application acquires mbfsz bytes of message buffer area and specifies the start address for mbf.
It is also possible to specify 0 as mbfsz. In this case, since message cannot be stored in the message buffer, the

R20UT0964EJ0101 Rev.1.01 RENESAS Page 369 of 565
Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

message sending task or message receiving task that has performed its operation first will enter the WAITING
state. The WAITING state of that task is canceled when the task of another side has performed its operation. Thus,
message sending tasks and message receiving tasks are completely synchronized. Note, mbf is disregarded when
mbfszis 0.

Note 1 The RIGB00PX is not concerned of anything of the access permission to the message buffer area.
Usually, the message buffer area should be generated to the area other than memory objects and user
stacks. When the message buffer area is generated in the memory object, a task with the operand-writie
access permission to the memory object might rewrite message buffer area by mistake.

Note 2 The ulTRON4.0 specification defines the function that the kernel allocates message buffer area when
NULL is specified for mbf. But RIGOOPX does not support this function.

Return value

Macro Value Description
- P\?:IISZe Normal completion of acre_mbf. (Created message buffer ID)
E_OK 0 Normal completion of cre_mbf.
Reserved attribute
E_RSATR -11
- mbfatr'= TA_TFIFO
Parameter error.
- pk_cmbf == NULL
E_PAR 47 - maxmsz == 0, maxmsz > 65528

- 0 < mbfsz < 8, mbfsz > 65532
- mbfsz == 0 and mbf + mbfsz > 0x100000000
- mbfsz == 0 and mbfsz < maxmsz + VTSZ_MBFTBL

Invalid ID number. (only for cre_mbf)
E_ID -18 - mbfid<0
- mbfid > VTMAX_MBF

Context error.

- This service call was issued in the CPU locked state.
E_CTX -25 - This service call was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Memory access violation.

E_MACV 26 - Stack pointer points out of user stack for invoking task.

- The operand-read access to the area indicated by pk_cmbf has not been
permitted to the invoking task.

Object access violation.

E_OACV -27
- The invoking task does not belong to trusted domain.
Insufficient memory.
E_NOMEM -33
- mbfsz != 0 and mbf == NULL
E_NOID -34 No ID number available.(only for acre_mbf)
Object state error. (only for cre_mbf)
E_OBJ -41
- The message buffer specified by mbfid exists.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 370 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

del_mbf

Outline

Delete message buffer.

C format
ER del mbf (ID mbfid);
Parameter(s)
I/0 Parameter Description
| 1D mbfid; ID number of the message buffer.
Explanation

This service call can be called from tasks that belong to Trusted Domain.

This service call deletes the message buffer indicated by mbfid.

When there are waiting tasks for the target message buffer by using snd_mbf, tsnd_mbf, rcv_mbf or trcv_mbf, this service
call cancels the WAITING state of the tasks and returns E_DLT as a return value of the snd_mbf, tsnd_mbf, rcv_mbf or
trcv_mbf.

Return value

Macro Value Description

E_OK 0 Normal completion.

Invalid ID number.
E_ID -18 - mbfid<0
- mbfid > VTMAX_MBF

Context error.

- This service call was issued in the CPU locked state.
E_CTX -25 - This service call was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask

level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Object access violation.
E_OACV -27
- The invoking task does not belong to trusted domain.
Non-existent object.
E_NOEXS -42
- The message buffer specified by mbfid does not exist.
R20UT0964EJ0101 Rev.1.01 .IENESAS Page 371 of 565

Sep 20, 2013

RIG00PX CHAPTER 19 SERVICE CALLS
snd_mbf
Outline
Send to message buffer (waiting forever).
C format
ER tsnd mbf (ID mbfid, VP msg, UINT msgsz);
Parameter(s)
I/0 Parameter Description
| 1D mbfid; ID number of the message buffer.
| VP msg; Pointer to the message to be sent.
| UINT msgsz; Message size to be sent (in bytes).
Explanation

This service call processes as follows according to the situation of the message buffer specified by the parameter mbfid.

- There is a task in the reception wait queue.
This service call transfers the message specified by parameter msg to the task in the top of the reception wait queue.
As a result, the task is unlinked from the reception wait queue and moves from the WAITING state (message
reception wait state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

- There is no task neither in the reception wait queue and transmission wait queue and there is available space in the

message buffer.

This service call stores the message specified by parameter msg to the message buffer. As a result, the size of
available space in the target message buffer decreases by the amount calculated by the following expression.

The amount of decrease = up4(msgsz) + VTSZ_MBFTBL

- There is no task neither in the reception wait queue and transmission wait queue and there is no available space in

the message buffer, or there is a task in the transmission wait queue.

This service call queues the invoking task to the transmission wait queue of the target message buffer and moves it
from the RUNNING state to the WAITING state (message transmission wait state).
The sending WAITING state for a message buffer is cancelled in the following cases.

Sending WAITING State for a Message Buffer Cancel Operation

Return Value

Available space was secured in the message buffer area as a result of issuing rcv_mbf. E_OK
Available space was secured in the message buffer area as a result of issuing prcv_mbf. E_OK
Available space was secured in the message buffer area as a result of issuing trcv_mbf. E_OK

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 372 of 565

RI600PX CHAPTER 19 SERVICE CALLS

Sending WAITING State for a Message Buffer Cancel Operation Return Value

The task at the top of the transmission wait queue was forcedly released from waiting by fol-
lowing either.

- Forced release from waiting (accept rel_wai while waiting).

- Forced release from waiting (accept irel_wai while waiting). E_OK

- Forced release from waiting (accept ter_tsk while waiting).

- The time specified by tmout for tsnd_mbf has elapsed.
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
The message buffer is reset as a result of issuing vrst_mbf. EV_RST
Forced release from waiting (accept del_mbf while waiting). E_DLT

Note 1 Message is written to the message buffer area in the order of the message transmission request.

Note 2 Invoking tasks are queued to the transmission wait queue of the target message buffer in the FIFO order.

Return value

Macro Value Description

E_OK 0 Normal completion.

Parameter error.

E_PAR 17 T Megsz ==
- msgsz > (Maximum message size specified at creation)

- msg == NULL

Invalid ID number.
E_ID -18 - mbfid<0
- mbfid > VTMAX_MBF

Context error.

- This service call was issued from a non-task.
E_CTX 25 - This service call was issued in the CPU locked state.
- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Memory access violation.

E_MACV 26 - Stack pointer points out of user stack for invoking task.

- The operand-read access to the area indicated by msg (start : msg, size :
msgsz) has not been permitted to the invoking task.

Non-existent object.

E_NOEXS -42
- The message buffer specified by mbfid does not exist.
Forced release from the WAITING state.
E_RLWAI -49
- Accept rel_wailirel_wai while waiting.
Waiting object deleted.
E_DLT -51
- Accept del_mbf while waiting.
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 373 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

Macro Value Description
EV_RST -127 Released from WAITING state by the object reset (vrst_mbf)
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 374 of 565

Sep 20, 2013

RI600PX

CHAPTER 19

SERVICE CALLS

psnd_mbf
ipsnd_mbf

Outline

Send to message buffer (polling).

C format
ER psnd mbf (ID mbfid, VP msg, UINT msgsz);
ER ipsnd mbf (ID mbfid, VP msg, UINT msgsz);
Parameter(s)
I/0 Parameter Description
| D mbfid; ID number of the message buffer.
| VP msg; Pointer to the message to be sent.
| UINT msgsz; Message size to be sent (in bytes).
Explanation

These service calls process as follows according to the situation of the message buffer specified by the parameter mbfid.

- There is a task in the reception wait queue.
This service call transfers the message specified by parameter msg to the task in the top of the reception wait queue.
As a result, the task is unlinked from the reception wait queue and moves from the WAITING state (message
reception wait state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

- There is no task neither in the reception wait queue and transmission wait queue and there is available space in the

message buffer.

This service call stores the message specified by parameter msg to the message buffer. As a result, the size of
available space in the target message buffer decreases by the amount calculated by the following expression.

The amount of decrease = up4(msgsz) + VTSZ_MBFTBL

- There is no task neither in the reception wait queue and transmission wait queue and there is no available space in
the message buffer, or there is a task in the transmission wait queue.

These service calls return “E_TMOUT".

Note

Return value

Message is written to the message buffer area in the order of the message transmission request.

Macro Value Description
E OK 0 Normal completion.
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 375 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS
Macro Value Description
Parameter error.
E_PAR 17 - Megsz ==
- msgsz > (Maximum message size specified at creation)
- msg == NULL
Invalid ID number.
E_ID -18 - mbfid <0
- mbfid > VTMAX_MBF
Context error.
- This service call was issued in the CPU locked state.
E_CTX 25 - The ipsnd_mbf was issued from task.
- The psnd_mbf was issued from non-task.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation. (only for psnd_mbf)
E_MACV 26 - Stack pointer points out of user stack for invoking task.
- The operand-read access to the area indicated by msg (start : msg, size :
msgsz) has not been permitted to the invoking task.
Non-existent object.
E_NOEXS -42
- The message buffer specified by mbfid does not exist.
E_TMOUT -50 Polling failure.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 376 of 565

RI600PX CHAPTER 19

SERVICE CALLS

tsnd_mbf

Outline

Send to message buffer (with time-out).

C format
ER tsnd mbf (ID mbfid, VP msg, UINT msgsz, TMO tmout);
Parameter(s)
I/0 Parameter Description
| 1D mbfid; ID number of the message buffer.
| VP msg; Pointer to the message to be sent.
| UINT msgsz; Message size to be sent (in bytes).
Specified time-out (in millisecond).
I T™O tmout; TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified time-out.
Explanation

This service call processes as follows according to the situation of the message buffer specified by the parameter mbfid.

- There is a task in the reception wait queue.

This service call transfers the message specified by parameter msg to the task in the top of the reception wait queue.
As a result, the task is unlinked from the reception wait queue and moves from the WAITING state (message
reception wait state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

- There is no task neither in the reception wait queue and transmission wait queue and there is available space in the

message buffer.

This service call stores the message specified by parameter msg to the message buffer. As a result, the size of
available space in the target message buffer decreases by the amount calculated by the following expression.

The amount of decrease = up4(msgsz) + VTSZ_MBFTBL

- There is no task neither in the reception wait queue and transmission wait queue and there is no available space in

the message buffer, or there is a task in the transmission wait queue.

This service call queues the invoking task to the transmission wait queue of the target message buffer and moves it

from the RUNNING state to the WAITING state with time (message transmission wait state).
The sending WAITING state for a message buffer is cancelled in the following cases.

Sending WAITING State for a Message Buffer Cancel Operation

Return Value

Available space was secured in the message buffer area as a result of issuing rcv_mbf. E_OK
Available space was secured in the message buffer area as a result of issuing prcv_mbf. E_OK
Available space was secured in the message buffer area as a result of issuing trcv._mbf. E_OK

R20UT0964EJ0101 Rev.1.01 .ZENESAS
Sep 20, 2013

Page 377 of 565

RI600PX CHAPTER 19 SERVICE CALLS

Sending WAITING State for a Message Buffer Cancel Operation Return Value

The task at the top of the transmission wait queue was forcedly released from waiting by fol-
lowing either.

- Forced release from waiting (accept rel_wai while waiting).

- Forced release from waiting (accept irel_wai while waiting). E_OK

- Forced release from waiting (accept ter_tsk while waiting).

- The time specified by tmout for tsnd_mbf has elapsed.
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
The message buffer is reset as a result of issuing vrst_mbf. EV_RST
The time specified by tmout has elapsed. E_TMOUT
Forced release from waiting (accept del_mbf while waiting). E_DLT

Note 1 Message is written to the message buffer area in the order of the message transmission request.
Note 2 Invoking tasks are queued to the transmission wait queue of the target message buffer in the FIFO order.

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to snd_mbf will be executed. When
TMO_POL is specified, processing equivalent to psnd_mbf will be executed.

Return value

Macro Value Description

E_OK 0 Normal completion.

Parameter error.
- msgsz ==
- msgsz > (Maximum message size specified at creation)
- msg == NULL
- tmout < -1
- tmout > (OX7FFFFFFF - TIC_NUME)/ TIC_DENO

E_PAR 17

Invalid ID number.

E_ID -18 - mbfid<0
- mbfid > VTMAX_MBF

Context error.

- This service call was issued from a non-task.
E_CTX 25 - This service call was issued in the CPU locked state.
- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Memory access violation.

E_MACV 26 - Stack pointer points out of user stack for invoking task.

- The operand-read access to the area indicated by msg (start : msg, size :
msgsz) has not been permitted to the invoking task.

R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 378 of 565
Sep 20, 2013

RIG00PX CHAPTER 19 SERVICE CALLS
Macro Value Description
Non-existent object.
E_NOEXS -42
- The message buffer specified by mbfid does not exist.
Forced release from the WAITING state.
E_RLWAI -49
- Accept rel_wailirel_wai while waiting.
E_TMOUT -50 Polling failure or specified time has elapsed.
Waiting object deleted.
E_DLT -51
- Accept del_mbf while waiting.
EV_RST -127 Released from WAITING state by the object reset (vrst_mbf)

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 379 of 565

RI600PX CHAPTER 19 SERVICE CALLS

rcv_mbf

Outline

Receive from message buffer (waiting forever).

C format

ER UINT rcv _mbf (ID mbfid, VP msg);

Parameter(s)
I/0 Parameter Description
| 1D mbfid; ID number of the message buffer.
0] VP msg; Pointer to store the message.
Explanation

This service call processes as follows according to the situation of the message buffer specified by the parameter mbfid.

- There is a message in the message buffer.
This service call takes out the oldest message from the message buffer and stores the message to the area specified
by msg and return the size of the message. As a result, the size of available space in the target message buffer
increases by the amount calculated by the following expression.

The amount of increase = up4(Return value) + VTSZ_MBFTBL

In addition, this service call repeats the following processing until task in the transmission wait queue is lost or it
becomes impossible to store the message in the message buffer.

- When there is a task in the transmission wait queue and there is available space in the message buffer for the
message specified by the task in the top of the transmission wait queue, the task is unlinked from the transmis-
sion wait queue and moves from the WAITING state (message transmission wait state) to the READY state, or
from the WAITING-SUSPENDED state to the SUSPENDED state. As a result, the size of available space in the
target message buffer decreases by the amount calculated by the following expression.

The amount of decrease =up4(The message size sent by the task) + VTSZ_MBFTBL

- There is no message in the message buffer and there is a task in the transmission wait queue.
This service call stores the message specified by the task in the top of the transmission wait queue to the area
pointed by the parameter msg. As a result, the task is unlinked from the transmission wait queue and moves from the
WAITING state (message transmission wait state) to the READY state, or from the WAITING-SUSPENDED state to
the SUSPENDED state.
Note, this situation is caused only when the size of the message buffer is 0.

- There is no message in the message buffer and there is no task in the transmission wait queue.
This service call queues the invoking task to the reception wait queue of the target message buffer and moves it from
the RUNNING state to the WAITING state (message reception wait state).
The receiving WAITING state for a message buffer is cancelled in the following cases.

Receiving WAITING State for a Message Buffer Cancel Operation Return Value
Message was sent to the message buffer area as a result of issuing snd_mbf. E_OK
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 380 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

Receiving WAITING State for a Message Buffer Cancel Operation Return Value
Message was sent to the message buffer area as a result of issuing psnd_mbf. E_OK
Message was sent to the message buffer area as a result of issuing ipsnd_mbf. E_OK
Message was sent to the message buffer area as a result of issuing tsnd_mbf. E_OK
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
Forced release from waiting (accept del_mbf while waiting). E_DLT

Note 1 The maximum message size is defined at creating the message buffer. The size of the area pointed by msg
must be not less than the maximum message size.

Note 2 Invoking tasks are queued to the reception wait queue of the target message buffer in the order of the
message reception request.

Return value

Macro Value Description
} P\? :llf;;e Normal completion (the size of the received message).
Parameter error.
E_PAR 17

- msg == NULL

Invalid ID number.
E_ID -18 - mbfid<0
- mbfid > VTMAX_MBF

Context error.

- This service call was issued from a non-task.
E_CTX 25 - This service call was issued in the CPU locked state.
- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Memory access violation.

- Stack pointer points out of user stack for invoking task.

E_MACV -26 - The operand-write access to the area indicated by msg (start : msg, size :
maximum message size specified at creation) has not been permitted to the
invoking task.

Non-existent object.
E_NOEXS -42
- The message buffer specified by mbfid does not exist.
Forced release from the WAITING state.
E_RLWAI -49
- Accept rel_waifirel_wai while waiting.
Waiting object deleted.
E_DLT -51
- Accept del_mbf while waiting.
R20UT0964EJ0101 Rev.1.01 .IENESAS Page 381 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

prcv_mbf

Outline

Receive from message buffer (polling).

C format

ER UINT prcv mbf (ID mbfid, VP msqg);

Parameter(s)
I/0 Parameter Description
| 1D mbfid; ID number of the message buffer.
0] VP msg; Pointer to store the message.
Explanation

- There is a message in the message buffer.
This service call takes out the oldest message from the message buffer and stores the message to the area specified
by msg and return the size of the message. As a result, the size of available space in the target message buffer
increases by the amount calculated by the following expression.

The amount of increase = up4(Return value) + VTSZ_MBFTBL

In addition, this service call repeats the following processing until task in the transmission wait queue is lost or it
becomes impossible to store the message in the message buffer.

- When there is a task in the transmission wait queue and there is available space in the message buffer for the
message specified by the task in the top of the transmission wait queue, the task is unlinked from the transmis-
sion wait queue and moves from the WAITING state (message transmission wait state) to the READY state, or
from the WAITING-SUSPENDED state to the SUSPENDED state. As a result, the size of available space in the
target message buffer decreases by the amount calculated by the following expression.

The amount of decrease =up4(The message size sent by the task) + VTSZ_MBFTBL

- There is no message in the message buffer and there is a task in the transmission wait queue.
This service call stores the message specified by the task in the top of the transmission wait queue to the area
pointed by the parameter msg. As a result, the task is unlinked from the transmission wait queue and moves from the
WAITING state (message transmission wait state) to the READY state, or from the WAITING-SUSPENDED state to
the SUSPENDED state.
Note, this situation is caused only when the size of the message buffer is 0.

- There is no message in the message buffer and there is no task in the transmission wait queue.
This service call returns “E_TMOUT".

Note The maximum message size is defined at creating the message buffer. The size of the area pointed by msg
must be not less than the maximum message size.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 382 of 565
Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

Return value

Macro Value Description
- P\?:I'S;e Normal completion (the size of the received message).
Parameter error.
E_PAR -17
- msg == NULL
Invalid ID number.
E_ID -18 - mbfid<0
- mbfid > VTMAX_MBF
Context error.
- This service call was issued from a non-task.
E_CTX -25 - This service call was issued in the CPU locked state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
- Stack pointer points out of user stack for invoking task.
E_MACV -26 . - . o
- - The operand-write access to the area indicated by msg (start : msg, size :
maximum message size specified at creation) has not been permitted to the
invoking task.
Non-existent object.
E_NOEXS -42
- The message buffer specified by mbfid does not exist.
E_TMOUT -50 Polling failure.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS Page 383 of 565

RIG00PX CHAPTER 19 SERVICE CALLS
trcv_mbf
Outline
Receive from message buffer (with time-out).
C format
ER UINT trcv mbf (ID mbfid, VP msg, TMO tmout);
Parameter(s)
I/0 Parameter Description
| 1D mbfid; ID number of the message buffer.
0] VP msg; Pointer to store the message.
Specified time-out (in millisecond).
I T™™O tmout; TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified time-out.
Explanation

This service call processes as follows according to the situation of the message buffer specified by the parameter mbfid.

- There is a message in the message buffer.
This service call takes out the oldest message from the message buffer and stores the message to the area specified
by msg and return the size of the message. As a result, the size of available space in the target message buffer
increases by the amount calculated by the following expression.

The amount of increase = up4(Return value) + VTSZ_MBFTBL

In addition, this service call repeats the following processing until task in the transmission wait queue is lost or it
becomes impossible to store the message in the message buffer.

- When there is a task in the transmission wait queue and there is available space in the message buffer for the
message specified by the task in the top of the transmission wait queue, the task is unlinked from the transmis-
sion wait queue and moves from the WAITING state (message transmission wait state) to the READY state, or
from the WAITING-SUSPENDED state to the SUSPENDED state. As a result, the size of available space in the
target message buffer decreases by the amount calculated by the following expression.

The amount of decrease =up4(The message size sent by the task) + VTSZ_MBFTBL

- There is no message in the message buffer and there is a task in the transmission wait queue.

This service call stores the message specified by the task in the top of the transmission wait queue to the area
pointed by the parameter msg. As a result, the task is unlinked from the transmission wait queue and moves from the
WAITING state (message transmission wait state) to the READY state, or from the WAITING-SUSPENDED state to
the SUSPENDED state.

Note, this situation is caused only when the size of the message buffer is 0.

There is no message in the message buffer and there is no task in the transmission wait queue.

This service call queues the invoking task to the reception wait queue of the target message buffer and moves it from
the RUNNING state to the WAITING state with time (message reception wait state).

The receiving WAITING state for a message buffer is cancelled in the following cases.

R20UT0964EJ0101 Rev.1.01

RENESAS Page 384 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

Receiving WAITING State for a Message Buffer Cancel Operation Return Value

Message was sent to the message buffer area as a result of issuing snd_mbf. E_OK
Message was sent to the message buffer area as a result of issuing psnd_mbf. E_OK
Message was sent to the message buffer area as a result of issuing ipsnd_mbf. E_OK
Message was sent to the message buffer area as a result of issuing tsnd_mbf. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The time specified by tmout has elapsed. E_TMOUT
Forced release from waiting (accept del_mbf while waiting). E_DLT

Note 1 The maximum message size is defined at creating the message buffer. The size of the area pointed by msg
must be not less than the maximum message size.

Note 2 Invoking tasks are queued to the reception wait queue of the target message buffer in the order of the
message reception request.

Note 3 TMO_FEVR is specified for wait time fmout, processing equivalent to rcv_mbf will be executed. When
TMO_POL is specified, processing equivalent to prcv_mbf will be executed.

Return value

Macro Value Description
- P\c/) :liLtji;e Normal completion (the size of the received message).
Parameter error.
E_PAR A7 - msg == NULL
- tmout < -1

- tmout > (Ox7TFFFFFFF - TIC_NUME) / TIC_DENO

Invalid ID number.
E_ID -18 - mbfid <0
- mbfid > VTMAX_MBF

Context error.

- This service call was issued from a non-task.
E_CTX 25 - This service call was issued in the CPU locked state.
- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Memory access violation.

- Stack pointer points out of user stack for invoking task.

E_MACV -26 - The operand-write access to the area indicated by msg (start : msg, size :
maximum message size specified at creation) has not been permitted to the
invoking task.

Non-existent object.
E_NOEXS -42
- The message buffer specified by mbfid does not exist.
R20UT0964EJ0101 Rev.1.01 .IENESAS Page 385 of 565

Sep 20, 2013

RIG00PX CHAPTER 19 SERVICE CALLS
Macro Value Description
Forced release from the WAITING state.
E_RLWAI -49
- Accept rel_waifirel_wai while waiting.
E_TMOUT -50 Polling failure or specified time has elapsed.
Waiting object deleted.
E_DLT -51
- Accept del_mbf while waiting.

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS

Page 386 of 565

RI600PX CHAPTER 19 SERVICE CALLS

ref_mbf
iref_mbf

Outline

Reference message buffer state.

C format
ER ref mbf (ID mbfid, T RMBF *pk rmbf);
ER iref mbf (ID mbfid, T RMBF *pk rmbf);
Parameter(s)
I/0 Parameter Description
| D mbfid; ID number of the message.
@) T RMBF *pk rmbf; Pointer to the packet returning the message buffer state.

[Message buffer state packet: T_RMBF]

typedef struct t rmbf ({

ID stskid; /*Existence of tasks waiting for message transmission*/
ID rtskid; /*Existence of tasks waiting for message reception*/
UINT smsgcnt; /*Number of message elements in message buffer*/
SIZE fmbfsz; /*Available buffer size*/
} T RMBE;
Explanation

These service calls store the detailed information of the message buffer (existence of waiting tasks, number of data
elements in the message buffer, etc.) specified by parameter mbfid into the area specified by parameter pk_rmbf.

- Stskid
Stores whether a task is queued to the transmission wait queue of the message buffer.
TSK_NONE: No applicable task
Value: ID number of the task at the head of the transmission wait queue
- riskid
Stores whether a task is queued to the reception wait queue of the message buffer.
TSK_NONE: No applicable task
Value: ID number of the task at the head of the reception wait queue
- smsgcnt

Stores the number of message elements in message buffer.

- fmbfsz
Stores available size of the message buffer (in bytes).

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 387 of 565
Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

Return value

Macro Value Description
E_OK 0 Normal completion.
Parameter error.
E_PAR -17
- pk_rmbf == NULL
Invalid ID number.
E_ID -18 - mbfid <0
- mbfid > VTMAX_MBF

Context error.

- This service call was issued in the CPU locked state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
E_CTX -25 level”.

Note When the iref_mbf is issued from task or the ref_mbf is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.

Memory access violation. (only for ref_mbf)

E_MACV -26 - The operand-write access to the area indicated by pk rmbf has not been
permitted to the invoking task.

Non-existent object.

E_NOEXS -42
- The message buffer specified by mbfid does not exist.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS Page 388 of 565

RI600PX CHAPTER 19 SERVICE CALLS

19.2.10 Memory pool management functions (fixed-sized memory pools)

The following shows the service calls provided by the RIGOOPX as the memory pool management functions (fixed-sized
memory pools).

Table 19-14 Memory Pool Management Functions (Fixed-Sized Memory Pools)

Service Call Function Useful Range
cre_mpf Create fixed-sized memory pool Task
acre_mpf Create fixed-sized memory pool (automatic ID assignment) Task
del_mpf Delete fixed-sized memory pool Task
get_mpf Acquire fixed-sized memory block (waiting forever) Task
pget_mpf Acquire fixed-sized memory block (polling) Task
ipget_mpf Acquire fixed-sized memory block (polling) Non-task
tget_mpf Acquire fixed-sized memory block (with time-out) Task
rel_mpf Release fixed-sized memory block Task
irel_mpf Release fixed-sized memory block Non-task
ref_mpf Reference fixed-sized memory pool state Task
iref_mpf Reference fixed-sized memory pool state Non-task
R20UT0964EJ0101 Rev.1.01 RENESAS Page 389 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

cre_mpf
acre_mpf

Outline

Create fixed-sized memory pool.

C format

ER cre mpf (ID mpfid, T CMPF *pk cmpf);
ER ID acre mpf (T CMPF *pk cmpf);

Parameter(s)

I/0 Parameter Description

| 1D mpfid; ID number of the fixed-sized memory pool.

Pointer to the packet containing the fixed-sized memory pool creation

| T CMPF *pk £; . .
- pr_cmp information.

[Fixed-sized memory pool creation information packet : T_CMPF]

typedef struct t cmpf {

ATR mpfatr; /*fixed-sized memory pool attribute*/
UINT blkcnt; /*Total number of memory blocks*/
UINT blksz; /*Memory block size (in bytes) */
VP mpf; /*Start address of the fixed-sized memory pool area*/
VP mpfmb; /*Start address of the fixed-sized memory pool management area*/
} T CMPF;
Explanation

This service call can be called from tasks that belong to Trusted Domain.

The cre_mpf creates a fixed-sized memory pool with fixed-sized memory pool ID indicated by mpfid according to the
content of pk_cmpf. The acre_mpf creates a fixed-sized memory pool according to the content of pk_cmpf, and returns the
created fixed-sized memory pool ID.

1) Fixed-sized memory pool attribute (mpfatr)
The following are specified for mpfatr.

mpfatr := (TA TFIFO | TA TPRI)

- TA_TFIFO (= 0x0000)
Task wait queue is managed in FIFO order.

- TA_TPRI (= 0x0001)
Task wait queue is managed in task current priority order. Among tasks with the same priority, they are queued in

FIFO order.

2) Total number of memory blocks (blkcnt), memory block size (blksz), Start address of the fixed-sized memory pool
area (mpf)

R20UT0964EJ0101 Rev.1.01 RENESAS Page 390 of 565
Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

The application acquires TSZ_MPF(blkcnt, blksz) bytes of fixed-sized memory pool area and specifies the start
address for mpf.

Note 1 For details of TSZ_MPF macro, refer to “18.3.3 Macros for Fixed-sized Memory Pool”.

Note 2 The RIB00PX is not concerned of anything of the access permission to the fixed-sized memory pool
area. To access to the memory block from task, the memory pool area must be in the memory object
with appropriate permission.

Note, the RIBOOPX generates management tables in the memory pool area. If the management table is
rewritten by allocation, correct system operation cannot be guaranteed.

Note 3 The pITRON4.0 specification defines the function that the kernel allocates fixed-sized memory pool
area when NULL is specified for mpf. But RIBOOPX does not support this function.

Note 4 The alignment number of memory block is 1. Please perform the following, in order to enlarge the align-
ment number of memory blocks.

- Specify the memory block size to a multiple of the desired alignment number at fixed-sized memory pool
creation.

- Make the start address of the fixed-sized memory pool area into the address of the desired alignment
number.

3) Start address of the fixed-sized memory pool management area (mpfmb)
The application acquires TSZ_MPFMB(blkcnt, blksz) bytes of fixed-sized memory pool management area and
specifies the start address for mpfmb.

Note 1 For details of TSZ_MPFMB macro, refer to “18.3.3 Macros for Fixed-sized Memory Pool”.

Note 2 The RIB00PX is not concerned of anything of the access permission to the fixed-sized memory pool
management area. Usually, the fixed-sized memory pool management area should be generated to the
area other than memory objects and user stacks. When the fixed-sized memory pool management area
is generated in the memory object, a task with the operand-write access permission to the memory
object might rewrite the fixed-sized memory pool management area by mistake.

Return value

Macro Value Description
- P\?:IISZe Normal completion of acre_mpf. (Created fixed-sized memory pool ID)
E_OK 0 Normal completion of cre_mpf.
Reserved attribute
E_RSATR -11
- Either of bits in mpfatr except bit0 is 1.
Parameter error.
- pk_cmpf==NULL
E PAR 17 - blkent == 0, blkcnt > 65535

- blksz == 0, blksz > 65535
- TSZ_MPF(blkent, blksz) > VTMAX_AREASIZE
- mpf + TSZ_MPF(blkcnt, blksz) > 0x100000000

Invalid ID number. (only for cre_mpf)
E_ID -18 - mpfid <0
- mpfid > VTMAX_MPF

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 391 of 565
Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

Macro Value Description

Context error.

- This service call was issued in the CPU locked state.

E_CTX -25 - This service call was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Memory access violation.

E_MACV 26 - Stack pointer points out of user stack for invoking task.

- The operand-read access to the area indicated by pk cmpf has not been
permitted to the invoking task.

Object access violation.
E_OACV -27
- The invoking task does not belong to trusted domain.

Insufficient memory.
E_NOMEM -33 - mpf == NULL
- mpfmb == NULL

E_NOID -34 No ID number available.(only for acre_mpf)
Object state error. (only for cre_mpf)
E_OBJ -41
- The fixed-sized memory pool specified by mpfid exists.
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 392 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

del_mpf

Outline

Delete fixed-sized memory pool.

C format
ER del mpf (ID mpfid);
Parameter(s)
I/0 Parameter Description
| 1D mpfid; ID number of the fixed-sized memory pool.
Explanation

This service call can be called from tasks that belong to Trusted Domain.

This service call deletes the fixed-sized memory pool indicated by mpfid.

When there are waiting tasks for the target fixed-sized memory pool by using get_mpf or tget_mpf, this service call cancels
the WAITING state of the tasks and returns E_DLT as a return value of the get_mpf or tget_mpf.

Return value

Macro Value Description

E_OK 0 Normal completion.

Invalid ID number.
E_ID -18 - mpfid <0
- mpfid > VTMAX_MPF

Context error.
- This service call was issued in the CPU locked state.

E_CTX -25 - This service call was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask

level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Object access violation.
E_OACV -27
- The invoking task does not belong to trusted domain.
Non-existent object.
E_NOEXS -42
- The fixed-sized memory pool specified by mpfid does not exist.
R20UT0964EJ0101 Rev.1.01 .IENESAS Page 393 of 565

Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

get_mpf

Outline

Acquire fixed-sized memory block (waiting forever).

C format
ER get mpf (ID mpfid, VP *p blk);
Parameter(s)
I/0 Parameter Description
| 1D mpfid; ID number of the fixed-sized memory pool.
@) VP *p blk; Start address of the acquired memory block.
Explanation

This service call acquires the fixed-sized memory block from the fixed-sized memory pool specified by parameter mpfid
and stores the start address in the area specified by parameter p_blk.

If no fixed-size memory blocks could be acquired from the target fixed-size memory pool (no available fixed-size memory
blocks exist) when this service call is issued, this service call does not acquire the fixed-size memory block but queues the
invoking task to the target fixed-size memory pool wait queue and moves it from the RUNNING state to the WAITING state
(fixed-size memory block acquisition wait state).

The WAITING state for a fixed-sized memory block is cancelled in the following cases.

WAITING State for a Fixed-sized Memory Block Cancel Operation Return Value

A fix.ed—sized memory block was returned to the target fixed-sized memory pool as a result of E OK

issuing rel_mpf. -

A fix.ed-_sized memory block was returned to the target fixed-sized memory pool as a result of E OK

issuing irel_mpf. _

Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The fixed-sized memory pool is reset as a result of issuing vrst_mpf. EV_RST
Forced release from waiting (accept del_mpf while waiting). E_DLT

Note 1 Invoking tasks are queued to the target fixed-size memory pool wait queue in the order defined at creating the
fixed-sized memory pool. (FIFO order or current priority order).
Note 2 The contents of the block are undefined.
Note 3 The alignment number of memory block is 1. Please perform the following, in order to enlarge the alignment
number of memory blocks.
- Specify the memory block size to a multiple of the desired alignment number at creating the fixed-sized
memory pool.
- Make the start address of the fixed-sized memory pool area into the address of the desired alignment
number.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 394 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS
Return value
Macro Value Description
E_OK 0 Normal completion.
Parameter error.
E_PAR -17
- p_blk == NULL
Invalid ID number.
E_ID -18 - mpfid <0
- mpfid > VTMAX_MPF
Context error.
- This service call was issued from a non-task.
E_CTX 25 - This service call was issued in the CPU locked state.
- This service call was issued in the dispatching disabled state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
E_MACV 26 - Stack pointer points out of user stack for invoking task.
- The operand-write access to the area indicated by p_blk has not been
permitted to the invoking task.
Non-existent object.
E_NOEXS -42
- The fixed-sized memory pool specified by mpfid does not exist.
Forced release from the WAITING state.
E_RLWAI -49
- Accept rel_wailirel_wai while waiting.
Waiting object deleted.
E_DLT -51
- Accept del_mpf while waiting.
EV_RST -127 Released from WAITING state by the object reset (vrst_mpf)

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 395 of 565

RI600PX CHAPTER 19 SERVICE CALLS
pget_mpf
ipget_mpf
Outline

Acquire fixed-sized memory block (polling).

C format
ER pget mpf (ID mpfid, VP *p blk);
ER ipget mpf (ID mpfid, VP *p blk);
Parameter(s)
I/0 Parameter Description
| D mpfid; ID number of the fixed-sized memory pool.
@) VP *p blk; Start address of the acquired memory block.
Explanation

This service call acquires the fixed-sized memory block from the fixed-sized memory pool specified by parameter mpfid

and stores the start address in the area specified by parameter p_blk.

If a fixed-sized memory block could not be acquired from the target fixed-sized memory pool (no available fixed-sized
memory blocks exist) when this service call is issued, fixed-sized memory block acquisition processing is not performed

but “E_TMOUT” is returned.

Note 1 The contents of the block are undefined.

Note 2 The alignment number of memory block is 1. Please perform the following, in order to enlarge the alignment

number of memory blocks.

- Specify the memory block size to a multiple of the desired alignment number at creating the fixed-sized

memory pool.

- Make the start address of the fixed-sized memory pool area into the address of the desired alignment

number.

Return value

Macro Value Description

E OK 0 Normal completion.

Parameter error.

- p_blk == NULL

E_PAR 17

Invalid ID number.
E_ID -18 - mpfid<0
- mpfid > VTMAX_MPF

R20UT0964EJ0101 Rev.1.01 .ZENESAS
Sep 20, 2013

Page 396 of 565

RI600PX CHAPTER 19 SERVICE CALLS

Macro Value Description

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
E_CTX -25 level”.

Note When the ipget_mpf is issued from task or the pget_mpf is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.

Memory access violation. (only for pget_mpf)

E_MACV 26 - Stack pointer points out of user stack for invoking task.

- The operand-write access to the area indicated by p_blk has not been
permitted to the invoking task.

Non-existent object.

E_NOEXS -42
- The fixed-sized memory pool specified by mpfid does not exist.
E_TMOUT -50 Polling failure.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 397 of 565

Sep 20, 2013

RI600PX CHAPTER 19

SERVICE CALLS

tget_mpf

Outline

Acquire fixed-sized memory block (with time-out).

C format
ER tget mpf (ID mpfid, VP *p blk, TMO tmout);
Parameter(s)
I/0 Parameter Description
| 1D mpfid; ID number of the fixed-sized memory pool.
@) VP *p blk; Start address of the acquired memory block.
Specified time-out (in millisecond).
I TMO tmout; TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified time-out.
Explanation

This service call acquires the fixed-sized memory block from the fixed-sized memory pool specified by parameter mpfid

and stores the start address in the area specified by parameter p_blk.

If no fixed-size memory blocks could be acquired from the target fixed-size memory pool (no available fixed-size memory
blocks exist) when this service call is issued, this service call does not acquire the fixed-size memory block but queues the
invoking task to the target fixed-size memory pool wait queue and moves it from the RUNNING state to the WAITING state

with time-out (fixed-size memory block acquisition wait state).
The WAITING state for a fixed-sized memory block is cancelled in the following cases.

WAITING State for a Fixed-sized Memory Block Cancel Operation Return Value
Afix.ed—sized memory block was returned to the target fixed-sized memory pool as a result of E OK
issuing rel_mpf. —
Afix.ed—_sized memory block was returned to the target fixed-sized memory pool as a result of E OK
issuing irel_mpf. -
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
The fixed-sized memory pool is reset as a result of issuing vrst_mpf. EV_RST
The time specified by tmout has elapsed. E_TMOUT
Forced release from waiting (accept del_mpf while waiting). E_DLT

Note 1 Invoking tasks are queued to the target fixed-size memory pool wait queue in the order defined at creating the

fixed-sized memory pool. (FIFO order or current priority order).

Note 2 The contents of the block are undefined.

R20UT0964EJ0101 Rev.1.01 .ZENESAS
Sep 20, 2013

Page 398 of 565

RI600PX CHAPTER 19 SERVICE CALLS

Note 3 The alignment number of memory block is 1. Please perform the following, in order to enlarge the alignment
number of memory blocks.

- Specify the memory block size to a multiple of the desired alignment number at creating the fixed-sized
memory pool.

- Make the start address of the fixed-sized memory pool area into the address of the desired alignment
number.

Note 4 TMO_FEVR is specified for wait time tmout, processing equivalent to get mpf will be executed. When
TMO_POL is specified, processing equivalent to pget_mpf will be executed.

Return value

Macro Value Description

E_OK 0 Normal completion.

Parameter error.

- p_blk == NULL
- tmout < -1
- tmout > (Ox7FFFFFFF - TIC_NUME)/ TIC_DENO

E_PAR 17

Invalid ID number.
E_ID -18 - mpfid<0
- mpfid > VTMAX_MPF

Context error.

- This service call was issued from a non-task.
E_CTX 25 - This service call was issued in the CPU locked state.
- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Memory access violation.

E_MACV 26 - Stack pointer points out of user stack for invoking task.

- The operand-write access to the area indicated by p_blk has not been
permitted to the invoking task.

Non-existent object.

E_NOEXS -42
- The fixed-sized memory pool specified by mpfid does not exist.
Forced release from the WAITING state.
E_RLWAI -49
- Accept rel_waifirel_wai while waiting.
E_TMOUT -50 Polling failure or specified time has elapsed.
Waiting object deleted.
E_DLT -51
- Accept del_mpf while waiting.
EV_RST -127 Released from WAITING state by the object reset (vrst_mpf)
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 399 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

rel_mpf
irel_mpf

Outline

Release fixed-sized memory block.

C format
ER rel mpf (ID mpfid, VP blk);
ER irel mpf (ID mpfid, VP blk);
Parameter(s)
I/0 Parameter Description
| D mpfid; ID number of the fixed-sized memory pool.
| VP blk; Start address of the memory block to be released.
Explanation

This service call returns the fixed-sized memory block specified by parameter blk to the fixed-sized memory pool specified
by parameter mpfid.

If a task is queued to the target fixed-sized memory pool wait queue when this service call is issued, fixed-sized memory
block return processing is not performed but fixed-sized memory blocks are returned to the relevant task (first task of wait
queue).

As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (WAITING state for a
fixed-sized memory block) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

Return value

Macro Value Description

E OK 0 Normal completion.

Parameter error.
E_PAR -17 - blk == NULL
- blkis illegal.

Invalid ID number.
E_ID -18 - mpfid <0
- mpfid > VTMAX_MPF

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 400 of 565
Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

Macro Value Description
Context error.
- This service call was issued in the CPU locked state.
E_CTX 25 - The irel_mpf was issued from task.
- The rel_mpf was issued from non-task.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation. (only for rel_mpf)
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Non-existent object.
E_NOEXS -42
- The fixed-sized memory pool specified by mpfid does not exist.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

REN ESNS Page 401 of 565

RI600PX CHAPTER 19 SERVICE CALLS

ref_mpf
iref_mpf

Outline

Reference fixed-sized memory pool state.

C format
ER ref mpf (ID mpfid, T RMPF *pk rmpf);
ER iref mpf (ID mpfid, T RMPF *pk rmpf);
Parameter(s)
I/0 Parameter Description
| D mpfid; ID number of the fixed-sized memory pool.
0] T RMPF *pk rmpf; Pointer to the packet returning the fixed-sized memory pool state.

[Fixed-sized memory pool state packet: T_RMPF]

typedef struct t rmpf ({

ID wtskid; /*Existence of waiting task*/
UINT fblkent; /*Number of free memory blocks*/
} T _RMPF;
Explanation

Stores fixed-sized memory pool state packet (ID number of the task at the head of the wait queue, number of free memory
blocks, etc.) of the fixed-sized memory pool specified by parameter mpfid in the area specified by parameter pk_rmpf.

- wiskid
Stores whether a task is queued to the fixed-size memory pool.
TSK_NONE: No applicable task
Value: ID number of the task at the head of the wait queue
- fblkent

Stores the number of free memory blocks.

Return value

Macro Value Description
E OK 0 Normal completion.
Parameter error.
E_PAR -17
- pk_rmpf== NULL
R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 402 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

Macro Value Description

Invalid ID number.
E_ID -18 - mpfid<0
- mpfid > VTMAX_MPF

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
E_CTX -25 level”.

Note When the iref_mpf is issued from task or the ref_mpf is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.

Memory access violation. (only for ref_mpf)

E_MACV -26 - The operand-write access to the area indicated by pk rmpf has not been
permitted to the invoking task.

Non-existent object.
E_NOEXS -42
- The fixed-sized memory pool specified by mpfid does not exist.

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 403 of 565
Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

19.2.11 Memory pool management functions (variable-sized memory pools)

The following shows the service calls provided by the RIBOOPX as the memory pool management functions (variable-sized
memory pools).

Table 19-15 Memory Pool Management Functions (Variable-Sized Memory Pools)

Service Call Function Useful Range
cre_mpl Create variable-sized memory pool Task
acre_mpl Create variable-sized memory pool (automatic ID assignment) Task
del_mpl Delete variable-sized memory pool Task
get_mpl Acquire variable-sized memory block (waiting forever) Task
pget_mpl Acquire variable-sized memory block (polling) Task
ipget_mpl Acquire variable-sized memory block (polling) Non-task
tget_mpl Acquire variable-sized memory block (with time-out) Task
rel_mpl Release variable-sized memory block Task
ref_mpl Reference variable-sized memory pool state Task
iref_mpl Reference variable-sized memory pool state Non-task
R20UT0964EJ0101 Rev.1.01 REN ESNS Page 404 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

cre_mpl
acre_mpl
Outline

Create variable-sized memory pool.

C format

ER cre mpl (ID mplid, T CMPL *pk cmpl);
ER ID acre mpl (T CMPL *pk cmpl);

Parameter(s)

I/0 Parameter Description

| D mplid; ID number of the variable-sized memory pool.

Pointer to the packet containing the variable-sized memory pool cre-

| T CMPL *pk 1; o .
¢ pr_cmp ation information.

[Variable-sized memory pool creation information packet : T_CMPL]

typedef struct t cmpl {

ATR mplatr; /*variable-sized memory pool attribute*/
SIZE mplsz; /*Size of variable-sized memory pool area (in bytes)*/
VP mpl; /*Start address of the variable-sized memory pool area*/
UINT maxblksz; /*maximum memory block size (in bytes)*/
} T CMPL;
Explanation

This service call can be called from tasks that belong to Trusted Domain.

The cre_mpl creates a variable-sized memory pool with variable-sized memory pool ID indicated by mplid according to the
content of pk_cmpl. The acre_mpl creates a variable-sized memory pool according to the content of pk_cmpl, and returns
the created variable-sized memory pool ID.

1) Variable-sized memory pool attribute (mplatr)
Only TA_TFIFO can be specified for mplatr.

- TA_TFIFO (= 0x0000)
Task wait queue is managed in FIFO order.

2) Size of variable-sized memory pool area (mplsz), Start address of the variable-sized memory pool area (mpl/)
The application acquires mplsz bytes of variable-sized memory pool area and specifies the start address for mpl.
The mpl must be 4-bytes boundary.

Note 1 The RIB00PX is not concerned of anything of the access permission to the variable-sized memory pool
area. To access to the memory block from task, the memory pool area must be in the memory object
with appropriate permission.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 405 of 565
Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

Note 2

Note, the RIBO0OPX generates management tables in the memory pool area. If the management table is

rewritten by allocation, correct system operation cannot be guaranteed.

The pITRON4.0 specification defines the function that the kernel allocates variable-sized memory pool

area when NULL is specified for mpl. But RI6OOPX does not support this function.

Note 3 The alignment number of memory block is 4.

3) Maximum memory block size (maxblksz)

Specify the maximum memory block size for maxblksz. Note, the maximum size of memory block that can be actu-

ally acquired might be larger than maxblksz. For details, refer to “9.3.1 Size of Variable-sized memory block”.

Return value

Macro

Value

Description

Positive
value

Normal completion of acre_mpl. (Created variable-sized memory pool ID)

E_OK

0

Normal completion of cre_mpl.

E_RSATR

-1

Reserved attribute

- mplatr!=TA_TFIFO

E_PAR

-17

Parameter error.
- pk_cmpl == NULL
- mplsz < 24, mplsz > VTMAX_AREASIZE
- maxblksz == 0, maxblksz > OxXOBFFFFF4
- mplsz is too small to maxblksz.
- mpl + mplsz > 0x100000000
- mplis not 4-bytes boundary.

-18

Invalid ID number. (only for cre_mpl)

- mplid<0
- mplid > VTMAX_MPL

E_CTX

Context error.

- This service call was issued in the CPU locked state.
- This service call was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_MACV

Memory access violation.

- Stack pointer points out of user stack for invoking task.

- The operand-read access to the area indicated by pk cmpl has not been
permitted to the invoking task.

E_OACV

Object access violation.

- The invoking task does not belong to trusted domain.

E_NOMEM

Insufficient memory.

- mpl==NULL

E_NOID

No ID number available.(only for acre_mpl)

E_OBJ

Object state error. (only for cre_mpl)

- The variable-sized memory pool specified by mplid exists.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS Page 406 of 565

RI600PX CHAPTER 19 SERVICE CALLS

del_mpl

Outline

Delete variable-sized memory pool.

C format
ER del mpl (ID mplid);
Parameter(s)
I/0 Parameter Description
| D mplid; ID number of the variable-sized memory pool.
Explanation

This service call can be called from tasks that belong to Trusted Domain.

This service call deletes the variable-sized memory pool indicated by mplid.

When there are waiting tasks for the target variable-sized memory pool by using get_mpl or tget_mpl, this service call can-
cels the WAITING state of the tasks and returns E_DLT as a return value of the get_mpl or tget_mpl.

Return value

Macro Value Description

E_OK 0 Normal completion.

Invalid ID number.
E_ID -18 - mplid<0
- mplid > VTMAX_MPL

Context error.

- This service call was issued in the CPU locked state.
E_CTX -25 - This service call was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask

level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Object access violation.
E_OACV -27
- The invoking task does not belong to trusted domain.
Non-existent object.
E_NOEXS -42
- The variable-sized memory pool specified by mplid does not exist.
R20UT0964EJ0101 Rev.1.01 .ZEN ESNS Page 407 of 565

Sep 20, 2013

RIG00PX CHAPTER 19 SERVICE CALLS
get_mpl
Outline
Acquire variable-sized memory block (waiting forever).
C format
ER get mpl (ID mplid, UINT blksz, VP *p blk);
Parameter(s)
I/0 Parameter Description
| D mplid; ID number of the variable-sized memory pool.
| UINT blksz; Memory block size to be acquired (in bytes).
(0] VP *p blk; Start address of the acquired memory block.
Explanation

This service call acquires a variable-size memory block of the size specified by parameter blksz from the variable-size
memory pool specified by parameter mplid, and stores its start address into the area specified by parameter p_blk.

If no variable-size memory blocks could be acquired from the target variable-size memory pool (no successive areas
equivalent to the requested size were available) when this service call is issued, this service call does not acquire variable-
size memory blocks but queues the invoking task to the target variable-size memory pool wait queue and moves it from
the RUNNING state to the WAITING state (variable-size memory block acquisition wait state).
The WAITING state for a variable-sized memory block is cancelled in the following cases.

WAITING State for a Variable-sized Memory Block Cancel Operation Return Value

Thg variaple-size memory block that sgtisfigs the requested size was returned to the target E OK
variable-size memory pool as a result of issuing rel_mpl. -
The task at the top of the transmission wait queue was forcedly released from waiting by follow-
ing either.

- Forced release from waiting (accept rel_wai while waiting).

- Forced release from waiting (accept irel_wai while waiting). E_OK

- Forced release from waiting (accept ter_tsk while waiting).

- The time specified by tmout for tget_mpl has elapsed.
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
The variable-sized memory pool is reset as a result of issuing vrst_mpl. EV_RST
Forced release from waiting (accept del_mpl while waiting). E_DLT

Note 1
Note 2

For the size of the memory block, refer to “9.3.1 Size of Variable-sized memory block”.

Invoking tasks are queued to the target variable-size memory pool wait queue in the FIFO order.

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS

Page 408 of 565

RI600PX CHAPTER 19 SERVICE CALLS

Note 3 The contents of the block are undefined.

Note 4 The alignment number of memory blocks changes with creation method of the variable-sized memory pool.
- Created by system configuration file
The alignment number is 1. To enlarge the alignment number to 4, specify unique section to Section name

assigned to the memory pool area (mpl_section) in Variable-sized Memory Pool Information
(variable_memorypool[]) and locate the section to 4-bytes boundary address when linking.

- Created by cre_mpl or acre_mpl
The alignment number is 4.

Return value

Macro Value Description

E_OK 0 Normal completion.

Parameter error.

E_PAR 17 - blksz ==
- blksz exceeds the maximum size that can be acquired.
- p_blk == NULL

Invalid ID number.
E_ID -18 - mplid<0
- mplid > VTMAX_MPL

Context error.

- This service call was issued from a non-task.
E_CTX 25 - This service call was issued in the CPU locked state.
- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Memory access violation.

E_MACV 26 - Stack pointer points out of user stack for invoking task.

- The operand-write access to the area indicated by p blk has not been
permitted to the invoking task.

Non-existent object.

E_NOEXS -42
- The variable-sized memory pool specified by mplid does not exist.
Forced release from the WAITING state.
E_RLWAI -49
- Accept rel_wailirel_wai while waiting.
Waiting object deleted.
E_DLT -51
- Accept del_mpl while waiting.
EV_RST -127 Released from WAITING state by the object reset (vrst_mpl)
R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 409 of 565

Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

pget_mpl
ipget_mpl

Outline

Acquire variable-sized memory block (polling).

C format
ER pget mpl (ID mplid, UINT blksz, VP *p blk);
ER ipget mpl (ID mplid, UINT blksz, VP *p blk);
Parameter(s)
I/0 Parameter Description
| D mplid; ID number of the variable-sized memory pool.
| UINT blksz; Memory block size to be acquired (in bytes).
(0] VP *p blk; Start address of the acquired memory block.

Explanation

This service call acquires a variable-size memory block of the size specified by parameter blksz from the variable-size
memory pool specified by parameter mplid, and stores its start address into the area specified by parameter p_blk.

If no variable-size memory blocks could be acquired from the target variable-size memory pool (no successive areas
equivalent to the requested size were available) when this service call is issued, this service call does not acquire variable-
size memory block but returns “E_TMOUT".

Note 1
Note 2
Note 3

For the size of the memory block, refer to “9.3.1 Size of Variable-sized memory block”.

The contents of the block are undefined.

The alignment number of memory blocks changes with creation method of the variable-sized memory pool.
Created by system configuration file

The alignment number is 1. To enlarge the alignment number to 4, specify unique section to Section name

assigned to the memory pool area (mpl_section) in Variable-sized Memory Pool Information
(variable_memorypool[]) and locate the section to 4-bytes boundary address when linking.

Created by cre_mpl or acre_mpl
The alignment number is 4.

Return value

Macro Value Description
E OK 0 Normal completion.
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 410 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

Macro Value Description

Parameter error.

E_PAR 17 - blksz ==
- blksz exceeds the maximum size that can be acquired.
- p_blk == NULL

Invalid ID number.
E_ID -18 - mplid<0
- mplid > VTMAX_MPL

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
E_CTX -25 level”.

Note When the ipget_mpl is issued from task or the pget_mpl is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.

Memory access violation. (only for pget_mpl)

E_MACV 26 - Stack pointer points out of user stack for invoking task.

- The operand-write access to the area indicated by p_blk has not been
permitted to the invoking task.

Non-existent object.

E_NOEXS -42
- The variable-sized memory pool specified by mplid does not exist.
E_TMOUT -50 Polling failure.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 411 of 565

Sep 20, 2013

RIG00PX CHAPTER 19 SERVICE CALLS
tget_mpl
Outline
Acquire variable-sized memory block (with time-out).
C format
ER tget mpl (ID mplid, UINT blksz, VP *p blk, TMO tmout);
Parameter(s)
I/0 Parameter Description
| D mplid; ID number of the variable-sized memory pool.
| UINT blksz; Memory block size to be acquired (in bytes).
(0] VP *p blk; Start address of the acquired memory block.
Specified time-out (in millisecond).
I T™MO tmout; TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified time-out.
Explanation

This service call acquires a variable-size memory block of the size specified by parameter blksz from the variable-size
memory pool specified by parameter mplid, and stores its start address into the area specified by parameter p_blk.

If no variable-size memory blocks could be acquired from the target variable-size memory pool (no successive areas
equivalent to the requested size were available) when this service call is issued, this service call does not acquire variable-
size memory blocks but queues the invoking task to the target variable-size memory pool wait queue and moves it from
the RUNNING state to the WAITING state with time-out (variable-size memory block acquisition wait state).

The WAITING state for a variable-sized memory block is cancelled in the following cases.

WAITING State for a Variable-sized Memory Block Cancel Operation Return Value

Thg variaple-size memory block that sa_tisfi(_as the requested size was returned to the target E OK
variable-size memory pool as a result of issuing rel_mpl. -
The task at the top of the transmission wait queue was forcedly released from waiting by follow-
ing either.

- Forced release from waiting (accept rel_wai while waiting).

- Forced release from waiting (accept irel_wai while waiting). E_OK

- Forced release from waiting (accept ter_tsk while waiting).

- The time specified by tmout for tget_mpl has elapsed.
Forced release from waiting (accept rel_wai while waiting). E_RLWAI
Forced release from waiting (accept irel_wai while waiting). E_RLWAI
The variable-sized memory pool is reset as a result of issuing vrst_mpl. EV_RST
The time specified by tmout has elapsed. E_TMOUT

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS

Page 412 of 565

RI600PX CHAPTER 19 SERVICE CALLS

WAITING State for a Variable-sized Memory Block Cancel Operation Return Value

Forced release from waiting (accept del_mpl while waiting). E_DLT

Note 1 For the size of the memory block, refer to “9.3.1 Size of Variable-sized memory block”.
Note 2 Invoking tasks are queued to the target variable-size memory pool wait queue in the FIFO order.
Note 3 The contents of the block are undefined.

Note 4 The alignment number of memory blocks changes with creation method of the variable-sized memory pool.

- Created by system configuration file
The alignment number is 1. To enlarge the alignment number to 4, specify unique section to Section name
assigned to the memory pool area (mpl_section) in Variable-sized Memory Pool Information
(variable_memorypool[]) and locate the section to 4-bytes boundary address when linking.

- Created by cre_mpl or acre_mpl
The alignment number is 4.

Note 5 TMO_FEVR is specified for wait time tmout, processing equivalent to get mpl will be executed. When
TMO_POL is specified, processing equivalent to pget_mpl will be executed.

Return value

Macro Value Description

E _OK 0 Normal completion.

Parameter error.
- blksz ==
- blksz exceeds the maximum size that can be acquired.
- p_blk == NULL
- tmout < -1
- tmout > (Ox7FFFFFFF - TIC_NUME)/ TIC_DENO

E_PAR 17

Invalid ID number.
E_ID -18 - mplid<0
- mplid > VTMAX_MPL

Context error.

- This service call was issued from a non-task.
E_CTX 25 - This service call was issued in the CPU locked state.
- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Memory access violation.

E_MACV 26 - Stack pointer points out of user stack for invoking task.

- The operand-write access to the area indicated by p_blk has not been
permitted to the invoking task.

Non-existent object.

E_NOEXS -42
- The variable-sized memory pool specified by mplid does not exist.
Forced release from the WAITING state.
E_RLWAI -49
- Accept rel_waifirel_wai while waiting.
R20UT0964EJ0101 Rev.1.01 .IENESAS Page 413 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS
Macro Value Description
E_TMOUT -50 Polling failure or specified time has elapsed.
Waiting object deleted.
E_DLT -51
- Accept del_mpl while waiting.
EV_RST -127 Released from WAITING state by the object reset (vrst_mpl)

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS

Page 414 of 565

RI600PX CHAPTER 19 SERVICE CALLS

rel_mpl

Outline

Release variable-sized memory block.

C format
ER rel mpl (ID mplid, VP blk);
Parameter(s)
I/O Parameter Description
| D mplid; ID number of the variable-sized memory pool.
| VP blk; Start address of memory block to be released.
Explanation

This service call returns the variable-sized memory block specified by parameter blk to the variable-sized memory pool
specified by parameter mplid.

After returning the variable-size memory blocks, these service calls check the tasks queued to the target variable-size
memory pool wait queue from the top, and assigns the memory if the size of memory requested by the wait queue is
available. This operation continues until no tasks queued to the wait queue remain or no memory space is available. As a
result, the task that acquired the memory is unlinked from the queue and moved from the WAITING state (variable-size
memory block acquisition wait state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED
state.

Note The RI600PX do only simple error detection for bik. If blk is illegal and the error is not detected, the operation is
not guaranteed after that.

Return value

Macro Value Description

E OK 0 Normal completion.

Parameter error.
E_PAR -17 - blk == NULL

- blkis illegal.

Invalid ID number.
E_ID -18 - mplid<0
- mplid > VTMAX_MPL

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 415 of 565
Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

Macro Value Description
Context error.
- This service call was issued in the CPU locked state.
E_CTX -25 - This service call was issued from non-task.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Non-existent object.
E_NOEXS -42
- The variable-sized memory pool specified by mplid does not exist.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

REN ESNS Page 416 of 565

RI600PX CHAPTER 19 SERVICE CALLS

ref_mpl
iref_mpl

Outline

Reference variable-sized memory pool state.

C format
ER ref mpl (ID mplid, T RMPL *pk rmpl);
ER iref mpl (ID mplid, T RMPL *pk rmpl);
Parameter(s)
I/0 Parameter Description
| D mplid; ID number of the variable-sized memory pool.
O T RMPL *pk rmpl; Pointer to the packet returning the variable-sized memory pool state.

[Variable-sized memory pool state packet: T_RMPL]

typedef struct t rmpl {

ID wtskid; /*Existence of waiting task*/
SIZE fmplsz; /*Total size of free memory blocks*/
UINT fblksz; /*Maximum memory block size available*/
} T RMPL;
Explanation

These service calls store the detailed information (ID number of the task at the head of the wait queue, total size of free
memory blocks, etc.) of the variable-size memory pool specified by parameter mplid into the area specified by parameter
pk_rmpl.

- wiskid
Stores whether a task is queued to the variable-size memory pool wait queue.
TSK_NONE: No applicable task
Value: ID number of the task at the head of the wait queue
- fmplsz

Stores the total size of free memory blocks (in bytes).

- fblksz
Stores the maximum memory block size available (in bytes).

R20UT0964EJ0101 Rev.1.01 RENESAS Page 417 of 565
Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

Return value

Macro Value Description
E_OK 0 Normal completion.
Parameter error.
E_PAR -17
- pk_rmpl == NULL
Invalid ID number.
E_ID -18 - mplid<0
- mplid > VTMAX_MPL

Context error.

- This service call was issued in the CPU locked state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
E_CTX -25 level”.

Note When the iref_mpl is issued from task or the ref_mpl is issued from non-task,
the context error is not detected and normal operation of the system is not
guaranteed.

Memory access violation. (only for ref_mpl)

E_MACV -26 - The operand-write access to the area indicated by pk rmpl has not been
permitted to the invoking task.

Non-existent object.

E_NOEXS -42
- The variable-sized memory pool specified by mplid does not exist.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

REN ESNS Page 418 of 565

RI600PX

CHAPTER 19 SERVICE CALLS

19.2.12 Time management functions

The following shows the service calls provided by the RIGO0PX as the time management functions.

Table 19-16 Time Management Functions

Service Call Function Useful Range
set_tim Set system time Task
iset_tim Set system time Non-task
get_tim Reference system time Task
iget_tim Reference system time Non-task
cre_cyc Create cyclic handler Task
acre_cyc Create cyclic handler (automatic ID assignment) Task
del_cyc Delete cyclic handler Task
sta_cyc Start cyclic handler operation Task
ista_cyc Start cyclic handler operation Non-task
stp_cyc Stop cyclic handler operation Task
istp_cyc Stop cyclic handler operation Non-task
ref_cyc Reference cyclic handler state Task
iref_cyc Reference cyclic handler state Non-task
cre_alm Create alarm handler Task
acre_alm Create alarm handler (automatic ID assignment) Task
del_alm Delete alarm handler Task
sta_alm Start alarm handler operation Task
ista_alm Start alarm handler operation Non-task
stp_alm Stop alarm handler operation Task
istp_alm Stop alarm handler operation Non-task
ref_alm Reference alarm handler state Task
iref_alm Reference alarm handler state Non-task

R20UT0964EJ0101 Rev.1.01 REN ESNS Page 419 of 565

Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

set_tim
iset_tim

Outline

Set system time.

C format
ER set tim (SYSTIM *p systim);
ER iset tim (SYSTIM *p systim);
Parameter(s)
I/0 Parameter Description
| SYSTIM *p systim; Time to set as system time.

[System time packet: SYSTIM]

typedef struct

UH
uW
} SYSTIM;

Explanation

systim {
utime; /*System time
ltime; /*System time

(higher 16 bits)*/
(lower 32 bits)*/

These service calls change the RIBOOPX system time (unit: msec) to the time specified by parameter p_systim.

Note Even if the system time is changed, the actual time at which the time management requests made before that
(e.g., task time-outs, task delay by dly_tsk, cyclic handlers, and alarm handlers) are generated will not change.

Return value

Macro Value Description
E_OK 0 Normal completion.
Parameter error.
E_PAR -17
- p_systim == NULL
R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 420 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

Macro Value Description

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
E_CTX -25 level”.

Note When the iset_tim is issued from task or the set_tim is issued from non-task,
the context error is not detected and normal operation of the system is not
guaranteed.

Memory access violation. (only for set_tim)

E_MACV -26 - The operand-read access to the area indicated by p_systim has not been per-
mitted to the invoking task.
R20UT0964EJ0101 Rev.1.01 IQEN ESNS Page 421 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

get_tim
iget_tim

Outline

Reference system time.

C format
ER get tim (SYSTIM *p systim);
ER iget tim (SYSTIM *p systim);
Parameter(s)
I/0 Parameter Description
0] SYSTIM *p systim; Current system time.

[System time packet: SYSTIM]

typedef struct systim {

UH utime; /*System time (higher 16 bits)*/

uw ltime; /*System time (lower 32 bits)*/
} SYSTIM;
Explanation

These service calls store the RIBOOPX system time (unit: msec) into the area specified by parameter p_systim.

Return value

Macro Value Description
E_OK 0 Normal completion.
Parameter error.
E_PAR -17
- p_systim == NULL
Context error.
- This service call was issued in the CPU locked state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
E_CTX -25 level”.

Note When the iget_tim is issued from task or the get_tim is issued from non-task,
the context error is not detected and normal operation of the system is not
guaranteed.

R20UT0964EJ0101 Rev.1.01 IIEN ESNS Page 422 of 565

Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

Macro

Value

Description

E_MACV

Memory access violation. (only for get_tim)

- The operand-write access to the area indicated by p_systim has not been per-

mitted to the invoking task.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 423 of 565

RI600PX CHAPTER 19 SERVICE CALLS

cre_cyc
acre_cyc

Outline

Create cyclic handler.

C format

ER cre cyc (ID cycid, T CCYC *pk ccyc);
ER ID acre cyc (T CCYC *pk ccyc);

Parameter(s)
I/0 Parameter Description
| ID cycid; ID number of the cyclic handler.
| T CCYC *pk ccyc; Pointer to the packet containing the cyclic handler creation information.

[Cyclic handler creation information packet : T_CCYC]

typedef struct t ccyc {

ATR cycatr; /*Cyclic handler attribute*/
VP _INT exinf; /*Extended information*/
FP cychdr; /*Cyclic handler start address*/
RELTIM cyctim; /*Activation cycle (in milli-second)*/
UINT cycphs; /*Activation phase (in milli-second) */
} T _CCYC;
Explanation

This service call can be called from tasks that belong to Trusted Domain.
The cre_cyc creates a cyclic handler with cyclic handler ID indicated by cycid according to the content of pk_ccyc. The
acre_cyc creates a cyclic handler according to the content of pk_ccyc, and returns the created cyclic handler ID.

1) Cyclic handler attribute (cycatr)
The following are specified for cycatr.

cycatr := (TA HLMG | [TA STA] | [TA PHS])

- TA_HLNG (= 0x0000)
Only C-language is supported for cyclic handler description language.

- TA_STA (= 0x0002)
When TA_STA is specified, the cyclic handler is in operational state (STA state). When TA_STA is not specified,
the cyclic handler is in non-operational state (STP state).

- TA_PHS (= 0x0004)
When TA_PHS is specified, the next activation time is determined preserving the activation phase when the
cyclic handler is moved to operational state. When TA_PHS is not specified, the cyclic handler is activated cyctim

R20UT0964EJ0101 Rev.1.01 RENESAS Page 424 of 565
Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

milliseconds after issuing sta_cyc or ista_cyc.
Please refer to “10.6.5 Start cyclic handler operation”.

2) Extended information (exinf)
The exinfis passed to the cyclic handler as argument. The exinf can be widely used by the user, for example, to set
information concerning the cyclic handler.

3) Cyclic handler start address (cychdr)
Specify the cyclic handler start address for cychdr.

4) Activation cycle (cyctim), activation phase (cycphs)
Specify activation cycle (in milli-second) for cyctim.
And specify the time to the first staring from this service call (in milli-second) for cycphs. When both TA_STA and
TA_PHS are not specified, the cycphs is ignored.

Return value

Macro Value Description
i Pg:.‘ﬂge Normal completion of acre_cyc. (Created cyclic handler ID)

E_OK 0 Normal completion of cre_cyc.

Reserved attribute
E_RSATR -11
- Either of bits in cycatr except bit1 and bit2 is 1.

Parameter error.
- pk_ccyc == NULL
E_PAR -17 - cychdr == NULL
- cyctim == 0, cyctim > (Ox7FFFFFFF - TIC_NUME)/ TIC_DENO

- cyctim < cycphs

Invalid ID number. (only for cre_cyc)
E_ID -18 - cycid< 0
- cycid > VTMAX_CYH

Context error.

- This service call was issued in the CPU locked state.
E_CTX -25 - This service call was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Memory access violation.

E_MACV 26 - Stack pointer points out of user stack for invoking task.

- The operand-read access to the area indicated by pk _ccyc has not been
permitted to the invoking task.

Object access violation.

E_OACV -27
- The invoking task does not belong to trusted domain.
E_NOID -34 No ID number available.(only for acre_cyc)
Object state error. (only for cre_cyc)
E_OBJ -41
- The cyclic handler specified by cycid exists.
R20UT0964EJ0101 Rev.1.01 .ZEN ESNS Page 425 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

del_cyc

Outline

Delete cyclic handler.

C format
ER del cyc (ID cycid);
Parameter(s)
I/0 Parameter Description
| ID cycid; ID number of the cyclic handler.
Explanation

This service call can be called from tasks that belong to Trusted Domain.
This service call deletes the cyclic handler indicated by cycid.

Return value

Macro Value Description

E_OK 0 Normal completion.

Invalid ID number.
E_ID -18 - cycid<0
- cycid > VTMAX_CYH

Context error.

- This service call was issued in the CPU locked state.

E_CTX -25 - This service call was issued from non-task.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Object access violation.
E_OACV -27
- The invoking task does not belong to trusted domain.
Non-existent object.
E_NOEXS -42
- The cyclic handler specified by cycid does not exist.
R20UT0964EJ0101 Rev.1.01 .IEN ESNS Page 426 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

sta_cyc
ista_cyc

Outline

Start cyclic handler operation.

C format
ER sta cyc (ID cycid);
ER ista cyc (ID cycid);
Parameter(s)
I/0 Parameter Description
| D cycid; ID number of the cyclic handler.
Explanation

This service call moves the cyclic handler specified by parameter cycid from the non-operational state (STP state) to
operational state (STA state).

As a result, the target cyclic handler is handled as an activation target of the RIGOOPX.

The relative interval from when either of this service call is issued until the first activation request is issued varies
depending on whether the TA_PHS attribute is specified for the target cyclic handler at creation. For details, refer to
“10.6.5 Start cyclic handler operation”.

- When the TA_PHS attribute is specified
The target cyclic handler activation timing is set up based on the activation phases and activation cycle.
If the target cyclic handler has already been in operational state, however, no processing is performed even if this
service call is issued, but it is not handled as an error.

- When the TA_PHS attribute is not specified
The target cyclic handler activation timing is set up according to the activation cycle on the basis of the call time of this
service call.
This setting is performed regardless of the operating status of the target cyclic handler.

Return value

Macro Value Description

E OK 0 Normal completion.

Invalid ID number.
E_ID -18 - cycid<0
- cycid > VTMAX_CYH

R20UT0964EJ0101 Rev.1.01 RENESAS Page 427 of 565
Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

Macro Value Description
Context error.
- This service call was issued in the CPU locked state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
E_CTX -25 level”.

Note When the ista_cyc is issued from task or the sta_cyc is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.

Non-existent object.

E_NOEXS -42
- The cyclic handler specified by cycid does not exist.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

REN ESNS Page 428 of 565

RI600PX CHAPTER 19 SERVICE CALLS

stp_cyc
istp_cyc

Outline

Stop cyclic handler operation.

C format
ER stp cyc (ID cycid);
ER istp cyc (ID cycid);
Parameter(s)
I/0 Parameter Description
| D cycid; ID number of the cyclic handler.
Explanation

This service call moves the cyclic handler specified by parameter cycid from the operational state (STA state) to non-
operational state (STP state).

As a result, the target cyclic handler is excluded from activation targets of the RIBO0OPX until issuance of sta_cyc or
ista_cyc.

Note This service call does not perform queuing of stop requests. If the target cyclic handler has been moved to the
non-operational state (STP state), therefore, no processing is performed but it is not handled as an error.

Return value

Macro Value Description

E_OK 0 Normal completion.

Invalid ID number.
E_ID -18 - cycid<0
- cycid > VTMAX_CYH

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
E_CTX -25 level”.

Note When the istp_cyc is issued from task or the stp_cyc is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.

Non-existent object.

E_NOEXS -42
- The cyclic handler specified by cycid does not exist.
R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 429 of 565

Sep 20, 2013

RI600PX

CHAPTER 19

SERVICE CALLS

ref_cyc
iref_cyc

Outline

Reference cyclic handler state.

C format
ER ref cyc (ID cycid, T RCYC *pk rcyc);
ER iref cyc (ID cycid, T RCYC *pk rcyc):;
Parameter(s)
I/0 Parameter Description
| D cycid; ID number of the cyclic handler.
@) T RCYC *pk rcyc; Pointer to the packet returning the cyclic handler state.

[Cyclic handler state packet: T_RCYC]

typedef struct t rcyc {
STAT cycstat;
RELTIM lefttim;
} T RCYC;
Explanation

/*Current state*/
/*Time left before the next activation*/

Stores cyclic handler state packet (current state, time until the next activation, etc.) of the cyclic handler specified by
parameter cycid in the area specified by parameter pk_rcyc.

- cycstat
Store the current state.

TCYC_STP:
TCYC_STA:

- lefttim

Non-operational state
Operational state

Stores the time until the next activation (in millisecond). When the target cyclic handler is in the non-operational state,

lefttim is undefined.

Return value

Macro Value Description
E OK 0 Normal completion.
R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 430 of 565

Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

Macro Value Description

Parameter error.

E_PAR -17
- pk_rcyc == NULL
Invalid ID number.
E_ID -18 - cycid<0
- cycid > VTMAX_CYH

Context error.

- This service call was issued in the CPU locked state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
E_CTX -25 level”.

Note When the iref_cyc is issued from task or the ref_cyc is issued from non-task,
the context error is not detected and normal operation of the system is not
guaranteed.

Memory access violation. (only for ref_cyc)

E_MACV -26 - The operand-write access to the area indicated by pk rcyc has not been
permitted to the invoking task.

Non-existent object.

E_NOEXS -42
- The cyclic handler specified by cycid does not exist.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

REN ESNS Page 431 of 565

RI600PX CHAPTER 19 SERVICE CALLS

cre_alm
acre_alm

Outline

Create alarm handler.

C format

ER cre alm (ID almid, T CALM *pk calm);
ER ID acre alm (T CALM *pk calm);

Parameter(s)
I/0 Parameter Description
I 1D almid; ID number of the alarm handler.
I T CALM *pk calm; Pointer to the packet containing the alarm handler creation information.

[Alarm handler creation information packet : T_CALM]

typedef struct t calm {

ATR almatr; /*Alarm handler attribute*/
VP _INT exinf; /*Extended information*/
FP almhdr; /*Alarm handler start address*/
} T CALM;
Explanation

This service call can be called from tasks that belong to Trusted Domain.
The cre_alm creates a alarm handler with alarm handler ID indicated by almid according to the content of pk_calm. The
acre_alm creates a alarm handler according to the content of pk_calm, and returns the created alarm handler ID.

1) Alarm handler attribute (almatr)
Only TA_HLNG can be specified for almatr.

- TA_HLNG (= 0x0000)
Only C-language is supported for alarm handler description language.

2) Extended information (exinf)
The exinf is passed to the alarm handler as argument. The exinf can be widely used by the user, for example, to
set information concerning the alarm handler.

3) Alarm handler start address (almhdr)
Specify the alarm handler start address for almhdr.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 432 of 565
Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

Return value

Macro Value Description
- P\?:I'S;e Normal completion of acre_alm. (Created alarm handler ID)
E_OK 0 Normal completion of cre_alm.
Reserved attribute
E_RSATR -11
- almatr!= TA_HLNG
Parameter error.
E_PAR -17 - pk_calm == NULL
- almhdr == NULL
Invalid ID number. (only for cre_alm)
E_ID -18 - almid<0
- almid > VTMAX_ALH
Context error.
- This service call was issued in the CPU locked state.
E_CTX -25 - This service call was issued from non-task.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
E_MACV 26 - Stack pointer points out of user stack for invoking task.
- The operand-read access to the area indicated by pk calm has not been
permitted to the invoking task.
Object access violation.
E_OACV -27
- The invoking task does not belong to trusted domain.
E_NOID -34 No ID number available.(only for acre_alm)
Object state error. (only for cre_alm)
E_OBJ -41
- The alarm handler specified by almid exists.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS Page 433 of 565

RI600PX CHAPTER 19 SERVICE CALLS

del_alm

Outline

Delete alarm handler.

C format
ER del alm (ID almid);
Parameter(s)
I/0 Parameter Description
| ID almid; ID number of the alarm handler.
Explanation

This service call can be called from tasks that belong to Trusted Domain.
This service call deletes the alarm handler indicated by almid.

Return value

Macro Value Description

E_OK 0 Normal completion.

Invalid ID number.
E_ID -18 - almid<0
- almid > VTMAX_ALH

Context error.

- This service call was issued in the CPU locked state.

E_CTX -25 - This service call was issued from non-task.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Object access violation.
E_OACV -27
- The invoking task does not belong to trusted domain.
Non-existent object.
E_NOEXS -42
- The alarm handler specified by almid does not exist.
R20UT0964EJ0101 Rev.1.01 .IEN ESNS Page 434 of 565

Sep 20, 2013

RIG00PX CHAPTER 19 SERVICE CALLS
sta_alm
ista_alm
Outline
Start alarm handler operation.
C format
ER sta alm (ID almid, RELTIM almtim);
ER ista alm (ID almid, RELTIM almtim);
Parameter(s)
I/0 Parameter Description
| ID almid; ID number of the alarm handler.
| RELTIM almtim; Activation time (unit: msec)
Explanation

This service call sets to start the alarm handler specified by parameter almid in almtim msec and moves the target alarm
handler from the non-operational state (STP state) to operational state (STA state).
As a result, the target alarm handler is handled as an activation target of the RIGOOPX.

Note 1 When 0 is specified for almtim, the alarm handler will start at next base clock interrupt.
Note 2 This service call sets the activation time even if the target alarm handler has already been in the operational

state. The previous activation time becomes invalid.

Return value

Macro Value Description
E_OK 0 Normal completion.
Parameter error.
E_PAR -17
- almtim > (Ox7FFFFFFF - TIC_NUME)/ TIC_DENO
Invalid ID number.
E_ID -18 - almid<0
- almid > VTMAX_ALH

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 435 of 565

RI600PX

CHAPTER 19 SERVICE CALLS

Macro Value Description
Context error.
- This service call was issued in the CPU locked state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
E_CTX -25 level”.

Note When the ista_alm is issued from task or the sta_alm is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.

Non-existent object.

E_NOEXS -42
- The alarm handler specified by almid does not exist.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS Page 436 of 565

RI600PX CHAPTER 19 SERVICE CALLS

stp_alm
istp_alm

Outline

Stop alarm handler operation.

C format
ER stp _alm (ID almid);
ER istp alm (ID almid);
Parameter(s)
I/0 Parameter Description
| ID almid; ID number of the alarm handler.
Explanation

This service call moves the alarm handler specified by parameter almid from the operational state (STA state) to non-
operational state (STP state).

As a result, the target alarm handler is excluded from activation targets of the RIBO0OPX until issuance of sta_alm or
ista_alm.

Note This service call does not perform queuing of stop requests. If the target alarm handler has been moved to the
non-operational state (STP state), therefore, no processing is performed but it is not handled as an error.

Return value

Macro Value Description

E_OK 0 Normal completion.

Invalid ID number.
E_ID -18 - almid <0
- almid > VTMAX_ALH

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
E_CTX -25 level”.

Note When the istp_alm is issued from task or the stp_alm is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.

Non-existent object.

E_NOEXS -42
- The alarm handler specified by almid does not exist.
R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 437 of 565

Sep 20, 2013

RI600PX

CHAPTER 19

SERVICE CALLS

ref_alm
iref_alm

Outline

Reference alarm handler state.

C format
ER ref alm (ID almid, T RALM *pk ralm);
ER iref alm (ID almid, T RALM *pk ralm);
Parameter(s)
I/0 Parameter Description
| ID almid; ID number of the alarm handler.

(0] T RALM *pk ralm;

Pointer to the packet returning the alarm handler state.

[Alarm handler state packet: T_RALM]

typedef struct t ralm ({

STAT almstat;
RELTIM lefttim;
} T RALM;
Explanation

/*Current state*/
/*Time left before the next activation*/

Stores alarm handler state packet (current state, time until the next activation, etc.) of the alarm handler specified by
parameter almid in the area specified by parameter pk_ralm.

- almstat
Store the current state.

TALM_STP: Non-operational state
TALM_STA: Operational state
- lefttim

Stores the time until the next activation (in millisecond). When the target alarm handler is in the non-operational state,

lefttim is undefined.

Return value

Macro Value Description
E OK 0 Normal completion.
R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 438 of 565

Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

Macro Value Description

Parameter error.

E_PAR -17
- pk_ralm == NULL
Invalid ID number.
E_ID -18 - almid<0
- almid > VTMAX_ALH

Context error.

- This service call was issued in the CPU locked state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
E_CTX -25 level”.

Note When the iref_alm is issued from task or the ref_alm is issued from non-task,
the context error is not detected and normal operation of the system is not
guaranteed.

Memory access violation. (only for ref_alm)

E_MACV -26 - The operand-write access to the area indicated by pk _ralm has not been
permitted to the invoking task.

Non-existent object.

E_NOEXS -42
- The alarm handler specified by almid does not exist.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS Page 439 of 565

RI600PX

CHAPTER 19 SERVICE CALLS

19.2.13 System state management functions

The following shows the service calls provided by the RIGO0PX as the system state management functions.

Table 19-17 System State Management Functions

Service Call Function Useful Range

rot_rdq Rotate task precedence Task

irot_rdq Rotate task precedence Non-task
get_tid Reference task ID in the RUNNING state Task

iget_tid Reference task ID in the RUNNING state Non-task
loc_cpu Lock the CPU Task

iloc_cpu Lock the CPU Non-task
unl_cpu Unlock the CPU Task

iunl_cpu Unlock the CPU Non-task
dis_dsp Disable dispatching Task

ena_dsp Enable dispatching Task

sns_ctx Reference contexts Task, Non-task
sns_loc Reference CPU locked state Task, Non-task
sns_dsp Reference dispatching disabled state Task, Non-task
sns_dpn Reference dispatch pending state Task, Non-task
vsys_dwn System down Task, Non-task
ivsys_dwn System down Task, Non-task
vsta_knl Start RIGOOPX Task, Non-task
ivsta_knl Start RIGOOPX Task, Non-task

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 440 of 565

RI600PX CHAPTER 19 SERVICE CALLS

rot_rdq
irot_rdq

Outline

Rotate task precedence.

C format
ER rot rdq (PRI tskpri);
ER irot rdq (PRI tskpri);
Parameter(s)
I/0 Parameter Description
Priority of the tasks.
I PRI tskpri; TPRI_SELF: Current priority of the invoking task.
Value: Priority of the tasks.
Explanation

This service call re-queues the first task of the ready queue corresponding to the priority specified by parameter tskpri to
the end of the queue to change the task execution order explicitly.

Note 1 This service call does not perform queuing of rotation requests. If no task is queued to the ready queue
corresponding to the relevant priority, therefore, no processing is performed but it is not handled as an error.

Note 2 Round-robin scheduling can be implemented by issuing this service call via a cyclic handler in a constant
cycle.

Note 3 The ready queue is a hash table that uses priority as the key, and tasks that have entered an executable state
(READY state or RUNNING state) are queued in FIFO order.
Therefore, the scheduler realizes the RIG00PX's scheduling system by executing task detection processing
from the highest priority level of the ready queue upon activation, and upon detection of queued tasks, giving
the CPU use right to the first task of the proper priority level.

Note 4 As for a task which has locked mutexes, the current priority might be different from the base priority. In this
case, even if the task issues this servie call specifying TPRI_SELF for parameter tskpri, the ready queue of the
current priority that the invoking task belongs cannot be changed.

Note 5 For current priority and base priority, refer to “8.2.2 Current priority and base priority”.

Return value

Macro Value Description
E OK 0 Normal completion.
R20UT0964EJ0101 Rev.1.01 IQENESAS Page 441 of 565

Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

Macro

Value

Description

E_PAR

-17

Parameter error.
- tskpri< 0
- tskpri> TMAX_TPRI

- When this service call was issued from a non-task, TPRI_SELF was specified
tskpri.

E_CTX

Context error.

- This service call was issued in the CPU locked state.
- The irot_rdq was issued from task.
- The rot_rdq was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_MACV

Memory access violation. (only for rot_rdq)

- Stack pointer points out of user stack for invoking task.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS Page 442 of 565

RI600PX CHAPTER 19 SERVICE CALLS

get_tid
iget_tid

Outline
Reference task ID in the RUNNING state.

C format
ER get tid (ID *p tskid);
ER iget tid (ID *p tskid);
Parameter(s)
I/0 Parameter Description
0] D *p tskid; Pointer to the area returning the task ID number.
Explanation

These service calls store the ID of a task in the RUNNING state in the area specified by parameter p_tskid.
This service call stores TSK_NONE in the area specified by parameter p_tskid if no tasks that have entered the RUNNING
state exist.

Return value

Macro Value Description
E_OK 0 Normal completion.
Parameter error.
E_PAR -17
- p_tskid == NULL
Context error.
- This service call was issued in the CPU locked state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
E_CTX -25 |eve|”_

Note When the iget_tid is issued from task or the get_tid is issued from non-task,
the context error is not detected and normal operation of the system is not
guaranteed.

Memory access violation. (only for get_tid)

E_MACV -26 - The operand-write access to the area indicated by p_tskid has not been
permitted to the invoking task.
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 443 of 565

Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

loc_cpu
iloc_cpu

Outline
Lock the CPU.

C format

ER loc_cpu (void);
ER iloc _cpu (void);

Parameter(s)

None.

Explanation

These service calls transit the system to the CPU locked state.

In the CPU locked state, the task scheduling is prohibited, and kernel interrupts are masked. Therefore, exclusive pro-

cessing can be achieved for all processing programs except non-kernel interrupt handlers.
The service calls that can be issued in the CPU locked state are limited to the one listed below.

Service Call that can be issued

Function

Terminate invoking task. (This service call transit the system to the

ext_tsk CPU unlocked state.)

oxd tsk Terminate and delete invoking task. (This service call transit the sys-
- tem to the CPU unlocked state.)

sns_tex Reference task exception disabled state

loc_cpu, iloc_cpu

Lock the CPU.

unl_cpu, iunl_cpu

Unlock the CPU.

sns_loc Reference CPU state.

sns_dsp Reference dispatching state.
sns_ctx Reference contexts.

sns_dpn Reference dispatch pending state.

vsys_dwn, ivsys_dwn

System down

The unl_cpu, iunl_cpu ext_tsk and exd_tsk releases from the CPU locked state,

Note 1 The CPU locked state changed by issuing these service calls must be cancelled before the processing

program that issued this service call ends.

Note 2 These service calls do not perform queuing of lock requests. If the system is in the CPU locked state,

therefore, no processing is performed but it is not handled as an error.

Note 3 The RI600PX realizes the TIME MANAGEMENT FUNCTIONS by using base clock timer interrupts that occurs
at constant intervals. If acknowledgment of the relevant base clock timer interrupt is disabled by issuing this
service call, the TIME MANAGEMENT FUNCTIONS may no longer operate normally.

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS

Page 444 of 565

RI600PX

CHAPTER 19 SERVICE CALLS

Note 4 For kernel interrupts, refer to “12.1 Interrupt Type”.

Note 5 The loc_cpu returns E_ILUSE error while interrupt mask has changed to other than 0 by chg_ims.

Return value

Macro Value Description
E_OK 0 Normal completion.
Context error.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
E_CTX -25
Note When the iloc_cpu is issued from task or the loc_cpu is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.
lllegal use of service call.
E_ILUSE -28 - This service call is issued in the status that the invoking task changes the
PSW.IPL to other than 0 by using chg_ims.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

REN ESNS Page 445 of 565

RI600PX

CHAPTER 19 SERVICE CALLS

unl_cpu
iunl_cpu

Outline
Unlock the CPU.

C format

ER unl cpu
ER iunl cpu

Parameter(s)

None.

Explanation

(void) ;
(void) ;

These service calls transit the system to the CPU unlocked state.

Note 1 These service calls do not perform queuing of cancellation requests. If the system is in the CPU unlocked
state, therefore, no processing is performed but it is not handled as an error.

Note 2 These service calls do not cancel the dispatching disabled state that was set by issuing dis_dsp.

Note 3 The CPU locked state is also cancelled by ext_tsk or exd_tsk.

Return value

Macro Value Description
E_OK 0 Normal completion.
Context error.
- The ilunl_cpu was issued from task.
E_CTX -25 - The unl_cpu was issued from task.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation. (only for unl_cpu)
E_MACV -26
- Stack pointer points out of user stack for invoking task.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

REN ESNS Page 446 of 565

RI600PX CHAPTER 19 SERVICE CALLS

dis_dsp

Outline

Disable dispatching.

C format

ER dis dsp (void);

Parameter(s)

None.

Explanation

This service call transits the system to the dispatching disabled state.

In the dispatching disabled state, the task scheduling is prohibited. Therefore, exclusive processing can be achieved for all
tasks.

The operation that transit the system to the dispatching disabled state is as follows.

- dis_dsp
- chg_ims that changes PSW.IPL to other than 0.

The operation that transit the system to the dispatching enabled state is as follows.

- ena_dsp

- ext_tsk

- exd_tsk

- chg_ims that changes PSW.IPL to 0.

Note 1 The dispatching disabled state changed by issuing this service call must be cancelled before the task that
issued this service call moves to the DORMANT state.

Note 2 This service call does not perform queuing of disable requests. If the system is in the dispatching disabled
state, therefore, no processing is performed but it is not handled as an error.

Note 3 If a service call (such as wai_sem, wai_flg) that may move the status of the invoking task is issued while the
dispatching disabled state, that service call returns E_CTX regardless of whether the required condition is
immediately satisfied.

R20UT0964EJ0101 Rev.1.01 RENESAS Page 447 of 565
Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

Return value

Macro Value Description

E_OK 0 Normal completion.

Context error.

- This service call was issued from a non-task.

E_CTX -25 - This service call was issued in the CPU locked state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 448 of 565

Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

ena_dsp

Outline

Enable dispatching.

C format

ER ena dsp (void);

Parameter(s)

None.

Explanation

This service call transits the system to the dispatching enabled state.

The operation that changes in the dispatching disabled state is as follows.

- dis_dsp
- chg_ims that changes PSW.IPL to other than 0.

The operation that changes in the dispatching enabled state is as follows.

- ena_dsp

- ext_tsk

- exd_tsk

- chg_ims that changes PSW.IPL to 0.

Note 1 This service call does not perform queuing of enable requests. If the system is in the dispatch enabled state,

therefore, no processing is performed but it is not handled as an error.

Note 2 If a service call (such as wai_sem, wai_flg) that may move the status of the invoking task is issued from when
dis_dsp is issued until this service call is issued, the RIBOOPX returns E_CTX regardless of whether the

required condition is immediately satisfied.

Return value

Macro Value Description

E_OK 0 Normal completion.

Context error.

- This service call was issued from a non-task.

E_CTX -25 - This service call was issued in the CPU locked state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
R20UT0964EJ0101 Rev.1.01 .IENESAS Page 449 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

Macro Value Description
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
R20UT0964EJ0101 Rev.1.01 .IENESAS Page 450 of 565

Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

sns_ctx

Outline

Reference contexts.

C format

BOOL sns_ctx

Parameter(s)

None.

Explanation

(void) ;

This service call examines the context type of the processing program that issues this service call. This service call returns
TRUE when the processing program is non-task context, and return FALSE when the processing program is task context.

Return value

Macro Value Description
TRUE 1 Normal completion (non-task context).
FALSE 0 Normal completion (task context).
Context error.
E_CTX -25 - This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 451 of 565

RI600PX

CHAPTER 19 SERVICE CALLS

sns_loc

Outline

Reference CPU locked state.

C format

BOOL sns_loc

Parameter(s)

None.

Explanation

(void) ;

This service call examines whether the system is in the CPU locked state or not. This service call returns TRUE when the
system is in the CPU locked state, and return FALSE when the system is in the CPU unlocked state.

Return value

Macro Value Description
TRUE 1 Normal completion (CPU locked state).
FALSE 0 Normal completion (CPU unlocked state).
Context error.
E_CTX -25 - This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 452 of 565

RI600PX CHAPTER 19 SERVICE CALLS

sns_dsp

Outline

Reference dispatching disabled state.

C format

BOOL sns_dsp (void);
Parameter(s)
None.

Explanation

This service call examines whether the system is in the dispatching disabled state or not. This service call returns TRUE
when the system is in the dispatching disabled state, and return FALSE when the system is in the dispatching enabled
state.

Return value

Macro Value Description
TRUE 1 Normal completion (dispatching disabled state).
FALSE 0 Normal completion (dispatching enabled state).
Context error.
E_CTX -25 - This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
R20UT0964EJ0101 Rev.1.01 RENESAS Page 453 of 565

Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

sns_dpn

Outline

Reference dispatch pending state.

C format

BOOL sns_dpn

Parameter(s)

None.

Explanation

(void) ;

This service call examines whether the system is in the dispatch pending state or not. This service call returns TRUE when
the system is in the dispatch pending state, and return FALSE when the system is not in the dispatch pending state.
The state to fill either the following is called dispatch pending state.

- Dispatching disabled state

- CPU locked state

- PSW.IPL > 0, such as handlers

Return value

Macro Value Description
TRUE 1 Normal completion. (dispatch pending state)
FALSE 0 Normal completion. (any other states)
Context error.
E_CTX -25 - This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 454 of 565

RIG00PX CHAPTER 19 SERVICE CALLS
vsys_dwn
ivsys_dwn
Outline
System down.
C format
void vsys dwn (W type, VW infl, VW inf2, VW inf3);
void vsys dwn (W type, VW infl, VW inf2, VW inf3);
Parameter(s)
I/0 Parameter Description
| W type; Error type.
| VW infl; System down information 1
| VW inf2; System down information 2
| VI inf3; System down information 3
Explanation

These service calls pass the control to the System down routine (_RI_sys dwn__ ()).
Specify the value (from 1 to Ox7FFFFFFF) typed to the occurring error for type. Note the value of 0 or less is reserved by

the RIGOOPX.

These service calls never return.

For details of the parameter specification, refer to “15.2.2 Parameters of system down routine”.
These service calls are the function outside the range of pITRON4.0 specifications.

Note The system down routine is also called when abnormality is detected in the RIGOOPX.

Return value

None.

R20UT0964EJ0101
Sep 20, 2013

Rev.1.01

RENESAS

Page 455 of 565

RI600PX

CHAPTER 19 SERVICE CALLS

vsta_knl
ivsta_knl

Outline
Start RIBOOPX.

C format

void vsta knl(void);
void vsta knl(void);

Parameter(s)

None.

Explanation

These service start the RIGOOPX.
These service calls never return.

When these service call is issued, it is necessary to fill the following.

- All interrupts can not be accepted. (For example, PSW.I ==
- The CPU is in the supervisor mode (PSW.PM ==

The outline of processing of these service calls is shown as follows.

1) Initialize ISP register to the end address of Sl section + 1

2) Initialize INTB register to the start address of the relocatable vector table (INTERRUPT_VECTOR section). The

relocatable vector table is generated by the cfg600px.
3) Initialize the system time to 0.

4) Create various object which are defined in the system configuration file. If an error is detected in this process, the

system will be down.

5) Initialize MPU (Memory Protection Unit).

6) Initialize base clock timer (call Base Clock Timer Initialization Routine (_RI_init_cmt_knl()))

7) Pass control to scheduler

These service calls are the function outside the range of nITRON4.0 specifications.

Return value

None.

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS

Page 456 of 565

RI600PX CHAPTER 19 SERVICE CALLS

19.2.14 Interrupt management functions

The following shows the service calls provided by the RIGO0PX as the interrupt management functions.

Table 19-18 Interrupt Management Functions

Service Call Function Useful Range
chg_ims Change interrupt mask Task
ichg_ims Change interrupt mask Non-task
get_ims Reference interrupt mask Task
iget_ims Reference interrupt mask Non-task
R20UT0964EJ0101 Rev.1.01 REN ESNS Page 457 of 565

Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

chg_ims
ichg_ims

Outline

Change interrupt mask.

C format

ER chg ims (IMASK imask);
ER ichg ims (IMASK imask) ;

Parameter(s)

/0 Parameter

Description

| IMASK 1imask;

Interrupt mask desired.

Explanation

These service calls change PSW.IPL to the value specified by imask. Ranges of the value that can be specified for imask

are from 0 to 15.

In the chg_ims, the system shifts to the dispatching disabled state when other than 0 is specified for imask, (it is equivalent
to dis_dsp.) and shifts to the dispatching enabled state when 0 is specified for imask (it is equivalent to ena_dsp.).

On the other hand, the ichg_ims does not change the dispatching disabled / enabled state.

The service calls that can be issued while PSW.IPL is larger than the Kernel interrupt mask level (system_IPL) are limited

to the one listed below.

Service Call that can be issued

Function

chg_ims, ichg_ims

Change interrupt mask.

get_ims, iget_ims

Reference interrupt mask

vsys_dwn, ivsys_dwn

System down

vsta_knl, ivsta_knl

Start RIGOOPX.

Note 1 In the non-task, the interrupt mask must not lower PSW.IPL more than it starts.

Note 2 The dispatching disabled state changed by issuing the chg_ims must be cancelled before the task that issued
this service call moves to the DORMANT state.

Note 3 If a service call (such as wai_sem, wai_flg) that may move the status of the invoking task is issued while the
dispatching disabled state, that service call returns E_CTX regardless of whether the required condition is

immediately satisfied.

Note 4 The RI600PX realizes the TIME MANAGEMENT FUNCTIONS by using base clock timer interrupts that occurs
at constant intervals. If acknowledgment of the relevant base clock timer interrupt is disabled by issuing this
service call, the TIME MANAGEMENT FUNCTIONS may no longer operate normally.

Note 5 Do not issue ena_dsp while a task changes PSW.IPL to other than 0 by using chg_ims. If issuing ena_dsp, the
system moves to the dispatching enabled state. If task dispatching occurs, PSW is changed for the dispatched
task. Therefore PSW.IPL may be lowered without intending it

Note 6 Referto “12.8 Prohibit Maskable Interrupts”.

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS

Page 458 of 565

RI600PX CHAPTER 19 SERVICE CALLS
Return value
Macro Value Description
E_OK 0 Normal completion.
Parameter error.
E_PAR -17
- imask> 15
Context error.
E_CTX 25 - This service call was issued in the CPU locked state.
- The ichg_ims was issued from task.
- The chg_ims was issued from non-task.
Memory access violation. (only for chg_ims)
E_MACV -26
- Stack pointer points out of user stack for invoking task.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 459 of 565

RI600PX CHAPTER 19 SERVICE CALLS

get_ims
iget_ims

Outline

Reference interrupt mask.

C format
ER get ims (IMASK *p imask);
ER iget ims (IMASK *p imask);
Parameter(s)
I/0 Parameter Description
0] IMASK *p imask; Pointer to the area returning the interrupt mask.
Explanation

These service calls store PSW.IPL into the area specified by parameter p_imask.

Note 1 These service call do not detect the context error.

Note 2 The following intrinsic functions provided by compiler are higher-speed than this service call. See “CubeSuite+
Integrated Development Environment User's Manual: RX Coding” for details about intrinsic functions.

- get_ipl() : Refers to the interrupt priority level.
- get_psw() : Refers to PSW value.

Return value

Macro Value Description
E_OK 0 Normal completion.
Parameter error.
E_PAR -17
- p_imask == NULL
Memory access violation. (only for get_ims)
E_MACV -26 - The operand-write access to the area indicated by p_imask has not been
permitted to the invoking task.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 460 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

19.2.15 System configuration management functions

The following shows the service calls provided by the RIGO0PX as the system configuration management functions.

Table 19-19 System Configuration Management Functions

Service Call Function Useful Range
ref ver Reference version information Task
iref_ver Reference version information Non-task
R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 461 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

ref_ver
iref_ver

Outline

Reference version information.

C format
ER ref ver (T RVER *pk rver);
ER iref ver (T RVER *pk rver;
Parameter(s)
I/0 Parameter Description
(0] T RVER *pk rver; Pointer to the packet returning the version information.

[Version information packet: T_RVER]

typedef struct t rver {

UH maker; /*Kernel maker code*/
UH prid; /*Identification number of the kernel*/
UH spver; /*Version number of the ITRON specification*/
UH prver; /*Version number of the kernel*/
UH prno[4]; /*Management information of the kernel*/
} T RVER;
Explanation

These service calls store the RIGOOPX version information into the area specified by parameter pk_rver.

- maker
The maker represents the manufacturer who created this kernel. In the RIGO0PX, 0x011B, which is the maker code
assigned for Renesas Electronics Corporation, is returned for maker.
Note, the value defined in the kernel configuration macro TKERNEL_MAKER is same as maker.

- prid
The prid represents the number that identifies the kernel and VLSI. In the RIGOOPX, 0x0004 is returned for prid.
Note, the value defined in the kernel configuration macro TKERNEL_PRID is same as prid.

- spver
The spver represents the specification to which this kernel conforms. In the RIGO0OPX, 0x5403 is returned for spver.
Note, the value defined in the kernel configuration macro TKERNEL_SPVER is same as spver.

- prver
The prver represents the version number of this kernel.
For example, 0x0123 is returned for prver when the kernel version is “V1.02.03".
Note, the value defined in the kernel configuration macro TKERNEL_PRVER is same as prver.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 462 of 565
Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

- prno
The prno represents product management information and product number, etc. In the RIGO0PX, 0x0000 is returned
for all prnos.

Return value

Macro Value Description
E_OK 0 Normal completion.
Parameter error.
E_PAR -17
- pk_rver == NULL
Context error.
- This service call was issued in the CPU locked state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
E_CTX -25 level”.

Note When the iref_ver is issued from task or the ref_ver is issued from non-task,
the context error is not detected and normal operation of the system is not
guaranteed.

Memory access violation. (only for ref_ver)

E_MACV -26 - The operand-write access to the area indicated by pk_rver has not been
permitted to the invoking task.
R20UT0964EJ0101 Rev.1.01 .IENESAS Page 463 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

19.2.16 Object reset functions

The following shows the service calls provided by the RIGO0PX as the object reset functions.

Table 19-20 Object Reset Functions

Service Call Function Useful Range
vrst_dtq Reset data queue Task
vrst_mbx Reset mailbox Task
vrst_mbf Reset message buffer Task
vrst_mpf Reset fixed-sized memory pool Task
vrst_mpl Reset variable-sized memory pool Task
R20UT0964EJ0101 Rev.1.01 REN ESNS Page 464 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

vrst_dtq

Outline

Reset data queue.

C format
ER vrst dtg (ID dtgid);
Parameter(s)
I/0 Parameter Description
| D dtgid; ID number of the data queue.
Explanation

This service call reset the data queue specified by parameter dtqid.
The data having been accumulated by the data queue area are annulled. The tasks to wait to send data to the target data
queue are released from the WAITING state, and EV_RST is returned as a return value for the tasks.

Note 1 In this service call, the tasks to wait to receive data do not released from the WAITING state.

Note 2 This service call is the function outside nITRON4.0 specification.

Return value

Macro Value Description

E_OK 0 Normal completion.

Invalid ID number.
E_ID -18 - dtqid<0
- dtqid > VTMAX _DTQ

Context error.

- This service call was issued from a non-task.

E_CTX -25 - This service call was issued in the CPU locked state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Non-existent object.
E_NOEXS -42
- The data queue specified by dtgid does not exist.
R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 465 of 565

Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

vrst_mbx

Outlin

e

Reset mailbox.

C format
ER vrst mbx (ID mbxid);
Parameter(s)
I/0 Parameter Description
| 1D mbxid; ID number of the mailbox.
Explanation

This service call reset the mailbox specified by parameter mbxid.
The messages having been accumulated by the mailbox come off from the management of the RIGOOPX.

Note 1

In this service call, the tasks to wait to receive message do not released from the WAITING state.

Note 2 This service call is the function outside nITRON4.0 specification.

Return value

Macro Value Description
E_OK 0 Normal completion.
Invalid ID number.
E_ID -18 - mbxid<0
- mbxid > VTMAX_MBX
Context error.
- This service call was issued from a non-task.
E_CTX -25 - This service call was issued in the CPU locked state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Non-existent object.
E_NOEXS -42
- The mailbox specified by mbxid does not exist.

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS Page 466 of 565

RI600PX CHAPTER 19 SERVICE CALLS

vrst_mbf

Outline

Reset message buffer.

C format
ER vrst mbf (ID mbfid);
Parameter(s)
I/0 Parameter Description
| 1D mbfid; ID number of the message buffer.
Explanation

This service call reset the message buffer specified by parameter mbfid.
The messages having been accumulated by the message buffer area are annulled. The tasks to wait to send message to
the target message buffer are released from the WAITING state, and EV_RST is returned as a return value for the tasks.

Note 1 In this service call, the tasks to wait to receive message do not released from the WAITING state.

Note 2 This service call is the function outside nITRON4.0 specification.

Return value

Macro Value Description

E_OK 0 Normal completion.

Invalid ID number.
E_ID -18 - mbfid<0
- mbfid > VTMAX_MBF

Context error.

- This service call was issued from a non-task.

E_CTX -25 - This service call was issued in the CPU locked state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Non-existent object.
E_NOEXS -42
- The message buffer specified by mbfid does not exist.
R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 467 of 565

Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

vrst_mpf

Outline

Reset fixed-sized memory pool.

C format
ER vrst mpf (ID mpfid);
Parameter(s)
I/0 Parameter Description
| 1D mpfid; ID number of the fixed-sized memory pool.
Explanation

This service call reset the fixed-sized memory pool specified by parameter mpfid.

The tasks to wait to get memory block from the target fixed-sized memory pool are released from the WAITING state, and

EV_RST is returned as a return value for the tasks.

Note 1 All fixed-sized memory blocks that had already been acquired are returned to the target fixed-sized memory
pool. Therefore, do not access those fixed-sized memory blocks after issuing this service call.

Note 2 This service call is the function outside nITRON4.0 specification.

Return value

Macro Value Description

E_OK 0 Normal completion.

Invalid ID number.
E ID -18 - mpfid <0
- mpfid > VTMAX_MPF

Context error.

- This service call was issued from a non-task.

E_CTX -25 - This service call was issued in the CPU locked state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Non-existent object.
E_NOEXS -42
- The fixed-sized memory pool specified by mpfid does not exist.
R20UT0964EJ0101 Rev.1.01 .IEN ESNS Page 468 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

vrst_mpl

Outline

Reset variable-sized memory pool.

C format
ER vrst mpl (ID mplid);
Parameter(s)
I/0 Parameter Description
| D mplid; ID number of the variable-sized memory pool.
Explanation

This service call reset the variable-sized memory pool specified by parameter mplid.
The tasks to wait to get memory block from the target variable-sized memory pool are released from the WAITING state,
and EV_RST is returned as a return value for the tasks.

Note 1 All variable-sized memory blocks that had already been acquired are returned to the target variable-sized
memory pool. Therefore, do not access those variable-sized memory blocks after issuing this service call.

Note 2 This service call is the function outside nITRON4.0 specification.

Return value

Macro Value Description

E_OK 0 Normal completion.

Invalid ID number.
E_ID -18 - mplid<0
- mplid > VTMAX_MPL

Context error.

- This service call was issued from a non-task.

E_CTX -25 - This service call was issued in the CPU locked state.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Non-existent object.
E_NOEXS -42
- The fixed-sized memory pool specified by mpfid does not exist.
R20UT0964EJ0101 Rev.1.01 .IEN ESNS Page 469 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

19.2.17 Memory object management functions

The following shows the service calls provided by the RIGO0PX as the memory object management functions.

Table 19-21 Memory Object Management Functions

Service Call Function Useful Range
ata_mem Register memory object Task
det_mem Unregister memory object Task
sac_mem Change access permission vector for memory object Task
vprb_mem Check access permission Task
ref_mem Reference memory object state Task
R20UT0964EJ0101 Rev.1.01 REN ESNS Page 470 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

ata_mem

Outline

Register memory object.

C format
ER ata mem (T AMEM *pk amem, ACVCT *p acvct);
Parameter(s)
I/0 Parameter Description

Pointer to the packet containing the memory object registration informa-

| T AMEM *pk amemm; .
— — tion.

| ACVCT *p_acvcet; Pointer to the packet containing the access permission vector.

[Memory object registration information packet : T_AMEM]

typedef struct t amem ({

ATR mematr; /*Memory object attribute*/

VP base; /*Memory object start address*/

SIZE size; /Size of memory object (in bytes)*/
} T AMEM;

[Access permission vector : ACVCT]

typedef struct acvct {

ACPTN acptnl; /*Access permission pattern for operand-read*/
ACPTN acptn2; /*Access permission pattern for operand-write*/
ACPTN acptn3; /*Access permission pattern for execution*/
} ACVCT;
Explanation

This service call can be called from tasks that belong to Trusted Domain.

This service call registers the area started from the address specified by base with the size [bytes] as the memory object
with the access permission vector specified by p_acvct.

The bit N-1 in the access permission pattern shows whether tasks belonging to the domain ID #N can access the memory
object. The bit value 1 means “permitted” and 0 means “not permitted”.

The specified memory object area must satisfy the following.

A) The start address (base) must be 16-bytes boundary. If not, this service call returns E_PAR error.
B) The size (size) must be multiple of 16. If not, this service call returns E_PAR error.

C) The memory object area must not either with all user stacks and all other memory objects. If not, this service
call does not detect an error, and correct system operation cannot be guaranteed.

R20UT0964EJ0101 Rev.1.01 RENESAS Page 471 of 565
Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

Note 1

Note 2

Note 3

The following macros are prepared to specify access permission vector.

TACT_SRW

Returns access permission vector that represents “all types of access (operand-read, operand-write,
execution) are permitted for all domains”. This macro can be describe only at the right of an initial assignment
statement.

TACT_SRO

Returns access permission vector that represents “operand-read access is permitted for all domains, and
operand-write access and execution access are not permitted for all domains”. This macro can be describe
only at the right of an initial assignment statement.

ACVCT TACT_PRW (ID domid)

Returns access permission vector that represents “all types of access (operand-read, operand-write, execu-
tion) are permitted only for the domain indicated by domid”. This macro can be describe only at the right of an
initial assignment statement.

ACVCT TACT_PRO (ID domid)

Returns access permission vector that represents “operand-write access is not permitted for all domain, oper-
and-read and execution access are permitted only for the domain indicated by domid’. This macro can be
describe only at the right of an initial assignment statement.

ACVCT TACT_SRPW (ID domid)

Returns access permission vector that represents “operand-read and execution access are permitted for all
domain, operand-write access is permitted only for the domain indicated by domid”. This macro can be
describe only at the right of an initial assignment statement.

The following macros are prepared to specify access permission pattern.

TACP_SHARED
Returns access permission pattern that represents “all domain can access”.

ACPTN TACP (ID domid)
Returns access permission pattern that represents “only the domain indicated by domid can access”.

The memory object attribute (mematr) is merely ignored.

Return value

Macro Value Description

E_OK

0 Normal completion.

E_PAR

parameter error.
- pk_amem == NULL
- base is not 16-bytes boundary.
- size is not multiple of 16.

17 - p_acvcet == NULL

- acptn1 == acptn2 == acptn3 ==

- Either of bits corresponding to the domain ID that is larger than the maximum
domain ID (VTMAX_DOMAIN) of either acptn1, acptn2 or acptn3 is 1.

- size ==
- base + size > 0x100000000

E_CTX

Context error.

- This service call was issued in the CPU locked state.
- This service call was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

R20UT0964EJ0101 Rev.1.01 RENESAS Page 472 of 565
Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

Macro Value Description

Memory access violation.

- Stack pointer points out of user stack for invoking task.

E MACV 26 - The operand-read access to the area indicated by pk_amem has not been
B permitted to the invoking task.

- The operand-read access to the area indicated by p_acvct has not been
permitted to the invoking task.

Object access violation.

E_OACV 27 - The invoking task does not belong to trusted domain.

- The number of memory objects from which the access is permitted to one
domain exceeds 7.

Object state error.

E_OBJ -41 - The memory object started from the address specified by base has already
been registered.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 473 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

det_mem

Outline

Unregister memory object.

C format
ER det mem (VP base);
Parameter(s)
I/0 Parameter Description
| VP base; Memory object start address.
Explanation

This service call can be called from tasks that belong to Trusted Domain.
This service call unregisters the memory object started from the address specified by base.

Return value

Macro Value Description

E_OK 0 Normal completion.

Context error.
- This service call was issued in the CPU locked state.
E_CTX -25 - This service call was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask

level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Object access violation.
E_OACV -27
- The invoking task does not belong to trusted domain.
Non-existent object.
E_NOEXS -42 - The memory object started from the address specified by base has already
been registered.
R20UT0964EJ0101 Rev.1.01 IQEN ESNS Page 474 of 565

Sep 20, 2013

RI600PX

CHAPTER 19 SERVICE CALLS

sac_mem

Outline

Change access permission vector for memory object.

C format
ER sac_mem (VP base, ACVCT *p acvct);
Parameter(s)
I/0 Parameter Description
| VP base; Memory object start address.
| ACVCT *p_acvct; Pointer to the packet containing the access permission vector.

[Access permission vector : ACVCT]

typedef struct

ACPTN

ACPTN

ACPTN
} ACVCT;

Explanation

acptnl;
acptn2;
acptn3;

acvect {

/*Access permission pattern for operand-read*/
/*Access permission pattern for operand-write*/
/*Access permission pattern for execution*/

This service call can be called from tasks that belong to Trusted Domain.
This service call changes the access permission vector for the memory object started from the address specified by base
to the content indicated by p_acvct.

Return value

Macro Value Description
E_OK 0 Normal completion.
Parameter error.
- p_acvet == NULL
E_PAR -17 - acptn1 == acptn2 == acptn3 ==
- Either of bits corresponding to the domain ID that is larger than the maximum
domain ID (VTMAX_DOMAIN) of either acptn1, acptn2 or acptn3 is 1.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 475 of 565

RI600PX CHAPTER 19 SERVICE CALLS

Macro Value Description
Context error.
- This service call was issued in the CPU locked state.
E_CTX -25 - This service call was issued from non-task.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.
Memory access violation.
E_MACV 26 - Stack pointer points out of user stack for invoking task.
- The operand-read access to the area indicated by p_acvct has not been
permitted to the invoking task.
Object access violation.
E_OACV 27 - The invoking task does not belong to trusted domain.
- The number of memory objects from which the access is permitted to one
domain exceeds 7.
Non-existent object.
E_NOEXS -42 - The memory object started from the address specified by base has already
been registered.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 476 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

vprb_mem

Outline

Check access permission.

C format

ER BOOL vprb mem (VP base, SIZE size, ID tskid, MODE pmmode) ;

Parameter(s)
I/0 Parameter Description
| VP base; Start address for checking
| SIZE size; Size of checking area (in bytes).
ID number of the task.
| ID tskid; TSK_SELF: Invoking task.
Value: ID number of the task.
| PMMODE pmmode; Access mode.
Explanation

This service call checks whether the task indicated by tskid has the access permission indicated by pmmode for the
memory area of size bytes from the address specified by base. This service call returns TRUE when the access is
permitted and returns FALSE when the access is not permitted.

The following are specified for pmmode.

pmmode := (TPM READ | TPM WRITE | TPM EXEC)

- TPM_READ (= 0x0001)
Checks whether operand-read access is permitted.

- TPM_WRITE (= 0x0002)
Checks whether operand-write access is permitted.

- TPM_EXEC (= 0x0004)
Checks whether execution access is permitted.

Note This service call is the function outside WITRON4.0 specification.

Return value

Macro Value Description
TRUE 0 Normal completion. (The access is permitted.)
FALSE 0 Normal completion.(The access is not permitted.)
R20UT0964EJ0101 Rev.1.01 IQEN ESNS Page 477 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

Macro Value Description

Parameter error.
E_PAR -17 - Size ==
- pmmode == 0, One of bits except bit0, bit1 and bit2 of pmmode is 1.

Invalid ID number.
E ID -18 - tskid< 0
- tskid > VTMAX_TSK

Context error.

- This service call was issued in the CPU locked state.
E_CTX -25 - This service call was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask

level”.
Memory access violation.
E_MACV -26
- Stack pointer points out of user stack for invoking task.
Non-existent object.
E_NOEXS -42
- The task specified by tskid does not exist.
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 478 of 565

Sep 20, 2013

RIG00PX CHAPTER 19 SERVICE CALLS
ref_mem
Outline
Reference memory object state.
C format
ER ref mem (VP base, T RMEM *pk rmem);
Parameter(s)
I/O Parameter Description
| VP base; Memory object start address.
0] T RMEM *pk rmem; Pointer to the packet returning the mutex state.

[Access permission vector : ACVCT]

typedef struct

ACPTN
ACPTN
ACPTN

} ACVCT;

acvet {
acptnl;
acptn2;
acptn3;

/*Access permission pattern for operand-read*/
/*Access permission pattern for operand-write*/

/*Access permission pattern for execution*/

[Memory object state packet: T_RMEM]

typedef struct t rmem

ACVCT

} T RMEM;

Explanation

acvcect;

{

/*Access permission vector*/

This service call stores the information of the memory object started from the address specified by parameter base into the
area specified by parameter pk_rmem.
The bit N-1 in the access permission pattern shows whether tasks belonging to the domain ID #N can access the memory
object. The bit value 1 means “permitted” and 0 means “not permitted”.

Return value

Macro Value Description
E_OK 0 Normal completion.
parameter error.
E_PAR -17
- pk_rmem == NULL
R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 479 of 565

Sep 20, 2013

RI600PX CHAPTER 19 SERVICE CALLS

Macro Value Description

Context error.

- This service call was issued in the CPU locked state.

E_CTX -25 - This service call was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Memory access violation.

E_MACV 26 - Stack pointer points out of user stack for invoking task.

- The operand-write access to the area indicated by pk rmem has not been
permitted to the invoking task

Non-existent object.

E_NOEXS -42 - The memory object started from the address specified by base has already

been registered.

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 480 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

CHAPTER 20 SYSTEM CONFIGURATION FILE

This chapter explains the coding method of the system configuration file required to output information files that contain
data to be provided for the RIGO0PX.

20.1 Outline

The following shows the notation method of system configuration files.

- Comment
Parts from two successive slashes (/) to the line end are regarded as comments.

- Numeric
A numeric value can be written in one of the following formats. Note, do not specify the value exceeding
OxFFFFFFFF.

Hexadecimal: Add “Ox” or “0X” at the beginning of a numeric value or add “h” or “H” at the end. In the latter format,
be sure to add “0” at the beginning when the value begins with an alphabetic letter from A to F or a
to f. Note that the configurator does not distinguish between uppercase and lowercase letters for
alphabetic letters (A to F or a to f) used in numeric value representation.

Decimal: Simply write an integer value as is usually done (23, for example). Note that a decimal value must
not begin with “0”.
Octal: Add “0” at the beginning of a numeric value or add “O” or “0” at the end.
Binary: Add “B” or “b” at the end of a numeric value. Note that a binary value must not begin with “0”.
- Operator

The following operator can be used for numeric value.

Table 20-1 Operator

Operator Precedence Direction of Computation
() High Left to right
- (unary minus) Right to left
*1 % Left to right
+ - (binary minus) Low Left to right

- Symbol
A symbol is a string of numeric characters, uppercase alphabetic letters, lowercase alphabetic letters, and under-
scores (_). It must not begin with a numeric character.

- Function name
A function name consists of numeric characters, uppercase alphabetic letters, lowercase alphabetic letters,
underscores (_), and dollar signs ($). It must not begin with a numeric character and must end with “()”.
To specify module name written by assembly language, name the module starting in '_', and specify the name that
excludes ' ' for function name.

- Frequency
The frequency is indicated by a character string that consist of numerals and . (period), and ends with “MHz". The
numerical values are significant up to six decimal places. Also note that the frequency can be entered using

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 481 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

20.2 Default System Configuration File

For most definition items, if the user omits settings, the settings in the default system configuration file are used. The
default system configuration file is stored in the folder indicated by environment variable “LIB600”. Be sure not to edit this
file.

20.3 Configuration Information (static API)

The configuration information that is described in a system configuration file is shown as follows.
- System Information (system)
- Base Clock Interrupt Information (clock)
- Maximum ID (maxdefine)
- Domain Definition (domain[])
- Memory Object Definition (memory_object][])
- Task Information (task[])
- Semaphore Information (semaphore[])
- Eventflag Information (flag[])
- Data Queue Information (dataqueue(])
- Mailbox Information (mailbox[])
- Mutex Information (mutex[])
- Message Buffer Information (message_buffer][])
- Fixed-sized Memory Pool Information (memorypool[])
- Variable-sized Memory Pool Information (variable_memorypool[])
- Cyclic Handler Information (cyclic_hand[])
- Alarm Handler Information (alarm_handl[])
- Relocatable Vector Information (interrupt_vector[])

- Fixed Vector/Exception Vector Information (interrupt_fvector(])

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 482 of 565
Sep 20, 2013

RI600PX

20.4

System Information (system)

Here, information on the system whole is defined.
Only one “system” can be defined. And the “system” can not be omitted.

Format

Parentheses < >show the user input part.

system {
stack size = <1. System stack size (stack size)>;
priority = <2. Maximum task priority (priority)>;
system IPL = <3. Kernel interrupt mask level (system IPL)>;
message pri = <4. Maximum message priority (message pri)>;
tic deno = <5. Denominator of base clock interval time (tic_deno)>;
tic_nume = <6. Numerator of base clock interval time (tic nume)>;
context = <7. Task context register (context)>;

1) System stack size (stack_size)

Description
Define the total stack size used in service call processing and interrupt processing.

Definition format
Numeric value

Definition range
More than 8, and multiple of 4.

When omitting
The set value in the default system configuration file (factory setting: 0x800) applied.

2) Maximum task priority (priority)

Description
Define the maximum task priority.

Definition format
Numeric value

Definition range
1-255

When omitting
The set value in the default system configuration file (factory setting: 32) applied.

TMAX_TPRI
The cfg600px outputs the macro TMAX_TPRI which defines this setting to the system information header file
“kernel_id.h".

3) Kernel interrupt mask level (system_IPL)

Description
Define the interrupt mask level when the kernel's critical section is executed (PSW register's IPL value).
Interrupts with higher priority levels than that are handled as “non-kernel interrupts”.

For details of “non-kernel interrupts” and “kernel interrupts”, refer to “12.1 Interrupt Type”.

Definition format
Numeric value

Definition range
1-15

When omitting
The set value in the default system configuration file (factory setting: 7) applied.

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 483 of 565
Sep 20, 2013

CHAPTER 20 SYSTEM CONFIGURATION FILE

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

- VTKNL_LVL
The cfg600px outputs the macro VTKNL_LVL which defines this setting to the system information header file
“kernel_id.h".

4) Maximum message priority (message_pri)

- Description
Define the maximum message priority used in the mailbox function. Note that if the mailbox function is not used,
this definition item has no effect.

- Definition format
Numeric value

- Definition range
1-255

- When omitting
The set value in the default system configuration file (factory setting: 255) applied.

- TMAX_MPRI
The cfg600px outputs the macro TMAX_MPRI which defines this setting to the system information header file
“kernel_id.h".

5) Denominator of base clock interval time (tic_deno)

- Description
The base clock interval time is calculated by the following expression. Either tic_deno or tic_nume should be 1.

The base clock interval time (in millisecond) = tic_nume / tic_deno

- Definition format
Numeric value

- Definition range
1-100

- When omitting
The set value in the default system configuration file (factory setting: 1) applied.

- TIC_DENO
The cfg600px outputs the macro TIC_DENO which defines this setting to the system information header file
“kernel_id.h”.

6) Numerator of base clock interval time (tic_nume)

- Description
See above.

- Definition format
Numeric value

- Definition range
1-65535

- When omitting
The set value in the default system configuration file (factory setting: 1) applied.

- TIC_NUME
The cfg600px outputs the macro TIC_NUME which defines this setting to the system information header file
“kernel_id.h".
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 484 of 565

Sep 20, 2013

RI600PX

CHAPTER 20 SYSTEM CONFIGURATION FILE

7) Task context register (context)

Description

Define the register set used by tasks. The settings made here apply to all tasks.

Definition format

Symbol

Definition range

Select one from item of “Setting” in Table 20-2.

Table 20-2 system.context

CPU FPU DSP
Setting PSW, PC, RO - R7, R14

" R15 ’ R8 - R13 FPSW Accumulator 2
NO Guaranteed Guaranteed Not guaranteed Not guaranteed
FPSW Guaranteed Guaranteed Guaranteed Not guaranteed
ACC Guaranteed Guaranteed Not guaranteed Guaranteed
FPSW,ACC Guaranteed Guaranteed Guaranteed Guaranteed
MIN Guaranteed Not guaranteed Not guaranteed Not guaranteed
MIN,FPSW Guaranteed Not guaranteed Guaranteed Not guaranteed
MIN,ACC Guaranteed Not guaranteed Not guaranteed Guaranteed
MON,FPSW,ACC Guaranteed Not guaranteed Guaranteed Guaranteed

a. When compiler option “-isa=rxv2” is specified, the “Accumulator” means ACCO register and ACC1 reg-
ister. In the case of others, the “Accumulator” means ACCO register (in RXv2 architecture) or ACC reg-

ister (in RXV1 architecture).

Note Compiler option “-isa” is supported by the compiler CC-RX V2.01 or later.

When omitting

The set value in the default system configuration file (factory setting: NO) applied.

Note

Be sure to refer to “20.5 Note Concerning system.context”.

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 485 of 565

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

20.5 Note Concerning system.context

This sections explains note concerning system.context.

20.5.1 Note concerning FPU and DSP

The setting for system.context differs depending on how FPU and DSP are handled.
The recommendation setting of system.context is indicated from now on. If other than recommended setting is specified,
the RIBOOPX performance may be slightly deteriorated, compared to the recommended settings case.

1) When using MCU that incorporates FPU and DSP (accumulator)
Corresponding MCUs: RX600 series, etc.

2) When using MCU that does not incorporate FPU, but incorporates DSP (accumulator)
Corresponding MCUs: RX200 series, etc.

3) When using MCU that incorporates FPU, but does not incorporate DSP (accumulator)
Corresponding MCUs: MCUs that corresponds to this doesn't exist at the time of making of this manual.

4) When using MCU that incorporate neither FPU nor DSP (accumulator)
Corresponding MCUs: MCUs that corresponds to this doesn't exist at the time of making of this manual.

Note The compiler outputs floating-point arithmetic instructions only when the -fpu option is specified. If the -chkfpu
option is specified in the assembiler, the floating-point arithmetic instructions written in a program are detected
as warning.

In no case does the compiler output the DSP function instructions. If the -chkdsp option is specified in the
assembler, the DSP function instructions written in a program are detected as warning.

1) When using MCU that incorporates FPU and DSP (accumulator)

Table 20-3 When using MCU that incorporates FPU and DSP (accumulator)

Usage condition of instruction in tasks

i i Recommendation setting of system.context
Floqtlng pglnt DSP function I "9 4 X
arithmetic . .
.) instructions
instructions
YES “‘FPSW” and “ACC” included settings essential
YES NO “FPSW” included setting essential and “ACC” excluded setting rec-
ommended
YES “ACC” included setting essential and “FPSW” excluded setting rec-
ommended
NO
NO “FPSW” and “ACC” excluded settings recommended
R20UT0964EJ0101 Rev.1.01 .2ENESAS Page 486 of 565

Sep 20, 2013

RI600PX

CHAPTER 20 SYSTEM CONFIGURATION FILE

2) When using MCU that does not incorporate FPU, but incorporates DSP (accumulator)

Table 20-4 When using MCU that does not incorporate FPU, but incorporates DSP (accumulator)

Usage condition of instruction in tasks
i i Recommendation setting of system.context
Floating point DSP function gorsy
arithmetic . .
. . instructions
instructions
YES Si
YES ince the MCU does not incorporate FPU, floating-point arithmetic
instructions cannot be used.
NO
YES “FPSW” excluded and “ACC” included settings essential
NO NO “FPSW” excluded setting essential and “ACC” excluded settings rec-
ommended

3) When using MCU that incorporates FPU, but does not incorporate DSP (accumulator)

Table 20-5 When using MCU that incorporates FPU, but does not incorporate DSP (accumulator)

Usage condition of instruction in tasks
i i Recommendation setting of system.context
Floa!tlng pqnt DSP function g y
arithmetic . .
. . instructions
instructions
YES Since the MCU does not incorporate DSP, DSP function instructions
YES cannot be used.
NO “FPSW” included and “ACC” excluded settings essential
YES Since the MCU does not incorporate DSP, DSP function instructions
cannot be used.
NO
NO “ACC” excluded setting essential and “FPSW” excluded settings rec-
ommended

R20UT0964EJ0101 Rev.1.01

KENESAS
Sep 20, 2013 /{

Page 487 of 565

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

4) When using MCU that incorporate neither FPU nor DSP (accumulator)

Table 20-6 When using MCU that incorporate neither FPU nor DSP (accumulator)

Usage condition of instruction in tasks
i i Recommendation setting of system.context
Floating point DSP function gorsy
arithmetic . .
. . instructions
instructions
YES
YES NO Since the MCU incorporate neither FPU nor DSP, floating-point arith-
metic instructions and DSP function instructions cannot be used.
YES
NO
NO “FPSW” and “ACC” excluded settings essential

20.5.2 Relationship with the compiler options “fint_register”, “base” and “pid”

n system.context, by selecting one of choices “MIN,” “MIN, ACC”, “MIN, FPSW,” or “MIN, ACC, FPSW,” it is possible to
configure the registers so that R8- R13 registers will not be saved as task context. This results in an increased processing
speed.

Note, however, that such a setting of system.context is permitted in only the case where all of R8 - R13 registers are spec-
ified to be used by the compiler options “-fint_register”, “-base” and “-pid”.

If, in any other case, the above setting is made for system.context, the kernel will not operate normally.

- Good example:

1) -fint_register=4 -base=rom=R8 -base=ram=R9
2) -fint_register=3 -base=rom=R8 -base=ram=R9 -base=0x80000=R10

- Bad example:

3) No “fint_register”, “-base” and “-pid” options
4) -fint_register=4
5) -base=rom=R8 -base=ram=R9

6) -fint_register=3 -base=rom=R8 -base=ram=R9

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 488 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

20.6 Base Clock Interrupt Information (clock)

Here, information on the base clock interrupt is defined. The cfg600px outputs the file “ri_cmt.h” where the base clock
timer initialization function (__RI_init_cmt()) is described.
Only one “clock” can be defined.

Format

Parentheses < >show the user input part.

clock {
timer = <1. Selection of timer channel for base clock (timer)>;
template = <2. Template file (template)>;

timer clock <3. CMT frequency (timer clock)>;
IPL = <4. Base clock interrupt priority level (IPL)>;
}i

1) Selection of timer channel for base clock (timer)

- Description
Define the timer channel for the base clock.

- Definition format
Symbol

- Definition range
Select one from Table 20-7.

Table 20-7 clock.timer

Setting Description

CMTO Use CMT channel 0 assigned to relocatable vector 28.

CMT1 Use CMT channel 1 assigned to relocatable vector 29.

CMT2 Use CMT channel 2 assigned to relocatable vector 30.

CMT3 Use CMT channel 3 assigned to relocatable vector 31.

OTHER Use. a timer other than the above. In this case, the user needs to create a timer initialize

routine.
NOTIMER Do not use the base clock interrupt.

Note 1 The CMT (Compare Match Timer) is the timer that is mounted on RX MCU typically.

Note 2 Do not select “CMT2” and “CMT3” when CMT channel 2 and channel 3 are not mounted with RX MCU
to use, and when relocatable vector assigned to CMT channel 2 and channel 3 is different from Table
20-7 with RX MCU to use.
For example, RX111 does not support CMT channel 2 and channel 3. And in RX64M, relocatable vector
assigned to CMT channel 2 and channel 3 is not 30 and 31.

- When omitting
The set value in the default system configuration file (factory setting: “CMTO0”) applied.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 489 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

2) Template file (template)

- Description
Specify template file where hardware information and initialization function of CMT is described.
This definition is ignored when either “NOTIMER” or “OTHER” is specified for timer.
The template files are provided by the RIGOOPX. The template files may be added in the future version.
Refer to the release notes for MCUs supported by each template file.
Either CMT1, CMT2 or CMT3 might be unsupported according to template file. When the unsupported CMT
channel is specified for timer, the cfg600px does not detect error but the error is detected at compilation of the file
which includes “ri_cmt.h”.

- Definition format
Symbol

- Definition range

- When omitting
The set value in the default system configuration file (factory setting: “rx630.tpl”) applied.
3) CMT frequency (timer_clock)

- Description
Define frequency of the clock supplied to CMT. Please specify the frequency of PCLK (peripheral clock).

- Definition format
Frequency

- Definition range

- When omitting
The set value in the default system configuration file (factory setting: “25MHz”) applied.

4) Base clock interrupt priority level (/PL)

- Description
Define the interrupt priority level of the base clock interrupt.

- Definition format
Numeric value

- Definition range
From 1 to Kernel interrupt mask level (system_IPL) in System Information (system)

- When omitting
The set value in the default system configuration file (factory setting: 4) applied.

- VTIM_LVL
The cfg600px outputs the macro VTIM_LVL which defines this setting to the system information header file
“kernel_id.h".
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 490 of 565

Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

20.7 Maximum ID (maxdefine)

The definition item maxdefine is provided for the definition of the maximum ID for each object. And this definition is
required to use service calls to create an object dynamically.

The macros in which the maximum ID of each object are defined is output to the system information header file
“kernel_id.h". (Refer to “18.2 Constant macros”)

Format

Parentheses < >show the user input part.

maxdefine ({
max_task = <1. Maximum task ID (max task)>;
max_sem = <2. Maximum semaphore ID (max sem)>;
max_ flag = <3. Maximum eventflag ID (max flag)>;
max_dtg = <4. Maximum data queue ID (max dtq)>;
max_mbx = <5. Maximum mailbox ID (max mbx)>;
max mtx = <6. Maximum mutex ID (max mtx)>;
max_mbf = <7. Maximum message buffer ID (max mbf)>;
max mpf = <8. Maximum fixed-sized memory pool ID (max mpf)>;
max mpl = <9. Maximum variable-sized memory pool ID (max mpl)>;
max cyh = <10. Maximum cyclic handler ID (max_cyh)>;
max alh = <11. Maximum alarm handler ID (max alh)>;
max_domain = <12. Maximum domain ID (max domain)>;
}i

1) Maximum task ID (max_task)

- Description
The cre_tsk, acre_tsk, del_tsk, exd_tsk and def_tex can be used by this definition. Ranges of task ID that can be
used are is as follows.

- Minimum value : 1

- Maximum value : The largest one among max_task, the ID number defined in “task[]” and the number of
“task[]” definitions

- Definition format
Numeric value

- Definition range
From 1 to 255

- When omitting
The cre_tsk, acre_tsk, del_tsk and def_tex returns E_NOSPT error. And exd_tsk causes system down.
Ranges of task ID that can be used are is as follows.

- Minimum value : 1

- Maximum value : The largest one among the ID number defined in “task[]” and the number of “task[]” defini-
tions

- VTMAX_TSK
The cfg600px outputs the macro VTMAX_TSK which defines the maximum value to the system information
header file “kernel_id.h".

2) Maximum semaphore ID (max_sem)

- Description
The cre_sem, acre_sem and del_sem can be used by this definition.
Ranges of semaphore ID that can be used are is as follows.

- Minimum value : 1

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 491 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

- Maximum value : The largest one among max_sem, the ID number defined in “semaphore[]” and the number
of “semaphore[]” definitions

- Definition format
Numeric value

- Definition range
From 1 to 255

- When omitting
The cre_sem, acre_sem and del_sem returns E_NOSPT error.
Ranges of semaphore ID that can be used are is as follows.

- Minimum value : 1

- Maximum value : The largest one among the ID number defined in “semaphore[]” and the number of
“semaphore[]” definitions

- VTMAX_SEM
The cfg600px outputs the macro VTMAX_SEM which defines the maximum value to the system information
header file “kernel_id.h".

3) Maximum eventflag ID (max_flag)

- Description
The cre_flg, acre_flg and del_flg can be used by this definition.
Ranges of eventflag ID that can be used are is as follows.

- Minimum value : 1

- Maximum value : The largest one among max_flag, the ID number defined in “flag[]” and the number of
“flag[]” definitions

- Definition format
Numeric value

- Definition range
From 1 to 255

- When omitting
The cre_flg, acre_flg and del_flg returns E_NOSPT error.
Ranges of eventflag ID that can be used are is as follows.

- Minimum value : 1

- Maximum value : The largest one among the ID number defined in “flag[]” and the number of “flag[]” defini-
tions

- VTMAX_FLG
The c¢fg600px outputs the macro VTMAX_FLG which defines the maximum value to the system information
header file “kernel_id.h".

4) Maximum data queue ID (max_dtq)

- Description
The cre_dtq, acre_dtqg and del_dtq can be used by this definition.
Ranges of data queue ID that can be used are is as follows.

- Minimum value : 1

- Maximum value : The largest one among max_dftq, the ID number defined in “data_queue[]” and the number
of “data_queue[]” definitions

- Definition format
Numeric value

- Definition range
From 1 to 255

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 492 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

- When omitting
The cre_dtq, acre_dtq and del_dtq returns E_NOSPT error.
Ranges of data queue ID that can be used are is as follows.

- Minimum value : 1

- Maximum value : The largest one among the ID number defined in “data_queue[]” and the number of
“data_queue[]” definitions

- VTMAX_DTQ
The cfg600px outputs the macro VTMAX_DTQ which defines the maximum value to the system information
header file “kernel_id.h".

5) Maximum mailbox ID (max_mbx)

- Description
The cre_mbx, acre_mbx and del_mbx can be used by this definition.
Ranges of mailbox ID that can be used are is as follows.

- Minimum value : 1

- Maximum value : The largest one among max_mbx, the ID number defined in “mailbox[]” and the number of
“mailbox[]” definitions

- Definition format
Numeric value

- Definition range
From 1 to 255

- When omitting
The cre_mbx, acre_mbx and del_mbx returns E_NOSPT error.
Ranges of mailbox ID that can be used are is as follows.

- Minimum value : 1

- Maximum value : The largest one among the ID number defined in “mailbox[]” and the number of “mailbox[]”
definitions

- VTMAX_MBX
The cfg600px outputs the macro VTMAX_MBX which defines the maximum value to the system information
header file “kernel_id.h".

6) Maximum mutex ID (max_mtx)

- Description
The cre_mtx, acre_mtx and del_mtx can be used by this definition.
Ranges of mutex ID that can be used are is as follows.

- Minimum value : 1

- Maximum value : The largest one among max_mtx, the ID number defined in “mutex[]” and the number of
“mutex[]” definitions

- Definition format
Numeric value

- Definition range
From 1 to 255

- When omitting
The cre_mtx, acre_mtx and del_mtx returns E_NOSPT error.
Ranges of mutex ID that can be used are is as follows.

- Minimum value : 1

- Maximum value : The largest one among the ID number defined in “mutex[]” and the number of “mutex[]”
definitions

- VTIMAX_MTX
The cfg600px outputs the macro VTMAX_MTX which defines the maximum value to the system information

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 493 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

7) Maximum message buffer ID (max_mbf)

- Description
The cre_mbf, acre_mbf and del_mbf can be used by this definition.
Ranges of message buffer ID that can be used are is as follows.

- Minimum value : 1

- Maximum value : The largest one among max_mbf, the ID number defined in “message_buffer[]” and the
number of “message_buffer[]” definitions

- Definition format
Numeric value

- Definition range
From 1 to 255

- When omitting
The cre_mbf, acre_mbf and del_mbf returns E_NOSPT error.
Ranges of message buffer ID that can be used are is as follows.

- Minimum value : 1

- Maximum value : The largest one among the ID number defined in “message_buffer[]” and the number of
“message_buffer(]” definitions

- VTMAX_MBF
The cfg600px outputs the macro VTMAX_MBF which defines the maximum value to the system information
8) Maximum fixed-sized memory pool ID (max_mpf)

- Description
The cre_mpf, acre_mpf and del_mpf can be used by this definition.
Ranges of fixed-sized memory pool ID that can be used are is as follows.

- Minimum value : 1

- Maximum value : The largest one among max_mpf, the ID number defined in “memorypool[]” and the num-
ber of “memorypool[]” definitions

- Definition format
Numeric value

- Definition range
From 1 to 255

- When omitting
The cre_mpf, acre_mpf and del_mpf returns E_NOSPT error.
Ranges of fixed-sized memory pool ID that can be used are is as follows.

- Minimum value : 1

- Maximum value : The largest one among the ID number defined in “memorypool[]” and the number of
“memorypool[]” definitions

- VTMAX_MPF
The cfg600px outputs the macro VTMAX_MPF which defines the maximum value to the system information
9) Maximum variable-sized memory pool ID (max_mpl)

- Description
The cre_mpl, acre_mpl and del_mpl can be used by this definition.
Ranges of variable-sized memory pool ID that can be used are is as follows.

- Minimum value : 1

- Maximum value : The largest one among max_mpl, the ID number defined in “variable_memorypool[]” and
the number of “variable_memorypool[]” definitions

- Definition format
Numeric value

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 494 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

- Definition range
From 1 to 255

- When omitting
The cre_mpl, acre_mpl and del_mpl returns E_NOSPT error.
Ranges of variable-sized memory pool ID that can be used are is as follows.

- Minimum value : 1

- Maximum value : The largest one among the ID number defined in “variable_memorypool[]” and the number
of “variable_memorypool[]” definitions

- VTMAX_MPL
The cfg600px outputs the macro VTMAX _MPL which defines the maximum value to the system information
10) Maximum cyclic handler ID (max_cyh)

- Description
The cre_cyc, acre_cyc and del_cyc can be used by this definition.
Ranges of cyclic handler ID that can be used are is as follows.

- Minimum value : 1

- Maximum value : The largest one among max_cyh, the ID number defined in “cyclic_hand[]” and the number
of “cyclic_hand[]” definitions

- Definition format
Numeric value

- Definition range
From 1 to 255

- When omitting
The cre_cyc, acre_cyc and del_cyc returns E_NOSPT error.
Ranges of cyclic handler ID that can be used are is as follows.

- Minimum value : 1

- Maximum value : The largest one among the ID number defined in “cyclic_hand[]” and the number of
“cyclic_hand[]” definitions

- VTMAX_CYH
The cfg600px outputs the macro VTMAX_CYH which defines the maximum value to the system information
11) Maximum alarm handler ID (max_alh)

- Description
The cre_alm, acre_alm and del_alm can be used by this definition.
Ranges of alarm handler ID that can be used are is as follows.

- Minimum value : 1

- Maximum value : The largest one among max_alh, the ID number defined in “alarm_hand[]” and the number
of “alarm_hand[]” definitions

- Definition format
Numeric value

- Definition range
From 1 to 255

- When omitting
The cre_alm, acre_alm and del_alm returns E_NOSPT error.
Ranges of alarm handler ID that can be used are is as follows.

- Minimum value : 1

- Maximum value : The largest one among the ID number defined in “alarm_hand[]” and the number of
“alarm_hand[]” definitions

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 495 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

VTMAX_ALH
The cfg600px outputs the macro VTMAX _ALH which defines the maximum value to the system information

12) Maximum domain ID (max_domain)

Description
Ranges of domain ID that can be used are is as follows.

- Minimum value : 1
- Maximum value : The largest one among max_domain, the ID number defined in “domain([]”

Definition format
Numeric value

Definition range
From 1 to 15

When omitting
Ranges of mutex ID that can be used are is as follows.

- Minimum value : 1
- Maximum value : The largest one among the ID number defined in “domain([]”’

VTMAX_DOMAIN
The c¢fg600px outputs the macro VTMAX_DOMAIN which defines the maximum value to the system information

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 496 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

20.8 Domain Definition (domain[])

Here, each domain is defined. The domain that is not defined by this static APl is handled as “trust = NO”.

Format

Parentheses < >show the user input part.

domain[<1. ID number>] {
trust = <2. Trusted domain (trust)>;

bi

1) ID number

- Description
Define the domain ID number.

- Definition format
Numeric value

- Definition range
From 1to 15

- When omitting
Cannot be omitted.
2) Trusted domain (trust)

- Description
Define whether the domain is Trusted Domain.

- Definition format
Symbol

- Definition range
Select either of the following:

YES: The domain is trusted domain.
OFF: The domain is not trusted domain.

- When omitting
The set value in the default system configuration file (factory setting: “NO”) applied.

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 497 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

20.9 Memory Object Definition (memory_object[])

Here, each memory object is defined.
Please be sure to refer to “3.11 Design of Memory Map”.

Format

Parentheses < >show the user input part.

memory object[] {
start address = <1. Start address of memory object (start addreess)>;
end address = <2. Termination address of memory object (end addreess)>;
acptnl = <3. Access permission pattern (acptnl, acptn2, acptn2)>;
acptn2 = <3. Access permission pattern (acptnl, acptn2, acptn2)>;
acptn3 = <3. Access permission pattern (acptnl, acptn2, acptn2)>;
}i

1) Start address of memory object (start_addreess)

- Description
Define start address of the memory object by numeric value or section name.
When section name is specified, since the section should be started from 16-bytes boundary address, specify
“aligned_section” linker option at linking.
When numeric value is specified, the value must be multiple of 16.

- Definition format
Symbol or numeric value

- Definition range
Numeric value : From 0 to OxFFFFFFFO, and multiple of 16

- When omitting
Cannot be omitted.

2) Termination address of memory object (end_addreess)

- Description
Define termination address of the memory object by numeric value or section name.
When section name is specified, the address in which termination address of this section is rounded up to
“multiple of 16 + 15” is treated with the termination address of the memory object. If the termination address of
this section is not “multiple of 16 + 15”, you must not allocate any section in the range from “the termination
address of this section + 1” to next “ multiple of 16 + 15” address. The above-mentioned conditions are fulfilled by
specifying “aligned_section” linker option as the section which follows this section at linking.

When numeric value is specified, the value must be multiple of 16 + 15.

- Definition format
Symbol or numeric value

- Definition range
Numeric value : From 0x0000000F to OxFFFFFFFF, and multiple of 16 + 15

- When omitting
Cannot be omitted.

3) Access permission pattern (acptn1, acptn2, acptn2)

- Description
Define access permission pattern for operand-read access (acptn1), operand-write access (acptn2) and execu-
tion access (acptn3) by symbol or numeric value.
Only the “TACP_SHARED” (permit access to all the domains) can be specified as symbol.
Use numeric value to specify permission for each domain according to Figure 20-1.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 498 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

When either of the bits corresponding to domains exceeding the maximum domain ID is set, the cfg600px does
not detect an error and t becomes a SYSTEM DOWNat staring the RIGOOPX.

Figure 20-1 Access Permission Pattern

bit15 bit14 bit1 bit0
A A
T— Domain ID #1
Domain ID#15
Domain ID #2
Not used (0)

- Definition format
Symbol or numeric value

- Definition range
Symbol : TACP_SHARED : Permits access to all the domains.
Numeric value : From 0 to Ox7FFF

- When omitting
The set value in the default system configuration file (factory setting: “TACP_SHARED”) applied.

R20UT0964EJ0101 Rev.1.01 .QEN ESNS Page 499 of 565
Sep 20, 2013

RI600PX

CHAPTER 20 SYSTEM CONFIGURATION FILE

20.10 Task Information (task[])

Here, each task is defined.

Format

Parentheses < >show the user input part.

task[<1. ID number>] {

name = <2. ID name (name)>;
entry address = <3. Task entry address (entry addreess)>;
stack size = <4. User stack size (stack size)>;

stack section = <5. Section name assigned to the stack area
priority = <6. Task initial priority (priority)>;
initial start = <7. TA ACT attribute (initial start)>;

(stack section)>;

exinf = <8. Extended information (exinf)>;
texrtn = <9. Task exception handling routine entry address (texrtn)>;
domain num = <10. Belonging domain ID (domain num)>;
}r
1) ID number
- Description

3)

Define the task ID number.

- Definition format
Numeric value

- Definition range
From 1 to 255

- When omitting
The cfg600px assigns the ID number automatically.

ID name (name)

- Description

Define the ID name. The specified ID name is output to the system information header file (kernel_id.h) in the

form of the following.
#define <ID name> <ID number>

- Definition format
Symbol

- Definition range

- When omitting
Cannot be omitted.
Task entry address (entry_addreess)

- Description
Define the starting function of the task.

- Definition format
Symbol

- Definition range

- When omitting
Cannot be omitted.

R20UT0964EJ0101 Rev.1.01 .QENESAS

Sep 20,

2013

Page 500 of 565

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

4) User stack size (stack_size)

- Description
Define the user stack size.

- Definition format
Numeric value

- Definition range
More than the following values, and multiple of 16.

Table 20-8 Lower Bound Value of User Stack Size

Setting of system.context Compiler option “-isa” Lower bound value
NO - 68
FPSW - 72

“-isa=rxv2” 92
ACC

“-isa=rxv1” or not specify “-isa” | 76

“-isa=rxv2” 96
FPSW,ACC

“-isa=rxv1” or not specify “-isa” | 80
MIN - 44
MIN,FPSW - 48

“-isa=rxv2” 68
MIN,ACC

“-isa=rxv1” or not specify “-isa” | 52

“-isa=rxv2” 72
MON,FPSW,ACC

“-isa=rxv1” or not specify “-isa” | 56

Note Compiler option “-isa” is supported by the compiler CC-RX V2.01 or later.

- When omitting
The set value in the default system configuration file (factory setting: 256) applied.

5) Section name assigned to the stack area (stack_section)

- Description
Define the section name to be assigned to the user stack area.
The cfg600px generates the user stack area with the size specified by stack_size to the section specified by
stack_section. The section attribute is “DATA”, and the alignment number is 4.
When linking, be sure to locate this section in the RAM area. Note, this section must not be located to address 0.
Since this section should be started from 16-bytes boundary address, specify “aligned_section” linker option at
linking.

- Definition format
Symbol

- Definition range

- When omitting
The set value in the default system configuration file (factory setting: “SURI_STACK”) applied.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 501 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

6) Task initial priority (priority)

- Description
Define the task initial priority.

- Definition format
Numeric value

- Definition range
From 1 to Maximum task priority (priority) in System Information (system)

- When omitting
The set value in the default system configuration file (factory setting: 1) applied.
7) TA_ACT attribute (initial_start)

- Description
Define the initial state of the task.

- Definition format
Symbol

- Definition range
Select either of the following:

ON: Specify the TA_ACT attribute. (The initial state is READY state.)
OFF: Not Specify the TA_ACT attribute. (The initial state is DORMANGT state.)
- When omitting
The set value in the default system configuration file (factory setting: “OFF”) applied.
8) Extended information (exinf)

- Description
Define the extended information of the task.

- Definition format
Numeric value

- Definition range
From 0 to OXFFFFFFFF

- When omitting
The set value in the default system configuration file (factory setting: 0) applied.

- Note
When the task is activated by the TA_ACT attribute, act_tsk or iact_tsk, the extended information is passed to the
task.

9) Task exception handling routine entry address (texrtn)

- Description
Define the starting function of the task exception handling routine. To not define task exception handling routine,
do not define texrtn.

- Definition format
Symbol

- Definition range

- When omitting
The task exception handling routine is not defined.

10) Belonging domain ID (domain_num)

- Description
Define the ID number of the domain by which the task belongs.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 502 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

- Definition format
Numeric value

- Definition range
From 1 to 15

- When omitting
The set value in the default system configuration file (factory setting: 1) applied.

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 503 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

20.11 Semaphore Information (semaphore[])

Here, each semaphore is defined.

Format

Parentheses < >show the user input part.

semaphore[<1. ID number>] {
name = <2. ID name (name)>;
max_ count = <3. Maximum resource count (max count)>;
initial count = <4. Initial resource count (initial count)>;
wait queue = <5. Wait queue attribute (wait queue)>;

}i

1) ID number

- Description
Define the semaphore ID number.

- Definition format
Numeric value

- Definition range
From 1 to 255

- When omitting
The cfg600px assigns the ID number automatically.

2) ID name (name)

- Description
Define the ID name. The specified ID name is output to the system information header file (kernel_id.h) in the
form of the following.

#define <ID name> <ID number>

- Definition format
Symbol

- Definition range

- When omitting
Cannot be omitted.
3) Maximum resource count (max_count)

- Description
Define the maximum resource count

- Definition format
Numeric value

- Definition range
From 1 to 65535

- When omitting
The set value in the default system configuration file (factory setting: 1) applied.

R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 504 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

4) |Initial resource count (initial_count)

- Description
Define the initial resource count.

- Definition format
Numeric value

- Definition range
From 0 to max_count

- When omitting
The set value in the default system configuration file (factory setting: 1) applied.
5) Wait queue attribute (wait_queue)

- Description
Define the wait queue attribute.

- Definition format
Symbol

- Definition range
Select either of the following:

TA_TFIFO: FIFO order

TA_TPRI: Task current priority order
Among tasks with the same current priority, they are queued in FIFO order.

- When omitting
The set value in the default system configuration file (factory setting: “TA_TFIFO”) applied.

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 505 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

20.12 Eventflag Information (flag[])

Here, each semaphore is defined.

Format

Parentheses < >show the user input part.

flag[<1. ID number>] {

name = <2. ID name (name)>;

initial pattern = <3. Initial bit pattern (initial pattern)>;

wait multi = <4. Multiple wait permission attribute (wait multi)>;
clear attribute = <5. Clear attribute (clear attribute)>;

wait queue = <6. Wait queue attribute (wait queue)>;

1) ID number

- Description
Define the eventflag ID number.

- Definition format
Numeric value

- Definition range
From 1 to 255

- When omitting
The cfg600px assigns the ID number automatically.

2) ID name (name)

- Description
Define the ID name. The specified ID name is output to the system information header file (kernel_id.h) in the
form of the following.

#define <ID name> <ID number>

- Definition format
Symbol

- Definition range

- When omitting
Cannot be omitted.
3) |Initial bit pattern (initial_pattern)

- Description
Define the initial bit pattern

- Definition format
Numeric value

- Definition range
From 0 to OXFFFFFFFF

- When omitting
The set value in the default system configuration file (factory setting: 0) applied.

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 506 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

4) Multiple wait permission attribute (wait_multi)

- Description
Define the attribute regarding whether multiple tasks are permitted to wait for the eventflag.

- Definition format
Symbol

- Definition range
Select either of the following:

TA_WSGL: Not permit multiple tasks to wait for the eventflag.
TA_WMUL: Permit multiple tasks to wait for the eventflag.

- When omitting
The set value in the default system configuration file (factory setting: “TA_WSGL”) applied.
5) Clear attribute (clear_attribute)

- Description
Define the clear attribute (TA_CLR).

- Definition format
Symbol

- Definition range
Select either of the following:

NO: Not specify the TA_CLR attribute.
YES: Specify the TA_CLR attribute.
- When omitting
The set value in the default system configuration file (factory setting: “NO”) applied.
6) Wait queue attribute (wait_queue)

- Description
Define the wait queue attribute.

- Definition format
Symbol

- Definition range
Select either of the following: However, when the TA_CLR attribute is not specified, the wait queue is managed in
the FIFO order even if TA_TPRI is specified for wait_queue. This behavior falls outside nITRON4.0 specification.

TA _TFIFO: FIFO order

TA_TPRI: Task current priority order
Among tasks with the same current priority, they are queued in FIFO order.

- When omitting
The set value in the default system configuration file (factory setting: “TA_TFIFO”) applied.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 507 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

20.13 Data Queue Information (dataqueue[])

Here, each data queue is defined.

Format

Parentheses < >show the user input part.

dataqueue[<1. ID number>] {

name = <2. ID name (name)>;

buffer size = <3. Data count (buffer size)>;

wait queue = <4. Wait queue attribute (wait queue)>;
}r

1) ID number

- Description
Define the data queue ID number.

- Definition format
Numeric value

- Definition range
From 1 to 255

- When omitting
The cfg600px assigns the ID number automatically.

2) ID name (name)

- Description
Define the ID name. The specified ID name is output to the system information header file (kernel_id.h) in the
form of the following.

#define <ID name> <ID number>

- Definition format
Symbol

- Definition range

- When omitting
Cannot be omitted.
3) Data count (buffer_size)

- Description
Define the number of data that the data queue can be stored.

- Definition format
Numeric value

- Definition range
From 0 to 65535

- When omitting
The set value in the default system configuration file (factory setting: 0) applied.

R20UT0964EJ0101 Rev.1.01 RENESAS Page 508 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

4) Wait queue attribute (wait_queue)

- Description
Define the wait queue attribute for sending.
Note, task wait queue for receiving is managed in FIFO order.

- Definition format
Symbol

- Definition range
Select either of the following:

TA _TFIFO: FIFO order

TA_TPRI: Task current priority order
Among tasks with the same current priority, they are queued in FIFO order.

- When omitting
The set value in the default system configuration file (factory setting: “TA_TFIFO”) applied.

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 509 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

20.14 Mailbox Information (mailbox[])

Here, each mailbox is defined.

Format

Parentheses < >show the user input part.

mailbox[<1. ID number>] {
name = <2. ID name (name)>;
wait queue = <3. Wait queue attribute (wait queue)>;
message queue = <4. Message queue attribute (message queue)>;
max pri = <5. Maximum message priority (max pri)>;

1) ID number

- Description
Define the mailbox ID number.

- Definition format
Numeric value

- Definition range
From 1 to 255

- When omitting
The cfg600px assigns the ID number automatically.
2) ID name (name)

- Description
Define the ID name. The specified ID name is output to the system information header file (kernel_id.h) in the
form of the following.

#define <ID name> <ID number>

- Definition format
Symbol

- Definition range

- When omitting
Cannot be omitted.
3) Wait queue attribute (wait_queue)

- Description
Define the wait queue attribute.

- Definition format
Symbol

- Definition range
Select either of the following:

TA_TFIFO: FIFO order

TA_TPRI: Task current priority order
Among tasks with the same current priority, they are queued in FIFO order.

- When omitting
The set value in the default system configuration file (factory setting: “TA_TFIFO”) applied.

4) Message queue attribute (message_queue)

R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 510 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

- Description
Define the message queue attribute.

- Definition format
Symbol

- Definition range
Select either of the following:

TA_MFIFO: The order of the message transmission request.
TA_MPRI: Message priority order
- When omitting
The set value in the default system configuration file (factory setting: “TA_MFIFQO”) applied.
5) Maximum message priority (max_pri)

- Description
When TA_MPRI is specified for message_queue, the message priority from 1 to max_pri can be used.
When TA_MFIFO is specified for message_queue, this item is only disregarded.

- Definition format
Numeric value

- Definition range
From 1 to Maximum message priority (message_pri) in System Information (system)

- When omitting
The set value in the default system configuration file (factory setting: 1) applied.

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 511 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

20.15 Mutex Information (mutex[])

Here, each mutex is defined.

Format

Parentheses < >show the user input part.

mutex[<1. ID number>] {
name = <2. ID name (name)>;
ceilpri = <3. Ceiling priority (ceilpri)>;

bi

1) ID number

- Description
Define the mutex ID number.

- Definition format
Numeric value

- Definition range
From 1 to 255

- When omitting
The c¢fg600px assigns the ID number automatically.

2) ID name (name)

- Description
Define the ID name. The specified ID name is output to the system information header file (kernel_id.h) in the
form of the following.

#define <ID name> <ID number>

- Definition format
Symbol

- Definition range

- When omitting
Cannot be omitted.
3) Ceiling priority (ceilpri)

- Description
The RI600PX adopts Simplified priority ceiling protocol. The ceiling priority should be defined in ceilpri.

- Definition format
Numeric value

- Definition range
From 1 to Maximum task priority (priority) in System Information (system)

- When omitting
The set value in the default system configuration file (factory setting: 1) applied.

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 512 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

20.16 Message Buffer Information (message_buffer[])

Here, each message buffer is defined.

Format

Parentheses < >show the user input part.

message buffer[<1. ID number>] {
name = <2. ID name (name)>;
mbf size = <3. Buffer size (mbf size)>;
mbf section = <4. Section name assigned to the message buffer area
max msgsz = <5. Maximum message size (max msgsz)>
}i

(mbf section)>;

1) ID number

- Description
Define the message buffer ID number.

- Definition format
Numeric value

- Definition range
From 1 to 255

- When omitting
The cfg600px assigns the ID number automatically.

2) ID name (name)

- Description

Define the ID name. The specified ID name is output to the system information header file (kernel_id.h) in the

form of the following.
#define <ID name> <ID number>

- Definition format
Symbol

- Definition range

- When omitting
Cannot be omitted.
3) Buffer size (mbf_size)

- Description
Define the size of the message buffer in bytes.

- Definition format
Numeric value

- Definition range
0, or multiple of 4 in the range from 8 to 65532

- When omitting
The set value in the default system configuration file (factory setting: 0) applied.

R20UT0964EJ0101 Rev.1.01 .ZENESAS
Sep 20, 2013

Page 513 of 565

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

4)

5)

Section name assigned to the message buffer area (mbf_section)

- Description
Define the section name to be assigned to the message buffer area.
When mbf_size > 0, the cfg600px generates the message buffer area with the size specified by buffer_size to the
section specified by mbf_section. The section attribute is “DATA”, and the alignment number is 4.
When linking, be sure to locate this section in the RAM area. Note, this section must not be located to address 0.

- Definition format
Symbol

- Definition range

- When omitting
The set value in the default system configuration file (factory setting: “BURI_HEAP”) applied.

Maximum message size (max_msgsz)

- Description
Define the maximum message size of the message buffer in bytes.
When mbf_size > 0, max_msgsz must be less than or equal to “mbf_size - 4”.

- Definition format
Numeric value

- Definition range
From 1 to 65528

- When omitting
The set value in the default system configuration file (factory setting: 4) applied.

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 514 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

20.17 Fixed-sized Memory Pool Information (memorypool[])

Here, each fixed-sized memory pool is defined.

Format

Parentheses < >show the user input part.

memorypool[<1. ID number>] {

name = <2. ID name (name)>;

siz block = <3. The size of the fixed-sized memory block (siz block)>;
num block = <4. The number of the fixed-sized memory block (num block)>;
section = <5. Section name assigned to the memory pool area (section)>
wait queue = <6. Wait queue attribute (wait queue)>;

1) ID number

- Description
Define the fixed-sized memory pool ID number.

- Definition format
Numeric value

- Definition range
From 1 to 255

- When omitting
The cfg600px assigns the ID number automatically.

2) ID name (name)

- Description
Define the ID name. The specified ID name is output to the system information header file (kernel_id.h) in the
form of the following.

#define <ID name> <ID number>

- Definition format
Symbol

- Definition range

- When omitting
Cannot be omitted.
3) The size of the fixed-sized memory block (siz_block)

- Description
Define the size of the fixed-sized memory block in bytes.

- Definition format
Numeric value

- Definition range
From 1 to 65535

- When omitting
The set value in the default system configuration file (factory setting: 256) applied.

R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 515 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

4) The number of the fixed-sized memory block (num_block)

- Description
Define the number of the fixed-sized memory block.

- Definition format
Numeric value

- Definition range
From 1 to 65535

- When omitting
The set value in the default system configuration file (factory setting: 1) applied.

5) Section name assigned to the memory pool area (section)

- Description
Define the section name to be assigned to the fixed-sized memory pool area.
The cfg600px generates the fixed-sized memory pool area with the size calculated by “siz_block * num_block” to
the section specified by section. The section attribute is “DATA”, and the alignment number is 4.
When linking, be sure to locate this section in the RAM area. Note, this section must not be located to address 0.

- Definition format
Symbol

- Definition range

- When omitting
The set value in the default system configuration file (factory setting: “BRI_HEAP”) applied.
6) Wait queue attribute (wait_queue)

- Description
Define the wait queue attribute.

- Definition format
Symbol

- Definition range
Select either of the following:

TA_TFIFO: FIFO order

TA_TPRI: Task current priority order
Among tasks with the same current priority, they are queued in FIFO order.

- When omitting
The set value in the default system configuration file (factory setting: “TA_TFIFO”) applied.

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 516 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

20.18 Variable-sized Memory Pool Information (variable_memorypool[])

Here, each variable-sized memory pool is defined.

Format

Parentheses < >show the user input part.

variable memorypool[<1. ID number>] {
name = <2. ID name (name)>;
heap size = <3. The size of the variable-sized memory pool (heap size)>;
num block = <4. Upper limit of the variable-sized memory block (max memsize)>;
section = <5. Section name assigned to the memory pool area (mpl section)>

1) ID number

- Description
Define the variable-sized memory pool ID number.

- Definition format
Numeric value

- Definition range
From 1 to 255

- When omitting
The cfg600px assigns the ID number automatically.

2) ID name (name)

- Description
Define the ID name. The specified ID name is output to the system information header file (kernel_id.h) in the
form of the following.

#define <ID name> <ID number>

- Definition format
Symbol

- Definition range

- When omitting
Cannot be omitted.
3) The size of the variable-sized memory pool (heap_size)

- Description
Define the size of the variable-sized memory pool area in bytes.

- Definition format
Numeric value

- Definition range
From 24 to 0x10000000

- When omitting
The set value in the default system configuration file (factory setting: 1024) applied.

R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 517 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

4) Upper limit of the variable-sized memory block (max_memsize)

- Description
Define the upper limit of an acquirable memory block size in bytes.

- Definition format
Numeric value

- Definition range
From 1 to OxXBFFFFF4

- When omitting
The set value in the default system configuration file (factory setting: 36) applied.

- Note
Refer to “9.3.1 Size of Variable-sized memory block” for the size of the variable-sized memory blocks.

5) Section name assigned to the memory pool area (mpl_section)

- Description
Define the section name to be assigned to the variable-sized memory pool area.
The cfg600px generates the variable-sized memory pool area with the size specified by heap_size to the section
specified by mpl_section. The section attribute is “DATA”, and the alignment number is 4.
When linking, be sure to locate this section in the RAM area. Note, this section must not be located to address 0.

- Definition format
Symbol

- Definition range

- When omitting
The set value in the default system configuration file (factory setting: “BRI_HEAP”) applied.

R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 518 of 565
Sep 20, 2013

RI600PX

CHAPTER 20 SYSTEM CONFIGURATION FILE

20.19 Cyclic Handler Information (cyclic_hand[])

Here, each cyclic handler is defined.

Format

Parentheses < >show the user input part.

cyclic hand[<1. ID number>] {

name = <2. ID name (name)>;
entry address = <3. Cyclic handler entry address (entry address)>;
interval counter = <4. Activation cycle (interval counter)>;
start = <5. Initial state (start)>;
phs counter = <6. Activation phase (phs counter)>;
phsatr = <7. TA PHS attribute (phsatr)>;
exinf = <8. Extended information (exinf)>;
bi
1) ID number
- Description

3)

4)

Define the cyclic handler ID number.

Definition format
Numeric value

Definition range
From 1 to 255

When omitting
The cfg600px assigns the ID number automatically.

ID name (name)

Description

Define the ID name. The specified ID name is output to the system information header file (kernel_id.h) in the

form of the following.
#define <ID name> <ID number>

Definition format
Symbol

Definition range

When omitting
Cannot be omitted.

Cyclic handler entry address (entry_address)

Description
Define the starting function of the cyclic handler.

Definition format
Symbol

Definition range

When omitting
Cannot be omitted.

Activation cycle (interval_counter)

R20UT0964EJ0101 Rev.1.01 .ZENESAS
Sep 20, 2013

Page 519 of 565

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

- Description
Define the activation cycle in millisecond.

- Definition format
Numeric value

- Definition range
From 1 to (OX7FFFFFFF - system.tic_nume) / system.tic_deno

- When omitting
The set value in the default system configuration file (factory setting: 1) applied.
5) Initial state (start)

- Description
Define the initial state of the cyclic handler.

- Definition format
Symbol

- Definition range
Select either of the following:

OFF: Non operational stat (The TA_STA attribute is not specified.)
ON: Operational state (The TA_STA attribute is specified.)
- When omitting
The set value in the default system configuration file (factory setting: “OFF”) applied.
6) Activation phase (phs_counter)

- Description
Define the activation phase in millisecond

- Definition format
Numeric value

- Definition range
From 0 to interval _counter

- When omitting
The set value in the default system configuration file (factory setting: 0) applied.
7) TA_PHS attribute (phsatr)

- Description
Define the attribute concerning the activation phase.

- Definition format
Symbol

- Definition range
Select either of the following:

OFF: Not preserve the activation phase. (The TA_PHS attribute is not specified.)
ON: Preserve the activation phase. (The TA_PHS attribute is specified.)
- When omitting
The set value in the default system configuration file (factory setting: “OFF”) applied.
8) Extended information (exinf)

- Description
Define the extended information of the cyclic handler.

- Definition format
Numeric value

- Definition range
From 0 to OxFFFFFFFF

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 520 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

- When omitting
The set value in the default system configuration file (factory setting: 0) applied.

- Note
The extended information is passed to the cyclic handler.

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 521 of 565
Sep 20, 2013

RI600PX

CHAPTER 20 SYSTEM CONFIGURATION FILE

20.20 Alarm Handler Information (alarm_handl[])

Here, each alarm handler is defined.

Format

Parentheses < >show the user input part.

}r

alarm hand[<1.

ID
name
entry address
exinf

number>] {
= <2.

ID name (name)>;
= <3. Alarm handler entry address (entry address)>;
<4. Extended information (exinf)>;

ID number

Description

Define the alarm handler ID number.

Definition format
Numeric value

Definition range
From 1 to 255

When omitting

The cfg600px assigns the ID number automatically.

ID name (name)

Description

Define the ID name. The specified ID name is output to the system information header file (kernel_id.h) in the

form of the following.

#define

Definition format
Symbol

Definition range

When omitting
Cannot be omitted.

Description

<ID name> <ID number>

Alarm handler entry address (entry_address)

Define the starting function of the alarm handler.

Definition format
Symbol

Definition range

When omitting
Cannot be omitted.

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

REN ESNS Page 522 of 565

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

4) Extended information (exinf)

- Description
Define the extended information of the alarm handler.

- Definition format
Numeric value

- Definition range
From 0 to OXFFFFFFFF

- When omitting
The set value in the default system configuration file (factory setting: 0) applied.

- Note
The extended information is passed to the alarm handler.

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 523 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

20.21 Relocatable Vector Information (interrupt_vector[])

Here, each interrupt handler for relocatable vector of the RX MCU is defined.

If any interrupt occurs whose vector number is not defined here, the system goes down.

Note, the cfg600px does not generate code to initialize the interrupt control registers, the causes of interrupts, etc. for the
interrupts defined here. These initialization need to be implemented in the application.

Note Since the vector number from 1 to 8 are reserved by the RIBO0PX, do not define these vectors. And do not
define the vectors which are reserved by the MCU specification.

Format

Parentheses < >show the user input part.

interrupt vector[<1. Vector number>] {
entry address = <2. Interrupt handler entry address (entry addreess)>;
os_int = <3. Kernel interrupt specification (os_int)>;

pragma switch = <4. Switch passed to pragma directive (pragma switch)>;

}r

1) Vector number

- Description
Define the vector number.

- Definition format
Numeric value

- Definition range
From 0 to 255

- When omitting
Cannot be omitted.

2) Interrupt handler entry address (entry_addreess)

- Description
Define the starting function of the interrupt handler.

- Definition format
Symbol

- Definition range

- When omitting
Cannot be omitted.

3) Kernel interrupt specification (os_int)

- Description
Interrupts whose interrupt priority level is lower than or equal to the Kernel interrupt mask level (system_IPL)
must be defined as the kernel interrupt, and the other interrupts must be defined as the non-kernel interrupt.
Note, when the Kernel interrupt mask level (system_IPL) is 15, all interrupts for relocatable vector must be
defined as the kernel interrupt.

- Definition format
Symbol

- Definition range
Select either of the following:

YES: Kernel interrupt
NO: Non-kernel interrupt
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 524 of 565

Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

- When omitting
Cannot be omitted.

4) Switch passed to pragma directive (pragma_switch)

- Description
The cfg600px outputs “#pragma interrupt” directive to handle the function specified by entry_address as a inter-
rupt function to the system information header file kernel_id.h.
The switches passed to this pragma directive should be specified for pragma_switch.

- Definition format
Symbol

- Definition range
The following can be specified. To specify multiple choices, separate each with a comma. However, “ACC” and
“NOACC” cannot be specified at the same time.

E: The “enable” switch that permits a multiple interrupt is passed.

F: The “fint” switch that specifies a fast interrupt is passed. Note, a fast interrupt must be handled
as non-kernel interrupt (os_int = NO).

S: The “save” switch that limits the number of registers used in the interrupt handler is passed.

ACC: The “acc” switch that guarantees the ACC register in the interrupt handler is passed.

NOACC: The “no_acc” switch that does not guarantee the ACC register in the interrupt handler is
passed

- When omitting
No switches are passed.

Note 1 Refer to Table 20-9 for the guarantee of the ACC register.

Table 20-9 Guarantee of the ACC Register

“-save_acc” compiler option
Setting of pragma_switch

Not specified Specified

Neither “acc” nor “no_acc” switch is | Neither “acc” nor “no_acc” switch is
not passed. not passed.
The ACC register is not guaranteed. | The ACC register is guaranteed.

Neither “ACC” nor “NOACC”
is not specified.

The “acc” switch is passed.

ACC” s specified. The ACC register is guaranteed.

The “no_acc” switch is passed.

NOACC" is specified. The ACC register is not guaranteed.

Note 2 When either “CMTO0”, “CMT1”, “CMT2” or “CMT3” is defined as Selection of timer channel for base clock
(timer), it is treated that “interrupt_vector[]” is implicitly defined by the following specification.

- Vector number
- CMTO: 28
- CMT1:29
- CMT2:30
- CMT3: 31

- entry_address : The entry address of the base clock interrupt processing routine in the RIBO0OPX

- os_int: YES

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 525 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

- pragma_switch : E,ACC

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 526 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

20.22 Fixed Vector/Exception Vector Information (interrupt_fvector[])

Here, fixed vector table of the RXv1 architecture (address from OxFFFFFF80 to OxFFFFFFFF) / exception vector table of
RXv2 architecture is defined.

Not only interrupt handler address but also the endian select register, etc., are included in fixed vector table/exception vec-
tor table.

All interrupt in fixed vector/exception vector is non-kernel interrupt.

In the RIGOOPX, the vector number is allocated according to the vector address as shown in Table 20-10. The Table 20-10
also shows the setting of the vector to which the definition is omitted.

Note, the content of fixed vector table/exception vector table is different in each MCU. For details, refer to the hardware
manual of the MCU used.

Note, the cfg600px does not generate code to initialize the interrupt control registers, the causes of interrupts, etc. for the
interrupts defined here. These initialization need to be implemented in the application.

Table 20-10 Fixed Vector Table/Exception Vector table

Vector Vector Example of factor When omittin
address 2 number (different in each MCU) 9
The following are set according to “-
endian” compiler option.
) . - “-endian=little”
OxFFFFFF80 | O Endian select register OxFFFFEFFE
- “-endian=big”
OxFFFFFFF8
OXFFFFFF84 | 1 (Reserved area)
OxFFFFFF88 | 2 Option function select register 1
OxFFFFFF8C | 3 Option function select register 0
OxFFFFFFQ0 | 4 (Reserved area)
OxFFFFFF94 | 5 (Reserved area)
OxFFFFFF98 | 6 (Reserved area)
OxFFFFFFOC | 7 ROM code protection (flash memory)
OxFFFFFFAO | 8 OxFFFFFFFF
OxFFFFFFA4 | 9 ID code protection on connection of the
OXFFFFFFA8 | 10 on-chip debugger (flash memory)
OxFFFFFFAC | 11
OxFFFFFFBO | 12 (Reserved area)
OxFFFFFFB4 | 13 (Reserved area)
OxFFFFFFB8 | 14 (Reserved area)
OxFFFFFFBC | 15 (Reserved area)
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 527 of 565

Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

Vector Vector .Examplle of factor When omitting
address 2 number (different in each MCU)
OxFFFFFFCO | 16 (Reserved area)
OxFFFFFFC4 | 17 (Reserved area)
OxFFFFFFC8 | 18 (Reserved area) System down
OxFFFFFFCC | 19 (Reserved area)
OxFFFFFFDO | 20 Privileged instruction exception
OxFFFFFFD4 | 21 Access exception Access exception handler °
OxFFFFFFD8 | 22 (Reserved area)
OxFFFFFFDC | 23 Undefined instruction exception
OxFFFFFFEO | 24 (Reserved area)
OxFFFFFFE4 | 25 Floating-point exception
OxFFFFFFE8 | 26 (Reserved area)
OxFFFFFFEC | 27 (Reserved area)
OxFFFFFFFO | 28 (Reserved area)
OxFFFFFFF4 | 29 (Reserved area)
OxFFFFFFF8 | 30 Non-maskable interrupt
OxFFFFFFFC | 31 Reset PowerON_Reset_PC()

a. The vector address in Table 20-10 is the address of fixed vector table in RXv1 architecture.
The address of exception vector table in RXv2 architecture is decided by EXTB register. The initial value of
EXTB register at the time of reset is same as fixed vector table in RXv1 architecture. Refer to
“FIX_INTERRUPT_VECTOR section” in section 2.6.4.

b. Do not define a handler to the vector-21. If defined, the access exception handler never be initiated.

Format

Parentheses < >show the user input part.

interrupt fvector[<1. Vector number>] {
entry address = <2. Interrupt handler entry address (entry addreess)>;
pragma_ switch = <3. Switch passed to pragma directive (pragma switch)>;

}i

1) Vector number

- Description
Define the vector number.

- Definition format
Numeric value

- Definition range
From 0 to 31

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 528 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

- When omitting
Cannot be omitted.

2) Interrupt handler entry address (entry_addreess)

- Description
Define the starting function of the interrupt handler or the set value to fixed vector/exception vector.

- Definition format
Symbol or numeric value

- Definition range
From 0 to OxFFFFFFFF when a numeric value is specified.

- When omitting
Cannot be omitted.

3) Switch passed to pragma directive (pragma_switch)

- Description
The cfg600px outputs “#pragma interrupt” directive to handle the function specified by entry_address as a inter-
rupt function to the system information header file kernel_id.h.
The switches passed to this pragma directive should be specified for pragma_switch.

- Definition format
Symbol

- Definition range
The following can be specified. To specify multiple choices, separate each with a comma. However, “ACC” and
“NOACC” cannot be specified at the same time.

S: The “save” switch that limits the number of registers used in the interrupt handler is passed.

ACC: The “acc” switch that guarantees the ACC register in the interrupt handler is passed.

NOACC: The “no_acc” switch that does not guarantee the ACC register in the interrupt handler is
passed

- When omitting
No switches are passed.

- Note
Refer to Table 20-9 for the guarantee of the ACC register.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 529 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

20.23 RAM Capacity Estimation

Memory areas used and managed by the RI600PX are broadly classified into four types of sections.

- BRI_RAM section: The RIBOOPX's management data, data queue area created by the system configuration file, mes-
sage buffer area created by the system configuration file without specifying section

- RRI_RAM section: The RI600PX’s management data (when dynamic creation function is used)

- BURI_HEAP section: Fixed-sized memory pool area and variable-sized memory pool area created by the system
configuration file without specifying section

- SURI_STACK section: User stack area of tasks created by the system configuration file without specifying section

- Sl section: System stack area

20.23.1 BRI_RAM and RRI_RAM section

The RI600PX’s management data is located in the BRI_RAM and RRI_RAM section.
The Table 20-11 shows the size calculation method for the BRI_RAM and RRI_RAM section (unit: bytes). In addition,
actual size may become larger than the value computed by Table 20-11 for boundary adjustment.

Table 20-11 BRI_RAM and RRI_RAM Section Size Calculation Method

Object Name Section Size Calculation Method (in bytes)

28 + 4 x down((TMAX_TPRI-1)/32 + 1) + TMAX_TPRI
+ VTMAX_SEM + 2 x VTMAX_DTQ + VTMAX_FLG + VTMAX_MBX

BRI_RAM
- + VTMAX_MTX + 2 x VTMAX_MBF + VTMAX_MPF + VTMAX_MPL
System control block +57 x VIMAX DOMAIN
RRI RAME | 4T VTMAX_SEM +2 x VIMAX_DTQ + VIMAX_FLG + VTMAX_MBX

+ VIMAX_MTX + 2 x VTMAX_MBF + VTMAX_MPF + VTMAX_MPL

BRI_RAM 28 x VTMAX_TSK

Task control block
RRI_RAMb 24 x VTMAX_TSK

Semaphore control | BR_LRAM | 4 x VTMAX_SEM + down (VTMAX_SEM /8 + 1)

block® RRI_RAMY | 4 x VTMAX_SEM

Eventlag control | BRILRAM | 8 x VTMAX_FLG +2 x down (VIMAX_FLG/ 8 + 1)

block® RRI_RAM' | 4 x VTMAX_FLG

block9 RRI_RAMM | 8 x VTMAX DTQ
Mailbox control | BRLRAM | 8 x VTMAX_MBX + 2 x down (VTIMAX_MBX [8 + 1)
block! RRI_RAMI | VTMAX_MBX

BRI_RAM VTMAX_MTX + down (VTMAX_MTX /8 + 1)

Mutex control block®
RRI_RAM' VTMAX_MTX

Message buffer | BRI_LRAM | 16 x VTMAX_MBF + MBF_ALLSIZE

control block™ RRI_RAM" | 8 x VTMAX_MBF

8 x VTMAX_MPF + down (VTMAX_MPF /8 + 1)

; ; BRI_RAM
Fixed-sized memory - + ¥ (memorypool[].num_block /8 + 1)

pool control block®

RRI_RAMP 12 x VTMAX_MPF

R20UT0964EJ0101 Rev.1.01 RENESAS Page 530 of 565
Sep 20, 2013

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE
Object Name Section Size Calculation Method (in bytes)
Variable-sized mem- | BRI_RAM 36 x VTMAX_MPL
ory pool control
blockd RRI_RAM' 20 x VTMAX_MPL
Cyclic handler | BRI_LRAM 8 x VTMAX_CYH
control block® RRLRAM! | 20 x VTMAX_CYH
Alarm handler | BRI_RAM 8 X VTMAX_ALH
control block" RRI_RAMY | 8 x VTMAX_ALH
a. When all Maximum task ID (max_task), Maximum semaphore ID (max_sem), Maximum eventflag ID (max_flag),
Maximum data queue ID (max_dtq), Maximum mailbox ID (max_mbx), Maximum mutex ID (max_mtx),
Maximum message buffer ID (max_mbf), Maximum fixed-sized memory pool ID (max_mpf) and Maximum
variable-sized memory pool ID (max_mpl) are 0 or undefined, the size of this area is 4 bytes.
b. This area is generated only when Maximum task ID (max_task) is defined.
c. This area is not generated when VTMAX_SEM is 0.
d. This area is generated only when Maximum semaphore ID (max_sem) is defined.
e. This area is not generated when VTMAX_FLG is 0.
f. This area is generated only when Maximum eventflag ID (max_flag) is defined.
g. This area is not generated when VTMAX_DTQis 0.
h. This area is generated only when Maximum data queue ID (max_dtq) is defined.
i. This area is not generated when VTMAX_MBX is 0.
j. This area is generated only when Maximum mailbox ID (max_mbx) is defined.
k. This area is not generated when VTMAX_MTXis 0.
I. This area is generated only when Maximum mutex ID (max_mtx) is defined.
m. This area is not generated when VTMAX_MBF is 0.
n. This area is generated only when Maximum message buffer ID (max_mbf) is defined.
o. This area is not generated when VTMAX_MPF is 0.
p. This area is generated only when Maximum fixed-sized memory pool ID (max_mpf) is defined.
g. This area is not generated when VTMAX_MPL is 0.
r. This area is generated only when Maximum variable-sized memory pool ID (max_mpl) is defined.
s. This area is not generated when VTMAX_CYH is 0.
t. This area is generated only when Maximum cyclic handler ID (max_cyh) is defined.
u. This area is not generated when VTMAX_ALH is 0.
v. This area is generated only when Maximum alarm handler ID (max_alh) is defined.
R20UT0964EJ0101 Rev.1.01 RENESAS Page 531 of 565

Sep 20, 2013

CHAPTER 20 SYSTEM CONFIGURATION FILE

Each keyword in the size calculation methods has the following meaning.

TMAX_TPRI:

VTMAX_TSK:

VTMAX_SEM:

VTMAX_FLG:

VTMAX_DTQ:

DTQ_ALLSIZE:

VTMAX_MBX:

VTMAX_MTX:

VTMAX_MBF:

MBF_ALLSIZE:

VTMAX_MPF:

VTMAX_MPL:

VTMAX_CYH:

VTMAX_ALH:

The TMAX_TPRI represents maximum task priority.

The cfg600px outputs the macro TMAX_TPRI which defines the value set as Maximum
task priority (priority) in System Information (system) to the system information header file
kernel_id.h.

The VTMAX_TSK represents the maximum task ID.
The cfg600px outputs the macro of VTMAX_TSK to the system information header file
kernel_id.h. For details, refer to “Maximum task ID (max_task)”.

The VTMAX_SEM represents the maximum semaphore ID.
The cfg600px outputs the macro of VTMAX_SEM to the system information header file
kernel_id.h. For details, refer to “Maximum semaphore ID (max_sem)”.

The VTMAX_FLG represents the maximum eventflag ID.
The cfg600px outputs the macro of VTMAX_FLG to the system information header file
kernel_id.h. For details, refer to “Maximum eventflag ID (max_flag)”.

The VTMAX_DTQ represents the maximum data queue ID.
The cfg600px outputs the macro of VTMAX DTQ to the system information header file
kernel_id.h. For details, refer to “Maximum data queue ID (max_dtq)”.

Total of size of data queue area created in the system configuration file. Concretely, it is
calculated by the following expressions.

2 dataqueue[].buffer_size * 4
Note, DTQ_ALLSIZE is 4 when this calculation result is 0.

The VTMAX_MBX represents the maximum mailbox ID.
The cfg600px outputs the macro of VTMAX MBX to the system information header file
kernel_id.h. For details, refer to “Maximum mailbox ID (max_mbx)”.

The VTMAX_MTX represents the maximum mutex ID.
The cfg600px outputs the macro of VTMAX_MTX to the system information header file
kernel_id.h. For details, refer to “Maximum mutex ID (max_mtx)”.

The VTMAX_MBF represents the maximum message buffer ID.
The cfg600px outputs the macro of VTMAX MBF to the system information header file
kernel_id.h. For details, refer to “Maximum message buffer ID (max_mbf)”.

Total of size of message buffer area created in the system configuration file without
specifying “mbf_section”. Concretely, it is calculated by the following expressions.
2 message_buffer[].mbf_size * 4

The VTMAX_MPF represents the maximum fixed-sized memory pool ID.
The cfg600px outputs the macro of VTMAX MPF to the system information header file
kernel_id.h. For details, refer to “Maximum fixed-sized memory pool ID (max_mpf)”.

The VTMAX_MPL represents the maximum variable-sized memory pool ID.
The cfg600px outputs the macro of VTMAX MPL to the system information header file
kernel_id.h. For details, refer to “Maximum variable-sized memory pool ID (max_mpl)”.

The VTMAX_CYH represents the maximum cyclic handler ID.
The cfg600px outputs the macro of VTMAX_CYH to the system information header file
kernel_id.h. For details, refer to “Maximum cyclic handler ID (max_cyh)”.

The VTMAX_ALH represents the maximum alarm handler ID.
The cfg600px outputs the macro of VTMAX ALH to the system information header file
kernel_id.h. For details, refer to “Maximum alarm handler ID (max_alh)”.

VTMAX_DOMAIN:The VTMAX_DOMAIN represents the maximum domain ID.

The cfg600px outputs the macro of VTMAX _DOMAIN to the system information header
file kernel_id.h. For details, refer to “Maximum domain ID (max_domain)”.

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

REN ESNS Page 532 of 565

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE

20.23.2 BURI_HEAP section

The fixed-sized memory pool area and variable-sized memory pool area are located in the BURI_HEAP section. Note,
when a fixed-sized memory pool and variable-sized memory pool are defined, the area can be located into the user-spe-
cific section.

The size of the BURI_HEAP section is calculated by the total of following. In addition, when user specific data is generated
in the BURI_HEAP section, the size should be added.

- Total size of fixed-sized memory pool area
This is calculated about the definition of Fixed-sized Memory Pool Information (memorypool[]) that omits to specify
“section” by the following expressions.

2 (memorypool[].siz_block * memorypool[].num_block)

- Total size of variable-sized memory pool area
This is calculated about the definition of Variable-sized Memory Pool Information (variable_memorypool[]) that omits
to specify “mpl_section” by the following expressions.

2 variable_memorypool[].heap_size

20.23.3 SURI_STACK section

The user stack area is located in the SURI_STACK section. Note, when a task is defined, the user stack area can be
located into the user-specific section.

The size of the SURI_STACK section is calculated about the definition of Task Information (task[]) that omits to specify
“stack_section” by the following expressions. In addition, when user specific data is generated in the SURI_STACK sec-
tion, the size should be added.

2 task[].stack_size

Note For estimation of stack size, refer to “APPENDIX D STACK SIZE ESTIMATION”.

20.23.4 Sl section

The system stack area is located in the Sl section.
The system stack size is the same as a set value for System stack size (stack_size) in System Information (system).

Note For estimation of stack size, refer to “APPENDIX D STACK SIZE ESTIMATION”.

R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 533 of 565
Sep 20, 2013

RI600PX

CHAPTER 20 SYSTEM CONFIGURATION FILE

20.24

Description Examples

The following describes an example for coding the system configuration file.

Note The RI600PX provides sample source files for the system configuration file.
// System Definition
system{
stack size = 1024;
priority = 10;
system IPL = 14;
message pri = 1;
tic_deno = 1;
tic_ nume =1;
context = FPSW,ACC;
}i
// System Clock Definition —--—-——------"=""""""—"-""—"—"—"————"——(——(———(——————
clock{
timer = CMTO;
template = rx630.tpl;
timer clock = 25MHz;
IPL = 13;
}i
// Number of object —-—-———---="="""""""—""—"""——"—"—~—~——(—~(———————————
max_task = 10;
max sem = 1;
// max_ flag =
max_dtg =1;
// max_mbx = ;
// max_mtx =3
// max_mbf = ;
// max_mpf =3
max mpl =1;
// max _cyh =3
// max_alh =5
max domain = 3;
}i
// Trusted domain
domain[1l] {
trust = YES;
}i
// Memory Object Definition : Master domain data
memory object[1] {
start address = BU MASTERDOM;
end_address = RU_MASTERDOM 2;
acptnl = 0x0001;
acptn2 = 0x0001;
acptn3 = 0;
}i
// Memory Object Definition : App-domain A data
memory object[2]{
start address = BU DOM A;
end_address = RU DOM A 2;
acptnl = 0x0002;
acptn2 = 0x0002;
acptn3 = 0;
}i
R20UT0964EJ0101 Rev.1.01 REN ESNS Page 534 of 565

Sep 20, 2013

RI600PX

CHAPTER 20 SYSTEM CONFIGURATION FILE

// Memory Object Definition
memory object[3]({
start address = BU DOM B;

b

// Memory Object Definition
memory object[4]{

b

// Memory Object Definition
memory object[5]{

end address

acptnl = 0x0001;
acptn2 = 0;
acptn3 = 0x0001;

}i
// Memory Object Definition

memory object[6]{
start _address = PU_DOM A;

}i
// Memory Object Definition

memory object[7]({
start address = PU DOM B;

}i
// Memory Object Definition

memory object[8]{
start_address = PU_SH;

b

App-domain B data

end address = RU DOM B 2;
acptnl = 0x0004;
acptn2 = 0x0004;
acptn3 = 0;

Shared data

start address = BURI HEAP;
end_ address = RU_SH 2;
acptnl = TACP_SHARED;
acptn2 = TACP_SHARED;
acptn3 = 0;

Master domain code and const

start address = PU MASTERDOM;
DU MASTERDOM 2;

App-domain A code and const

end address = DU DOM A 2;
acptnl = 0x0002;
acptn2 = 0;

acptn3 = 0x0002;

App-domain B code and const

end address = DU DOM B 2;
acptnl = 0x0004;
acptn2 = 0;

acptn3 = 0x0004;

Shared code and const

end_ address = DU _SH 2;
acptnl = TACP_SHARED;
acptn2 = 0;

acptn3 = TACP_SHARED;

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS

Page 535 of 565

RI600PX CHAPTER 20 SYSTEM CONFIGURATION FILE
// Task Definition —-—-———————————— -
task[]{

name = ID MASTERDOMTASK;
entry address = MasterDom Task();
initial start = ON;
stack size = 256;
priority =1;
// stack section = SURI_STACK;
exinf =1;
// texrtn =3
domain num =1;
b
// Semaphore Definition ---—-—-—-----""""""——————(——(————
// semaphorel[]{
// name = ID SEMI;
// wait queue = TA TFIFO;
// max_count =1;
// initial count = 1;
/Y
// Eventflag Definition ---——-—---=—-——=—————————————— - ——————
// flagl]{
// name = ID FLGI;
// initial pattern = 0;
// wait queue = TA TFIFO;
// wait multi = TA WSGL;
// clear attribute = NO;
/Y
// Data Queue Definition -——-————-———————————
// dataqueue[] {
// name = ID DTQ1;
// buffer size = 4;
// wait queue = TA TFIFO;
/Y
// Mailbox Definition —-—-——-—————"="=""—-—-—————(—(——
// mailbox[]{
!/ name = ID MBX1;
// wait queue = TA TFIFO;
// message_queue = TA MFIFO;
// max_pri =1;
/Y
// Mutex definition —————————————
// mutex[]{
// name = ID MTX1;
// ceilpri =1;
/Y
// Message Buffer Definition —--—--—-—-—---"-""""—""—"—"——"———————(——————
// message buffer[] {
1/ name = ID MBF1;
// mbf size = 128;
// mbf section = BRI_RAM;
// max msgsz = 16;
// wait queue = TA TFIFO;
/)Y
R20UT0964EJ0101 Rev.1.01 RENESAS Page 536 of 565

Sep 20, 2013

RI600PX

CHAPTER 20

!/
//
1/
//
//
//
!/
1/
1/
//
//
//
!/
!/

b

memorypool []{
name
section
num block
siz block
wait queue

b

Variable-sized Memory Pool Definition
variable memorypool[] {

name
mpl section
heap size

max memsize

b

name
entry address =
interval counter
start

phsatr =
phs counter =
exinf =

name
entry address =
exinf =

// Fixed-sized Memory Pool Definition

// Cyclic Handler Definition
cyclic hand[] {

ID MPF1;
BURI HEAP;
1;

0x100;

TA TFIFO;

ID MPL1;
BURI_HEAP;
1024;

36;

ID _CYCl;
cyhl ()
10;

= ONj;
OFF;

10;
1;

// Alarm Handler Definition
alarm hand[] {

ID ALM1;
alhl();
1;

// Relocatable Vector Definition ---————==-=-------—--—-——————————————————
// interrupt vector[64] {
// os_int = YES;
// entry address = inh64 () ;
// pragma switch = E;
/Y
// Fixed Vector Definition --—-—-—-———=-—-=————————————— - ————
// interrupt fvector[0]{// MDES register (address O0xFFFFFF80)
// entry address = AUTO ENDIAN;
/Y
// interrupt fvector[l]{// Reserved (address OxFFFFFF84)
// entry address = O0xFFFFFFFF;
/Y
// interrupt fvector[2]{// OFSl register (address O0xFFFFFF88)
// entry address = OxFFFFFFFF;
/Y
// interrupt fvector[3]{// OFSO register (address OxFFFFFF8C)
// entry address = OxXFFFFFFFF;
/Y
// interrupt fvector[4]{// Reserved (address OxFFFFFF90)
// entry address = OxFFFFFFFF;
/Y
R20UT0964EJ0101 Rev.1.01 IQENESAS Page 537 of 565

Sep 20, 2013

SYSTEM CONFIGURATION FILE

RI600PX

CHAPTER 20 SYSTEM CONFIGURATION FILE

// interrupt fvector[5]{// Reserved (address OxFFFFFF96)
// entry address = OxFFFFFFFF;
/)Y
// interrupt fvector[6]{// Reserved (address OxFFFFFF98)
// entry address = OxXFFFFFFFF;
/Y
// interrupt fvector[7]{// ROM code protect (address OxFFFFFFIC)
// entry address = OxFFFFFFFF;
/Y
// interrupt fvector([8]{// ID coce protect (address O0xFFFFFFAO)
// entry address = OxFFFFFFFF;
/Y
// interrupt fvector[9]{// ID coce protect (address OxFFFFFFA4)
// entry address = OxFFFFFFFF;
/Y
// interrupt fvector[10]{// ID coce protect (address O0xFFFFFFAS8)
// entry address = OxFFFFFFFF;
/Y
// interrupt fvector[11l]{// ID coce protect (address OxFFFFFFAC)
// entry address = OxFFFFFFFF;
/Y
// interrupt fvector[12]{// Reserved (address OxFFFFFFAOQ)
// entry address = OxFFFFFFFF;
/Y
// interrupt fvector[13]{// Reserved (address OxFFFFFFA4)
// entry address = OxFFFFFFFF;
/Y
// interrupt fvector[l4]{// Reserved (address OxFFFFFFAS8)
// entry address = OxFFFFFFFF;
/Y
// interrupt fvector[1l5]{// Reserved (address O0xFFFFFFAC)
// entry address = OxFFFFFFFF;
/Y
// interrupt fvector[30]{// NMI (address OxFFFFFFF8)
// entry address = NMI handler();
// pragma_ switch = ;
/Y
// interrupt fvector[31]{// Reset (address OxFFFFFFEC)
// entry address = PowerON Reset PC();
/Y
R20UT0964EJ0101 Rev.1.01 IQENESAS Page 538 of 565

Sep 20, 2013

RI600PX CHAPTER 21 CONFIGURATOR cfg600px

CHAPTER 21 CONFIGURATOR cfg600px

This chapter explains configurator cfg600px.

21.1 Outline

To build systems (load module) that use functions provided by the RIGOOPX, the information storing data to be provided for
the RI600PX is required.

Since information files are basically enumerations of data, it is possible to describe them with various editors.

Information files, however, do not excel in descriptiveness and readability; therefore substantial time and effort are
required when they are described.

To solve this problem, the RIGOOPX provides a utility tool (configurator “cfg600px”) that converts a system configuration file
which excels in descriptiveness and readability into information files.

The cfg600px reads the system configuration file as a input file, and then outputs information files.

The information files output from the cfg600px are explained below.

- System information header file (kernel_id.h)
An information file that contains the correspondence between object names (task names, semaphore names, or the
like) described in the system configuration file and IDs.

- Service call definition file (kernel_sysint.h)
The declaration for issuing service calls by using INT instruction is described in this file. This file is included by ker-
nel.h.

- ROM definition file (kernel_rom.h), RAM definition file (kernel_ram.h)
These files contain the RIBOOPX management data. These files must be included only by the boot processing file. For
details, refer to “17.2 Boot Processing File (User-Own Coding Module)”.

- System definition file (ri600.inc)
The system definition file is included by the table file (ritable.src) which is generated by the mktitbl.

- Vector table template file (vector.tpl)
The vector table template file is input to the mkritblpx.

- CMT timer definition file (ri_cmt.h)
When either of CMTO, CMT1, CMT or CMT3 is specified for Selection of timer channel for base clock (timer) for in
Base Clock Interrupt Information (clock), the Template file (template) is retrieved from the folder indicated by the envi-
ronment variable “LIB600”, and the retrieved file is output after it is renamed to “ri_cmt.h”. The CMT timer definition
file is used for the base clock timer initialization routine. For details, refer to “10.9 Base Clock Timer Initialization
Routine (_RI_init_cmt_knl())".

R20UT0964EJ0101 Rev.1.01 RENESAS Page 539 of 565
Sep 20, 2013

RI600PX CHAPTER 21 CONFIGURATOR cfg600px

21.2 Start cfg600px

21.2.1 Start cfg600px from command line

It is necessary to set the environment variable “LIB600” to “<ri_root>\lib600” beforehand.

The following is how to activate the cfg600px from the command line.

Note that, in the examples below, “C>" indicates the command prompt, “A” indicates pressing of the space key, and
“<Enter>" indicates pressing of the enter key.

The options enclosed in “[] can be omitted.

C> cfg600px.exe A [-U] A [-v] A [-V] A file <Enter>

The output files are generated to the current folder.

The details of each option are explained below:

- -U
When an undefined interrupt occurs, the system down is caused. When -U option is specified, the vector number will
be transferred to the system down routine (refer to “CHAPTER 15 SYSTEM DOWN?”). This is useful for debugging.
However, the kernel code size increases by about 1.5 kB.

- v
Show a description of the command option and details of its version.

- -V
Show the creation status of files generated by the cfg600px.

- file
Specifies the system configuration file name to be input. If the filename extension is omitted, the extension “.cfg” is
assumed.

Note <ri_root> indicates the installation folder of RIGOOPX.
The default folder is “C:\Program Files\Renesas Electronics\CubeSuite+\RI600PX".

21.2.2 Start cfg600px from CubeSuite+

This is started when CubeSuite+ performs a build, in accordance with the setting on the Property panel, on the [System
Configuration File Related Information] tab.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 540 of 565
Sep 20, 2013

RI600PX CHAPTER 22 TABLE GENARATION UTILITY mkritblpx

CHAPTER 22 TABLE GENARATION UTILITY mkritblpx

This chapter explains the table generation utility mkritblpx.

22.1 Outline

The utility mkritblpx is a command line tool that after collecting service call information used in the application, generates
service call tables and interrupt vector tables.

When compiling applications, the service call information files (.mrc) that contains the service call information to be used
are generated. The mkribl reads the service call information files, and generates the service call table to be linked only the
service calls used in the system.

Furthermore, the mkritblpx generates an interrupt vector table based on the vector table template files generated by the
cfg600px and the service call information files.

Figure 22-1 Outline of mkritblpx

The short dashed arrow represents System configuration
“‘include”, and solid arrow represents file (.cfg)
“input/output file”. *

(_ Configurator cfg600px)
|

v v v v

Service call System information Vector table System
definition file header file template file definition file
(kernel_sysint.h) (kernel_id.h) (vector.tpl) (ri600.inc)

Standard header fileyg _ _ _ _ _ i :
(kernel.h) :
| |
1 |
|
| |
|
S » Application €------- J

v |
< C Compiler > :

v
Service call
information files (.mrc) + v
(Table generation utility mkritblpx)
Library files
- Kernel library
- Standard library Table file (ritable. -—---
- Runtime library ‘ able file (ritable.src) |¢
\4
e
Object files ¢

| ritableobj |

v
(Linker)
v

| Load module |

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 541 of 565
Sep 20, 2013

RI600PX CHAPTER 22 TABLE GENARATION UTILITY mkritblpx

22.2 Start mkritblpx

22.2.1 Start mkritblpx from command line

It is necessary to set the environment variable “LIB600” to “<ri_root>\lib600” beforehand.

The following is how to activate the mkritblpx from the command line.

Note that, in the examples below, “C>" indicates the command prompt, “A” indicates pressing of the space key, and
“<Enter>" indicates pressing of the enter key.

The options enclosed in “[] can be omitted.

C> mkritblpx.exe A [path] <Enter>

The output files are generated to the current folder.
The details of each option are explained below:

- path
Specifies the service call information file or the path to the folder where the service call information files are retrieved.
Note, when a folder path is specified, the sub folder is not retrieved.
The mkritblpx makes the current folder a retrieval path regardless of this specification.

Note <ri_root> indicates the installation folder of RIGOOPX.
The default folder is “C:\Program Files\Renesas Electronics\CubeSuite+\RI600PX".

22.2.2 Start mkritblpx from CubeSuite+

This is started when CubeSuite+ performs a build, in accordance with the setting on the Property panel, on the [System
Configuration File Related Information] tab.

22.3 Notes

Refer to “2.6.1 Service call information files and “-ri600_preinit_mrc” compiler option”.

R20UT0964EJ0101 Rev.1.01 IZEN ESNS Page 542 of 565
Sep 20, 2013

RI600PX APPENDIX A WINDOW REFERENCE

APPENDIX A WINDOW REFERENCE

This appendix explains the window/panels that are used when the activation option for the configurator cfg600px and the
table generation utility mkritblpx is specified from the integrated development environment CubeSuite+.

A.1 Description

The following shows the list of window/panels.

Table A-1 List of Window/Panels

Window/Panel Name Function Description
Main window This is the first window to be open when CubeSuite+ is launched.
Project Tree panel This panel is used to display the project components in tree view.

This panel is used to display the detailed information on the Realtime OS
Property panel node, system configuration file, or the like that is selected on the Project
Tree panel and change the settings of the information.

R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 543 of 565
Sep 20, 2013

RI600PX APPENDIX A WINDOW REFERENCE

Main window

Outline

This is the first window to be open when CubeSuite+ is launched.
This window is used to control the user program execution and open panels for the build process.

This window can be opened as follows:

- Select Windows [start] -> [All programs] -> [Renesas Electronics CubeSuite+] -> [CubeSuite+]

Display image

0_RIGOOPH - CubeSuite+ - [Property]
JrAIKE) FREE) Fm(M) TOIIOME) BILFED TS0 W=D o OO AL ZHH)

Brrte @ EXamoe ks DHBEBEXIN@OOO*MI=E
CEEEH

Project Tree

B[ropery oF
% @D 3 :E'E' RIGOOPY Property - |+

= LT, RX630 RIGOOPX (Project)t || [[E Version Information

: . =l W1 .01 00
3"% REFEESD?O)_QFN Microcontraller Inztall falder | G:¥Program Files¥Renesas Electronics¥GubeSuite+¥RIGO0OPH
A CC-RX (Build Taal)

H Endian Little endian
4 RIGODPX (Realtime 0S)

éﬁ-\ R Simulator (Debug Tool)

T’ Program #nalyzer (Analyze Too =
Elj File 'IK'I'?i;niE;It‘llrEi;:;ian of the RIGO0PY to be uzed in thiz project.
|_:_|[3 rezet

----- ‘_:J dbsctc
----- ‘f_} resetpre c RIGOOPX 1/ b
[—][3 kernel -
----- ‘_:J access_exc.c

----- ‘_:J init_cmtc

----- ‘_:J sysdwn.c

----- ‘_:J handler c

‘ﬂ common.c

[EOF]

‘ﬂ master_domc

‘ﬂ dom_fc A
1| | » ' all Messages / -

R N E1 ST [G T T e e
| |[/1;DISCONNECT |

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 544 of 565
Sep 20, 2013

RI600PX APPENDIX A WINDOW REFERENCE

Explanation of each area

1) Menu bar

Displays the menus relate to realtime OS.
Contents of each menu can be customized in the User Setting dialog box.

- [View]

The [View] menu shows the cascading menu to start the tools of realtime

Realtime OS 0s.

Opens the Realtime OS Resource Information panel.

Resource Information Note that this menu is disabled when the debug tool is not connected.

2) Toolbar

Displays the buttons relate to realtime OS.
Buttons on the toolbar can be customized in the User Setting dialog box. You can also create a new toolbar in the
same dialog box.

- Realtime OS toolbar

= Opens the Realtime OS Resource Information panel.
Note that this button is disabled when the debug tool is not connected.

3) Panel display area
The following panels are displayed in this area.

- Project Tree panel
- Property panel
- Output panel

See the each panel section for details of the contents of the display.

Note See “CubeSuite+ Integrated Development Environment User's Manual: RX Build” for details about the
Output panel.

R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 545 of 565
Sep 20, 2013

RI600PX APPENDIX A WINDOW REFERENCE

Project Tree panel

Outline

This panel is used to display the project components such as Realtime OS node, system configuration file, etc. in tree
view.

This panel can be opened as follows:

- From the [View] menu, select [Project Tree].

Display image

Project Tree

..... I REFESI07CxFM (Micracontroller)
..... A, GG=FX (Build Tool)

..... 4 RIBDOPX (Realtime OS)

..... e, B Simulator (Debug Tool)

----- o Program finalyzer {Analyze Toal)

=[P File
ﬂ Build tool generated files
E| i reset

=L L) kernel

..... ﬂ ACCEES BNC D
..... ﬂ init_cmt o

..... & sysdwnc

..... ﬂ hand ler

..... ‘-’ﬂ comman o

..... o samplecfe

I'_-'Iﬂ' Fealtime 05 generated files
..... u kernel_sysinth

..... h| kernelidh

..... u kernel_ramh

..... u kernel_ramh

..... ind +i600 inc

..... h| ricmth

Bam
----- M pitable sre

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 546 of 565
Sep 20, 2013

RI600PX APPENDIX A WINDOW REFERENCE

Explanation of each area

1) Project tree area
Project components are displayed in tree view with the following given node.

Node Description

RI600PX (Realtime OS)

(referred to as “Realtime OS node”) Realtime OS to be used.

xxx.cfg System configuration file.

The following information files appear directly below the
node created when a system configuration file is added.

- System information header file (kernel_id.h)
- Service call definition file (kernel_sysint.h
- ROM definition file (kernel_rom.h)

Realtime OS generated files - RAM definition file (kernel_ram.h)
(re:;er”r)ed to as “Realtime OS generated files - System definition file (ri600.inc)
node

- vector table template file (vector.tpl)
- CMT timer definition file (ri_cmt.h)

This node and files displayed under this node cannot be
deleted directly.

This node and files displayed under this node will no longer
appear if you remove the system configuration file from the
project.

Context menu

1) When the Realtime OS node or Realtime OS generated files node is selected

Property Displays the selected node's property on the Property panel.

2) When the system configuration file or an information file is selected

Assembles the selected assembler source file.
Note that this menu is only displayed when a system information table file or

Assemble _
an entry file is selected.
Note that this menu is disabled when the build tool is in operation.
Open Opens the selected file with the application corresponds to the file extension.

Note that this menu is disabled when multiple files are selected.

Opens the selected file with the Editor panel.

Open with Internal Editor... Note that this menu is disabled when multiple files are selected.

Opens the Open with Program dialog box to open the selected file with the

Open with Selected designated application.

Application... Note that this menu is disabled when multiple files are selected.

Open Folder with Explorer Opens the folder that contains the selected file with Explorer.

Add Shows the cascading menu to add files and category nodes to the project.
R20UT0964EJ0101 Rev.1.01 .IENESAS Page 547 of 565

Sep 20, 2013

RI600PX APPENDIX A WINDOW REFERENCE

Add File... Opens the Add Existing File dialog box to add the selected file to the project.

Opens the Add File dialog box to create a file with the selected file type and

Add New File... add to the project.

Adds a new category node at the same level as the selected file. You can
rename the category.

This menu is disabled while the build tool is running, and if categories are
nested 20 levels.

Add New Category

Removes the selected file from the project.
Remove from Project The file itself is not deleted from the file system.
Note that this menu is disabled when the build tool is in operation.

Copies the selected file to the clipboard.
Copy When the file name is in editing, the characters of the selection are copied to
the clipboard.

Paste This menu is always disabled.
You can rename the selected file.
Rename o
The actual file is also renamed.
Property Displays the selected file's property on the Property panel.
R20UT0964EJ0101 Rev.1.01 .ZENESAS Page 548 of 565

Sep 20, 2013

RI600PX APPENDIX A WINDOW REFERENCE

Property panel

Outline

This panel is used to display the detailed information on the Realtime OS node, system configuration file, or the like that is
selected on the Project Tree panel by every category and change the settings of the information.

This panel can be opened as follows:

- On the Project Tree panel, select the Realtime OS node, system configuration file, or the like, and then select the
[View] menu -> [Property] or the [Property] from the context menu.

Note When either one of the Realtime OS node, system configuration file, or the like on the Project Tree panel
while the Property panel is opened, the detailed information of the selected node is displayed.

Display image

2‘3 RIGOOF Property -1+

S ey i — iShu:uw variable properties. i
t-ernel wersion | W1 .01 .00
Ihztall folder G¥Program Filezs¥Renesas Electronics¥CGubebuite+¥RIGOOPX
Endian Little endian

Kernelversion
Thiz iz the verzion of the RIGO0FX to be uzed in thiz project.

RIGODPX :

Explanation of each area

1) Selected node area

Display the name of the selected node on the Project Tree panel.
When multiple nodes are selected, this area is blank.

2) Detailed information display/change area

In this area, the detailed information on the Realtime OS node, system configuration file, or the like that is selected
on the Project Tree panel is displayed by every category in the list. And the settings of the information can be
changed directly.

Mark [E indicates that all the items in the category are expanded. Mark [indicates that all the items are collapsed.
You can expand/collapse the items by clicking these marks or double clicking the category name.

See the section on each tab for the details of the display/setting in the category and its contents.

3) Property description area

Display the brief description of the categories and their contents selected in the detailed information display/change
area.

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 549 of 565
Sep 20, 2013

RI600PX APPENDIX A WINDOW REFERENCE

4) Tab selection area

Categories for the display of the detailed information are changed by selecting a tab.
In this panel, the following tabs are contained (see the section on each tab for the details of the display/setting on
the tab).

When the Realtime OS node is selected on the Project Tree panel

- [RIBOOPX] tab

When the system configuration file is selected on the Project Tree panel

- [System Configuration File Related Information] tab

- [File Information] tab

When the Realtime OS generated files node is selected on the Project Tree panel

- [Category Information] tab

When the system information table file or entry file is selected on the Project Tree panel

- [Build Settings] tab
- [Individual Assemble Options] tab
- [File Information] tab

When the system information header file is selected on the Project Tree panel

- [File Information] tab

Note1 See “CubeSuite+ Integrated Development Environment User's Manual: RX Build” for details about the
[File Information] tab, [Category Information] tab, [Build Settings] tab, and [Individual Assemble Options]
tab.

Note2 When multiple components are selected on the Project Tree panel, only the tab that is common to all the
components is displayed. If the value of the property is modified, that is taken effect to the selected
components all of which are common to all.

[Edit] menu (only available for the Project Tree panel)

Undo Cancels the previous edit operation of the value of the property.
While editing the value of the property, cuts the selected characters and copies
Cut)
them to the clip board.
Copy Copies the selected characters of the property to the clip board.
Paste While editing the value of the property, inserts the contents of the clip board.
Delete While editing the value of the property, deletes the selected character string.
While editing the value of the property, selects all the characters of the selected
Select All
property.
Context menu
Undo Cancels the previous edit operation of the value of the property.
While editing the value of the property, cuts the selected characters and copies
Cut .
them to the clip board.
Copy Copies the selected characters of the property to the clip board.
R20UT0964EJ0101 Rev.1.01 .IENESAS Page 550 of 565

Sep 20, 2013

RI600PX APPENDIX A WINDOW REFERENCE

Paste While editing the value of the property, inserts the contents of the clip board.
Delete While editing the value of the property, deletes the selected character string.

While editing the value of the property, selects all the characters of the selected
Select All property

Restores the configuration of the selected item to the default configuration of
the project.

For the [Individual Assemble Options] tab, restores to the configuration of the
general option.

Reset to Default

Restores all the configuration of the current tab to the default configuration of
the project.

For the [Individual Assemble Options] tab, restores to the configuration of the
general option.

Reset All to Default

R20UT0964EJ0101 Rev.1.01 .QENESAS Page 551 of 565
Sep 20, 2013

RI600PX APPENDIX A WINDOW REFERENCE

[RIGOOPX] tab

Outline

This tab shows the detailed information on RIGOOPX to be used categorized by the following.

- Version Information

Display image

fﬁ? RIGOOFY Property -1+

= Vers ion Information | Show variable properties. |
kernel wersion | W1 .01.00
Inztall folder G¥Program Files¥Renesas Electronics¥GubeSuite+¥RIGO0PX
Endian Little endian

Kernel version
Thiz iz the verzion of the RIGO0F to be uzed in this project.

‘RIGODPX :

..............................

Explanation of each area

1) [Version Information]
The detailed information on the version of the RIGOOPX are displayed.

Display the version of RIGOOPX to be used.

Kernel version Default The version of the installed RIGOOPX

How to change | Changes not allowed
Display the folder in which RIGOOPX to be used is installed with the absolute path.
Install folder Default The folder in which RI600PX to be used is installed

How to change | Changes not allowed

Display the endian set in the project.
Display the same value as the value of the [Select endian] property of the build

. tool.
Endian
Default The endian in the property of the build tool
How to change | Changes not allowed
R20UT0964EJ0101 Rev.1.01 .QENESAS Page 552 of 565

Sep 20, 2013

RI600PX APPENDIX A WINDOW REFERENCE

[System Configuration File Related Information] tab

Outline

This tab shows the detailed information on the using system configuration file categorized by the following and the
configuration can be changed.

- Realtime OS Generation Files
- Configurator Start Setting
- Service Call Information File

Display image

v zamplecfe Property -]+
El Realtime OS5 Generation Files

Generate files Yes(lt updates the files when the cfe file iz chaneed)

Cutput folder 5BuildMode Mamek

Service Call Definition File name kernel syzinth

Svatem Information Header File name kernel idh

RO Definition File name kernel romh

RAM Definition File name kernel ramh

avatem Definition File name FIG0N inc

GMT Timer Definition File name ticmth

Table File name titable sre

B Configurator Start Settng
When undefined interrupt iz generated, the interruption ve Yes(-11)
The making situation of the file that the configuratar ger Yes(-V)
[zer optiohs
Bl Service Gall Information File
The path that containg the service call information file | The path that contains the service call information file[0]

Generate files

Select whether to make a Realtime O3 Generation Files which iz output from a system configuration file. Thiz file ncludes
information of system initialization.

\ System Configuration File Related Information A File Inforrnation / -
R20UT0964EJ0101 Rev.1.01 RENESAS Page 553 of 565

Sep 20, 2013

RI600PX

APPENDIX A WINDOW REFERENCE

Explanation of each area

1) [Realtime OS Generation Files]
The detailed information on the RIGO0OPX generation files are displayed and the configuration can be changed.

Generate files

Select whether to generate realtime OS generation files and whether to update
the realtime OS generation files when the system configuration file is changed.

Default

Yes(It updates the file when the .cfg file is changed)

How to change

Select from the drop-down list.

Restriction

Generates new realtime OS genera-
tion files and displays them on the
project tree.

If the system configuration file is

Yes(lt updates the file
when the .cfg file is

changed) changed when there are already real-
time OS generation files, then real-
time OS generation files are updated.
Does not generate realtime OS gen-
eration files and does not display

No(It does not | them on the project tree.

register the file to the | If this item is selected when there are

project) already realtime OS generation files,

then the files themselves are not
deleted.

Output folder

Display the folder for outputting realtime OS generation files.

Default

%BuildModeName%

How to change

Changes not allowed

Service Call Definition File

Display the name of the service call definition file that the cfg600px outputs.

Header File Name

Default

Default kernel_sysint.h
Name

How to change | Changes not allowed

Display the name of the system information header file that the cfg600px outputs.
System Information

kernel_id.h

How to change

Changes not allowed

Display the name of the ROM definition file that the cfg600px outputs.

ROM Definition Flle Default kernel_rom.h
Name -
How to change | Changes not allowed
Display the name of the RAM definition file that the cfg600px outputs.
RAM Definition Flle Default kernel_ram.h
Name

How to change

Changes not allowed

Name

System Definition Flle

Display the name of the system definition file that the cfg600px outputs.

Default

ri600.inc

How to change

Changes not allowed

Name

CMT Timer Definition File

Display the name of the CMT timer definition file which is generated by the

cfg600px.

Default

ri_cmt.h

How to change

Changes not allowed

R20UT0964EJ0101 Rev.1.01

Sep 20, 2013

RENESAS

Page 554 of 565

RI600PX

APPENDIX A WINDOW REFERENCE

Table File Name

Display the name of the table file that the mkritblpx outputs..

Default ritable.src

How to change

Changes not allowed

2) [Configurator Start Setting]

The start option of the configurator cfg600px can be specified.

When undefined interrupt
is generated, the
interruption vector number
is passed to system down
routine.

When an undefined interrupt occurs, the system down is caused. When -U option
is specified, the vector number will be transferred to the system down routine

(refer to “CAHPTER 15 SYSTEM DOWN?”).

This is useful for debugging.

However, the kernel code size increases by about 1.5 kB.

Default Yes(-U)

How to change

Select from the drop-down list.

Yes(-U)

Restriction

When undefined interrupt is
generated, the interruption vector
number is passed to system down
routine.

No

When undefined interrupt is
generated, the interruption vector
number is not passed to system down
routine.

The making situation of

the file that the
configurator generates is
displayed.

Select whether to display the creation status of files generated by the cfg600px.

Default Yes(-U)

How to change

Select from the drop-down list.

Yes(-U)
Restriction

Display the creation status of files
generated by the cfg600px.

No

Do not display the creation status of
files generated by the cfg600px.

User options.

Input the command line option directly.

Default -

How to change

Directly enter to the text box.

Restriction Up to 259 characters

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS

Page 555 of 565

RI600PX APPENDIX A WINDOW REFERENCE

3) [Service Call Information File]
Specify the path where the table generation utility mkritblpx retrieves the service call information files.

Specifies the service call information file (.mrc) or the path to the folder where the
service call information files are retrieved.

Note, when a folder path is specified, the sub folder is not retrieved.

When relative path is specified, the project folder is the base folder.

When absolute path is specified, the specified path is converted into the relative
path which is based from the project folder. However, if the drive of the specified
path is different from the drive of the project folder, this conversion is not done.
Note, the project folder is passed to the mkritblpx regardless this setting.

The following place holder can be specified.

%BuildModeName% : Convert to the build mode name.

The path that contains the
service call information
file.

Edit by the Path Edit dialog box which appears when clicking

How to change the [...] button.

Up to 259 characters
Restriction Note, when extension is not specified or the specified exten-
sion is not “.mrc”, the specified path is interpreted as folder.

Note 1 Refer to “2.6.1 Service call information files and “-ri600_preinit_mrc” compiler option” for the service call
information file.

Note 2 When using the “optimization for accesses to external variables” compiler option, the CubeSuite+ generates
the folder to store object files and service call information files for 1st build, and specifies this folder path for
[Service Call Information File] tacit.

Note 3 The service call information files are generated to the same folder as object files at compilation. Please
change this item appropriately when you do the operation to which the output folder of object files is
changed.

R20UT0964EJ0101 Rev.1.01 RENESAS Page 556 of 565
Sep 20, 2013

RI600PX

APPENDIX B FLOATING-POINT OPERATION FUNCTION

APPENDIX B FLOATING-POINT OPERATION

FUNCTION

It is only when the -fpu option is specified that the compiler outputs floating-point arithmetic instructions.
If the -chkfpu option is specified in the assembler, the floating-point arithmetic instructions written in a program are detected

as warning.

B.1 When Using Floating-point Arithmetic Instructions in Tasks and
Task Exception Handling Routines

Make settings that include “FPSW” for Task context register (context) in System Information (system). As a result, the
FPSW register is managed independently in each task.

The initial FPSW value for tasks and task exception handling routines is initialized by the value according to compiler
options to be used. For details, refer to “4.2.4 Internal processing of task” and “6.2.2 Internal processing of task exception

handling routine”.

B.2 When Using Floating-point Arithmetic Instructions in Handlers

It is necessary that the handler explicitly guarantee the FPSW register.
The initial FPSW value of handlers is undefined.

To guarantee and initialize the FPSW register, write a program as follows.

#include <machine.h> // To use the intrinsic function get fpsw() and set fpsw(),

// include machine.h.

#include "kernel.h"
#include "kernel id.h"

void handler (void)

{

unsigned long old fpsw; // Declare variable for saving the FPSW register
old fpsw = get fpsw () ; // Save the FPSW register
set fpsw (0x00000100) ; // Initialize the FPSW register if necessary

/* Floating-point arithmetic operation */
set fpsw (old fpsw) ;

// Restore the FPSW register

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

REN ESNS Page 557 of 565

RI600PX APPENDIX C DSP FUNCTION

APPENDIX C DSP FUNCTION

When a MCU which support the DSP function is used, it is necessary to note the treatment of the ACC register
(accumulator). Concretely, please note it as follows when you use the following DSP instructions which update ACC regis-
ter.

- RXv1/RXv2 architecture common instruction
MACHI, MACLO, MULHI, MULLO, RACW, MVTACHI, MVTACLO

- RXv2 architecture instructions
EMACA, EMSBA, EMULA, MACLH, MSBHI, MSBLH, MSBLO, MULLH, MVTACGU, RACL,RDACL, RDACW

In no case does the compiler generate these instructions.

Note also that if the -chkdsp option is specified in the assembler, the DSP function instructions written in a
program are detected as warning.

C.1 When Using DSP Instructions in Tasks and Task Exception Han-
dling Routines

Make settings that include “ACC” for Task context register (context) in System Information (system). As a result, the ACC
register is managed independently in each task.

C.2 When Using DSP Instructions in Handlers

If the application contains any tasks or interrupt handlers that use the above-mentioned DSP instructions, it is necessary
that all of the interrupt handlers guarantee the ACC register. There are the following two method.

1) Use “-save_acc” compiler option

2) Specify “ACC” for “pragma_switch” in all interrupt handler definition (Relocatable Vector Information
(interrupt_vector[]) and Fixed Vector/Exception Vector Information (interrupt_fvector([])).

R20UT0964EJ0101 Rev.1.01 RENESAS Page 558 of 565
Sep 20, 2013

RI600PX APPENDIX D STACK SIZE ESTIMATION

APPENDIX D STACK SIZE ESTIMATION

If a stack overflows, the behavior of the system becomes irregular. Therefore, a stack must not overflow referring to this
chapter.

D.1 Types of Stack

There are two types of stacks: the user stack and system stack. The method for calculating stack sizes differs between the
user stack and system stack.

- User stack
The stack used by tasks is called “User stack”.
When a task is created by Task Information (task[]) in the system configuration file, the size and the name of the sec-
tion where the stack is allocated are specified.
When a task is created by cre_tsk or acre_tsk, the size and the start address of the user stack area are specified.

- System stack
The system stack is used by handlers and the kernel. The system has only one system stack. The size is specified by
System stack size (stack_size) in System Information (system). The section name of the system stack is “SI”.

D.2 Call Walker

The CubeSuite+ package includes “Call Walker” which is a utility tool to calculate stack size.
The Call Walker can display stack size used by each function tree.

R20UT0964EJ0101 Rev.1.01 RENESAS Page 559 of 565
Sep 20, 2013

RI600PX

APPENDIX D STACK SIZE ESTIMATION

D.3 User Stack Size Estimation

The quantity consumed of user stack for each task is a value in which the value calculated by the following expressions

was rounded up to the multiple of 16.

Quantity consumed of user stack = treesz_task + ctxsz _task + treesz_tex + ctxsz_tex

- treesz_task

Size consumed by function tree that makes the task entry function starting point. (the size displayed by Call Walker).

- treesz_tex

Size consumed by function tree that makes the task exception handling routine entry function starting point. (the size

displayed by Call Walker).

- ctxsz _task, ctxsz _tex

Size for task context registers. The ctxsz _task is for task, and ctxsz _tex is for task exception handling routine.
The size for task context registers is different according to the setting of Task context register (context) in System
Information (system). Refer to Table D-1.

Table D-1 Size of Task Context Register

Setting of system.context Compiler option “-isa” Size of Task Contest Register
NO - 68
FPSW - 72

“-isa=rxv2” 92
ACC

“-isa=rxv1” or not specify “-isa” | 76

“-isa=rxv2” 96
FPSW,ACC

“-isa=rxv1” or not specify “-isa” | 80
MIN - 44
MIN,FPSW - 48

“-isa=rxv2” 68
MIN,ACC

“-isa=rxv1” or not specify “-isa” | 52

“-isa=rxv2” 72
MON,FPSW,ACC

“-isa=rxv1” or not specify “isa” | 56

Note Compiler option “-isa” is supported by the compiler CC-RX V2.01 or later.

R20UT0964EJ0101 Rev.1.01
Sep 20, 2013

RENESAS

Page 560 of 565

RI600PX APPENDIX D STACK SIZE ESTIMATION

D.4 System Stack Size Estimation

The system stack is most consumed when an interrupt occurs during service call processing followed by the occurrence of
multiple interrupts. The quantity consumed of system stack is calculated by the following expressions.

Quantity consumed of system stack = svcsz

15
+ Yinthdrsz
k=1

+ sysdwnsz

- svecsz
The maximum size among the service calls to be used in the all processing program. The value svcsz depends on the
RI600PX version. For details, refer to release notes.

- inthdrsz
Size consumed by function tree that makes the interrupt handler entry function starting point. (the size displayed by
Call Walker).
The “k” means interrupt priority level. If there are multiple interrupts in the same priority level, the inthdrsz , should
select the maximum size among the handlers.
The size used by the base clock interrupt handler (the interrupt priority level is specified by Base clock interrupt
priority level (IPL) in Base Clock Interrupt Information (clock)) is the maximum value in the following Please refer to
the release notes for clocksz1, clocksz2 and clocksz3.
Don't have to add the size used by the base clock interrupt handler when base clock timer is not used (clock.timer =
NOTIMER).

- clocksz1 + cycsz
- clocksz2 + almsz
- clocksz3

- cycsz
Size consumed by function tree that makes the cyclic handler entry function starting point. (the size
displayed by Call Walker).

If there are multiple cyclic handlers, the cycsz should select the maximum size among the handlers.

- almsz
Size consumed by function tree that makes the alarm handler entry function starting point. the size displayed
by Call Walker).
If there are multiple alarm handlers, the cycsz should select the maximum size among the handlers.

- sysdwnsz
Size consumed by function tree that makes the system down routine entry function starting point. (the size displayed
by Call Walker) + 40. When the system down routine has never been executed, sysdwnsz is assumed to be 0.

R20UT0964EJ0101 Rev.1.01 IZENESAS Page 561 of 565
Sep 20, 2013

Revision Record

Description
Rev. Date
Page Summary
1.00 Apr 01, 2012 - First Edition issued
1.01 Sep 20, 24 “2.6.2 Compiler option for the boot processing file” has been detailed.
2013
(RIGOOPX 25 With support of RXv2 architecture, the composition of kernel libraries have been
V1.02.00) changed.
28, 217, With support of RXv2 architecture, the explanation about
225,527, | FIX_INTERRUPT_VECTOR section and EXTB register have been added or
etc. changed. Moreover, “fixed vector” has been replaced by “fixed vector/exception
vector”.
29 “2.6.5 Initialized data section” has been added.
42, 67, The specification of FPSW register when task and task exception handling rou-
557 tine processing is started has been changed.
217 With support of RXv2 architecture, the explanation about compiler option
“-isa” and “-cpu” have been added.
221,456 | The explanation about starting of RIGOOPX has been improved.
222 Expression of section “17.4 Section Initialization Function (_INITSCT())” has
been improved.
230 With revision to V1.02.00, the definition value of TKERNEL_PRVER has been
changed into 0x0120.
485 With support of RXv2 architecture, Table 20-2 has been changed.
489 The explanation of Table 20-7 has been improved.
501 With support of RXv2 architecture, Table 20-8 has been changed.
558 The RXv2 instructions have been added to DSP instructions which update ACC
register.
558 The description “All interrupt handlers explicitly guarantee the ACC register” has
been deleted.
560 With support of RXv2 architecture, Table D-1 has been changed.

RI600PX Real-Time Operating System
User's Manual: Coding

Publication Date: Rev.1.00 Apr 01, 2012
Rev.1.01 Sep 20, 2013

Published by: Renesas Electronics Corporation

LENESAS

SALES OFFICES Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Dusseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.

7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China

Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.

13F, No. 363, Fu Shing North Road, Taipei, Taiwan

Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949

Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2013 Renesas Electronics Corporation. All rights reserved.
Colophon 1.3

RI6GO0PX

RENESAS

Renesas Electronics Corporation
R20UT0964EJ0101

	Cover

	How to Use This Manual
	CHAPTER 1 OVERVIEW
	1.1 Outline
	1.1.1 Real-time OS
	1.1.2 Multi-task OS
	1.1.3 Memory protection function

	CHAPTER 2 SYSTEM BUILDING
	2.1 Outline
	2.2 Coding Processing Programs
	2.3 Coding System Configuration File
	2.4 Coding User-Own Coding Module
	2.5 Creating Load Module
	2.6 Build Options
	2.6.1 Service call information files and “-ri600_preinit_mrc” compiler option
	2.6.2 Compiler option for the boot processing file
	2.6.3 Kernel library
	2.6.4 Arrangement of section
	2.6.5 Initialized data section

	CHAPTER 3 MEMORY PROTECTION FUNCTIONS
	3.1 Outline
	3.2 Domain, Memory object, Access permission vector
	3.3 Restriction in the Number of Memory Objects
	3.4 Trusted Domain
	3.5 Change Access Permission
	3.6 Protection of User Stack
	3.7 Check Access Permission
	3.8 Processor Mode
	3.9 Enable MPU (Memory Protection Unit)
	3.10 Access Exception Handler (_RI_sys_access_exception())
	3.10.1 User-Own Coding Module

	3.11 Design of Memory Map
	3.11.1 The Restrictions regarding the Address of Memory Objects
	3.11.2 Area That Should Be the Inside of Memory Objects
	3.11.3 Area That Should Be the Outside of Memory Objects

	CHAPTER 4 TASK MANAGEMENT FUNCTIONS
	4.1 Outline
	4.2 Tasks
	4.2.1 Task state
	4.2.2 Task priority
	4.2.3 Basic form of tasks
	4.2.4 Internal processing of task
	4.2.5 Processor mode of task

	4.3 Create Task
	4.4 Delete Task
	4.5 Activate Task
	4.5.1 Activate task with queuing
	4.5.2 Activate task without queuing

	4.6 Cancel Task Activation Requests
	4.7 Terminate Task
	4.7.1 Terminate invoking task
	4.7.2 Terminate Another task

	4.8 Change Task Priority
	4.9 Reference Task Priority
	4.10 Reference Task State
	4.10.1 Reference task state
	4.10.2 Reference task state (simplified version)

	CHAPTER 5 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS
	5.1 Outline
	5.2 Put Task to Sleep
	5.2.1 Waiting forever
	5.2.2 With time-out

	5.3 Wake-up Task
	5.4 Cancel Task Wake-up Requests
	5.5 Forcibly Release Task from Waiting
	5.6 Suspend Task
	5.7 Resume Suspended Task
	5.7.1 Resume suspended task
	5.7.2 Forcibly resume suspended task

	5.8 Delay Task
	5.9 Differences Between Sleep with Time-out and Delay

	CHAPTER 6 TASK EXCEPTION HANDLING FUNCTIONS
	6.1 Outline
	6.2 Task Exception Handling Routines
	6.2.1 Basic form of task exception handling routines
	6.2.2 Internal processing of task exception handling routine
	6.2.3 The starting conditions of task exception handling routines

	6.3 Define Task Exception Handling Routine
	6.4 Cancel a Definition of Task Exception Handling Routine
	6.5 Request Task Exception
	6.6 Disable and Enable Task Exception
	6.7 Reference Task Exception Disabled State
	6.8 Reference Task Exception State

	CHAPTER 7 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS
	7.1 Outline
	7.2 Semaphores
	7.2.1 Create semaphore
	7.2.2 Delete semaphore
	7.2.3 Acquire semaphore resource
	7.2.4 Release semaphore resource
	7.2.5 Reference semaphore state

	7.3 Eventflags
	7.3.1 Create eventflag
	7.3.2 Delete Eventflag
	7.3.3 Set eventflag
	7.3.4 Clear eventflag
	7.3.5 Check bit pattern
	7.3.6 Reference eventflag state

	7.4 Data Queues
	7.4.1 Create data queue
	7.4.2 Delete data queue
	7.4.3 Send to data queue
	7.4.4 Forced send to data queue
	7.4.5 Receive from data queue
	7.4.6 Reference data queue state

	7.5 Mailboxes
	7.5.1 Messages
	7.5.2 Create mailbox
	7.5.3 Delete mailbox
	7.5.4 Send to mailbox
	7.5.5 Receive from mailbox
	7.5.6 Reference mailbox state

	CHAPTER 8 EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS
	8.1 Outline
	8.2 Mutexes
	8.2.1 Priority inversion problem
	8.2.2 Current priority and base priority
	8.2.3 Simplified priority ceiling protocol
	8.2.4 Differences from semaphores
	8.2.5 Create mutex
	8.2.6 Delete mutex
	8.2.7 Lock mutex
	8.2.8 Unlock mutex
	8.2.9 Reference mutex state

	8.3 Message Buffers
	8.3.1 Create message buffer
	8.3.2 Delete message buffer
	8.3.3 Send to message buffer
	8.3.4 Receive from message buffer
	8.3.5 Reference message buffer state

	CHAPTER 9 MEMORY POOL MANAGEMENT FUNCTIONS
	9.1 Outline
	9.2 Fixed-Sized Memory Pools
	9.2.1 Create fixed-sized memory pool
	9.2.2 Delete fixed-sized memory pool
	9.2.3 Acquire fixed-sized memory block
	9.2.4 Release fixed-sized memory block
	9.2.5 Reference fixed-sized memory pool state

	9.3 Variable-Sized Memory Pools
	9.3.1 Size of Variable-sized memory block
	9.3.2 Create variable-sized memory pool
	9.3.3 Delete variable-sized memory pool
	9.3.4 Acquire variable-sized memory block
	9.3.5 Release variable-sized memory block
	9.3.6 Reference variable-sized memory pool state

	CHAPTER 10 TIME MANAGEMENT FUNCTIONS
	10.1 Outline
	10.2 System Time
	10.2.1 Base clock timer interrupt
	10.2.2 Base clock interval

	10.3 Timer Operations
	10.4 Delay Task
	10.5 Time-out
	10.6 Cyclic Handlers
	10.6.1 Basic form of cyclic handler
	10.6.2 Processing in cyclic handler
	10.6.3 Create cyclic handler
	10.6.4 Delete cyclic handler
	10.6.5 Start cyclic handler operation
	10.6.6 Stop cyclic handler operation
	10.6.7 Reference cyclic handler state

	10.7 Alarm Handlers
	10.7.1 Basic form of alarm handler
	10.7.2 Processing in alarm handler
	10.7.3 Create alarm handler
	10.7.4 Delete alarm handler
	10.7.5 Start alarm handler operation
	10.7.6 Stop alarm handler operation
	10.7.7 Reference Alarm Handler State

	10.8 System Time
	10.8.1 Set system time
	10.8.2 Reference system time

	10.9 Base Clock Timer Initialization Routine (_RI_init_cmt_knl())
	10.9.1 User-own cording module

	CHAPTER 11 SYSTEM STATE MANAGEMENT FUNCTIONS
	11.1 Outline
	11.2 Rotate Task Precedence
	11.3 Reference Task ID in the RUNNING State
	11.4 Lock and Unlock the CPU
	11.5 Reference CPU Locked State
	11.6 Disable and Enable Dispatching
	11.7 Reference Dispatching Disabled State
	11.8 Reference Context Type
	11.9 Reference Dispatch Pending State

	CHAPTER 12 INTERRUPT MANAGEMENT FUNCTIONS
	12.1 Interrupt Type
	12.2 Fast Interrupt of the RX-MCU
	12.3 CPU Exception
	12.4 Base Clock Timer Interrupt
	12.5 Multiple Interrupts
	12.6 Interrupt Handlers
	12.6.1 Basic form of interrupt handlers
	12.6.2 Register interrupt handler

	12.7 Maskable Interrupt Acknowledgement Status in Processing Programs
	12.8 Prohibit Maskable Interrupts
	12.8.1 Move to the CPU locked state by using loc_cpu, iloc_cpu
	12.8.2 Change PSW.IPL by using chg_ims, ichg_ims
	12.8.3 Change PSW.I and PSW.IPL directly (only for handlers)

	CHAPTER 13 SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS
	13.1 Outline
	13.2 Reference Version Information

	CHAPTER 14 OBJECT RESET FUNCTIONS
	14.1 Outline
	14.2 Reset Data Queue
	14.3 Reset Mailbox
	14.4 Reset Message Buffer
	14.5 Reset Fixed-sized Memory Pool
	14.6 Reset Variable-sized Memory Pool

	CHAPTER 15 SYSTEM DOWN
	15.1 Outline
	15.2 User-Own Coding Module
	15.2.1 System down routine (_RI_sys_dwn__())
	15.2.2 Parameters of system down routine

	CHAPTER 16 SCHEDULING FUNCTION
	16.1 Outline
	16.2 Processing Unit and Precedence
	16.3 Task Drive Method
	16.4 Task Scheduling Method
	16.4.1 Ready queue

	16.5 Task Scheduling Lock Function
	16.6 Idling
	16.7 Task Scheduling in Non-Tasks

	CHAPTER 17 SYSTEM INITIALIZATION
	17.1 Outline
	17.2 Boot Processing File (User-Own Coding Module)
	17.2.1 Boot processing function (PowerON_Reset_PC())
	17.2.2 Include kernel_ram.h and kernel_rom.h
	17.2.3 Compiler option for boot processing file
	17.2.4 Example of the boot processing file

	17.3 Kernel Initialization Module (vsta_knl, ivsta_knl)
	17.4 Section Initialization Function (_INITSCT())
	17.4.1 Section information file (User-Own Coding Module)

	17.5 Registers in Fixed Vector Table / Exception Vector Table

	CHAPTER 18 DATA TYPES AND MACROS
	18.1 Data Types
	18.2 Constant macros
	18.3 Function Macros
	18.3.1 Macros for Error Code
	18.3.2 Macros for Data Queue
	18.3.3 Macros for Fixed-sized Memory Pool
	18.3.4 Macros for Domain
	18.3.5 Access permission

	CHAPTER 19 SERVICE CALLS
	19.1 Outline
	19.1.1 Method for calling service calls

	19.2 Explanation of Service Call
	19.2.1 Task management functions
	cre_tsk
	acre_tsk
	del_tsk
	act_tsk
	iact_tsk
	can_act
	ican_act
	sta_tsk
	ista_tsk
	ext_tsk
	exd_tsk
	ter_tsk
	chg_pri
	ichg_pri
	get_pri
	iget_pri
	ref_tsk
	iref_tsk
	ref_tst
	iref_tst

	19.2.2 Task dependent synchronization functions
	slp_tsk
	tslp_tsk
	wup_tsk
	iwup_tsk
	can_wup
	ican_wup
	rel_wai
	irel_wai
	sus_tsk
	isus_tsk
	rsm_tsk
	irsm_tsk
	frsm_tsk
	ifrsm_tsk
	dly_tsk

	19.2.3 Task exception handling functions
	def_tex
	ras_tex
	iras_tex
	dis_tex
	ena_tex
	sns_tex
	ref_tex
	iref_tex

	19.2.4 Synchronization and communication functions (semaphores)
	cre_sem
	acre_sem
	del_sem
	wai_sem
	pol_sem
	ipol_sem
	twai_sem
	sig_sem
	isig_sem
	ref_sem
	iref_sem

	19.2.5 Synchronization and communication functions (eventflags)
	cre_flg
	acre_flg
	del_flg
	set_flg
	iset_flg
	clr_flg
	iclr_flg
	wai_flg
	pol_flg
	ipol_flg
	twai_flg
	ref_flg
	iref_flg

	19.2.6 Synchronization and communication functions (data queues)
	cre_dtq
	acre_dtq
	del_dtq
	snd_dtq
	psnd_dtq
	ipsnd_dtq
	tsnd_dtq
	fsnd_dtq
	ifsnd_dtq
	rcv_dtq
	prcv_dtq
	iprcv_dtq
	trcv_dtq
	ref_dtq
	iref_dtq

	19.2.7 Synchronization and communication functions (mailboxes)
	cre_mbx
	acre_mbx
	del_mbx
	snd_mbx
	isnd_mbx
	rcv_mbx
	prcv_mbx
	iprcv_mbx
	trcv_mbx
	ref_mbx
	iref_mbx

	19.2.8 Extended synchronization and communication functions (mutexes)
	cre_mtx
	acre_mtx
	del_mtx
	loc_mtx
	ploc_mtx
	tloc_mtx
	unl_mtx
	ref_mtx

	19.2.9 Extended synchronization and communication functions (message buffers)
	cre_mbf
	acre_mbf
	del_mbf
	snd_mbf
	psnd_mbf
	ipsnd_mbf
	tsnd_mbf
	rcv_mbf
	prcv_mbf
	trcv_mbf
	ref_mbf
	iref_mbf

	19.2.10 Memory pool management functions (fixed-sized memory pools)
	cre_mpf
	acre_mpf
	del_mpf
	get_mpf
	pget_mpf
	ipget_mpf
	tget_mpf
	rel_mpf
	irel_mpf
	ref_mpf
	iref_mpf

	19.2.11 Memory pool management functions (variable-sized memory pools)
	cre_mpl
	acre_mpl
	del_mpl
	get_mpl
	pget_mpl
	ipget_mpl
	tget_mpl
	rel_mpl
	ref_mpl
	iref_mpl

	19.2.12 Time management functions
	set_tim
	iset_tim
	get_tim
	iget_tim
	cre_cyc
	acre_cyc
	del_cyc
	sta_cyc
	ista_cyc
	stp_cyc
	istp_cyc
	ref_cyc
	iref_cyc
	cre_alm
	acre_alm
	del_alm
	sta_alm
	ista_alm
	stp_alm
	istp_alm
	ref_alm
	iref_alm

	19.2.13 System state management functions
	rot_rdq
	irot_rdq
	get_tid
	iget_tid
	loc_cpu
	iloc_cpu
	unl_cpu
	iunl_cpu
	dis_dsp
	ena_dsp
	sns_ctx
	sns_loc
	sns_dsp
	sns_dpn
	vsys_dwn
	ivsys_dwn
	vsta_knl
	ivsta_knl

	19.2.14 Interrupt management functions
	chg_ims
	ichg_ims
	get_ims
	iget_ims

	19.2.15 System configuration management functions
	ref_ver
	iref_ver

	19.2.16 Object reset functions
	vrst_dtq
	vrst_mbx
	vrst_mbf
	vrst_mpf
	vrst_mpl

	19.2.17 Memory object management functions
	ata_mem
	det_mem
	sac_mem
	vprb_mem
	ref_mem

	CHAPTER 20 SYSTEM CONFIGURATION FILE
	20.1 Outline
	20.2 Default System Configuration File
	20.3 Configuration Information (static API)
	20.4 System Information (system)
	20.5 Note Concerning system.context
	20.5.1 Note concerning FPU and DSP
	20.5.2 Relationship with the compiler options “fint_register”, “base” and “pid”

	20.6 Base Clock Interrupt Information (clock)
	20.7 Maximum ID (maxdefine)
	20.8 Domain Definition (domain[])
	20.9 Memory Object Definition (memory_object[])
	20.10 Task Information (task[])
	20.11 Semaphore Information (semaphore[])
	20.12 Eventflag Information (flag[])
	20.13 Data Queue Information (dataqueue[])
	20.14 Mailbox Information (mailbox[])
	20.15 Mutex Information (mutex[])
	20.16 Message Buffer Information (message_buffer[])
	20.17 Fixed-sized Memory Pool Information (memorypool[])
	20.18 Variable-sized Memory Pool Information (variable_memorypool[])
	20.19 Cyclic Handler Information (cyclic_hand[])
	20.20 Alarm Handler Information (alarm_handl[])
	20.21 Relocatable Vector Information (interrupt_vector[])
	20.22 Fixed Vector/Exception Vector Information (interrupt_fvector[])
	20.23 RAM Capacity Estimation
	20.23.1 BRI_RAM and RRI_RAM section
	20.23.2 BURI_HEAP section
	20.23.3 SURI_STACK section
	20.23.4 SI section

	20.24 Description Examples

	CHAPTER 21 CONFIGURATOR cfg600px
	21.1 Outline
	21.2 Start cfg600px
	21.2.1 Start cfg600px from command line
	21.2.2 Start cfg600px from CubeSuite+

	CHAPTER 22 TABLE GENARATION UTILITY mkritblpx
	22.1 Outline
	22.2 Start mkritblpx
	22.2.1 Start mkritblpx from command line
	22.2.2 Start mkritblpx from CubeSuite+

	22.3 Notes

	APPENDIX A WINDOW REFERENCE
	A.1 Description
	Main window
	Project Tree panel
	Property panel
	[RI600PX] tab
	[System Configuration File Related Information] tab

	APPENDIX B FLOATING-POINT OPERATION FUNCTION
	B.1 When Using Floating-point Arithmetic Instructions in Tasks and Task Exception Handling Routines
	B.2 When Using Floating-point Arithmetic Instructions in Handlers

	APPENDIX C DSP FUNCTION
	C.1 When Using DSP Instructions in Tasks and Task Exception Handling Routines
	C.2 When Using DSP Instructions in Handlers

	APPENDIX D STACK SIZE ESTIMATION
	D.1 Types of Stack
	D.2 Call Walker
	D.3 User Stack Size Estimation
	D.4 System Stack Size Estimation

