

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

User’s Manual

Target devices
78K/0S Series

RA78K0S
Assembler Package Ver. 1.30 or Later

Language

Document No. U14877EJ1V0UM00 (1st edition)
Date Published September 2000 N CP(K)

Printed in Japan

User’s Manual U14877EJ1V0UM002

[MEMO]

User’s Manual U14877EJ1V0UM00 3

Windows and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the

United States and/or other countries.

HP-UX is a trademark of Hewlett-Packard Company.

SunOS is a trademark of Sun Microsystems, Inc.

M8E 00. 4

The information in this document is current as of September, 2000. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or
data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all
products and/or types are available in every country. Please check with an NEC sales representative
for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.
NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
developed based on a customer-designated "quality assurance program" for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.
Customers must check the quality grade of each semiconductor product before using it in a particular
application.
 "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio

and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for

NEC (as defined above).

•

•

•

•

•

•

User’s Manual U14877EJ1V0UM004

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, pIease contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
 components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
 800-366-9782
Fax: 408-588-6130
 800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana s.r.l.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Madrid Office
Madrid, Spain
Tel: 91-504-2787
Fax: 91-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore
Tel: 65-253-8311
Fax: 65-250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951

NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP Brasil
Tel: 55-11-6462-6810
Fax: 55-11-6462-6829

J00.7

User’s Manual U14877EJ1V0UM00 5

INTRODUCTION

This manual is designed to facilitate correct understanding of the basic functions of each program in the RA78K0S

Assembler Package (hereafter called RA78K0S) and the methods of describing source programs.

This manual does not cover how to operate the respective programs of the RA78K0S. Therefore, after

comprehending the contents of this manual, read the RA78K0S Assembler Package User’s Manual Operation

(U14876E) (hereafter called Operation) to operate each program in the assembler package.

Descriptions related to the RA78K0S in this manual apply to Ver. 1.30 or later.

[Target Readers]

This manual is intended for user engineers who understand the functions and instructions of the microcontroller

(78K/0S Series) subject to development.

[Organization]

This manual consists of the following six chapters and appendices:

CHAPTER 1 GENERAL

Outlines all of the basic functions of the RA78K0S.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Outlines how to describe source programs, and explains the operators of the assembler.

CHAPTER 3 DIRECTIVES

Explains how to write and use directives, including application examples.

CHAPTER 4 CONTROL INSTRUCTIONS

Explains how to write and use control instructions, including application examples.

CHAPTER 5 MACROS

Explains all macro functions, including macro definition, macro reference, and macro expansion.

Macro directives are explained in CHAPTER 3 DIRECTIVES.

CHAPTER 6 PRODUCT UTILIZATION

Introduces some measures recommended for describing a source program.

APPENDICES

These contain a list of reserved words, a list of directives, the maximum performance,

characteristics, and an index.

The instruction sets are not detailed in this manual. For these instructions, refer to the user’s manual of the

microcontroller (instruction version) for which software is being developed.

Also, for instructions on architecture, refer to the user's manual (hardware version) of each microcontroller for

which software is being developed.

User’s Manual U14877EJ1V0UM006

[Macros]

Those using an assembler for the first time are encouraged to read from CHAPTER 1 GENERAL of this manual.

Those who have a general knowledge of assembler programs may skip CHAPTER 1 GENERAL of this manual.

However, be sure to read 1.2 Reminders Before Program Development and CHAPTER 2 HOW TO DESCRIBE

SOURCE PROGRAMS.

Those who wish to know the directives and control instructions of the assembler are encouraged to read

CHAPTERS 3 DIRECTIVES and 4 CONTROL INSTRUCTIONS, respectively. The format, function, use, and

application examples of each directive or control instruction are detailed in these chapters.

[Conventions]

The following symbols and abbreviations are used throughout this manual:

 : Same format is repeated.

[]: Characters enclosed in these brackets can be omitted.

{ }: One of the items in { } is selected.

“ ”: Characters enclosed in “ ”(quotation marks) are a character string.

‘ ’: Characters enclosed in ‘ ’ (single quotation marks) are a character string.

(): Characters between parentheses are a character string.

< >: Characters (mainly title) enclosed in these brackets are a character string.

__: An underline is used to indicate an important point or input character strings.

∆: Indicates one or more blanks characters or tabs.

/: Character delimiter

∼: Continuity

Boldface : Characters in boldface are used to indicate an important point or reference point.

…

User’s Manual U14877EJ1V0UM00 7

[Related Documents]

The documents (user’s manuals) related to this manual are listed below.

The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

Document Name Document No.

Operation U14876E

Language This manual

RA78K0S Assembler Package

Structured Assembly Language U11623E

Operation U14871ECC78K0S C Compiler

Language U14872E

SM78K0S, SM78K0 Series System Simulator

WindowsTM Based

Operation U14611E

Project Manager Windows Based Operation U14610E

ID78K0-NS, ID78K0S-NS

Integrated Debugger Windows Based

Operation U14910E

78K/0S Series OS MX78K0S Fundamental U12938E

78K/0S Series Instruction U11047E

User’s Manual U14877EJ1V0UM008

[MEMO]

User’s Manual U14877EJ1V0UM00 9

CONTENTS

CHAPTER 1 GENERAL... 15
1.1 Assembler Overview.. 16

1.1.1 What is an assembler? ... 17

1.1.2 What is a relocatable assembler? .. 19

1.2 Reminders Before Program Development.. 21

1.2.1 Maximum performance characteristics of RA78K0S .. 21

1.3 Features of RA78K0S 23

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS .. 25
2.1 Basic Configuration of Source Program 25

2.1.1 Module header.. 26

2.1.2 Module body ... 27

2.1.3 Module tail .. 28

2.1.4 Overall configuration of source program .. 28

2.1.5 Description example of source program... 29

2.2 Description Format of Source Program.. 32

2.2.1 Configuration of statements.. 32

2.2.2 Character set .. 33

2.2.3 Fields that make up a statement .. 36

2.3 Expressions and Operators 48

2.3.1 Functions of operators.. 49

2.3.2 Restrictions on operations.. 64

2.4 Bit Position Specifier.. 71

2.5 Characteristics of Operands... 74

2.5.1 Size and address range of operand value... 74

2.5.2 Size of operands required for instructions.. 76

2.5.3 Symbol attributes and relocation attributes of operands .. 77

CHAPTER 3 DIRECTIVES.. 81
3.1 Overview of Directives 81

3.2 Segment Definition Directives 82

(1) CSEG (code segment)... 84

(2) DSEG (data segment)... 88

(3) BSEG (bit segment).. 92

(4) ORG (origin) 97

3.3 Symbol Definition Directives 100

(1) EQU (equate).. 101

(2) SET (set) 105

3.4 Memory Initialization and Area Reservation Directives ... 107

(1) DB (define byte) 108

(2) DW (define word) 110

(3) DS (define storage)... 112

(4) DBIT (define bit)... 114

3.5 Linkage Directives 115

(1) EXTRN (external) 116

User’s Manual U14877EJ1V0UM0010

(2) EXTBIT (external bit)118

(3) PUBLIC (public)120

3.6 Object Module Name Declaration Directive..122

(1) NAME (name)123

3.7 Automatic Branch Instruction Selection Directive..124

(1) BR (branch)125

3.8 Macro Directives127

(1) MACRO (macro)128

(2) LOCAL (local)...130

(3) REPT (repeat)133

(4) IRP (indefinite repeat)...135

(5) EXITM (exit from macro)...137

(6) ENDM (end macro)..140

3.9 Assembly Termination Directive142

(1) END (end)143

CHAPTER 4 CONTROL INSTRUCTIONS.. 14 5
4.1 Overview of Control Instructions145

4.2 Processor Type Specification Control Instruction..147

(1) PROCESSOR (processor)148

4.3 Debug Information Output Control Instructions149

(1) DEBUG/NODEBUG (debug/nodebug) ...15 0

(2) DEBUGA/NODEBUGA (debuga/nodebuga) ..151

4.4 Cross-Reference List Output Specification Control Instructions..152

(1) XREF/NOXREF (xref/noxref)153

(2) SYMLIST/NOSYMLIST (symlist/nosymlist) ...15 4

4.5 Inclusion Control Instruction155

(1) INCLUDE (include)156

4.6 Assembly List Control Instructions159

(1) EJECT (eject)...160

(2) LIST/NOLIST (list/nolist)...162

(3) GEN/NOGEN (generate/no generate)164

(4) COND/NOCOND (condition/no condition) ..16 6

(5) TITLE (title)168

(6) SUBTITLE (subtitle)171

(7) FORMFEED/NOFORMFEED (formfeed/noformfeed) ..174

(8) WIDTH (width)175

(9) LENGTH (length)176

(10) TAB (tab)..177

4.7 Conditional Assembly Control Instructions178

(1) IF/_IF/ELSEIF/_ELSEIF/ELSE/ENDIF179

(2) SET/RESET (set/reset)...184

4.8 Other Control Instructions186

CHAPTER 5 MACROS.. 187
5.1 Overview of Macros187

5.2 Utilization of Macros188

5.2.1 Macro definition ..188

User’s Manual U14877EJ1V0UM00 11

5.2.2 Macro reference ... 189

5.2.3 Macro expansion .. 190

5.3 Symbols Within Macros 191

5.4 Macro Operators 194

CHAPTER 6 PRODUCT UTILIZATION 197

APPENDIX A LIST OF RESERVED WORDS... 199

APPENDIX B LIST OF DIRECTIVES... 201

APPENDIX C MAXIMUM PERFORMANCE CHARACTERISTICS.. 203

APPENDIX D INDEX ... 205

User’s Manual U14877EJ1V0UM0012

LIST OF FIGURES

Figure No. Title Page

1-1 RA78K0S Assembler Package ...16

1-2 Flow of Assembler...17

1-3 Development Process of Microcontroller-Applied Products ...18

1-4 Reassembly for Debugging ..20

1-5 Program Development Using Existing Module ...20

2-1 Configuration of Source Module ...25

2-2 Overall Configuration of Source Module ..28

2-3 Examples of Source Module Configurations ..28

2-4 Configuration of Sample Program...29

2-5 Fields That Make Up a Statement...32

3-1 Memory Location of Segments ...83

3-2 Relocation of Code Segment..84

3-3 Relocation of Data Segment...88

3-4 Relocation of Bit Segment..92

3-5 Location of Absolute Segment..97

3-6 Relationship of Symbols Between Two Modules ..115

User’s Manual U14877EJ1V0UM00 13

LIST OF TABLES

Table No. Title Page

1-1 Maximum Performance Characteristics of Assembler...21

1-2 Maximum Performance Characteristics of Linker ...22

2-1 Instructions That Can Be Described in Module Header...26

2-2 Symbol Types ..36

2-3 Names of Segments Automatically Generated by Assembler ..38

2-4 Symbol Attributes and Values ..39

2-5 Methods of Representing Numeric Constants..42

2-6 Special Characters That Can Be Described in Operand Field ...44

2-7 Types of Operators ... 48

2-8 Order of Precedence of Operators..49

2-9 Types of Relocation Attributes ...64

2-10 Combinations of Terms and Operators by Relocation Attribute..65

2-11 Combinations of Terms and Operators by Relocation Attribute (External Reference Terms)67

2-12 Types of Symbol Attributes in Operations..68

2-13 Combinations of Terms and Operators by Symbol Attribute ..69

2-14 Combinations of 1st and 2nd Terms by Relocation Attribute ...73

2-15 Values of Bit Symbols ... 73

2-16 Ranges of Operand Values of Instructions ..75

2-17 Ranges of Operand Values of Directives...75

2-18 Properties of Described Symbols as Operands..78

2-19 Properties of Described Symbols as Operands of Directives...79

3-1 List of Directives ...81

3-2 Segment Definition Methods and Memory Address Location...82

3-3 Relocation Attributes of CSEG ...85

3-4 Default Segment Names of CSEG..86

3-5 Relocation Attributes of DSEG ...89

3-6 Default Segment Names of DSEG..90

3-7 Relocation Attributes of BSEG ...93

3-8 Default Segment Names of BSEG ..95

3-9 Representation Formats of Operands Indicating Bit Values .. 102

4-1 List of Control Instructions ... 145

4-2 Control Instructions and Assembler Options .. 146

User’s Manual U14877EJ1V0UM0014

[MEMO]

User’s Manual U14877EJ1V0UM00 15

CHAPTER 1 GENERAL

This chapter describes the role of the RA78K0S in microcontroller software development and the features of the

RA78K0S.

CHAPTER 1 GENERAL

User’s Manual U14877EJ1V0UM0016

1.1 Assembler Overview

The RA78K0S Assembler Package is a generic term for a series of programs designed to translate source

programs coded in the assembly language for 78K/0S Series microcontrollers into machine language coding.

The RA78K0S contains six programs: Structured Assembler Preprocessor, Assembler, Linker, Object Converter,

Librarian, and List Converter.

In addition, a project manager that helps to perform a series of operations including program editing,

compiling/assembling, linking, and debugging on WindowsTM is also supplied with the RA78K0S.

This project manager is supplied with an editor (idea-L editor).

Figure 1-1. RA78K0S Assembler Package

Structured Assembler Preprocessor

Assembler

Linker

Object Converter

RA78K0S Assembler Package

Librarian

List Converter

Project Manager

idea-L Editor

CHAPTER 1 GENERAL

User’s Manual U14877EJ1V0UM00 17

1.1.1 What is an assembler?

(1) Assembly language and machine language

An assembly language is the most fundamental programming language for a microcontroller.

For the microprocessor in a microcontroller to do its job, programs and data are required. These programs and

data must be written by people (i.e., programmers) and stored in the memory section of the controller. The

programs and data handled by the microcontroller are collections of binary numbers called machine language.

For programmers, however, machine language code is difficult to remember, causing errors to occur frequently.

Fortunately, methods exist whereby English abbreviations or mnemonics are used to represent the meanings of

the original machine language codes in a way that is easy for people to comprehend. A programming language

system that uses this symbolic coding is called an assembly language.

Since the microcontroller must handle programs in machine language form, another program is required that

translates programs created in assembly language into machine language. This program is called an

assembler.

Figure 1-2. Flow of Assembler

(Object module file)(Assembler)(Source module file)

Program coded in
sets of binary

Program written in
assembly language

CHAPTER 1 GENERAL

User’s Manual U14877EJ1V0UM0018

(2) Development of microcontroller-applied products and the role of RA78K0S

Figure 1-3 Development Process of Microcontroller-Applied Products illustrates the position of assembly-

language programming in the (software) product development process.

Figure 1-3. Development Process of Microcontroller-Applied Products

System design

Logic design

Manufacturing

Inspection

Software design

Program coding in

assembly language

Assembly

OKOK

Debugging

OK

System evaluation

NO

YES

NO

NO

YES

YES

Hardware

development

Software

development

Product marketing

Product planning

Position of

RA78K0S

CHAPTER 1 GENERAL

User’s Manual U14877EJ1V0UM00 19

1.1.2 What is a relocatable assembler?

The machine language translated from a source language by the assembler is stored in the memory of the

microcontroller before use. To do this, the location in memory where each machine language instruction is to be

stored must already be determined. Therefore, information is added to the machine language assembled by the

assembler, stating where in memory each machine language instruction is to be located.

Depending on the method of locating addresses to machine language instructions, assemblers can be broadly

divided into absolute assemblers and relocatable assemblers.

•••• Absolute assembler

An absolute assembler locates machine language instructions assembled from the assembly language to

absolute addresses.

• Relocatable assembler

In a relocatable assembler, the addresses determined for the machine language instructions assembled from

the assembly language are tentative. Absolute addresses are determined subsequently by a program called

the linker.

In the past, when a program was created with an absolute assembler, programmers had to, as a rule, complete

programming at the same time. However, if all the components of a large program are created at the same time, the

program becomes complicated, making analysis and maintenance of the program troublesome. To avoid this, such

large programs are developed by dividing them into several subprograms, called modules, for each functional unit.

This programming technique is called modular programming.

A relocatable assembler is an assembler suitable for modular programming.

The following advantages can be derived from modular programming with a relocatable assembler:

(1) Increase in development efficiency

It is difficult to write a large program all at the same time. In such cases, dividing the program into modules for

each function enables two or more programmers to develop subprograms in parallel to increase development

efficiency.

Furthermore, if any bugs are found in the program, it is not necessary to assemble the entire program just to

correct one part of the program, and only a module that must be corrected can be reassembled. This shortens

debugging time.

CHAPTER 1 GENERAL

User’s Manual U14877EJ1V0UM0020

Figure 1-4. Reassembly for Debugging

Module

Module

Module

×××× ××××

Bugs
are
found!

Bugs
are
found!

Program consisting of a
single module

Program consisting of two or
more modules

Entire
program
must be
assembled
again.

Only this
module needs
to be
assembled
again.

Module

Module

(2) Utilization of resources

Highly reliable, highly versatile modules that have been previously created can be utilized for the creation of

another program. Accumulating such high-versatility modules as software resources saves time and labor in

developing a new program.

Figure 1-5. Program Development Using Existing Module

Module A Module B Module C Module D

New module

Module A

New module

Module D

New program

CHAPTER 1 GENERAL

User’s Manual U14877EJ1V0UM00 21

1.2 Reminders Before Program Development

Before beginning to develop a program, keep the following points in mind.

1.2.1 Maximum performance characteristics of RA78K0S

(1) Maximum performance characteristics of assembler

Table 1-1. Maximum Performance Characteristics of Assembler

Maximum Performance CharacteristicsItem

PC Version WS Version

Number of symbols (local + public) 65,535 symbolsNote 1 65,535 symbolsNote 1

Number of symbols for which cross-reference list can be output 65,534 symbolsNote 2 65,534 symbolsNote 2

Maximum size of macro body for one macro reference 1 MB 1 MB

Total size of all macro bodies 10 MB 10 MB

Number of segments in one file 256 segments 256 segments

Macro and include specifications in one file 10,000 10,000

Macro and include specifications in one include file 10,000 10,000

Relocation dataNote 3 65,535 items 65,535 items

Line number data 65,535 items 65,535 items

Number of BR directives in one file 32,767 directives 32,767 directives

Number of characters per line 2,048 charactersNote 4 2,048 charactersNote 4

Symbol length 256 characters 256 characters

Number of definitions of switch nameNote 5 1,000 1,000

Character length of switch nameNote 5 31 characters 31 characters

Number of nesting levels on include file in one file 8 levels 8 levels

Notes 1. XMS is used. If there is no XMS, a file is used.

2. Memory is used. If there is no memory, a file is used.

3. "Relocation data" is the data transferred to the linker when the assembler cannot decide the symbol

values.

For example, when referring to an external reference symbol by a MOV instruction, two items of

relocation data are generated in the .rel file.

4. This includes the carriage return and feed codes. If 2,049 characters or more are described on a line,

an error message is output and terminates processing.

5. Switch name is set to true or false by SET/RESET directives and used with $IF, etc.

CHAPTER 1 GENERAL

User’s Manual U14877EJ1V0UM0022

(2) Maximum performance characteristics of linker

Table 1-2. Maximum Performance Characteristics of Linker

Maximum Performance CharacteristicsItem

PC Version WS Version

Number of symbols (local + public) 65,535 symbols 65,535 symbols

Line number data of same segment 65,535 items 65,535 items

Number of segments 65,535 segments 65,535 segments

Number of input modules 1,024 modules 1,024 modules

CHAPTER 1 GENERAL

User’s Manual U14877EJ1V0UM00 23

1.3 Features of RA78K0S

The RA78K0S has the following features:

(1) Macro function

When the same group of instructions must be described in a source program over and over again, a macro can

be defined by giving a single macro name to the group of instructions.

By using this macro function, coding efficiency and readability of the program can be increased.

(2) Optimize function of branch instructions

The RA78K0S has a directive to automatically select a branch instruction (BR directive).

To create a program with high memory efficiency, a byte branch instruction must be described according to the

branch destination range of the branch instruction. However, it is troublesome for the programmer to describe a

branch instruction by paying attention to the branch destination range for each branching. By describing the BR

directive, the assembler generates the appropriate branch instruction according to the branch destination range.

This is called the optimize function of branch instructions.

(3) Conditional assembly function

With this function, a part of a source program can be specified for assembly or non-assembly according to a

predetermined condition.

If a debug statement is described in a source program, whether or not the debug statement should be translated

into machine language can be selected by setting a switch for conditional assembly. When the debug statement

is no longer required, the source program can be assembled without major modifications to the program.

User’s Manual U14877EJ1V0UM0024

[MEMO]

User’s Manual U14877EJ1V0UM00 25

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

This chapter describes the description methods, description formats, expressions and operators of the source

program.

2.1 Basic Configuration of Source Program

When a source program is described by dividing it into several modules, each module that becomes the unit of

input to the assembler is called a source module (if a source program consists of a single module, “source program”

means the same as “source module”).

Each source module that becomes the unit of input to the assembler consists mainly of the following three parts:

<1> Module header

<2> Module body

<3> Module tail

Figure 2-1. Configuration of Source Module

Module header

Module body

Module tail

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM0026

2.1.1 Module header

In the module header, the control instructions shown in Table 2-1 Instructions That Can Be Described in

Module Header below can be described. Note that these control instructions can only be described in the module

header.

Also, the module header can be omitted.

Table 2-1. Instructions That Can Be Described in Module Header

Item That Can Be Described Explanation Chapter/Section in This

Manual

Control instructions that have the

same functions as assembler

options

Control instructions that have the same functions as

assembler options are as follows:

• PROCESSOR

• XREF/NOXREF

• DEBUG/NODEBUG/DEBUGA/NODEBUGA

• TITLE

• SYMLIST/NOSYMLIST

• FORMFEED/NOFORMFEED

• WIDTH

• LENGTH

• TAB

Special control instructions output

by high-level programs such as C

compiler and structured

assembler preprocessor

Special control instructions output by high-level programs

such as C compiler and structured assembler preprocessor

are as follows:

• TOL_INF

• DGS

• DGL

CHAPTER 4 CONTROL

INSTRUCTIONS

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM00 27

2.1.2 Module body

In the module body, the following instructions cannot be described:

• Control instructions that have the same functions as assembler options

All other directives, control instructions, and instructions can be described in the module body.

The module body must be described by dividing it into units, called “segments”.

The user may define the following four segments with a directive corresponding to each segment:

<1> Code segment............ Must be defined with the CSEG directive.

<2> Data segment............. Must be defined with the DSEG directive.

<3> Bit segment Must be defined with the BSEG directive.

<4> Absolute segment Must be defined by specifying a location address for the relocation attribute (AT

location address) with the CSEG, DSEG, or BSEG directive. This segment may also

be defined with the ORG directive.

The module body may be configured with any combination of segments.

However, a data segment and a bit segment should be defined before a code segment.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM0028

2.1.3 Module tail

The module tail indicates the end of the source module. The END directive must be described in this part.

If anything other than a comment, a blank, a tab, or a line feed code is described following the END directive, the

assembler will output a warning message and ignore the characters described after the END directive.

2.1.4 Overall configuration of source program

The overall configuration of a source module (source program) is as shown below.

Figure 2-2. Overall Configuration of Source Module

Control instruction(s) that have the
same function(s) as assembler
option(s)

Directive(s)

Control instruction(s)

Instruction(s)

END directive

Module header

Module body

Module tail

Examples of simple source module configurations are shown in Figure 2-3.

Figure 2-3. Examples of Source Module Configurations

$ PROCESSOR (9026)

VECT CSEG AT 0H

…

MAIN CSEG

…

END END

$ PROCESSOR (9026)

FLAG BSEG

…

WORK DSEG

…

SUB CSEG

…

Module header

Module body

Module tail

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM00 29

2.1.5 Description example of source program

In this subsection, a description example of a source module (source program) is shown as a sample program.

The configuration of the sample program can be illustrated simply as follows.

Figure 2-4. Configuration of Sample Program

<Module name SAMPM>

<Module name SAMPS>

NAME SAMPM

DATA DSEG AT 0FE20H

Variable definition

CODE CSEG AT 0H
MAIN: DW START

CSEG

START:

…

CALL !CONVAH

…

CSEG

CONVAH:

…

CALL !SASC

…
RETEND

END

CSEG

SASC:

…

RET

NAME SAMPS

This sample program was created by dividing a single source program into two modules. The module “SAMPM” is

the main routine of this program and the module “SAMPS” is a subroutine to be called within the main routine.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM0030

<Main routine>

NAME SAMPM ;(1)
;**

;*

;* HEX -> ASCII Conversion Program

;*

;* main-routine

;*

;**

PUBLIC MAIN,START ;(2)
EXTRN CONVAH ;(3)
EXTRN _@STBEG ;(4)

DATA DSEG saddr ;(5)
HDTSA: DS 1

STASC: DS 2

CODE CSEG AT 0H ;(6)
MAIN: DW START

CSEG ;(7)
START:

;chip initialize

MOVW AX,#_@STBEG

MOVW SP,AX

MOV HDTSA,#1AH

MOVW HL,#HDTSA ;set hex 2-code data in HL register

CALL !CONVAH ;convert ASCII <- HEX

;output BC-register <- ASCII code

MOVW DE,#STASC ;set DE <- store ASCII code table

MOV A,B

MOV [DE],A

INCW DE

MOV A,C

MOV [DE],A

BR $$

END ;(8)

(1) Declaration of module name
(2) Declaration of symbol referenced from another module as an external reference symbol
(3) Declaration of symbol defined in another module as an external reference symbol
(4) Declaration of stack solution symbol generated from “-S” option of linker as an external reference symbol (an

error will occur if “-S” option is not specified when linking)
(5) Declaration of the start of a data segment (to be located in saddr)
(6) Declaration of the start of a code segment (to be located as an absolute segment starting from address 0H)
(7) Declaration of the start of a code segment (meaning the end of the absolute segment)
(8) Declaration of the end of the module

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM00 31

<Subroutine>

NAME SAMPS ;(9)
;***

;*

;* HEX -> ASCII Conversion Program

;* sub-routine

;*

;* input condition : (HL) <- hex 2 code

;* output condition : BC-register <-ASCII 2 code

;*

;***

PUBLIC CONVAH ;(10)

CSEG ;(11)
CONVAH:

MOV A, [HL]

ROR A, 1

ROR A, 1

ROR A, 1

ROR A, 1

AND A, #0FH ;hex upper code load

CALL !SASC

MOV B,A ;store result

XOR A,A

XCH A, [HL]

AND A, #0FH ;hex lower code load

CALL !SASC

MOV C,A ;store result

RET

;***

;* subroutine convert ASCII code

;* input Acc (lower 4bits) <- hex code

;* output Acc <- ASCII code

;***

SASC:

CMP A,#0AH ;check hex code > 9

BC $SASC1

ADD A,#07H ;bias(+7H)

SASC1:

ADD A,#30H ;bias(+30H)

RET

END ;(12)

(9) Declaration of module name

(10) Declaration of symbol referenced from another module as an external definition symbol

(11) Declaration of the start of the code segment

(12) Declaration of the end of the module

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM0032

2.2 Description Format of Source Program

2.2.1 Configuration of statements

A source program consists of statements.

Each statement consists of the four fields shown in Figure 2-5 Fields That Make Up a Statement .

Figure 2-5. Fields That Make Up a Statement

Statement Symbol field Mnemonic field Operand field Comment field [CR] LF

< 1 > < 2 > < 3 > < 4 >

<1> The symbol field and the mnemonic field must be separated from each other with a colon (:) or one or more

blanks or tabs (It depends on an instruction described in the mnemonic field whether colons or blanks are

used).

<2> The mnemonic field and the operand field must be separated from each other with one or more blanks or

tabs. Depending on the instruction described in the mnemonic field, the operand field may not be required.

<3> The comment field if used must be preceded with a semicolon (;).

<4> Each line must be delimited with an LF code (one CR code may exist immediately before the LF code).

A statement must be described within a line. A maximum of 2,048 characters (including CR and LF) can be

described per line.

Each TAB or independent CR is counted as a single character. If 2,049 or more characters are described, a

warning message is output and any characters at or over 2,049 are ignored. However, 2,049 or more characters will

be output to the assembly list.

An independent CR will not be output to the assembly list.

The following lines may also be described:

• Dummy line (line without statement description)

• Line consisting of the symbol field alone

• Line consisting of the comment field alone

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM00 33

2.2.2 Character set

Characters that can be described in a source file are classified into the following three types:

• Language characters

• Character data

• Comment characters

(1) Language characters

Language characters are characters used to describe instructions in a source program. The language character

set includes alphabetic, numeric, and special characters.

[Alphanumeric Characters]

Name Characters

Numeric characters 0 1 2 3 4 5 6 7 8 9

Uppercase

letters

A B C D E F G H I J K L M N O P Q R S T U

V W X Y Z

Alphabetic

characters

Lowercase

letters

a b c d e f g h i j k l m n o p q r s t u

v w x y z

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM0034

[Special Characters]

Character Name Main Use

?

@

_

Question mark

Circa

Underscore

Symbol equivalent to alphabetic characters

Symbol equivalent to alphabetic characters

Symbol equivalent to alphabetic characters

Blank

HT (09H)

,

:

;

CR (0DH)

LF (0AH)

Tab code

Comma

Colon

Semicolon

Carriage return code

Line-feed code

Delimiter

symbols

Delimiter of each field

Character equivalent to blank

Delimiter of operands

Delimiter of labels

Symbol indicating the start of the Comment field

Symbol indicating the end of a line (ignored in the assembler)

Symbol indicating the end of a line

+

-

*

/

.

(,)

< , >

=

Plus sign

Minus sign

Asterisk

Slash

Period

Left and right parentheses

Not Equal sign

Equal sign

Assem-

bler

operators

ADD operator or positive sign

SUBTRACT operator or negative sign

MULTIPLY operator

DIVIDE operator

Bit position specifier

Symbols specifying the order of arithmetic operations to be

performed

Relational operators

Relational operator

' Single quotation mark • Symbol indicating the start or end of a character constant

• Symbol indicating a complete macro parameter

$

&

#

!

[]

Dollar sign

Ampersand

Sharp sign

Exclamation point

Brackets

• Symbol indicating the location counter

• Symbol indicating the start of a control instruction equivalent to an assembler

option

• Symbol specifying relative addressing

Concatenating symbol (used in macro body)

Symbol specifying immediate addressing

Symbol specifying absolute addressing

Symbol specifying indirect addressing

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM00 35

(2) Character data

“Character data” refers to characters used to describe string constants, character strings, and control

instructions (TITLE, SUBTITLE, INCLUDE).

[Character Set for Character Data]

• All characters except “00H” can be used, codes may be different depending on the operating system). If

“00H” has been described, an error will result and subsequent characters before the closing single quotation

mark (’) will be ignored.

• If any illegal character has been described, the assembler will replace the illegal character with “!” for output

to the assembly list (an independent CR (0DH) code will not be output to the assembly list).

• With Windows, the assembler interprets code “1AH” as the end of the file (EOF) and thus the code cannot be

a part of the input data.

(3) Comment characters

“Comment characters” refers to characters used to describe a comment statement.

[Character Set for Comments]

• Characters that can be used in a comment statement are the same as those in the character set for character

data. However, no error will result even if code “00H” has been described. Instead, the assembler will output

the illegal character to the assembly list by replacing it with “!”.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM0036

2.2.3 Fields that make up a statement

This subsection details the respective fields that make up a statement.

(1) Symbol field

Statement Symbol field Mnemonic field Operand field Comment field

A symbol is described in the symbol field. The term “symbol” refers to a name given to numerical data or an

address.

By using symbols, the contents of a source program can be understood more easily.

[Symbol Types]

Symbols are classified into the types shown in Table 2-2 , depending on their use and method of definition.

Table 2-2. Symbol Types

Symbol Type Use Method of Definition

Name Used as numerical data or an address in a

source program.

This type is described in the symbol field of the

EQU, SET, or DBIT directive.

Label Used as address data in a source program. This type is defined by suffixing a colon (:) to a

symbol.

External reference name Used to reference symbol defined by a

module by another module.

This type is described in the operand field of the

EXTRN or EXTBIT directive.

Segment name Symbol used during linker operation This type is defined in the symbol field of the

CSEG, DSEG, BSEG or ORG directive.

Module name Used during symbolic debugging This type is described in the operand field of the

NAME directive.

Macro name Used for macro reference in a source

program.

This type is described in the symbol field of the

MACRO directive.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM00 37

[Conventions of Symbol Description]

All symbols must be described according to the following rules:

<1> A symbol must be made up of alphanumeric characters and special characters (?, @, and _) that can be

used as characters equivalent to alphabetic characters.

None of the numeric characters 0 to 9 can be used as the first character of a symbol.

<2> A symbol must be made up of not more than 31 characters. Characters in excess of the maximum symbol

length will be ignored.

<3> No reserved word can be used as a symbol. Reserved words are indicated in APPENDIX A LIST OF

RESERVED WORDS.

<4> The same symbol cannot be defined more than once (however, a name defined with the SET directive can

be redefined with the SET directive).

<5> The assembler distinguishes between lowercase and uppercase characters.

<6> When describing a label in the Symbol field, “:” (colon) must be described immediately after the label.

(Examples of correct symbol descriptions)

CODE01 CSEG ; “CODE01” is a segment name.

VAR01 EQU 10H ; “VAR01” is a name.

LAB01: DW 0 ; “LAB01” is a label.

NAME SAMPLE ; “SAMPLE” is a module name.

MAC1 MACRO ; “MAC1” is a macro name.

(Examples of incorrect symbol descriptions)

1ABC EQU 3 ; No numeric character can be used as the 1st character of a

symbol.

LAB MOV A, R0 ; “LAB” is a label and must be separated from the Mnemonic

field with a colon (:).

FLAG: EQU 10H ; A colon (:) is not necessary in a name.

(Example of a symbol that is too long)

A123456789B12 to Y1234567890123456 EQU 70H

; Character “6” in excess of the maximum symbol length (256

characters) are ignored. The symbol will be defined as

“A123456789B12 to Y123456789012345”.

 (Example of a statement composed of a symbol only)

ABCD: ; “ABCD” will be defined as a label.

[Some Cautions about Symbols]

The symbol “??RAnnnn (n = 0000 to FFFF)” is a symbol that is automatically replaced by the assembler every

time a local symbol is developed inside a macro body. Be careful not to define this symbol twice.

When a segment name is not specified by a segment definition directive, the assembler generates a segment

name automatically. These segments are shown in Table 2-3 Names of Segments Automatically Generated

by Assembler .

Duplicate segment name definition causes an error.

250

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM0038

Table 2-3. Names of Segments Automatically Generated by Assembler

Segment Name Directive Relocation Attribute

?An ORG directive n = 0000 to FFFF

?CSEG UNIT

?CSEGUP UNITP

?CSEGT0 CALLT0

?CSEGFX FIXED

?CSEGIX

CSEG directive

IXRAM

?DSEG UNIT

?DSEGUP UNITP

?DSEGS SADDR

?DSEGSP SADDRP

?DSEGIH IHRAM

?DSEGL LRAM

?DSEGDSP

DSEG directive

DSPRAM

?BSEG BSEG directive UNIT

[Symbol Attributes]

All names and labels have both a value and an attribute.

A value refers to the value of defined numerical data or address data itself.

Segment names, module names, and macro names do not have a value.

The attribute of a symbol is called a symbol attribute and must be one of the eight types indicated in Table 2-4

Symbol Attributes and Values .

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM00 39

Table 2-4. Symbol Attributes and Values

Attribute Type Classification Value

NUMBER • Names to which numeric constants are assigned

• Symbols defined with the EXTRN directive

• Numeric constants

ADDRESS • Symbols defined as labels

• Names defined as labels with EQU and SET directives

Decimal representation:

0 to 65535

Hexadecimal

representation: 0H to FFFFH

BIT • Names defined as bit values

• Names within BSEG

• Symbols defined with the EXTBIT directive

saddr area

CSEG Segment names defined with the CSEG directive

DSEG Segment names defined with the DSEG directive

BSEG Segment names defined with the BSEG directive

MODULE Module names defined with the NAME directive (A module name if

not defined is created from the primary name of the input source

filename)

MACRO Macro names defined with the MACRO directive

These attribute types have no

value.

Examples

TEN EQU 10H ; Name “TEN” has attribute “NUMBER” and value “10H”.

ORG 80H

START: MOV A,#10H ; Label “START” has attribute “ADDRESS” and value “80H”.

BIT1 EQU 0FE20H.0 ; Name “BIT1” has attribute “BIT” and value “0FE20H.0”.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM0040

(2) Mnemonic field

Statement Symbol field Mnemonic field Operand field Comment field

In the mnemonic field, a mnemonic instruction, a directive, or a macro reference is described.

With an instruction or directive requiring an operand or operands, the mnemonic field must be separated from

the operand field with one or more blanks or tabs.

However, with the first operand of an instruction that begins with “#”, “$” ,“!”, or “[”, the assembly will be executed

properly even if nothing exists between the mnemonic field and the first operand field.

(Examples of correct descriptions)

MOV A,#0H

CALL !CONVAH

RET

(Examples of incorrect descriptions)

MOVA #0H ; No blank exists between the mnemonic and operand fields.

C ALL ! CONVAH ; A blank exists within the mnemonic field.

ZZZ ; The 78K/0S Series has no such instruction as “ZZZ”.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM00 41

(3) Operand field

Statement Symbol field Mnemonic field Operand field Comment field

In the operand field, the data (operands) required for executing the instruction, directive, or macro reference is

described.

Depending on the instruction or directive, no operand is required in the operand field or two or more operands

must be described in the operand field.

When describing two or more operands, delimit each operand with a comma (,).

The following types of data can be described in the operand field:

• Constants (numeric constants and string constants)

• Character strings

• Register names

• Special characters ($, #, !, and [])

• Relocation attribute names of segment definition directives

• Symbols

• Expressions

• Bit terms

The size and attribute of the required operand may be different depending on the instruction or directive. Refer

to 2.5 Characteristics of Operands for the sizes and attributes of operands.

For the operand representation formats and description methods in the instruction set, see the user’s manual of

the microcontroller for which software is being developed.

Each of the data types that can be described in the operand field is detailed below.

[Constants]

A constant is a fixed value or data item and is also referred to as immediate data.

Constants are divided into numeric constants and character-string constants.

• Numeric constants

A binary, octal, decimal, or hexadecimal number can be described as a numeric constant. The method of

representing each numeric constant type is shown in Table 2-5 Methods Representing Numeric Constants

below.

A numeric constant will be processed as unsigned 16-bit data.

Value range: 0 ≤ n ≤ 65,535 (0FFFFH)

When describing a negative value, use the minus sign of the operator.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM0042

Table 2-5. Methods of Representing Numeric Constants

Constant Method of Representation Example

Binary constant • Character “B” or “Y” is suffixed to a numerical value. 1101B

1101Y

Octal constant • Character “O” or “Q” is suffixed to a numerical value. 74O

74Q

Decimal constant • A numerical value is described as is, or character “D” or “T” is suffixed to a

numerical value.

128

128D

128T

Hexadecimal

constant

• Character “H” is suffixed to a numerical value.

• If the first character begins with “A”, “B”, “C”, “D”, “E”, or “F”, “0” must be

prefixed to the constant.

8CH

0A6H

• Character-string constants

A character-string constant is expressed by enclosing a string of characters from those shown in 2.2.2

Character set , in a pair of single quotation marks (’).

As a result of an assembly process, the character-string constant is converted into 7-bit ASCII code with the

parity bit (MSB) set as “0”.

The length of a string constant is 0 to 2 characters.

To use the single quotation mark itself as a string constant, the single quotation mark must be input twice in

succession.

Examples of character-string constant descriptions:

'ab' ; Represents “6162H”

'A' ; Represents “0041H”

'A' ' ' ; Represents “4127H”

' ' ; Represents “0020H” (one blank)

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM00 43

[Character Strings]

A character string is expressed by enclosing a string of characters from those shown in 2.2.2 Character set , in

a pair of single quotation marks (’). Character strings are mainly used for operands in the DB directive and

TITLE or SUBTITLE control instruction.

• Application examples of character strings

CSEG

MAS1: DB 'YES' ; Initializes with character string “YES”.

MAS2: DB 'NO' ; Initializes with character string “NO”.

[Register Names]

The following registers can be described in the Operand field.

• General registers

• General register pairs

• Special function registers

General registers and general register pairs can be described with their absolute names (R0 to R7 and RP0 to

RP3), as well as with their function names (X, A, B, C, D, E, H, L, AX, BC, DE, HL).

The register names that can be described in the operand field may be different depending on the type of

instruction. For details of the method of describing each register name, see the user’s manual of the

microcontroller for which software is being developed.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM0044

[Special Characters]

Special characters that can be described in the operand field are shown in Table 2-6 Special Characters That

Can Be Described in Operand Field .

Table 2-6. Special Characters That Can Be Described in Operand Field

Special Character Function

$ • Indicates the location address of the instruction having this operand (or the 1st byte of this address, in

the case of addresses with a multiple-byte instruction).

• Indicates a relative addressing mode for a branch instruction.

! • Indicates an absolute addressing mode for a branch instruction.

• Indicates the specification of addr16 that allows all memory space to be specified with an MOV

instruction.

• Indicates immediate data.

[] • Indicates indirect addressing mode.

• Application examples of special characters

Address Source program

100 ADD A, #10H

102 LOOP: INC A

103 BR $$-1 ...<1>

105 BR !$+100H ...<2>

<1> The second $ in the operand indicates address 103H. Describing “BR $-1” results in the same operation.

<2> The second $ in the operand indicates address 105H. Describing “BR $+100H” results in the same

operation.

[Relocation attributes of segment definition directives]

Relocation attributes can be described in the operand field.

For details of relocation attributes, refer to 3.2 Segment Definition Directives .

[Symbols]

If a symbol is described in the operand field, an address (or value) allocated to that symbol becomes the

operand value.

• Application examples of symbols

VALUE EQU 100H

MOV A, #VALUE ; This description can be written as “MOV A, #100H”.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM00 45

[Expressions]

An expression is constants, $ (which indicates a location address), names, or labels connected with operators.

The expression can be described where numeric values can be expressed as instruction operands.

For the expressions and operators, refer to 2.3 Expressions and Operators .

• Examples of expressions

TEN EQU 10H

MOV A, #TEN-5H

In this example, “TEN-5H” is an expression.

In this expression, the name and numeric constant are connected with a – (minus) operator. The value of the

expression is BH.

Therefore, this description can be rewritten as “MOV A, #0BH”.

[Bit terms]

A bit term can be obtained by the bit position specifier. For details of bit terms, refer to 2.4 Bit Position

Specifier .

• Examples of bit terms

CLR1 A.5

SET1 1+0FE30H.3 ; The operand value is 0FE31H.3.

CLR1 0FE40H.4+2 ; The operand value is 0FE40H.6.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM0046

(4) Comment field

Statement Symbol field Mnemonic field Operand field Comment field

In the comment field, comments or remarks may be described following the input of a semicolon (;). The

comment field is from a semicolon to the line-feed code of that line or EOF. By describing a comment statement

in the comment field, an easy-to-understand source program can be created. The comment statement in the

comment field is not subject to assembler operation (i.e., conversion into machine language) but will be output

without change on an assembly list.

Characters that can be described in the comment field are those shown in 2.2.2 Character set .

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM00 47

(Examples of comments)

NAME SAMPM ;(1)
;**

;*

;* HEX -> ASCII Conversion Program

;*

;* main-routine

;*

;**

PUBLIC MAIN,START ;(2)
EXTRN CONVAH ;(3)
EXTRN @STBEG ;(4)

DATA DSEG saddr ;(5)
HDTSA: DS 1

STASC: DS 2

CODE CSEG AT 0H ;(6)
MAIN: DW START

CSEG ;(7)
START:

;chip initialize

MOVW AX, #_@STBEG

MOVW SP, AX

MOV HDTSA,#1AH

MOVW HL,#HDTSA ;set hex 2-code data in HL register

CALL !CONVAH ;convert ASCII <- HEX

;output BC-register <- ASCII code

MOVW DE,#STASC ;set DE <- store ASCII code table

MOV A,B

MOV [DE],A

INCW DE

MOV A,C

MOV [DE],A

BR $$

END ;(8)

Lines consisting of

comment field only

Lines in which

comments are

described in

comment field

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM0048

2.3 Expressions and Operators

An expression is a symbol, constant, location address (indicated by $) or bit term, an operator combined with one

of the above, or a combination of operators.

Elements of an expression other than the operators are called terms, and are referred to as the 1st term, 2nd term,

and so forth from left to right, in the order of their description.

Operators are available in the types shown in Table 2-7 Types of Operators , and the order of their precedence

in calculation has been predetermined as shown in Table 2-8 Order of Precedence of Operators .

Parentheses “()” are used to change the order in which calculations are performed.

Example : MOV A, #5* (SYM+1) ; <1>

In <1> above, “5* (SYM+1) ” is an expression. “5” is the 1st term of the expression and “SYM” and “1” are the 2nd

and 3rd terms respectively. “* ”,“+”, and “() ” are operators.

Table 2-7. Types of Operators

Type of Operator Operators

Arithmetic operators + sign, − sign, +, –, *, /, MOD

Logical operators NOT, AND, OR, XOR

Relational operators EQ or =, NE or < >, GT or >, GE or >=, LT or <, LE or <=

Shift operators SHR, SHL

Byte-separating operators HIGH, LOW

Special operators DATAPOS, BITPOS, MASK

Other operators ()

The above operators can also be divided into unary operators, special unary operators, binary operators, N-ary

operators, and other operators.

Unary operators: + sign, – sign, NOT, HIGH, LOW

Special unary operators: DATAPOS, BITPOS

Binary operators: +, –, *, /, MOD, AND, OR, XOR, EQ or =, NE or < >, GT or >, GE or >=, LT or <, LE or

<=, SHR, SHL

N-ary operators: MASK

Other operators: ()

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM00 49

Table 2-8. Order of Precedence of Operators

Priority Priority

Level

Operators

Higher 1 + sign, – sign, NOT, HIGH, LOW, DATAPOS, BITPOS, MASK

2 *, /, MOD, SHR, SHL

3 +, –

4 AND

5 OR, XOR

Lower 6 EQ or =, NE or < >, GT or >, GE or >=, LT or <, LE or <=

Operations on expressions are performed according to the following rules:

<1> Operations are performed according to the order of precedence given to each operator. If two or more

operators of the same order of precedence exist in an expression, the operation designated by the leftmost

operator will be carried out. In the case of unary operators, the operation will be performed from right to left.

<2> An expression in parentheses is carried out before expressions outside the parentheses.

<3> Operations between two or more unary operators are allowed.

Examples : 1=– –1==1

–1=–+1=–1

<4> Expressions are calculated within 16 bits, without signs. If an overflow occurs in operation due to an

expression exceeding 16 bits, the overflowed value is ignored.

<5> If a constant exceeds 16 bits (0FFFFH), an error will result and the value of the result will be regarded as 0

for calculation.

<6> In division, the decimal fraction part of the result will be truncated. If the divisor is 0, an error will occur, and

the result will be 0.

2.3.1 Functions of operators

The functions of the respective operators are described in this subsection.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM0050

Arithmetic Operators Arithmetic Operators

(1) + (ADD) operator

[Function]

Returns the sum of the values of the 1st and 2nd terms of an expression.

[Application Example]

 ORG 100H

 START: BR !$+6 ;(a)

[Explanation]

The BR instruction causes a jump to “current location address plus 6”, namely, to address “100H+6H=106H”.

Therefore, (a) in the above example can also be described as: START: BR !106H

(2) – (SUBTRACT) operator

[Function]

Returns the result of subtraction of the 2nd-term value from the 1st-term value.

[Application Example]

 ORG 100H

 BACK: BR BACK-6H ; (b)

[Explanation]

The BR instruction causes a jump to “address assigned to BACK minus 6”, namely, to address “100H-

6H=0FAH”.

Therefore, (b) in the above example can also be described as: BACK: BR !0FAH

…
…

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM00 51

Arithmetic Operators Arithmetic Operators

(3) * (MULTIPLY) operator

[Function]

Returns the result of multiplication (product) between the values of the 1st and 2nd terms of an expression.

[Application Example]

 TEN EQU 10H

 MOV A,#TEN*3 ;(c)

[Explanation]

With the EQU directive, the value “10H” is defined in the name “TEN”.

“#” indicates immediate data. The expression “TEN*3” is the same as “10H*3” and returns the value “30H”.

Therefore, (c) in the above expression can also be described as: MOV A,#30H

(4) / (DIVIDE) operator

[Function]

Divides the value of the 1st term of an expression by the value of its 2nd term and returns the integer part of the

result. The decimal fraction part of the result will be truncated. If the divisor (2nd term) of a division operation is

0, an error will result.

[Application Example]

 MOV A,#256/50 ; (d)

[Explanation]

The result of the division “256/50” is 5 with remainder 6.

The operator returns the value “5” that is the integer part of the result of the division.

Therefore, (d) in the above expression can also be described as: MOV A,#5

…

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM0052

Arithmetic Operators Arithmetic Operators

(5) MOD (Remainder) operator

[Function]

Obtains the remainder in the result of dividing the value of the 1st term of an expression by the value of its 2nd

term.

An error will result if the divisor (2nd term) is 0.

A blank is required before and after the MOD operator.

[Application Example]

 MOV A,#256 MOD 50 ; (e)

[Explanation]

The result of the division “256/50” is 5 with remainder 6.

The MOD operator returns the remainder 6.

Therefore, (e) in the above expression can also be described as: MOV A,#6.

(6) + sign

[Function]

Returns the value of the term of an expression without change.

[Application Example]

 FIVE EQU +5

[Explanation]

The value “5” of the term is returned without change.

The value “5” is defined in name “FIVE” with the EQU directive.

(7) – sign

[Function]

Returns the value of the term of an expression by the two’s complement.

[Application Example]

 NO EQU -1

[Explanation]

–1 becomes the two’s complement of 1.

The two’s complement of binary 0000 0000 0000 0001

becomes: 1111 1111 1111 1111

Therefore, with the EQU directive, the value “0FFFFH” is defined in the name “NO”.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM00 53

Logical Operators Logical Operators

(1) NOT operator (negation)

[Function]

Negates the value of the term of an expression on a bit-by-bit basis and returns the result.

A blank is required between the NOT operator and the term.

[Application Example]

 MOVW AX,#NOT 3H ;(a)

[Explanation]

Logical negation is performed on “3H” as follows:

NOT) 0000 0000 0000 0011


1111 1111 1111 1100

0FFFCH is returned.

Therefore, (a) can also be described as: MOVW AX, #0FFFCH

(2) AND operator (logical product)

[Function]

Performs an AND (logical product) operation between the value of the 1st term of an expression and the value of

its 2nd term on a bit-by-bit basis and returns the result.

A blank is required before and after the AND operator.

[Application Example]

 MOV A,#6FAH AND 0FH ;(b)

[Explanation]

AND operation is performed between the two values “6FAH” and “0FH” as follows:

0000 0110 1111 1010

AND) 0000 0000 0000 1111


0000 0000 0000 1010

The result 0AH is returned. Therefore, (b) in the above expression can also be described as: MOV A, #0AH

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM0054

Logical Operators Logical Operators

(3) OR operator (Logical sum)

[Function]

Performs an OR (Logical sum) operation between the value of the 1st term of an expression and the value of its

2nd term on a bit-by-bit basis and returns the result.

A blank is required before and after the OR operator.

[Application Example]

 MOV A,#0AH OR 1101B ;(c)

[Explanation]

OR operation is performed between the two values “0AH” and “1101B” as follows:

0000 0000 0000 1010

OR) 0000 0000 0000 1101


0000 0000 0000 1111

The result 0FH is returned. Therefore, (c) in the above expression can also be described as: MOV A, #0FH

(4) XOR operator (Exclusive logical sum)

[Function]

Performs an Exclusive-OR operation between the value of the 1st term of an expression and the value of its 2nd

term on a bit-by-bit basis and returns the result.

A blank is required before and after the XOR operator.

[Application Example]

 MOV A,#9AH XOR 9DH ;(d)

[Explanation]

XOR operation is performed between the two values “9AH” and “9DH” as follows:

0000 0000 1001 1010

XOR) 0000 0000 1001 1101


0000 0000 0000 0111

The result 7H is returned. Therefore, (d) in the above expression can also be described as: MOV A, #7H

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM00 55

Relational Operators Relational Operators

(1) EQ or = (Equal) operator

[Function]

Returns 0FFH (True) if the value of the 1st term of an expression is equal to the value of its 2nd term, and 00H

(False) if both values are not equal.

A blank is required before and after the EQ operator.

[Application Example]

 A1 EQU 12C4H

 A2 EQU 12C0H

 MOV A,#A1 EQ (A2+4H) ;(a)

 MOV X,#A1 EQ A2 ;(b)

[Explanation]

In (a) above, the expression “A1 EQ (A2+4H)” becomes “12C4H EQ (12C0H+4H)”.

The operator returns 0FFH because the value of the 1st term is equal to the value of the 2nd term.

In (b) above, the expression “A1 EQ A2” becomes “12C4H EQ 12C0H”.

The operator returns 00H because the value of the 1st term is not equal to the value of the 2nd term.

(2) NE or < > (Not Equal) operator

[Function]

Returns 0FFH (True) if the value of the 1st term of an expression is not equal to the value of its 2nd term, and

00H (False) if both values are equal.

A blank is required before and after the NE operator.

[Application Example]

 A1 EQU 5678H

 A2 EQU 5670H

 MOV A,#A1 NE A2 ; (c)

 MOV A,#A1 NE (A2+8H) ; (d)

[Explanation]

In (c) above, the expression “A1 NE A2” becomes “5678H NE 5670H”.

The operator returns 0FFH because the value of the 1st term is not equal to the value of the 2nd term.

In (d) above, the expression “A1 NE (A2+8H)” becomes “5678H NE (5670H+8H)”.

The operator returns 00H because the value of the 1st term is equal to the value of the 2nd term.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM0056

Relational Operators Relational Operators

(3) GT or > (Greater Than) operator

[Function]

Returns 0FFH (True) if the value of the 1st term of an expression is greater than the value of its 2nd term, and

00H (False) if the value of the 1st term is equal to or less than the value of the 2nd term.

A blank is required before and after the GT operator.

[Application Example]

 A1 EQU 1023H

 A2 EQU 1013H

 MOV A,#A1 GT A2 ;(e)

 MOV X,#A1 GT (A2+10H) ;(f)

[Explanation]

In (e) above, the expression “A1 GT A2” becomes “1023H GT 1013H”.

The operator returns 0FFH because the value of the 1st term is greater than the value of the 2nd term.

In (f) above, the expression “A1 GT (A2+10H)” becomes “1023H GT (1013H+10H)”.

The operator returns 00H because the value of the 1st term is equal to the value of the 2nd term.

(4) GE or >= (Greater-than or Equal) operator

[Function]

Returns 0FFH (True) if the value of the 1st term of an expression is greater than or equal to the value of its 2nd

term, and 00H (False) if the value of the 1st term is less than the value of the 2nd term.

A blank is required before and after the GE operator.

[Application Example]

 A1 EQU 2037H

 A2 EQU 2015H

 MOV A,#A1 GE A2 ;(g)

 MOV X,#A1 GE (A2+23H) ;(h)

[Explanation]

In (g) above, the expression “A1 GE A2” becomes “2037H GE 2015H”.

The operator returns 0FFH because the value of the 1st term is greater than the value of the 2nd term.

In (h) above, the expression “A1 GE (A2+23H)” becomes “2037H GE (2015H+23H)”.

The operator returns 00H because the value of the 1st term is less than the value of the 2nd term.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM00 57

Relational Operators Relational Operators

(5) LT or < (Less Than) operator

[Function]

Returns 0FFH (True) if the value of the 1st term of an expression is less than the value of its 2nd term, and 00H

(False) if the value of the 1st term is equal to or greater than the value of the 2nd term.

A blank is required before and after the LT operator.

[Application Example]

 A1 EQU 1000H

 A2 EQU 1020H

 MOV A,#A1 LT A2 ;(i)

 MOV X,#(A1+20H) LT A2 ;(j)

[Explanation]

In (i) above, the expression “A1 LT A2” becomes “1000H LT 1020H”.

The operator returns 0FFH because the value of the 1st term is less than the value of the 2nd term.

In (j) above, the expression “(A1+20H) LT A2” becomes “(1000H+20H) LT 1020H”.

The operator returns 00H because the value of the 1st term is equal to the value of the 2nd term.

(6) LE or <= (Less than or Equal) operator

[Function]

Returns 0FFH (True) if the value of the 1st term of an expression is less than or equal to the value of its 2nd

term, and 00H (False) if the value of the 1st term is greater than the value of the 2nd term.

A blank is required before and after the LE operator.

[Application Example]

 A1 EQU 103AH

 A2 EQU 1040H

 MOV A,#A1 LE A2 ;(k)

 MOV X,#(A1+7H) LE A2 ;(l)

[Explanation]

In (k) above, the expression “A1 LE A2” becomes “103AH LE 1040H”.

The operator returns 0FFH because the value of the 1st term is less than the value of the 2nd term.

In (l) above, the expression “(A1+7H) LE A2” becomes “(103AH+7H) LE 1040H”.

The operator returns 00H because the value of the 1st term is greater than the value of the 2nd term.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM0058

Shift Operators Shift Operators

(1) SHR (Shift Right) operator

[Function]

Returns a value obtained by shifting the value of the 1st term of an expression to the right the number of bits

specified by the value of the 2nd term. Zeros equivalent to the specified number of bits shifted move into the

higher bits.

A blank is required before and after the SHR operator.

[Application Example]

 MOV A,#01AFH SHR 5 ;(a)

[Explanation]

This operator shifts the value “01AFH” to the right by 5 bits.

0000 0001 1010 1111

0000 0000 0000 1101 0111 1

0’s are inserted. Right-shifted by 5 bits.

The value “000DH” is returned.

Therefore, (a) in the above example can also be described as: MOV A, #0DH

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM00 59

Shift Operators Shift Operators

(2) SHL (Shift Left) operator

[Function]

Returns a value obtained by shifting the value of the 1st term of an expression to the left the number of bits

specified by the value of the 2nd term. Zeros equivalent to the specified number of bits shifted move into the

lower bits.

A blank is required before and after the SHL operator.

[Application Example]

 MOV A,#21H SHL 2 ;(b)

[Explanation]

This operator shifts the value “21H” to the left by 2 bits.

0000 0000 0010 0001

 00 0000 0000 1000 0100

Left-shifted by 2 bits. 0’s are inserted.

The value “84H” is returned.

Therefore, (b) in the above example can also be described as: MOV A, #84H

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM0060

Byte-Separating Operators Byte-Separating Operators

(1) HIGH operator

[Function]

Returns the higher 8-bit value of a term.

A blank is required between the HIGH operator and the term.

[Application Example]

 MOV A,#HIGH 1234H ;(a)

[Explanation]

By executing a MOV instruction, this operator returns the higher 8-bit value “12H” of the expression “1234H”.

Therefore, (a) in the above example can also be described as: MOV A, #12H

(2) LOW operator

[Function]

Returns the lower 8-bit value of a term.

A blank is required between the LOW operator and the term.

[Application Example]

 MOV A,#LOW 1234H ;(b)

[Explanation]

By executing a MOV instruction, this operator returns the lower 8-bit value “34H” of the expression “1234H”.

Therefore, (b) in the above example can also be described as: MOV A, #34H

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM00 61

Special Operators Special Operators

(1) DATAPOS

[Function]

Returns the address portion (byte address) of a bit symbol.

[Application Example]

 SYM EQU 0FE68H.6

 MOV A,!DATAPOS SYM ;(a)

[Explanation]

An EQU directive defines the name “SYM” with a value of 0FE68H.6.

“DATAPOS SYM” represents “DATAPOS 0FE68H.6”, and “0FE68H” is returned.

Therefore, (a) in the above example can also be described as: MOV A, !0FE68H

(2) BITPOS

[Function]

Returns the bit portion (bit position) of a bit symbol.

[Application Example]

 SYM EQU 0FE68H.6

 CLR1 [HL].BITPOS SYM ;(b)

[Explanation]

An EQU directive defines the name “SYM” with a value of 0FE68H.6.

“BITPOS.SYM” represents “BITPOS 0FE68H.6”, and “6” is returned.

A CLR1 instruction clears [HL].6 to 0.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM0062

Special Operators Special Operators

(3) MASK

[Function]

Returns a 16-bit value in which the specified bit position is 1 and all others are set to 0.

[Application Example]

 MOVW AX, #MASK(0, 3, 0FE00H.7, 15)

[Explanation]

A MOVW instruction returns the value “8089H”.

F E D C B A 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1

MASK(0, 3, 0FE00H.7, 15)

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM00 63

Other Operators Other Operators

(1) ()

[Function]

Causes an operation in parentheses to be performed prior to operations outside the parentheses.

This operator is used to change the order of precedence of other operators.

If parentheses are nested at multiple levels, the expression in the innermost parentheses will be calculated first.

[Application Example]

 MOV A, #(4+3)*2

[Explanation]

(4+3) * 2

 <1>

 <2>

Calculations are performed in the order of expressions <1> and <2> and value “14” is returned as a result.

If parentheses are not used,

4+3 * 2

 <1>

 <2>

Calculations are performed in the order <1> <2> shown above, and the value “10” is returned as a result.

See Table 2-8 Order of Precedence of Operators , for the order of precedence of operators.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM0064

2.3.2 Restrictions on operations

The operation of an expression is performed by connecting terms with operator(s). Elements that can be

described as terms include constants, $, names, and labels. Each term has a relocation attribute and a symbol

attribute.

Depending on the types of relocation attribute and symbol attribute inherent in each term, operators that can work

on the term are limited. Therefore, when describing an expression, it is important to pay attention to the relocation

attribute and symbol attribute of each of the terms constituting the expression.

(1) Operators and relocation attributes

As previously mentioned, each of the terms that constitute an expression has a relocation attribute and symbol

attribute.

Terms can be divided into three types when classified by their relocation attributes: Absolute terms, relocatable

terms, and external reference terms.

Types of relocation attributes in operations, the nature of each attribute, and terms applicable to each attribute

are shown in Table 2-9 Types of Relocation Attributes .

Table 2-9. Types of Relocation Attributes

Type Nature Applicable Terms

Absolute term Term whose value and constant are

determined at assembly time

• Constants

• Labels defined within an absolute segment

• $ indicating the location address defined within an absolute

segment

• Names defined with constants, the above labels, the above

$, or absolute values

Relocatable term Term whose value is not determined

at assembly time

• Labels defined within a relocatable segment

• $ indicating the location address defined within a

relocatable segment

• Names defined with a relocatable symbol

External reference

term
Note

Term that externally references the

symbol of another module

• Labels defined with the EXTRN directive

• Names defined with the EXTBIT directive

Note The following four operators can work on external reference terms: ‘+’, ‘–’, ‘HIGH’, and ‘LOW’. Only one

external reference symbol can be described in an expression. In this case, the external reference symbol

must be connected with a “+” operator.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM00 65

Combinations of the type of operator and terms on which each operator can work are shown in Table 2-10

Combinations of Terms and Operators by Relocation Attribute .

Table 2-10. Combinations of Terms and Operators by Relocation Attribute (1/2)

Relocation Attribute of Term

Type of Operator

X:ABS

Y:ABS

X:ABS

Y:REL

X:REL

Y:ABS

X:REL

Y:REL

X + Y A R R —

X – Y A — R ANote

X * Y A — — —

X / Y A — — —

X MOD Y A — — —

X SHL Y A — — —

X SHR Y A — — —

X EQ Y A — — ANote

X LT Y A — — ANote

X LE Y A — — ANote

X GT Y A — — ANote

X GE Y A — — ANote

X NE Y A — — ANote

X AND Y A — — —

X OR Y A — — —

X XOR Y A — — —

NOT X A A — —

+ X A A R R

– X A A — —

<Explanation>

ABS: Absolute term

REL: Relocatable term

A: The result of the operation becomes an absolute term.

R: The result of the operation becomes a relocatable term.

—: The operation cannot be performed.

Note The operation can only be performed if X or Y is not a relocatable term on which HIGH, LOW, DATAPOS

are operated, and both X and Y are defined within the same segment.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM0066

Table 2-10. Combinations of Terms and Operators by Relocation Attribute (2/2)

Relocation Attribute of Term

Type of Operator

X:ABS

Y:ABS

X:ABS

Y:REL

X:REL

Y:ABS

X:REL

Y:REL

HIGH X A A RNote RNote

LOW X A A RNote RNote

MASK (X) A A — —

DATAPOS X.Y A — — —

BITPOS X.Y A — — —

MASK (X.Y) A — — —

DATAPOS X A A R R

BITPOS X A A A A

MASK (X) A A — —

<Explanation>

ABS: Absolute term

REL: Relocatable term

A: The result of the operation becomes an absolute term.

R: The result of the operation becomes a relocatable term.

—: The operation cannot be performed.

Note The operation can only be performed if X or Y is not a relocatable term on which HIGH, LOW, DATAPOS

are operated.

The following four operators can work on external reference terms: ‘+’, ‘–’, ‘HIGH’, and ‘LOW’ (however, note that

only one external reference term can be described in an expression).

Combinations of the types of operators and external reference terms on which each operator can work are

classified according to relocation attributes in Table 2-11 Combinations of Terms and Operators by

Relocation Attribute (External Reference Terms) .

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM00 67

Table 2-11. Combinations of Terms and Operators by Relocation Attribute (External Reference Terms)

Relocation Attribute of Term

Type of Operator

X:ABS

Y:EXT

X:EXT

Y:ABS

X:REL

Y:EXT

X:EXT

Y:REL

X:EXT

Y:EXT

X + Y E E — — —

X – Y — E — — —

+ X A E R E E

HIGH X A ENote 1 RNote 2 ENote 1 ENote 1

LOW X A ENote 1 RNote 2 ENote 1 ENote 1

MASK (X) A — — — —

DATAPOS X.Y — — — — —

BITPOS X.Y — — — — —

MASK (X.Y) — — — — —

DATAPOS X A E R E E

BITPOS X A E A E E

<Explanation>

ABS: Absolute term

REL: Relocatable term

A: The result of the operation becomes an absolute term.

E: The result of the operation becomes an external reference term.

R: The result of the operation becomes a relocatable term.

—: The operation cannot be performed.

Notes 1. The operation can only be performed if X or Y is not an external reference term on which HIGH,

LOW, DATAPOS, BITPOS are operated.

2. The operation can only be performed if X or Y is not a relocatable term on which HIGH, LOW,

DATAPOS are operated.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM0068

(2) Operators and symbol attributes

As previously mentioned, each of the terms that constitute an expression has a symbol attribute in addition to a

relocation attribute. Terms can be divided into two types when classified by their symbol attributes: NUMBER

terms and ADDRESS terms.

Types of symbol attributes in operations and terms applicable to each attribute are shown in Table 2-12 Types

of Symbol Attributes in Operations .

Table 2-12. Types of Symbol Attributes in Operations

Type of Symbol Attribute Applicable Terms

NUMBER term • Symbols that have NUMBER attribute

• Constants

ADDRESS term • Symbols that have ADDRESS attribute

• $ indicating the location counter

Combinations of the type of operator and terms on which each operator can work when classified by their

symbol attributes are shown in Table 2-13 Combinations of Terms and Operators by Symbol Attribute .

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM00 69

Table 2-13. Combinations of Terms and Operators by Symbol Attribute

Symbol Attribute of Term

Type of Operator

X:ADDRESS

Y:ADDRESS

 X:ADDRESS

Y:NUMBER

X:NUMBER

 Y:ADDRESS

X:NUMBER

Y:NUMBER

X + Y — A A N

X – Y N A — N

X * Y — — — N

X / Y — — — N

X MOD Y — — — N

X SHL Y — — — N

X SHR Y — — — N

X EQ Y N — — N

X LT Y N — — N

X LE Y N — — N

X GT Y N — — N

X GE Y N — — N

X NE Y N — — N

X AND Y — — — N

X OR Y — — — N

X XOR Y — — — N

NOT X — — N N

+ X A A N N

– X — — N N

HIGH X A A N N

LOW X A A N N

DATAPOS X A A N N

MASK X N N N N

<Explanation>

ADDRESS: ADDRESS term

NUMBER: NUMBER term

A: The result of the operation becomes an ADDRESS term.

N: The result of the operation becomes a NUMBER term.

—: The operation cannot be performed.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM0070

(3) How to check restrictions on the operation

An example of an operation by the relocation attribute and by symbol attribute of each term is shown here.

Example BR $TABLE+5H

Here, assume that “TABLE” is a label defined in a relocatable code segment.

<1> Operator and relocation attribute

Because “TABLE+5H” is “relocatable term+absolute term”, this operation is applied to Table 2-10

Combinations of Terms and Operators by Relocation Attribute .

Type of operator X+Y

Relocation attribute of term X:REL, Y:ABS

The result is therefore R (namely, a relocatable term).

<2> Operator and symbol attribute

Because “TABLE+5H” is “ADDRESS term+NUMBER term”, this operation is applied to Table 2-13

Combinations of Terms and Operators by Symbol Attribute .

Type of operator X+Y

Symbol attribute of term X:ADDRESS, Y:NUMBER

The result is therefore A (namely, an ADDRESS term).

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM00 71

2.4 Bit Position Specifier

Bits can be accessed by using the bit position specifier (.).

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM0072

Bit position specifier Bit position specifier

(1) Period (.) (Bit position specifier)

[Description Format]

 X [∆] . [∆] Y

 Bit term

Combinations of X (1st Term) and Y (2nd Term)

X (1st Term) Y (2nd Term)

General register A Expression (0 to 7)

Control register PSW Expression (0 to 7)

Special function

register
sfrNote Expression (0 to 7)

Memory [HL]Note Expression (0 to 7)

Note For details on the specific description, see the user’s manual of each device.

[Function]

• The bit position specifier specifies a byte address with its 1st term and the position of a bit by its 2nd term. A

specific bit can be accessed by this bit position specifier.

[Explanation]

• A bit term refers to an expression that uses a bit position specifier.

• The bit position specifier is not affected by the precedence order of operators. The left side of the bit position

specifier is recognized as the 1st term and its right side as the 2nd term.

• The following restrictions apply to the 1st term:

<1> An expression with the NUMBER or ADDRESS attribute, an SFR name capable of 8-bit access, or

register name (A) can be described.

<2> When an absolute expression is described in the 1st term, it must be within the range 0FE20H to

0FF1FH.

<3> An external reference symbol can be described.

• The following restrictions apply to the 2nd term:

<1> The value of an expression must be in the range of 0 to 7. If this value range is exceeded, an error will

result.

<2> Only an absolute expression with the NUMBER attribute can be described.

<3> No external reference symbol can be described.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM00 73

[Operations and Relocation Attributes]

• Combinations of the 1st and 2nd terms by relocation attribute are shown in Table 2-14 Combinations of 1st

and 2nd Terms by Relocation Attribute .

Table 2-14. Combinations of 1st and 2nd Terms by Relocation Attribute

Combination of Terms X: ABS ABS REL REL ABS EXT REL EXT EXT

Y: ABS REL ABS REL EXT ABS EXT REL EXT

X.Y A — R — — E — — —

<Explanation>

ABS: Absolute term A: The result of the operation becomes an absolute term.

REL: Relocatable term R: The result of the operation becomes a relocatable term.

EXT: External reference term E: The result of the operation becomes an external reference term.

—: The operation cannot be performed.

[Values of Bit Symbols]

• When a bit symbol is defined by describing a bit term using the bit position specifier in the operand field of the

EQU directive, the value that the bit symbol will have is shown in Table 2-15 Values of Bit Symbols , below.

Table 2-15. Values of Bit Symbols

Operand Type Symbol Value

A.bitNote 2 1.bit

PSW.bitNote 2 1FEH.bit

sfrNote 1.bitNote 2 FFxxH.bitNote 3

expression.bitNote 2 xxxxH.bitNote 4

Notes 1. For a detailed description, refer to the user’s manual of each device.

2. bit = 0 to 7

3. FFxxH indicates the address of an sfr.

4. xxxxH indicates the value of an expression.

[Application Example]

 SET1 0FE20H.3

 SET1 A.5

 CLR1 P1.2

 SET1 1+0FE30H.3 ; Equals 0FE31H.3

 SET1 0FE40H.4+2 ; Equals 0FE40H.6

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM0074

2.5 Characteristics of Operands

Instructions and directives requiring an operand or operands differ from one type of instruction to another in the

size and address range of the required operand value and in the symbol attribute of the operand.

For example, the instruction “MOV r, #byte” functions to transfer the value indicated by “byte” to register “r”. In this

case, because r is an 8-bit register, the size of the data “byte” to be transferred must be 8 bits or less.

If an instruction is described as “MOV R0, #100H”, an assembly error occurs, because the size of the 2nd operand

“100H” of the instruction exceeds the capacity of the 8-bit register R0.

When describing an operand, therefore, attention must be paid to the following points:

• Is the size of the operand value or its address range suitable for the operand (numerical data, name, or label) of

the instruction?

• Is the symbol attribute suitable for the operand (name or label) of the instruction?

2.5.1 Size and address range of operand value

Certain conditions are set for the size and address range of the value of the numerical data, name, or label that

can be described as the operand of an instruction.

With instructions, conditions for the size and address range of an operand value are governed by the operand

representation format of each instruction. With directives, conditions for the size and address range of an operand

value are governed by the type of instructions.

These conditions are shown in Tables 2-16 Ranges of Operand Values of Instructions and 2-17 Ranges of

Operand Values of Directives , below.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM00 75

Table 2-16. Ranges of Operand Values of Instructions

Operand Representation Format Range of Values

byte 8-bit value 0H to FFH

word 16-bit value 0H to FFFFH

saddr FE20H to FF1FH

saddrp Even value of FE20H to FF1FH

sfr FF00H to FFCFH, FFE0H to FFFFH

sfrp Even value of FF00H to FFCFH, FFE0H to FFFFH

MOV, MOVW 0H to FFFFHaddr16

Other instructions 0H to FA7FH

addr5 Even value of 40H to 7EH

bit 3-bit value 0 to 7

n 2-bit value 0 to 3

Table 2-17. Ranges of Operand Values of Directives

Type of Directive Directive Range of Values

CSEG AT 0H to FEFFH

DSEG AT 0H to FEFFH

BSEG AT FE20H to FEFFH

Segment definition directives

ORG 0H to FEFFH

EQU 16-bit value 0H to FFFFHSymbol definition directives

SET 16-bit value 0H to FFFFH

DB 8-bit value 0H to FFH

DW 16-bit value 0H to FFFFH

Memory initialization and area

reservation directives

DS 16-bit value 0H to FFFFH

Automatic branch instruction selection directive BR 0H to FEFFH

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM0076

2.5.2 Size of operands required for instructions

Instructions can be classified into machine instructions and directives. For instructions that require immediate

data and symbols as operands, the size of the operand required varies for each instruction.

Therefore, when data in excess of the size of the operand required for the instruction is described, an error occurs.

The operations of expressions are carried out with unsigned 16 bits. If the evaluation result exceeds 0FFFFH (16

bits), a warning message is output.

However, when relocatable or external-reference symbols are described in an operand, the values are not

determined within the assembler. Instead, the linker determines the values and checks the value range.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM00 77

2.5.3 Symbol attributes and relocation attributes of operands

When names, labels, and $ (which indicate location counters) are described as instruction operands, they may or

may not be describable as operands. This depends on the symbol attributes and relocation attributes (see 2.3.2

Restrictions on operations) that serve as the terms of their expressions, as well as on the direction of reference in

the case of names and labels.

Reference direction for names and labels can be backward reference or forward reference.

• Backward reference … A name or label referenced as an operand, which is defined in a line above (before) the

name or label

• Forward reference … A name or label referenced as an operand, which is defined in a line below (after) the

name or label

[Example]

 NAME TEST

 CSEG

 L1:

 BR !L1

 BR !L2

 L2:

 END

 Backward reference

 Forward reference

These symbol attributes and relocation attributes, as well as direction of reference for names and labels, are

shown in Table 2-18 Properties of Described Symbols as Operands , and Table 2-19 Properties of Described

Symbols as Operands of Directives .

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM0078

Table 2-18. Properties of Described Symbols as Operands

Symbol Attributes NUMBER ADDRESS NUMBER

ADDRESS

Relocation Attributes Absolute Terms Absolute Terms Relocatable Terms External

Reference Terms

Reference Pattern

Description Format

Back-

ward

For-

ward

Back-

ward

For-

ward

Back-

ward

For-

ward

Back-

ward

For-

ward

sfr

Reserved

Words
Note 1

byte { { { { { { { { ×

word { { { { { { { { ×

saddr { { { { { { { { {
Notes 2, 3

saddrp { { { { { { { { {
Notes 2, 4

sfr {
Note 5

× × × × × × × {
Notes 2, 6

sfrp × × × × × × × × {
Notes 2, 7

addr16
Note 8

{ { { { { { { { ×

addr5 { { { { { { { { ×

bit { { × × × × × × ×

n { { × × × × × × ×

<Explanation>

Forward: This means forward reference.

Backward: This means backward reference.

{: This means that description is possible.

×: This means an error.

—: This means that description is not possible.

Notes 1. The defined symbol specifying sfr or sfrp (sfr area where saddr and sfr are not overlapped) as an

operand of EQU directive is only referenced backward. Forward reference is prohibited.

2. If an sfr reserved word in the saddr area has been described for an instruction in which a combination

of sfr/sfrp changed from saddr/saddrp exists in the operand combination, a code is output as

saddr/saddrp.

3. sfr reserved word in saddr area

4. sfrp reserved word in saddr area

5. Only absolute expressions

6. Only sfr reserved words that allow 8-bit accessing

7. Only sfr reserved words that allow 16-bit accessing

8. When the address of use prohibited area (FA80H to FADFH) as a value of addr16 is described, check

is not performed.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U14877EJ1V0UM00 79

Table 2-19. Properties of Described Symbols as Operands of Directives

Symbol Attributes NUMBER ADDRESS, SADDR1, SADDR2 BIT

Relocation Attributes Absolute

Terms

Absolute

Terms

Relocatable

Terms

External

Reference

Terms

Absolute

Terms

Relocatable

Terms

External

Reference

Terms

Reference

Direction

Directive

Back-

ward

For-

ward

Back-

ward

For-

ward

Back-

ward

For-

ward

Back-

ward

For-

ward

Back-

ward

For-

ward

Back-

ward

For-

ward

Back-

ward

For-

ward

ORG {
Note 1 — — — — — — — — — — — — —

EQUNote 2
{ — { — {

Note 3 — — — { — {
Note 3 — — —

SET {
Note 1 — — — — — — — — — — — — —

Size {
Note 1 — — — — — — — — — — — — —DB

Initial value { { { { { { { { — — — — — —

Size {
Note 1 — — — — — — — — — — — — —DW

Initial value { { { { { { { { — — — — — —

DS {
Note 4 — — — — — — — — — — — — —

BR { — — — — — — — — — — — — —

{: Description possible —: Description impossible

Notes 1. Only an absolute expression can be described.

2. An error will result if an expression including one of the following patterns is described.

• ADDRESS attribute - ADDRESS attribute

• ADDRESS attribute relational operator ADDRESS attribute

• HIGH absolute ADDRESS attribute

• LOW absolute ADDRESS attribute

• DATAPOS absolute ADDRESS attribute

• MASK absolute ADDRESS attribute

• When the operation results can be affected by optimization from the above 6 patterns.

3. A term created by the HIGH/LOW/DATAPOS/MASK operator that has a relocatable term is not

allowed.

4. Refer to 3.4 (3) DS.

User’s Manual U14877EJ1V0UM0080

[MEMO]

User’s Manual U14877EJ1V0UM00 81

CHAPTER 3 DIRECTIVES

This chapter explains the directives. Directives are instructions that direct all types of instructions necessary for

the RA78K0S to perform a series of processes.

3.1 Overview of Directives

Instructions are translated into object codes (machine language) as a result of assembling, but directives are not

converted into object codes in principle. Directives contain the following functions mainly:

• To facilitate description of source programs

• To initialize memory and reserve memory areas

• To provide the information required for assemblers and linkers to perform their intended processing

Table 3-1 List of Directives shows the types of directives.

Table 3-1. List of Directives

No. Type of Directive Directives

1 Segment definition directives CSEG, DSEG, BSEG, ORG

2 Symbol definition directives EQU, SET

3 Memory initialization/area reservation directives DB, DW, DG, DS, DBIT

4 Linkage directives PUBLIC, EXTRN, EXTBIT

5 Object module name declaration directive NAME

6 Automatic branch instruction selection directive BR

7 Macro directives MACRO, LOCAL, REPT, IRP, EXITM, ENDM

8 Assembly termination directive END

The following sections explain the details of each directive.

In the description format of each directive, “[]” indicates that the parameter in square brackets may be omitted

from specification, and “...” indicates the repetition of description in the same format.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM0082

3.2 Segment Definition Directives

A source module must be described in units of segments.

Segment definition directives are used to define these segments. Segments are divided into the following four

types:

• Code segments

• Data segments

• Bit segments

• Absolute segments

The type of segment determines the address range in memory in which each segment will be located.

Table 3-2 Segment Definition Methods and Memory Address Location shows the method of defining each

segment and the memory address at which each segment is located.

Table 3-2. Segment Definition Methods and Memory Address Location

Type of Segment Method of Definition Memory Address at Which Each Segment Is Located

Code segment CSEG directive Within the internal or external ROM address

Data segment DSEG directive Within the internal or external RAM address

Bit segment BSEG directive Within the saddr area in the internal RAM

Absolute segment Specifies location address (AT location

address) to relocation attribute with CSEG,

DSEG, or BSEG directive

Specified address

If the user wishes to determine the memory location of a segment, describe the segment as an absolute segment.

For the stack area, the user needs to reserve an area in the data segment and set it in the stack pointer.

An example of segment location is shown in Figure 3-1 Memory Location of Segments .

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 83

Figure 3-1. Memory Location of Segments

Data segment

Absolute segment which
belongs to data segment

Code segment

Bit segment

Absolute segment which
belongs to code segment

<One source module >

0FFFFH

0H

saddr

RAM

ROM

<Memory>

Source module Source module

Source module

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM0084

CSEG code segment CSEG

(1) CSEG (code segment)

[Description Format]

Symbol field Mnemonic field Operand field Comment field

[segment-name] CSEG [relocation-attribute] [;comment]

[Function]

• The CSEG directive indicates to the assembler the start of a code segment.

• All instructions described following the CSEG directive belong to the code segment until it comes across a

segment definition directive (CSEG, DSEG, BSEG, or ORG) or the END directive, and finally those

instructions are located within a ROM address after being converted into machine language.

Figure 3-2. Relocation of Code Segment

<Source module> <Memory>

ROM

RAM

NAME T1

…

DSEG

…

CSEG

…

END

Code
segment

[Use]

• The CSEG directive is used to describe instructions, DB, DW directives, etc. in the code segment defined by

the CSEG directive.

(However, to relocate the code segment from a fixed address, “AT absolute-expression” must be described as

its relocation attribute in the operand field.)

• Description of one functional unit such as a subroutine should be defined as a single code segment. If the

unit is relatively large or if the subroutine is highly versatile (i.e. can be utilized for development of other

programs), the subroutine should be defined as a single module.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 85

CSEG code segment CSEG

[Explanation]

• The start address of a code segment can be specified with the ORG directive. It can also be specified by

describing the relocation attribute “AT absolute-expression”.

• A relocation attribute defines a range of location addresses for a code segment. Relocation attributes are

shown in Table 3-3 Relocation Attributes of CSEG .

Table 3-3. Relocation Attributes of CSEG

Relocation Attribute Description Format Explanation

CALLT0 CALLT0 Tells the assembler to locate the specified segment so that the start

address of the segment becomes a multiple of 2 within the address range

0040H to 007FH. Specify this relocation attribute for a code segment that

defines the entry address of a subroutine to be called with the one-byte

instruction "CALLT".

FIXED FIXED Tells the assembler to locate the beginning of the specified segment

within the address range 0800H to 0FFFH.

AT AT absolute-

expression

Tells the assembler to locate the specified segment to an absolute

address (0000H to FEFFH).

UNIT UNIT Tells the assembler to locate the specified segment to any address

(0080H to FA7FH).

UNITP UNITP Tells the assembler to locate the specified segment to any address, so

that the start of the address may be an even number (0080H to FA7EH).

IXRAM IXRAM Tells the assembler to locate the specified segment to the internal

expansion RAM.

• If no relocation attribute is specified for the code segment, the assembler will assume that “UNIT” has been

specified.

• If a relocation attribute other than those listed in Table 3-3 Relocation Attributes of CSEG is specified, the

assembler will output an error message and assume that “UNIT” has been specified. An error will result if the

size of each code segment exceeds that of the area specified by its relocation attribute.

• If the absolute expression specified with the relocation attribute “AT” is illegal, the assembler will output an

error message and continue processing by assuming the value of the expression to be “0”.

By describing a segment name in the symbol field of the CSEG directive, the code segment can be named. If no

segment name is specified for a code segment, the assembler will automatically give a default segment name to

the code segment. The default segment names of the code segments are shown in Table 3-4 Default

Segment Names of CSEG .

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM0086

CSEG code segment CSEG

Table 3-4. Default Segment Names of CSEG

Relocation Attribute Default Segment Name

CALLT0 ?CSEGT0

FIXED ?CSEGFX

UNIT (or omitted) ?CSEG

UNITP ?CSEGUP

IXRAM ?CSEGIX

AT Segment name cannot be omitted.

• An error will result if the segment name is omitted when the relocation attribute is AT.

• If two or more code segments have the same relocation attribute (except AT), these code segments may have

the same segment name. These same-named code segments are processed as a single code segment

within the assembler.

An error will result if the same-named segments differ in their relocation attributes. Therefore, the number of

the same-named segments for each relocation attribute is one.

• The same-named code segments in two or more different modules are combined into a single code segment

at linkage.

• No segment name can be referenced as a symbol.

• The total number of segments that can be output by the assembler is up to 255 alias names, including those

defined with the ORG directive. The same-named segments are counted as one.

• The maximum number of characters recognizable as a segment name is 8.

• The uppercase and lowercase characters of a segment name are distinguished.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 87

CSEG code segment CSEG

[Application Examples]

NAME SAMP1

C1 CSEG ;(1)

C2 CSEG CALLT0 ;(2)

CSEG FIXED ;(3)

C1 CSEG CALLT0 ;(4)

CSEG ;(5)

END

<Explanation>

(1) The assembler interprets the segment name as “C1”, and the relocation attribute as “UNIT”.

(2) The assembler interprets the segment name as “C2”, and the relocation attribute as “CALLT0”.

(3) The assembler interprets the segment name as “?CSEGFX”, and the relocation attribute as “FIXED”.

(4) Because the segment name “C1” was defined as the relocation attribute “UNIT” in (1), an error occurs.

(5) The assembler interprets the segment name as “?CSEG”, and the relocation attribute as “UNIT”.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM0088

DSEG data segment DSEG

(2) DSEG (data segment)

[Description Format]

Symbol field Mnemonic field Operand field Comment field

[segment-name] DSEG [relocation-attribute] [;comment]

[Function]

• The DSEG directive indicates to the assembler the start of a data segment.

• A memory defined by the DS directive following the DSEG directive belongs to the data segment until it

comes across a segment definition directive (CSEG, DSEG, BSEG, or ORG) or the END directive, and finally

it is reserved within the RAM address.

Figure 3-3. Relocation of Data Segment

<Source module> <Memory>

Data
segment

ROM

RAM

NAME T1

…

DSEG

…

CSEG

…

END

[Use]

• The DS directive is mainly described in the data segment defined by the DSEG directive. Data segments are

located within the RAM area. Therefore, no instructions can be described in any data segment.

• In a data segment, a RAM work area used in a program is reserved by the DS directive and a label is

attached to each work area. Use this label when describing a source program.

Each area reserved as a data segment is located by the linker so that it does not overlap with any other work

areas on the RAM (stack area, general register area, and work areas defined by other modules).

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 89

DSEG data segment DSEG

[Explanation]

• The start address of a data segment can be specified with the ORG directive. It can also be specified by

describing the relocation attribute “AT” followed by an absolute expression in the operand field of the DSEG

directive.

• A relocation attribute defines a range of location addresses for a data segment. The relocation attributes

available for data segments are shown in Table 3-5 Relocation Attributes of DSEG .

Table 3-5. Relocation Attributes of DSEG

Relocation

Attribute

Description

Format

Explanation

SADDR SADDR Tells the assembler to locate the specified segment in the saddr area (saddr area: 0FE20H

to 0FEFFH).

SADDRP SADDRP Tells the assembler to locate the specified segment from an even-numbered address of the

saddr area (saddr area: 0FE20H to 0FEFFH).

AT AT absolute-

expression

Tells the assembler to locate the specified segment in an absolute address.

UNIT UNIT or no

specification

Tells the assembler to locate the specified segment in any location (within the memory area

name “RAM”).

UNITP UNITP Tells the assembler to locate the specified segment in any location from an even-numbered

address (within the memory area name “RAM”).

IHRAM IHRAM Tells the assembler to locate the specified segment in the high-speed RAM area.

LRAM LRAM Tells the assembler to locate the specified segment in the low-speed RAM area.

DSPRAM DSPRAM Tells the assembler to locate the specified segment in the display RAM area.

IXRAM IXRAM Tells the assembler to locate the specified segment in the internal expansion RAM area.

• If no relocation attribute is specified for the data segment, the assembler will assume that “UNIT” has been

specified.

• If a relocation attribute other than those listed in Table 3-5 Relocation Attributes of DSEG is specified, the

assembler will output an error message and assume that “UNIT” has been specified. An error will result if the

size of each data segment exceeds that of the area specified by its relocation attribute.

• If the absolute expression specified with the relocation attribute “AT” is illegal, the assembler will output an

error message and continue processing by assuming the value of the expression to be “0”.

• By describing a segment name in the symbol field of the DSEG directive, the data segment can be named.

If no segment name is specified for a data segment, the assembler automatically gives a default segment

name. The default segment names of the data segments are shown in Table 3-6 Default Segment Names

of DSEG .

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM0090

DSEG data segment DSEG

Table 3-6. Default Segment Names of DSEG

Relocation Attribute Default Segment Name

SADDR ?DSEGS

SADDRP ?DSEGSP

UNIT (or no specification) ?DSEG

UNITP ?DSEGUP

IHRAM ?DSEGIH

LRAM ?DSEGL

DSPRAM ?DSEGDSP

IXRAM ?DSEGIX

AT Segment name cannot be omitted.

• If two or more data segments have the same relocation attribute (except AT), these data segments may have

the same segment name. These segments are processed as a single data segment within the assembler.

• If the relocation attribute is SADDRP, the specified segment is located so that the address immediately after

the DSEG directive is described becomes a multiple of 2.

• An error occurs if the same-named segments differ in their relocation attributes. Therefore, the number of the

same-named segments for each relocation attribute is one.

• The same-named data segments in two or more different modules are combined into a single data segment at

linkage time.

• No segment name can be referenced as a symbol.

• The total number of segments that can be output by the assembler is up to 255 alias segments including

those defined with the ORG directive. The same-named segments are counted as one.

• The maximum number of characters recognizable as a segment name is 8.

• The uppercase and lowercase characters of a segment name are distinguished.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 91

DSEG data segment DSEG

[Application Examples]

NAME SAMP1

DSEG ;(1)

WORK1: DS 1

WORK2: DS 2

CSEG

MOV A,!WORK1 ;(2)

MOV A,WORK1 ;(3)

MOVW DE,#WORK2 ;(4)

MOVW AX,WORK2 ;(5)

END

<Explanation>

(1) The start of a data segment is defined with the DSEG directive. Because its relocation attribute is omitted,

“UNIT” is assumed. The default segment name is “?DSEG”.

(2) This description corresponds to “MOV A, !addr16”.

(3) This description corresponds to “MOV A, saddr”. Relocatable label “WORK1” cannot be described as

“saddr”. Therefore, an error occurs as a result of this description.

(4) This description corresponds to “MOVW rp, #word”.

(5) This description corresponds to “MOVW AX, saddrp”.

Relocatable label “WORK2” cannot be described as “saddrp”. Therefore, an error occurs as a result of this

description.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM0092

BSEG bit segment BSEG

(3) BSEG (bit segment)

[Description Format]

Symbol field Mnemonic field Operand field Comment field

[segment-name] BSEG [relocation-attribute] [;comment]

[Function]

• The BSEG directive indicates to the assembler the start of a bit segment.

• A bit segment is a segment that defines the RAM addresses to be used in the source module.

• A memory area that is defined by the DBIT directive after the BSEG directive until it comes across a segment

definition directive (CSEG, DSEG, or BSEG) or the END directive belongs to the bit segment.

Figure 3-4. Relocation of Bit Segment

<Source module> <Memory>

Bit
segment

ROM

RAM

NAME T1
BSEG

…

DSEG

…

CSEG

…

END

[Use]

• Describe the DBIT directive in the bit segment defined by the BSEG directive (see Application Example).

• No instructions can be described in any bit segment.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 93

BSEG bit segment BSEG

[Explanation]

• The start address of a bit segment can be specified by describing “AT absolute-expression” in the relocation

attribute field.

• A relocation attribute defines a range of location addresses for a bit segment. Relocation attributes available

for bit segments are shown in Table 3-7 Relocation Attributes of BSEG .

Table 3-7. Relocation Attributes of BSEG

Relocation

Attribute

Description

Format

Explanation

AT AT absolute-

expression

Tells the assembler to locate the starting address of the specified segment in the

0th bit of an absolute address. Specification in bit units is prohibited (FE20H to

FEFFH).

UNIT UNIT (or no

specification)

Tells the assembler to locate the specified segment in any location (FE20H to

FEFFH).

• If no relocation attribute is specified for the bit segment, the assembler assumes that “UNIT” is specified.

• If a relocation attribute other than those listed in Table 3-7 Relocation Attributes of BSEG is specified, the

assembler outputs an error message and assumes that “UNIT” is specified. An error occurs if the size of

each bit segment exceeds that of the area specified by its relocation attribute.

• In both the assembler and the linker, the location counter in a bit segment is displayed in the form “0xxxx.b”

(The byte address is hexadecimal 4 digits and the bit position is hexadecimal 1 digit (0 to 7)).

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM0094

BSEG bit segment BSEG

With absolute bit segment

(1) (2) (3) (4) (5) (6) (7) (8)

(9) (10) (11) (12) (13) (14) (15) (16)

0 1 2 3 4 5 6 7 Bit position

Location counter
(1)0FE20H.0 (9)0FE21H.0

(2)0FE20H.1(10)0FE21H.1
(3)0FE20H.2(11)0FE21H.2

(4)0FE20H.3(12)0FE21H.3

(5)0FE20H.4(13)0FE21H.4

(6)0FE20H.5(14)0FE21H.5
(7)0FE20H.6(15)0FE21H.6

(8)0FE20H.7(16)0FE21H.7

0FE20H

0FE21H

Byte address

With relocatable bit segment

Location counter
(1)0H.0 (9)1H.0
(2)0H.1 (10)1H.1
(3)0H.2 (11)1H.2
(4)0H.3 (12)1H.3
(5)0H.4 (13)1H.4
(6)0H.5 (14)1H.5
(7)0H.6 (15)1H.6
(8)0H.7 (16)1H.7

0H

1H

(1) (2) (3) (4) (5) (6) (7) (8)

(9) (10) (11) (12) (13) (14) (15) (16)

0 1 2 3 4 5 6 7 Bit positionByte address

Remark Within a relocatable bit segment, the byte address specifies an offset value in byte units from the

beginning of the segment.

In a symbol table output by the object converter, a bit offset from the beginning of an area where a bit

is defined is displayed and output.

Symbol Value Bit Offset

00FE20H.0 0000

00FE20H.1 0001

00FE20H.2 0002

… …

00FE20H.7 0007

00FE21H.0 0008

00FE21H.1 0009

… …

00FE80H.0 0300

… …

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 95

BSEG bit segment BSEG

• If the absolute expression specified with the relocation attribute “AT” is illegal, the assembler outputs an error

message and continues processing while assuming the value of the expression to be “0”.

• By describing a segment name in the symbol field of the BSEG directive, the bit segment can be named.

If no segment name is specified for a bit segment, the assembler automatically gives a default segment

name. The following table shows the default segment names.

Table 3-8. Default Segment Names of BSEG

Relocation Attribute Default Segment Name

UNIT (or no specification) ?BSEG

AT Segment name cannot be omitted.

• If the relocation attribute is “UNIT”, two or more data segments can have the same segment name (except

AT). These segments are processed as a single segment within the assembler.

Therefore, the number of same-named segments for each relocation attribute is one.

• The same-named bit segments in two or more different modules will be combined into a single bit segment at

linkage time.

• No segment name can be referenced as a symbol.

• The only instructions that can be described in the bit segments are the DBIT, EQU, SET, PUBLIC, EXTBIT,

EXTRN, MACRO, REPT, IRP, ENDM directive, macro definition and macro reference. Description of

instructions other than these causes in an error.

• The total number of segments that the assembler outputs is up to 255 alias segments, with segments defined

by the ORG directive. The segments having the same name are counted as one.

• The maximum number of characters recognizable as a segment name is 8.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM0096

BSEG bit segment BSEG

[Application Examples]

NAME SAMP1

FLAG EQU 0FE20H

FLAG0 EQU FLAG.0 ;(1)

FLAG1 EQU FLAG.1 ;(1)

BSEG ;(2)

FLAG2 DBIT

CSEG

SET1 FLAG0 ;(3)

SET1 FLAG2 ;(4)

END

<Explanation>

(1) Bit addresses (bits 0 and 1 of 0FE20H) are defined with consideration given to byte address boundaries.

(2) A bit segment is defined with the BSEG directive.

Because its relocation attribute is omitted, the relocation attribute “UNIT” and the segment name “?BSEG”

are assumed. In each bit segment, a bit work area is defined for each bit with the DBIT directive. A bit

segment should be described at the early part of the module body. Bit address FLAG2 defined within the bit

segment is located without considering the byte address boundary.

(3) This description can be replaced with “SET1 FLAG.0”. This FLAG indicates a byte address.

(4) In this description, no consideration is given to byte address boundaries.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 97

ORG origin ORG

(4) ORG (origin)

[Description Format]

Symbol field Mnemonic field Operand field Comment field

[segment name] ORG Absolute expression [;comment]

[Function]

• The ORG directive sets the value of the expression specified by its operand of the location counter.

• After the ORG directive, described instructions or reserved memory area belongs to an absolute segment

until it comes across a segment definition directive (CSEG, DSEG, BSEG, or ORG) or the END directive, and

they are located from the address specified by an operand.

Figure 3-5. Location of Absolute Segment

0FE20H

1000H

<Source module> <Memory>

Absolute
segment

Absolute
segment

ROM

RAM

NAME T1
DSEG
BSEG AT 0FE20H

…

CSEG

…

ORG 1000H

…

END

[Use]

• Specify the ORG directive to locate a code segment or data segment from a specific address.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM0098

ORG origin ORG

 [Explanation]

• The absolute segment defined with the ORG directive belongs to the code segment or data segment defined

with the CSEG or DSEG directive immediately before this ORG directive.

Within an absolute segment that belongs to a data segment, no instructions can be described.

An absolute segment that belongs to a bit segment cannot be described with the ORG directive.

• The code segment or data segment defined with the ORG directive is interpreted as a code segment or data

segment of the relocation attribute “AT”.

• By describing a segment name in the symbol field of the ORG directive, the absolute segment can be named.

The maximum number of characters that can be recognized as a segment name is 8.

• If no segment name is specified for an absolute segment, the assembler will automatically assign the default

segment name “?A00xxxx”, where “xxxx” indicates the four-digit hexadecimal start address (0000 to FEFF) of

the segment specified.

• If neither CSEG nor DSEG directive has been described before the ORG directive, the absolute segment

defined by the ORG directive is interpreted as an absolute segment in a code segment.

• If a name or label is described as the operand of the ORG directive, the name or label must be an absolute

term that has already been defined in the source module.

• No segment name can be referenced as a symbol.

• The total number of segments that the assembler outputs is up to 255 alias segments, with segments defined

by the segment definition directive. The segments having the same name are counted as one.

• The maximum number of characters recognizable as a segment name is 8.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 99

ORG origin ORG

[Application examples]

NAME SAMP1

DSEG

ORG 0FE20H ;(1)

SADR1: DS 1

SADR2: DS 1

SADR3: DS 2

MAIN0 ORG 100H

MOV A,SADR1 ;(2)

CSEG ;(3)

MAIN1 ORG 1000H ;(4)

MOV A,SADR2

MOVW AX,SADR3

END

<Explanation>

(1) An absolute segment that belongs to a data segment is defined. This absolute segment will be located from

the short direct addressing area that starts from address “FE20H”.

Because specification of the segment name is omitted, the assembler automatically assigns the name

“?A00FE20”.

(2) Because no instruction can be described within an absolute segment that belongs to a data segment, an

error occurs.

(3) This directive declares the start of a code segment.

(4) This absolute segment is located in an area that starts from address “1000H”.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00100

3.3 Symbol Definition Directives

Symbol definition directives assign names to numerical data to be used for describing a source module. These

names clarify the meaning of each data value and make the contents of the source module easy to understand.

Symbol definition directives inform the assembler of the value of each name to be used in the source module.

Two directives EQU and SET are available for symbol definition.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 101

EQU equate EQU

(1) EQU (equate)

[Description Format]

Symbol field Mnemonic field Operand field Comment field

name EQU expression [;comment]

[Function]

• The EQU directive defines a name that has the value and attributes (symbol attribute and relocation attribute)

of the expression specified in the operand field.

[Use]

• Define numerical data to be used in the source module as a name with the EQU directive and describe the

name in the operand of an instruction in place of the numerical data.

Numerical data to be frequently used in the source module is recommended to be defined as a name. If a

data value in the source module needs to be changed, simply change the operand value of the name (see

Application Example).

[Explanation]

• When a name or label is to be described in the operand of the EQU directive, use the name or label that has

already been defined in the source module.

No external reference term can be described as the operand of this directive.

• An expression including a term created by a HIGH/LOW/DATAPOS/BITPOS operator that has a relocatable

term in its operand cannot be described.

• If an expression with any of the following patterns of operands is described, an error will result:

(a) Expression 1 with ADDRESS attribute – expression 2 with ADDRESS attribute

(b) Expression 1 with ADDRESS attribute Relational operator Expression 2 with ADDRESS attribute

(c) Either of the following conditions <1> and <2> is fulfilled in the above expression (a) or (b):

<1> If label 1 in the expression 1 with ADDRESS attribute and label 2 in the expression 2 with

ADDRESS attribute belong to the same segment and if a BR directive for which the number of

bytes of the object code cannot be determined is described between the two labels

<2> If label 1 and label 2 differ in segment and if a BR directive for which the number of bytes of the

object code cannot be determined is described between the beginning of the segment and label

(d) HIGH absolute expression with ADDRESS attribute

(e) LOW absolute expression with ADDRESS attribute

(f) DATAPOS absolute expression with ADDRESS attribute

(g) BITPOS absolute expression with ADDRESS attribute

(h) The following <3> is fulfilled in the expression (d), (e), (f), or (g):

<3> If a BR directive for which the number of bytes of the object code cannot be determined instantly is

described between the label in the expression with ADDRESS attribute and the beginning of the

segment to which the label belongs

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00102

EQU equate EQU

• If an error exists in the description format of the operand, the assembler will output an error message, but will

attempt to store the value of the operand as the value of the name described in the symbol field to the extent

that it can analyze.

• A name defined with the EQU directive cannot be redefined within the same source module.

• A name that has defined a bit value with the EQU directive will have an address and bit position as value.

• Table 3-9 Representation Formats of Operands Indicating Bit Values shows the bit values that can be

described as the operand of the EQU directive and the range in which these bit values can be referenced.

Table 3-9. Representation Formats of Operands Indicating Bit Values

Operand Type Symbol Value Reference Range

A.bitNote 1 1.bit

PSW.bitNote 1 1FEH.bit

sfrNote 2.bitNote 1 0FFxxHNote 3.bit

Can be referenced within the same

module only.

saddr.bitNote 1 0xxxxHNote 4.bit

expression.bitNote 1 0xxxxHNote 4.bit

Can be referenced from another

module.

Notes 1 . bit = 0 to 7

2. For a detailed description, refer to the user’s manual of each device.

3. “0FFxxH” indicates the address of an sfr.

4. “0xxxxH” indicates the saddr area (FE20H to FF1FH).

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 103

EQU equate EQU

[Application Example]

NAME SAMP1

WORK1 EQU 0FE20H ;(1)

WORK10 EQU WORK1.0 ;(2)

P02 EQU P0.2 ;(3)

A4 EQU A.4 ;(4)

PSW5 EQU PSW.5 ;(5)

SET1 WORK10 ;(6)

SET1 P02 ;(7)

SET1 A4 ;(8)

SET1 PSW5 ;(9)

END

<Explanation>

(1) The name “WORK1” has the value “0FE20H”, symbol attribute “NUMBER”, and relocation attribute

“ABSOLUTE”.

(2) The name “WORK10” is assigned to bit value “WORK1.0”, which is in the operand format “saddr.bit”.

“WORK1”, which is described in an operand, is already defined at the value “0FE20H”, in (1) above.

(3) The name “P02” is assigned to the bit value “P0.2”, which is in the operand format “sfr.bit”.

(4) The name “A4” is assigned to the bit value “A.4”, which is in the operand format “A.bit”.

(5) The name “PSW5” is assigned to the bit value “PSW.5”, which is in the operand format “PSW.bit”.

(6) This description corresponds to “SET1 saddr.bit”.

(7) This description corresponds to “SET1 sfr.bit”.

(8) This description corresponds to “SET1 A.bit”.

(9) This description corresponds to “SET1 PSW.bit”.

Names that have defined “sfr.bit”, “A.bit”, and “PSW.bit” as in (3) through (5) can be referenced only within the

same module.

A name that has defined “saddr.bit” can also be referenced from another module as an external definition symbol

(see 3.5 (2) EXTBIT).

As a result of assembling the source module in example, the following assemble list is generated.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00104

EQU equate EQU

 Assemble list

 ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

 1 1 NAME SAMP

 2 2

 3 3 (FE20) WORK1 EQU 0FE20H ;(1)

 4 4 (FE20.0) WORK10 EQU WORK1.0 ;(2)

 5 5 (FF00.2) P02 EQU P0.2 ;(3)

 6 6 (0001.4) A4 EQU A.4 ;(4)

 7 7 (01FE.5) PSW5 EQU PSW.5 ;(5)

 8 8 0000 0A20 SET1 WORK10 ;(6)

 9 9 0002 2A00 SET1 P02 ;(7)

 10 10 0004 61CA SET1 A4 ;(8)

 11 11 0006 5A1E SET1 PSW5 ;(9)

 12 12

 13 13 END

<Explanation>

On lines (2) through (5) of the assemble list, the bit address values of the bit values defined as names are

indicated in the object code field.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 105

SET set SET

(2) SET (set)

[Description Format]

Symbol field Mnemonic field Operand field Comment field

name SET absolute-expression [;comment]

[Function]

• The SET directive defines a name that has the value and attributes (symbol attribute and relocation attribute)

of the expression specified in the operand field.

• The value and attribute of a name defined with the SET directive can be re-defined within the same module.

These values and attribute are valid until the same name is re-defined.

[Use]

• Define numerical data (a variable) to be used in the source module as a name and describe it in the operand

of an instruction in place of the numerical data (a variable).

If the value of a name in the source module needs to be changed, a different value can be defined for the

same name using the SET directive again.

[Explanation]

• An absolute expression must be described in the operand field of the SET directive.

• The SET directive may be described anywhere in a source program. However, a name that has been defined

with the SET directive cannot be forward-referenced.

• If an error is detected in the statement in which a name is defined with the SET directive, the assembler

outputs an error message but will attempt to store the value of the operand as the value of the name

described in the symbol field to the extent that it can analyze.

• A symbol defined with the EQU directive cannot be re-defined with the SET directive.

A symbol defined with the SET directive cannot be re-defined with the EQU directive.

• A bit symbol cannot be defined.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00106

SET set SET

[Application Example]

NAME SAMP1

COUNT SET 10H ;(1)

CSEG

MOV B,#COUNT ;(2)

LOOP:

DEC B

BNZ $LOOP

COUNT SET 20H ;(3)

MOV B,#COUNT ;(4)

END

<Explanation>

(1) The name “COUNT” has the value “10H”, the symbol attribute “NUMBER”, and relocation attribute

“ABSOLUTE”. The value and attributes are valid until they are re-defined by the SET directive in (3) below.

(2) The value “10H” of the name “COUNT” is transferred to register B.

(3) The value of the name “COUNT” is changed to “20H”.

(4) The value “20H” of the name “COUNT” is transferred to register B.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 107

3.4 Memory Initialization and Area Reservation Directives

Memory initializing directives define the constant data to be used in a source program.

The values of the defined constant data are generated as object codes.

Area reservation directives reserve memory areas to be used in a program.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00108

DB define byte DB

(1) DB (define byte)

[Description Format]

Symbol field Mnemonic field Operand field Comment field

[label:] DB {(size) initial-value [,...]} [;comment]

[Function]

• The DB directive tells the assembler to initialize a byte area. The number of bytes to be initialized can be

specified as “size”.

• The DB directive also tells the assembler to initialize a memory area in byte units with the initial value(s)

specified in the operand field.

[Use]

• Use the DB directive when defining an expression or character string used in the program.

[Explanation]

• If a value in the operand field is parenthesized, the assembler assumes that a size is specified. Otherwise,

an initial value is assumed.

• The DB directive cannot be described in a bit segment.

With size specification:

• If a size is specified in the operand field, the assembler initializes an area equivalent to the specified number

of bytes with the value “00H”.

• An absolute expression must be described as a size. If the size description is illegal, the assembler outputs

an error message and will not execute initialization.

With initial value specification:

• The following two parameters can be specified as initial values:

<1> Expression

The value of an expression must be 8-bit data. Therefore, the value of the operand must be in the

range of 0H to 0FFH. If the value exceeds 8 bits, the assembler will use only lower 8 bits of the value

as valid data and output an error message.

<2> Character string

If a character string is described as the operand, an 8-bit ASCII code will be reserved for each character

in the string.

• Two or more initial values may be specified within a statement line of the DB directive.

• As an initial value, an expression that includes a relocatable symbol or external reference symbol may be

described.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 109

DB define byte DB

[Application Example]

NAME SAMP1

CSEG

WORK1: DB (1) ;(1)

WORK2: DB (2) ;(1)

CSEG

MASSAG: DB 'ABCDEF' ;(2)

DATA1: DB 0AH, 0BH, 0CH ;(3)

DATA2: DB (3+1) ;(4)

DATA3: DB 'AB'+1 ;(5)

END

<Explanation>

(1) Because the size is specified, the assembler will initialize each byte area with the value “00H”.

(2) A 6-byte area is initialized with character string ‘ABCDEF’.

(3) A 3-byte area is initialized with “0AH, 0BH, 0CH”.

(4) A 4-byte area is initialized with “00H”.

(5) Because the value of expression ‘AB’ +1 is 4143H (4142H+1) and exceeds the range of 0H to 0FFH, this

description will result in an error.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00110

DW define word DW

(2) DW (define word)

[Description Format]

Symbol field Mnemonic field Operand field Comment field

[label:] DW {(size) initial-value [,...]} [;comment]

[Function]

• The DW directive tells the assembler to initialize a word area. The number of words to be initialized can be

specified as “size”.

• The DW directive also tells the assembler to initialize a memory area in word units (2 bytes) with the initial

value(s) specified in the operand field.

[Use]

• Use the DW directive when defining a 16-bit numeric constant such as an address or data used in the

program.

[Explanation]

• If a value in the operand field is parenthesized, the assembler assumes that a size is specified; otherwise an

initial value is assumed.

• The DW directive cannot be described in a bit segment.

With size specification:

• If a size is specified in the operand field, the assembler will initialize an area equivalent to the specified

number of words with the value “00H”.

• An absolute expression must be described as a size. If the size description is illegal, the assembler outputs

an error message and will not execute initialization.

With initial value specification:

• The following two parameters can be specified as initial values:

<1> Constant

16 bits or less.

<2> Expression

The value of an expression must be stored as a 16-bit data.

No character string can be described as an initial value.

• The upper 2 digits of the specified initial value are stored in the HIGH address and the lower 2 digits of the

value in the LOW address.

• Two or more initial values may be specified within a statement line of the DW directive.

• As an initial value, an expression that includes a relocatable symbol or external reference symbol may be

described.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 111

DW define word DW

[Application Example]

NAME SAMP1

CSEG

WORK1: DW (10) ;(1)

WORK2: DW (128) ;(1)

CSEG

ORG 10H

DW MAIN ;(2)

DW SUB1 ;(2)

CSEG

MAIN:

CSEG

SUB1:

DATA: DW 1234H,5678H ;(3)

END

<Explanation>

(1) Because the size is specified, the assembler will initialize each word with the value “00H”.

(2) Vector entry addresses are defined with the DW directives.

(3) A 2-word area is initialized with value “34127856”.

Caution The HIGH address of memory is initialized with the upper 2 digits of the word value. The LOW

address of memory is initialized with the lower 2 digits of the word value.

NAME SAMPLE

CSEG

ORG 1 0 0 0 H

DW 1 2 3 4 H

…

END

1 2

3 4

Upper 2 digits

Lower 2 digits

Example :

HIGH

LOW

Source module Memory

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00112

DS define storage DS

(3) DS (define storage)

[Description Format]

Symbol field Mnemonic field Operand field Comment field

[label:] DS absolute-expression [;comment]

[Function]

• The DS directive tells the assembler to reserve a memory area for the number of bytes specified in the

operand field.

[Use]

• The DS directive is mainly used to reserve a memory (RAM) area to be used in the program. If a label is

specified, the value of the first address of the reserved memory area is assigned to the label. In the source

module, this label is used for description to manipulate the memory.

[Explanation]

• The contents of an area to be reserved with this DS directive are unknown (indefinite).

• The specified absolute expression will be evaluated with unsigned 16 bits.

• When the operand value is “0”, no area can be reserved.

• The DS directive cannot be described within a bit segment.

• The symbol (label) defined with the DS directive can be referenced only in the backward direction.

• Only the following parameters extended from an absolute expression can be described in the operand field:

<1> A constant

<2> An expression with constants in which an operation is to be performed (constant expression)

<3> EQU symbol or SET symbol defined with a constant or constant expression

<4> Expression 1 with ADDRESS attribute – expression 2 with ADDRESS attribute

If both label 1 in “expression 1 with ADDRESS attribute” and label 2 in “expression 2 with ADDRESS

attribute” are relocatable, both labels must be defined in the same segment.

However, an error will result in either of the following two cases:

(a) If label 1 and label 2 belong to the same segment and if a BR directive for which the number of

bytes of the object code cannot be determined is described between the two labels

(b) If label 1 and label 2 differ in segment and if a BR directive for which the number of bytes of the

object code cannot be determined is described between either label and the beginning of the

segment to which the label belongs

<5> Any of the expressions <1> through <4> above on which an operation is to be performed.

• The following parameters cannot be described in the operand field:

<1> External reference symbol

<2> Symbol that has defined “expression 1 with ADDRESS attribute – expression 2 with ADDRESS

attribute” with the EQU directive

<3> Location counter ($) is described in either expression 1 or expression 2 in the form of “expression 1 with

ADDRESS attribute – expression 2 with ADDRESS attribute”

<4> Symbol that defines with the EQU directive an expression with the ADDRESS attribute on which the

HIGH/LOW/DATAPOS/BITPOS operator is to be operated

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 113

DS define storage DS

[Application Example]

NAME SAMPLE

DSEG

TABLE1: DS 10 ;(1)

WORK1: DS 1 ;(2)

WORK2: DS 2 ;(3)

CSEG

MOVW HL,#TABLE1

MOV A,!WORK1

MOVW BC,#WORK2

END

<Explanation>

(1) A 10-byte working area is reserved, but the contents of the area are unknown (indefinite). Label “TABLE1”

is allocated to the start of the address.

(2) A 1-byte working area is reserved.

(3) A 2-byte working area is reserved.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00114

DBIT define bit DBIT

(4) DBIT (define bit)

[Description Format]

Symbol field Mnemonic field Operand field Comment field

[name] DBIT None [;comment]

[Function]

• The DBIT directive tells the assembler to reserve a 1-bit memory area within a bit segment.

[Use]

• Use the DBIT directive to reserve a bit area within a bit segment.

[Explanation]

• The DBIT directive is described only in a bit segment.

• The contents of a 1-bit area reserved with the DBIT directive are unknown (indefinite).

• If a name is specified in the Symbol field, the name has an address and a bit position as its value.

• The defined name can be described at the place where saddr.bit is required.

[Application Example]

NAME SAMPLE

BSEG

BIT1 DBIT ;(1)

BIT2 DBIT ;(1)

BIT3 DBIT ;(1)

CSEG

SET1 BIT1 ;(2)

CLR1 BIT2 ;(3)

END

<Explanation>

(1) By these three DBIT directives, the assembler will reserve three 1-bit areas and define names (BIT1, BIT2,

and BIT3) each having an address and a bit position as its value.

(2) This description corresponds to “SET1 saddr.bit” and describes the name “BIT1” of the bit area reserved in

(1) above as operand “saddr.bit”.

(3) This description corresponds to “CLR1 saddr.bit” and describes name “BIT2” as “saddr.bit”.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 115

3.5 Linkage Directives

Linkage directives clarify the relativity to reference a symbol defined in the other modules.

Consider a case where a program is created by being divided into two modules: Module 1 and Module 2. In

Module 1, when a symbol defined in Module 2 is referenced, the symbol cannot be used without declaration in each

module. For this reason, some sort of signal or indication such as “I want to use the symbol” or “You may use the

symbol” is required to be issued between the two modules.

In Module 1, the external reference declaration of a symbol issues to indicate that a symbol defined in another

module must be referenced. In Module 2, the external definition declaration of a symbol issues to indicate that the

defined symbol may be referenced in another module.

The symbol can be referenced for the first time when both the external reference declaration and the external

definition declaration are effectively made.

Linkage directives function to establish this interrelationship and are available in the following two types:

• To declare external definition of a symbol: PUBLIC directive

• To declare external reference of a symbol: EXTRN and EXTBIT directives

Figure 3-6. Relationship of Symbols Between Two Modules

NAME MODUL1

EXTRN MDL2 ;(1)

CSEG

…

BR !MDL2 ;(2)

…

END

NAME MODUL2

PUBLIC MDL2 ;(3)

CSEG

…
MDL2:

…

END

<Module 1> <Module 2>

In module 1 in Figure 3-6, the symbol “MDL2” defined in module 2 is referenced in (2). Therefore, the symbol is

declared as an external reference with the EXTRN directive in (1).

In module 2, the symbol “MDL2” to be referenced from module 1 is declared as an external definition with the

PUBLIC directive in (3).

The linker checks whether or not this external reference of the symbol corresponds to the external definition of the

symbol.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00116

EXTRN external EXTRN

(1) EXTRN (external)

[Description Format]

Symbol field Mnemonic field Operand field Comment field

[label:] EXTRN symbol-name [,...] [;comment]

[Function]

• The EXTRN directive declares to the linker that a symbol (other than bit symbols) in another module is to be

referenced in this module.

[Use]

• When referencing a symbol defined in another module, the EXTRN directive must be used to declare the

symbol as an external reference.

[Explanation]

• The EXTRN directive may be described anywhere in a source program (see 2.1 Basic Configuration of

Source Program).

• Up to 20 symbols can be specified in the operand field by delimiting each symbol name with a comma (,).

• When referencing a symbol having a bit value, the symbol must be declared as an external reference with the

EXTBIT directive.

• The symbol declared with the EXTRN directive must be declared in another module with a PUBLIC directive.

• No macro name can be described as the operand of EXTRN directive (see CHAPTER 5 MACROS for the

macro name).

• The EXTRN directive enables only one EXTRN declaration for a symbol in an entire module. For the second

and subsequent EXTRN declarations for the symbol, the linker will output a warning message.

• A symbol that has been declared cannot be described as the operand of the EXTRN directive. Conversely, a

symbol that has been declared as EXTRN cannot be re-defined or declared with any other directive.

• A symbol defined by the EXTRN directive can be used to for reference of an saddr area.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 117

EXTRN external EXTRN

[Application Example]

<Module 1>

NAME SAMP1

EXTRN SYM1,SYM2 ;(1)

CSEG

S1: DW SYM1 ;(2)

MOV A,SYM2 ;(3)

END

<Module 2>

NAME SAMP2

PUBLIC SYM1,SYM2 ;(4)

CSEG

SYM1 EQU 0FFH ;(5)

DATA1 DSEG SADDR

SYM2: DB 012H ;(6)

END

<Explanation>

(1) This EXTRN directive declares symbols “SYM1” and “SYM2” to be referenced in (2) and (3) as external

references. Two or more symbols may be described in the operand field.

(2) This DW instruction references symbol “SYM1”.

(3) This MOV instruction references symbol “SYM2” and outputs a code that references an saddr2 area.

(4) The symbols “SYM1” and “SYM2” are declared as external definitions.

(5) The symbol “SYM1” is defined.

(6) The symbol “SYM2” is defined.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00118

EXTBIT external bit EXTBIT

(2) EXTBIT (external bit)

[Description Format]

Symbol field Mnemonic field Operand field Comment field

[label:] EXTBIT bit-symbol-name [,...] [;comment]

[Function]

• The EXTBIT directive declares to the linker that a bit symbol that has a value of saddr.bit in another module is

to be referenced in this module.

[Use]

• When referencing a symbol that has a bit value and has been defined in another module, the EXTBIT

directive must be used to declare the symbol as an external reference.

[Explanation]

• The EXTBIT directive may be described anywhere in a source program.

• Up to 20 symbols can be specified in the operand field by delimiting each symbol with a comma (,).

• A symbol declared with the EXTBIT directive must be declared with a PUBLIC directive in another module.

• The EXTBIT directive enables only one EXTBIT declaration for a symbol in an entire module. For the second

and subsequent EXTBIT declarations for the symbol, the linker will output a warning message.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 119

EXTBIT external bit EXTBIT

[Application Example]

<Module 1>

NAME SAMP1

EXTBIT FLAG1,FLAG2 ;(1)

CSEG

SET1 FLAG1 ;(2)

CLR1 FLAG2 ;(3)

END

<Module 2>

NAME SAMP2

PUBLIC FLAG1,FLAG2 ;(4)

BSEG

FLAG1 DBIT ;(5)

FLAG2 DBIT ;(6)

CSEG

NOP

END

<Explanation>

(1) This EXTBIT directive declares symbols “FLAG1” and “FLAG2” to be referenced as external references.

Two or more symbols may be described in the operand field.

(2) This SET1 instruction references symbol “FLAG1”. This description corresponds to “SET1 saddr.bit”.

(3) This CLR1 instruction references symbol “FLAG2”. This description corresponds to “CLR1 saddr.bit”.

(4) This PUBLIC directive defines symbols “FLAG1” and “FLAG2”.

(5) This DBIT directive defines symbol “FLAG1” as a bit symbol of SADDR area.

(6) This DBIT directive defines symbol “FLAG2” as a bit symbol of SADDR area.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00120

PUBLIC public PUBLIC

(3) PUBLIC (public)

[Description Format]

Symbol field Mnemonic field Operand field Comment field

[label:] PUBLIC symbol-name [,...] [;comment]

[Function]

• The PUBLIC directive declares to the linker that the symbol described in the operand field is a symbol to be

referenced from another module.

[Use]

• When defining a symbol (including bit symbol) to be referenced from another module, the PUBLIC directive

must be used to declare the symbol as an external definition.

[Explanation]

• The PUBLIC directive may be described anywhere in a source program.

• Up to 20 symbols can be specified in the operand field by delimiting each symbol name with a comma (,).

• Symbol(s) to be described in the operand field must be defined within the same module.

• The PUBLIC directive enables only one PUBLIC declaration for a symbol in an entire module. The second

and subsequent PUBLIC declarations for the symbol will be ignored by the linker.

• The following symbols cannot be used as the operand of the PUBLIC directive:

• Name defined with the SET directive

• Symbol defined with the EXTRN or EXTBIT directive within the same module

• Segment name

• Module name

• Macro name

• Symbol not defined within the module

• Symbol defining an operand with a bit attribute with the EQU directive

• Symbol defining an sfr with the EQU directive (however, the place where sfr area and saddr area are

overlapped is excluded)

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 121

PUBLIC public PUBLIC

[Application Example]

Example of program consisting of three modules

<Module 1>

NAME SAMP1

PUBLIC A1,A2 ;(1)

EXTRN B1

EXTBIT C1

A1 EQU 10H

A2 EQU 0FE20H.1

CSEG

BR B1

SET1 C1

END

<Module 2>

NAME SAMP2

PUBLIC B1 ;(2)

EXTRN A1

CSEG

B1:

MOV C,#LOW(A1)

END

<Module 3>

NAME SAMP3

PUBLIC C1 ;(3)

EXTBIT A2

C1 EQU 0FE21H.0

CSEG

CLR1 A2

END

<Explanation>

(1) This PUBLIC directive declares that symbols “A1” and “A2” are to be referenced from other modules.

(2) This PUBLIC directive declares that symbol “B1” is to be referenced from another module.

(3) This PUBLIC directive declares that symbol “C1” is to be referenced from another module.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00122

3.6 Object Module Name Declaration Directive

The object module name declaration directive gives a module name to an object module to be created by the

RA78K0S assembler.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 123

NAME name NAME

(1) NAME (name)

[Description Format]

Symbol field Mnemonic field Operand field Comment field

[label:] NAME object-module-name [;comment]

[Function]

• The NAME directive assigns the object module name described in the operand field to an object module to be

output by the assembler.

[Use]

• A module name is required for each object module in symbolic debugging with a debugger.

[Explanation]

• The NAME directive may be described anywhere in a source program.

• For the conventions of module name description, see the conventions on symbol description in 2.2.3 Fields

that make up a statement .

• Characters that can be specified as a module name are those characters permitted by the operating system

of the assembler software other than “ (”,“ (28H)”, “)” or “ (29H)”.

• No module name can be described as the operand of any directive other than NAME or of any instruction.

• If the NAME directive is omitted, the assembler will assume the primary name (first 8 characters) of the input

source module file as the module name. In the Windows version, the primary name is converted to capital

letters for retrieval. If two or more module names are specified, the assembler will output a warning message

and ignore the second and subsequent module name declarations.

• A module name to be described in the operand field must not exceed eight characters.

• The uppercase and lowercase characters of a symbol name are distinguished.

[Application Example]

NAME SAMPLE ;(1)

DSEG

BIT1: DBIT

CSEG

MOV A,B

END

<Explanation>

(1) This NAME directive declares “SAMPLE” as a module name.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00124

3.7 Automatic Branch Instruction Selection Directive

Unconditional branch instructions directly describe a branch destination address as their operand. Two such

instructions, “BR !addr16” and “BR $addr16”, are available. These instructions select and use the most appropriate

operand according to the address range of the branch destination. Since the number of bytes is different for each

directive, in order to create a program with high memory utilization efficiency, it is necessary to use the instruction

with the smallest number of bytes. However, it is quite troublesome to take this address range into account when

describing the branch instruction.

For this reason, there was a need for a directive that directs the assembler to automatically select the two-byte or

three-byte branch instruction according to the address range of the branch destination. This is called automatic

branch instruction selection directive.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 125

BR branch BR

(1) BR (branch)

[Description Format]

Symbol field Mnemonic field Operand field Comment field

[label:] BR expression [;comment]

[Function]

• The BR directive tells the assembler to automatically select a 2- or 3-byte BR branch instruction according to

the value range of the expression specified in the operand field and to generate the object code applicable to

the selected instruction.

[Use]

• If the branch destination is within the range of –80H to +7FH from the address next to the BR directive, the 2-

byte branch instruction “BR $addr16” can be described. With this instruction, the required memory space can

be reduced by one byte as compared with that when using the 3-byte branch instruction “BR !addr16”. To

create a program with high memory utilization efficiency, the 2-byte branch instruction should be used

positively.

However, it is troublesome to take the address range of the branch destination into account when describing

the branch instruction. Therefore, use the BR directive if it is unclear whether a 2-byte branch instruction can

be described.

• When it can be determined whether to describe a 2-byte or 3-byte branch instruction, describe the applicable

instruction. This shortens the assembly time in comparison with describing the BR directive.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00126

BR branch BR

[Explanation]

• The BR directive can only be used within a code segment.

• The direct jump destination is described as the operand of the BR directive. “$” indicating the current location

counter at the beginning of an expression cannot be described.

• For optimization, the following conditions must be satisfied.

<1> No more than 1 label or forward-reference symbol in the expression.

<2> Do not describe an EQU symbol with the ADDRESS attribute.

<3> Do not describe an EQU defined symbol for “expression 1 with ADDRESS attribute – expression 2 with

ADDRESS attribute”.

<4> Do not describe an expression with ADDRESS attribute on which the HIGH/LOW/DATAPOS/BITPOS

operator has been operated.

If these conditions are not met, the 3-byte BR instruction will be selected.

[Application Example]

ADDRESS NAME SAMPLE

C1 CSEG AT 50H

000050H BR L1 ; (1)

000052H BR L2 ; (2)

00007DH L1:

007FFFH L2:

END

<Explanation>

(1) This BR directive generates a 2-byte branch instruction (BR $addr16) because the displacement between

this line and the branch destination is within the range of –80H and +7FH.

(2) This BR directive will be substituted with the 3-byte branch instruction (BR !addr16) because the

displacement between this line and the branch destination is within the range of –80H and +7FH.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 127

3.8 Macro Directives

When describing a source program, it is troublesome to describe a series of frequently used instruction groups

over and over again, and this may cause an increase in the number of description or coding errors.

By using the macro function with macro directives, the need to repeatedly describe the same group of instructions

can be eliminated, thereby increasing coding efficiency of the program. The basic function of a macro is the

substitution of a series of statements with a name.

Macro directives include MACRO, LOCAL, REPT, IRP, EXITM, and ENDM.

In this section, each of these macro directives is detailed. For details of the macro function, see CHAPTER 5

MACROS.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00128

MACRO macro MACRO

(1) MACRO (macro)

[Description Format]

Symbol field Mnemonic field Operand field Comment field

macro-name MACRO [formal-parameter [,...]] [;comment]

…

Macro body

…
ENDM [;comment]

[Function]

• The MACRO directive executes a macro definition by assigning the macro name specified in the symbol field

to a series of statements (called a macro body) described between this directive and the ENDM directive.

[Use]

• Define a series of frequently used statements in the source program with a macro name. After its definition

only describe the defined macro name (for macro reference), and the macro body corresponding to the macro

name is expanded.

[Explanation]

• The MACRO directive must be paired with the ENDM directive.

• For the macro name to be described in the symbol field, see the conventions of symbol description in 2.2.3

Fields that make up a statement .

• To reference a macro, describe the defined macro name in the mnemonic field (see Application Example).

• For the formal parameter(s) to be described in the operand field, the same rules as the conventions of symbol

description will apply.

• Up to 16 formal parameters can be described per macro directive.

• Formal parameters are valid only within the macro body.

• An error will result if any reserved word is described as a formal parameter. However, if a user-defined

symbol is described, its recognition as a formal parameter will take precedence.

• The number of formal parameters must be the same as the number of actual parameters.

• A name or label defined within the macro body if declared with the LOCAL directive becomes effective with

respect to one-time macro expansion.

• Nesting of macros (i.e., to refer to other macros within the macro body) is allowed up to eight levels including

REPT and IRP directives.

• The number of macros that can be defined within a single source module is not specifically limited. In other

words, macros may be defined as long as there is memory space available.

• Formal parameter definition lines, reference lines, and symbol names are not output to a cross-reference list.

• Two or more segments must not be defined in a macro body. If defined, an error will be output.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 129

MACRO macro MACRO

[Application Example]

NAME SAMPLE

ADMAC MACRO PARA1,PARA2 ;(1)

MOV A,#PARA1

ADD A,#PARA2

ENDM ;(2)

ADMAC 10H,20H ;(3)

END

<Explanation>

(1) A macro is defined by specifying macro name “ADMAC” and two formal parameters “PARA1” and “PARA2”.

(2) This directive indicates the end of the macro definition.

(3) Macro “ADMAC” is referenced.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00130

LOCAL local LOCAL

(2) LOCAL (local)

[Description Format]

Symbol field Mnemonic field Operand field Comment field

None LOCAL symbol-name [,...] [;comment]

[Function]

• The LOCAL directive declares that the symbol name specified in the operand field is a local symbol that is

valid only within the macro body.

[Use]

• If a macro that defines a symbol within the macro body is referenced more than once, the assembler will

output a double definition error for the symbol. By using the LOCAL directive, you can reference (or call) a

macro, which defines symbol(s) within the macro body, can be referenced (or called) more than once.

[Explanation]

• For the conventions on symbol names to be described in the operand field, see the conventions on symbol

description in 2.2.3 Fields that make up a statement .

• A symbol declared as LOCAL will be substituted with a symbol “??RAn” (where n = 0000 to FFFF) at each

macro expansion. The symbol “??RAn” after the macro replacement will be handled in the same way as a

global symbol and will be stored in the symbol table, and can thus be referenced under the symbol name

“??RAn”.

• If a symbol is described within a macro body and the macro is referenced more than once, it means that the

symbol would be defined more than once in the source module. For this reason, it is necessary to declare

that the symbol is a local symbol that is valid only within the macro body.

• The LOCAL directive can be used only within a macro definition.

• The LOCAL directive must be described before using the symbol specified in the operand field (in other

words, the LOCAL directive must be described at the beginning of the macro body).

• Symbol names to be defined with the LOCAL directive within a source module must be all different (in other

words, the same name cannot be used for local symbols to be used in each macro).

• The number of local symbols that can be specified in the operand field is not limited as long as they are all

within a line. However, the number of symbols within a macro body is limited to 64. If 65 or more local

symbols are declared, the assembler will output an error message and store the macro definition as an empty

macro body. Nothing will be expanded even if the macro is called.

• Macros defined with the LOCAL directive cannot be nested.

• Symbols defined with the LOCAL directive cannot be called (referenced) from outside the macro.

• No reserved word can be described as a symbol name in the operand field. However, if a symbol same as

the user-defined symbol is described, its recognition as a local symbol will take precedence.

• A symbol declared as the operand of the LOCAL directive will not be output to a cross-reference list and

symbol table list.

• The statement line of the LOCAL directive will not be output at the time of the macro expansion.

• If a LOCAL declaration is made within a macro definition for which a symbol has the same name as a formal

parameter of that macro definition, an error will be output.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 131

LOCAL local LOCAL

[Application Example]

<Source Program>

NAME SAMPLE

MAC1 MACRO

LOCAL LLAB ;(1)

LLAB:

BR $LLAB ;(2)

ENDM

REF1: MAC1 ;(3)

BR !LLAB ;(4)

REF2: MAC1 ;(5)

END

 Macro definition

 This description is erroneous.

<Explanation>

(1) This LOCAL directive defines symbol name “LLAB” as a local symbol.

(2) This BR instruction references local symbol “LLAB” within macro MAC1.

(3) This macro reference calls macro MAC1.

(4) Because local symbol “LLAB” is referenced outside the definition of macro MAC1, this description results in

an error.

(5) This macro reference calls macro MAC1.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00132

LOCAL local LOCAL

The assemble list of the above application example is shown below.

 Assemble list

 ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

 1 1 NAME SAMPLE

 2 2 M MAC1 MACRO

 3 3 M LOCAL LLAB ;(1)

 4 4 M LLAB:

 5 5 M BR $LLAB ;(2)

 6 6 M ENDM

 7 7

 8 8 000000 REF1: MAC1 ;(3)

 9 #1 ;

 10 000000 #1 ??RA0000:

 11 000000 14FE #1 BR $??RA0000 ;(2)

 9 12

 10 13 000002 2C0000 BR !LLAB ;(4)

*** ERROR F407, STNO 13 (0) Undefined symbol reference 'LLAB'

*** ERROR F303, STNO 13 (13) Illegal expression

 11 14

 12 15 000005 REF2: MAC1 ;(5)

 16 #1 ;

 17 000005 #1 ??RA0001:

 18 000005 14FE #1 BR $??RA0001 ;(2)

 13 19

 14 20 END

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 133

REPT repeat REPT

(3) REPT (repeat)

[Description Format]

Symbol field Mnemonic field Operand field Comment field

[label:] REPT absolute-expression [;comment]

…

ENDM [;comment]

[Function]

• The REPT directive tells the assembler to repeatedly expand a series of statements described between this

directive and the ENDM directive (called the REPT-ENDM block) the number of times equivalent to the value

of the expression specified in the operand field.

[Use]

• Use the REPT and ENDM directives to describe a series of statements repeatedly in a source program.

[Explanation]

• An error occurs if the REPT directive is not paired with the ENDM directive.

• In the REPT-ENDM block, macro references, REPT directives, and IRP directives can be nested up to eight

levels.

• If the EXITM directive appears in the REPT-ENDM block, subsequent expansion of the REPT-ENDM block by

the assembler is terminated.

• Assembly control instructions may be described in the REPT-ENDM block.

• Macro definitions cannot be described in the REPT-ENDM block.

• The absolute expression described in the operand field is evaluated with unsigned 16 bits. If the value of the

expression is 0, nothing is expanded.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00134

REPT repeat REPT

[Application Example]

<Source Program>

 NAME SAMP1

 CSEG

 REPT 3 ; (1)

 INC B

 DEC C

 ENDM ; (2)

 END

 REPT-ENDM block

<Explanation>

(1) This REPT directive tells the assembler to expand the REPT-ENDM block three consecutive times.

(2) This directive indicates the end of the REPT-ENDM block.

When the above source program is assembled, the REPT-ENDM block is expanded as shown in the following

assemble list:

<Assemble List>

NAME SAMP1

CSEG

REPT 3

INC B

DEC C

ENDM

INC B

DEC C

INC B

DEC C

INC B

DEC C

END

The REPT-ENDM block defined by statements (1) and (2) has been expanded three times. On the assemble

list, the definition statements (1) and (2) by the REPT directive in the source module is not displayed.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 135

IRP indefinite repeat IRP

(4) IRP (indefinite repeat)

[Description Format]

Symbol field Mnemonic field Operand field Comment field

[label:] IRP formal-parameter, <[actual-

parameter [,...]]>

[;comment]

…

ENDM [;comment]

[Function]

• The IRP directive tells the assembler to repeatedly expand a series of statements described between this

directive and the ENDM directive (called the IRP-ENDM block) the number of times equivalent to the number

of actual parameters while replacing the formal parameter with the actual parameters specified in the operand

field.

[Use]

• Use the IRP and ENDM directives to describe a series of statements, only some of which become variables,

repeatedly in a source program.

[Explanation]

• The IRP directive must be paired with the ENDM directive.

• Up to 16 actual parameters may be described in the operand field.

• In the IRP-ENDM block, macro references, REPT and IRP directives can be nested up to eight levels.

• If the EXITM directive appears in the IRP-ENDM block, subsequent expansion of the IRP-ENDM block by the

assembler is terminated.

• Macro definitions cannot be described in the IRP-ENDM block.

• Assembly control instructions may be described in the IRP-ENDM block.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00136

IRP indefinite repeat IRP

[Application Example]

<Source Program>

 NAME SAMP1

 CSEG

 IRP PARA,<0AH,0BH,0CH> ; (1)

 ADD A,#PARA

 MOV [DE],A

 ENDM ; (2)

 END

 IRP-ENDM block

<Explanation>

(1) The formal parameter is “PARA” and the actual parameters are the following three: “0AH”, “0BH”, and

“0CH”. This IRP directive tells the assembler to expand the IRP-ENDM block three times (i.e., the number

of actual parameters) while replacing the formal parameter “PARA” with the actual parameters “0AH”, “0BH”,

and “0CH”.

(2) This directive indicates the end of the IRP-ENDM block.

When the above source program is assembled, the IRP-ENDM block is expanded as shown in the following

assemble list:

<Assemble List>

 NAME SAMP1

 CSEG

 ADD A,#0AH ; (3)

 MOV [DE],A

 ADD A,#0BH ; (4)

 MOV [DE],A

 ADD A,#0CH ; (5)

 MOV [DE],A

 END

The IRP-ENDM block defined by statements (1) and (2) has been expanded three times (equivalent to the

number of actual parameters).

(3) In this ADD instruction, PARA is replaced with 0AH.

(4) In this ADD instruction, PARA is replaced with 0BH.

(5) In this ADD instruction, PARA is replaced with 0CH.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 137

EXITM exit from macro EXITM

(5) EXITM (exit from macro)

[Description Format]

Symbol field Mnemonic field Operand field Comment field

[label:] EXITM None [;comment]

[Function]

• The EXITM directive forcibly terminates the expansion of the macro body defined by the MACRO directive

and the repetition by the REPT-ENDM or IRP-ENDM block.

[Use]

• This function is mainly used when a conditional assembly function (see 4.7 Conditional Assembly Control

Instructions) is used in the macro body defined with the MACRO directive.

• If conditional assembly functions are used in combination with other instructions in the macro body, part of the

source program that must not be assembled is likely to be assembled unless control is returned from the

macro by force using this EXITM directive. In such cases, be sure to use the EXITM directive.

[Explanation]

• If the EXITM directive is described in a macro body, instructions up to the ENDM directive will be stored as

the macro body.

• The EXITM directive indicates the end of a macro only during the macro expansion.

• If something is described in the operand field of the EXITM directive, the assembler will output an error

message but will execute the EXITM processing.

• If the EXITM directive appears in a macro body, the assembler will return by force the nesting level of

IF/_IF/ELSE/ELSEIF/_ELSEIF/ENDIF blocks to the level when the assembler entered the macro body.

• If the EXITM directive appears in an INCLUDE file resulting from expanding the INCLUDE control instruction

described in a macro body, the assembler will accept the EXITM directive as valid and terminate the macro

expansion at that level.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00138

EXITM exit from macro EXITM

[Application Example]

• In the example here, conditional assembly control instructions are used. See 4.7 Conditional Assembly

Control Instructions .

• See CHAPTER 5 MACROS for the macro body and macro expansion.

<Source Program>

 NAME SAMP1

MAC1 MACRO ; (1)

 NOT1 CY

$ IF(SW1) ; (2)

 BT A.1,$L1

 EXITM ; (3)

$ ELSE ; (4)

 MOV1 CY,A.1

 MOV A,#0

$ ENDIF ; (5)

$ IF(SW2) ; (6)

 BR [HL]

$ ELSE ; (7)

 BR [DE]

$ ENDIF ; (8)

 ENDM ; (9)

 CSEG

$ SET(SW1) ; (10)

 MAC1 ; (11)

L1: NOP

 END

 Macro body

 IF block

 ELSE block

 IF block

 ELSE block

 Macro reference

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 139

EXITM exit from macro EXITM

<Explanation>

(1) The macro “MAC1” uses conditional assembly functions (2) and (4) through (8) within the macro body.

(2) An IF block for conditional assembly is defined here. If switch name “SW1” is true (not “0”), the ELSE block

is assembled.

(3) This directive terminates by force the expansion of the macro body in (4) and thereafter.

If this EXITM directive is omitted, the assembler proceeds to the assembly process in (6) and thereafter

when the macro is expanded.

(4) An ELSE block for conditional assembly is defined here. If switch name “SW1” is false (“0”), the ELSE block

is assembled.

(5) This ENDIF control instruction indicates the end of the conditional assembly.

(6) Another IF block for conditional assembly is defined here. If switch name “SW2” is true (not “0”), the

following IF block is assembled.

(7) Another ELSE block for conditional assembly is defined. If switch name “SW2” is false (“0”), the ELSE block

is assembled.

(8) This ENDIF instruction indicates the end of the conditional assembly processes in (6) and (7).

(9) This directive indicates the end of the macro body.

(10) This SET control instruction gives true value (not “0”) to switch name “SW1” and sets the condition of the

conditional assembly.

(11) This macro reference calls macro “MAC1”.

When the source program in the above example is assembled, macro expansion occurs as shown below.

NAME SAMP1

MAC1 MACRO ; (1)

 ENDM ; (9)

 CSEG

$ SET(SW1) ; (10)

 MAC1 ; (11)

 NOT1 CY

$ IF(SW1)

 BT A.1,$L1

L1: NOP

 END

 Macro-expanded part

The macro body of macro “MAC1” is expanded by referring to the macro in (11). Because true value is set in

switch name “SW1” in (10), the first IF block in the macro body is assembled. Because the EXITM directive is

described at the end of the IF block, the subsequent macro expansion is not executed.

…

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00140

ENDM end macro ENDM

(6) ENDM (end macro)

[Description Format]

Symbol field Mnemonic field Operand field Comment field

None ENDM None [;comment]

[Function]

• The ENDM directive instructs the assembler to terminate the execution of a series of statements defined as

the functions of the macro.

[Use]

• The ENDM directive must always be described at the end of a series of statements following the MACRO,

REPT, and/or the IRP directives.

[Explanation]

• A series of statements described between the MACRO directive and ENDM directive becomes a macro body.

• A series of statements described between the REPT directive and ENDM directive becomes a REPT-ENDM

block.

• A series of statements described between the IRP directive and ENDM directive becomes an IRP-ENDM

block.

[Application Examples]

Example 1 <MACRO-ENDM>

NAME SAMP1

ADMAC MACRO PARA1,PARA2

MOV A, #PARA1

ADD A, #PARA2

ENDM

END

…

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 141

ENDM end macro ENDM

Example 2 <REPT-ENDM>

NAME SAMP2

CSEG

REPT 3

INC B

DEC C

ENDM

END

Example 3 <IRP-ENDM>

NAME SAMP3

CSEG

IRP PARA,<1,2,3>

ADD A,#PARA

MOV [DE],A

ENDM

END

…
…

…
…

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00142

3.9 Assembly Termination Directive

The assembly termination directive informs the assembler of the end of a source module. This assembly

termination directive must always be described at the end of each source module.

The assembler processes a series of statements up to the assembly termination directive as a source module.

Therefore, if the assembly termination directive exists before the ENDM in a REPT block or an IRP block, the REPT

block or IRP block becomes invalid.

CHAPTER 3 DIRECTIVES

User’s Manual U14877EJ1V0UM00 143

END end END

(1) END (end)

[Description Format]

Symbol field Mnemonic field Operand field Comment field

None END None [;comment]

[Function]

• The END directive indicates to the assembler the end of a source module.

[Use]

• The END directive must always be described at the end of each source module.

[Explanation]

• The assembler continues to assemble a source module until the END directive appears in the source module.

Therefore, the END directive is required at the end of each source module.

• Always input a line-feed (LF) code after the END directive.

• If any statement other than blank, tab, LF, or comments appears after the END directive, the assembler

outputs a warning message.

[Application Example]

 NAME SAMPLE

 DSEG

 CSEG

 END ; (1)

<Explanation>

(1) Always describe the END directive at the end of each source module.

…
…

User’s Manual U14877EJ1V0UM00144

[MEMO]

User’s Manual U14877EJ1V0UM00 145

CHAPTER 4 CONTROL INSTRUCTIONS

This chapter explains the control instructions. Control instructions provide detailed directions on the operation of

the assembler.

4.1 Overview of Control Instructions

Control instructions are described in a source program to provide detailed directions on the operation of the

assembler.

These instructions are not subject to object code generation.

Control instructions are available in the following types:

Table 4-1. List of Control Instructions

No. Type of Control Instruction Control Instruction

1 Processor type specification control instruction PROCESSOR

2 Debug information output control instructions DEBUG/NODEBUG, DEBUGA/NODEBUGA

3 Cross-reference list output specification control

instructions

XREF/NOXREF, SYMLIST/NOSYMLIST

4 Inclusion control instruction INCLUDE

5 Assembly list control instructions EJECT, TITLE, SUBTITLE,

LIST/NOLIST,

GEN/NOGEN,

COND/NOCOND,

FORMFEED/NOFORMFEED,

WIDTH, LENGTH, TAB

6 Conditional assembly control instructions SET/RESET,

IF/_IF/ELSEIF/_ELSEIF/ELSE/ENDIF

7 Other control instructions DGL, DGS, TOL_INF

Control instructions are described in a source program in the same way as the assembler directives.

Of the control instructions listed in Table 4-1 List of Control Instructions , the following instructions have the

same functions as assembler options that can be specified in the start-up command line of the assembler.

The correspondence between the control instructions and the command line assembler options is given in Table

4-2 Control Instructions and Assembler Options .

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00146

Table 4-2. Control Instructions and Assembler Options

Control Instructions Assembler Options

PROCESSOR -C

DEBUG/NODEBUG -G/-NG

DEBUGA/NODEBUGA -GA/-NGA

XREF/NOXREF -KX/-NKX

SYMLIST/NOSYMLIST -KS/-NKS

FORMFEED/NOFORMFEED -LF/-NLF

TITLE -LH

WIDTH -LW

LENGTH -LL

TAB -LT

For the method of specifying the control instructions and assembler options by command line, see the RA78K0S

Assembler Package Operation .

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00 147

4.2 Processor Type Specification Control Instruction

The processor type specification control instruction specifies in a source module file the type of target device

subject to assembly.

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00148

PROCESSOR processor PROCESSOR

(1) PROCESSOR (processor)

[Description Format]

[∆]$[∆]PROCESSOR[∆]([∆] processor-type[∆])

[∆]$[∆]PC[∆]([∆] processor-type[∆]) ; Abbreviated format

[Function]

• The PROCESSOR control instruction specifies in a source module file the processor type of the target device

subject to assembly.

[Use]

• The processor type of the target device subject to assembly must always be specified in the source module

file or in the start-up command line of the assembler.

• If there is no processor type specification for the target device subject to assembly in each source module file,

specify the processor type at each assembly operation. Specifying the target device subject to assembly in

each source module file saves time and trouble when starting up the assembler.

[Explanation]

• The PROCESSOR control instruction can be described only in the header section of a source module file. If

the control instruction is described elsewhere, the assembler will be aborted.

• If the specified processor type differs from the actual target device subject to assembly, the assembler will be

aborted.

• Only one PROCESSOR control instruction can be specified in the module header.

• The processor type of the target device subject to assembly may also be specified with the assembler option

(-C) in the start-up command line of the assembler. If the specified processor type differs between the source

module file and the start-up command line, the assembler will output a warning message and give

precedence to the processor type specification in the start-up command line.

• Even when the assembler option (-C) has been specified in the start-up command line, the assembler

performs a syntax check on the PROCESSOR control instruction.

• If the processor type is not specified in either the source module file or the start-up command line, the

assembler will be aborted.

[Application Example]

$ PROCESSOR(9026)

$ DEBUG

$ XREF

 NAME TEST

 CSEG

…

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00 149

4.3 Debug Information Output Control Instructions

The debug information output control instructions are used to specify in a source module file the output or non-

output of debugging information to an object module file created from the source module file.

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00150

DEBUG/NODEBUG debug/nodebug DEBUG/NODEBUG

(1) DEBUG/NODEBUG (debug/nodebug)

[Description Format]

[∆]$[∆]DEBUG ; Default assumption

[∆]$[∆]DG ; Abbreviated format

[∆]$[∆]NODEBUG

[∆]$[∆]NODG ; Abbreviated format

[Function]

• The DEBUG control instruction tells the assembler to add local symbol information to an object module file.

• The NODEBUG control instruction tells the assembler not to add local symbol information to an object module

file. However, in this case as well, the segment name is output to an object module file.

• “Local symbol information” refers to symbols other than module names and PUBLIC, EXTRN, and EXTBIT

symbols.

[Use]

• Use the DEBUG control instruction when symbolic debugging including local symbols is to be performed.

• Use the NODEBUG control instruction when:

1. Symbolic debugging is to be performed for global symbols only

2. Debugging is to be performed without symbols

3. Only objects are required (as for evaluation with PROM)

[Explanation]

• The DEBUG or NODEBUG control instruction can be described only in the header section of a source module

file.

• If the DEBUG or NODEBUG control instruction is omitted, the assembler will assume that the DEBUG control

instruction has been specified.

• The addition of local symbol information can be specified using the assembler option (-G/-NG) in the start-up

command line.

• If the control instruction specification in the source module file differs from the specification in the start-up

command line, the specification in the command line takes precedence.

• Even when the assembler option (-NG) has been specified, the assembler performs a syntax check on the

DEBUG or NODEBUG control instruction.

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00 151

DEBUGA/NODEBUGA debuga/nodebuga DEBUGA/NODEBUGA

(2) DEBUGA/NODEBUGA (debuga/nodebuga)

[Description Format]

[∆]$[∆]DEBUGA ; Default assumption

[∆]$[∆]NODEBUGA

[Function]

• The DEBUGA control instruction tells the assembler to add assembler source debugging information to an

object module file.

• The NODEBUGA control instruction tells the assembler not to add assembler source debugging information to

an object module file.

[Use]

• Use the DEBUGA control instruction when debugging is to be performed at the assembler or structured

assembler source level. An integrated debugger will be necessary for debugging at the source level.

• Use the NODEBUGA control instruction when:

1. Debugging is to be performed without the assembler source

2. Only objects are required (as for evaluation with PROM)

[Explanation]

• The DEBUGA or NODEBUGA control instruction can be described only in the header section of a source

module file.

• If the DEBUGA or NODEBUGA control instruction is omitted, the assembler will assume that the DEBUGA

control instruction has been specified.

• If two or more of these control instructions are specified, the last specified control instruction takes

precedence over the others.

• The addition of assembler source debugging information can be specified using the assembler option (-GA/-

NGA) in the start-up command line.

• If the control instruction specification in the source module file differs from the specification in the start-up

command line, the specification in the command line takes precedence.

• Even when the assembler option (-NGA) has been specified, the assembler performs a syntax check on the

DEBUGA or NODEBUGA control instruction.

• If compiling or structure-assembling the debug information output by the C compiler or structured assembler

preprocessor, do not describe the debug information output control instructions when assembling the output

assemble source. The control instructions necessary at assembly are output to assembler source as control

statements by the C compiler or structured assembler preprocessor.

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00152

4.4 Cross-Reference List Output Specification Control Instructions

The cross-reference list output specification control instructions are used in a source module file to specify the

output or non-output of a cross-reference list.

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00 153

XREF/NOXREF xref/noxref XREF/NOXREF

(1) XREF/NOXREF (xref/noxref)

[Description Format]

[∆]$[∆]XREF

[∆]$[∆]XR ; Abbreviated format

[∆]$[∆]NOXREF ; Default assumption

[∆]$[∆]NOXR ; Abbreviated format

[Function]

• The XREF control instruction tells the assembler to output a cross-reference list to an assembly list file.

• The NOXREF control instruction tells the assembler not to output a cross-reference list to an assembly list

file.

[Use]

• Use the XREF control instruction to output a cross-reference list when obtaining information on where each of

the symbols defined in the source module file is referenced or how many such symbols are referenced in the

source module file.

• To specify the output or non-output of a cross-reference list at each assembly operation, specification of the

XREF or NOXREF control instruction in the source module file may save time and labor.

[Explanation]

• The XREF or NOXREF control instruction can be described only in the header section of a source module file.

• If two or more of these control instructions are specified, the last specified control instruction takes

precedence over the others.

• Output or non-output of a cross-reference list can also be specified by the assembler option (-KX/-NKX) in the

start-up command line.

• If the control instruction specification in the source module file differs from the assembler option specification

in the start-up command line, the specification in the command line will take precedence over that in the

source module.

• Even when the assembler option (-NP) has been specified in the start-up command line, the assembler

performs a syntax check on the XREF/NOXREF control instruction.

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00154

SYMLIST/NOSYMLIST symlist/nosymlist SYMLIST/NOSYMLIST

(2) SYMLIST/NOSYMLIST (symlist/nosymlist)

[Description Format]

[∆]$[∆]SYMLIST

[∆]$[∆]NOSYMLIST ; Default assumption

[Function]

• The SYMLIST control instruction tells the assembler to output a symbol list to a list file.

• The NOSYMLIST control instruction tells the assembler not to output a symbol list to a list file.

[Use]

• Use the SYMLIST control instruction to output a symbol list.

[Explanation]

• The SYMLIST or NOSYMLIST control instruction can be described only in the header section of a source

module file.

• If two or more of these control instructions are specified, the last specified control instruction takes

precedence over the others.

• Output of a symbol list can also be specified by the assembler option (-KS/-NKS) in the start-up command

line.

• If the control instruction specification in the source module file differs from the assembler option specification

in the start-up command line, the specification in the command line will take precedence over that in the

source module.

• Even when the assembler option (-NP) has been specified in the start-up command line, the assembler

performs a syntax check on the SYMLIST/NOSYMLIST control instruction.

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00 155

4.5 Inclusion Control Instruction

The inclusion control instruction is used in a source module file to specify the inclusion of another module file in

the source module file.

Making effective use of this control instruction saves time and labor in describing a source program.

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00156

lNCLUDE include lNCLUDE

(1) INCLUDE (include)

[Description Format]

[∆]$[∆]INCLUDE[∆]([∆] filename[∆])

[∆]$[∆]IC[∆]([∆] filename[∆]) ; Abbreviated format

[Function]

• The INCLUDE control instruction tells the assembler to insert and expand the contents of a specified file

beginning on a specified line in the source program for assembly.

[Use]

• A relatively large group of statements that may be shared by two or more source modules should be

combined into a single file as an INCLUDE file. If the group of statements must be used in each source

module, specify the filename of the required INCLUDE file with the INCLUDE control instruction. With this

control instruction, the time and labor in describing source modules can be greatly reduced.

[Explanation]

• The INCLUDE control instruction can only be described in ordinary source programs.

• The pathname or drive name of an INCLUDE file can be specified with the assembler option (-I).

• The assembler searches INCLUDE file read paths in the following sequence:

(a) When an INCLUDE file is specified without pathname specification

<1> Path in which the source file exists

<2> Path specified by the assembler option (-I)

<3> Path specified by the environment variable INC78K0S

(b) When an INCLUDE file is specified with a pathname

If the INCLUDE file is specified with a drive name or a pathname which begins with (\), the path specified

with the INCLUDE file will be prefixed to the INCLUDE filename. If the INCLUDE file is specified with a

relative path (which does not begin with (\)), a pathname will be prefixed to the INCLUDE filename in the

order described in (a) above.

• Nesting of INCLUDE files is allowed up to seven levels. In other words, the nesting level display of INCLUDE

files in the assembly list is up to 8 (the term “nesting” here refers to the specification of one or more other

INCLUDE files in an INCLUDE file).

• The END directive need not be described in an INCLUDE file.

• If the specified INCLUDE file cannot be opened, the assembler will abort operation.

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00 157

lNCLUDE include lNCLUDE

• An INCLUDE file must be closed with IF or _IF control instruction that is properly paired with an ENDIF control

instruction within the INCLUDE file. If the IF level at the entry of the INCLUDE file expansion does not

correspond with the IF level immediately after the INCLUDE file expansion, the assembler will output an error

message and force the IF level to return to that level at the entry of the INCLUDE file expansion.

• When defining a macro in an INCLUDE file, the macro definition must be closed in the INCLUDE file. If an

ENDM directive appears unexpectedly (without the corresponding MACRO directive) in the INCLUDE file, an

error message will be output and the ENDM directive will be ignored. If an ENDM directive is missing for the

MACRO directive described in the INCLUDE file, the assembler will output an error message but will process

the macro definition by assuming that the corresponding ENDM directive has been described.

[Application Example]

<SET1.INC>Note 3

<Source program>Note 1 <EQU.INC>Note 2

 NAME SAMPLE

 EXTRN L1,L2

 PUBLIC L3

$ INCLUDE(EQU.INC) ;(1)

 CSEG

 END

SYMA EQU 10H

$ INCLUDE(SET1.INC) ;(2)

SYMB EQU 20H

$ INCLUDE(SET2.INC) ;(3)

$ INCLUDE(SET3.INC) ;(4)

SYMZ EQU 100H

<SET2.INC>Note 3

<SET3.INC>Note 3

Notes 1. Two or more $IC control instructions can be specified in the source file. The same INCLUDE file

may also be specified more than once.

2. Two or more $IC control instructions may be specified for INCLUDE file “EQU.INC”.

3. No $IC control instruction can be specified in any of the INCLUDE files “SET1.INC”, “SET2.INC”,

and “SET3.INC”.

<Explanation>

(1) This control instruction specifies “EQU.INC” as the INCLUDE file.

(2), (3), (4) These control instructions specify “SET1.INC”, “SET2.INC”, and “SET3.INC” as the INCLUDE file.

When this source program is assembled, the contents of the INCLUDE file will be expanded as follows:

SYM1 SET 10H

SYM1 SET 30H

SYM1 SET 20H

…

…

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00158

lNCLUDE include lNCLUDE

NAME SAMPLE

EXTRN L1,L2

PUBLIC L3

$ INCLUDE(EQU.INC) ;(1)

SYMA EQU 10H

& INCLUDE(SET1.INC) ;(2)

SYM1 SET 10H

SYMB EQU 20H

& INCLUDE(SET2.INC) ;(3)

SYM1 SET 20H

& INCLUDE(SET3.INC) ;(4)

SYM1 SET 30H

SYMZ EQU 100H

CSEG

END

The contents of INCLUDE file
“EQU.INC” have been
expanded.

The contents of INCLUDE file
“SET1.INC” have been
expanded.

The contents of INCLUDE file
“SET2.INC” have been
expanded.

The contents of INCLUDE file
“SET3.INC” have been
expanded.

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00 159

4.6 Assembly List Control Instructions

The assembly list control instructions are used in a source module file to control the output format of an assembly

list such as page ejection, suppression of list output, and subtitle output.

The assembly list control instructions include:

• EJECT

• LIST and NOLIST

• GEN and NOGEN

• COND and NOCOND

• TITLE

• SUBTITLE

• FORMFEED and NOFORMFEED

• WIDTH

• LENGTH

• TAB

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00160

EJECT eject EJECT

(1) EJECT (eject)

[Description Format]

[∆]$[∆]EJECT

[∆]$[∆]EJ ; Abbreviated format

[Default Assumption]

• EJECT control instruction is not specified.

[Function]

• The EJECT control instruction causes the assembler to execute page ejection (formfeed) of an assembly list.

[Use]

• Describe the EJECT control instruction in a line of the source module at which page ejection of the assembly

list is required.

[Explanation]

• The EJECT control instruction can only be described in ordinary source programs.

• Page ejection of the assembly list is executed after the image of the EJECT control instruction itself is output.

• If the assembler option (-NP) or (-LLO) is specified in the start-up command line or if the assembly list output

is disabled by another control instruction, the EJECT control instruction becomes invalid. See the RA78K0S

Assembler Package Operation for those assembler options.

• If an illegal description follows the EJECT control instruction, the assembler will output an error message.

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00 161

EJECT eject EJECT

[Application Example]

<Source module>

 MOV [DE+],A

 BR $$

$ EJECT ; (1)

 CSEG

 END

<Explanation>

(1) When page ejection is executed with the EJECT control instruction, the output assembly list will look like

this.

 MOV [DE+], A

 BR $$

$ EJECT

 CSEG

 END

Page ejection

…
…

…
…

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00162

LIST/NOLIST list/nolist LIST/NOLIST

(2) LIST/NOLIST (list/nolist)

[Description Format]

[∆]$[∆]LIST ; Default assumption

[∆]$[∆]LI ; Abbreviated format

[∆]$[∆]NOLIST

[∆]$[∆]NOLI ; Abbreviated format

[Function]

• The LIST control instruction indicates to the assembler the line at which assembly list output must start.

• The NOLIST control instruction indicates to the assembler the line at which assembly list output must be

suppressed.

All source statements described after the NOLIST control instruction specification will be assembled, but will

not be output on the assembly list until the LIST control instruction appears in the source program.

[Use]

• Use the NOLIST control instruction to limit the amount of assembly list output.

• Use the LIST control instruction to cancel the assembly list output suppression specified by the NOLIST

control instruction.

Using a combination of NOLIST and LIST control instructions controls the amount of assembly list output as

well as the contents of the list.

[Explanation]

• The LIST/NOLIST control instruction can only be described in ordinary source programs.

• The NOLIST control instruction functions to suppress assembly list output and is not intended to stop the

assembly process.

• If the LIST control instruction is specified after the NOLIST control instruction, statements described after the

LIST control instruction will be output again on the assembly list. The image of the LIST or NOLIST control

instruction will also be output on the assembly list.

• If neither the LIST nor NOLIST control instruction is specified, all statements in the source module will be

output to an assembly list.

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00 163

LIST/NOLIST list/nolist LIST/NOLIST

[Application Example]

 NAME SAMP1

$ NOLIST ; (1)

DATA1 EQU 10H

DATA2 EQU 11H

DATAX EQU 20H

DATAY EQU 20H

$ LIST ; (2)

 CSEG

 END

Statements in this part will

not be output to the

assembly list.

<Explanation>

(1) Because the NOLIST control instruction is specified here, statements after “$ NOLIST” and up to the LIST

control instruction in (2) will not be output on the assembly list. The image of the NOLIST control instruction

itself will be output on the assembly list.

(2) Because the LIST control instruction is specified here, statements after this control instruction will be output

again on the assembly list. The image of the LIST control instruction itself will also be output on the

assembly list.

…
…

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00164

GEN/NOGEN generate/no generate GEN/NOGEN

(3) GEN/NOGEN (generate/no generate)

[Description Format]

[∆]$[∆]GEN ; Default assumption

[∆]$[∆]NOGEN

[Function]

• The GEN control instruction tells the assembler to output macro definition lines, macro reference lines, and

macro-expanded lines to an assembly list.

• The NOGEN control instruction tells the assembler to output macro definition lines and macro reference lines

but to suppress macro-expanded lines.

[Use]

• Use the GEN/NOGEN control instruction to limit the amount of assembly list output.

[Explanation]

• The GEN/NOGEN control instruction can only be described in ordinary source programs.

• If neither the GEN nor NOGEN control instruction is specified, macro definition lines, macro reference lines,

and macro-expanded lines will be output to an assembly list.

• The specified list control takes place after the image of the GEN or NOGEN control instruction itself has been

printed on the assembly list.

• The assembler continues its processing and increments the statement number (STNO) count even after the

list output control by the NOGEN control instruction.

• If the GEN control instruction is specified after the NOGEN control instruction, the assembler will resume the

output of macro-expanded lines.

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00 165

GEN/NOGEN generate/no generate GEN/NOGEN

[Application Example]

<Source Program>

 NAME SAMP

$ NOGEN

ADMAC MACRO PARA1,PARA2

 MOV A,#PARA1

 ADD A,#PARA2

 ENDM

 CSEG

 ADMAC 10H,20H

 END

When the above source program is assembled, the output assembly list will look like this.

 NAME SAMP

$ NOGEN

ADMAC MACRO PARA1,PARA2

 MOV A,#PARA1

 ADD A,#PARA2

 ENDM

 CSEG

 ADMAC 10H, 20H

 MOV A,#10H

 AUD A,#20H

 END

Macro-expanded

part will not be

output.

<Explanation>

(1) Because the NOGEN control instruction is specified, the macro-expanded lines will not be output to the

assembly list.

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00166

COND/NOCOND condition/no condition COND/NOCOND

(4) COND/NOCOND (condition/no condition)

[Description Format]

[∆]$[∆]COND ; Default assumption

[∆]$[∆]NOCOND

[Function]

• The COND control instruction tells the assembler to output lines that have satisfied the conditional assembly

condition as well as those which have not satisfied the conditional assembly condition to an assembly list.

• The NOCOND control instruction tells the assembler to output only lines that have satisfied the conditional

assembly condition to an assembly list. The output of lines that have not satisfied the conditional assembly

condition and lines in which IF/_IF, ELSEIF/_ELSEIF, ELSE, and ENDIF have been described will be

suppressed.

[Use]

• Use the COND/NOCOND control instruction to limit the amount of assembly list output.

[Explanation]

• The COND/NOCOND control instruction can only be described in ordinary source programs.

• If neither the COND nor NOCOND control instruction is specified, the assembler will output lines that have

satisfied the conditional assembly condition as well as those which have not satisfied the conditional

assembly condition to an assembly list.

• The specified list control takes place after the image of the COND or NOCOND control instruction itself has

been printed on the assembly list.

• The assembler increments the ALNO and STNO counts even after the list output control by the NOCOND

control instruction.

• If the COND control instruction is specified after the NOCOND control instruction, the assembler will resume

the output of lines that have not satisfied the conditional assembly condition and lines in which IF/_IF,

ELSEIF/_ELSEIF, ELSE, and ENDIF have been described.

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00 167

COND/NOCOND condition/no condition COND/NOCOND

[Application Example]

<Source Program>

 NAME SAMP

$ NOCOND

$ SET(SWl)

$ IF(SWl)

 MOV A,#1H

$ ELSE

 MOV A,#0H

 ENDIF

 END

This part, though

assembled, will not

be output to the

assembly list.

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00168

TITLE title TITLE

(5) TITLE (title)

[Description Format]

[∆]$[∆]TITLE[∆]([∆]' title-string'[∆])

[∆]$[∆]TT[∆]([∆]' title-string'[∆]) ; Abbreviated format

[Default Assumption]

• When the TITLE control instruction is not specified, the TITLE column of the assembly list header is left blank.

[Function]

• The TITLE control instruction specifies the character string to be printed in the TITLE column at each page

header of an assembly list, symbol table list, or cross-reference list.

[Use]

• Use the TITLE control instruction to print a title on each page of a list so that the contents of the list can be

easily identified.

• If a title has to be specified with the assembler option at each assembly time, describing this control

instruction in the source module file saves time and labor when starting up the assembler.

[Explanation]
• The TITLE control instruction can be described only in the header section of a source module file.

• If two or more TITLE control instructions are specified at the same time, the assembler will accept only the

last specified TITLE control instruction as valid.

• Up to 60 characters can be specified as the title string. If the specified title string consists of 61 or more

characters, the assembler will accept only the first 60 characters of the string as valid.

However, if the character length specification per line of an assembly list file (a quantity “X”) is 119 characters

or less, “X – 60 characters” will be acceptable.

• If a single quotation mark (’) is to be used as part of the title string, describe the single quotation mark twice in

succession.

• If no title string is specified (the number of characters in the title string = 0), the assembler will leave the

TITLE column blank.

• If any character not included in 2.2.2 Character set is found in the specified title string, the assembler will

output “!” in place of the illegal character in the TITLE column.

• A title for an assembly list can also be specified with the assembler option (-LH) in the start-up command line

of the assembler.

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00 169

TITLE title TITLE

[Application Example]

<Source Module>

$ PROCESSOR(9026)

$ TITLE('THIS IS TITLE')

NAME SAMPLE

CSEG

MOV A,B

END

When the above source program is assembled, the output assembly list will appear as shown on the next page

(with the number of lines per page specified as 72).

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00170

TITLE title TITLE

78K/0S Series Assembler Vx.xx THIS IS TITLE Date:xx xxx xxxx Page: 1

Command: sample.asm

Para-file:

In-file: SAMPLE.ASM

Obj-file: SAMPLE.REL

Prn-file: SAMPLE.PRN

 Assemble list

 ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

 1 1 $ PROCESSOR(9026)

 2 2 $ TITLE('THIS IS TITLE')

 3 3 NAME SAMPLE

 4 4 ---- CSEG

 5 5 0000 63 MOV A,B

 6 6 END

Segment information:

 ADRS LEN NAME

 0000 0001H ?CSEG

 Target chip : uPD789026

 Device file : Vx.xx

Assembly complete, 0 error(s) and 0 warning(s) found. (0)

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00 171

SUBTITLE subtitle SUBTITLE

(6) SUBTITLE (subtitle)

[Description Format]

[∆]$[∆]SUBTITLE[∆]([∆]' character-string'[∆])

[∆]$[∆]ST[∆]([∆]' character-string'[∆]) ; Abbreviated format

[Default Assumption]

• When the SUBTITLE control instruction is not specified, the SUBTITLE section of the assembly list header is

left blank.

[Function]

• The SUBTITLE control instruction specifies the character string to be printed in the SUBTITLE section at each

page header of an assembly list.

[Use]

• Use the SUBTITLE control instruction to print a subtitle on each page of an assembly list so that the contents

of the assembly list can be easily identified. The character string of a subtitle may be changed for each page.

[Explanation]
• The SUBTITLE control instruction can only be described in ordinary source programs.

• Up to 72 characters can be specified as the subtitle string.

If the specified title string consists of 73 or more characters, the assembler will accept only the first 72

characters of the string as valid. A 2-byte character is counted as two characters, and tab is counted as one

character.

• The character string specified with the SUBTITLE control instruction will be printed in the SUBTITLE section

on the page after the page on which the SUBTITLE control instruction has been specified. However, if the

control instruction is specified at the top (first line) of a page, the subtitle will be printed on that page.

• If the SUBTITLE control instruction has not been specified, the assembler will leave the SUBTITLE section

blank.

• If a single quotation mark (’) is to be used as part of the character string, describe the single quotation mark

twice in succession.

• If the character string in the SUBTITLE section is 0, the SUBTITLE column will be left blank.

• If any character not included in 2.2.2 Character set is found in the specified subtitle string, the assembler

will output “!” in place of the illegal character in the SUBTITLE column. If CR (0DH) is described, an error will

result and nothing will be output in the assembly list. If 00H is described, nothing from that point to the

closing single quotation mark (’) will be output.

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00172

SUBTITLE subtitle SUBTITLE

[Application Example]

<Source Module>

 NAME SAMP

 CSEG

$ SUBTITLE('THIS IS SUBTITLE 1') ;(1)

$ EJECT ;(2)

 CSEG

$ SUBTITLE('THIS IS SUBTITLE 2') ;(3)

$ EJECT ;(4)

$ SUBTITLE('THIS IS SUBTITLE 3') ;(5)

 END

<Explanation>

(1) This control instruction specifies the character string ‘THIS IS SUBTITLE 1’.

(2) This control instruction specifies a page ejection.

(3) This control instruction specifies the character string ‘THIS IS SUBTITLE 2’.

(4) This control instruction specifies a page ejection.

(5) This control instruction specifies the character string ‘THIS IS SUBTITLE 3’.

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00 173

SUBTITLE subtitle SUBTITLE

The assembly list for this example appears as follows (with the number of lines per page specified as 80).

78K/0S Series Assembler Vx.xx Date:xx xxx xxxx Page: 1

Command: -c9026 sample.asm

Para-file:

In-file: SAMPLE.ASM

Obj-file: SAMPLE.REL

Prn-file: SAMPLE.PRN

 Assemble list

 ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

 1 1 NAME SAMP

 2 2 ------ CSEG

 3 3 $ SUBTITLE('THIS IS SUBTITLE 1') ;(1)

 4 4 $ EJECT ;(2)

78K/0S Series Assembler Vx.xx Date:xx xxx xxxx Page: 2

THIS IS SUBTITLE 1

 ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

 5 5 ------ CSEG

 6 6 $ SUBTITLE('THIS IS SUBTITLE 2') ;(3)

 7 7 $ EJECT ;(4)

78K/0S Series Assembler Vx.xx Date:xx xxx xxxx Page: 3

THIS IS SUBTITLE 2

 ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

 8 8 $ SUBTITLE('THIS IS SUBTITLE 3') ;(5)

 9 9 END

 Target chip : uPD789026

 Device file : Vx.xx

Assembly complete, 0 error(s) and 0 warning(s) found. (0)

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00174

FORMFEED/NOFORMFEED formfeed/noformfeed FORMFEED/NOFORMFEED

(7) FORMFEED/NOFORMFEED (formfeed/noformfeed)

[Description Format]

[∆]$[∆]FORMFEED

[∆]$[∆]NOFORMFEED ; Default assumption

[Function]

• The FORMFEED control instruction tells the assembler to output a FORMFEED code at the end of an

assembly list file.

• The NOFORMFEED control instruction tells the assembler not to output a FORMFEED code at the end of an

assembly list file.

[Use]

• Use the FORMFEED control instruction to start a new page after printing the contents of an assembly list file.

[Explanation]

• The FORMFEED or NOFORMFEED control instruction can be described only in the header section of a

source module file.

• At the time of printing an assembly list, the last page of the list may not come out if printing ends in the middle

of a page. In such a case, add a FORMFEED code to the end of the assembly list using the FORMFEED

control instruction or assembler option (-LF).

In many cases, a FORMFEED code will be output at the end of a file. For this reason, if a FORMFEED code

exists at the end of a list file, an unwanted white page may be ejected. To prevent this, the NOFORMFEED

control instruction or assembler option (-NLF) has been set as a default value.

• If two or more FORMFEED/NOFORMFEED control instructions are specified at the same time, only the last

specified control instruction will become valid.

• The output or non-output of a formfeed code may also be specified with the assembler option (-LF) or (-NLF)

in the start-up command line of the assembler.

• If the control instruction specification (FORMFEED/NOFORMFEED) in the source module differs from the

specification (-LF/-NLF) in the start-up command line, the specification in the start-up command line will take

precedence over that in the source module.

• Even when the assembler option (-NP) has been specified in the start-up command line, the assembler

performs a syntax check on the FORMFEED or NOFORMFEED control instruction.

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00 175

WIDTH width WIDTH

(8) WIDTH (width)

[Description Format]

[∆]$[∆]WIDTH[∆]([∆] columns-per-line[∆])

[Default Assumption]

$WIDTH (132)

[Function]

• The WIDTH control instruction specifies the number of columns (characters) per line of a list file. “columns-

per-line” must be a value in the range of 72 to 260.

[Use]

• Use the WIDTH control instruction to change the number of columns per line of a list file.

[Explanation]

• The WIDTH control instruction can be described only in the header section of a source module file.

• If two or more WIDTH control instructions are specified at the same time, only the last specified control

instruction will become valid.

• The number of columns per line of a list file may also be specified with the assembler option (-LW) in the

start-up command line of the assembler.

• If the control instruction specification (WIDTH) in the source module differs from the specification (-LW) in the

start-up command line, the specification in the command line will take precedence over that in the source

module.

• Even when the assembler option (-NP) has been specified in the start-up command line, the assembler

performs a syntax check on the WIDTH control instruction.

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00176

LENGTH length LENGTH

(9) LENGTH (length)

[Description Format]

[∆]$[∆]LENGTH[∆]([∆] lines-per-page[∆])

[Default Assumption]

$LENGTH (66)

[Function]

• The LENGTH control instruction specifies the number of lines per page of a list file. “lines-per-page” may be

“0” or a value in the range of 20 to 32767.

[Use]

• Use the LENGTH control instruction to change the number of lines per page of a list file.

[Explanation]

• The LENGTH control instruction can be described only in the header section of a source module file.

• If two or more LENGTH control instructions are specified at the same time, only the last specified control

instruction will become valid.

• The number of columns per line of a list file may also be specified with the assembler option (-LL) in the start-

up command line of the assembler.

• If the control instruction specification (LENGTH) in the source module differs from the specification (-LL) in the

start-up command line, the specification in the command line will take precedence over that in the source

module.

• Even when the assembler option (-NP) has been specified in the start-up command line, the assembler

performs a syntax check on the LENGTH control instruction.

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00 177

TAB tab TAB

(10) TAB (tab)

[Description Format]

[∆]$[∆]TAB[∆]([∆] number-of-columns[∆])

[Default Assumption]

$TAB (8)

[Function]

• The TAB control instruction specifies the number of columns as tab stops on a list file. “number-of-columns”

may be a value in the range of 0 to 8.

• The TAB control instruction specifies the number of columns that becomes the basis of tabulation processing

to output any list by replacing a HT (Horizontal Tabulation) code in a source module with several blank

characters on the list.

[Use]

• Use HT code to reduce the number of blanks when the number of characters per line of any list is reduced

using the TAB control instruction.

[Explanation]

• The TAB control instruction can be described only in the header section of a source module file.

• If two or more TAB control instructions are specified at the same time, only the last specified control

instruction will become valid.

• The number of tab stops may also be specified with the assembler option (-LT) in the start-up command line

of the assembler.

• If the control instruction specification (TAB) in the source module differs from the specification (-LT) in the

start-up command line, the specification in the command line will take precedence over that in the source

module.

• Even when the assembler option (-NP) has been specified in the start-up command line, the assembler

performs a syntax check on the TAB control instruction.

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00178

4.7 Conditional Assembly Control Instructions

The conditional assembly control instructions are used to select a series of statements in a source module as

those subject to assembly or not subject to assembly, by setting switches for conditional assembly.

These control instructions consist of the IF/_IF/ELSEIF/_ELSEIF/ELSE/ENDIF control instructions and the

SET/RESET control instructions.

By making effective use of these control instructions, a source module that excludes unwanted statements can be

assembled with little or no change to the source module.

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00 179

IF/_IF/ELSEIF/_ELSEIF/ELSE/ENDIF lF/_lF/ELSEIF/_ELSEIF/ELSE/ENDIF

(1) IF/_IF/ELSEIF/_ELSEIF/ELSE/ENDIF

[Description Format]

[∆]$[∆]IF[∆]([∆] switch-name[[∆]:[∆] switch-name] ···[∆])

or [∆]$[∆]_IF ∆conditional-expression

[∆]$[∆]ELSEIF[∆]([∆] switch-name[[∆]:[∆] switch-name] ···[∆])

or [∆]$[∆]_ELSEIF ∆conditional-expression

[∆]$[∆]ELSE

[∆]$[∆]ENDIF

[Function]

• The control instructions set the conditions to limit source statements subject to assembly.

Source statements described between the IF or _IF control instruction and the ENDIF control instruction are

subject to conditional assembly.

• If the evaluated value of the conditional expression or the switch name specified by the IF or _IF control

instruction (i.e., IF or _IF condition) is true (other than 00H), source statements described after this IF or _IF

control instruction until the appearance of the next conditional assembly control instruction (ELSEIF/_ELSEIF,

ELSE, or ENDIF) in the source program will be assembled. For subsequent assembly processing, the

assembler will proceed to the statement next to the ENDIF control instruction.

If the IF or _IF condition is false (00H), source statements described after this IF or _IF control instruction until

the appearance of the next conditional assembly control instruction (ELSEIF/_ELSEIF, ELSE, or ENDIF) in

the source program will not be assembled.

• The ELSEIF or _ELSEIF control instruction is checked for true/false status only when the conditions of all the

conditional assembly control instructions described before this ELSEIF or _ELSEIF control instruction are not

satisfied (i.e. the evaluated values are false).

If the evaluated value of the conditional expression or the switch name specified by the ELSEIF or _ELSEIF

control instruction (i.e. ELSEIF or _ELSEIF condition) is true, source statements described after this ELSEIF

or _ELSEIF control instruction until the appearance of the next conditional assembly control instruction

(ELSEIF/_ELSEIF, ELSE, or ENDIF) in the source program will be assembled. For subsequent assembly

processing, the assembler will proceed to the statement next to the ENDIF control instruction.

If the ELSEIF or _ELSEIF condition is false, source statements described after this ELSEIF or _ELSEIF

control instruction until the appearance of the next conditional assembly control instruction (ELSEIF/_ELSEIF,

ELSE, or ENDIF) in the source program will not be assembled.

• If the conditions of all the IF/_IF and ELSEIF/_ELSEIF control instructions described before the ELSE control

instruction are not satisfied (i.e., all the switch names are false), source statements described after this ELSE

control instruction until the appearance of the ENDIF control instruction in the source program will be

assembled.

• The ENDIF control instruction indicates to the assembler the termination of source statements subject to

conditional assembly.

…
…

…

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00180

IF/_IF/ELSEIF/_ELSEIF/ELSE/ENDIF lF/_lF/ELSEIF/_ELSEIF/ELSE/ENDIF

[Use]

• With these conditional assembly control instructions, source statements subject to assembly can be changed

without major modifications to the source program.

• If a statement for debugging that becomes necessary only during the program development is described in a

source program, whether or not the debugging statement should be assembled (translated into machine

language) can be specified by setting switches for conditional assembly.

[Explanation]

• The IF and ELSEIF control instructions are used for true/false condition judgment with switch name(s),

whereas the _IF and _ELSEIF control instructions are used for true/false condition judgment with a

conditional expression.

Both IF/ELSEIF and _IF/_ELSEIF may be used in combination. In other words, ELSEIF/_ELSEIF may be

used in a pair with IF or _IF and ENDIF.

• Describe absolute expression for a conditional expression.

• The rules of describing switch names are the same as the conventions of symbol description (for details, see

2.2.3 Fields that make up a statement). However, the maximum number of characters that can be

recognized as a switch name is always 31.

• If the two or more switch names are to be specified with the IF or ELSEIF control instruction, delimit each

switch name with a colon (:). Up to five switch names can be used per module.

• When two or more switch names have been specified with the IF or ELSEIF control instruction, the IF or

ELSEIF condition is judged to be satisfied if one of the switch name values is true.

• The value of each switch name to be specified with the IF or ELSEIF control instruction must be defined with

the SET or RESET control instruction (see 4.7 (2) SET/RESET). Therefore, if the value of the switch name

specified with the IF or ELSEIF control instruction is not set in the source module with the SET or RESET

control instruction in advance, it is assumed to be reset.

• If the specified switch name or conditional expression contains an illegal description, the assembler will output

an error message and determine that the evaluated value is false.

• When describing the IF or _IF control instruction, the IF or _IF control instruction must always be paired with

the ENDIF control instruction.

• If an IF-ENDIF block is described in a macro body and control is transferred back from the macro at that level

by EXITM processing, the assembler will force the IF level to return to that level at the entry of the macro

body. In this case, no error will result.

• Description of an IF-ENDIF block in another IF-ENDIF block is referred to as nesting of IF control instructions.

Nesting of IF control instructions is allowed up to 8 levels.

• In conditional assembly, object codes will not be generated for statements not assembled, but these

statements will be output without change on the assembly list. Use the $NOCOND control instruction to avoid

outputting these statements.

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00 181

IF/_IF/ELSEIF/_ELSEIF/ELSE/ENDIF lF/_lF/ELSEIF/_ELSEIF/ELSE/ENDIF

[Application Examples]

Example 1

 text0

$ IF(SW1) ; (1)

 text1

$ ENDIF ; (2)

 END

<Explanation>

(1) If the value of switch name “SW1” is true, statements in “text1” will be assembled.

If the value of switch name “SW1” is false, statements in “text1” will not be assembled.

The value of switch name “SW1” has been set to true or false with the SET or RESET control instruction

described in “text0”.

(2) This instruction indicates the end of the source statement range for conditional assembly.

Example 2

 text0

$ IF(SW1) ; (1)

 text1

$ ELSE ; (2)

 text2

$ ENDIF ; (3)

 END

<Explanation>

(1) The value of switch name “SW1” has been set to true or false with the SET or RESET control instruction

described in “text0”.

If the value of switch name “SW1” is true, statements in “text1” will be assembled and statements in "text2"

will not be assembled.

(2) If the value of switch name “SW1” in (1) is false, statements in “text1” will not be assembled and statements

in “text2” will be assembled.

(3) This instruction indicates the end of the source statement range for conditional assembly.

…
…

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00182

IF/_IF/ELSEIF/_ELSEIF/ELSE/ENDIF lF/_lF/ELSEIF/_ELSEIF/ELSE/ENDIF

Example 3

 text0

$ IF(SW1:SW2) ; (1)

 text1

$ ELSEIF(SW3) ; (2)

 text2

$ ELSEIF(SW4) ; (3)

 text3

$ ELSE ; (4)

 text4

$ ENDIF ; (5)

 END

<Explanation>
(1) The values of switch names “SW1”, “SW2”, and “SW3” have been set to true or false with the SET or

RESET control instruction described in “text0”.
If the value of switch name “SW1” or “SW2” is true, statements in “text1” will be assembled and statements
in “text2”, “text3”, and “text4” will not be assembled.
If the values of switch names “SW1” and “SW2” are false, statements in “text1” will not be assembled and
statements after (2) will be conditionally assembled.

(2) If the values of switch names “SW1” and “SW2” in (1) are false and the value of switch name “SW3” is true,
statements in “text2” will be assembled and statements in “text1”, “text3”, and “text4” will not be assembled.

(3) If the values of switch names “SW1” and “SW2” in (1) and “SW3” in (2) are false and the value of switch
name “SW4” is true, statements in “text3” will be assembled and statements in “text1”, “text2”, and “text4”
will not be assembled.

(4) If the values of switch names “SW1” and “SW2” in (1), “SW3” in (2), and “SW4” in (3) are all false,
statements in “text4” will be assembled and statements in “text1”, “text2”, and “text3” will not be assembled.

(5) This instruction indicates the end of the source statement range for conditional assembly.

…

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00 183

IF/_IF/ELSEIF/_ELSEIF/ELSE/ENDIF lF/_lF/ELSEIF/_ELSEIF/ELSE/ENDIF

Example 4

 text0

$ _IF(SYMA) ; (1)

 text1

$ _ELSEIF(SYMB=SYMC) ; (2)

 text2

$ ENDIF ; (3)

 END

<Explanation>

(1) The value of switch name “SYMA” has been defined with the EQU or SET directive described in “text0”.

If the symbol name “SYMA” is true (not “0”), statements in “text1” will be assembled and “text2” will not be

assembled.

(2) If the value of the symbol name “SYMA” is “0”, and “SYMB” and “SYMC” have the same value, statements

in “text2” will be assembled.

(3) This instruction indicates the end of the source statement range for conditional assembly.

…

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00184

SET/RESET set/reset SET/RESET

(2) SET/RESET (set/reset)

[Description Format]

[∆]$[∆]SET[∆]([∆] switch-name[[∆]:[∆] switch-name] ···[∆])

[∆]$[∆]RESET[∆]([∆] switch-name[[∆]:[∆] switch-name] ···[∆])

[Function]

• The SET and RESET control instructions give a value to each switch name to be specified with the IF or

ELSEIF control instruction.

• The SET control instruction gives a true value (0FFH) to each switch name specified in its operand.

• The RESET control instruction gives a false value (00H) to each switch name specified in its operand.

[Use]

• Describe the SET control instruction to give a true value (0FFH) to each switch name to be specified with the

IF or ELSEIF control instruction.

• Describe the RESET control instruction to give a false value (00H) to each switch name to be specified with

the IF or ELSEIF control instruction.

[Explanation]

• With the SET and RESET control instructions, at least one switch name must be described.

The conventions for describing switch names are the same as the conventions for describing symbols (see

2.2.3 Fields that make up a statement). However, the maximum number of characters that can be

recognized as a switch name is always 31.

• The specified switch name(s) may be the same as user-defined symbol(s) other than reserved words and

other switch names.

• If two or more switch names are to be specified with the SET or RESET control instruction, delimit each

switch name with a colon (:). Up to 1,000 switch names can be used per module.

• A switch name once set to “true” with the SET control instruction can be changed to “false” with the RESET

control instruction, and vice versa.

• A switch name to be specified with the IF or ELSEIF control instruction must be defined at least once with the

SET or RESET control instruction in the source module before describing the IF or ELSEIF control instruction.

• Switch names will not be output to a cross-reference list.

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00 185

SET/RESET set/reset SET/RESET

[Application Example]

 $ SET(SW1) ; (1)

 $ IF(SW1) ; (2)

 text1

 $ ENDIF ; (3)

 $ RESET(SW1:SW2) ; (4)

 $ IF(SW1) ; (5)

 text2

 $ ELSEIF(SW2) ; (6)

 text3

 $ ELSE ; (7)

 text4

 $ ENDIF ; (8)

 END

<Explanation>

(1) This instruction gives a true value (0FFH) to switch name “SW1”.

(2) Because the true value has been given to switch name “SW1” in (1) above, statements in “text1” will be

assembled.

(3) This instruction indicates the end of the source statement range for conditional assembly that starts from

(2).

(4) This instruction gives a false value (00H) to switch names “SW1” and “SW2”, respectively.

(5) Because the false value has been given to switch name “SW1” in (4) above, statements in “text2” will not be

assembled.

(6) Because the false value has also been given to switch name “SW2” in (4) above, statements in “text3” will

not be assembled.

(7) Because both switch names “SW1” and “SW2” are false in (5) and (6) above, statements in “text4” will be

assembled.

(8) This instruction indicates the end of the source statement range for conditional assembly that starts from

(5).

…
…

…
…

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U14877EJ1V0UM00186

4.8 Other Control Instructions

The following control instructions are special control instructions output by high-level programs such as C compiler

and structured assembler preprocessor.

$TOL_INF

$DGS

$DGL

User’s Manual U14877EJ1V0UM00 187

CHAPTER 5 MACROS

This chapter explains how to use a macro function. A macro is a very useful function when describing a series of

statements repeatedly in a source program.

5.1 Overview of Macros

When describing a series or group of instructions repeatedly in a source program, a macro function is very useful

for program description. The macro function refers to the expansion of a series of statements (an instruction group)

defined as a macro body with MACRO and ENDM directives into the location where the macro name is referenced.

A macro is used to increase the coding efficiency of a source program and is different from a subroutine.

Macros and subroutines have distinct features as explained below. For effective use, select either a macro or a

subroutine according to the specific purpose.

(1) Subroutines

• Describe a process that must be repeated many times in a program as a single subroutine. The subroutine

will be converted into machine language by the assembler only once.

• To call the subroutine, simply describe a subroutine call instruction (generally, instructions to set arguments

are also described before and after the subroutine).

 Effective use of subroutines enables program memory to be used with high efficiency.

• By coding a series of processes in a program as subroutines, the program can be structured (this structuring

makes the overall structure of the program easy for the programmer to understand, making program design

easy).

(2) Macros

• The basic function of a macro is the replacement of a group of instructions with a name.

A series (or group) of instructions defined as a macro body with MACRO and ENDM directives will be

expanded into the location where the macro name is referenced.

• When the assembler finds a macro reference, the assembler expands the macro body and converts the group

of instructions into machine language while replacing the formal parameter(s) of the macro body with the

actual parameters at the time of the macro reference.

• Parameters can be described for a macro.

For example, if there are instruction groups that are the same in processing procedure but are different in the

data to be described in the operand, define a macro by assigning formal parameter(s) to the data. By

describing the macro name and the actual parameter(s) at macro reference time, the assembler can cope

with various instruction groups that differ only in part of the statement description.

Programming techniques using subroutines are mainly used to reduce memory size and structure programs,

whereas macros are used to increase the coding efficiency of the program.

CHAPTER 5 MACROS

User’s Manual U14877EJ1V0UM00188

5.2 Utilization of Macros

5.2.1 Macro definition

A macro is defined with the MACRO and ENDM directives.

[Description Format]

Symbol field Mnemonic field Operand field Comment field

macro-name MACRO [formal-parameter [,…]] [;comment]

…

ENDM

[Function]

• The MACRO directive executes a macro definition by assigning the macro name specified in the symbol field

to a series of statements (called a macro body) described between this directive and the ENDM directive.

[Application Example]

 ADMAC MACRO PARA1,PARA2

 MOV A,#PARA1

 ADD A,#PARA2

 ENDM

<Explanation>

The above example shows a simple macro definition that specifies the addition of two values “PARA1” and

“PARA2” and the storage of the result in register A. The macro is given a name “ADMAC” and “PARA1” and

“PARA2” are formal parameters.

For details, see (1) MACRO (macro) in 3.8 Macro Directives .

CHAPTER 5 MACROS

User’s Manual U14877EJ1V0UM00 189

5.2.2 Macro reference

To call a macro, the already defined macro name must be described in the mnemonic field of the source program.

[Description Format]

Symbol field Mnemonic field Operand field Comment field

[label:] macro-name [actual-parameter [,...]] [;comment]

[Function]

• This statement description calls the macro body assigned to the macro name specified in the mnemonic field.

[Use]

• Use this statement description to call a macro body.

[Explanation]

• The macro name to be specified in the mnemonic field must have been defined before the macro reference.

• Up to 16 actual parameters may be specified per line by delimiting each actual parameter with a comma (,).

• No blank can be described in the character string constituting an actual parameter.

• When describing a comma (,), semicolon (;), blank, or tab in an actual parameter, enclose the character string

that includes any of these special characters with a pair of single quotation marks.

• Formal parameters are replaced with their corresponding actual parameters in sequence from left to right.

A warning message will be output if the number of formal parameters is not equal to the number of actual

parameters.

[Application Example]

 NAME SAMPLE

ADMAC MACRO PARA1,PARA2

 MOV A,#PARA1

 ADD A,#PARA2

 CSEG

 ADMAC 10H,20H

 END

<Explanation>

This macro reference calls the already defined macro name “ADMAC”. 10H and 20H are actual parameters.

…
…

CHAPTER 5 MACROS

User’s Manual U14877EJ1V0UM00190

5.2.3 Macro expansion

The assembler processes a macro as follows:

• The assembler expands the macro body corresponding to the referenced macro name to the location where the

macro name is referenced.

• The assembler assembles statements in the expanded macro body in the same way as other statements.

[Application Example]

When the macro referenced in 5.2.2 Macro reference is assembled, the macro body will be expanded as

shown below.

 NAME SAMPLE

 ADMAC MACRO PARA1,PARA2

 MOV A,#PARA1

 ADD A,#PARA2

 ENDM

 CSEG

 ADMAC 10H,20H ; (1)

 MOV A,#10H

 ADD A,#20H

 END

Macro definition

Macro expansion

<Explanation>

By the macro reference in (1), the macro body will be expanded. The formal parameters within the macro body

will be replaced with the actual parameters.

…
…

CHAPTER 5 MACROS

User’s Manual U14877EJ1V0UM00 191

5.3 Symbols Within Macros

Symbols that can be defined in a macro are divided into two types: global symbols and local symbols.

(1) Global symbols

• A global symbol is a symbol that can be referenced from any statement within a source program.

Therefore, if a macro in which the global symbol has been defined is referenced more than once to expand a

series of statements, the symbol will cause a double definition error.

• Symbols not defined with the LOCAL directive are global symbols.

(2) Local symbols

• A local symbol is a symbol defined with the LOCAL directive (see (2) LOCAL (local) in 3.8 Macro

Directives).

• A local symbol can be referenced within the macro declared as LOCAL with the LOCAL directive.

• No local symbol can be referenced from outside the macro.

CHAPTER 5 MACROS

User’s Manual U14877EJ1V0UM00192

[Application Example]

<Source program>

 NAME SAMPLE

MAC1 MACRO

 LOCAL LLAB ; (1)

LLAB:

GLAB:

 BR LLAB ; (2)

 BR GLAB ; (3)

 ENDM

REF1: MAC1 ; (4)

 BR LLAB ; (5)

 BR GLAB ; (6)

REF2: MAC1 ; (7)

 END

Macro definition

Macro reference

This description is

erroneous.

Macro reference

<Explanation>

(1) This LOCAL directive defines label “LLAB” as a local symbol.

(2) This BR instruction references local symbol “LLAB” in macro “MAC1”.

(3) This BR instruction references global symbol “GLAB” in macro “MAC1”.

(4) This statement references macro “MAC1”.

(5) This BR instruction references local symbol “LLAB” from outside the definition of macro “MAC1”. This

description causes an error when the source program is assembled.

(6) This BR instruction references global symbol “GLAB” from outside the definition of macro “MAC1”.

(7) This statement references macro “MAC1”. The same macro is referenced twice.

…
…

…
…

…

CHAPTER 5 MACROS

User’s Manual U14877EJ1V0UM00 193

When the source program in the above example is assembled, the macro body will be expanded as shown below.

 NAME

REF1: MAC1

??RA0000:

GLAB:

 BR ??RA0000

 BR GLAB

 BR !LLAB

 BR !GLAB

REF2: MAC1

??RA0001:

GLAB:

 BR ??RA0001

 BR GLAB

 END

 Macro expansion

 Error

 Error

 Macro expansion

 Error

<Explanation>

Global symbol “GLAB” has been defined in macro “MAC1”. Because macro “MAC1” is referenced twice, global

symbol “GLAB” causes a double definition error as a result of expanding a series of statements in the macro

body.

…
…

…
…

…
…

CHAPTER 5 MACROS

User’s Manual U14877EJ1V0UM00194

5.4 Macro Operators

Two types of macro operators are available: “& (ampersand)” and “’ (single quotation mark)”.

(1) & (Concatenation)

• The ampersand “&” concatenates one character string to another within a macro body. At macro expansion

time, the character string on the left of the ampersand is concatenated to the character string on the right of

the sign. The “&” itself disappears after concatenating the strings.

• At macro definition time, a string before or after “&” in a symbol can be recognized as a formal parameter or

LOCAL symbol. At macro expansion time, the formal parameter or LOCAL symbol before or after “&” is

evaluated as a symbol and can be concatenated in the symbol.

• The “&” sign enclosed in a pair of single quotation marks is simply handled as data.

• Two “&” signs described in succession are handled as a single “&” sign.

[Application Example]

Macro definition

MAC MACRO P

LAB&P:

D&B 10H

DB 'P'

DB P

DB '&P'

ENDM

Formal parameter “P” is recognized.

Macro reference

 MAC 1H

 LAB1H:

 DB 10H

 DB 'P'

 DB 1H

 DB '&P'

“D” and “B” are concatenated and become

“DB”.

& enclosed in a pair of single quotation

marks is simply handled as data.

CHAPTER 5 MACROS

User’s Manual U14877EJ1V0UM00 195

(2) ’ (Single quotation mark)

• If a character string enclosed by a pair of single quotation marks is described at the beginning of an actual

parameter in a macro reference line or an IRP directive or after a delimiting character, the character string will

be interpreted as an actual parameter. The character string will be passed to the actual parameter without

the enclosing single quotation marks.

• If a character string enclosed by a pair of single quotation marks exists in a macro body, the character string

will simply be handled as data.

• To use a single quotation mark as a single quotation mark in text, describe the single quotation mark twice in

succession.

[Application Example]

NAME SAMP

MAC1 MACRO P

IRP Q,<P>

MOV A,#Q

ENDM

ENDM

MAC1 ‘10,20,30 ’

When the source program in the above example is assembled, macro “MAC1” will be expanded as shown

below.

IRP Z,<10,20,30>

MOV A,#Q

ENDM

MOV A,#10

MOV A,#20

MOV A,#30

IRP expansion

User’s Manual U14877EJ1V0UM00196

[MEMO]

User’s Manual U14877EJ1V0UM00 197

CHAPTER 6 PRODUCT UTILIZATION

This chapter introduces some measures recommended for effective utilization of the RA78K0S assembler

package.

There are several ways to effectively use the RA78K0S for assembly of source modules. This section introduces

just a few of these techniques.

(1) Saving time and trouble in starting up the assembler

Some control instructions have the same functions as assembler options and must always be used when

starting up the assembler; examples of these include the processor type specification (-C) and the kanji code

specification (-ZS/-ZE/-ZN)(Japanese version only). It is advisable to describe such control instructions in a

source module file. In particular, the processor type specification, which cannot be omitted, should be specified

in the header section of a source module file using the PROCESSOR control instruction. This avoids the need

to specify the assembler option (-C) in the start-up command line each time the assembler program is started.

Remember that an error will result if this assembler option is not specified in the start-up command line, in which

case the assembler will need to be started from the beginning again with the correct assembler options.

The cross-reference list output control instruction (XREF) should also be specified in the module header.

Example

 $ PROCESSOR(9026)

 $ KANJICODE NONE

 $ XREF

 NAME TEST

 CSEG

(2) How to develop programs with high memory utilization efficiency

The short direct addressing area is an area that can be accessed with instructions of short byte length as

compared with other data memory areas.

Therefore, by using this area efficiently, a program with high memory utilization efficiency can be developed.

Declare the short direct addressing area in one module. In this way, even if all the variables intended for

location in the short direct addressing area cannot be located there, changes can easily be made so that only

variables to be accessed frequently are located in the short direct addressing area.

Module 1

 PUBLIC TMP1, TMP2

 WORK DSEG AT 0FE20H

 TMP1: DS 2 ;word

 TMP2: DS 1 ;byte

…

CHAPTER 6 PRODUCT UTILIZATION

User’s Manual U14877EJ1V0UM00198

Module 2

 EXTRN TMP1,TMP2

 SAB CSEG

 MOVW TMP1,#1234H

 MOV TMP2,#56H

…

User’s Manual U14877EJ1V0UM00 199

APPENDIX A LIST OF RESERVED WORDS

Reserved words are available in six types: machine language instructions, directives, control instructions,

operators, register names, and sfr symbols. The reserved words are character strings reserved in advance by the

assembler and cannot be used for other than the intended purposes.

Types of reserved words that can be described in the respective fields of a source program are shown below.

Symbol field No reserved words can be described in this field.

Mnemonic field Only machine language instructions and directives can be described in this field.

Operand field Only operators, sfr symbols, and register names can be described in this field.

Comment field All reserved words can be described in this field.

For the sfr list, refer to the Special Function Register Table of each device.

For the interrupt request source list, refer to the Notes on Use in each device file.

For the machine language instructions and list of register names, refer to the user’s manual of each device.

(1) List of reserved words

AND BITPOS DATAPOS EQ GE

GT HIGH LE LOW LT

MASK MOD NE NOT OR

Operators

SHL SHR XOR

AT BR BSEG CALLT0 CSEG

DB DBIT DS DSEG DSPRAM

DW END ENDM EQU EXITM

EXTBIT EXTRN FIXED IHRAM IRP

IXRAM LOCAL LRAM MACRO NAME

ORG PUBLIC REPT SADDR SADDRP

Directives

SET UNIT UNITP

COND DEBUG DEBUGA DG EJ

EJECT ELSE ELSEIF _ELSEIF ENDIF

FORMFEED GEN IC IF _IF

INCLUDE LENGTH LI LIST NOCOND

NODEBUG NODEBUGA NOFORMFEED NOGEN NOLI

NOLIST NOSYMLIST NOXR NOXREF PC

PROCESSOR RESET SET ST SUBTITLE

SYMLIST TAB TITLE TT WIDTH

Control

instructions

XR XREF

Others DGL DGS SFR SFRP TOL_INF

User’s Manual U14877EJ1V0UM00200

[MEMO]

User’s Manual U14877EJ1V0UM00 201

APPENDIX B LIST OF DIRECTIVES

(1) List of directives

DirectiveNo.

Symbol Field Mnemonic Field Operand Field Comment Field

Function
/Classification

Remarks

1 [segment name] CSEG [relocation-
attribute]

[;comment] Declares the start of
a code segment.

2 [segment name] DSEG [relocation-
attribute]

[;comment] Declares the start of
a data segment.

3 [segment name] BSEG [relocation-
attribute]

[;comment] Declares the start of
a bit segment.

4 [segment name] ORG absolute-
expression

[;comment] Declares the start of
an absolute
segment.

Forward reference of symbols
within an operand is
prohibited.

5 name EQU expression [;comment] Defines a name. name: symbol
Forward or external reference
of symbols within an operand
is prohibited.

6 name SET absolute-
expression

[;comment] Defines a
redefinable name.

name: symbol
Forward reference of symbols
within an operand is
prohibited.

7 [label:] DB {(size) initial-
value [,...]}

[;comment] Initializes or
reserves a byte data
area.

label: symbol
A character string can be
located in place of an initial
value.

8 [label:] DW {(size) initial-
value [,...]}

[;comment] Initializes or
reserves a word data
area.

label: symbol

9 [label:] DS absolute-
expression

[;comment] Reserves byte data
area.

name: symbol
Forward reference of symbols
within an operand is
prohibited.

10 name DBIT None [;comment] Reserves a bit data
area.

name: symbol
Forward reference of symbols
within an operand is
prohibited.

11 [label:] PUBLIC symbol-name
[,...]

[;comment] Declares an external
definition name.

12 [label:] EXTRN symbol-name
[,...]

[;comment] Declares an external
reference name.

13 [label:] EXTBIT bit-symbol-
name [,...]

[;comment] Declares an external
reference name.

Symbol names are limited to
those having a bit value.

14 [label:] NAME object-module-
name

[;comment] Defines a module
name.

module name: symbol

15 [label:] BR expression [;comment] Automatically selects
a branch instruction.

label: symbol

APPENDIX B LIST OF DIRECTIVES

User’s Manual U14877EJ1V0UM00202

DirectiveNo.

Symbol Field Mnemonic Field Operand Field Comment Field

Function
/Classification

Remarks

16 macro-name MACRO [formal-
parameter [,...]]

[;comment] Defines a macro. macro-name: symbol

17 [label:] LOCAL symbol-name
[,...]

[;comment] Defines a symbol
valid only within a
macro.

Can only be used in the
macro definition.

18 [label:] REPT absolute-
expression

[;comment] Specifies repeat
count during macro
expansion.

label: symbol

19 [label:] IRP formal-
parameter,
<actual-
parameter [,...]>

[;comment] Assigns an actual
parameter to a
formal parameter.

label: symbol

20 [label:] EXITM None [;comment] Interrupts macro
expansion.

Can only be used in the
macro definition.

21 None ENDM None [;comment] Terminates macro
definition.

Can only be used in the
macro definition.

22 None END None [;comment] Indicates the end of
the source module.

User’s Manual U14877EJ1V0UM00 203

APPENDIX C MAXIMUM PERFORMANCE CHARACTERISTICS

(1) Maximum performance characteristics of assembler

Maximum Performance CharacteristicsItem

PC Version WS Version

Number of symbols (local + public) 65,535 symbolsNote 1 65,535 symbolsNote 1

Number of symbols for which cross-reference list can be output 65,534 symbolsNote 2 65,534 symbolsNote 2

Maximum size of macro body for one macro reference 1 MB 1 MB

Total size of all macro bodies 10 MB 10 MB

Number of segments in one file 256 segments 256 segments

Macro and include specifications in one file 10,000 10,000

Macro and include specifications in one include file 10,000 10,000

Relocation dataNote 3 65,535 items 65,535 items

Line number data 65,535 items 65,535 items

Number of BR directives in one file 32,767 directives 32,767 directives

Number of characters per line 2,048 charactersNote 4 2,048 charactersNote 4

Symbol length 256 characters 256 characters

Number of definitions of switch nameNote 5 1,000 1,000

Character length of switch nameNote 5 31 characters 31 characters

Number of nesting levels on include file in one file 8 levels 8 levels

Notes 1. XMS is used. If there is no XMS, a file is used.

2. Memory is used. If there is no memory, a file is used.

3. “Relocation data” is the data transferred to the linker when the assembler cannot determine the symbol

values.

For example, when referring to an external reference symbol by a MOV instruction, two items of

relocation data are generated in the .rel file.

4. This includes the carriage return and feed codes. If 2,049 characters or more are described on a line,

an error message is output and terminates processing.

5. Switch name is set to true or false by SET/RESET directives and used with $IF, etc.

(2) Maximum performance characteristics of linker

Maximum Performance CharacteristicsItem

PC Version WS Version

Number of symbols (local + public) 65,535 symbols 65,535 symbols

Line number data of same segment 65,535 items 65,535 items

Number of segments 65,535 segments 65,535 segments

Number of input modules 1,024 modules 1,024 modules

User’s Manual U14877EJ1V0UM00204

[MEMO]

User’s Manual U14877EJ1V0UM00 205

APPENDIX D INDEX

??RAn... 130

?An ... 38

?BSEG.. 38, 95

?CSEG ... 38, 86

?CSEGFX... 38, 86

?CSEGIX .. 38, 86

?CSEGT0 ... 38, 86

?CSEGUP .. 38, 86

?DSEG ... 38, 90

?DSEGDSP .. 38, 90

?DSEGIH.. 38, 90

?DSEGIX .. 38, 90

?DSEGL ... 38, 90

?DSEGS ... 38, 90

?DSEGSP... 38, 90

?DSEGUP .. 38, 90

[A]
Absolute assembler .. 19

Absolute segment................................. 27, 82, 97

Absolute term ... 64, 78

Actual parameter 189, 195

ADDRESS .. 39, 78

ADDRESS term .. 68

Alphabetic character... 33

AND operator.. 48, 53

Area reservation directive............................... 107

Assembler... 16, 21

Assembler option...................................... 26, 146

Assembler package.. 16

Assembly language .. 17

Assembly list control instruction 159

Assembly termination directive....................... 142

AT relocation attribute 85, 86, 89, 90, 93, 95

Automatic branch instruction selection

directive .. 124

[B]
Backward reference.. 77

Binary number .. 42

BIT .. 39

Bit access ... 71

Bit segment... 27, 82, 92

Bit symbol ... 73

BITPOS operator...48, 61

BR directive...23, 125

BSEG directive..92

[C]
CALLT0 relocation attribute85, 86

CALLT instruction..85

Character set...33

Character-string constant..................................42

Code segment.......................................27, 82, 84

Comment field ...46, 201

Concatenation...194

COND control instruction166

Conditional assembly function ..23, 137, 166, 178

Constant..41

Control instruction27, 145

Cross-reference list output specification

control instruction..152

CSEG directive..84

[D]
Data segment..27, 82, 88

DATAPOS operator.....................................48, 61

DB directive...108

DBIT directive..114

DEBUG control instruction26, 150

Debug information output control

instruction..149

DEBUGA control instruction......................26, 151

Decimal numbers ..42

DGL control instruction..............................26, 186

DGS control instruction27, 186

Directives ..81, 201

DS directive...112

DSEG directive..88

DSPRAM relocation attribute89, 90

DW directive..110

[E]
EJECT control instruction................................160

ELSE control instruction..................................179

ELSEIF control instruction...............................179

END directive ..143

ENDIF control instruction179

APPENDIX D INDEX

User’s Manual U14877EJ1V0UM00206

ENDM directive... 140

EQ operator .. 48, 55

EQU directive.. 101

EXITM directive .. 137

Expressions .. 48

EXTBIT directive... 118

External definition declaration................. 115, 120

External reference declaration........ 115, 116, 118

External reference term 64, 78

EXTRN directive ... 116

[F]
FIXED relocation attribute........................... 85, 86

Formal parameter 128, 187, 194

FORMFEED control instruction................. 26, 174

Forward reference .. 77

[G]
GE operator .. 48, 56

GEN control instruction................................... 164

General register .. 43

General register pair ... 43

Global symbol ... 130, 191

GT operator .. 48, 56

[H]
Hexadecimal number.. 42

HIGH operator .. 48, 60

[I]
idea-L editor.. 16

IF control instruction 179

IHRAM relocation attribute.......................... 89, 90

INCLUDE control instruction........................... 156

Inclusion control instruction 155

IRP directive ... 135

IRP-ENDM block... 135

IXRAM relocation attribute.............. 85, 86, 89, 90

[L]
Label ... 36

LE operator ... 48, 57

LENGTH control instruction 26, 176

Librarian.. 16

Lines ... 32

Linkage directive .. 115

Linker.. 16, 22

LIST control instruction................................... 162

List converter.. 16

LOCAL directive ... 130

LOCAL symbol ... 191

LOW operator... 48, 60

LRAM relocation attribute........................... 89, 90

LT operator... 48, 57

[M]
Machine language.. 17

Macros.. 23, 187

Macro body............................. 128, 130, 137, 189

Macro definition 164, 188

MACRO directive.................................... 128, 187

Macro directive ... 127

Macro expansion 164, 190

Macro name 36, 128, 188, 189

Macro operator ... 194

Macro reference 164, 189

MASK operator... 48, 62

Memory initialization directive 107

Mnemonic... 40

Mnemonic field ... 40, 199

MOD operator... 48, 52

Modular programming 19

Module body... 25, 27

Module header ... 25, 26

Module name.................................... 36, 122, 123

Module tail .. 25, 28

[N]
Name.. 36, 101

NAME directive... 123

NE operator .. 48, 55

NOCOND control instruction 166

NODEBUG control instruction 26, 150

NODEBUGA control instruction................ 26, 151

NOFORMFEED control instruction........... 26, 174

NOGEN control instruction 166

NOLIST control instruction 162

NOSYMLIST control instruction 26, 154

NOT operator ... 48, 53

NOXREF control instruction 26, 153

NUMBER.. 39, 78

Number of files ... 21

APPENDIX D INDEX

User’s Manual U14877EJ1V0UM00 207

NUMBER term.. 68

Numeric character .. 33

Numeric constant.. 42

[O]
Object converter ... 16

Object module .. 123, 150

Octal number .. 42

Operand.. 41, 74, 76

Operand field .. 41, 199

Operator ... 48

Order of precedence of operator 49

Optimize function.. 23

OR operator.. 48, 54

ORG directive ... 97

[P]
PROCESSOR control instruction.............. 26, 148

Processor type specification control

instruction ... 147

Project Manager ... 16

PUBLIC directive .. 120

[R]
Relocatable assembler 19

Relocatable term .. 64, 78

Relocation attribute................... 64, 77, 85, 89, 93

REPT directive.. 133

REPT-ENDM block... 133

RESET control instruction 184

[S]
SADDR relocation attribute 89, 90

SADDRP relocation attribute 89, 90

Segment ... 21, 27, 83

Segment definition directive 84

Segment name 36, 86, 90, 95, 98

SET control instruction 184

SET directive .. 105

SHL operator .. 48, 59

SHR operator.. 48, 58

Source module ... 25, 143

Special character.. 34, 44

Special function register 43

Statement ... 32

Structured assembler preprocessor 16

Subroutine...189

SUBTITLE control instruction..........................171

Subtitle section..171

Switch name..180, 183

Symbol ..21, 36, 191, 199

Symbol attribute ..38, 77

Symbol definition directive100

SYMLIST control instruction......................26, 154

[T]
TAB control instruction..............................26, 177

TITLE control instruction26, 168

TOL_INF control instruction26, 186

[U]
UNIT relocation attribute85, 86, 89, 90, 93, 95

UNITP relocation attribute...............85, 86, 89, 90

[W]
WIDTH control instruction26, 175

[X]
XOR operator ..48, 54

XREF control instruction26, 153

User’s Manual U14877EJ1V0UM00208

[MEMO]

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-2719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: 1-800-729-9288

1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6462-6829

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Semiconductor Technical Hotline
Fax: 044-435-9608

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 00.6

Name

Company

From:

Tel. FAX

Facsimile Message

	U14877EJ1V0UM00-1.pdf
	Cover
	INTRODUCTION
	CHAPTER 1 GENERAL
	1.1 Assembler Overview
	1.1.1 What is an assembler?
	1.1.2 What is a relocatable assembler?

	1.2 Reminders Before Program Development
	1.2.1 Maximum performance characteristics of RA78K0S

	1.3 Features of RA78K0S

	CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS
	2.1 Basic Configuration of Source Program
	2.1.1 Module header
	2.1.2 Module body
	2.1.3 Module tail
	2.1.4 Overall configuration of source program
	2.1.5 Description example of source program

	2.2 Description Format of Source Program
	2.2.1 Configuration of statements
	2.2.2 Character set
	2.2.3 Fields that make up a statement

	2.3 Expressions and Operators
	2.3.1 Functions of operators
	2.3.2 Restrictions on operations

	2.4 Bit Position Specifier
	2.5 Characteristics of Operands
	2.5.1 Size and address range of operand value
	2.5.2 Size of operands required for instructions
	2.5.3 Symbol attributes and relocation attributes of operands

	CHAPTER 3 DIRECTIVES
	3.1 Overview of Directives
	3.2 Segment Definition Directives
	(1)CSEG (code segment)
	(2)DSEG (data segment)
	(3)BSEG (bit segment)
	(4)ORG (origin)

	3.3 Symbol Definition Directives
	(1)EQU (equate)
	(2)SET (set)

	3.4 Memory Initialization and Area Reservation Directives
	(1)DB (define byte)
	(2)DW (define word)
	(3)DS (define storage)
	(4)DBIT (define bit)

	3.5 Linkage Directives
	(1)EXTRN (external)
	(2)EXTBIT (external bit)
	(3)PUBLIC (public)

	3.6 Object Module Name Declaration Directive
	(1)NAME (name)

	3.7 Automatic Branch Instruction Selection Directive
	(1)BR (branch)

	3.8 Macro Directives
	(1)MACRO (macro)
	(2)LOCAL (local)
	(3)REPT (repeat)
	(4)IRP (indefinite repeat)
	(5)EXITM (exit from macro)
	(6)ENDM (end macro)

	3.9 Assembly Termination Directive
	(1)END (end)

	CHAPTER 4 CONTROL INSTRUCTIONS
	4.1 Overview of Control Instructions
	4.2 Processor Type Specification Control Instruction
	(1)PROCESSOR (processor)

	4.3 Debug Information Output Control Instructions
	(1)DEBUG/NODEBUG (debug/nodebug)
	(2)DEBUGA/NODEBUGA (debuga/nodebuga)

	4.4 Cross-Reference List Output Specification Control Instructions
	(1)XREF/NOXREF (xref/noxref)
	(2)SYMLIST/NOSYMLIST (symlist/nosymlist)

	4.5 Inclusion Control Instruction
	(1)INCLUDE (include)

	4.6 Assembly List Control Instructions
	(1)EJECT (eject)
	(2)LIST/NOLIST (list/nolist)
	(3)GEN/NOGEN (generate/no generate)
	(4)COND/NOCOND (condition/no condition)
	(5)TITLE (title)
	(6)SUBTITLE (subtitle)
	(7)FORMFEED/NOFORMFEED (formfeed/noformfeed)
	(8)WIDTH (width)
	(9)LENGTH (length)
	(10)TAB (tab)

	4.7 Conditional Assembly Control Instructions
	(1)IF/_IF/ELSEIF/_ELSEIF/ELSE/ENDIF
	(2)SET/RESET (set/reset)

	4.8 Other Control Instructions

	CHAPTER 5 MACROS
	5.1 Overview of Macros
	5.2 Utilization of Macros
	5.2.1 Macro definition
	5.2.2 Macro reference
	5.2.3 Macro expansion

	5.3 Symbols Within Macros
	5.4 Macro Operators

	CHAPTER 6 PRODUCT UTILIZATION
	APPENDIX A LIST OF RESERVED WORDS
	APPENDIX B LIST OF DIRECTIVES
	APPENDIX C MAXIMUM PERFORMANCE CHARACTERISTICS
	APPENDIX D INDEX

