LENESANS

-
»
o)
ﬁ—
)
<
)
S
-
O

RL78 Family

Renesas Flash Driver RL78 Type 02

User's Manual

RENESAS Microcontrollers

RL78/F24
RL78/F23

All information contained in these materials, including products and product specifications, represents
information on the product at the time of publication and is subject to change by Renesas Electronics
Corp. without notice. Please review the latest information published by Renesas Electronics Corp.
through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

Renesas Electronics Rev.1.10 Dec 2022

www.renesas.com

Notice

1.

12.

13.
14.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of
these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or
other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims
any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is
inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not
limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’'s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products
are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury,
injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety
design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging
degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology, the most up-to-date
Koto-ku, Tokyo 135-0061, Japan version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered trademarks
are the property of their respective owners.

© 2022 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit
Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products
covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1.

Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must
be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate.
When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices
must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work
benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare
hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register
settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the
states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product
that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which
resetting is specified.

Input of signal during power-off state

Do not input signals or an 1/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or /O pull-
up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow
the guideline for input signal during power-off state as described in your product documentation.

Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in
the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.
Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a
reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an
external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V. (Max.) and
Vi (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is
fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Vi1 (Min.).

Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these
addresses as the correct operation of the LSl is not guaranteed.

Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The
characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of
internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating
margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for

the given product.

How to Use This Manual

Readers

This manual is intended for engineers who wish to develop application systems using the RL78/F23 and
RL78/F24 microcontroller.

Purpose

This manual is intended to give users an understanding of the methods for using the Renesas Flash Driver
(RFD) RL78 Type 02 to reprogram the flash memory in the RL78/F23 and RL78/F24 microcontroller.

Organization

This manual is separated into the following sections.
1. Overview

2. System Configuration

3. API Functions of RFD RL78 Type 02

4. Flash Memory Sequencer Operation

5. Sample Programs

6. Creating a Sample Project for RFD RL78 Type 02

How to Read this Manual

It is assumed that the readers of this manual have general knowledge in the fields of electrical engineering,
logic circuits, microcontrollers, C language, and assemblers.

To understand the hardware functions of the RL78/F23 and RL78/F24:
- Refer to the User's Manual of the target RL78/F23 and RL78/F24 device.

Conventions
- Data significance: Higher digits on the left and lower digits on the right
- Active low representations: xxx (overscore over pin and signal name)
- Note: Footnote for item marked with Note in the text
- Caution: Information requiring particular attention
- Remark: Supplementary information
- Numeric representation:
Binary: xxxx or xxxxB
Decimal: xxxx
Hexadecimal: xxxxH or Oxxxxx
- Prefixes indicating power of 2 (address space and memory capacity):
K (kilo) 2'° = 1024
M (mega) 2%° = 1024°

Related Documents

The related documents indicated in this publication may include preliminary versions. However, preliminary
versions are not marked as such.

No Document Title Document Number

RL78/F23, F24 User's Manual: Hardware RO1UHO0944EJ

2 E1/E20/E2 Emulator, E2 Emulator Lite Additional Document for R20UT1994EJ
User’'s Manual (Notes on Connection of RL78)

3 Renesas Flash Driver and EEPROM Emulation Software R20UT5229EJ
Target MCU List for RL78 - Automotive

Table of Contents

1. OVEIVIBW ...ttt ettt et e e e e e e s a et e et e e e e e e e aatbe e e e e eeeeeesannbsseeeeaaeeeeaannnnrees 9
St R © 11 1= SRS 9
1.1.1 ULy oo 1= SRR 9
2 70 o (= 0 | - S 9
R T == (0= S RE 10
1.4 Operating ENVIFONMENT ... ittt ettt et e e bt ab e e st e e eneeesnseesnneeeneeas 11
1.5 POINES FOF CAULION. ...ttt et sa ettt e e en e san e eeneeneereen 12
1.6 C ComMPIiler DEfINILIONSveiiiiiie ettt e e e e e et e e e e tbe e e e ebaeeeeebaeeesenbaeeeanres 13
2. System ConfIQUIAtIONuiiiiiiiei e e e e e e e e e 15
21 L1 LT 1 0T (U = S 15
211 o]0 =T) 1 0T (0 = SR 15
21.2 LISE O FlES ...ttt b e bbb nr e nhe e 16
2.2 Resources Of RL78/F23 @nd RL78/F24...........oo oottt et e st e stee et e snaeesnteesteeenneeenns 18
221 [T o g Lo TV V= T o RO 18
222 The Allocation Of BIOCKS.........ooo ettt e e e e e e e e e eneeeean 19
223 List of Registers Related to Flash Memory Sequencer Controlccccoeiiiiiiieeiin e 20
2.3 Resources Used in RFD RL78 TYPE 02.......ccueiiiiiiiiie ittt ettt st e sae e smeeeebeeesaeeenns 21
2.31 Sections Used in RFD RL78 TyPE 02........ooiiiiiiiee ettt srae e e s enee e e s nnraea s snneeeeanes 21
2.3.2 Code Size and Stack Size which API FUNCHONS USE.........ccoviieiiiieciee e 23
3. APl Functions of RFD RL78 Type 02........cooiiiiiiiiieieee et 24
3.1 List of APl Functions of RFD RL78 TYPE 02eeeiiiiiiiieie ettt ettt 24
3.1.1 API Functions Used in Common for Flash Memory Control ... 24
3.1.2 API Functions for Code Flash Memory CONtrol...........cceeiieciiiieeiiiec e 25
3.1.3 API Functions for Data Flash Memory CONtrol...........cccooouieiiiiiiiieniie e 25
3.14 API Functions for EXtra Area CONTIOlc.cooiiiiiiiiiiiiesiee sttt sttt e e ssseesnseesneees 26
3.1.5 i (o To QT e 1T LSS 26
3.2 Data Type DefiNItiONS.coo ittt et e e sb e e st e e e be e e sbe e e sateeebeeenaeeena 27
3.2.1 = = T I/ o= PSS 27
322 GIODAI VAIADIES ...ttt 27
3.2.3 T 4= = (1] LSO 28
3.24 Y E= o {0 TN I T 1 1 T) o PSS 29
3.3 Specifications of APl FUNCHONS ...ttt e e et e e e e e e e e e amee e e e eneeas 38
3.3.1 Specifications of API Functions Used in Common for Flash Memory Control.............ccccooceeiieennne. 39
3.3.2 Specifications of API Functions for Code Flash Memory Controlccocceiiiiniieiin e 57
3.3.3 Specifications of APl Functions for Data Flash Memory Controlcccoecieeiiiiiie e 61
3.34 Specifications of APl Functions for Extra Area Control.............cccooiiiiiiiiie i 65
3.3.5 Specifications of HOOK FUNCHONS...........cccuiiiiiiiie e 72
4. Flash Memory Sequencer OpPerationoooieiiiiiiiiiiiiiieiiieeeeeeeeeeeeeeeeeeee e 74
4.1 Setting of Flash Memory Control MOAEcc.uiiiiiiiiiie e 74
411 Procedure for Executing Specific SEQUENCEoviiiiiiii i 74

4.1.2 Procedure for transition from non-programmable mode to the Code Flash Memory Programming
/T o [PSPPSR 76

4.1.3 Procedure for transition from non-programmable mode to the Data Flash Memory Programming
/T Yo [USSR 76
41.4 Procedure for transition to the Non-programmable Mode.............cccooiiiiiiiiii e 76
4.2 Clearing the Registers for Flash Memory Sequencer Controlocceveiiiiie e 78
4.3 Specifying the Operating Frequency of the Flash Memory Sequencerccccocvevieeiiiiiiieeniee e 79

4.4 Flash Memory SequenCEr COMMEANGScoeiiiiiiiiesiiee e ettt esieee st e eeeeesseeessseeeseeessseesnseeansaeessseesnseeenseens 80

4.41 OVEBIVIBW ...ttt ettt et ettt e e et e ettt et e e e et e eeeeeeeeeeeeeeeeeeeeseeseeeeseeeseeeaeeeseeeseesesesenssennnnnnes 80

442 Code/Data Flash Area Sequencer COMMANGASooiiiiiiir i e e e e e e e e eeeeee e 81
443 Extra Area Sequencer COMMEANGS........ocuuiiiiiiiiieiie ettt et s e et e e sn e sbeeeneeeenreeenes 87
444 Procedures for Judging the End of Command Execution in the Flash Memory Sequencer 92
445 Procedure for Forcibly Terminating Command Execution in the Code/Data Flash Area Sequencer..
... 93

4.5 BOOt SWAP FUNCHON ...ttt et e e et e e e e tb e e e e ebaeeeeebaeeesnbeeeeenres 94
451 OVEIVIBW ...ttt ettt bt a e b e bt e oo h et e o e b e e £ bt e e ehe e e eab e e e b et e eh et e eabe e ebe e e aneeeenbeeennes 94
452 Operation of the Boot SWap FUNCHON..........ocoii i 94
453 Execution of the Boot SWap FUNCHON..........c.uiiiii e 95
4.6 Flash Shield WIiNAOW FUNCHONcoiiiiiiiiieie et 97
4.6.1 OVEBIVIBW ...ttt ettt ettt ettt b e bt bt e s bt e oh e e oh e e 4h et £ he e ea et e ab e e et e bt e nheeehe e sheesaeesaeesmtesaneenbeenreans 97
46.2 Operation of the Flash Shield Window FUNCHONccccooiiiiiiiie e 97
46.3 Execution of the Flash Shield WINdow FUNCHONc.coiiiiiiii e 98
4.7 Examples of Command Execution for Reprogramming of Flash Areasc.ccoccviiiiiiiiiinene e, 99
4.71 Example of Command Execution for Reprogramming of the Code Flash Area............ccccccceeeiennne. 99
4.7.2 Example of Command Execution for Reprogramming of the Data Flash Area............cc.cccocuve.. 100
473 Example of Command Execution for Reprogramming of the Extra Areacccccccoeveeeeieneiinnne 101

5. SAMPIE Programs 102
Lo TR I 1 L= 1 o (1] USRS 102
511 o] o T] 1 BT (1] S PSSR 102
5.1.2 LISE OF FlES ...ttt ettt sr e nr e nr e nneennee s 103
5.2 Data Type DefiNIfiONS.......coiiiiiiiii ettt ettt e sttt e st e e sns e e enee e seeesnseeenseeenneeennnes 105
5.2.1 ENUMEIAtIONS ...ttt ettt e r e e enee e 105
5.3 Sample Program FUNCHONSooiiiiiiiiiii ettt bbbt e et be e st en et e saneesaneas 106
5.3.1 Sample Program for Controlling the Reprogramming of the Code Flash Memoryc.c......... 107
5.3.2 Sample Program for Controlling the Reprogramming of the Data Flash Memoryc......... 112
5.3.3 Sample Program for Controlling the Reprogramming of the Extra Area...........ccccoccveeeiecvieeeccneenn. 117
5.3.4 Sample Program Used in Common for Controlling the Flash Memory...........cccccveieiiienieeciennne 120
5.4 Specifications of Sample Program FUNCHONS...........ccoiiiiiiiiiiie e 123
5.4.1 Sample Program Functions for Controlling the Reprogramming of the Code Flash Memory 123
54.2 Sample Program Functions for Controlling the Reprogramming of the Data Flash Memory 125
54.3 Sample Program Functions for Controlling the Reprogramming of the Extra Area....................... 127
54.4 Sample Program Functions Used in COMMONcooiiiiiiiiiiiiee et 129

6. Creating a Sample Project for RFD RL78 Type 02.........cooooiiiiiiiiii 131
6.1 Creating a Project in the case of Using @ CC-RL COMPIIENccceeiiiiiiiiiiiiiieeeeieeee e 131
6.1.1 Example of Creating @ Sample Project..........cooiiiiiiiiii e 132
6.1.2 Example of Registration of Target Folders and Target Files............cccoooiiiiiiiiiiie 135
6.1.3 1011 o I o To) IST= 1] o - TR SUTRPROTPRN 140
6.1.4 (D= o1 o [e To] ST 1] T = SRS 151
6.2 Creating a Project in the case of Using IAR COMPIIEToiiiiiiiiieiiie e 153
6.2.1 Example of Creating @ Sample Project..........cooii i e 154
6.2.2 Example of Registration of Target Folders and Target Files............cccoooiiiiiiii i 156
6.2.3 Integrated Development Environment (IDE) Settingscoccveiiiiiiriiiieneeee e 160
6.2.4 Linker Configuration File(.icf) SEttiNgS.......cccioiiiiiiie e 163
6.2.5 ON-Chip DEDBUG SEHINGS ...t e et e st e et e e sraeesnreeereeens 166
6.3 Setting related t0 ChanNgiNG AEVICES.........ccuuiiiiiiiiie et esee e sneeesnneas 167
6.3.1 CC-RL Compiler Environment SettiNgScc.ueiiiiiiiiiiii e 169
6.3.2 IAR Compiler Environment SEHiNGSooiiiiiiie e e 177

6.3.3 Modifies in the Sample Program (Common to COMPIIErS)........coceiiiiiiiiieriie e 183

7. REVISION HISTOIY ...ttt e e e e e e e e e e e e e e s s e e e eaeeeeennnes

7.1 Major Modifications in this Revision

Abbreviations
Abbreviation Description

RFD Renesas flash driver

API Application program interface
Background operation

BGO Instructions in the code flash memory can be executed during reprogramming of the data flash
memory.
Flash shield window

FSW This is a function for disabling programming and erasure of the specified window range or the
flash areas outside the specified window range during self-programming.
Random access memory

RAM Randomly accessible volatile memory. It is memory for holding values that are to be changed
during program execution.
Read-only memory

ROM Non-volatile memory. It is memory whose contents cannot be changed. The code flash memory
may be called ROM.

Terminology

Terminology

Description

Code flash memory

Flash memory for storing application code and constant data.
Note that this memory may be abbreviated as “CF” in this document.

Data flash memory

Flash memory for storing data.
Note that this memory may be abbreviated as “DF” in this document.

Extra area

Generic name of the configuration setting area, security setting area, block
protection area, and boot swap setting area.

Flash memory sequencer

The RL78 microcontroller has a dedicated circuit for controlling the flash memory.
This circuit is called the flash memory sequencer in this document. The flash
memory sequencer consists of the code/data flash area sequencer, which
reprograms the code flash area or data flash area, and the extra area sequencer,
which reprograms the extra area.

Flash memory control mode

The flash memory sequencer has the following modes, which indicate the
programming enabled or disabled state.

- Code flash memory programming mode
- Data flash memory programming mode

- Non-programmable mode

Code flash memory
programming mode

The code flash memory (and extra area) can be reprogrammed in this mode.

Data flash memory
programming mode

The data flash memory can be reprogrammed in this mode.

Non-programmable mode

The flash memory (and extra area) cannot be reprogrammed in this mode.

Self-programming

A method of reprogramming the flash memory by executing a user program
instead of using an external flash memory programming tool.

Serial programming

A method of reprogramming the flash memory using an external flash memory
programming tool.

Boot area

Logical area from 00000H to 03FFFH (16 Kbytes) including the reset vectors

Boot clusters 0 and 1

A boot cluster is a 16-Kbyte group of blocks and either boot cluster 0 or 1 is
allocated to the boot area.

Physical area name:
Boot cluster 0: 00000H to 03FFFH (logical addresses at shipment)
Boot cluster 1: 04000H to 07FFFH (logical addresses at shipment)

Boot swap

Boot clusters 0 and 1 are swapped.

RFD RL78 Type 02 1. Overview

1. Overview

11 Outline

Renesas Flash Driver RL78 Type 02 (hereafter called RFD RL78 Type 02) is software for reprogramming the
flash memory in the RL78/F23 and RL78/F24.

111 Purpose

The purpose of this document is to give the information about RFD RL78 Type 02.

1.2 Contents

The API functions of RFD RL78 Type 02 are called from the user program to reprogram the code flash
memory or data flash memory.

The RFD RL78 Type 02 package includes the following.

« This user's manual

« Source code files of RFD RL78 Type 02 for controlling the data flash memory and code flash memory
incorporated in the RL78/F23 and RL78/F24

« Sample programs for erasing and reprogramming the data flash memory, code flash memory, and extra
area

R20UT5009EJ0110 Rev.1.10 NS Page 9 of 186
Dec.28.22 RENES

RFD RL78 Type 02 1. Overview

1.3 Features

RFD RL78 Type 02 reprograms the flash memory according to the specified flow of command processing for
the flash memory control circuit. Each API function of RFD RL78 Type 02 consists of a single sub-function or
two or more sub-functions, and the necessary processing is implemented by combinations of individual sub-
functions and user processing. Such a configuration is adopted so as to flexibly handle processing
dependent on the user application, such as, timeout processing in which the timeout value varies with the
conditions of user application program execution.

Figure 1-1 shows the flash memory control by the user application using the API functions of RFD RL78
Type 02.

RFD RL78 Type 02 provides sample programs of the processing that is implemented by combinations of two
or more API functions and user programs. Refer to the sample programs when embedding the flash memory
control processing in the user application.

User program

User application

(RFD RL78 Type 02 API functions are called.)

RFD RL78 Type 02 API functions

(Flash memory sequencer is controlled.)

Flash memory hardware

Flash memory sequencer

(Hardware for controlling the flash memory)

¥ ¥ ¥

Code flash memory Data flash memory

Figure 1-1 Flash Memory Control Using API Functions of RFD RL78 Type 02

R20UT5009EJ0110 Rev.1.10 NS Page 10 of 186
Dec.28.22 RENES

RFD RL78 Type 02

1. Overview

1.4

Operating Environment

o Host Computer
The operation of RFD RL78 Type 02 does not depend on the host computer but the appropriate
environment for the C compiler package, debugger and emulator must be prepared. (RFD RL78 Type 02
was developed and tested on Windows10 Enterprise.)

o C Compiler Package
Table 1-1 shows the target C compiler packages for RFD RL78 Type 02.

Table 1-1 the target C Compiler Packages for RFD RL78 Type 02

Package

Manufacturer

Version

CC-RL (for CS+ or e?studio)

Renesas Electronics

V1.11 or later

IAR (Embedded Workbench)

IAR Systems

V4.21 or later

« Emulator
Table 1-2 shows the emulator on which the operation of RFD RL78 Type 02 was confirmed.

Table 1-2 Emulator on which RFD RL78 Type 02 Operation was Confirmed

Emulator

Manufacturer

E2 emulator

Renesas Electronics

E2 emulator Lite

Renesas Electronics

o Target MCU

RL78/F24
RL78/F23

R20UT5009EJ0110 Rev.1.10
Dec.28.22

LENESAS

Page 11 of 186

RFD RL78 Type 02 1. Overview

1.5 Points for Caution

(1) Reprogramming of the code flash memory or extra area
Place the reprogramming code in RAM when reprogramming the code flash memory or extra area.
(2) Precondition for control of the data flash area
Be sure to set the DFLEN bit (bit 0) of the data flash control register (DFLCTL) to 1 (enable access to the
data flash area) before controlling the data flash area.
(3) Program execution during reprogramming of the flash memory
Self-programming in the RL78/F23 and RL78/F24 uses the flash memory sequencer to control the

reprogramming of the flash memory. In the following flash memory control modes in which the flash
memory can be reprogrammed, the CPU cannot read data from the target flash memory.

« In the code flash memory programming mode, the CPU cannot read data from the code flash memory.
The API functions of RFD RL78 Type 02 and the user program to be executed in the code flash memory
programming mode should be copied from ROM to RAM in advance and executed and referenced in
RAM.

« In the data flash memory programming mode, the CPU cannot read data from the data flash memory.
The data to be read in the data flash memory programming mode should be copied from the data flash
memory to RAM in advance and referenced in RAM.

(4) Points to note when using the Internal verify command
Execute the internal verify command only once for the target area immediately after writing.

(5) The precautions in the case of debugging self-programming with an on-chip debugger
In the case which debugs self-programming with an on-chip debugger, because 128 bytes of area is used
from the top address of RAM when a debugger is executed, it is necessary to vacate this area.
Additionally, in case CS+ or e?studio is used as the development environment, the debugger settings
need to be configured to use flash self-programming

o Example settings for CS+:

On the project, select “Connect Settings” tab from “RL78 E2 [Lite] (Debug Tool)”, and set “Yes” to “Flash” -
“Using the flash self programming”.

« Example settings for e?studio:

On the project, select “Property” - “Run/Debug Settings”, and edit the target “HardwareDebug” setting.
On the displayed screen, select “Debugger” tab - “Connection Settings” tab, and set “Yes” to “Flash” -
“Program uses flash self programming”.

R20UT5009EJ0110 Rev.1.10 NS Page 12 of 186
Dec.28.22 RENES

RFD RL78 Type 02

1. Overview

1.6 C Compiler Definitions

The definitions of the target compiler written in the header file (r_rfd_compiler.h) for RFD RL78 Type 02 are

shown below.

The definitions differ between compilers. The “r_rfd_compiler.h” file is used to identify the current compiler

and the definitions for the target compiler are used.

« Definition of CC-RL compiler :
“ CCRL__"is defined.
#define COMPILER_CC (1)
o Definition of IAR compiler V4 :
“ IAR_SYSTEMS_ICC__"is defined
#define COMPILER_IAR (2)

<Descriptions in the r_rfd_compiler.h file>

/* Compiler definition */
#define COMPILER_CC
#define COMPILER_IAR (2)

(1

#if defined (__ CCRL_)

#define COMPILER COMPILER_CC
#elif defined (__IAR_SYSTEMS_ICC_)

#define COMPILER COMPILER_IAR
#else

/* Unknown compiler error */

#error
#endif

"Non-supported compiler."

/* Compiler dependent definition */
#if (COMPILER_CC == COMPILER)

#define R_RFD_FAR_FUNC _far

#define R_RFD_NO_OPERATION() __nop()
#define R_RFD_DISABLE_INTERRUPT() __DI()
#define R_RFD_ENABLE_INTERRUPT() __EI()
#define R_RFD_GET_PSW_IE_STATE() __get_psw()

#define R_RFD_IS_PSW_IE_ENABLE(u08_psw_ie_state)
#elif (COMPILER_IAR == COMPILER)
#define R_RFD_FAR_FUNC
#define R_RFD_NO_OPERATION()
#define R_RFD_DISABLE_INTERRUPT()
#define R_RFD_ENABLE_INTERRUPT()
#define R_RFD_GET_PSW_IE_STATE()
#define R_RFD_IS_PSW_IE_ENABLE(u08 psw_ie_state)
#else

_ far_func

/* Unknown compiler error */
#error
#endif

"Non-supported compiler."

__no_operation()
__disable_interrupt()
__enable_interrupt()
__get_interrupt_state()

(Ou != (u08_psw_ie_state & 0x80u))

(Ou != (u08_psw_ie_state & 0x80u))

R20UT5009EJ0110 Rev.1.10

Dec.28.22 RENESAS

Page 13 of 186

RFD RL78 Type 02 1. Overview

o C Compiler Options

The contents of the C compiler option setup which normal operation can be checking are shown below.

- [CC-RL(CS+)]
Major compile options:

-cpu=S3 -g -g_line -lang=c99

- [IAR (Embedded Workbench)]
Major compile options:

--core s3 --calling_convention v2 --code_model far --data_model near -e -Ol --no_cse --no_unroll
--no_inline --no_code_motion --no_tbaa --no_cross_call --no_scheduling --no_clustering --debug

R20UT5009EJ0110 Rev.1.10 RENESAS Page 14 of 186

Dec.28.22

RFD RL78 Type 02 2. System Configuration

2. System Configuration

2.1 File Structure

211 Folder Structure

Figure 2-1 shows the folder structure of RFD RL78 Type 02.

RFDRL78TOZ2 : : Folders of this product

include RFD RL78 Type 02
include files

rid
sample

common
include

source
Sample programs

codeflash

common
dataflash
extra_fsw
RL78_F24
CF
DF
EX_FSW

source

codeflash

RFD RL78 Type 02
source program files

common

dataflash

extraarea

g RFD RL78 Type 02
I user-own fles

Figure 2-1 Folder Structure of RFD RL78 Type 02

Note: Figure 2-1 shows an example of using RL78/F24. Refer to “5.1.1 Folder Structure” for the sample

folder.

R20UT5009EJ0110 Rev.1.10 NS Page 15 of 186
Dec.28.22 xENES

RFD RL78 Type 02 2. System Configuration

2.1.2 List of Files
2.1.2.1 List of Source Files
Table 2-1 shows the program source files in the “source\common\” folder.

Table 2-1 Program Source Files in the “source\common\” Folder

No. Source File Name Description

1 r_rfd_common_api.c This file contains the API functions for settings used in
common for flash memory control.

2 r_rfd_common_control_api.c This file contains the API functions for command control
used in common for flash memory control.

3 r_rfd_common_get_api.c This file contains the API functions for information
acquisition used in common for flash memory control.

4 r_rfd_common_extension_api.c This file contains the API functions for extended facilities
used in common for flash memory control.

Table 2-2 shows the program source file in the “source\codeflash\” folder.

Table 2-2 Program Source File in the “source\codeflash\” Folder

No. Source File Name Description

1 r_rfd_code_flash_api.c This file contains the API functions for code flash
memory control.

Table 2-3 shows the program source file in the “source\dataflash\” folder.

Table 2-3 Program Source File in the “source\dataflash\” Folder

No. Source File Name Description

1 r_rfd_data_flash_api.c This file contains the API functions for data flash memory
control.

Table 2-4 shows the program source files in the “source\extraarea\” folder.

Table 2-4 Program Source File in the “source\extraarea\” Folder

No. Source File Name Description

1 r_rfd_extra_area_api.c This file contains the API functions for extra area control.

2 r_rfd_extra_area_security_api.c This file contains the API functions for the security
facilities for the extra area.

Table 2-5 shows the program source file in the “userown\” folder.

Table 2-5 Program Source File in the “userown\” Folder

No. Source File Name Description
1 r_rfd_common_userown.c This file contains the hook functions for user processing
to be performed in RFD RL78 Type 02.

R20UT5009EJ0110 Rev.1.10 NS Page 16 of 186
Dec.28.22 RENES

RFD RL78 Type 02 2. System Configuration

2.1.2.2 Header File List of Header Files

Table 2-6 shows the program header files in the “include\rfd” folder.

Table 2-6 Program Header Files in the “include\rfd” Folder

No. Header File Name Description

1 r_rfd.h Common header file.
This file needs to be included when RFD RL78 Type 02 is
used.

2 r_rfd_compiler.h This file describes the definitions that differ between
compilers used in RFD RL78 Type 02.

3 r_rfd_memmap.h This file defines macros to describe sections used in
RFD RL78 Type 02.

4 r_rfd_device.h This file defines the hardware-specific macros used in
RFD RL78 Type 02.

5 r_rfd_types.h This file defines the types of variables used in RFD RL78
Type 02.

6 r_typedefs.h This file defines the types of data used in RFD RL78
Type 02.

Table 2-7 shows the program header files in the “include\” folder.

Table 2-7 Program Header Files in the “include\” Folder

No. Header File Name Description

1 r_rfd_common_api.h This file defines the prototype declarations of the API
functions for setting used in common for flash memory
control.

2 r_rfd_code_flash_api.h This file defines the prototype declarations of the API

functions for code flash memory control.

3 r_rfd_common_control_api.h This file defines the prototype declarations of the API
functions for command control used in common for flash
memory control.

4 r_rfd_common_get_api.h This file defines the prototype declarations of the API
functions for information acquisition used in common for
flash memory control.

5 r_rfd_common_extension_api.h This file defines the prototype declarations of the API
functions for extended facilities used in common for flash
memory control.

6 r_rfd_common_userown.h This file defines the prototype declarations of the hook
functions for user processing to be performed in RFD
RL78 Type 02.

7 r_rfd_data_flash_api.h This file defines the prototype declarations of the API

functions for data flash memory control.

8 r_rfd_extra_area_api.h This file defines the prototype declarations of the API
functions for extra area control.

9 r_rfd_extra_area_security_api.h This file defines the prototype declarations of the API
functions for the security facilities for the extra area.

R20UT5009EJ0110 Rev.1.10 NS Page 17 of 186
Dec.28.22 RENES

RFD RL78 Type 02

2. System Configuration

2.2

221

Memory Map

Resources of RL78/F23 and RL78/F24

Table 2-8 shows the memory map (code flash memory (CF), data flash memory (DF), and RAM) of the
RL78/F23 and RL78/F24.

Table 2-8 Memory Map (ROM, Data Flash, and RAM)

RL78 Device Code Flash Memory: CF RAM
R7F123FxG (x =B, G, L, M) 128 Kbytes (00000H-1FFFFH) | 12 Kbytes (FCFOOH-FFEFFH)
F23
Data Flash Memory: DF 8 Kbytes (F1000H-F2FFFH) All RL78/F23
R7F124FxJ (x=B, G, L, M, P) | 256 Kbytes (00000H-3FFFFH) | 24 Kbytes (FOFOOH-FFEFFH)
F24
Data Flash Memory: DF 16 Kbytes (F1000H-F4FFFH) All RL78/F24

R20UT5009EJ0110 Rev.1.10

Dec.28.22

LENESAS

Page 18 of 186

RFD RL78 Type 02

2. System Configuration

2.2.2 The Allocation of Blocks

Figure 2-2 and Figure 2-3 shows the allocation of blocks in code flash memory (CF) and data flash memory

(DF) for RL78/F24.

RL78/F24 (Code flash memory: 256 Kbytes)

3FFFFH

3FCO0H
3FBFFH

3F800H
3F7FFH

3F400H

3F3FFH

00800H

007FFH

00400H
003FFH

00000H

Figure 2-2 Blocks in the Code Flash Memory

RL78/F24 (Data flash memory: 16 Kbytes)

FAFFFH
FACOOH
FABFFH
F4800H

F1800H
F17FFH
F1400H
F13FFH
F1000H

Figure 2-3 Blocks in the Data Flash Memory

CF: Block OFFH
(1 Kbyte)

CF: Block OFEH
(1 Kbyte)

CF: Block OFCH
(1 Kbyte)

CF: Block 001H
(1 Kbyte)

CF: Block 000H
(1 Kbyte)

DF: Block O0OFH
(1 Kbyte)

DF: Block 00EH
(1 Kbyte)

DF: Block 001H
(1 Kbyte)

DF: Block 000H
(1 Kbyte)

R20UT5009EJ0110 Rev.1.10
Dec.28.22

LENESAS

Page 19 of 186

RFD RL78 Type 02 2. System Configuration

2.2.3 List of Registers Related to Flash Memory Sequencer Control
Table 2-9 shows the registers in the RL78/F23 and RL78/F24 used by RFD RL78 Type 02.

Table 2-9 Registers in the RL78/F23 and RL78/F24 Used by RFD RL78 Type 02

Base Offset Register Name Size Function Name and Note

Address

FOOOOH 90H DFLCTL 1 byte Data flash control register
COH FLPMC 1 byte Flash programming mode control register
C1H FLARS 1 byte Flash area select register
C2H FLAPL 2 bytes Flash address pointer register L
C4H FLAPH 1 byte Flash address pointer register H
C5H FSSQ 1 byte Flash memory sequencer control register
C6H FLSEDL 2 bytes Flash end address pointer register L
C8H FLSEDH 1 byte Flash end address pointer register H
C9H FLRST 1 byte Flash registers initialization register
CAH FSASTL 1 byte Flash memory sequencer status register L
CBH FSASTH 1 byte Flash memory sequencer status register H
CCH FLWL 2 bytes Flash write buffer register L
CEH FLWH 2 bytes Flash write buffer register H

FFFOOH BOH FLSEC 2 bytes Flash security flag monitor register
B2H FLFSWS 2 bytes Flash FSW monitoring register S
B4H FLFSWE 2 bytes Flash FSW monitoring register E
B6H FSSET 1 byte Flash memory sequencer initial setting register
B7H FSSE 1 byte Flash extra area sequencer control register
COH PFCMD 1 byte Flash protect command register
C1H PFS 1 byte Flash status register
C6H FLWE 1 byte Flash ECC write buffer register

R20UT5009EJ0110 Rev.1.10 RENESAS Page 20 of 186

Dec.28.22

RFD RL78 Type 02

2. System Configuration

2.3

231

Resources Used in RFD RL78 Type 02

Sections Used in RFD RL78 Type 02

2.3.1.1 Sections Used for Reprogramming of the Code Flash Memory

The CPU cannot read from the code flash memory in the “code flash memory programming mode” used for
reprogramming of the code flash memory. The sections allocated as program areas should be copied from
ROM to RAM in advance and programs should be executed in RAM. The initial values for the initialized
global variable section (RFD_DATA) allocated to RAM should be copied from ROM to RAM in advance
according to the directions of the target compiler.

Table 2-10 shows the sections used for reprogramming of the code flash memory and allocations of the

sections.

Table 2-10 Sections Used for Reprogramming of the Code Flash Memory

Section Name Description Allocation
RFD_CMN Program section of API functions used in common for flash RAM
memory control
RFD_CF Program section of API functions for code flash memory control RAM
RFD_DATA Data section for initialized global variables RAM
SMP_CMN Program section of sample functions used in common for flash RAM
memory control
SMP_CF Program section of sample functions for code flash memory RAM
control

2.3.1.2 Sections Used for Reprogramming of the Data Flash Memory

The initial values for the initialized global variable section (RFD_DATA) allocated to RAM should be copied
from ROM to RAM in advance according to the directions of the target compiler.

Table 2-11 shows the sections used for reprogramming of the data flash memory and allocations of the

sections.

Table 2-11 Sections Used for Reprogramming of the Data Flash Memory

Section Name Description Allocation

RFD_CMN Program section of API functions used in common for flash ROM
memory control

RFD_DF Program section of API functions for data flash memory control ROM

RFD_DATA Data section for initialized global variables RAM

SMP_CMN Program section of sample functions used in common for flash ROM
memory control

SMP_DF Program section of sample functions for data flash memory ROM
control

R20UT5009EJ0110 Rev.1.10

Dec.28.22

LENESAS

Page 21 of 186

RFD RL78 Type 02 2. System Configuration

2.3.1.3 Sections Used for Reprogramming of the Extra Area

The CPU cannot read from the code flash memory in the “code flash memory programming mode” used for
reprogramming of the extra flash memory. The sections allocated as program areas should be copied from
ROM to RAM in advance and programs should be executed in RAM. The initial values for the initialized
global variable section (RFD_DATA) allocated to RAM should be copied from ROM to RAM in advance
according to the directions of the target compiler.

Table 2-12 shows the sections used for reprogramming of the extra area and allocations of the sections.

Table 2-12 Sections Used for Reprogramming of the Extra Area

Section Name Description Allocation
RFD_CMN Program section of API functions used in common for flash RAM
memory control
RFD_EX Program section of API functions for extra area control RAM
RFD_DATA Data section for initialized global variables RAM
SMP_CMN Program section of sample functions used in common for flash RAM
memory control
SMP_EX Program section of sample functions for extra area control RAM
R20UT5009EJ0110 Rev.1.10 RENESAS Page 22 of 186

Dec.28.22

RFD RL78 Type 02

2. System Configuration

23.2

Code Size and Stack Size which API Functions Use

Table 2-13 shows code size and stack size which API functions for RFD RL78 Type 02 use.

Table 2-13 Code Size and Stack Size which API Functions for RFD RL78 Type 02 Use

Code Size (Bytes) Stack Size (Bytes)
API Name
CC-RL IAR CC-RL IAR
R_RFD_lInit 37 44 4 4
R_RFD_SetDataFlashAccessMode 36 20 10 10
R_RFD_SetFlashMemoryMode 264 284 14 16
R_RFD_CheckFlashMemoryMode 26 36 4 4
R_RFD_CheckCFDFSeqEndStep1 13 24 4 6
R_RFD_CheckExtraSeqEndStep1 13 23 4 6
R_RFD_CheckCFDFSeqEndStep2 8 19 4 6
R_RFD_CheckExtraSeqEndStep2 6 19 4 6
R_RFD_GetSeqErrorStatus 8 8 4 4
R_RFD_ClearSeqRegister 11 10 4 4
R_RFD_ForceStopSeq 6 5 4 4
R_RFD_ForceReset 2 2 4 4
R_RFD_SetBootArealmmediately 15 19 4 4
R_RFD_GetSecurityAndBootFlags 5 5 4 4
R_RFD_GetFSW 22 24 8 6
r_rfd_wait_count 19 19 6 6
R_RFD_EraseCodeFlashReq 34 43 4 4
R_RFD_WriteCodeFlashReq 28 58 4 6
R_RFD_BlankCheckCodeFlashReq 34 43 4 4
R_RFD_IVerifyCodeFlashReq 34 43 4 4
R_RFD_EraseDataFlashReq 29 41 4 4
R_RFD_WriteDataFlashReq 20 27 4 6
R_RFD_BlankCheckDataFlashReq 34 76 6 12
R_RFD_IVerifyDataFlashReq 34 76 6 12
R_RFD_SetExtraEraseProtectReq 24 29 4 4
R_RFD_SetExtraWriteProtectReq 24 29 4 4
R_RFD_SetExtraBootAreaProtectReq 24 29 4 4
R_RFD_SetExtraBootAreaReq 48 77 4 6
R_RFD_SetExtraFSWReq 21 30 4 4
R_RFD_HOOK_EnterCriticalSection 9 9 4 4
R_RFD_HOOK_ExitCriticalSection 11 10 4 4
R20UT5009EJ0110 Rev.1.10 RENESAS Page 23 of 186

Dec.28.22

RFD RL78 Type 02

3. API Functions of RFD RL78 Type 02

3.

31

3.141

API Functions of RFD RL78 Type 02

List of APl Functions of RFD RL78 Type 02

API Functions Used in Common for Flash Memory Control

Table 3-1 shows the API functions used in common for flash memory control in RFD RL78 Type 02.

Table 3-1 API Functions Used in Common for Flash Memory Control in RFD RL78 Type 02
API Name Overview

1 R_RFD_lInit Sets the frequency specified by the parameter in the flash
memory sequencer and initializes RFD RL78 Type 02.

2 R_RFD_SetDataFlashAccessMode Enables or disables access to the data flash memory according
to the parameter setting.

3 R_RFD_SetFlashMemoryMode Places the flash memory sequencer in the flash memory control
mode specified by the parameter and then sets the specified
CPU operating frequency in the flash memory sequencer.

4 R_RFD_CheckFlashMemoryMode Checks if the flash memory sequencer is in the mode specified
by the parameter.

5 R_RFD_CheckCFDFSegEndStep1 Checks if the operation of the activated code/data flash area
sequencer has been completed.

6 R_RFD_CheckExtraSeqEndStep1 Checks if the operation of the activated extra area sequencer
has been completed.

7 R_RFD_CheckCFDFSeqEndStep2 Checks if the command operation has been completed after the
flash memory sequencer control register is cleared.

8 R_RFD_CheckExtraSeqEndStep2 Checks if the command operation has been completed after the
flash memory sequencer control register is cleared.

9 R_RFD_GetSeqgErrorStatus Acquires the information on errors that occurred during
command execution in the code/data flash area sequencer or
extra area sequencer.

10 R_RFD_ClearSeqRegister Clears the registers for controlling the code/data flash area
sequencer and extra area sequencer

11 R_RFD_ForceStopSeq Forcibly stops the operation of the code/data flash area
sequencer.

12 R_RFD_ForceReset Generates an internal reset of the CPU.

13 R_RFD_SetBootArealmmediately Allocates the boot cluster specified by the parameter to the boot
area (00000H to 03FFFH) immediately.

14 R_RFD_GetSecurityAndBootFlags Acquires the information on the security flags (protection flags)
and boot area switching flag.

15 R_RFD_GetFSW Acquires the range of the flash shield window, the flash shield
window mode, and the protection flag value.

16 r_rfd_wait_count Executes a software loop to wait for the time specified by the
parameter (time count in units of 1 ps).

R20UT5009EJ0110 Rev.1.10

Dec.28.22

LENESAS

Page 24 of 186

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

3.1.2 API Functions for Code Flash Memory Control
Table 3-2 shows the API functions for code flash memory control in RFD RL78 Type 02.

Table 3-2 API Functions for Code Flash Memory Control in RFD RL78 Type 02

API Name Overview

1 R_RFD_EraseCodeFlashReq Activates the code/data flash area sequencer and begins the
erasure of the code flash memory (one block).

2 R_RFD_WriteCodeFlashReq Activates the code/data flash area sequencer and begins the
programming of the code flash memory (4 bytes).

3 R_RFD_BlankCheckCodeFlashReq Activates the code/data flash area sequencer and begins the
blank check of the code flash memory (one block).

4 R_RFD_IVerifyCodeFlashReq Activates the code/data flash area sequencer and begins the
internal verify of the code flash memory (one block).

3.1.3 API Functions for Data Flash Memory Control
Table 3-3 shows the API functions for data flash memory control in RFD RL78 Type 02.

Table 3-3 API Functions for Data Flash Memory Control in RFD RL78 Type 02

API Name Overview

1 R_RFD_EraseDataFlashReq Activates the code/data flash area sequencer and begins the
erasure of the data flash memory (one block).

2 R_RFD_WriteDataFlashReq Activates the code/data flash area sequencer and begins the
programming of the data flash memory (1 byte).

3 R_RFD_BlankCheckDataFlashReq Activates the code/data flash area sequencer and begins the
blank check of the data flash memory (Specified number of
bytes).

4 R_RFD_IVerifyDataFlashReq Activates the code/data flash area sequencer and begins the

internal verify of the data flash memory (Size of the write data).

R20UT5009EJ0110 Rev.1.10 NS Page 25 of 186
Dec.28.22 RENES

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

3.1.4 API Functions for Extra Area Control
Table 3-4 shows the API functions for extra area control in RFD RL78 Type 02.

Table 3-4 API Functions for Extra Area Control in RFD RL78 Type 02

APl Name Overview

1 R_RFD_SetExtraEraseProtectReq Activates the extra area sequencer and begins the setting of the
block erase-prohibited flag.

2 R_RFD_SetExtraWriteProtectReq Activates the extra area sequencer and begins the setting of the
write-prohibited flag.

3 R_RFD_SetExtraBootAreaProtectReq Activates the extra area sequencer and begins the setting of the
boot area rewrite-prohibited flag.

4 R_RFD_SetExtraBootAreaReq Activates the extra area sequencer and begins the setting of the
boot area switching flag.

5 R_RFD_SetExtraFSWReq Activates the extra area sequencer and begins the setting of the
range and mode of the flash shield window specified by the
parameters.

3.1.5 Hook Functions
Table 3-5 shows the hook functions in RFD RL78 Type 02.

Table 3-5 Hook Functions in RFD RL78 Type 02

APl Name Overview
1 R_RFD_HOOK_EnterCriticalSection Executes the instruction for disabling interrupts.
2 R_RFD_HOOK_ExitCriticalSection Executes the instruction for enabling interrupts.
R20UT5009EJ0110 Rev.1.10 RENESAS Page 26 of 186

Dec.28.22

RFD RL78 Type 02

3. API Functions of RFD RL78 Type 02

3.2

3.2.1

Data Type Definitions

Data Types

Table 3-6 shows the data type definitions in RFD RL78 Type 02.

Table 3-6 Data Type Definitions in RFD RL78 Type 02

3.2.2

Macro Value Type Description

int8_t signed char 1-byte signed integer

uint8_t unsigned char 1-byte unsigned integer

int16_t signed short 2-byte signed integer

uint16_t unsigned short 2-byte unsigned integer

int32_t signed long 4-byte signed integer

uint32_t unsigned long 4-byte unsigned integer

bool unsigned char Boolean value (false = 0, true = 1)

Remark: In the C language standard C 99 and later, these data types are defined in “stdint.h” and

“stdbool.h”.

Global Variables

The following shows the global variables used in RFD RL78 Type 02.

(1) g_u08_cpu_frequency

Type/Name

uint8_t g_u08_cpu_frequency

Default value

0x00 (R_RFD_VALUE_U08_INIT_VARIABLE)

Description

CPU operating frequency (2 MHz to 40 MHz)
- Value of (CPU operating frequency — 1): 0x01u to 0x27u (1 to 39)

Definition file

r_rfd_common_api.c

(2) g_u08_fset_cpu_frequency

Type/Name

uint8_t g_u08 fset_cpu_frequency

Default value

0x00 (R_RFD_VALUE_UO08_INIT_VARIABLE)

Description

Value to be set to FSET bit of FSSET register.

Definition file

r_rfd_common_api.c

(3) sg_u08_psw_ie_state

Type/Name

static uint8_t sg_u08 psw_ie_state

Default value

0x00 (R_RFD_VALUE_U08_INIT_VARIABLE)

Description

Variable for saving or restoring the state of the interrupt enable flag (IE) in PSW
- Interrupts are disabled: 0x00u
- Interrupts are enabled: 0x80u

Definition file

r_rfd_common_userown.c

Note: The user needs to implement the processing for copying the initial values to be assigned to the initialized global

variables from the Data section in ROM to RAM.

R20UT5009EJ0110 Rev.1.10 RENESAS Page 27 of 186

Dec.28.22

RFD RL78 Type 02

3. API Functions of RFD RL78 Type 02

3.2.3

Enumerations

« e_rfd_flash_memory_mode (enumerated-type variable name: e_rfd_flash_memory_mode _t)
Flash memory control mode

Symbol Name Value Description
R _RFD_ENUM_FLASH MODE_CODE_PROGRAMMING 0x01 Code flash memory programming
mode
R_RFD_ENUM_FLASH_MODE_DATA_PROGRAMMING 0x02 Data flash memory programming
mode
R_RFD_ENUM_ 0x03 Non-programmable mode

FLASH_MODE_CODE_TO_NONPROGRAMMABLE

[Transition from the code flash
programming mode.]

R_RFD_ENUM_

FLASH_MODE_DATA_TO_NONPROGRAMMABLE

0x04 Non-programmable mode

[Transition from the data flash
programming mode.]

« e_rfd_df_access (enumerated-type variable name: e_rfd_df access_t)
Data flash memory access control

Symbol Name Value Description
R_RFD_ENUM_DF_ACCESS_DISABLE 0x00 Access to the data flash memory is disabled.
R_RFD_ENUM_DF_ACCESS_ENABLE 0x01 Access to the data flash memory is enabled.

« e _rfd_boot cluster (enumerated-type variable name: e _rfd_boot_cluster _t)

Boot cluster number

Symbol Name Value Description
R_RFD_ENUM_BOOT_CLUSTER_1 0x00 Boot cluster 1
R_RFD_ENUM_BOOT_CLUSTER_0O 0x01 Boot cluster 0

« e_rfd_ret (enumerated-type variable name: e_rfd_ret_t)

Return values
Symbol Name Value Description

R_RFD_ENUM_RET_STS OK 0x00 Normal end
R_RFD_ENUM_RET_STS BUSY 0x01 Busy
R_RFD_ENUM_RET_ERR_PARAMETER 0x10 Parameter error
R_RFD_ENUM_RET_ERR_MODE_MISMATCHED 0x11 Mode mismatch error

R20UT5009EJ0110 Rev.1.10 RENESAS Page 28 of 186

Dec.28.22

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

3.24 Macro Definitions
3.2.41 Macro Definitions for Setting the Global Data of RFD

« Macro definitions for masking to obtain 16-bit and 8-bit data
The data bits exceeding the specified size are masked by ANDing with 0.

Symbol Name Value Description
R_RFD_VALUE_U08_MASK1_8BIT OxFFu 8-bit mask value
R_RFD_VALUE_U16_MASK1_16BIT OxFFFFu 16-bit mask value

« Macro definitions for shifting data by 16 bits and 8 bits
A 32-bit value is shifted by 16 bits or 8 bits, and a 16-bit value is shifted by 8 bits.

Symbol Name Value Description
R_RFD_VALUE_U08_SHIFT_8BIT 8u Value for 8-bit shifting
R_RFD_VALUE_UO08_SHIFT_16BIT 16u Value for 16-bit shifting

« Macro definitions for Initial value settings
Defines the initial value of the global variable.

Symbol Name Value Description
R_RFD_VALUE_UO08 INIT_VARIABLE 0x00u Initial value of the global variable
R20UT5009EJ0110 Rev.1.10 RENESAS Page 29 of 186

Dec.28.22

RFD RL78 Type 02

3. API Functions of RFD RL78 Type 02

3.2.4.2 Macro Definitions for Setting the Registers and Extra Area in the RL78/F23 and RL78/F24

Macro definitions for DFLCTL (data flash control register)
Whether to enable or disable access to the data flash memory is specified.

Target register definition: R_RFD_REG_U08 DFLCTL
(Target bit [DFLEN]: R_RFD_REG_UO01_DFLCTL_DFLEN)

Symbol Name Value Description
R_RFD_VALUE_UO01_ Ou Access to the data flash memory is disabled.
DFLEN_DATA_FLASH_ACCESS_DISABLE
R_RFD_VALUE_UO01_ 1u Access to the data flash memory is enabled.

DFLEN_DATA_FLASH_ACCESS_ENABLE

Macro definitions for FLARS (flash area select register)
The target area of access is specified.

Target register definition: R_RFD_REG_U08_FLARS

Symbol Name Value Description
R RFD_VALUE_U08 FLARS USER_AREA 0x00u The user area is specified.
R _RFD_VALUE_U08 FLARS EXTRA AREA 0x01u The extra area is specified.

Target register definition: R_RFD_REG_U08_FSSQ

Macro definitions 1 for FSSQ (flash memory sequencer control register)

The commands to be executed in the activated flash memory sequencer are defined.

[Bit 7] SQST: Bit for starting or stopping the sequencer.
The sequencer starts operation when SQST = 1.

[Bits 2 to 0] SQMD2 to SQMDO0: Command for the flash memory sequencer.

Symbol Name Value Description
R_RFD_VALUE_U08_FSSQ_WRITE 0x81u Write command for the flash memory
R_RFD_VALUE_U08_FSSQ_IVERIFY_CF 0x82u Internal verify command for the code flash

memory
R_RFD_VALUE_U08_FSSQ_IVERIFY_DF 0x8Au Internal verify command for the data flash
memory
R_RFD_VALUE_U08_FSSQ_BLANKCHECK_CF 0x83u Blank check command for the code flash
memory
R_RFD_VALUE_U08_FSSQ_BLANKCHECK_DF 0x8Bu Blank check command for the data flash
memory
R_RFD_VALUE_U08 FSSQ_ERASE 0x84u Erase command for the flash memory
R _RFD_VALUE_U08 FSSQ_CLEAR 0x00u Value for clearing the settings for operation of
the flash memory sequencer
R20UT5009EJ0110 Rev.1.10 RENESAS Page 30 of 186

Dec.28.22

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

« Macro definition 2 for FSSQ (flash memory sequencer control register)
The value of the bit for forcibly stopping the flash memory sequencer is defined.
[Bit 6] FSSTP: Bit for forcibly stopping the sequencer.
The sequencer is forcibly stopped when FSSTP = 1.

Target register definition: R_RFD_REG_U01_FSSQ_FSSTP

Symbol Name Value Description

R_RFD_VALUE_U01_FSSQ_FSSTP_ON 1u Value for forcibly stopping the flash memory
sequencer

« Macro definitions for FSSE (flash extra area sequencer control register)
The commands to be executed in the activated extra area sequencer are defined.
[Bit 7] ESQST: Bit for starting or stopping the sequencer.
The sequencer starts operation when ESQST = 1.
[Bits 2 to 0] ESQMD2 to ESQMDO: Command for the extra area sequencer

Target register definition: R_ RFD_REG_U08 FSSE

Symbol Name Value Description

R_RFD_VALUE_U08_FSSE_FSW 0x82u Command for setting the flash shield window
function

R _RFD_VALUE_U08 FSSE_SECURITY_FLAG 0x81u Command for setting the security flag

R_RFD_VALUE_U08 FSSE_CLEAR 0x00u Value for clearing the settings for operation of
the extra area sequencer

« Macro definition for PFCMD (flash protect command register)
The fixed value to be written to the register that is used to write-protect specific registers is defined.

Target register definition: R_RFD_REG_U08_PFCMD

Symbol Name Value Description
R_RFD_VALUE_UO08_ O0xA5u Value for releasing protection in the specific
PFCMD SPECIFIC SEQUENCE WRITE sequence for the flash memory sequencer

« Macro definition for PFS (flash states register)
[bit0] FPRERR: Error status of the specific sequence. FRPERR = 1 indicates a protection error.

Target register definition: R_ RFD_REG_U08_PFS

Symbol Name Value Description
R_RFD_VALUE_U08_MASK1_PFS_FPRERR 0x01u Value for comparing the protection error which
happened while executing the specific
sequence.
R20UT5009EJ0110 Rev.1.10 RENESAS Page 31 of 186

Dec.28.22

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

« Macro definitions for FLPMC (flash programming mode control register)

The values used to control the transition between the flash memory programming mode and the non-
programmable mode are defined.

Target register definition: R_RFD_REG_U08_FLPMC

Symbol Name Value Description
R_RFD_VALUE_U08_FLPMC_MODE_ 0x08u The flash memory sequencer is in the non-
NONPROGRAMMABLE programmable mode.
R_RFD_VALUE_U08_FLPMC_MODE_ 0x82u Code flash memory programming mode
CODE_FLASH_PROGRAMMING
R_RFD_VALUE_U08_FLPMC_MODE_ 0x10u Data flash memory programming mode

DATA_FLASH_PROGRAMMING

Symbol Name Value Description
R_RFD_VALUE_U08_FLPMC_ 0x12u Control value used for the transition to code
TRANSFER_1ST_LAYER flash memory programming mode, or the

transition to non-programmable mode from
code flash memory programming mode.

R_RFD_VALUE_U08 FLPMC OxEDu Control value used for the transition to code
TRANSFER_1ST_LAYER_INVERSION flash memory programming mode, or the
transition to non-programmable mode from
code flash memory programming mode.
(Inverted 0x12u)

R_RFD_VALUE_U08_FLPMC_ 0x92u Control value used for the transition to code
TRANSFER_2ND_LAYER flash memory programming mode, or the
transition to non-programmable mode from
code flash memory programming mode.

R_RFD_VALUE_U08_FLPMC_ 0x6Du Control value used for the transition to code
TRANSFER_2ND_LAYER_INVERSION flash memory programming mode, or the
transition to non-programmable mode from
code flash memory programming mode.
(Inverted 0x92u)

« Macro definitions for FSASTH (flash memory sequencer status register: upper 8 bits)
The end state of the flash memory sequencer (extra area sequencer or code/data flash area sequencer)
is defined.
[Bit 7] ESQEND: End state of the extra area sequencer. ESQEND = 1 indicates that the sequencer has
completed operation. This bit is cleared when the ESQST bit is cleared.
[Bit 6] SQEND: End state of the code/data flash area sequencer. SQEND = 1 indicates that the sequencer
has completed operation. This bit is cleared when the SQST bit is cleared.
Target register definition: R_RFD_REG_U08 FSASTH

Symbol Name Value Description

R_RFD_VALUE_U08_MASK1_FSASTH_SQEND 0x40u Value to be compared with the end state of
the code/data flash area sequencer

R_RFD_VALUE_U08_MASK1_FSASTH_ESQEND 0x80u Value to be compared with the end state of
the extra area sequencer

R20UT5009EJ0110 Rev.1.10 NS Page 32 of 186
Dec.28.22 RENES

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

Macro definition for FSASTL (flash memory sequencer status register: lower 8 bits)

The value of the error status mask when the operation of the flash memory sequencer (extra area
sequencer or code/data flash area sequencer) is finished is defined.

[Bit 5] ESEQER: Error status of the extra area sequencer. ESEQER = 1 indicates a sequencer error.

[Bit 4] SEQER: Error status of the code/data flash area sequencer. SEQER = 1 indicates a sequencer error.
[Bit 3] BLER: Error status of the blank check command. BLER = 1 indicates a blank error.

[Bit 2] IVER: Error status of the internal verify command. IVER = 1 indicates an internal verify error.

[Bit 1] WRER: Error status of the write command. WRER = 1 indicates a write error.

[Bit 0] ERER: Error status of the block erase command. ERER = 1 indicates an erasure error.

Target register definition: R_RFD_REG_U08_FSASTL

Symbol Name Value Description
R_RFD_VALUE_UO08_ 0x3Fu Value of the error status mask when the operation of
MASK1 FSASTL ERROR FLAG the flash memory sequencer (extra area sequencer

- - - or code/data flash area sequencer) is finished.

Macro definitions 1 for FSSET (flash memory sequencer initial setting register)

The boot swap setting bit, temporary boot swap setting bit, or other setting bits are masked by ANDing

with 0.

[Bit 7] TMSPMD: Boot swap setting. When TMSPMD = 0, boot swap is executed according to the
information in the extra area. When TMSPMD = 1, boot swap is executed according to
the TMBTSEL bit setting.

[Bit 6] TMBTSEL: Temporary boot swap setting. When TMBTSEL = 0, boot cluster 0 is selected as the
boot area. When TMBTSEL = 1, boot cluster 1 is selected as the boot area.

Target register definition: R_RFD_REG_U08 FSSET

Symbol Name Value Description
R_RFD_VALUE_U08_MASK1_ 0xCOu The boot swap setting and temporary boot
FSSET_TMSPMD_AND_TMBTSEL swap setting are masked.
R_RFD_VALUE_U08_MASKO_ 0x3Fu The bits other than the boot swap setting or
FSSET TMSPMD AND TMBTSEL temporary boot swap setting are masked.
R_RFD_VALUE_U08_MASK1_FSSET_TMSPMD 0x80u The bits other than the boot swap setting are

masked.
R _RFD_VALUE_U08 0x80u Value for specifying boot cluster 0 for
FSSET_BOOT_CLUSTER_0 temporary boot swap.
R _RFD_VALUE_UO08 0xCOu Value for specifying boot cluster 1 for
FSSET_BOOT_CLUSTER_1 temporary boot swap.
R20UT5009EJ0110 Rev.1.10 RENESAS Page 33 of 186

Dec.28.22

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

Macro definitions 2 for FSSET (flash memory sequencer initial setting register)

The range of operating frequencies of the flash memory sequencer and the correction value (-1) for
conversion of the FSSET register setting, and the correction shift value for conversion of the FSSET
register setting are defined.

[Bits 4 to 0] FSET4 to FSETO: Enter the CPU operating frequency converted for the FSSET register.

Target register definition: R_RFD_REG_U08 FSSET

Symbol Name Value Description

R_RFD_VALUE_U08_FREQUENCY_LOWER_LIMIT 2u Lowest allowable operating frequency
(2 MHz)

R_RFD_VALUE_U08_FREQUENCY_UPPER_LIMIT 40u Highest allowable operating frequency
(40 MHz)

R_RFD_VALUE_U08 FREQUENCY_ADJUST 1u Correction value (-1) for conversion of the
FSSET register setting

R_RFD_VALUE_U08_FREQUENCY_SHIFT_ADJUST 1u Correction shift value for conversion of
the FSSET register setting

R_RFD_VALUE_U08 FREQUENCY _ 23u Threshold for calculating the FSSET

CALC_THRESHOLD register setting

Macro definitions for FLRST (flash registers initialization register)

The values for specifying the initialization of the registers for the flash memory sequencer (extra area

sequencer or code/data flash area sequencer) are defined.

[Bit 0] FLRST: When FLRST = 1, the registers for the flash memory sequencer (extra area sequencer or
code/data flash area sequencer) are initialized.

Target register definition: R_ RFD_REG_U08 FLRST

Symbol Name Value Description
R _RFD_VALUE_U08 FLRST_ON 0x01u Value for initializing the sequencer registers
R _RFD_VALUE_U08 FLRST_OFF 0x00u Value for not initializing the sequencer
registers
R20UT5009EJ0110 Rev.1.10 RENES NS Page 34 of 186

Dec.28.22

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

« Macro definitions for FLFSWS and FLFSWE (flash FSW monitor registers START and END)
The mask values used to acquire or make the FSW settings are defined.
FLFSWE [bits 9 to 0]: The end block number +1 of FSW is specified.
FLFSWS [bits 9 to 0]: The FSW start block number is specified.
Target register definitions: R_RFD_REG_U16_FLFSWE and R_RFD_REG_U16_FLFSWS

(1) Mask values for acquiring FSW settings

Symbol Name Value Description

R_RFD_VALUE_U16_MASK1_FLFSW_BLOCK_NUMBER 0x03FFu Mask value for acquiring the block
number setting

(2) Mask value for making FSW settings

Symbol Name Value Description
R _RFD_VALUE_U16_MASK1_FSW_BLOCK_INFO 0x03FFu Mask value for setting the FSW block
R20UT5009EJ0110 Rev.1.10 RENESAS Page 35 of 186

Dec.28.22

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

« Macro definitions for FLAPH, FLAPL, FLSEDH, and FLSEDL (flash address pointer registers HIGH and
LOW)
(1) The start and end addresses of erasure (1 block = 1 Kbyte) and blank check for the data flash memory
are defined.
FLAPH [bits 3 to 0]: FLAP19 to FLAP16 specify the upper bits of the start address of a data flash memory
area. This value is fixed to OxOF.
FLAPL [bits 15 to 0]: FLAP15 to FLAPO specify the lower bits of the start address of a data flash memory
area.
FLSEDH [bits 3 to 0]: EWA19 to EWA16 specify the upper bits of the end address of a data flash memory
area. This value is fixed to OxOF.
FLSEDL [bits 15 to 0]: EWA15 to EWAQO specify the lower bits of the end address of a data flash memory
area.
Target register definitions: R_ RFD_REG_U08 FLAPH, R_ RFD REG_U16_ FLAPL,
R_RFD_REG_U08_FLSEDH, and R_RFD_REG_U16_FLSEDL

Symbol Name Value Description
R_RFD_VALUE_U16_ Value for the lower bits of the start address of
DATA FLASH ADDR LOW 0x1000u a data flash area (16 bitS)
R_RFD_VALUE_UO08_ Value for the upper bits of the start address
DATA FLASH ADDR HIGH 0x0Fu of a data flash area (8 bitS)
R_RFD_VALUE_UO08_ Mask value for the lower bits of the start
DATA FLASH BLOCK ADDR LOW Ox3Fu address of a data flash block (8 bitS).
R_RFD_VALUE_U16_ OXO3EE Value for the lower bits of the end address of
DATA_FLASH_BLOCK_ADDR_END TP | a data flash block (16 bits)
R_RFD_VALUE_UO08_ Value for shifting the lower address bits to
DATA FLASH SHIFT LOW ADDR 10u calculate the offset of a data flash area from

- - - - the block number

(2) The start and end addresses of erasure and blank check (1 block = 1 Kbyte) for the code flash memory

are defined.

FLAPH [bits 3 to 0]: FLAP19 to FLAP16 specify the upper bits of the start address of a code flash
memory area.

FLAPL [bits 15 to 0]: FLAP15 to FLAPO specify the lower bits of the start address of a code flash memory
area.

FLSEDH [bits 3 to 0]: EWA19 to EWA16 specify the upper bits of the end address of a code flash
memory area.

FLSEDL [bits 15 to 0]: EWA15 to EWAO specify the lower bits of the end address of a code flash memory
area.

Target register definitions: R_ RFD_REG_U08 FLAPH, R RFD _REG_U16_FLAPL,

R_RFD_REG_U08_FLSEDH, and R_RFD_REG_U16_FLSEDL

R20UT5009EJ0110 Rev.1.10 NS Page 36 of 186
Dec.28.22 RENES

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

Symbol Name Value Description
R_RFD_VALUE_U16_ Mask value for the lower bits of the start
CODE FLASH BLOCK ADDR LOW Ox003Fu | address of a code flash block (16 bits)
R_RFD_VALUE_U16_ Mask value for the upper bits of the start
CODE FLASH BLOCK ADDR HIGH 0x03CO0u address of a code flash block (16 bits; only

- - - - the lower 8 bits after shifting are used)
R_RFD_VALUE_U16_ OXO3FE Lower address in 1-Kbyte units of the end of
CODE_FLASH_BLOCK_ADDR_END PSP | a code flash block (16 bits)
R_RFD_VALUE_UO08_ Value for shifting the lower address bits to
CODE FLASH SHIFT LOW ADDR 10u calculate the offset of a code flash area

- - - - from the block number
R _RFD_VALUE_UO08 Value for shifting the upper address bits to
CODE FLASH SHIFT HIGH ADDR 6u calculate the offset of a code flash area

- - - - from the block number

Example: Block number = 107 -> 0x006B

R_RFD_VALUE_U16_CODE_FLASH_BLOCK_ADDR_LOW:
0x002B -> 0xACO0O0 (shifted to the left by 10 bits)

R_RFD_VALUE_U16_CODE_FLASH_BLOCK_ADDR_HIGH:
0x0040 -> 0x0001 (shifted to the right by 6 bits)

Block start address = 0x0001_ACO00

« Macro definitions for FLSEC (flash security flag monitor register)

The mask values for extra area settings and security monitoring are defined.
[Bit 12] WRPR: Write-prohibited flag. WRPR = 0 disables programming.
[Bit 10] SEPR: Block erase-prohibited flag. SEPR = 0 disables block erasure.

[Bit 9] BTPR: Flag for controlling the protection against reprogramming of the boot block cluster.
BTPR = 0 disables reprogramming of the boot block cluster.

[Bit 8] BTFLG: Boot area switching flag.
BTFLG = 0: Boot cluster 1 is used as the boot area.
BTFLG = 1: Boot cluster 0 is used as the boot area.

Target register definitions: R_ RFD_REG_U16_FLWH, R_RFD_REG_U16_FLWL, and

R_RFD_REG_U16_FLSEC

Symbol Name

Value Description

R_RFD_VALUE_U16_MASKO_ERASE_PROTECT_FLAG

OxFBFFu

Mask value for setting the block
erasure protection

R_RFD_VALUE_U16_MASKO_WRITE_PROTECT FLAG

OXEFFFu

Mask value for setting the write
protection

R_RFD_VALUE_U16_MASKO_
BOOT_CLUSTER_PROTECT_FLAG

Mask value for setting the

OxFDFFu protection against reprogramming

of the boot block cluster

R_RFD_VALUE_U16_MASKO_BOOT FLAG

OxFEFFu

Mask value for switching and
monitoring the boot area flag

R_RFD_VALUE_U16_MASK1_BOOT _FLAG

0x0100u

Mask value for switching and
monitoring the boot area flag

R20UT5009EJ0110 Rev.1.10 NS
Dec.28.22 RENES

Page 37 of 186

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

3.3 Specifications of APl Functions

This section describes the detailed specifications of the API functions of Renesas Flash Driver (RFD) RL78
Type 02.

There are some prerequisites for using the API functions of RFD RL78 Type 02 to reprogram the flash
memory. If the prerequisites are not satisfied, execution of the API functions may result in indeterminate
operation.

Prerequisites:

« Execute the R_RFD_Init() function once before starting the use of RFD functions.

« The high-speed on-chip oscillator must be active while self-programming is in progress. Execute API
functions of RFD RL78 Type 02 only while the high-speed on-chip oscillator is active.

« To control the data flash memory, execute API functions of RFD RL78 Type 02 while access to the data
flash memory is enabled. For the method of enabling access to the data flash memory, refer to the user's
manual of the target RL78 microcontroller.

The following shows the format for describing the specifications of API functions.

Description format:

Information:
Syntax Syntax for calling this function from a C-language program
Reentrancy Reentrant or Non-reentrant
Parameters Input parameters for this Parameter [Value, range, meaning of the
(IN) function parameter, etc.]
Parameters Input/output parameters for this Parameter [Value, range, meaning of the
(INJOUT) function parameter, etc.]
Parameters Output parameters for this Parameter [Value, range, meaning of the
(OUT) function parameter, etc.]
Return Value Type of the return value from Enumerator (constant value) of the return value:
this function Value
(Enumerated type, pointer type, [Meaning of the constant: Detailed description]
etc.)
Enumerator (constant value) of the return value:
Value
[Meaning of the constant: Detailed description]
Description Overview of function
Preconditions Overview of preconditions
Remarks Special notes on this function

Details of Specifications:
The operation of this function is described.
Note:

Conditions of usage or restrictions on this function are described.

R20UT5009EJ0110 Rev.1.10 NS Page 38 of 186
Dec.28.22 RENES

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

3.31 Specifications of APl Functions Used in Common for Flash Memory Control
This section describes the API functions used in common for flash memory control in RFD RL78 Type 02.

3.3.1.1 R_RFD_lnit

Information:

Syntax R_RFD_FAR_FUNC e_rfd_ret_t R_RFD_Init(unit8_t i_u08_cpu_frequency);

Reentrancy Non-reentrant

Parameters unit8_ti_u08_cpu_frequency CPU operating frequency [2 to 40 (MHz)]

(IN)

Parameters N/A

(IN/OUT)

Parameters N/A

(OUT)

Return Value e_rfd_ret_t R_RFD_ENUM_RET_STS_OK: 0x00
[Normal end: The frequency is within the allowable
range.]
R_RFD_ENUM_RET_ERR_PARAMETER: 0x10
[Parameter error: The frequency is outside the
allowable range.]

Description Sets the frequency specified by the parameter in the flash memory sequencer and

initializes RFD RL78 Type 02.
Preconditions Execute this function in the non-programmable mode while the high-speed on-chip
oscillator is active.
Remarks Execute this function once before starting the use of RFD functions.

Details of Specifications:

« Whether the value of the parameter (CPU operating frequency) is within the range from 2 MHz to 40 MHz
is checked. When the value is within the range, the value of (specified CPU operating frequency — 1) is
set in the variable “g_u08_cpu_frequency”.

« The value which converted the CPU operating frequency inputted into the FSSET register is set to
“g_u08 fset cpu_frequency”.
- When the argument (i_u08_cpu_frequency) is less than or equal to the threshold (23MHz)
g_u08_fset cpu_frequency = (i_u08 cpu_frequency -1)
- When the argument (i_u08_cpu_frequency) exceeds threshold (23MHz)
g_u08_fset cpu_frequency = (i_u08 cpu_frequency + Threshold) >> 1u

Notes:

« The high-speed on-chip oscillator needs to be kept active while self-programming is in progress. Execute
this function while the high-speed on-chip oscillator is active.
* RFD RL78 Type 02 does not activate or check the high-speed on-chip oscillator.

« For the parameter (i_u08 cpu_frequency), specify the integer obtained by rounding up the fraction of the
CPU operating frequency that is actually used in the microcontroller.
(Example: When the CPU operates at 4.5 MHz, specify 5 in this initialization function.)
When the CPU operates at a frequency lower than 4 MHz, a value of 2 MHz, or 3 MHz can be used but a
non-integer value such as 2.5 MHz cannot be used.

R20UT5009EJ0110 Rev.1.10 NS Page 39 of 186
Dec.28.22 RENES

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

The frequency specified in the parameter (i_u08_cpu_frequency) should be the actual frequency at which

the CPU operates during flash memory reprogramming; it is not necessarily that the frequency of the

high-speed on-chip oscillator should be specified.

- If the specified frequency differs from the actual CPU operating frequency, the subsequent operation is
indeterminate. In this case, even if flash memory reprogramming is completed, the written data value
and data retention period may not be guaranteed.

* For the range of the CPU operating frequency, refer to the user's manual of the target RL78
microcontroller.

If this function is executed while the sequencer is not in the non-programmable mode, the subsequent
operation is indeterminate.

R20UT5009EJ0110 Rev.1.10 NS Page 40 of 186
Dec.28.22 RENES

RFD RL78 Type 02

3. API Functions of RFD RL78 Type 02

3.3.1.2 R_RFD_SetDataFlashAccessMode

Information:
Syntax R_RFD_FAR_FUNC void R_RFD_SetDataFlashAccessMode
(e_rfd_df access ti_e_df _access);

Reentrancy Non-reentrant

Parameters e rfd_df access t Control of access to the data flash memory

(IN) i_e_df access R_RFD_ENUM_DF_ACCESS_ENABLE: 0x01
[Access to the data flash memory is enabled.]
R_RFD_ENUM_DF_ACCESS_DISABLE: 0x00
[Access to the data flash memory is disabled.]

Parameters N/A

(IN/OUT)

Parameters N/A

(OUT)

Return Value N/A

Description Enables or disables access to the data flash memory according to the parameter

setting.
Preconditions Execute this function in the non-programmable mode.
Remarks -

Details of Specifications:

o When the parameter (i_e_df access) is setto R_RFD_ENUM_DF_ACCESS_DISABLE, the DFLEN bit
(bit 0 of DFLCTL) is set to 0 (R_RFD_VALUE_UO1_DFLEN_DATA_FLASH_ACCESS_DISABLE) to
disable access to the data flash memory.

o When the parameter (i_e_df access) is setto R_RFD_ENUM_DF_ACCESS_ENABLE, the DFLEN bit
(bit 0 of DFLCTL) is set to 1 (R_RFD_VALUE_UO01_DFLEN_DATA_FLASH_ACCESS_ENABLE) to
enable access to the data flash memory.

« Wait for the setup time (setup time: 4usec). After the wait, the data flash memory can be accessed.

Notes:

« If the value specified by the parameter (i_e_df access) is neither
R _RFD_ENUM_DF_ACCESS DISABLE norR_RFD_ENUM _DF_ACCESS ENABLE, the DFLEN bit (bit
0 of DFLCTL) is set to 0 (R_RFD_VALUE_UO1_DFLEN_DATA_FLASH_ACCESS_DISABLE) to disable
access to the data flash memory.

« If this function is executed while the sequencer is not in the non-programmable mode, the subsequent
operation is indeterminate.

R20UT5009EJ0110 Rev.1.10

Dec.28.22

RENESAS Page 41 of 186

RFD RL78 Type 02

3. API Functions of RFD RL78 Type 02

3.3.1.3 R_RFD_SetFlashMemoryMode

Information:

Syntax

R_RFD_FAR_FUNC e rfd_ret t R_RFD_SetFlashMemoryMode

(e_rfd_flash_memory_mode_ti_e_ flash_mode);

Reentrancy

Non-reentrant

Parameters

(IN)

e_rfd_flash_memory_mode_t

i_e_flash_mode

Flash memory control mode

R_RFD_ENUM_FLASH_MODE_CODE_PROGRAMMING
: 0x01
[Code flash memory programming mode]

R_RFD_ENUM_FLASH_MODE_DATA_PROGRAMMING:
0x02

[Data flash memory programming mode]
R_RFD_ENUM_FLASH_MODE_CODE_TO_
NONPROGRAMMABLE : 0x03

[Non-programmable mode: Transition from the code flash
memory programming mode]

R_RFD_ENUM_FLASH_MODE_DATA_TO_
NONPROGRAMMABLE : 0x04

[Non-programmable mode: Transition from the data flash
memory programming mode]

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value

e rfd_ret_t

R_RFD_ENUM_RET_STS_OK: 0x00 [Normal end]

R_RFD_ENUM_RET_ERR_MODE_MISMATCHED: 0x11
[Mode mismatch error]

(The flash memory sequencer is not placed in the
specified mode.)

Description

Places the flash memory sequencer in the flash memory control mode specified by the
parameter and then sets the specified CPU operating frequency in the flash memory

sequencer.

Preconditions

Execute this function while command execution is not in progress in the code/data flash
area sequencer or extra area sequencer.

Remarks

Details of Specifications:

o The hook function R_RFD_HOOK_EnterCriticalSection() is called to save the current interrupt disabled
(DI) or enabled (El) state and disable interrupts.

« The FLPMC register is set up according to the value of the parameter (i_e_flash_mode) to place the flash
memory sequencer in the specified flash memory control mode.

« Before a transition to the specified mode, a wait time (tMS) is inserted. For the wait time (tMS), refer to

the hardware manual of the target RL78 microcontroller.

« The hook function R_RFD_HOOK_ExitCriticalSection() is called to restore the interrupt disabled (DI) or

enabled (El) state.

o Setthe “g u08 fset cpu_frequency” setin the R_RFD _Init function to the FSSET register.

R20UT5009EJ0110 Rev.1.10

Dec.28.22

RENESAS Page 42 of 186

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

Notes:

« When this function is executed, interrupts need to be disabled in the period between the calls of the hook
functions R_RFD_HOOK_EnterCriticalSection() and R_RFD_HOOK_ExitCriticalSection(). If interrupts are
enabled and an interrupt occurs in this period, the subsequent operation is indeterminate.

« If the value specified by the parameter is not a flash memory control mode value, the operation is same
as that for the non-programmable mode (transition from data flash memory programming mode).

« If this function is executed before the R_RFD_Init function, the reprogrammed data are not guaranteed
even after the reprogramming processing by the RFD is completed. To use RFD RL78 Type 02, be sure
to execute the R_RFD_Init() function once before starting the use of RFD functions.

« When transitioning to code flash memory programming mode or data flash memory programming mode,
please transition from non-programmable mode.

R20UT5009EJ0110 Rev.1.10 NS Page 43 of 186
Dec.28.22 RENES

RFD RL78 Type 02

3. API Functions of RFD RL78 Type 02

3.3.1.4 R_RFD_CheckFlashMemoryMode

Information:

Syntax R_RFD_FAR_FUNC e _rfd_ret_t R_RFD_CheckFlashMemoryMode
(e_rfd_flash_memory_mode_ti_e_flash_mode);

Reentrancy Non-reentrant

Parameters e_rfd_flash_memory_mode_t Flash memory control mode

(IN) i_e_flash_mode R_RFD_ENUM_FLASH_MODE_CODE_PROGRAMMING:
0x01
[Code flash memory programming mode]
R_RFD_ENUM_FLASH_MODE_DATA_PROGRAMMING:
0x02
[Data flash memory programming mode]
R_RFD_ENUM_FLASH_MODE_CODE_TO _
NONPROGRAMMABLE: 0x03
[Non-programmable mode]
R_RFD_ENUM_FLASH_MODE_DATA_TO_
NONPROGRAMMABLE: 0x04
[Non-programmable mode]

Parameters N/A

(IN/OUT)

Parameters N/A

(OUT)

Return Value e rfd_ret_t R_RFD_ENUM_RET_STS_OK: 0x00 [Normal end]
R_RFD_ENUM_RET_ERR_MODE_MISMATCHED: 0x11
[Mode mismatch error]

Description Checks if the flash memory sequencer is in the mode specified by the parameter.

Preconditions Execute this function while command execution is not in progress in the code/data flash area

sequencer or extra area sequencer.
Remarks -

Details of Specifications:

« The value of the FLPMC register is read to check if it matches the register value for the mode specified by
the parameter (i_e_flash_mode).

- Non-programmable mode: 0x08
- Code flash memory programming mode: 0x82
- Data flash memory programming mode: 0x10

Notes:

« If the control mode of the flash memory sequencer was specified by a function other than
R_RFD_SetFlashMemoryMode(), this function may not be executed correctly.

« If this function is executed during command execution in the code/data flash area sequencer or the extra
area sequencer, the subsequent operation is indeterminate.

« When the value other than flash memory control mode is specified for the argument, the same processing
as when the non-programmable mode is set is performed.

R20UT5009EJ0110 Rev.1.10

Dec.28.22

RENESAS Page 44 of 186

RFD RL78 Type 02

3. API Functions of RFD RL78 Type 02

3.3.1.5 R_RFD_CheckCFDFSeqEndStep1

Information:

Syntax R_RFD_FAR_FUNC e _rfd_ret t R_RFD_CheckCFDFSeqEndStep1(void);

Reentrancy Non-reentrant

Parameters N/A

(IN)

Parameters N/A

(IN/OUT)

Parameters N/A

(OUT)

Return Value e _rfd_ret_t R_RFD_ENUM_RET_STS_OK: 0x00 [Normal end]
R_RFD_ENUM_RET_STS BUSY: 0x01
[Sequencer command execution is in progress.]

Details of Specifications:

Description

Checks if the operation of the activated code/data flash area sequencer has been
completed.

Preconditions

Execute this command after starting the command for activating the code/data flash
area sequencer.

Remarks

Execute this function again if R_RFD_STS_BUSY is returned.

After confirming that R_RFD_ENUM_RET_STS_OK has been returned from this
function, execute the R_RFD_CheckCFDFSegEndStep2() function.

« Whether the operation of the activated code/data flash area sequencer has been completed (SQEND (bit
6 of FSASTH) = 1) is checked.

« When the operation of the code/data flash area sequencer has been completed, the flash memory
sequencer control register is cleared (FSSQ = 0x00) and R_RFD_ENUM_RET_STS_OK is returned.
If the operation has not been completed, R_RFD_ENUM_RET_STS_BUSY is returned.

Notes:

« Execute this function again if R_RFD_STS_BUSY is returned.

« If execution of this function is attempted before the command for activating the code/data flash area
sequencer is started, this function is not executed correctly.

« After confirming that R_RFD_ENUM_RET_STS_OK has been returned from this function, execute the
R_RFD_CheckCFDFSeqEndStep2() function.

R20UT5009EJ0110 Rev.1.10

Dec.28.22

RENESAS Page 45 of 186

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

3.3.1.6 R_RFD_CheckExtraSeqEndStep1

Information:

Syntax R_RFD_FAR_FUNC e _rfd_ret t R_RFD_CheckExtraSeqEndStep1(void);

Reentrancy Non-reentrant

Parameters N/A

(IN)

Parameters N/A

(IN/OUT)

Parameters N/A

(OUT)

Return Value e _rfd_ret_t R_RFD_ENUM_RET_STS_OK: 0x00 [Normal end]
R_RFD_ENUM_RET_STS BUSY: 0x01
[Sequencer command execution is in progress.]

Description Checks if the operation of the activated extra area sequencer has been completed.

Preconditions Execute this command after starting the command for activating the extra area
sequencer.
Remarks Execute this function again if R_RFD_STS_BUSY is returned.

After confirming that R_RFD_ENUM_RET_STS_OK has been returned from this
function, execute the R_RFD_CheckExtraSeqEndStep2() function.

Details of Specifications:

« Whether the operation of the activated extra area sequencer has been completed (ESQEND (bit 7 of
FSASTH) = 1) is checked.

« When the operation of the extra area sequencer has been completed, the flash memory sequencer
control register is cleared (FSSE = 0x00) and R_RFD_ENUM_RET_STS_OKiis returned.
If the operation has not been completed, R_ RFD_ENUM_RET_STS_BUSY is returned.

Notes:

« Execute this function again if R_RFD_STS_BUSY is returned.

« If execution of this function is attempted before the command for activating the extra area sequencer is
started, this function is not executed correctly.

« After confirming that R_RFD_ENUM_RET_STS_OK has been returned from this function, execute the
R_RFD_CheckExtraSeqEndStep2() function.

R20UT5009EJ0110 Rev.1.10 NS Page 46 of 186
Dec.28.22 RENES

RFD RL78 Type 02

3. API Functions of RFD RL78 Type 02

3.3.1.7 R_RFD_CheckCFDFSeqEndStep2

Information:
Syntax R_RFD_FAR_FUNC e _rfd_ret t R_RFD_CheckCFDFSeqEndStep2(void);
Reentrancy Non-reentrant
Parameters N/A
(IN)
Parameters N/A
(IN/OUT)
Parameters N/A
(OUT)
Return Value e _rfd_ret_t R_RFD_ENUM_RET_STS_OK: 0x00

[Normal end: Sequencer operation has been
completed.]

R_RFD_ENUM_RET_STS_BUSY: 0x01
[Sequencer operation is in progress.]

Description

Checks if the command operation has been completed after the flash memory
sequencer control register is cleared.

Preconditions

Execute this function after confirming that R_RFD_ENUM_RET_STS_OK has been
returned from the R_RFD_CheckCFDFSeqEndStep1() function.

Remarks

Execute this function again if R_RFD_STS_BUSY is returned.

Details of Specifications:

« Whether the command operation in the code/data flash area sequencer has been completed (SQEND (bit
6 of FSASTH) = 0) is checked after the flash memory sequencer control register is cleared (FSSQ =

0x00).

« When the command execution in the code/data flash area sequencer has been completed,
R_RFD_ENUM_RET_STS_ OK s returned.
If the operation has not been completed, R_ RFD_ENUM_RET_STS_BUSY is returned.

Notes:

« Execute this function again if R_RFD_STS_BUSY is returned.

« If execution of this function is attempted before R_ RFD_ENUM_RET_STS_OK has been confirmed by
the R_RFD_CheckCFDFSeqENndStep1() function, this function is not executed correctly.

R20UT5009EJ0110 Rev.1.10

Dec.28.22

RENESAS Page 47 of 186

RFD RL78 Type 02

3. API Functions of RFD RL78 Type 02

3.3.1.8 R_RFD_CheckExtraSeqEndStep2

Information:

Syntax R_RFD_FAR_FUNC e _rfd_ret t R_RFD_CheckExtraSeqEndStep2(void);

Reentrancy Non-reentrant

Parameters N/A

(IN)

Parameters N/A

(IN/OUT)

Parameters N/A

(OUT)

Return Value e _rfd_ret_t R_RFD_ENUM_RET_STS_OK: 0x00
[Normal end: Sequencer operation has been
completed.]
R_RFD_ENUM_RET_STS BUSY: 0x01
[Sequencer operation is in progress.]

Details of Specifications:

Description

Checks if the command operation has been completed after the flash memory
sequencer control register is cleared.

Preconditions

Execute this function after checking that R_RFD_ENUM_RET_STS_OK has been
returned from the R_RFD_CheckExtraSeqEndStep1() function.

Remarks

Execute this function again if R_RFD_STS_BUSY is returned.

« Whether all command execution in the extra area sequencer has been completed (ESQEND (bit 7 of
FSASTH) = 0) is checked after the flash memory sequencer control register is cleared (FSSE = 0x00).
« When the command operation in the extra area sequencer has been completed,
R_RFD_ENUM_RET_STS_OK is returned.
If the operation has not been completed, R_ RFD_ENUM_RET_STS_BUSY is returned.

Notes:

« Execute this function again if R_RFD_STS_BUSY is returned.

« If execution of this function is attempted before R_ RFD _ENUM_RET_STS_OK has not been confirmed
by the R_RFD_CheckExtraSeqEndStep1() function, this function is not executed correctly.

R20UT5009EJ0110 Rev.1.10

Dec.28.22

RENESAS Page 48 of 186

RFD RL78 Type 02

3. API Functions of RFD RL78 Type 02

3.3.1.9 R_RFD_GetSeqErrorStatus

Information:
Syntax R_RFD_FAR_FUNC void R_RFD_GetSeqErrorStatus
(uint8_t __ near * onp_u08_error_status);
Reentrancy Non-reentrant
Parameters N/A
(IN)
Parameters N/A
(IN/OUT)
Parameters uint8_t _ near* Pointer to the variable for storing the information on
(OUT) onp_u08_error_status errors
Return Value N/A

Details of Specifications:

Description

Acquires the information on errors that occurred during command execution in the
code/data flash area sequencer or extra area sequencer.

Preconditions

Execute this function while command execution is not in progress in the code/data
flash area sequencer or extra area sequencer.

Remarks

o The FSASTL register (8 bits) is read and the value of bits 5 to 0 is stored in the variable pointed to by the
parameter (onp_u08 error_status).

Note: Bits 7 to 6 are set to a fixed value of O.

Error information to be acquired (six bits of the FSASTL register: bits 5 to 0):

Bit 5: Extra area sequencer error
Bit 4: Code/data flash area sequencer error
Bit 3: Blank check command error
Bit 2: Internal verify command error
Bit 1: Write command error

Bit 0: Erase command error

Note:

« Correct values may not be acquired if this function is executed while command execution is in progress in
the code/data flash area sequencer or extra area sequencer.

R20UT5009EJ0110 Rev.1.10

Dec.28.22

LENESAS

Page 49 of 186

RFD RL78 Type 02

3. API Functions of RFD RL78 Type 02

3.3.1.10 R_RFD_ClearSeqRegister

Information:
Syntax R_RFD_FAR_FUNC void R_RFD_ClearSeqRegister(void);
Reentrancy Non-reentrant
Parameters N/A
(IN)
Parameters N/A
(IN/OUT)
Parameters N/A
(OUT)
Return Value N/A

Details of Specifications:

Description

Clears the registers for controlling the code/data flash area sequencer and extra area
sequencer.

Preconditions

Use this function in the code flash memory programming mode or data flash memory
programming mode.

Use this function while command execution is not in progress in the code/data flash
area sequencer or extra area sequencer.

Remarks

Execute this function after execution of the R_RFD_CheckCFDFSeqEndStep2() or
R_RFD_CheckExtraSeqEndStep2() function.

« The flash registers initialization register (FLRST) is set to 0x01 and then cleared to 0x00 to clear the
following registers.

- Target registers for controlling the code/data flash area sequencer or extra area sequencer:
FLAPH, FLAPL, FLSEDH, FLSEDL, FLWH, FLWL, FLARS, FSSQ, and FSSE

Notes:

« This function does not clear the information on errors generated during command execution in the flash
memory sequencer (the information in the FSASTL register).

« If this function is executed while operation is in progress in the code/data flash area sequencer or extra
area sequencer, the subsequent operation is indeterminate.

« If this function is executed while the sequencer is not in the code flash memory programming mode or
data flash memory programming mode, the subsequent operation is indeterminate.

R20UT5009EJ0110 Rev.1.10

Dec.28.22

RENESAS Page 50 of 186

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

3.3.1.11 R_RFD_ForceStopSeq

Information:
Syntax R_RFD_FAR_FUNC void R_RFD_ForceStopSeq(void);
Reentrancy Non-reentrant
Parameters N/A
(IN)
Parameters N/A
(IN/OUT)
Parameters N/A
(OUT)
Return Value N/A

Description Forcibly stops the operation of the code/data flash area sequencer.

Preconditions Use this function after starting the command for activating the code/data flash area
sequencer (while command execution is in progress or the sequencer is operating).

Use this function before the R_RFD_CheckCFDFSeqENndStep1() function returns
R_RFD_ENUM_RET_STS_OK (before the sequencer operation is completed).

Remarks Execute the R_RFD_CheckCFDFSeqEndStep1() function after this function.

Details of Specifications:

« While the code/data flash area sequencer is executing the blank check command or erase command, the
FSSTP bit (bit 6) of the FSSQ register is set to 1 to forcibly stop the code/data flash area sequencer.

Notes:

« Use this function only when forced stop of command execution is necessary in an emergency situation.

« Execute this function only while the code/data flash area sequencer is executing the blank check
command, internal verify command, or erase command.

« When this function is executed during execution of the erase command, the target area should be erased
again.

« Do not execute this function while the code/data flash area sequencer is executing a command other than
the blank check, internal verify, or erase command or while the extra area sequencer is operating.
Otherwise, the subsequent operation is indeterminate. (If this function is executed during the write
command execution, undefined data are written.)

« This function cannot be used while the command execution state is undetermined.

« The command that has been forcibly stopped by this function may generate an error. In this case, do not
refer to the error flags because the command execution may have not been completed.

R20UT5009EJ0110 Rev.1.10 NS Page 51 of 186
Dec.28.22 RENES

RFD RL78 Type 02

3. API Functions of RFD RL78 Type 02

3.3.1.12 R_RFD_ForceReset

Information:

Details of Specifications:

Syntax R_RFD_FAR_FUNC void R_RFD_ForceReset(void);
Reentrancy Non-reentrant

Parameters N/A

(IN)

Parameters N/A

(IN/OUT)

Parameters N/A

(OUT)

Return Value N/A

Description

Generates an internal reset of the CPU.

Preconditions

Remarks

« The illegal instruction code (OxFF) is intentionally executed to generate an internal reset of the CPU.

Notes:

« As aninternal reset is generated in the CPU, the code after this function is not executed.

« Forthe internal reset by the instruction code OxFF (illegal instruction), refer to the user's manual of the
target RL78 microcontroller.

« Avresetis not generated by this function during emulation by an on-chip debugging emulator.

R20UT5009EJ0110 Rev.1.10

Dec.28.22

LENESAS

Page 52 of 186

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

3.3.1.13 R_RFD_SetBootArealmmediately

Information:
Syntax R_RFD_FAR_FUNC void R_RFD_SetBootArealmmediately
(e_rfd_boot_cluster ti_e_boot_cluster);

Reentrancy Non-reentrant

Parameters e rfd_boot_ cluster t Boot cluster number

(IN) i_e_boot_cluster
R_RFD_ENUM_BOOT_CLUSTER_0: 0x01
[Boot cluster 0]
R_RFD_ENUM_BOOT_CLUSTER_1: 0x00
[Boot cluster 1]

Parameters N/A

(IN/OUT)

Parameters N/A

(OUT)

Return Value N/A

Description Allocates the boot cluster specified by the parameter to the boot area (00000H to
03FFFH) immediately.

Preconditions Use this function in the code flash memory programming mode or data flash memory
programming mode.

Use this function while command execution is not in progress in the code/data flash
area sequencer or extra area sequencer.

Remarks -

Details of Specifications:

« The value indicating the boot cluster number specified through the parameter (i_e_boot_cluster) by the
user is set in the TMBTSEL bit (bit 6) of the FSSET register and a value of 1 is set in the TMSPMD bit (bit
7); the specified boot cluster is immediately allocated to the boot area.
- When R_RFD_ENUM_BOOT_CLUSTER_O is specified by the parameter (i_e_boot_cluster):
The value of “R_RFD_VALUE_U08_FSSET_BOOT_CLUSTER_0 (0x80u) |
(g_u08_fset cpu_frequency)’ is set in the FSSET register.
- When R_RFD_ENUM_BOOT_CLUSTER _1 is specified by the parameter (i_e_boot_cluster):
The value of “R_RFD_VALUE_U08_FSSET_BOOT_CLUSTER_1 (0xCOu) |
(g_u08 _fset_cpu_frequency)’ is set in the FSSET register.

Notes:

« If an unallowable value is specified by the parameter (i_e_boot_cluster), boot cluster 0 is allocated to the
boot area.

« The boot cluster that is not selected as the boot area is allocated to the area (04000H to 07FFFH)
immediately following the boot area (00000H to 03FFFH).

« Ifa CPU reset is applied, the cluster selected by the boot area switching flag (BTFLG: bit 0) of the FLSEC
register is allocated to the boot area regardless of the setting by this function.

« If this function is executed while command execution is in progress in the code/data flash area sequencer
or extra area sequencer, the subsequent operation is indeterminate.

R20UT5009EJ0110 Rev.1.10 NS Page 53 of 186
Dec.28.22 RENES

RFD RL78 Type 02

3. API Functions of RFD RL78 Type 02

3.3.1.14 R_RFD_GetSecurityAndBootFlags

Information:
Syntax R_RFD_FAR_FUNC void R_RFD_GetSecurityAndBootFlags
(uint16_t _ near * onp_u16_security_and_boot_flags);
Reentrancy Non-reentrant
Parameters N/A
(IN)
Parameters N/A
(IN/OUT)
Parameters uint16_ t _ near*™ Pointer to the variable for storing the
(OUT) onp_u16_security_and_boot_flags information on security flags (protection

flags) and boot area switching flag

Return Value

N/A

Description

Acquires the information on the security flags (protection flags) and boot area

switching flag.

Preconditions

Use this function while command execution is not in progress in the code/data flash
area sequencer or extra area sequencer.

Remarks

Details of Specifications:

« The value of the FLSEC register (16 bits) that shows the information on the security flags (protection
flags) and boot area switching flag is read and stored in the variable pointed to by the parameter
(onp_u16_security_and_boot_flags).

Notes:

« Security flag and boot area switching flag information to be acquired (bits 15 to 0 of the FLSEC register):

Bits 15 to 13: -

Bit 12 (WRPR): Write-prohibited flag

Bit 11: -

Bit 10 (SEPR): Block erase-prohibited flag
Bit 9 (BTPR): Boot area rewrite-prohibited flag
Bit 8 (BTFLG): Boot area switching flag

Bits 7 to O: -

For the information on the BTFLG bit (bit 8) acquired by this function, note that a value of 0 indicates boot
cluster 1 and a value of 1 indicates boot cluster 0.

« Correct values may not be acquired if this function is executed while command execution is in progress in
the code/data flash area sequencer or extra area sequencer.

R20UT5009EJ0110 Rev.1.10

Dec.28.22

RENESAS Page 54 of 186

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

3.3.1.15 R_RFD_GetFSW

Information:
Syntax R_RFD_FAR_FUNC void R_RFD_GetFSW
(uint16_t __ near * onp_u16_start_block_number,
uint16_t _ near * onp_u16_end_block_number);
Reentrancy Non-reentrant
Parameters N/A
(IN)
Parameters N/A
(IN/OUT)
Parameters uint16_t __ near * Pointer to the variable for storing the start block
(OUT) onp_u16_start_block_number number
uint16_t _ near * Pointer to the variable for storing the end block
onp_u16_end_block_number number +1
Return Value N/A
Description Acquires the range of the flash shield window.

Preconditions Use this function while command execution is not in progress in the code/data flash
area sequencer or extra area sequencer.

Remarks -

Details of Specifications:

« The values of the FLFSWS register (16 bits) and FLFSWE register (16 bits) that indicate the start block
and end block +1 of the flash shield window are read and stored in the variables pointed to by the
corresponding parameters.

- Values (output) of the variables pointed to by the parameters:

*onp_u16_start_block _number: Start block
(Setting in bits 9 to 0 of FLFSWS. Bits 15 to 10 are masked with 0.)

*onp_u16_end_block _number: End block +1
(Setting in bits 9 to 0 of FLFSWE. Bits 15 to 10 are masked with 0.)

Notes:

« If this function is executed in the initial state of the device, onp_u16_start _block_number = 1023 and
onp_u16_end_block number = 1023 are acquired.

« Correct values may not be acquired if this function is executed while command execution is in progress in
the code/data flash area sequencer or extra area sequencer.

R20UT5009EJ0110 Rev.1.10 NS Page 55 of 186
Dec.28.22 RENES

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

3.3.1.16 r_rfd_wait_count

Information:
Syntax R_RFD_FAR_FUNC void r_rfd_wait_count(uint8_ti_u08_count);
Reentrancy Non-reentrant
Parameters uint8 t Wait time (Time count in units of 1 ps: A value
(IN) i u08 count from 1 to 255 can be specified.)
Parameters N/A
(IN/OUT)
Parameters N/A
(OUT)
Return Value N/A

Description Executes a software loop to wait for the time specified by the parameter (time count in
units of 1 us).

Preconditions -

Remarks -

Details of Specifications:

o Avalue of 1 is added to the g_u08_cpu_frequency value (CPU operating frequency — 1) to obtain the
CPU operating frequency.
« The number of software loop repetitions for the specified wait time (time count in units of 1 us) is
calculated and the software loops are executed.
Number of software loop repetitions for the specified wait time (time count in units of 1 ps)
= ((frequency [MHZz]]) x (specified count [us]) / (loop execution cycles: 8 [cycles])) + 1
Example: Frequency value = 32 [MHz] and time count = 10 [us]
Number of software loop repetitions for the wait time (time count in units of 1 ps)
= (32 [MHz] x 10 [us] / 8 [cycles]) + 1
(1 is added so that the result after rounding does not become smaller than the wait time.)
= 41 [repetitions]
Execution time of this function = 1/32 [MHz] x 8 [cycles] x 41 [repetitions] = 10.25 [us]

Note:

o The range of wait time is from 1 us to 255 ps, which does not include the overhead of the processing
other than the loop processing.

R20UT5009EJ0110 Rev.1.10 NS Page 56 of 186
Dec.28.22 RENES

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

3.3.2 Specifications of APl Functions for Code Flash Memory Control

This section describes the API functions for code flash memory control in RFD RL78 Type 02.

3.3.2.1 R_RFD_EraseCodeFlashReq

Information:
Syntax R_RFD_FAR_FUNC void R_RFD_EraseCodeFlashReq
(uint16_ti_u16_block_number);

Reentrancy Non-reentrant

Parameters uint16_t Target block number for erasure [0 to 511]

(IN) i_u16_block_number Example: For RL78/F24, 0 to 255 (256 Kbytes max.)
Example: For RL78/F23, 0 to 127 (128 Kbytes max.)

Parameters N/A

(IN/OUT)

Parameters N/A

(OUT)

Return Value N/A

Description Activates the code/data flash area sequencer and begins the erasure of the code flash
memory (one block).

Preconditions Use this function in the code flash memory programming mode while command
execution is not in progress in the code/data flash area sequencer or extra area
sequencer.

Remarks Execute the R_RFD_CheckCFDFSeqEndStep1() function after this function.

Details of Specifications:

The code/data flash area is selected as the target area of reprogramming.
FLARS register = R_RFD_VALUE_UO08_FLARS_USER_AREA: 0x00 (EXA (bit 0) = 0)

The code/data flash area sequencer is activated and the address of one block (1 Kbyte) to be erased in
the code flash memory is set in the sequencer.

- The start address and end address of the target block (1 Kbyte) in the code flash memory are
calculated from the block number for erasure specified by the parameter (i_u16_block_number) and
set in the FLAPL and FLAPH registers and the FLSEDL and FLSEDH registers, respectively.

R_RFD_VALUE_UO08 FSSQ_ERASE = 0x84 is set in the FSSQ register to start the erasure.
(SQST (bit 7) = 1, SQMD (bits 2 to 0) = 4 (0b100), and the other bits are set to 0.)

Notes:

The lower 10 bits of the 16-bit parameter (i_u16_block _number) are used; the upper 6 bits are not used.
The target block number must not exceed the number of blocks in the code flash memory implemented in
the device. If the specified number is outside the allowable range, the subsequent operation is
indeterminate.

If this function is executed while the sequencer is not in the code flash memory programming mode, the
subsequent operation is indeterminate.

If this function is executed while command execution is in progress in the code/data flash area sequencer
or extra area sequencer, the subsequent operation is indeterminate.

R20UT5009EJ0110 Rev.1.10 NS Page 57 of 186
Dec.28.22 RENES

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

3.3.2.2 R_RFD_WriteCodeFlashReq

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_WriteCodeFlashReq
(uint32_ti_u32_start_addr,
uint8_t _ near * inp_u08_write_data);

Reentrancy Non-reentrant
Parameters uint32_t Target start address for programming
(IN) i_u32_start_addr (4-byte boundary)
[Address in the code flash area]
uint8_t _ near* Pointer to the variable that stores write data
inp_u08_write_data [Size of the write data pointed to is 4 bytes]
Parameters N/A
(IN/OUT)
Parameters N/A
(OUT)
Return Value N/A

Description Activates the code/data flash area sequencer and begins the programming of the code
flash memory (4 bytes).

Preconditions Use this function in the code flash memory programming mode while command
execution is not in progress in the code/data flash area sequencer or extra area
sequencer.

Remarks Execute the R_RFD_CheckCFDFSeqEndStep1() function after this function.

Details of Specifications:

The code/data flash area is selected as the target area of reprogramming.
FLARS register = R_RFD_VALUE_UO08_FLARS_USER_AREA: 0x00 (EXA (bit 0) = 0)

The code/data flash area sequencer is activated, and the programming start address in the code flash
memory and the write data (4 bytes) are set in the sequencer.

- The target start address in the code flash memory specified by the parameter i_u32_start_addr is set
in the FLAPL and FLAPH registers.

- The 4-byte value in the variable (data to be written to the code flash memory) pointed to by the
parameter inp_u08_write_data is set in the FLWL and FLWH registers.

R _RFD_VALUE_UO08 FSSQ_WRITE = 0x81 is set in the FSSQ register to start programming.
(SQST (bit 7) = 1, SQMD (bits 2 to 0) = 1 (0b001), and the other bits are set to 0.)

Notes:

The lower 24 bits of the 32-bit parameteri_u32_start_addr are used with the upper 8 bits masked with
0x00. The start address must be a 4-byte boundary address within the space of the code flash memory
implemented in the device. If the specified address is outside the allowable space or is not a 4-byte
boundary address, the subsequent operation is indeterminate.

The parameter inp_u08_write_data is a pointer to the 8-bit input data. To repeat the function processing
with this pointer updated, note that the pointer needs to be updated in units of 4 bytes (in units of
programming of the code flash memory).

If this function is executed while the sequencer is not in the code flash memory programming mode, the
subsequent operation is indeterminate.

If this function is executed while command execution is in progress in the code/data flash area sequencer
or extra area sequencer, the subsequent operation is indeterminate.

R20UT5009EJ0110 Rev.1.10 NS Page 58 of 186
Dec.28.22 RENES

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

3.3.2.3 R_RFD_BlankCheckCodeFlashReq

Information:
Syntax R_RFD_FAR_FUNC void R_RFD_BlankCheckCodeFlashReq
(uint16_ti_u16_block_number);

Reentrancy Non-reentrant

Parameters uint16_t Target block number for blank check [0 to 511]

(IN) i_u16_block_number Example: For RL78/F24, 0 to 255 (256 Kbytes max.)
Example: For RL78/F23, 0 to 127 (128 Kbytes max.)

Parameters N/A

(IN/OUT)

Parameters N/A

(OUT)

Return Value N/A

Description Activates the code/data flash area sequencer and begins the blank check of the code
flash memory (one block).

Preconditions Use this function in the code flash memory programming mode while command
execution is not in progress in the code/data flash area sequencer or extra area
sequencer.

Remarks Execute the R_RFD_CheckCFDFSeqEndStep1() function after this function.

Details of Specifications:

The code/data flash area is selected as the target area of reprogramming.

FLARS register = R_RFD_VALUE_U08_FLARS_USER_AREA: 0x00 (EXA (bit 0) = 0)

The code/data flash area sequencer is activated and the address of one block (1 Kbyte) to be checked for
blanks in the code flash memory is set in the sequencer.

- The start address and end address of the target block (1024 bytes) in the code flash memory are
calculated from the block number for blank check specified by the parameter (i_u16_block _number)
and set in the FLAPL and FLAPH registers and the FLSEDL and FLSEDH registers, respectively.

R_RFD_VALUE_U08_FSSQ_BLANKCHECK_CF = 0x83 is set in the FSSQ register to start the blank
check. (SQST (bit 7) = 1, MDCH (bit 3) = 0, SQMD (bits 2 to 0) = 3 (0b011), and the other bits are set to 0.)

Notes:

The lower 10 bits of the 16-bit parameter (i_u16_block_number) are used; the upper 6 bits are not used.
The target block number must not exceed the number of blocks in the code flash memory implemented in
the device. If the specified number is outside the allowable range, the subsequent operation is
indeterminate.

If this function is executed while the sequencer is not in the code flash memory programming mode, the
subsequent operation is indeterminate.

If this function is executed while command execution is in progress in the code/data flash area sequencer
or extra area sequencer, the subsequent operation is indeterminate.

R20UT5009EJ0110 Rev.1.10 NS Page 59 of 186
Dec.28.22 RENES

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

3.3.2.4 R_RFD_IVerifyCodeFlashReq

Information:
Syntax R_RFD_FAR_FUNC void R_RFD_IVerifyCodeFlashReq
(uint16_ti_u16_block_number);

Reentrancy Non-reentrant

Parameters uint16_t Target block number for internal verify [0 to 511]

(IN) i_u16_block_number Example: For RL78/F24, 0 to 255 (256 Kbytes max.)
Example: For RL78/F23, 0 to 127 (128 Kbytes max.)

Parameters N/A

(IN/OUT)

Parameters N/A

(OUT)

Return Value N/A

Description Activates the code/data flash area sequencer and begins the internal verify of the code
flash memory (one block).

Preconditions Use this function in the code flash memory programming mode while command
execution is not in progress in the code/data flash area sequencer or extra area
sequencer.

Remarks Execute the R_RFD_CheckCFDFSeqEndStep1() function after this function.

Details of Specifications:

The code/data flash area is selected as the target area of reprogramming.

FLARS register = R_RFD_VALUE_U08_FLARS_USER_AREA: 0x00 (EXA (bit 0) = 0)

The code/data flash area sequencer is activated and set the top address of one block (1024byte) that
executes internal verify of the code flash memory.

- The start address and end address of the target block (1024 bytes) in the code flash memory are
calculated from the block number for internal verify specified by the parameter (i_u16_block _number)
and set in the FLAPL and FLAPH registers and the FLSEDL and FLSEDH registers, respectively.

R_RFD_VALUE_UO08 FSSQ_IVERIFY_CF = 0x82 is set in the FSSQ register to start the internal verify.
(SQST (bit 7) =1, MDCH (bit 3) = 0, SQMD (bits 2 to 0) = 2 (0b010), and the other bits are set to 0.)

Notes:

The lower 10 bits of the 16-bit parameter (i_u16_block_number) are used; the upper 6 bits are not used.
The target block number must not exceed the number of blocks in the code flash memory implemented in
the device. If the specified number is outside the allowable range, the subsequent operation is
indeterminate.

If this function is executed while the sequencer is not in the code flash memory programming mode, the
subsequent operation is indeterminate.

If this function is executed while command execution is in progress in the code/data flash area sequencer
or extra area sequencer, the subsequent operation is indeterminate.

The internal verify can be executed only once on the target block immediately after writing. Do not execute
internal verification more than once.

R20UT5009EJ0110 Rev.1.10 NS Page 60 of 186
Dec.28.22 RENES

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

3.3.3 Specifications of APl Functions for Data Flash Memory Control
This section describes the API functions for data flash memory control in RFD RL78 Type 02.

3.3.3.1 R_RFD_EraseDataFlashReq

Information:
Syntax R_RFD_FAR_FUNC void R_RFD_EraseDataFlashReq(uint8_t i_u08_block_number);
Reentrancy Non-reentrant
Parameters uint8_t Target block number for erasure [0 to 63]
(IN) i_u08_block_number Example: For RL78/F24, 0 to 15 (16 Kbytes max.)
Example: For RL78/F23, 0 to 7 (8 Kbytes max.)
Parameters N/A
(IN/OUT)
Parameters N/A
(OUT)

Return Value N/A

Description Activates the code/data flash area sequencer and begins the erasure of the data flash
memory (one block).

Preconditions Use this function while access to the data flash memory is enabled (DFLEN = 1).

Use this function in the data flash memory programming mode while command
execution is not in progress in the code/data flash area sequencer or extra area
sequencer.

Remarks Execute the R_RFD_CheckCFDFSeqEndStep1() function after this function.

Details of Specifications:

« The code/data flash area is selected as the target area of reprogramming.
FLARS register = R_RFD_VALUE_U08_FLARS_USER_AREA: 0x00 (EXA (bit 0) = 0)

« The code/data flash area sequencer is activated and the address of one block (1024 bytes) to be erased
in the data flash memory is set in the sequencer.

- The start address and end address of the target block (1024 bytes) in the data flash memory are
calculated from the block number for erasure specified by the parameter (i_u08_block_number) and
set in the FLAPL and FLAPH registers and the FLSEDL and FLSEDH registers, respectively.

« R_RFD_VALUE_U08_FSSQ_ERASE = 0x84 is set in the FSSQ register to start the erasure.

(SQST (bit 7) = 1, SQMD (bits 2 to 0) = 4 (0b100), and the other bits are set to 0.)
Notes:

« The lower 6 bits of the 8-bit parameter (i_u08_block_number) are used; the upper 2 bits are not used.
The target block number must not exceed the number of blocks in the data flash memory implemented in
the device. If the specified number is outside the allowable range, the subsequent operation is
indeterminate.

« If this function is executed while access to the data flash memory is disabled, the subsequent operation is
indeterminate.

« If this function is executed while the sequencer is not in the data flash memory programming mode, the
subsequent operation is indeterminate.

« If this function is executed while command execution is in progress in the code/data flash area sequencer
or extra area sequencer, the subsequent operation is indeterminate.

R20UT5009EJ0110 Rev.1.10 NS Page 61 of 186
Dec.28.22 RENES

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

3.3.3.2 R_RFD_WriteDataFlashReq

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_WriteDataFlashReq
(uint32_ti_u32_start_addr,
uint8_t _ near * inp_u08_write_data);

Reentrancy Non-reentrant

Parameters uint32_t Target start address for programming

(IN) i_u32_start_addr [Address in the data flash area]
uint8_t __ near* Pointer to the variable that stores write data
inp_u08_write_data [Size of the write data pointed to is 1 byte]

Parameters N/A

(IN/OUT)

Parameters N/A

(OUT)

Return Value N/A

Description Activates the code/data flash area sequencer and begins the programming of the data
flash memory (1 byte).

Preconditions Use this function while access to the data flash memory is enabled (DFLEN = 1).

Use this function in the data flash memory programming mode while command
execution is not in progress in the code/data flash area sequencer or extra area
sequencer.

Remarks Execute the R_RFD_CheckCFDFSeqEndStep1() function after this function.

Details of Specifications:

« The code/data flash area is selected as the target area of reprogramming.
FLARS register = R_RFD_VALUE_U08_FLARS_USER_AREA: 0x00 (EXA (bit 0) = 0)

« The code/data flash area sequencer is activated, and the programming start address in the data flash
memory and the write data (1 byte) are set in the sequencer.

- The target start address in the data flash memory specified by the parameter i_u32_start_addr is set
in the FLAPL and FLAPH registers.

- The 1-byte value in the variable (data to be written to the data flash memory) pointed to by the
parameter inp_u08_write_data is set in the lower 8 bits of the FLWL register.

« R _RFD VALUE_UO08 FSSQ_WRITE = 0x81 is set in the FSSQ register to start programming.
(SQST (bit 7) = 1, SQMD (bits 2 to 0) = 1 (0b001), and the other bits are set to 0.)

Notes:

o The lower 24 bits of the 32-bit parameteri_u32_start_addr are used with the upper 8 bits masked with
0x00. The start address must be within the space of the data flash memory implemented in the device. If
the specified address is outside the allowable space, the subsequent operation is indeterminate.

« If this function is executed while access to the data flash memory is disabled, the subsequent operation is
indeterminate.

- If this function is executed while the sequencer is not in the data flash memory programming mode, the
subsequent operation is indeterminate.

« If this function is executed while command execution is in progress in the code/data flash area sequencer
or extra area sequencer, the subsequent operation is indeterminate.

R20UT5009EJ0110 Rev.1.10 NS Page 62 of 186
Dec.28.22 RENES

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

3.3.3.3 R_RFD_BlankCheckDataFlashReq

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_BlankCheckDataFlashReq
(uint32_ti_u32_start_addr,
uint16_t i_u16_blankcheck_length);

Reentrancy Non-reentrant

Parameters uint32_t Target start address for blank check

(IN) i_u32_start_addr [Address in the data flash area]
uint16_t Target data length for blank check
i_u16_blankcheck_length

Parameters N/A

(IN/OUT)

Parameters N/A

(OUT)

Return Value N/A

Description Activates the code/data flash area sequencer and begins the blank check of the data
flash memory (Specified number of bytes).

Preconditions Use this function while access to the data flash memory is enabled (DFLEN = 1).

Use this function in the data flash memory programming mode while command
execution is not in progress in the code/data flash area sequencer or extra area
sequencer.

Remarks Execute the R_RFD_CheckCFDFSeqEndStep1() function after this function.

Details of Specifications:

The code/data flash area is selected as the target area of reprogramming.
FLARS register = R_RFD_VALUE_U08_FLARS_USER_AREA: 0x00 (EXA (bit 0) = 0)
The code/data flash area sequencer is activated and set the start and end addresses to be blank check for
data flash memory.
- The start address of the data flash memory for the blank check of an argument (i_u32_start_addr) is
set in the FLAPL and FLAPH register.
- The end address (start address + specified byte size) of the data flash memory is calculated, and it
sets in the FLSEDL and FLSEDH register.
R_RFD_VALUE_UO08 FSSQ_BLANKCHECK_DF = 0x8B is set in the FSSQ register to start the blank
check. (SQST (bit 7) =1, MDCH (bit 3) = 1, SQMD (bits 2 to 0) = 3 (0b011), and the other bits are set to 0.)

Notes:

It cannot be set to straddle blocks. Set within the range of 1 block.

The lower 24 bits of the 32-bit parameteri_u32_start_addr are used with the upper 8 bits masked with
0x00. The start address must be within the space of the data flash memory implemented in the device. If
the specified address is outside the allowable space, the subsequent operation is indeterminate.

If this function is executed while access to the data flash memory is disabled, the subsequent operation is
indeterminate.

If this function is executed while the sequencer is not in the data flash memory programming mode, the
subsequent operation is indeterminate.

If this function is executed while command execution is in progress in the code/data flash area sequencer
or extra area sequencer, the subsequent operation is indeterminate.

R20UT5009EJ0110 Rev.1.10 NS Page 63 of 186
Dec.28.22 RENES

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

3.3.3.4 R_RFD_IVerifyDataFlashReq

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_|VerifyDataFlashReq
(uint32_ti_u32_start_addr,
uint16_ti_u16_iverify_length);

Reentrancy Non-reentrant

Parameters uint32_t Target start address for internal verify

(IN) i_u32_start_addr [Address in the data flash area]

uint16_t Target data length for internal verify

i_u16_iverify_length

Parameters N/A
(IN/OUT)

Parameters N/A
(OUT)

Return Value N/A

Description Activates the code/data flash area sequencer and begins the internal verify of the data
flash memory (Size of the write data).

Preconditions Use this function while access to the data flash memory is enabled (DFLEN = 1).

Use this function in the data flash memory programming mode while command
execution is not in progress in the code/data flash area sequencer or extra area
sequencer.

Remarks Execute the R_RFD_CheckCFDFSeqEndStep1() function after this function.

Details of Specifications:

« The code/data flash area is selected as the target area of reprogramming.
FLARS register = R_RFD_VALUE_U08_FLARS_USER_AREA: 0x00 (EXA (bit 0) = 0)

« The code/data flash area sequencer is activated and sets the address at which to initiate the internal
verify of the data flash memory and the number of bytes of interest.

- The start address of the data flash memory for the internal verify of an argument (i_u32_start_addr) is
set in the FLAPL and FLAPH register.

- The end address (start address + size of the write data) of the data flash memory is calculated, and it
sets in the FLSEDL and FLSEDH register.

« R _RFD_VALUE_UO08 FSSQ_IVERIFY_DF = 0x8A is set in the FSSQ register to start the blank check.
(SQST (bit 7) =1, MDCH (bit 3) = 1, SQMD (bits 2 to 0) = 2 (0b010), and the other bits are set to 0.)

Notes:

« It cannot be set to straddle blocks. Set within the range of 1 block.

« The lower 24 bits of the 32-bit parameter i_u32_start addr are used with the upper 8 bits masked with
0x00. The start address must be within the space of the data flash memory implemented in the device. If
the specified address is outside the allowable space, the subsequent operation is indeterminate.

« If this function is executed while access to the data flash memory is disabled, the subsequent operation is
indeterminate.

« If this function is executed while the sequencer is not in the data flash memory programming mode, the
subsequent operation is indeterminate.

« If this function is executed while command execution is in progress in the code/data flash area sequencer
or extra area sequencer, the subsequent operation is indeterminate.

« The internal verify can be executed only once for the area immediately after writing. Do not execute
internal verification more than once.

R20UT5009EJ0110 Rev.1.10 NS Page 64 of 186
Dec.28.22 RENES

RFD RL78 Type 02

3. API Functions of RFD RL78 Type 02

3.3.4 Specifications of APl Functions for Extra Area Control

This section describes the API functions for extra area control in RFD RL78 Type 02.

3.3.4.1 R_RFD_SetExtraEraseProtectReq

Information:
Syntax R_RFD_FAR_FUNC void R_RFD_SetExtraEraseProtectReq(void);
Reentrancy Non-reentrant
Parameters N/A
(IN)
Parameters N/A
(IN/OUT)
Parameters N/A
(OUT)
Return Value N/A

Description

Activates the extra area sequencer and begins the setting of the block erase-
prohibited flag.

Preconditions

Use this function in the code flash memory programming mode while command
execution is not in progress in the code/data flash area sequencer or extra area
sequencer.

Remarks

Execute the R_RFD_CheckExtraSeqEndStep1() function after this function.

Details of Specifications:

« The extra area is selected as the target area of reprogramming.
FLARS register = R_RFD_VALUE_UO08 FLARS_EXTRA_AREA: 0x01 (EXA (bit 0) = 1)
« The extra area sequencer is activated and the setting of the block erase-prohibited flag is started.

- The FLSEC register is read and this value is set in the FLWL register with the current value of the
BTFLG bit (bit 8) retained and the SEPR bit (bit 10) cleared to 0 (block erasure is disabled). OxFFFF
is set in the FLWH registers.

« R _RFD _VALUE_UO08 FSSE_SECURITY_FLAG = 0x81 is set in the FSSE register to start the setting of

the flag.

(ESQST (bit 7) = 1, ESQMD (bits 2 to 0) = 1 (0b001), and the other bits are set to 0.)

Notes:

« If this function is executed while the sequencer is not in the code flash memory programming mode, the
subsequent operation is indeterminate.

« If this function is executed while command execution is in progress in the code/data flash area sequencer
or extra area sequencer, the subsequent operation is indeterminate.

R20UT5009EJ0110 Rev.1.10

Dec.28.22

RENESAS Page 65 of 186

RFD RL78 Type 02

3. API Functions of RFD RL78 Type 02

3.3.4.2 R_RFD_SetExtraWriteProtectReq

Information:
Syntax R_RFD_FAR_FUNC void R_RFD_SetExtraWriteProtectReq(void);
Reentrancy Non-reentrant
Parameters N/A
(IN)
Parameters N/A
(IN/OUT)
Parameters N/A
(OUT)
Return Value N/A

Description

Activates the extra area sequencer and begins the setting of the write-prohibited flag.

Preconditions

Use this function in the code flash memory programming mode while command
execution is not in progress in the code/data flash area sequencer or extra area
sequencer.

Remarks

Execute the R_RFD_CheckExtraSeqEndStep1() function after this function.

Details of Specifications:

« The extra area is selected as the target area of reprogramming.
FLARS register = R_RFD_VALUE_U08_FLARS_EXTRA_AREA: 0x01 (EXA (bit 0) = 1)
« The extra area sequencer is activated and the setting of the write-prohibited flag is started.

- The FLSEC register is read and this value is set in the FLWL register with the current value of the
BTFLG bit (bit 8) retained and the WRPR bit (bit 12) cleared to 0 (programming is disabled). OxFFFF
is set in the FLWH registers.

« R_RFD_VALUE_U08_FSSE_SECURITY_FLAG = 0x81 is set in the FSSE register to start the setting of

the flag.

(ESQST (bit 7) = 1, ESQMD (bits 2 to 0) = 1 (0b001), and the other bits are set to 0.)

Notes:

« If this function is executed while the sequencer is not in the code flash memory programming mode, the
subsequent operation is indeterminate.

« If this function is executed while command execution is in progress in the code/data flash area sequencer
or extra area sequencer, the subsequent operation is indeterminate.

R20UT5009EJ0110 Rev.1.10

Dec.28.22

RENESAS Page 66 of 186

RFD RL78 Type 02

3. API Functions of RFD RL78 Type 02

3.3.4.3 R_RFD_SetExtraBootAreaProtectReq

Information:
Syntax R_RFD_FAR_FUNC void R_RFD_SetExtraBootAreaProtectReq(void);
Reentrancy Non-reentrant
Parameters N/A
(IN)
Parameters N/A
(IN/OUT)
Parameters N/A
(OUT)
Return Value N/A

Details of Specifications:

« The extra area is selected as the target area of reprogramming.
FLARS register = R_RFD_VALUE_UO08_FLARS_ EXTRA_AREA: 0x01 (EXA (bit 0) = 1)

Description

Activates the extra area sequencer and begins the setting of the boot area rewrite-

prohibited flag.

Preconditions

Use this function in the code flash memory programming mode while command
execution is not in progress in the code/data flash area sequencer or extra area

sequencer.

Remarks

Execute the R_RFD_CheckExtraSeqEndStep1() function after this function.

« The extra area sequencer is activated and the setting of the boot area rewrite-prohibited flag is started.

- The FLSEC register is read and this value is set in the FLWL register with the current value of the
BTFLG bit (bit 8) retained and the BTPR bit (bit 9) cleared to 0 (programming is disabled). OxFFFF is
set in the FLWH registers.

« R_RFD_VALUE_U08 FSSE_SECURITY_FLAG = 0x81 is set in the FSSE register to start the setting of

the flag.
(ESQST (bit 7) = 1, ESQMD (bits 2 to 0) = 1 (0b001), and the other bits are set to 0.)

Notes:

« If this function is executed while the sequencer is not in the code flash memory programming mode, the
subsequent operation is indeterminate.

« If this function is executed while command execution is in progress in the code/data flash area sequencer

or extra area sequencer, the subsequent operation is indeterminate.

R20UT5009EJ0110 Rev.1.10

Dec.28.22

LENESAS

Page 67 of 186

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

3.3.4.4 R_RFD_SetExtraBootAreaReq

Information:
Syntax R_RFD_FAR_FUNC void R_RFD_SetExtraBootAreaReq
(e_rfd_boot_cluster ti_e_boot_cluster);

Reentrancy Non-reentrant

Parameters e rfd_boot_ cluster t Boot cluster number

(IN) i_e_boot_cluster R_RFD_ENUM_BOOT_CLUSTER_0: 0x01
[Boot cluster 0]
R_RFD_ENUM_BOOT_CLUSTER_1: 0x00
[Boot cluster 1]

Parameters N/A

(IN/OUT)

Parameters N/A

(OUT)

Return Value N/A

Description Activates the extra area sequencer and begins the setting of the boot area switching

flag.

Preconditions Use this function in the code flash memory programming mode while command
execution is not in progress in the code/data flash area sequencer or extra area
sequencer.

Remarks Execute the R_RFD_CheckExtraSeqEndStep1() function after this function.

Details of Specifications:

« This function specifies that the boot swap is executed only after a reset instead of immediately after the
setting of the BTFLG.

- The FSSET and FLSEC registers are read.
- Only when the TMSPMD bit (bit 7) of the FSSET register is 0, the TMSPMD bit is set to 1 and the
boot cluster selected by the BTFLG bit (bit 8) of the FLSEC register is reflected in the TMBTSEL bit
(bit 6) of the FSSET register.
TMSPMD = 0: Boot swap is executed according to the information in the extra area (BTFLG).
1: Boot swap is executed according to the TMBTSEL setting.
BTFLG = 0: Boot cluster 1 is used as the boot area.
1: Boot cluster 0 is used as the boot area.
TMBTSEL = 0: Boot cluster O is used as the boot area.
1: Boot cluster 1 is used as the boot area.
« The extra area is selected as the target area of reprogramming.
FLARS register = R_RFD_VALUE_U08 FLARS_EXTRA_AREA: 0x01 (EXA (bit 0) = 1)
« The extra area sequencer is activated and the setting of the boot area switching flag is started.

The value shown below is set in the FLWL register, in which the boot cluster selected by the parameter
(i_e_boot_cluster) is set in the bit that corresponds to the BTFLG bit (bit 8) of the FLSEC register, and
R_RFD_VALUE_U08 MASK1_16BIT (OxFFFF) is set in the FLWH register.

-When R_RFD_ENUM_BOOT_CLUSTER_1 is specified:
R_RFD_VALUE_U16_MASKO_BOOT_FLAG (OXFEFF) is set in the FLWL register.

-When R_RFD_ENUM_BOOT_CLUSTER_0 is specified:
R_RFD_VALUE_U08_MASK1_16BIT (OXFFFF) is set in the FLWL register.

R20UT5009EJ0110 Rev.1.10 NS Page 68 of 186
Dec.28.22 RENES

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

« R_RFD_VALUE_U08 FSSE_SECURITY_FLAG = 0x81 is set in the FSSE register to start the setting of
the flag.
(ESQST (bit 7) = 1, ESQMD (bits 2 to 0) = 1 (0b001), and the other bits are set to 0.)

Notes:

« The parameter (i_e_boot_cluster) must be a correct value (enumerated type: e_rfd_boot_cluster_t). If the
value specified for this parameter is neither R_ RFD_ENUM_BOOT_CLUSTER 0 nor
R_RFD_ENUM_BOOT CLUSTER_1,R_RFD_ENUM BOOT CLUSTER_0 is used.

Boot cluster that is selected as the boot area:
Allocated to addresses 00000H to 03FFFH (boot area).
Boot cluster that is not selected as the boot area:
Allocated to addresses 04000H to 07FFFH (the area immediately following the boot area).

« If this function is executed while the sequencer is not in the code flash memory programming mode, the
subsequent operation is indeterminate.

« If this function is executed while command execution is in progress in the code/data flash area sequencer
or extra area sequencer, the subsequent operation is indeterminate.

R20UT5009EJ0110 Rev.1.10 NS Page 69 of 186
Dec.28.22 RENES

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

3.3.4.5 R_RFD_SetExtraFSWReq

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_SetExtraFSWReq
(uint16_ti_u16_start_block_number,
uint16_ti_u16_end_block_number);

Reentrancy Non-reentrant
Parameters uint16_t Start block number
(IN) i_u16_start_block_number Example: For RL78/F24, 0 to 255 (256 Kbytes max.)
Example: For RL78/F23, 0 to 127 (128 Kbytes max.)
uint16 _t End block number +1
i_u16_end_block_number Example: For RL78/F24, 1 to 256 (256 Kbytes max.)
Example: For RL78/F23, 1 to 128 (128 Kbytes max.)
Parameters N/A
(IN/OUT)
Parameters N/A
(OUT)
Return Value N/A

Description Activates the extra area sequencer and begins the setting of the range and mode of
the flash shield window specified by the parameters.

Preconditions Use this function in the code flash memory programming mode while command
execution is not in progress in the code/data flash area sequencer or extra area
sequencer.

Remarks Execute the R_RFD_CheckExtraSeqEndStep1() function after this function.

Details of Specifications:

The extra area is selected as the target area of reprogramming.

FLARS register = R_RFD_VALUE_U08 FLARS_EXTRA_AREA: 0x01 (EXA (bit 0) = 1)

The extra area sequencer is activated, and the setting of the start and end block numbers of the flash
shield window and the flash shield window mode is started.

- The block number specified by the parameter i_u16_start_block_number, which corresponds to the
FSWS (flash shield window start block address) register, is set in the FLWL register. Bits 15 to 10
(the bits other than the block address bits) are set to 0.

- The block nhumber specified by the parameter i_u16_end_block_number, which corresponds to the
FSWE (flash shield window end block address) register, is set in the FLWH register. Bits 15 to 10 (the
bits other than the block address bits) are set to 0.

R_RFD_VALUE_UO08 FSSE_FSW = 0x82 is set in the FSSE register to start the setting.

(ESQST (bit 7) = 1, ESQMD (bits 2 to 0) = 2 (0b010), and the other bits are set to 0.)

R20UT5009EJ0110 Rev.1.10 NS Page 70 of 186
Dec.28.22 RENES

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

Notes:

« Bits 9 to 0 of a 16-bit parameter are used as the block number to be set (the maximum number is 1023);
bits 15 to 10 are not used.

« Specify the parameters so that the condition i_u16_start_block_number <i_u16_end_block _number is
satisfied.

o Forthe parameteri_u16_end_block_number, specify the end block number of the desired window range
plus 1.
Examples:
- To shield the areas outside the four blocks from block 12 to block 15:
i_u16_start_block_number =12,i u16_end_block_number = 16
« If this function is executed while the sequencer is not in the code flash memory programming mode, the
subsequent operation is indeterminate.
« If this function is executed while command execution is in progress in the code/data flash area sequencer
or extra area sequencer, the subsequent operation is indeterminate.

R20UT5009EJ0110 Rev.1.10 NS Page 71 of 186
Dec.28.22 RENES

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

3.3.5 Specifications of Hook Functions
This section describes the hook functions of RFD RL78 Type 02.

3.3.5.1 R_RFD_HOOK_EnterCriticalSection

Information:
Syntax R_RFD_FAR_FUNC void R_RFD_HOOK_EnterCriticalSection(void);
Reentrancy Non-reentrant
Parameters N/A
(IN)
Parameters N/A
(IN/OUT)
Parameters N/A
(OUT)
Return Value N/A

Description Executes the instruction for disabling interrupts.

Preconditions Execute this function before the processing that should be executed with interrupts
disabled.

Remarks —

Details of Specifications:

« The interrupt disabled or enabled state is acquired and saved in the variable sg_u08 psw_ie state that is
prepared to store the value of the interrupt enable flag (IE) of the PSW.

« The macro instruction for disabling interrupts (R_RFD_DISABLE_INTERRUPT) is executed.
Note:

« Execute this function before the processing that should be executed with interrupts disabled (critical
section), and execute the R_RFD_HOOK_ExitCriticalSection function after the critical section ends.

R20UT5009EJ0110 Rev.1.10 NS Page 72 of 186
Dec.28.22 RENES

RFD RL78 Type 02 3. API Functions of RFD RL78 Type 02

3.3.5.2 R_RFD_HOOK_ExitCriticalSection

Information:
Syntax R_RFD_FAR_FUNC void R_RFD_HOOK_ExitCriticalSection(void);
Reentrancy Non-reentrant
Parameters N/A

(IN)

Parameters N/A
(IN/OUT)

Parameters N/A
(OUT)

Return Value N/A

Description Executes the instruction for enabling interrupts.

Preconditions Execute this function to enable interrupts after the processing executed with interrupts
disabled.

Remarks —

Details of Specifications:

« According to the value of the variable sg_u08 psw_ie_state, which saves the interrupt enable flag (IE) of
the PSW, the macro instruction for enabling interrupts is executed.

Value of sg_u08 psw_ie_state:
- 0x00 (bit 7 = 0: interrupts are disabled): Nothing is done.

- Ox80 (bit 7 = 1: interrupts are enabled): The macro instruction for enabling interrupts
(R_RFD_ENABLE_INTERRUPT) is executed and the interrupt enabled state (El) is restored.

Note:

« Execute this function after the R_RFD_HOOK_EnterCriticalSection is executed and the processing
executed with interrupts disabled (critical section) ends.

R20UT5009EJ0110 Rev.1.10 NS Page 73 of 186
Dec.28.22 RENES

RFD RL78 Type 02 4. Flash Memory Sequencer Operation

4. Flash Memory Sequencer Operation

41 Setting of Flash Memory Control Mode

The flash memory control mode can be changed to the code or data flash memory reprogrammable mode by
executing the specific sequence of the flash memory sequencer.

- Code flash memory (and extra area) reprogrammable state:
Code flash memory programming mode
- Data flash memory reprogrammable state:
Data flash memory programming mode
- Flash memory (and extra area) non-programmable state:
Non-programmable mode
Target function of this operation: R_RFD_SetFlashMemoryMode

« When transitioning to code flash memory programming mode or data flash memory programming mode,
please transition from non-programmable mode.

« Do not transition directly from code flash memory programming mode to data flash memory programming
mode.

« Do not transition directly from data flash memory programming mode to code flash memory programming
mode.

« When transition non-programmable mode, follow the procedure corresponding to the current flash
memory control mode.

Note: To control the data flash area, the DFLEN bit (bit 0) of the data flash control register (DFLCTL)
must be set to 1 (access to the data flash memory must be enabled) in advance.

411 Procedure for Executing Specific Sequence

The flash programming mode control register (FLPMC) can only be written to by the following specific
sequence and the flash memory sequencer can be placed in a desired mode.

Procedure Specific Sequence (Program Processing)

Step 1 Write a specific value (= 0xA5) to the PFCMD register.

Step 2 Write the value for the desired mode setting to the FLPMC register.

Step 3 Write the inverted value of the desired mode setting to the FLPMC register.
Step 4 Write the value for the desired mode setting to the FLPMC register.

« The specific sequence can only be executed while the FLRST bit (bit 0) of the FLRST register is 0 and
the flash memory sequencer is stopped.

« If writing to other memory spaces or registers is attempted between steps 1 to 4 in the specific sequence,
the FLPMC register is not written to. In this case, a protection error occurs and the status flag (FPRERR
(bit 0)) of the flash status register (PFS) is set to 1. The FPRERR bit is cleared when a reset is applied or
the next time the specific sequence is started.

R20UT5009EJ0110 Rev.1.10 NS Page 74 of 186
Dec.28.22 RENES

RFD RL78 Type 02

4. Flash Memory Sequencer Operation

PFCMD register (After reset: Undefined value):

7 6 5 4 3 2 1 0
REG7 REG6 REGS REG4 REG3 REG2 REG1 REGO
w w W w w w w w

- The flash protect command register (PFCMD) is a write-only register and an undefined value is always
read from this register.

FLPMC register (After reset: 0x08):

7 6 5 4 3 2 1 0

FLPMCI7 : 0]

R/W

Code and Data flash mode
Non-programmable mode
(Read mode)

FLPMC register setting
This state is the state after reset.
When transitioning from Code flash programming mode and Data
flash programming mode, perform in a specific sequence. (See 4.1.4,
Procedure for transition to the Non-programmable Mode).
This mode can only be transitioned from Read mode.
Set FLPMC register in a specific sequence (See 4.1.2, Procedure for
transition from non-programmable mode to the Code Flash Memory
Programming Mode).
This mode can only be transitioned from Read mode.
Set FLPMC register in a specific sequence (See 4.1.3, Procedure for
transition from non-programmable mode to the Data Flash Memory
Programming Mode).

Code flash programming mode

Data flash programming mode

PFS register (After reset: 0x00):

7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 FPRERR
R R R R R R R R

R20UT5009EJ0110 Rev.1.10
Dec.28.22

RENESAS Page 75 of 186

RFD RL78 Type 02

4. Flash Memory Sequencer Operation

4.1.2 Procedure for Transition from Non-programmable Mode to the Code Flash Memory
Programming Mode

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Step 6:
Step 7:
Step 8:
Step 9:
Step 10:
Step 11:
Step 12:
Step 13:
Step 14:

PFCMD register = 0xA5
FLPMC register = 0x12
FLPMC register = OxED
FLPMC register = 0x12

3us Wait.

PFCMD register = 0xA5
PFCMD register = 0x92
PFCMD register = 0x6D
PFCMD register = 0x92
PFCMD register = 0xA5
PFCMD register = 0x82
PFCMD register = 0x7D
PFCMD register = 0x82

10us Wait.

e Steps 2 and 4
FLPMC register setting (0x12)
e Step 3
Inverted value or FLPMC register setting (OXED)

e Steps 7 and 9
FLPMC register setting (0x92)
e Step 8
Inverted value or FLPMC register setting (0x6D)

e Steps 11 and 13
FLPMC register setting (0x82)
e Step 12
Inverted value or FLPMC register setting (0x7D)

41.3 Procedure for Transition from Non-programmable Mode to the Data Flash Memory
Programming Mode

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:

PFCMD register = 0xA5
FLPMC register = 0x10
FLPMC register = OXEF
FLPMC register = 0x10

10us Wait.

e Steps 2 and 4
FLPMC register setting (0x10)
e Step 3
Inverted value or FLPMC register setting (OxEF)

41.4 Procedure for Transition to the Non-programmable Mode

Data can be read from the target flash memory after the wait time (10us) has passed since the end of the
procedure for a transition from the code flash memory programming mode or data flash memory

programming mode to the non-programmable mode.

(1) When transition from data flash memory programming mode to non-programmable mode

Step 1:
Step 2:
Step 3:
Step 4:

PFCMD register = 0xA5
FLPMC register = 0x08
FLPMC register = OxF7
FLPMC register = 0x08

e Steps 2 and 4
FLPMC register setting (0x08)
e Step 3
Inverted value or FLPMC register setting (0xF7)

Step 5: After the wait time (10us) has passed, data can be read from the target flash memory.

R20UT5009EJ0110 Rev.1.10

Dec.28.22

LENESAS

Page 76 of 186

RFD RL78 Type 02

4. Flash Memory Sequencer Operation

(2) When transition from code flash memory programming mode to non-programmable mode

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Step 6:
Step 7:
Step 8:
Step 9:

Step 10:
Step 11:
Step 12:
Step 13:

PFCMD register = OxA5
FLPMC register = 0x92
FLPMC register = 0x6D
FLPMC register = 0x92
3us Wait

PFCMD register = 0xA5
FLPMC register = 0x12
FLPMC register = OXED
FLPMC register = 0x12
PFCMD register = 0xA5
FLPMC register = 0x08
FLPMC register = OxF7
FLPMC register = 0x08

e Steps 2 and 4
FLPMC register setting (0x92)
e Step 3
Inverted value or FLPMC register setting (0x6D)

e Steps 7 and 9
FLPMC register setting (0x12)
e Step 8
Inverted value or FLPMC register setting (OXED)

e Steps 11 and 13
FLPMC register setting (0x08)
e Step 12
Inverted value or FLPMC register setting (0xF7)

Step 14: After the wait time (10US) has passed, data can be read from the target flash memory.

R20UT5009EJ0110 Rev.1.10

Dec.28.22

RENESAS Page 77 of 186

RFD RL78 Type 02 4. Flash Memory Sequencer Operation

4.2 Clearing the Registers for Flash Memory Sequencer Control

The registers shown below can be cleared by setting the FLRST bit of the flash registers initialization register
(FLRST) to 1.

Target registers to be initialized: FLAPH, FLAPL, FLSEDH, FLSEDL, FLWH, FLWL, FLARS, FSSQ, and
FSSE

Target function of this operation: R_RFD_ClearSeqRegister
Operation Procedure:

o Setthe FLRST bit to 1. (Write 0x01 to the FLRST register.)
« Wait for at least one cycle (by using a NOP instruction, etc.).
o Clear the FLRST bit to 0. (Write 0x00 to the FLRST register.)

Note: The FLRST bit can only be modified while both the SQST bit of the FSSQ register and the ESQST bit
of the FSSE register are 0 (the flash memory sequencer is stopped). With other settings, the FLRST
bit cannot be modified (the writing to this bit is ignored).

FLRST register (After reset: 0x00):

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 FLRST

R R R R R R R R/W
R20UT5009EJ0110 Rev.1.10 RENESAS Page 78 of 186

Dec.28.22

RFD RL78 Type 02 4. Flash Memory Sequencer Operation

4.3 Specifying the Operating Frequency of the Flash Memory Sequencer

Set to FSET [bit4-0] of the flash memory sequencer initial setting register (FSSET) the value
(g_u08_fset _cpu_frequency) generated with the “R_RFD_Init function”.

Specify the integer value obtained by rounding up the fraction part of the CPU operating frequency.
(Example: When the CPU operating frequency is 4.5 MHz, specify 5 in the initialization function.)

When the CPU operating frequency is lower than 4 MHz, a frequency of 2 MHz, or 3 MHz can be specified.
A non-integer frequency such as 2.5 MHz cannot be used.

Target functions of this operation: R_RFD_Initand R_RFD_SetFlashMemoryMode
Operation Procedure:

« Change the flash memory control mode to the code flash memory programming mode or data flash
memory programming mode. For the procedures for transitions between modes, see section 4.1.1,
Procedure for Executing Specific Sequence, section 4.1.2, Procedure for transition from non-
programmable mode to the Code Flash Memory Programming Mode, and section 4.1.3, Procedure for
transition from non-programmable mode to the Data Flash Memory Programming Mode.

« Read the flash memory sequencer initial setting register (FSSET) and write the read value to the FSSET
register with the values of the TMSPMD bit (bit 7) and TMBTSEL bit (bit 6) retained, bit 5 set to 0, and the
bits corresponding to FSET (bits 4 to 0) set to the CPU operating frequency (2MHz to 40 MHz).

Note: The FSET bits (bits 4 to 0) of the FSSET register can be written to in the code flash memory
programming mode or data flash memory programming mode. In other modes, the FSET bits cannot
be modified (the writing to the bits is ignored).

Before operating (such as reprogramming) the code flash memory, data flash memory, or extra area
by using the flash memory sequencer, specify the CPU operating frequency in the FSET bits of the
FSSET register.

Note that the reprogramming operation is indeterminate and written data are not guaranteed if
reprogramming is attempted before the CPU operating frequency is specified correctly. (Even if
expected data are read from the flash memory immediately after reprogramming, the data retention
period cannot be guaranteed.)

FSSET register (After reset: 0x00):

7 6 5 4 3 2 1 0
TMSPMD | TMBTSEL 0 FSET4 FSET3 FSET2 FSET1 FSETO
R/W R/W R R/W R/W R/W R/W R/W
R20UT5009EJ0110 Rev.1.10 RENESAS Page 79 of 186

Dec.28.22

RFD RL78 Type 02 4. Flash Memory Sequencer Operation

4.4 Flash Memory Sequencer Commands
441 Overview

The flash memory sequencer in the RL78/F23 and RL78/F24 consists of the code/data flash area
sequencer, which reprograms the code flash area or data flash area, and the extra area sequencer, which
reprograms the extra area. To reprogram individual areas, the commands for the respective sequencers
need to be executed. Before using the flash memory sequencer commands, please read and understand the
descriptions in (3) Program execution during reprogramming of the flash memory in section 1.5, Points for
Caution.

4.41.1 Selection of the Area to be Reprogrammed

The area to be reprogrammed needs to be selected by the EXA bit (bit 0) of the flash area select register
(FLARS); select the user area to reprogram the code/data flash area or select the extra area to reprogram
the extra area. The EXA bit cannot be modified while the FLRST bit (bit 0) of the FLRST register is 1.

FLARS register (After reset: 0x00):

7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 EXA
R R R R R R R R/W

EXA = 0 (after reset): User area is selected.
EXA = 1: Extra area is selected.

R20UT5009EJ0110 Rev.1.10 NS Page 80 of 186
Dec.28.22 RENES

RFD RL78 Type 02 4. Flash Memory Sequencer Operation

44.2 Code/Data Flash Area Sequencer Commands

Dedicated commands for the code/data flash area sequencer are used to reprogram the code flash area or
data flash area. To issue a command, specify the desired command number in the SQMD2 to SQMDO bits
(bits 2 to 0) of the flash memory sequencer control register (FSSQ) and set the SQST bit (bit 7) to 1.

FSSQ register (After reset: 0x00):

7 6 5 4 3 2 1 0
SQST FSSTP DCLR 0 MDCH SQMD2 SQMD1 SQMDO
R/W R/W R/W R/W R/W R/W R/W R/W

Table 4-1 shows the dedicated commands for the code/data flash area sequencer.

Table 4-1 Dedicated Commands for the Code/Data Flash Area Sequencer

SQMD2 to MDCH Function of Dedicated Command
SQMDO Setting

Description

0x1 CF: 0 Write

DF: 0 The data specified in the FLWH and FLWL registers are written to the flash
memory address specified by the FLAPH and FLAPL registers.

e Code flash memory programming (1 word (4 bytes)):
Specify data in the FLWH and FLWL registers.
e Data flash memory programming (1 byte):
Specify data in the FLW7 to FLWO bits (bits 7 to 0) of the FLWL register.
0x2 CF: 0 Internal verify
DF:

N

Internal verify is performed in the area between the address specified by the
FLAPH and FLAPL registers and the address specified by the FLSEDH and
FLSEDL registers. The value to be set in the MDCH bit (bit 3) of the FSSQ
register differs depending on the target flash memory to be checked. For the
code flash memory, set the MDCH bit (bit 3) to 0. For the data flash memory,
setto 1.

0x3 CF: 0 Blank check
DF:

—_

Blank check is performed in the area between the address specified by the
FLAPH and FLAPL registers and the address specified by the FLSEDH and
FLSEDL registers. The value to be set in the MDCH bit (bit 3) of the FSSQ
register differs depending on the target flash memory to be checked. For the
code flash memory, set the MDCH bit (bit 3) to 0. For the data flash memory,
setto 1.

0x4 CF: 0 Block erase

DF: 0 Data are erased from the blocks between the start address specified by the
FLAPH and FLAPL registers and the end address specified by the FLSEDH
and FLSEDL registers.

Others - Setting prohibited

Note: CF: Code flash memory access
DF: Data flash memory access

R20UT5009EJ0110 Rev.1.10 NS Page 81 of 186
Dec.28.22 RENES

RFD RL78 Type 02

4. Flash Memory Sequencer Operation

o FLAPH and FLAPL registers (flash address pointer registers)
FLAPH register (After reset: 0x00):

7 6 5 4 3 2 1 0
0 0 0 0 FLAP 19 FLAP 18 FLAP 17 FLAP 16
R R R R R/W R/W R/W R/W
FLAPL register (After reset: 0x0000):
15 14 13 12 11 10 9 8
FLAP 15 FLAP 14 FLAP 13 FLAP 12 FLAP 11 FLAP 10 FLAP 9 FLAP 8
R/W R/W R/W R/W R/W R/W R/W R/W
7 6 5 4 3 2 1 0
FLAP 7 FLAP 6 FLAP 5 FLAP 4 FLAP 3 FLAP 2 FLAP 1 FLAP O
R/W R/W R/W R/W R/W R/W R/W R/W
o FLWH and FLWL registers (flash write buffer registers)
FLWH register (After reset: 0x0000):
15 14 13 12 11 10 9 8
FLW 31 FLW 30 FLW 29 FLW 28 FLW 27 FLW 26 FLW 25 FLW 24
R/W R/W R/W R/W R/W R/W R/W R/W
7 6 5 4 3 2 1 0
FLW 23 FLW 22 FLW 21 FLW 20 FLW 19 FLW 18 FLW 17 FLW 16
R/W R/W R/W R/W R/W R/W R/W R/W
FLWL register (After reset: 0x0000):
15 14 13 12 11 10 9 8
FLW 15 FLW 14 FLW 13 FLW 12 FLW 11 FLW 10 FLW 9 FLW 8
R/W R/W R/W R/W R/W R/W R/W R/W
7 6 5 4 3 2 1 0
FLW 7 FLW 6 FLW 5 FLW 4 FLW 3 FLW 2 FLW 1 FLW 0
R/W R/W R/W R/W R/W R/W R/W R/W

Note that the bits used in the FLWH and FLWL registers differ depending on the command to be executed.

R20UT5009EJ0110 Rev.1.10 Page 82 of 186

Dec.28.22 RENESAS

RFD RL78 Type 02

4. Flash Memory Sequencer Operation

o FLSEDH and FLSEDL registers (flash end address pointer registers)

FLSEDH register (After reset: 0x00):

7 6 5 4 3 2 1 0
0 0 0 0 EWA 19 EWA 18 EWA 17 EWA 16
R R R R R/W R/W R/W R/W
FLSEDL register (After reset: 0x0000):
15 14 13 12 11 10 9 8
EWA 15 EWA 14 EWA 13 EWA 12 EWA 11 EWA 10 EWA 9 EWA 8
R/W R/W R/W R/W R/W R/W R/W R/W
7 6 5 4 3 2 1 0
EWA 7 EWA 6 EWA 5 EWA 4 EWA 3 EWA 2 EWA 1 EWA 0
R/W R/W R/W R/W R/W R/W R/W R/W
R20UT5009EJ0110 Rev.1.10 RENESAS Page 83 of 186

Dec.28.22

RFD RL78 Type 02 4. Flash Memory Sequencer Operation

4.4.21 Reprogramming the Code Flash Area

To reprogram the code flash area, change the flash memory control mode to the code flash memory
programming mode and then execute commands for the code/data flash area sequencer. Before executing a
command, the necessary address and data for the command should be specified in the respective registers.

Units of erasure and writing for reprogramming of the code flash area:

- Block erase unit: 1 Kbyte
- Write unit: 1 word (4 bytes)

Target functions of this operation: R_RFD_EraseCodeFlashReq, R_RFD_WriteCodeFlashReq,
R_RFD_BlankCheckCodeFlashReq, and R_RFD _IVerifyCodeFlashReq

Operation Procedure:
Block erase, write, blank check, and internal verify commands for the code flash memory can be used.

« Change the control mode to the code flash memory programming mode. For the mode transition
procedure, see section 4.1.1, Procedure for Executing Specific Sequence, and section 4.1.2, Procedure
for Transition to the Code Flash Memory Programming Mode.

o Set the FLARS register to 0x00 (EXA (bit 0) = 0): Select the user area.
« Specify the necessary data in the respective registers before executing a command.

(1) Block erase

FLAPH and FLAPL registers: Start block address of the code flash memory
(Example: 0x002000)

FLSEDH and FLSEDL registers: End block address of the code flash memory
(Example: 0x0023FF)

(2) Write: This command is executed in units of one word (4 bytes); specify a multiple of 4 as an address —
that is, set bits 1 and 0 to 0.

FLAPH and FLAPL registers: Start address of the target flash memory area
(Example: 0x002000)

FLSEDH and FLSEDL registers: Set to all Os or specify nothing. (Example: 0x000000)
FLWH and FLWL registers: Specify the data to be written (1 word (4 bytes)).

(3) Blank check: This command is executed in units of one word (4 bytes); specify a multiple of 4 as an
address — that is, set bits 1 and 0 to 0.

FLAPH and FLAPL registers: Start address of the target flash memory area (Example: 0x002000)
FLSEDH and FLSEDL registers: End address of the target flash memory area (Example: 0x0023FF)

Note: To perform blank check only in a 1-word (4-byte) area, set FLAPH = FLSEDH and FLAPL =
FLSEDL.

(4) Internal verify:
FLAPH and FLAPL registers: Start address of the target flash memory area (Example: 0x002000)
FLSEDH and FLSEDL registers: End address of the target flash memory area (Example: 0x0023FF)

Note: This command can be executed only once in the area immediately after writing. Do not execute it
more than once.

« Specify the desired command number in the SQMD2 to SQMDO bits (bits 2 to 0) of the FSSQ register
and set the SQST bit (bit 7) to 1.
Block erase: 0x84 Write: 0x81 Blank check: 0x83 Internal verify: 0x82
« Wait until command execution is completed in the code/data flash area sequencer. For the procedure for
waiting for the completion of command execution, see section 4.4.4.1, Procedure for Judging the End of
Command Execution in the Code/Data Flash Area Sequencer.

R20UT5009EJ0110 Rev.1.10 NS Page 84 of 186
Dec.28.22 RENES

RFD RL78 Type 02 4. Flash Memory Sequencer Operation

» Processing after command execution
To continue command processing:

The same command or a different code flash area reprogramming command can be executed with the
data in the registers modified while the sequencer is placed in the code flash memory programming
mode.

To complete command processing:

Place the sequencer in the non-programmable mode. For the mode transition procedure, see section
4.1.1, Procedure for Executing Specific Sequence, and section 4.1.4, Procedure for transition to the Non-
programmable Mode.

4.4.2.2 Reprogramming the Data Flash Area

To reprogram the data flash area, change the flash memory control mode to the data flash memory
programming mode and then execute commands for the code/data flash area sequencer. Before executing a
command, the necessary address and data for the command should be specified in the respective registers.

Units of erasure and writing for reprogramming of the data flash area:

- Block erase unit: 1 Kbyte
- Write unit: 1 byte

Target functions of this operation: R_RFD_EraseDataFlashReq, R_RFD_WriteDataFlashReq,
R_RFD_BlankCheckDataFlashReq, and R_RFD_|VerifyDataFlashReq

Operation Procedure:
Block erase, write, blank check, and internal verify commands for the data flash memory can be used.

« Change the control mode to the data flash memory programming mode. For the mode transition
procedure, see section 4.1.1, Procedure for Executing Specific Sequence, and section 4.1.3, Procedure
for transition from non-programmable mode to the Data Flash Memory Programming Mode.

o Set the FLARS register to 0x00 (EXA (bit 0) = 0): Select the user area.
« Specify the necessary data in the respective registers before executing a command.

(1) Block erase
FLAPH and FLAPL registers: Start block address of the data flash memory (Example: 0x0F 1400)
FLSEDH and FLSEDL registers: End block address of the data flash memory (Example: OxOF17FF)

(2) Write: 1 byte
FLAPH and FLAPL registers: Start address of the target flash memory area (Example: 0xOF1101)
FLSEDH and FLSEDL registers: Set to all Os or specify nothing. (Example: 0x000000)

FLWH and FLWL registers: Specify the data to be written (0x00000000 to 0xO00000FF).
Only the FLW7 to FLWO bits (bits 7 to 0) are valid.

(3) Blank check:
FLAPH and FLAPL registers: Start address of the target flash memory area (Example: 0xOF1400)
FLSEDH and FLSEDL registers: End address of the target flash memory area (Example: OxOF17FF)
Note: To perform blank check only in a 1-byte area, set FLAPH = FLSEDH and FLAPL = FLSEDL.

(4) Internal verify:
FLAPH and FLAPL registers: Start address of the target flash memory area (Example: 0xOF 1400)
FLSEDH and FLSEDL registers: End address of the target flash memory area (Example: OxOF 15FF)

Note: This command can be executed only once in the area immediately after writing. Do not execute it
more than once.

R20UT5009EJ0110 Rev.1.10 NS Page 85 of 186
Dec.28.22 RENES

RFD RL78 Type 02 4. Flash Memory Sequencer Operation

« Specify the desired command number in the SQMD2 to SQMDO bits (bits 2 to 0) of the FSSQ register
and set the SQST bit (bit 7) to 1.

Block erase: 0x84
Write: 0x81
Blank check: 0x8B (MDCH (bit 3) = 1: Only for DF)
Internal verify: 0x8A (MDCH (bit 3) = 1: Only for DF)
« Wait until command execution is completed in the code/data flash area sequencer. For the procedure for
waiting for the completion of command execution, see section 4.4.4.1, Procedure for Judging the End of
Command Execution in the Code/Data Flash Area Sequencer.
« Processing after command execution
To continue command processing:
The same command or a different data flash area reprogramming command can be executed with the
data in the registers modified while the sequencer is placed in the data flash memory programming
mode.

To complete command processing:
Place the sequencer in the non-programmable mode. For the mode transition procedure, see section

4.1.1, Procedure for Executing Specific Sequence, and section 4.1.4, Procedure for transition to the
Non-programmable Mode.

R20UT5009EJ0110 Rev.1.10 NS Page 86 of 186
Dec.28.22 RENES

RFD RL78 Type 02 4. Flash Memory Sequencer Operation

443 Extra Area Sequencer Commands

Dedicated commands for the extra area sequencer are used to reprogram the extra area. To issue a
command, specify the desired command number in the ESQMD2 to ESQMDO bits (bits 2 to 0) of the Flash
extra area sequencer control register (FSSE) and set the ESQST bit (bit 7) to 1.

FSSE register (After reset: 0x00):

7 6 5 4 3 2 1 0
ESQST 0 0 0 0 ESQMD2 | ESQMD1 ESQMDO
R/W R R R R R/W R/W R/W

Table 4-2 shows the dedicated commands for the extra area sequencer.

Table 4-2 Dedicated Commands for the Extra Area Sequencer

ESQMD2 Function of Dedicated Command
ESQt(I)VIDO Description
0x1 Extra area write (programming of the security flags and the boot area switching flag)

The data specified in the FLWH and FLWL registers are written to the extra flash
area. The security flags and the boot area switching flag are set up. For the security
flags, only the disabling setting can be specified. While the boot area protection is
specified (BTPR = 0), the boot area switching flag cannot be modified.

0x2 Extra area write (programming of FSW-related data)

The data specified in the FLWH and FLWL registers are written to the extra flash
area. The FSW range is set up.

Others Setting prohibited

R20UT5009EJ0110 Rev.1.10 NS Page 87 of 186
Dec.28.22 RENES

RFD RL78 Type 02 4. Flash Memory Sequencer Operation

4.4.3.1 Reprogramming the Extra Area

To reprogram the extra area, change the flash memory control mode to the code flash memory programming
mode and then execute commands for the extra area sequencer. Before executing a command, the
necessary data for the command should be specified in the respective registers.

Unit of writing for reprogramming of the extra area:
- Write unit: 1 word (4 bytes)
Note: The erase command is not provided and therefore the unit of erasing is not shown.

Target functions of this operation: R_RFD_SetExtraEraseProtectReq, R_RFD_SetExtraWriteProtectReq,
R_RFD_SetExtraBootAreaProtectReq, R_RFD_SetExtraBootAreaReq,
and R_RFD_SetExtraFSWReq

Operation Procedure:
The data write command for the extra area can be used.

« Change the control mode to the code flash memory programming mode. For the mode transition
procedure, see section 4.1.1, Procedure for Executing Specific Sequence, and section 4.1.2, Procedure
for transition from non-programmable mode to the Code Flash Memory Programming Mode.

« Setthe FLARS register to 0x01 (EXA (bit 0) = 1): Select the extra area.

o Specify 1-word (4-byte) data in the FLWH and FLWL registers before executing a command. The
individual bits (FLW31 to FLWO) of the FLWH and FLWL registers correspond to EX bits 31 to 0 of the
target extra area data.

FLWH register (After reset: 0x0000):

15 14 13 12 11 10 9 8
FLW 31 FLW 30 FLW 29 FLW 28 FLW 27 FLW 26 FLW 25 FLW 24

7 6 5 4 3 2 1 0
FLW 23 FLW 22 FLW 21 FLW 20 FLW 19 FLW 18 FLW 17 FLW 16

FLWL register (After reset: 0x0000):

15 14 13 12 11 10 9 8
FLW 15 FLW 14 FLW 13 FLW 12 FLW 11 FLW 10 FLW 9 FLW 8

7 6 5 4 3 2 1 0
FLW 7 FLW 6 FLW 5 FLW 4 FLW 3 FLW 2 FLW 1 FLW 0

Note that the bits used in the FLWH and FLWL registers differ depending on the command to be executed.

« Specify the area to be programmed through the command. Specify the desired command number in the
ESQMD2 to ESQMDO (bits 2 to 0) bits of the FSSE register and set the ESQST bit (bit 7) to 1.

(1) Programming of the security flags and the boot area switching flag: 0x81
Wait until command execution is completed in the extra area sequencer. For the procedure for waiting for
the completion of command execution, see section 4.4.4.2, Procedure for Judging the End of Command
Execution in the Extra Area Sequencer.

(2) Programming of the FSW-related data: 0x82

R20UT5009EJ0110 Rev.1.10
Dec.28.22

RENESAS Page 88 of 186

RFD RL78 Type 02 4. Flash Memory Sequencer Operation

» Processing after command execution
To continue command processing:

The same command or a different extra area reprogramming command can be executed with the data
in the registers modified while the sequencer is placed in the code flash memory programming
mode.

To complete command processing:

Place the sequencer in the non-programmable mode. For the mode transition procedure, see section
4.1.1, Procedure for Executing Specific Sequence, and section 4.1.4, Procedure for transition to the
Non-programmable Mode.

R20UT5009EJ0110 Rev.1.10 NS Page 89 of 186
Dec.28.22 RENES

RFD RL78 Type 02

4. Flash Memory Sequencer Operation

4.4.3.2 Data Settings for Extra Area Sequencer Commands

The extra area is programmed in units of 1 word (4 bytes) including the data not to be modified. Specify the
extra area data (EX bits 31 to 0) for the target command in the FLW31 to FLWO bits of the FLWH and FLWL

registers as shown below and then execute the command.

(1) Programming of the FSW-related data
Specify the following extra area data (EX bits 31 to 0) in the FLW31 to FLWO bits of the FLWH and FLWL

registers.

EX bit 31 EX bit 30 EX bit 29 EX bit 28 EX bit 27 EX bit 26 EX bit 25 EX bit 24

- - - - - - FSWE9 FSWES8
EX bit 23 EX bit 22 EX bit 21 EX bit 20 EX bit 19 EX bit 18 EX bit 17 EX bit 16
FSWE7 FSWEG6 FSWES5 FSWE4 FSWE3 FSWE2 FSWE1 FSWEO
EX bit 15 EX bit 14 EX bit 13 EX bit 12 EX bit 11 EX bit 10 EX bit 9 EX bit 8

- - - - - - FSWS9 FSWS8
EX bit 7 EX bit 6 EX bit 5 EX bit 4 EX bit 3 EX bit 2 EX bit 1 EX bit 0
FSWS7 FSWS6 FSWS5 FSWS4 FSWS3 FSWS2 FSWS1 FSWS0

- FSWE9 to FSWEDO (bits 25 to 16): Specify the value of (end block +1) of the window range.

- FSWS9 to FSWSO0 (bits 9 to 0): Specify the start block of the window range.

R20UT5009EJ0110 Rev.1.10

Dec.28.22

LENESAS

Page 90 of 186

RFD RL78 Type 02 4. Flash Memory Sequencer Operation

(2) Programming of the security flags and the boot area switching flag

Specify the following extra area data (EX bits 31 to 0) in the FLW31 to FLWO bits of the FLWH and FLWL
registers.

EX bit 31 EX bit 30 EX bit 29 EX bit 28 EX bit 27 EX bit 26 EX bit 25 EX bit 24

1 1 1 1 1 1 1 1

EX bit 23 EX bit 22 EX bit 21 EX bit 20 EX bit 19 EX bit 18 EX bit 17 EX bit 16

1 1 1 1 1 1 1 1

EX bit 15 EX bit 14 EX bit 13 EX bit 12 EX bit 11 EX bit 10 EX bit 9 EX bit 8

1 1 1 WRPR 1 SEPR BTPR BTFLG

EX bit 7 EX bit 6 EX bit 5 EX bit 4 EX bit 3 EX bit 2 EX bit 1 EX bit 0

1 1 1 1 1 1 1 1

- WRPR (bit 12): Specify the write protection in the serial programming mode.
WRPR =0: Programming in the serial programming mode is disabled.
1 (setting at shipment): Programming in the serial programming mode is enabled.
- SEPR (bit 10): Specify the block erasure protection in the serial programming mode.
SEPR = 0: Block erasure in the serial programming mode is disabled.
1 (setting at shipment): Block erasure in the serial programming mode is enabled.

- BTPR (bit 9): Specify the protection against reprogramming of the boot area in the serial or self
programming mode.

BTPR = 0: Reprogramming of the boot area is disabled.
1 (setting at shipment): Reprogramming of the boot area is enabled.

- BTFLG (bit 8): Control the boot cluster to be allocated to the boot area when TMSPMD = 0 (boot swap
is executed according to the setting of the boot area switching flag (BTFLG) in the extra area).
BTFLG =0: Boot cluster 1 is used as the boot area.
1 (setting at shipment): Boot cluster 0 is used as the boot area.

Notes: 1. When modifying the BTFLG flag, set the other bits to 1.

2. When modifying a security flag other than the BTFLG flag to 0 (disabled), set the other bits
to 1 except for the BTFLG flag (set to the read value).

3. After the WRPR flag is set to 0 (disabled), it can be set to 1 (enabled) only when the erase
chip command is executed in the serial programming mode

While any of the following protections is set (operation is disabled), the erase chip
command cannot be executed in the serial programming mode.

e SEPR = 0 (Protection against block erasure)
e BTPR = 0 (Protection against reprogramming of the boot area)

R20UT5009EJ0110 Rev.1.10 NS Page 91 of 186
Dec.28.22 RENES

RFD RL78 Type 02

4. Flash Memory Sequencer Operation

444

Procedures for Judging the End of Command Execution in the Flash Memory Sequencer

To terminate command execution in the flash memory sequencer started in the RL78/F23 and RL78/F24, a
specific procedure for judging the end of command execution should be used.

Read the ESQEND bit (bit 7) or SQEND bit (bit 6) of the FSASTH register and confirm that it is set to 1 to
judge the end of command execution in the code/data flash area sequencer or extra area sequencer. After
this judgement, read the error bits (BLER (bit 3), IVER (bit 2), WRER (bit 1), and ERER (bit 0)) of the
FSASTL register to check whether an error has occurred in the execution of the respective commands.

FSASTH register (After reset: 0x00):

7 6 5 4 3 2 1 0
ESQEND SQEND 0 0 0 0 0 0
R R R R R R R R
FSASTL register (After reset: 0x00):
7 6 5 4 3 2 1 0
MBTSEL ESEQER SEQER BLER IVER WRER ERER
R R R R R R R R

Note: The boot flag monitor bit (MBTSEL (bit 7)) holds the inverted value of the boot area switching flag (BTFLG (bit 8))
in the extra area.

4.4.41 Procedure for Judging the End of Command Execution in the Code/Data Flash Area
Sequencer

Judgment Procedure:

(1) After starting the execution of a command in the code/data flash area, wait until the SQEND bit (bit 6) of
the FSASTH register is automatically set.
(2) After confirming that the SQEND bit (bit 6) has been set, clear the SQST bit (bit 7) of the FSSQ register.

(3) Wait until the SQEND bit (bit 6) of the FSASTH register is automatically cleared; the procedure ends
when the bit is cleared.

4.4.4.2 Procedure for Judging the End of Command Execution in the Extra Area Sequencer
Judgment Procedure:

(1) After starting the execution of a command in the extra area sequencer, wait until the ESQEND bit (bit 7)
of the FSASTH register is automatically set.

(2) After confirming that the ESQEND bit (bit 7) has been set, clear the ESQST bit (bit 7) of the FSSE
register.

(3) Wait until the ESQEND bit (bit 7) of the FSASTH register is automatically cleared; the procedure ends
when the bit is cleared.

R20UT5009EJ0110 Rev.1.10
Dec.28.22

RENESAS Page 92 of 186

RFD RL78 Type 02 4. Flash Memory Sequencer Operation

445 Procedure for Forcibly Terminating Command Execution in the Code/Data Flash Area
Sequencer

Command execution in the code/data flash area sequencer can be forcibly terminated if an emergency stop
is necessary.

Note: Command execution in the extra area sequencer cannot be forcibly terminated.
Procedure of Forced Termination:

(1) Set the FSSTP bit (bit 6) of the FSSQ register to 1 between the start of command execution (step (1) in
section 4.4.4.1, Procedure for Judging the End of Command Execution in the Code/Data Flash Area
Sequencer) and the clearing of the SQST bit (bit 7) of the FSSQ register (step (2)); the command
execution started in the code/data flash area sequencer is forcibly stopped.

(2) Check that the SQEND bit (bit 6) of the FSASTH register has been set and then clear the SQST bit (bit 7)
and FSSTP bit (bit 6) of the FSSQ register.

(3) Wait until the SQEND bit (bit 6) of the FSASTH register is automatically cleared; the procedure ends
when the bit is cleared.

FSSQ register (After reset: 0x00):

7 6 5 4 3 2 1 0
SQST FSSTP DCLR 0 MDCH SQMD2 SQMD1 SQMD 0
R/W R/W R/W R/W R/W R/W R/W R/W
R20UT5009EJ0110 Rev.1.10 RENESAS Page 93 of 186

Dec.28.22

RFD RL78 Type 02 4. Flash Memory Sequencer Operation

4.5 Boot Swap Function

4.51 Overview

If reprogramming fails due to a temporary power failure or a reset from an external source while the boot
area (00000H to 03FFFH), which stores the vector table data, basic functions of programs, and boot
program for self-programming, is being reprogrammed, the data in the boot area are damaged; the user
program cannot be restarted or reprogrammed even by a reset applied after that. The boot swap function is
provided to avoid this situation.

4.5.2 Operation of the Boot Swap Function

The boot swap function replaces boot cluster 0 (00000H to 03FFFH), which is the boot area, with boot
cluster 1 (04000H to 07FFFH), which is the target area of boot swap. Before starting the reprogramming
processing, write a new boot program to boot cluster 1 (04000H to 07FFFH). Swap boot cluster 1 (04000H to
07FFFH) and boot cluster 0 (00000H to 03FFFH) so that boot cluster 1 is allocated to the boot area (00000H
to 03FFFH). Even if a temporary power failure occurs during reprogramming of the boot area after this swap,
booting by the next reset is done in boot cluster 1 (00000H to 03FFFH), which stores the new boot program,
and the user program can be executed correctly.

Boot area Logical area from 00000H to 03FFFH including the reset vector address

Boot clusters 0 and 1 A boot cluster is a 16-Kbyte group of blocks and either boot cluster 0 or 1
is allocated to the boot area.

Physical area name:

Boot cluster 0: 00000H to 03FFFH (logical addresses at shipment)
Boot cluster 1: 04000H to 07FFFH (logical addresses at shipment)
Note: The logical addresses of boot cluster 0 and boot cluster 1 are switched after boot swap.

The TMSPMD bit (bit 7) and TMBTSEL bit (bit 6) of the FSSET register can only be modified while BTPR = 1 and
the flash memory sequencer is in the code flash memory programming mode or data flash memory programming
mode. In other cases, the TMSPMD and TMBTSEL bits cannot be manipulated (writing to these bits is ignored).

The operation of the boot swap function is controlled by the boot area switching flag (BTFLG) in the extra
area or the TMBTSEL bit (bit 6) of the flash memory sequencer initial setting register (FSSET) depending on
the setting of the TMSPMD bit (bit 7) of the FSSET register.

- When the TMSPMD bit (bit 7) is O (after a reset), the boot area is determined according to the setting of
the BTFLG in the extra area.

BTFLG =0: Boot cluster 1 is used as the boot area.
1 (setting at shipment): Boot cluster 0 is used as the boot area.

- When the TMSPMD bit (bit 7) is 1, the boot area is determined according to the setting of the TMBTSEL
bit (bit 6) in the FSSET register.

TMBTSEL = 0 (after a reset): Boot cluster 0 is used as the boot area.
1: Boot cluster 1 is used as the boot area.

FSSET register (After reset: 0x00):

7 6 5 4 3 2 1 0
TMSPMD | TMBTSEL 0 FSET4 FSET3 FSET2 FSET1 FSETO
R/W R/W R R/W R/W R/W R/W R/W
R20UT5009EJ0110 Rev.1.10 RENESAS Page 94 of 186

Dec.28.22

RFD RL78 Type 02 4. Flash Memory Sequencer Operation

4.5.3 Execution of the Boot Swap Function
The boot swap function can be executed in two ways: immediate execution and execution after a reset.

Note: When writing to the FSSET register to manipulate the TMSPMD bit or TMBTSEL bit, do not
modify the value of the FSET4 to FSETO bits (CPU operating frequency) of the register. Before
writing to the FSSET register, be sure to read the register, and then write to it without
changing the value of the FSET4 to FSETO bits.

If an incorrect CPU operating frequency is set in the FSSET register, the operation of the flash
memory sequencer is indeterminate and the reprogrammed values in the flash memory are not
guaranteed.

4.5.3.1 Immediate Execution of Boot Swap

The specified boot cluster is immediately allocated to the boot area (00000H to 03FFFH) (boot swap is
performed immediately).

Note: When BTPR = 0, the TMSPMD bit cannot be modified and boot swap is not executed.
Target function of this operation: R_RFD_SetBootArealmmediately
Operation Procedures:

(1) When the TMSPMD bit = 0 (boot swap according to BTFLG):
o Read the MBTSEL bit of the FSAST register and set the value in the TMBTSEL bit of the FSSET register.
a) When the TMBTSEL bit = 1:

- Set the TMSPMD bit to 1 (boot swap according to TMBTSEL) and the TMBTSEL bit to 0. Boot swap
is executed immediately.

b) When the TMBTSEL bit = 0:

- Set the TMSPMD bit to 1 (boot swap according to TMBTSEL) and the TMBTSEL bit to 1. Boot swap
is executed immediately.

(2) When the TMSPMD bit = 1 (boot swap according to TMBTSEL):
a) When the TMBTSEL bit = 1:
- Set the TMBTSEL bit to 0. Boot swap is executed immediately.
b) When the TMBTSEL bit = 0:
- Set the TMBTSEL bit to 1. Boot swap is executed immediately.

R20UT5009EJ0110 Rev.1.10 NS Page 95 of 186
Dec.28.22 RENES

RFD RL78 Type 02 4. Flash Memory Sequencer Operation

4.5.3.2 Boot Swap Execution after a Reset
Boot swap is not executed immediately after the BTFLG is written to but executed after a reset.

Note: When BTPR = 0, neither the TMSPMD bit can be modified nor the BTFLG can be set by
programming of the extra area. Therefore, boot swap is not executed.

Target function of this operation: R_RFD_SetExtraBootAreaReq
Operation Procedures:

(1) When the TMSPMD bit = 0 (boot swap according to BTFLG):
« Read the BTFLG bit of the FLSEC register.
a) When the BTFLG bit = 0 in the FLSEC register:
- Set the TMSPMD bit to 1 (boot swap according to TMBTSEL) and the TMBTSEL bit to 1.

- Write to the BTFLG bit in the extra area. (Specify the boot cluster to be used as the boot area.
ESQMD = 0x1 in the FSSE register)

- Boot swap is executed after the reset operation and execution branches to the reset vector address in
the specified boot cluster.

b) When the BTFLG bit = 1 in the FLSEC register:
- Set the TMSPMD bit to 1 (boot swap according to TMBTSEL) and the TMBTSEL bit to 0.

- Write to the BTFLG bit in the extra area. (Specify the boot cluster to be used as the boot area.
ESQMD = 0x1 in the FSSE register)

- Boot swap is executed after the reset operation and execution branches to the reset vector address in
the specified boot cluster.

(2) When the TMSPMD bit = 1 (boot swap according to TMBTSEL):

« Write to the BTFLG bit in the extra area. (Specify the boot cluster to be used as the boot area. ESQMD =
0x1 in the FSSE register)

« Boot swap is executed after the reset operation and execution branches to the reset vector address in the
specified boot cluster.

R20UT5009EJ0110 Rev.1.10 NS Page 96 of 186
Dec.28.22 RENES

RFD RL78 Type 02
4.6

4. Flash Memory Sequencer Operation

Flash Shield Window Function

4.6.1 Overview

The flash shield window (FSW) function is provided as one of the security functions for self-programming. It
disables programming and erasure of areas other than the specified window range only during self-
programming. The window range for the FSW function is specified by the start block and end block +1.

4.6.2 Operation of the Flash Shield Window Function

The operation of the FSW function is determined by the settings in the flash FSW monitor registers
(FLFSWE and FLFSWS), which reflect the FSW information written to the extra area. To modify the FSW
settings, use the extra area sequencer to write the setting values to the extra area for FSW settings.

FLFSWE register (the value in the corresponding extra area is reflected in this register after a reset or
when the extra area is programmed):

15

14

13 12 11 10 9 8
0 0 0 0 0 0 FSWE9 FSWES8
R R R R R R R R
7 6 5 4 3 2 1 0
FSWE7 FSWEG6 FSWES FSWE4 FSWE3 FSWE2 FSWE1 FSWEO
R R R R R R R R

FLFSWS register (the value in the corresponding extra area is reflected in this register after a reset or
when the extra area is programmed):

15 14 13 12 11 10 9 8

0 0 0 0 0 0 FSWE9 FSWS8

R R R R R R R R

7 6 5 4 3 2 1 0
FSWS7 FSWS6 FSWS5 FSWS4 FSWS3 FSWS2 FSWS1 FSWSO0

R R R R R R R R

- FSWE (bits 9 to 0) of the FLFSWE register: Specify the end block number +1 of the window range.
- FSWS (bits 9 to 0) of the FLFSWS register: Specify the start block number of the window range.

R20UT5009EJ0110 Rev.1.10
Dec.28.22

LENESAS

Page 97 of 186

RFD RL78 Type 02

4. Flash Memory Sequencer Operation

4.6.3 Execution of the Flash Shield Window Function

4.6.3.1 Control of the Flash Shield Window Mode

Target function of this operation: R_RFD_SetExtraFSWReq

Operation Procedure:

« Write to the FSWE, and FSWS bits in the extra area. (ESQMD = 0x1 in the FSSE register)
FSWE: End block number +1 of the FSW window range.
FSWS: Start block of the FSW window range.

Note: Set reserved bits (bits 15 to 10) to 0. When the FSWS and FSWE bits are set to the same value,
reprogramming is enabled in the entire area of the code flash memory.

Example: Target device = R7F124FPJ

Specify “start block = 03H”, “end block = 05H” as window ranges.

Flash shield area

4 3FFFFH

v 01800H

End block

Flash memory T 017FFH Block 05H (1 Kbytes)

area

Window range
(reprogrammable area)

Block 04H (1 Kbytes)

Block 03H (1 Kbytes)

00C00H Start block

00BFFH

Flash shield area

00000H

Figure 4-1

Example of FSW Settings

Self-programmin

v': Reprogrammable

R20UT5009EJ0110 Rev.1.10

Dec.28.22

RRENESAS

Page 98 of 186

RFD RL78 Type 02 4. Flash Memory Sequencer Operation

4.7 Examples of Command Execution for Reprogramming of Flash Areas

4.71 Example of Command Execution for Reprogramming of the Code Flash Area

Figure 4-2 shows a flowchart of command execution for reprogramming of the code flash area.

* Copy the reprogramming
processing code to RAM.

e Jump to RAM.

¢ Place the sequencer in the code ¢ 4.1.2, Procedure for transition from non-programmable mode to

flash memory programming mode. the Code Flash Memory Programming Mode
¢ 4.3, Specifying the Operating Frequency of the Flash Memory
Sequencer

:

e Execute a command in the ¢ 4.4.2.1, Reprogramming the Code Flash Area

code/data flash area sequencer.

o Wait until the end of command ¢ 4.4.4.1, Procedure for Judging the End of Command Execution

execution in the code/data flash in the Code/Data Flash Area Sequencer

area sequencer.

ontinue command execution?
Yes
» Place the sequencer in the non- ¢ 4.1.4, Procedure for transition to the Non-programmable Mode

programmable mode.

e Jump to ROM.

To the user
processing

Figure 4-2 Flowchart of Command Execution for Reprogramming of the Code Flash Area

R20UT5009EJ0110 Rev.1.10 NS Page 99 of 186
Dec.28.22 RENES

RFD RL78 Type 02 4. Flash Memory Sequencer Operation

4.7.2 Example of Command Execution for Reprogramming of the Data Flash Area

Figure 4-3 shows a flowchart of command execution for reprogramming of the data flash area.

¢ Set the DFLEN bit to 1 to enable
access to the data flash memory.

¢ Place the sequencer in the data ¢ 4.1.3, Procedure for transition from non-programmable mode to
flash memory programming mode. the Data Flash Memory Programming Mode
¢ 4.3, Specifying the Operating Frequency of the Flash Memory
Sequencer
N
'l
e Execute a command in the ¢ 4.4.2.2, Reprogramming the Data Flash Area
code/data flash area sequencer.
o Wait until the end of command ¢ 4.4.4.1, Procedure for Judging the End of Command Execution
execution in the code/data flash in the Code/Data Flash Area Sequencer
area sequencer.
Continue command execution?
Yes No
» Place the sequencer in the non- ¢ 4.1.4, Procedure for transition to the Non-programmable Mode

programmable mode.

To the user
processing

Figure 4-3 Flowchart of Command Execution for Reprogramming of the Data Flash Area

R20UT5009EJ0110 Rev.1.10 NS Page 100 of 186
Dec.28.22 RENES

RFD RL78 Type 02

4. Flash Memory Sequencer Operation

4.7.3 Example of Command Execution for Reprogramming of the Extra Area

Figure 4-4 shows a flowchart of command execution for reprogramming of the extra area.

¢ Copy the reprogramming
processing code to RAM.

e Jump to RAM.

¢ Place the sequencer in the code

flash memory programming mode.

»
»

e Execute a command in the extra
area sequencer.

¢ Wait until the end of command
execution in the extra area
sequencer.

Continue command execution?

Yes

¢ Place the sequencer in the non-
programmable mode.

e Jump to ROM.

To the user
processing

* 4.1.2, Procedure for transition from non-programmable mode to the Code
Flash Memory Programming Mode

¢ 4.3, Specifying the Operating Frequency of the Flash Memory Sequencer

¢ 4.4.3.1, Reprogramming the Extra Area

e 4.4.4.2, Procedure for Judging the End of Command Execution in the
Extra Area Sequencer

* 4.1.4, Procedure for transition to the Non-programmable Mode

Figure 4-4 Flowchart of Command Execution for Reprogramming of the Extra Area

R20UT5009EJ0110 Rev.1.10
Dec.28.22

RENESAS Page 101 of 186

RFD RL78 Type 02

5. Sample Programs

5.

Sample Programs

This section describes the sample programs provided together with RFD RL78 Type 02.

5.1

5.1.1

File Structure

Folder Structure

Figure 5-1 shows the structure of sample program folders.

Figure 5-1 shows an example of using RL78/F24. The installed “sample” folder contains a folder for each
device group (e.g. RL78_F24).

The "RL78_F24" folder is used when using RL78/F23 and RL78/F24.

RFDRL78T02

include
rfd

sample

source

CF
DF

source

common

include

&

codeflash
common

dataflash
extra_fsw

RL78_F24

EX_FSW

codeflash
common
dataflash

extraarea

Userown

L=

&

: : Folders of sample programs

RFD RL78 Type 02
include files

Sample programs

RFD RL78 Type 02
source program files

RFD RL78 Type 02
user-own files

Figure 5-1 Structure of Sample Program Folders

R20UT5009EJ0110 Rev.1.10
Dec.28.22

RENESAS

Page 102 of 186

RFD RL78 Type 02 5. Sample Programs

5.1.2 List of Files
5.1.2.1 List of Source Files
Table 5-1 shows the program source file in the “sample\common\source\common\” folder.

Table 5-1 Program Source File in the “sample\common\source\common\” Folder

No. Source File Name Description

1 sample_control_common.c This file contains the functions used in common for
controlling the flash memory.

Table 5-2 shows the program source file in the “sample\common\source\dataflash\” folder.

Table 5-2 Program Source File in the “sample\common\source\dataflash\” Folder

No. Source File Name Description

1 sample_control_data_flash.c This file contains the functions for controlling the data
flash memory.

Table 5-3 shows the program source file in the “sample\common\source\codeflash\” folder.

Table 5-3 Program Source File in the “sample\common\source\codeflash\” Folder

No. Source File Name Description

1 sample_control_code_flash.c This file contains the functions for controlling the code
flash memory.

Table 5-4 shows the program source file in the “sample\common\source\extra_fsw\” folder.

Table 5-4 Program Source File in the “sample\common\source\extra_fsw\” Folder

No. Source File Name Description

1 sample_control_extra_fsw.c This file contains the functions for controlling the FSW in
the extra area.

Table 5-5 shows the program source files of the main processing for controlling the code flash memory (CF),
data flash memory (DF), and FSW in the extra area (EX_FSW) in the “sample\RL78_F24” folder.

- Main processing for controlling the code flash memory (CF):
“sample\RL78_ F24\CF\[compiler name]\source\” folder

- Main processing for controlling the data flash memory (DF):
“sample\RL78_F24\DF\[compiler name]\source\” folder

- Main processing for controlling the FSW in the extra area (EX_FSW):
“sample\RL78_F24\EX_ FSW\[compiler name]\source\” folder

Table 5-5 Program Source Files of the Main Processing

No. Source File Name Description

1 main.c (for code flash) Sample file of the main processing functions for
controlling the code flash memory

2 main.c (for data flash) Sample file of the main processing functions for
controlling the data flash memory

3 main.c (for FSW control in extra Sample file of the main processing functions for

area) controlling the extra area (FSW function)
R20UT5009EJ0110 Rev.1.10 RENESAS Page 103 of 186

Dec.28.22

RFD RL78 Type 02

5. Sample Programs

5.1.2.2 List of Header Files

Table 5-6 shows the program header files in the “sample\commonl\include\” folder.

Table 5-6 Program Header Files in the “sample\commonl\include\” Folder

No.

Header File Name

Description

1

sample_control_common.h

This file defines the prototype declarations of the sample
functions used in common for controlling the flash
memory.

sample_control_data_flash.h

This file defines the prototype declarations of the sample
functions for controlling the data flash memory.

sample_control_code_flash.h

This file defines the prototype declarations of the sample
functions for controlling the code flash memory.

sample_control_extra_fsw.h

This file defines the prototype declarations of the sample
functions for controlling the FSW in the extra area.

sample_defines.h

This file defines the macros of the sample functions for
controlling the flash memory.

sample_memmap.h

This file defines the macros that describes the sections
used by the sample program that controls the flash
memory.

sample_types.h

This file defines the enumerated-type return values for
the sample programs.

R20UT5009EJ0110 Rev.1.10

Dec.28.22

RENESAS Page 104 of 186

RFD RL78 Type 02 5. Sample Programs

5.2 Data Type Definitions
5.21 Enumerations

- e_sample_ret (enumerated-type variable name: e_sample_ret_t)

Table 5-7 shows the results (normal end or error) of execution in the flash memory sequencer and the
status after execution.

Table 5-7 Results (Normal End or Error) of Execution in the Flash Memory Sequencer and Status
after Execution

Symbol Name Value Description
SAMPLE_ENUM_RET_STS OK 0x00u Status (Normal end)
SAMPLE_ENUM_RET_ERR_PARAMETER 0x10u Parameter error
SAMPLE_ENUM_RET_ERR_CONFIGURATION 0x11u Configuration error
SAMPLE_ENUM_RET_ERR_MODE_MISMATCHED 0x12u Mode mismatch error
SAMPLE_ENUM_RET_ERR_CHECK_WRITE_DATA 0x13u Written data comparison error
SAMPLE_ENUM_RET_ERR_CFDF_SEQUENCER 0x20u Code/data flash area sequencer error
SAMPLE_ENUM_RET_ERR_EXTRA_SEQUENCER 0x21u Extra area sequencer error
SAMPLE_ENUM_RET_ERR_ACT_ERASE 0x22u Erase operation error
SAMPLE_ENUM_RET_ERR_ACT_WRITE 0x23u Write operation error
SAMPLE_ENUM_RET_ERR_ACT_BLANKCHECK 0x24u Blank check operation error
SAMPLE_ENUM_RET_ERR_ACT_IVERIFY 0x25u Internal verify operation error
SAMPLE_ENUM_RET_ERR_CMD_ERASE 0x30u Erase command error
SAMPLE_ENUM_RET_ERR_CMD_WRITE 0x31u Write command error
SAMPLE_ENUM_RET_ERR_CMD_BLANKCHECK 0x32u Blank check command error
SAMPLE_ENUM_RET_ERR_CMD_IVERIFY 0x33u Internal verify command error
SAMPLE_ENUM_RET_ERR_CMD_SET_EXTRA_AREA 0x34u Extra area command setting error

R20UT5009EJ0110 Rev.1.10 NS Page 105 of 186
Dec.28.22 RENES

RFD RL78 Type 02 5. Sample Programs

5.3 Sample Program Functions
Table 5-8 shows the sample program functions.

Table 5-8 List of Sample Program Functions

API Function Name Outline

1 main (for code flash) Executes the main processing of the sample program for
controlling the reprogramming of the code flash memory.

2 Sample_CodeFlashControl Executes the processing for reprogramming the code flash
memory.

3 | main (for data flash) Executes the main processing of the sample program for
controlling the reprogramming of the data flash memory.

4 Sample_DataFlashControl Executes the processing for reprogramming the data flash
memory.

5 main (for FSW control in extra Executes the main processing of the sample program for

area) controlling the reprogramming of the extra area (FSW function

settings).

6 Sample_ExtraFSWControl Executes the processing for reprogramming the extra area (FSW
function settings).

7 Sample_CheckCFDFSegEnd Waits for the completion of command execution in the code/data
flash area sequencer.

8 Sample_CheckExtraSeqEnd Waits for the completion of command execution in the extra area
sequencer.

R20UT5009EJ0110 Rev.1.10 RENESAS Page 106 of 186

Dec.28.22

RFD RL78 Type 02 5. Sample Programs

5.3.1 Sample Program for Controlling the Reprogramming of the Code Flash Memory

The sample program for controlling the reprogramming of the code flash memory in RFD RL78 Type 02
erases block 28 (00007000H) in the code flash area and writes 256-word (1024-byte) data from the
beginning of the block.

Note: In the code flash memory programming mode, the programs in the code flash memory cannot

be executed. Copy the Sample_CodeFlashControl function and the processing to be executed
and data to be referenced within the function to RAM in advance, and execute and reference
them in RAM.

Operating conditions (Example of a sample program for RL78/F24):

CPU operating frequency: 40 MHz (The high-speed on-chip oscillator clock is used for the main system
clock.)

Code flash memory address for erasure and programming: 00007000H

Block number for erasure: 001CH

Size of write data: 256 words (1024 bytes)

Figure 5-2 shows a flowchart of the main processing of the sample program for controlling the code flash
memory reprogramming in RFD RL78 Type 02.

R20UT5009EJ0110 Rev.1.10 NS Page 107 of 186
Dec.28.22 RENES

RFD RL78 Type 02

5. Sample Programs

5.3.1.1 main Function

e Set the write data in the buffer. ‘

Is HOCO activated?

Yes

e Return value <- Configuration
error

»

1

R_RFD_Init

Is the frequency
within the range?

Yes

e Return value <- Parameter error

Sample
CodeFlashControl

<

<

e Initializes RFD RL78 Type 02 (specifies the operating
frequency).

e CPU operating frequency range of the RL78/F24:
2 MHz to 40 MHz

¢ Within range: Returns “normal end” (0x00).

Out of range: Returns “parameter error” (0x10).

¢ Processing for controlling the code flash memory
reprogramming
¢ Return value <- Value returned from the function

Figure 5-2 Flowchart of the Main Processing of the Sample Program for Controlling Code Flash
Memory Reprogramming

R20UT5009EJ0110 Rev.1.10
Dec.28.22

RENESAS Page 108 of 186

RFD RL78 Type 02

5. Sample Programs

5.3.1.2 Sample_CodeFlashControl Function

Sample_
CodeFlashControl

o |nitialize the return value
(STS_OK).

o Initialize the error flag (= false).
o Set the reprogramming address

in the variable.
|

R_RFD_
SetFlashMemoryMode

Yes No

e Error flag <- true
e Return value <- Mode mismatch

>l
L

Error flag = false?

No Yes

R_RFD_
BlankCheckCodeFlashReq

Sample_
CheckCFDFSeqENd

The sequencer is placed in the code flash memory programming mode and the blank check and block
erasure are executed.

¢ Specifies the code flash memory programming mode.

e Correctly placed in the mode: 0x00
Mismatch with the specified mode: 0x11

¢ Blank check processing

Blank check error?

No

R_RFD_
EraseCodeFlashReq

Sample
CheckCFDFSeqENd

Yes No

e Error flag <- true
e Return value <- Erase error

ple

e Erasure processing

Normal end?

No

e Error flag <- true
¢ Return value <- Blank check error

V]‘

®

(1/3)

Figure 5-3 Flowchart of Sample Processing for Controlling Code Flash Memory Reprogramming

R20UT5009EJ0110 Rev.1.10
Dec.28.22

LENESAS

Page 109 of 186

RFD RL78 Type 02 5. Sample Programs

« Programming, and internal verify are executed.

Error flag = false?
No Yes

e Initialize the programming e Programming processing
address.

o |nitialize the counter (= 0).

Ll
Counter value < Length?
Yes No

R RFD ¢ Processing for controlling the code flash memory
WriteCodeFlashReq reprogramming

Sample_
CheckCFDFSeqENd

Yes No
¢ Increment the programming

address (+4).
o Increment the counter (+4).

<

]

e Error flag <- true
e Return value <- Write error

>
»

Error flag = false?
No Yes

R RFD e Internal verify processing
IVerifyCodeFlashReq

>
)

Sample_
CheckCFDFSeqENd

Yes No

e Error flag <- true
e Return value <- Verify error

N
Figure 5-4 Flowchart of Sample Processing for Controlling Code Flash Memory Reprogramming
(2/3)

R20UT5009EJ0110 Rev.1.10 NS Page 110 of 186
Dec.28.22 RENES

RFD RL78 Type 02 5. Sample Programs

« The sequencer in placed in the non-programmable mode and the verification check is executed through
reading by the CPU.

R RFD ¢ Specifies the non-programmable mode.
SetFIash_I\/Iemo_ryMode

Yes No

e Error flag <- true

e Correctly placed in the mode: 0x00
Mismatch with the specified mode: 0x11

e Return value <- Mode mismatch

Ll
Error flag = false?
No Yes

o Initialize the counter (= 0). o Verification check through reading by the CPU

>
Counter value < Length?
Yes No

e Read the written data.

Read data match?
Yes No

e Increment the read address (+1).

e Increment the counter (+1).

A
r

e Error flag <- true

¢ Return value
<- Data comparison error

»

Figure 5-5 Flowchart of Sample Processing for Controlling Code Flash Memory Reprogramming
(3/3)

R20UT5009EJ0110 Rev.1.10 NS Page 111 of 186
Dec.28.22 RENES

RFD RL78 Type 02 5. Sample Programs

5.3.2 Sample Program for Controlling the Reprogramming of the Data Flash Memory

The sample program for controlling the reprogramming of the data flash memory in RFD RL78 Type 02
erases block 0 (O00F1000H) in the data flash area and writes 64-byte data from the beginning of the block.

Note: In the data flash memory programming mode, the data in the data flash memory cannot be
referenced. Copy the Sample_DataFlashControl function and the data to be referenced within
the function to RAM in advance, and reference them in RAM.

Operating conditions (Example of a sample program for RL78/F24):

o CPU operating frequency: 40 MHz (The high-speed on-chip oscillator clock is used for the main system
clock.)

« Data flash memory address for erasure and programming: 000F1000H
« Block number for erasure: 0000H
« Size of write data: 64 bytes

Figure 5-6 shows a flowchart of the main processing of the sample program for controlling the data flash
memory reprogramming in RFD RL78 Type 02.

R20UT5009EJ0110 Rev.1.10 NS Page 112 of 186
Dec.28.22 RENES

RFD RL78 Type 02 5. Sample Programs

5.3.2.1 main Function

e Set the write data in the buffer.

Is HOCO activated?
Yes No

| e Return value <- Parameter error ‘

»

1

o Initializes RFD RL78 Type 02 (specifies the operating frequency).

R_RFD_lInit
o CPU operating frequency range of the RL78/F24:
Is the frequency 2 MHz to 40 MHz
within the range? - . ,
o Within range: Returns “normal end” (0x00).
Yes No Out of range: Returns “parameter error” (0x10).

| e Return value <- Parameter error ‘

»

|

Sample
DataFlashControl e Return value <- Value returned from the function

Figure 5-6 Flowchart of the Main Processing of the Sample Program for Controlling
Data Flash Memory Reprogramming

¢ Processing for controlling the data flash memory reprogramming

R20UT5009EJ0110 Rev.1.10 NS Page 113 of 186
Dec.28.22 RENES

RFD RL78 Type 02 5. Sample Programs

5.3.2.2 Sample_DataFlashControl Function

« The sequencer is placed in the data flash memory programming mode and the blank check and block
erasure are performed.

Sample
DataFlashControl

e |nitialize the return value
(STS_OK).

o Initialize the error flag (= false).
e Set the reprogramming address
in the variable. |

R RFD o Sets the DFLEN bit (bit 0) to 1 (enables access to the data flash
SetDataFlashAccessMode memory).
|
R RFD » Specifies the data flash memory programming mode.
SetFlashMemoryMode

o Correctly placed in the mode: 0x00
Mismatch with the specified mode: 0x11

Yes No

e Error flag <- true
¢ Return value <- Mode mismatch

>
L

Error flag = false?

No Yes

R RFD e Blank check processing
BIankChec_kData_FIashReq

Sample_
CheckCFDFSeqENd

Blank check error?

Yes

R RFD e Erasure processing
EraseDEtaFIa_shReq

Sample_
CheckCFDFSeqENd

Yes No

e Error flag <- true
e Return value <- Erase error

=

Figure 5-7 Flowchart of Sample Processing for Controlling Data Flash Memory Reprogramming
(1/3)

Normal end?
No

e Error flag <- true
e Return value <- Blank check error

R20UT5009EJ0110 Rev.1.10 NS Page 114 of 186
Dec.28.22 RENES

RFD RL78 Type 02

5. Sample Programs

Error flag = false?
No Yes

o |nitialize the programming
address.
o Initialize the counter (= 0).

Ll
Counter value < Length
Yes No

R _RFD_
WriteDataFlashReq

Sample_
CheckCFDFSeqgENd

Yes No

¢ Increment the programming
address (+1).
e Increment the counter (+1).

Programming, and internal verify are executed.

¢ Programming processing

reprogramming

o Error flag <- true
e Return value <- Write error

Ll‘
Error flag = false?
No Yes

R_RFD_
IVerifyDataFlashReq

Sample_
CheckCFDFSeqENd

Yes No

e Error flag <- true
o Return value <- Verify error

|

®

e Internal verify processing

(2/3)

¢ Processing for controlling the data flash memory

Figure 5-8 Flowchart of Sample Processing for Controlling Data Flash Memory Reprogramming

R20UT5009EJ0110 Rev.1.10
Dec.28.22

LENESAS

Page 115 of 186

RFD RL78 Type 02 5. Sample Programs

« The sequencer is placed in the non-programmable mode and the verification check is executed through
reading by the CPU.

R_RFD_ » Specifies the non-programmable mode.
SetFlashMemoryMode
N | end? e Correctly placed in the mode: 0x00
ormatendr Mismatch with the specified mode: 0x11
Yes ‘ No

e Error flag <- true
e Return value <- Mode mismatch

»
Error flag = false?
No Yes

‘ e Initialize the counter (= 0). ‘ « Verification check through reading by the CPU

)|
i
Counter value < Length?
Yes No

‘ e Read the written data. ‘

Read data match?
Yes No

¢ Increment the read address (+1).

¢ Increment the counter (+1).

o
“

e Error flag <- true
¢ Return value <-
Data comparison error

L|A

> |‘
R RFD_ o Sets the DFLEN bit (bit 0) to O (disables access to the data
SetDataFlashAccessMode flash memory).

Figure 59 Flowchart of Sample Processing for Controlling Data Flash Memory Reprogramming
(3/3)

R20UT5009EJ0110 Rev.1.10 NS Page 116 of 186
Dec.28.22 RENES

RFD RL78 Type 02 5. Sample Programs

5.3.3 Sample Program for Controlling the Reprogramming of the Extra Area

The sample program for controlling the reprogramming of the extra area in RFD RL78 Type 02 reprograms
the 4-byte (32-bit) area used to control the flash shield window (FSW).

o FSWS (start block) = 0, FSWE (end block +1) = 256
(Enables reprogramming of the entire area of the code flash memory.)

Note: In the code flash memory programming mode for reprograming the extra area, the programs
in the code flash memory cannot be executed. Copy the Sample_ExtraFSWControl function
and the processing to be executed and data to be referenced within the function to RAM in
advance, and execute and reference them in RAM.

Operating conditions (Example of a sample program for RL78/F24):

« CPU operating frequency: 40 MHz (The high-speed on-chip oscillator clock is used for the main system
clock.)

« Area for programming: Extra area (FSW-related data)

« Size of write data: 4 bytes

Figure 5-10 shows a flowchart of the main processing of the sample program for controlling the extra area
reprogramming in RFD RL78 Type 02.

5.3.3.1 main Function

Is HOCO activated?
Yes ‘ No

¢ Return value <- Configuration
error

>

R_RFD_Init

Is the frequency
within the range?
Yes No

e Return value <- Parameter error ‘

»

¢ Initializes RFD RL78 Type 02 (specifies the operating frequency).

e CPU operating frequency range of the RL78/F24:
2 MHz to 40 MHz

¢ Within range: Returns “normal end” (0x00).
Out of range: Returns “parameter error” (0x10).

»
»

Sample_ ¢ Processing for controlling the extra area reprogramming
ExtraF SWControl « Return value <- Value returned from the function

d
<«

Figure 5-10 Flowchart of the Main Processing of the Sample Program for Controlling Extra Area
(FSW) Reprogramming

R20UT5009EJ0110 Rev.1.10 NS Page 117 of 186
Dec.28.22 RENES

RFD RL78 Type 02 5. Sample Programs

5.3.3.2 Sample_ExtraFSWControl Function

« The sequencer is placed in the code flash memory programming mode and the FSW setting processing
is performed.

Sample
ExtraF SWControl

o |nitialize the return value
(STS_OK).
« Initialize the error flag (= false).

R RFD » Specifies the code flash memory programming mode.
SetFlashMemoryMode

Yes No

e Error flag <- true

¢ Correctly placed in the mode: 0x00
Mismatch with the specified mode: 0x11

e Return value <- Mode mismatch

Error flag = false?
No Yes

R_RFD_ e Flash shield window (FSW) setting processing
SetExtraFSWReq

Sample_
CheckExtraSeqEnd

|
Yes ‘ No

e Error flag <- true

e Return value <- Extra area
command setting error

Ll‘
L)

Figure 5-11 Flowchart of Sample Processing for Controlling Extra Area (FSW) Reprogramming (1/2)

R20UT5009EJ0110 Rev.1.10 NS Page 118 of 186
Dec.28.22 RENES

RFD RL78 Type 02 5. Sample Programs

« The sequencer is placed in the non-programmable mode and the FSW settings are read to check that the
read settings match the expected values.

R RFD ¢ Specifies the non-programmable mode.
SetFlashMemoryMode

Yes No

e Error flag <- true

e Correctly placed in the mode: 0x00
Mismatch with the specified mode: 0x11

e Return value <- Mode mismatch

»l
"
Error flag = false?
No

‘ Yes

R_RFD_GetFSW ¢ Read the start and end block +1 of the FSW.

Expected FSW setting?
No ‘ Yes

e Error flag <- true

e Return value
<- Data comparison error
e

Figure 5-12 Flowchart of Sample Processing for Controlling Extra Area (FSW) Reprogramming (2/2)

R20UT5009EJ0110 Rev.1.10 NS Page 119 of 186
Dec.28.22 RENES

RFD RL78 Type 02 5. Sample Programs

5.3.4 Sample Program Used in Common for Controlling the Flash Memory

5.3.4.1 Sample_CheckCFDFSegEnd Function

« The end of the operation of the activated code/data flash area sequencer is confirmed and the execution
result is returned.

Sample_Check

CFDFSeaEnd
e |nitialize the return value
(STS_OK).

R_RFD_Check
CFDFSeqENndStep1

R_RFD_Check
CFDFSeqEndStep2

Is the sequencer busy?

No

R_RFD
GetSeqErrorStatus

Figure 5-13 Flowchart of Sample_CheckCFDFSeqEnd Function (1/2)

R20UT5009EJ0110 Rev.1.10 NS Page 120 of 186
Dec.28.22 RENES

RFD RL78 Type 02

5. Sample Programs

Returns the execution result.

Sequencer error?
No

Yes

Return value <-

ERR_CFDF_SEQUENCER

Erase error?

Yes
| Return value <- ERR_ACT_ERASE |

A

N

Yes
| Return value <- ERR_ACT_WRITE |

A

Yes

Blank check error?
No

Return value <-

ERR_ACT_BLANKCHECK

d
«

Internal verify

Return value <- STS_OK

No

error?
Yes

Return value <-
ERR_ACT_IVERIFY

R_RFD_
ClearSeqRegister

Figure 5-14 Flowchart of Sample_CheckCFDFSeqEnd Function (2/2)

R20UT5009EJ0110 Rev.1.10

Dec.28.22

RENESAS

Page 121 of 186

RFD RL78 Type 02 5. Sample Programs

5.3.4.2 Sample_CheckExtraSeqEnd Function

« The end of the operation of the activated extra area sequencer is confirmed and the execution result is
returned.

Sample_Check
ExtraSeqEnd
e |nitialize the return value
(STS_OK).

>
»

R_RFD_Check
ExtraSeqEndStep1

s the sequencer busy?
Yes

» No
R_RFD_Check
ExtraSeqEndStep2

Is the sequencer busy?
No

R_RFD
GetSeqErrorStatus

Sequencer error?
N
Yes

Return value <-
ERR_Extra_ SEQUENCER

Erase error?

Yes
| Return value <- ERR_ACT_ERASE |

Yes
| Return value <- ERR_ACT_WRITE |

|
Blank check error?
No

Yes
Return value <-
ERR_ACT_BLANKCHECK

A

Internal verify
error?
Yes
Return value <- STS_OK Return value <-

ERR_ACT_IVERIFY

No

d
w

R RFD_
ClearSeqRegister
Figure 5-15 Flowchart of Sample_CheckExtraSeqEnd Function
R20UT5009EJ0110 Rev.1.10 RENESAS Page 122 of 186

Dec.28.22

RFD RL78 Type 02 5. Sample Programs

54 Specifications of Sample Program Functions
This section describes the specifications of the functions in the sample programs for RFD RL78 Type 02.

The sample programs for RFD RL78 Type 02 are examples of basic processing for reprogramming the code
flash area, data flash area, and extra area. The functions in the sample programs can be used as reference
for developing an application program that reprograms these areas.

Please be sure to thoroughly check the operation of the developed application program.

5.4.1 Sample Program Functions for Controlling the Reprogramming of the Code Flash Memory

5411 main
Information:
Syntax int main(void);
Reentrancy Non-reentrant
Parameters N/A
(IN)
Parameters N/A
(IN/OUT)
Parameters N/A
(OUT)
Return Value | int SAMPLE_ENUM_RET_STS_OK: 0x00
(e_sample_ret_t) [Normal end]
SAMPLE_ENUM_RET_ERR_PARAMETER: 0x10
[Parameter error]
SAMPLE_ENUM_RET_ERR_CONFIGURATION: 0x11
[Configuration error]
SAMPLE_ENUM_RET_ERR_MODE_MISMATCHED: 0x12
[Mode mismatch error]
SAMPLE_ENUM_RET_ERR_CHECK_WRITE_DATA: 0x13
[Written data comparison error]
SAMPLE_ENUM_RET_ERR_CMD_ERASE: 0x30
[Erase command error]
SAMPLE_ENUM_RET_ERR_CMD_WRITE: 0x31
[Write command error]
SAMPLE_ENUM_RET_ERR_CMD_BLANKCHECK: 0x32
[Blank check command error]
SAMPLE_ENUM_RET_ERR_CMD_IVERIFY: 0x33
[Internal verify command error]
Description Executes the main processing of the sample program for controlling the reprogramming
of the code flash memory.
Preconditions | Execute this function in the non-programmable mode while the high-speed on-chip
oscillator is active.
Remarks -
R20UT5009EJ0110 Rev.1.10 RENESAS Page 123 of 186

Dec.28.22

RFD RL78 Type 02

5. Sample Programs

5.4.1.2 Sample_CodeFlashControl

Information:
Syntax R_RFD_FAR_FUNC e_sample_ret_t Sample_CodeFlashControl
(uint32_ti_u32_start_addrr,
uint16_t i_u16_write_data_length,
uint8_t __ near * inp_u08_write_data);
Reentrancy Non-reentrant
Parameters uint32_t Start address of the area to be reprogrammed
(IN) i_u32_start_addr
uint16_t Size of the reprogram data
i_u16_write_data_length
uint8_t _ near* Pointer to the reprogram data buffer
inp_u08_write_data
Parameters N/A
(IN/OUT)
Parameters N/A
(OUT)

Return Value

e sample_ret t

SAMPLE_ENUM_RET_STS_OK: 0x00
[Normal end]

SAMPLE_ENUM_RET_ERR_MODE_MISMATCHED: 0x12
[Mode mismatch error]

SAMPLE_ENUM_RET_ERR_CHECK_WRITE_DATA: 0x13
[Written data comparison error]

SAMPLE_ENUM_RET_ERR_CMD_ERASE: 0x30

[Erase command error]
SAMPLE_ENUM_RET_ERR_CMD_WRITE: 0x31

[Write command error]
SAMPLE_ENUM_RET_ERR_CMD_BLANKCHECK: 0x32
[Blank check command error]
SAMPLE_ENUM_RET_ERR_CMD_IVERIFY: 0x33
[Internal verify command error]

Description

Executes the processing for reprogramming the code flash memory.

- The blank check, erase, write, and internal verify commands are executed in the code
flash memory programming mode.

- The written data are read in the non-programmable mode to check that the data have

been written correctly.

Preconditions

Execute this function in the non-programmable mode while the high-speed on-chip

oscillator is active.

Remarks

R20UT5009EJ0110 Rev.1.10

Dec.28.22

RENESAS Page 124 of 186

RFD RL78

Type 02

5. Sample Programs

5.4.2 Sample Program Functions for Controlling the Reprogramming of the Data Flash Memory

5.4.2.1 main
Information:
Syntax int main(void);
Reentrancy Non-reentrant
Parameters N/A
(IN)
Parameters N/A
(IN/OUT)
Parameters N/A
(OUT)

Return Value

int
(e_sample_ret_t)

SAMPLE_ENUM_RET_STS_OK: 0x00

[Normal end]

SAMPLE_ENUM_RET_ERR_PARAMETER: 0x10
[Parameter error]
SAMPLE_ENUM_RET_ERR_CONFIGURATION: 0x11
[Configuration error]
SAMPLE_ENUM_RET_ERR_MODE_MISMATCHED: 0x12
[Mode mismatch error]

SAMPLE_ENUM_RET_ERR_CHECK_WRITE_DATA: 0x13
[Written data comparison error]

SAMPLE_ENUM_RET_ERR_CMD_ERASE: 0x30

[Erase command error]
SAMPLE_ENUM_RET_ERR_CMD_WRITE: 0x31

[Write command error]
SAMPLE_ENUM_RET_ERR_CMD_BLANKCHECK: 0x32
[Blank check command error]
SAMPLE_ENUM_RET_ERR_CMD_IVERIFY: 0x33
[Internal verify command error]

Description

Executes the main processing of the sample program for controlling the reprogramming

of the data flash memory.

Preconditions

Execute this function in the non-programmable mode while the high-speed on-chip

oscillator is active.

Remarks

R20UT5009EJ0110 Rev.1.10

Dec.28.22

RENESAS Page 125 of 186

RFD RL78 Type 02

5. Sample Programs

5.4.2.2 Sample_DataFlashControl

Information:

Syntax R_RFD_FAR_FUNC e_sample_ret_t Sample_DataFlashControl
(uint32_ti_u32_start_addrr,
uint16_t i_u16_write_data_length,
uint8_t __near * inp_u08_write_data);

Reentrancy Non-reentrant

Parameters uint32_t Start address of the area to be reprogrammed

(IN) i_u32_start_addr

uint16_t Size of the reprogram data
i_u16_write_data_length

uint8_t _ near* Pointer to the reprogram data buffer
inp_u08_write_data

Parameters N/A

(IN/OUT)

Parameters N/A

(OUT)

Return Value

e sample_ret t

SAMPLE_ENUM_RET_STS_OK: 0x00
[Normal end]

SAMPLE_ENUM_RET_ERR_MODE_MISMATCHED: 0x12
[Mode mismatch error]

SAMPLE_ENUM_RET_ERR_CHECK_WRITE_DATA: 0x13
[Written data comparison error]
SAMPLE_ENUM_RET_ERR_CMD_ERASE: 0x30

[Erase command error]
SAMPLE_ENUM_RET_ERR_CMD_WRITE: 0x31

[Write command error]
SAMPLE_ENUM_RET_ERR_CMD_BLANKCHECK: 0x32
[Blank check command error]
SAMPLE_ENUM_RET_ERR_CMD_IVERIFY: 0x33
[Internal verify command error]

Description

Executes the processing for reprogramming the data flash memory.

- The blank check, erase, write, and internal verify commands are executed in the data
flash memory programming mode.

- The written data are read in the non-programmable mode to check that the data have

been written correctly.

Preconditions

Execute this function in the non-programmable mode while the high-speed on-chip

oscillator is active.

Enable access to the data flash memory at the beginning of this function, and disable it
after the reprogramming of the data flash memory is completed.

Remarks

R20UT5009EJ0110 Rev.1.10

Dec.28.22

RENESAS Page 126 of 186

RFD RL78 Type 02 5. Sample Programs

5.4.3 Sample Program Functions for Controlling the Reprogramming of the Extra Area

5.4.3.1 main
Information:
Syntax int main(void);
Reentrancy Non-reentrant
Parameters N/A
(IN)
Parameters N/A
(IN/OUT)
Parameters N/A
(OUT)
Return Value int SAMPLE_ENUM_RET_STS_OK: 0x00
(e_sample_ret_t) [Normal end]
SAMPLE_ENUM_RET_ERR_PARAMETER: 0x10
[Parameter error]
SAMPLE_ENUM_RET_ERR_CONFIGURATION: 0x11
[Configuration error]
SAMPLE_ENUM_RET_ERR_MODE_MISMATCHED: 0x12
[Mode mismatch error]
SAMPLE_ENUM_RET_ERR_CHECK_WRITE_DATA: 0x13
[Written data comparison error]
SAMPLE_ENUM_RET_ERR_CMD_SET_EXTRA_AREA: 0x34
[Extra area command setting error]
Description Executes the main processing of the sample program for controlling the
reprogramming of the extra area (FSW function settings).
Preconditions Execute this function in the non-programmable mode while the high-speed on-chip
oscillator is active.
Remarks -
R20UT5009EJ0110 Rev.1.10 RENESAS Page 127 of 186

Dec.28.22

RFD RL78

Type 02

5. Sample Programs

5.4.3.2 Sample_ExtraFSWControl

Information:

Syntax R_RFD_FAR_FUNC e_sample_ret_t Sample_ExtraFSWControl
(uint16_ti_u16_start_block_number,
uint16_ti_u16_end_block_number);

Reentrancy Non-reentrant

Parameters uint16_t Start block number

(IN) i_u16_start_block_numberr | Example: For RL78/F24, 0 to 255 (256 Kbytes max.)

uint16_t End block number +1
i_u16_end_block_number Example: For RL78/F24, 1 to 256 (256 Kbytes max.)

Parameters N/A

(IN/OUT)

Parameters N/A

(OUT)

Return Value

e_sample_ret_t

SAMPLE_ENUM_RET_STS_OK: 0x00

[Normal end]
SAMPLE_ENUM_RET_ERR_MODE_MISMATCHED: 0x12
[Mode mismatch error]
SAMPLE_ENUM_RET_ERR_CHECK_WRITE_DATA: 0x13
[Written data comparison error]

SAMPLE_ENUM_RET_ERR_CMD_SET_EXTRA_AREA:
0x34

[Extra area command setting error]

Description

Executes the processing for reprogramming the extra area (FSW function settings).

- The write command for the extra area (FSW-related data programming command) is
executed in the code flash memory programming mode.

- The on-chip registers corresponding to the written data are read in the non-programmable
mode to check that the data have been written correctly.

Preconditions

Execute this function in the non-programmable mode while the high-speed on-chip oscillator

is active.

Remarks

R20UT5009EJ0110 Rev.1.10

Dec.28.22

RENESAS Page 128 of 186

RFD RL78 Type 02 5. Sample Programs

5.4.4 Sample Program Functions Used in Common

5.4.41 Sample_CheckCFDFSeqEnd

Information:
Syntax R_RFD_FAR_FUNC e_sample_ret_t Sample_CheckCFDFSeqEnd(void);
Reentrancy Non-reentrant
Parameters N/A
(IN)
Parameters N/A
(IN/OUT)
Parameters N/A
(OUT)
Return Value e_sample_ret_t SAMPLE_ENUM_RET_STS_OK: 0x00
[Normal end]
SAMPLE_ENUM_RET_ERR_CFDF_SEQUENCER: 0x20
[Code/data flash area sequencer error]
SAMPLE_ENUM_RET_ERR_ACT_ERASE: 0x22
[Erase operation error]
SAMPLE_ENUM_RET_ERR_ACT_WRITE: 0x23
[Write operation error]
SAMPLE_ENUM_RET_ERR_ACT_BLANKCHECK: 0x24
[Blank check operation error]
SAMPLE_ENUM_RET_ERR_ACT_IVERIFY: 0x25
[Internal verify operation error]
Description Waits for the completion of command execution in the code/data flash area
sequencer.
Preconditions Use this function in the code flash memory programming mode or data flash memory
programming mode while the high-speed on-chip oscillator is active.
When reprogramming the data flash memory, use this function while access to the
data flash memory is enabled (DFLEN = 1).
Remarks -
R20UT5009EJ0110 Rev.1.10 RENESAS Page 129 of 186

Dec.28.22

RFD RL78 Type 02

5. Sample Programs

5.4.4.2 Sample_CheckExtraSeqEnd

Information:
Syntax R_RFD_FAR_FUNC e_sample_ret_t Sample_CheckExtraSeqEnd(void);
Reentrancy Non-reentrant
Parameters N/A
(IN)
Parameters N/A
(IN/OUT)
Parameters N/A
(OUT)

Return Value

e sample_ret t

SAMPLE_ENUM_RET_STS_OK: 0x00

[Normal end]
SAMPLE_ENUM_RET_ERR_EXTRA_SEQUENCER: 0x21
[Extra area sequencer error]
SAMPLE_ENUM_RET_ERR_ACT_ERASE: 0x22

[Erase operation error]
SAMPLE_ENUM_RET_ERR_ACT_WRITE: 0x23

[Write operation error]
SAMPLE_ENUM_RET_ERR_ACT_BLANKCHECK: 0x24
[Blank check operation error]
SAMPLE_ENUM_RET_ERR_ACT_IVERIFY: 0x25
[Internal verify operation error]

Description

Waits for the completion of command execution in the extra area sequencer.

Preconditions

Execute this function in the code flash memory programming mode while the high-speed

on-chip oscillator is active.

Use this function while access to the data flash memory is enabled.

Remarks

R20UT5009EJ0110 Rev.1.10

Dec.28.22

RENESAS Page 130 of 186

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02
6. Creating a Sample Project for RFD RL78 Type 02

RFD RL78Type 02 includes sample programs for a code flash memory area and a data flash memory area
to program. The compilers which can be used by RFD RL78 Type 02 are a CC-RL compiler and an IAR
compiler. Users can create a sample project using the Integrated Development Environment (IDE)
corresponding to each compiler.

The example of the sample program for RL78/F24(R7F124FPJ) is explained to this section. When using
other than RL78/F24(R7F124FPJ), section address settings must be changed by referring to the user's
manual for the target device.

If the RL78/F23 is used, the RL78/F24 sample program is available.

Note: The target Integrated Development Environment (IDE) and the compiler are premised on using
the version for RL78/F23 and RL78/F24. Be sure to use them, after confirming that RL78/F23
and RL78/F24 are target products.

6.1 Creating a Project in the Case of Using a CC-RL Compiler

CS+ or e?studio can be used for a RENESAS CC-RL compiler as an IDE. RFD RL78 Type 02 is registered
and built in the project created by the IDE. An example of creating a sample project in case each IDE is used
is shown. Because to understand a CC-RL compiler and each IDE, it is necessary to refer to the user's
manual of each tool product.

R20UT5009EJ0110 Rev.1.10 NS Page 131 of 186
Dec.28.22 RENES

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

6.1.1 Example of Creating a Sample Project

(1) An example of creating a sample project which used CS+ (IDE)
* The CS+ starts and from the [Project] menu, select [Create New Project...], the “Create Project” window
will open.
- Select the product of “RL78/F24 (ROM: 256 Kbytes)” - “R7F124FPJ5xFB(100pin)” as [Using
microcontroller].
- Select “Application (CC-RL)” as [Kind of project].
- [Project name] is temporarily set to “RFDRL78T02_PJ01”.

- When you click the [Create] button, the new project is created.

Create Project x

Microcentroller: RL7& w

Using microcontreller:

FyF24 Update...

3 R7F124FMJ4xFB(80pin) Product Name:R7F124FPJ5xFB
W RTF124FMJ5xFB(E0pin) Intemal ROM size[KBytes]:256
R7F124F P 3xFE{100pin) Intemal RAM size[Bytes]: 24576
IWE R7F124FPJ4xFB(100pin)
)[R 126FPu52FB(1000i)

#5 RLVBFGIC (ROM:32KB)

¥ RLTSFGIC (ROM:B4KE)

¥ RL7AFGIC (ROM:128KE)

>

Lo % o —oucan smoae e N
Kind of project: |App|ication[CC—F{L] w |
Project name: |F{FDF{L?8TD2_PJDI |
Place: C¥Users¥nooouood Documents¥CS_Plus_Project ~ Browse...
Mzke the project folder

(It is shown absolute path of a project file to create)
[] Pass the file composition of an existing project to the new project

Eroject to be passed: Browse. ..

s | [o

R20UT5009EJ0110 Rev.1.10 NS Page 132 of 186
Dec.28.22 xENES

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

n example of creating a sample project which used e“studio
2)A le of i I ject which used e?studio (IDE

* The e?studio starts and from the [File] menu, select [New] — [C/C++ Project], the “Templates for New
C/C++ Project” window will open.

E e2_studio - &° studio
Edit Source Refactor Mavigate Search Project RenesasViews FRun Window Help
| New Alt+Shift+N >| [Makefile Project with Existing Code
Open File... |@ C/C++ Project
[} Open Projects from File System... ™ Project...
Close Ctrl+W Convert to a C/C++ Project (Adds C/C++ Nature)

- Select [Renesas CC-RL C Executable Project] displayed after selection in [Renesas RL78], and push
“next” button.

B8 New C/C++ Project O X

Templates for New C/C++ Project

All GCC for Renesas RL78 C/C++ Executable Project
Make FE= A C/C++ Executable Project for Renesas RL78

Renesas Debui using the GCC for Renesas RL78 Toolchain.

GCC for Renesas RL78 C/C++ Library Project

FE="> A C/C++ Library Project for Renesas RL7E using
the GCC for Renesas RL7E Toolchain.

Renesas CC-RL C Executable Project

=T A C Executable Project for Renesas RL78 using
the CCRL toolchain,

Renesas CC-RL C Library Project
FE=> A C Library Project for Renesas RL78 using the CCRL toolchain,

@ < Back Net> | Finish Cancel

- Input “project name” on “New Renesas CC-RL Executable Project” window, and push “next” button.
[Project name] is temporarily set to “RFDRL78T02_PJ01".

e’ O X
New Renesas CC-RL Executable Project —

|
Project name{|RFDRL78T02_PI01 I

Use default location
DAwork\02-Project\E2_Studic\workspace\RFDRL78T02_PJO1 Browse...
Create Directory for Project

default

@ < Back Mext = Finish Cancel

R20UT5009EJ0110 Rev.1.10 NS Page 133 of 186
Dec.28.22 xENES

RFD RL78 Type 02

6. Creating a Sample Project for RFD RL78 Type 02

- Select the [Target Device] of [Device Settings], and select “RL78 - F24” - “R7F124FPJ5xFB”.
- It is a premise that E2 Lite is selected as a debugging tool and on-chip debugging is executed. Put a check

mark to “Create Hardware Debug Configuration” by [Configurations]. And select “E2 Lite (RL78)".

- When press the [Next] button, the “Select Coding Assistant settings” window will be displayed, so press

the [Finish] button.

New Renesas CC-RL Executable Project

Select toolchain, device & debug settings

Toolchain Settings

Language: @c OC++
Toolchain: Renesas CCRL b
Toolchain Version: v1.11.00 ~

Manage Toolchains...

e O

Device Settings Configurations
Target Board: l_Custom ¥l +| Create Hardware Debug Configuration
E2 Lite (RL78)

Target Device: |R?F1 24FPISxFB

[[] Create Debug Configuration

Unlock Devyjtes... RL78 Simulator

Endian: Little

. [[] Create Release Configuration
Project Type: Default

@ < Back Einish Cancel

Device Selection

You can filter devices by regular expression

Search Device

Device RAM ROM Pin RTOS Smar.. Perip.. *
v RL78 - F24
RL7S - F24 22pin
RL7S - F24 48pin
RL7S - F24 64pin
RL7S - F24 80pin
v RL78 - F24 100pin
RTFI24FP3FE 24KB 256KB 100
RTFI24FPMXFE 24KB 256KB 100
24KB 256KB 100
RL78- G10
RL7S - G11
RL7S - G12
RL7S - G13
RL7S - G13A

DLTI0 44

®

X X X
XXX

R20UT5009EJ0110 Rev.1.10

Dec.28.22 RENESAS

Page 134 of 186

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

6.1.2 Example of Registration of Target Folders and Target Files

Using RFD RL78Type 02, when programming each area [(1) code flash memory, (2) data flash memory, (3)
extra area], the example which registers necessary files is shown. Each folder of the RFD RL78Type 02
source-program file is “include”, “source”, “userown”, and “sample”. The target file in each folder is selected
and registered by the area programmed.

As other registration methods, after all the folders of “include”, “source”, “userown”, and “sample” are
registered, unnecessary files and folders can be removed using the function of "Remove from Project"(CS+)

or [Resource Configuration] — [Exclude from Build] (e?studio).

—.[7% REDRL78T02 PJO1 (Project)” [& RFDRL78T02_PJO1
IE,R?F'I 24FPJ5xFB (Microcontroller) | n¥ Includes
----- 4\. CC-RL {El_llld Tl:ll:ll:l Ec! generate
_E“-\ RL72 E2 Lite (Debug Tool) v 8 src
----- < F'.ru:-gram Analyzer (Analyze Tool) & Hickids
= E File .‘ I
+ include A
4.1 sample = source
. I source & userown
-] userown l¢) RFDRL78T02_PJO1.c
RFDRL78T02_PJ01 HardwareDebug.launch
The registration tree screen of RFD (CS+) The registration tree screen of RFD (e?studio)

- Registration of the latest I/O header file(iodefine.h) outputted to target products by IDE
“iodefine.h” is an I/O header file which CS+ or e?studio outputs to target products. Replacing instead of
“iodefine.h” included in RFD RL78 Type 02 is recommended. Registration of target folders and target files
is implemented. Then, a user replaces “iodefine.h” which IDE outputted with “iodefine.h” included in RFD
RL78 Type 02.

The folder to which an 1/O header file (iodefine.h) is outputted by IDE:
- CS+: [Project name] Folder

- e?studio: [Project name]/generate Folder

The folder with which a user replaces the “iodefine.h” file:
- The case of code flash programming: “\[Project name]\sample\RL78_F24\CF\CCRL\include”
- The case of data flash programming: “\[Project name]\sample\RL78_F24\DF\CCRL\include”
- The case of extra area (FSW) programming:
“\[Project name]\sample\RL78_F24\EX FSW\CCRL\include”

* Exclusion of the file automatically added by the function of IDE.
There are files added automatically in the created project. The same file as these exists also in the
“sample” folder of RFD RL78 Type 02. Therefore, using the function of IDE, select those files from tree and
excludes from a project.
- CS+: Click the right mouse button for the file of tree. And exclude target file using “Remove from Project”
function. Targets are “cstart.asm, f24opt.asm, hdwinit.asm, stkinit.asm, main.c, and iodefine.h” in [project

name] folder.

R20UT5009EJ0110 Rev.1.10 NS Page 135 of 186
Dec.28.22 RENES

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

- e?studio: Clicks the right mouse button for the file of tree. And on the [Settings] screen displayed by the
“property”, put a check mark to [Exclude resource from build] and exclude a target file (target folder).
(Exclusion of a folder is also possible)

Target files are cstart.asm, f24opt.asm, hdwinit.asm, iodefine.h, and stkinit.asm in a [project name] /
generate folder. And [project name] .c (‘RFDRL78T02_PJ01.c”) in a [project name] / src folder is a target.

R20UT5009EJ0110 Rev.1.10 NS Page 136 of 186
Dec.28.22 RENES

RFD RL78 Type 02

6. Creating a Sample Project for RFD RL78 Type 02

(1) Registration of the folders and files of the target in the case of reprogramming code flash memory

The folders (“include”, “source”, “userown”, “sample”) and source program file which are included in RFD

"« LT "«

RL78 Type 02 to register are shown below.

in the “include” folder

Q[E include
- rfd
L rrfdh
"J r_rfd_compiler.h
be| r_rid_device.h
-i'J r_rfd_memmap.h
; -i'J r_rfd_types.h
L. r_typedefs.h
..... t| r_rid_cede_flash_api.h
----- i'J r_rfd_common_api.h

----- ‘J r_rfd_commen_contrel_api.h

----- ."J r_rfd_commen_extension_api.h
----- i'J r_rfd_commen_get_api.h

----- "J r_rfd_coemmon_userown.h

in the “source” folder

El[E source

&[]} codeflash

L. ‘ﬂ r_rfd_code_flash_api.c
E[E common

L. ‘ﬂ r_rfd_common_api.c

'-'ﬂ r_rfd_commen_control_api.c

"ﬂ r_rfd_common_extension_api.c

2| r_rfd_commen_get_api.c

Transpose to “iodefine.h” outputted
by CS+ or e?studio.

in the “userown” folder

EI[E userown
o | rrfd_common_userown.c

in the “sample” folder

B[E sample

F_![E commen

EI[E include

-i'J sample_control_code_flash.h
-i'J sample_control_common.h
-i'J sample_defines.h

-i'J sample_memmap.h

: -i'J sample_types.h

EI[E source

&-[1] codeflash

: ‘ﬂ sample_control_code_flash.c
Q[E commaon

‘ﬂ sample_control_commen.c
&-L1] RL78_F24

ol cF
-] ccrRL

9[include
Cl b| iodefine.h
(- | sample_config.h
-1 source

..... 83l Cstart.asm

..... & hdwinit.c

& main.c

. B:";' stkinit.asm

R20UT5009EJ0110 Rev.1.10

Dec.28.22

RENESAS

Page 137 of 186

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

(2) Registration of the folders and files of the target in the case of reprogramming data flash memory
The folders (“include”, “source”, “userown”, “sample”) and source program file which are included in RFD

RL78 Type 02 to register are shown below.

in the “include” folder

=8 Einclude
=1 [1] rfd
b rrid.h
"J r_rfd_compiler.h
...h] r_rid_deviceh
"J r_rfd_memmap.h
"J r_rfd_types.h
"J r_typedefs.h
----- "J r_rfd_common_api.h
----- i'J r_rfd_cemmen_contrel_api.h
----- i'J r_rfd_common_userown.h
..... | r_rid_data_flash_apih

in the “source” folder

E source

=-L1) common

- ‘d r_rfd_commen_api.c

o ﬂ r_rfd_commen_contrel_api.c
-1 dataflash

.8 r_rfd_data_flash_api.c

Transpose to “iodefine.h” outputted
by CS+ or e?studio.

in the “userown” folder

E LISEFOWN
'-'ﬂ r_rfd_common_userown.c

in the “sample” folder

EII-E sample
afﬂ commaon
EI-E include
-.'J sample_control_commen.h
"_J sample_control_data_flash.h
"_J sample_defines.h
"_J sample_memmap.h
i'_J sample_types.h
= E source
E comman
- ‘ﬂ sample_control_common.c
-1 dataflash
- ‘ﬂ sample_control_data_flash.c
B [E RL78 F24
E DF
&L CCRL
EI[include

: tlJ sample._ conﬁg h
El E source

Bﬂl cstart.asm
ﬂ hdwinit.c
ﬂ main.c
5:'2' stkinit.asm
LB £240pt,35m

R20UT5009EJ0110 Rev.1.10
Dec.28.22

RENESAS

Page 138 of 186

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

(3) Registration of the folders and files of the target in the case of reprogramming extra area (FSW setting)

The folders (“include”, “source”, “userown”, “sample”) and source program file which are included in RFD
RL78 Type 02 to register are shown below.

in the “include” folder in the “userown” folder
El[_ﬂ include B[E F—
E'H] rd L. ﬂ r_rfd_common_userown.c
] r_rid.h —
| r_rfd_compiler.h in the “sample” folder
| r_rid_device.h _
----- i‘J r_rfd_memmap.h B[ﬂ sample
i‘J r_rfd_types.h El[_ﬂ common
P b r typedefs.h B[ﬂ include
b r_rfd_comman_apih ----- "J sample_control_common.h
UJ r_rfd_comman_contral_api.h ----- "J sample_control_extra_fsw.h
.'J r_rfd_common_get_api.h """ 'J sample_defines.h
.'J r_rfd_common_userown.h """ 'J sample_memmap.h
"J r_rfd_extra_area_api.h """ t=| sample_types.h
"J r_rfd_extra_area_security_api.h B[E =ource
El[ﬂ common
b '-'ﬂ sample_control_common.c
in the “source” folder EI---[.E extra_fow
o ﬂ sample_control_extra_fsw.c
&1 source El...[__ﬂ RL75_F24
B[_E comman B{E EX_FSwW
Lo ‘ﬂ r_rfd_common_api.c EI[E CCRL
& r_rfd_common_control_api.c E[D include
‘_:J r_rfd_common_get_api.c *.— iodefine.h _
B[_E extraarea - %_Tple_cunflg.h
.6 r_rfd_extra_area_api.c = i‘ﬂc;rtasm
e ‘_:J r_rfd_extra_area_security_api.c ‘fJ N
‘_:J main.c
“ . » ‘:‘:‘ stkinit.asm
Transpose to “iodefine.h” outputted .4a £240pt.asm

by CS+ or e?studio.

R20UT5009EJ0110 Rev.1.10 NS Page 139 of 186
Dec.28.22 RENES

RFD RL78 Type 02

6. Creating a Sample Project for RFD RL78 Type 02

6.1.3 Build Tool Settings

Set IDE setting necessary in order to build RFD RL78 Type 02 using a CC-RL compiler.

CS+: Click the right mouse button for the “CC-RL (Build tool)” in a tree, and select “Property”. And set each

setting of the build tool in the displayed window.

e?studio: Click the right mouse button for the project (‘RFDRL78T02_PJ01") in a tree, and select “Property”.

And set each setting of the build tool in the displayed window.

6.1.3.1 Include Path Settings

« Setting of the include path on CS+ inputs path in “Common Options” tab. (Change by a target area)

- Input the Include directory path in the “Path Edit” window displayed by selection of [Frequently Used

Options(for Compile)] - [Additional include paths].

(1) Code flash memory reprogramming

include\rfd
include . Path Edit X
sample\RL78 F24\CF\CCRL\include
sample\common\include ColEmimoEaE T
?nclude¥rfd
(2) Data flash memory reprogramming Isnacrlnupd|:¥H|_?s_F24¥cF¥CCHL¥inc|ude
include\rfd sample¥common¥include
include
sample\RL78_F24\DF\CCRL\include
sample\common\include
(3) Extra area (FSW) reprogramming Browse...
!nclude\rfd [] Permit non-existent path
include i [] Include subfolders automatically
sample\RL78_F24\EX FSW\CCRL\include N
sample\commonl\include I - : I
=]} haoldar LY L]

- Setting of the include path on e?studio inputs path in “Properties” window. (Change by a target area)

- Input the Include directory path in the window displayed by selection of “C/C++” build [Setting] -

“Compiler” [Source].

(1) Code flash memory reprogramming

@ Properties for RFDRL78T02_PIO1

${ProjDirPath}\src\include\rfd

${ProjDirPath}\src\include
${ProjDirPath}\src\sample\RL78_F24\CF\CCRL\include
${ProjDirPath}\src\sample\common\include

type filter text

Settings
Resource
Builders

~ C/C++ Build

d Variables
Environmel
Logging

(2) Data flash memory reprogramming

[Setting:
Stack Analysis

® SMS
& Common

Tool Chain Editor ~ & Compiler

${ProjDirPath}\src\include\rfd
${ProjDirPath}\src\include

${ProjDirPath}\src\sample\common\include

${ProjDirPath}\src\sample\RL78_F24\DF\CCRL\include [

C/C++ General
Project Natures
Project Refe

€sas QF
Run/Debug Settings

(= So
(2 Object

Output

(3) Extra area (FSW) reprogramming

& User
® Assembler

ler

(2 Language

@3 Optimizatic

de

(& Misgéllaneous
(& MISRA C Rule Check

® Tool Settings Toolchain Device . Build Steps

Configuration: HardwareDebug [Active]

Build Artifact (& Binary Parsers

Include file directories (-1)

${ProjDirPathj\src\include
${ProjDirPath}\src\include\rfd
${ProjDirPath}\src\sample\common\include
${ProjDirPathj\src\sample\RL78_F24\CF\CCRL\include

Include files at head of compiling units (-preinclude)

${ProjDirPath}\src\include\rfd
${ProjDirPath}\src\include

${ProjDirPath}\src\sample\common\include

${ProjDirPath}\src\sample\RL78_F24\EX_ FSW\CCRL\include

R20UT5009EJ0110 Rev.1.10
Dec.28.22

RENESAS

Page 140 of 186

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

6.1.3.2 Device Item Settings

- Setting of the device Items on CS+ inputs in the “Link Options” tab. (Common in each area)

- Setting the [Device] items
Select “Yes (-OCDBG)” in [Set enable/disable on-chip debug by link option].
Note: The example of a setting on condition of on-chip debugging execution.
Input the “A5” into [Option byte values for OCD]. [Example of permission of operation for on-chip
debugging.]

Select “Yes (-SECURITY_OPT_BYTE)” in [Set security option byte].
Input the “FE” into [Security option byte value]. [Example of enables read of on-chip debug and flash
serial programming security ID.] [The example for RL78/F24]
Note: Be sure to confirm the contents of “On-Chip Debug Option Byte” and “Security Option
Byte” in “Option Byte” chapter on the user's manual of a target device. And describe the
set value used with user application.

Select “Yes(Specify address range)(-OCDBG_MONITOR=<Address range>)” in [Set debug monitor
area]. Set “3FE00-3FFFF” to [Range of debug monitor area]. [The example for RL78/F24]

Note: The user needs to input the range of the area which the debugger uses with reference to
description of the user's manual for a target device. And please refer to “Memory Spaces
Allocated for Use by the Monitor Program for Debugging” in “Allocation of Memory
Spaces to User Resources” on a user's manual.

Select “Yes(-USER_OPT_BYTE)” in [Set user option byte].
Set “6E6FES8” to [User option byte value]. (WDT stop, LVD [reset mode], 40MHz [The example for
RL78/F24])
Note: Be sure to confirm the contents of “User option byte” in “Option Byte” chapter on the
user's manual of a target device. And describe the set value used with user application.

4, CC-RL Property a F
Library
w Dewvice
Set enable/disable on-chip debug by link option Yes-DCDBG)
Option byte values for OCD [FE2] AR
Set secunty option byte Yes(-SECURITY_OPT_BYTE)
Security option byte value [F2] FE
Set debug monitor area Yes(Specify address range)(-DEBUG_MONITOR=<Address range =)
Range of debug monitor area IFEDD-3FFFF
Set user option byte Yes{-USER_OPT_BYTE)
|User option byte value [te2] EEGFES
Contral allocation to trace RAM area Ma
Control allocation to hot plug-in RAM area Mo
Didtnut T e
Input File
'\ Common Options ; Compile Options ; AssembleOptions ,- Link Options \ Hex Qutput Options ; I/0 Header File Gener.

R20UT5009EJ0110 Rev.1.10 NS Page 141 of 186
Dec.28.22 RENES

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

- Setting of the device Items on e?studio inputs in the “Properties” window. (Common in each area)

- Select “C/C++ Build” [Setting] - “Linker” [Device]. And set device items on the displayed screen.

Put in a check mark to [Secure memory area of OCD monitor(-debug_monitor)] in the screen.

Note: The example of a setting on condition of on-chip debugging execution.

Set “3FE00-3FFFF” to [Memory area (-debug_monitor=<start address>-<end address>)]. [The example
for RL78/F24]

Note: The user needs to input the range of the area which the debugger uses with reference to
description of the user's manual for a target device. And please refer to “Memory Spaces
Allocated for Use by the Monitor Program for Debugging” in “Allocation of Memory
Spaces to User Resources” on a user's manual.

Put a check mark to [Set user option byte(-user_opt_byte)].
Set “6E6FES8” to [User option byte value(-user_opt_byte=<value>)]. (WDT stop, LVD [reset mode],
40MHz [The example for RL78/F24])
Note: Be sure to confirm the contents of “User option byte” in “Option Byte” chapter on the
user's manual of a target device. And describe the set value used with user application.

Put a check mark to [Set enable /disable on-chip debug by link option(-ocdbg)].

Note: The example of a setting on condition of on-chip debugging execution.
Input the “A5” into [On-chip debug control value(-ocdbg=<value>)]. (Example of permission of operation
for on-chip debugging)

Put a check mark to [Set security option byte (-security_opt_byte)].
Input the “FE” into [Security option byte value (-security_opt_byte=<value>]. [Example of enables read of
on-chip debug and flash serial programming security ID.] [The example for RL78/F24]
Note: Be sure to confirm the contents of “On-Chip Debug Option Byte” and “Security Option
Byte” in “Option Byte” chapter on the user's manual of a target device. And describe the
set value used with user application.

& Properties for RFDRL78T02_PJ01

type filter text Settings
Resource
Builders
v C/C++ Build Configuration: HardwareDebug [Active] v||M

Build Variables
Environment

Run/Debug Settings

5 Section

ogaing & Tool Settings Toolchain Device Build Steps Build Artifact |aid Binary Parsers @ Error Parsers
Settings ® VS A bl) - ‘
Stack Analysis \% . ssembler Security ID value (-security_id) 0
Tool Chain Editor ‘% ComrrT:tm Serial Programming Security 1D value (-flash_secunity id) ‘FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
&2 Compiler
C/C++ General s] Reserve working memary for RRM/DMM function (-rrm)
. w9 Assembler
Project Natures o
- ~ 8% Linker
Project References o
Refactoring History r} ILr_“i[UT Secure memory area of OCD monitor (-debug_monitor)
3 Lis
Renesas QE e A itor= - -
i’" Optimization Memory area (-debug_monitor= <start address>-<end address>) ‘3FEUD 3FFFF

Set user option byte (-user_opt_byte)

User option byte value (-user_opt_byte=<valuex) ‘GESFES
— Output Set enable/disable on-chip debug by link option (-ocdbg)
(%8 Miscellaneous
2 User On-chip debug control value (-ocdbg=<value>) ‘AS
%3 Converter Set security option byte (-security_opt_byte)
Security option byte value (-security_opt_byte=<value>) ‘FE
RAM area without section (-self/-ocdtr/-ocdhpi) None

Qutput a warning message when a section is allocated to the RAM area (-selfw/-ocdtrw/-ocdhpiw)
[Check specifications of device (-check_device)
O Suppress checking section allocation that crosses (64KB-1) boundary (-check_&4k_only)

"] Do not check memoary allocation of sections (-no_check_section_layout)

Address range of memory type (-cpu)

R20UT5009EJ0110 Rev.1.10
Dec.28.22

RENESAS Page 142 of 186

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

6.1.3.3 Section Item Settings

- Setting of the section ltems on CS+ inputs in the “Link Options” tab. (Common in each area)
- Setting the [Section] items

Set “No” to [Layout sections automatically]. And sections come to be displayed on [Section start address].
Push the “|,,, | ” button of the right-hand side which sections are displaying, and a “Section settings”
screen is displayed.

Dewvice
Dutput Code
List
Vanables Hunchions informabon
w Sechion
Layout sections automatically No
Section start address _const. text. RLIB. SLIB. textf. constf. dat{.]
Section that outputs external defined symbols to the file Section that outputs extenal defined symbols to the file
ROM to RAM mapped section ROMto RAM mapped section[Z]
Verify
Message

» Setting of the section Items on e?studio inputs in the “Properties” window.(Common in each area)

- Select “C/C++ Build” [Setting] - “Linker” [Section]. And set section items on the displayed screen.

Remove a check mark to [Layout sections automatically(-auto_section_layout)]. Push the “|,..|” button of
the right-hand side which sections are displaying, and a “Section viewer” screen is displayed.

& Properties for RFDRL78T02_PJO1 O

|t3me filter text Settings - -
Resource
Builders ;

~ C/C++ Build Configuration: | HardwareDebug [Active] ~ | | Manage Configurations...

Build Variables

Environment .
& Tool Settings Toolchain Device # Build Steps

Logaing Build Artifact Binary Parsers @ Error Parsers
) SMS Assembler Specify execution start address (-entry)
Stack Antalysis_ & Common Execution start address (-entry=<symbol>) ‘_start |
Tool Chain Editor & Compiler Layout sections automatically (-auto_section_layout)
C/C++ General 5 Assembler
Project Natures ~ Linker Sections (-start) ‘.const..‘[ex‘t..data.‘sdata_RLIB..SLIB..tex‘tf..const|D
Project References & Input
Renesas QF 5 List
Run/Debug Settings Optimization
& Device
~ (& Qutput
Advanced
£ Miscellaneous
28 User
~ & Converter

R20UT5009EJ0110 Rev.1.10
Dec.28.22

RENESAS

Page 143 of 186

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

» Section setting operation for CS+ and e?studio
Set “0x05000” to a top address.

Add the sections defined by “#pragma section” in RFD RL78 Type 02 to the program area (code flash
memory) and the RAM area. Refer to “2.3.1 Sections in case of using RFD RL78 Type 02” for the details
of each section.

Note: In this description, it is a premise to select a medium model as Memory Model of Compile
Options. (It is the same as the “auto select” in R7F124FPJ) The section names of each
program on “#pragma section” of CC-RL are set to “section name +_f” with a “__far”
attribute. The section names copied to RAM from ROM are “section name +_fR” with a
“__far” attribute. Copy processing of the sections from ROM to RAM is executed in a

cstart.asm file. Refer to the user's manual of CC-RL for the section name of each program
when a “small model” is selected.

R20UT5009EJ0110 Rev.1.10 NS Page 144 of 186
Dec.28.22 RENES

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

(1) The addition of the sections for code flash memory reprogramming

- The addition of the sections for code flash memory reprogramming on CS+
Add sections necessary for code flash memory reprogramming on a “Section Settings” screen.

Add to the program area: RFD_DATA_n, RFD_CMN_f, RFD_CF_f, SMP_CMN_f, SMP_CF _f
Add to the RAM area: .stack_bss, RFD_DATA nR, RFD_CMN_fR, RFD_CF_fR, SMP_CMN_fR,

SMP_CF_fR
Section Settings b4
Address Section Add... age
(05000 const Additional
text sections
o . RFD_DATA_n
LB
= RFD_CMN_f
_constf
daa RFD_CF_f
sdata
RFD_DATA_n SMP_CMN_f
RFD_CMN_f SMP_CF_f
RFD_CF f
SMP_CMN_f
SMP_CF £
(kFSFO0 dataR | .stack_bss
bss
RFD_DATA_nR
RFD_CMN R RFD_DATA nR
RFD_CFfR ﬂ-\ RF D_CM N_fR
SMP_CMN_fR —
- r | RFD_CF_fR
OxFFE20 sdataR Import.. —
sbss T SMP_CMN_fR
Heb SMP_CF_fR

Be sure to return [Layout sections automatically] to “Yes”, after pushing the “OK” button.

Device

Output Code

List

‘U’llll- bl M

Section

Layout sections automatically

Section start address

Section that outputs external defined symbols to the file
ROM to RAM mapped section

Verify

<

| Yes(-AUTO_SECTION_LAYOUT) |
const, text. RLIB._SLIB. texif. constf. data. sdata. RFD_DATA_n.RFD_CMN_f RFD_CF_f SMP_CMN
Section that outputs extemal defined symbals to the file[0]
ROM to RAM mapped section[0]

Push the right-hand side “ | ...|” button by [ROM to RAM mapped section], display the “Text Edit” screen,

and add the section for copying to RAM from ROM.

Text Edit

Text:

ROM to RAM mapped

section (-rom)

data=dataR

sdata=sdatalR
RFD_DATA_n=RFD_DATA_nR
RFD_CMM_f=RFD_CMMN_fR
RFD_CF_f=RFD_CF_fR
SMP_CMMN_f=SMP_CMHN_fR
SMP_CF_f=SMP_CF fR

.data=.dataR

.sdata=.sdataR
RFD_DATA_n=RFD_DATA_nR
RFD_CMN_f=RFD_CMN_fR
RFD_CF_f=RFD_CF_fR
SMP_CMN_f=SMP_CMN_fR

SMP_CF_f=SMP_CF_fR

R20UT5009EJ0110 Rev.1.10
Dec.28.22

RENESAS

Page 145 of 186

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

* The addition of the sections for code flash memory reprogramming on e?studio
Add sections necessary for code flash memory reprogramming on a “Section Viewer”.

Add to the program area: RFD_DATA _n, RFD_CMN_f, RFD_CF_f, SMP_CMN_f, SMP_CF _f
Add to the RAM area: .stack_bss, RFD_DATA nR, RFD_CMN_fR, RFD_CF_fR, SMP_CMN_fR,

SMP_CF_fR
v x Additional
Section Viewer sections
Address Section Name
0x00005000 .const R F D—DATA—n
text RFD_CMN _f
.data
.sdata RFD_CF_f
RLB
sUB SMP_CMN_f
textf
.constf Section SMP—CF_f
RFD_DATA_n New Overlay
o0n || e o e
SMP_CMN_f poveln / =
SMP_CF_f Move
0x000FIFO0 dataR [— RED DATA nR
iy _DATA
bss RFD_CMN fR
RFD_DATA_nR] — —
RFD_CMN_R | — RFD_CF_fR
ROCR 4 SMP_CMN_fR
SMP_CMN_fR - —
SMP_CF_fR SMP_CF _fR
0x000FFE20 sdataR - =

.sbss

Be sure to put a check mark to [Layout sections automatically (-auto_section_layout)], after pushing the

“OK” button.
Resource
Builders & Tool Settings Toolchain Device . Build Steps Build Artifact Binary Parsers @ Error Parsers
v C/C++ Build i SMS Assembler Specify execution start address (-entry)
Build Variabl
EUI' aria tes % Common Execution start address (-entry=<symbol>) ‘,star‘t |
nvironmen % Compiler = . - :
i Layout sections automatically (-auto_section_layout)

Logging i Assembler .
Settings « ¥ Linker Sections (-start) ‘.const.tex‘t..data..sdata_RLIB..SLIB_tenf..constf.R|
Stack Analysis & Input
Tool Chain Editor {8 List

C/C++ General (& Optimization

Project Natures (# Section

Select “C/C++ Build” [Settings] - “Linker” [Output], display the “ROM to RAM mapped section (-rom)”
screen, and add the section for copying to RAM from ROM.

ROM to RAM mapped

section (-rom)

ROM to RAM mapped section (-rom)

.data=.dataR

sdata=.sdataR .data=.dataR
RFD_DATA_n=RFD_DATA_nR

RFD_CMM_f=RFD_CMM_fR .sdata=.sdataR
RFD_CF_f=RFD_CF_fR |

S P__C f:"l h_f= S_M p:c MM_fR RFD_DATA_n= RFD_DATA_n R
SMP_CF_f=SMP_CF.fR RFD_CMN_f=RFD_CMN_fR

RFD_CF_f=RFD_CF_fR
SMP_CMN_f=SMP_CMN_fR
SMP_CF_f=SMP_CF_fR

R20UT5009EJ0110 Rev.1.10 NS Page 146 of 186
Dec.28.22 RENES

RFD RL78 Type 02

6. Creating a Sample Project for RFD RL78 Type 02

(2) The addition of the sections for data flash memory reprogramming

- The addition of the sections for data flash memory reprogramming on CS+
Add sections necessary for data flash memory reprogramming on a “section settings” screen.

Add to the program area: RFD_DATA n, RFD_CMN_f, RFD_DF_f, SMP_CMN_f, SMP_DF _f
Add to the RAM area: .stack_bss, RFD_DATA nR

Section Settings X
Address Section Add.. Additional
05000 const .
- sections
RLIB New Qvertay... RFD_DATA_n
sLiB
textf RFD_CMN _f
congtf
. RFD_DF _f
sicic SMP_CMN_f
RFD_DATA_n — —
RFD_CMN_f SMP DF f
RFD_DF f ——
SMP_CMN_f
SMP_DF f
0<FSFO0 dataR - .stack_bss
[osm Jo |
bss
—oorele | [pep pATA R
xFFE20 sdataR Import... — =
Sbss Export...
Cancel Help

Be sure to return [Layout sections automatically] to “Yes”, after pushing the “OK” button.

Device
Output Code
List

Variabl

v Section
Layout sections automatically
Section start address

ROM to RAM mapped section
Verify

Section that outputs external defined symbols to the file Section that outputs extemal defined symbols to the file[0]

Yes(-AUTO_SECTION_LAYOUT)

“Const. 1ext .. Texif_constf. data. sdata. RFD_DATA_n.RFD_CMN_f.RFD_DF_f SMP_(

ROM to RAM mapped section[0]

Push the right-hand side “|,,

.| ” button by [ROM to RAM mapped section], display the “Text Edit” screen,

and add the section for copying to RAM from ROM.

Text Edit ROM to RAM mapped
Text: section (-rom)
[.data=.dataR
sdata=sdataR « —— | .sdata=.sdataR
RFD_DATA_n=RFD_DATA_nR
RFD_DATA_n=RFD_DATA_nR
R20UT5009EJ0110 Rev.1.10 xENESAS Page 147 of 186

Dec.28.22

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

* The addition of the sections for data flash memory reprogramming on e?studio
Add sections necessary for data flash memory reprogramming on a “Section Viewer”.

Add to the program area: RFD_DATA _n, RFD_CMN_f, RFD_DF_f, SMP_CMN_f, SMP_DF _f
Add to the RAM area: .stack_bss, RFD_DATA_nR

m x
Cection Vi Additional
ection Viewer t
ion
Address Section Name seclions
£0x00005000 const RFD_DATA_n
text
€ RFD CMN f
.data — —
sdata RFD_DF f
RLIB
LB SMP_CMN_f
et SMP_DF _f
.constf _ — —
emove Section
RFD_DATA n
RFD_CMN_f / Move Up
RFD_DF_f Move Down .stack_bss
SMP_CMN_f I
SMP_DE_f ot
0X000FIF00 dataR port / RFD_DATA nR
P
.bss
RFD_DATA nR
0x000FFE20 sdataR
.sbss

Be sure to put a check mark to [Layout sections automatically (-auto_section_layout)], after pushing the

“OK” button.
Resource
Builders ® Tool Settings Toolchain Device . Build Steps Build Artifact Binary Parsers @ Error Parsers
v UCB*-TIj:"d_ . ® SMS Assembler Specify execution start address (-entry)
EUI' ana tes & Common Execution start address (-entry=<symbol =) ‘_star‘t |
nvironmen " i
Logain © Compiler Layou‘[sections automatically (-auto_section_layout)
gging & Assembler
Settings « ® Linker Sections (-start) ‘.const.tex‘t..data..sdata‘.RLIB..SLIB‘.tenf..constf.R|
Stack Analysis 2 Input
Tool Chain Editor % List
C/C++ General & Optimization
Project Natures (& Section
Neninct Maf

Select “C/C++ Build” [Settings] - “Linker” [Output], display the “ROM to RAM mapped section (-rom)”
screen, and add the section for copying to RAM from ROM.

ROM to RAM mapped section (-rom) ROM to RAM mapped
.data=.dataR section (-rom)
sdata=.sdataR «— |

RFD_DATA_n=RFD_DATA_nR .data=.dataR

.sdata=.sdataR
RFD_DATA n=RFD_DATA nR

R20UT5009EJ0110 Rev.1.10 NS Page 148 of 186
Dec.28.22 xENES

RFD RL78 Type 02

6. Creating a Sample Project for RFD RL78 Type 02

(3) The addition of the sections for extra area (FSW) reprogramming

+ The addition of the sections for extra area (FSW) reprogramming on CS+

Add sections necessary for extra area (FSW) reprogramming on a “section settings” screen.

Add to the program area: RFD_DATA n, RFD_CMN_f, RFD_EX_f, SMP_CMN_f, SMP_EX_f
Add to the RAM area: .stack_bss, RFD_DATA nR, RFD_CMN_fR, RFD_EX fR, SMP_CMN_fR,

SMP_EX_fR
Section Settings =
Address Section Add... g
(05000 const Addlt_lonal
ten sections
.RLIB MNew Overay... RFD DATA n
SLB i —
= RFD_CMN_f
constf
ps RFD_EX_f
sdata
R FaDt_DATA_n / SMP_CMN_f
RFD_CMN_f
RFD_EX.f SMP_EX f
SMP_CMN_f
SMP_EX_f
(xF3F00 .dataR !
. StaCk_bSS
bss
RFD_DATA_NR
RFD_CMN_{R RFD_DATA nR
RFD_EX_fR
s o [RFD_CMN_fR
SN
(xFFE20 sdataR Import... RFD—Ex_fR
= Bt SMP_CMN_fR
Cancel Help SM P_EX_fR

Be sure to return [Layout sections automatically] to "Yes", after pushing the "OK" button.

Device
Dutput Code
List
‘U’lﬂl- bl M
~ Section
Layout sections automatically
Section start address

ROM to RAM mapped section
Verify

Section that outputs external defined symbols to thefile Section that outputs extemal defined symbols to the file[0]

const. text. RLIB._5LIB. textf. constf _data. sdata. RFD_DATA_n.RFD_CMN_f RFD_EX_f.SMP_(

ROM to RAM mapped section[0]

Push the right-hand side “

..~ button by [ROM to RAM mapped section], display the “Text Edit” screen,

and add the section for copying to RAM from ROM.

ROM to RAM mapped

Text Edit
section (-rom)
Teut:
.data=.dataR
::jt ; ; f:é:.tiﬂ .sdata=.sdataR
RFD_DATA_n=RFD_DATA nR [$— =
RFD_CMN_f=RFD_CMN_{f ——— | RFD_DATA n=RFD_DATA_nR
RFD_EX f=RFD_EX fR RFD_CMN_f=RFD_CMN_fR
SMP_CMN_f=SMP_CMN_fR
SMP_EX_f=SMP_EX_fR RFD_EX_f=RFD_EX_fR
SMP_CMN_f=SMP_CMN_fR
SMP_EX_f=SMP_EX_fR
R20UT5009EJ0110 Rev.1.10 RENESAS Page 149 of 186

Dec.28.22

RFD RL78 Type 02

6. Creating a Sample Project for RFD RL78 Type 02

* The addition of the sections for extra area (FSW) reprogramming on e?studio
Add sections necessary for extra area (FSW) reprogramming on a “Section Viewer”.

Add to the program area: RFD_DATA n, RFD_CMN_f, RFD_EX_f, SMP_CMN_f, SMP_EX_f
Add to the RAM area: .stack_bss, RFD_DATA nR, RFD_CMN_fR, RFD_EX fR, SMP_CMN_fR,

SMP_EX fR
L X Additional
Section Viewer sections
Address Section Name RFD_DATA_n
0:00005000 .const
text RFD_CMN _f
.data
sdata RFD_EX f
RLB
<UB SMP_CMN_f
textf
constf Add Section SMP_EX_f
RFD_DATA n New QOverla
RFD_CMN._f / Remove Ser:ti);n
RFD_EX_f .stack_bss
SMP.CVIN. £ Move Up /
SMP_EX_f Move Dow
Ox000F9FO0 dataR Kpmu/ RED DATA nR
o DATAN
bss RFD_CMN_fR
RFD_DATA_nR /
RFD_CMN_fR L ——]
REDEX R [&— | RFD_EX R
SMP_CMN_R SMP_CMN_fR
SMP_EX_iR
0x000FFE20 sdataR SMP_EX_fR
.sbss

Be sure to put a check mark to [Layout sections automatically (-auto_section_layout)], after pushing the

“OK” button.

Resource
: B Tool Settings Toolchain Device # Build Steps Build Artifact Binary Parsers @ Error Parsers

Builders

v C/C++ Build i SMS Assembler Specify execution start address (-entry)
Build Variabl
EUI' aria tes % Common Execution start address (-entry=<symbol>) ‘,star‘t |
nvironmen % Compiler = . - :
i Layout sections automatically (-auto_section_layout)

Logging i Assembler .
Settings « ¥ Linker Sections (-start) ‘.const.tex‘t..data..sdata_RLIB..SLIB_tenf..constf.R|
Stack Analysis & Input
Tool Chain Editor {8 List

C/C++ General (& Optimization

Project Natures (# Section

Select “C/C++ Build” [Settings] - “Linker” [Output], display the “ROM to RAM mapped section (-rom)”
screen, and add the section for copying to RAM from ROM.

ROM to RAM mapped secti

on (-rom)

.data=.dataR
sdata=.sdataR

RFD_CMM_f=RFD_CMMN_fR
RFD_EX_f=RFD_EX_fR
SMP_CMM_f=5MP_CMM_fR
SMP_EX_f=SMP_EX_fR

RFD_DATA_n=RFD_DATA_nR

ROM to RAM mapped

section (-rom)

.data=.dataR

.sdata=.sdataR

RFD_DATA n=RFD_DATA_nR

RFD_CMN_f=RFD_CMN_fR

RFD_EX_f=RFD_EX_fR

SMP_CMN_f=SMP_CMN_fR

SMP_EX_f=SMP_EX_fR

R20UT5009EJ0110 Rev.1.10
Dec.28.22

RENESAS

Page 150 of 186

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

6.1.4 Debug Tool Settings

This section describes the contents of connection setting on a target board necessary in order to execute on-
chip debugging. As a debugging tool, it is a premise that E2 Lite is selected. Refer to the user's manual for
each IDE for the details of other debugging tool setting.

On CS+, right-click a mouse by “RL78 simulator (Debug Tool)” [initial setting] of a tree. And select the “RL78
E2 Lite” by “Using Debug Tool” displayed there. And a “RL78 E2 Lite Property” screen is displayed, and
select each tab, and perform debugging tool setting.

On e?studio, right-click a mouse in the target project of a tree. Selection of [Debug As] - [Debug
Configurations...] will display the “Debug Configurations” screen. On the tree of a screen, select the target
project (“RFDRL78T02_PJ01 HardwareDebug”) of [Renesas GDB Hardware Debugging]. And the displayed
“Debugger” tab performs debugging tool setting.

Note: The power is already supplied to the target board, or when power supply capacity is
insufficient, the emulator including E2 Lite may be unable to supply power to a target
board. Be sure to refer to “the user's manual and Additional Document for User's Manual
(Notes on Connection of RL78)” for the emulator for target devices, and use an emulator.

6.1.4.1 Setting of Connection with Target Board

= On CS+, set up the connection with target board (via E2 Lite) with “Connect Settings” tab. (Common in
each area)

- [Connection with Target Board] item

In order to let power supply (Supply voltage: 3.3V) from E2 Lite to a target board, it is necessary to set
“Yes” to [Power target from the emulator (MAX 200mA)].

Project Tree 1 %X |= Property
& 2

= Q 3 @ e RL78 E2 Lite Property)

-|_T% REDRLT8T02 PJO1 (Project)” 7ir

= RTF124FP)5xFB (Microcontroller)

RL78 E2 Lite (Debug Tool) |
- Program Analyzer (Analyze Tool)
(3] File

Main clock freguency [MHz]
Sub clock freguency[kHz]

Using intemal clock
Using intemal clock

Meonitor clock System
+ Connection with Emulator
Emulator serial No.
+ | Connection with Target Board
Fower target from the emulator. [MAX 200ma) Yes
Supply voltage [V] 3.3V
~ Flash
Security 1D 00000000000000000000000000000000

Serial Programming Security 1D

Permit flash programming

Permit rewrite the serial programming security (D
Initialize unused space during flash programming

Internal ROM/RAM

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

es
Mo
Mo

', Connect Settings / Debug Tool Settings 4 Download File Settings 4 Hook Transaction Settings /

R20UT5009EJ0110 Rev.1.10
Dec.28.22

LENESAS

Page 151 of 186

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

- On e?studio, set up the connection with target board (via E2 Lite) with “Connect Settings” tab. (Common in

each area)
- [Connection with Target Board] item

In order to let power supply (Supply Voltage: 3.3V) from E2 Lite to a target board, it is necessary to set

“Yes” to [Power Target From The Emulator (MAX 200mA)].

ﬁ Edit Configuration

Edit launch configuration properties

@ [Main]: Program does not exist

Name: | RFDRL78T02_PJ01 HardwareDebug

[Startup| B Source| H Common
Debug hardware: Target Device: R7F124FP)
GDB Setting Debug Toaol Settings
v Clock
Main Clock Frequency[MHz] Using Internal Clock v
Sub Clock FrequencylkHz] Using Internal Clock v
Monitor Clock System ~
I ~ Connection with Target Board I
Emulator (Auto)
Low voltage OCD board No
Power Target From The Emulator (MAX 200mA) Yes v
Supply Voltage([V] 33 W
Hot Plug No v
v Flash
Current Security 1D (HEX) 00000000000000000000000000000000
Current Serial Programming Security |D (HEX) FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Revert Apply
@

R20UT5009EJ0110 Rev.1.10 NS
Dec.28.22 RENES

Page 152 of 186

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

6.2 Creating a Project in the Case of Using IAR Compiler

IAR Embedded Workbench can be used for a IAR compiler as an IDE. RFD RL78 Type 02 is registered and
built in the project created by the IDE. An example of creating a sample project in case each IDE is used is
shown. Because to understand a IAR compiler and each IDE, it is necessary to refer to the user's manual of
each tool product.

IAR Systems, IAR Embedded Workbench, C-SPY, IAR, and the logotype of IAR Systems are
trademarks or registered trademarks owned by IAR Systems AB.

R20UT5009EJ0110 Rev.1.10 NS Page 153 of 186
Dec.28.22 RENES

RFD RL78 Type 02

6. Creating a Sample Project for RFD RL78 Type 02

6.2.1

Example of Creating a Sample Project

(1) An example of creating a sample project which used IAR Embedded Workbench (IDE)

* The IAR Embedded Workbench starts and from the [Project] menu, select [Create New Project...], the

“Create Project” window will open.
- Select the “C” as [project template].
- When you click the [OK] button, the “Save As” window will open.

Create New Project

x

T ool chain: RLVA

FProject templates:

...... 2y Empty project

----- By Aam
: @ C++
1 DLib

------ 2y Extemally built executable

Description:

Creates a C project.

Carcel

- Create “RFDRL78T02_PJ01” folder temporarily, and move into a folder.

- The Project File name is temporarily set to “RFDRL78T02_PJ01”.

<« |AR_Project » | RFDRL7ETO2_PJO1

MName

Date modified

Mo items match your search.

e Save As
&« v
Organize = MNew folder
[This PC
) 30 Objects
[Desktop
@ Documents v £
File name: | RFDRL7ETO2_PJO1 |
Save as type: | Project Files (*.ewp)
 Hide Folders

| Save Cancel

R20UT5009EJ0110 Rev.1.10

Dec.28.22

RENESAS

Page 154 of 186

RFD RL78 Type 02

6. Creating a Sample Project for RFD RL78 Type 02

(2) Selection of a target device
= On IAR Embedded Workbench, I click the right mouse button of the project (‘RFDRL78T02_PJ01 —
Debug”) in a tree. When an “option” is selected, the “Options for node [Project name]” window is displayed.

Workspace v 01 X | mainc x -
Debug v fiy
Files 8 . | ‘ int main(woid)

E @RFDRL78T02_FJ01 - Debug Options...

H&1 B main.c ke b o:
| [Cutut Comi
0 ompile
& I Uutput Rebuild Al
Clean
C-STAT Static Analysis ¥
Stop Build
Add ¥
Remove
Rename...
Version Control System ¥
Open Containing Folder...
File Properties...
I RFORL7ETOZ_PJM Set as Active =

- Input setting in the [General Option] - [Target] tab of “Option for node [Project name]” window.
- Push “ [g, | ” button of [Device]. And select “RL78 - F24” - “RL78 - R7F124FPJ”. Select “Far” as [code

model] and select “Near” as [Data model].

Options for node "RFDRL78T02_PJO1" RL78 core S1 - Unspecified
RL78 core S2 - Unspecified
RL78 core 53 - Unspecified
Cetogee RL78 - D1A
e
Statc Anaiysis RL78 - F12
C/C++ Compiler i .
Assembler Library Options 2 Stack/Heap RL78-F13
Output Converter Target Output Lbrary ¢ Ri78-F14
Custom Buid Device RL78 - F15
Build Actions
Linker I RL78 - R7F124FP) I = | hgelAb
Debugger RL78 - F1E
COM Port Code model RL78 - F24 RL78 - R7F124FB)
E1l I P I RL78 - FGIC RL78 - R7F124FG)
ar [
E2 RLT8 - FGxx RL78 - R7F124FL)
E20 Tl Use far runtime library calls
RL78 - Fxx RI78 - R7F124FM]
E2 Lite / E2 On-board
EZ-CUBE Data model RL78 - G10 RL78 - R7F124FP)
EZ-CUBE2 I Near I RL78 - G11
IEQUBE RL78 - G12
Simulator
TK Near constant location RL78 - G13
[Override default addresses RL78 - G13A
. RL78 - G14
Mirror ROM 0 = C
RL78 - G1A
RL78 - G1C
RL78 - G1D
RL78 - G1E
R20UT5009EJ0110 Rev.1.10 - zENESAS Page 155 of 186

Dec.28.22

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

6.2.2 Example of Registration of Target Folders and Target Files

Using RFD RL78 Type 02, when programming each area [(1) code flash memory, (2) data flash memory, (3)
extra area], the example which registers necessary files is shown. Each folder of a RFD RL78 Type 02
source-program file is “include”, “source”, “userown”, and “sample”. The target file in each folder is selected

and registered by the area programmed.

Instead of registering a folder by IAR Embedded Workbench, select [Add Group] of the [Project] menu, and
add a group. The example into which | add the group of the same structure as the folder for RFD RL78 Type
02, and files are registered is shown. (Registering without making a group is also possible.)

The example which added the group of each area [(1) Code flash memory, (2) Data flash memory, and (3)
Extra area] is shown. (The group name which changes with areas is shown by “ =".)

2 @RFDRL78TO02_PJO1...

21 B include

L— wirtd

— zample

= B comimon
|— M include
l—E_l B source

I— B codeflazh
L — B comman
L5 mRL7EF24
=l e
Lg mkR
I— B inciude
L— M zource
—& B source
|— B codeflash
L — & cormman
— B userown
(] Cutput

5 @RFDRL78T02_PJO1 ...

21 B include
L— mrid
—= -sample
21 Bl cormaon
|— B include
|—E| Bl source
|— Bl dataflazh
L— & common
Lo W RL7E F24
Lo e
Lo miaR
|— B include
L — M source
21 Bl source
I— Bl dataflash
L — B commaon
— Bl Lserown
-Clutput

(1) Code flash memory

(2) Data flash memory

E @RFDRL78T02_PJO1...
—= B include
L— &rid
—= -sar'nple
— B cormmaon
I— B include
I—El B source
l— B extra fow
L — & common
L0 ERL7EF24
Lo sEX Faw
Lo mir
|— B includs
L — source
2 B source
|— Bl extraarea
L — 8 comman
— B Lizerown
-Output

(3) Extra area

- Exclusion of the file automatically added by the function of IDE.
There are files added automatically in the created project. The same file as these exists also in the
“sample” folder of RFD RL78 Type 02. Therefore, using the function of IDE, select those files from tree and
excludes from a project.
- IAR Embedded Workbench: Clicks the right mouse button for the file of tree. And exclude the target

“main.c” file by “Remove” function.

R20UT5009EJ0110 Rev.1.10 Page 156 of 186

Dec.28.22 RENESAS

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

(1) Registration of the groups and files of the target in the case of reprogramming code flash memory

The groups (“include”, “source”, “userown”, “sample”) and source program file which are included in RFD

RL78 Type 02 to register are shown below.

in the “include” group in the “sample” group
—E1 B include =1 B sarnple
= B 21 8 cormmon
|_ Bl r rfdh |—E| B include

F—) rrfd_compiler b | — B sample_controlcade flashh
l— 5] ¥ rfd device b | — [l sample_control comman h
l_) r_rfd_memm;ap h I — [k sarmple_defines h

B — [k sarmple_memmap h
l— rrid_typesh L— [l sample_typesh

L— R r typedefsh L5 8 source
— [r rfd code flash apih 1 Bl codeflash
— [l r_rfd_common_apih sample_controal_code_flash o
— [&] r_rfd_cormmon_contral_apih 1 B comrmon
— [r rfd_common_extension_apih _ [2] sample_control comman o
— [r_rfd_common_get_apih —E-I|_;R-|_-E;5":_F24
L— [r _rfd_common_userown b l_El B AR
in the “source” grou - Sinclude
- g P | — zample_confiz h
] -SEurCE L5 i source
|_E| B codeflash low_level_init.c
| [£] r rfd code_flazh_apic [l main.c
I—EJ Bl cornrron [option_ byte.c

T L— B sample_linker file CF icf

r_rfd_cormimon_control_apic
r_rfd_common_extension_api.c

r_rfd_common_zet_apic T M userown
r_rfd_common_userown.c

in the “userown” group

T

R20UT5009EJ0110 Rev.1.10 NS Page 157 of 186
Dec.28.22 RENES

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

(2) Registration of the groups and files of the target in the case of reprogramming data flash memory

The groups (“include”, “source”, “userown”, “sample”) and source program file which are included in RFD

RL78 Type 02 to register are shown below.

in the “include” group in the “sample” group

H=1 B include 2 isa_mple
B rfd = conmmon
_E}— Elrridh 2 & include
l_ r_rfd.cnmpiler k | — [sample_control commanh

: | — [&] sarmple_control_data_flashik
}_ Bl r_rid device h | — Bsample_definesh

I— r_rfd_mernnap b | — B sample_mermaph
}— L] r rid_tvpes h |

L— [sample_types h

— r_typedefz b
— k] r_rfd_comimon_spih
— bl r_rfd_common_control_apih

Lo @Wsource
& B common
zample_control_common.c

L= Bl dataflash
zample_control_data_flash.c
Lo mRL7e F24

F—] r_rfd_common_userown.b
— |u] r_rfd_data_flazh_apih

. » ” ECF
in the “source” group I_E'l_a oin
Bl zource '—El H include
—H Bl cormmon | L zarmple_confiz b
\ B zource
| I—I r rfd_cormimon_api.c low el it
| r_rfd_common_control_apic mai;‘| o b

L3 o datatlash

option_byte .o
r_rfd_data_flazh_apic

L— B sarrple_linker file DF icf

in the “userown” group

& B userown
r_rfd_common_userown .o

R20UT5009EJ0110 Rev.1.10
Dec.28.22

RENESAS Page 158 of 186

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

(3) Registration of the groups and files of the target in the case of reprogramming extra area (FSW setting)

The groups (“include”, “source”, “userown”, “sample”) and source program file which are included in RFD

RL78 Type 02 to register are shown below.

in the “include” group

in the “sample” group

—=] B include
=1 i rid

F— Brridh

}— [kl r_rfd_compiler b

I— Hr rfd device h

}— k] r rfd memmap h

}— k] r rfd_tvpes h

L L] r_typedefz.h
— [=] r_rfd_commor_apih
Il r_rfd_comman_contral_apih
— [kl r_rfd_common_get_apih
— Il r_rfd_common_userown.h
—Iul r_rfd_extra_area_apih
— || r_rfd_extra_area_security apih

= isample
& B common
I—EI M include
| — [l sample_control_commaon b
| — [kl sample_control_extra_fswh
| — [kl sample_defines h
| F— [kl zample_memmap h
| L— [zample_typesh
L= B source
21 B exctra_fow
zample_control_extra_faw.c
L &1 8 cormmaon
zample_control_common.c
Lo ERL7E F24
Lo dEx Faw

Lo dnr

in the “source” group

I—EJ M include
| L [kl zarmple_config.h
B source

£ B source

I—EI B carmman

| [l r_rfd common apic

| [l r_rfd_common_control apic

| [l r_rfd common_get_apic

I—EI Bl cxtracrea
r_rfd_extra_area_apic
r_rfd_extra_area_security_apic

low_level_init.c

rmain.c

option_byte.c

— zample_linker file EX FEW icf

in the “userown” group

3 Bl Lserown

r_rfd_common_userown .o

R20UT5009EJ0110 Rev.1.10
Dec.28.22

RENESAS Page 159 of 186

RFD RL78 Type 02

6. Creating a Sample Project for RFD RL78 Type 02

6.2.3 Integrated Development Environment (IDE) Settings

Set IDE setting necessary in order to build RFD RL78 Type 02 using an IAR compiler.
IAR Embedded Workbench: Click the right mouse button for the project (‘RFDRL78T02_PJ01”) in a tree, and

select “Options”. And set each setting of the “Category” in the displayed window.

6.2.3.1 Include Path Settings

- Setting of the include path on IAR Embedded Workbench selects “C/C++ Compiler” of “Category”, and

inputs path in “Preprocessor” tab. (Change by a target area)

- Input the Include directory path in the “Edit include Directories” window displayed by selection of

[Additional include directories: (one per line)].

Options for node "RFDRL78T02_PJO1” x
Categon: Factomy Settings
General Options 0 Multi-file Compilation
Static Analysis Discard Unused Publics
Assembler Diagnostics MISRA-C:2004 MISRA-C:1998 Encodings xtra Option
Output Converter language1 Llanguage2 Optimizations Output List
Custom Build -
Build Actions O Ignore standard include directories
Linker Additional include directories: (one per line)
Debugger C¥Users¥ooocoondDocuments¥IAR_Project¥RFDRL78T02_PI0T¥sample |I|
COM Port C¥Users¥oocoocodfDocuments¥IAR_Project¥RFDRL7ETO2_PJO1¥sample
3 C¥Users¥oocooox¥Documents¥l AR_Project¥RFDRL78T02_PJ01¥include
E2 C¥Users¥oocooox¥Documents¥lAR_Project¥RFDRL78T02 PI01¥include
E20
E2 Lite / E2 On-board Preinclude file:
EZ-CUBE
EZ-CUBE2
1ECUBE Defined symbols: (one per line)
Simulator O Preprocessor output to file
TK Preserve comments
Generate #line directives

Edit Include Directories

Include directory

<Click. to add:

C:h U serswmmaens s Documentz\AR_ProjecthBFDRLYAT0Z2_PJ0N veampleh R L7E_F245CR AR NRcude
C:hUsersmmamamahDocumentz\AR_ProjecthBFDRL /AT 0Z2_PJ0T vsamplehcommoninchude
C:hUsersvwmmamems s Documentz\AR_ProjecthBFDRLYET0Z_PJ07 sinclude

C:a] serstasmmmsesDocument s\ AR _Project \RFDRLYET 02_PJ07 \includeafd

Carcel

R20UT5009EJ0110 Rev.1
Dec.28.22

.10

RENESAS

Page 160 of 186

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

- The example of folder path setting.

TS TS "«

It is the example which placed each folder (“include”, “source”, “userown”, “sample”) of the source
program file of RFD RL78 Type 02 on “C:\Users\xxxxxxxx\Documents\IAR _Project\”.

(1) Code flash memory reprogramming
C:\Users\xxxxxxxx\Documents\IAR_Project\RFDRL78T02_PJ01\sample\RL78_F24\CF\IAR\include
C:\Users\xxxxxxxx\Documents\IAR _Project\RFDRL78T02_PJ01\sample\common\include
C:\Users\xxxxxxxx\Documents\IAR _Project\RFDRL78T02_PJ01\include
C:\Users\xxxxxxxx\Documents\IAR_Project\RFDRL78T02_PJO1\include\rfd

(2) Data flash memory reprogramming
C:\Users\xxxxxxxx\Documents\IAR _Project\RFDRL78T02_PJ01\sample\RL78_F24\DF\IAR\include
C:\Users\xxxxxxxx\Documents\IAR_Project\RFDRL78T02_PJ01\sample\common\include
C:\Users\xxxxxxxx\Documents\IAR_Project\RFDRL78T02_PJ0MN\include
C:\Users\xxxxxxxx\Documents\IAR_Project\RFDRL78T02_PJO0MN\include\rfd

(3) Extra area (FSW) reprogramming
C:\Users\xxxxxxxx\Documents\IAR_Project\RFDRL78T02_PJ01\sample\RL78_F24\EX_FSW\IAR\include
C:\Users\xxxxxxxx\Documents\IAR_Project\RFDRL78T02_PJ01\sample\common\include
C:\Users\xxxxxxx\Documents\IAR_Project\RFDRL78T02_PJ0MN\include
C:\Users\xxxxxxxx\Documents\IAR_Project\RFDRL78T02_PJO01\include\rfd

Note: About the path setting of include directories.
When the project is copied in the case appointed by the absolute path, the setup is needed
again. It is possible to appoint a relative path ($PROJ_DIRS$) so that it can be used, even if
it copies the project.
Refer to each reference manual of IAR Embedded Workbench about how to appoint the
relative path.

R20UT5009EJ0110 Rev.1.10 NS Page 161 of 186
Dec.28.22 RENES

RFD RL78 Type 02

6. Creating a Sample Project for RFD RL78 Type 02

6.2.3.2 Debugger Settings

- Select “E2 Lite/E2 On-Board” from [Driver] of [Debugger] — [Setup] tab on the assumption that on-chip

debugging is implemented.

Category:

General Options

Static Analysis
C/C++ Compiler
Assembler

Custom Build
Build Actions
Linker

H Debugger
COM Port
EL

E2

E20

EZ-CUBE
EZ-CUBE2
IECUBE
Simulator
TK

Options for node "RFDRL78T02_PJOT"

Output Converter

E2 Lite / E2 On-board

Setup Images Extra Options Plugins

Driver: 4 Run to:

| E2 Lite / E2 On-board = rmain

Setup macros
[J Use macro file:

Device description file

[Qverride default:

$TOOLKIT_DIR$¥config¥debugqer¥ior7f124fp| ddf

Factory Settings

Carcs

Note: Refer to each reference manual of IAR Embedded Workbench about the other items to be

set.

R20UT5009EJ0110 Rev.1.10

Dec.28.22

RENESAS

Page 162 of 186

RFD RL78 Type 02

6. Creating a Sample Project for RFD RL78 Type 02

6.2.4 Linker Configuration File(.icf) Settings

On IAR Embedded Workbench, Linker configuration file (*. icf) describes link setting executed by building.

Select “Options” by the click right mouse buttan of project with tree. Select [Linker] by “Category” in the

displayed window, And put a check mark to “Override default” of the [Config] tab. Select Linker configuration

file (*. icf) in the “Open” window of *

...|” button. Select the “sample_linker_file_(area name).icf” file prepared

for RFD RL78 Type 02. Linker configuration file (*. icf) for every reprogramming area is as follows.

- For code flash memory reprogramming: sample_linker_file_CF.icf (\Sample\RL78_ F24\CF\IAR\source\)
- For data flash memory reprogramming: sample_linker_file_DF.icf (\Sample\RL78_F24\DF\IAR\source\)
- For Extra area (FSW): sample_linker_file_EX_FSW.icf \Sample\RL78_F24\EX_FSW\IAR\source\)

Options for node "RFDRL78T02_PJO1"

X

Category:

General Options
Static Analysis
C/C++ Compiler
Assembler
Output Converter
Custom Build
Build Actions
[|
Debugger
COM Port

=21

#define
Config

Diagnostics Checksum

Library Input Optimizations

Linker configuration file

[Eloverride default

_PI ¥samp|e¥RL?8_F24¥CF¥IAR¥source¥samp|e_|inkeb'_file_CEicf

Factony Settings

Encodings
Advanced

Extra Options
Output List

"

@ Open

“ R « CF » IAR » source Search source

v 0

Organize v Mew folder SEENR

-

CCRL ”
IAR

MName

|{£] sample_linker file CF.icf |

include
project

source
W

File name: | sample_linker_file_CF.icf V| lef Files (*.icf)

Cancel

Note: Refer to each reference manual of IAR Embedded Workbench about the descriptive
content of Linker configuration file, and the details of the description method.

R20UT5009EJ0110 Rev.1.10

Dec.28.22 xENESAS

Page 163 of 186

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

6.2.4.1 Section Settings

The outline of the section added to Linker configuration file (*. icf) currently prepared by RFD RL78 Type 02
is explained.

Note: Refer to each reference manual of IAR Embedded Workbench about the section setting
method and the detail of functions for Linker configuration file.

- The setting outline of the section item described to Linker configuration file (*. icf) of RFD RL78 Type 02.

(1) The addition of the sections for code flash memory reprogramming
Add the initial value of each section of RFD_DATA, RFD_CMN, RFD_CF, SMP_CMN, and SMP_CF to
ROM area (ROM _far). It is necessary to copy them to the section of RAM area (RAM_near, RAM_code).

- The additional section of the ROM_far area (The data and the program for copying to RAM area):
RFD_DATA_init, RFD_CMN_init, RFD_CF _init, SMP_CMN_init, SMP_CF _init

- The additional section of RAM_near area (Data copied from ROM area):
RFD_DATA

- The additional section of RAM_code area (program copied from ROM area):
RFD_CMN, RFD_CF, SMP_CMN, SMP_CF

(2) The addition of the sections for data flash memory reprogramming
Add the initial value of each section of RFD_DATA, RFD_CMN, RFD_DF, SMP_CMN, and SMP_DF to
ROM area (ROM _far). It is necessary to copy RFD_DATA to the section of RAM area (RAM_near).

- The additional section of the ROM_far area (The program and the data for copying to RAM area to be
placed in ROM area):
RFD_DATA_init, RFD_CMN, RFD_DF, SMP_CMN, SMP_DF

- The additional section of RAM_near area (Data copied from ROM area):
RFD_DATA

(3) The addition of the sections for extra area (FSW) reprogramming
Add the initial value of each section of RFD_DATA, RFD_CMN, RFD_EX, SMP_CMN, and SMP_EX to
ROM area (ROM _far). It is necessary to copy them to the section of RAM area (RAM_near, RAM_code).

- The additional section of the ROM_far area (The data and the program for copying to RAM area):
RFD_DATA_init, RFD_CMN_init, RFD_EX_init, SMP_CMN_init, SMP_EX_init

- The additional section of RAM_near area (Data copied from ROM area):
RFD_DATA

- The additional section of RAM_code area (program copied from ROM area):
RFD_CMN, RFD_EX, SMP_CMN, SMP_EX

R20UT5009EJ0110 Rev.1.10 RENESAS Page 164 of 186

Dec.28.22

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

6.2.4.2 Option Bytes Settings

The Option bytes definition of RL78 is described in Linker configuration file (*. icf) of IAR Embedded
Workbench attachment or the sample_linker_file (area name).icf file prepared for RFD RL78 Type 02. The
Option Bytes value for RFD RL78 Type 02 is described by the “option_byte.c” file.

Note: Refer to each reference manual of IAR Embedded Workbench about the option bytes
setting method for Linker configuration file.

The example of an Option Bytes definition of Linker configuration file for RFD RL78 Type 02 (*. icf).

define block OPT_BYTE with size =5 {R_OPT_BYTE,
ro section .option_byte,
ro section OPTBYTE };

I
place at address mem:0x000CO { block OPT_BYTE };

The example of description of the Option Bytes value in a “option_byte.c” file.

frragma location = “OPTBYTE"
__roof const unsigned char option_bytes[i] = {
0=6E, A% 01101110 #/
f | #/
i +-- Watchdog timer ®
i operat ion stopped #f
i in HALT/STOP mode
i +H4--- Watchdog timer e
i averf low time s #f
f 2718 S fIL = e
S AT93.18 m= i/
L Fmm---- Yatchdog timer ®
i operat ion dizabled #/
M- 10038 window open)
S period i
I Interval interrupt
S iz not uzed i/
0=RF, A 01101111 */f
i III|III| #
S - YD reset mode
i - Contral of clock monitor operation is enabled #/
N=E8, /% 11101000 #/¢
S]]
fE |- 4D MHz #/f
F Zelectz P130 as a general port pin (output only) &/
M=ff, A 101001071 =/
f | [| #/
f4 4= |---++-- OCD: enables on-chip debuzzing function #/
i e Enables flash serial programming operation. #/
; NxFE /% Enables read of on-chip debug and flash serial programming security D #f
- Description of user option byte value:
The value of User option byte (000COH-000C2H) in “option_byte.c” file is “OX6EGFES8”.
(WDT Stop, LVD [reset mode], 40MHz [The example for RL78/F24])
The value of on-chip debug option byte(000C3H/040C3H) in “option_byte.c” file is “OxA5”.
(The example of enable on-chip debug operation)

Note: Be sure to confirm the contents of “User option byte” of the chapter of “Option Bytes”,
and “On-chip debug option byte” by the user’s manual of a target device. And describe the
set value used with user application.

R20UT5009EJ0110 Rev.1.10 RENESAS Page 165 of 186

Dec.28.22

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

6.2.5 On-chip Debug Settings

After executing building of a target project, connect E2 Lite, select [Download and Debug] from [Project]

menu, and start debugging.
6.2.5.1 Example of How to deal with Connection Errors

Explain the common examples of how to deal with an error which happened by connection in on-chip run

debug. This is the case when an ID code mismatch or power failure occurs.

Note: In cases where a target cannot be connected by other causes, please confirm each
reference manual from [Help] of IAR Embedded Workbench.

When selecting [Download and Debug] and starting debugging, an “E2Lite hardware setting” screen may be

displayed. The cause may be ID code mismatch or power setting error.

- In the case of the ID code mismatch:

“Cannot verify the ID code.” etc. may be displayed as a message. In this case, put a check mark to
“Erase flash before next ID check” of the [ID code] in an “E2LiteHardwareSetup” window, and continue.
And the flash memory is erased and debugger may be connected.

- In the case of power setting error:

Initial setting of “Power supply” is “Target”. When supplying power supply from E2 Lite, select “3V” by
the pull down menu for “Power supply”.

Caution: Be sure not to set “3V” (supply power from E2Lite), when the power is supplied to the

target.
E2Lite Hardware Setup (R7F124FPJA) X
|D Code
Securiy 1D
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF Cancel
Flash programmer security |D Time unit
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
nsec
I [0 Erase flash before nest ID check I
Main clock Sub clock Manitor clock
Clock board Clock board ® System Defaul
® External ® External © User Fad
System System Fall-safe break
None MHz None kHz View setup
Flash programming Target power off Low-voltage Power supply
® Permit O Permit O On T B ‘
Mot Permit ® Not Permit ® 0ff
Pin mask Peripheral break Target m
WAIT O TARGET RESET O A timer] Connect 10010
Ml O INTERMAL RESET [B [senal etc.] Not Connect
Memory map
Start address: Length: Type:
0x0 960 Intemnal ROM Add
0+00000 - Dx3FFFF Intemal ROM 256 Kbytes
0xFSFO0 - DxFFEFF Internal RAM 24576 bytes
Remove
Remove Al
R20UT5009EJ0110 Rev.1.10 - zENESAS Page 166 of 186

Dec.28.22

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

6.3 Setting Related to Changing Devices

When using a device other than RL78/F24(R7F124FPJ), the address settings in the section and some of the
sample programs must be modified. This section describes the where to modify and procedure to modify.

To modify the setting values, refer to "Renesas Flash Driver and EEPROM Emulation Software for RL78
Target MCU List - Automotive" (here after “Target MCU List”) and change the setting values according to the
device you are using. An example of referencing the Target MCU List and an example of where to modify is
shown below.

- Example of reference of the Target MCU List

For example, when modifying the setting value indicated by [R-1] (the start address of RAM) as shown in
the following figure. Here, refer to the setting value of the start address [R-1] (RAM Start Address) of RAM
shown in the Target MCU List and set the value of RL78/F23 (R7F123FxG).

Example of where to modify the start address of RAM: RL78/F24(R7F124FPJ RAM: 24 Kbytes)

RFO_ORTH R
RFD _Ghak_f
RFD.GF f
SMP_GMMN_f
SMP_GF f

[R-1] — ||l oxFaFon dataR

=ztack_bss

Example of setting the start address value of RAM when using RL78/F23 (R7F123FxG RAM: 12 Kbytes).
FFU_OATAT

RFD_GMH_f

RFDGF f

SMP_GMH f

SMP_GF f

0=FCFO0 dataR.

ztack_bes

The value to be set in [R-1] refers to the Target MCU List and sets the start address value of RAM of the
target device.

In the column "Target MCU name" of the Target MCU List, search for the row for R7TF123FxG. Next, find
the cell in the [R-1] column that intersects the row of R7F123FxG.

- Example of displaying the “Target MCU List”

Code Flash memory User RAM Data Flash memory [R-1] R-2] [R-3] [R-4] [R-5] [R-6] [R-7] [R-8]
MCU Group [size Size Size RAMStart | ROMEnd | ROMEnd | DataFlash Target MCU name
(bytes) Star/End Address (bytes) Start/End Address (bytes) ‘Start/End Address Address Address 1 Address 2 | End Address OCD_ROM | Trace RAM | Hot plug-in JEND_BLOCI

RL78/F23 128K | 0x00000 - Ox1FFFF 12K 0xFCFOO - OXFFEFF 8K 0xF1000 - 0xF2FFF | OxFCFOD | OxOFFFF | Ox1FFFF 0xF2FFF 0x1FE00 0xFD300 0xFD500 128 R7F123FXG (x=B, G.L. M)

RL78/F24 256K | 0x00000 - 0X3FFFF 24K 0xFIF00 - OXFFEFF 16K 0xF1000 - OxF4FFF 0xF9F00 OxOFFFF | 0x3FFFF 0xF4FFF 0x3FE00 0xFA300 0xFA500 256 R7F124Fx)(x=B, G.L. M, P)

Since "OxFCFO00" applies, the setting value of [R-1] is RL78/F23 (R7F123FxG) value "OxFCF00".

[R-1] [R-2] [R-3] [R-4] [R-5] [R-6] [R-T] [R-8]

RAM Start] ROMEnd | ROMEnd | DataFlash Target MCU name
Address Address 1 Address 2 | End Address

0oCD_ROM | Trace RAM | Hot plug-in |END_BLOCK

0xFCFO0 0xOFFFF 0x1FFFF 0xF2FFF 0x1FEQQ OxFD300 OxFDS00 128 R7F123FxG(x=B, G, L, M)
OxF9F00 0xOFFFF 0x3FFFF OxFAFFF Ox3FEDD OxFA300 OxFAS00 256 IR?F124F).’J(}<= B,G,L M, P)
R20UT5009EJ0110 Rev.1.10 RENESAS Page 167 of 186

Dec.28.22

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

- Example of where to modify

Points that need to be modified from the RL78/F24(R7F124FPJ) settings are listed from "6.3.1".
Points that need to be modified are indicated with "[R-x] —". Refer to the Target MCU List to find the
appropriate [R-x] setting for your device. Enter the searched value in [R-x]. (x =1, 2, 3...)

- Example of modification the section setting (start address of RAM) of code flash (CF) memory

reprogramming (CS+: CC-RL compiler):

Setting for RL78/F24(RAM: 24 Kbytes) Setting for RL78/F23(RAM: 12 Kbytes)
Example: R7F124FPJ Example: R7F123FxG
Section Settings * Section Settings *
Address Section Add... Address Section Add...
(05000 const (05000 const
text text
.RLIB Mew Qveray... .RLIB Mew Qveray...
SLB SLB
tedf tedf
constf constf
data data
sdata sdata
RFD_DATA_n RFD_DATA_n
RFD_CMN_f RFD_CMN_f
RFD_CF f RFD_CF f
SMP_CMN_f SMP_CMN_f
SMP_CF f SMP_CF f
e - [
stack_bss stack_bss
bss bss
RFD_DATA_nR RFD_DATA_nR
RFD_CMN_fR RFD_CMN_fR
RFD_CF_fR RFD_CF_fR
SMP_CMN_fR SMP_CMN_fR
SMP_CF_fR SMP_CF_fR
OFFE20 sdataR e OFFE20 sdataR e
Cancel Help Cancel Help
R20UT5009EJ0110 Rev.1.10 RENESAS Page 168 of 186

Dec.28.22

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

6.3.1 CC-RL Compiler Environment Settings

Points of modifies and examples of modifies when using the CC-RL compiler environments (CS+ and

e?studio) are described.

6.3.1.1 RAM Start Address Settings
Sets the starting address of RAM area.

"cstart.asm" stored in the “sample” folder is set to use a RAM size of 24 Kbytes on RL78/F24 (R7F124FxJ).
Therefore, it is necessary to modify the setting when using a RAM size other than 24 Kbytes.

This section describes an example of modifying the settings when using RL78/F24 (R7F124FxJ) with a
RAM size of 12 Kbytes.

To use the RL78/F23 (R7F123FxG) with a RAM size of 12 Kbytes, modify the value of the RAM start
address setting register (RAMSAR) from "0x9F" to "OxCF" in "cstart.asm" stored in the "sample" folder.
For more information about the RAM Start Address Setting Register (RAMSAR), refer to the hardware
manual of the target RL78.

- File path of “cstart.asm” stored in “sample” folder (area name: CF, DF, or EX_FSW)
\sample\RL78_F24\(area name)\CCRL\source\cstart.asm

Setting for RL78/F24(RAM: 24 Kbytes) Example: R7F124FPJ

; setting RAMSAR=0x9F RAM area is 24KB (RL78/F24)

MOV IRAMSAR, #0x9F|

Setting for RL78/F23(RAM: 12 Kbytes) Example: R7F123FxG

; setting RAMSAR=0x9F RAM area is 12KB (RL78/F23)

MOV IRAMSAR, #0xCF

R20UT5009EJ0110 Rev.1.10 NS Page 169 of 186
Dec.28.22 RENES

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

6.3.1.2 Exclude Unused File

“f24opt.asm” stored in the “sample” folder is a file used only by RL78/F24, therefore, when using RL78/F23,

remove “f24opt.asm” from the project.

- File path of "f24opt.asm" stored in “sample” folder (area name: CF, DF, or EX_FSW)
\sample\RL78_F24\(area name)\CCRL\source\f24opt.asm

- Example of excluding "f24opt.asm" from a project In CS+

B [Remove from Project Shift+Delete
5 Copy Ctri+C
| Paste Crl+y
d# Rename =
- L source * Change Extension...

- 88 cstart.asm

b R (5] Property

..... ‘ﬂ hdwinit.c

..... U main.c

L8 stlinit.asm

- Example of excluding "f24opt.asm" from a project In e?studio

~ = RL78_F24 !
v & DF MNew ?
~ & CCRL Open
(= include Show In Alt+Shift+W >
~ (= source Open With z
[S) cstart.asm Copy Ctrl+C
[5] f24opt.asm Paste Ctrl+V
[¢ hdwinit.c & Delete Delete
el main.c Source ?
[5] stkinit.asm Move..

6.3.1.3 Section Settings

Modify the start address of the RAM area in the section settings.

This example shows the change from RL78/F24 (R7F124FxJ) to RL78/F23 (R7F123FxG).

Since the RAM size is changed from 24 Kbytes to 12 Kbytes, modify the start address of the RAM from
“0OxF9F00” to “OxFCF00”.

Note: For the start address of the RAM for each product, refer to “R-1” column in the Target MCU List.

R20UT5009EJ0110 Rev.1.10 NS Page 170 of 186
Dec.28.22 RENES

RFD RL78 Type 02

6. Creating a Sample Project for RFD RL78 Type 02

- Example of modifying CF, DF, and EX section settings (start address of the RAM) in CS+:

(1) The Case of Code Flash (CF) Memory Reprogramming
Setting for RL78/F24(RAM: 24 Kbytes)
Example: R7F124FPJ

[R-1] —

Setting for RL78/F23(RAM: 12 Kbytes)
Example: R7F123FxG

[R-1] —

Section Settings Section Settings *
Address Section Add... Address Section Add..
(05000 const - (05000 const :
teat = teat =
.RLIB Mew Overay. .RLIB Mew Qveray...
SLIB —_— SLIB =
tetf e tetf e
constf Up D constf Up D
data data
sdata sdata
RFD_DATA_n RFD_DATA_n
RFD_CMN_f RFD_CMN_f
RFD_CF_f RFD_CF_f
SMP_CMN_f SMP_CMN_f
SMP_CF_f SMP_CF_f
ﬂ OxFSFO0 EER ' [l dataR
stack_bss stack_bss
bss bss
RFD_DATA_nR RFD_DATA_nR
RFD_CMN_fR RFD_CMN_fR
RFD_CF_fR RFD_CF_fR
SMP_CMN_fR SMP_CMN_fR
SMP_CF_fR SMP_CF_fR
(<FFE20 sdataR e (<FFE20 sdataR e
sbs Export_. sbs Export_.
Cancel Help Cancel Help
(2) The case of data flash (DF) memory reprogramming
Setting for RL78/F24(RAM: 24 Kbytes) Setting for RL78/F23(RAM: 12 Kbytes)
Example: R7F124FPJ Example: R7F123FxG
Section Settings Section Settings *
Address Section Add... Address Section Add...
(05000 const (05000 const
teat = teat =
.RLIB Mew Qveray... .RLIB Mew Qveray...
SLIB = SLIB =
text = text =
constf Up D constf Up D
data data
sdata sdata
RFD_DATA_n RFD_DATA_n
RFD_CMN_f RFD_CMN_f
RFD_DF_f RFD_DF_f
SMP_CMN_f SMP_CMN_f
SMP_DF_f SMP_DF_f
nﬂ:F‘JFDD [B— > n{hFCFDD | datar
stack_bss stack_bss
bss bss
RFD_DATA_nR RFD_DATA_nR
(<FFE20 sdataR e (<FFE20 sdataR e
sbss Export. sbss Export.
Cancel Help Cancel Help
R20UT5009EJ0110 Rev.1.10 ;{ENESAS Page 171

Dec.28.22

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

(3) The case of extra area (EX) reprogramming
Setting for RL78/F24(RAM: 24 Kbytes)
Example: R7F124FPJ

Setting for RL78/F23(RAM: 12 Kbytes)
Example: R7F123FxG

Section Settings Section Settings
Address Section Add.. Address Section Add..
(05000 const (05000 const
teat = teat =
.RLIB Mew Overay. .RLIB Mew Overay.
SLB = SLB =
text = text =
constf Up D constf Up D
data data
sdata sdata
RFD_DATA_n RFD_DATA_n
RFD_CMN_f RFD_CMN_f
RFD_EX_f RFD_EX_f
SMP_CMN_f SMP_CMN_f
SMP_EX_f SMP_EX_f
0«FSFO0 Hatat > n[hFCFDD I dataR
stack_bss stack_bss
bss bss
RFD_DATA_nR RFD_DATA_nR
RFD_CMN_fR RFD_CMN_fR
RFD_EX_fR RFD_EX_fR
SMP_CMN_fR SMP_CMN_fR
SMP_EX_fR SMP_EX_fR
(<FFE20 sdataR Import.. (<FFE20 sdataR Import..
sbss Export... sbss Export...
Cancel Help Cancel Help
R20UT5009EJ0110 Rev.1.10 ;IENESAS Page 172 of 186

Dec.28.22

RFD RL78 Type 02

6. Creating a Sample Project for RFD RL78 Type 02

- Example of modifying CF, DF, and EX section settings (start address of the RAM) in e2studio:

(1) The Case of Code Flash (CF) Memory Reprogramming

Setting for RL78/F24(RAM: 24 Kbytes)
Example: R7F124FPJ

Section Viewer

Address
000005000

[RA] —{[Zoororm_] wet

0x000FFE20

Setting for RL78/F23(RAM: 12 Kbytes)
Example: R7F123FxG

x [
Section Viewer
Section Name Address Section Name
.const 0x00005000 .const
dext text
data data
sdata sdata
.RLIB .RLIB
SLIB SLIB
textf textf
.constf Add Section .constf
RFD_DATA_n New Overlay RFD_DATA_n
RFD_CMN_f S RFD_CMMN_f
RED.CF f Remove Section RFD_CF f
SMP_CMN_f Move Up SMP_CMN_f
SMP_CF_f Move Down SMP_CF_f
Import. P 0x000FCFOO I .dataR
stack_bss .stack_bss
.bss Export.. .bss
RFD_DATA_nR RFD_DATA_nR
RFD_CMN_fR RFD_CMMN_fR
RFD_CF_fR RFD_CF fR
SMP_CMN_fR SMP_CMN_fR.
SMP_CF_fR SMP_CF_fR
sdataR 0x000FFE20 sdataR
shss sbss

Add Section
New Overlay
Remove Section
Move Up
Move Down
Import...
Export...

(2) The Case of Data Flash (DF) Memory Reprogramming

Setting for RL78/F24(RAM: 24 Kbytes)
Example: R7F124FPJ

Setting for RL78/F23(RAM: 12 Kbytes)
Example: R7F123FxG

(W X K X
Section Viewer Section Viewer

Address Section Name Address Section Name

0x00005000 .const 0x00005000 .const
fext text
data data
sdata sdata
RLIB RLIB
SLIB SLIB
textf textf
.constf Add Section .constf Add Section
RFD_DATA n New Overlay RFD_DATA n New Overlay
EIF:E:S:I_:U Remove Section Eig:;':l:j Remove Section
SMP_CMN _f Move Up SMP_CMN_f Move Up
SMP_DF f Maove Down SMP_DF _f Move Down

[R-1] — | 0x000F9F00 | ataRt Tmport. 0x000FCFOO I dataR Import.

stack_bss Stack_bss
bss Export... bss Export...
RFD_DATA_nR RFD_DATA_nR

0x000FFE20 sdataR Ox000FFE20 sdataR
Sbss Sbss

R20UT5009EJ0110 Rev.1.10 RENESAS Page 173 of 186

Dec.28.22

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

(3) The Case of Extra Area (EX) Reprogramming
Setting for RL78/F24(RAM: 24 Kbytes)
Example: R7F124FPJ

Setting for RL78/F23(RAM: 12 Kbytes)
Example: R7F123FxG

(K X [x
Section Viewer Section Viewer
Address Section Name Address Section Name
0x00005000 .const 0x00005000 .canst

dext text
data data
sdata sdata
.RLIB RLIB
SLIB SLIB
textf textf
.constf Add Section .constf Add Section
RFD_DATA n New Overlay RFD_DATA n New Overlay
RFD_CMM_f RFD_CMM_f
RED_EX_f Remove Section RED_EX_f Remove Section
SMP_CMN_f Move Up SMP_CMN_f Move Up
SMP_EX_f Move Down SMP_EX_f Move Down

[R-1] —i | OX000FOFO0 | dataRt —— 0xODOFCFO0 I dataR \mporL.
stack bss stack bss
bss Export... bss Export...
RFD_DATA_nR RFD_DATA_nR
RFD_CMN_fR RFD_CMN_fR
RFD_EX_fR RFD_EX_fR
SMP_CMN_fR SMP_CMN_fR
SMP_EX_fR SMP_EX_fR

0x000FFE20 sdataR 0x000FFE20 sdataR
shss sbss
R20UT5009EJ0110 Rev.1.10 RENESAS Page 174 of 186

Dec.28.22

RFD RL78 Type 02

6. Creating a Sample Project for RFD RL78 Type 02

6.3.1.4 Debug Settings

When using the RL78/F23, the debug monitor area has a different range when using the debugger.

- The start of the “debug monitor area” address sets the address obtained by subtracting “511 bytes
(Ox1FF)” from the end address of the ROM area. If the end address is “Ox3FFFF”, set it to “Ox3FEQ0”.

This example shows the modify from RL78/F24 (R7F124FPJ) to RL78/F23 (R7F123FMG).
- Set the debug monitor area range to “Ox1FEQO - Ox1FFFF” for the RL78/F23 (R7F123FMG).

Note: For information on The start address of the “debug monitor area” for each product, refer to “[R-5]”

column in the Target MCU List.

- To set the debug monitor area in CS+, select the [Device] on the “Link Options” tab.

Setting for RL78/F24 (ROM: 256 Kbytes) Example: R7TF124FPJ

Ay CC-RL Property
Library
v Device
Set enable/disable on-chip debug by link option
Option byte values for OCD
Set debug monitor area
Range of debug monitor area
Set user option byte
|Uzer option byte value
Caontrol allocation to trace RAM area
Control allocation to hot plug-in RAM area
Output Code

Section

JFEDD-3FFFF

Yes-USER_OPT_BYTE)

Yes[-OCDBG)
(=] AS

Yes(Specify ad

[F2] GEGFES
Mo
Mo

\ Common Options ,f Compile Options ,f AssembleOptions ,h Link Options / Hex Output Options {{’ I/ Header File Ger

idress range)(-DEBUG_MONITOR=<Address range>)
< [R-5]

Setting for RL78/F23 (ROM: 128 Kbytes) Example: R7F123FMG

4, CC-RL Property

Library

Device

Set enable/disable on-chip debug by link option
Option byte values for OCD

Set debug monitor area

Range of debug monitor area

Set user option byte

User option byte value

Contrel allocation to trace RAM area

Control allocation to hot plug-in RAM area
Output Code

Section

W

Yes(-DCDBG)
[rex] AR
Yes

1FEOD-1FFFF

Yes-USER_OFT_BYTE)

[Fe] GEGFES
Ne
Ne

\ Common Options {{’ Compile Options {{’ AssembleOptions ,.= Link Options / Hex Output Options ,f /0 Header File Ger

ify address range)(-DEBUG_MONITOR=<Address range>)

R20UT5009EJ0110 Rev.1.10
Dec.28.22

=XEN

ESANS Page 175 of 186

RFD RL78 Type 02

6. Creating a Sample Project for RFD RL78 Type 02

- To set the area of OCD monitor in e2studio, select the [Device] in the “Linker”.

Setting for RL78/F24 (ROM: 256 Kbytes) Example: R7F124FPJ

v CfC++ Build
Build Variables
Environment
Logging
Settings
Stack Analysis
Tool Chain Editor
C/C++ General
Project Natures
Project References
Renesas QF
Run/Debug Settings

B Tool Settings Toolchain Device . Build Steps

® SMS Assembler
® Common

% Compiler

& Assembler

~ B Linker

2 Input
3 List
Optimization
2 Section
& Device
@ Qutput
Miscellaneous
& User
® Converter

Build Artifact Binary Parsers @ Error Parsers

Security 1D value (-security_id) 0

[] Reserve working memory for RRM/DMM function (-rrm)

Start address area (-rrm=<valug>)

Secure memory area of OCD monitor (-debug_monitor)

Memoary area (-debug_monitor=<start address=-<end address>)l|3FEUU—3FFFF I
Set user option byte (-user_opt_byte)

< [R-5]

User option byte value (-user_opt_byte=<value=) |6E6FE8
Set enable/disable on-chip debug by link option (-ocdbg)

On-chip debug control value (-ocdbg=<value=) |A5
RAM area without section (-self/-ocdtr/-ocdhpi) None

Qutput a warning message when a section is allocated to the RAM area (-selfw/-ocdtrw/-ocdhpiw)
[] Check specifications of device (-check_device)
O Suppress checking section allocation that crosses (64KB-1) boundary (-check_64k_only)
[[] Do not check memory allocation of sections (-no_check_section_layout)

Address range of memory type (-cpu)

Setting for RL78/F23 (ROM: 128 Kbytes) Example: R7F123FMG

~ C/C++ Build
Build Variables
Environment
Logaging
Settings
Stack Analysis
Tool Chain Editor
C/C++ General
Project Natures
Project References
Renesas QE
Run/Debug Settings

® Tool Settings Toolchain Device .# Build Steps

% SMS Assembler
& Common

% Compiler

® Assembler

~ & Linker

& Input
& List
Optimization
(# Section
2 Device
2 Output
& Miscellaneous
(2 User
& Converter

Build Artifact Binary Parsers @ Error Parsers

Security 1D value (-security_id) 0

[Reserve working memory for RRM/DMM function (-rrm)
Start address area i(-rrm=<value>)

Secure memory area of OCD monitor (-debug_monitor)

Memoary area (-debug_monitor=<start address=-<end address>)l| 1FEQO-1FFFF I

Set user option byte (-user_opt_byte)

User option byte value (-user_opt_byte=<value=) |6E6FES
Set enable/disable on-chip debug by link option (-ocdbg)

On-chip debug control value (-ocdbg= <value>) |A5
RAM area without section (-self/-ocdtr/-ocdhpi) MNone

Qutput a warning message when a section is allocated to the RAM area (-selfw/-ocdtrw/-ocdhpiw)
[Check specifications of device (-check_device)
[[J Suppress checking section allocation that crosses (64KB-1) boundary (-check_64k_only)

1 Do not check memory allocation of sections (-no_check_section_layout)

Address range of memory type (-cpu)

R20UT5009EJ0110 Rev.1.10

Dec.28.22

RENESAS Page 176 of 186

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

6.3.2 IAR Compiler Environment Settings

Points of modifies and examples of modifies when using the IAR compiler environment (Embedded
Workbench) is described.

6.3.2.1 Setting up Header files for Target Device

The “main.c” and “low_level_init.c” provided with RFD RL78 Type 02 V1.00 includes the header files for the
target device “RL78/F24: R7F124FPJ”. When using other RL78/F24 products or RL78/F23 products, the
included header file must be changed to the header file for the device used.

This section describes when RL78/F23 (R7F123FMG) is used.

Target files name: main.c, low_level_init.c

- For RL78/F24 (R7TF124FPJ):
< main.c >

#include "ior7f124fpj.h"

< low_level_init.c >
#include "ior7f124fpj.h"
#include "ior7f124fpj_ext.h"

- Example for RL78/F23 (R7F123FMG):
< main.c >
#include "ior7f123fmg.h"
<low_level_init.c >
#include "ior7f123fmg.h"
#include "ior7f123fmg_ext.h"

Note: For the device type name of the product, refer to “Target MCU name” column in the Target MCU
List.

6.3.2.2 Linker Configuration File Settings

In the sample program provided by RFD RL78 Type 02, The sections (ROM, RAM, and Data flash range) for

RL78/F24 (R7F124FPJ) are set.

When using other RL78/F24 products, modify the contents of the linker configuration file
“sample_linker_file_xx.icf (xx = CF or DF or EX_FSW)” provided for the RL78/F24 of RFD RL78 Type 02
V1.00 because the section settings are different. The modifications are shown in red text below, so refer to
the Target MCU List and change the setting values for the target device.

Target files name: sample_linker_file_xx.icf (xx = CF or DF or EX_FSW)

This example shows the modify from RL78/F24 (R7F124FPJ) to RL78/F23 (R7F123FMG).
- Modify the ROM area to the range of 128 Kbytes [0x00000 - Ox1FFFF]
- Modify the start address to “OxFCF00” because the RAM area is 12 Kbytes [OXOFCFO0O0 - OXOFFEFF]
- Modify the end address to “OxF2FFF” because the data flash area is 8 Kbytes [0xOF1000 - OxOF2FFF]

R20UT5009EJ0110 Rev.1.10 NS Page 177 of 186
Dec.28.22 RENES

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

(1) Section Settings
- sample_linker_file_CF.icf, and sample_linker_file_EX_FSW.icf

Setting for RL78/F24 (ROM: 256 Kbytes, RAM: 24 Kbytes, Data Flash: 16 Kbytes) Example: R7F124FPJ

define region ROM_near = mem:[from 0x00132 to [0OxOFFFF]; < [R-2]

define region ROM_far = mem:[from 0x00132 to | mem:[from 0x10000 to]
| mem:[from 0x20000 to [0x2FFFF|] | mem:[from 0x30000 to I [R-2], [R-3] Notes 1

define region ROM_huge = mem:[from 0x00132 to I, < [R-2] or [R-3] Notes 2

define region SADDR = mem:[from OxFFE20 to OxFFEDF];

define region RAM_near = mem:[from to OXFFE1F]; < [R-1]

define region RAM_far = mem:[from to OXFFE1F]; < [R-1]

define region RAM_code = mem:[from to OXFFE1F]; < [R-1]

define region RAM_huge = mem:[from to OXFFE1F]; < [R-1]

define region VECTOR = mem:[from 0x00000 to 0x0007F];

define region CALLT = mem:[from 0x00080 to 0x000BF];

define region EEPROM = mem:[from OxF1000 to [OxF4FFF]]; <« [R-4]

Notes 1 When the ROM size is larger than 64 Kbytes, the description must change as the ROM size
increases. For details of the description.

2 Sets the value [R-3] when there is an address value in [R-3]on the list. In the case of “-“, set the
value of [R-2].

Setting for RL78/F23 (ROM: 128 Kbytes, RAM: 12 Kbytes, Data Flash: 8 Kbytes) Example: R7F123FMG

define region ROM_near = mem:[from 0x00132 to OxOFFFF];
define region ROM_far = mem:[from 0x00132 to OxOFFFF] | mem:[from 0x10000 to Ox1FFFF J;
define region ROM_huge = mem:[from 0x00132 to Ox1FFFF];
define region SADDR = mem:[from 0xFFE20 to OxFFEDF];
define region RAM_near = mem:[from OxFCF0O to OxFFE1F];
define region RAM_far = mem:[from OxFCFOO to OXFFE1F];
define region RAM_code = mem:[from 0xFCFO0O to OxFFE1F];
define region RAM_huge = mem:[from OxFCF0O0 to OxFFE1F];
define region VECTOR = mem:[from 0x00000 to 0x0007F];
define region CALLT = mem:[from 0x00080 to O0x000BF];
define region EEPROM = mem:[from 0xF1000 to OxF2FFF];

R20UT5009EJ0110 Rev.1.10 NS Page 178 of 186
Dec.28.22 RENES

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

- sample_linker_file DF.icf

Setting for RL78/F24 (ROM: 256 Kbytes, RAM: 24 Kbytes, Data Flash: 16 Kbytes) Example: R7F124FPJ

define region ROM_near = mem:[from 0x00132 to OxOFFFF[; « [R-2]

define region ROM_far = mem:[from 0x00132 to] | mem:[from 0x10000 to]
| mem:[from 0x20000 to [0x2FFFF|] | mem:[from 0x30000 to ;< [R-2], [R-3] Notes 1
define region ROM_huge = mem:[from 0x00132 to I; < [R-2] or [R-3] Notes 2
define region SADDR = mem:[from OxFFE20 to OxFFEDFT;
define region RAM_near = mem:[from to OXFFE1F]; < [R-1]
define region RAM_far = mem:[from to OXFFE1F]; <« [R-1]
define region RAM_huge = mem:[from to OXFFE1F];<— [R-1]
define region VECTOR = mem:[from 0x00000 to 0x0007F];
define region CALLT = mem:[from 0x00080 to 0x000BF];
define region EEPROM = mem:[from 0xF1000 to]; < [R-4]

Notes 1 When the ROM size is larger than 64 Kbytes, the description must change as the ROM size
increases. For details of the description.

“w o

2 Sets the value [R-3] when there is an address value in [R-3]on the list. In the case of “-”, set the

value of [R-2].

Setting for RL78/F23 (ROM: 128KB, RAM: 12KB, Data Flash: 8KB) Example: R7F123FMG

define region ROM_near = mem:[from 0x00132 to OxOFFFF];

define region ROM_far = mem:[from 0x00132 to OxOFFFF] | mem:[from 0x10000 to Ox1FFFF J;
define region ROM_huge = mem:[from 0x00132 to Ox1FFFF J;

define region SADDR = mem:[from 0xFFE20 to OxFFEDF];

define region RAM_near = mem:[from OxFCF0O0 to OXFFE1F];

define region RAM_far = mem:[from OxFCFOO to OxFFE1F];

define region RAM_huge = mem:[from OxFCFO0O0 to OXFFE1F];

define region VECTOR = mem:[from 0x00000 to 0x0007F];

define region CALLT = mem:[from 0x00080 to 0xO00BF];

define region EEPROM = mem:[from 0xF1000 to OxF2FFF];

R20UT5009EJ0110 Rev.1.10 NS Page 179 of 186
Dec.28.22 RENES

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

(2) Debug Settings
- The first address of the debug monitor area is set by subtracting "511 bytes(0x1FF)" from the end address
of the ROM area. If the end address is “Ox3FFFF”, set it to “Ox3FEQQ”.

- The first address of the TraceRAM area is set by adding "1 Kbyte(0x400))" to the first address of the RAM
area. If the first address is "0xF9F00", set "OxFA300".

- The first address of the hot plug-in RAM area is set by adding "0x600" to the first address of the RAM area.
If the first address is "OxFOF00", set "0xFA500".

As an example, modifying from RL78/F24 (R7F124FPJ) to RL78/F23 (R7F123FMG) is shown.
- Set the debug monitor area range to [from 0x1FEQO size 0x0200].
- Set the TraceRAM area range to [from 0xFD300 size 0x0200].
- Set the hot plug-in RAM area range to [from OxFD500 size 0x0030].

R20UT5009EJ0110 Rev.1.10 NS Page 180 of 186
Dec.28.22 RENES

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

- Modifies to the TraceRAM area, debug monitor area, and hot plug-in RAM area when using the
debugger.

Setting for RL78/F24 (ROM: 256 Kbytes, RAM: 24 Kbytes) Example: R7F124FPJ

if (isdefinedsymbol(_ RESERVE_OCD_ROM))

{
if (__RESERVE_OCD_ROM == 1)
{
reserve region "OCD ROM area" = mem:[from [0x3FEQQ)| size 0x0200]; < [R-5]
}
}
[Omitted]
if (isdefinedsymbol(_ RESERVE_OCD_TRACE_RAM))
{

if (_ RESERVE_OCD_TRACE_RAM == 1)

{
reserve region "OCD Trace RAM" = mem:[from [0xFA300| size 0x0200]; <~ [R-6]

}

}
[Omitted]
if (isdefinedsymbol(_ RESERVE_HOTPLUGIN_RAM))
{
if (__ RESERVE_HOTPLUGIN_RAM == 1)

{
reserve region "Hot Plugin RAM" = mem:[from [0xFA500) size 0x0030]; < [R-7]

¥

}
Setting for RL78/F23 (ROM: 128 Kbytes, RAM: 12 Kbytes, Data Flash: 8 Kbytes) Example: R7TF123FMG

if (isdefinedsymbol(_ RESERVE_OCD_ROM))

{
if (__RESERVE_OCD_ROM == 1)
{
reserve region "OCD ROM area" = mem:[from 0x1FEQO size 0x0200];
}
}
[Omitted]
if (isdefinedsymbol(_ RESERVE_OCD_TRACE_RAM))
{

if (__RESERVE_OCD_TRACE_RAM == 1)
{
reserve region "OCD Trace RAM" = mem:[from 0xFD300 size 0x0200];

}

}
[Omitted]
if (isdefinedsymbol(_ RESERVE_HOTPLUGIN_RAM))

{
if (_ RESERVE_HOTPLUGIN_RAM == 1)

{
reserve region "Hot Plugin RAM" = mem:[from OxFD500 size 0x0030];
}
}

R20UT5009EJ0110 Rev.1.10 NS Page 181 of 186
Dec.28.22 RENES

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

(3) RAM Start Address Settings
Sets the starting address of RAM area.

“sample_linker_file_xx.icf (xx = CF or DF or EX_FSW)” is set to use a RAM size of 24 Kbytes on RL78/F24
(R7F124FPJ). Therefore, it is necessary to modify the setting when using a RAM size other than 24 Kbytes.

This section describes an example of modifying the settings when using RL78/F24 (R7F124FPJ) with a
RAM size of 12 Kbytes.

To use RL78/F23 (R7F123FMG) with a RAM size of 12 Kbytes, modify the value of the RAM start address
setting register (RAMSAR) from “0x9F” to “OxCF” in “cstart.asm” stored in the “sample” folder.

For more information about the RAM Start Address Setting Register (RAMSAR), refer to the hardware
manual of the target RL78.

Setting for RL78/F24(RAM: 24 Kbytes) Example: R7F124FPJ

define exported symbol _RAMSAR_ADDR = 0xF0076;

if (lisdefinedsymbol(__ RAMSAR_VAL))

{

define exported symbol RAMSAR_VAL = [0x9F];

\

Setting for RL78/F23(RAM: 12 Kbytes) Example: R7F123FMG

define exported symbol _RAMSAR_ADDR = 0xF0076;
if (lisdefinedsymbol(_ RAMSAR_VAL))

{

define exported symbol _RAMSAR_VAL = 0xCF;

R20UT5009EJ0110 Rev.1.10 NS Page 182 of 186
Dec.28.22 RENES

RFD RL78 Type 02 6. Creating a Sample Project for RFD RL78 Type 02

6.3.3 Modifies in the Sample Program (Common to Compilers)
6.3.3.1 Extra Area [FSW Range] Modifying the Reprogramming Sample Program

The number of the maximum blocks of the code flash of RL78/F23 differs from RL78/F24. Therefore, modify
the setting value of FSW range end block macro [END_BLOCK] in “sample_config.h” for Extra area.

[END_BLOCK] indicates the “End block number + 1 ([R-8])" of the FSW range. Also, the comment contains
the value of “End block number ([R-8]) of the FSW range” and “End block number + 1 ([R-8]) of the FSW
range”.

Example) For RL78/F24 (R7F124FPJ), [R-8] is 256 and “[R-8] -1” is 255.
As an example, modifying from RL78/F24 (R7F124FPJ) to RL78/F23 (R7F123FMG) is shown.

File Name: sample_config.h
File Path: \sample\RL78_F24\EX_FSW\IAR\include

Setting for RL78/F24 (ROM: 256 Kbytes) Example: R7F124FPJ

/
User configurable parameters

[**** CPU frequency (MHz) ****/
/* It must be rounded up digits after the decimal point to form an integer (MHz). */
#define CPU_FREQUENCY (40u)

[**** Block numbers for FSW ****/

/* Start block number for FSW */

#define START_BLOCK (0u)

/* End block number for FSW */

/* It must be the block number points one block past the end of range for FSW. */

/* If the block number 255 is the end of range for FSW, please specify 256.* < [R-8]-1, [R-8]
#define END_BLOCK (256u) < [R-8]

¥

Setting for RL78/F23 (ROM: 128 Kbytes) Example: R7F123FMG

/
User configurable parameters

[**** CPU frequency (MHz) ****/
/* It must be rounded up digits after the decimal point to form an integer (MHz). */
#define CPU_FREQUENCY (40u)

[**** Block numbers for FSW ****/

/* Start block number for FSW */

#define START_BLOCK (Ou)

/* End block number for FSW */

/* It must be the block number points one block past the end of range for FSW. */
/* If the block number 127 is the end of range for FSW, please specify 128. */
#define END_BLOCK (128u)

R20UT5009EJ0110 Rev.1.10 NS Page 183 of 186
Dec.28.22 RENES

RFD RL78 Type 02

7. Revision History

7. Revision History

71 Major Modifications in this Revision
Description
Rev. Date
Page Summary
1.00 Jul.6.22 - Newly created.
1.10 Dec.28.22 - Add support of RL78/F23.
R20UT5009EJ0110 Rev.1.10 RENESAS Page 184 of 186

Dec.28.22

Renesas Flash Driver RL78 Type 02 User's Manual

Publication Date: Rev.1.10 Dec.28.22

Published by: Renesas Electronics Corporation

Renesas Flash Driver
RL78 Type 02

LENESAS

Renesas Electronics Corporation RO1UT5009EJ0110

	Cover
	Notice
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	How to Use This Manual
	Table of Contents
	Abbreviations
	Terminology
	1. Overview
	1.1 Outline
	1.1.1 Purpose

	1.2 Contents
	1.3 Features
	1.4 Operating Environment
	1.5 Points for Caution
	1.6 C Compiler Definitions

	2. System Configuration
	2.1 File Structure
	2.1.1 Folder Structure
	2.1.2 List of Files
	2.1.2.1 List of Source Files
	2.1.2.2 Header File List of Header Files

	2.2 Resources of RL78/F23 and RL78/F24
	2.2.1 Memory Map
	2.2.2 The Allocation of Blocks
	2.2.3 List of Registers Related to Flash Memory Sequencer Control

	2.3 Resources Used in RFD RL78 Type 02
	2.3.1 Sections Used in RFD RL78 Type 02
	2.3.1.1 Sections Used for Reprogramming of the Code Flash Memory
	2.3.1.2 Sections Used for Reprogramming of the Data Flash Memory
	2.3.1.3 Sections Used for Reprogramming of the Extra Area

	2.3.2 Code Size and Stack Size which API Functions Use

	3. API Functions of RFD RL78 Type 02
	3.1 List of API Functions of RFD RL78 Type 02
	3.1.1 API Functions Used in Common for Flash Memory Control
	3.1.2 API Functions for Code Flash Memory Control
	3.1.3 API Functions for Data Flash Memory Control
	3.1.4 API Functions for Extra Area Control
	3.1.5 Hook Functions

	3.2 Data Type Definitions
	3.2.1 Data Types
	3.2.2 Global Variables
	3.2.3 Enumerations
	3.2.4 Macro Definitions
	3.2.4.1 Macro Definitions for Setting the Global Data of RFD
	3.2.4.2 Macro Definitions for Setting the Registers and Extra Area in the RL78/F23 and RL78/F24

	3.3 Specifications of API Functions
	3.3.1 Specifications of API Functions Used in Common for Flash Memory Control
	3.3.1.1 R_RFD_Init
	3.3.1.2 R_RFD_SetDataFlashAccessMode
	3.3.1.3 R_RFD_SetFlashMemoryMode
	3.3.1.4 R_RFD_CheckFlashMemoryMode
	3.3.1.5 R_RFD_CheckCFDFSeqEndStep1
	3.3.1.6 R_RFD_CheckExtraSeqEndStep1
	3.3.1.7 R_RFD_CheckCFDFSeqEndStep2
	3.3.1.8 R_RFD_CheckExtraSeqEndStep2
	3.3.1.9 R_RFD_GetSeqErrorStatus
	3.3.1.10 R_RFD_ClearSeqRegister
	3.3.1.11 R_RFD_ForceStopSeq
	3.3.1.12 R_RFD_ForceReset
	3.3.1.13 R_RFD_SetBootAreaImmediately
	3.3.1.14 R_RFD_GetSecurityAndBootFlags
	3.3.1.15 R_RFD_GetFSW
	3.3.1.16 r_rfd_wait_count

	3.3.2 Specifications of API Functions for Code Flash Memory Control
	3.3.2.1 R_RFD_EraseCodeFlashReq
	3.3.2.2 R_RFD_WriteCodeFlashReq
	3.3.2.3 R_RFD_BlankCheckCodeFlashReq
	3.3.2.4 R_RFD_IVerifyCodeFlashReq

	3.3.3 Specifications of API Functions for Data Flash Memory Control
	3.3.3.1 R_RFD_EraseDataFlashReq
	3.3.3.2 R_RFD_WriteDataFlashReq
	3.3.3.3 R_RFD_BlankCheckDataFlashReq
	3.3.3.4 R_RFD_IVerifyDataFlashReq

	3.3.4 Specifications of API Functions for Extra Area Control
	3.3.4.1 R_RFD_SetExtraEraseProtectReq
	3.3.4.2 R_RFD_SetExtraWriteProtectReq
	3.3.4.3 R_RFD_SetExtraBootAreaProtectReq
	3.3.4.4 R_RFD_SetExtraBootAreaReq
	3.3.4.5 R_RFD_SetExtraFSWReq

	3.3.5 Specifications of Hook Functions
	3.3.5.1 R_RFD_HOOK_EnterCriticalSection
	3.3.5.2 R_RFD_HOOK_ExitCriticalSection

	4. Flash Memory Sequencer Operation
	4.1 Setting of Flash Memory Control Mode
	4.1.1 Procedure for Executing Specific Sequence
	4.1.2 Procedure for Transition from Non-programmable Mode to the Code Flash Memory Programming Mode
	4.1.3 Procedure for Transition from Non-programmable Mode to the Data Flash Memory Programming Mode
	4.1.4 Procedure for Transition to the Non-programmable Mode

	4.2 Clearing the Registers for Flash Memory Sequencer Control
	4.3 Specifying the Operating Frequency of the Flash Memory Sequencer
	4.4 Flash Memory Sequencer Commands
	4.4.1 Overview
	4.4.1.1 Selection of the Area to be Reprogrammed

	4.4.2 Code/Data Flash Area Sequencer Commands
	4.4.2.1 Reprogramming the Code Flash Area
	4.4.2.2 Reprogramming the Data Flash Area

	4.4.3 Extra Area Sequencer Commands
	4.4.3.1 Reprogramming the Extra Area
	4.4.3.2 Data Settings for Extra Area Sequencer Commands

	4.4.4 Procedures for Judging the End of Command Execution in the Flash Memory Sequencer
	4.4.4.1 Procedure for Judging the End of Command Execution in the Code/Data Flash Area Sequencer
	4.4.4.2 Procedure for Judging the End of Command Execution in the Extra Area Sequencer

	4.4.5 Procedure for Forcibly Terminating Command Execution in the Code/Data Flash Area Sequencer

	4.5 Boot Swap Function
	4.5.1 Overview
	4.5.2 Operation of the Boot Swap Function
	4.5.3 Execution of the Boot Swap Function
	4.5.3.1 Immediate Execution of Boot Swap
	4.5.3.2 Boot Swap Execution after a Reset

	4.6 Flash Shield Window Function
	4.6.1 Overview
	4.6.2 Operation of the Flash Shield Window Function
	4.6.3 Execution of the Flash Shield Window Function
	4.6.3.1 Control of the Flash Shield Window Mode

	4.7 Examples of Command Execution for Reprogramming of Flash Areas
	4.7.1 Example of Command Execution for Reprogramming of the Code Flash Area
	4.7.2 Example of Command Execution for Reprogramming of the Data Flash Area
	4.7.3 Example of Command Execution for Reprogramming of the Extra Area

	5. Sample Programs
	5.1 File Structure
	5.1.1 Folder Structure
	5.1.2 List of Files
	5.1.2.1 List of Source Files
	5.1.2.2 List of Header Files

	5.2 Data Type Definitions
	5.2.1 Enumerations

	5.3 Sample Program Functions
	5.3.1 Sample Program for Controlling the Reprogramming of the Code Flash Memory
	5.3.1.1 main Function
	5.3.1.2 Sample_CodeFlashControl Function

	5.3.2 Sample Program for Controlling the Reprogramming of the Data Flash Memory
	5.3.2.1 main Function
	5.3.2.2 Sample_DataFlashControl Function

	5.3.3 Sample Program for Controlling the Reprogramming of the Extra Area
	5.3.3.1 main Function
	5.3.3.2 Sample_ExtraFSWControl Function

	5.3.4 Sample Program Used in Common for Controlling the Flash Memory
	5.3.4.1 Sample_CheckCFDFSeqEnd Function
	5.3.4.2 Sample_CheckExtraSeqEnd Function

	5.4 Specifications of Sample Program Functions
	5.4.1 Sample Program Functions for Controlling the Reprogramming of the Code Flash Memory
	5.4.1.1 main
	5.4.1.2 Sample_CodeFlashControl

	5.4.2 Sample Program Functions for Controlling the Reprogramming of the Data Flash Memory
	5.4.2.1 main
	5.4.2.2 Sample_DataFlashControl

	5.4.3 Sample Program Functions for Controlling the Reprogramming of the Extra Area
	5.4.3.1 main
	5.4.3.2 Sample_ExtraFSWControl

	5.4.4 Sample Program Functions Used in Common
	5.4.4.1 Sample_CheckCFDFSeqEnd
	5.4.4.2 Sample_CheckExtraSeqEnd

	6. Creating a Sample Project for RFD RL78 Type 02
	6.1 Creating a Project in the Case of Using a CC-RL Compiler
	6.1.1 Example of Creating a Sample Project
	6.1.2 Example of Registration of Target Folders and Target Files
	6.1.3 Build Tool Settings
	6.1.3.1 Include Path Settings
	6.1.3.2 Device Item Settings
	6.1.3.3 Section Item Settings

	6.1.4 Debug Tool Settings
	6.1.4.1 Setting of Connection with Target Board

	6.2 Creating a Project in the Case of Using IAR Compiler
	6.2.1 Example of Creating a Sample Project
	6.2.2 Example of Registration of Target Folders and Target Files
	6.2.3 Integrated Development Environment (IDE) Settings
	6.2.3.1 Include Path Settings
	6.2.3.2 Debugger Settings

	6.2.4 Linker Configuration File(.icf) Settings
	6.2.4.1 Section Settings
	6.2.4.2 Option Bytes Settings

	6.2.5 On-chip Debug Settings
	6.2.5.1 Example of How to deal with Connection Errors

	6.3 Setting Related to Changing Devices
	6.3.1 CC-RL Compiler Environment Settings
	6.3.1.1 RAM Start Address Settings
	6.3.1.2 Exclude Unused File
	6.3.1.3 Section Settings
	6.3.1.4 Debug Settings

	6.3.2 IAR Compiler Environment Settings
	6.3.2.1 Setting up Header files for Target Device
	6.3.2.2 Linker Configuration File Settings

	6.3.3 Modifies in the Sample Program (Common to Compilers)
	6.3.3.1 Extra Area [FSW Range] Modifying the Reprogramming Sample Program

	7. Revision History
	7.1 Major Modifications in this Revision

	Colophon
	Back Cover

