
R32C/100 Series
C Compiler Package V.1.02
C Compiler User’s Manual

Rev.2.00 2010.04

a5024650
テキストボックス
NOTICE:
There are corrections in Table C.3 NC100 Specifications on page 164.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.
“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual

equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-

crime systems; safety equipment; and medical equipment not specifically designed for life support.
“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or

systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

REJ10J2009-0200 Rev.2.00 2010.04.01

R32C/100 Series C Compiler Package V.1.02 Preface

Preface
NC100 is the C compiler for the Renesas 32-bit microcomputer R32C/100 series. NC100 converts programs
written in C into assembly language source files for the R32C/100 series. You can also specify compiler
options for assembling and linking to generate hexadecimal files that can be written to the microcomputer.
Please be sure to read the precautions written in this manual before using NC100.

 Microsoft, MS-DOS, Windows and Windows NT are either registered trademarks or trademarks or
 Microsoft Corporation in the United States and other countries. HP-UX is a registered trademark of

Hewlett-Packard Company.
 IBM and AT are registered trademarks of International Business Machines Corporation.
 Intel and Pentium are registered trademarks of Intel Corporation.
 Adobe and Acrobat are registered trademarks of Adobe Systems Incorporated.
 Netscape and Netscape Navigator are registered trademarks of Netscape Communications Corporation

in the U.S. and other countries.
All other brand and product names are trademarks, registered trademarks or service marks of their
respective holders.

Terminology
The following terms are used in the NC100 User Manuals.

Term Meaning
NC100 Compiler package for R32C/100 series
nc100 Compile driver and its executable file
AS100 Assembler package included in Compiler package for R32C/100 series
as100 Relocatable macro assembler and its executable file
High-performance Embedded
Workshop Integrated development environment of attachment

Description of Symbols
The following symbols are used in the NC100 manuals.

Symbol Description
A> MS-Windows(TM) prompt
<RET> Return key
< > Mandatory item
[] Optional item
U Space or tab code (mandatory)
S Space or tab code (optional)
:
(omitted)
:

Indicates that part of file listing has been omitted

Additional descriptions are provided where other symbols are used.

R32C/100 Series C Compiler Package V.1.02 Contents

REJ10J2009-0200 Rev.2.00 2010.04.01

Chapter 1 Introduction to NC100... 1
1.1 NC100 Components... 1
1.2 NC100 Processing Flow... 2

1.2.1 nc100.. 3
1.2.2 igen100... 3
1.2.3 cpp100.. 3
1.2.4 ccom100... 3
1.2.5 aopt100 .. 3
1.2.6 Call Walker & gensni .. 3
1.2.7 MapViewer.. 3

1.3 Notes... 4
1.3.1 Notes about Version-up of compiler .. 4
1.3.2 Notes about the R32C's Type Dependent Part ... 4

1.4 Example Program Development ... 5
1.5 NC100 Output Files... 7

1.5.1 Introduction to Output Files.. 7
1.5.2 Preprocessed C Source Files .. 8
1.5.3 Assembly Language Source Files ...10

Chapter 2 Basic Method for Using the Compiler...13
2.1 Starting Up the Compiler ...13

2.1.1 nc100 Command Format..13
2.1.2 Command File..14
2.1.3 Notes on NC100 Command Line Options...15
2.1.4 nc100 Command Line Options..16

2.2 Preparing the Startup Program...21
2.2.1 Sample of Startup Program...21
2.2.2 Customizing the Startup Program...33
2.2.3 Customizing for NC100 Memory Mapping...37

Chapter 3 Programming Technique...50
3.1 Notes...50

3.1.1 Notes about Version-up of compiler ..50
3.1.2 Notes about the R32C's Type Dependent Part ...50
3.1.3 About Optimization...51
3.1.4 Precautions on Using register Variables..53
3.1.5 About Startup Handling...53

3.2 For Greater Code Efficiency ...54
3.2.1 Programming Techniques for Greater Code Efficiency...54
3.2.2 Speeding Up Startup Processing...55

3.3 Linking Assembly Language Programs with C Programs..56
3.3.1 Calling Assembler Functions from C Programs...56
3.3.2 Writing Assembler Functions ..58
3.3.3 Notes on Coding Assembler Functions...61

3.4 Other...62
3.4.1 Precautions on Transporting between NC-Series Compilers...62

Appendix A Command Option Reference..63
A.1 nc100 Command Format..63
A.2 nc100 Command Line Options ..64

A.2.1 Options for Controlling Compile Driver...64
A.2.2 Options Specifying Output Files ...67
A.2.3 Version Information Display Option...68

R32C/100 Series C Compiler Package V.1.02 Contents

REJ10J2009-0200 Rev.2.00 2010.04.01

A.2.4 Options for Debugging..69
A.2.5 Optimization Options..70
A.2.6 Generated Code Modification Options...82
A.2.7 Library Specifying Option..88
A.2.8 Warning Options..89
A.2.9 Assemble and Link Options...96

A.3 Notes on Command Line Options ...97
A.3.1 Coding Command Line Options..97
A.3.2 Priority of Options for Controlling ..97

Appendix B Extended Functions Reference ...98
B.1 Near and far Modifiers ..100

B.1.1 Overview of near and far Modifiers ..100
B.1.2 Format of Variable Declaration...100
B.1.3 Format of Pointer type Variable..101
B.1.4 Declaration of function..103
B.1.5 near and far Control by nc100 Command Line Options...103
B.1.6 Function of Type conversion from near to far ...104
B.1.7 Declaration of function..104
B.1.8 Function for Specifying near and far in Multiple Declarations ...105
B.1.9 Notes on near and far Attributes...106

B.2 asm Function ..107
B.2.1 Overview of asm Function..107
B.2.2 Specifying FB Offset Value of auto Variable..108
B.2.3 Specifying Register Name of register Variable ... 111
B.2.4 Specifying Symbol Name of extern and static Variable...112
B.2.5 Specification Not Dependent on Storage Class...115
B.2.6 Selectively suppressing optimization ...116
B.2.7 Notes on the asm Function ..116

B.3 Description of Japanese Characters..119
B.3.1 Overview of Japanese Characters...119
B.3.2 Settings Required for Using Japanese Characters..119
B.3.3 Japanese Characters in Character Strings...120
B.3.4 Sing Japanese Characters as Character Constants ..121

B.4 Default Argument Declaration of Function ...122
B.4.1 Overview of Default Argument Declaration of Function ..122
B.4.2 Format of Default Argument Declaration of Function..122
B.4.3 Restrictions on Default Argument Declaration of Function...124

B.5 inline Function Declaration..125
B.5.1 Overview of inline Storage Class...125
B.5.2 Declaration Format of inline Storage Class ..125
B.5.3 Restrictions on inline Storage Class...126

B.6 Extension of Comments ..129
B.6.1 Overview of "//" Comments...129
B.6.2 Comment "//" Format ..129
B.6.3 Priority of "//" and "/*"..129

B.7 #pragma Extended Functions..130
B.7.1 Index of #pragma Extended Functions..130
B.7.2 Using Memory Mapping Extended Functions..134
B.7.3 Using Extended Functions for Target Devices ...144
B.7.4 Use of the other extension function ..152

R32C/100 Series C Compiler Package V.1.02 Contents

REJ10J2009-0200 Rev.2.00 2010.04.01

B.8 assembler Macro Function ...156
B.8.1 Outline of Assembler Macro Function..156
B.8.2 Description Example of Assembler Macro Function..156
B.8.3 Commands that Can be Written by Assembler Macro Function...157

Appendix C Overview of C Language Specifications...163
C.1 Performance Specifications...163

C.1.1 Overview of Standard Specifications..163
C.1.2 Introduction to NC100 Performance..163

C.2 Standard Language Specifications..166
C.2.1 Syntax..166
C.2.2 Type..169
C.2.3 Expressions...171
C.2.4 Declaration..172
C.2.5 Statement..175

C.3 Preprocess Commands..178
C.3.1 List of Preprocess Commands Available..178
C.3.2 Preprocess Commands Reference...178
C.3.3 Predefined Macros...185
C.3.4 Usage of predefined Macros...185

Appendix D C Language Specification Rules...186
D.1 Internal Representation of Data..186

D.1.1 Integral Type ..186
D.1.2 Floating Type..187
D.1.3 Enumerator Type...188
D.1.4 Pointer Type..188
D.1.5 Array Types...188
D.1.6 Structure types...189
D.1.7 Unions..190
D.1.8 Bitfield Types..190

D.2 Sign Extension Rules...191
D.3 Function Call Rules..192

D.3.1 Rules of Return Value ...192
D.3.2 Rules on Argument Transfer..192
D.3.3 Rules for Converting Functions into Assembly Language Symbols ...194
D.3.4 Interface between Functions..199

D.4 Securing auto Variable Area...204
D.5 Rules of Escaping of the Register...205

Appendix E Standard Library...206
E.1 Standard Header Files ..206

E.1.1 Contents of Standard Header Files ..206
E.1.2 Standard Header Files Reference...207

E.2 Standard Function Reference ..216
E.2.1 Overview of Standard Library...216
E.2.2 List of Standard Library Functions by Function..217
E.2.3 Standard Function Reference..223
E.2.4 Using the Standard Library...290

E.3 Modifying Standard Library ..291
E.3.1 Structure of I/O Functions..291
E.3.2 Sequence of Modifying I/O Functions...292

Appendix F Error Messages..301

R32C/100 Series C Compiler Package V.1.02 Contents

REJ10J2009-0200 Rev.2.00 2010.04.01

F.1 Message Format...301
F.2 nc100 Error Messages ...302
F.3 cpp100 Error Messages...304
F.4 cpp100 Warning Messages..307
F.5 ccom100 Error Messages...308
F.6 cccom100 Warning Messages...321

Appendix G Using gensni or the stack information File Creation Tool for Call Walker ...330
G.1 Starting Call Walker..330
G.2 Outline of gensni...330

G.2.1 Processing Outline of gensni..330
G.3 Starting gensni ...332

G.3.1 Input format ...332
G.3.2 Option References..333

G.4 Error Messages of gensni..334
G.4.1 Error Messages ..334

REJ10J2009-0200 Rev.2.00 2010.04.01
1

R32C/100 Series C Compiler Package V.1.02 1. Introduction to NC100

Chapter 1 Introduction to NC100

This chapter introduces the processing of compiling performed by NC100, and provides an example of program
development using NC100.

1.1 NC100 Components

NC100 consists of the following five executable files:
(1) nc100 C Compile driver
(2) igen100 C Inline generator
(3) cpp100 C Preprocessor
(4) ccom100 C Compiler
(5) aopt100 Assembler optimizer
(6) Call Walker & gensni Stack analysis tool & Stack information analysis utility
(7) MapViewer Map Viewer

REJ10J2009-0200 Rev.2.00 2010.04.01
2

R32C/100 Series C Compiler Package V.1.02 1. Introduction to NC100

1.2 NC100 Processing Flow

Figure 1.1 illustrates the NC100 processing flow.

Absolute
module

file

Relocatable
file

Assembly
language
source file

Assembler

as100

Linker

ln100

C language
source file

nc100 Compile driver

Inline generator

ccom100

Motorola S format file
or

Intel HEX format file

Stack analysis tool
Call Walker

Map Viewer

Map viewer

lmc100

gensni

Stack information analysis utility

Software : Software in NC100 package

: File processed by NC100

igen100 cpp100 Preprocessor

aopt100

Compiler

Assembler optimizer

Figure 1.1 NC100 Processing Flow

REJ10J2009-0200 Rev.2.00 2010.04.01
3

R32C/100 Series C Compiler Package V.1.02 1. Introduction to NC100

1.2.1 nc100

nc100 is the executable file of the compile driver.
By specifying options, nc100 can perform the series of operations from compiling to linking. You can also specify for
the as100 relocatable macro assembler and four for the ln100 linkage editor by including the –as100 and –ln100
command line options when you start nc100.

1.2.2 igen100

igen100 is the executable file of the inline generator.
igen100 calls cpp100.

1.2.3 cpp100

cpp100 is the executable file for the preprocessor.
cpp100 processes macros starting with # (#define, #include, etc.) and performs conditional compiling
(#if-#else-#endif, etc.).

1.2.4 ccom100

ccom100 is the executable file of the compiler itself.
C source programs processed by cpp100 are converted to assembly language source programs that can be processed
by as100.

1.2.5 aopt100

aopt100 is the assembler optimizer
It optimizes the assembler codes output by ccom100.

1.2.6 Call Walker & gensni

CallWalker is the utility to graphically display the relationship between stack sizes and function calls that is
needed for program operation. Similarly, gensni is the utility to analyze the necessary information.
CallWalker loads a stack information file (.x30) that is output by gensni to display the amount of stacks used. The
amount of stacks used by an assembly program that cannot be output to a stack information file can be added or
edited by using the editing facility, making it possible to find the total amount of stacks used in the entire system.
The edited information for the amount of stacks used can be saved or loaded as a call information file (*.cal).
Before CallWalker & gensni can be used, the compile driver’s startup option -finfo must be specified during
compilation so that inspector information will be added to the absolute module file (.x30).

1.2.7 MapViewer

MapViewer is the execution file for the map viewer.
By processing the absolute module file (.x30), MapViewer graphically shows a post-link memory mapping.
To use MapViewer, specify the compile driver startup option -finfo when compiling, so that the absolute module file
(.x30) will be generated.

REJ10J2009-0200 Rev.2.00 2010.04.01
4

R32C/100 Series C Compiler Package V.1.02 1. Introduction to NC100

1.3 Notes

To use the technical contents shown in product data, diagrams or tables or the programs or algorithms presented
herein for your system, please carefully evaluate their suitability as part of the entire system, not singly as
technical content, program or algorithm alone, to determine in advance whether they are actually suitable for your
system. Renesas Electronics Corporation and Renesas Resolutions Corporation will not assume responsibility for
the suitability of said items in user systems.

1.3.1 Notes about Version-up of compiler

The machine-language instructions (assembly language) generated by NC100 vary in contents depending on the
startup options specified when compiling, contents of version-up, etc. Therefore, when you have changed the
startup options or upgraded the compiler version, be sure to reevaluate the operation of your application program.
Furthermore, when the same RAM data is referenced (and its contents changed) between interrupt handling and
non-interrupt handling routines or between tasks under realtime OS, always be sure to use exclusive control such
as volatile specification. Also, use exclusive control for bit field structures which have different member names but
are mapped into the same RAM.

1.3.2 Notes about the R32C's Type Dependent Part

When writing to or reading a register in the SFR area, it may sometimes be necessary to use a specific instruction.
Because this specific instruction varies with each type of MCU, consult the user's manual of your MCU for details.
In this case, write the instruction directly in the program using the ASM function.
In this compiler, the instructions which cannot be used may be generated for writing and read-out to the register of
SFR area. When accessing registers in the SFR area in C language, make sure that the same correct instructions
are generated as done by using asm functions, regardless of the compiler's version and of whether optimizing
options are used or not.
When you describe like the following examples as C language description to a SFR area, in this compiler may
generate the assembler code which carries out operation which is not assumed since the interrupt request bit is not
normal.

#pragma ADDRESS TA0IC 006Ch /* R32C/100 Timer A0 interrupt control register */

struct {
 char ILVL : 3;
 char IR : 1; /* An interrupt request bit */
 char dmy : 4;
} TA0IC;

void wait_until_IR_is_ON(void)
{
 while (TA0IC.IR == 0) /* Waits for TA0IC.IR to become 1 */
 {
 ;
 }
 TA0IC.IR = 0; /* Returns 0 to TA0IC.IR when it becomes 1 */
}

Figure 1.2 C language description to SFR area

REJ10J2009-0200 Rev.2.00 2010.04.01
5

R32C/100 Series C Compiler Package V.1.02 1. Introduction to NC100

1.4 Example Program Development

Figure 1.3 shows the flow for the example program development using NC100. The program is described below.
(Items [1] to [4] correspond to the same numbers in Figure 1.3)

(1) The C source program AA.c is compiled using nc100, then assembled using as100 to create
the re-locatable object file AA.r30.

(2) The startup program ncrt0.a30 and the include file sect100.inc, which contains information
on the sections, are matched to the system by altering the section mapping, section size, and
interrupt vector table settings.

(3) The modified startup program is assembled to create the relocatable object file ncrt0.a30.
(4) The two relocatable object files AA.r30 and ncrt0.a30 are linked by the linkage editor ln100,

which is run from nc100, to create the absolute module file AA.x30.

AA.x30

ln100

(4)

(1)

AA.c

AA.a30

AA.r30

nc100

as100

(2)

ncrt0.a30

sect100.inc

(3)
ncrt0.r30

as100

Figure 1.3 Program Development Flow

Figure 1.3 is an example make file containing the series of operations shown in Figure 1.4.

REJ10J2009-0200 Rev.2.00 2010.04.01
6

R32C/100 Series C Compiler Package V.1.02 1. Introduction to NC100

AA.x30 : ncrt0.r30 AA.r30
 nc100 -oAA ncrt0.r30 AA.r30

ncrt0.r30 : ncrt0.a30
 as100 ncrt0.a30

AA.r30 : AA.c
 nc100 -c AA.c

Figure 1.4 Example make File

Figure 1.5 shows the command line required for nc100 to perform the same operations as in the make file shown in
Figure 1.4.

% nc100 -oAA ncrt0.a30 AA.c<RET>

%: Indicates the prompt
<RET>: Indicates the Return key

*Specify ncrt0.a30 first ,when linking.

Figure 1.5 Example nc100 Command Line

REJ10J2009-0200 Rev.2.00 2010.04.01
7

R32C/100 Series C Compiler Package V.1.02 1. Introduction to NC100

1.5 NC100 Output Files

This chapter introduces the preprocess result C source program output when the sample program sample.c is
compiled using NC100 and the assembly language source program.

1.5.1 Introduction to Output Files

With the specified command line options, the nc100 compile driver outputs the files shown in Figure 1.6. Below, we
show the contents of the files output when the C source file smp.c shown in Figure 1.7 is compiled, assembled, and
linked.
See the AS100 User Manual for the relocatable object files (extension .r30), print files (extension .lst),and map files
(extension .map) output by as100 and ln100.

: output file of nc100

-P

nc100
command

option

-S

nc100
command

option

-c

nc100
command

option

Absolute
module file

C language
source file

C source file
from

preprocesser

igen100 / cpp100

Relocatable
object

file

ccom100

Assembly
language source

file

as100

ln100

Figure 1.6 Relationship of nc100 Command Line Options and Output Files

REJ10J2009-0200 Rev.2.00 2010.04.01
8

R32C/100 Series C Compiler Package V.1.02 1. Introduction to NC100

#include <stdio.h>
#define CLR 0
#define PRN 1

void main(void)
{
 int flag;

 flag = CLR;
#ifdef PRN
 printf("flag = %d¥n", flag);
#endif
}

Figure 1.7 Example C Source File (sample.c)

1.5.2 Preprocessed C Source Files

The cpp100 processes preprocess commands starting with #. Such operations include header file contents, macro
expansion, and judgments on conditional compiling.
The C source files output by the preprocessor include the results of cpp100 processing of the C source files.
Therefore, do not contain preprocess lines other than #pragma and #line. You can refer to these files to check the
contents of programs processed by the compiler. The file extension is .i.
Figure 1.8 and Figure 1.9 are examples of file output.

typedef struct _iobuf { (1)
 char _buff;
 int _cnt;
 int _flag;
 int _mod;
 int (*_func_in)(void);
 int (*_func_out)(int);
} FILE;
 :
 (omitted)
 :
typedef long fpos_t;

typedef unsigned long size_t;

extern FILE _iob[];

Figure 1.8 Example Preprocessed C Source File (1)

REJ10J2009-0200 Rev.2.00 2010.04.01
9

R32C/100 Series C Compiler Package V.1.02 1. Introduction to NC100

typedef char _far *__va_list; (1)

extern int getc(FILE _far *);
extern int getchar(void);
extern int putc(int, FILE _far *);
extern int putchar(int);
extern int feof(FILE _far *);
extern int ferror(FILE _far *);
extern int fgetc(FILE _far *);
extern char _far *fgets(char _far *, int, FILE _far *);
extern int fputc(int, FILE _far *);
extern int fputs(const char _far *, FILE _far *);
 :
 (omitted)
 :
extern int printf(const char _far *, ...);
extern int fprintf(FILE _far *, const char _far *, ...);
extern int sprintf(char _far *, const char _far *, ...);
 :
 (omitted)
 :
extern int init_dev(FILE _far *, int);
extern int speed(int, int, int, int);
extern int init_prn(void);
extern int _sget(void);
extern int _sput(int);
extern int _pput(int);
extern const char _far *_print(int(*)(), const char _far *, int _far * _far *, int _far *);

void main(void) (2)
{
 int flag;

 flag = 0 ; (3)

 printf("flag = %d¥n", flag); (4)

}

Figure 1.9 Example Preprocessed C Source File (2)

Let's look at the contents of the preprocessed C source file. Items (1) to (4) correspond to (1) to (4) in Figure 1.8 and
Figure 1.9.

(1) Shows the expansion of header file stdio.h specified in #include.
(2) Shows the C source program resulting from expanding the macro.
(3) Shows that CLR specified in #define is expanded as 0.
(4) Shows that, because PRN specified in #define is 1, the compile condition is satisfied and the

printf function is output.

REJ10J2009-0200 Rev.2.00 2010.04.01
10

R32C/100 Series C Compiler Package V.1.02 1. Introduction to NC100

1.5.3 Assembly Language Source Files

The assembly language source file is a file that can be processed by AS100 as a result of the compiler ccom100
converting the preprocess result C source file. The output files are assembly language source files with the
extension .a30.
Figure 1.10 and Figure 1.11 are examples of the output files. When the nc100 command line option "-dsource (-dS) "
is specified, the assembly language source files contain the contents of the C source file as comments.

REJ10J2009-0200 Rev.2.00 2010.04.01
11

R32C/100 Series C Compiler Package V.1.02 1. Introduction to NC100

 ._LANG 'C','X.XX.XX.XXX','REV.X'

;## C Compiler OUTPUT
;## ccom100 Version X.XX.XX.XXX
;## Copyright(C) XXXX. Renesas Electronics Corp.
;## and Renesas Solutions Corp., All Rights Reserved.
;## Compile Start Time XXX XX XX XX:XX:XX XXXX

;## COMMAND_LINE: ccom100 -dS -o sample.a30 sample.i

;## Normal Optimize OFF (1)
;## ROM size Optimize OFF
;## Speed Optimize OFF
;## Default ROM is far
;## Default RAM is near

 .GLB __SB__
 .SB __SB__
 .FB 0

;## # FUNCTION main
;## # ARG Size(4) Auto Size(0) Context Size(4)

 .SECTION program,CODE,ALIGN
 ._file 'sample.c'
 .align
 ._line 6
;## # C_SRC : {
 .glb _main
_main:
 ._line 9
;## # C_SRC : flag = CLR;
 mov.l #00000000H,R2R0 ; flag
 ._line 11
;## # C_SRC : printf("flag = %d¥n", flag); (2)
 push.l R2R0 ; flag
 push.l #___T0
 jsr _printf
 add.l #08H,SP
 ._line 13
;## # C_SRC : }
 rts
E1:
 :
 (omitted)
 :
 .glb __iob
 .glb $getc
 .glb _getchar
 .glb $putc
 .glb $putchar
 .glb $feof
 .glb $ferror
 .glb $fgetc
 .glb $fgets
 .glb $fputc
 :
 (omitted)
 :

Figure 1.10 Example Assembly Language Source File (1) "sample.a30"

REJ10J2009-0200 Rev.2.00 2010.04.01
12

R32C/100 Series C Compiler Package V.1.02 1. Introduction to NC100

 .SECTION rom_FAR,ROMDATA,ALIGN
___T0:
 .byte 66H ; 'f'
 .byte 6cH ; 'l'
 .byte 61H ; 'a'
 .byte 67H ; 'g'
 .byte 20H ; ' '
 .byte 3dH ; '='
 .byte 20H ; ' '
 .byte 25H ; '%'
 .byte 64H ; 'd'
 .byte 0aH
 .byte 00H
 .END

;## Compile End Time XX XXX XX XX:XX:XX XXXX

Figure 1.11 Example Assembly Language Source File (2) "sample.a30"

Let's look at the contents of the assembly language source files. Items (1) to (2) correspond to (1) to (2) in Figure
1.10.

(1) Shows status of optimization option, and information on the initial settings of the near and
far attribute for ROM and RAM.

(2) When the nc100 command line option "-dsource (-dS)" is specified, shows the contents of the
C source file(s) as comments.

REJ10J2009-0200 Rev.2.00 2010.04.01
13

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

Chapter 2 Basic Method for Using the Compiler

This chapter describes how to start the compile driver nc100 and the command line options.

2.1 Starting Up the Compiler

2.1.1 nc100 Command Format

The nc100 compile driver starts the compiler commands (cpp100 and ccom100), the assemble command as100 and
the link command ln100 to create a absolute module file. The following information (input parameters) is needed in
order to start nc100:

(1) C source file(s)
(2) Assembly language source file(s)
(3) Relocatable object file(s)
(4) Command line options (optional)

These items are specified on the command line.

Figure 2.1 shows the command line format. Figure 2.2 is an example. In the example, the following is performed:

(1) Startup program ncrt0.a30 is assembled.
(2) C source program sample.c is compiled and assembled.
(3) Relocatable object files ncrt0.r30 and sample.r30 are linked.

The absolute module file sample.x30 is also created. The following command line options are used:
 Specifies machine language data file sample.x30. option -o
 Specifies output of list file (extension .lst) at assembling. option -as100 "-l"
 Specifies output of map file (extension .map) at linking option -ln100 "-ms"

% nc100 [command-line-option] [assembly-language-source-file-name]

[relocatable-object-file-name] <C-source-file-name>

% : Prompt
< > : Mandatory item
[] : Optional item

: Space

Figure 2.1 nc100 Command Line Format

REJ10J2009-0200 Rev.2.00 2010.04.01
14

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

% nc100 -osample -as100 "-l" -ln100 "-ms" ncrt0.a30 sample.c<RET>

<RET> : Return key
* Always specify the startup program first when linking.

Figure 2.2 Example nc100 Command Line

2.1.2 Command File

The compile driver can compile a file which has multiple command options written in it (i.e., a command file) after
loading it into the machine.
Use of a command file helps to overcome the limitations on the number of command line characters imposed by
Microsoft Windows (TM), etc.

a Command file input format

% nc100 [command-line-option] <@file-name>[command-line-option]

% : Prompt
< > : Mandatory item
[] : Optional item

: Space

Figure 2.3 Command File Command Line Format

% nc100 -c @test.cmd -g<RET>

<RET> : Return key
* Always specify the startup program first when linking.

Figure 2.4 Example Command File Command Line

Command files are written in the manner described below.

Command File description

<CR>: Denotes carriage return.

ncrt0.a30<CR>
sample1.c sample2.r30<CR>
-g -as100 -l<CR>
-o<CR>
sample<CR>

Figure 2.5 Example Command File description

REJ10J2009-0200 Rev.2.00 2010.04.01
15

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

b Rules on command file description

The following rules apply for command file description:
 Only one command file can be specified at a time. You cannot specify multiple command

files simultaneously.
 No command file can be specified in another command file.
 Multiple command lines can be written in a command file.
 New-line characters in a command file are replaced with space characters.
 The maximum number of characters that can be written in one line of a command file is

2,048. An error results when this limit is exceeded.

c Precautions to be observed when using a command file

A directory path can be specified for command file names. An error results if the file does not exist in the specified
directory path.
Command files for ln100 whose file name extension is ".cm$" are automatically generated in order for specifying
files when linking. Therefore, existing files with the file name extension ".cm$", if any, will be overwritten. Do not
use files which bear the file name extension ".cm$" along with this compiler. You cannot specify two or more
command files simultaneously.
If multiple files are specified, the compiler displays an error message "Too many command files".

2.1.3 Notes on NC100 Command Line Options

a Notes on Coding nc100 Command Line Options

The nc100 command line options differ according to whether they are written in uppercase or lowercase letters.
Some options will not work if they are specified in the wrong case.

b Priority of Options for Controlling Compile driver

There are the following priorities in the opinion about control of compile driver.

-E -P -S -c
 High Priority low

Therefore, if the following two options are specified at the same time, for example,

 "-c": Finish processing after creating a relocatable file (extension .r30)
 "-S": Finish processing after creating an assembly language source file (extension .a30) the

-S option has priority.
That is to say, the compile driver does not perform any further processing after assembling.
In this case, it only generates an assembly language source file. If you want to create a re-locatable file
simultaneously with an assembly language source file, use the option "-dsource(shortcut -dS)".

REJ10J2009-0200 Rev.2.00 2010.04.01
16

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

2.1.4 nc100 Command Line Options

a Options for Controlling Compile Driver

Tabel 2.1 shows the command line options for controlling the compile driver.

Tabel 2.1 Options for Controlling Compile Driver
Option Function
-c Creates a relocatable file (extension .r30) and ends processing.1

- Didentifier Defines an identifier. Same function as #define.
-dsource
(Short form -dS)

Generates an assembly language source file (extension ".a30") with a C
language source list output as a comment. (Not deleted even after
assembling.)

-dsource_in_list
(Short form -dSL)

In addition to the "-dsource" function, generates an assembly language
list file (.lst).

-E Invokes only preprocess commands and outputs result to standard
output.

-Idirectory Specifies the directory containing the file(s) specified in #include. You can
specify up to 256 directories.

-P nvokes only preprocess commands and creates a file (extension .i).
-S Creates an assembly language source file (extension .a30) and ends

processing.
-silent Suppresses the copyright message display at startup.
-Upredefined macro Undefines the specified predefined macro.

b Options Specifying Output Files

Tabel 2.2 shows the command line option that specifies the name of the output machine language data file.

Tabel 2.2 Options for Specifying Output Files
Option Function
-dirdirectory-name Specifies the destination directory of the file(s) (absolute module file, map

file, etc.) generated by ln100.
-ofile-name Specifies the name(s) of the file(s) (absolute module file, map file, etc.)

generated by ln100. This option can also be used to specify the
destination directory.
Do not specify the filename extension.

c Version and command line Information Display Option

Tabel 2.3 shows the command line options that display the cross-tool version data and the command line
informations.

Tabel 2.3 Options for Displaying Version Data and Command line informations
Option Function
-v Displays the name of the command program and the command line

during execution.
-V Displays the startup messages of the compiler programs, then finishes

processing . (without compiling)

1 If you do not specify command line options -c, -E, -P, or -S, nc100 finishes at ln100 and output files up to the absolute load module file
(extension .x30) are created.

REJ10J2009-0200 Rev.2.00 2010.04.01
17

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

d Options for Debugging

Tabel 2.4 shows the command line options for outputting the symbol file for the C source file.

Tabel 2.4 Options for Debugging
Option Function
-g Outputs debugging information to an assembler source file

(extension .a30).Therefore you can perform C language- level debugging.
-genter Always outputs an enter instruction when calling a function.

Be sure to specify this option when using the debugger's stack trace
function.

e Optimization Options

Tabel 2.5 shows the command line options for optimizing program execution speed and ROM capacity.

Tabel 2.5 Optimization Option
Option Short form Function
-O[1-5] None Optimizes the program to be efficient in both speed and

ROM size at each level.
-O5OA None Inhibits code generation based on bit-manipulating

instructions when the optimization option “-O5” is selected.
-OR None Optimizes the program as much as possible by placing

priority on ROM size.
-OS None Optimizes the program as much as possible by placing

priority on speed.
-OR_MAX -ORM Maximum optimization of ROM size followed by speed.
-OS_MAX -OSM Maximum optimization of speed followed by ROM size.
-Ocompare_byte_to_word -OCBTW Compares consecutive bytes of data at contiguous addresses

in words.
-Oconst -OC Performs optimization by replacing references to the

const-qualified external variables with constants.
-Ofile_inline -OFI All inline functions are expanded inline.
-Oinline_line -OIL This option changes the size (number of lines) of the function

to be inline expanded.
-Oglb_jmp -OGJ Global jump is optimized.
-Oglobal_to_inline -OGTI Handles global functions as inline-declared.
-Oloop_unroll[=loop count] -OLU Unrolls code as many times as the loop count without

revolving the loop statement. The "loop count" can be
omitted. When omitted, this option is applied to a loop count
of up to 5.

-Ono_bit -ONB Suppresses optimization based on grouping of bit
manipulations.

-Ono_break_source_debug -ONBSD Suppresses optimization that affects source line data.
-Ono_float_const_fold -ONFCF Suppresses the constant folding processing of floating point

numbers.
-Ono_logical_or_combine -ONLOC Suppresses the optimization that puts consecutive OR

together.
-Ono_asmopt -ONA Inhibits starting the assembler optimizer "aopt100".
-Osp_adjust -OSA Optimizes removal of stack correction code. This allows the

necessary ROM capacity to be reduced.
However, this may result in an increased amount of stack
being used.

-Ostatic_to_inline -OSTI A static function is treated as an inline function.

REJ10J2009-0200 Rev.2.00 2010.04.01
18

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

f Generated Code Modification Options

Tabel 2.6 shows the command line options for controlling nc100 generated assembly code.

Tabel 2.6 Generated Code Modification Options
Option Short form Function
-fansi None Makes "-fnot_reserve_far_and_near", "-fnot_reserve_asm",

and "-fextend_to_int" valid.
-fconst_not_ROM -fCNR Does not handle the types specified by const as ROM data.
-fdouble_32 -fD32 This option specifies that the double type be handled in

32-bit data length as is the float type.
-fenable_register -fER Make register storage class available.
-fextend_to_int -fETI Performs operation after extending char-type or short-type

data to the int-type data. (Extended according to ANSI
standards.) 1

-ffar_RAM -fFRAM Changes the default attribute of RAM data to far.
-finfo None Outputs the information required for the Inspector, "Call

Walker", and "Map Viewer" to the absolute module file
(.x30).

-fint_16 -fI16 Does handle int type at the 16-bit width.
-fJSRW None Changes the default instruction for calling functions to

JSR.W.
-fnear_ROM -fNROM Changes the default attribute of ROM data to near.
-fno_align -fNA Does not align the start address of the function.
-fno_switch_table -fNST When this option is specified, the code which branches since

it compares is generated to a switch statement.
-fnot_address_volatile -fNAV Does not regard the variables specified by #pragma

ADDRESS (#pragma EQU) as those specified by volatile.
-fnot_reserve_asm -fNRA Exclude asm from reserved words. (Only _asm is valid.)
-fnot_reserve_far_and_near -fNRFAN Exclude far and near from reserved words. (Only _far and

_near are valid.)
-fnot_reserve_inline -fNRI Exclude far and near from reserved words. (Only _inline is

made a reserved word.)
-fsigned_char -fSC Handles type char without sign specification as type signed

char.
-fswitch_other_section -fSOS This option outputs a ROM table for a 'switch' statement to

some other section than a program section.
-fuse_FPU -fUF Outputs FPU instruction

1 (unsigned) char-type, signed char-type, short-type and unsigned short-type data evaluated under ANSI rules is always extended to the int-type
data.
This is because operations on char types (c1=c2*2/c3; for example) would otherwise result in an overflow and failure to obtain the intended result.

REJ10J2009-0200 Rev.2.00 2010.04.01
19

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

g Library Specifying Option

Tabel 2.7 lists the startup options you can use to specify a library file.

Tabel 2.7 Library Specifying Option
Option Function
-llibraryfilename Specifies a library file that is used by ln100 when linking files.

h Warning Options

Tabel 2.8 shows the command line options for outputting warning messages for contraventions of nc100 language
specifications.

Tabel 2.8 Warning Options
Option Short form Function
-Wall None Displays message for all detectable warnings.

(however, not including alarms output by
-Wlarge_to_small and "-Wno_used_argument")

-Wccom_max_warnings
=Warning Count

-WCMW This option allows you to specify an upper limit for the
number of warnings output by ccom100.

-Werror_file<file name > -WEF Outputs error messages to the specified file.
-Wlarge_to_small -WLTS Outputs a warning about the tacit transfer of variables in

descending sequence of size.
-Wmake_tagfile -WMT Outputs error messages to the tag file of source file by

source file.
-Wnesting_comment -WNC Outputs a warning for a comment including "*/" .
-Wno_stop -WNS Prevents the compiler stopping when an error occurs.
-Wno_used_argument -WNUA Outputs a warning for unused argument of functions.
-Wno_used_function -WNUF Displays unused global functions when linking.
-Wno_used_static_function -WNUSF For one of the following reasons, a static function name is

output that does not require code generation.
-Wno_warning_stdlib -WNWS Specifying this option while "-Wnon_prototype" or "-Wall"

is specified inhibits "Alarm for standard libraries which
do not have prototype declaration.

-Wnon_prototype -WNP Outputs warning messages for functions without
prototype declarations.

-Wstdout None Outputs error messages to the host machine's standard
output (stdout).

-Wstop_at_link -WSAL Stops linking the source files if a warning occurs during
linking to suppress generation of absolute module files.
Also, a return value "10" is returned to the host OS.

-Wstop_at_warning -WSAW Stops compiling the source files if a warning occurs
during compiling and returns the compiler end code "10".

-Wundefined_macro -WUM Warns you that undefined macros are used in #if.
-Wuninitialize_variable -WUV Outputs a warning about auto variables that have not

been initialized.
-Wunknown_pragma -WUP Outputs warning messages for non-supported #pragma.
-Wmultiple_tentative_definitions -WMTD Outputs a warning when there are multiple tentative

definitions for one and the same variable name.
-Wignore_near_pointer -WINP Inhibits a warning when the near pointer is handled as a

far pointer.

REJ10J2009-0200 Rev.2.00 2010.04.01
20

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

i Assemble and Link Options

Tabel 2.9 shows the command line options for specifying as100 and ln100 options.

Tabel 2.9 Assemble and Link Options
Option Function
-as100 < Option> Specifies options for the as100 link command. If you specify two or more

options, enclose them in double quotes.
-ln100 < Option> Specifies options for the ln100 assemble command. If you specify two or

more options, enclose them in double quotes.

REJ10J2009-0200 Rev.2.00 2010.04.01
21

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

2.2 Preparing the Startup Program

For C-language programs to be "burned" into ROM, NC100 comes with a sample startup program written in the
assembly language to initial set the hardware (R32C/100), locate sections, and set up interrupt vector address
tables, etc. This startup program needs to be modified to suit the system in which it will be installed.
The following explains about the startup program and describes how to customize it.

2.2.1 Sample of Startup Program

The NC100 startup program consists of the following two files:
 ncrt0.a30

Write a program which is executed immediately after reset.
 sect100.inc

Included from ncrt0.a30, this file defines section locations (memory mapping).

Figure 2.6 to Figure 2.11 show the ncrt0.a30 source program list. Figure 2.12 to Figure 2.17 show the sect100.inc
source program list.

;***;
;
; C COMPILER for R32C/100
; Copyright(C) XXXX. Renesas Electronics Corp.
; and Renesas Solutions Corp., All rights reserved.
;
; ncrt0.a30 : startup program
;
; This program is applicable when using the basic I/O library
;
; $Id: ncrt0.a30,v X.XX XXXX/XX/XX XX:XX:XX XXXXX Exp $
;
;***;

;---
; HEEP SIZE definition (1)
;---
.if __HEAP__ == 1 ; for HEW

HEAPSIZE .equ 0h

.else
.if __HEAPSIZE__ == 0

HEAPSIZE .equ 300h

.else ; for HEW

HEAPSIZE .equ __HEAPSIZE__

.endif
.endif;

 (1) defines the heap size.

Figure 2.6 Startup Program List (1) (ncrt0.a30)

REJ10J2009-0200 Rev.2.00 2010.04.01
22

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

;---
; STACK SIZE definition (2)
;---
.if __USTACKSIZE__ == 0

STACKSIZE .equ 300h

.else ; for HEW

STACKSIZE .equ __USTACKSIZE__

.endif

;---
; INTERRUPT STACK SIZE definition (3)
;---
.if __ISTACKSIZE__ == 0

ISTACKSIZE .equ 300h

.else ; for HEW

ISTACKSIZE .equ __ISTACKSIZE__

.endif

;---
; INTERRUPT VECTOR ADDRESS definition (4)
;---
VECTOR_ADR .equ 0FFFFFBDCH

;---
; Section allocation
;---
 .list OFF
 .include sect100.inc (5)
 .list ON

(2) defines the user stack size.
(3) defines the interrupt stack size.
(4) defines the start address of interrupt vector table.
(5) Includes sect100.inc

Figure 2.7 Startup Program List (2) (ncrt0.a30)

REJ10J2009-0200 Rev.2.00 2010.04.01
23

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

;---;
; SB AREA DEFINITION ;
;---;
 .glb __SB__
__SB__ .equ data_SB8_top
;---;
; INITIALIZE MACRO DEFINITION ;
;---;
BZERO .macro TOP_,SECT_
 mov.b #00H,R0L
 mov.l #TOP_,A1
 mov.l #sizeof SECT_,R7R5
 sstr.b
 .endm
BCOPY .macro FROM_,TO_,SECT_
 mov.l #FROM_,A0
 mov.l #TO_,A1
 mov.l #sizeof SECT_,R7R5
 smovf.b
 .endm

Figure 2.8 Startup Program List (3) (ncrt0.a30)

REJ10J2009-0200 Rev.2.00 2010.04.01
24

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

;---;
; INTERRUPT SECTION ;
;---;
 .insf start, S, 0
 .glb start
 .section interrupt, code, align
start: (6)
 ;---;
 ; after reset, this program will start ;
 ;---;
 ldc #istack_top,ISP ; istack pointer
 ldc #0080H,FLG ; switch to usp (7)
 ldc #stack_top,SP ; stack pointer
 ldc #data_SB8_top,SB ; sb register
 fset b
 ldc #data_SB8_top,SB ; bsb register
 fclr b
 ldc #VECTOR_ADR,INTB ; vector address
 ;---;
 ; zero clear BSS ; (8)
 ;---;
 BZERO bss_SB8_top, bss_SB8
; BZERO bss_SB16_top, bss_SB16
 BZERO bss_NEAR_top, bss_NEAR
 BZERO bss_FAR_top, bss_FAR
 BZERO bss_EXT_top, bss_EXT
 BZERO bss_MON1_top, bss_MON1
 BZERO bss_MON2_top, bss_MON2
 BZERO bss_MON3_top, bss_MON3
 BZERO bss_MON4_top, bss_MON4
 ;---;
 ; initialize DATA ; (9)
 ;---;
 BCOPY data_SB8_INIT_top, data_SB8_top, data_SB8
; BCOPY data_SB16_INIT_top, data_SB16_top, data_SB16
 BCOPY data_NEAR_INIT_top, data_NEAR_top, data_NEAR
 BCOPY data_FAR_INIT_top, data_FAR_top, data_FAR
 BCOPY data_EXT_INIT_top, data_EXT_top, data_EXT
 BCOPY data_MON1_INIT_top, data_MON1_top, data_MON1
 BCOPY data_MON2_INIT_top, data_MON2_top, data_MON2
 BCOPY data_MON3_INIT_top, data_MON3_top, data_MON3
 BCOPY data_MON4_INIT_top, data_MON4_top, data_MON4

(6) After a reset, execution starts from this label (start)
(7) Sets IPL and each flags.
(8) Clears the bss section (to zeros).
(9) Moves the initial values of the data section to RAM.

Figure 2.9 Startup Program List (4) (ncrt0.a30)

REJ10J2009-0200 Rev.2.00 2010.04.01
25

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

 ;---;
 ; initialize heap manager ; (10)
 ;---;
.if __HEAP__ != 1
 .glb __mnext
 .glb __msize
 mov.l #heap_top,__mnext
 mov.l #HEAPSIZE,__msize
.endif
 ;---;
 ; initialize standard I/O ; (11)
 ;---;
.if __STANDARD_IO__ == 1
 .glb __init
 .call __init, G
 jsr.a __init
.endif
 ;---;
 ; invoke main() function ; (12)
 ;---;
 ldc #0H,FB ; for DEBUGGER
 .glb _main
 jsr.a _main

(10) Initializes the heap area. Comment out this line if no memory management function is used.
(11) Calls the init function, which initializes standard I/O. Comment out this line if no I/O function is used.
(12) Calls the 'main' function.
* Interrupt is not enable, when calls 'main' function.
Therefore, permits interrupt by FSET command, when uses interrupt function.

Figure 2.10 Startup Program List (5) (ncrt0.a30)

REJ10J2009-0200 Rev.2.00 2010.04.01
26

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

;==
 ;---;
 ; exit() function ; (13)
 ;---;
 .glb _exit
 .glb $exit
_exit: ; End of execution
$exit:
 jmp _exit
 .einsf
 ;---;
 ; dummy interrupt function ; (14)
 ;---;
 .glb dummy_int
dummy_int:
 reit
 .end
;***;
; ;
; End of R32C/100 start up ;
; ;
;***;

(13) exit function.
(14) Dummy interrupt processing function.

Figure 2.11 Startup Program List (6) (ncrt0.a30)

REJ10J2009-0200 Rev.2.00 2010.04.01
27

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

;***;
;
; C COMPILER for R32C/100
; Copyright(C) XXXX. Renesas Electronics Corp.
; and Renesas Solutions Corp., All rights reserved.
;
; ncrt0.a30 : startup program
;
; This program is applicable when using the basic I/O library
;
; $Id: sect100.inc,v X.X XXXX/XX/XX XX:XX:XX XXX Exp $
;
;***;
;---;
;
; Arrangement of section
;
;---;
;---;
; NEAR RAM SECTIONS ;
;---;
 .section data_SB8, data
 .org 00000400H
data_SB8_top:
 .section bss_SB8, data, align
bss_SB8_top:
 .section data_NEAR, data, align
data_NEAR_top:
 .section bss_NEAR, data, align
bss_NEAR_top:
 .section data_MON1, data, align
data_MON1_top:
 .section bss_MON1, data, align
bss_MON1_top:
 .section data_MON2, data, align
data_MON2_top:
 .section bss_MON2, data, align
bss_MON2_top:
 .section data_MON3, data, align
data_MON3_top:
 .section bss_MON3, data, align
bss_MON3_top:
 .section data_MON4, data, align
data_MON4_top:
 .section bss_MON4, data, align
bss_MON4_top:

;---;
; STACK SECTION ;
;---;
 .section stack, data, align
 .blkb STACKSIZE
 .align
stack_top:
 .blkb ISTACKSIZE
 .align
istack_top:

Figure 2.12 Startup Program List (7) (sect100.inc)

REJ10J2009-0200 Rev.2.00 2010.04.01
28

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

;---;
; HEAP SECTION ;
;---;
 .section heap, data, align
heap_top:
 .blkb HEAPSIZE

;---;
; SB RELATIVE RAM SECTIONS ;
;---;
; .section data_SB8, data
; .org 00008000H
;data_SB8_top:
; .section bss_SB8, data, align
;bss_SB8_top:
; .section data_SB16, data, align
;data_SB16_top:
; .section bss_SB16, data, align
;bss_SB16_top:

;---;
; FAR RAM SECTIONS ;
;---;
 .section data_FAR, data, align
data_FAR_top:
 .section bss_FAR, data, align
bss_FAR_top:

;---;
; EXTENDED RAM SECTIONS ;
;---;
 .section data_EXT, data
 .org 00800000H
data_EXT_top:
 .section bss_EXT, data, align
bss_EXT_top:

;---;
; EXTENDED ROM SECTIONS ;
;---;
 .section data_EXT_INIT, romdata
 .org 0FF000000H
data_EXT_INIT_top:
 .section rom_EXT, romdata, align
rom_EXT_top:
 .section program_EXT, code, align

;---;
; FAR ROM SECTIONS ;
;---;
 .section rom_FAR, romdata
 .org 0FFE00000H
rom_FAR_top:

Figure 2.13 Startup Program List (8) (sect100.inc)

REJ10J2009-0200 Rev.2.00 2010.04.01
29

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

;---;
; INITIAL DATA SECTIONS ;
;---;
 .section data_NEAR_INIT, romdata

.org 0FFFF0000H
data_NEAR_INIT_top:
 .section data_MON1_INIT, romdata, align
data_MON1_INIT_top:
 .section data_MON2_INIT, romdata, align
data_MON2_INIT_top:
 .section data_MON3_INIT, romdata, align
data_MON3_INIT_top:
 .section data_MON4_INIT, romdata, align
data_MON4_INIT_top:
 .section data_SB8_INIT, romdata, align
data_SB8_INIT_top:
; .section data_SB16_INIT, romdata, align
;data_SB16_INIT_top:
 .section data_FAR_INIT, romdata, align
data_FAR_INIT_top:

;---;
; SWITCH TABLE SECTIONS ;
;---;
 .section switch_table, romdata, align

;---;
; CODE SECTIONS ;
;---;
 .section program, code, align

 .section interrupt, code, align

;---;
; NEAR ROM SECTIONS ;
;---;
; .section rom_NEAR, romdata
; .org 0FFFF8000H
;rom_NEAR_top:

Figure 2.14 Startup Program List (9) (sect100.inc)

REJ10J2009-0200 Rev.2.00 2010.04.01
30

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

;---;
; VARIABLE VECTOR SECTION ;
;---;
 .section vector, romdata
 .org VECTOR_ADR
.if __MVT__ == 1
 .lword dummy_int ; BRK (software int 0)
 .lword dummy_int ; reservation area (software int 1)
 .lword dummy_int ; uart5 trance/NACK (software int 2)
 .lword dummy_int ; uart5 receive/ACK (software int 3)
 .lword dummy_int ; uart6 trance/NACK (software int 4)
 .lword dummy_int ; uart6 receive/ACK (software int 5)
 .lword dummy_int ; uart5/uart6 bus collision (software int 6)
 .lword dummy_int ; reservation area (software int 7)
 .lword dummy_int ; DMA0 (software int 8)
 .lword dummy_int ; DMA1 (software int 9)
 .lword dummy_int ; DMA2 (software int 10)
 .lword dummy_int ; DMA3 (software int 11)
 .lword dummy_int ; TIMER A0 (software int 12)
 .lword dummy_int ; TIMER A1 (software int 13)
 .lword dummy_int ; TIMER A2 (software int 14)
 .lword dummy_int ; TIMER A3 (software int 15)
 .lword dummy_int ; TIMER A4 (software int 16)
 .lword dummy_int ; uart0 trance/NACK (software int 17)
 .lword dummy_int ; uart0 receive/ACK (software int 18)
 .lword dummy_int ; uart1 trance/NACK (software int 19)
 .lword dummy_int ; uart1 receive/ACK (software int 20)
 .lword dummy_int ; TIMER B0 (software int 21)
 .lword dummy_int ; TIMER B1 (software int 22)
 .lword dummy_int ; TIMER B2 (software int 23)
 .lword dummy_int ; TIMER B3 (software int 24)
 .lword dummy_int ; TIMER B4 (software int 25)
 .lword dummy_int ; INT5 (software int 26)
 .lword dummy_int ; INT4 (software int 27)
 .lword dummy_int ; INT3 (software int 28)
 .lword dummy_int ; INT2 (software int 29)
 .lword dummy_int ; INT1 (software int 30)
 .lword dummy_int ; INT0 (software int 31)
 .lword dummy_int ; TIMER B5 (software int 32)
 .lword dummy_int ; uart2 trance/NACK (software int 33)
 .lword dummy_int ; uart2 receive/ACK (software int 34)
 .lword dummy_int ; uart3 trance/NACK (software int 35)
 .lword dummy_int ; uart3 receive/ACK (software int 36)
 .lword dummy_int ; uart4 trance/NACK (software int 37)
 .lword dummy_int ; uart4 receive/ACK (software int 38)
 .lword dummy_int ; uart2 bus collision (software int 39)
 .lword dummy_int ; uart3/uart0 bus collision (software int 40)
 .lword dummy_int ; uart4/uart1 bus collision (software int 41)
 .lword dummy_int ; A-D Convert (software int 42)
 .lword dummy_int ; input key (software int 43)
 .lword dummy_int ; intelligent I/O 0 (software int 44)
 .lword dummy_int ; intelligent I/O 1 (software int 45)
 .lword dummy_int ; intelligent I/O 2 (software int 46)
 .lword dummy_int ; intelligent I/O 3 (software int 47)
 .lword dummy_int ; intelligent I/O 4 (software int 48)
 .lword dummy_int ; intelligent I/O 5 (software int 49)
 .lword dummy_int ; intelligent I/O 6 (software int 50)
 .lword dummy_int ; intelligent I/O 7 (software int 51)
 .lword dummy_int ; intelligent I/O 8 (software int 52)
 .lword dummy_int ; intelligent I/O 9 (software int 53)
 .lword dummy_int ; intelligent I/O 10 (software int 54)

Figure 2.15 Startup Program List (10) (sect100.inc)

REJ10J2009-0200 Rev.2.00 2010.04.01
31

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

 .lword dummy_int ; intelligent I/O 11 (software int 55)
 .lword dummy_int ; reservation area (software int 56)
 .lword dummy_int ; reservation area (software int 57)
 .lword dummy_int ; reservation area (software int 58)
 .lword dummy_int ; CAN1WU (software int 59)
 .lword dummy_int ; reservation area (software int 60)
 .lword dummy_int ; reservation area (software int 61)
 .lword dummy_int ; reservation area (software int 62)
 .lword dummy_int ; reservation area (software int 63)
 .lword dummy_int ; reservation area (software int 64)
 .lword dummy_int ; reservation area (software int 65)
 .lword dummy_int ; reservation area (software int 66)
 .lword dummy_int ; reservation area (software int 67)
 .lword dummy_int ; Audio interface 0 (software int 68)
 .lword dummy_int ; Sound field processor (software int 69)
 .lword dummy_int ; reservation area (software int 70)
 .lword dummy_int ; reservation area (software int 71)
 .lword dummy_int ; reservation area (software int 72)
 .lword dummy_int ; reservation area (software int 73)
 :
 (omitted)
 :
 .lword dummy_int ; reservation area (software int 89)
 .lword dummy_int ; reservation area (software int 90)
 .lword dummy_int ; reservation area (software int 91)
 .lword dummy_int ; reservation area (software int 92)
 .lword dummy_int ; INT8 (software int 93)
 .lword dummy_int ; INT7 (software int 94)
 .lword dummy_int ; INT6 (software int 95)
 .lword dummy_int ; CAN0 trance (software int 96)
 .lword dummy_int ; CAN0 receive (software int 97)
 .lword dummy_int ; CAN0 error (software int 98)
 .lword dummy_int ; CAN1 trance (software int 99)
 .lword dummy_int ; CAN1 receive (software int 100)
 .lword dummy_int ; CAN1 error (software int 101)
 .lword dummy_int ; reservation area (software int 102)
 .lword dummy_int ; reservation area (software int 103)
 .lword dummy_int ; reservation area (software int 104)
 .lword dummy_int ; reservation area (software int 105)
 :
 (omitted)
 :
 .lword dummy_int ; reservation area (software int 120)
 .lword dummy_int ; reservation area (software int 121)
 .lword dummy_int ; reservation area (software int 122)
 .lword dummy_int ; reservation area (software int 123)
 .lword dummy_int ; uart7 trance (software int 124)
 .lword dummy_int ; uart7 receive (software int 125)
 .lword dummy_int ; uart8 trance (software int 126)
 .lword dummy_int ; uart8 receive (software int 127)
 .lword dummy_int ; software int 128
 .lword dummy_int ; software int 129
 .lword dummy_int ; software int 130
 .lword dummy_int ; software int 131
 .lword dummy_int ; software int 132

Figure 2.16 Startup Program List (11) (sect100.inc)

REJ10J2009-0200 Rev.2.00 2010.04.01
32

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

 .lword dummy_int ; software int 133
 .lword dummy_int ; software int 134
 .lword dummy_int ; software int 135
 :
 (omitted)
 :
 .lword dummy_int ; software int 253
 .lword dummy_int ; software int 254
 .lword dummy_int ; software int 255
.endif
.
;---;
; FIXED VECTOR SECTION ;
;---;
 .section fvector, romdata
 .org 0FFFFFFDCH
UDI: .lword dummy_int
OVER_FLOW: .lword dummy_int
BRKI: .lword dummy_int
 .lword 0FFFFFFFFH
 .lword 0FFFFFFFFH
WDT: .lword dummy_int
 .lword dummy_int
NMI: .lword dummy_int
RESET: .lword start

;---;
; ID code DEFINITION ;
;---;
; ID code check function
; .id "CodeChk"

;***;
; ;
; End of R32C/100 start up ;
; ;
;***;

Figure 2.17 Startup Program List (12) (sect100.inc)

REJ10J2009-0200 Rev.2.00 2010.04.01
33

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

2.2.2 Customizing the Startup Program

a Overview of Startup Program Processing

(1) About ncrt0.a30

This program is run at the start of the program or immediately after a reset. It performs the following process
mainly:

 Sets the top address (__SB__) of the SBDATA area (it is accessing area to used the SB
relative addressing mode).

 Sets the processor's operating mode.
 Initializes the stack pointer (ISP Register and USP Register).
 Initializes SB register.
 Initializes INTB register.
 Initializes the data near area.

(1) Default
bss_NEAR sections are cleared (to 0).

(2) When far-qualified variables are used
bss_FAR sections are cleared (to 0).

(3) #pragma SBDATA Extended Functions
bss_SB8 sections are cleared (to 0).

(4) #pragma SB16DATA Extended Functions
bss_SB16 sections are cleared (to 0).

(5) #pragma EXTMEM Extended Functions
bss_EXT sections are cleared (to 0).

(6) #pragma MONITORn Extended Functions
bss_MON1, bss_MON2, bss_MON3, bss_MON4 sections are cleared (to 0).

 Transfers initial values from the ROM section in which they are stored to a data area that
has initial values.
(1) Default

Transfers initial values from the data_NEAR_INIT section to the data_NEAR
section.

(2) When far-qualified variables are used
Transfers initial values from the data_FAR_INIT section to the data_FAR section.

(3) #pragma SBDATA Extended Functions
Transfers initial values from the data_SB8_INIT section to the data_SB8 section.

(4) #pragma SB16DATA Extended Functions
Transfers initial values from the data_ SB16_INIT section to the data_SB16 section.

(5) #pragma EXTMEM Extended Functions
Transfers initial values from the data_EXT_INIT section to the data_EXT section.

(6) #pragma MONITORn Extended Functions
Transfers initial values from the data_MON1_INIT, data_MON2_INIT,
data_MON3_INIT, and data_MON4_INIT sections to data_MON1, data_MON2,
data_MON3, and data_MON4 sections, respectively.

 Initializes the heap area.
 Initializes the standard I/O function library.
 Initializes FB register
 Calls the 'main' function.

REJ10J2009-0200 Rev.2.00 2010.04.01
34

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

b Modifying the Startup Program

Figure 2.18 summarizes the steps required to modify the startup programs to match the target system.

sect100.inc

2.2.3 Customizing Memory Allocations

ncrt0.a30

Set the size of stack sections.

Set the size of heap sections.

Set the interrupt base register.

Set the processor operating mode.

d.

e.

f.

g.

Figure 2.18 Example Sequence for Modifying Startup Programs

c Examples of startup modifications that require caution

(1) Settings When Not Using Standard I/O Functions

The init function1 initializes the R32C/100 Series I/O. It is called before main in ncrt0.a30.
Figure 2.19 shows the part where the init function is called.
If your application program does not use standard I/O, comment out the init function call from ncrt0.a30.

 ;---;
 ; initialize standard I/O ;
 ;---;
.if __STANDARD_IO__ == 1
 .glb __init
 .call __init,G
 jsr.a __init
.endif

Figure 2.19 Part of ncrt0.a30 Where init Function is Called

If you are using only sprintf and sscanf, the init function does not need to be called.

1 The init function also initializes the microcomputer (hardware) for standard in-put/output functions. By default, the R32C/100 is assumed to be
the microcomputer that it initializes.
When using standard input/output functions, the init function, etc. may need to be modified depending on the system in which the microcomputer is
to be used.

REJ10J2009-0200 Rev.2.00 2010.04.01
35

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

(2) Settings When Not Using Memory Management Functions

To use the memory management functions calloc and malloc, etc., not only is an area allocated in the heap section
but the following settings are also made in ncrt0.a30.

(1) Initialization of external variable char *_mnext
Initializes the heap_top label, which is the starting address of the heap section.

(2) Initialization of external variable unsigned_msize
Initializes the "HEAPSIZE" expression, which sets at "2.2.2 e heap section size".

Figure 2.20 shows the initialization performed in ncrt0.a30.

 ;---;
 ; initialize heap manager ;
 ;---;
.if __HEAP__ != 1
 .glb __mnext
 .glb __msize
 mov.l #heap_top,__mnext
 mov.l #HEAPSIZE,__msize
.endif

Figure 2.20 Initialization When Using Memory Management Functions (ncrt0.a30)

If you are not using the memory management functions, comment out the whole initialization section. This saves
the ROM size by stopping unwanted library items from being linked.

(3) Notes on Writing Initialization Programs

Note the following when writing your own initialization programs to be added to the startup program.
(1) If your initialization program changes the U, or B flags, return these flags to the original

state where you exit the initialization program. Do not change the contents of the SB
register.

(2) If your initialization program calls a subroutine written in C, note the following two points:
 Call the C subroutine only after clearing them, B and D flags.
 Call the C subroutine only after setting the U flag.

d Setting the Stack Section Size

A stack section has the domain used for user stacks, and the domain used for interruption stacks. Since stack is
surely used, please surely secure a domain. stack size should set up the greatest size to be used.1
Stack size is calculated to use the stack size calculation utility Call Walker.

1 The stack is used within the startup program as well. Although the initial values are reloaded before calling the main() function, consideration is
required if the stack size used by the main() function, etc. is insufficient.

REJ10J2009-0200 Rev.2.00 2010.04.01
36

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

e Heap Section Size

Set the heap to the maximum amount of memory allocated using the memory management functions calloc and
malloc in the program. Set the heap to 0 if you do not use these memory management functions. Make sure that
the heap section does not exceed the physical RAM area.

;---
; HEEP SIZE definition
;---
.if __HEAP__ == 1 ; for HEW

HEAPSIZE .equ 0h

.else
.if __HEAPSIZE__ == 0

HEAPSIZE .equ 300h

.else ; for HEW

HEAPSIZE .equ __HEAPSIZE__

.endif
.endif

Figure 2.21 Example of Setting Heap Section Size (ncrt0.a30)

f Setting the interrupt vector table

Set the top address of the interrupt vector table to the part of Figure 2.22 in ncrt0.a30. The INTB Register is
initialized by the top address of the interrupt vector table.

;---
; INTERRUPT VECTOR ADDRESS definition
;---
VECTOR_ADR .equ 0FFFFFBDCH

Figure 2.22 Example of Setting Top Address of Interrupt Vector Table (ncrt0.a30)

The sample startup program has had values set for the tables listed below.

0FFFFFBDCH - 0FFFFFFDBH: Interrupt vector table
0FFFFFFDCH - 0FFFFFFFFH: Fixed vector table

Normally, these set values do not need to be modified.

REJ10J2009-0200 Rev.2.00 2010.04.01
37

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

g Setting the Processor Mode Register

Set the processor operating mode to match the target system at address 04H (Processor mode register) in the part
of ncrt0.a30 shown in Figure 2.23.

 ;---;
 ; after reset, this program will start ;
 ;---;
 :
 (omitted)
 :
 ; mov.b #00H,04H ; processor mode
 :
 (omitted)
 :

Figure 2.23 Example Setting of Processor Mode Register (ncrt0.a30)

See the User’s Manual of microcomputer you are using for details of the Processor Mode Register.

2.2.3 Customizing for NC100 Memory Mapping

a Structure of Sections

In the case of a native environment compiler, the executable files generated by the compiler are mapped to memory
by the operating system, such as UNIX. However, with cross-environment compilers such as NC100, the user must
determine the memory mapping.
With NC100, storage class variables, variables with initial values, variables without initial values, character string
data, interrupt processing programs, and interrupt vector address tables, etc., are mapped to Micoro Processor
series memory as independent sections according to their function.
The names of sections consist of a base name and attribute as shown below:

Section Base Name Attri

Figure 2.24 Section Names

Tabel 2.10 shows Section Base Name and Tabel 2.11 shows Attributes.

Tabel 2.10 Section Base Names
Section base name Content
data Stores data with initial values
bss Stores data without initial values
rom Stores character strings, and data specified in #pragma ROM or with the const

modifier

REJ10J2009-0200 Rev.2.00 2010.04.01
38

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

Tabel 2.11 Section Naming Rules
Attribute Meaning Target section base name
INIT Section containing initial values of data data

NEAR near attribute 1

FAR far attribute
data, bss, rom

SB8 SBDATA attribute data, bss
SB16 SB16DATA attribute data, bss
EXT EXTMEM attribute data, bss, rom
MON1 MONITOR1 attribute data, bss
MON2 MONITOR2 attribute data, bss
MON3 MONITOR3 attribute data, bss

NEAR / FAR
/ SB8 / SB16
/ EXT
/ MON1 / MON2
/ MON3 / MON4

MON4 MONITOR4 attribute data, bss

Tabel 2.12 shows the contents of sections other than those based on the naming rules described above.

Tabel 2.12 Section Names
Section name Contents
fvector This section stores the contents of the Micro Processor's fixed vector.
heap This memory area is dynamically allocated during program execution by

memory management functions (e.g., malloc).
This section can be allocated at any desired location of the Micro Processor
RAM area.

program Stores programs
stack

This section is used as a stack.
This section can be allocated to any desired location of the RAM areas in the
microcomputer.

switch_table The section to which the branch table for switch statements is allocated. This
section is generated only with the "-fSOS" option.

vector This section stores the contents of the Micro Processor's interrupt vector table.
The interrupt vector table can be allocated at any desired location of the Micro
Processor's entire memory space by intb register relative addressing.
For more information, refer to the Micro Processor Hardware Manual.

These sections are mapped to memory according to the settings in the startup program include file sect100.inc. You
can modify the include file to change the mapping.
Figure 2.25 shows the how the sections are mapped according to the sample startup program's include file
sect100.inc.

1 near and far are the qualifiers specific to NC100. Use of these qualifiers makes it possible to specify addressing modes explicitly.
 near ... The accessible addresses range from 00000000H to 00007FFFH and from 0FFFF8000H to 0FFFFFFFFH.
 far ... The accessible addresses range from 00000000H to 007FFFFFH and from 0FF800000H to 0FFFFFFFFH.

REJ10J2009-0200 Rev.2.00 2010.04.01
39

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

00000000H 0FF000000H data_EXT_INIT section

 rom_EXT section
 program_EXT section

00000400H data_SB8 section
 bss_SB8 section
 data_NEAR section
 bss_NEAR section
 data_MON1 section
 bss_MON1 section
 data_MON2 section
 bss_MON2 section 0FFE00000H rom_FAR section
 data_MON3 section 0FFFF0000H data_NEAR_INIT section
 bss_MON3 section data_MON1_INIT section
 data_MON4 section data_MON2_INIT section
 bss_MON4 section data_MON3_INIT section
 stack section data_MON4_INIT section
 heap section data_SB8_INIT section
 data_FAR_INIT section
 switch_table section

00008000H data_FAR section program section
 bss_FAR section interrupt section

 0FFFF8000H rom_NEAR section

 0FFFFFBDCH vector section

00800000H data_EXT section
 bss_EXT section 0FFFFFDCH

0FFFFFFFH fvector section

SB

SB
area

SFR area
Internal R

AM
 area

External m
em

ory area INTB

Internal R
O

M
 area

External m
em

ory area

Figure 2.25 Example Section Mapping (1)

Also, Figure 2.26 shows the how the sections are mapped according to the sample startup program's include file
sect100.inc (used #pragma SB16DATA Extended Functions).
See the "B.7 #pragma Extended Functions" and "2.2.1.f #pragma SB16DATA" for the "#pragma SB16DATA
Extended Functions".

REJ10J2009-0200 Rev.2.00 2010.04.01
40

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

00000000H 0FF000000H data_EXT_INIT section

 rom_EXT section
 program_EXT section

00000400H data_NEAR section
 bss_NEAR section
 data_MON1 section
 bss_MON1 section
 data_MON2 section
 bss_MON2 section
 data_MON3 section 0FFE00000H rom_FAR section
 bss_MON3 section 0FFFF0000H data_NEAR_INIT section
 data_MON4 section data_MON1_INIT section
 bss_MON4 section data_MON2_INIT section
 stack section data_MON3_INIT section
 heap section data_MON4_INIT section
 data_SB8_INIT section
 data_SB16_INIT section

00008000H data_SB8 section data_FAR_INIT section
 bss_SB8 section switch_table section
 data_SB16 section program section
 bss_SB16 section interrupt section
 data_FAR section
 bss_FAR section 0FFFF8000H rom_NEAR section

 0FFFFFBDCH vector section

00800000H data_EXT section
 bss_EXT section 0FFFFFDCH

0FFFFFFFH fvector section

SB
SFR area

External m
em

ory area

Internal RAM
 area

Internal R
O

M
 area

External m
em

ory area

INTB

SB16
area

SB8
area

Figure 2.26 Example Section Mapping (2)

REJ10J2009-0200 Rev.2.00 2010.04.01
41

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

b Outline of memory mapping setup file

(1) About sect100.inc

This program is included from ncrt0.a30. It performs the following process mainly:
 Maps each section (in sequence)
 Sets the starting addresses of the sections
 Defines the size of the stack and heap sections
 Sets the interrupt vector table
 Sets the fixed vector table

c Modifying the sect100.inc

Figure 2.27 summarizes the steps required to modify the startup programs to match the target system.

sect100.inc

Map (order) each section and set starting addresses.

Set the special page vector table.

ncrt0.a30

2.2.2 Customizing the Startup Program

d.

e.

Figure 2.27 Example Sequence for Modifying Startup Programs

d Mapping and Order Sections and Specifying Starting Address

Map and order the sections to memory and specify their starting addresses (mapping programs and data to ROM
and RAM) in the sect100.inc include file of the startup program.
The sections are mapped to memory in the order they are defined in sect100.inc. Use the as100 pseudo
instruction .ORG to specify their starting addresses.
Figure 2.28 is an example of these settings.

 .section program, code, align
 .org 0FFFF0000H Specifies the starting address of the program section

Figure 2.28 Example Setting of Section Starting Address

If no starting address is specified for a section, that section is mapped immediately after the previously defined
section.

REJ10J2009-0200 Rev.2.00 2010.04.01
42

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

(1) Rules for Mapping Sections to Memory

Because of the effect on the memory attributes (RAM and ROM) of Micro Processor memory, some sections can
only be mapped to specific areas. Apply the following rules when mapping sections to memory.

(1) Sections mapped to RAM
 stack section heap section
 data_NEAR section bss_NEAR section
 data_FAR section bss_FAR section
 data_EXT section bss_EXT section
 data_SB8 section bss_SB8 section
 data_SB16 section bss_SB16 section
 data_MON1 section bss_MON1 section
 data_MON2 section bss_MON2 section
 data_MON3 section bss_MON3 section
 data_MON4 section bss_MON4 section

(2) Sections mapped to ROM

 program section program_EXT section
 interrupt section fvector section
 switch_table section rom_NEAR section
 rom_EXT section rom_FAR section
 data_NEAR_INIT section data_MON1_INIT section
 data_FAR_INIT section data_MON2_INIT section
 data_EXT_INIT section data_MON3_INIT section
 data_SB8_INIT section data_MON4_INIT section
 data_SB16_INIT section

Note also that some sections can only be mapped to specific memory areas in the Micro Processor memory space.

(1) Sections mapped only to 0H - 07FFFH, 0FFFF8000H - 0FFFFFFFFH (near area)
 data_NEAR section bss_NEAR section
 rom_NEAR section

(2) Sections mapped only to 0H - 07FFFFFH, 0FF800000H - 0FFFFFFFFH (farr area)

 program section interrupt section
 switch_table section bss_FAR section
 data_FAR section bss_MON1 section
 data_MON1 section bss_MON2 section
 data_MON2 section bss_MON3 section
 data_MON3 section bss_MON4 section
 data_MON4 section vector section
 rom_FAR section

(3) Sections mapped only to 0FFFFFFDCH - 0FFFFFFFFH

 fvector section

REJ10J2009-0200 Rev.2.00 2010.04.01
43

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

(4) Sections mapped to any area for the R32C/100 series
 stack section heap section
 data_EXT section bss_EXT section
 rom_EXT section program_EXT section
 data_NEAR_INIT section data_FAR_INIT section
 data_EXT_INIT section data_SB8_INIT section
 data_SB16_INIT section data_MON1_INIT section
 data_MON2_INIT section data_MON3_INIT section
 data_MON4_INIT section

If any of the following data sections have a size of 0, they need not be defined.

 program_EXT section switch_table section
 data_NEAR section data_NEAR_INIT section
 data_FAR section data_FAR_INIT section
 data_EXT section data_EXT_INIT section
 data_MON1 section data_MON1_INIT section
 data_MON2 section data_MON2_INIT section
 data_MON3 section data_MON3_INIT section
 data_MON4 section data_MON4_INIT section
 data_SB8 section data_SB8_INIT section
 data_SB16 section data_SB16_INIT section
 bss_NEAR section bss_MON1 section
 bss_FAR section bss_MON2 section
 bss_EXT section bss_MON3 section
 bss_SB8 section bss_MON4 section
 bss_SB16 section rom_NEAR section
 rom_FAR section rom_EXT section

(2) Example Section Mapping in Single-Chip Mode

Figure 2.29, to Figure 2.32 are examples of the sect100.inc include file which is used for mapping sections to
memory in single-chip mode.

REJ10J2009-0200 Rev.2.00 2010.04.01
44

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

;***;
;
; C COMPILER for R32C/100
; Copyright(C) XXXX. Renesas Electronics Corp.
; and Renesas Solutions Corp., All rights reserved.
 :
 (omitted)
 :
; $Id: sect100.inc,v X.X XXXX/XX/XX XX:XX:XX XXXXX Exp $
;
;***;
;---;
;
; Arrangement of section
;
;---;
;---;
; NEAR RAM SECTIONS ;
;---;
 .section data_SB8, data
 .org 00000400H
data_SB8_top:
 .section bss_SB8, data, align
bss_SB8_top:
 .section data_NEAR, data, align
data_NEAR_top:
 .section bss_NEAR, data, align
bss_NEAR_top:
 .section data_MON1, data, align
data_MON1_top:
 .section bss_MON1, data, align
bss_MON1_top:
 .section data_MON2, data, align
data_MON2_top:
 .section bss_MON2, data, align
bss_MON2_top:
 .section data_MON3, data, align
data_MON3_top:
 .section bss_MON3, data, align
bss_MON3_top:
 .section data_MON4, data, align
data_MON4_top:
 .section bss_MON4, data, align
bss_MON4_top:

;---;
; STACK SECTION ;
;---;
 .section stack, data, align
 .blkb STACKSIZE
 .align
stack_top:
 .blkb ISTACKSIZE
 .align
istack_top:

Figure 2.29 Listing of sect100.inc in Single-Chip Mode (1)

REJ10J2009-0200 Rev.2.00 2010.04.01
45

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

;---;
; HEAP SECTION ;
;---;
 .section heap, data, align
heap_top:
 .blkb HEAPSIZE

;---;
; SB RELATIVE RAM SECTIONS ;
;---;
; .section data_SB8, data
; .org 00008000H
;data_SB8_top:
; .section bss_SB8, data, align
;bss_SB8_top:
; .section data_SB16, data, align
;data_SB16_top:
; .section bss_SB16, data, align
;bss_SB16_top:

;---;
; FAR RAM SECTIONS ;
;---;
 .section data_FAR, data, align
data_FAR_top:
 .section bss_FAR, data, align
bss_FAR_top:

;---;
; EXTENDED RAM SECTIONS ;
;---;
 .section data_EXT, data
 .org 00800000H
data_EXT_top:
 .section bss_EXT, data, align
bss_EXT_top:

;---;
; EXTENDED ROM SECTIONS ;
;---;
 .section data_EXT_INIT, romdata
 .org 0FF000000H
data_EXT_INIT_top:
 .section rom_EXT, romdata, align
rom_EXT_top:
 .section program_EXT, code, align

;---;
; FAR ROM SECTIONS ;
;---;
 .section rom_FAR, romdata
 .org 0FFE00000H
rom_FAR_top:

You can remove this part, because it is
unnecessary.

In this case,you need to remove the
initialize program in the far area of
ncrt0.a30.

Figure 2.30 Listing of sect100.inc in Single-Chip Mode (2)

REJ10J2009-0200 Rev.2.00 2010.04.01
46

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

;---;
; INITIAL DATA SECTIONS ;
;---;
 .section data_NEAR_INIT, romdata
 .org 0FFFF0000H
data_NEAR_INIT_top:
 .section data_MON1_INIT, romdata, align
data_MON1_INIT_top:
 .section data_MON2_INIT, romdata, align
data_MON2_INIT_top:
 .section data_MON3_INIT, romdata, align
data_MON3_INIT_top:
 .section data_MON4_INIT, romdata, align
data_MON4_INIT_top:
 .section data_SB8_INIT, romdata, align
data_SB8_INIT_top:
; .section data_SB16_INIT, romdata, align
;data_SB16_INIT_top:
 .section data_FAR_INIT, romdata, align
data_FAR_INIT_top:

;---;
; SWITCH TABLE SECTIONS ;
;---;
 .section switch_table, romdata, align

;---;
; CODE SECTIONS ;
;---;
 .section program, code, align

 .section interrupt, code, align

;---;
; NEAR ROM SECTIONS ;
;---;
; .section rom_NEAR, romdata
; .org 0FFFF8000H
;rom_NEAR_top:

;---;
; VARIABLE VECTOR SECTION ;
;---;
 .section vector, romdata
 .org VECTOR_ADR
.if __MVT__ == 1
 :
 (omitted)
 :
.endif

Figure 2.31 Listing of sect100.inc in Single-Chip Mode (3)

REJ10J2009-0200 Rev.2.00 2010.04.01
47

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

;---;
; FIXED VECTOR SECTION ;
;---;
 .section fvector, romdata
 .org 0FFFFFFDCH
UDI: .lword dummy_int
OVER_FLOW: .lword dummy_int
BRKI: .lword dummy_int
 .lword 0FFFFFFFFH
 .lword 0FFFFFFFFH
WDT: .lword dummy_int
 .lword dummy_int
NMI: .lword dummy_int
RESET: .lword start

;---;
; ID code DEFINITION ;
;---;
; ID code check function
; .id "CodeChk"

;***;
; ;
; End of R32C/100 start up ;
; ;
;***;

Figure 2.32 Listing of sect100.inc in Single-Chip Mode (4)

e Setting Interrupt Vector Table

In a program that uses interrupt processing, set up an interrupt vector table by
(1) Setting up the interrupt vector table of the vector section in sect100.inc

The contents of interrupt vectors differ with each microcomputer type. Make sure the interrupt vectors you’ve set
suit the microcomputer type you use. For details, refer to the user’s manual of your microcomputer.

(1) When setting up the interrupt vector table in sect100.inc

For programs that use interrupt processing, change the interrupt vector table for the vector section in sect100.inc.
Figure 2.33 shows an example interrupt vector table.

REJ10J2009-0200 Rev.2.00 2010.04.01
48

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

;---;
; VARIABLE VECTOR SECTION ;
;---;
 .section vector, romdata
 .org VECTOR_ADR
.if __MVT__ == 1
 .lword dummy_int ; BRK (software int 0)
 :
 (omitted)
 :
 .lword dummy_int ; DMA0 (software int 8)
 .lword dummy_int ; DMA1 (software int 9)
 .lword dummy_in ; DMA2 (software int 10)
 :
 (omitted)
 :
 .lword dummy_int ; uart1 trance/NACK (software int 19)
 .lword dummy_int ; uart1 receive/ACK (software int 20)
 .lword dummy_int ; TIMER B0 (software int 21)
 :
 (omitted)
 :
 .lword dummy_int ; INT5 (software int 26)
 .lword dummy_int ; INT4 (software int 27)
 :
 (omitted)
 :
 .lword dummy_int ; uart2 trance/NACK (software int 33)
 .lword dummy_int ; uart2 receive/ACK (software int 34)
 :
 (omitted)
 :
 .lword dummy_int ; software int 255

* dummy_int is a dummy interrupt processing function.

Figure 2.33 Interrupt Vector Address Table

REJ10J2009-0200 Rev.2.00 2010.04.01
49

R32C/100 Series C Compiler Package V.1.02 2. Basic Method for Using the Compiler

Follow the procedure described below to alter the interrupt vector table of the vector section in sect100.inc.

(1) Externally declare the interrupt processing function in the .GLB as100 pseudo instruction.
(2) The labels of functions created by NC100 are preceded by the underscore (_). Therefore, the

names of interrupt processing functions declared here should also be preceded by the
underscore.

(3) Replace the names of the interrupt processing functions with the names of interrupt
processing functions that use the dummy interrupt function name dummy_int
corresponding to the appropriate interrupt table in the vector address table.

Figure 2.34 is an example of registering the UART1 send interrupt processing function uarttrn.

 .lword dummy_int ; uart0 receive (for user)
 .glb _uarttrn Process (1) above
 .lword _uarttrn ; uart1 trance (for user) Process (2) above

 (remainder omitted)

Figure 2.34 Example Setting of Interrupt Vector Addresses

REJ10J2009-0200 Rev.2.00 2010.04.01
50

R32C/100 Series C Compiler Package V.1.02 3. Programming Technique

Chapter 3 Programming Technique

This chapter describes precautions to be observed when programming with the C compiler, NC100.

3.1 Notes

Renesas Electronics Corp. are not designed or manufactured for use in a device or system that is used under
circumstances in which human life is potentially at stake. Please contact Renesas Electronics Corp., Renesas
Solutions Corp., or an authorized Renesas Semiconductor product distributor when considering the use of a
product contained herein for any specific purposes, such as apparatus orsystems for transportation, vehicular,
medical, aerospace, nuclear, or undersea repeater use.

3.1.1 Notes about Version-up of compiler

The machine-language instructions (assembly language) generated by NC100 vary in contents depending on the
startup options specified when compiling, contents of version-up, etc. Therefore, when you have changed the
startup options or upgraded the compiler version, be sure to reevaluate the operation of your application program.
Furthermore, when the same RAM data is referenced (and its contents changed) between interrupt handling and
non-interrupt handling routines or between tasks under realtime OS, always be sure to use exclusive control such
as volatile specification. Also, use exclusive control for bit field structures which have different member names but
are mapped into the same RAM.

3.1.2 Notes about the R32C's Type Dependent Part

When writing to or reading a register in the SFR area, it may sometimes be necessary to use a specific instruction.
Because this specific instruction varies with each type of MCU, consult the user's manual of your MCU for details.
In this case, write the instruction directly in the program using the ASM function.
In this compiler, the instructions which cannot be used may be generated for writing and read-out to the register of
SFR area.
When accessing registers in the SFR area in C language, make sure that the same correct instructions are
generated as done by using asm functions, regardless of the compiler's version and of whether optimizing options
are used or not.
When you describe like the following examples as C language description to a SFR area, in this compiler may
generate the assembler code which carries out operation which is not assumed since the interrupt request bit is not
normal.

REJ10J2009-0200 Rev.2.00 2010.04.01
51

R32C/100 Series C Compiler Package V.1.02 3. Programming Technique

#pragma ADDRESS TA0IC 006Ch /* R32C/100 MCU's Timer A0 interrupt control register */

struct {
 char ILVL : 3;
 char IR : 1; /* An interrupt request bit */
 char dmy : 4;
} TA0IC;

void wait_until_IR_is_ON(void)
{
 while(TA0IC.IR == 0) /* Waits for TA0IC.IR to become 1 */
 {
 ;
 }
 TA0IC.IR = 0; /* Returns 0 to TA0IC.IR when it becomes 1 */
}

Figure3.1 C language description to SFR area

3.1.3 About Optimization

a Regular optimization

The following are always optimized regardless of whether optimization options are specified or not.

(1) Meaningless variable access

For example, the variable port shown below does not use the readout results, so that readout operations are
deleted.

extern int port;

void func(void)
{
 port;
}

Figure3.2 Example of a Meaningless Variable Access (Optimized)

Although the intended operation in this example is only to read out port, the readout code actually is not optimized
before being output. To suppress optimization, add the volatile qualifier as shown in Figure3.2.

extern int volatile port;

void func(void)
{
 port;
}

Figure3.3 Example of a Meaningless Variable Access (Optimization Suppressed)

REJ10J2009-0200 Rev.2.00 2010.04.01
52

R32C/100 Series C Compiler Package V.1.02 3. Programming Technique

(2) Meaningless comparison

int func(char c)
{
 int i;

 if(c != -1)
 i = 1;
 else
 i = 0;
 return i;
}

Figure3.4 eaningless Comparison

In the case of this example, because the variable c is written as char, the compiler treats it as the unsigned char
type. Since the range of values re-presentable by the unsigned char type is 0 to 255, the variable c will never take
on the value -1.
Accordingly, if there is any statement which logically has no effect like this example, the compiler does not generate
assembler code.

(3) Programs not executed

No assembler codes are generated for programs which logically are not executed.

void func(int i)
{
 func2(i);
 return;

 i = 10; Fragment not executed
}

Figure3.5 Program Not Executed

(4) Operation between constants

Operation between constants is performed when compiling.

int func(void)
{
 int i = 1 + 2; Operation on this part is performed when compiling

 return i;
}

Figure3.6 Program Not Executed

REJ10J2009-0200 Rev.2.00 2010.04.01
53

R32C/100 Series C Compiler Package V.1.02 3. Programming Technique

(5) Selection of optimum instructions

Selection of optimum instructions as when outputting shift instructions for division/multiplications, is always
performed regardless of whether optimization options are specified or not.

b About the volatile qualifier

Use of the volatile qualifier helps to prevent the referencing of variables, the order in which they are referenced, the
number of times they are referenced, etc. from being affected by optimization.
However, avoid writing statements like those shown below which will be interpreted ambiguously.

int a;
int volatile b, c;

a = b = c; /* whether a = c or a = b? */
a = ++b; /* whether a = b or a = (b + 1)? */

Figure3.7 Example of Ambiguously Interpreted volatile qualifier

3.1.4 Precautions on Using register Variables

a register qualification and compile option "-fenable_register(-fER)"

If the compile option "-fenable_register(-fER)" is specified, the variables that are register-qualified so as to satisfy
specific conditions can be forcibly assigned to registers. This facility is provided for improving generated codes
without relying on optimization.
Because improper use of this facility produces negative effects, always be sure to examine generated codes before
deciding to use it.

b About register qualification and optimization options

The compiler automatically assigns variables to the registers. This assignment facility is unaffected by a register
qualification.

3.1.5 About Startup Handling

Startup may need to be modified depending on the type of microcomputer you are using or depending on your
application system. For modifications pertinent to the type of microcomputer, consult the data book, etc. for your
microcomputer and correct the startup file included with the compiler package before use.

REJ10J2009-0200 Rev.2.00 2010.04.01
54

R32C/100 Series C Compiler Package V.1.02 3. Programming Technique

3.2 For Greater Code Efficiency

3.2.1 Programming Techniques for Greater Code Efficiency

a Using Prototype declaration Efficiently

NC100 allows you to accomplish an efficient function call by declaring the prototype of a function.
This means that unless a function is declared of its prototype in NC100, arguments of that function are placed on
the stack following the rules listed in Table 3.1 when calling the function.

Table 3.1 Rules for Using Stack for Parameters
Data type(s) Rules for pushing onto stack
char type
short type

Expanded into the int type when stacked.

float type Expanded into the double type when stacked.
otherwise type Not expanded when stacked.

For this reason, NC100 may require redundant type expansion unless you declare the prototype of a function.
Prototype declaration of functions helps to suppress such redundant type expansion and also makes it possible to
assign arguments to registers. All this allows you to accomplish an efficient function call.

b Using SB Register Efficiently

Using the SB register-based addressing mode, you can reduce the size of your application program (ROM size).
NC100 allows you to declare variables that use the SB register- based addressing mode by writing the description
shown in Figure3.8.

#pragma SBDATA val

int val;

Figure3.8 Example of variable declaration using SB-based addressing mode

c Compressing ROM Size Using Compile Option -fJSRW

When calling a function defined outside the file in NC100, the function is called with the JSR.A instruction.
However, if the program is not too large, most functions can be called with the "JSR.W" instruction.
In this case, ROM size will be reduced by doing as follows :
First, Compile with the -fJSRW option and check functions which are indicated as errors at link-time. Then change
declarations for the error functions only into declarations using "#pragma JSRA function-name".
When you use the -OGJ option, the JMP instruction at the time of a link is chosen.

REJ10J2009-0200 Rev.2.00 2010.04.01
55

R32C/100 Series C Compiler Package V.1.02 3. Programming Technique

d Other methods

In addition to the above, the ROM capacity can be compressed by changing program description s as shown below.
(1) Change a relatively small function that is called only once to an inline function.
(2) Replace an if-else statement with a switch statement. (This is effective unless the variable

concerned is a simple variable such as an array, pointer, or structure.)
(3) For a function which returns a value in only the range of char type, declare its return value

type with char.
(4) For variables used overlapping a function call, do not use a register variable.

3.2.2 Speeding Up Startup Processing

The ncrt0.a30 startup program includes routines for clearing the bss area. This routine ensures that variables that
are not initialized have an initial value of 0, as per the C language specifications.
For example, the code shown in Figure3.9 does not initialize the variable, which must therefore be initialized to 0
(by clearing the bss1 area) during the startup routine.

static int i;

Figure3.9 Example Declaration of Variable Without Initial Value

In some instances, it is not necessary for a variable with no initial value to be cleared to 0. In such cases, you can
comment out the routine for clearing the bss area in the startup program to increase the speed of startup
processing.

 ;---;
 ; zero clear BSS ;
 ;---;
; BZERO bss_SB8_top, bss_SB8
; BZERO bss_SB16_top, bss_SB16
; BZERO bss_NEAR_top, bss_NEAR
; BZERO bss_FAR_top, bss_FAR
; BZERO bss_MON1_top, bss_MON1
; BZERO bss_MON2_top, bss_MON2
; BZERO bss_MON3_top, bss_MON3
; BZERO bss_MON4_top, bss_MON4

Figure3.10 Commenting Out Routine to Clear bss Area

1 The external variables in RAM which do not have initial values are referred to as "bss".

REJ10J2009-0200 Rev.2.00 2010.04.01
56

R32C/100 Series C Compiler Package V.1.02 3. Programming Technique

3.3 Linking Assembly Language Programs with C Programs

3.3.1 Calling Assembler Functions from C Programs

a Calling Assembler Functions

Assembler functions are called from C programs using the name of the assembler function in the same way that
functions written in C would be.
The first label in an assembler function must be preceded by an underscore (_). However, when calling the
assembly function from the C program, the underscore is omitted. The calling C program must include a prototype
declaration for the assembler function.
Figure3.11 is an example of calling assembler function asm_func.

extern void asm_func(void); Assembler function prototype declaration

void main()
{
 :
 (omitted)
 :
 asm_func(); Calls assembler function
}

Figure3.11 Example of Calling Assembler Function Without Parameters(sample1.c)

 .glb _main
_main:
 :
 (omitted)
 :
 jsr _asm_func Calls assembler function(preceded by '_')
 rts

Figure3.12 Compiled result of sample1.c(sample1.a30)

b When assigning arguments to assembler functions

When passing arguments to assembler functions, use the extended function "#pragma PARAMETER".
This #pragma PARAMETER passes arguments to assembler functions via 32-bit general-purpose registers (R2R0,
R3R1, R6R4, R7R5), 16-bit general-purpose registers (R0, R1, R2, R3, R4, R5, R6, R7), or 8-bit general-purpose
registers (R0L, R0H, R1L, R1H, R2L, R2H, R3L, R3H) and address registers (A0, A1, A2, A3).
For 64-bit quantities, the compiler uses the 32-bit general-purpose register pair (R3R1R2R0 and R7R5R6R4) or
address register pair (A1A0 and A3A2).

REJ10J2009-0200 Rev.2.00 2010.04.01
57

R32C/100 Series C Compiler Package V.1.02 3. Programming Technique

The following shows the sequence of operations for calling an assembler function using #pragma PARAMETER:

(1) Write a prototype declaration for the assembler function before the #pragma PARAMETER
declaration. You must also declare the parameter type(s).

(2) Declare the name of the register used by #pragma PARAMETER in the assembler
function's parameter list.

Figure3.13 is an example of using #pragma PARAMETER when calling the assembler function asm_func.

extern short asm_func(short, short);
#pragma PARAMETER asm_func(R0, R1) Parameters are passed via the R0 and R1
 registers to the assembler function.
void main(void)
{
 short i = 0x02;
 short j = 0x05;

 asm_func(i, j);
}

Figure3.13 Example of Calling Assembler Function With Parameters (sample2.c)

 .SECTION program,CODE,ALIGN
 ._file 'smp2.c'
 .align
 ._line 5
;## # C_SRC : {
 .glb _main
_main:
 ._line 6
;## # C_SRC : short i = 0x02;
 mov.w #0002H,R0 ; i Parameters are passed via the R0 and R1
 ._line 7 registers to the assembler function.
;## # C_SRC : short j = 0x05;
 mov.w #0005H,R1 ; j
 ._line 9
;## # C_SRC : asm_func(i, j);
 jsr _asm_func Calls assembler function(preceded by '_')
 ._line 10
;## # C_SRC : }
 rts

Figure3.14 Compiled result of sample2.c(sample2.a30)

REJ10J2009-0200 Rev.2.00 2010.04.01
58

R32C/100 Series C Compiler Package V.1.02 3. Programming Technique

c Limits on Parameters in #pragma PARAMETER Declaration

The following parameter types cannot be declared in a #pragma PARAMETER declaration.
 structure types and union type parameters

Furthermore, return values of structure or union types cannot be defined as the return values of assembler
functions.

3.3.2 Writing Assembler Functions

a Method for writing the called assembler functions

The following shows a procedure for writing the entry processing of assembler functions.
(1) Specify section names using the assembler pseudo-command .SECTION.
(2) Global specify function name labels using the assembler pseudo-command .GLB.
(3) Add the underscore (_) to the function name to write it as label.
(4) When modifying the B and U flags within the function, save the flag register to the stack

beforehand.1

The following shows a procedure for writing the exit processing of assembler functions.

(1) If you modified the B and U flags within the function, restore the flag register from the
stack.

(2) Write the RTS instruction.

Do not change the contents of the SB and FB registers in the assembler function. If the contents of the SB and FB
registers are changed, save them to the stack at the entry to the function, then restore their values from the stack
at the exit of the function.
Figure3.15 is an example of how to code an assembler function. In this example, the section name is program,
which is the same as the section name output by NC100.

 .section program, code, align (1)
 .glb _asm_func (2)
_asm_func: (3)
 pushc FLG (4)
 mov.l SYM1, R3R1

 popc FLG (5)
 rts (6)
 .END

Figure3.15 Example Coding of Assembler Function

1 Do not change the contents of B and U flags in the assembler function.

REJ10J2009-0200 Rev.2.00 2010.04.01
59

R32C/100 Series C Compiler Package V.1.02 3. Programming Technique

b Returning Return Values from Assembler Functions

When returning values from an assembler function to a C language program, registers can be used through which
to return the values for the integer, pointer, and floating- point types. Table 3.2 lists the rules on calls regarding
return values. Figure3.16 shows an example of how to write an assembler function to return a value.

Table 3.2 Return Value-related Calling Rules
Type of return value Rules
char type
_Bool type

R0L register

int type (16 bits)
short int

R0 register

int type (32 bits)
float type
long type

R2R0 register

pointer type A0 register
long long type
double type
long double type

A1A0 register (32 high-order and 32 low-order bits stored in A1 and A0 registers,
respectively)

structure type
union type

Immediately before the function call, save the far address for the area for storing
the return value to the stack. Before execution returns from the called function,
that function writes the return value to the area indicated by the far address saved
to the stack.

 .section program
 .glb _asm_func
_asm_func:
 :
 (omitted)
 :
 mov.l #01A000H, R2R0
 rts
 .END

Figure3.16 Example of Coding Assembler Function to Return long-type Return Value

c Referencing C Variables

Because assembler functions are written in different files from the C program, only the C global variables can be
referenced.
When including the names of C variables in an assembler function, precede them with an underscore (_). Also, in
assembler language programs, external variables must be declared using the assembler pseudo instruction .GLB.
Figure3.17 is an example of referencing the C program's global variable counter from the assembler function
asm_func.

REJ10J2009-0200 Rev.2.00 2010.04.01
60

R32C/100 Series C Compiler Package V.1.02 3. Programming Technique

C program:

unsigned short counter; C program global variable

void main(void)
{
 :
 (omitted)
 :
}

Assembler function:

 .glb _counter External declaration of C program's global variable
_asm_func:
 :
 (omitted)
 :
 mov.w _counter, R0 Reference

Figure3.17 Referencing a C Global Variable

d Notes on Coding Interrupt Handing in Assembler Function

If you are writing a program (function) for interrupt processing, the following processing must be performed at the
entry and exit.

(1) Save the registers (R2R0, R3R1, R6R4, R7R5, A0, A1, A2 and A3) at the entry point.
(2) Restore the registers (R2R0, R3R1, R6R4, R7R5, A0, A1, A2, and A3) at the exit point.
(3) Use the REIT instruction to return from the function.

Figure3.18 is an example of coding an assembler function for interrupt processing.

 .section program
 .glb _func
_int_func:
 pushm R2R0,R3R1,R6R4,R7R5,A0,A1,A2,A3 Save registers
 mov.b #01H, R0L
 :
 (omitted)
 :
 popm R2R0,R3R1,R6R4,R7R5,A0,A1,A2,A3 Restore registers
 reit Return to C program
 .END

Figure3.18 Example Coding of Interrupt Processing Assembler Function

REJ10J2009-0200 Rev.2.00 2010.04.01
61

R32C/100 Series C Compiler Package V.1.02 3. Programming Technique

e Notes on Calling C Functions from Assembler Functions

Note the following when calling a function written in C from an assembly language program.
(1) Call the C function using a label preceded by the underscore (_) or the dollar ($).
(2) Make sure the registers used in the assembler functions are saved before calling any C

language function, and that they are restored after returning from the C language function.

3.3.3 Notes on Coding Assembler Functions

Note the following when writing assembly language functions (subroutines) that are called from a C program.

a Notes on Handling B and U flags

When returning from an assembler function to a C language program, always make sure that the B and U flags
are in the same condition as they were when the function was called.

b Notes on Handling FB Register

If you modified the FB (frame base) register in an assembler function, you may not be able to return normally to
the C language program from which the function was called.

c Notes on Handling General-purpose and Address Registers

The general-purpose registers (R2R0, R3R1, R6R4, and R7R5) and address registers (A0, A1, A2, and A3) can have
their contents modified in assembler functions without a problem.

d Passing Parameters to an Assembler Function

Use the #pragma PARAMETER function if you need to pass parameters to a function written in assembly
language. The parameters are passed via registers.
Figure3.19 shows the format (asm_func in the figure is the name of an assembler function).

short asm_func(short, short); Prototype declaration of assembler function

#pragma PARAMETER asm_func(R0, R1)

Figure3.19 Prototype declaration of assembler function

#pragma PARAMETER passes arguments to assembler functions via 32-bit general-purpose registers (R2R0,
R3R1, R6R4, and R7R5), 16-bit general-purpose registers (R0, R1, R2, R3, R4, R5, R6, and R7), 8-bit
general-purpose registers (R0L, R0H, R1L, R1H, R2L, R2H, R3L, and R3H), and address registers (A0, A1, A2, and
A3). In addition, the 32-bit general-purpose registers are combined to form 64-bit registers (R3R1R2R0, R7R5R6R4,
A1A0, and A3A2) for the parameters to be passed to the Note that an assembler function's prototype must always
be declared before the #pragma PARAMETER declaration.
However, you cannot declare the struct and union types in a #pragma PARAMETER declaration.
Also cannot declare the functions returning structure or union types as the function's return values.

REJ10J2009-0200 Rev.2.00 2010.04.01
62

R32C/100 Series C Compiler Package V.1.02 3. Programming Technique

3.4 Other

3.4.1 Precautions on Transporting between NC-Series Compilers

NC100 basically is compatible with Renesas C compilers "NCxx" at the language specification level (including
extended functions). However, there are some differences between the compiler (this manual) and other NC-series
compilers as described below.

a Difference in default near/far

The default " near/far" in the NC series are shown in Table 3.3. Therefore, when transporting the compiler (this
manual) to other NC-series compilers, the near/far specification needs to be adjusted.

Table 3.3 Default near/far in the NC Series
Compiler RAM data ROM data Program
NC100 near

(However, pointer type is far Fixed)
far far Fixed

NC308 near
(However, pointer type is far)

far far Fixed

NC30 near far far Fixed

REJ10J2009-0200 Rev.2.00 2010.04.01
63

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

Appendix A Command Option Reference

This appendix describes how to start the compile driver nc100 and the command line options. The description of
the command line options includes those for the as100 assembler and ln100 linkage editor, which can be started
from nc100.

A.1 nc100 Command Format

% nc100 [command-line-option] <[assembly-language-source-file-name]

[relocatable-object-file-name] [C-source-file-name]>

% : Prompt
< > : Mandatory item
[] : Optional item

: Space

Figure A.1 nc100 Command Line Format

% nc100 -osample -as100 "-l" -ln100 "-ms" ncrt0.a30 sample.c<RET>

<RET> : Return key
* Always specify the startup program first when linking.

Figure A.2 Example nc100 Command Line

REJ10J2009-0200 Rev.2.00 2010.04.01
64

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

A.2 nc100 Command Line Options

A.2.1 Options for Controlling Compile Driver

Table A.1 shows the command line options for controlling the compile driver.

Table A.1 Options for Controlling Compile Driver
Option Function
-c Creates a relocatable file (extension .r30) and ends processing 1

- Didentifier Defines an identifier. Same function as #define.
-dsource
(Short form -dS)

Generates an assembly language source file (extension ".a30") with a C
language source list output as a comment. (Not deleted even after
assembling.)

-dsource_in_list
(Short form -dSL)

In addition to the "-dsource(-dS)" function, generates an assembly
language list file (.lst).

-E Invokes only preprocess commands and outputs result to standard
output.

-Idirectory Specifies the directory containing the file(s) specified in #include.
You can specify up to 256 directories.

-P Invokes only preprocess commands and creates a file (extension .i).
-S Creates an assembly language source file (extension .a30) and ends

processing.
-silent Suppresses the copyright message display at startup.
-Upredefined macro Undefines the specified predefined macro.

-c

Compile driver control

Function: Creates a relocatable object file (extension .r30) and finishes processing.

Notes: If this option is specified, no absolute module file (extension .x30) or other file output by

ln100 is created.

-Didentifier

Compile driver control

Function: The function is the same as the preprocess command #define.

Delimit multiple identifiers with spaces.

Syntax: nc100 -Didentifier[=constant] <C source file>

[= constant] is optional.

Notes: The number of identifiers that can be defined may be limited by the maximum number

of characters that can be specified on the command line of the operating system of the
host machine.

1 If you do not specify command line options -c, -E, -P, or -S, nc100 finishes at ln100 and output files up to the absolute load module file
(extension .x30) are created.

REJ10J2009-0200 Rev.2.00 2010.04.01
65

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

-dsource -dS

Comment option

Function: Generates an assembly language source file (extension ".a30") with a C language source

list output as a comment (Not deleted even after assembling).

Supplement: (1) When the -S option is used, the option "-dsouce(-dS)" is automatically enabled. The

generated files ".a30" and ".r30" are not deleted.
(2) Use this option when you want to output C-language source lists to the assembly

list file.

-dsource_in_list -dSL

List File option

Function: In addition to the "-dsource(-dS)" function, generates an assembly language list file

(filename extension ".lst").

-E

Compile driver control

Function: Invokes only preprocess commands and outputs results to standard output.

Notes: When this option is specified, no assembly source file (extensions .a30), re-locatable

object files (extension .r30), absolute module files (extension .x30), or other files output
by ccom100, as100, or ln100 are generated.

-Idirectory

Compile driver control

Function: Specifies the directory name in which to search for files to be referenced by the

preprocess command #include.
Max specified 256 directory.

Syntax: nc100 -Idirectory <C source file>

Supplement: An example of specifying two directories (dir1 and dir2) for the "-I" option is shown

below.
% nc100 -Idir1 -Idir2 sample.c<RET>

%: Indicates the prompt
<RET>: Indicates the Return key

Notes: The number of directories that can be defined may be limited by the maximum number

of characters that can be specified on the command line of the operating system of the
host machine.

REJ10J2009-0200 Rev.2.00 2010.04.01
66

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

-P

Compile driver control

Function: Invokes only preprocess commands, creates a file (extension .i) and stops processing.

Notes: (1) When this option is specified, no assembly source file (extensions .a30), re-locatable

object files (extension .r30), absolute module files (extension .x30) or other files
output by ccom100, as100, or ln100 are generated.

(2) The file (extension .i) generated by this option does not include the #line command
generated by the preprocessor. To get a result that includes #line, try again with
the -E option.

-S

Compile driver control

Function: Creates assembly language source files (extension .a30 and .ext) and stops processing.

Notes: When this option is specified, no relocatable object files (extension.r30), absolute module

files (extension .x30) or other files output by as100 or ln100 are generated.

-silent

Compile driver control

Function: Suppresses the display of copyright notices at startup.

-Upredefined macro

Compile driver control

Function: Undefines predefined macro constants.

Syntax: nc100 -Upredefined macro <C source file>

Notes: The maximum number of macros that can be undefined may be limited by the

maximum number of characters that can be specified on the command line of the
operating system of the host machine.
STDC, _LINE_, _FILE_, _DATE_, and _TIME_ cannot be undefined.

REJ10J2009-0200 Rev.2.00 2010.04.01
67

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

A.2.2 Options Specifying Output Files

Table A.2 shows the command line option that specifies the name of the output absolute module file.

Table A.2 Options for Specifying Output Files
Option Function
-dirdirectory-name Specifies the destination directory of the file(s) (absolute module file, map

file, etc.) generated by ln100.
-ofile-name Specifies the name(s) of the file(s) (absolute module file, map file, etc.)

generated by ln100. This option can also be used to specify the
destination directory.
This option can also be used to specify the file name includes the path. Do
not specify the filename extension.

-dirdirectory-name

Output file specification

Function: This option allows you to specify an output destination directory for the output file.

Syntax: nc100 -dirdirectory-name

Notes: The source file information used for debugging is generated starting from the directory

from which the compiler was invoked (the current directory).
Therefore, if output files were generated in different directories, the debugger, etc. must
be notified of the directory from which the compiler was invoked.

-ofile-name

Output file specification

Function: Specifies the name(s) of the file(s) (absolute module file, map file, etc.) generated by

ln100. This option can also be used to specify the file name includes the path.
You must not specify the filename extension.

Syntax: nc100 -ofile-name <C source file>

REJ10J2009-0200 Rev.2.00 2010.04.01
68

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

A.2.3 Version Information Display Option

Table A.3 shows the command line options that display the cross-tool version data.

Table A.3 Options for Displaying Version Data
Option Function
-v Displays the name of the command program and the command line

during execution.
-V Displays the startup messages of the compiler programs, then finishes

processing (without compiling).

-v

Display command program name

Function: Compiles the files while displaying the name of the command program that is being

executed.

Notes: Use lowercase v for this option.

-V

Display version data

Function: Displays version data for the command programs executed by the compiler, then

finishes processing.

Supplement: Use this option to check that the compiler has been installed correctly. The "R32C/100

Series C Compiler package Release Notes" list the correct version numbers of the
commands executed internally by the compiler.

If the version numbers in the Release Notes do not match those displayed using this
option, the package may not have been installed correctly. See the "R32C/100 Series C
Compiler package Release Notes" for details of how to install the NC100 package.

Notes: (1) Use uppercase V for this option.

(2) If you specify this option, all other options are ignored.

REJ10J2009-0200 Rev.2.00 2010.04.01
69

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

A.2.4 Options for Debugging

Table A.4 lists the debugging startup options that output C language level debug information.

Table A.4 Options for Debugging
Option Option
-g Outputs debug information to an assembly language source file

(extension .a30). This makes C level debugging of programs possible.
-genter Always outputs an enter instruction when calling a function.

Be sure to specify this option when using the debugger's stack trace
function.

-g

Outputting debugging information

Function: Outputs debugging information to an assembler source file (extension .a30).

Notes: When debugging your program at the C language level, always specify this option.

Specification of this option does not affect the code generated by the compiler.

-genter

Outputting enter instruction

Function: Always output an enter instruction when calling a function.

Notes: (1) When using the debugger's stack trace function, always specify this option.

Without this option, you cannot obtain the correct result.
(2) When this option is specified, the compiler generates code to reconstruct the stack

frame using the enter command at entry of the function regardless of whether or
not it is necessary. Consequently, the ROM size and the amount of stack used may
increase.

REJ10J2009-0200 Rev.2.00 2010.04.01
70

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

A.2.5 Optimization Options

Table A.5 shows the command line options for optimizing program execution speed and ROM capacity.

Table A.5 Optimization Options
Option Short form Function
-O[1-5] None Optimization of speed and ROM size.
-O5OA None Inhibits code generation based on bit-manipulating

instructions when the optimization option “-O5” is selected.
-OR None Optimization of ROM size followed by speed.
-OS None Optimization of speed followed by ROM size.
-OR_MAX -ORM Maximum optimization of ROM size followed by speed.
-OS_MAX -OSM Maximum optimization of speed followed by ROM size.
-Ocompare_byte_to_word -OCBTW Compares consecutive bytes of data at contiguous addresses

in words.
-Oconst -OC Performs optimization by replacing references to the

const-qualified external variables with constants.
-Ofile_inline -OFI All inline functions are expanded inline.
-Oinline_line -OIL This option changes the size (number of lines) of the function

to be inline expanded.
-Oglb_jmp -OGJ Global jump is optimized.
-Oglobal_to_inline -OGTI Handles global functions as inline-declared.
-Oloop_unroll[=loop count] -OLU Unrolls code as many times as the loop count without

revolving the loop statement. The "loop count" can be
omitted. When omitted, this option is applied to a loop count
of up to 5.

-Ono_bit -ONB Suppresses optimization based on grouping of bit
manipulations.

-Ono_break_source_debug -ONBSD Suppresses optimization based on grouping of bit
manipulations.

-Ono_float_const_fold -ONFCF Suppresses the constant folding processing of floating point
numbers.

-Ono_logical_or_combine -ONLOC Suppresses the optimization that puts consecutive OR
together.

-Ono_asmopt -ONA Inhibits starting the assembler optimizer "aopt100".
-Osp_adjust -OSA Optimizes removal of stack correction code. This allows the

necessary ROM capacity to be reduced.
However, this may result in an increased amount of stack
being used.

-Ostatic_to_inline -OSTI A static function is treated as an inline function.

The effects of main optimization options are shown in Table A.6.

Table A.6 Effect of each Optimization Options
Option -O -OR -OS -OSA
SPEED faster lower faster faster
ROM size decrease decrease increase decrease
usage of stack decrease same same increase

REJ10J2009-0200 Rev.2.00 2010.04.01
71

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

-O[1-5]

Optimization

Function: Optimizes speed and ROM size to the maximum.

This option can be specified with -g options.-O3 is assumed if you specify no numeric (no
level).

 -O1: Makes "-O3", "-Ono_bit", "-Ono_break_source_debug" and,

"-Ono_float_const_fold" valid.

 -O2: Makes no diffrence with "-O1".

 -O3: Optimizes speed and ROM size to the maximum.

 -O4: "-O3" and "-Oconst" valid.

 -O5: Effect the best possible optimization in common sub expressions (if the option

"-OR" is concurrently specified); effects the best possible optimization in
transfer and comparison of character strings (if the option "-OS" is
concurrently specified).

 However, a normal code may be unable to be outputted when fulfilling the following

conditions.
 With a different variable points out the same memory position

simultaneously within a single function and they point to an-identical
address.

 When these variables are used in one and the same function.
 Exsample :

int a = 3;
int *p = &a;

void test1(void)
{
 int b;
 *p = 9;
 a = 10;
 b = *p; /* By applying optimization, "p" will be transposed to "9". */
 printf("b = %d (expect b = 10)¥n",b);
}

result:

b = 9 (expect =10)

REJ10J2009-0200 Rev.2.00 2010.04.01
72

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

-O[1-5]

Optimization

Notes: When the "-O5" optimizing options is used, the compiler generates in some cases

"BTSTC" or "BTSTS" bit manipulation instructions. In R32C/100, the "BTSTC" and
"BTSTS" bit manipulation instructions are prohibited from rewriting the contents of the
interrupt control registers.

However, the compiler does not recognize the type of any register, so, should "BTSTC" or
"BTSTS" instructions be generated for interrupt control registers, the assembled
program will be different from the one you intend to develop.

When the "-O5" optimizing options is used in the program shown below, a "BTSTC"
instruction is generated at compilation, which prevents an interrupt request bit from
being processed correctly, resulting in the assembled program performing improper
operations.

 #pragma ADDRESS ta0ic_addr 006CH /* Timer A0 interrupt control register */

struct {
char ilvl :3;
char ir :1; /* An interrupt request bit */
char dmy :4;
} ta0ic;

void wait_until_IR_is_ON(void)
{
 while (ta0ic.ir == 0) /* Waits for ta0ic.ir to become 1 */
 {
 ;
 }
 ta0ic.ir = 0; /* Returns 0 to ta0ic.ir when it becomes 1 */
}

Please compile after taking the following measures, if the manipulation instructions is
generated to bit operation of SFR area. Make sure that no "BTSTC" and "BTSTS"
instructions are generated after these side-steppings.

 Optimization options other than "-O5" are used".
When you use the optimization option of "-O5", please use together with
"-O5A."

 An instruction is directly described in a program using an ASM function.

-O5OA

Optimization

Function: Inhibits code generation based on bit-manipulating instructions when the optimization

option “-O5” is selected.

REJ10J2009-0200 Rev.2.00 2010.04.01
73

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

-OR

Optimization

Function: Optimizes ROM size in preference to speed. This option can be specified with "-g" and

"-O" options.

Notes: When this option is used, the source line information may partly be modified in the

course of optimization. Therefore, if this options is specified, when your program is
running on the debugger, your program is a possibility of different actions.
If you do not want the source line information to be modified, use the
"-One_break_source_debug(-ONBSD)" option to suppress optimization.

-OS

Optimization

Function: Although the ROM size may somewhat increase, optimization is performed to obtain the

fastest speed possible.
This option can be specified along with the "-g" and " -O " options.

-OR_MAX -ORM

Optimization

Function: Optimizes ROM size in preference to speed.

When this option is used, the effect is same with "-O5", "-O5OA", "-OGJ", "-OR", "-fD32",
"-fNA", "-fUF" options.

-OS_MAX -OSM

Optimization

Function: Although the ROM size may somewhat increase, optimization is performed to obtain the

fastest speed possible.
When this option is used, the effect is same with "-O4", "-OGJ", "-OGTI", "-OS", "-OSA",
"-OSTI", "-OLU=10", "-fD32", "-fUF" options.

-Ocompare_byte_to_word -OCBTW

Optimization

Function: Compares consecutive bytes of data at contiguous addresses in words.

Notes: This option is only valid if you specify option -O[1 to 5], -OR, -OR_MAX(-ORM), -OS or

-OS_MAX(-OSM)).

REJ10J2009-0200 Rev.2.00 2010.04.01
74

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

-Oconst -OC

Optimization

Function: Optimizes code generation by replacing reference to variables to declared by the

const-qualifier with constants.
This is effective even when other than the "-O4" option is specified.

Supplement: Optimization is performed when all of the following conditions are met:

(1) Variables not including bit-fields and unions.
(2) Variables for which the const-qualifier is specified but are not specified to be

volatile.
(3) Variables that are subject to initialization in the same C language source file.
(4) Variables that are initialized by constant or const-qualified variables.

-Ofile_inline [= inline expansion file(,...)] -OFI [= inline expansion file(,...)]

Inline expansion

Function: All inline functions are expanded in-line.

 Code generation for unreferenced static functions is suppressed.
 If an inline expansion file is specified, inline expansion is performed on global

functions extending across a file boundary.
 The inline expansion of global functions extending across a file boundary is
 performed on only those functions whose expanded size (from ‘{’ to ‘}’) is within 150
lines including a comment line. Note that the size can be changed using the option
“-Oinline_line.”

Supplement: Although it normally is necessary that an inline function be declared before its entity

can be defined, use of this option permits the entity of an inline function to be defined
before the inline function is declared.

 The following shows an example of a program fragment where a function is inline
 expanded for the option “-Ofile_inline” specified in it.

extern int i;
inline int func(void)

void main(void)

 {
int s;

s = func();
s = func();

 }

inline int func(void)
 {

return i++;
 }

The function func() is inline expanded within the
respective places of the function main() in which
it is called.

Furthermore, if an inline expansion file is specified, the global functions extending
across a file boundary can be inline expanded.

 An example of a program fragment where a function is inline expanded for the
option “-Ofile_inline = inline expansion file” specified in it. In the example below, inline
expansion is performed on the source file main.c for the option “-Ofile_inline = sub.c”
specified in it.

REJ10J2009-0200 Rev.2.00 2010.04.01
75

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

-Ofile_inline [=inline expansion file(,...)] -OFI [=inline expansion file(,...)]

Inline expansion

file：main.c

extern int func(void)
extern int i;

void main(void)

 {
int s;

s = func();
s = func();

 }

 file：sub.c
 extern int func(void)
extern int i;

int func(void)

 {
return i++;

 }

The function func() defined in sub.c is
inline expanded within the respective
places of the function main() defined in
main.c where func() is called.

Notes: (1) Declaration of an inline function and the definition of the entity of the inline

function must be written in one and the same file.
(2) No structures or unions can be used for the arguments to an inline function. If this

precaution is neglected, a compile error may result.
(3) Inline functions cannot be called indirectly. If any indirect call is encountered, a

compile error may result.
(4) Inline functions cannot be called recursively. If any recursive call is encountered, a

compile error may result.
(5) If multiple inline expansion files are specified, inline expansion is performed in the

order in which the files are specified. If the inline expand option is specified as
“main.c -Ofile_inline = a.c, b.c, c.c,” it is processed assuming the file configuration
shown below.

c.c

b.c

a.c

main.c

Since processing is performed in the direction of
the arrow, the forward-referenced functions in
a.c, b.c and c.c. each are not inline expanded.

(6) This option applies to the program section only. If section names are changed by

#pragma SECTION, functions are not inline expanded across a file boundary.
(7) The static functions defined by #pragma __ASMMACRO that begin with the

underbar (_) (those defined in asmmacro.h and string.h) are inline expanded.

REJ10J2009-0200 Rev.2.00 2010.04.01
76

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

-Oinline_line = inline expansion line -OI L= inline expansion line

Inline expansion

Function: This option changes the size (number of lines) of the function to be inline expanded for

the option “-Ofile_inline,” “-Oglobal_to_inline” or “-Ostatic_to_inline” specified in the
program.
When this option is omitted, inline expansion is performed on only the functions whose
expanded size from ‘{’ to ‘}’ is within 150 lines including a comment line.

-Oglb_jmp -OGJ

Optimization

Function: Global jump is optimized.

REJ10J2009-0200 Rev.2.00 2010.04.01
77

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

-Oglobal_to_inline -OGTI

Handles global functions as inline-declared.

Function: Handles global functions as inline-declared functions (inline functions) to generate

inline-expanded assemble code.

Supplement: When the following conditions are met, the compiler handles global functions as inline

functions to generate inline-expanded assemble code.
(1) Operation is performed on the global function whose body is written prior to a

function call.
 A function call and the body of that function must be written in the same

source file.
 If the “-Ofile_inline” option is selected, this condition should be ignored.

(2) If no addresses are acquired in the program for the target global function
(3) If the target global function is recursively called

The following shows an example of how a global function to be inline expanded will be
written.
 extern int i;

int func(void)

 {
 return i++;
 }

void main(void)
 {
 int s;

 s = func();
 s = func();
 }

The function func() is inline expanded in
respective places of the function main() in which
it is called.

Notes: (1) Assembler code for the body of the global function handled as an inline function is

always generated.
(2) If a function needs to be forcibly handled as an inline function, be sure to declare it

as inline.
(3) Inline expansion is performed on only the functions whose expanded size from ‘{’ to

‘}’ is within 150 lines including a comment line. Note that the size can be changed
using the option “-Oinline_line.”

REJ10J2009-0200 Rev.2.00 2010.04.01
78

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

-Oloop_unroll[=loop count] -OLU[=loop count]

Unrolls a loop

Function: Unrolls code as many times as the loop count without revolving the loop statement.

The "loop count" can be omitted. When omitted, this option is applied to a loop count of
up to 5.

Supplement: Unrolled code is output for only the "for" statements where the number of times they are

executed is known. Specify the upper-limit count for which times for is revolved in the
target for statement to be unrolled.
By default, this option is applied to the for statements where for is revolved up to five
times.

Notes: The ROM size increases for reasons that the for statement is revolved.

-Ono_bit -ONB

Suppression of optimization

Function: Suppresses optimization based on grouping of bit manipulations.

Supplement: When you specify -O (or -OR or -OS), optimization is based on grouping manipulations

that assign constants to a bit field mapped to the same memory area into one routine.
Because it is not suitable to perform this operation when there is an order to the
consecutive bit operations, as in I/O bit fields, use this option to suppress optimization.

Notes: This option is only valid if you specify option -O[3 to 5], -OR or -OS.

-Ono_break_source_debug -ONBSD

Suppression of optimization

Function: Suppresses optimization that affects source line data.

Supplement: Specifying the " -OR" or "-O" option performs the following optimization, which may

affect source line data. This option ("-ONBSD") is used to suppress such optimization.

Notes: This option is valid only when the "-OR" or "-O" option is specified.

REJ10J2009-0200 Rev.2.00 2010.04.01
79

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

-Ono_float_const_fold -ONFCF

Suppression of optimization

Function: Suppresses the constant folding processing of floating point numbers.

Supplement: By default, NC100 folds constants. Following is an example.

 before optimization:
 (val/1000e250)*50.0

after optimization:
 val/20e250

In this case, if the application uses the full dynamic range of floating points, the results
of calculation differ as the order of calculation is changed. This option suppresses the
constant folding in floating point numbers so that the calculation sequence in the C
source file is preserved.

-Ono_logical_or_combine -ONLOC

Suppression of optimization

Function: Suppresses the optimization that puts logical OR together.

Supplement: If one of three options "-O3 or greater, -OR, or -OS" is specified when compiling as in the

example shown below, the compiler optimizes code generation by combining logical OR.
 Example:

 if(a & 0x01 ¦¦ a & 0x02 ¦¦ a & 0x04)

 (Optimized)

 if(a & 0x07)

In this case, the variable “a” is referenced up to three times, but after optimization it is
referenced only once.
However, if the variable “a” has any effect on I/O references, etc., the program may
become unable to operate correctly due to optimization. In such a case, specify this
option to suppress the optimization to combine logical OR.
Note, however, that if the variable is declared with volatile, logical OR are not combined
for optimization.

-Ono_asmopt -ONA

Inhibits starting the assembler optimizer

Function: Inhibits starting the assembler optimizer "aopt100".

REJ10J2009-0200 Rev.2.00 2010.04.01
80

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

-Osp_adjust -OSA

Removing stack correction code after calling a function

Function: Optimizes code generation by combining stack correction codes after function calls.

Please use this option together with -O[1-5].

Supplement: Because the area for arguments to a function normally is deal located for each function

call made, processing is performed to correct the stack pointer.
If this option is specified, processing to correct the stack pointer is performed collectively,
rather than for each function call made.
 Example :

In the example shown below, the stack pointer is corrected each time func1() and
then func2() is called, so that the stack pointer is corrected twice. If this option is
specified, the stack pointer is corrected only once.

char func1(char, char, char);
char func2(char, char, char);

void main(void) {
 char i = 1;
 char j = 2;
 char k=3;
 char l, m;

 l = func1(i, j, k);
 m = func2(i, j, k);
}

Notes: Use of the option "-Osp_adjust" helps to reduce the ROM capacity and at the same time,

to speed up the processing. However, the amount of stack used may increase.

REJ10J2009-0200 Rev.2.00 2010.04.01
81

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

-Ostatic_to_inline -OSTI

A static function is treated as an inline function

Function: A static function is treated as an inline function and the assembling code which carried

out inline deployment is generated.

Supplement: When the following conditions are fulfilled, a static function is treated as an inline

function and the assembling code which carried out inline deployment is generated.
(1) Substance is described before the function call. It is aimed at a static function.

 A function call and the body of that function must be written in the same
source file.

 When you specify "-Ofile_inline" option, ignore this condition.
(2) When address acquisition is omitted in the program to the static function.
(3) When the recursive call of the static function has not been carried out.

The following shows an example of how a static function to be inline expanded will be
written.
 extern int i;

static int func(void)

 {
 return i++;
 }

void main(void)
 {
 int s;

 s = func();
 s = func();
 }

Function func() is a function.
inline deployment is carried out in each place
currently called within main().

Notes: (1) The assembler code to description of substance of the static function which became

inline function treatment is always generated.
However, it is not generated when using it together with the option "- Ofile_
inline".

(2) About a function, it is compulsorily. In treating as an inline function, it is in a
function. Please make an inline declaration.

(3) Inline expansion is performed on only the functions whose expanded size from ‘{’ to
‘}’ is within 150 lines including a comment line. Note that the size can be changed
using the option “-Oinline_line.”

REJ10J2009-0200 Rev.2.00 2010.04.01
82

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

A.2.6 Generated Code Modification Options

Table A.7 shows the command line options for controlling nc100-generated assembly code.

Table A.7 Generated Code Modification Options
Option Short form Function
-fansi None Makes "-fnot_reserve_far_and_near", "-fnot_reserve_asm",

and "-fextend_to_int" valid.
-fconst_not_ROM -fCNR Does not handle the types specified by const as ROM data.
-fdouble_32 -fD32 This option specifies that the double type be handled in

32-bit data length as is the float type.
-fenable_register -fER Make register storage class available.
-fextend_to_int -fETI Performs operation after extending char-type or short-type

data to the int-type data. (Extended according to ANSI
standards.) 2

-ffar_RAM -fFRAM Changes the default attribute of RAM data to far.
-finfo None Outputs the information required for the Inspector, Call

Walker and Map Viewer to the absolute module file (.x30).
-fint_16 -fI16 Does handle int type at the 16-bit width.
-fJSRW None Changes the default instruction for calling functions to

JSR.W.
-fnear_ROM -fNROM Changes the default attribute of ROM data to near.
-fno_align -fNA Does not align the start address of the function.
-fno_switch_table -fNST When this option is specified, the code which branches since

it compares is generated to a switch statement.
-fnot_address_volatile -fNAV Does not regard the variables specified by #pragma

ADDRESS (#pragma EQU) as those specified by volatile.
-fnot_reserve_asm -fNRA Exclude asm from reserved words. (Only _asm is valid.)
-fnot_reserve_far_and_near -fNRFAN Exclude far and near from reserved words. (Only _far and

_near are valid.)
-fnot_reserve_inline -fNRI Exclude far and near from reserved words. (Only _inline is

made a reserved word.)
-fsigned_char -fSC Handles type char without sign specification as type signed

char.
-fswitch_other_section -fSOS This option outputs a ROM table for a 'switch' statement to

some other section than a program section.
-fuse_FPU -fUF Outputs FPU instruction.

2 (unsigned) char-type, signed char-type, short-type and unsigned short-type data evaluated under ANSI rules is always extended to the int-type
data.
This is because operations on char types (c1=c2*2/c3; for example) would otherwise result in an overflow and failure to obtain the intended result.

REJ10J2009-0200 Rev.2.00 2010.04.01
83

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

-fansi

Modify generated code

Function: Validates the following command line options:
 -fnot_reserve_asm: Removes asm from reserved words
 -fnot_reserve_far_and_near: Removes far and near from reserved words
 -fnot_reserve_inline: Removes inline from reserved words
 -fextend_to_int: Extends char-type data to int-type data to

perform operations

Supplement: When this option is specified, the compiler generates code in conformity with ANSI

standards.

-fconst_not_ROM -fCNR

Modify generated code

Function: Does not handle the types specified by const as ROM data.

Supplement: The const-specified data by default is located in the ROM area. Take a look at the

example below.
 int const array[10] = { 1,2,3,4,5,6,7,8,9,10 };
In this case, the array "array" is located as ROM area. By specifying this option, you can
locate the "array" in the RAM area.
You do not normally need to use this option.

-fdouble_32 -fD32

Modify generated code

Function: This option specifies that the double type be handled in 32-bit data length as is the float

type.

Supplement: (1) When specifying this option, always make sure the prototype of the function is

declared. If no prototype declarations exist, invalid code may be generated.
(2) When this option is selected, the debug information for type double is handled as

type float. In the C watch window or global window, etc. of the emulator debugger
or simulator debugger, said information is displayed as type float.

REJ10J2009-0200 Rev.2.00 2010.04.01
84

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

-fenable_register -fER

Register storage class

Function Allocates variables with a specified register storage class to registers.

Supplement: When optimizing register assignments of auto variables, it may not always be possible

to obtain the optimum solution. This option is provided as a means of increasing the
efficiency of optimization by instructing register assignments in the program under the
above situation.
When this option is specified, the following register-specified variables are forcibly
assigned to registers:

 Integral type variable
 Floating point variable
 Pointer variable

Notes: Because register specification in some cases has an adverse effect that the efficiency

decreases, be sure to verify the generated assembly language before using this
specification.

-fextend_to_int -fETI

Modify generated code

Function: Performs operation after extending char-type or short-type data to the int-type data.

(Extended according to ANSI standards.)

Supplement: (unsigned)char-type, signed char-type, short-type and unsigned short-type data

evaluated under ANSI rules is always extended to the int-type data. This extension is
provided to prevent a problem in char-type arithmetic operations, e.g., c1 = c2 * 2 / c3;
that the char type overflows in the middle of operation, and that the result takes on an
unexpected value. An example is shown below.
 void main(void)

{
 char c1:
 char c2 = 200;
 char c3 = 2;

 c1 = c2 * 2 / c3;
}

In this case, the char type overflows when calculating [c2 * 2], so that the correct result
may not be obtained.
Specification of this option helps to obtain the correct result. The reason why extension
into the int type is disabled by default is because it is conducive to increasing the ROM
efficiency any further.

REJ10J2009-0200 Rev.2.00 2010.04.01
85

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

-ffar_RAM -fFRAM

Modify generated code

Function: Change the default attribute of RAM data to far.

Supplement: The RAM data (variables) are located in the near area by default. Use this option when

you want the RAM data to be located in other areas than the near area (64-Kbytes
area).

-finfo

Modify generated code

Function: Outputs the information required for the "Call Walker" and "Map Viewer".

Supplement: When using "Call Walker" and "Map Viewer" the absolute module file ".x30" output by

this option is needed.

-fint_16 -fI16

Modify generated code

Function: Does handle int type at the 16-bit width.

Supplement: When using this option, you need to link nc100i16.lib instead of nc100lib.lib as the

standard library. If you executed a range of operations from compile to link after
specifying this option from the compiler driver, the libraries to be linked are
automatically changed.
The default size of type int when this option is not specified is 32 bits.
Note that if this option is used in combination with the compile option
“-fuse_FPU(-fIUF),” you need to link nc100i16fpu.lib instead of nc100lib.lib.

-fJSRW

Modify generated code

Function: Changes the default instruction for calling functions to JSR.W.

Supplement: When calling a function that has been defined external to the source file, the "JSR.A"

command is used by default. This option allows it to be changed to the "JSR.W"
command. Change to the "JSR.W" command helps to compress the generated code size.
This option is useful when the program is relatively small not exceeding 32 Kbytes in
size or ROM compression is desired.

Notes: Conversely, if a function is called that is located 32 Kbytes or more forward or backward

from the calling position, the "JSR.W" command causes an error when linking. This
error can be avoided by a combined use with "#pragma JSRA".

REJ10J2009-0200 Rev.2.00 2010.04.01
86

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

-fnear_ROM -fNROM

Modify generated code

Function: Changes the default attribute of ROM data to near.

Supplement: The ROM data (const-specified variables, etc.) are located in the far area by default. By

specifying this option you can locate the ROM data in the near area.

-fno_align -fNA

Modify generated code

Function: Does not align the start address of the function.

-fno_switch_table -fNST

Modify generated code

Function: When this option is specified, the code which branches since it compares is generated to

a switch statement.

Supplement: Only when code size becomes smaller when not specifying this option, the code which

used the jump table is generated.

Notes: For such a large function whose code size is larger than 32 Kbytes, if code which

contains a jump table for a switch statement is generated, the program may not be
branched to an appropriate address.
In that case, be sure to specify this option.
Please note that when a code which cannot be branched properly because of not
specifying this option is generated, the compiler, assembler and linkage editor do not
output any warning or error message.

-fnot_address_volatile -fNAV

Modify generated code

Function: Does not handle the global variables specified by "#pragma ADDRESS" or "#pragma

EQU" or the static variables declared outside a function as those that are specified by
volatile.

Supplement: If I/O variables are optimized in the same way as for variables in RAM, the compiler

may not operate as expected. This can be avoided by specifying volatile for the I/O
variables.
Normally #pragma ADDRESS or #pragma EQU operates on I/O variables, so that even
though volatile may not actually be specified, the compiler processes them assuming
volatile is specified. This option suppresses such processing.

Notes: You do not normally need to use this option.

REJ10J2009-0200 Rev.2.00 2010.04.01
87

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

-fnot_reserve_asm -fNRA

Modify generated code

Function: Removes asm from the list of reserved words.

Supplement: "_asm" that has the same function is handled as a reserved word.

-fnot_reserve_far_and_near -fNRFAN

Modify generated code

Function: Removes far and near from list of reserved words.

Supplement: "_far" and "_near" that has the same function is handled as a reserved word.

-fnot_reserve_inline -fNRI

Modify generated code

Function: Does not handle inline as a reserved word.

Supplement: "_inline" that has the same function is handled as a reserved word.

-fsigned_char -fSC

Modify generated code

Function: Handles type char without sign specification as type signed char.

-fswitch_other_section -fSOS

Modify generated code

Function: This option outputs a ROM table for a 'switch' statement to some other section than a

program section.

Supplement: Section name is 'switch_table'

Notes: This option does not normally need to be used.

-fuse_FPU -fUF

Modify generated code

Function: Outputs FPU instruction.

Supplement: When using this option, you need to link nc100fpu.lib instead of nc100lib.lib as the

standard library. If you executed a range of operations from compile to link after
specifying this option from the compiler driver, the libraries to be linked are
automatically changed.
Note that if this option is used in combination with the compile option “-fint_16(-fI16),”
you need to link nc100i16fpu.lib instead of nc100lib.lib.

REJ10J2009-0200 Rev.2.00 2010.04.01
88

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

A.2.7 Library Specifying Option

Table A.8 lists the startup options you can use to specify a library file.

Table A.8 Library Specifying Option
Option Function
-llibraryfilename Specifies a library file that is used by ln100 when linking files.

-llibrary-file-name

Function: Specifies a library file that is used by ln100 when linking files. The file extension can be

omitted.

Syntax: nc100 -lfilename <C source file name>

Notes: (1) In file specification, the extension can be omitted. If the extension of a file is

omitted, it is processed assuming an extension ".lib".
(2) If you specify a file extension, be sure to specify ".lib".
(3) NC100 links by default the library “nc100lib.lib” that is present in the directory

specified by the environment variable LIB100. The table below lists the library
files to be linked for each compile option specified.

(4) If multiple libraries are specified, references to “nc100lib.lib” are assigned the

lowest priority.

compile option
"-fint_16"

compile option
"-fuse_FPU"

reference library

None None nc100lib.lib
Specify None nc100i16.lib
None Specify nc100fpu.lib
Specify Specify nc100i16fpu.lib

REJ10J2009-0200 Rev.2.00 2010.04.01
89

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

A.2.8 Warning Options

Table A.9 shows the command line options for outputting warning messages for contraventions of nc100 language
specifications.

Table A.9 Warning Options
Option Short form Function
-Wall None Displays message for all detectable warnings.

(however, not including alarms output by
-Wlarge_to_small and "-Wno_used_argument")

-Wccom_max_warnings
=Warning Count

-WCMW This option allows you to specify an upper limit for the
number of warnings output by ccom100.

-Werror_file<file name > -WEF Outputs error messages to the specified file.
-Wignore_near_pointer -WINP Inhibits a warning when the near pointer is handled as a

far pointer.
-Wlarge_to_small -WLTS Outputs a warning about the tacit transfer of variables in

descending sequence of size.
-Wmake_tagfile -WMT If an error or warning occurred, a tag file is output for

each file.
-Wnesting_comment -WNC Outputs a warning for a comment including "*/" .
-Wno_stop -WNS Prevents the compiler stopping when an error occurs.
-Wno_used_argument -WNUA Outputs a warning for unused argument of functions.
-Wno_used_function -WNUF Displays unused global functions when linking.
-Wno_used_static_function -WNUSF For one of the following reasons, a static function name is

output that does not require code generation.
-Wno_warning_stdlib -WNWS Specifying this option while "-Wnon_prototype" or "-Wall"

is specified inhibits "Alarm for standard libraries which
do not have prototype declaration.

-Wnon_prototype -WNP Outputs warning messages for functions without
prototype declarations.

-Wstdout None Outputs error messages to the host machine's standard
output (stdout).

-Wstop_at_link -WSAL Stops linking the source files if a warning occurs during
linking to suppress generation of absolute module files.
Also, a return value "10" is returned to the host OS.

-Wstop_at_warning -WSAW Stops compiling the source files if a warning occurs
during compiling and returns the compiler end code "10".

-Wundefined_macro -WUM Warns you that undefined macros are used in #if.
-Wuninitialize_variable -WUV Outputs a warning about auto variables that have not

been initialized.
-Wunknown_pragma -WUP Outputs warning messages for non-supported #pragma.
-Wmultiple_tentative_definitions -WMTD Outputs a warning when there are multiple tentative

definitions for one and the same variable name.

REJ10J2009-0200 Rev.2.00 2010.04.01
90

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

-Wall

Warning Options

Function: Indicates all detectable alarms.

Supplement: (1) The alarms indicated here do not include those that may be generated when

“Wlarge_to_small(-WLTS)” and “Wno_used_argument(-WNUA)” and
“Wno_used_static_function(-WNUSF)” are used.

(2) The alarms indicated here are equivalent to those of the options
“Wnon_prototype(-WNP),” “Wunknown_pragma(-WUP),”
“Wnesting_comment(-WNC),” and “Wuninitialize_variable(-WUV).”

(3) Alarms are indicated in the following cases too:
 When the assignment operator = is used in the if statement, the for

statement or a comparison statement with the && or || operator.
 When "==" is written to which '=' should be specified.
 When function is defined in old format.

Notes: These alarms are detected within the scope that the compiler assumes on its judgment

that description is erroneous. Therefore, not all errors can be alarmed.

-Wccom_max_warnings= Warning Count -WCMW= Warning Count

Warning Options

Function: This option allows you to specify an upper limit for the number of warnings output by

ccom100.

Supplement: By default, there is no upper limit to warning outputs.

Use this option to adjust the screen as it scrolls for many warnings that are output.

Notes For the upper-limit count of warning outputs, specify a number equal to or greater than

0. Specification of this count cannot be omitted. When you specify 0, warning outputs are
completely suppressed inhibited.

-Werror_file <file-name>

Warning Options

Function: Outputs error messages to the specified file.

Syntax: nc100 -Werror_file <output error message file name>

Notes: The format in which error messages are output to a file differs from one in which error

messages are displayed on the screen. When error messages are output to a file, they are
output in the format suitable for the "tag jump function" that some editors have.

REJ10J2009-0200 Rev.2.00 2010.04.01
91

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

-Wignore_near_pointer -WINP

Warning Options

Function: Inhibits a warning when the near pointer is handled as a far pointer.

Supplement: In the compiler, the pointer attribute is fixed to far (32 bits). The compiler by default

ignores near qualifiers for the pointer after generating a warning.
If this option is specified, the compiler inhibits a warning that near qualifiers for the
pointer are ignored.

-Wlarge_to_small -WLTS

Warning Options

Function: Outputs a warning about the substitution of variables in descending sequence of size.

Supplement: A warning may be output for negative boundary values of any type even when they fit in

the type. This is because negative values are considered under language conventions to
be an integer combined with the unary operator (-).
For example, the value 32768 fits in the signed int type, but when broken into "?" and
"32768," the value 32768 does not fit in the signed int type and, consequently, becomes
the signed long type.
Therefore, the immediate value 32768 is the signed long type. For this reason, any
statement like "int i = 32768;" gives rise to a warning.

Notes: Because this option outputs a large amount of warnings, warning output is suppressed

for the type conversions listed below.
 Assignment from char type variables to char type variables
 Assignment of immediate values to char type variables
 Assignment of immediate values to float type variables

-Wmake_tagfile -WMT

Warning Options

Function: Outputs error messages to the tag file of source-file by source-file, when an error or

warning occurs.

Supplement: This option with "-Werror_file (-WEF)" option can’t specify.

REJ10J2009-0200 Rev.2.00 2010.04.01
92

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

-Wmultiple_tentative_definitions -WMTD

Warning Options

Function: Outputs a warning when there are multiple tentative definitions for one and the same

variable name.

Supplement: If variables are declared outside a function by not using an initializer and without a

storage class specifier or with storage class static, such a declaration is referred to as
“tentative definition.”
If this option is specified, the compiler outputs a warning when such a declaration is
encountered two or more times.

-Wnesting_comment -WNC

Warning Options

Function: Generates a warning when comments include "/*".

Supplement: By using this option, it is possible to detect nesting of comments.

-Wno_stop -WNS

Warning Options

Function: Prevents the compiler stopping when an error occurs.

Supplement: The compiler compiles the program one function at a time. If an error occurs when

compiling, the compiler by default does not compile the next function.
Also, another error may be induced by an error, giving rise to multiple errors. In such a
case, the compiler stops compiling.
When this option is specified, the compiler continues compiling as far as possible.

Notes: A system error may occur due to erroneous description in the program. In such a case,

the compiler stops compiling even when this option is specified.

-Wno_used_argument -WNUA

Warning Options

Function: Outputs a warning for unused arguments function.

REJ10J2009-0200 Rev.2.00 2010.04.01
93

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

-Wno_used_function -WNUF

Warning Options

Function: Displays unused global functions when linking.

Notes: When selecting this option, be sure to specify the “-finfo” option at the same time.

-Wno_used_static_function -WNUSF

Warning Options

Function: For one of the following reasons, a static function name is output that does not require

code generation.
 The static function is not referenced from anywhere in the file.
 static functions are made inline by use of the "-Ostatic_to_inline(-OSTI)"

option.

Notes: If a function name is written for the initializer of an array as shown below, the compiler

handles the function as referenced even though it may not actually be referenced during
program operation. In the example given below, although the functions f4 and f5 are not
referenced, the compiler handles them as referenced.
 Example:

void (*a[5])(void) = {f1,f2,f3,f4,f5};

 for(i = 0; i < 3; i++) (*a[i])();

-Wno_warning_stdlib -WNWS

Warning Options

Function: Specifying this option while "-Wnon_prototype" or "-Wall" is specified inhibits "Alarm for

standard libraries which do not have prototype declarations".

-Wnon_prototype -WNP

Warning Options

Function: Outputs warning messages for functions without prototype declarations or if the

prototype declaration is not performed for any function.

Supplement: Function arguments can be passed via a register by writing a prototype declaration.

Increased speed and reduced code size can be expected by passing arguments via a
register. Also, the prototype declaration causes the compiler to check function
arguments. Increased program reliability can be expected from this.
Therefore, Renesas recommends using this option whenever possible.

REJ10J2009-0200 Rev.2.00 2010.04.01
94

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

-Wstdout

Warning Options

Function: Outputs error messages to the host machine's standard output (stdout).

Supplement: Use this option to save error output, etc. to a file by using Redirect in the Microsoft

Windows (TM).

Notes: In this Compiler for Microsoft Windows (TM), errors from as100 and ln100 invoked by

the compile-driver are output to the standard output regardless of this option.

-Wstop_at_link -WSAL

Warning Options

Function: Stops linking the source files if a warning occurs during linking to suppress generation

of absolute module files. Also, a return value "10" is returned to the host OS.

-Wstop_at_warning -WSAW

Warning Options

Function: Stops compiling the source files if a warning occurs during compiling and returns the

compiler end code "10."

Supplement: If a warning occurs when compiling, the compilation by default is terminated with the

end code "0" (terminated normally).
Use this option when you are using the make utility, etc. and want to stop compile
processing when a warning occurs.

-Wundefined_macro -WUM

Warning Options

Function: Warns you that undefined macros are used in #if.

REJ10J2009-0200 Rev.2.00 2010.04.01
95

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

-Wuninitialize_variable -WUV

Warning Options

Function: Outputs a warning for uninitialized auto variables.

This option is effective even when "-Wall" is specified.

Supplement: If an auto variable is initialized in conditional jump by, for example, a if or a for

statement in the user application, the compiler assumes it is not initialized.
Therefore, when this option is used, the compiler outputs a warning for it.

-Wunknown_pragma -WUP

Warning Options

Function: Outputs warning messages for non-supported #pragma.

Supplement: By default, no alarm is generated even when an unsupported, unknown "#pragma" is

used.
When you are using only the NC-series compilers, use of this option helps to find
misspellings in "#pragma".

Notes: When you are using only the NC-series compilers, Renesas recommends that this option

be always used when compiling.

REJ10J2009-0200 Rev.2.00 2010.04.01
96

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

A.2.9 Assemble and Link Options

Table A.10 shows the command line options for specifying as100 and ln100 options.

Table A.10 Assemble and Link Options
Option Function
-as100 < Option> Specifies options for the as100 link command. If you specify two or more

options, enclose them in double quotes.
-ln100 < Option> Specifies options for the ln100 assemble command. If you specify two or

more options, enclose them in double quotes.

-as100 "Option"

Assemble/link option

Function: Specifies as100 assemble command options

If you specify two or more options, enclose them in double quotes.

Syntax: nc100 -as100 "option1 option2" <C source file>

Notes: Do not specify the as100 options "-.", "-C", "-O", -PSFP", "-T", or "-V".

-ln100 "Option"

Assemble/link option

Function: Specifies options for the ln100 link command. You can specify a maximum of four

options.
If you specify two or more options, enclose them in double quotes.

Syntax: nc100 -ln100 "option1 option2" <C source file name>

Notes: Do not specify the ln100 options "-.", "-G", "-O", "-ORDER", "-L", "-T", "-V" or "@ file".

REJ10J2009-0200 Rev.2.00 2010.04.01
97

R32C/100 Series C Compiler Package V.1.02 A. Command Option Reference

A.3 Notes on Command Line Options

A.3.1 Coding Command Line Options

The NC100 command line options differ according to whether they are written in uppercase or lowercase letters.
Some options will not work if they are specified in the wrong case.

A.3.2 Priority of Options for Controlling

If you specify both the following options in the NC100 command line, the -S option takes precedence and only the
assembly language source files will be generated.

 "-c": Stop after creating relocatable files.
 "-S": Stop after creating assembly language source files.

REJ10J2009-0200 Rev.2.00 2010.04.01
98

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

Appendix B Extended Functions Reference

To facilitate its use in systems using the R32C/100 series, NC100 has a number of additional(extended) functions.
This appendix B describes how to use these extended functions, excluding those related to language specifications,
which are only described in outline.

Table B.1 Extended Functions (1/2)
Extended feature Description
near/far qualifiers Specifies the addressing mode to access data.

near Access to an area within 64K bytes (00000000H-
00007FFFH and 0FFFF8000H-0FFFFFFFFH).

far Access to an area within 4G bytes (00000000H-
007FFFFFH and 0FF800000H-0FFFFFFFFH).

 All functions take on far attributes.
asm function (1) Assembly language can be directly included in C programs.

It can also be included outside functions.
Example :

asm(" MOV.W #0, R0");
(2) You can specify variable names (within functions only).

Example 1 :
asm(" MOV.W R0, $$[FB]",f);

Example 2 :
asm(" MOV.W R0, $$",s);

Example 3 :
asm(" MOV.W R0, $@",f);

(3) You can include dummy asm functions as a means of partially
suppressing optimization (within functions only).

Example :
 asm();

Japanese characters (4) Permits you to use Japanese characters in character strings.
Example :

L" "
(5) Permits you to use Japanese characters for character constants.

Example :
L' '

(6) Permits you to write Japanese characters in comments.
Example :

/∗ ∗/
 Shift-JIS and EUC code are supported ,but can't use the half size

character of Japanese-KATA-KANA
Default argument declaration
for function

Default value can be defined for the argument of a function.
Example :

extern int func(int=1, char=0);
Example 2 :

extern int func(int=a, char=0);
 When writing a variable as a default value, be sure to declare the

variable used as a default value before declaring the function.
 Write default values sequentially beginning immediately after the

argument.

REJ10J2009-0200 Rev.2.00 2010.04.01
99

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

Table B.2 Extended Functions (2/2)
Extended feature Description
Inline storage class Functions can be inline developed by using the inline storage class

specifier.inline.
Example :

inline func(int i);
 Always be sure to define the body of an inline function before using

the inline function.
Extension of Comments You can include C++-like comments ("//").

Example :
// This is a comment.

#pragma Extended functions You can use extended functions for which the hardware of R32C/100
series in C language.

macro assebler function You can describe some assembler command as the function of C
Example 1 :

signed char abs_b(signed char val);
Example 2 :

long int abs_l(long int val);

REJ10J2009-0200 Rev.2.00 2010.04.01
100

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

B.1 Near and far Modifiers

For the R32C/100 series microcomputers, the addressing modes used for referencing and locating data vary around
the boundary address 00007FFFH and 0FFFF8000H. NC100 allows you to control addressing mode switching by
near and far qualifiers.

B.1.1 Overview of near and far Modifiers

The near and far qualifiers select an addressing mode used for variables or functions.
 near modifier............... Area of 00000000H-00007FFFH and 0FFFF8000H-0FFFFFFFFH
 far modifier.................. Area of 00000000H-007FFFFFH and 0FF800000H-0FFFFFFFFH

The near and far modifiers are added to a type specifier when declaring a variable or function. If you do not specify
the near or far modifiers when declaring variables and functions, NC100 interprets their attributes as follows:

 Variables near attribute
 const-qualified constants far attribute
 Functions far attribute

Furthermore, NC100 allows you to modify these default attributes by using the startup options of compile driver
nc100.

B.1.2 Format of Variable Declaration

The near and far modifiers are included in declarations using the same syntactical format as the const and volatile
type modifiers. Figure B.1 is a format of variable declaration.

type specifier. near or far. variable;

Figure B.1 Format of Variable added near / far modifier

Figure B.2 is an example of variable declaration. Figure B.3 is a memory map for that variable.

short near in_data;
short far if_data;

void func(void)
{
 (remainder omitted)
 :

Figure B.2 Example of Variable Declaration

REJ10J2009-0200 Rev.2.00 2010.04.01
101

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

2bytes
_in_data

_if_data

far area

near area

2bytes

Figure B.3 Memory Location of Variable

B.1.3 Format of Pointer type Variable

The pointer-type variables are always a far-type (4-bytes) variable. If type near is specified in the declaration of a
pointer-type variable, the compiler outputs a warning message “Near pointer not supported, near qualifier ignored”
and ignores the near qualifier.
An example declaration of a pointer-type variable is shown in Figure B.4.

Example :

short * ptr;

Figure B.4 Example of Declaring a Pointer Type Variable (1)

Because the variables are located near and take on the pointer variable type far, the description in Figure B.4 is
interpreted as in Figure B.5.

Example :

short far * near ptr;

Figure B.5 Example of Declaring a Pointer Type Variable (2)

The variable ptr is a 4-byte variable that indicates the short-type variable located in the far area. The ptr itself is
located in the near area.
Memory mapping for the above example is shown in Figure B.6.

REJ10J2009-0200 Rev.2.00 2010.04.01
102

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

4bytes _ptr

far area

near area

2bytes *ptr

Figure B.6 Memory Location of Pointer type Variable

When "near and far" is explicitly specified, determine the size of the address at which to store the "variable and
function" that is written on the right side. A declaration of pointer-type variables that handle addresses is shown in
Figure B.7

Example 1 :

short far * ptr1;

Example 1 :

short * far ptr2;

Figure B.7 Example of Declarning a Pointer Type Variable (1)

As explained earlier, unless "near and far" is specified, the compiler handles the variable location as "near" and the
variable type as "far." Therefore, Examples 1 and 2 respectively are interpreted as shown in Figure B.8

Example 1 :

short far * near ptr1;

Example 2 :

short far * far ptr2;

Figure B.8 Example of Declaring a Pointer Type Variable (2)

REJ10J2009-0200 Rev.2.00 2010.04.01
103

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

In Example 1, the variable ptr1 is a 4-byte variable that indicates the short-type variable located in the far area.
The variable itself is located in the near area. In Example 2, the variable ptr2 is a 4-byte variable that indicates the
short-type variable located in the far area. The variable itself is located in the far area.
Memory mappings for Examples 1 and 2 are shown in Figure B.9.

4bytes _ptr1

far area

near area

2bytes *ptr1

short far *ptr1

*ptr2

4bytes _ptr2

far area

2bytes

short * far ptr2

Figure B.9 Memory Location of Pointer type Variable

B.1.4 Declaration of function

A function's near and far allocation attributes are always far. If you specify the near attribute in function
declaration, the system outputs a warning message (function must be far) with your near declaration ignored.

B.1.5 near and far Control by nc100 Command Line Options

NC100 handles functions as belonging to the far attribute and variables (data) as belonging to the near attribute if
you do not specify the near and far attributes. NC100's command line options allow you to modify the default
attributes of functions and variables (data). These are listed in the table below.

Table B.3 Command Line Options
Command Line Options Function
-fnear_ROM(-fNROM) Change the default attribute of ROM data to near.
-ffar_RAM(-fFRAM) Change the default attribute of RAM data to far.

REJ10J2009-0200 Rev.2.00 2010.04.01
104

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

B.1.6 Function of Type conversion from near to far

The program in Figure B.10 performs a type conversion from near to far.

int func(int far *);
int far *f_ptr;
int near n_var;

void main(void)
{
 f_ptr = &n_var; /* assigns the near address to the far pointer */
 :
 (abbreviated)
 :
 func (&n_var); /* prototype declaration for function with far pointer to parameter */
 /* specifies near address parameter at the function call */
}

Figure B.10 Type conversion from near to far

When converted to type far, the pointer is sign-extended with the most significant bit of the near address (16-bit
quantity).

B.1.7 Declaration of function

In NC100, functions are always located in the far area. Therefore, do not write a near declaration for functions.
If a function is declared to take on a near attribute, NC100 outputs a warning and continues processing by
assuming the attribute of that function is far. Figure B.11 shows a display example where a function is declared to
be near.

%nc100 -S smp.c
R32C/100 Series C Compiler V.X.XX Release XX
Copyright(C) XXXX(XXXX-XXXX). Renesas Electronics Corp.
and Renesas Solutions Corp., All rights reserved.
smp.c
[Warning(ccom):smp.c,line 3] function must be far
===> {
func
%

Figure B.11 Example Declaration of Function

REJ10J2009-0200 Rev.2.00 2010.04.01
105

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

B.1.8 Function for Specifying near and far in Multiple Declarations

As shown in Figure B.12, if there are multiple declarations of the same variable, the type information for the
variable is interpreted as indicating a combined type.

extern int far idata;
int idata;
int idata = 10;

void func(void)
{
 (remainder omitted)
 :

This Declaration is interpreted as the following:

extern int far idata = 10;

void func(void)
{
 (remainder omitted)
 :

Figure B.12 Integrated Function of Variable Declaration

As shown in this example, if there are many declarations, the type can be declared by specifying "near or far" in one
of those declarations. However, an error occurs if there is any contention between near and far specifications in two
or more of those declarations.
You can ensure consistency among source files by declaring "near or far" using a common header file.

#include "common.h"

void main(void)
{
 data = 1;
}

#include "common.h"

int data = 10;

extern int far data;

C source file
a.c

common header file
common.h

C source file
b.c

Figure B.13 Example of Common header file Declaration

REJ10J2009-0200 Rev.2.00 2010.04.01
106

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

B.1.9 Notes on near and far Attributes

a Notes on near and far Attributes of Functions

Functions always assume the far attribute. Do not declare functions with near. NC100 will output a warning when
you declare the near attribute for a function.

b Notes on near and far Modifier Syntax

Syntactically, the near and far modifiers are identical to the const modifier. The following code therefore results in
an error.

int i, far j; This is not permitted

int i;
int far j;

Figure B.14 Example of Variable Declaration

REJ10J2009-0200 Rev.2.00 2010.04.01
107

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

B.2 asm Function

NC100 allows you to include assembly language routines (asm functions)1 in your C source programs.

B.2.1 Overview of asm Function

The asm function is used for including assembly language code in a C source program. As shown in Figure B.15,
the format of the asm function is asm(" ");, where an assembly language instruction that conforms to the AS100
language specifications is included between the double quote marks.

#pragma ADDRESS ta0_int 6CH
char ta0_int;

void func(void)
{
 :
 (abbreviated)
 :
 ta0_int = 0x07; Permits timer A0 interrupt

 asm(" FSET I"); Set interrupt enable flag
}

Figure B.15 Example of Description of asm Function (1)

Compiler optimization based on the positional relationship of the statements can be partially suppressed using the
code shown in Figure B.16.

asm();

Figure B.16 Example of Coding asm Function (2)

The asm function used in NC100 not only allows you to include assembly language code but also has the following
extended functions :

 Specifying the FB offset of storage class auto variables in the C program using the names of
the variables in C

 Specifying the register name of storage class register variables in the C program using the
names of the variables in C

 Specifying the symbol name of storage class extern and static variables in the C program
using the names of the variables in C

The following shows precautions to be observed when using the asm function :

 Do not destroy register contents in the asm function.
 The compiler does not check the inside of the asm function.
 If registers are going to be destroyed, write push and pop instructions using the asm

function to save and restore the registers.

1 For the purpose of expression in this user's manual, the subroutines written in the assembly language are referred to as assembler functions.
Those written with asm() in a C language program are referred to as asm functions or inline assemble description.

REJ10J2009-0200 Rev.2.00 2010.04.01
108

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

B.2.2 Specifying FB Offset Value of auto Variable

The storage class auto and register variables (including arguments) written in the C language are referenced and
located as being offset from the Frame Base Register (FB). (They may be mapped to registers as a result of
optimization.)
The auto variables which are mapped to the stack can be used in the asm function by writing the program as
shown in Figure B.17 below.

asm(" op-code R1 , $$ [FB] " , variable name);

Figure B.17 Description Format for Specifying FB Offset

Only two variable name can be specified by using this description format. The following types are supported for
variable names :

 Variable name
 Array name [integer]
 Struct name, member name (not including bit-field members)

void func(void)
{
 short idata;
 short a[3];
 struct TAG{
 short i;
 short k;
 } s;
 :
 asm(" MOV.W R0, $$[FB]", idata);
 :
 asm(" MOV.W R0, $$[FB]", a[2]);
 :
 asm(" MOV.W R0, $$[FB]", s.i);
 (Remainder omitted)
 :
 asm(" MOV.W $$[FB], $$[FB]", s.i, a[2]);
}

Figure B.18 Description example for specifying

Figure B.19 shows an example for referencing an auto variable and its compile result.

REJ10J2009-0200 Rev.2.00 2010.04.01
109

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

C source file :

void func(void)
{
 short idata = 1;

 asm(" MOV.W $$[FB], R0", idata);
 asm(" CMP.W #00001H ,R0");
 (remainder omitted)
 :
}

Assembly language source file (compile result) :

; ; ;## # FUNCTION func
;## # FRAME AUTO (idata) size 2, offset -4
;## # FRAME AUTO (__PAD2) size 1, offset -1
;## # FRAME AUTO (__PAD1) size 1, offset -2
;## # ARG Size(4) Auto Size(4) Context Size(8)
 :
 (abbreviated)
;## # C_SRC : asm(" MOV.W $$[FB], R0", idata);
;#### ASM START
MOV.W -4[FB], R0
 ._line 5
;## # C_SRC : asm(" CMP.W #00001H ,R0");
 CMP.W #00001H ,R0
;#### ASM END
 (remainder omitted)
 :

Figure B.19 Example for Referencing an auto Variables

You can also use the format show in Figure B.20 so that auto variables in an asm function use a 1-bit field. (Can
not operate bit-fields og greater than 2-bits.)

asm(" op-code $b[FB]" , bit field name);

Figure B.20 Format for Specifying FB Offset Bit Position.

You can only specify one variable name using this format. Figure B.21 is an example.

REJ10J2009-0200 Rev.2.00 2010.04.01
110

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

void func(void)
{
 struct TAG{
 char bit0:1;
 char bit1:1;
 char bit2:1;
 char bit3:1;
 } s;

 asm(" bset $b[FB]",s.bit1);
}

Figure B.21 Example for Specifying FB Offset Position

Figure B.22 shows examples of referencing auto area bit fields and the result of compiling.

C source file :

void func(void)
{
 struct TAG{
 char bit0:1;
 char bit1:1;
 char bit2:1;
 char bit3:1;
 } s;
 asm(" bset $b[FB]",s.bit1);
}

Assembly language source file(compile result):

;## # FUNCTION func
;## # FRAME AUTO (__PAD3) size 1, offset -1
;## # FRAME AUTO (__PAD2) size 1, offset -2
;## # FRAME AUTO (__PAD1) size 1, offset -3
;## # FRAME AUTO (s) size 1, offset -4
;## # ARG Size(4) Auto Size(4) Context Size(8)

 .SECTION program,CODE,ALIGN
 ._file 'bit.c'
 .align
 ._line 2
;## # C_SRC : {
 .glb _func
_func:
 enter #04H
 ._line 9
;## # C_SRC : asm(" bset $b[FB]",s.bit1);
;#### ASM START
bset 1,-4[FB] ; s
;#### ASM END
 ._line 10
;## # C_SRC : }
 exitd

Figure B.22 Example of Referencing auto Area Bit Field

REJ10J2009-0200 Rev.2.00 2010.04.01
111

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

B.2.3 Specifying Register Name of register Variable

The storage class auto and register variables (including arguments) may be mapped to registers by the compiler.
The variables mapped to registers can be used in the asm function by writing the program as shown in Figure B.23
below1

asm(" op-code $$ " , Variable name);

Figure B.23 Description Format for Register Variables

You can only specify two variable name using this format. Figure B.24 shows examples of referencing register
variables and the results of compiling.

C Source file :

void func(void)
{
 register short i=1;

 asm(" mov.w $$,R1",i);
}

Assembly language source file (compile result) :
;## # FUNCTION func
;## # ARG Size(4) Auto Size(0) Context Size(4)

 .SECTION program,CODE,ALIGN
 ._file 'reg.c'
 .align
 ._line 2
;## # C_SRC : {
 .glb _func
_func:
 ._line 3
;## # C_SRC : register short i=1;
 mov.w #0001H,R0 ; i
 ._line 4
;## # C_SRC : asm(" mov.w $$,R1",i);
;#### ASM START

mov.w R0,R1 R0 register is transferred to R0 register
;#### ASM END

Figure B.24 Example for Referencing a Register Variable

In NC100, register variables used within functions are managed dynamically. At anyone position, the register used
for a register variable is not necessarily always the same one. Therefore, if a register is specified directly in an asm
function, it may after compiling operate differently. We therefore strongly suggest using this function to check the
register variables.

1 If the variables need to be forcibly mapped to registers using the register qualifier, specify the option -fenable_register (-fER) when compiling.

REJ10J2009-0200 Rev.2.00 2010.04.01
112

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference
B.2.4 Specifying Symbol Name of extern and static Variable

Extern and static storage class variables written in C are referenced as symbols.
You can use the format shown in Figure B.25 to use extern and static variables in asm functions.

asm(" op-code R1, $ " , variable name);

Figure B.25 Description Format for Specifying Symbol Name

Only two variable name can be specified by using this description format. The following types are supported for
variable names :

 Variable name
 Array name [integer]
 Struct name, member name (not including bit-field members)

short idata;
short a[3];
struct TAG{
 short i;
 short k;
} s;

void func(void)
{
 :
 asm(" MOV.W R0, $$", idata);
 :
 asm(" MOV.W R0, $$", a[2]);
 :
 asm(" MOV.W R0, $$", s.i);
 (remainder omitted)
 :
}

Figure B.26 Example for Specifying Symbol Names

See Figure B.27 for examples of referencing extern and static variables.

REJ10J2009-0200 Rev.2.00 2010.04.01
113

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

C source file :
extern short ext_val;

void func(void)
{
 static short s_val;

 asm(" mov.w #01H,$$",ext_val);
 asm(" mov.w #01H,$$",s_val);
}

Assembly language source file(compile result) :
_func:
 ._line 5
;## # C_SRC : asm(" mov.w #01H,$$",ext_val);
;#### ASM START

mov.w #01H,_ext_val Move to_ext_val
 ._line 6
;## # C_SRC : asm(" mov.w #01H,$$",s_val);

mov.w #01H,___S0_s_val Move to__S0_s_val
ASM END
 ._line 7
;## # C_SRC : }
 rts
E1:
 .glb _ext_val

 .SECTION bss_NEAR,DATA,ALIGN
___S0_s_val: ;### C's name is s_val
 .blkb 2
 .END

Figure B.27 Example of Referencing extern and static Variables

You can use the format shown in Figure B.26 to use 1-bit bit fields of extern and static variables in asm functions.
(Can not operate bit-fields og greater than 2-bits.)

asm(" op-code $b[FB]", bit field name);

Figure B.28 Format for Specifying Symbol Names

REJ10J2009-0200 Rev.2.00 2010.04.01
114

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

You can specify one variable name using this format. See Figure B.29 for an example.

struct TAG{
 char bit0:1;
 char bit1:1;
 char bit2:1;
 char bit3:1;
} s;

void func(void)
{
 asm(" bset $b",s.bit1);
}

Figure B.29 Example of Specifying Symbol Bit Position

Figure B.30 shows the results of compiling the C source file shown in Figure B.29.

;## # FUNCTION func
;## # ARG Size(4) Auto Size(0) Context Size(4)

 .SECTION program,CODE,ALIGN
 ._file 'bitfield.c'
 .align
 ._line 8
;## # C_SRC : {
 .glb _func
_func:
 ._line 9
;## # C_SRC : asm(" bset $b",s.bit1);
;#### ASM START
 bset 1,_s Reference to bitfield bit0 of structure s
;#### ASM END
 ._line 10
;## # C_SRC : }
 rts
E1:

 .SECTION bss_NEAR,DATA,ALIGN
 .glb _s
_s:
 .blkb 1
 .END

Figure B.30 Example of Referencing Bit Field of Symbol

REJ10J2009-0200 Rev.2.00 2010.04.01
115

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

B.2.5 Specification Not Dependent on Storage Class

The variables written in C language can be used in the asm function without relying on the storage class of that
variable (auto, register1, extern, or static variable).
Consequently, any variable written in C language can be used in the asm function by writing it in the format
shown in Figure B.312

asm(" op-code R0, $@", variable name);

Figure B.31 Description Format Not Dependent on Variable's Storage Class

You can only specify one variable name using this format. Figure B.32 shows examples of referencing register
variables and the results of compiling.

C source file :

extern int e_val;

void func(void)
{
 int f_val;
 register int r_val;
 static int s_val;

 asm(" mov.w #1, $@", e_val); Reference to external variable
 asm(" mov.w #2, $@", f_val); Reference to auto variable
 asm(" mov.w #3, $@", r_val); Reference to register variable
 asm(" mov.w #4, $@", s_val); Reference to static variable
 asm(" mov.w $@, $@", f_val,r_val);
}

Assembly language source file(compile result) :
 .glb _func
_func:
 enter #04H
 ._line 7
;## # C_SRC : asm(" mov.w #1, $@", e_val);
;#### ASM START
 mov.w #1, _e_val:16 Reference to external variable
 ._line 8
;## # C_SRC : asm(" mov.w #2, $@", f_val);

mov.w #2, -4[FB] Reference to auto variable
 ._line 9
;## # C_SRC : asm(" mov.w #3, $@", r_val);

mov.w #3, R2R0 Reference to register variable
 ._line 10
;## # C_SRC : asm(" mov.w #4, $@", s_val);

mov.w #4, ___S0_s_val:16 Reference to static variable
 ._line 11
;## # C_SRC : asm(" mov.w $@, $@", f_val,r_val);

mov.w -4[FB], R2R0
;#### ASM END

Figure B.32 Example for Referencing Variables of Each Storage Class

1 It does not restrict being assigned to a register, even if it specifies a register qualified.
2 Whether it is arranged at which storage class should actually compile, and please check it.

REJ10J2009-0200 Rev.2.00 2010.04.01
116

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

B.2.6 Selectively suppressing optimization

In Figure B.33, the dummy asm function is used to selectively suppress a part of optimization.

#pragma ADDRESS port 02H
struct port{
 char bit0:1;
 char bit1:1;
 char bit2:1;
 char bit3:1;
 char bit4:1;
 char bit5:1;
 char bit6:1;
 char bit7:1;
}port;

void func(void)
{
 port.bit0 = 0x01; or.b #03H,_port
 port.bit1 = 0x01;
}

 port.bit0 = 0x01;
 asm(); /*dummy*/ bset 00H, _port
 port.bit1 = 0x01; bset 01H, _port

Optimization results in any steps to set
the two port bits separately being
combined as one step.

Optimization is suppressed.

Optimization

Optimization

Figure B.33 Example of Suppressing Optimization by Dummy asm

B.2.7 Notes on the asm Function

a Extended Features Concerning asm functions

When using the asm function for the following processing, be sure to use the format shown in the coding examples.

(1) For variables with storage class auto, arguments, and 1-bit bit fields

Do not specify auto variables or parameters, or 1-bit bit fields using the offset from the frame base register (FB).
Use the format shown in Figure B.34 to specify auto variables and parameters.

asm(" MOV.W #01H,$$[FB]", i); Format for referencing auto variables
asm(" BSET $$[FB]", s.bit0); Format for checking auto bit fields

Figure B.34 Example Coding of asm Function (1)

REJ10J2009-0200 Rev.2.00 2010.04.01
117

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

(2) Specification of the register storage class

You can specify the register storage class in NC100. When register class variables are compiled with option
-fenable_register (-fER), use the format shown in Figure B.35 for register variables in asm functions.

asm(" MOV.W #0,$$", i); Format for checking register variables

Figure B.35 Example Coding of asm Function (2)

Note that, when you specify option -O[1-5], -OR, -OS, -OR_MAX, or -OS_MAX parameters passed via the registers
may, to improve code efficiency, be processed as register variables rather than being moved to the auto area. In this
case, when parameters are specified in an asm function, the assembly language is output using the register names
instead of the variable's FB offset.

(3) When referencing arguments in the asm function

The compiler analyzes a program flow with respect to its interval in which variables (including arguments and
auto variables) remain effective as it processes the program. If arguments or auto variables are referenced in an
asm function as shown in Figure B.36, the compiler will fail to keep track of the effective interval and cannot
generate correct code.
Therefore, if arguments or auto variables need to be referenced in an asm function you write, always be sure to use
the “$$, $b, or $@” feature of the asm function for that reference.

void func(void)
{
 short i, j;
 asm (" mov.w -2[FB],-4[FB]"); /* j = i; */
}

Figure B.36 Example cannot be referred to correctly

In the above case, because the compiler determines that "i" and "j" are not used within the function func, it does not
output codes necessary to construct the frame in which to reference the arguments. For this reason, the arguments
cannot be referenced correctly.

(4) About branching within the asm function

The compiler analyzes program flow in the intervals in which registers and variables respectively are effective, as it
processes the program. Do not write statements for branching (including conditional branching) in the asm
function that may affect the program flow.

b About Register

 Do not destroy registers within the asm function. If registers are going to be destroyed, use push and
pop instructions to save and restore the registers.

 NC100 is premised on condition that the SB register is used in fixed mode after being initialized by
the startup program. If you modified the SB register, write a statement to restore it at the end of
consecutive asm functions as shown in Figure B.37.

REJ10J2009-0200 Rev.2.00 2010.04.01
118

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

asm(" .SB 0);
asm(" LDC #0H, SB"); SB changed
asm(" MOV.W R0, _port[SB]");
 :
 (omitted
 :
asm(" .SB __SB__);
asm(" LDC #__SB__,SB"); SB returned to original state

Figure B.37 Restoring Modified Static Base (SB) register

 Do not modified the FB register by the asm functions, because which use for the stack flame pointer.

c Notes on Labels

The assembler source files generated by NC100 include internal labels in the format shown in Figure B.38.
Therefore, you should avoid using labels in an asm function that might result in duplicate names.

Labels consisting of one uppercase letter and one or more numerals :

 A1:
 C9830:

Labels consisting of two or more characters preceded by the underscore (_) :

 __LABEL:
 ___START:

Figure B.38 Label Format Prohibited in asm Function

REJ10J2009-0200 Rev.2.00 2010.04.01
119

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

B.3 Description of Japanese Characters

NC100 allows you to include Japanese characters in your C source programs. This chapter describes how to do so.

B.3.1 Overview of Japanese Characters

In contrast to the letters in the alphabet and other characters represented using one byte, Japanese characters
require two bytes. NC100 allows such 2-byte characters to be used in character strings, character constants, and
comments. The following character types can be included :

 kanji
 hiragana
 full-size katakana
 half-size katakana

Only the following kanji code systems can be used for Japanese characters in NC100.
 EUC (excluding user-defined characters made up of 3-byte code)
 Shift JIS (SJIS)

B.3.2 Settings Required for Using Japanese Characters

The following environment variables must be set in order to use kanji codes. default specifies :
 Environment variable specifying input code system NCKIN
 Environment variable specifying output code system NCKOUT

Figure B.39 is an example of setting the environment variables.

Include the following in your autoexec.bat file :

set NCKIN=SJIS
set NCKOUT=SJIS

Figure B.39 Example Setting of Environment Variables NCKIN and NCKOUT

In NC100, the input kanji codes are processed by the cpp100 preprocessor. cpp100 changes the codes to EUC codes.
In the last stage of token analysis in the ccom100 compiler, the EUC codes are then converted for output as
specified in the environment variable.

REJ10J2009-0200 Rev.2.00 2010.04.01
120

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

B.3.3 Japanese Characters in Character Strings

Figure B.40 shows the format for including Japanese characters in character strings.

L" "

Figure B.40 Format of Kanji code Description in Character Strings

If you write Japanese using the format L" " as with normal character strings, it is processed as a
pointer type to a char type when manipulating the character string. You therefore cannot manipulate them as
2-byte characters.
To process the Japanese as 2-byte characters, precede the character string with L and process it as a pointer type to
a wchar_t type. wchar_t types are defined (typedef) as unsigned short types in the standard header file stdlib.h.
Figure B.41 shows an example of a Japanese character string.

#include <stdlib.h>

void func(void)
{
 wchar_t JC[4] = L" ";

 (remainder omitted)
 :

Figure B.41 Example of Japanese Character Strings Description

Figure B.42 is a memory map of the character string initialized in (1) in Figure B.41.

8 bytes

 JC[0]

JC[1]

JC[2]

JC[3]

address
higher

NULL

Figure B.42 Memory Location of wchar_t Type Character Strings

REJ10J2009-0200 Rev.2.00 2010.04.01
121

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

B.3.4 Sing Japanese Characters as Character Constants

Figure B.43 shows the format for using Japanese characters as character constants.

L' '

Figure B.43 Format of Kanji code Description in Character Strings

As with character strings, precede the character constant with L and process it as a wchar_t type. If, as
' ' , in you use two or more characters as the character constant, only the first character " "
becomes the character constant. Figure B.44 shows examples of how to write Japanese character constants.

#include <stdlib.h>

void func(void)
{
 wchar_t JC[5];

 JC[0] = L' ';
 JC[1] = L' ';
 JC[2] = L' ';
 JC[3] = L' ';

 (remainder omitted)
 :

Figure B.44 Format of Kanji Character Constant Description

Figure B.45 is a memory map of the array to which the character constant in Figure B.44 has been assigned.

10 bytes

address
higher

NULL

JC[0]

JC[1]

JC[2]

JC[3]

JC[4]

Figure B.45 Memory Location of wchar_t Type Character Constant Assigned Array

REJ10J2009-0200 Rev.2.00 2010.04.01
122

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

B.4 Default Argument Declaration of Function

NC100 allows you to define default values for the arguments of functions in the same way as with the C++ facility.
This chapter describes NC100's facility to declare the default arguments of functions.

B.4.1 Overview of Default Argument Declaration of Function

NC100 allows you to use implicit arguments by assigning parameter default values when declaring a function's
prototype. By using this facility you can save the time and labor that would otherwise be required for writing
frequently used values when calling a function.

B.4.2 Format of Default Argument Declaration of Function

Figure B.46 shows the format used to declare the default arguments of a function.

Storage class specifierUType declaratorUDeclarator([Dummy argument[=Default value or variable],...]);

Figure B.46 Format for declaring the default arguments of a function

Figure B.47 shows an example of declaration of a function, and Figure B.48 shows a result of compiling of sample
program which shows at Figure B.47.

short func(short i=1 , short j=2); Declares the default values of parameters in the arguments to

the function func as first argument: 1 and second argument: 2.

void main(void)
{
 func(); The actual argument consists of the first argument: 1 and the second argument: 2.
 func(3); The actual argument consists of the first argument: 3 and the second argument: 2.
 func(3,5); The actual argument consists of the first argument: 3 and the second argument: 5.
}

Figure B.47 Example for declaring the default arguments of a function

REJ10J2009-0200 Rev.2.00 2010.04.01
123

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

;## # C_SRC : {
 .glb _main
_main:
 ._line 5
;## # C_SRC : func();
 mov.w #0002H,R1 second argument :2
 mov.w #0001H,R0 first argument :1
 jsr $func
 ._line 6
;## # C_SRC : func(3);
 mov.w #0002H,R1 second argument :2
 mov.w #0003H,R0 first argument :3
 jsr $func
 ._line 7
;## # C_SRC : func(3,5);
 mov.w #0005H,R1 second argument :5
 mov.w #0003H,R0 first argument :3
 jsr $func
 ._line 8
;## # C_SRC : }
 rts
 :
 (omitted)
 :

Note) In NC100, arguments are stacked in revere order beginning with the argument that is declared last in the function.
In this example, arguments are passed via registers as they are processed.

Figure B.48 Compiling Result of smp1.c (smp1.a30)

A variable can be written for the argument of a function.
Figure B.49 shows an example where default arguments are specified with variables. Figure B.50 shows a compile
result of the sample program shown in Figure B.49.

short near sym ;
short func(short i = sym); Default argument is specified with a variable.

void main(void)
{
 func(); Function is called using variable (sym) as argument.
}
 :
 (omitted)
 :

Figure B.49 Example for specifying default argument with a variable (smp2.c)

REJ10J2009-0200 Rev.2.00 2010.04.01
124

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

_main:
 ._line 6
 mov.w _sym:16,R0 Function is called using variable (sym) as argument.
 jsr $func
 ._line 7
 rts

Figure B.50 Compile Result of smp2.c (smp2.a30)

B.4.3 Restrictions on Default Argument Declaration of Function

The default argument declaration of a function is subject to some restrictions as listed below. These restrictions
must be observed.

a When specifying a default value for multiple arguments

When specifying a default value in a function that has multiple arguments, always be sure to write values
beginning with the last argument. Figure B.51 shows examples of incorrect description.

void func1(int i, int j=1, int k=2); /* correct */
void func2(int i, int j, int k=2); /* correct */
void func3(int i = 0, int j, int k); /* incorrect */
void func4(int i = 0, int j, int k = 1); /* incorrect */

Figure B.51 Examples of Prototype Declaration

b When specifying a variable for a default value

When specifying a variable for a default value, write the prototype declaration of a function after declaring the
variable you specify. If a variable is specified for the default value of an argument that is not declared before the
prototype declaration of a function, it is processes as an error.

REJ10J2009-0200 Rev.2.00 2010.04.01
125

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

B.5 inline Function Declaration

NC100 allows you to specify the inline storage class in the similar manner as in C++. By specifying the inline
storage class for a function, you can expand the function inline. This chapter describes specifications of the inline
storage class.

B.5.1 Overview of inline Storage Class

The inline storage class specifier declares that the specified function is a function to be expanded inline. The inline
storage-class specifier indicates to a function that the function declared with it is to be expanded in-line. The
functions specified as inline storage class have codes embedded directly in them at the assembly level.

B.5.2 Declaration Format of inline Storage Class

The inline storage class specifier must be written in a syntactically similar format to that of the static and
extern-type storage class specifiers when declaring the inline storage class. Figure B.52 shows the format used to
declare the inline storage class.

inlineUtype specifierUfunction;

Figure B.52 Declaration Format of inline Storage Class

An example function declaration and its compile result are shown in Figure B.53 and Figure B.54, respectively.

inline short func(short i) Inline function declaration and definition
{
 return i++;
}

void main(void)
{
 short s;

 s = func(s); Inline function call
}

Figure B.53 Sample program of inline function (sample. c)

REJ10J2009-0200 Rev.2.00 2010.04.01
126

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

 .SECTION program,CODE,ALIGN
 ._file 'sample.c'
 .align
 ._line 7
;## # C_SRC : {
 .glb _main
_main:
 enter #04H
 ._line 10
;## # C_SRC : s = func(s);
 mov.w -4[FB],R0 ; s
 ._line 2
;## # C_SRC : {
 mov.w R0,-2[FB] ; i
 ._line 3
;## # C_SRC : return i++; Inline storage class have codes
 mov.w R0,R1 embedded directly
 add.w #0001H,R0
 ._line 10
;## # C_SRC : s = func(s);
 mov.w R1,-4[FB] ; s
 ._line 11
;## # C_SRC : }
 exitd
E1:
 .END

Figure B.54 Compile Result of sample program (smp.a30)

B.5.3 Restrictions on inline Storage Class

When specifying the inline storage class, pay attention to the following :

(1) Regarding the parameter of inline functions

The parameter of an in line function cannot be used by “structure” and “union”. It becomes a compile error.

(2) Regarding the indirect call of inline functions

The indirect call of an in line function cannot be carried out. It becomes a compile error when a indirect call is
described.

(3) Regarding the recursive call of inline functions

The recursive call of an in line function cannot be carried out. It becomes a compile error when a recursive call is
described.

(4) Regarding the definition of an inline function

When specifying inline storage class for a function, be sure to define the body of the function in addition to
declaring it. Make sure that this body definition is written in the same file as the function is written . The
description in Figure B.55 is processed as an error in NC100.

REJ10J2009-0200 Rev.2.00 2010.04.01
127

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

inline void func(int i);

void main(void)
{
 func(1);
}

[Error Message]
[Error(ccom):sample.c,line 5] inline function's body is not declared previously
===> func(1);
Sorry, compilation terminated because of these errors in main().

Figure B.55 Example of inappropriate code of inline function (1)

Furthermore, if any function is defined as an inline function after being used as an ordinary function, the
specification of inline has no effect and all of such a definition is handled as static functions (Figure B.56).

int func(int i);

void main(void)
{
 func(1);
}

inline int func(int i)
{
 return i;
}

[Warning Message]
[Warning(ccom):smp.c,line 10] inline function is called as normal function before,change to static function.

Figure B.56 Example of inappropriate code of inline function (2)

(5) Regarding the address of an inline function

The inline function itself does not have an address. Therefore, if the & operator is used for an inline function, the
software assumes an error. (Figure B.57)

REJ10J2009-0200 Rev.2.00 2010.04.01
128

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

inline int func(int i)
{
 return i;
}

void main(void)
{
 int (*f)(int);

 f = &func;
}

[Error Message]
[Error(ccom):sample.c,line 10] can't get inline function's address by '&' operator
===> f = &func;
Sorry, compilation terminated because of these errors in main().

Figure B.57 Example of inappropriate code of inline function (3)

(6) Declaration of static data

If static data is declared in an inline function, the body of the declared static data is allocated in units of files. For
this reason, if an inline function consists of two or more files, this results in accessing different areas. Therefore, if
there is static data you want to be used in an inline function, declare it outside the function. If a static declaration is
found in an inline function, NC100 generates a warning. Renesas does not recommend entering static declarations
in an inline function. (Figure B.58)

inline int func(int j)
{
 static int i = 0;

 i++;
 return i + j;
}

[Warning Message]
[Warning(ccom):smp.c,line 3] static valuable in inline function
===> static int i = 0;

Figure B.58 Example of inappropriate code of inline function (4)

(7) Regarding debug information

NC100 does not output C language-level debug information for inline functions. Therefore, you need to debug
inline functions at the assembly language level.

REJ10J2009-0200 Rev.2.00 2010.04.01
129

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

B.6 Extension of Comments

NC100 allows comments enclosed between "/*" and "*/" as well as C++-like comments starting with "//".

B.6.1 Overview of "//" Comments

In C, comments must be written between "/*" and "*/". In C++, anything following "//"

B.6.2 Comment "//" Format

When you include "//" on a line, anything after the "//" is treated as a comment. Figure B.59 shows comment format.

// comments

Figure B.59 Comment Format

Figure B.60 shows example comments.

void func(void)
{
 int i; /* This is commentes */
 int j; // This is commentes
 :
 (omitted)
 :
}

Figure B.60 Example Comments

B.6.3 Priority of "//" and "/*"

The priority of "//" and "/*" is such that the one that appears first has priority.
Therefore, a "/*" written between a "//" to the new-line code does not have an effect as signifying the beginning of a
comment. Also, a "//" written between "/*" and "*/" does not have an effect as signifying the beginning of a comment.

REJ10J2009-0200 Rev.2.00 2010.04.01
130

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

B.7 #pragma Extended Functions

B.7.1 Index of #pragma Extended Functions

Following index tables show contents and formation for #pragma extended functions.

a Using Memory Mapping Extended Functions

Table B.4 Memory Mapping Extended Functions (1/2)
Extented function Description
#pragma EXTMEM Declares that data or function be located in an area that cannot be accessed

in address-0 relative addressing.
Syntax :

#pragma EXTMEMUvariable-name
#pragma EXTMEMUfunction-name()

Example :
#pragma EXTMEM val
#pragma EXTMEM func()

#pragma MONITORn Declares that data be located in a special section for the RAM monitor.
Syntax :

#pragma MONITOR1Uvariable-name
Example :

#pragma MONITOR1 val
#pragma ROM Maps the specified variable to rom.

Syntax :
#pragma ROMUvariable-name

Example :
#pragma ROM val

#pragma SB16DATA Declares that the data uses SB relative addressing of 16-bit displacement.
Syntax :

#pragma SB16DATAUvariable-name
Example :

#pragma SB16DATA val
#pragma SBDATA Declares that the data uses SB relative addressing of 8bit displacement

Syntax :
#pragma SBDATAUvariable-name

Example :
#pragma SBDATA val

#pragma SECTION Changes the section name generated by NC100.
Syntax :

#pragma SECTIONUsection-nameUnew-section-name
Example :

#pragma SECTION bss nonval-data

REJ10J2009-0200 Rev.2.00 2010.04.01
131

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

Table B.5 Memory Mapping Extended Functions (2/2)
Extented function Description
#pragma STRUCT (1) Inhibits the packing of structures with the specified tag

Syntax :
#pragma STRUCTUstructure-tagUunpack

Example :
#pragma STRUCT TAG1 unpack

(2) Arranges members of structures with the specified tag and maps
even sized members first

Syntax :
#pragma STRUCTUstructure-tagUarrange

Example :
#pragma STRUCT TAG1 arrange

b Using Extended Functions for Target Devices

Table B.6 Extended Functions for Use with Target Devices (1/2)
Extended function Description
#pragma ADDRESS Specifies the absolute address of a variable. For near variables, this

specifies the address within the bank.
Syntax :

#pragma ADDRESSUvariable-nameUabsolute-address
Example :

#pragma ADDRESS port0 2H
#pragma DMAC Specifies the DMAC register of a external variable.

Syntax :
#pragma DMACUvariable-nameUDMAC register-name

Example :
#pragma DMAC dsa0 DSA0

#pragma INTCALL Declares a function written in assembler called in a software interrupt
(int instruction).

Syntax1 :
#pragma INTCALLUINT-No.Uassembler function-
name(register-name)

Example1 :
#pragma INTCALL 25 func(R0,R1)

Syntax2 :
#pragma INTCALLUINT-No.UC language function-
name()

Example2 :
#pragma INTCALL 25 func()

 Always be sure to declare the prototype of the function before entering
this declaration.

REJ10J2009-0200 Rev.2.00 2010.04.01
132

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

Table B.7 Extended Functions for Use with Target Devices (2/2)
Extended function Description
#pragma INTERRUPT Declares an interrupt handling function written in C language. This

declaration causes code to perform a procedure for the interrupt handling
function to be generated at the entry or exit to and from the function.

Syntax :
#pragma INTERRUPTU[/B¦/E¦/F¦/R¦/V]Uinterrupt-
handling-function-name

#pragma INTERRUPTU[/B¦/E¦/F¦/R]Uinterrupt-
vector-numberUinterrupt-handling-function-
name

#pragma INTERRUPTU[/B¦/E¦/F¦/R]Uinterrupt-
handling-function-name(vect=interrupt-vector-
number)

Example :
#pragma INTERRUPT int_func
#pragma INTERRUPT /B int_func
#pragma INTERRUPT 10 int_func
#pragma INTERRUPT /E 10 int_func
#pragma INTERRUPT int_func(vect=10)
#pragma INTERRUPT /R int_func

#pragma PARAMETER Declares that, when calling an assembler function, the parameters are
passed via specified registers.

Syntax :
#pragma PARAMETERUfunction-name(register-name)

Example :
#pragma PARAMETER asm_func(R0,R1)

 Always be sure to declare the prototype of the function before entering
this declaration.

REJ10J2009-0200 Rev.2.00 2010.04.01
133

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

c The Other Extensions

Table B.8 The Other Extensions
Extended feature Description
#pragma __ASMMACRO Declares defined a function by assembler macro.

Syntax :
#pragma __ASMMACROUfunction-name(register-name)

Example :
#pragma __ASMMACRO max_w(R0,R2)

#pragma ASM
#pragma ENDASM

Specifies an area in which statements are written in assembly language.
Syntax :

#pragmaUASM
#pragmaUENDASM

Example :
#pragma ASM

mov.w R0,R1
add.w R1,02H

#pragma ENDASM
#pragma JSRA Calls functions using JSR.A as the JSR instruction.

Syntax :
#pragma JSRAUfunction-name

Example :
#pragma JSRA func

#pragma JSRW Calls functions using JSR.W as the JSR instruction.
Syntax :

#pragma JSRWUfunction-name
Example :

#pragma JSRW func
#pragma PAGE Indicates a new-page point in the assembler listing file.

Syntax :
#pragmaUPAGE

Example :
#pragma PAGE

REJ10J2009-0200 Rev.2.00 2010.04.01
134

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

B.7.2 Using Memory Mapping Extended Functions

NC100 includes the following memory mapping extended functions.

#pragma EXTMEM

Declares exclusion of address-0 relative addressing

Function: Declares a variable or function to be located in an area that cannot be accessed in

address-0 relative addressing.

Syntax: #pragma EXTMEMUvariable-name

#pragma EXTMEMUfunction-name()

Description: In address-0 relative addressing that is normally used to access an external variable

directly or call a function directly, no addresses in the range 00800000H-0FF7FFFFFH
can be accessed.
#pragma EXTMEM declares that a variable or function be located in such an
inaccessible area. The variables and functions declared with #pragma EXTMEM are
accessed in address register relative addressing, etc.
Note that the variables and functions declared with #pragma EXTMEM too can have
their location addresses handled by an ordinary far pointer.

Rules: (1) Declaration with #pragma EXTMEM is ignored unless it declares a variable name

or function name.
(2) #pragma EXTMEM is not applied to the static variables declared within a

function.
(3) This extended feature has priority over the near and far qualifiers declared.
(4) This extended feature cannot be used in combination with other extended features

of #pragma for one variable or function at a time.

Example: #pragma EXTMEM extfunc()

#pragma EXTMEM extvar;

short extfunc(void);
short far extvar;
short far *p;

void func(void)
{

extvar = extfunc();
p = &extvar;

}

Figure B.61 Example Use of #pragma EXTMEM Declaration

When this extended feature is specified, the compiler generates the following sections.

Name Attribute Content
data_EXT DATA Data with initial values declared with

#pragma EXTMEM
bss_EXT DATA Data without initial values declared with

#pragma EXTMEM
rom_EXT ROMDATA const qualified data declared with #pragma

EXTMEM
data_EXT_INIT ROMDATA Initial value of data_EXT section

Supplement:

program_EXT CODE Function code declared with #pragma
EXTMEM

REJ10J2009-0200 Rev.2.00 2010.04.01
135

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

#pragma MONITORn

Directive to specify the location of the RAM monitor area

Function: Declares that the specified external variable be located in a section used exclusively for the

RAM monitor area.

Syntax: #pragma MONITOR[n]Uexternal variable-name

(n=1-4)

Rules: (1) Only external variables and external static variables can be specified.

(2) The area for the external variable declared by #pragma MONITOR[n] is allocated to
one of the sections listed below.

 data_MON[n] External variables that have initial values are located here
 bss_MON[n] External variables that do not have initial values are

located here
 data_MON[n]_INIT Initial values of external variables that have

initial values are located here

(3) The declaration of #pragma MONITOR[n] must be made before the external variable

is defined.
(4) The external variable declared by #pragma MONITOR[n] cannot be used in

combination with other extended #pragma directives. However, if #pragma SBDATA
and #pragma MONITOR[n] are specified at the same time, #pragma SBDATA has
priority. At this time, no warnings are output.

Note: (1) #pragma MONITOR[n] does not affect the op-codes generated by the compiler. Please

pay attention to the near/far attributes of variables.
(2) Even if external variables with different near/far attributes coexist in a section used

exclusively for the RAM monitor area, no errors and warnings are assumed. Please
pay attention to the near/far attributes of variables.

(3) The sections used exclusively for the RAM monitor area are not subject to size
limitations.

(4) The location address of the section allocated by #pragma MONITOR[n] and a process
to set the initial value for the external variable should be written in the startup
program.

(5) If #pragma MONITOR[n] is declared a number times for one and the same external
variable, the #pragma MONITOR[n] declared first is effective.

(6) The external variables declared by #pragma MONITOR[n] are not affected by
#pragma SECTION.

(7) The declaration of #pragma MONITOR[n] has no effect if 'n' in it is other than 1-4. If
the compile option -Wunknown_pragma[-WUP] or -Wall is specified, a warning is
output.

(8) External variables with ROM attribute cannot be handled by #pragma
MONITOR[n]. However, if the compile option -fconst_not_ROM[-fCNR] is specified,
these variables can be handled by #pragma MONITOR[n].

#pramga MONITOR1 i
const int i; <==== Has no effect

(9) Even when variable locations are changed by this function, the addressing mode of
generated code is not changed. If the locations of variables that are to be stored in a
near-attribute RAM area (addresses 00000000H to 00007FFFH) are changed, the
section that contains those variables must be located in a near area (except for the
ROMDATA attribute sections of initial values).

REJ10J2009-0200 Rev.2.00 2010.04.01
136

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

#pragma MONITORn

Directive to specify the location of the RAM monitor area

Example: #pragma MONITOR1 i

#pragma MONITOR1 c

short i;
short j = 0x0100;

Figure B.62 Example Use of #pragma MONITORn Declaration

REJ10J2009-0200 Rev.2.00 2010.04.01
137

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

#pragma ROM

 Map to rom section

Function: Maps specified data (variable) to rom section

Syntax: #pragma ROMUvariable-name

Description: This extended function is valid only for variables that satisfy one or other of the

following conditions:
 Non-extern variables defined outside a function (Variables for which an area

is secured)
 Variables declared as static within the function

Rules: (1) If you specify other than a variable, it will be ignored.

(2) No error occurs if you specify #pragma ROM more than once.
(3) The data is mapped to a rom section with initial value 0 if you do not include

aninitialization expression.

Example: C language source program :

#pragma ROM i
unsigned short i; Variable i, which satisfies condition[1]

void func(void)
{
 static short i = 20; Variable i, which satisfies condition[2]
 :
 (remainder omitted)

Assembly language source program :

 .SECTION rom_FAR,ROMDATA,ALIGN
 .glb _i
_i: Variable i, which satisfies condition[1]
 .byte 00H
 .byte 00H
___S0_i: ;### C's name is i Variable i, which satisfies condition[2]
 .word 0014H

Figure B.63 Example Use of #pragma ROM Declaration

REJ10J2009-0200 Rev.2.00 2010.04.01
138

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

#pragma SB16DATA

SB Relative Addressing Using of 16bit displacement Variable Description Function

Function: Declares that the data uses SB relative addressing of 16bit displacement.

Syntax: #pragma SBDATAUvaluable-name

Description: The R32C/100 series allows you to choose instructions that can be executed efficiently

by using SB relative addressing.
Section accessed by SB relative addressing When it has arranged to the far
area,#pragma SB16DATA declares that SB relative addressing of 16bit displacement
can be used for the variable when referencing data. This facility helps to generate ROM
efficient code.

Rules: (1) Section accessed by SB relative addressing when using #pragma SB16DATA It is

necessary to arrange to a far domain. Therefore, it is necessary to change
specification of the section arrangement by the start-up file. For details of how to
modify the startup file, see Chapter 2.2.2 "Customizing the Startup Program" and
Chapter 2.2.3 “2.2.3 Customizing for NC100 Memory Mapping” in the Operation
part of the NC100 User's Manual.

(2) As opposed to the same variable #pragma SBDATA #pragma SB16DATA cannot
be specified simultaneously.

(3) If #pragma SB16DATA is specified for anything other than a variable, it is ignored
as invalid.

(4) If the specified variable is a static variable declared in a function, the
#pragmaSB16DATA declaration is ignored as invalid.

(5) The variable declared to be #pragma SB16DATA is placed in a SB16DATA
attribute section when allocating memory for it

(6) If #pragma SB16DATA is declared for ROM data, declaration of #pragma
SB16DATA becomes invalid 1

Example: #pragma SB16DATA sym_data

int far sym_data;

void func(void)
{
 sym_data = 1;
}

Figure B.64 Example Use of #pragma SB16DATA Declaration

Supplement: NC100 is premised on an assumption that the SB register will be initialized after reset
and will thereafter be used as a fixed quantity.

1 Do not write a #pragma SB16DATA declaration for ROM data.

REJ10J2009-0200 Rev.2.00 2010.04.01
139

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

#pragma SBDATA

SB Relative Addressing Using of 8bit displacement Variable Description Function

Function: Declares that the data uses SB relative addressing of 8bit displacement.

Syntax: #pragma SBDATAUvaluable-name

Description: The R32C/100 series allows you to choose instructions that can be executed efficiently by

using SB relative addressing. #pragma SBDATA declares that SB relative addressing
can be used for the variable when referencing data. This facility helps to generate
ROM-efficient code.

Rules: (1) The variable declared to be #pragma SBDATA is declared by the assembler's

pseudo-instruction .SBSYM.
(2) If #pragma SBDATA is specified for anything other than a variable, it is ignored as

invalid.
(3) If the specified variable is a static variable declared in a function, the #pragma

SBDATA declaration is ignored as invalid.
(4) The variable declared to be #pragma SBDATA is placed in a SBDATA attribute

section when allocating memory for it.
(5) As opposed to the same variable #pragma SBDATA #pragma SB16DATA cannot

be specified simultaneously.
(6) If #pragma SBDATA is declared for ROM data, the data is not placed in a SBDATA

attribute section.

Example: #pragma SBDATA sym_data

struct sym_data{
 char bit0:1;
 char bit1:1;
 char bit2:1;
 char bit3:1;
 char bit4:1;
 char bit5:1;
 char bit6:1;
 char bit7:1;
}sym_data;

void func(void)
{
 sym_data.bit1 = 0;
 :
 (omitted)
 :

Figure B.65 Example Use of #pragma SBDATA Declaration

Supplement: NC100 is premised on an assumption that the SB register will be initialized after reset
and will thereafter be used as a fixed quantity.

REJ10J2009-0200 Rev.2.00 2010.04.01
140

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

#pragma SECTION

Change section name

Function: Changes the names of sections generated by NC100

Syntax: #pragma SECTIONUsection nameUnew section name

Description: Specifying the program section, data section and rom section in a #pragma SECTION

declaration changes the section names of all subsequent functions.
Specifying a bss section in a #pragma SECTION declaration changes the names of all
data sections defined in that file.
If you need to add or change section names after using this function to change section
names, change initialization, etc., in the startup program for the respective sections.

 The program, data, rom and bss sections can have their names changed a
number of times in one and the same file.

 All other sections cannot have their names changed twice or more.

Example: C source program:

#pragma SECTION program pro1 Changes name of program section to pro1
void func(void);
 :
 (remainder omitted)

Assembly language source program:

;### FUNCTION func
 .section pro1,CODE,ALIGN Maps to pro1 section
 ._file 'smp.c'
 ._line 9
 .glb _func
_func:

Change name of data section from data to data1:

#pragma SECTION data data1
int i; Maps to data1_NE section

void func(void)
{
 (remainder omitted)
}

#pragma SECTION data data2
int j; Maps to data2_NE section

void sub(void)
{
 (remainder omitted)
}

Figure B.66 Example Use of #pragma SECTION Declaration

REJ10J2009-0200 Rev.2.00 2010.04.01
141

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

#pragma SECTION

Change section name

Supplement: When modifying the name of a section, note that the section's location attribute (e.g.,

_NE or _NEI) is added after the section name.

Note: String data and const data without initial values are output with the rom section name

that is last declared.

REJ10J2009-0200 Rev.2.00 2010.04.01
142

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

#pragma STRUCT

Control structure mapping

Function: (1) Inhibits packing of structures

(2) Arranges structure members

Syntax: (1) #pragma STRUCTUstructure_tagUunpack

(2) #pragma STRUCTUstructure_tagUarrange

Description: In NC100, structures are packed. For example, the members of the structure in Figure

B.67 are arranged in the order declared without any padding.

struct s {
 short i;
 char c;
 short j;
};

Member
name

Type Size Mapped
location
(offset)

i short 16 bits 0
c char 8 bits 2
j shortt 16 bits 3

Figure B.67 Example Mapping of Structure Members (1)

Rules: (1) Inhibiting packing

This NC100 extended function allows you to control the mapping of structure
members. Figure B.68 is an example of mapping the members of the structure in
Figure B.67 using #pragma STRUCT to inhibit packing.

struct s {
 short i;
 char c;
 short j;
};

Member
name

Type Size Mapped
location
(offset)

i short 16 bits 0
c char 8 bits 2
j short 16 bits 3

Padding (char) 8 bits -

Figure B.68 Example Mapping of Structure Members (2)

As shown Figure B.68, if the total size of the structure members is an odd
number of bytes, #pragma STRUCT adds 1 byte as packing after the last
member. Therefore, if you use #pragma STRUCT to inhibit padding, all
structures have an even byte size.

REJ10J2009-0200 Rev.2.00 2010.04.01
143

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

#pragma STRUCT

Control structure mapping

Rules: (2) Arranging members

This NC100 extended function allows you to map the all odd-sized structure
members first, followed by even-sized members. Figure B.69 shows the offsets
when the structure shown in Figure B.68 is arranged using #pragma STRUCT.

struct s {
 short i;
 char c;
 short j;
};

Member
name

Type Size Mapped
location
(offset)

i short 16 bits 0
j short 16 bits 2
c char 8 bits 4

Figure B.69 Example Mapping of Structure Members (3)

You must declare #pragma STRUCT for inhibiting packing and arranging the structure
members before defining the structure members.

Example: #pragma STRUCT TAG unpack

struct TAG {
 int i;
 char c;
} s1;

Figure B.70 Example of #pragma STRUCT Declaration

REJ10J2009-0200 Rev.2.00 2010.04.01
144

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

B.7.3 Using Extended Functions for Target Devices

NC100 includes the following extended functions for target devices.

#pragma ADDRESS

Specify absolute address of I/O variable

Function: Specifies the absolute address of a variable. For near variables, the specified address is

within the bank.

Syntax: #pragma ADDRESSUvariable-nameUabsolute-address

Description: The absolute address specified in this declaration is expanded as a character string in an

assembler file and defined in pseudo instruction .EQU. The format for writing the
numerical values therefore depends on the assembler, as follows:

 Append 'B' or 'b' to binary numbers
 Append 'O' or 'o' to octal numbers
 Write decimal integers only.
 Append 'H' or 'h' to hexadecimal numbers. If the number starts with letters A

to F, precede it with 0.

Rules: (1) All storage classes such as extern and static for variables specified in #pragma

ADDRESS are invalid.
(2) Variables specified in #pragma ADDRESS are valid only for variables defined

outside the function.
(3) #pragma ADDRESS is valid for previously declared variables.
(4) #pragma ADDRESS is invalid if you specify other than a variable.
(5) No error occurs if a #pragma ADDRESS declaration is duplicated, but the last

declared address is valid.
(6) A warning occurs if you include an initialization expression and an initialization

expression is invalid.
(7) Normally #pragma ADDRESS operates on I/O variables, so that even though

volatile may not actually be specified, the compiler processes them assuming
volatile is specified.

Example: #pragma ADDRESS port 24H

int io;

void func(void)
{
 io = 10;
}

Figure B.71 #pragma ADDRESS Declaration

REJ10J2009-0200 Rev.2.00 2010.04.01
145

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

#pragma ADDRESS

Specify absolute address of I/O variable

Note: If a variable is used prior to the specification of #pragma ADDRESS as shown in Figure

B.72, the specification of #pragma ADDRESS has no effect.
 char port;

void func(void)
{
 port = 0; /* Uses a variable before specifying #pragma ADDRESS */
}

#pragma ADDRESS port 100H

Figure B.72 Cases where the specification of #pragma ADDRESS has no effect

Supplement: The numeric representation in C language is used to write the absolute address in this

declaration form.

REJ10J2009-0200 Rev.2.00 2010.04.01
146

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

#pragma DMAC

Specifies the DMAC register of a external variable

Function: The DMAC register inside CPU is assigned to the specified external variable.

Syntax: #pragma DMACUvariable-nameUDMAC Register Name

(1) You have to declare the variable specified to be #pragma DMAC before description
of #pragma DMAC.

(2) It can be specified as #pragma DMAC. #pragma DMAC register name and the
type of a variable are as follows.

 Register Name DMD0

DMD1
DMD2
DMD3

DCT0
DCT1
DCT2
DCT3

DCR0
DCR1
DCR2
DCR3

DDA0
DDA1
DDA2
DDA3

DDR0
DDR1
DDR2
DDR3

DSA0
DSA1
DSA2
DSA3

DSR0
DSR1
DSR2
DSR3

 Variable Type unsigned long To arbitrary models far pointer, However,
the pointer to a function cannot be used.

Rules:

(3) Two or more #pragma DMAC cannot be declared to the same register.
(4) The "&"(address operator), "()"(function call operator),"[]"(subscript operator), and

"->"(indirection operator) cannot be specified to the variable specified by #pragma
DMAC.

(5) The variable specified by #pragma DMAC is processed as that to which volatile
specification is carried out, even if there is no volatile specification.

Example: void _far *dda0;

#pragma DMAC dda0 DDA0

void func(void)
{
 unsigned char buff[10];

 dda0 = buff;
}

Figure B.73 #pragma DMAC Declaration

REJ10J2009-0200 Rev.2.00 2010.04.01
147

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

#pragma INTCALL

Declare a function called by the INT instruction

Function: Declares a function called by a software interrupt (by the int instruction)

Syntax: (1) #pragmaINTCALLUINT-No.Uassembler-function-name(register-name,

registername,…)
(2) #pragma INTCALLUINT-No.UC-function-name()

Description: This extended function declares the assembler function called by a software interrupt

with the INT number.

Rules: Declaring assembler functions

(1) Before a #pragma INTCALL declaration, be sure to include an assembler
function prototype declaration. If there is no prototype declaration, a
warning is output and the #pragma INTCALL declaration is ignored.

(2) Observe the following in the prototype declaration:
(1) Make sure that the number of parameters in the prototype

declaration matches those in the #pragma INTCALL
declaration.

(2) You cannot declare the following types in the parameters in the
assembler function:

 structure types
 union types

(3) You cannot declare the following functions as the return values of
assembler functions:

 Functions that return structures or unions
(3) You can use the following registers for parameters when calling:

 double types, long types (64-bit registers)
R3R1R2R0, R7R5R6R4, A1A0, A3A2

 float types, long types, int types, far*{far pointer}(32-bit registers)
R2R0, R3R1, R6R4, R7R5, A0, A1, A2, A3

 short types, int types("-fint_16" option use)(16-bit registers)
R0, R1, R2, R3, R4, R5, R6, R7

 char types, _Bool types (8-bit registers)
R0L, R0H, R1L, R1H, R2L, R2H, R3L, R3H

 There is no differentiation between uppercase and lowercase
letters in register names.

(4) You can only use decimals for the INT Numbers.
 Declaring functions of which the body is written in C

(1) Before a #pragma INTCALL declaration, be sure to include a prototype
declaration. If there is no prototype declaration, a warning is output and the
#pragma INTCALL declaration is ignored.

(2) You cannot specify register names in the parameters of functions that
include the #pragma INTCALL declaration.

(3) Observe the following in the prototype declaration:
(1) In the prototype declaration, you can only declare functions in

which all parameters are passed via registers, as in the function
calling rules.

(2) You cannot declare the following functions as the return values of
functions:

 Functions that return structures or unions
(4) You can only use decimals for the INT Numbers.

REJ10J2009-0200 Rev.2.00 2010.04.01
148

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

#pragma INTCALL

Declare a function called the INT instruction

Example: int asm_func(unsigned long, unsigned short); Prototype declaration for the

#pragma INTCALL 25 asm_func(R2R0, R1) assembler function

void main(void)
{
 int i;
 long l;

 i = 0x7FFD;
 l = 0x007F;

 asm_func(l, i); Calling the assembler function
}

Figure B.74 Example of #pragma INTCALL Declaration(asm function) (1)

 int c_func(unsigned int, unsigned int); Prototype declaration for the C function
#pragma INTCALL 25 c_func(); You may NOT specify registers.

void main(void)
{
 int i, j;

 i = 0x7FFD;
 j = 0x007F;

 c_func(i, j); Calling the C function
}

Figure B.75 Example of #pragma INTCALL Declaration(C language function) (2)

Supplement: To use the startup file included with the product, alter the content of the vector section

before use. For details on how to alter it, refer to “Preparing the Startup Program.”

REJ10J2009-0200 Rev.2.00 2010.04.01
149

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

#pragma INTERRUPT

Declare interrupt function

Function: Declares an interrupt handler

Syntax: (1) #pragma INTERRUPTU[/B|/E|/F|R|/V]Uinterrupt-handler-name

(2) #pragmaINTERRUPTU[/B|/E|/F|/R]Uinterrupt-vector-numberUinterrupt
-handler-name

(3) #pragmaINTERRUPTU
[/B|/E|/F|/R]Uinterrupt-handler-name(vect=interrupt-vector-number
)

Description: (1) By using the above format to declare interrupt processing functions written in C,

NC100 generates the code for performing the following interrupt processing at the entry
and exit points of the function.

 In entry processing, all registers of the Micro Procesor are saved to the stack.
 In exit processing, the saved registers are restored and control is returned to the

calling function by the REIT instruction.
(2) You may specify either /B or /E of /F in this declaration:

 [/B]
Instead of saving the registers to the stack when calling the function, you can
switch to the alternate registers. This allows for faster interrupt processing.

 [/E]
:Multiple interrupts are enabled immediately after entering the interrupt. This
improves interrupt response.

 [/F]
:Return to th calling function by the FREIT instruction in exit processing.

 [/R]
Does not output the code that changes floating-point rounding mode of FLG
register to the “nearest value.”

 [/V]
Only generates a vector table for interrupt functions and does not change
generated code. Use this switch primarily for fixed vectors.

(3) Interrupt vector numbers can be specified in a function declaration.
A variable vector table can be automatically generated by setting interrupt vector
numbers before compiling the sources.
To use the assembly language startup program without specifying vector numbers,
refer to paragraph e, “Setting an interrupt vector table,” in Section 2.2.2, “Customizing
the Startup Program.”

REJ10J2009-0200 Rev.2.00 2010.04.01
150

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

#pragma INTERRUPT

Declare interrupt function

Rules: (1) A warning is output when compiling if you declare interrupt processing functions

that take parameters
(2) A warning is output when compiling if you declare interrupt processing functions

that return a value. Be sure to declare that any return value of the function has
the void type.

(3) Only functions for which the function is defined after a #pragma INTERRUPT
declaration are valid.

(4) No processing occurs if you specify other than a function name.
(5) No error occurs if you duplicate #pragma INTERRUPT declarations.
(6) You cannot specify both switch /E and switch /B at the same time.
(7) If different interrupt vector numbers are written in the same interrupt handling

function, the vector number declared later is effective.
(8) /V and other switches cannot be used at the same time.
 #pragma INTTERUPT intr(vect=10)
#pragma INTTERUPT intr(vect=20) /* The interrupt vector number 20 is effective. */

Figure B.76 Example for writing different interrupt vector numbers

Example: extern int int_counter;

#pragma INTERRUPT /B i_func

void i_func(void)
{
 int_counter += 1;
}

Figure B.77 Example of #pragma INTERRUPT Declaration

Supplement: (1) To use the startup file included with the product, alter the content of the vector

section before use. For details on how to alter it, refer to “Preparing the Startup
Program.”

(2) When using a register on the back side, be careful that the back register is not
corrupted by a nesting of interrupts.

REJ10J2009-0200 Rev.2.00 2010.04.01
151

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

#pragma PARAMETER

Declare assembler function that passed arguments via register

Function: Declares an assembler function that passes parameters via registers

Syntax: #pragma PARAMETERUassembler-function-name(register-name,register-

name,…)

Description: This extended function declares that, when calling an assembler function, its

parameters are passed via registers.
 double types, long long types (64-bit registers)

R3R1R2R0, R7R5R7R4, A1A0, A3A2
 float types, long types, int types, far *{far pointer} (32-bit registers)

R2R0, R3R1, R6R4, R7R5, A0, A1, A2, A3
 short types, int types("-fint_16" option use)(16-bit registers)

R0, R1, R2, R3, R4, R5, R6, R7
 char types, _Bool types(8-bit registers)

R0L, R0H, R1L, R1H, R2L, R2H, R3L, R3H
 There is no differentiation between uppercase and lowercase letters in

register names.
 Structure and union types cannot be declared.

Rules: (1) Always put the prototype declaration for the assembler function before the

#pragma PARAMETER declaration. If you fail to make the prototype declaration,
a warning is output and #pragma PARAMETER is ignored.

(2) Follow the following rules in the prototype declaration:
a Note also that the number of parameters specified in the prototype

declaration must match that in the #pragma PARAMETER declaration.
b The following types cannot be declared as parameters for an assembler

function in a #pragma PARAMETER declaration:
 structure-type and union-type

c The assembler functions shown below cannot be declared:
 Functions returning structure or union type

Example: short asm_func(short, short); Prototype declaration for the assembler function

#pragma PARAMETER asm_func(R0, R1)

void main(void)
{
 short i, j;

 i = 0x7FFD;
 j = 0x007F;

 asm_func(i, j); Calling the assembler function
}

Figure B.78 Example of #pragma PARAMETER Declaration

REJ10J2009-0200 Rev.2.00 2010.04.01
152

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

B.7.4 Use of the other extension function

NC100 includes the following extended function for embedding assembler description inline.

#pragma __ASMMACRO

Assembler macro function

Function: Declares defined a function by assembler macro.

Syntax: #pragma __ASMMACRO function-name(register name, …)

Rules: (1) Always put the prototype declaration before the #pragma __ASMMACRO

declaration. Assembler macro function be sure to declare “static”.
(2) Can’t declare the function of no parameter. Parameter is passed via register. Please

specify the register matching the parameter type.
(3) Please append the underscore (“_”) to the head of the definition assembler macro

name.
(4) The following is a return value-related calling rules. You can’t declare structure

and union type as the return value.

 char and _Bool types : R0L float types : R2R0
 int("-fint_16" use),

short types :
R0 double types : A1A0

int("-fint_16" does’nt use),
long types :

R2R0 long-long type : A1A0

pointer types : A0

 (5) If you change the register’s data, save the register to the stack in entry processing

of assembler macro function and the saved register restore in exit processing.

Example: static short max_w(short, short); /* Be sure to declare “static” */

#pragma __ASMMACRO max_w(R0, R2)
#pragma ASM
_max_w .macro
 max.w R2,R0 ; ; The return-value is set to, R0 register
 .endm
#pragma ENDASM

short s;

void test_func(void)
{
s = max_w(2, 3);
}

Figure B.79 Example of #pragma __AMMACRO

REJ10J2009-0200 Rev.2.00 2010.04.01
153

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

#pragma ASM-#pragma ENDASM

Inline assembling

Function: Specifies assembly code in C.

Syntax: #pragma ASM

assembly statements
#pragma ENDASM

Description: The line(s) between #pragma ASM and #pragma ENDASM are output without

modifying anything to the generated assembly source file.
Writing #pragma ASM, be sure to use it in combination with #pragma ENDASM.
NC100 suspends processing if no #pragma ENDASM is found the corresponding
#pragma ASM.

Rules: (1) In assembly language description, do not write statements which will cause the

register contents to be destroyed. When writing such statements, be sure to use the
push and pop instructions to save and restore the register contents.

(2) Within the "#pragma ASM" to "#pragma ENDASM" section, do not reference
arguments and auto variables.

(3) Within the "#pragma ASM" to "#pragma ENDASM" section, do not write a branch
statement (including conditional branch) which may affect the program flow.

Example: void func(void)

{
 int i, j;

 for(i=0; i < 10;i++){
 func2();
 }

#pragma ASM
 FCLR I
LOOP1:
 MOV.W #0FFH,R0
 :
 (omitted)
 :
 FSET I

#pragma ENDASM
}

This area is output directly to an
assembly language file.

Figure B.80 Example of #pragma ASM(ENDASM)

Supplement: It is this assembly language program written between #pragma ASM and #pragma

ENDASM that is processed by the C preprocessor.

REJ10J2009-0200 Rev.2.00 2010.04.01
154

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

#pragma JSRA

Calls a function with JSR.A

Function: Calls a function using the JSR.A instruction.

Syntax: #pragma JSRAUfunction-name

Description: Calls all functions declared using #pragma JSRA using the JSR.A instruction. #pragma

JSRA can be specified to avoid errors in the case of functions that include code generated
using the -fJSRW option and that cause errors during linking.

Rules: This preprocessing directive has no effect when the -fJSRW option not specified.

Example: extern void func(int i);

#pragma JSRA func()

void main(void)
{
 func(1);
}

Figure B.81 Example of #pragma JSRA

#pragma JSRW

Calls a function with JSR.W

Function: Calls a function using the JSR.W instruction.

Syntax: #pragma JSRWUfunction-name

Description: By default, the JSR.A instruction is used when calling a function that, in the same file,

has no body definition. However, the #pragma JSRW-declared function are always
called using JSR.W. This directive helps reduce ROM size.

Rules: (1) You may NOT specify #pragma JSRW for static functions.

(2) When function call with the JSR.W instruction does not reach #pragma
JSRW-declared function, an error occurs at link-time. In this case, you may not use
#pragma JSRW.

Example: #pragma JSRW func()

void main(void)
{
 func(1);
}

Figure B.82 Example of #pragma JSRW

Supplement: The #pragma JSRW is valid only when directly calling a function. It has no effect when

calling indirectly.

REJ10J2009-0200 Rev.2.00 2010.04.01
155

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

#pragma PAGE

Output .PAGE

Function: Declares the position to be changed for a new page in a list file that is output by an

assembler.

Syntax: #pragma PAGE

Description: Putting the line #pragma PAGE in C source code, the .PAGE pseudo-instruction is

output at the corresponding line in the compiler-generated assembly source. This
instruction causes page ejection asesmbler-output assembly list file.

Rules: (1) You cannot specify the character string specified in the header of the assembler

pseudo-instruction .PAGE.
(2) You cannot write a #pragma PAGE in an auto variable declaration.

Example: void func(void)

{
 int i, j;

 for(i=0; i < 10;i++){
 func2();
 }
#pragma PAGE
 i++;
}

Figure B.83 Example of #pragma PAGE

REJ10J2009-0200 Rev.2.00 2010.04.01
156

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

B.8 assembler Macro Function

B.8.1 Outline of Assembler Macro Function

NC100 allows part of assembler commands to be written as C-language functions. Because specific assembler
commands can be written directly in a C-language program, you can easily tune up the program.

B.8.2 Description Example of Assembler Macro Function

Assembler macro functions can be written in a C language program in the same form as C language functions, as
shown in Figure B.84.
When using the facility of any assembler macro function, be sure to include asmmacro.h.

#include <asmmacro.h> /* Includes the assembler macro function definition file */
long l;
char a[20];
char b[20];

void func(void)
{
 l = rmpa_b(0,19,a,b); /* asm Macro Function(rmpa command) */
}

Figure B.84 Description Example of Assembler Macro Function

REJ10J2009-0200 Rev.2.00 2010.04.01
157

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

B.8.3 Commands that Can be Written by Assembler Macro Function

The following shows the assembler commands that can be written using assembler macro functions and their
functionality and format as assembler macro functions.

ABS

Function : Returns the absolute value of val

Syntax : #include <asmmacro.h>

/* When calculated in 8 bits */
static signed char abs_b(signed char val);

/* When calculated in 16 bits */
static short int abs_w(short int val);

/* When calculated in 32 bits */
static long int abs_l(long int val);

MAX

Function : Returns the value val1 or val2 whichever is found larger by comparison.

Syntax : #include <asmmacro.h>

/* When calculated in 8 bits */
static signed char max_b(signed char val1, signed char val2);

/* When calculated in 16 bits */
static short int max_w(short int val1, short int val2);

/* When calculated in 32 bits */
static long int max_l(long int val1, long int val2);

REJ10J2009-0200 Rev.2.00 2010.04.01
158

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

MIN

Function : Returns the value val1 or val2 whichever is found smaller by comparison.

Syntax : #include <asmmacro.h>

/* When calculated in 8 bits */
static signed char min_b(signed char val1, signed char val2);

/* When calculated in 16 bits */
static short int min_w(short int val1, short int val2);

/* When calculated in 32 bits */
static long int min_l(long int val1, long int val2);

RMPA

Function : Initial value: init; Number of times: count. The result is returned after performing a

sum-of-products operation assuming p1 and P2 as the start addresses where multipliers
are stored.

Syntax : #include <asmmacro.h>

/* When calculated in 8 bits */
static long long rmpa_b(long long init, unsigned long int count,
const signed char _far *p1, const signed char _far *p2);

/* When calculated in 16 bits */
static long long rmpa_w(long long init, unsigned long int count,
const short int _far *p1, const short int _far *p2);

/* When calculated in 32 bits */
static long long rmpa_l(long long init, unsigned long int count,
const long int _far *p1, const long int _far *p2);

REJ10J2009-0200 Rev.2.00 2010.04.01
159

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

SIN

Function : Strings are transferred from a fixed source address that is indicated by p1 to the

destination address indicated by p2 as many times as indicated by count in the
address-incrementing direction. There is no return value.

Syntax : #include <asmmacro.h>

/* When calculated in 8 bits */
static void sin_b(volatile const void _far *p1, void _far *p2, unsigned
long int count);

/* When calculated in 16 bits */
static void sin_w(volatile const void _far *p1, void _far *p2, unsigned
long int count);

/* When calculated in 32 bits */
static void sin_l(volatile const void _far *p1, void _far *p2, unsigned
long int count);

SMOVB

Function : Strings are transferred from the source address indicated by p1 to the destination

address indicated by p2 as many times as indicated by count in the address
decrementing direction. There is no return value.

Syntax : #include <asmmacro.h>

/* When calculated in 8 bits */
static void smovb_b(const void _far *p1, void _far *p2, unsigned long
int count);

/* When calculated in 16 bits */
static void smovb_w(const void _far *p1, void _far *p2, unsigned long
int count);

/* When calculated in 32 bits */
static void smovb_l(const voiid _far *p1, void _far *p2, unsigned
long int count);

REJ10J2009-0200 Rev.2.00 2010.04.01
160

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

SMOVF

Function : Strings are transferred from the source address indicated by p1 to the destination

address indicated by p2 as many times as indicated by count in the address
incrementing direction. There is no return value.

Syntax : #include <asmmacro.h>

/* When calculated in 8 bits */
static void smovf_b(const void _far *p1, void _far *p2, unsigned long
int count);

/* When calculated in 16 bits */
static void smovf_w(const void _far *p1, void _far *p2, unsigned long
int count);

/* When calculated in 32 bits */
static void smovf_l(const voiid _far *p1, void _far *p2, unsigned
long int count);

SMOVU

Function : Strings are transferred from the source address indicated by p1 to the destination

address indicated by p2 in the address-incrementing direction until zero is detected.
There is no return value

Syntax : #include <asmmacro.h>

/* When calculated in 8 bits */
static void smovu_b(const void _far *p1, void _far *p2);

/* When calculated in 16 bits */
static void smovu_w(const void _far *p1, void _far *p2);

REJ10J2009-0200 Rev.2.00 2010.04.01
161

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

SOUT

Function : Strings are transferred in the address-incrementing direction from the source address

indicated by p1 to the destination address indicated by p2 as many times as indicated by
count. There is no return value.

Syntax : #include <asmmacro.h>

/* When calculated in 8 bits */
static void sout_b(const void _far *p1, volatile void _far *p2, unsigned
long int count);

/* When calculated in 16 bits */
static void sout_w(const void _far *p1, volatile void _far *p2, unsigned
long int count);

/* When calculated in 32 bits */
static void sout_l(const void _far *p1, volatile void _far *p2, unsigned
long int count);

SSTR

Function : Strings are stored using val as the data to store, p as the address to from val address

which to transfer, and count as the number of times to transfer data. There is no return
value.

Syntax : #include <asmmacro.h>

/* When calculated in 8 bits */
static void sstr_b(usigned char val, void _far *p, unsigned long int
count);

/* When calculated in 16 bits */
static void sstr_w(usigned short int val, void _far *p, unsigned long
int count);

/* When calculated in 32 bits */
static void sstr_l(usigned long int val, void _far *p, unsigned long
int count);

REJ10J2009-0200 Rev.2.00 2010.04.01
162

R32C/100 Series C Compiler Package V.1.02 B. Extended Functions Reference

SUNTIL

Function : Searches the file in the address increment direction from the comparison address

indicated by from as many times as specified by count until the data that matches val is
encountered.

Syntax : #include <asmmacro.h>

/* When calculated in 8 bits */
static void _far *suntil_b(unsigned char val, const void _far *from,
unsigned long int count);

/* When calculated in 16 bits */
static void _far *suntil_w(unsigned short int val, const void _far
*from,unsigned long int count);

/* When calculated in 32 bits */
static void _far *suntil_l(unsigned long iont val, const void _far
*from,unsigned long int count);

SWHILE

Function : Searches continually in the address incrementing direction from the comparison address

indicated by from as many times as specified by cout until the data that does not match
val is encountered.

Syntax : #include <asmmacro.h>

/* When calculated in 8 bits */
static void _far *swhile_b(unsigned char val, const void _far *from,
unsigned long int count);

/* When calculated in 16 bits */
static void _far *swhile_w(unsigned short int val, const void _far
*from,unsigned long int count);

/* When calculated in 32 bits */
static void _far *swhile_l(unsigned long iont val, const void _far
*from,unsigned long int count);

REJ10J2009-0200 Rev.2.00 2010.04.01
163

R32C/100 Series C Compiler Package V.1.02 C. Overview of C Language Specifications

Appendix C Overview of C Language Specifications

In addition to the standard versions of C available on the market, C language specifications include extended
functions for embedded system.

C.1 Performance Specifications

C.1.1 Overview of Standard Specifications

NC100 is a cross C compiler targeting the R32C/100 series. In terms of language specifications, it is virtually
identical to the standard full-set C language, but also has specifications to the hardware in the R32C/100 series and
extended functions for embedded system.

 Extended functions for embedded system(near/far modifiers, and asm function, etc.)
 Floating point library and host machine-dependent functions are contained in the standard

library.

C.1.2 Introduction to NC100 Performance

This section provides an overview of NC100 performance.

a Test Environment

Table C.1 shows the standard PC environment.

Table C.1 Standard PC Environment
Item Type of PC OS Version
PC environment IBM PC/AT or compatible Windows XP, Windows Me, Windows 98,

Windows 2000, Windows NT 4.0

b C Source File Coding Specifications

Table C.2 shows the specifications for coding NC100 C source files. Note that estimates are provided for items for
which actual measurements could not be achieved.

Table C.2 Specifications for Coding C Source Files
Item Specification
Number of characters per line of source file 512 bytes (characters) including the new line code
Number of lines in source file 65535 max.

REJ10J2009-0200 Rev.2.00 2010.04.01
164

R32C/100 Series C Compiler Package V.1.02 C. Overview of C Language Specifications

c NC100 Specifications

Table C.3 to Table C.4 lists the NC100 specifications. Note that estimates are provided for items for which actual
measurements could not be achieved.

Table C.3 NC100 Specifications (1/2)
Item Specification
Maximum number of files that can be specified in nc100 Depends on amount of available memory
Maximum length of filename Depends on operating system
Maximum number of macros that can be specified in nc100
command line option -D

Depends on amount of available memory

Maximum number of directories that can be specified in
nc100 command line option -I

256 max

Maximum number of parameters that can be specified in
nc100 command line option -as100

Depends on amount of available memory

Maximum number of parameters that can be specified in
nc100 command line option -n100

Depends on amount of available memory

Maximum nesting levels of compound statements, iteration
control structures, and selection control structures

Depends on amount of available memory

Maximum nesting levels in conditional compiling Depends on amount of available memory
Number of pointers modifying declared basic types, arrays,
and function declarators

Depends on amount of available memory

Number of function definitions Depends on amount of available memory
Number of identifiers with block scope in one block Depends on amount of available memory
Maximum number of macro identifiers that can be
simultaneously defined in one source file

Depends on amount of available memory

Maximum number of macro name replacements Depends on amount of available memory
Number of logical source lines in input program Depends on amount of available memory
Maximum number of levels of nesting #include files 40max
Maximum number of case names in one switch statement
(with no nesting of switch statement)

Depends on amount of available memory

Total number of operators and operands that can be defined
in #if and #elif

Depends on amount of available memory

Size of stack frame that can be secured per function(in
bytes)

64K max

Number of variables that can be defined in #pragma
ADDRESS

Depends on amount of available memory

Maximum number of levels of nesting parentheses Depends on amount of available memory
Number of initial values that can be defined when defining
variables with initialization expressions

Depends on amount of available memory

Maximum number of levels of nesting modifier declarators Depends on stack size of YACC
Maximum number of levels of nesting declarator
parentheses

Depends on stack size of YACC

Maximum number of levels of nesting operator parentheses Depends on stack size of YACC
Maximum number of valid characters per internal identifier
or macro name

Depends on amount of available memory

Maximum number of valid characters per external
identifier

Depends on amount of available memory

Maximum number of external identifiers per source file Depends on amount of available memory
Maximum number of identifiers with block scope per block Depends on amount of available memory

b1500043
線

b1500043
テキストボックス
200 max

b1500043
線

b1500043
テキストボックス
200 max

REJ10J2009-0200 Rev.2.00 2010.04.01
165

R32C/100 Series C Compiler Package V.1.02 C. Overview of C Language Specifications

Table C.4 NC100 Specifications (2/2)
Item Specification
Maximum number of macros per source file Depends on amount of available memory
Maximum number of parameters per function call and per
function

Depends on amount of available memory

Maximum number of parameters or macro call parameters
per macro

31max

Maximum number of characters in character string literals
after concatenation

Depends on amount of available memory

Maximum size (in bytes) of object Depends on amount of available memory
Maximum number of members per structure/union Depends on amount of available memory
Maximum number of enumerator constants per numerator Depends on amount of available memory
Maximum number of levels of nesting of structures or
unions per struct declaration list

Depends on amount of available memory

Maximum number of characters per character string Depends on operating system
Maximum number of lines per file Depends on amount of available memory

REJ10J2009-0200 Rev.2.00 2010.04.01
166

R32C/100 Series C Compiler Package V.1.02 C. Overview of C Language Specifications

C.2 Standard Language Specifications

The chapter discusses the NC100 language specifications with the standard language specifications.

C.2.1 Syntax

This section describes the syntactical token elements. In NC100, the following are processed as tokens:
 Key words Identifiers
 Constants Character literals
 Operators Punctuators
 Comment

a Key Words

NC100 interprets the followings as key words.

Table C.5 Key Words List
_asm _far _near asm auto
_Bool _inline break case char
const continue default do double
else enum extern far float
for goto if inline int
long near register restrict return
short signed sizeof static struct
switch typedef union unsigned void
volatile while

b Identifiers

Identifiers consist of the following elements:
 The 1st character is a letter or the underscore (A to Z, a to z, or __)
 The 2nd and subsequent characters are alphanumerics or the underscore (A to Z, a to z, 0 to

9, or __)
Identifiers can consist of up to 200 characters. However, you cannot specify Japanese characters in identifiers.

c Constants

Constants consists of the followings.
 Integer constants
 Floating point constants
 Character constants

REJ10J2009-0200 Rev.2.00 2010.04.01
167

R32C/100 Series C Compiler Package V.1.02 C. Overview of C Language Specifications

(1) Integer constants

In addition to decimals, you can also specify octal and hexadecimal integer constants. Table C.6 shows the format of
each base (decimal, octal, and hexadecimal).

Table C.6 Specifying Integer Constants
Base Notation Structure Example
Decimal None 0123456789 15
Octal Start with 0 (zero) 01234567 017
Hexadecimal Start with 0X or 0x 0123456789ABCDEF

0123456789abcdef
0XF or 0xf

Determine the type of the integer constant in the following order according to the value.

 Octal and hexadecimal:
signed int . unsigned int . signed long . unsigned long. signed long long . unsigned long long

 Decimal:
signed int . signed long . signed long long

Adding the suffix U or u, or L or l, or LL or ll, results in the integer constant being processed as follows:

(1) Unsigned constants
Specify unsigned constants by appending the letter U or u after the value. The type is
determined from the value in the following order:

 unsigned int . unsigned long . unsigned long long
(2) long-type constants

Specify long-type constants by appending the letter L or l. The type is determined from the
value in the following order:

 Octal and hexadecimal: signed long . unsigned long . signed long long unsigned long
long

 Decimal : signed long long . unsigned long long
(3) long-type constants

Specify long long-type constants by appending the letter LL or ll. The type is determined from
the value in the following order:

 Octal and hexadecimal: signed long long . unsigned long long
 Decimal : signed long long

(2) Floating point constants

If nothing is appended to the value, floating point constants are handled as double types. To have them processed
as float types, append the letter F or f after the value. If you append L or l, they are treated as long double types.

(3) Character constants

Character constants are normally written in single quote marks, as in 'character'. You can also include the
following extended notation (escape sequences and trigraph sequences). Hexadecimal values are indicated by
preceding the value with ¥x. Octal values are indicated by preceding the value with ¥.

REJ10J2009-0200 Rev.2.00 2010.04.01
168

R32C/100 Series C Compiler Package V.1.02 C. Overview of C Language Specifications

Table C.7 Extended Notation List
Notation Escape sequence Notation Trigraph sequence
¥' single quote ¥ constant octal
¥" quotation mark ¥x constant hexadecimal
¥¥ backslash ??(express "[" character
¥? question mark ??/ express "¥" character
¥a bell ??) express "]" character
¥b backspace ??' express "^" character
¥f form feed ??< express "{" character
¥n line feed ??! express "{" character
¥r return ??> express "}" character
¥t horizontal tab ??− express "~" character
¥v vertical tab ??= express "#" character

d Character Literals

Character literals are written in double quote marks, as in "character string". The extended notation shown in
Table C.7 for character constants can also be used for character literals.

e Operators

NC100 can interpret the operators shown in Table C.8.

Table C.8 Operators List
++ &&
−− ¦¦

monadic operator

−

logical operator

!
+ conditional operator ?:
− comma operator ,
* address operator &
/ pointer operator *

binary operator

% <<
= >>
+= &
−= ¦
*= ̂
/= ̃

assignment operators

%= &=
> ¦=
< ^=
>= <<=
<=

bitwise operator

>>=
==

relational operators

!=
sizeof operator sizeof

REJ10J2009-0200 Rev.2.00 2010.04.01
169

R32C/100 Series C Compiler Package V.1.02 C. Overview of C Language Specifications

f Punctuators

NC100 interprets the followings as punctuators.
 { }
 : ;
 ,

g Comment

Comments are enclosed between / ∗ and ∗/. They cannot be nested.
Comments are enclosed between “//” and the end of line.

C.2.2 Type

a Data Type

NC100 supports the following data type.
 character type integral type
 structure union
 enumerator type void
 floating type

b Qualified Type

NC100 interprets the following as qualified type.
 const volatile
 restrict near
 far

REJ10J2009-0200 Rev.2.00 2010.04.01
170

R32C/100 Series C Compiler Package V.1.02 C. Overview of C Language Specifications

c Data Type and Size

Table C.9 shows the size corresponding to data type.

Table C.9 Data Type and Bit Size
Type Existence of sign Bit size Range of values
_Bool No 8 0, 1
char
unsigned char

No 8 between 0 and 255

signed char Yes 8 between -128 and 127
int
short
signed int
signed short

Yes 16 between -32768 and 32767

unsigned int
unsigned short

No 16 between 0 and 65535

int
long
signed int
signed long

Yes 32 between -2147483648 and 2147483647

unsigned int
unsigned long

No 32 between 0 and 4294967295

long long
signed long long

Yes 64 between -9223372036854775808 and
9223372036854775807

unsigned long long No 64 18446744073709551615
float Yes 32 between 1.17549435e-38F and

3.40282347e+38F
double
long double

Yes 64 between 2.2250738585072014e-308 and
1.7976931348623157e+308

far pointer No 32 between 0 and 0xFFFFFFFF

 The _Bool type can not specify to sign.
 If a char type is specified with no sign, it is processed as an unsigned char type.
 If an int or short type is specified with no sign, it is processed as a signed int or signed short

type.
 If a long type is specified with no sign, it is processed as a sign long type.
 If a long long type is specified with no sign, it is processed as a sign long long type.
 If the bit field members of a structure are specified with no sign, they are processed as

unsigned.
 Can not specifies bit-fields of long long type.
 Type int is handled in 32 bits. However, if the compile option “fI16 (-fint_16)” is specified, int

is handled in 16 bits.

REJ10J2009-0200 Rev.2.00 2010.04.01
171

R32C/100 Series C Compiler Package V.1.02 C. Overview of C Language Specifications

C.2.3 Expressions

Table C.10 and Table C.11 show the relationship between types of expressions and their elements.

Table C.10 Types of Expressions and Their Elements (1/2)
Type of expression Elements of expression

identifier
constant
character literal
(expression)

Primary expression

primary expression
Postpositional expression [expression]
Postpositional expression (list of parameters, ...)
Postpositional expression. identifier
Postpositional expression −> identifier
Postpositional expression ++
Postpositional expression −−

Postpositional expression

Postpositional expression
++ monadic expression
−− monadic expression
monadic operator cast expression
sizeof monadic expression
sizeof (type name)

Monadic expression

Monadic expression
(type name) cast expression Cast expression
cast expression
expression * expression
expression / expression

Expression

expression % expression
expression + expression Additional and

subtraction expressions expression − expression
expression << expression Bitwise shift expression
expression >> expression
expression
expression < expression
expression > expression
expression <= expression

Relational expressions

expression >= expression
expression == expression Equivalence expression
expression != expression

Bitwise AND expression & expression
Bitwise XOR expression ̂ expression
Bitwise OR expression | expression
Logical AND expression && expression
Logical OR expression || expression
Conditional expression expression ? expression: expression

REJ10J2009-0200 Rev.2.00 2010.04.01
172

R32C/100 Series C Compiler Package V.1.02 C. Overview of C Language Specifications

Table C.11 Types of Expressions and Their Elements (2/2)
Type of expression Elements of expression

monadic expression += expression
monadic expression −= expression
monadic expression *= expression
monadic expression /= expression
monadic expression %= expression
monadic expression <<= expression
monadic expression >>= expression
monadic expression &= expression
monadic expression ¦= expression
monadic expression ̂ = expression

Assign expression

assignment expression
Comma operator expression, monadic expression

C.2.4 Declaration

There are following two types of declaration.:
 Variable Declaration
 Function Declaration

a Variable Declaration

Use the format shown in Figure C.1 to declare variables.

storage class specifier type declarator declaration specifier initialization_expression;

Figure C.1 Declaration Format of Variable

(1) Storage-class Specifiers

NC100 supports the following storage-class specifiers.
 extern auto
 static register
 typedef

(2) Type Declarator

NC100 supports the type declarators.
 _Bool char
 int short
 long long long
 float double
 unsigned signed
 struct union
 enum

(3) Declaration Specifier

Use the format of declaration specifier shown in Figure C.2 in NC100.

REJ10J2009-0200 Rev.2.00 2010.04.01
173

R32C/100 Series C Compiler Package V.1.02 C. Overview of C Language Specifications

Declarator : Pointer opt declarator2
Declarator2 : identifier(declarator)

declarator2[constant expression opt]
declarator2(list of dummy arguments opt)

* Only the first array can be omitted from constant expressions showing the number of arrays.
* opt indicates optional items.

Figure C.2 Format of Declaration Specifier

(4) Initialization expressions

NC100 allows the initial values shown in Figure C.3 in initialization expressions.

integral types : constant
integral types array : constant, constant
character types : constant
character types array : character literal, constant
pointer types : character literal
pointer array : character literal, character literal

Figure C.3 Initial Values Specifiable in Initialization Expressions

REJ10J2009-0200 Rev.2.00 2010.04.01
174

R32C/100 Series C Compiler Package V.1.02 C. Overview of C Language Specifications

b Function Declaration

Use the format shown in Figure C.4 to declare functions.

function declaration (definition) :
 storage-class specifier type declarator declaration specifier main program

function declaration (prototype declaration) :
 storage-class specifier type declarator declaration specifier;

Figure C.4 Declaration Format of Function

(1) Storage-class Specifier

NC100 supports the following storage-class specifier.
 extern
 static

(2) Type Declarators

NC100 supports the following type declarators.
 _Bool char
 int short
 long long long
 float double
 unsigned signed
 struct union
 enum

(3) Declaration Specifier

Use the format of declaration specifier shown in Figure C.5 in NC100.

Declarator : Pointer opt declarator2
Declarator2 : identifier(list of dummy argument opt)
 (declarator)
 declarator[constant expressiono opt]
 declarator(list of dummy argument opt)

* Only the first array can be omitted from constant expressions showing the number of arrays.
* opt indicates optional items.
* The list of dummy arguments is replaced by a list of type declarators in a prototype declaration.

Figure C.5 Format of Declaration Specifier

REJ10J2009-0200 Rev.2.00 2010.04.01
175

R32C/100 Series C Compiler Package V.1.02 C. Overview of C Language Specifications

(4) Body of the Program

Use the format of body of the program shown in Figure C.6.

List of Variable Declaratoropt Compound Statement

*There is no body of the program in a prototype declaration, which ends with a semicolon.
*opt indicates optional items.

Figure C.6 Format of Body of the Program

C.2.5 Statement

NC100 supports the following.
 Labelled Statement Compound Statement
 Expression / Null Statement Selection Statement
 Iteration Statement Jump Statement
 Assembly Language Statement

a Labelled Statement

Use the format of labelled statement shown in Figure C.7

Identifier : statement
case constant : statement
default : statement

Figure C.7 Format of Labelled Statement

b Compound Statement

Use the format of compound statement shown in Figure C.8.

{ list of declarationsoptlist of statementsopt opt }
* opt indicates optional items.

Figure C.8 Format of Compound Statement

REJ10J2009-0200 Rev.2.00 2010.04.01
176

R32C/100 Series C Compiler Package V.1.02 C. Overview of C Language Specifications

c Expression / Null Statement

Use the format of expression and null statement shown in Figure C.9

expression:
expression;
null statement:
;

Figure C.9 Format of Expression and Null Statement

d Selection Statement

Use the format of selection statement shown in Figure C.10

if(expression)statement
if(expression)statement else statement
switch(expression)statement

Figure C.10 Format of Selection Statement

e Iteration Statement

Use the format of iteration statement shown in Figure C.11

while(expression)statement
do statement while (expression);
for(expression opt;expression opt;expression opt)statement;

* opt indicates optional items.

Figure C.11 Format of Iteration Statement

f Jump statement

Use the format of jump statement shown in Figure C.12

goto identifier;
continue;
break;
return expression opt;

*opt indicates optional items.

Figure C.12 Format of Jump Statement

REJ10J2009-0200 Rev.2.00 2010.04.01
177

R32C/100 Series C Compiler Package V.1.02 C. Overview of C Language Specifications

g Assembly Language Statement

Use the format of assembly language shown in Figure C.13

asm("Literals");
literals : assembly language statement

Figure C.13 Format of Assembly Language Statement

REJ10J2009-0200 Rev.2.00 2010.04.01
178

R32C/100 Series C Compiler Package V.1.02 C. Overview of C Language Specifications

C.3 Preprocess Commands

Preprocess commands start with the pound sign (#) and are processed by the cpp100 preprocessor. This chapter
provides the specifications of the preprocess commands.

C.3.1 List of Preprocess Commands Available

Table C.12 lists the preprocess commands available in NC100.

Table C.12 List of Preprocess Commands
Command Function
#assert Outputs a warning when a constant expression is false.
#define Defines macros.
#elif Performs conditional compilation.
#else Performs conditional compilation.
#endif Performs conditional compilation.
#error Outputs messages to the standard output device and terminates processing.
#if Performs conditional compilation.
#ifdef Performs conditional compilation.
#ifndef Performs conditional compilation.
#include Takes in the specified file.
#line Specifies file's line numbers.
#pragma Instructs processing for NC100's extended function.
#undef Undefines macros.

C.3.2 Preprocess Commands Reference

The NC100 preprocess commands are described in more detail below.

#assert

Function: Issues a warning if a constant expression results in zero (0).

Format: #assert constant expression

Description: Issues a warning if a constant expression results in zero (0). Compile is continued,

however.

 [Warning(cpp100):x.c, line xx]assertion warning

REJ10J2009-0200 Rev.2.00 2010.04.01
179

R32C/100 Series C Compiler Package V.1.02 C. Overview of C Language Specifications

#define

Function: Defines macros.

Format: (1) #define indentifier lexical string opt.

(2) #define identifier(identifier list opt) lexical string opt

Description: (3) Defines an identifier as macro.

(4) Defines an identifier as macro. In this format, do not insert any space or tab
between the first identifier and the left parenthesis '('.

 The identifier in the following code is replaced by blanks.

 #define SYMBOL

 When a macro is used to define a function, you can insert a backslash so that the
code can span two or more lines.

 The following four identifiers are reserved words for the compiler.
 __FILE__ Name of source file
__LINE__ Current source file line No.
__DATE__ Date compiled (mm dd yyyy)
__TIME__ Time compiled (hh:mm:ss)

The following are predefined macros in NC100.

 R32C100
NC100
__INT_16__ (When compilation option "-fI16(-fint_16)" is used, it is defined.)
__CHAR_SIGNED__ (When compilation option "-fSC(-fsigned_char)" is used, it is defined.)

 You can use the token string operator '#' and token concatenated operator '##' with

tokens, as shown below.
 #define debug(s,t) printf("x"#s" = %d x"#t" = %d",x ## s,x ## t)
When parameters are specified for this macro debug (s, t) as debug (1, 2), they are interpreted as
follows:
#define debug(s,t) printf("x1 = %d x2 = %d", x1,x2)

 Macro definitions can be nested (to a maximum of 20 levels) as shown below.

 #define XYZ1 100
#define XYZ2 XYZ1
 :
 (abbreviated)
 :
#define XYZ20 XYZ19

REJ10J2009-0200 Rev.2.00 2010.04.01
180

R32C/100 Series C Compiler Package V.1.02 C. Overview of C Language Specifications

#error

Function: Suspends compilation and outputs the message to the standard output device.

Format: #error character string

Description: Suspends compilation.

 lexical string is found, this command outputs that character string to the standard
output device.

#if − #elif − #else − #endif

Function: Performs conditional compilation.(Examines the expression true or false.)

Format: #if constant expression

:
#elif constant expression
:
#else
:
#endif

Description: If the value of the constant is true (not 0), the commands #if and #elif process the

program that follows.
 #elif is used in a pair with #if, #ifdef, or #ifndef.
 #else is used in a pair with #if. Do not specify any tokens between #else and the

line feed. You can, however, insert a comment.
 #endif indicates the end of the range controlled by #if. Always be sure to enter

#endif when using command #if.
 Combinations of #if-#elif-#else-#endif can be nested. There is no set limit to the

number of levels of nesting (but it depends on the amount of available memory).
 Cannot use the sizeof operator, cast operator, or variables in a constant expression.

REJ10J2009-0200 Rev.2.00 2010.04.01
181

R32C/100 Series C Compiler Package V.1.02 C. Overview of C Language Specifications

#ifdef − #elif − #else − #endif

Function: Performs conditional compilation. (Examines the macro defined or not.)

Format: #ifdef identifier

:
#elif constant expression
:
#else
:
#endif

Description: If an identifier is defined, #ifdef processes the program that follows. You can also

describe the following.
 #if. defined identifier
#if. defined (identifier)

 #else is used in a pair with #ifdef. Do not specify any tokens between #else and the

line feed. You can, however, insert a comment.
 #elif is used in a pair with #if, #ifdef, or #ifndef.
 #endif indicates the end of the range controlled by #ifdef. Always be sure to enter

#endif when using command #ifdef.
 Combinations of #ifdef-#else-#endif can be nested. There is no set limit to the

number of levels of nesting (but it depends on the amount of available memory).

#ifndef − #elif − #else − #endif

Function: Performs conditional compilation. (Examines the macro defined or not.)

Format: #ifndef identifier

:
#elif constant expression
:
#else
:
#endif

Description: If an identifier isn’t defined, #ifndef processes the program that follows. You can

also describe the followings.
 #if !defined identifier
#if !defined (identifier)

 #else is used in a pair with #ifndef. Do not specify any tokens between #else and

the line feed. You can, however, insert a comment.
 #elif is used in a pair with #if, #ifdef, or #ifndef.
 #endif indicates the end of the range controlled by #ifndef. Always be sure to enter

#endif when using command #ifndef.
 Combinations of #ifndef-#else-#endif can be nested. There is no set limit to the

number of levels of nesting (but it depends on the amount of available memory).

REJ10J2009-0200 Rev.2.00 2010.04.01
182

R32C/100 Series C Compiler Package V.1.02 C. Overview of C Language Specifications

#include

Function: Takes in the specified file.

Format: (1) #include <file name>

(2) #include "file name"
(3) #include identifier

Description: (1) Takes in <file name> from the directory specified by nc100's command line option

-I.
Searches <file name> from the directory specified by environment variable

 "INC100" if it's not found.
(2) Takes in "file name" from the current directory. Searches "file name" from the

following directory in sequence if it's not found.
(1) The directory specified by nc100's startup option -I.
(2) The directory specified by environment variable "INC100"

(3) If the macro-expanded identifier is <file name> or "file name" this command takes
in that file from the directory according to rules of search [1] or [2].

 The maximum number of levels of nesting is 40.
 An include error results if the specified file does not exist.

#line

Function: Changes the line number in the file.

Format: #line integer "file name"

Description: Specify the line number in the file and the filename.

 You can change the name of the source file and the line No.

REJ10J2009-0200 Rev.2.00 2010.04.01
183

R32C/100 Series C Compiler Package V.1.02 C. Overview of C Language Specifications

#pragma

Function: Instructs the system to process NC100's extended functions.

Format: (1) #pragma ROM variable name

(2) #pragma SBDATA variable name
(3) #pragma SB16DATA variable name
(4) #pragma SECTION predetermined section name altered section name
(5) #pragma STRUCT tag name of structure unpack
(6) #pragma STRUCT tag name of structure arrange
(7) #pragma ADDRESS variable name absolute address
(8) #pragma DMAC variable name DMAC register name
(9) #pragma INTCALL int No assembler function name (register name,

register name, ..)
(10) #pragma INTCALL int No C language function name()
(11) #pragma INTERRUPT [/B ¦/E ¦/F ¦/R ¦/V] interrupt handling vector

number interrupt handling function name
(12) #pragma PARAMETER assembler function name (register name, register

name, ...)
(13) #pragma ASM
(14) #pragma ENDASM
(15) #pragma JSRA function name
(16) #pragma JSRW function name
(17) #pragma PAGE
(18) #pragma __ASMMACRO function name (register name)
(19) #pragma MRCALL S=stack size INT number function code service call

name （type of argument...）
(20) #pragma MRPARAMETER service call name（type of quotation...）
(21) #pragma ALMHANDLER alarm handler function name
(22) #pragma CYCHANDLER cyclic handler function name
(23) #pragma INTHANDLER [/E￤/R] interrupt handler function name
(24) #pragma TASK task start function name
(25) #pragma EXTMEM variable name
(26) #pragma EXTMEM function name()

REJ10J2009-0200 Rev.2.00 2010.04.01
184

R32C/100 Series C Compiler Package V.1.02 C. Overview of C Language Specifications

#pragma

Description: (1) Facility to arrange in the rom section

(2) Facility to describe variables using SB relative addressing
(3) Facility to describe variables using SB relative 16-bit displacement addressing
(4) Facility to alter the section base name
(5) Facility to control the array of structures
(6) Facility to control the array of structures
(7) Facility to specify absolute addresses for input/output variables
(8) Facility to specify the DMAC register of a external variable.
(9) Facility to declare functions using software interrupts
(10) Facility to declare functions using software interrupts
(11) Facility to write interrupt functions
(12) Facility to declare assembler functions passed via register
(13) Facility to describe inline assembler
(14) Facility to describe inline assembler
(15) Facility to declare functions calling with JSR.A instruction
(16) Facility to declare functions calling with JSR.W instruction
(17) Facility to output .PAGE
(18) Facility to declare Assembler macro function
(19) Facility to declare interface functions of service call of realtime OS for R32C series
(20) Facility to declare interface functions of service call of realtime OS for R32C series
(21) Facility to declare alarm handler functions of realtime OS for R32C series.
(22) Facility to declare cyclic handler functions of realtime OS for R32C series.
(23) Facility to declare kernel interrupt handler functions of realtime OS for R32C

series
(24) Facility to declare task start functions of realtime OS for R32C series.
(25) Declares exclusion of address-0 relative addressing
(26) Declares exclusion of address-0 relative addressing

 You can only specify the above 25 processing functions with #pragma. If you specify
a character string or identifier other than the above after #pragma, it will be
ignored.

 By default, no warning is output if you specify an unsupported #pragma function.
Warnings are only output if you specify the nc100 command line option -
Wunknown_pragma (-WUP).

REJ10J2009-0200 Rev.2.00 2010.04.01
185

R32C/100 Series C Compiler Package V.1.02 C. Overview of C Language Specifications

#undef

Function: Nullifies an identifier that is defined as macro.

Format: #undef identifier

Description: Nullifies an identifier that is defined as macro.

 The following four identifiers are compiler reserved words. Because these
identifiers must be permanently valid, do not undefine them with #undef.

 __FILE__ Name of source file
__LINE__ Current source file line No.
__DATE__ Date compiled (mm dd yyyy)
__TIME__Time compiled (hh:mm:ss)

C.3.3 Predefined Macros

The following macros are predefined in NC100:
 R32C100
 NC100
 __INT_16__ (When compilation option "-fI16(-fint_16)" is used, it is defined.)
 __CHAR_SIGNED__(When compilation option –fSC "-fsigned_char)" is used, it is defined.)

C.3.4 Usage of predefined Macros

The predefined macros are used to, for example, use preprocess commands to switch machine-dependent code in
non-NC100 C programs.

#ifdef NC100
#pragma ADDRESS port0 2H
#pragma ADDRESS port1 3H
#else
#pragma AD portA = 0x5F
#pragma AD portA = 0x60
#endif

Figure C.14 Usage Example of Predefined Macros

REJ10J2009-0200 Rev.2.00 2010.04.01
186

R32C/100 Series C Compiler Package V.1.02 D. C Language Specification Rules

Appendix D C Language Specification Rules

This appendix describes the internal structure and mapping of data processed by NC100, the extended rules for
signs in operations, etc, and the rules for calling functions and the values returned by functions.

D.1 Internal Representation of Data

D.1.1 Integral Type

Table D.1 shows the number of bytes used by integral type data.

Table D.1 Data Size of Integral Type
Type Existence of sign Bit size Range of values
_Bool No 8 0, 1
char
unsigned char

No 8 between 0 and 255

signed char Yes 8 between -128 and 127
int
short
signed int
signed short

Yes 16 between -32768 and 32767

unsigned int
unsigned short

No 16 between 0 and 65535

int
long
signed int
signed long

Yes 32 between -2147483648 and 2147483647

unsigned int
unsigned long

No 32 between 0 and 4294967295

long long
signed long long

Yes 64 between -9223372036854775808 and
9223372036854775807

unsigned long long No 64 18446744073709551615
float Yes 32 between 1.17549435e-38F and 3.40282347e+38F
double
long double

Yes 64 between 2.2250738585072014e-308 and
1.7976931348623157e+308

near pointer No 16 between 0 and 0xFFFF
far pointer No 32 between 0 and 0xFFFFFFFF

 The _Bool type can not specify to sign.
 If a char type is specified with no sign, it is processed as an unsigned char type.
 If an int or short type is specified with no sign, it is processed as a signed int or signed short type.
 If a long type is specified with no sign, it is processed as a sign long type.
 If a long long type is specified with no sign, it is processed as a sign long long type.

REJ10J2009-0200 Rev.2.00 2010.04.01
187

R32C/100 Series C Compiler Package V.1.02 D. C Language Specification Rules

 If the bit field members of a structure are specified with no sign, they are processed as unsigned.
 Can not specifies bit-fields of long long type.
 Type int is handled in 32 bits. However, if the compile option “-fI16 (-fint_16)” is specified, int is

handled in 16 bits.

D.1.2 Floating Type

Table D.2 shows the number of bytes used by floating type data.

Table D.2 Data Size of Floating Type
Type Existence of sign Bit Size Range of values
float Yes 32 between 1.17549435e-38F and 3.40282347e+38F
double
long double

Yes 64 between 2.2250738585072014e-308 and
1.7976931348623157e+308

NC100's floating-point format conforms to the format of IEEE (Institute of Electrical and Electronics Engineers)
standards. The following shows the single precision and double precision floating-point formats.

(1) Single-precision floating point data format

Figure D.1 shows the format for binary floating point (float) data.

s e m

31 23 16 8 0

Fixed-point location

s:fixed-point part sign (1bit)
e:characteristic part (8bits)
m:fixed-point part (23bits)

Figure D.1 Single-precision floating point data format

REJ10J2009-0200 Rev.2.00 2010.04.01
188

R32C/100 Series C Compiler Package V.1.02 D. C Language Specification Rules

(2) Double-precision floating point data format

Figure D.2 shows the format for binary floating point (double and long double) data.

s:fixed-point part sign (1bit)
e:characteristic part (11bits)
m:fixed-point part (52bits)

Fixed-point location

63 52 48 40 32 24 16 8 0

s e m

Figure D.2 Double-precision floating point data format

D.1.3 Enumerator Type

Enumerator types have the same internal representation as unsigned int types. Unless otherwise specified,
integers 0, 1, 2, are applied in the order in which the members appear.

D.1.4 Pointer Type

Table D.3 shows the number of bytes used by pointer type data.

Table D.3 Data Size of Pointer Types
Type Existence of sign Bit Size Range
pointers No 32 between 0 and 0xFFFFFFFF

All pointers are handled as the far pointer. Therefore, the compiler outputs a warning “Near pointer not supported,
near qualifier ignored” to the effect that the pointer variables declared as a near pointer will be handled as a far
pointer.
Note, however, that if the compile option “-WINP (-Wignore_near_pointer)” is specified, the compiler inhibits said
warning from being output.

D.1.5 Array Types

Array types are mapped contiguously to an area equal to the product of the size of the elements (in bytes) and the
number of elements. They are mapped to memory in the order in which the elements appear. Figure D.3 is an
example of mapping.

REJ10J2009-0200 Rev.2.00 2010.04.01
189

R32C/100 Series C Compiler Package V.1.02 D. C Language Specification Rules

c[0]

c[1]

c[2]

c[3]

c[4]

5 bytes

address higher

Example :

char c[5] = {0, 1, 2, 3, 4};

Figure D.3 Example of Placement of Array

D.1.6 Structure types

Structure types are mapped contiguously in the order of their member data. Figure D.4 is an example of mapping.

Example :

struct TAG {
 char c;
 short i;
} s;

3 bytes

address higher

s.c

s.i

Figure D.4 Example of Placement of Structure (1)

Normally, there is no word alignment with structures. The members of structures aremapped contiguously. To use
word alignment, use the #pragma STRUCT extended function. #pragma STRUCT adds a byte of padding if the
total size of the members is odd. Figure D.5 is an example of mapping.

Example :

#pragma STRUCT TAG unpac

struct TAG {
 char c;
 short i;
} s;

4 bytes

address higher

s.c

padding

s.i

Figure D.5 Example of Placement of Structure (2)

REJ10J2009-0200 Rev.2.00 2010.04.01
190

R32C/100 Series C Compiler Package V.1.02 D. C Language Specification Rules

D.1.7 Unions

Unions occupy an area equal to the maximum data size of their members. Table D.6 is an example of mapping.

4 bytes (size of lo)

address higher

i

lo

c

Example :

union TAG {
 char c;
 short i;
 long lo;
} s;

Figure D.6 Example of Placement of Union

D.1.8 Bitfield Types

Bitfield types are mapped from the least significant bit. Figure D.7 is an example of mapping.

Example :

struct BTAG {
 char b0 : 1;
 char b1 : 1;
 char b2 : 1;
 char b3 : 1;
 char b4 : 1;
 char b5 : 1;
 char b6 : 1;
 char b7 : 1;
} s;

s.b7 s.b6 s.b5 s.b4 s.b3 s.b2 s.b1 s.b0
bit0 bit7

1 byte

Figure D.7 Example of Placement of Bitfield (1)

REJ10J2009-0200 Rev.2.00 2010.04.01
191

R32C/100 Series C Compiler Package V.1.02 D. C Language Specification Rules

If a bitfield member is of a different data type, it is mapped to the next address. Thus, members of the same data
type are mapped contiguously from the lowest address to which that data type is mapped.

Example :

struct BTAG {
 char b0 : 1;
 char b1 : 1;
 char b2 : 1;
 char b3 : 1;
 char b4 : 1;
 short b56 :2;
 char b7 : 1;
} s;

 s.b7 s.b4 s.b3 s.b2 s.b1 s.b0

 s.b56

bit0 bit7

address higher

1 byte

2 bytes

Figure D.8 Example of Placement of Bitfield (2)

 Note :
(a) If no sign is specified, the default bitfield member type is unsigned.
(b) Can not specifies bit-fields of long long type.

D.2 Sign Extension Rules

Under the ANSI and other standard C language specifications, char type data is sign extended to int type data for
calculations, etc. This specification prevents the maximum value for char types being exceeded with unexpected
results when performing the char type calculation shown in Figure D.9.

void func(void)
{
 char c1, c2, c3;

 c1 = c2 * 2 / c3;
}

Figure D.9 Example of C Program

To generate code that maximizes code efficiency and maximizes speed, NC100 does not, by default, extend char
types to int types. The default can, however, be overridden using the nc100 compile driver command line option
-fansi or -fextend_to_int (-fETI) to achieve the same sign extension as in standard C.
If you do not use the -fansi or -fextend_to_int (-fETI) option and your program assigns the result of a calculation to
a char type, as in Figure D.9 make sure that the maximum or minimum1 value for a char type does not result in an
overflow in the calculation.

1 The ranges of values that can be expressed as char types in NC100 are as follows:
* unsigned char typebetween 0 and 255
* signed char type between -128 and 127

REJ10J2009-0200 Rev.2.00 2010.04.01
192

R32C/100 Series C Compiler Package V.1.02 D. C Language Specification Rules

D.3 Function Call Rules

D.3.1 Rules of Return Value

When returning a return value from a function, the system uses a register to return that value for the integer,
pointer, and floating-point types. Table D.4 shows rules on calls regarding return values.

Table D.4 Return Value-related Calling Rules
Type of return value Rules
char type
_Bool type

R0L register

int type (16 bits)
short int type

R0 register

int type (32 bits)
float type
long type

R2R0 register

pointer type A0 register
long long type
double type
long double type

A1A0 register (32 high-order and 32 low-order bits stored in A1 and A0 registers,
respectively)

struct type
union type

Immediately before the function call, save the far address for the area for storing
the return value to the stack. Before execution returns from the called function,
that function writes the return value to the area indicated by the far address saved
to the stack.

D.3.2 Rules on Argument Transfer

NC100 uses registers or stack to pass arguments to a function.

(1) Passing arguments via register

When the conditions below are met, the system uses the corresponding "Registers Used" listed in Table D.5, Table
D.6 and Table D.6 to pass arguments.

 Function is prototype declared2 and the type of argument is known when calling the function.
 Variable argument "..." is not used in prototype declaration.
 For the type of the argument of a function, the Argument and Type of Argument in Table D.5, Table

D.6 and Table D.7 are matched.

2 NC100 uses a via-register transfer only when entering prototype declaration (i.e., when writing a new format). Consequently, all arguments are
passed via stack when description of K&R format is entered (description of old format).
Note also that if a description format where prototype declaration is entered for the function (new format) and a description of the K&R format (old
format) coexist in given statement, the system may fail to pass arguments to the function correctly, for reasons of language specifications of the C
language.
Therefore, we recommend using a prototype- declaring description format as the standard format to write the C language source files for NC100.

REJ10J2009-0200 Rev.2.00 2010.04.01
193

R32C/100 Series C Compiler Package V.1.02 D. C Language Specification Rules

Table D.5 Rules on Argument Transfer via Register (NC100)
Argument Type of argument Registers used

_Bool, char R0L register
int (16 bits), short R0 register
int (32 bits)
float, long

R2R0 register

pointer A0 register

First argument

long long, double
long double

A1A0 register

_Bool, char R1L register
int (16 bits), short R1 register
int (32 bits)
float, long

R3R1 register

pointer A2 register

Second argument

long long, double
long double

A3A2 register

int (16 bits), short R4 register
int (32 bits)
float, long

R6R4 register
Third argument

pointer R6R4 register
int (16 bits), short R5 register
int (32 bits)
float, long

R7R5 register
Fourth argument

pointer R7R5 register

Table D.6 Rules on Argument Transfer via Register (NC308)
Argument Type of argument Registers used

_Bool
char

R0L register First argument

int
near pointer

R0 register

Table D.7 Rules on Argument Transfer via Register (NC30)
Argument Type of argument Registers used

_Bool
char

R1L register First argument

int
near pointer

R1 register

Second argument int
near pointer

R2 register

REJ10J2009-0200 Rev.2.00 2010.04.01
194

R32C/100 Series C Compiler Package V.1.02 D. C Language Specification Rules

(2) Passing arguments via stack

All arguments that do not satisfy the register transfer requirements are passed via stack. The Table D.8, Table D.9
and Table D.10 summarize the methods used to pass arguments.

Table D.8 Rules on Passing Arguments to Function(NC100)

Type of argument First argument Second
argument

Third
argument

Fourth
argument

fifth and following
arguments

_Bool type, char R0L register R1L register Stack Stack Stack
int (16 bits)
short

R0 register R1 register R4 register R5 register Stack

int (32 bits)
float, long

R2R0 register R3R1 register R6R4 register R7R5 register Stack

pointer A0 register A2 register R6R4 register R7R5 register Stack
long long
double
long double

A1A0 register A3A2 register Stack Stack Stack

Table D.9 Rules on Passing Arguments to Function(NC308)

Type of argument First argument Second argument Third and following
arguments

_Bool
char

R0L register Stack Stack

int
near pointer

R0 register Stack Stack

Table D.10 Rules on Passing Arguments to Function(NC30)
Type of argument First argument Second argument Third and following

arguments
_Bool
char

R1L register R2 register Stack

int
near pointer

R1 register Stack Stack

D.3.3 Rules for Converting Functions into Assembly Language Symbols

The function names in which functions are defined in a C language source file are used as the start labels of
functions in an assembler source file.
The beginning label of a function in an assembler source file consists of the function name in the C language source
file that is prefixed by an underbar (_) or dollar mark ($), or the function name itself. The appended strings and the
conditions under which strings are appended are shown in Table D.11.

Table D.11 Conditions Under Which Character Strings Are Added to Function
Added character string Condition
$ (dollar) Functions where any one of arguments is passed via register
_ (underbar) Functions that do not belong to the above3

Shown in Figure D.10 is a sample program where a function has register arguments and where a function has its
arguments passed via only a stack.

3 However, function names are not output for the functions that are specified by #pragma INTCALL.

REJ10J2009-0200 Rev.2.00 2010.04.01
195

R32C/100 Series C Compiler Package V.1.02 D. C Language Specification Rules

int func_proto(int , int , int); [1]

int func_proto(int i, int j, int k) [2]
{
 return k + j + i
}

int func_no_proto(i, j, k) [3]
int i;
int j;
int k;
{
 return k + j + i
}

void main(void) [4]
{
 int sum;

 sum = func_proto(1,2,3); [5]
 sum = func_no_proto(1,2,3); [6]
}

[1] This is the prototype declaration of function func_proto.
[2] This is the body of function func_proto. (Prototype declaration is entered, so this is a new format.)
[3] This is the body of function func_no_proto. (This is a description in K&R format, that is, an old format.)
[4]This is the body of function main.
[5] This calls function func_proto.
[6] This calls function func_no_proto.

Figure D.10 Sample Program for Calling a Function (sample.c)

The compile result of the above sample program is shown in the next page. Figure D.11 shows the compile result of
program part [2] that defines function func_proto. Figure D.12 shows the compile result of program part [3] that
defines function func_no_proto. Figure D.13 shows the compile result of program part [4] that calls function
func_proto and function func_no_proto.

REJ10J2009-0200 Rev.2.00 2010.04.01
196

R32C/100 Series C Compiler Package V.1.02 D. C Language Specification Rules

;## # FUNCTION func_proto
;## # REGISTER ARG (i) size 4, REGISTER R2R0 [9]
;## # REGISTER ARG (j) size 4, REGISTER R3R1 [8]
;## # REGISTER ARG (k) size 4, REGISTER R6R4 [7]
;## # ARG Size(0) Auto Size(0) Context Size(4)

 .SECTION program,CODE,ALIGN
 ._file 'test.c'
 .align
 ._line 4
;## # C_SRC : {
 .glb $func_proto
$func_proto: [10]
 ._line 5
;## # C_SRC : return k + j + i;
 add.l R3R1,R6R4 ; j
 add.l R6R4,R2R0 rts
E1:

[7] This passes the third argument k via stack.
[8] This passes the first argument i via register.
[9] This passes the second argument j via register.
[10] This is the start address of function func_proto.

Figure D.11 Compile Result of Sample Program (sample.c) (1)

In the compilation result (1) of the sample program (sample.c) in Figure D.10, the first, second, and third
arguments are passed via registers because the function func_proto has its prototype declared.
Furthermore, since the arguments to the function are passed via registers, the symbol name for the beginning
address of the function is taken after “func_proto” written in the C language source file by prefixing it with the
dollar mark ($), namely “$func_proto.”

REJ10J2009-0200 Rev.2.00 2010.04.01
197

R32C/100 Series C Compiler Package V.1.02 D. C Language Specification Rules

;## # FUNCTION func_no_proto
;## # FRAME ARG (i) size 4, offset 8 [11]
;## # FRAME ARG (j) size 4, offset 12
;## # FRAME ARG (k) size 4, offset 16
;## # ARG Size(12) Auto Size(0) Context Size(8)

 .align
 ._line 12
;## # C_SRC : {
 .glb _func_no_proto
_func_no_proto: [12]
 enter #00H
 ._line 13
;## # C_SRC : return k + j + i
 mov.l 16[FB],R2R0 ; k
 add.l 12[FB],R2R0 ; j
 add.l 8[FB],R2R0 ; i
 exitd
E2:

[11] This passes all arguments via a stack.
[12] This is the start address of function func_no_proto.

Figure D.12 Compile Result of Sample Program (sample.c) (2)

In the compile result (2/3) of the sample program (sample.c) listed in Figure D.10, all arguments are passed via a
stack since function func_no_proto is written in K&R format.
Furthermore, since the arguments of the function are not passed via register, the symbol name of the function's
start address is derived from "func_no_proto" described in the C language source file by prefixing it with _
(underbar), hence, "_func_no_proto."

REJ10J2009-0200 Rev.2.00 2010.04.01
198

R32C/100 Series C Compiler Package V.1.02 D. C Language Specification Rules

;## # FUNCTION main
;## # FRAME AUTO (sum) size 4, offset -4
;## # ARG Size(4) Auto Size(4) Context Size(8)

 .align
 ._line 17
;## # C_SRC : {
 .glb _main
_main:
 enter #04H
 ._line 20
;## # C_SRC : sum = func_proto(1,2,3);
 mov.l #00000003H,R6R4 [13]
 mov.l #00000002H,R3R1
 mov.l #00000001H,R2R0
 jsr $func_proto
 mov.l R2R0,-4[FB] ; sum
 ._line 21
;## # C_SRC : sum = func_no_proto(1,2,3);
 push.l #00000003H [14]
 push.l #00000002H
 push.l #00000001H
 jsr _func_no_proto
 add.l #0cH,SP
 mov.l R2R0,-4[FB] ; sum
 ._line 22
;## # C_SRC : }
 exitd
E3:

 .END

Figure D.13 Compile Result of Sample Program (sample.c) (3)

Figure D.13, part [13] calls func_proto and part [14] calls func_no_proto.

REJ10J2009-0200 Rev.2.00 2010.04.01
199

R32C/100 Series C Compiler Package V.1.02 D. C Language Specification Rules

D.3.4 Interface between Functions

Figure D.17 and Figure D.18 show the process for building and freeing the stack frame in the program shown in
Figure D.14. Shown in Figure D.15 and Figure D.16 are the assembly language programs derived by compiling the
program in Figure D.14.

iint func(int, int, int);

void main(void)
{
 int ans;
 int i = 0x1111; Argument to func
 int j = 0x2222; Argument to func
 int k = 0x3333; Argument to func
 ans = func(i, j ,k);
}

int func(int x, int y, int z)
{
 int sum;
 int s = 0x4444;
 int t = 0x5555;
 int u = 0x6666;
 sum = s + t + u + x + y + z ;
 return sum; Return value to main
}

Figure D.14 Example of C Language Sample Program

REJ10J2009-0200 Rev.2.00 2010.04.01
200

R32C/100 Series C Compiler Package V.1.02 D. C Language Specification Rules

;## # FUNCTION main
;## # FRAME AUTO (ans) size 4, offset -4
;## # ARG Size(4) Auto Size(4) Context Size(8)

 .SECTION program,CODE,ALIGN
 ._file 'interface.c'
 .align
 ._line 4
;## # C_SRC : {
 .glb _main
_main: [1]
 enter #04H [2]
 ._line 6
;## # C_SRC : int i = 0x1111;
 mov.l #00001111H,R2R0 ; i
 ._line 7
;## # C_SRC : int j = 0x2222;
 mov.l #00002222H,R3R1 ; j
 ._line 8
;## # C_SRC : int k = 0x3333;
 mov.l #00003333H,R6R4 ; k
 ._line 9
;## # C_SRC : ans = func(i, j ,k);
 jsr $func [3]
 mov.l R2R0,-4[FB] ; ans [7]
 ._line 10
;## # C_SRC : }
 exitd
E1:

Figure D.15 Assembly language sample program (1)

REJ10J2009-0200 Rev.2.00 2010.04.01
201

R32C/100 Series C Compiler Package V.1.02 D. C Language Specification Rules

;## # FUNCTION func
;## # FRAME AUTO (u) size 4, offset -4
;## # REGISTER ARG (x) size 4, REGISTER R2R0
;## # REGISTER ARG (y) size 4, REGISTER R3R1
;## # REGISTER ARG (z) size 4, REGISTER R6R4
;## # ARG Size(0) Auto Size(4) Context Size(8)

 .align
 ._line 13
;## # C_SRC : {
 .glb $func
$func:
 enter #04H [4]
 ._line 15
;## # C_SRC : int s = 0x4444;
 mov.l #00004444H,R7R5 ; s
 ._line 16
;## # C_SRC : int t = 0x5555;
 mov.l #00005555H,A0 ; t
 ._line 17
;## # C_SRC : int u = 0x6666;
 mov.l #00006666H,-4[FB] ; u
 ._line 18
;## # C_SRC : sum = s + t + u + x + y + z ;
 add.l A0,R7R5 ; t
 add.l -4[FB],R7R5 ; u
 add.l R7R5,R2R0
 add.l R2R0,R3R1
 mov.l R6R4,R2R0 ; z z
 add.l R3R1,R2R0 ; sum [5]
 ._line 19
;## # C_SRC : return sum;
 exitd [6]
E2:

Figure D.16 Assembly language sample program (2)

Figure D.17 and Figure D.18 show the stack and register behaviors during the processes [1], [2], and [3] in Figure
D.15 (i.e., process at entry to the function main and process to call the function func) and during the processes [4],
[5], [6], and [7] (i.e., process to build the stack frame used in the function func and process to return from the
function func to the function main), respectively.

REJ10J2009-0200 Rev.2.00 2010.04.01
202

R32C/100 Series C Compiler Package V.1.02 D. C Language Specification Rules

Variable ans

Return
address

Variable ans

OLD FB

 FB

 SP

Argument x(i)

Argument y(j)

Argument z(k)
Variable i

Variable j

Variable k

Stack usage state for
start of [1]-main

Stack usage state of [2]
(When ENTER instruction
completed)

Stack usage state of [3]
(When JSR instruction
completed)

 FB

 SP

 SP

OLD FB

R2R0

R3R1

R6R4

R2R0

R3R1

R6R4

Figure D.17 Process at entry to the function and process to call the function func

REJ10J2009-0200 Rev.2.00 2010.04.01
203

R32C/100 Series C Compiler Package V.1.02 D. C Language Specification Rules

Return value of func
 (Variable sum)

R2R0

Stack uage state of [7]

 SP

 FB

OLD FB

Variable ans

 SP

 FB

OLD FB

Return
address

FB of
Function

main

Stack uage state of [4]
(When ENTER instruction
completed)

Variable ans

Variable u

Stack uage state of [5]

OLD FB

Return
address

FB of
Function

main

Variable ans

Variable u

 FB

 SP

Stack uage state of [6]
(When EXITED instruction
completed)

Variable ans

OLD FB

 SP

 FB

Argument x(i)

R2R0

Argument z(k)

R6R4

Variable s

R7R5

Variable t

A0

Argument y(j)

R3R1

Figure D.18 Process to build the stack frame used in the function func and process to return from the function func to
the function main

REJ10J2009-0200 Rev.2.00 2010.04.01
204

R32C/100 Series C Compiler Package V.1.02 D. C Language Specification Rules

D.4 Securing auto Variable Area

Variables of storage class auto are placed in the stack of the micro processor. For a C language source file like the
one shown in Figure D.19, if the areas where variables of storage class auto are valid do not overlap each other, the
system allocates only one area which is then shared between multiple variables.

void func(void)
{
 int i, j, k;

 for(i=0 ; i<=0 ; i++){
 process scope of i
 }
 :
 (abbreviated)
 :
 for(j=0xFF ; j<=0 ; j--){
 process scope of j
 }
 :
 (abbreviated)
 :
 for(k=0 ; k<=0 ; k++){
 process scope of k
 }
}

Figure D.19 Example of C Program

In this example, the effective ranges of three auto variables i, j, and k do not overlap, so that a two-byte area (offset
1 from FB) is shared Figure D.20 shows an assembly language source file generated by compiling the program in
Figure D.19.

;### FUNCTION func
;### FRAME AUTO (k) size 4, offset -4 [1]
;### FRAME AUTO (j) size 4, offset -4 [2]
;### FRAME AUTO (i) size 4, offset -4 [3]
 .section program
 ._file 'auto.c'
 ._line 3
 .glb _func
_func:
 enter #04H
 :
 (remainder omitted)

* As shown by [1],[2], and [3],the three auto variables share the FB offset -2 area.

Figure D.20 Example of Assembly Language Source Program

REJ10J2009-0200 Rev.2.00 2010.04.01
205

R32C/100 Series C Compiler Package V.1.02 D. C Language Specification Rules

D.5 Rules of Escaping of the Register

The rules of Escaping of the register when call C function as follows:

(a) The rules of Escaping of the register when call C function as follows:

 Register which use in called C function

(b) Register which should escaping in the entrance procedure of the called function.
 None

REJ10J2009-0200 Rev.2.00 2010.04.01
206

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

Appendix E Standard Library

E.1 Standard Header Files

When using the NC100 standard library, you must include the header file that defines that function.
This appendix details the functions and specifications of the standard NC100 header files.

E.1.1 Contents of Standard Header Files

NC100 includes the 15 standard header files shown in Table E.1.

Table E.1 List of Standard Header Files
Header File Name Contents
assert.h Outputs the program's diagnostic information.
ctype.h Declares character determination function as macro.
errno.h Defines an error number.
float.h Defines various limit values concerning the internal representation of floating

points.
limits.h Defines various limit values concerning the internal processing of compiler.
locale.h Defines/declares macros and functions that manipulate program localization.
math.h Declares arithmetic/logic functions for internal processing.
setjmp.h Defines the structures used in branch functions.
signal.h Defines/declares necessary for processing asynchronous interrupts.
stdarg.h Defines/declares the functions which have a variable number of real arguments.
stddef.h Defines the macro names which are shared among standard include files.
stdio.h (1) Defines the FILE structure.

(2) Defines a stream name.
(3) Declares the prototype of input/output functions.

stdlib.h Declares the prototypes of memory management and terminate functions.
string.h Declares the prototypes of character string and memory handling functions.
time.h Declares the functions necessary to indicate the current calendar time and defines

the type.

REJ10J2009-0200 Rev.2.00 2010.04.01
207

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

E.1.2 Standard Header Files Reference

Following are detailed descriptions of the standard header files supplied with NC100. The header files are
presented in alphabetical order.
The NC100 standard functions declared in the header files and the macros defining the limits of numerical
expression of data types are described with the respective header files.

assert.h

Function: Defines assert function.

ctype.h

Function: Defines/declares string handling function.The following lists string handling functions.

Function Contents
isalnum Checks whether the character is an alphabet or numeral.
isalpha Checks whether the character is an alphabet.
iscntrl Checks whether the character is a control character.
isdigit Checks whether the character is a numeral.
isgraph Checks whether the character is printable (except a blank).
islower Checks whether the character is a lower-case letter.
isprint Checks whether the character is printable (including a blank).
ispunct Checks whether the character is a punctuation character.
isspace Checks whether the character is a blank, tab, or new line.
isupper Checks whether the character is an upper-case letter.
isxdigit Checks whether the character is a hexadecimal character.
tolower Converts the character from an upper-case to a lower-case.

toupper Converts the character from a lower-case to an upper-case.

errno.h

Function: Defines error number.

REJ10J2009-0200 Rev.2.00 2010.04.01
208

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

float.h

Function: Defines the limits of internal representation of floating point values. The following lists

the macros that define the limits of floating point values.
In NC100, long double types are processed as double types. Therefore, the limits
applying to double types also apply to long double types.

Macro name Contents Defined value
DBL_DIG Maximum number of digits of double-type

decimal precision
15

DBL_EPSILON Minimum positive value where
1.0+DBL_EPSILON is found not to be 1.0

2.2204460492503131e-16

DBL_MANT_DIG Maximum number of digits in the
mantissa part when a double-type
floating-point value is matched to the radix
in its representation

53

DBL_MAX Maximum value that a double-type
variable can take on as value

1.7976931348623157e+308

DBL_MAX_10_EXP Maximum value of the power of 10 that
can be represented as a double-type
floating-point numeric value

308

DBL_MAX_EXP Maximum value of the power of the radix
that can be represented as a double-type
floating-point numeric value

1024

DBL_MIN Minimum value that a double-type
variable can take on as value

2.2250738585072014e-308

DBL_MIN_10_EXP Minimum value of the power of 10 that can
be represented as a double-type
floating-point numeric value

-307

DBL_MIN_EXP Minimum value of the power of the radix
that can be represented as a double-type
floating-point numeric value

-1021

FLT_DIG Maximum number of digits of float-type
decimal precision

6

FLT_EPSILON Minimum positive value where
1.0+FLT_EPSILON is found not to be 1.0

1.19209290e-07F

FLT_MANT_DIG Maximum number of digits in the
mantissa part when a float-type
floating-point value is matched to the radix
in its representation

24

FLT_MAX Maximum value that a float-type variable
can take on as value

3.40282347e+38F

FLT_MAX_10_EXP Maximum value of the power of 10 that
can be represented as a float-type
floating-point numeric value

38

FLT_MAX_EXP Maximum value of the power of the radix
that can be represented as a float-type
floating-point numeric value

128

FLT_MIN Minimum value that a float-type variable
can take on as value

1.17549435e-38F

FLT_MIN_10_EXP Minimum value of the power of 10 that can
be represented as a float-type floating-point
numeric value

-37

FLT_MIN_EXP Maximum value of the power of the radix
that can be represented as a float-type
floating-point numeric value

-125

REJ10J2009-0200 Rev.2.00 2010.04.01
209

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

Macro name Contents Defined value
FLT_RADIX Radix of exponent in floating-point

representation
2

FLT_ROUNDS Method of rounding off a floating-point number 1(Rounded to the nearest whole
number)

REJ10J2009-0200 Rev.2.00 2010.04.01
210

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

limits.h

Function: Defines the limitations applying to the internal processing of the compiler. The following

lists the macros that define these limits.

Macro name Contents Defined value
MB_LEN_MAX Maximum value of the number of

multibyte character- type bytes
1

CHAR_BIT Number of char-type bits 8
CHAR_MAX Maximum value that a char-type variable

can take on as value
255 or 127(When a compile
option "-fSC(-fsigned_char)"
is specified)

CHAR_MIN Minimum value that a char-type variable
can take on as value

0 or -128(When a compile
option "-fSC(-fsigned_char)"
is specified)

SCHAR_MAX Maximum value that a signed char-type
variable can take on as value

127

SCHAR_MIN Minimum value that a signed char-type
variable can take on as value

-128

INT_MAX Maximum value that a int-type variable
can take on as valueMaximum value that
a int-type variable can take on as value

32767 or 2147483647(When
a compile option
"-fI16(-fint_16)" is specified)

INT_MIN Minimum value that a int-type variable
can take on as value

32768 or 2147483648(When
a compile option
"-fI16(-fint_16)" is specified)

SHRT_MAX Maximum value that a short int-type
variable can take on as value

32767

SHRT_MIN Minimum value that a short int-type
variable can take on as value

-32768

LONG_MAX Maximum value that a long-type variable
can take on as value

2147483647

LONG_MIN Minimum value that a long-type variable
can take on as value

-2147483648

LLONG_MAX Maximum value that a signed long
long-type variable can take on as value

9223372036854775807

LLONG_MIN Minimum value that a signed long
longtype variable can take on as value

-9223372036854775808

UCHAR_MAX Maximum value that an unsigned
char-type variable can take on as value

255

UINT_MAX Maximum value that an unsigned int-type
variable can take on as value

65535 or 4294967295 (When
a compile option
"-fI16(-fint_16)" is specified)

USHRT_MAX Maximum value that an unsigned short
int-type variable can take on as value

65535

ULONG_MAX Maximum value that an unsigned long
int-type variable can take on as value

4294967295

ULLONG_MAX Maximum value that an unsigned long
long inttype variable can take on as value

18446744073709551615

REJ10J2009-0200 Rev.2.00 2010.04.01
211

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

locale.h

Function: Defines/declares macros and functions that manipulate program localization.The

following lists locale functions.

Function Contents
localeconv Initializes struct lconv.

setlocale Sets and searches the locale information of a program.

math.h

Function: Declares prototype of mathematical function.The following lists mathematical functions.

Function Contents
acos Calculates arc cosine.
asin Calculates arc sine.
atan Calculates arc tangent.
atan2 Calculates arc tangent.
ceil Calculates an integer carry value.
cos Calculates cosine.
cosh Calculates hyperbolic cosine.
exp Calculates exponential function.
fabs Calculates the absolute value of a double-precision floating-point

number.
floor Calculates an integer borrow value.
fmod Calculates the remainder.
frexp Divides floating-point number into mantissa and exponent parts.
labs Calculates the absolute value of a long-type integer.
ldexp Calculates the power of a floating-point number.
log Calculates natural logarithm.
log10 Calculates common logarithm.
modf Calculates the division of a real number into the mantissa and

exponent parts.
pow Calculates the power of a number.
sin Calculates sine.
sinh Calculates hyperbolic sine.
sqrt Calculates the square root of a numeric value.
tan Calculates tangent.

tanh Calculates hyperbolic tangent.

REJ10J2009-0200 Rev.2.00 2010.04.01
212

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

setjmp.h

Function: Defines the structures used in branch functions.

Function Contents
longjmp Performs a global jump.

setjmp Sets a stack environment for a global jump.

signal.h

Function: Defines/declares necessary for processing asynchronous interrupts.

REJ10J2009-0200 Rev.2.00 2010.04.01
213

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

stdarg.h

Function: Defines/declares the functions which have a variable number of real arguments.

stddef.h

Function: Defines the macro names which are shared among standard include files.

stdio.h

Function: Defines the FILE structure, stream name, and declares I/O function prototypes.

Prototype declarations are made for the following functions.

Type Function Function
init Initializes R32C/100 family input/outputs. Initialize
clearerr Initializes (clears) error status specifiers.
fgetc Inputs one character from the stream.
getc Inputs one character from the stream.
getchar Inputs one character from stdin.
fgets Inputs one line from the stream.
gets Inputs one line from stdin.
fread Inputs the specified items of data from the stream.
scanf Inputs characters with format from stdin.
fscanf Inputs characters with format from the stream.

Input

sscanf Inputs data with format from a character string.
fputc Outputs one character to the stream.
putc Outputs one character to the stream.
putchar Outputs one character to stdout.
fputs Outputs one line to the stream.
puts Outputs one line to stdout.
fwrite Outputs the specified items of data to the stream.
perror Outputs an error message to stdout.
printf Outputs characters with format to stdout.
fflush Flushes the stream of an output buffer.
Fprintf Outputs characters with format to the stream.
sprintf Writes text with format to a character string.
vfprintf Output to a stream with format.
vprintf Output to stdout with format.

Output

vsprintf Output to a buffer with format.
Return ungetc Sends one character back to the input stream.

ferror Checks input/output errors.

D e t e r -
mination feof Checks EOF (End of File).

REJ10J2009-0200 Rev.2.00 2010.04.01
214

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

stdlib.h

Function: Declares the prototypes of memory management and terminate functions.

Function Contents
abort Terminates the execution of the program.
abs Calculates the absolute value of an integer.
atof Converts a character string into a double-type floating-point

number.
atoi Converts a character string into an int-type integer.
atol Converts a character string into a long-type integer.
bsearch Performs binary search in an array.
calloc Allocates a memory area and initializes it to zero (0).
div Divides an int-type integer and calculates the remainder.
free Frees the allocated memory area.
labs Calculates the absolute value of a long-type integer.
ldiv Divides a long-type integer and calculates the remainder.
malloc Allocates a memory area.
mblen Calculates the length of a multibyte character string.
mbstowcs Converts a multibyte character string into a wide character string.
mbtowc Converts a multibyte character into a wide character.
qsort Sorts elements in an array.
realloc Changes the size of an allocated memory area.
strtod Converts a character string into a double-type integer.
strtol Converts a character string into a long-type integer.
strtoul Converts a character string into an unsigned long-type integer.
wcstombs Converts a wide character string into a multibyte character string.

wctomb Converts a wide character into a multibyte character.

REJ10J2009-0200 Rev.2.00 2010.04.01
215

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

string.h

Function: Declares the prototypes of string handling functions and memory handling functions.

Type Type Contents
strcpy Copies a character string. Copy
strncpy Copies a character string ('n' characters).
strcat Concatenates character strings. Concatenate
strncat Concatenates character strings ('n' characters).
strcmp Compares character strings.
strcoll Compares character strings (using locale information).
stricmp Compares character strings. (All alphabets are handled as

upper-case letters.)
strncmp Compares character strings ('n' characters).

Compare

strnicmp Compares character strings ('n' characters). (All alphabets
are handled as upper-case letters.)

strchr Searches the specified character beginning with the top of
the character string.

strcspn Calculates the length (number) of unspecified characters
that are not found in the other character string.

strpbrk Searches the specified character in a character string from
the other character string.

strrchr Searches the specified character from the end of a character
string.

strspn Calculates the length (number) of specified characters that
are found in the other character string.

strstr Searches the specified character from a character string.

Search

strtok Divides some character string from a character string into
tokens.

Length strlen Calculates the number of characters in a character string.
strerror Converts an error number into a character string. Convert
strxfrm Converts a character string (using locale information).

Initialize bzero Initializes a memory area (by clearing it to zero).
bcopy Copies characters from a memory area to another.
memcpy Copies characters ('n' bytes) from a memory area to another.

Copy

memset Set a memory area by filling with characters.
memcmp Compares memory areas ('n' bytes). Compare
memicmp Compares memory areas (with alphabets handled as

uppercase letters).

Search

memchr Searches a character from a memory area.

time.h

Function: Declares the functions necessary to indicate the current calendar time and defines the

type.

REJ10J2009-0200 Rev.2.00 2010.04.01
216

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

E.2 Standard Function Reference

Describes the features and detailed specifications of the standard function library of the compiler.

E.2.1 Overview of Standard Library

NC100 has 119 Standard Library items. Each function can be classified into one of the following 11 categories
according to its function.

(1) String Handling Functions
Functions to copy and compare character strings, etc.

(2) Character Handling Functions
Functions to judge letters and decimal characters, etc., and to covert uppercase to lowercase
and vice-versa.

(3) I/O Functions
Functions to input and output characters and character strings. These include functions for
formatted I/O and character string manipulation.

(4) Memory Management Functions
Functions for dynamically securing and releasing memory areas.

(5) Memory Manipulation Functions
Functions to copy, set, and compare memory areas.

(6) Execution Control Functions
Functions to execute and terminate programs, and for jumping from the currently executing
function to another function.

(7) Mathematical Functions
* These functions require time.

• Therefore, pay attention to the use of the watchdog timer.
(8) Integer Arithmetic Functions

Functions for performing calculations on integer values.
(9) Character String Value Convert Functions

Functions for converting character strings to numerical values.
(10) Multi-byte Character and Multi-byte Character String Manipulate Functions

Functions for processing multi-byte characters and multi-byte character strings.
(11) Locale Functions

Locale-related functions.

REJ10J2009-0200 Rev.2.00 2010.04.01
217

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

E.2.2 List of Standard Library Functions by Function

(1) String Handling Functions

The following lists String Handling Functions.

Table E.2 String Handling Functions
Type Function Contents Reentrant

strcpy Copies a character string. O Copy
strncpy Copies a character string ('n' characters). O
strcat Concatenates character strings. O Concatenate
strncat Concatenates character strings ('n' characters). O
strcmp Compares character strings. O
strcoll Compares character strings (using locale information). O
stricmp Compares character strings. (All alphabets are handled as

upper-case letters.)
O

strncmp Compares character strings ('n' characters). O

Compare

strnicmp Compares character strings ('n' characters). (All alphabets
are handled as upper-case letters.)

O

strchr Searches the specified character beginning with the top of
the character string.

O

strcspn Calculates the length (number) of unspecified characters
that are not found in the other character string.

O

strpbrk Searches the specified character in a character string from
the other character string.

O

strrchr Searches the specified character from the end of a character
string.

O

strspn Calculates the length (number) of specified characters that
are found in the other character string.

O

strstr Searches the specified character from a character string. O

Search

strtok Divides some character string from a character string into
tokens.

X

Length strlen Calculates the number of characters in a character string. O
strerror Converts an error number into a character string. X Convert
strxfrm Converts a character string (using locale information). O

REJ10J2009-0200 Rev.2.00 2010.04.01
218

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

(2) Character Handling Functions

The following lists character handling functions.

Table E.3 Character Handling Functions
Function Contents Reentrant
isalnum Checks whether the character is an alphabet or numeral. O
isalpha Checks whether the character is an alphabet. O
iscntrl Checks whether the character is a control character. O
isdigit Checks whether the character is a numeral. O
isgraph Checks whether the character is printable (except a blank). O
islower Checks whether the character is a lower-case letter. O
isprint Checks whether the character is printable (including a blank). O
ispunct Checks whether the character is a punctuation character. O
isspace Checks whether the character is a blank, tab, or new line. O
isupper Checks whether the character is an upper-case letter. O
isxdigit Checks whether the character is a hexadecimal character. O
tolower Converts the character from an upper-case to a lowercase. O
toupper Converts the character from a lower-case to an uppercase. O

REJ10J2009-0200 Rev.2.00 2010.04.01
219

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

(3) Input/Output Functions

The following lists Input/Output functions.

Table E.4 Input/Output Functions
Type Function Contents Reentrant

init Initializes R32C series's input/outputs. X Initialize
clearerror Initializes (clears) error status specifiers. X
fgetc Inputs one character from the stream. X
getc Inputs one character from the stream. X
getchar Inputs one character from stdin. X
fgets Inputs one line from the stream. X
gets Inputs one line from stdin. X
fread Inputs the specified items of data from the stream. X
scanf Inputs characters with format from stdin. X
fscanf Inputs characters with format from the stream. X

Initialize

sscanf Inputs data with format from a character string. X
fputc Outputs one character to the stream. X
putc Outputs one character to the stream. X
putchar Outputs one character to stdout. X
fputs Outputs one line to the stream. X
puts Outputs one line to stdout. X
fwrite Outputs the specified items of data to the stream. X
perror Outputs an error message to stdout. X
printf Outputs characters with format to stdout. X
fflush Flushes the stream of an output buffer. X
fprintf Outputs characters with format to the stream. X
sprintf Writes text with format to a character string. X
vfprintf Output to a stream with format. X
vprintf Output to stdout with format. X

Output

vsprintf Output to a buffer with format. X
Return ungetc Sends one character back to the input stream. X

ferror Checks input/output errors. X Determination
feof Checks EOF (End of File). X

(4) Memory Management Functions

The following lists memory management functions.

Table E.5 Memory Management Functions
Function Contents Reentrant
calloc Allocates a memory area and initializes it to zero (0). X
free Frees the allocated memory area. X
malloc Allocates a memory area. X
realloc Changes the size of an allocated memory area. X

REJ10J2009-0200 Rev.2.00 2010.04.01
220

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

(5) Memory Handling Functions

The following lists memory handling functions.

Table E.6 Memory Handling Functions
Type Function Contents Reentrant
Initialize bzero Initializes a memory area (by clearing it to zero). O

bcopy Copies characters from a memory area to another. O
memcpy Copies characters ('n' bytes) from a memory area to another. O

Copy

memset Set a memory area by filling with characters. O
memcmp Compares memory areas ('n' bytes). O Compare
memicmp Compares memory areas (with alphabets handled as

upper-case letters).
O

Move memmove Moves the area of a character string. O
Search memchr Searches a character from a memory area. O

(6) Execution Control Functions

The following lists execution control functions.

Table E.7 Execution Control Functions
Function Contents Reentrant
abort Terminates the execution of the program. O
longjmp Performs a global jump. O
setjmp Sets a stack environment for a global jump. O

REJ10J2009-0200 Rev.2.00 2010.04.01
221

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

(7) Mathematical Functions

The following lists mathematical functions.

Table E.8 Mathematical Functions
Function Contents Reentrant
acos Calculates arc cosine. O
asin Calculates arc sine. O
atan Calculates arc tangent. O
atan2 Calculates arc tangent. O
ceil Calculates an integer carry value. O
cos Calculates cosine. O
cosh Calculates hyperbolic cosine. O
exp Calculates exponential function. O
fabs Calculates the absolute value of a double-precision floating- point

number.
O

floor Calculates an integer borrow value. O
fmod Calculates the remainder. O
frexp Divides floating-point number into mantissa and exponent parts. O
labs Calculates the absolute value of a long-type integer. O
ldexp Calculates the power of a floating-point number. O
log Calculates natural logarithm. O
log10 Calculates common logarithm. O
modf Calculates the division of a real number into the mantissa and exponent

parts.
O

pow Calculates the power of a number. O
sin Calculates sine. O
sinh Calculates hyperbolic sine. O
sqrt Calculates the square root of a numeric value. O
tan Calculates tangent. O
tanh Calculates hyperbolic tangent. O

(8) Integer Arithmetic Functions

The following lists integer arithmetic functions.

Table E.9 Integer Arithmetic Functions
Function Contents Reentrant
abs Calculates the absolute value of an integer. O
bsearch Performs binary search in an array. O
div Divides an int-type integer and calculates the remainder. O
labs Calculates the absolute value of a long-type integer. O
ldiv Divides a long-type integer and calculates the remainder. O
qsort Sorts elements in an array. O
rand Generates a pseudo-random number. O
srand Imparts seed to a pseudo-random number generating routine. O

REJ10J2009-0200 Rev.2.00 2010.04.01
222

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

(9) Character String Value Convert Functions

The following lists character string value convert functions.

Table E.10 Character String Value Convert Functions
Function Contents Reentrant
atof Converts a character string into a double-type floatingpoint number. O
atoi Converts a character string into an int O
atol Converts a character string into a long O
strtod Converts a character string into a double O
strtol Converts a character string into a long O
strtou Converts a character string into an unsigned long-type integer. O

(10) Multi-byte Character and Multi-byte Character String Manipulate Functions

The following lists Multibyte Character and Multibyte Character string Manipulate Functions.

Table E.11 Multibyte Character and Multibyte Character String Manipulate Functions
Function Contents Reentrant
mblen Calculates the length of a multibyte character string. O
mbstowcs Converts a multibyte character string into a wide character string. O
mbtowc Converts a multibyte character into a wide character. O
wcstombs Converts a wide character string into a multibyte character string. O
wctomb Converts a wide character into a multibyte character. O

(11) Localization Functions

The following lists localization functions.

Table E.12 Localization Functions
Function Contents Reentrant
localeconv Initializes struct lconv. O
setlocale Sets and searches the locale information of a program. O

REJ10J2009-0200 Rev.2.00 2010.04.01
223

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

E.2.3 Standard Function Reference

The following describes the detailed specifications of the standard functions provided in NC100. The functions are
listed in alphabetical order.
Note that the standard header file (extension .h) shown under "Format" must be included when that function is
used.

A

abort

Execution Control Functions

Function: Terminates the execution of the program abnormally.

Format: #include<stdlib.h>

void abort(void);

Method: function

Variable: No argument used.

ReturnValue: No value is returned.

Description: Terminates the execution of the program abnormally.

Note: Actually, the program loops in the abort function.

abs

Integer Arithmetic Functions

Function: Calculates the absolute value of an integer.

Format: #include<stdlib.h>

int abs(n);

Method: function

Variable: int n; Integer

ReturnValue: Returns the absolute value of integer n (distance from 0).

REJ10J2009-0200 Rev.2.00 2010.04.01
224

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

acos

Mathematical Functions

Function: Calculates arc cosine.

Format: #include<math.h>

double acos(x);

Method: function

Variable: double x; arbitrary real number

ReturnValue: Assumes an error and returns 0 if the value of given real number x is outside

therange of -1.0 to 1.0.
 Otherwise, returns a value in the range from 0 to π radian.

asin

Mathematical Functions

Function: Calculates arc sine.

Format: #include<math.h>

double asin(x);

Method: Function

Variable: double x; arbitrary real number

ReturnValue: Assumes an error and returns 0 if the value of given real number x is outside the

range of -1.0 to 1.0.
 Otherwise, returns a value in the range from -π/2 to π/2 radian.

atan

Mathematical Functions

Function: Calculates arc tangent.

Format: #include<math.h>

double atan(x);

Method: function

Variable: double x; arbitrary real number

ReturnValue: Returns a value in the range from -π/2 to π/2 radian.

REJ10J2009-0200 Rev.2.00 2010.04.01
225

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

atan2

Mathematical Functions

Function: Calculates arc tangent.

Format: #include <math.h>

double atan2(x, y);

Method: function

Variable: double x;

double y;
arbitrary real number
arbitrary real number

ReturnValue: Returns a value in the range from -π to π radian.

atof

Character String Value Convert Functions

Function: Converts a character string into a double-type floating- point number.

Format: #include <stdlib.h>

double atof(s);

Method: function

Variable: const char _far *s; Pointer to the converted character string

ReturnValue: Returns the value derived by converting a character string into a double-precision

floating-point number.

atoi

Character String Convert Functions

Function: Converts a character string into an int-type integer.

Format: #include <stdlib.h>

int atoi(s);

Method: function

Variable: const char _far *s; Pointer to the converted character string

ReturnValue: Returns the value derived by converting a character string into an int-type integer.

REJ10J2009-0200 Rev.2.00 2010.04.01
226

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

atol

Character String Convert Functions

Function: Converts a character string into a long-type integer.

Format: #include <stdlib.h>

long atol(s);

Method: function

Variable: const char _far *s; Pointer to the converted character string

ReturnValue: Returns the value derived by converting a character string into a long-type integer.

REJ10J2009-0200 Rev.2.00 2010.04.01
227

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

B

bcopy

Memory Handling Functions

Function: Copies characters from a memory area to another.

Format: #include <string.h>

void bcopy(src, dtop, size);

Method: function

Variable: char _far *src;

char _far *dtop;
unsigned long size;

Start address of the memory area to be copied from
Start address of the memory area to be copied to
Number of bytes to be copied

ReturnValue: Copies the number of bytes specified in size from the beginning of the area specified in

src to the area specified in dtop.

bsearch

Integer Arithmetic Functions

Function: Performs binary search in an array.

Format: #include <stdlib.h>

void _far *bsearch(key, base, nelem, size, cmp);

Method: function

Variable: const void _far *key;

const void _far *base;
size_t nelem;
size_t size;
int cmp();

Search key
Start address of array
Element number
Element size
Compare function

ReturnValue: Returns a pointer to an array element that equals the search key.

 Returns a NULL pointer if no elements matched.

Note: The specified item is searched from the array after it has been sorted in ascending order.

REJ10J2009-0200 Rev.2.00 2010.04.01
228

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

bzero

Memory Handling Functions

Function: Initializes a memory area (by clearing it to zero).

Format: #include <string.h>

void bzero(top, size);

Method: function

Variable: char _far ∗top;

unsigned long size;
Start address of the memory area to be cleared to zero
Number of bytes to be cleared to zero

ReturnValue: No value is returned.

Description: Initializes (to 0) the number of bytes specified in size from the starting address of the

area specified in top.

REJ10J2009-0200 Rev.2.00 2010.04.01
229

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

C

calloc

Memory Management Functions

Function: Allocates a memory area and initializes it to zero (0).

Format: #include <stdlib.h>

void _far * calloc(n, size);

Method: function

Variable: size_t n;

size_t size;
Number of elements
Value indicating the element size in bytes

ReturnValue: Returns NULL if a memory area of the specified size could not be allocated.

Description: After allocating the specified memory, it is cleared to zero.

 The size of the memory area is the product of the two parameters.

Rule: The rules for securing memory are the same as for malloc.

ceil

Mathematical Functions

Function: Calculates an integer carry value.

Format: #include <math.h>

double ceil(x);

Method: function

Argument: double x; arbitrary real number

ReturnValue: Returns the minimum integer value from among integers larger than given real

number x.

REJ10J2009-0200 Rev.2.00 2010.04.01
230

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

clearerr

Input/Output Functions

Function: Initializes (clears) error status specifiers.

Format: #include <stdio.h>

void clearerr(stream);

Method: function

Argument: FILE _far *stream; Pointer of stream

ReturnValue: No value is returned.

Description: Resets the error designator and end of file designator to their normal values.

cos

Mathematical Functions

Function: Calculates cosine.

Format: #include <math.h>

double cos(x);

Method: function

Argument: double x; arbitrary real number

ReturnValue: Returns the cosine of given real number x handled in units of radian.

cosh

Mathematical Functions

Function: Calculates hyperbolic cosine.

Format: #include <math.h>

double cosh(x);

Method: function

Argument: double x; arbitrary real number

ReturnValue: Returns the hyperbolic cosine of given real number x.

REJ10J2009-0200 Rev.2.00 2010.04.01
231

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

D

div

Integer Arithmetic Functions

Function: Divides an int-type integer and calculates the remainder.

Format: #include <stdlib.h>

div_t div(number, denom);

Method: function

Argument: int number;

int denom;
Dividend
Divisor

ReturnValue: Returns the quotient derived by dividing "number" by "denom" and the remainder of the

division.

Description: Returns the quotient derived by dividing "number" by "denom" and the remainder

of the division in structure div_t.
 div_t is defined in stdlib.h. This structure consists of members int quot and int

rem.

E

exp

Mathematical Functions

Function: Calculates exponential function.

Format: #include <math.h>

double exp(x);

Method: function

Argument: double x; arbitrary real number

ReturnValue: Returns the calculation result of an exponential function of given real number x.

REJ10J2009-0200 Rev.2.00 2010.04.01
232

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

F

fabs

Mathematical Functions

Function: Calculates the absolute value of a double-precision floating-point number.

Format: #include <math.h>

double fabs(x);

Method: function

Argument: double x; arbitrary real number

ReturnValue: Returns the absolute value of a double-precision floating-point number.

feof

Input/Output Functions

Function: Checks EOF (End of File).

Format: #include <stdio.h>

int feof(stream);

Method: macro

Argument: FILE _far *stream; Pointer of stream

ReturnValue: Returns "true" (other than 0) if the stream is EOF.

 Otherwise, returns NULL (0).

Description: Determines if the stream has been read to the EOF.

 Interprets code 0x1A as the end code and ignores any subsequent data.

REJ10J2009-0200 Rev.2.00 2010.04.01
233

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

ferror

Input/Output Functions

Function: Checks input/output errors.

Format: #include <stdio.h>

int ferror(stream);

Method: macro

Argument: FILE _far *stream; Pointer of stream

ReturnValue: Returns "true" (other than 0) if the stream is in error.

 Otherwise, returns NULL (0).

Description: Determines errors in the stream.

 Interprets code 0x1A as the end code and ignores any subsequent data.

fflush

Input/Output Functions

Function: Flushes the stream of an output buffer.

Format: #include <stdio.h>

int fflush(stream);

Method: function

Argument: FILE _far *stream; Pointer of stream

ReturnValue: Always returns 0.

REJ10J2009-0200 Rev.2.00 2010.04.01
234

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

fgetc

Input/Output Functions

Function: Reads one character from the stream.

Format: #include <stdio.h>

int fgetc(stream);

Method: function

Argument: FILE _far *stream; Pointer of stream

ReturnValue: Returns the one input character.

 Returns EOF if an error or the end of the stream is encountered.

Description: Reads one character from the stream.

 Interprets code 0x1A as the end code and ignores any subsequent data.

fgets

Input/Output Functions

Function: Reads one line from the stream.

Format: #include <stdio.h>

char _far * fgets(buffer, n, stream);

Method: function

Argument: char _far *buffer;

int n;
FILE _far *stream;

Pointer of the location to be stored in
Maximum number of characters
Pointer of stream

ReturnValue: Returns the pointer of the location to be stored (the same pointer as given by the

argument) if normally input.
 Returns the NULL pointer if an error or the end of the stream is encountered.

Description: Reads character string from the specified stream and stores it in the buffer

 Input ends at the input of any of the following:
(1) new line character ('¥n')
(2) n-1 characters
(3) end of stream

 A null character ('¥0') is appended to the end of the input character string.
 The new line character ('¥n') is stored as-is.
 Interprets code 0x1A as the end code and ignores any subsequent data.

REJ10J2009-0200 Rev.2.00 2010.04.01
235

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

floor

Mathematical Functions

Function: Calculates an integer borrow value.

Format: #include <math.h>

double floor(x);

Method: function

Argument: double x; arbitrary real number

ReturnValue: The real value is truncated to form an integer, which is returned as a double type.

fmod

Mathematical Functions

Function: Calculates the remainder.

Format: #include <math.h>

double fmod(x, y);

Method: function

Argument: double x;

double y;
dividend
divisor

ReturnValue: Returns a remainder that derives when dividend x is divided by divisor y.

fprintf

Input/Output Functions

Function: Outputs characters with format to the stream.

Format: #include <stdio.h>

int fprintf(stream, format, argument...);

Method: function

Argument: FILE _far *stream;

const char _far *format;
Pointer of stream
Pointer of the format specifying character string

ReturnValue: Returns the number of characters output.

 Returns EOF if a hardware error occurs.

Description: Argument is converted to a character string according to format and output to the

stream.
 Format is specified in the same way as in printf.

REJ10J2009-0200 Rev.2.00 2010.04.01
236

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

fputc

Input/Output Functions

Function: Outputs one character to the stream.

Format: #include <stdio.h>

int fputc(c, stream);

Method: function

Argument: int c;

FILE _far *stream;
Character to be output
Pointer of the stream

ReturnValue: Returns the output character if output normally.

 Returns EOF if an error occurs.

Description: Outputs one character to the stream.

fputs

Input/Output Functions

Function: Outputs one line to the stream.

Format: #include <stdio.h>

int fputs (str, stream);

Method: function

Argument: const char _far *str;

FILE _far *stream;
Pointer of the character string to be output
Pointer of the stream

ReturnValue: Returns 0 if output normally.

 Returns any value other than 0 (EOF) if an error occurs.

Description: Outputs one line to the stream.

REJ10J2009-0200 Rev.2.00 2010.04.01
237

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

fread

Input/Output Functions

Function: Reads fixed-length data from the stream

Format: #include <stdio.h>

size_t fread(buffer, size, count, stream);

Method: function

Argument: void _far *buffer;

size_t size;
size_t count;
FILE _far *stream;

Pointer of the location to be stored in
Number of bytes in one data item
Maximum number of data items
Pointer of stream

ReturnValue: Returns the number of data items input.

Description: Reads data of the size specified in size from the stream and stores it in the buffer.

This is repeated by the number of times specified in count.
 If the end of the stream is encountered before the data specified in count has been

input, this function returns the number of data items read up to the end of the
stream.

 Interprets code 0x1A as the end code and ignores any subsequent data.

free

Memory Management Function

Function: Frees the allocated memory area.

Format: #include <stdlib.h>

void free(cp);

Method: function

Argument: void _far *cp; Pointer to the memory area to be freed

ReturnValue: No value is returned.

Description: Frees memory areas previously allocated with malloc or calloc.

 No processing is performed if you specify NULL in the parameter.

REJ10J2009-0200 Rev.2.00 2010.04.01
238

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

frexp

Mathematical Functions

Function: Divides floating-point number into mantissa and exponent parts.

Format: #include <math.h>

double frexp(x, prexp);

Method: function

Argument: double x;

int _far *prexp;
float-point number
Pointer to an area for storing a 2-based exponent

ReturnValue Returns the floating-point number x mantissa part.

fscanf

Input/Output Function

Function: Reads characters with format from the stream.

Format: #include <stdio.h>

int fscanf(stream, format, argument...);

Method: function

Argument: FILE _far *stream;

const char _far *format;
Pointer of stream
Pointer of the input character string

ReturnValue: Returns the number of data entries stored in each argument.

 Returns EOF if EOF is input from the stream as data.

Description: Converts the characters input from the stream as specified in format and stores

them in the variables shown in the arguments.
 Argument must be a pointer to the respective variable.
 Interprets code 0x1A as the end code and ignores any subsequent data.
 Format is specified in the same way as in scanf.

REJ10J2009-0200 Rev.2.00 2010.04.01
239

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

fwrite

Input/Output Functions

Function: Outputs the specified items of data to the stream.

Format: #include <stdio.h>

size_t fwrite(buffer, size, count, stream);

Method: function

Argument: const void _far *buffer;

size_t size;
size_t count;
FILE _far *stream;

Pointer of the output data
Number of bytes in one data item
Maximum number of data items
Pointer of the stream

ReturnValue: Returns the number of data items output

Description: Outputs data with the size specified in size to the stream. Data is output by the

number of times specified in count.
 If an error occurs before the amount of data specified in count has been input, this

function returns the number of data items output to that point.

REJ10J2009-0200 Rev.2.00 2010.04.01
240

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

G

getc

Input/Output Functions

Function: Reads one character from the stream.

Format: #include <stdio.h>

int getc(stream);

Method: macro

Argument: FILE _far *stream; Pointer of stream

ReturnValue: Returns the one input character.

 Returns EOF if an error or the end of the stream is encountered.

Description: Reads one character from the stream.

 Interprets code 0x1A as the end code and ignores any subsequent data.

getchar

Input/Output Functions

Function: Reads one character from stdin.

Format: #include <stdio.h>

int getchar(void);

Method: macro

Argument: No argument used.

ReturnValue: Returns the one input character.

 Returns EOF if an error or the end of the file is encountered.

Description: Reads one character from stream (stdin).

 Interprets code 0x1A as the end code and ignores any subsequent data.

REJ10J2009-0200 Rev.2.00 2010.04.01
241

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

gets

Input/Output Functions

Function: Reads one line from stdin.

Format: #include <stdio.h>

char _far * gets(buffer);

Method: function

Argument: char _far *buffer; Pointer of the location to be stored in

ReturnValue: Returns the pointer of the location to be stored (the same pointer as given by the

argument) if normally input.
 Returns the NULL pointer if an error or the end of the file is encountered.

Description: Reads character string from stdin and stores it in the buffer.

 The new line character ('¥n') at the end of the line is replaced with the null
character ('¥0').

 Interprets code 0x1A as the end code and ignores any subsequent data.

REJ10J2009-0200 Rev.2.00 2010.04.01
242

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

I

init

Input/Output Functions

Function: Initializes the stream.

Format: #include <stdio.h>

void init(void);

Method: function

Argument: No argument used.

ReturnValue: No value is returned.

Description: Initializes the stream. Also calls speed and init_prn in the function to make the

initial settings of the UART and Centronics output device.
 init is normally used by calling it from the startup program.

isalnum

Character Handling Functions

Function: Checks whether the character is an alphabet or numeral (A - Z,a - z,0 - 9).

Format: #include <ctype.h>

int isalnum(c);

Method: macro

Argument: int c; Character to be checked

ReturnValue: Returns any value other than 0 if an alphabet or numeral.

 Returns 0 if not an alphabet nor numeral.

Description: Determines the type of character in the parameter.

REJ10J2009-0200 Rev.2.00 2010.04.01
243

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

isalpha

Character Handling Functions

Function: Checks whether the character is an alphabet(A - Z,a - z).

Format: #include <ctype.h>

int isalpha(c);

Method: macro

Argument: int c; Character to be checked

ReturnValue: Returns any value other than 0 if an alphabet.

 Returns 0 if not an alphabet.

Description: Determines the type of character in the parameter.

iscntrl

Character Handling Functions

Function: Checks whether the character is a control character(0x00 - 0x1f,0x7f).

Format: #include <ctype.h>

int iscntrl(c);

Method: macro

Argument: int c; Character to be checked

ReturnValue: Returns any value other than 0 if a numeral.

 Returns 0 if not a control character.

Description: Determines the type of character in the parameter.

REJ10J2009-0200 Rev.2.00 2010.04.01
244

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

isdigit

Character Handling Functions

Function: Checks whether the character is a numeral(0 - 9).

Format: #include <ctype.h>

int isdigit(c);

Method: macro

Argument: int c; Character to be checked

ReturnValue: Returns any value other than 0 if a numeral.

 Returns 0 if not a numeral.

Description: Determines the type of character in the parameter.

isgraph

Character Handling Functions

Function: Checks whether the character is printable (except a blank)(0x21 - 0x7e).

Format: #include <ctype.h>

int isgraph(c);

Method: macro

Argument: int c; Character to be checked

ReturnValue: Returns any value other than 0 if printable.

 Returns 0 if not printable.

Description: Determines the type of character in the parameter.

REJ10J2009-0200 Rev.2.00 2010.04.01
245

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

islower

Character Handling Functions

Function: Checks whether the character is a lower-case letter (a - z).

Format: #include <ctype.h>

int islower(c);

Method: macro

Argument: int c; Character to be checked

ReturnValue: Returns any value other than 0 if a lower-case letter.

 Returns 0 if not a lower-case letter.

Description: Determines the type of character in the parameter.

isprint

Character Handling Functions

Function: Checks whether the character is printable (including a blank) (0x20 - 0x7e).

Format: #include <ctype.h>

int isprint(c);

Method: macro

Argument: int c; Character to be checked

ReturnValue: Returns any value other than 0 if printable.

 Returns 0 if not printable.

Description: Determines the type of character in the parameter.

REJ10J2009-0200 Rev.2.00 2010.04.01
246

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

ispunct

Character Handling Functions

Function: Checks whether the character is a punctuation character.

Format: #include <ctype.h>

int ispunct(c);

Method: macro

Argument: int c; Character to be checked

ReturnValue: Returns any value other than 0 if a punctuation character.

 Returns 0 if not a punctuation character.

Description: Determines the type of character in the parameter.

isspace

Character Handling Functions

Function: Checks whether the character is a blank, tab, or new line.

Format: #include <ctype.h>

int isspace(c);

Method: macro

Argument: int c; Character to be checked

ReturnValue: Returns any value other than 0 if a blank, tab, or new line.

 Returns 0 if not a blank, tab, or new line.

Description: Determines the type of character in the parameter.

REJ10J2009-0200 Rev.2.00 2010.04.01
247

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

isupper

Character Handling Functions

Function: Checks whether the character is an upper-case letter (A - Z).

Format: #include <ctype.h>

int isupper(c);

Method: macro

Argument: int c; Character to be checked

ReturnValue: Returns any value other than 0 if an upper-case letter.

 Returns 0 if not an upper-case letter.

Description: Determines the type of character in the parameter.

isxdigit

Character Handling Functions

Function: Checks whether the character is a hexadecimal character (0 - 9, A - F, a - f).

Format: #include <ctype.h>

int isxdigit(c);

Method: macro

Argument: int c; Character to be checked

ReturnValue: Returns any value other than 0 if a hexadecimal character.

 Returns 0 if not a hexadecimal character.

Description: Determines the type of character in the parameter.

REJ10J2009-0200 Rev.2.00 2010.04.01
248

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

L

labs

Integer Arithmetic Functions

Function: Calculates the absolute value of a long-type integer.

Format: #include <stdlib.h>

long labs(n);

Method: function

Argument: long n; Long integer

ReturnValue: Returns the absolute value of a long-type integer (distance from 0).

ldexp

Localization Functions

Function: Calculates the power of a floating-point number.

Format: #include <math.h>

double ldexp(x,exp);

Method: function

Argument: double x;

int exp;
Float-point number
Power of number

ReturnValue: Returns x *(exp power of 2).

REJ10J2009-0200 Rev.2.00 2010.04.01
249

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

ldiv

Integer Arithmetic Functions

Function: Divides a long-type integer and calculates the remainder.

Format: #include <stdlib.h>

ldiv_t ldiv(number, denom);

Method: function

Argument: long number;

long denom;
Dividend
Divisor

ReturnValue: Returns the quotient derived by dividing "number" by "denom" and the remainder of the

division.

Description: Returns the quotient derived by dividing "number" by "denom" and the remainder

of the division in the structure ldiv_t.
 ldiv_t is defined in stdlib.h. This structure consists of members long quot and

longrem.

localeconv

Localization Functions

Function: Initializes struct lconv.

Format: #include <locale.h>

struct lconv _far *localeconv(void);

Method: function

Argument: No argument used.

ReturnValue: Returns a pointer to the initialized struct lconv.

REJ10J2009-0200 Rev.2.00 2010.04.01
250

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

log

Mathematical Functions

Function: Calculates natural logarithm.

Format: #include <math.h>

double log(x);

Method: function

Argument: double x; arbitrary real number

ReturnValue: Returns the natural logarithm of given real number x.

Description: This is the reverse function of exp.

log10

Mathematical Functions

Function: Calculates common logarithm.

Format: #include <math.h>

double log10(x);

Method: function

Argument: double x; arbitrary real number

ReturnValue: Returns the common logarithm of given real number x

REJ10J2009-0200 Rev.2.00 2010.04.01
251

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

longjmp

Execution Control Functions

Function: Restores the environment when making a function call

Format: #include <setjmp.h>

void longjmp(env, val);

Method: function

Argument: jmp_buf env;

int val;
Pointer to the area where environment is restored
Value returned as a result of setjmp

ReturnValue: No value is returned.

Description: Restores the environment from the area indicated in "env".

 Program control is passed to the statement following that from which setjmp was
called.

 The value specified in "val" is returned as the result of setjmp. However, if "val" is
"0", it is converted to "1".

REJ10J2009-0200 Rev.2.00 2010.04.01
252

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

M

malloc

Memory Management Functions

Function: Allocates a memory area.

Format: #include <stdlib.h>

void _far * malloc(nbytes);

Method: function

Argument: size_t nbytes; Size of memory area (in bytes) to be allocated

ReturnValue: Returns NULL if a memory area of the specified size could not be allocated.

Description: Dynamically allocates memory areas

Rule: malloc performs the following two checks to secure memory in the appropriate location.

(1) If memory areas have been freed with free
 If the amount of memory to be secured is smaller than that freed, the area is

secured from the high address of the contiguously empty area created by free
toward the low address.

Heap area

mallocfree

Low

High

Unused area

Freed area

Unused area Unused area

REJ10J2009-0200 Rev.2.00 2010.04.01
253

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

malloc

Memory Management Functions

Rule: If the amount of memory to be secured is larger than that freed, the area is

secured from the lowest address of the unused memory toward the high
address.

Heap area

mallocfree

Low

High

Unused area

Freed area

Unused area

Freed area

(2) If no memory area has been freed with free.

 If there is any unused area that can be secured, the area is secured from the
lowest address of the unused memory toward the high address.

Heap area

mallocmalloc

Low

High

Unused area
Unused area

Unused area

 If there is no unused area that can be secured, malloc returns NULL without
any memory being secured.

Note: No garbage collection is performed. Therefore, even if there are lots of small unused

portions of memory, no memory is secured and malloc returns NULL unless there is an
unused portion of memory that is larger than the specified size.

REJ10J2009-0200 Rev.2.00 2010.04.01
254

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

mblen

Multi-byte Character Multi-byte Character String Manipulate Functions

Function: Calculates the length of a multibyte character string.

Format: #include <stdlib.h>

int mblen (s, n);

Method: function

Argument: const char _far *s;

size_t n;
Pointer to a multibyte character string
Number of searched byte

ReturnValue: Returns the number of bytes in the character string if 's' configures a correct

multibyte character string.
 Returns -1 if 's' does not configure a correct multibyte character string.

Description: Returns 0 if 's' indicates a NULL character.

mbstowcs

Multi-byte Character Multi-byte Character String Manipulate Functions

Function: Converts a multibyte character string into a wide character string.

Format: #include <stdlib.h>

size_t mbstowcs(wcs, s, n);

Method: function

Argument: wchar_t _far *wcs;

const char _far *s;
size_t n;

Pointer to an area for storing conversion wide character
string
Pointer to a multibyte character string
Number of wide characters stored

ReturnValue: Returns the number of characters in the converted multibyte character string.

 Returns -1 if 's' does not configure a correct multibyte character string.

REJ10J2009-0200 Rev.2.00 2010.04.01
255

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

mbtowc

Multi-byte Character Multi-byte Character String Manipulate Functions

Function: Converts a multibyte character into a wide character.

Format: #include <stdlib.h>

int mbtowc(wcs, s, n);

Method: function

Argument: wchar_t _far *wcs;

const char _far *s;
size_t n;

Pointer to an area for storing conversion wide character
string
Pointer to a multibyte character string
Number of wide characters stored

ReturnValue: Returns the number of wide characters converted if 's' configure a correct

multibyte character string.
 Returns -1 if 's' does not configure a correct multibyte character string.
 Returns 0 if 's' indicates a NULL character.

memchr

Memory Handling Functions

Function: Searches a character from a memory area.

Format: #include <string.h>

void _far * memchr(s, c, n);

Method: function

Argument: const void _far *s;

int c;
size_t n;

Pointer to the memory area to be searched from
Character to be searched
Size of the memory area to be searched

ReturnValue: Returns the position (pointer) of the specified character "c" where it is found.

 Returns NULL if the character "c" could not be found in the memory area.

Description: Searches for the characters shown in "c" in the amount of memory specified in "n"

starting at the address specified in "s".
 When you specify options -O[3-5], -OR, or -OS, the system may selects another

functions with good code efficiency by optimization.

REJ10J2009-0200 Rev.2.00 2010.04.01
256

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

memcmp

Memory Handling Functions

Function: Compares memory areas ('n' bytes).

Format: #include <string.h>

int memcmp(s1, s2, n);

Method: function

Argument: const void _far *s1;

const void _far *s2;
size_t n;

Pointer to the first memory area to be compared
Pointer to the second memory area to be compared
Number of bytes to be compared

ReturnValue: Return Value==0 The two memory areas are equal.

 Return Value>0 The first memory area (s1) is greater than the other.
 Return Value<0 The second memory area (s2) is greater than the other.

Description: Compares each of n bytes of two memory areas

 When you specify options -O[3-5], -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

memcpy

Memory Handling Functions

Function: Copies n bytes of memory

Format: #include <string.h>

void _far * memcpy(s1, s2, n);

Method: macro(default) or function

Argument: void _far *s1;

const void _far *s2;
size_t n;

Pointer to the memory area to be copied to
Pointer to the memory area to be copied from
Number of bytes to be copied

ReturnValue: Returns the pointer to the memory area to which the characters have been copied.

Description: Usually, the program code described by macro is used for this function. In using the

function in a library, please describe it as #undef memcpy after description of
#include <string.h>.

 Copies "n" bytes from memory "S2" to memory "S1".
 When you specify options -O[3-5], -OR, or -OS, the system may selects another

functions with good code efficiency by optimization.

REJ10J2009-0200 Rev.2.00 2010.04.01
257

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

memicmp

Memory Handling Functions

Function: Compares memory areas (with alphabets handled as upper-case letters).

Format: #include <string.h>

int memicmp(s1, s2, n);

Method: function

Argument: char _far *s1;

char _far *s2;
size_t n;

Pointer to the first memory area to be compared
Pointer to the second memory area to be compared
Number of bytes to be compared

ReturnValue: Return Value== 0 The two memory areas are equal.

 Return Value>0 The first memory area (s1) is greater than the other.
 Return Value<0 The second memory area (s2) is greater than the other.

Description: Compares memory areas (with alphabets handled as upper-case letters).

 When you specify options -O[3-5], -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

memmove

Memory Handling Functions

Function: Moves the area of a character string.

Format: #include <string.h>

void _far * memmove(s1, s2, n);

Method: function

Argument: void _far *s1;

const void _far *s2;
size_t n;

Pointer to be moved to
Pointer to be moved from
Number of bytes to be moved

ReturnValue: Returns a pointer to the destination of movement.

Description: When you specify options -O[3-5], -OR, or -OS, the system may selects another functions

with good code efficiency by optimization.

REJ10J2009-0200 Rev.2.00 2010.04.01
258

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

memset

Memory Handling Functions

Function: Set a memory area.

Format: #include <string.h>

void _far * memset(s, c, n);

Method: macro or function

Argument: void _far *s;

int c;
size_t n;

Pointer to the memory area to be set at
Data to be set
Number of bytes to be set

ReturnValue: Returns the pointer to the memory area which has been set.

Description: Usually, the program code described by macro is used for this function. In using the

function in a library, please describe it as #undef memset after description of
#include <string.h>.

 Sets "n" bytes of data "c" in memory "s".
 When you specify options -O[3-5], -OR, or -OS, the system may selects another

functions with good code efficiency by optimization.

modf

Mathematical Functions

Function: Calculates the division of a real number into the mantissa and exponent parts.

Format: #include <math.h>

double modf (val, pd);

Method: function

Argument: double val;

double _far *pd;
arbitrary real number
Pointer to an area for storing an integer

ReturnValue: Returns the decimal part of a real number.

REJ10J2009-0200 Rev.2.00 2010.04.01
259

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

P

perror

Input/Output Functions

Function: Outputs an error message to stderr.

Format: #include <stdio.h>

void perror(s);

Method: function

Argument: const char _far *s; Pointer to a character string attached before a message.

ReturnValue: No value is returned.

pow

Mathematical Functions

Function: Calculates the power of a number.

Format: #include <math.h>

double pow(x, y);

Method: function

Argument: double x;

double y;
multiplicand
power of a numbe

ReturnValue: Returns the multiplicand “x” raised to the power of “y.”

REJ10J2009-0200 Rev.2.00 2010.04.01
260

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

printf

Input/Output Functions

Function: Outputs characters with format to stdout.

Format: #include <stdio.h>

int printf(format, argument...);

Method: function

const char _far *format; Pointer of the format specifying character string

Argument:

The part after the percent (%) sign in the character string given in format has the
following meaning. The part between [and] is optional. Details of the format are shown
below.
 Format: %[flag][minimum field width][precision][modifier (I, L, or h)] conversion

specification character

Example format: %-05.8ld

ReturnValue: Returns the number of characters output.

 Returns EOF if a hardware error occurs.

Description: Converts argument to a character string as specified in format and outputs the

character string to stdout.
 When giving a pointer to argument, it is necessary to be a far type pointer.

(1) Conversion specification symbol
 d, i

Converts the integer in the parameter to a signed decimal.
 u

Converts the integer in the parameter to an unsigned decimal.
 o

Converts the integer in the parameter to an unsigned octal.
 x

Converts the integer in the parameter to an unsigned hexadecimal.
Lowercase "abcdef" are equivalent to 0AH to 0FH.

 X
Converts the integer in the parameter to an unsigned hexadecimal.
Uppercase "ABCDEF" are equivalent to 0AH to 0FH.

 c
Outputs the parameter as an ASCII character.

 s
Converts the parameter after the string far pointer (char *) (and up to a
null character '/0' or the precision) to a character string. Note that wchar_t
type character strings cannot be processed.1

 p
Outputs the parameter pointer (all types) in the format 24 bits address.

 n
Stores the number of characters output in the integer pointer of the
parameter. The parameter is not converted.

1 In the standard library included with your product, the character string pointer is a far pointer. (All printf functions handle %s with a far pointer.)
Note that scanf functions use a near pointer by default.

REJ10J2009-0200 Rev.2.00 2010.04.01
261

R32C/100 Series C Compiler Package V.1.02 E. Standard Library
printf

Input/Output Functions

Description: e

Converts a double-type parameter to the exponent format. The format is
[-]d.dddddde±dd.

 E
Same as e, except that E is used in place of e for the exponent.

 f
Converts double parameters to [-]d.dddddd format.

 g
Converts double parameters to the format specified in e or f. Normally, f
conversion, but conversion to e type when the exponent is -4 or less or the
precision is less than the value of the exponent.

 G
Same as g except that E is used in place of e for the exponent.

 −
Left-aligns the result of conversion in the minimum field width. The
default is right alignment.

 +
Adds + or − to the result of signed conversion. By default, only the - is
added to negative numbers.

 Blank' '
By default, a blank is added before the value if the result of signed
conversion has no sign.

 #
Adds 0 to the beginning of o conversion.
Adds 0x or 0X to the beginning when other than 0 in x or X conversion.
Always adds the decimal point in e, E, and f conversion.
Always adds the decimal point in g and G conversion and also outputs any
0s in the decimal place.

(2) Minimum field width
 Specifies the minimum field width of positive decimal integers.
 When the result of conversion has fewer characters than the specified

field width, the left of the field is padded.
 The default padding character is the blank. However, '0' is the padding

character if you specified the field with using an integer preceded by '0'.
 If you specified the − flag, the result of conversion is left aligned and

padding characters (always blanks) inserted to the right.
 If you specified the asterisk (∗) for the minimum field width, the integer in

the parameter specifies the field width. If the value of the parameter is
negative, the value after the −flag is the positive field width.

(3) Precision
Specify a positive integer after '.'. If you specify only '.' with no value, it is
interpreted as zero. The function and default value differs according to the
conversion type.
Floating point type data is output with a precision of 6 by default.
However, no decimal places are output if you specify a precision of 0.

 d, i, o, u, x, and X conversion
(1) If the number of columns in the result of conversion is less

than the specified number, the beginning is padded with
zeros.

(2) If the specified number of columns exceeds the minimum
field width, the specified number of columns takes
precedence.

REJ10J2009-0200 Rev.2.00 2010.04.01
262

R32C/100 Series C Compiler Package V.1.02 E. Standard Library
printf

Input/Output Functions

Description: (3) If the number of columns in the specified precision is less

than the minimum field width the field width is processed
after the minimum number of columns have bee
processed.

(4) The default is 1
(5) Nothing is output if zero with converted by zero minimum

columns.
 s conversion

(1) Represents the maximum number of characters.
(2) If the result of conversion exceeds the specified number of

characters, the remainder is discarded.
(3) There is no limit to the number of characters in the

default.
(4) If you specify an asterisk (∗) for the precision, the integer

of the parameter specifies the precision.
(5) If the parameter is a negative value, specification of the

precision is invalid.
 e, E, and f conversion

n (where n is the precision) numerals are output after the
decimal point.

 g and G conversion
Valid characters in excess of n (where n is the precision) are not
output.

(4) I, L1 or h
 I: d, i, o, u, x, X, and n conversion is performed on long int and unsigned

long int parameters.
 h: d, i, o, u, x, and X conversion is performed on short int and unsigned

short int parameters.
 If I or h are specified in other than d, i, o, u, x, X, or n conversion, they are

ignored.
 L: e, E, f, g, and G conversion is performed on double parameters.

1 In the standard C specifications, variables e, E, f, and g conversions are performed in the case of L on long double parameters. In NC100, long
double types are processed as double types.Threfore, if you specify L, the parameters are processed as double types.

REJ10J2009-0200 Rev.2.00 2010.04.01
263

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

putc

Input/Output Functions

Function: Outputs one character to the stream.

Format: #include <stdio.h>

int putc(c, stream);

Method: macro

Argument: int c;

FILE _far *stream;
Character to be output
Pointer of the stream

ReturnValue: Returns the output character if output normally.

 Returns EOF if an error occurs.

Description: Outputs one character to the stream.

putchar

Input/Output Functions

Function: Outputs one character to stdout.

Format: #include <stdio.h>

int putchar(c);

Method: macro

Argument: int c; Character to be output

ReturnValue: Returns the output character if output normally.

 Returns EOF if an error occurs.

Description: Outputs one character to stdout.

REJ10J2009-0200 Rev.2.00 2010.04.01
264

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

puts

Input/Output Functions

Function: Outputs one line to stdout.

Format: #include <stdio.h>

int puts(str);

Method: macro

Argument: char _far *str; Pointer of the character string to be output

ReturnValue: Returns 0 if output normally.

 Returns -1 (EOF) if an error occurs.

Description: Outputs one line to stdout.

 The null character ('¥0') at the end of the character string is replaced with the new
line character ('¥n').

REJ10J2009-0200 Rev.2.00 2010.04.01
265

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

Q

qsort

Integer Arithmetic Functions

Function: Sorts elements in an array.

Format: #include <stdlib.h>

void qsort(base, nelen, size, cmp(e1, e2));

Method: function

Argument: void _far *base;

size_t nelen;
size_t size;
int cmp();

Start address of array
Element number
Element size
Compare function

ReturnValue: No value is returned.

Description: Sorts elements in an array.

REJ10J2009-0200 Rev.2.00 2010.04.01
266

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

R

rand

Integer Arithmetic Functions

Function: Generates a pseudo-random number.

Format: #include <stdlib.h>

int rand(void);

Method: function

Argument: No argument used.

ReturnValue: Returns the seed random number series specified in srand.

 The generated random number is a value between 0 and RAND_MAX.

realloc

Memory Management Functions

Function: Changes the size of an allocated memory area.

Format: #include <stdlib.h>

void _far * realloc(cp, nbytes);

Method: function

Argument: void _far *cp;

size_t nbytes;
Pointer to the memory area before change
Size of memory area (in bytes) to be changed

ReturnValue: Returns the pointer of the memory area which has had its size changed.

 Returns NULL if a memory area of the specified size could not be secured.

Description: Changes the size of an area already secured using malloc or calloc.

 Specify a previously secured pointer in parameter "cp" and specify the number of
bytes to change in "nbytes".

REJ10J2009-0200 Rev.2.00 2010.04.01
267

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

S

scanf

Input/Output Functions

Function: Reads characters with format from stdin.

Format: #include <stdio.h>

#include <ctype.h>

int scanf(format, argument...);

Method: function

const char _far *format; Pointer of format specifying character string

Argument:

The part after the percent (%) sign in the character string given in format has the
following meaning. The part between [and] is optional. Details of the format are shown
below.
 Format:

%[*][maximum field width] [modifier (I, L, or h)]conversion specification
character

Example format: %*5ld

ReturnValue: Returns the number of data entries stored in each argument.

 Returns EOF if EOF is input from stdin as data.

Description: Converts the characters read from stdin as specified in format and stores them in

the variables shown in the arguments.
 Argument must be a far pointer to the respective variable.
 The first space character is ignored except in c and [] conversion.
 Interprets code 0x1A as the end code and ignores any subsequent data.

REJ10J2009-0200 Rev.2.00 2010.04.01
268

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

scanf

Input/Output Functions

(1) Conversion specification symbol
 d

Converts a signed decimal. The target parameter must be a pointer to an
integer.

 i
Converts signed decimal, octal, and hexadecimal input. Octals start with 0.
Hexadecimals start with 0x or 0X. The target parameter must be a pointer
to an integer.

 u
Converts an unsigned decimal. The target parameter must be a pointer to
an unsigned integer.

 o
Converts a signed octal. The target parameter must be a pointer to an
integer.

 x, X
Converts a signed hexadecimal. Uppercase or lowercase can be used for
0AH to 0FH. The leading 0x is not included. The target parameter must be
a pointer to an integer.

 s
Stores character strings ending with the null character '¥0'. The target
parameter must be a pointer to a character array of sufficient size to store
the character string including the null character '¥0'.
If input stops when the maximum field width is reached, the character
string stored consists of the characters to that point plus the ending null
character.

Description:

 c
Stores a character. Space characters are not skipped. If you specify 2 or
more for the maximum field width, multiple characters are stored.
However, the null character '¥0' is not included. The target parameter
must be a pointer to a character array of sufficient size to store the
character string.

 p
The pointer of the argument is output.

 []
Stores the input characters while the one or more characters between
[and] are input. Storing stops when a character other than those between
[and] is input. If you specify the circumflex (^) after [, only character other
than those between the circumflex and] are legal input characters. Storing
stops when one of the specified characters is input.
The target parameter must be a pointer to a character array of sufficient
size to store the character string including the null character '¥0', which is
automatically added.

 n
Stores the number of characters already read in format conversion. The
target parameter must be a pointer to an integer.

 e, E, f, g, G
Convert to floating point format. If you specify modifier I, the target
parameter must be a pointer to a double type. The default is a pointer to a
float type.

REJ10J2009-0200 Rev.2.00 2010.04.01
269

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

scanf

Input/Output Functions

Description: (2) *(prevents data storage)

 Specifying the asterisk (*) prevents the storage of converted data in the
parameter.

(3) Maximum field width
 Specify the maximum number of input characters as a positive decimal

integer. In any one format conversion, the number of characters read will
not exceed this number.

 If, before the specified number of characters has been read, a space
character (a character that is true in function isspace()) or a character
other than in the specified format is input, reading stops at that character.

(4) I, L or h
 I: The results of d, i, o, u, and x conversion are stored as long int and

unsigned long int. The results of e, E, f, g, and G conversion are stored as
double.

 h: The results of d, i, o, u, and x conversion are stored as short int and
unsigned short int.

 If I or h are specified in other than d, i, o, u, or x conversion, they are
ignored.

 L: The results of e, E, f, g, and G conversion are stored as float.

REJ10J2009-0200 Rev.2.00 2010.04.01
270

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

setjmp

Execution Control Functions

Function: Saves the environment before a function call

Format: #include <setjmp.h>

int setjmp(env);

Method: function

Argument: jmp_buf env; Pointer to the area where environment is saved

ReturnValue: Returns the numeric value given by the argument of longjmp.

Description: Saves the environment to the area specified in "env".

setlocale

Localization Functions

Function: Sets and searches the locale information of a program.

Format: #include <locale.h>

char _far *setlocale(category, locale);

Method: function

Argument: int category;

const char _far *locale;
Locale information, search section information
Pointer to a locale information character string

ReturnValue: Returns a pointer to a locale information character string.

 Returns NULL if information cannot be set or searched.

sin

Mathematical Functions

Function: Calculates sine.

Format: #include <math.h>

double sin(x);

Method: function

Argument: double x; arbitrary real number

ReturnValue: Returns the sine of given real number “x” handled in units of radian.

REJ10J2009-0200 Rev.2.00 2010.04.01
271

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

sinh

Mathematical Functions

Function: Calculates hyperbolic sine.

Format: #include <math.h>

double sinh(x);

Method: function

Argument: double x; arbitrary real number

ReturnValue: Returns the hyperbolic sine of given real number “x”.

sprintf

Input/Output Functions

Function: Writes text with format to a character string.

Format: #include <stdio.h>

int sprintf(pointer, format, argument...);

Method: function

Argument: char _far *pointer;

const char _far *format;
Pointer of the location to be stored
Pointer of the format specifying character string

ReturnValue: Returns the number of characters output.

Description: Converts argument to a character string as specified in format and stores them

from the pointer.
 Format is specified in the same way as in printf.

sqrt

Mathematical Functions

Function: Calculates the square root of a numeric value.

Format: #include <math.h>

double sqrt(x);

Method: function

Argument: double x; arbitrary real number

ReturnValue: Returns the square root of given real number “x”.

REJ10J2009-0200 Rev.2.00 2010.04.01
272

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

srand

Integer Arithmetic Functions

Function: Imparts seed to a pseudo-random number generating routine.

Format: #include <stdlib.h>

void srand(seed);

Method: function

Argument: unsigned int seed; Series value of random number

ReturnValue: No value is returned.

Description: Initializes (seeds) the pseudo random number series produced by rand using seed.

sscanf

Input/Output Functions

Function: Reads data with format from a character string.

Format: #include <stdio.h>

int sscanf(string, format, argument...);

Method: function

Argument: const char _far *string;

const char _far *format;
Pointer of the input character string
Pointer of the format specifying character string

ReturnValue: Returns the number of data entries stored in each argument.

 Returns EOF if null character ('¥0') is input as data.

Description: Converts the characters input as specified in format and stores them in the

variables shown in the arguments.
 Argument must be a far pointer to the respective variable.
 Format is specified in the same way as in scanf.

REJ10J2009-0200 Rev.2.00 2010.04.01
273

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

strcat

String Handling Functions

Function: Concatenates character strings.

Format: #include <string.h>

char _far * strcat(s1, s2);

Method: function

Argument: char _far *s1;

const char _far *s2;
Pointer to the character string to be concatenated to
Pointer to the character string to be concatenated from

ReturnValue: Returns a pointer to the concatenated character string area (s1).

Description: Concatenates character strings "s1" and "s2" in the sequence s1+s21

 The concatenated string ends with NULL.
 When you specify options -O[3-5], -OR, or -OS, the system may selects another

functions with good code efficiency by optimization.

strchr

String Handling Functions

Function: Searches the specified character beginning with the top of the character string.

Format: #include <string.h>

char _far * strchr(s, c);

Method: function

Argument: const char _far *s;

int c;
Pointer to the character string to be searched in
Character to be searched for

ReturnValue: Returns the position of character "c" that is first encountered in character string

"s."
 Returns NULL when character string "s" does not contain character "c".

Description: Searches for character "c" starting from the beginning of area "s".

 You can also search for '¥0'.
 When you specify options -O[3-5], -OR, or -OS, the system may selects another

functions with good code efficiency by optimization.

1 There must be adequate space to accommodate s1 plus s2.

REJ10J2009-0200 Rev.2.00 2010.04.01
274

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

strcmp

String Handling Functions

Function: Compares character strings.

Format: #include <string.h>

int strcmp(s1, s2);

Method: Macro, function

Argument: const char _far *s1;

const char _far *s2;
Pointer to the first character string to be compared
Pointer to the second character string to be compared

ReturnValue: ReturnValue== 0 The two character strings are equal.

 ReturnValue>0 The first character string (s1) is greater than the other.
 ReturnValue<0 The second character string (s2) is greater than the other.

Description: Usually, the program code described by macro is used for this function. In using the

function in a library, please describe it as #undef strcmp after description of
#include <string.h>.

 Compares each byte of two character strings ending with NULL
 When you specify options -O[3-5], -OR, or -OS, the system may selects another

functions with good code efficiency by optimization.

strcoll

String Handling Functions

Function: Compares character strings (using locale information).

Format: #include <string.h>

int strcoll(s1, s2);

Method: function

Argument: const char _far *s1;

const char _far *s2;
Pointer to the first character string to be compared
Pointer to the second character string to be compared

ReturnValue: ReturnValue==0 The two character strings are equal

 ReturnValue>0 The first character string (s1) is greater than the other
 ReturnValue<0 The second character string (s2) is greater than the other

Description: When you specify options -O[3-5] or -OS, the system may selects another functions with

good code efficiency by optimization.

REJ10J2009-0200 Rev.2.00 2010.04.01
275

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

strcpy

String Handling Functions

Function: Copies a character string.

Format: #include <string.h>

char _far * strcpy(s1, s2);

Method: macro or function

Argument: char _far *s1;

const char _far *s2;
Pointer to the character string to be copied to
Pointer to the character string to be copied from

ReturnValue: Returns a pointer to the character string at the destination of copy.

Description: Usually, the program code described by macro is used for this function. In using the

function in a library, please describe it as #undef strcpy after description of
#include <string.h>.

 Copies character string "s2" (ending with NULL) to area "s1"
 After copying, the character string ends with NULL.
 When you specify options -O[3-5], -OR, or -OS, the system may selects functions

with good code efficiency by optimization.

strcspn

String Handling Functions

Function: Calculates the length (number) of unspecified characters that are not found in the other

character string

Format: #include <string.h>

size_t strcspn(s1, s2);

Method: function

Argument: const char _far *s1;

const char _far *s2;
Pointer to the character string to be searched in
Pointer to the character string to be searched for

ReturnValue: Returns the length (number) of unspecified characters.

Description: Calculates the size of the first character string consisting of characters other than

those in “s2” from area “s1”, and searches the characters from the beginning of
“s1”.

 You cannot search for '¥0'.

REJ10J2009-0200 Rev.2.00 2010.04.01
276

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

stricmp

String Handling Functions

Function: Compares character strings. (All alphabets are handled as upper-case letters.)

Format: #include <string.h>

int stricmp(s1, s2);

Method: function

Argument: char _far *s1;

char _far *s2;
Pointer to the first character string to be compared
Pointer to the second character string to be compared

ReturnValue: ReturnValue==0 The two character strings are equal.

 ReturnValue>0 The first character string (s1) is greater than the other.
 ReturnValue<0 The second character string (s2) is greater than the other.

Description: Compares each byte of two character strings ending with NULL. However, all letters are

treated as uppercase letters.

strerror

String Handling Functions

Function: Converts an error number into a character string.

Format: #include <string.h>

char _far * strerror(errcode);

Method: function

Argument: int errcode; error code

ReturnValue: Returns a pointer to a message character string for the error code.

Description: stderr returns the pointer for a static array.

REJ10J2009-0200 Rev.2.00 2010.04.01
277

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

strlen

String Handling Functions

Function: Calculates the number of characters in a character string.

Format: #include <string.h>

size_t strlen(s);

Method: function

Argument: const char _far *s; Pointer to the character string to be operated on to

calculate length

ReturnValue: Returns the length of the character string.

Description: Determines the length of character string "s" (to NULL).

strncat

String Handling Functions

Function: Concatenates character strings ('n' characters).

Format: #include <string.h>

char _far * strncat(s1, s2, n);

Method: function

Argument: char _far *s1;

const char _far *s2;
size_t n;

Pointer to the character string to be concatenated to
Pointer to the character string to be concatenated from
Number of characters to be concatenated

ReturnValue: Returns a pointer to the concatenated character string area.

Description: Concatenates character strings "s1" and "n" characters from character string "s2".

 The concatenated string ends with NULL.
 When you specify options -O[3-5], -OR, or -OS, the system may selects another

functions with good code efficiency by optimization.

REJ10J2009-0200 Rev.2.00 2010.04.01
278

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

strncmp

String Handling Function

Function: Compares character strings ('n' characters).

Format: #include <string.h>

int strncmp(s1, s2, n);

Method: function

Argument: const char _far *s1;

const char _far *s2;
size_t n;

Pointer to the first character string to be compared
Pointer to the second character string to be compared
Number of characters to be compared

ReturnValue: ReturnValue==0 The two character strings are equal.

 ReturnValue>0 The first character string (s1) is greater than the other.
 ReturnValue<0 The second character string (s2) is greater than the other.

Description: Compares each byte of n characters of two character strings ending with NULL.

 When you specify options -O[3-5], -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

strncpy

String Handling Function

Function: Copies a character string ('n' characters).

Format: #include <string.h>

char _far * strncpy(s1, s2, n);

Method: function

Argument: char _far *s1;

const char _far *s2;
size_t n;

Pointer to the character string to be copied to
Pointer to the character string to be copied from
Number of characters to be copied

ReturnValue: Returns a pointer to the character string at the destination of copy.

Description: Copies "n" characters from character string "s2" to area "s1". If character string

"s2" contains more characters than specified in "n", they are not copied and '¥0' is
not appended. Conversely, if "s2" contains fewer characters than specified in "n",
'¥0's are appended to the end of the copied character string to make up the number
specified in "n".

 When you specify options -O[3-5], -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

REJ10J2009-0200 Rev.2.00 2010.04.01
279

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

strnicmp

String Handling Functions

Function: Compares character strings ('n' characters). (All alphabets are handled as uppercase

letters.)

Format: #include <string.h>

int strnicmp(s1, s2, n);

Method: function

Argument: char _far *s1;

char _far *s2;
size_t n;

Pointer to the first character string to be compared
Pointer to the second character string to be compared
Number of characters to be compared

ReturnValue: ReturnValue==0 The two character strings are equal.

 ReturnValue>0 The first character string (s1) is greater than the other.
 ReturnValue<0 The second character string (s2) is greater than the other.

Description: Compares each byte of n characters of two character strings ending with

NULL.However, all letters are treated as uppercase letters.
 When you specify options -O[3-5], -OR, or -OS, the system may selects another

functions with good code efficiency by optimization.

strpbrk

String Handling Functions

Function: Searches the specified character in a character string from the other character string.

Format: #include <string.h>

char _far * strpbrk(s1, s2);

Method: function

Argument: const char _far *s1;

const char _far *s2;
Pointer to the character string to be searched in
Pointer to the character string of the character to be
searched for

ReturnValue: Returns the position (pointer) where the specified character is found first.

 Returns NULL if the specified character cannot be found.

Description: Searches the specified character "s2" from the other character string in "s1" area.

 You cannot search for '¥0'.
 When you specify options -O[3-5], -OR, or -OS, the system may selects another

functions with good code efficiency by optimization.

REJ10J2009-0200 Rev.2.00 2010.04.01
280

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

strrchr

String Handling Functions

Function: Searches the specified character from the end of a character string.

Format: #include <string.h>

char _far * strrchr(s, c);

Method: function

Argument: const char _far *s;

int c;
Pointer to the character string to be searched in
Character to be searched for

ReturnValue: Returns the position of character "c" that is last encountered in character string "s."

 Returns NULL when character string "s" does not contain character "c".

Description: Searches for the character specified in "c" from the end of area "s".

 You can search for '¥0'.
 When you specify options -O[3-5], -OR, or -OS, the system may selects another

functions with good code efficiency by optimization.

strspn

String Handling Functions

Function: Calculates the length (number) of specified characters that are found in the character

string.

Format: #include <string.h>

size_t strspn(s1, s2);

Method: function

Argument: const char _far *s1;

const char _far *s2;
Pointer to the character string to be searched in
Pointer to the character string of the character to be
searched for

ReturnValue: Returns the length (number) of specified characters.

Description: Calculates the size of the first character string consisting of characters in “s2” from

area “s1”, and searches the characters from the beginning of 's1'.
 You cannot search for '¥0'.
 When you specify options -O[3-5], -OR, or -OS, the system may selects another

functions with good code efficiency by optimization.

REJ10J2009-0200 Rev.2.00 2010.04.01
281

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

strstr

String Handling Functions

Function: Searches the specified character from a character string.

Format: #include <string.h>

char _far * strstr(s1, s2);

Method: function

Argument: const char _far *s1;

const char _far *s2;
Pointer to the character string to be searched in
Pointer to the character string of the character to be
searched for

ReturnValue: Returns the position (pointer) where the specified character is found.

 Returns NULL when the specified character cannot be found.

Description: Returns the location (pointer) of the first character string "s2" from the beginning

of area "s1".
 When you specify options -O[3-5], -OR, or -OS, the system may selects another

functions with good code efficiency by optimization.

strtod

Character String Value Convert Functions

Function: Converts a character string into a double-type integer.

Format: #include <string.h>

double strtod(s, endptr);

Method: function

Argument: const char _far *s;

char _far * _far *endptr;
Pointer to the converted character string
Pointer to the remaining character strings that have not
been converted

ReturnValue: ReturnValue ==0L Does not constitute a number.

 ReturnValue != 0L Returns the configured number in double type.

Description: When you specify options -O[3-5], -OR, or -OS, the system may selects another functions

with good code efficiency by optimization.

REJ10J2009-0200 Rev.2.00 2010.04.01
282

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

strtok

String Handling Functions

Function: Divides some character string from a character string into tokens.

Format: #include <string.h>

char _far * strtok(s1, s2);

Method: function

Argument: char _far *s1;

const char _far *s2;
Pointer to the character string to be divided up
Pointer to the punctuation character to be divided with

ReturnValue: Returns the pointer to the divided token when character is found.

 Returns NULL when character cannot be found.

Description: In the first call, returns a pointer to the first character of the first token. A NULL

character is written after the returned character. In subsequent calls (when "s1" is
NULL), this instruction returns each token as it is encountered. NULL is returned
when there are no more tokens in "s1".

 When you specify options -O[3-5], -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

strtol

Character String Value Convert Function

Function: Converts a character string into a long-type integer.

Format: #include <string.h>

long strtol(s,endptr,base);

Method: function

Argument: const char _far *s;

char _far * _far *endptr;

int base;

Pointer to the converted character string
Pointer to the remaining character strings that have not
been converted.
Base of values to be read in (0 to 36)
Reads the format of integral constant if the base of value
is zero

ReturnValue: ReturnValue == 0L Does not constitute a number.

 ReturnValue != 0L Returns the configured number in long type.

Description: When you specify options -O[3-5], -OR, or -OS, the system may selects another functions

with good code efficiency by optimization.

REJ10J2009-0200 Rev.2.00 2010.04.01
283

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

strtoul

Character String Value Convert Function

Function: Converts a character string into an unsigned long-type integer.

Format: #include <string.h>

unsigned long strtoul(s,endptr,base);

Method: function

Argument: const char _far *s;

char _far * _far *endptr;

int base;

Pointer to the converted character string
Pointer to the remaining character strings that have not
been converted.
Base of values to be read in (0 to 36)
Reads the format of integral constant if the base of value
is zero

ReturnValue: ReturnValue == 0L Does not constitute a number.

 ReturnValue != 0L Returns the configured number in long type.

Description: When you specify options -O[3-5], -OR, or -OS, the system may selects another functions

with good code efficiency by optimization.

strxfrm

Character String Value Convert Functions

Function: Converts a character string (using locale information).

Format: #include <string.h>

size_t strxfrm(s1,s2,n);

Method: function

Argument: char _far *s1;

const char _far *s2;
size_t n;

Pointer to an area for storing a conversion result
character string.
Pointer to the character string to be converted.
Number of bytes converted

ReturnValue: Returns the number of characters converted.

Description: When you specify options -O[3-5], -OR, or -OS, the system may selects another functions

with good code efficiency by optimization.

REJ10J2009-0200 Rev.2.00 2010.04.01
284

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

T

tan

Mathematical Functions

Function: Calculates tangent.

Format: #include <math.h>

double tan(x);

Method: function

Argument: double x; arbitrary real number

ReturnValue: Returns the tangent of given real number “x” handled in units of radian.

tanh

Mathematical Functions

Function: Calculates hyperbolic tangent.

Format: #include <math.h>

double tanh(x);

Method: function

Argument: double x; arbitrary real number

ReturnValue: Returns the hyperbolic tangent of given real number “x”.

tolower

Character Handling Functions

Function: Converts the character from an upper-case to a lower-case.

Format: #include <ctype.h>

int tolower(c);

Method: macro

Argument: int c; Character to be converted

ReturnValue: Returns the lower-case letter if the argument is an upper-case letter.

 Otherwise, returns the passed argument as is.

Description: Converts the character from an upper-case to a lower-case.

REJ10J2009-0200 Rev.2.00 2010.04.01
285

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

toupper

Character Handling Functions

Function: Converts the character from a lower-case to an upper-case.

Format: #include <ctype.h>

int toupper(c);

Method: macro

Argument: int c; Character to be converted

ReturnValue: Returns the upper-case letter if the argument is a lower-case letter.

 Otherwise, returns the passed argument as is.

Description: Converts the character from a lower-case to an upper-case.

REJ10J2009-0200 Rev.2.00 2010.04.01
286

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

U

ungetc

Input/Output Functions

Function: Returns one character to the stream

Format: #include <stdio.h>

int ungetc(c, stream);

Method: macro

Argument: int c;

FILE _far *stream;
Character to be returned
Pointer of stream

ReturnValue: Returns the returned one character if done normally.

 Returns EOF if the stream is in write mode, an error or EOF is encountered, or the
character to be sent back is EOF.

Description: Returns one character to the stream.

 Interprets code 0x1A as the end code and ignores any subsequent data.

REJ10J2009-0200 Rev.2.00 2010.04.01
287

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

V

vfprintf

Input/Output Functions

Function: Output to a stream with format.

Format: #include <stdarg.h>

#include <stdio.h>

int vfprintf(stream, format, ap...);

Method: function

Argument: FILE _far *stream;

const char _far *format;
va_list ap;

Pointer of stream
Pointer of the format specifying character string
Pointer of argument list

ReturnValue: Returns the number of characters output.

Description: Output to a stream with format.

 When writing pointers in variable-length variables, make sure they are a far-type
pointer.

vprintf

Input/Output Functions

Function: Output to stdout with format.

Format: #include <stdarg.h>

#include <stdio.h>

int vprintf(format, ap...);

Method: function

Argument: const char _far *format;

va_list ap;
Pointer of the format specifying character string
Pointer of argument list

ReturnValue: Returns the number of characters output.

Description: Output to stdout with format.

 When writing pointers in variable-length variables, make sure they are a far-type
pointer.

REJ10J2009-0200 Rev.2.00 2010.04.01
288

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

vsprintf

Input/Output Functions

Function: Output to a buffer with format.

Format: #include <stdarg.h>

#include <stdio.h>

int vfprintf(s, format, ap...);

Method: function

Argument: char _far *s;

const char _far *format;
va_list ap;

Pointer of the location to be store
Pointer of the format specifying character string
Pointer of argument list

ReturnValue: Returns the number of characters output.

Description: When writing pointers in variable-length variables, make sure they are a far-type

pointer.

REJ10J2009-0200 Rev.2.00 2010.04.01
289

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

W

wcstombs

Multi-byte Character Multi-byte Character String Manipulate Functions

Function: Converts a wide character string into a multibyte character string.

Format: #include <stdlib.h>

size_t _far wcstombs(s, wcs, n);

Method: function

Argument: char _far *s;

const wchar_t _far *wcs;
size_t n;

Pointer to an area for storing conversion multibyte
character string
Pointer to a wide character string
Number of wide characters stored

ReturnValue: Returns the number of stored multibyte characters if the character string was

converted correctly.
 Returns -1 if the character string was not converted correctly.

wctomb

Multi-byte Character Multi-byte Character String Manipulate Functions

Function: Converts a wide character into a multibyte character.

Format: #include <stdlib.h>

int wctomb(s, wchar);

Method: function

Argument: char _far *s;

wchar_t wchar;

Pointer to an area for storing conversion multibyte
character string
wide character

ReturnValue: Returns the number of bytes contained in the multibyte characters.

 Returns -1 if there is no corresponding multibyte character.
 Returns 0 if the wide character is 0.

REJ10J2009-0200 Rev.2.00 2010.04.01
290

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

E.2.4 Using the Standard Library

a Notes on Regarding Standard Header File

When using functions in the standard library, always be sure to include the specified standard header file. If this
header file is not included, the integrity of arguments and return values will be lost, making the program unable to
operate normally.

b Notes on Regarding Optimization of Standard Library

If you specify any of optimization options -O[3-5], -OS, or -OR, the system performs optimization for the standard
functions. This optimization can be suppressed by specifying -Ono_stdlib. Such suppression of optimization is
necessary when you use a user function that bear the same name as one of the standard library functions.

(12) Inline padding of functions

Regarding functions strcpy and memcpy, the system performs inline padding of functions if the conditions inTable
E.13 are met.

Table E.13 Optimization Conditions for Standard Library Functions
Function Name Optimization Condition Description Example
strcpy First argument:far pointer

Second argument:string constant
strcpy(str, "sample");

memcpy First argument:far pointer
Second argument: far pointer
Third argument:constant

memcpy(str ,"sample", 6);
memcpy(str , fp, 6);

REJ10J2009-0200 Rev.2.00 2010.04.01
291

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

E.3 Modifying Standard Library

The NC100 package includes a sophisticated function library which includes functions such as the scanf and printf
I/O functions. These functions are normally called high-level I/ O functions. These high-level I/O functions are
combinations of hardware-dependent lowlevel I/O functions.
In R32C/100 series application programs, the I/O functions may need to be modified according to the target
system's hardware. This is accomplished by modifying the source file for the standard library.
This chapter describes how to modify the NC100 standard library to match the target system.
The entry vedrsion does not come with source files for the standard function library. Therefore, the standard
function library cannot be customized for the entry version.

E.3.1 Structure of I/O Functions

As shown in Figure E.1, the I/O functions work by calling lower-level functions (level 2 . level 3) from the level 1
function. For example, fgets calls level 2 fgetc, and fgetc calls a level 3 function.
Only the lowest level 3 functions are hardware-dependent (I/O port dependent) in the Micro Processor. If your
application program uses an I/O function, you may need to modify the source files for the level 3 functions to match
the system.

Input function

gets getchar

fgets

fread

getc

Level 1

fgetc

Level 2

_sget

_sput

_pput

Level 3

Output function

puts putchar

fputs

fwrite

putc

Level 1

fputc

Level 2

_sput

_pput

Level 3

Figure E.1 Calling Relationship of I/O Functions

REJ10J2009-0200 Rev.2.00 2010.04.01
292

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

E.3.2 Sequence of Modifying I/O Functions

Figure E.2 outlines how to modify the I/O functions to match the target system.

Modify the level 3 I/O function(s)

Set the stream

Compile the modified source program(s)

a.

b.

c.

Figure E.2 Example Sequence of Modifying I/O Functions

a Modifying Level 3 I/O Function

The level 3 I/O functions perform 1-byte I/O via the R32C/100 series I/O ports. The level 3 I/O functions include
_sget and _sput, which perform I/O via the serial communications circuits (UART), and _pput, which performs I/O
via the Centronics communications circuit.

(1) Circuit settings

 Clock frequency: 20MHz

(2) Initial serial communications settings

 Use UART1
 Baud rate: 9600bps
 Data size: 8 bits
 Parity: None
 Stop bits: 2 bits

*The initial serial communications settings are made in the init function (init.c).

REJ10J2009-0200 Rev.2.00 2010.04.01
293

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

The level 3 I/O functions are written in the C library source file device.c. Table E.14 lists the specifications of these
functions.

Table E.14 Specifications of Level 3 Functions
Input functions Parameters Return value (int type)
_sget
_sput
_pput

None If no error occurs, returns the input character Returns EOF if an
error occurs

Output unctions Parameters(int type) Return value (int type)
_sput
_pput

Character to
output

If no error occurs, returns 1
Returns EOF if an error occurs

Serial communication is set to UART1 in the R32C/100 series's two UARTs. device.c is written so that the UART0
can be selected using the conditional compile commands, as follows:

 To use UART0............................. #define UART0 1
Specify these commands at the beginning of device.c, or specify following option, when compiling.

 To use UART0.............................. -DUART0
To use both UARTs, modify the file as follows:

(1) Delete the conditional compiling commands from the beginning of the device.c file.
(2) Change the UART0 special register name defined in #pragma EQU to a variable other than

UART1.
(3) Reproduce the level 3 functions _sget and _sput for UART0 and change them to different

variable names such as _sget0 and _sput0.
(4) Also reproduce the speed function for UART0 and change the function name to something

like speed0.
This completes modification of device.c.
Next, modify the init function (init.c), which makes the initial I/O function settings, then change the stream
settings (see below).

REJ10J2009-0200 Rev.2.00 2010.04.01
294

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

b Stream Settings

The NC100 standard library has five items of stream data (stdin, stdout, stderr, stdaux, and stdprn) as external
structures. These external structures are defined in the standard header file stdio.h and control the mode
information of each stream (flag indicating whether input or output stream) and status information (flag indicating
error or EOF).

Table E.15 Stream Information
Stream information Name
stdin Standard input
stdout Standard output
stderr Standard error output (error is output to stdout)
stdaux Standard auxiliary I/O
stdprn Standard printer output

The stream corresponding to the NC100 standard library functions shown shaded in Figure E.3 are fixed to
standard input (stdin) and standard output (stdout). The stream cannot be changed for these functions. The output
direction of stderr is defined as stdout in #define.
The stream can only be changed for functions that specify pointers to the stream as parameters such as fgetc and
fputc.

REJ10J2009-0200 Rev.2.00 2010.04.01
295

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

scanf

getchar

gets

printf

putchar

puts

stdin

stdout

sscanf

fgetc

getc

fgets

fread

fscanf

stdin

stdaux

stdprn

stream=?

fprintf

sprintf

fputc

putc

fputs

puts

fwrite

vfprintf

stdout

stdaux

stdprn

stream=?

Figure E.3 fRelationship of Functions and Streams

Figure E.4 shows the stream definition in stdio.h.

REJ10J2009-0200 Rev.2.00 2010.04.01
296

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

/***
*
* standard I/O header file
 :
 (omitted)
 :
typedef struct _iobuf {
 char _buff; /* Store buffer for ungetc */ [1]
 int _cnt; /* Strings number in _buff(1 or 0) */ [2]
 int _flag; /* Flag */ [3]
 int _mod; /* Mode */ [4]
 int (*_func_in)(void); /* Pointer to one byte input function */ [5]
 int (*_func_out)(int); /* Pointer to one byte output function */ [6]
} FILE;
#define _IOBUF_DEF
 :
 (omitted)
 :
extern FILE _iob[];
#define stdin (&_iob[0]) /* Fundamental input */
#define stdout (&_iob[1]) /* Fundamental output */
#define stdaux (&_iob[2]) /* Fundamental auxialiary input output */
#define stdprn (&_iob[3]) /* Fundamental printer output */

#define stderr stdout /* NC no-support */

/***
*
***/
#define _IOREAD 1 /* Read only flag */
#define _IOWRT 2 /* Write only flag */
#define _IOEOF 4 /* End of file flag */
#define _IOERR 8 /* Error flag */
#define _IORW 16 /* Read and write flag */
#define _NFILE 4 /* Stream number */
#define _TEXT 1 /* Text mode flag */
#define _BIN 2 /* Binary mode flag */

 (remainder omitted)
 :

Figure E.4 Stream Definition in stdio.h

Let's look at the elements of the file structures shown in Figure E.4. Items [1] to [6] correspond to [1] to [6] in Figure
E.4

REJ10J2009-0200 Rev.2.00 2010.04.01
297

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

(1) char _buff

Functions scanf and fscanf read one character ahead during input. If the character is no use, function
ungetc is called and the character is stored in this variable.
If data exists in this variable, the input function uses this data as the input data.

(2) int _cnt
Stores the _buff data count (0 or 1)

(3) int _flag
Stores the read-only flag (_IOREAD), the write-only flag (_IOWRT), the read-write flag (_IORW), the
end of file flag (_IOEOF) and the error flag (_IOERR).

 _IOREAD, _IOWRT, _IORW
These flags specify the stream operating mode. They are set during stream
initialization.

 _IOEOF, _IOERR
These flags are set according to whether an EOF is encountered or error occurs in the
I/O function.

(4) int _mod
Stores the flags indicating the text mode (_TEXT) and binary mode (_BIN).

 Text mode
Echo-back of I/O data and conversion of characters. See the source programs (fgetc.c
and fputc.c) of the fgetc and fputc functions for details of echo back and character
conversion.

 Binary mode
No conversion of I/O data. These flags are set in the initialization block of the stream.

(5) int (*_func_in)()
When the stream is in read-only mode (_IOREAD) or read/write mode (_IORW), stores the level 3
input function pointer. Stores a NULL pointer in other cases.
This information is used for indirect calling of level 3 input functions by level 2 input functions.

(6) int (*_func_out)()
When the stream is in write mode (_IOWRT), stores the level 3 output function pointer. If the stream
can be input (_IOREAD or _IORW), and is in text mode, it stores the level 3 output function pointer
for echo back. Stores a NULL pointer in other cases.
This information is used for indirect calling of level 3 output functions by level 2 output functions.

REJ10J2009-0200 Rev.2.00 2010.04.01
298

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

Set values for all elements other than char_buff in the stream initialization block. The standard library file
supplied in the NC100 package initializes the stream in function init, which is called from the ncrt0.a30 startup
program.
Figure E.5 shows the source program for the init function.

#include <stdio.h>

FILE _iob[4];

void init(void);

void init(void)
{
 stdin->_cnt = stdout->_cnt = stdaux->_cnt = stdprn->_cnt = 0;
 stdin->_flag = _IOREAD;
 stdout->_flag = _IOWRT;
 stdaux->_flag = _IORW;
 stdprn->_flag = _IOWRT;

 stdin->_mod = _TEXT;
 stdout->_mod = _TEXT;
 stdaux->_mod = _BIN;
 stdprn->_mod = _TEXT;

 stdin->_func_in = _sget;
 stdout->_func_in = NULL;
 stdaux->_func_in = _sget;
 stdprn->_func_in = NULL;

 stdin->_func_out = _sput;
 stdout->_func_out = _sput;
 stdaux->_func_out = _sput;
 stdprn->_func_out = _pput;

#ifdef UART0
 speed(_96, _B8, _PN, _S2);
#else /* UART1 : default */
 speed(_96, _B8, _PN, _S2);
#endif
 init_prn();
}

Figure E.5 Source file of init function (init.c)

REJ10J2009-0200 Rev.2.00 2010.04.01
299

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

In systems using the two R32C/100 series UARTs, modify the init function as shown below. In the previous
subsection, we set the UART0 functions in the device.c source file temporarily as _sget0, _sput0, and speed0.

(1) Use the standard auxiliary I/O (stdaux) for the UART0 stream.
(2) Set the flag (_flag) and mode (_mod) for standard auxiliary I/O to match the system.
(3) Set the level 3 function pointer for standard auxiliary I/O.
(4) Delete the conditional compile commands for the speed function and change to function

speed0 for UART0.
These settings allow both UARTs to be used. However, functions using the standard I/O stream cannot be used for
standard auxiliary I/O used by UART0. Therefore, only use functions that take streams as parameters. Figure E.6
shows how to change the init function.

void init(void)
{
 :
 (omitted)
 :
 stdaux->_flag = _IORW; [2](set read/write mode)
 :
 (omitted)
 :
 stdaux->_mod = _TEXT; [2](set text mode)
 :
 (omitted)
 :
 stdaux->_func_in = _sget0; [3](set UART0 level 3 input function)
 :
 (omitted)
 :
 stdaux->_func_out = _sput0; [3](set UART0 level 3 input function)
 :
 (omitted)
 :
 speed(_96, _B8, _PN, _S2); [4](set UART0 speed function)
 init_prn();
}

* [2] to [4] correspond to the items in the description of setting, above.

Figure E.6 Modifying the init Function

REJ10J2009-0200 Rev.2.00 2010.04.01
300

R32C/100 Series C Compiler Package V.1.02 E. Standard Library

c Incorporating the Modified Source Program

There are two methods of incorporating the modified source program in the target system:
(1) Specify the object files of the modified function source files when linking.
(2) Use the makefile (under MS-Windows, makefile.dos) supplied in the NC100 package to

update the library file.
In method [1], the functions specified when linking become valid and functions with the same names in the library
file are excluded.
Figure E.7 shows method(1). Figure E.8 shows method(2).

% nc100 -c -g -osample ncrt0.a30 device.r30 init.r30 sample.c<RET>

* This example shows the command line when device.c and init.c are modified.

Figure E.7 Method of Directly Linking Modified Source Programs

% make <RET>

Figure E.8 Method of Updating Library Using Modified Source Programs

REJ10J2009-0200 Rev.2.00 2010.04.01
301

R32C/100 Series C Compiler Package V.1.02 F. Error Messages

Appendix F Error Messages

This appendix describes the error messages and warning messages output by NC100, and their countermeasures.

F.1 Message Format

If, during processing, NC100 detects an error, it displays an error message on the screen and stops the compiling
process.
Figure F.1 to Figure F.3 shows the format of error messages and warning messages.

nc100:[error-message]

Figure F.1 Format of Error Messages from the nc100 Compile Driver

[Error(cpp100.error-No.): filename, line-No.] error-message
[Error(ccom): filename, line-No.] error-message
[Fatal(ccom): filename, line-No.] error-message *1

Figure F.2 Format of Command Error Messages

[Warning(cpp100. warning-No.): filename, line-No.] warning-message
[Warning(ccom): filename, line-No.] warning-message

Figure F.3 Format of Command Warning Messages

 *1. Fatal error message

This error message is not normally output. Please contact nearest Renesas office. with details of the message
if displayed.

REJ10J2009-0200 Rev.2.00 2010.04.01
302

R32C/100 Series C Compiler Package V.1.02 F. Error Messages

F.2 nc100 Error Messages

Table F.1 and Table F.2 list the nc100 compile driver error messages and their countermeasures.

Table F.1 nc100 Error Messages (1/2)
Error message Description and countermeasure

Arg list too long • The command line for starting the respective
processingsystem is longer than the character string
defined bythe system.

⇒ Specify a NC100 option to ensure that the number
ofcharacters defined by the system is not exceeded.
Usethe -v option to check the command line used for
eachprocessing block.

Cannot analyze error • This error message is not normally displayed. (It is
aninternal error.)

⇒ Contact Renesas Solutions Corp.
command-file line characters exceed
2048.

• There are more than 2048 characters on one or more lines
in the command file.

⇒ Reduce the number of characters per line in the
commandfile to 2048 max.

Core dump(command_name) • The processing system (indicated in parentheses)caused a
core dump.

⇒ The processing system is not running correctly. Checkthe
environment variables and the directory containingthe
processing system. If the processing system stilldoes not
run correctly, Please contact Renesas SolutionsCorp.

Exec format error • Corrupted processing system executable file.
⇒ Reinstall the processing system.

Ignore option '-?' • You specified an illegal option (-?) for NC100.
⇒ Specify the correct option.

illegal option • You specified options greater than 100 characters for
–as100 or –ln100.

⇒ Reduce the options to 99 characters or less.
Invalid argument • This error message is not normally displayed. (It is

aninternal error.)
⇒ Contact Renesas Solutions Corp.

Invalid option '-?' • The required parameter was not specified in option "-?".
⇒ "-?"Specify the required parameter after "-?".
• You specified a space between the -? option and its

parameter.
⇒ Delete the space between the -? option and its parameter.

Invalid option '-o' • No output filename was specified after the -o option.
⇒ Specify the name of the output file. Do not specify the

filename extension.
Invalid suffix '.xxx' • You specified a filename extension not recognized by

NC100 (other than .c, .i, .a30, .r30, .x30).
⇒ Specify the filename with the correct extension.

REJ10J2009-0200 Rev.2.00 2010.04.01
303

R32C/100 Series C Compiler Package V.1.02 F. Error Messages

Table F.2 nc100 Error Messages (2/2)
Error message Description and countermeasure

No such file or directory • The processing system will not run.
⇒ Check that the directory of the processing system is

correctly set in the environment variable.
Not enough core • Insufficient swap area

⇒ Increase the swap area.
Permission denied • The processing system will not run.

⇒ Check access permission to the processing systems. Or, if
access permission is OK, check that the directory of the
processing system is correctly set in the environment
variable.

can't open command file • Can not open the command file specified by '@'.
⇒ Specify the correct input file.

too many options • This error message is not normally displayed. (It is an
internal error.)

⇒ Compile options cannot be specified exceeding 99
characters.

Result too large • This error message is not normally displayed. (It is an
internal error.)

⇒ Contact Renesas Solutions Corp.
Too many open files • This error message is not normally displayed. (It is an

internal error.)
⇒ Contact Renesas Solutions Corp.

REJ10J2009-0200 Rev.2.00 2010.04.01
304

R32C/100 Series C Compiler Package V.1.02 F. Error Messages

F.3 cpp100 Error Messages

Table F.3 to Table F.5 list the error messages output by the cpp100 preprocessor and their countermeasures.

Table F.3 cpp100 Error Messages (1/3)
NO. Error message Description and countermeasure

• Input filename specified twice.
⇒ Specify the input filename once only.
• The same name was specified for both input and output

files.
⇒ Specify different names for input and output files.
• Output filename specified twice.
⇒ Specify the output filename once only.
• The command line ends with the -o option.
⇒ Specify the name of the output file after the –o option.
• The -I option specifying the include file path exceeds the

limit.
⇒ Specify the -I option 8 times or less.
• The command line ends with the -I option.
⇒ Specify the name of an include file after the –I option.
• The string following the -D option is not of a character

type (letter or underscore) that can be used in a macro
name. Illegal macro name definition.

⇒ Specify the macro name correctly and define the macro
correctly.

• The command line ends with the -D option.
⇒ Specify a macro filename after the -D option.
• The string following the -U option is not of a character

type (letter or underscore) that can be used in a macro
name.

⇒ Define the macro correctly.

1 illegal command option

• You specified an illegal option on the cpp100 command
line.

⇒ Specify only legal options.
11 cannot open input file. • Input file not found.

⇒ Specify the correct input file name.
12 cannot close input file. • Input file cannot be closed.

⇒ Check the input file name.
14 cannot open output file. • Cannot open output file.

⇒ Specify the correct output file name.
15 cannot close output file. • Cannot close output file.

⇒ Check the available space on disk.
16 cannot write output file • Error writing to output file.

⇒ Check the available space on disk.

REJ10J2009-0200 Rev.2.00 2010.04.01
305

R32C/100 Series C Compiler Package V.1.02 F. Error Messages

Table F.4 cpp100 Error Messages (2/3)
No. Error message Description and countermeasure
17 input file name buffer overflow • The input filename buffer has overflowed. Note that the

filename includes the path.
⇒ Reduce the length of the filename and path (use the -I

option to specify the standard directory).
18 not enough memory for macro

include file not found
• Insufficient memory for macro name and contents of

macro
⇒ Increase the swap area

21 include file not found • The include file could not be opened..
⇒ The include files are in the current directory and that

specified in the -I option and environment variable. Check
these directories.

22 illegal file name error • Illegal filename.
⇒ Specify a correct filename.

23 include file nesting over • Nesting of include files exceeds the limit (8).
⇒ Reduce nesting of include files to a maximum of 8 levels.

25 illegal identifier • Error in #define.
⇒ Code the source file correctly.

26 illegal operation • Error in preprocess commands #if - #elseif - #assert
operation expression.

⇒ Rewrite operation expression correctly.
27 macro argument error • Error in number of macro parameters when expanding

macro.
⇒ Check macro definition and reference and correct as

necessary.
28 input buffer over flow • Input line buffer overflow occurred when reading source

file(s). Or, buffer overflowed when converting macros.
⇒ Reduce each line in the source file to a maximum of 1023

characters. If you anticipate macro conversion, modify the
code so that no line exceeds 1023 characters after
conversion.

29 EOF in comment • End of file encountered in a comment.
⇒ Correct the source file.

31 EOF in preprocess command • End of file encountered in a preprocess command
⇒ Correct the source file.

32

unknown preprocess command • An unknown preprocess command has been specified.
⇒ Only the following preprocess commands can be used in

CPP100 :
#include, #define, #undef, #if, #ifdef, #ifndef, #else, #endif,
#elseif, #line, #assert, #pragma, #error

33

new_line in string • A new-line code was included in a character constant or
character string constant.

⇒ Correct the program.
34 string literal out of range 509

characters
• A character string exceeded 509 characters.
⇒ Reduce the character string to 509 characters max.

35 macro replace nesting over • Macro nesting exceeded the limit (20).
⇒ Reduce the nesting level to a maximum of 20.

41 include file error • Error in #include instruction.
⇒ Correct the #include.

REJ10J2009-0200 Rev.2.00 2010.04.01
306

R32C/100 Series C Compiler Package V.1.02 F. Error Messages

Table F.5 cpp100 Error Messages (3/3)
No. Error message Description and countermeasure
43 illegal id name • Error in following macro name or argument in #define

command:
__FILE__, __LINE__, __DATE__, __TIME__

⇒ Correct the source file.
44 token buffer over flow • Token character buffer of #define overflowed.

⇒ Reduce the number of token characters.
45

illegal undef command usage

• Error in #undef.
⇒ Correct the source file.

46 undef id not found • The following macro names to be undefined in #undef
were not defined:
__FILE__, __LINE__, __DATE__, __TIME__

⇒ Check the macro name.
52 illegal ifdef / ifndef command

usage
• Error in #ifdef.
⇒ Correct the source file.

53 elseif / else sequence erro • #elseif or #else were used without #if - #ifdef - #ifndef.
⇒ Use #elseif or #else only after #if - #ifdef -#ifndef.

54 endif not exist • No #endif to match #if - #ifdef - #ifndef.
⇒ Add #endif to the source file.

55 endif sequence error • #endif was used without #if - #ifdef - #ifndef.
⇒ Use #endif only after #if - #ifdef - #ifndef.

61 illegal line command usage • Error in #line.
⇒ Correct the source file.

REJ10J2009-0200 Rev.2.00 2010.04.01
307

R32C/100 Series C Compiler Package V.1.02 F. Error Messages

F.4 cpp100 Warning Messages

Table F.6 shows the warning messages output by cpp100 and their countermeasures.

Table F.6 cpp100 Warning Messages
No. Warning Messages Description and countermeasure
81 reserved id used • You attempted to define or undefine one of the following

macro names reserved by cpp100:
__FILE__, __LINE__, __DATE__, __TIME__

⇒ Use a different macro name.
82 assertion warning • The result of an #assert operation expression was 0.

⇒ Check the operation expression.
83 garbage argument • Characters other than a comment exist after a preprocess

command.
⇒ Specify characters as a comment (/* string */) after the

preprocess command.
84 escape sequence out of range for

character
• An escape sequence in a character constant or character

string constant exceeded 255 characters.
⇒ Reduce the escape sequence to within 255 characters.

85 redefined • A previously defined macro was redefined with different
contents.

⇒ Check the contents against those in the previous
definition.

87 /* within comment • A comment includes /*.
⇒ Do not nest comments.

88 Environment variable 'NCKIN'
must be 'SJIS' or 'EUC'

• Environment variable 'NCKIN' is not valid.
⇒ Set "SJIS" or "EUC" to NCKIN.

90 ‘Macro name’ in #if is not
defined,so it’s tereated as 0

• An undefined macro name in #if is used.
⇒ Check the macro definition.

REJ10J2009-0200 Rev.2.00 2010.04.01
308

R32C/100 Series C Compiler Package V.1.02 F. Error Messages

F.5 ccom100 Error Messages

Table F.7 to Table F.19 list the ccom100 compiler error messages and their countermeasures.

Table F.7 ccom100 Error Messages (1/13)
Error message Description and countermeasure

#pragma PRAGMA-name
function-name redefined

• The same function is defined twice in #pragma name.
⇒ Make sure that #pragma-name is declared only once.

#pragma PRAGMA-name function
argument is long-long or double

• The arguments used for the function specified with the
"#pragma program name function name" are the long
long type or the double type.

⇒ The long long type and double type cannot be used in the
functions specified with the "#pragma program name
function name." Use other types.

#pragma PRAGMA-name & function
prototype mismatched

• The function specified by #pragma PRAGMA name does
not match the contents of argument in prototype
declaration.

⇒ Make sure it is matched to the argument in prototype
declaration.

#pragma PRAGMA-name's function
argument is struct or union

• The struct or union type is specified in the prototype
declaration for the function specified by #pragma
PRAGMA-name.

⇒ Specify the int or short type, 2-byte pointer type, or
enumeration type in the prototype declaration.

#pragma PRAGMA-name must be
declared before use

• A function specified in the #pragma PRAGMAname
declaration is defined after call for that function.

⇒ Declare a function before calling it.
#pragma BITADDRESS variable is not
_Bool type

• The variable spcified by #pragma BITADDRESS is not
_Bool type

⇒ Use the _Bool type to declare the variable.
#pragma INTCALL function's argument
on stack

• When the body of functions declared in #pragma
INTCALL are written in C, the parameters are passed via
the stack.

⇒ When the body of functions declared in #pragma
INTCALL are written in C, specify the parameters are
being passed via the stack.

#pragma PARAMETER function's
register not allocated

• A register which is specifed in the function decleared by
#pragma PARAMETER can not be allocated.

⇒ Use the correct register.
'const' is duplicate • const is described more than twice.

⇒ Write the type qualifier correctly.
'far' & 'near' conflict • far/near is described more than twice.

⇒ Write near/far correctly.
'far' is duplicate • far is described more than twice.

⇒ Write far correctly.
'near' is duplicate • near is described more than twice.

⇒ Write near correctly.
'static' is illegal storage class for
agument

• An appropriate storage class is used in argument
declaration.

⇒ Use the correct storage class.
'volatile' is duplicate • volatile is described more than twice.

⇒ Write the type qualifier correctly.

REJ10J2009-0200 Rev.2.00 2010.04.01
309

R32C/100 Series C Compiler Package V.1.02 F. Error Messages

Table F.8 ccom100 Error Messages (2/13)
Error message Description and countermeasure

(can't read C source from filename
line number for error message)

• The source line is in error and cannot be displayed.
The file indicated by filename cannot be found or the line
number does not exist in the file.

⇒ Check whether the file actually exists.
(can't open C source filename for error
message)

• The source file in error cannot be opened.
⇒ Check whether the file exists.

argument type given both places • Argument declaration in function definition overlaps an
argument list separately given.

⇒ Choose the argument list or argument declaration for this
argument declaration.

array of functions declared • The array type in array declaration is defined as function.
⇒ Specify scalar type struct/union for the array type.

array size is not constant integer • The number of elements in array declaration is not a
constant.

⇒ Use a constant to describe the number of elements.
asm()'s string must have only 1 $b • $b is described more than twice in asm statement.

⇒ Make sure that $b is described only once.
asm()'s string must not have more than
3 $$ or $@

• $$ or $@ is described more than thrice in asm statement.
⇒ Make sure that $$ ($@)is described only twice.

auto variable's size is zero • An array with 0 elements or no elements was declared in
the auto area.

⇒ Correct the coding.
bitfield width exceeded • The bit-field width exceeds the bit width of the data type.

⇒ Make sure that the data type bit width declared in the
bit-field is not exceeded.

bitfield width is not constant integer • The bit width of the bit-field is not a constant.
⇒ Use a constant to write the bit width.

can't get bitfield address by '&' operator • The bit-field type is written with the & operator.
⇒ Do not use the & operator to write the bit-field type.

can't get inline function's address by '&'
operator

• The & operator is written in an inline function.
⇒ Do not use the & operator in an inline function.

can't get size of bitfield • The bit-field type is written with the sizeof operator.
⇒ Do not use the sizeof operator to write the bitfield type.

can't get void value • An attempt is made to get void-type data as in cases
where the right side of an assignment expression is the
void type.

⇒ Check the data type.
can't output to file-name • The file cannot be wrote

⇒ Check the rest of disk capacity or permission of the file.
can't open file-name • The file cannot be opened.

⇒ Check the permission of the file.
can't set argument • The type of an actual argument does not match prototype

declaration. The argument cannot be set in a register
(argument).

⇒ Correct mismatch of the type.
cannot refer to the range outside of the
stack frame.

• A location outside the stack frame area is referenced.
⇒ Reference the correct location.

case value is duplicated • The value of case is used more than one time.
⇒ Make sure that the value of case that you used once is not

used again within one switch statement.

REJ10J2009-0200 Rev.2.00 2010.04.01
310

R32C/100 Series C Compiler Package V.1.02 F. Error Messages

Table F.9 ccom100 Error Messages (3/13)
Error message Description and countermeasure

conflict declare of variable-name • The variable is defined twice with different storage
classes each time.

⇒ Use the same storage class to declare a variable twice.
conflict function argument type of
variable-name

• The argument list contains the same variable name.
⇒ Change the variable name.

declared register parameter function's
body declared

• The function body for the function declared with #pragma
PARAMETER is defined in C

⇒ Do not define , in C, the body for such function .
default function argument conflict • The default value of an argument is declared more than

once in prototype declaration.
⇒ Make sure that the default value of an argument is

declared only once.
default: is duplicated • The default value is used more than one time.

⇒ Use only one default within one switch statement.
do while(struct/union) statement • The struct or union type is used in the expression of the

do-while statement.
⇒ Use the scalar type for an expression in the dowhile

statement.
do while(void) statement • The void type is used in the expression of the dowhile

statement.
⇒ Use the scalar type for an expression in the dowhile

statement.
duplicate frame position defind
variable-name

• Auto variable is described more than twice.
⇒ Write the type specifier correctly.

Empty declare • Only storage class and type specifiers are found.
⇒ Write a declarator.

float and double not have sign • Specifiers signed/unsigned are described in float or
double.

⇒ Write the type specifier correctly.
floating point value overflow • The floating-point immediate value exceeds the

representable range.
⇒ Make sure the value is within the range.

floating type's bitfield • A bit-field of an invalid type is declared.
⇒ Use the integer type to declare a bit-field.

for(; struct/union;) statement • The struct or union type is used in the second expression
of the for statement.

⇒ Use the scalar type to describe the second expression of
the for statement.

for(; void ;) statement • The 2nd expression of the for statement has void.
⇒ Use the scalar type as the 2nd expression of the for

statement.
function initialized • An initialize expression is described for function

declaration.
⇒ Delete the initialize expression.

function member declared • A member of struct or union is function type
⇒ Write the members correctly.

function returning a function declared • The type of the return value in function declaration is
function type

⇒ Change the type to “pointer to function”etc.

REJ10J2009-0200 Rev.2.00 2010.04.01
311

R32C/100 Series C Compiler Package V.1.02 F. Error Messages

Table F.10 ccom100Error message (4/13)
Error message Description and countermeasure

function returning an array • The type of the return value in function declaration is an
array type.

⇒ Change the type to “pointer to function”etc.
handler function called • The function specified by #pragma HANDLER is called.

⇒ Be careful not to call a handler.
identifier (variable-name) is duplicated • The variable is defined more than one time.

⇒ Specify variable definition correctly.
if(struct/union) statement • The struct or union type is used in the expression of the if

statement.
⇒ The expression must have scalar type.

if(void) statement • The void type is used in the expression of the if statement.
⇒ The expression must have scalar type.

illegal storage class for argument, 'inline'
ignored

• An inline function is declared in declaration statement
within a function.

⇒ Declare it outside a function.
illegal storage class for argument,
'interrupt' ignored

• An interrupt function is declared in declaration statement
within a function.

⇒ Declare it outside a function.
incomplete array access • An attempt is made to reference an array of incomplete.

⇒ Define size of array.
incomplete return type • An attempt is made to reference an return variable of

incomplete type.
⇒ Check return variable.

incomplete struct get by [] • An attempt is made to reference or initialize an array of
incomplete structs or unions that do not have defined
members.

⇒ Define complete structs or unions first.
incomplete struct member • An attempt is made to reference an struct member of

incomplete .
⇒ Define complete structs or unions first.

incomplete struct initialized • An attempt is made to initialize an array of incomplete
structs or unions that do not have defined members.

⇒ Define complete structs or unions first.
incomplete struct return function call • An attempt is made to call a function that has as a return

value the of incomplete struct or union that does not have
defined members.

⇒ Define a complete struct or union first.
incomplete struct / union's member
access

• An attempt is made to reference members of an
incomplete struct or union that do not have defined
members.

⇒ Define a complete struct or union first.
incomplete struct / union(tagname)' s
member access

• An attempt is made to reference members of an
incomplete struct or union that do not have defined
members.

⇒ Define a complete struct or union first.
inline function have invalid argument or
return code

• inline function has an invalid argument or an invalid
return value.

⇒ Write the argument or an invalid return value correctly.
inline function is called as normal
function before

• The function declared in storage class inline is called as
an ordinary function.

⇒ Always be sure to define an inline function before using it.

REJ10J2009-0200 Rev.2.00 2010.04.01
312

R32C/100 Series C Compiler Package V.1.02 F. Error Messages

Table F.11 ccom100Error message (5/13)
Error message Description and countermeasure

inline function's address used • An attempt is made to reference the address of an inline
function.

⇒ Do not use the address of an inline function.
inline function's body is not declared
previously

• The body of an inline function is not defined.
⇒ Using an inline function, define the function body prior to

the function call.
inline function (function-name) is
recursion

• The recursive call of an in line function cannot be carried
out.

⇒ Using an inline function, No recursive.
interrupt function called • The function specified by #pragma INTERRUPT is called.

⇒ Be careful not to call an interrupt handling function.
invalid environment variable:
(environment variable -name)

• The variable name specified in the environment variable
NCKIN/NCKOUT is specified by other than SJIS and
EUC.

⇒ Check the environment variables used.
invalid function default argument • The default argument to the function is incorrect.

⇒ This error occurs when the prototype declaration of the
function with default arguments and those in the function
definition section do not match. Make sure they match.

invalid push • An attempt is made to push void type in function
argument, etc.

⇒ The type void cannot be pushed.
invalid ' ? : ' operand • The ?: operation contains an error.

⇒ Check each expression. Also note that the expressions on
the left and right sides of : must be of the same type.

invalid '!=' operands • The != operation contains an error.
⇒ Check the expressions on the left and right sides of the

operator.
invalid '&&' operands • The && operation contains an error.

⇒ Check the expressions on the left and right sides of the
operator.

invalid '&' operands • The & operation contains an error.
⇒ Check the expression on the right side of the operator.

invalid '&=' operands • The &= operation contains an error.
⇒ Check the expressions on the left and right sides of the

operator.
invalid '()' operand • The expression on the left side of () is not a function.

⇒ Write a function or a pointer to the function in the
left-side expression of ().

invalid '*' operands • If multiplication, the * operation contains an error.
If * is the pointer operator, the right-side expressionis not
pointer type.

⇒ For a multiplication, check the expressions on the left and
right sides of the operator. For a pointer, check the type of
the right-side expression.

invalid '*=' operands • The *= operation contains an error.
⇒ Check the expressions on the left and right sides of the

operator.
invalid '+' operands • The + operation contains an error.

⇒ Check the expressions on the left and right sides of the
operator.

REJ10J2009-0200 Rev.2.00 2010.04.01
313

R32C/100 Series C Compiler Package V.1.02 F. Error Messages

Table F.12 ccom100Error message (6/13)
Error message Description and countermeasure

invalid '+=' operands • The += operation contains an error.
⇒ Check the expressions on the left and right sides of the

operator.
invalid '-' operands • The - operator contains an error.

⇒ Check the expressions on the left and right sides of the
operator.

invalid '-=' operands • The -= operation contains an error.
⇒ Check the expressions on the left and right sides of the

operator.
invalid '/=' operands • The /= operation contains an error.

⇒ Check the expressions on the left and right sides of the
operator.

invalid '<<' operands • The << operation contains an error.
⇒ Check the expressions on the left and right sides of the

operator.
invalid '<<=' operands • The <<= operation contains an error.

⇒ Check the expressions on the left and right sides of the
operator.

invalid '<=' operands • The <= operation contains an error.
⇒ Check the expressions on the left and right sides of the

operator.
invalid '=' operand • The = operation contains an error.

⇒ Check the expressions on the left and right sides of the
operator.

invalid '==' operands • The == operation contains an error.
⇒ Check the expressions on the left and right sides of the

operator.
invalid '>=' operands • The >= operation contains an error.

⇒ Check the expressions on the left and right sides of the
operator.

invalid '>>' operands • The >> operation contains an error.
⇒ Check the expressions on the left and right sides of the

operator.
invalid '>>=' operands • The >>= operation contains an error.

⇒ Check the expressions on the left and right sides of the
operator.

invalid '[]' operands • The left-side expression of [] is not array type or pointer
type.

⇒ Use an array or pointer type to write the left-side
expression of [].

invalid '̂ =' operands • The ̂ = operation contains an error.
⇒ Check the expressions on the left and right sides of the

operator.
invalid '|=' operands • The | = operation contains an error.

⇒ Check the expressions on the left and right sides of the
operator.

invalid '||' operands • The || operation contains an error.
⇒ Check the expressions on the left and right sides of the

operator.

REJ10J2009-0200 Rev.2.00 2010.04.01
314

R32C/100 Series C Compiler Package V.1.02 F. Error Messages

Table F.13 ccom100Error message (7/13)
Error message Description and countermeasure

invalid '%=' operands • The %= operation contains an error.
⇒ Check the expressions on the left and right sides of the

operator.
invalid ++ operands • The ++ unary operator or postfix operator contains an

error.
⇒ For the unary operator, check the right-side expression.

For the postfix operator, check the leftside expression.
invalid -- operands • The -- unary operation or postfix operation contains an

error.
⇒ For the unary operator, check the right-side expression.

For the postfix operator, check the leftside expression.
invalid -> used • The left-side expression of -> is not struct or union.

⇒ The left-side expression of -> must have struct or union.
invalid (? ;)'s condition • The ternary operator is erroneously written.

⇒ Check the ternary operator.
invalid array type • Incomplete arrays cannot be declared.

⇒ Specify the number of elements in the multidimensional
array.

invalid operation for pointer to
incomplete type

• Invalid calculation for the pointer to an incomplete type.
⇒ Define members of a structure or define complete structs.

Invalid #pragma OS Extended function
interrupt number

• The INT No. in #pragma OS Extended function is invalid.
⇒ Specify correctly.

Invalid #pragma INTCALL interrupt
number

• The INT No. in #pragma INTCALL is invalid.
⇒ Specify correctly.

Invalid #pragma SPECIAL special page
number (NC30, NC308 only)

• The number or format specification written with #pragma
SPECIAL is incorrect.

⇒ Specify the number or format correctly.
invalid, #pragma INTERRUPT vector
number

• The number or format specification written with #pragma
INTERRUPT is incorrect.

⇒ Specify the number or format correctly.
invalid CAST operand • The cast operation contains an error. The void type cannot

be cast to any other type; it can neither be cast from the
structure or union type nor can it be cast to the structure
or union type.

⇒ Write the expression correctly.
invalid asm()'s argument • The variables that can be used in asm statements are

only the auto variable and argument.
⇒ Use the auto variable or argument for the statement.

invalid bitfield declare • The bit-field declaration contains an error.
⇒ Write the declaration correctly.

invalid break statements • The break statement is put where it cannot be used.
⇒ Make sure that it is written in switch, while, dowhile, and

for.
invalid case statements • The switch statement contains an error.

⇒ Write the switch statement correctly.
invalid case value • The case value contains an error.

⇒ Write an integral-type or enumerated-type constant.
invalid cast operator • Use of the cast operator is illegal.

⇒ Write the expression correctly.

REJ10J2009-0200 Rev.2.00 2010.04.01
315

R32C/100 Series C Compiler Package V.1.02 F. Error Messages

Table F.14 ccom100Error message (8/13)
Error message Description and countermeasure

invalid continue statements • The continue statement is put where it cannot be used.
⇒ Use it in a while, do-while, and for block.

invalid default statements • The switch statement contains an error.
⇒ Write the switch statement correctly.

invalid enumerator initialized • The initial value of the enumerator is incorrectly specified
by writing a variable name, for example.

⇒ Write the initial value of the enumerator correctly.
invalid function argument • An argument which is not included in the argument list is

declared in argument definition in function definition.
⇒ Declare arguments which are included in the argument

list.
invalid function's argument declaration • The argument of the function is erroneously declared.

⇒ Write it correctly.
invalid function declare • The function definition contains an error.

⇒ Check the line in error or the immediately preceding
function definition.

invalid initializer • The initialization expression contains an error. This error
includes excessive parentheses, many initialize
expressions, a static variable in the function initialized by
an auto variable, or a variable initialized by another
variable.

⇒ Write the initialization expression correctly.
invalid initializer of variable-name • The initialization expression contains an error.This error

includes a bit-field initialize expression described with
variables, for example.

⇒ Write the initialization expression correctly.
invalid initializer on array • The initialization expression contains an error.

⇒ Check to see if the number of initialize expressions in the
parentheses matches the number of array elements and
the number of structure members.

invalid initializer on char array • The initialization expression contains an error.
⇒ Check to see if the number of initialize expressions in the

parentheses matches the number of array elements and
the number of structure members.

invalid initializer on scalar • The initialization expression contains an error.
⇒ Check to see if the number of initialize expressions in the

parentheses matches the number of array elements and
the number of structure members.

invalid initializer on struct • The initialization expression contains an error.
⇒ Check to see if the number of initialization expressions in

the parentheses matches the number of array elements
and the number of structure members.

invalid initializer, too many brace • Too many braces { } are used in a scalar-type initialization
expression of the auto storage class.

⇒ Reduce the number of braces { } used.
invalid lvalue • The left side of the assignment statement is not lvalue.

⇒ Write a substitutable expression on the left side of the
statement.

invalid lvalue at '=' operator • The left side of the assignment statement is not lvalue.
⇒ Write a substitutable expression on the left side of the

statement.

REJ10J2009-0200 Rev.2.00 2010.04.01
316

R32C/100 Series C Compiler Package V.1.02 F. Error Messages

Table F.15 ccom100Error message (9/13)
Error message Description and countermeasure

invalid member • The member reference contains an error.
⇒ Write correctly.

invalid member used • The member reference contains an error.
⇒ Write correctly.

invalid redefined type name of
(identifier)

• The same identifier is defined more than once in typedef.
⇒ Write the identifier correctly.

invalid return type • The type of return value of the function is incorrect.
⇒ Write it correctly.

invalid sign specifier • Specifiers signed/unsigned are described twice or more.
⇒ Write the type specifier correctly.

invalid storage class for data • The storage class is erroneously specified.
⇒ Write it correctly.

invalid struct or union type • Structure or union members are referenced for the
enumerated type of data.

⇒ Write it correctly.
invalid truth expression • The void, struct, or union type is used in the first

expression of a condition expression (?:).
⇒ Use scalar type to write this expression.

invalid type specifier • The same type specifier is described twice or more as in
"int int i;" or an incompatible type specifier is described as
in "float int i;."

⇒ Write the type specifier correctly.
invalid type's bitfield • A bit-field of an invalid type is declared.

⇒ Use the integer type for bit-fields.
invalid type specifier,long long long • Specifiers “long” are described thrice or more.

⇒ Check the type.
invalid unary '!' operands • Use of the ! unary operator is illegal.

⇒ Check the right-side expression of the operator.
invalid unary '+' operands • Use of the + unary operator is illegal.

⇒ Check the right-side expression of the operator.
invalid unary '-' operands • Use of the - unary operator is illegal.

⇒ Check the right-side expression of the operator.
invalid unary '~' operands • Use of the ~ unary operator is illegal.

⇒ Check the right-side expression of the operator.
invalid void type • The void type specifier is used with long or singed.

⇒ Write the type specifier correctly.
invalid void type, int assumed • The void-type variable cannot be declared. Processing will

be continued by assuming it to be the int type.
⇒ Write the type specifier correctly.

invalid size of bitfield • Get the bitfield size.
⇒ Not write bitfield on this decraration.

invalid switch statement • The switch statement is illegal.
⇒ Write it correctly.

label label redefine • The same label is defined twice within one function.
⇒ Change the name for either of the two labels.

long long type's bitfield • Specifies bitfield by long long type
⇒ Can not specifies bit-fields of long long type.

mismatch prototyped parameter type • The argument type is not the type declared in prototype
declaration.

⇒ Check the argument type.

REJ10J2009-0200 Rev.2.00 2010.04.01
317

R32C/100 Series C Compiler Package V.1.02 F. Error Messages

Table F.16 ccom100Error message (10/13)
Error message Description and countermeasure

No #pragma ENDASM • #pragma ASM does not have matching #pragma
ENDASM.

⇒ Write #pragma ENDASM.
No declarator • The declaration statement is incomplete.

⇒ Write a complete declaration statement.
Not enough memory • The memory area is insufficient.

⇒ Increase the memory or the swap area.
not have 'long char' • Type specifiers long and char are simultaneously used.

⇒ Write the type specifier correctly.
not have 'long float' • Type specifiers long and float are simultaneously used.

⇒ Write the type specifier correctly.
not have 'long short' • Type specifiers long and short are simultaneously used.

⇒ Write the type specifier correctly.
not static initializer for variable-name • The initialize expression of static variable contains an

error. This is because the initialize expression is a function
call, for example.

⇒ Write the initialize expression correctly.
not struct or union type • The left-side expression of -> is not the structure or union

type.
⇒ Use the structure or union type to describe the left-side

expression of ->.
redeclare of variable-name • An variable-name has been declared twice.

⇒ Change the name for either of the two variable name.
redeclare of enumerator • An enumerator has been declared twice.

⇒ Change the name for either of the two enumerators.
redefine function function-name • The function indicated by function-name is defined twice.

⇒ The function can be defined only once. Change the name
for either of the two functions.

redefinition tag of enum tag-name • An enumeration is defined twice.
⇒ Make sure that enumeration is defined only once.

redefinition tag of struct tag-name • A structure is defined twice.
⇒ Make sure that a structure is defined only once.

redefinition tag of union tag-name • A union is defined twice.
⇒ Make sure that a union is defined only once.

reinitialized of variable-name • An initialize expression is specified twice for the same
variable.

⇒ Specify the initializer only once.
restrict is duplicate • A restrict is defined twice.

⇒ Make sure that a restrict is defined only once.
size of incomplete array type • An attempt is made to find sizeof of an array of unknown

size. This is an invalid size.
⇒ Specify the size of the array.

size of incomplete type • An undefined structure or union is used in the operand of
the sizeof operator.

⇒ Define the structure or union first.
• The number of elements of an array defined as an

operand of the sizeof operator is unknown.
⇒ Define the structure or union first.

REJ10J2009-0200 Rev.2.00 2010.04.01
318

R32C/100 Series C Compiler Package V.1.02 F. Error Messages

Table F.17 ccom100Error message (11/13)
Error message Description and countermeasure

size of void • An attempt is made to find the size of void. This is an
invalid size.

⇒ The size of void cannot be found.
Sorry, stack frame memory exhaust,
max. 128 bytes but now nnn bytes

• A maximum of 128 bytes of parameters can be secured on
the stack frame. Currently, nnn bytes have been used.

⇒ Reduce the size or number of parameters.
Sorry, compilation terminated because of
these errors in function-name.

• An error occurred in some function indicated by
function-name. Compilation is terminated.

⇒ Correct the errors detected before this message is output.
Sorry, compilation terminated because of
too many errors.

• Errors in the source file exceeded the upper limit (50
errors).

⇒ Correct the errors detected before this message is output.
struct or enum's tag used for union • The tag name for structure and enumerated type is used

as a tag name for union.
⇒ Change the tag name.

struct or union's tag used for enum • The tag name for structure and union is used as a tag
name for enumerated type.

⇒ Change the tag name.
struct or union,enum does not have long
or sign

• Type specifiers long or signed are used for the
struct/union/enum type specifiers.

⇒ Write the type specifier correctly.
switch's condition is floating • The float type is used for the expression of a switch

statement.
⇒ Use the integer type or enumerated type.

switch's condition is void • The void type is used for the expression of a switch
statement.

⇒ Use the integer type or enumerated type.
switch's condition must integer • Invalid types other than the integer and enumerated

types are used for the expression of a switch statement.
⇒ Use the integer type or enumerated type.

syntax error • This is a syntax error.
⇒ Write the description correctly.

System Error • It does not normally occur. (This is an internal error.)This
error may occur pursuant to one of errors that occurred
before it.

⇒ If this error occurs even after eliminating all errors that
occurred before it, please send the content of the error
message to Renesas Solutions Corp. as you contact.

too big data-length • An attempt is made to get an address exceeding the 32-bit
range.

⇒ Make sure the set values are within the address range of
the microcomputer used.

too big address • An attempt is made to set an address exceeding the 32-bit
range.

⇒ Make sure the set values are within the address range of
the microcomputer used.

too many storage class of typedef • Storage class specifiers such as extern/typedef/
static/auto/register are described more than twice in
declaration.

⇒ Do not describe a storage class specifier more than twice.

REJ10J2009-0200 Rev.2.00 2010.04.01
319

R32C/100 Series C Compiler Package V.1.02 F. Error Messages

Table F.18 ccom100Error message (12/13)
Error message Description and countermeasure

type redeclaration of variable-name • The variable is defined with different types each time.
⇒ Always use the same type when declaring a variable

twice.
typedef initialized • An initialize expression is described in the variable

declared with typedef.
⇒ Delete the initialize expression.

uncomplete array pointer operation • An incomplete multidimensional array has been accessed
to pointer.

⇒ Specify the size of the multidimensional array.
undefined label "label" used • The jump-address label for goto is not defined in the

function.
⇒ Define the jump-address label in the function.

union or enum's tag used for struct • The tag name for union and enumerated types is used as
a tag name for structure.

⇒ Change the tag name.
unknown function argument variable-
name

• An argument is specified that is not included in the
argument list.

⇒ Check the argument.
unknown member "member-name"
used

• A member is referenced that is not registered as any
structure or union members.

⇒ Check the member name.
unknown pointer to structure
identifier"variable-name"

• The left-side expression of -> is not the structure or union
type.

⇒ Use struct or union as the left-side expression of ->.
unknown size of struct or union • A structure or union is used which has had its size not

determined.
⇒ Declare the structure or union before declaring a

structure or union variable.
unknown structure identifier "variable-
name"

• The left-side expression of "." dose not have struct or
union.

⇒ Use the struct or union as it.
unknown variable "variable-name"
used in asm()

• An undefined variable name is used in the asm
statement.

⇒ Define the variable.
unknown variable variable-name • An undefined variable name is used.

⇒ Define the variable.
unknown variable variable-name
used

• An undefined variable name is used.
⇒ Define the variable.

void array is invalid type, int array
assumed

• An array cannot be declared as void. Processing will be
continued, assuming it has type int.

⇒ Write the type specifier correctly.
void value can't return • The value converted to void (by cast) is used as the return

from a function.
⇒ Write correctly.

while(struct/union) statement • struct or union is used in the expression of a while
statement.

⇒ Use scalar type.
while(void) statement • void is used in the expression of a while statement.

⇒ Use scalar type.

REJ10J2009-0200 Rev.2.00 2010.04.01
320

R32C/100 Series C Compiler Package V.1.02 F. Error Messages

Table F.19 ccom100Error message (13/13)
Error message Description and countermeasure

multiple #pragma EXT4MPTR'spointer,
ignored (NC30 only)

• A pointer variable decleared by #pragma EXT4MPTR is
duplecate.

⇒ Declare the variable only one time.
zero size array member • the array which size is zero.

⇒ Declare the array size.
• The structure members include an array whose size is

zero.
⇒ Arrays whose size is zero cannot be members of a

structure.
‘function-name’ is resursion, then inline
is ignored

• The inline-declared 'function name' is called recursively.
The inline declaration will be ignored.

⇒ Correct the statement not to call such a function name
recursively.

REJ10J2009-0200 Rev.2.00 2010.04.01
321

R32C/100 Series C Compiler Package V.1.02 F. Error Messages

F.6 cccom100 Warning Messages

Table F.20 to Table F.28 list the ccom100 compiler warning messages and their countermeasures.

Table F.20 ccom100 Warning Messages (1/9)
Warning message Description and countermeasure

#pragma pragma-name & HANDLER
both specified

• Both #pragma pragma-name and #pragma HANDLER
are specified in one function.

⇒ Specify #pragma pragma-name and #pragma HANDLER
exclusive to each other.

#pragma pragma-name & INTERRUPT
both specified

• Both #pragma pragma-name and #pragma INTERRUPT
are specified in one function.

⇒ Specify #pragma pragma-name and #pragma INTERRUPT
exclusive to each other.

#pragma pragma-name & TASK both
specified

• Both #pragma pragma-name and #pragma TASK are
specified in one function.

⇒ Specify #pragma pragma-name and #pragma TASK
exclusive to each other.

#pragma pragma-name format error • The #pragma pragma-name is erroneously written.
Processing will be continued.

⇒ Write it correctly.
#pragma pragma-name format error,
ignored

• The #pragma pragma-name is erroneously written.
This line will be ignored.

⇒ Write it correctly.
#pragma pragma-name not function,
ignored

• A name is written in the #pragma pragma-name that is
not a function.

⇒ Write it with a function name.
#pragma pragma-name's function must
be predeclared, ignored

• A function specified in the #pragma pragma-name is not
declared.

⇒ For functions specified in a #pragma pragmaname, write
prototype declaration in advance.

#pragma pragma-name's function must
be prototyped, ignored

• A function specified in the #pragma pragma-name is not
prototype declared.

⇒ For functions specified in a #pragma pragmaname, write
prototype declaration in advance.

#pragma pragma-name's function
return type invalid,ignored

• The type of return value for a function specified in the
#pragma pragma-name is invalid.

⇒ Make sure the type of return value is any type other than
struct, union, or double.

#pragma pragma-name unknown
switch,ignored

• The switch specified in the #pragma pragma-name is
invalid.

⇒ Write it correctly.
#pragma pragma-name variable
initialized, initialization ignored

• The variable specified in #pragma pragma-name is
initialized. The specification of #pragma pragma-name
will be nullified.

⇒ Delete either #pragma pragma-name or the initialize
expression.

#pragma ASM line too long, then cut • The line in which #pragma ASM is written exceeds the
allowable number of characters = 1,024 bytes.

⇒ Write it within 1,024 bytes.

REJ10J2009-0200 Rev.2.00 2010.04.01
322

R32C/100 Series C Compiler Package V.1.02 F. Error Messages

Table F.21 ccom100 Warning Messages (2/9)
Warning message Description and countermeasure

#pragma directive conflict • #pragma of different functions is specified for one
function.

⇒ Write it correctly.
#pragma DMAC duplicate • The same #pragma DMAC is defined twice.

⇒ Write it correctly.
#pragma DMAC variable must be far
pointer to object for variable name,
ignored

• The #pragma DMAC-declared variable must be a far
pointer to an object (or incomplete) type. The DMAC
declaration was ignored.

⇒ Define #pragma DMAC correctly.
#pragma DMAC variable must be
unsigned long for variable name,
ignored

• The #pragma DMAC-declared variable must be of an
unsigned long type. The DMAC declaration was ignored.

⇒ Define #pragma DMAC correctly.
#pragma DMAC’s variable must be
pre-declared, ignored

• Variable declared by #pragma DMAC needs a type
declaration.

⇒ Write it correctly.
#pragma DMAC, register conflict • Multiple variables are allocated to the same register.

⇒ Write it correctly.
#pragma DMAC, unknown register
name used

• Unknown register is used in #pragma DMAC declaration.
⇒ Write it correctly.

#pragma JSRA illegal location, ignored • Do not put #pragma JSRA inside function scope.
⇒ Write #pragma JSRA outside a function.

#pragma JSRW illegal location, ignored • Do not put #pragma JSRW inside function scope.
⇒ Write #pragma JSRA outside a function.

#pragma PARAMETER function's address
used

• The address of the function specified by #pragma
PARAMETER is referenced.

⇒ Do not reference that address.
#pragma control for function duplicate,
ignored

• Two or more of INTERRUPT, TASK, HANDLER,
CYCHANDLER, or ALMHANDLER are specified for the
same function in #pragma.

⇒ Be sure to specify only one of INTERRUPT, T A S K , H A
N D L E R , C Y C H A N D L E R , o r ALMHANDLER.

#pragma unknown switch, ignored • Invalid switch is specified to #pragma.#pragma
declaration is ignored.

⇒ Write switch correctly.
'auto' is illegal storage class • An incorrect storage class is used.

⇒ Specify the correct storage class.
'register' is illegal storage class • An incorrect storage class is used.

⇒ Specify the correct storage class.
argument is define by 'typedef', 'typedef'
ignored

• Specifier typedef is used in argument declaration.
Specifier typedef will be ignored.

⇒ Delete typedef.
assign far pointer to near pointer, bank
value ignored

• The bank address will be nullified when substituting the
far pointer for the near pointer.

⇒ Check the data types, near or far.
assignment from const pointer to
non-const pointer

• The const property is lost by assignment from const
pointer to non-const pointer.

⇒ Check the statement description. If the description is
correct, ignore this warning.

REJ10J2009-0200 Rev.2.00 2010.04.01
323

R32C/100 Series C Compiler Package V.1.02 F. Error Messages

Table F.22 ccom100 Warning Messages (3/9)
Warning message Description and countermeasure

assignment from volatile pointer to
non-volatile pointer

• The volatile property is lost by assignment from volatile
pointer to non-volatile pointer.

⇒ Check the statement description. If the description is
correct, ignore this warning.

assignment in comparison statement • You put an assignment expression in a comparison
statement.

⇒ You may confuse "==" with '='. Check on it.
block level extern variable initialize
forbid,ignored

• An initializer is written in extern variable declaration in a
function.

⇒ Delete the initializer or change the storage class.
can't get address from register storage
class variable

• The & operator is written for a variable of the storage
class register.

⇒ Do not use the & operator to describe a variable of the
storage class register.

can't get size of bitfield • The bit-field is used for the operand of the sizeof operator.
⇒ Write the operand correctly.

can't get size of function • A function name is used for the operand of the sizeof
operator.

⇒ Write the operand correctly.
can't get size of function, unit size 1
assumed

• The pointer to the function is incremented (++) or
decremented (--). Processing will be continued by
assuming the increment or decrement value is 1.

⇒ Do not increment (++) or decrement (--) the pointer to a
function.

char array initialized by wchar_t string • The array of type char is initialized with type wchar_t .
⇒ Make sure that the types of initializer are matched.

case value is out of range • The value of case exceeds the switch parameter range.
⇒ Specify correctly.

character buffer overflow • The size of the string exceeded 512 characters.
⇒ Do not use more than 511 characters for a string.

character constant too long • There are too many characters in a character constant
(characters enclosed with single quotes).

⇒ Write it correctly.
constant variable assignment • In this assign statement, substitution is made for a

variable specified by the const qualifier.
⇒ Check the declaration part to be substituted for.

cyclic or alarm handler function has
argument

• The function specified by #pragma CYCHANDLER or
ALMHANDLER is using an argument.

⇒ The function cannot use an argument. Delete the
argument.

enumerator value overflow size of
unsigned char

• The enumerator value exceeded 255.
⇒ Do not use more than 255 for the enumerator; otherwise,

do not specify the startup function - fchar_enumerator.
enumerator value overflow size of
unsigned int

• The enumerator value exceeded 65535.
⇒ Do not use more than 65535 to describe the enumerator.

enum's bitfield • An enumeration is used as a bit field member.
⇒ Use a different type of member.

external variable initialized,change to
public

• An initialization expression is specified for an
extern-declared variable. extern will be ignored.

⇒ Delete extern.

REJ10J2009-0200 Rev.2.00 2010.04.01
324

R32C/100 Series C Compiler Package V.1.02 F. Error Messages

Table F.23 ccom100 Warning Messages (4/9)
Warning message Description and countermeasure

far pointer (implicitly) casted by near
pointer

• The far pointer was converted into the near pointer.
⇒ Check the data types, near or far.

function must be far • The function is declared with the near type.
⇒ Write it correctly.

function function-name has no-used
argument (variable-name)

• The variable declared in the argument to the function is
not used.

⇒ Check the variables used.
handler function called • The function specified by #pragma HANDLER is called.

⇒ Be careful not to call a handler.
handler function can't return value • The function specified by #pragma HANDLER is using a

returned value.
⇒ The function specified by #pragma HANDLER cannot

use a returned value. Delete the return value.
handler function has argument • The function specified by #pragma HANDLER is using

an argument.
⇒ The function specified by #pragma HANDLER cannot

use an argument. Delete the argument.
hex character is out of range • The hex character in a character constant is excessively

long. Also, some character that is not a hex representation
is included after \.

⇒ Reduce the length of the hex character.
identifier (member-name) is duplicated,
this declare ignored

• The member name is defined twice or more. This
declaration will be ignored.

⇒ Make sure that member names are declared only once.
identifier (variable-name) is duplicated • The variable name is defined twice or more. This

declaration will be ignored.
⇒ Make sure that variable names are declared only once.

identifier (variable-name) is shadowed • The auto variable which is the same as the name declared
as an argument is used.

⇒ Use any name not in use for arguments.
illegal storage class for argument,
'extern' ignore

• An invalid storage class is used in the argument list of
function definition.

⇒ Specify the correct storage class.
incomplete array access • An incomplete multidimensional array has been accessed.

⇒ Specify the size of the multidimensional array.
incompatible pointer types • The object type pointed to by the pointer is incorrect.

⇒ Check the pointer type.
incomplete return type • An attempt is made to reference an return variable of

incomplete type.
⇒ Check return variable.

incomplete struct member • An attempt is made to reference an struct member of
incomplete .

⇒ Define complete structs or unions first.
init elements overflow,ignored • The initialization expression exceeded the size of the

variable to be initialized.
⇒ Make sure that the number of initialize expressions does

not exceed the size of the variables to be initialized.
inline function is called as normal
function before, change to static function

• The function declared in storage class inline is called as
an ordinary function.

⇒ Always be sure to define an inline function before using it.

REJ10J2009-0200 Rev.2.00 2010.04.01
325

R32C/100 Series C Compiler Package V.1.02 F. Error Messages

Table F.24 ccom100 Warning Messages (5/9)
Warning message Description and countermeasure

integer constant is out of range • The value of the integer constant exceeded the value that
can be expressed by unsigned long.

⇒ Use a value that can be expressed by unsigned long to
describe the constant.

interrupt function called • The function specified by #pragma INTERRUPT is called.
⇒ Be careful not to call an interrupt handling function.

interrupt function can't return value • The interrupt handling function specified by #pragma
INTERRUPT is using a return value.

⇒ Return values cannot be used in an interrupt function.
Delete the return value.

interrupt function has argument • The interrupt handling function specified by #pragma
INTERRUPT is using an argument.

⇒ Arguments cannot be used in an interrupt function.
Delete the argument.

invalid #pragma EQU • The description of #pragma EQU contains an error. This
line will be ignored.

⇒ Write the description correctly.
invalid #pragma SECTION, unknown
section base name

• The section name in #pragma SECTION contains an
error. The section names that can be specified are data,
bss, program, rom, interrupt, and bas. This line will be
ignored.

⇒ Write the description correctly.
invalid #pragma operand, ignored • An operand of #pragma contains an error. This line will

be ignored.
⇒ Write the description correctly.

invalid function argument ⇒ The function argument is not correctly written.
• Write the function argument correctly.

invalid return type • The expression of the return statement does not match
the type of the function.

⇒ Make sure that the return value is matched to the type of
the function or that the type of the function is matched to
the return value.

invalid storage class for function, change
to extern

• An invalid storage class is used in function declaration. It
will be handled as extern when processed.

⇒ Change the storage class to extern.
Kanji in #pragma ADDRESS • The line of #pragma ADDRESS contains kanji code. This

line will be ignored.
⇒ Do not use kanji code in this declaration.

Kanji in #pragma BITADDRESS • The line of #pragma BITADDRESS contains kanji code.
This line will be ignored.

⇒ Do not use kanji code in this declaration.
keyword (keyword) are reserved for
future

• A reversed keyword is used.
⇒ Change it to a different name.

large type was implicitly cast to small
type

• The upper bytes (word) of the value may be lost by
assignment from large type to a smaller type.

⇒ Check the type. If the description is correct, ignore this
warning.

mismatch prototyped parameter type • The argument type is not the type declared in prototype
declaration.

⇒ Check the argument type.

REJ10J2009-0200 Rev.2.00 2010.04.01
326

R32C/100 Series C Compiler Package V.1.02 F. Error Messages

Table F.25 ccom100 Warning Messages (6/9)
Warning message Description and countermeasure

meaningless statements deleted in
optimize phase

• Meaningless statements were deleted during
optimization.

⇒ Delete meaningless statements.
meaningless statement • The tail of a statement is "==".

⇒ You may confuse "=" with '=='. Check on it.
mismatch function pointer assignment • The address of a function having a register argument is

substituted for a pointer to a function that does not have a
register argument (i.e., a nonprototyped function).

⇒ Change the declaration of a pointer variable for function
to a prototype declaration.

multi-character character constant • A character constant consisting of two characters or more
is used.

⇒ Use a wide character (L'xx') when two or more characters
are required.

near/far is conflict beyond over typedef • The type defined by specifying near/far is again defined by
specifying near/far when referencing it.

⇒ Write the type specifier correctly.
No hex digit • The hex constant contains some character that cannot be

used in hex notation.
⇒ Use numerals 0 to 9 and alphabets A to F and a to f to

describe hex constants.
No initialized of variable-name • It is probable that the register variables are used without

being initialized.
⇒ Make sure the register variables are assigned the

appropriate value.
No storage class & data type in declare,
global storage class & int type assumed

• The variable is declared without storage-class and type
specifiers. It will be handled as int when processed.

⇒ Write the storage-class and type specifiers.
non-initialized variable “variable-name”
is used

• It is probable that uninitialized variables are being
referenced.

⇒ Check the statement description. This warning can occur
in the last line of the function. In such a case, check the
description of the auto variables, etc. in the function. If the
description is correct, ignore this warning.

non-prototyped function used • A function is called that is not declared of the prototype.
This message is output only when you specified the
Wnon_prototype option.

⇒ Write prototype declaration. Or delete the option
“- Wnon_prototype”.

non-prototyped function declared • A prototype declaration for the defined function cannot be
found. (Displayed only when the - WNP option is
specified.)

⇒ Write a prototype declaration.
octal constant is out of range • The octal constant contains some character that cannot be

used in octal notation.
⇒ Use numerals 0 to 7 to describe octal constants.

octal_character is out of range • The octal constant contains some character that cannot be
used in octal notation.

⇒ Use numerals 0 to 7 to describe octal constants.
overflow in floating value converting to
integer

• A very large floating-point number that cannot be stored
in integer type is being assigned to the integer type.

⇒ Reexamine the assignment expression.

REJ10J2009-0200 Rev.2.00 2010.04.01
327

R32C/100 Series C Compiler Package V.1.02 F. Error Messages

Table F.26 com100 Warning Messages (7/9)
Warning message Description and countermeasure

old style function declaration • The function definition is written in format prior to ANSI
(ISO) C.

⇒ Write the function definition in ANSI (ISO) format.
prototype function is defined as
non-prototype function before.

• The non-prototyped function is redefine prototype-
declaration.

⇒ Unite ways to declare function type.
redefined type • Redwfine typedef.

⇒ Check typedef.
redefined type name of (qualify) • The same identifier is defined twice or more in typedef.

⇒ Write identifier correctly.
register parameter function used before
as stack parameter function

• The function for register argument is used as a function
for stack argument before.

⇒ Write a prototype declaration before using the function.
RESTRICT qualifier can set only
pointer type.

• The RESTRICT qualifier is declared outside a pointer.
⇒ Declare it in only a pointer.

section name 'interrupt' no more used • The section name specified by "pragma SECTION uses
'interrupt'.

⇒ A section name 'interrupt' cannot be used. Change it to
another.

size of incomplete type • An undefined structure or union is used in the operand of
the size of operator.

⇒ Define the structure or union first.
• The number of elements of an array defined as an

operand of the size of operator is unknown.
⇒ Define the structure or union first.

size of incomplete array type

• An attempt is made to find size of of an array of unknown
size. This is an invalid size.

⇒ Specify the size of the array.
size of void • An attempt is made to find the size of void. This is an

invalid size.
⇒ The size of void cannot be found.

standard library ”function-name()”
need “include-file name”

• This standard library function is used without its header
file included.

⇒ Be sure to include the header file.
static variable in inline function • static data is declared within a function that is declared in

storage class inline.
⇒ Do not declare static data in an inline function.

string size bigger than array size • The size of the initialize expression is greater than that of
the variable to be initialized.

⇒ Make sure that the size of the initialize expression is
equal to or smaller than the variable.

string terminator not added • Since the variable to be initialized and the size of the
initialize expression are equal, '\0' cannot be affixed to the
character string.

⇒ Increase a element number of array.
struct (or union) member's address can't
has no near far information

• near or far is used as arrangement position information of
members (variables) of a struct (or union).

⇒ Do not specify near and far for members.

REJ10J2009-0200 Rev.2.00 2010.04.01
328

R32C/100 Series C Compiler Package V.1.02 F. Error Messages

Table F.27 ccom100 Warning Messages (8/9)
Warning message Description and countermeasure

task function called • The function specified by #pragma TASK is called.
⇒ Be careful not to call a task function.

task function can't return value • The function specified by #pragma TASK is using a
return value.

⇒ The function specified by #pragma TASK cannot use
return values. Delete the return value.

task function has invalid argument • The function specified with #pragma TASK uses
arguments.

⇒ Any function specified with #pragma TASK cannot use
arguments. Delete the arguments.

this comparison is always false • Comparison is made that always results in false.
⇒ Check the conditional expression.

this comparison is always true • Comparison is made that always results in true.
⇒ Check the conditional expression.

this feature not supported now, ignored • This is a syntax error. Do not this syntax because t is
reserved for extended use in the future.

⇒ Write the description correctly.
this function used before with non-default
argument

• A function once used is declared as a function hat has a
default argument.

⇒ Declare the default argument before using a unction.
this interrupt function is called as
normal function before

• A function once used is declared in #pragma NTERRUPT.
⇒ An interrupt function cannot be called. Check the ontent

of #pragma.
too big octal character • The character constant or the octal constant in he

character string exceeded the limit value (255 n decimal).
⇒ Do not use a value greater than 255 to describe he

constant.
too few parameters • Arguments are insufficient compared to the number f

arguments declared in prototype declaration.
⇒ Check the number of arguments.

too many parameters • Arguments are excessive compared to the number f
arguments declared in prototype declaration.

⇒ Check the number of arguments.
unknown #pragma STRUCT xxx • #pragma STRUCTxxx cannot be processed. his line will

be ignored.
⇒ Write correctly.

Unknown debug option (-dx) • The option -dx cannot be specified.
⇒ Specify the option correctly.

Unknown function option (-Wxxx) • The option -Wxxx cannot be specified.
⇒ Specify the option correctly.

Unknown function option (-fx) • The option -fx cannot be specified.
⇒ Specify the option correctly.

Unknown function option (-gx) • The option -gx cannot be specified.
⇒ Specify the option correctly.

Unknown optimize option (-mx) • The option -mx cannot be specified.
⇒ Specify the option correctly.

Unknown optimize option (-Ox) • The option -Ox cannot be specified.
⇒ Specify the option correctly.

Unknown option (-x) • The option -x cannot be specified.
⇒ Specify the option correctly.

REJ10J2009-0200 Rev.2.00 2010.04.01
329

R32C/100 Series C Compiler Package V.1.02 F. Error Messages

Table F.28 ccom100 Warning Messages (9/9)
Warning message Description and countermeasure

unknown pragma pragma-specification
used

• Unsupported #pragma is written.
⇒ Check the content of #pragma.

*This warning is displayed only when the
Wunknown_pragma (-WUP) option is specified.

wchar_t array initialized by char string • The initialize expression of the wchar_t type is nitialized
by a character string of the char type.

⇒ Make sure that the types of the initialize expression re
matched.

zero divide in constant folding • The divisor in the divide operator or remainder alculation
operator is 0.

⇒ Use any value other than 0 for the divisor.
zero divide, ignored • The divisor in the divide operator or remainder alculation

operator is 0.
⇒ Use any value other than 0 for the divisor.

zero width for bitfield • The bit-field width is 0.
⇒ Write a bit-field equal to or greater than 1.

no const in previous declaretion • The function or variable declaration without const
qualification is const-qualified on the entity definition side.

⇒ Make sure the function or variable declaration and the
const qualification on the entity definition side are
matched.

xxx was declared but never referenced • There is a declaration that is not referenced.
⇒ Delete the declaration.

REJ10J2009-0200 Rev.2.00 2010.04.01
330

R32C/100 Series C Compiler Package V.1.02 G. Using gensni or the Stack information File Creation Tool for Call Walker

Appendix G Using gensni or the stack information File Creation Tool for Call Walker

Before Call Walker or the stack analysis tool of the High-performance Embedded Workshop can be used, you must
have stack information files (extension .sni) as the input files for it.
You use gensni or the stack information file creation tool for Call Walker to create these stack information files from
the absolute module file.

G.1 Starting Call Walker

To start Call Walker, select “Call Walker” that is registered to the High-performance Embedded Workshop or select
the tool from the Tools menu of the High-performance Embedded Workshop.
After starting Call Walker, choose Import Stack File from the File menu and select a stack information file as the
input file for Call Walker.

G.2 Outline of gensni

G.2.1 Processing Outline of gensni

gensni is the tool to create .sni files for Call Walker.
gensni generates a stack information file (extension .sni) by processing the absolute module file (extension .x30).
Before gensni can be used, there must be an absolute module file (extension .x30) available. Specify the compile
option “-finfo” during compilation to generate that file.
The processing flow of NC100 is shown in Figure G.1

REJ10J2009-0200 Rev.2.00 2010.04.01
331

R32C/100 Series C Compiler Package V.1.02 G. Using gensni or the Stack information File Creation Tool for Call Walker

Inline generator
Preprocessor

nc100 Command option

Software : Indicates the software included in the NC100

: Files output by NC100 and gensni

Absolute module
file

Stack information
file

Stack information

analysis utility gensni

Specify the nc100
startup option “-finfo”
to generate this file.

Assembly
language
source file

C language
source file

nc100
Compile driver

igen100

ccom100 Compiler

-finfo

Linker

ln100

Relocatabale
file

Assembler

as100

aopt100 Assembler optimizer

cpp100

Figure G.1 Processing flow of NC100

REJ10J2009-0200 Rev.2.00 2010.04.01
332

R32C/100 Series C Compiler Package V.1.02 G. Using gensni or the Stack information File Creation Tool for Call Walker

G.3 Starting gensni

If Call Walker is started from the High-performance Embedded Workshop, gensni is automatically executed.
However, if Call Walker is started from other than the High-performance Embedded Workshop, gensni is not
automatically executed. In this case, start gensni from the Windows command prompt.

G.3.1 Input format

To start gensni, specify an input file name and startup option according to the input format shown below.

% gensni [Command option] Absolute module file(extension.x30)

% : Denotes the prompt
< > : Denotes the essential items.
[] : Denotes the items that need to be written when necessary.

 : Denotes a space.
When writing multiple startup options, separate each with a space.

Figure G.2 gensni command input format

To use gensni, specify both of the following in the startup options of this compiler
 Inspector information output -finfo option
 Debug information output -g option

to generate absolute module files (extension “.x30”).
An input example is shown below. In the input example here, the following option is specified in gensni.

 Information output to a specified file -o option
(By default, the information is output to a file named after the input file by changing the file extension from “.x30”
to “.sni.”

Generate an absolute module file :

%nc100 –g –finfo ncrt0.a30 sample.c<RET>
R32C/100 Series C Compiler V.X.XX Release XX
Copyright(C) XXXX(XXXX-XXXX). Renesas Electronics Corp.
and Renesas Solutions Corp., All rights reserved.
ncrt0.a30
sample.c

%

Generate stack information file:

%gensni -o sample ncrt0.x30<RET>

sample.sni is created.

%

<RET> : The input of the return key is shown.

Figure G.3 gensni command input example

REJ10J2009-0200 Rev.2.00 2010.04.01
333

R32C/100 Series C Compiler Package V.1.02 G. Using gensni or the Stack information File Creation Tool for Call Walker

G.3.2 Option References

The startup options of gensni are listed in Table G.1.

Table G.1 gensni Command option
Option short form function
-o file name None Specify a stack information file name.

 If this option is not specified, the stack information file is
named after the input file by changing its file extension
to “.sni.”

 If an extension is specified .sni file name, the specified
extension is changed to “.sni.”
If no extensions are specified, the extension “.sni” is
assumed.

-V None Shows the startup message of gensni and terminates
processing without performing anything.
No stack information files are generated.

-o Stack information file

Specify a stack information file name

Function: If this option is not specified, the stack information file is named after the input file

by changing its file extension to “.sni.”
 If an extension is specified the stack information file name, the specified extension

is changed to “.sni.” If no extensions are specified, the extension “.sni” is assumed.

Description: Use of this option permits you to change the stack information file name as necessary.

The extension can also be changed.

-V

Terminate processing after showing the startup message of gensni

Function: Shows the startup message of gensni and terminates processing without performing

anything.
 No stack information files are generated.

REJ10J2009-0200 Rev.2.00 2010.04.01
334

R32C/100 Series C Compiler Package V.1.02 G. Using gensni or the Stack information File Creation Tool for Call Walker

G.4 Error Messages of gensni

G.4.1 Error Messages
Table G.2 lists the error messages output by gensni along with the contents of errors and the corrective actions to
be taken.

Table G.2 List of Error Messages of gensni
Error Messages Content of Error and Corrective Action
usage: gensni [-V][-o out_file] in_file • The input format is incorrect.

⇒ Specify a correct input format.
Can’t open file: XXX • The absolute module file cannot be opened.

⇒ Check whether the file exists and the file attribute.
Can’t create file: XXX • The stack information file cannot be created.

⇒ Check the file and folder attributes.
Check the free disk space available.

Illegal file format: XXX • The content of the absolute module file is incorrect. No
stack information file can be created.

⇒ Check whether the absolute module file is the one that
you created with NC100.
Also check whether -finfo and -g are specified in the
compiler options.

Not enough memory • Memory could not be allocated for gensni.
⇒ Check the available memory size of your PC.

R32C/100 Series C Compiler Package V.1.02
C Compiler User’s Manual

Publication Date: Apr. 1, 2010 Rev.2.00

Published by:
Renesas Electronics Corporation
1753, Shimonumabe, Nakahara-ku, Kawasaki-shi,
Kanagawa 211-8668 Japan

Edited by: Renesas Solutions Corp.

© 2010 Renesas Electronics Corporation, All rights reserved. Printed in Japan.

REJ10J2009-0200

R32C/100 Series
C Compiler Package V.1.02

C Compiler User’s Manual

	R32C/100 Series C Compiler Package V.1.02 C Compiler User's Manual
	Notice
	Preface
	Contents
	Chapter1 Introduction to NC100
	1.1 NC100 Components
	1.2 NC100 Processing Flow
	1.2.1 nc100
	1.2.2 igen100
	1.2.3 cpp100
	1.2.4 ccom100
	1.2.5 aopt100
	1.2.6 Call Walker & gensni
	1.2.7 MapViewer

	1.3 Notes
	1.3.1 Notes about Version-up of compiler
	1.3.2 Notes about the R32C's Type Dependent Part

	1.4 Example Program Development
	1.5 NC100 Output Files
	1.5.1 Introduction to Output Files
	1.5.2 Preprocessed C Source Files
	1.5.3 Assembly Language Source Files

	Chapter2 Basic Method for Using the Compiler
	2.1 Starting Up the Compiler
	2.1.1 nc100 Command Format
	2.1.2 Command File
	2.1.3 Notes on NC100 Command Line Options
	2.1.4 nc100 Command Line Options

	2.2 Preparing the Startup Program
	2.2.1 Sample of Startup Program
	2.2.2 Customizing the Startup Program
	2.2.3 Customizing for NC100 Memory Mapping

	Chapter3 Programming Technique
	3.1 Notes
	3.1.1 Notes about Version-up of compiler
	3.1.2 Notes about the R32C's Type Dependent Part
	3.1.3 About Optimization
	3.1.4 Precautions on Using register Variables
	3.1.5 About Startup Handling

	3.2 For Greater Code Efficiency
	3.2.1 Programming Techniques for Greater Code Efficiency
	3.2.2 Speeding Up Startup Processing

	3.3 Linking Assembly Language Programs with C Programs
	3.3.1 Calling Assembler Functions from C Programs
	3.3.2 Writing Assembler Functions
	3.3.3 Notes on Coding Assembler Functions

	3.4 Other
	3.4.1 Precautions on Transporting between NC-Series Compilers

	Appendix A Command Option Reference
	A.1 nc100 Command Format
	A.2 nc100 Command Line Options
	A.2.1 Options for Controlling Compile Driver
	A.2.2 Options Specifying Output Files
	A.2.3 Version Information Display Option
	A.2.4 Options for Debugging
	A.2.5 Optimization Options
	A.2.6 Generated Code Modification Options
	A.2.7 Library Specifying Option
	A.2.8 Warning Options
	A.2.9 Assemble and Link Options

	A.3 Notes on Command Line Options
	A.3.1 Coding Command Line Options
	A.3.2 Priority of Options for Controlling

	Appendix B Extended Functions Reference
	B.1 Near and far Modifiers
	B.1.1 Overview of near and far Modifiers
	B.1.2 Format of Variable Declaration
	B.1.3 Format of Pointer type Variable
	B.1.4 Declaration of function
	B.1.5 near and far Control by nc100 Command Line Options
	B.1.6 Function of Type conversion from near to far
	B.1.7 Declaration of function
	B.1.8 Function for Specifying near and far in Multiple Declarations
	B.1.9 Notes on near and far Attributes

	B.2 asm Function
	B.2.1 Overview of asm Function
	B.2.2 Specifying FB Offset Value of auto Variable
	B.2.3 Specifying Register Name of register Variable
	B.2.4 Specifying Symbol Name of extern and static Variable
	B.2.5 Specification Not Dependent on Storage Class
	B.2.6 Selectively suppressing optimization
	B.2.7 Notes on the asm Function

	B.3 Description of Japanese Characters
	B.3.1 Overview of Japanese Characters
	B.3.2 Settings Required for Using Japanese Characters
	B.3.3 Japanese Characters in Character Strings
	B.3.4 Sing Japanese Characters as Character Constants

	B.4 Default Argument Declaration of Function
	B.4.1 Overview of Default Argument Declaration of Function
	B.4.2 Format of Default Argument Declaration of Function
	B.4.3 Restrictions on Default Argument Declaration of Function

	B.5 inline Function Declaration
	B.5.1 Overview of inline Storage Class
	B.5.2 Declaration Format of inline Storage Class
	B.5.3 Restrictions on inline Storage Class

	B.6 Extension of Comments
	B.6.1 Overview of "//" Comments
	B.6.2 Comment "//" Format
	B.6.3 Priority of "//" and "/*"

	B.7 #pragma Extended Functions
	B.7.1 Index of #pragma Extended Functions
	B.7.2 Using Memory Mapping Extended Functions
	B.7.3 Using Extended Functions for Target Devices
	B.7.4 Use of the other extension function

	B.8 assembler Macro Function
	B.8.1 Outline of Assembler Macro Function
	B.8.2 Description Example of Assembler Macro Function
	B.8.3 Commands that Can be Written by Assembler Macro Function

	Appendix C Overview of C Language Specifications
	C.1 Performance Specifications
	C.1.1 Overview of Standard Specifications
	C.1.2 Introduction to NC100 Performance

	C.2 Standard Language Specifications
	C.2.1 Syntax
	C.2.2 Type
	C.2.3 Expressions
	C.2.4 Declaration
	C.2.5 Statement

	C.3 Preprocess Commands
	C.3.1 List of Preprocess Commands Available
	C.3.2 Preprocess Commands Reference
	C.3.3 Predefined Macros
	C.3.4 Usage of predefined Macros

	Appendix D C Language Specification Rules
	D.1 Internal Representation of Data
	D.1.1 Integral Type
	D.1.2 Floating Type
	D.1.3 Enumerator Type
	D.1.4 Pointer Type
	D.1.5 Array Types
	D.1.6 Structure types
	D.1.7 Unions
	D.1.8 Bitfield Types

	D.2 Sign Extension Rules
	D.3 Function Call Rules
	D.3.1 Rules of Return Value
	D.3.2 Rules on Argument Transfer
	D.3.3 Rules for Converting Functions into Assembly Language Symbols
	D.3.4 Interface between Functions

	D.4 Securing auto Variable Area
	D.5 Rules of Escaping of the Register

	Appendix E Standard Library
	E.1 Standard Header Files
	E.1.1 Contents of Standard Header Files
	E.1.2 Standard Header Files Reference

	E.2 Standard Function Reference
	E.2.1 Overview of Standard Library
	E.2.2 List of Standard Library Functions by Function
	E.2.3 Standard Function Reference
	E.2.4 Using the Standard Library

	E.3 Modifying Standard Library
	E.3.1 Structure of I/O Functions
	E.3.2 Sequence of Modifying I/O Functions

	Appendix F Error Messages
	F.1 Message Format
	F.2 nc100 Error Messages
	F.3 cpp100 Error Messages
	F.4 cpp100 Warning Messages
	F.5 ccom100 Error Messages
	F.6 cccom100 Warning Messages

	Appendix G Using gensni or the stack information File Creation Tool for Call Walker
	G.1 Starting Call Walker
	G.2 Outline of gensni
	G.2.1 Processing Outline of gensni

	G.3 Starting gensni
	G.3.1 Input format
	G.3.2 Option References

	G.4 Error Messages of gensni
	G.4.1 Error Messages

