
U
ser’s M

anual

R32C/100 E30A Emulator Debugger V.1.02
User’s Manual

Supported Devices:
R32C/100 Series

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corporation without notice. Please review the latest information published
by Renesas Electronics Corporation through various means, including the Renesas Electronics
Corporation website (http://www.renesas.com).

www.renesas.com Rev.1.00 Dec 2010

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Overview
The High-performance Embedded Workshop is a Graphical User Interface intended to ease the
development and debugging of applications written in C/C++ programming language and assembly
language for Renesas microcomputers. Its aim is to provide a powerful yet intuitive way of accessing,
observing and modifying the debugging platform in which the application is running.

This help explains the function as a "debugger" of High-performance Embedded Workshop.

Target System
The Debugger operates on the emulator E30A system.

Supported CPU
This help explains the debugging function corresponding to the following CPUs.
• R32C/100 Series

Note: In this help, the information which depends on this CPU is described as "for R32C".

Setup of Debugger 1

1. Features 3
1.1 RAM Monitor Function .. 3

1.1.1 RAM Monitor Area.. 3
1.1.2 Sampling Period.. 3
1.1.3 Related Windows .. 3

1.2 Break Functions ... 4
1.2.1 Software Breaks Function .. 4
1.2.2 Hardware Break ... 4

1.3 Real-Time Trace Function ... 5
1.3.1 Trace Area ... 5
1.3.2 Trace Condition Setting.. 6

1.4 Time Measurement Function .. 6
1.4.1 The Measurement Condition.. 6

1.5 Real-Time OS Debugging Function... 6
1.6 GUI Input/Output Function .. 6

2. About the Emulator E30A 7
2.1 Communication method ... 7
2.2 Function table... 7

3. Before starting the debugger 8
3.1 Communication method by emulator .. 8

3.1.1 USB Interface.. 8
3.2 Download of Firmware... 8
3.3 Setting before emulator starts... 9

3.3.1 USB communication ... 9

4. Preparation before Use 10
4.1 Workspaces, Projects, and Files .. 10
4.2 Starting the High-performance Embedded Workshop ... 11

4.2.1 Creating a New Workspace (Toolchain Used) ... 12
4.2.2 Creating a New Workspace (Toolchain Not Used) .. 17

4.3 Starting the Debugger.. 22
4.3.1 Connecting the Emulator ... 22
4.3.2 Ending the Emulator .. 22

5. Setup the Debugger 23
5.1 Init Dialog... 23

5.1.1 MCU Tab ... 24
5.1.2 Debugging Information Tab ... 26
5.1.3 Emulator Tab .. 28
5.1.4 Script Tab.. 30
5.1.5 Debugging Mode Tab .. 31

5.2 Setting of the Communication Interface ... 33
5.2.1 Setting of the USB Interface .. 33

5.3 Setup the Debugger for R32C .. 34
5.3.1 Emem Dialog... 34

Tutorial 39

i

6. Tutorial 41
6.1 Introduction.. 41
6.2 Usage .. 42

6.2.1 Step1 : Starting the Debugger.. 42
6.2.2 Step2 : Checking the Operation of RAM.. 43
6.2.3 Step3 : Downloading the Tutorial Program... 44
6.2.4 Step4 : Setting a Breakpoint .. 46
6.2.5 Step5 : Executing the Program .. 47
6.2.6 Step6 : Reviewing Breakpoints .. 49
6.2.7 Step7 : Viewing Register .. 50
6.2.8 Step8 : Viewing Memory... 51
6.2.9 Step9 : Watching Variables .. 52
6.2.10 Step10 : Stepping Through a Program .. 54
6.2.11 Step11 : Forced Breaking of Program Executions... 57
6.2.12 Step12 : Displaying Local Variables .. 58
6.2.13 Step13 : Stack Trace Function ... 59
6.2.14 What Next?.. 60

Reference 61

7. Windows/Dialogs 63
7.1 RAM Monitor Window ... 64

7.1.1 Extended Menus ... 65
7.1.2 Setting the RAM monitor area... 66

7.2 ASM Watch Window .. 68
7.2.1 Extended Menus ... 69

7.3 C Watch Window.. 70
7.3.1 Extended Menus ... 72

7.4 Script Window .. 73
7.4.1 Extended Menus ... 74

7.5 S/W Break Point Setting Window.. 75
7.5.1 Command Button.. 76
7.5.2 Setting and Deleting a Break Points from Editor(Source) Window 77

7.6 Event Setting Window ... 78
7.6.1 Specify the Event .. 79
7.6.2 Select the action condition by which an event is assumed to have occurred 81
7.6.3 Select the Combinatorial Condition ... 82
7.6.4 Setting the RAM monitor event ... 83
7.6.5 Select the Trace Range ... 83
7.6.6 Select the Trace Mode... 84
7.6.7 Setting the execution time measurement.. 84
7.6.8 Command Button.. 85
7.6.9 Setting and Deleting a Break Points from Editor(Source) Window 86
7.6.10 Specify the Break Events ... 87
7.6.11 Specify the Event Combination Condition... 91
7.6.12 Specify the Trace Events .. 92
7.6.13 Specify the Time Measurement Events ..101

7.7 Time Measurement Window...104
7.7.1 Specify the Time Measurement Event..105
7.7.2 Time Measurement Condition...105
7.7.3 Command Button...105
7.7.4 Set the Measurement Condition ...106
7.7.5 Reference the time measurement results ...108

ii

7.8 Trace Window..109
7.8.1 Configuration of Bus Mode..109
7.8.2 Configuration of Disassemble Mode..111
7.8.3 Configuration of Data Access Mode ..112
7.8.4 Configuration of Source Mode ...113
7.8.5 Extended Menus ..114
7.8.6 Display of bus information on the R32C Debugger..115

7.9 GUI I/O Window..116
7.9.1 Extended Menus ..117

7.10 MR Window ...118
7.10.1 Extended Menus ..119
7.10.2 Display the Task Status ..120
7.10.3 Display the Ready Queue Status ..124
7.10.4 Display the Timeout Queue Status...125
7.10.5 Display the Event Flag Status ..127
7.10.6 Display the Semaphore Status..129
7.10.7 Display the Mailbox Status ...131
7.10.8 Display the Data Queue Status...133
7.10.9 Display the Cycle Handler Status...135
7.10.10 Display the Alarm Handler Status ...137
7.10.11 Display the Memory Pool Status...138
7.10.12 Display the Task Context ..140

7.11 MR Trace Window...142
7.11.1 Extended Menus ..144
7.11.2 Refer the Execution History of Task(MRxx Window) ..145

7.12 MR Analyze Window...151
7.12.1 Configuration of CPU Occupancy Status Display Mode ..151
7.12.2 Configuration of Ready State Duration Display Mode...152
7.12.3 Configuration of System Call History Display Mode ...152
7.12.4 Extended Menus ..153
7.12.5 Analyze the Execution History of Task...153

8. Table of Script Commands 156
8.1 Table of Script Commands (classified by function)..156

8.1.1 Execution Commands ..156
8.1.2 File Operation Commands...156
8.1.3 Register Operation Commands ...157
8.1.4 Memory Operation Commands ...157
8.1.5 Assemble/Disassemble Commands ...157
8.1.6 Software Break Setting Commands..157
8.1.7 Real-time Trace Commands ..158
8.1.8 Event Setting Commands..158
8.1.9 Script/Log File Commands ..158
8.1.10 Program Display Commands...158
8.1.11 Clock Command ...158
8.1.12 C Language Debugging Commands ..159
8.1.13 Real-time OS Command ..159
8.1.14 Utility Commands..159

8.2 Table of Script Commands (alphabetical order) ..160

9. Writing Script Files 162
9.1 Structural Elements of a Script File ..162

9.1.1 Script Command ..163
9.1.2 Assign Statement...163
9.1.3 Conditional Statement...163
9.1.4 Loop Statement(while,endw) and Break Statement ..164
9.1.5 Comment statements...164

iii

9.2 Writing Expressions..165
9.2.1 Constants ...165
9.2.2 Symbols and labels ..166
9.2.3 Macro Variables ...167
9.2.4 Register variables ..167
9.2.5 Memory variables ..167
9.2.6 Line Nos. ..168
9.2.7 Character constants...168
9.2.8 Operators..168

10. C/C++ Expressions 169
10.1 Writing C/C++ Expressions ..169

10.1.1 Immediate Values ..169
10.1.2 Scope Resolution ..170
10.1.3 Mathematical Operators..170
10.1.4 Pointers ..170
10.1.5 Reference ..170
10.1.6 Sign Inversion ..171
10.1.7 Member Reference Using Dot Operator..171
10.1.8 Member Reference Using Arrow ...171
10.1.9 Pointers to Members..172
10.1.10 Parentheses..172
10.1.11 Arrays ...172
10.1.12 Casting to Basic Types...172
10.1.13 Casting to typedef Types ...173
10.1.14 Variable Name ...173
10.1.15 Function Name...173
10.1.16 Character Constants..173
10.1.17 Character String Literals ..173

10.2 Display Format of C/C++ Expressions ...174
10.2.1 Enumeration Types ...174
10.2.2 Basic Types...174
10.2.3 Pointer Types ...175
10.2.4 Array Types..176
10.2.5 Function Types...176
10.2.6 Reference Types ...176
10.2.7 Bit Field Types...176
10.2.8 When No C Symbol is Found...177
10.2.9 Syntax Errors...177
10.2.10 Structure and Union Types ...177

11. Display the Cause of the Program Stoppage 178

12. Attention 179
12.1 Common Attention ..179

12.1.1 File operation on Windows ..179
12.1.2 Area where software breakpoint can be set..179
12.1.3 Get or set C variables ..180
12.1.4 Function name in C++ ...180
12.1.5 Option settings for download modules..180
12.1.6 Debugging multi modules..180
12.1.7 Synchronized debugging..181
12.1.8 Down-load of Firmware ...181
12.1.9 Check of ID Code..181
12.1.10 ID code write to flash memory ..181
12.1.11 The start procedure of debugger. ..181
12.1.12 Use of Watch dog timer ...181

iv

12.1.13 Debugging Resource on MCU..181
12.1.14 Setting of break point on MCU's internal RAM area...181

12.2 Attention of the R32C Debugger ..182
12.2.1 Stack area used by the emulator...182
12.2.2 Interrupt stack pointer when resetting the target program......................................182
12.2.3 RAM area used by the data compare break function ...182
12.2.4 Option of C Compiler/Assembler/Linker...182
12.2.5 Downloading a program to external flash memory ..183

12.3 Option of C Compiler/Assembler/Linker ..184
12.3.1 When Using NCxx ...184
12.3.2 When Using the IAR EC++ Compiler (EW)..184
12.3.3 When Using the IAR C Compiler (EW)...185
12.3.4 When Using the IAR C Compiler (ICC) ..186

v

Setup of Debugger

1

(Blank Page)

2

R32C/100 E30A Emulator Debugger Chapter 1 Features

1. Features

1.1 RAM Monitor Function
This debugger supports the real time RAM monitor function which allows you to reference the memory data during
execution of the target program.
The memory contents being displayed can be periodically updated.
However, the real time capability of program execution is lost.
To operate the RAM monitor function, set as follows.

•

•

•
•
•
•
•

•
•
•

Set the RAM monitor event to the event E5 in the Event Setting window or the RAM monitor area setup
window.
Select the menu ([RAM Monitor]->[Enable RAM Monitor]) of each window which supports the RAM monitor
function.

Specify the memory data acquisition interval time during executing the target program in the Emulator tab of the
Init dialog.

1.1.1 RAM Monitor Area
This debugger has 1 Kbytes of RAM monitor area which can be located in any contiguous address location or in 64
separate blocks comprised of 16 bytes each.

1.1.2 Sampling Period
Sampling cycle means the display update interval.
You can specify this function in any window which supports the RAM monitor. (The interval of 1s is set by default.)
The actual sampling cycle may take longer time than the specified cycle depending on the operating environment.
(Sampling cycle depends on the following environments.)

Communication interface
Number of the RAM Monitor windows displayed
Size of the RAM Monitor window displayed
Number of ASM watch points within the RAM monitor area of the ASM Watch window
Number of C watch points within the RAM monitor area of the C Watch window

1.1.3 Related Windows
The window where the function of the RAM monitor function can be used is shown below.

RAM Monitor Window
ASM Watch Window
C Watch Window

REJ10J2120-0100 Rev. 1.00 Page 3 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 1 Features

1.2 Break Functions

1.2.1 Software Breaks Function
Software Break breaks the target program before execution of the command at the specified address. This break
point is called software breakpoint.
The software breakpoint is set/reset in the Editor (Source) window or in the S/W Breakpoint Setting window. You
can also disable/enable a software breakpoint temporarily.
You can specify up to 256 software breakpoints. When specifying two or more software breakpoints, the breakpoint
combination is based on the OR logic. (Arrival to any one of breakpoints breaks the target program.)

1.2.1.1 Setting of software breakpoint

The software breakpoint can be set by the following windows.
Editor (Source) Window •

•

•

•

•
•

S/W Break Point Setting Window

You can double-click the mouse to set/reset the software breakpoint in the Editor (Source) window.
You can also switch to temporarily disable/enable the software breakpoint in the S/W Breakpoint Setting window.

1.2.1.2 Area where software breakpoint can be set

The area which can be set for software breakpoint varies depending on the product.
For the areas available for software breakpoint, see the following:
"12.1.2 Area where software breakpoint can be set"

1.2.2 Hardware Break
This function causes the target program to stop upon detecting a data read/write to memory and instruction
execution.
Event breaks come in two types of breaks as shown below.

Instruction Execution Break
The instruction execution break is used to detect instruction execution, and the target program is made to
stop immediately before executing the instruction at a specified address.
Memory Access Break
A data write/read to or from memory is detected when a specified address is accessed for data, upon which
the target program is made to stop (post-execution break).

A total of 8 events comprised of break events, trace events, and time measurement events in combination can be
specified. Instruction execution allows you to specify the function name.
For the address designation method, memory access allow the range designation, in addition to the normal
one-address designation. Moreover, memory access allows you to specify the comparison data to read/write data
related to the specified address in the same manner as when setting the breakpoint. It also allows mask
designation to the comparison data. Note, however, that comparison data can be specified for only one event. You
cannot specify an address range.

Specified hardware break events can be used in one of the following combinations:

Break when any one of the specified break points is effected. (Or)
Events occur in a specified order. (Sequential)

REJ10J2120-0100 Rev. 1.00 Page 4 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 1 Features

1.3 Real-Time Trace Function
This function records a target program execution history.
Up to 8M cycles of execution history can be recorded. This record allows inspecting the bus information, executed
instructions, and source program execution path for each cycle.
The real-time trace function records the execution history of the target program.
The execution history is referred to in the tracing window.
The execution history can be referred to in the following mode.

BUS mode
This mode allows you to inspect cycle-by-cycle bus information. The display content depends on the
MCU and emulator system used. In addition to bus information, this mode allows disassemble,
source line or data access information to be displayed in combination.

•

•

•

•

•

•

•

•

Disassemble mode
This mode allows you to inspect the executed instructions. In addition to disassemble information,
this mode allows source line or data access information to be displayed in combination.
Data access mode
This mode allows you to inspect the data read/write cycles. In addition to data access information,
this mode allows source line information to be displayed in combination.
Source mode
This mode allows you to inspect the program execution path in the source program.

1.3.1 Trace Area
The 8M cycles execution history can be referred to with this debugger.
The trace area of the following 4 mode is being supported.

Break
8M cycles before target program stops
Before
8M cycles before trace point
After
8M cycles after trace point
Full
Until 8M cycles are written in the trace memory

To perform a trace measurement, you need to set a trace range and a trace event.
By default, Break is set for the trace range, and an event for measuring jump address information in the entire
address range is set as the trace event.

REJ10J2120-0100 Rev. 1.00 Page 5 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 1 Features

1.3.2 Trace Condition Setting
The following designations are available as trace events:
•
•
•

•

•
•

Branch trace
Data trace
Condition branch trace

A mixed trace of branch and data traces can be performed.
A total of 8 events comprised of break events, trace events, and time measurement events in combination can be
specified.
Trace events can be combined as below:

Trace when one of the valid events is established (OR condition)

1.4 Time Measurement Function
Execution time measurement
This function measures all execution times.

Interval time measurement
This function measures the minimum, maximum, and average execution time and the number of executions
performed in a specified interval.
Measurements can be taken in up to three intervals at the same time.

1.4.1 The Measurement Condition
Execution time measurement
Measuring the program execution time from when the program started to when it stops.

Interval time measurement
The measurement condition of the zone time can specify the following.

Time between two events
Time of event occurrence period

1.5 Real-Time OS Debugging Function
This function debugs the realtime OS-dependent parts of the target program that uses the realtime OS.
This function helps to show the status of the realtime OS.

1.6 GUI Input/Output Function
This function simulates the user target system's key input panel (buttons) and output panel on a window.
Buttons can be used for the input panel, and labels (strings) and LEDs can be used for the output panel.

REJ10J2120-0100 Rev. 1.00 Page 6 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 2 About the Emulator E30A

2. About the Emulator E30A

The E30AEmulator is an on-chip debugging emulator that makes use of the debugging circuit, or 1 Pin NSD (New
Single-wire Debugger), that is built in the R32C/100 series MCUs.
1 Pin NSD is Renesas original OCD (On-chip Debugger).
Using only the BYTE pin of the target MCU as a communication path, it permits the MCU operation and electrical
characteristics, etc. to be debugged under a condition close to that of the user's final product.

2.1 Communication method
The supported communication method is USB communication.

2.2 Function table
The supported functions are as follows.

Function Emulator 30A E
S/W Break 256 points
Event Break 8 points (A total of 8 events comprised of break events, trace events, and

time meas rement events in combination can be specified.) u
Real-Time Trace 8M cycles
RAM monitor 1K bytes (16bytes x 64blocks) area
Time Measurement Go to Stop / 3 points interval

REJ10J2120-0100 Rev. 1.00 Page 7 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 3 Before starting the debugger

3. Before starting the debugger

3.1 Communication method by emulator
The supported communication method is as follows.
•

•
•
•

USB

3.1.1 USB Interface
Compliant with USB Standard 2.0.
Connections via USB hub are not supported.
The necessary cable is included with the emulator.

3.2 Download of Firmware
This debugger searches the version of the firmware downloaded to the emulator at start. Also when the firmware
downloaded to the emulator is of old version, a mode which drives this debugger to download firmware is set.

When this debugger gets started while the emulator is set in the mode which drives the debugger to download
firmware forcedly, the following dialog is opened at start.
Click the OK button to download the firmware.

REJ10J2120-0100 Rev. 1.00 Page 8 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 3 Before starting the debugger

3.3 Setting before emulator starts

3.3.1 USB communication
Connection of USB devices is detected by Windows' Plug & Play function. The device driver needed for the
connected USB device is automatically installed.

3.3.1.1 Install of USB device driver

The USB devices connected are detected by Windows' Plug & Play function. The installation wizard for USB device
drivers starts after the device had been detected. The following shows the procedure for installing the USB device
drivers.
1. Connect the host computer and the emulator with USB cable.
2. Then turn on the power to the emulator.
3. When [Add New Hardware Wizard] is displayed, select [Install the software automatically].

ATTENTION
Before the USB device drivers can be installed, the debugger you use must already be installed.
Install this debugger first.

•

• A user who install the USB device driver need administrator rights.

REJ10J2120-0100 Rev. 1.00 Page 9 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 4 Preparation before Use

4. Preparation before Use

Please run the High-performance Embedded Workshop and connect the emulator .
In addition, in order to debug with this product, it is necessary to create a workspace.

4.1 Workspaces, Projects, and Files
Just as a word processor allows you to create and modify documents, this product allows you to create and modify
workspaces.
A workspace can be thought of as a container of projects and, similarly, a project can be thought of as a container of
project files. Thus, each workspace contains one or more projects and each project contains one or more files.

Workspaces allow you to group related projects together. For example, you may have an application that needs to
be built for different processors or you may be developing an application and library at the same time. Projects can
also be linked hierarchically within a workspace, which means that when one project is built all of its "child"
projects are built first.
However, workspaces on their own are not very useful, we need to add a project to a workspace and then add files
to that project before we can actually do anything.

REJ10J2120-0100 Rev. 1.00 Page 10 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 4 Preparation before Use

4.2 Starting the High-performance Embedded Workshop
Activate the High-performance Embedded Workshop from [Programs] in the [Start] menu.
The [Welcome!] dialog box is displayed.

In this dialog box, A workspace is created or displayed.

[Create a new project workspace] radio button:
Creates a new workspace.

•

•

•

[Open a recent project workspace] radio button:
Uses an existing workspace and displays the history of the opened workspace.
[Browse to another project workspace] radio button:
Uses an existing workspace;
this radio button is used when the history of the opened workspace does not remain.

In the case of Selecting an Existing Workspace, select [Open a recent project workspace] or [Browse to another
project workspace] radio button and select the workspace file (.hws).

Please refer to the following about the method to create a new workspace.
Refer to "4.2.1 Creating a New Workspace (Toolchain Used)"
Refer to "4.2.2 Creating a New Workspace (Toolchain Not Used)"
* When debugging the existing load module file with this product, a workspace is created by this method.

The method to create a new workspace depends on whether a toolchain is or is not in use. Note that this product
does not include a toolchain. Use of a toolchain is available in an environment where the C/C++ compiler package
for the CPU which you are using has been installed.
For details on this, refer to the manual attached to your C/C++ compiler package.

REJ10J2120-0100 Rev. 1.00 Page 11 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 4 Preparation before Use

4.2.1 Creating a New Workspace (Toolchain Used)

4.2.1.1 Step1 : Creation of a new workspace

In the [Welcome!] dialog box that is displayed when the High-performance Embedded Workshop is activated, select
the [Create a new project workspace] radio button and click the [OK] button.
Creation of a new workspace is started.
The following dialog box is displayed.

1. Select the target CPU family

In the [CPU family] combo box, select the target CPU family.
2. Select the target toolchain

In the [Tool chain] combo box, select the target toolchain name when using the toolchain.
3. Select the project type

In the [Project type] list box, select the project type to be used.
In this case, select "Application" .
(Please refer to the manual attached to your C/C++ compiler package about the details of the project type
which can be chosen.)

4. Specify the workspace name and project name
- In the [Workspace Name] edit box, enter the new workspace name.
- In the [Project Name] edit box, enter the project name. When the project name is the same as the workspace

name, it needs not be entered.
- In the [Directory] edit box, enter the directory name in which the workspace will be created. Click the

[Browse...] button to select a directory.

After a setting, click the [OK] button.

REJ10J2120-0100 Rev. 1.00 Page 12 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 4 Preparation before Use

4.2.1.2 Step2 : Setting for the Toolchain

A wizard for the project creation starts.

Here, the following contents are set.

toolchain •
•
•

the setting for the real-time OS (when using)
the setting for the startup file, heap area, stack area, and so on

Please set required information and click the [Next] button.

The contents of a setting change with C/C++ compiler packages of use. Please refer to the manual attached to your
C/C++ compiler package about the details of the contents of a setting.

REJ10J2120-0100 Rev. 1.00 Page 13 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 4 Preparation before Use

4.2.1.3 Step 3: Selecting of the Target Platform

Select the target system used for your debugging (emulator, simulator).
When the setting for the toolchain has been completed, the following dialog box is displayed.

1. Selecting of the Target type

In the [Target type] list box, select the target CPU type.
2. Selecting of the Target Platform

In the [Targets] area, the target for the session file used when this debugger is activated must be selected here.
Check the box against the target platform. (And choose other target as required.)

And click the [Next] button.

REJ10J2120-0100 Rev. 1.00 Page 14 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 4 Preparation before Use

4.2.1.4 Step4 : Setting the Configuration File Name

Set the configuration file name for each of the all selected target.
The configuration file saves the state of High-performance Embedded Workshop except for the target (emulator,
simulator).

The default name is already set. If it is not necessary to change, please click the [next] button as it is.

REJ10J2120-0100 Rev. 1.00 Page 15 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 4 Preparation before Use

4.2.1.5 Step5 : The check of a created file name

Finally, confirm the file name you create. The files which will be generated by the High-performance Embedded
Workshop are displayed If you want to change the file name, select and click it then enter the new name.

This is the end of the emulator settings.
Exit the Project Generator following the instructions on the screen.

REJ10J2120-0100 Rev. 1.00 Page 16 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 4 Preparation before Use

4.2.2 Creating a New Workspace (Toolchain Not Used)
When debugging the existing load module file with this product, a workspace is created by this method. (It can
work even if the tool chain is not installed.)

4.2.2.1 Step1 : Creation of a new workspace

In the [Welcome!] dialog box that is displayed when the High-performance Embedded Workshop is activated, select
the [Create a new project workspace] radio button and click the [OK] button.
Creation of a new workspace is started. The following dialog box is displayed.

1. Select the target CPU family

In the [CPU family] combo box, select the target CPU family.
2. Select the target toolchain

In the [Tool chain] combo box, select "None". In this case, toolchain is not used.
(When the toolchain has not been installed, the fixed information is displayed in this combo box.)

3. Select the project type
(When the toolchain is not used, it is displayed on a [Project Type] list box as "Debugger only - Target Name".
Select it. (When two or more project types are displayed, please select one of them.)

4. Specify the workspace name and project name
- In the [Workspace Name] edit box, enter the new workspace name.
- In the [Project Name] edit box, enter the project name. When the project name is the same as the workspace

name, it needs not be entered.
- In the [Directory] edit box, enter the directory name in which the workspace will be created. Click the

[Browse...] button to select a directory.

After a setting, click the [OK] button.

REJ10J2120-0100 Rev. 1.00 Page 17 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 4 Preparation before Use

4.2.2.2 Step 2: Selecting of the Target Platform

Select the target system used for your debugging (emulator, simulator).
A wizard starts and the following dialog box is displayed.

1. Selecting of the Target type

In the [Target type] list box, select the target CPU type.
2. Selecting of the Target Platform

In the [Targets] area, the target for the session file used when this debugger is activated must be selected here.
Check the box against the target platform. (And choose other target as required.)

And click the [Next] button.

REJ10J2120-0100 Rev. 1.00 Page 18 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 4 Preparation before Use

4.2.2.3 Step3 : Setting the Configuration File Name

Set the configuration file name for each of the all selected target.
The configuration file saves the state of High-performance Embedded Workshop except for the target (emulator,
simulator).

The default name is already set. If it is not necessary to change, please click the [next] button as it is.
This is the end of the emulator settings.
Exit the Project Generator following the instructions on the screen.
And the dialog for the setup of a debugger is also displayed at this time . If preparation of an emulator is completed,
set up the debugger in this dialog box and connect with an emulator.

REJ10J2120-0100 Rev. 1.00 Page 19 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 4 Preparation before Use

4.2.2.4 Step4 : Registering the Load modules to be downloaded

Finally, register the load module file to be used.
Select [Debug Settings...] from the [Debug] menu to open the [Debug Settings] dialog box.

1. Select the product name to be connected in the [Target] drop-down list box.
2. Select the format of the load module to be downloaded in the [Default Debug Format] drop-down list box.

Format Name Contents
IEEE695_REN S ESA IEEE-695 format file (When Using Renesas toolchain)
IEEE695_IAR IEEE-695 format file (When Using IAR toolchain)
IEEE695_TASKING IEEE-695 format file (When Using Tasking toolchain)
ELF/DWARF2 ELF/DWARF2 format file (When Using Renesas toolch in) a
ELF/DWARF2_IAR ELF/DWARF2 format file (When Using IAR toolchain)
ELF/DWARF2_TASKING ELF/DWARF2 format file (When Using Tasking toolchain)
ELF/DWARF2_KPIT ELF/DWARF2 format file (When Using KPIT toolchain)

This debugger does not support the object formats, which are not shown in the drop down list.

REJ10J2120-0100 Rev. 1.00 Page 20 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 4 Preparation before Use

3. Then register the corresponding download module in the [Download Modules] list box.

A download module can be specified in the dialog opened with a [Add...] button.

- Select the format of the download module in the [Format] edit box. Please refer to the upper table about the
format name of a download module.

- Enter the full path and filename of the download module in the [Filename] edit box.
- Specifies the access size for the current download module in the [Access size] list box.

After that, click the [OK] button.

ATTENTION
"Offset", "Access size" and "Perform memory verify during download" is ignored. The offset is always set to 0, the
access size is always set to 1 and the verification does not work.

REJ10J2120-0100 Rev. 1.00 Page 21 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 4 Preparation before Use

4.3 Starting the Debugger
The debugging can be started by connecting with an emulator.

4.3.1 Connecting the Emulator
Connect the emulator by simply switching the session file to one in which the setting for the emulator use has been
registered.
The session file is created by default. The session file has information about the target selected when a project was
created.
In the circled list box in the following tool bars, select the session name including the character string of the target
to connect.

After the session name is selected, the dialog box for setting the debugger is displayed and the emulator will be
connected.
When the dialog box is not displayed, select [Connect] from the [Debug] menu.

4.3.2 Ending the Emulator
The emulator can be exited by using the following methods:

1. Selecting the “Disconnect”

Select [Disconnect] from the [Debug] menu.

2. Selecting the "DefaultSession"

Select the "DefaultSession" in the list box that was used at the time of emulator connection.

3. Exiting the High-performance Embedded Workshop

Select [Exit] from the [File] menu. High-performance Embedded Workshop will be ended.

The message box, that asks whether to save a session, will be displayed when an emulator is exited. If necessary to
save it, click the [Yes] button. If not necessary, click the [No] button.

REJ10J2120-0100 Rev. 1.00 Page 22 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 5 Setup the Debugger

5. Setup the Debugger

5.1 Init Dialog
The Init dialog box is provided for setting the items that need to be set when the debugger starts up. The contents
set from this dialog box are also effective the next time the debugger starts. The data set in this dialog remains
effective for the next start.

The tabs available on this dialog box vary with each product used. For details, click the desired tab name shown in
the table below.

Product Name Tab Name
The debugger for R32C

MCU exist
Debuggin Information g exist
Emulator exist
Script exist
Debugging Mode exist

REJ10J2120-0100 Rev. 1.00 Page 23 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 5 Setup the Debugger

You can open the Init dialog using either one of the following methods:

After the debugger gets started, select Menu - [Setup] -> [Emulator] -> [System...]. •
• Start Debugger while holding down the Ctrl key.

5.1.1 MCU Tab
The specified content becomes effective when the next being start.

5.1.1.1 Specifying the MCU file

Click the "Refer" button.
The File Selection dialog is opened. Specify the corresponding MCU file.

An MCU file contains the information specific to the target MCU. •
•

•

The specified MCU file is displayed in the MCU area of the MCU tab.

5.1.1.2 Setting of the Communication Interface

The displayed data varies depending on the specified communication interface.
The available communication interface varies depending on the products.
The following shows the setting for each communication interface.

Refer to "5.2.1 Setting of the USB Interface"

5.1.1.3 Choosing to use or not to use CPU rewrite mode

Specify whether or not you want to use CPU rewrite mode. (By default, CPU rewrite mode is unused.)

Select the above check box when you are debugging the target system that uses CPU rewrite mode.
 This specification can only be set or changed when you start the debugger.

REJ10J2120-0100 Rev. 1.00 Page 24 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 5 Setup the Debugger

Supplementary explanation
When debugging in CPU rewrite mode is enabled, the following limitations apply:

No software breaks can be set in the internal ROM area. •

5.1.1.4 Choosing to use or not to use ECC in the E2 Data Flash

Specify whether or not you want to use ECC in the E2 Data Flash. (By default, ECC is unused.)

Select the above check box when you use ECC in the E2 Data Flash.
This specification can only be set or changed when you start the debugger.
This setting is invalid for MCU that doesn't support the E2 Data Flash.

5.1.1.5 Specifying the Start Address of the Debug Monitor Program

Specify the start address of the area (MCU's internal RAM area) to be used by the debug monitor program.

The debug monitor program will use 1.2K bytes of area beginning with the specified start address.
Although no particular considerations need to be taken for it because the memory contents are saved in advance,
the following precautions should be observed.

Only the start address consisting of 00xx00 (xx = arbitrary) can be set. By default, the address 002000 is set. •
• No areas that overlap the stack or the target area of DMA can be specified.

REJ10J2120-0100 Rev. 1.00 Page 25 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 5 Setup the Debugger

5.1.2 Debugging Information Tab
The specified content becomes effective when the next being start.

5.1.2.1 display the compiler used and its object format

Display the compiler used and its object file format.

Please specify the compiler used and its object file format in the dialog opened by menu [Debug] -> [Debug
Settings...].

5.1.2.2 Specify the Storing of Debugging Information

There are two methods for storing debugging information: on-memory and on-demand.
Select one of these two methods. (The on-memory method is selected by default.)
To select the on-demand method, click the On Demand check box.
The specified content becomes effective when the next being download.

On-memory method
Debugging information is stored in the internal memory of your computer.
Usually, select this method.

•

• On-demand method
Debugging information is stored in a reusable temporary file on the hard disk of your computer.
Because the stored debugging information is reused, the next time you download the same load
module it can be downloaded faster.
This method is suitable when it takes so long time to download the debugging information, because
the PC has less memory against the load module file size.

Notes
If the load module size is large, the on-memory method may be inefficient because it requires a very
large amount of time for downloading. In such a case, select the on-demand method.

•

• In the on-demand method, a folder in which to store a reusable temporary file is created in the folder
that contains the downloaded load module. This folder is named after the load module name by the
word "~INDEX_" to it. If the load module name is "sample.abs", for example, the folder name is
"~INDEX_sample". This folder is not deleted even after quitting the debugger.

REJ10J2120-0100 Rev. 1.00 Page 26 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 5 Setup the Debugger

5.1.2.3 Specify whether to display the instruction format specifier

Specify whether to display the instruction format specifier in the disassembled display.

Select the above check box when you display the instruction format specifier.
This specification can only be set or changed when you start the debugger.

5.1.2.4 To treat size of enumeration type as 1 byte

You can specify whether your debugger treat all sizes of enumeration types whose size is unknown in the
debugging information as 1 byte. For reducing memory consumption, NC30, NC308 and NC100 have an option to
treat the sizes of enumerator types as 1 byte and not as same size of 'int'. Note that NC30, NC308 and NC100 don't
output the sizes of enumerator types in debugging information and debuggers consider the size as same size of 'int'.
Therefore you may not correctly refer the values of enumeration types in the target programs which were compiled
with the above option. This function is for resolving the above issue. See the users' manual of each compiler for
details of the above option

Check the above check box if you would like to treat all sizes of enumeration types as 1 byte. It is necessary to load
the debugging information again in order to reflect this setting.

REJ10J2120-0100 Rev. 1.00 Page 27 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 5 Setup the Debugger

5.1.3 Emulator Tab

5.1.3.1 Specify the Target Clock

Change the setting by synchronizing with the clock used by the target microcomputer. (Generated is set by default.)

Select the option "Generated" if the frequency you have set should be set for the clock internally generated by the
emulator (user-defined clock), or select "Internal" if said frequency should be set for the internal clock.

No matter whether you set the user-defined clock or the internal clock, be sure to enter the frequency to be used in
the frequency input text box. (By default, no values are set.)

The user-defined clock in the debugger can be input in the range 1.0000 MHz to 99.9999 MHz in 0.0001 MHz
increments.

•

•
•

The value in the frequency input text box can only be set or altered at debugger startup.
The debugger cannot be started unless any value is set in the frequency input text box.

5.1.3.2 Setting of PLL circuit

Enter the frequency of the internal PLL of the target MCU.
Enter the value of the internal clock control register of the target MCU.

REJ10J2120-0100 Rev. 1.00 Page 28 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 5 Setup the Debugger

5.1.3.3 Specifying Memory Data Acquisition Intervals during Target Program Execution

While the target program is running, specify a memory data acquisition interval in ms units at which intervals you
want memory data to be acquired one byte or word at a time by the RAM monitor function. The default interval
time is 5 ms. The interval time specified here differs from the display update interval (sampling period) that you
set in each window that supports the RAM monitor.

5.1.3.4 Choosing to communicate or not to communicate with MCU while executing target program

Please specify whether to communicate with MCU while executing the target program.

Select the above check box when not communicating with MCU.
The communication fault occurs if it communicates with MCU while executing the WAIT/STOP instruction. In this
case, please set not to communicate with MCU.

REJ10J2120-0100 Rev. 1.00 Page 29 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 5 Setup the Debugger

5.1.4 Script Tab
The specified content becomes effective when the next being start.

5.1.4.1 Automatically Execute the Script Commands

To automatically execute the script command at start of Debugger, click the "Refer" button to specify the script file
to be executed.

By clicking the "Refer" button, the File Selection dialog is opened.
The specified script file is displayed in the "Init File:" field.
To disable auto-execution of the script command, erase a character string displayed in the "Init File:" field.

REJ10J2120-0100 Rev. 1.00 Page 30 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 5 Setup the Debugger

5.1.5 Debugging Mode Tab

5.1.5.1 Selecting of the Debugging Mode

Select the debugging mode of the emulator debugger.

The trace mode is the mode to use the trace function. •
•
•
•

The time measurement mode is the mode to use the time measurement function.
The RAM monitor mode is the mode to use the RAM monitor function.
The writer mode is the mode to use the emulator as a writer of the flash ROM.

The function of the mode except for the chosen mode can't be used.
The following shows the debugging function that can be used in each mode.

Debugging function
Break Trace Time measurement RAM

monitor

Mode

Execution
PC

Data
access

Address
Area

Data
compare

 Execution
time

Interval
time

Trace :
Trace priority

Yes Yes No No Yes No No No

Trace :
MCU execution
priority

Yes Yes No Yes Yes No No No

Time
measurement

Yes Yes No No No Yes Yes No

RAM monitor Yes Yes Yes No No No No Yes
Writer No No No No No No No No

REJ10J2120-0100 Rev. 1.00 Page 31 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 5 Setup the Debugger

5.1.5.2 Setting of Download to Flash ROM Area

When downloading the target program, specify whether or not to verify in the flash ROM area.
To use the verify function, select the "Enable Verification" check box.

5.1.5.3 Specifying Writer Mode

Specify writer mode when the emulator needs to be used as a flash ROM writer. The target program cannot be
debugged in writer mode.
To specify writer mode, select the the load module file you want to download.
To select a file, click the Add button and select one in the ensuing dialog box. The selected file is listed in the file
name column of the dialog box. Multiple files can be selected.
To delete a file from the list, select the file you want to delete and click the Remove button.
To use the verify and checksum functions, select the "Enable Verification and Checksum" check box.
The ID code is written into the flash memory only when the program was downloaded in writer mode.

When the write operation is completed, restart or quit the emulator debugger.

ATTENTION
Only when writer mode is selected in the Debugging Mode, writer function can be used. •

• When operating in other than the writer mode, no ID code is written into the flash memory even
when the program is downloaded. In that case, an ID code consisting entirely of FFh is assumed.

REJ10J2120-0100 Rev. 1.00 Page 32 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 5 Setup the Debugger

5.2 Setting of the Communication Interface

5.2.1 Setting of the USB Interface
USB communication uses the personal computer's USB interface. It is compliant with USB 2.0.
Before USB communication can be performed, the computer must have a dedicated device driver installed in it. For
details on how to install USB device drivers, see "3.3.1.1 Install of USB device driver."

The currently USB-connected emulators are listed in the Serial No. area. Select the serial No. of the emulator you
want to connect.

REJ10J2120-0100 Rev. 1.00 Page 33 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 5 Setup the Debugger

5.3 Setup the Debugger for R32C

5.3.1 Emem Dialog
In the Emem dialog box, setting information on the user target. The Emem dialog box opens after closing the Init
dialog box.

Tab Name Contents
Internal flash memory overwrite Specify whether or not to clear the contents of the MCU's internal

flash ROM.
External flash memory Register the external flash memory information.
Ext Port Specify whether or not to invalidate reset of the target.

You can open the Emem dialog using either one of the following methods:

After the debugger gets started, select Menu - [Setup] -> [Emulator] -> [Target...]. •

REJ10J2120-0100 Rev. 1.00 Page 34 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 5 Setup the Debugger

5.3.1.1 Internal flash memory overwrite Tab

The specified content becomes effective when the next being start.

5.3.1.1.1. Setting to clear the MCU's internal flash ROM
Specify whether or not to clear the contents of the MCU's internal flash ROM when downloading the target
program or data.

The MCU's internal flash ROM is displayed block by block in the list view.

The blocks whose check marks are turned on do not have their flash contents cleared when
downloading. The memory contents in places not overwritten by downloading remain intact.

•

•
•
•

The blocks whose check marks are turned off have their flash contents cleared when downloading.
Pressing the Select All button keeps all blocks from being cleared when downloading.
Pressing the Clear All button clears all blocks when downloading.

5.3.1.1.2. Setting to clear the E2 Data Flash
Specify whether or not to clear the contents of the E2 Data Flash when downloading the target program or data.

Select the above check box when you do not clear the content of the E2 Data Flash when downloading.
The memory contents in places not overwritten by downloading remain intact.
This setting is invalid for MCU that doesn't support the E2 Data Flash.

REJ10J2120-0100 Rev. 1.00 Page 35 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 5 Setup the Debugger

5.3.1.2 External flash memory Tab

The specified content becomes effective when the next being start.

5.3.1.2.1. Registering Information on External Flash Memory
The [External flash memory] tab of the [Emem] dialog box allows you to register information on external flash
memory (that is, flash memory connected to the external-bus address space of the MCU). This registration is
necessary when you wish to download a program to external flash memory.
External flash memory is not recognized until its USD file (which defines how the external flash memory is
connected to the user system, etc.) is added to the [External flash memory] tab of the [Emem] dialog box.

Clicking on the [Add…] button opens a dialog box in which you can select USD files. When a USD file is selected,
information from the file is displayed in the [Flash memory] section of the [External flash memory] tab.
Up to four USD files can be added. To create USD files, use the External Flash Definition Editor. For details on
how to create USD files, refer to the user’s manual for the External Flash Definition Editor, which is available at
http://www.renesas.com/efe.

5.3.1.2.2. Deleting Information on the External Flash Memory
Select the USD file that you wish to delete and click on the [Remove] button.

REJ10J2120-0100 Rev. 1.00 Page 36 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 5 Setup the Debugger

5.3.1.2.3. Detail Setting of the External Flash Memory
Select external flash memory information from the flash memory list and click the [Detail Setting] button or
double-click external flash memory information. The [External flash memory detail setting] dialog box will be
displayed.
In the [External flash memory detail setting] dialog box, make detail settings for each sector (block) of the external
flash memory.

Settings for all sectors defined in the selected USD file are automatically shown in the list. When a checkbox is
selected, the sector will be overwritten (merged) when the user program is downloaded. To alter the setting for one
sector, enter the new first and last address in the [Address] edit box and click on [Set]. If [Overwrite] is selected,
the selected sector will be overwritten without erasure when the user program is downloaded. If the [Disable
download] checkbox is checked, the selected sector is neither erased nor downloaded at download time. If [Write
after all sectors are erased.] is selected, all sectors will be erased when the user program is downloaded.

REJ10J2120-0100 Rev. 1.00 Page 37 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 5 Setup the Debugger

5.3.1.3 Ext Port Tab

The specified content becomes effective when the next being start.

5.3.1.3.1. Setting to extension port
Specify whether or not to invalidate reset of the target.

If you want to invalidate reset of the target, select the check box shown above. When the extension
port is not connected, this function cannot be set.

•

• When the extension port is connected, this function can be changed even after debugger start.

REJ10J2120-0100 Rev. 1.00 Page 38 of 193
Dec. 01, 2010

Tutorial

39

(Blank Page)

40

R32C/100 E30A Emulator Debugger Chapter 6 Tutorial

6. Tutorial

6.1 Introduction
This section describes the main functions of this debugger by using a tutorial program. The tutorial programs are
installed to the directory ¥WorkSpace¥Tutorial of the drive you installed High-performance Embedded Workshop.
There are workspaces for each targets and each MCUs. Please select the corresponding one to your system, and
open the workspace file (*.hws) from the menu [Open Workspace...].

The tutorial program is based on the C program that sorts ten random data items in ascending or descending order.
The tutorial program performs the following actions:

The tutorial function generates random data to be sorted. •
•
•

The sort function sorts the generated random data in ascending order.
The change function then sorts the data in descending order.

Note
After recompilation, the addresses may differ from those given in this section.

REJ10J2120-0100 Rev. 1.00 Page 41 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 6 Tutorial

6.2 Usage
Please follow these instructions:

6.2.1 Step1 : Starting the Debugger

6.2.1.1 Preparation before Use

To run the High-performance Embedded Workshop and connect the emulator, refer to "4 Preparation before Use ".

6.2.1.2 Setup the Debugger

If it connects with an emulator, the dialog box for setting up a debugger will be displayed. Please set up the
debugger in this dialog box.
To setup the debugger in this dialog box, refer to "5 Setup the Debugger ".
After the setup of a debugger, it will function as a debugger.

REJ10J2120-0100 Rev. 1.00 Page 42 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 6 Tutorial

6.2.2 Step2 : Checking the Operation of RAM
Check that RAM is operating correctly. Display and edit the contents of the memory in the [Memory] window to
check that the memory is operating correctly.

Note
The memory can be installed on the board in some microcomputers. In this case, however, the above way of
checking the operation of memory may be inadequate. It is recommended that a program for checking the memory
be created.

6.2.2.1 Checking the Operation of RAM

Select [Memory] from the [CPU] submenu of the [View] menu and enter the RAM address (Here, enter “400”) in the
[Display Address] edit boxes. The [Scroll Start Address] and [Scroll End Address] editing box is left to a default
setting. (By default, the scroll range is set to 0h to the maximum address of MCU.)

Note
The settings of the RAM area differ depending on the product. For details, refer to the hardware manual.

Click the [OK] button. The [Memory] window is displayed and shows the specified memory area.

Placing the mouse cursor on a point in the display of data in the [Memory] window and double-clicking allows the
values at that point to be changed.

REJ10J2120-0100 Rev. 1.00 Page 43 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 6 Tutorial

6.2.3 Step3 : Downloading the Tutorial Program

6.2.3.1 Downloading the Tutorial Program

Download the object program to be debugged. The download file and the address to be downloaded will depends on
the target mcu you uses. Please replace the screen image and addresses with corresponding one to your target mcu.

The Debugger for M16C/R8C, M32C or R32C
Select [Download module] from [Tutorial.x30] under [Download modules].

•

REJ10J2120-0100 Rev. 1.00 Page 44 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 6 Tutorial

6.2.3.2 Displaying the Source Program

This debugger allows the user to debug a user program at the source level.
Double-click [tutorial.c] under [C source file]. A [Editor(Source)] window opens and the contents of a "Tutorial.c" file
are displayed.

Select the [Format Views...] option from the [Setup] menu to set a font and size that are legible, if necessary.
Initially the [Editor(Source)] window shows the start of the user program, but the user can use the scroll bar to
scroll through the user program and look at the other statements.

REJ10J2120-0100 Rev. 1.00 Page 45 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 6 Tutorial

6.2.4 Step4 : Setting a Breakpoint
A software breakpoint is a basic debugging function.
The [Editor(Source)] window provides a very simple way of setting a software breakpoint at any point in a program.

6.2.4.1 Setting a Software Breakpoint

For example, to set a software breakpoint at the sort function call:
Double-click the [S/W breakpoints] column on the line containing the sort function call.

The red symbol will appear on the line containing the sort function call. This shows that a softwarebreak
breakpoint has been set.

REJ10J2120-0100 Rev. 1.00 Page 46 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 6 Tutorial

6.2.5 Step5 : Executing the Program
Execute the program as described in the following:

6.2.5.1 Resetting of CPU

To reset the CPU, select [Reset CPU] from the [Debug] menu, or click the [Reset CPU] button on the toolbar.

6.2.5.2 Executing the Program

To execute the program, select [Go] from the [Debug] menu, or click the [Go] button on the toolbar.
The program will be executed up to the breakpoint that has been set, and an arrow will be displayed in the [S/W
Breakpoints] column to show the position that the program has halted.

Note
When the source file is displayed after a break, a path of the source file may be inquired. In this case, please specify
the location of a source file.

REJ10J2120-0100 Rev. 1.00 Page 47 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 6 Tutorial

6.2.5.3 Reviewing Cause of the Break

The break factor is displayed in the [Output] window.

The user can also see the cause of the break that occurred last time in the [Status] window.
Select [Status] from the [CPU] submenu of the [View] menu. After the [Status] window is displayed, open the
[Platform] sheet, and check the Status of Cause of last break.

Please refer to "11 Display the Cause of the Program Stoppage " about the notation of a break factor.

REJ10J2120-0100 Rev. 1.00 Page 48 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 6 Tutorial

6.2.6 Step6 : Reviewing Breakpoints
The user can see all the breakpoints set in the program in the [Breakpoints] dialog box.

6.2.6.1 Reviewing Breakpoints

Push the key Ctrl+B, and the [Breakpoints] dialog box will be displayed.

This window allows the user to delete, enable, or disable breakpoints.

REJ10J2120-0100 Rev. 1.00 Page 49 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 6 Tutorial

6.2.7 Step7 : Viewing Register
The user can see all registers/flags value in the [Register] window.

6.2.7.1 Viewing Register

Select [Registers] from the [CPU] submenu of the [View] menu. The [Register] window is displayed.
The figure below shows a Register window of the debugger for M16C/R8C.

6.2.7.2 Setting the Register Value

You can change a register/flag value from this window.
Double-click the register line to be changed. The dialog is opened. Enter the value to be changed.

REJ10J2120-0100 Rev. 1.00 Page 50 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 6 Tutorial

6.2.8 Step8 : Viewing Memory
When the label name is specified, the user can view the memory contents that the label has been registered in the
[ASM Watch] window.

6.2.8.1 Viewing Memory

For example, to view the memory contents corresponding to __msize in word size:
Select [ASM Watch] from the [Symbol] submenu of the [View] menu, open the [ASM Watch] window.
And click the [ASM Watch] window with the right-hand mouse button and select [Add...] from the popup menu,
enter __msize in the [Address] edit box, and set Word in the [Size] combo box.

Click the [OK] button. The [ASM Watch] window showing the specified area of memory is displayed.

REJ10J2120-0100 Rev. 1.00 Page 51 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 6 Tutorial

6.2.9 Step9 : Watching Variables
As the user steps through a program, it is possible to watch that the values of variables used in the user program
are changed.

6.2.9.1 Watching Variables

For example, set a watch on the long-type array a declared at the beginning of the program, by using the following
procedure:
Click the left of displayed array a in the [Editor(Source)] window to position the cursor, and select [Add C Watch...]
with the right-hand mouse button. The [Watch] tab of [C watch] window in which the variable is displayed opens.

The user can click mark '+' at the left side of array a in the [C Watch] window to watch all the elements.

REJ10J2120-0100 Rev. 1.00 Page 52 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 6 Tutorial

6.2.9.2 Registering Variable

The user can also add a variable to the [C Watch] window by specifying its name.
Click the [C Watch] window with the right-hand mouse button and select [Add...] from the popup menu.
The following dialog box will be displayed. Enter variable i.

Click the [OK] button. The [C Watch] window will now also show the int-type variable i.

REJ10J2120-0100 Rev. 1.00 Page 53 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 6 Tutorial

6.2.10 Step10 : Stepping Through a Program
This debugger provides a range of step menu commands that allow efficient program debugging.
1. Step In

Executes each statement, including statements within functions(subroutines).
2. Step Out

Steps out of a function(subroutine), and stops at the statement following the statement in the program that
called the function(subroutine).

3. Step Over
Executes a function(subroutine) call in a single step.

4. Step...
Steps the specified times repeatedly at a specified rate.

6.2.10.1 Executing [Step In] Command

The [Step In] command steps into the called function(subroutine) and stops at the first statement of the called
function(subroutine).

To step through the sort function, select [Step In] from the [Debug] menu, or click the [Step In] button on
the toolbar.
The PC cursor moves to the first statement of the sort function in the [Editor(Source)] window.

REJ10J2120-0100 Rev. 1.00 Page 54 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 6 Tutorial

6.2.10.2 Executing [Step Out] Command

The [Step Out] command steps out of the called function(subroutine) and stops at the next statement of the calling
statement in the main function.

To step out of the sort function, select [Step Out] from the [Debug] menu, or click the [Step Out] button on
the toolbar.
The PC cursor slips out of a sort function, and moves to the position before a change function.

Note
It takes time to execute this function. When the calling source is clarified, use [Go To Cursor].

REJ10J2120-0100 Rev. 1.00 Page 55 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 6 Tutorial

6.2.10.3 Executing [Step Over] Command

The [Step Over] command executes a function (subroutine) call as a single step and stops at the next statement of
the main program.
To step through all statements in the change function at a single step, select [Step Over] from the [Debug] menu, or

click the [Step Over] button on the toolbar.
The PC cursor moves to the next position of a change function.

REJ10J2120-0100 Rev. 1.00 Page 56 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 6 Tutorial

6.2.11 Step11 : Forced Breaking of Program Executions
This debugger can force a break in the execution of a program.

6.2.11.1 Forced Breaking of Program Executions

Cancel all breaks.

To execute the remaining sections of the main function, select [Go] from the [Debug] menu or the [Go] button
on the toolbar.
The program goes into an endless loop. To force a break in execution, select [Halt Program] from the [Debug] menu

or the [Halt] button on the toolbar.

REJ10J2120-0100 Rev. 1.00 Page 57 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 6 Tutorial

6.2.12 Step12 : Displaying Local Variables
The user can display local variables in a function using the [C Watch] window.

6.2.12.1 Displaying Local Variables

For example, we will examine the local variables in the tutorial function, which declares three local variables: i, j,
and p_sam.

Select [C Watch] from the [Symbol] submenu of the [View] menu. The [C Watch] window is displayed. By default,
[C watch] window has four tabs as following:

[Watch] tab
Only the variable which the user registered is displayed.

•

•

•

•

[Local] tab
All the local variables that can be referred to by the scope in which the the PC exists are displayed. If
a scope is changed by program execution, the contents of the [Local] tab will also change.
[File Local] tab
All the file local variables of the file scope in which the PC exists are displayed. If a file scope is
changed by program execution, the contents of the [File Local] tab will also change.
[Global] tab
All the global variables currently used by the downloaded program are displayed.

Please choose the [Local] tab, when you display a local variable.

Double-click the mark '+' at the left side of pointer p_sam in the [Locals] window to display the structure *(p_sam).
When the user refers to the members of the structure at the end of the Tutorial function, it is clarified that random
data is sorted in descending order.

REJ10J2120-0100 Rev. 1.00 Page 58 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 6 Tutorial

6.2.13 Step13 : Stack Trace Function
The debugger uses the information on the stack to display the names of functions in the sequence of calls that led to
the function to which the program counter is currently pointing.

6.2.13.1 Reference the function call status

Double-click the [S/W Breakpoints] column in the sort function and set a software breakpoint.

To executes the user program from the reset vector address, select [Reset Go] from the [Debug] menu, or click the

[Reset Go] button on the toolbar.
After the break in program execution, select [Stack Trace] from the [Code] submenu of the [View] menu to open the
[Stack Trace] window.

The upper figure shows that the position of the program counter is currently at the selected line of the sort()
function, and that the sort() function is called from the tutorial() function.

REJ10J2120-0100 Rev. 1.00 Page 59 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 6 Tutorial

6.2.14 What Next?
This tutorial has described the usage of this debugger.
Sophisticated debugging can be carried out by using the emulation functions that the emulator offers. This provides
for effective investigation of hardware and software problems by accurately isolating and identifying the conditions
under which such problems arise.

REJ10J2120-0100 Rev. 1.00 Page 60 of 193
Dec. 01, 2010

Reference

61

(Blank Page)

62

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7. Windows/Dialogs

The window of this debugger is shown below.

Window Name View Menu
RAM Monitor Window [View]->[CPU]->[RamMonitor]
ASM Watch Window [View]->[Symbol]->[ASMWatch]
C Watch Window [View]->[Symbol]->[CWatch]
Script Window [View]->[Script]
S/W Break Point Setting Window [View]->[Break]->[S/W Break Points]
Event Setting Window [View]->[Trace]->[Trace Points]

[View]->[Break]->[H/W Break Points]
Time Measurement Window [View]->[Trace]->[Time Measure]
Trace Window [View]->[Trace]->[Trace]
GUI I/O Window [View]->[Graphic]->[GUI I/O]
MR Window [View]->[RTOS]->[MR]
MR Trace Window [View]->[RTOS]->[MR Trace]
MR Analyze Window [View]->[RTOS]->[MR Analyze]

For the reference of the following windows, refer to the help attached to a High-performance Embedded Workshop
main part.

Differences Window •
•
•
•
•
•
•
•
•
•
•
•
•

Map Window
Command Line Window
Workspace Window
Output Window
Disassembly Window
Memory Window
IO Window
Status Window
Register Window
Image Window
Waveform Window
Stack Trace Window

REJ10J2120-0100 Rev. 1.00 Page 63 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.1 RAM Monitor Window
The RAM monitor window is a window in which changes of memory contents are displayed while running the
target program.
The displayed contents are updated at given intervals while running the target program.

This system has 1 Kbytes of RAM monitor area which can be located in any contiguous address
location or in 64 separate blocks comprised of 16 bytes each.

•

•

•

The RAM monitor area can be changed to any desired address range.
Refer to "7.1.2 Setting the RAM monitor area" for details on how to change the RAM monitor area.
The display content updating interval can be set for each window individually.
The actual updating interval at which the display contents are actually updated while running the
target program is shown in the title field of the Address display area.

ATTENTION
The interval time at which intervals the display is updated may be longer than the specified interval
depending on the operating condition (shown below).

•

- Host machine performance/load condition
- Communication interface
- Window size (memory display range) or the number of windows displayed

REJ10J2120-0100 Rev. 1.00 Page 64 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.1.1 Extended Menus
This window has the following popup menus that can be brought up by right-clicking in the window.

Menu Function
RAM Monitor Area... Set RAM monitor base address.
Sampling Period... Set RAM monitor sampling period.
Clear Clear access attribute.
Up Moves display position to the immediately preceding RAM

monitor area (smaller address)
Down Moves display position to the immediately following RAM

monitor area (larger address)
Address... Display from specified address.
Scroll Area... Specify scroll range.

1byte Display in 1Byte unit.
2bytes Display in 2Byte unit.
4bytes Display in 4Byte unit.

Data Length

8bytes Display in 8Byte unit.
Hex Display in Hexadecimal.
Dec Display in Decimal.
Single Dec Display in Signed Decimal.
Oct Display in Octdecimal.

Radix

Bin Display in Binary.
ASCII Display as ASCII character.
SJIS Display as SJIS character.
JIS Display as JIS character.
UNICODE Display as UNICODE character.
EUC Display as EUC character.
Float Display as Floating-point.

Code

Double Display as Double Floating-point.
Label Switch display or non-display of Label area.
Register Switch display or non-display of Register area.

Layout

Code Switch display or non-display of Code area.
Column... Set the number of columns displayed on one line.
Split Split window.
Toolbar display Display toolbar.
Customize toolbar... Open toolbar customize dialog box.
Allow Docking Allow window docking.
Hide Hide window.

REJ10J2120-0100 Rev. 1.00 Page 65 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.1.2 Setting the RAM monitor area
Choose the popup menu [RAM Monitor Area...] in the RAM monitor window.
The RAM monitor area setup window shown below will appear. The currently set RAM monitor areas are listed in
this window.

Use this window to add, delete or change RAM monitor areas.

Specify a RAM monitor area by its start address and size (the latter by a number of blocks.) •
•

•

•

The start address can be specified in 0x10 byte units.
If you specify a non-aligned address value, it is rounded off to the nearest address value in 0x10 byte
units before being set.
Specify the size of the RAM monitor area by a number of blocks.
For the E30A, one block is 16 bytes in size. Up to 64 blocks can be specified.
RAM monitor areas can be added until the total number of blocks used reaches 64.
(The number of blocks (and the size) that are currently available to use are displayed below the list.)

REJ10J2120-0100 Rev. 1.00 Page 66 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.1.2.1 Changing the RAM Monitor Area

The start address and the size of the RAM monitor area can be changed.
Changing from a dialog box
Select the RAM monitor area you want to change from a list of RAM monitor areas and double-click
on it.
The Set RRAM Area dialog box shown below will appear. Specify the start address and the size (by a
number of blocks) of the RAM monitor area in the Start and the Size fields of this dialog box.

•

Changing directly in the window
Select the RAM monitor area you want to change from a list of RAM monitor areas and click again in
its Start display column or Size display column.
Specify a new start address or a new size with which you want to be changed in the ensuing edit box.
Press the Enter key to confirm what you've entered, or the Esc key to cancel.

•

7.1.2.2 Adding RAM Monitor Areas

Click the [Add...] button.
The Set RRAM Area dialog box will appear. Specify the start address and the size (by a number of blocks) of a new
RAM monitor area in the Start and the Size fields of this dialog box.

7.1.2.3 Deleting RAM Monitor Areas

Select the RAM monitor area you want to delete from a list of RAM monitor areas and click the [Remove] button.
To delete all RAM monitor areas, click the [Remove All] button.

7.1.2.4 Setting the RAM monitor event

To set the RAM monitor event, select the below check box.

The RAM monitor event is set to the event E5.
Please note that the RAM monitor function doesn't operate when the RAM monitor event is not set.

REJ10J2120-0100 Rev. 1.00 Page 67 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.2 ASM Watch Window
The ASM watch window is a window in which you can register specific addresses as watchpoints and inspect
memory contents at those addresses.
If a registered address resides within the RAM monitor area, the memory content at that address is updated at
given intervals (by default, every 100 ms) during program execution.

The addresses to be registered are called the "watchpoints." One of the following can be registered: •

•

•

•
•
•

- Address (can be specified using a symbol)
- Address + Bit number
- Bit symbol

The registered watchpoints are saved in the debugger when the ASM watch window is closed and are
automatically registered when the window is reopened.
If symbols or bit symbols are specified for the watchpoints, the watchpoint addresses are
recalculated when downloading the target program.
The invalid watchpoints are marked by "-<not active>-" when displayed on the screen.
The order in which the watchpoints are listed can be changed by a drag-and-drop operation.
The watchpoint expressions, sizes, radixes and datas can be changed by in-place editing.

ATTENTION
The RAM monitor function of this debugger is realized with memory dump. Real-time capability is
impaired when this function is used.

•

• The background color by the access attribute cannot be changed.

REJ10J2120-0100 Rev. 1.00 Page 68 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.2.1 Extended Menus
This window has the following popup menus that can be brought up by right-clicking in the window.

Menu Function
Add... Add watchpoint.
Add Bit... Add bit-lebel watchpoint.
Remove Remove the selected watchpoint.
Remove All Remove all watchpoints.
Set... Set new data to selected watchpoint.

Bin Display in Binary.
Dec Display in Decimal.

Radix

Hex Display in Hexadecimal.
Refresh Refresh memory data.

Address Area Switch display or non-display of Address area. Layout
Size Area Switch display or non-display of Size area.
Enable RAM Monitor Switch enable or disable RAM moniter function. RAM Monitor
Sampling Period... Set RAM monitor sampling period.

Toolbar display Display toolbar.
Customize toolbar... Open toolbar customize dialog box.
Allow Docking Allow window docking.
Hide Hide window.

REJ10J2120-0100 Rev. 1.00 Page 69 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.3 C Watch Window
The C Watch Window displays C/C++ expressions and their values (results of calculations).
The C/C++ expressions displayed in the C Watch Window are known as C watchpoints. The displays of the results
of calculating the C watchpoints are updated each time a command is executed.
When RAM monitor function is effective and the C watch points are within the RAM monitor area, the displayed
values are updated during execution of the target program.

Variables can be inspected by scope (local, file local or global). •
•
•
•

•

•
•
•
•

The display is automatically updated at the same time the PC value changes.
Variable values can be changed.
The display radix can be changed for each variable individually.

- The initial display radix can be changed.
- Leading-zero suppression is selectable in hexadecimal display.

Any variable can be registered to the Watch tab, so that it will be displayed at all times:
- The registered content is saved for each project separately.
- If two or more of the C watch window are opened at the same time, the registered.
- The reference scope of the variable is selectable from current scope, global scope and each file's scopes.

The C watchpoints can be registered to separate destinations by adding Watch tabs.
Variables can be registered from another window or editor by a drag-and-drop operation.
The C watchpoints can be sorted by name or by address.
The RAM monitor can be allocated to the address of specified variable

REJ10J2120-0100 Rev. 1.00 Page 70 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

ATTENTION
You cannot change the values of the C watch points listed below: •

•

•

•

•

•

- Register variables
- C watch point which does not indicate an address(invalid C watch point)

If a C/C++ language expression cannot be calculated correctly (for example, when a C/C++ symbol
has not been defined), it is registered as invalid C watch point.
It is displayed as "--<not active>--". If that C/C++ language expression can be calculated correctly at
the second time, it becomes an effective C watch point.
The display settings of the Local, File Local and Global tabs are not saved. The contents of the Watch
tab and those of newly added tabs are saved.
The variables, which are changed in RAM monitor function, are global variables and file local
variables only.
The RAM monitor function of this debugger is realized with memory dump. Real-time capability is
impaired when this function is used.
The background color by the access attribute cannot be changed.

About more information for C variables, please refer to "12.1.3 Get or set C variables"

REJ10J2120-0100 Rev. 1.00 Page 71 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.3.1 Extended Menus
This window has the following popup menus that can be brought up by right-clicking in the window.

Menu Function
Add... Add C watchpoint.
Remove Remove the selected C watchpoint.
Remove All Remove all C watchpoints.
Initialize Reevaluates the selected C watchpoint.
Set New Value... Set new data to selected C watchpoint.

Hex Display in Hexadecimal.
Bin Display in Binary.
Default Display in Default Radix.
Toggle(All Variables) Change radix (toggle).

Radix

Set initial... Set initial radix.
Refresh Refresh memory data.
Hide type name Hide type names from variables.
Show char* as string Selects whether to display char* type as a string.
Zero suppress in Hex display Suppress zero in Hex display.

Sort by Name Sort variables by its name. Sort
Sort by Address Sort variables by its address.
Enable RAM Monitor Switch enable or disable RAM monitor function.
Sampling Period... Set RAM monitor sampling period.
Arrange a RAM monitor
area around this variable

Arrange a RAM monitor area around this variable.

Start Recording... Start to record the updated values.

RAM Monitor

Stop Recording Stop recording the updated values.
Add New Tab... Add new tab.
Remove Tab Remove the selected tab.
Copy Copy the selected item to the clipboard.
Copy All Copy the all items in the sheet to the clipboard.
Toolbar display Display toolbar.
Customize toolbar... Open toolbar customize dialog box.
Allow Docking Allow window docking.
Hide Hide window.

REJ10J2120-0100 Rev. 1.00 Page 72 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.4 Script Window
The Script Window displays the execution of text -format script commands and the results of that execution.
Script commands can be executed using a script file or interactively. You can also write script commands in the
script file so that they are automatically executed. The results of script command execution can also be stored in a
previously specified log file.

The Script Window has a view buffer that stores the results of executing the last 1000 lines. The
results of execution can therefore be stored in a file (view file) without specifying a log file.

•

•

•

•

When a script file is opened, the command history area changes to become the script file display area
and displays the contents of the script file. When script files are nested, the contents of the last
opened script file are displayed. The script file display area shows the line currently being executed
in inverse vide.
When a script file is open, you can invoke script commands from the command input area provided
the script file is not being executed.
The Script Window can record the history of the executed commands to a file. This function is not the
same as the log function. This function records not the result but only the executed commands, so the
saved files can be used as the script files.

REJ10J2120-0100 Rev. 1.00 Page 73 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.4.1 Extended Menus
This window has the following popup menus that can be brought up by right-clicking in the window.

Menu Function
Open... Open script file.
Run Run script file.
Step One step execution of script file.

Script

Close Close script file.
Save... Save view buffer to file. View
Clear Clear view buffer.
On... Open log file and start recording (start output to file). Log
Off Close log file and end recording (stop output to file).
On... Record the executed commands to a file. Record
Off Stop recording the executed commands.

Copy Copy the selection and put it on the Clipboard.
Paste Insert Clipboard contents.
Cut Cut the selection and put it on the Clipboard.
Delete Erase the selection.
Undo Undo the last action.
Toolbar display Display toolbar.
Customize toolbar... Open toolbar customize dialog box.
Allow Docking Allow window docking.
Hide Hide window.

REJ10J2120-0100 Rev. 1.00 Page 74 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.5 S/W Break Point Setting Window
The S/W Break Point Setting window allows you to set software break points.
Software breaks stop the execution of instructions immediately before the specified break point.

If you have set multiple software breakpoints, program execution stops when any one software break
address is encountered (OR conditions).

•

•

•

•

You can continue to set software breakpoints until you click the "Close" button to close the S/W
Break Point Setting Window.
You can clear, enable or disable software breakpoints selected by clicking in the software breakpoint
display area. You can also enable and disable software breakpoints by double-clicking on them.
Click on the "Save" button to save the software break points in the file. To reload software break
point settings from the saved file, click the "Load" button. If you load software break points from a
file, they are added to any existing break points.

REJ10J2120-0100 Rev. 1.00 Page 75 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.5.1 Command Button
The buttons on this window has the following meanings.

Button Function
Load... Load setting information from a file in which it was saved.
Save... Save the contents set in the window to a file.
Help Display the help of this window.
Add Add the break point.
Refer... Open file selection dialog box.
Close Close the window.
Delete Remove the selected break point.
Delete All Remove all break points.
Enable Enable the selected break points.
All Enable Enable all break points.
Disable Disable the selected break point.
All Disable Disable all break points.
View Shows the selected breakpoint positions in the Editor(Source) window.

REJ10J2120-0100 Rev. 1.00 Page 76 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.5.2 Setting and Deleting a Break Points from Editor(Source) Window
The area which can be set in the software breakpoint is different according to the product. Please refer to "12.1.2
Area where software breakpoint can be set" for details.
You can set break points in the Editor(Source) Window. To do so, double-click the break point setting area ("S/W
breakpoints" column) for the line in which you want to set the break. (A red marker is displayed on the line to
which the break point was set.)

You can delete the break point by double-clicking again in the break point setting area ("S/W breakpoints" column).

In the Editor(Source) window, a display of "S/W breakpoints" column is set to "Enable" by default. To erase this
column, deselect the [S/W breakpoints] check box in the dialog box opened by choosing the main menu - [Edit] ->
[Define Column Format]. The "S/W breakpoints" column is erased from all Editor (Source) windows. And select
popup menu - [Columns] -> [S/W breakpoints] in the Editor (Source) window, A column can be set up for each
Editor (Source) windows.

REJ10J2120-0100 Rev. 1.00 Page 77 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.6 Event Setting Window
The Event Setting window is used to set break events, trace events, time measurement events, and RAM monitor
event.

If the contents of events are altered, they are marked by an asterisk (*) on the title bar. The
asterisks (*) are not displayed after setting up the emulator.

•

• A total of 8 events comprised of break events, trace events, and interval time measurement events
can be used. The combinatorial conditions of events are as follows:

− Trace when one of the valid events is established. (OR condition)
− Events occur in a specified order. (Sequential condition)

ATTENTION
To change an already set event to another event, clear the currently set event in the EVENT area
first before setting a new event.

•

• The combinatorial event condition of Sequential can be specified for only break events.

REJ10J2120-0100 Rev. 1.00 Page 78 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.6.1 Specify the Event
To set events, double-click in the event setting area of the Event Setting Window. This opens an event setting
dialog box.
The type of event you specify can be changed by altering Event Type in this dialog box.

If you set events in the Set Event Status dialog box, they will be set as unused events. Unused events are searched
in the order shown below.

E7 -> E6 -> E3 -> E2 -> E1 -> E5 -> E4 -> E0
The events E0 and E4 and the event E5 are assigned lower priorities because the former are special events for
specifying the trace or the start and end of time measurement, and the latter is a data comparison break event or
the RAM monitor event.

You also can set events directly in the event setting area of the Event Setting Window. Select the line for the event
you want to set and then click on a condition to select.

The following can be set up as a condition of each event.

REJ10J2120-0100 Rev. 1.00 Page 79 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.6.1.1 Select the access condition

Select the access condition for an event to occur. Use the ACCESS area of the Event Setting Window to make this
selection.

ACCESS Condition Content
EXECUTION Instruc ecution tion Ex
BRANCH Branch
READ Data Read
WRITE Data Write
R/W Data Read or Data Write

The ACCESS conditions that can be specified for each event are listed below.

ACCESS Condition Event
EXECUTION BRANCH READ WRITE R/W

Break event Ye s No Yes Yes Yes
Trace event(Trace pickup event) No Ye s Yes Yes Yes
Trace event(Trace start event and Trace end
event)

Yes No Yes Yes Yes
Interval time measurement event No No Ye s Ye s Ye s
RAM monitor event No No No No No

7.6.1.2 Select address match or range specification

Select address match or range specification as the address range condition for an event to occur. Use the RANGE
area of the Event Setting Window to make this selection.

RAN E Condition G Content
EQU Address match
IN(START) Address range specification (Start Address)
IN(END) Address range specification (End Address)

Address range specification cannot be set for the events that have had EXECUTION selected in ACCESS condition.
Note also that only the following combinations of events can be selected.

E0(Start Address) and E1(End Address) •
•
•
•

E2(Start Address) and E3(End Address)
E4(Start Address) and E5(End Address)
E6(Start Address) and E7(End Address)

REJ10J2120-0100 Rev. 1.00 Page 80 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.6.2 Select the action condition by which an event is assumed to have occurred
Select the action condition by which an event is assumed to have occurred. Use the ACTION area of the Event
Setting Window to make this selection.
Any event selected in the EVENT area is displayed in different colors depending on the event action you have
selected for it in the ACTION area. The display color can be changed using the Color button.

ACTION ondition C Content Colo r
BREAK Break Red
TRACE PICK P U Trace Pickup Green
TIME START Execution time measuring star t Yellow
TIME END Execution time measuring end Yellow
TIME Interval time measurement Orange
TRACE STAR T Tracing star t Blue
TRACE END Tracing end Blue
RAM MONITOR RAM monitor function use Purple

The ACTION conditions that can be specified for each event are listed below.

ACTION Condition
Event BREAK TRACE

PICKUP TIME
STAR T

TIME
END TIME TRACE

STAR T
TRACE

END RAM
MONITOR

Event E0 Yes Yes Yes No No Yes No No
Event E1 Yes Yes No No Yes No No No
Event E2 Yes Yes No No Yes No No No
Event E3 Yes Yes No No Yes No No No
Event E4 Yes Yes No Yes No No Yes No
Event E5 Yes Yes No No Yes No No Yes
Event E6 Yes Yes No No Yes No No No
Event E7 Yes Yes No No Yes No No No

REJ10J2120-0100 Rev. 1.00 Page 81 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.6.3 Select the Combinatorial Condition
Select the combinatorial conditions of an event. Use the EVENT and the SEQ areas of the Event Setting Window to
make this selection.

Select the OR Condition In the EVENT area you can select an use event. •

Select the Sequential Condition In the SEQ area you can select an event for which the Sequential
condition is to be set. Sequential condition can only be selected for break events. However, if the
event E5 is used to set a data comparison break event or the RAM monitor event, you cannot specify
Sequential for the event E5.

•

S quential Condition e Content
- Single Condition
Ex -> Ex-1 Sequential Condition

The Sequential condition can also be selected using the Sequential button.

Click on the button between the events for which you want to specify the Sequential condition. Transition between
the events will be shown by an arrow. The Sequential condition can only be specified for the events that have been
set as break events. Example: To set successively occurring events as in E3 -> E2 -> E1 -> E0

The Sequential condition can be specified for two to eight events. You also can specify multiple Sequential
conditions in pairs. If the Sequential condition is specified for the event En, that event and the event En-1 are
specified to be Sequential. The Sequential condition can be specified in order of events En, En-1, En-2, and so on.
For example, the Sequential condition can be specified for events E2 -> E1 -> E0, but cannot be specified in order of
E0 -> E1 -> E2, or in order of E3 -> E0, etc.

REJ10J2120-0100 Rev. 1.00 Page 82 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.6.4 Setting the RAM monitor event
To set the RAM monitor event, select the below check box.

The RAM monitor event is set to the event E5.
Please note that the RAM monitor function doesn't operate when the RAM monitor event is not set.

ATTENTION
Only when RAM monitor mode is selected in the Debugging Mode tab of the Init dialog, RAM
monitor function can be used.

•

7.6.5 Select the Trace Range
A trace range can be selected for the trace event concerned.
A trace measurement of up to 8M cycles can be recorded.

Trace Area Content
Break Stores the 8M cycles to the point at which the target program stops.
Befor e Stores the 8M cycles to the point at which the trace point is passed.
After Stores the 8M cycles of trace data after the trace point.
Full Stores the 8M cycles of trace data after the trace starts.

ATTENTION
Only when Trace mode is selected in the Debugging Mode tab of the Init dialog, Trace function can
be used.

•

REJ10J2120-0100 Rev. 1.00 Page 83 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.6.6 Select the Trace Mode
The trace mode can be selected.

Mode Content
Trace priority The Trace priority mode gives priority to the trace data output, and the

MCU execution is delayed.
MCU execution priority The MCU execution priority mode gives priority to the MCU execution, and

the trace range is 512 cycles.

The kind of trace data to record is displayed in the trace kind column.

Kind Content
Branch/Data Access Branch trace, Data acc s trace es
Branch(Compression) Condition branch trace

ATTENTION
Only when Trace mode is selected in the Debugging Mode tab of the Init dialog, Trace function can
be used.

•

7.6.7 Setting the execution time measurement
The trace mode can be selected.

The Execution time measurement event is set to the event E0 and the event E4.
Please note that the execution time measurement function doesn't operate when the Execution time measurement
event is not set.

ATTENTION
Only when Time measurement mode is selected in the Debugging Mode tab of the Init dialog,
Execution time measurement function can be used.

•

REJ10J2120-0100 Rev. 1.00 Page 84 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.6.8 Command Button
The buttons at the bottom of the Event Setting window have the following meanings.

Button Name Content
Color ... Change the display color of the event list.
Reset Discards the contents being displayed in the window and loads contents from

the emulator in which they were set.
Save... Saves the contents set in the window to a file.
Load... Loads event information from a file in which it was saved.
Set Sends the contents set in the window to the emulator.
Close Closes the window.

REJ10J2120-0100 Rev. 1.00 Page 85 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.6.9 Setting and Deleting a Break Points from Editor(Source) Window
You can set break points in the Editor(Source) Window. To do so, double-click the break point setting area ("H/W
Breakpoints" column) for the line in which you want to set the break. (A blue marker is displayed on the line to
which the break point was set.)

You can delete the break point by double-clicking again in the break point setting area ("H/W Breakpoints" column).

In the Editor(Source) window, a display of "H/W Breakpoints" column is set to "Enable" by default. To erase this
column, deselect the [H/W Breakpoints] check box in the dialog box opened by choosing the main menu - [Edit] ->
[Define Column Format]. The "H/W Breakpoints" column is erased from all Editor (Source) windows. And select
popup menu - [Columns] -> [H/W Breakpoints] in the Editor (Source) window, A column can be set up for each
Editor (Source) windows.

REJ10J2120-0100 Rev. 1.00 Page 86 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.6.10 Specify the Break Events
To specify an break event, select Break on the Event Type of the Event Select dialog box.

Following events can be set for an break event.

Instruction Execution
To specify an instruction execution event, select the "EXECUTION" in the ACCESS area of the event.
The event is established immediately before executing the instruction at a specified address.

•

• Memory Access
To specify a memory access event, select the "READ" or "WRITE or "R/W" in the ACCESS area of the
event. The event is established when memory is accessed at the specified address or under conditions
set for the specified address range. When specifying a break event for memory access, you can
specify the data to be compared with the data written/read to or from a specified address. You also
can specify mask bits for the comparison data.

7.6.10.1 Instruction Execution of Specified Address

Specify the following.

Example) Instruction execution at address F81000h

REJ10J2120-0100 Rev. 1.00 Page 87 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.6.10.2 Writing/Reading a Specified Address

Set as below.

Example) Writing to address 4100h

Example) Writing byte length data 32h to address 4100h

REJ10J2120-0100 Rev. 1.00 Page 88 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

Example) Writing word length data 1234h to address 4100h

ATTENTION
Data comparison can be specified for the event E5 only when Trace mode is selected in the
Debugging Mode tab of the Init dialog.

•

•

•

If the event E5 is used for a break event without data comparison, be sure to specify 0000h for the
mask value. Furthermore, if it is used for data comparison in byte units, specify 00FFh for the mask
value. Note that data comparison in word units beginning with an odd address can also be specified.
If data comparison is set, the real-time capability of the user program execution will be lost.

REJ10J2120-0100 Rev. 1.00 Page 89 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.6.10.3 Reading/writing data to the specified address range

Set as below.

Example) Writing data to addresses ranging from 4100h to 41FFh

7.6.10.4 Entering to specified function

Set as below.

Example) Entering a break to function name “change”

REJ10J2120-0100 Rev. 1.00 Page 90 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.6.11 Specify the Event Combination Condition
Break events can be used in one of the following combinations. (A total of 8 events comprised of break events, trace
events, and time measurement events in combination can be specified.)

One of the specified events is established. (OR condition) •
• Events occur in a specified order. (Sequential condition)

7.6.11.1 Select OR

Check (turn on) an event in the event specification area that you want to use.

7.6.11.2 Select Sequential

Use the Sequential button.

Click on the button between the events for which you want to specify the Sequential condition. Transition between
the events will be shown by an arrow. The Sequential condition can only be specified for the events that have been
set as break events. However, if the event E5 is used to set a data comparison break event, you cannot specify
Sequential for the event E5.
The Sequential condition can be specified for two to eight events. You also can specify multiple Sequential
conditions in pairs.
If the Sequential condition is specified for the event En, that event and the event En-1 are specified to be
Sequential.
The Sequential condition can be specified in order of events En, En-1, En-2, and so on. For example, the Sequential
condition can be specified for events E2 -> E1 -> E0, but cannot be specified in order of E0 -> E1 -> E2, or in order
of E3 -> E0, etc.

Example: To set successively occurring events as in E3 -> E2 -> E1 -> E0

REJ10J2120-0100 Rev. 1.00 Page 91 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

Example: To set successively occurring events as in E3 -> E2 and E7 -> E6 -> E5

7.6.12 Specify the Trace Events
To specify a trace event, select Trace Point on the Trace/Time Measurement tab of the Event Select dialog box.

For the trace event, you can specify a branch trace event that records jump address information or a data trace
event that records data access information. For whichever trace event to be set, you should specify trace conditions
as necessary.
Note that you can set both branch trace event and data trace event, so that mixed information can be recorded.
When the trace event are not set, the trace function is the condition branch trace. The condition branch trace is
recorded by compressing information of the condition branch instruction.
Therefore, the condition branch trace can record the execution history more than the branch trace.

The following shows the trace conditions that can be set.

Specify the branch trace event •
The new instruction address fetched at the jump address is recorded.
To specify an branch trace event, select the "BRANCH" in the ACCESS area of the event. The branch trace
event can specify only the setting that records jump address information in the entire address range.
Specify the following.

Example: To record the jump address information in the entire address range

REJ10J2120-0100 Rev. 1.00 Page 92 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

Specify the data trace event •

The access information to the specified address is recorded. To specify an data trace event, select the
"READ/WRITE/RW" in the ACCESS area of the event. The event is established when memory is accessed at
the specified address or under conditions set for the specified address range.
Specify the following.

Example: To record the data writes to the address 4100h

REJ10J2120-0100 Rev. 1.00 Page 93 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

Specify the condition branch trace •
The jump address information in the entire address range is recorded.
Please remove all the trace events.

REJ10J2120-0100 Rev. 1.00 Page 94 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.6.12.1 Specifying a trace range for the trace event to be set

To set a trace event, you need to specify a trace range. Event setting conditions differ depending on mode specified
for a trace range.
The specifiable trace range and event setting conditions are shown below.

Specify Break or Full for the trace range for the trace event to be set
Specify any address or address range as you set a trace event. By default, Break is set for the trace range,
and events for recording jump address information in the entire address range are set in E6 and E7 as the
trace event.

•

Default setting

Trace conditions (branch trace/data trace) should be specified in the ACCESS area of the event used. To
specify an address range, use range specification of the event. The following shows a combination of events
for which a range can be specified.

Combination of E0 and E1 •
•
•
•

Combination of E2 and E3
Combination of E4 and E5
Combination of E6 and E7

To perform a trace with any condition you specified, change the above setting.
Specify the following.

REJ10J2120-0100 Rev. 1.00 Page 95 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

Example: To record data writes to the 4100h, 4110h and 4120h in Full mode

To set a data write to the addresses 4110h and 4120h, open the Set Event Status dialog box
again and change the address in the Address1 text box shown above to register it as
addition.

REJ10J2120-0100 Rev. 1.00 Page 96 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

•

•
•

Specify Before for the trace range for the trace event to be set
Set the trace start event (only event E0 specifiable) and the trace end event (only event E4 specifiable) and
then specify any address or address range to set a trace event.

In Before mode, the debugger records the trace events that have occurred from the trace start event
(program started running) till the condition for the trace end event is met.

For the trace start event, set a trace start for Before mode (by specifying the current PC value for the address
and EXECUTION for the ACCESS condition) in the event E0. For the trace end event, set any address and
ACCESS condition in the event E4 as the trace end condition.

Trace conditions (branch trace/data trace) should be specified in the ACCESS area of the event used. To
specify an address range, use range specification of the event. The events that can be combined in range
specification are limited to those given below because the events E0 and E4 are used for the trace start and
trace end events.

Combination of E2 and E3
Combination of E6 and E7

By default, events for recording jump address information in the entire address range are set in E6 and E7
as the trace event.
Specify the following.

Example: To record jump address information in the entire address range in Before mode and specify
instruction execution at the address F82000h as the trace end condition

To perform a trace with any condition you specified, change the above setting.
Specify the following.

REJ10J2120-0100 Rev. 1.00 Page 97 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

Example: To record data writes in the range 4100h to 41FFh in Before mode and specify data writes at the
address 4200h as the trace end condition

REJ10J2120-0100 Rev. 1.00 Page 98 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

•

•
•

Specify After for the trace range for the trace event to be set
Set the trace start event (only event E0 specifiable) and the trace end event (only event E4 specifiable) and
then specify any address or address range to set a trace event.

In After mode, the debugger records the trace events that have occurred from when the condition for the
trace start event was met till when the program has stopped running.

For the trace start event, set any address and ACCESS condition in the event E0 as the trace start condition.
For the trace end event, set a condition unlikely to occur (e.g., 0h is specified for the address while WRITE is
specified for the ACCESS condition) in the event E4 as the trace end event for After mode.

Trace conditions (branch trace/data trace) should be specified in the ACCESS area of the event used. To
specify an address range, use range specification of the event. The events that can be combined in range
specification are limited to those given below because the events E0 and E4 are used for the trace start and
trace end events.

Combination of E2 and E3
Combination of E6 and E7

By default, events for recording jump address information in the entire address range are set in E6 and E7
as the trace event.
Specify the following.

Example: To record data access (data read and data write) in the entire address range in After mode and
specify data writes at the address 4100h as the trace start condition

To perform a trace with any condition you specified, change the above setting. Specify the following.

REJ10J2120-0100 Rev. 1.00 Page 99 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

Example: To record data writes to the 4100h, 4110h and 4120h in After mode and and specify data writes at
the address 4010h as the trace start condition

To set a data write to the addresses 4110h and 4120h, open the Set Event Status dialog box
again and change the address in the Address1 text box shown above to register it as
addition.

ATTENTION
In Before and After modes, the debugger records the trace events that have occurred within the trace
range, as well as the trace start events that occurred during that time. Note that no trace end events
are recorded.

•

•

•

•

The condition branch trace might take time to display the disassemble mode and the source mode of
the trace window.
When the MCU execution priority mode is selected in the trace mode, the trace range is 512 cycles.
Please select the Trace priority mode in the trace mode when the trace range is 8M cycles. The Trace
priority mode gives priority to the trace data output, and the MCU execution is delayed. This mode
requires a program processing time more than in MCU execution priority mode. When the condition
branch trace, the trace mode is the Trace priority mode.
Only when Trace mode is selected in the Debugging Mode tab of the Init dialog, Trace function can
be used.

REJ10J2120-0100 Rev. 1.00 Page 100 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.6.13 Specify the Time Measurement Events
To specify an time measurement event, double-click to the event setting area. This opens an event setting dialog
box. Select Time Measurement on the Event Type of the event setting dialog box.

There are the following measurement functions in the time measurement.

Execution time measurement
Measuring the program execution time from when the program started to when it stops.

•

•

•

Interval time measurement
Measuring the interval time from Start Event to End Event.
Following events can be set for an interval time measurement event.
− Memory Access

To specify a memory access event, select the "READ or WRITE or R/W" in the ACCESS area of the
event. The event is established when memory is accessed at the specified address.

Set the measurement events (measurement start event and measurement end event) at the
Measurement Condition of the Time Measurement Window.

7.6.13.1 Specify the Execution Time Measurement Events

Measuring the program execution time from when the program started to when it stops
Select the below check box.

The Execution time measurement event is set to the event E0 and the event E4.
Please note that the execution time measurement function doesn't operate when the Execution time
measurement event is not set.

REJ10J2120-0100 Rev. 1.00 Page 101 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.6.13.2 Specify the Interval Time Measurement Events

Writing/Reading a Specified Address
Set as below.

•

Example: Writing to address 410h

Example: Writing byte length data 32h to address 420h

REJ10J2120-0100 Rev. 1.00 Page 102 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

Example: Writing word length data 1234h to address 430h

ATTENTION
Only when Time measurement mode is selected in the Debugging Mode tab of the Init dialog,
Execution time measurement function can be used.

•

REJ10J2120-0100 Rev. 1.00 Page 103 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.7 Time Measurement Window
The Time Measurement window displays the minimum/maximum/average execution time and measurement count
at any measurement point. The execution time of up to 3 measurement points can be measured simultaneously.
You can specify the event for the measurement condition in the same manner as when specifying events in the
Event Setting Window.

If the contents of events are altered, they are marked by an asterisk (*) on the title bar. The
asterisks (*) are not displayed after setting up the emulator.

•

ATTENTION
The Event Setting Window and the Time Measure Windows use the same resource of the emulator.
If the event settings are modified in Time Measure Window, settings of the Event Setting Window
are modified, too.

•

REJ10J2120-0100 Rev. 1.00 Page 104 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.7.1 Specify the Time Measurement Event
The events listed below can be specified as measurement events.

• Memory Access

To set events, double-click to the event setting area of the Time Measurement Window. This opens an event setting
dialog box.
For details on how to specify an interval time measurement event, see "7.6.13 Specify the Time Measurement
Events."

7.7.2 Time Measurement Condition
For the time measurement conditions, the following can be specified for each measurement interval.

Measures the time in an interval from where the start event is
established till where the end event is established.

Measures the time from where an event is established till
where the next event is established.

7.7.3 Command Button
The buttons on this window has the following meanings.

Butto n Function
Reset Discards the contents being displayed in the window and loads contents from the

emulator in which they were set.
Save... Saves the contents set in the window to a file.
Load... Loads event information from a file in which it was saved.
Set Sends the contents set in the window to the emulator.
Close Closes the window.

REJ10J2120-0100 Rev. 1.00 Page 105 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.7.4 Set the Measurement Condition
For the debugger, the following measurement conditions can be specified.

Measure the execution time between the events. •
• Measure the event occurrence cycle.

Up to three measurement intervals can be specified. To specify measurement intervals, double-click any line
(MP1-MP3) in the Measurement Point group of the Interval Time Measure Window. This opens a dialog box for
specifying measurement conditions.

7.7.4.1 Measure the execution time between the events

1. Set the measurement events (measurement start event and measurement end event).
2. Specify the following in the Measurement Condition Designation dialog.

REJ10J2120-0100 Rev. 1.00 Page 106 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.7.4.2 Measure the event occurrence cycle

1. Set the measurement event (measurement start event only).
2. Specify the following in the Measurement Condition Designation dialog.

REJ10J2120-0100 Rev. 1.00 Page 107 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.7.5 Reference the time measurement results

7.7.5.1 Reference the execution time measurement results

The point execution time measurement results are displayed in the Platform tab of the Status window.
The cumulative result is displayed when measured two or more times.

7.7.5.2 Reference the interval time measurement results

The point time measurement results are displayed at the bottom of the Point Time Measurement window.

Min Minimum execution time
Max Maximum execution time
Avg Average execution time
Cnt Measurement count

7.7.5.3 Clear the measurement results

Click the button of the measurement result to be cleared.

You can clear all the measurement results by clicking the ALL button.

REJ10J2120-0100 Rev. 1.00 Page 108 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.8 Trace Window
The Trace Window is used to display the results of real-time trace measurement.

Bus mode
This mode allows you to inspect cycle-by-cycle bus information. The display content depends on the
MCU and simulator system used. In addition to bus information, this mode allows disassemble,
source line or data access information to be displayed in combination.

•

•

•

•

Disassemble mode
This mode allows you to inspect the executed instructions. In addition to disassemble information,
this mode allows source line or data access information to be displayed in combination.
Data access mode
This mode allows you to inspect the data read/write cycles. In addition to data access information,
this mode allows source line information to be displayed in combination.
Source mode
This mode allows you to inspect the program execution path in the source program.

The measurement result is displayed when a trace measurement has finished. When a trace measurement restarts,
the window display is cleared.

The range of a trace measurement can be altered in the Trace Point Setting Window. For details about this window,
refer to "7.6 Event Setting Window" With default settings, the trace information immediately before the program
has stopped is recorded.

7.8.1 Configuration of Bus Mode
When bus mode is selected, trace information is displayed in bus mode. Bus mode is configured as shown below.
The display content in bus mode differs depending on the MCU or simulator system used.

REJ10J2120-0100 Rev. 1.00 Page 109 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

1. Cycle display area: Shows trace cycles. Double-click here to bring up a dialog box to change the displayed

cycle.
2. Label display area: Shows labels corresponding to address bus information. Double-click here to bring up a

dialog box to search for addresses.
3. Bus information display area: The content displayed here differs depending on the MCU or simulator system

used.
- Refer to "7.8.6 Display of bus information on the R32C Debugger"

4. Time information display area: Shows time information of trace measurement result. One of the following
three modes can be selected from the menu. (Not supported.)

- Absolute Time:Shows an elapsed time from the time the program started running up to now in terms of
absolute time (default).

- Differences:Shows a differential time from the immediately preceding cycle.
- Relative Time:Shows a relative time from the selected cycle. Note, however, that this mode changes to the

absolute time display mode when the trace measurement result is updated.
5. Acquired range of trace measurement result: Shows the currently acquired range of trace measurement result.
6. Trace measurement range: Shows the currently set range of trace measurement.
7. First line cycle: Shows the cycle of the first line displayed.
8. First line address: Shows the address of the first line displayed.
9. First line time: First line time: Shows the time information of the first line displayed.
10. Window splitting box: Double-clicking this box splits the window into parts.

In addition to bus information, the window can display disassemble, source line or data access information in
combination. In this case, the display will be similar to the one shown below.

REJ10J2120-0100 Rev. 1.00 Page 110 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.8.2 Configuration of Disassemble Mode
When disassemble mode is selected while bus mode is unselected, trace information is displayed in disassemble
mode. Disassemble mode is configured as shown below.

1. Address display area: Shows addresses corresponding to instructions. Double-click here to bring up a dialog

box to search for addresses.
2. Object code display area: Shows the object codes of instructions.
3. Label display area: Shows labels corresponding to instruction addresses. Double-click here to bring up a dialog

box to search for addresses.
4. Mnemonic display area: Shows the mnemonics of instructions.

Other display areas are the same as in bus mode.

In addition to disassemble information, the window can display source line or data access information in
combination. In this case, the display will be similar to the one shown below.

REJ10J2120-0100 Rev. 1.00 Page 111 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.8.3 Configuration of Data Access Mode
When data access mode is selected while bus mode and disassemble mode are unselected, trace information is
displayed in data access mode. Data access mode is configured as shown below.

1. Data access display area: Shows data access information. If the information displayed here is "000400 1234

W," for example, it means that data "1234H" was written to the address 000400H in 2-byte width.

Other display areas are the same as in bus mode.

In addition to data access information, the window can display source line information in combination. In this case,
the display will be similar to the one shown below.

REJ10J2120-0100 Rev. 1.00 Page 112 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.8.4 Configuration of Source Mode
When only source mode is selected, trace information is displayed in source mode. Source mode is configured as
shown below.

1. Line number display area: Shows the line number information of the displayed file. Double-click here to bring

up a dialog box to change the displayed file.
2. Address display area: Shows addresses corresponding to source lines. Double-click here to bring up a dialog

box to search for addresses.
3. Referenced cycle display area: Shows the currently referenced cycle that is marked by ">>." Furthermore, the

addresses corresponding to source lines, if any, are marked by "-."
4. Source display area: Shows the content of the source file.
5. File name: Shows the file name of the currently displayed source file.
6. Referenced cycle: Shows the currently referenced cycle.
7. Referenced address: Shows the address corresponding to the currently referenced cycle.
8. Referenced time: Shows the time information corresponding to the currently referenced cycle.

Other display areas are the same as in bus mode.

REJ10J2120-0100 Rev. 1.00 Page 113 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.8.5 Extended Menus
This window has the following popup menus that can be brought up by right-clicking in the window.

Menu Function
BUS Display the information of BUS mode.
DIS Display the information of Disassemble mode.
SRC Display the information of Source mode.
DATA Display the information of Data access mode.

Cycle... Changes the displayed position by specifying a cycle.
Address... Changes the displayed position by searching an address.

View

Source... Display a selected source file.
Absolute Time Shows elapsed time from the time the program started

running up to now in terms of absolute time.
Differences Shows a differential time from the immediately preceding

displayed cycle.

Time

Relative Time Shows a relative time from the currently selected cycle.
Forward Changes the direction of search to forward direction.
Backward Changes the direction of search to reverse direction.
Step Searches in Step mode in the specified direction of search.
Come Searches in Come mode in the specified direction of search.
Stop Stops trace measurement in the middle and displays the

measured content at the present point of time.

Trace

Restart Restarts trace measurement.
Layout... Change layout of the corrent view.
Copy Copy selected lines.
Save... Save trace data to file.
Load... Load trace data from file.
Toolbar display Display toolbar.
Customize toolbar... Open toolbar customize dialog box.
Allow Docking Allow window docking.
Hide Hide window.

REJ10J2120-0100 Rev. 1.00 Page 114 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.8.6 Display of bus information on the R32C Debugger
From left to right, the contents are as follows:

Src, Dest
The status of the address bus

•

•

•

Data
The status of the data bus
Size
The data access size

Representation BIU status
B 8bit
W 16bit
L 32bit
Q 64bit

Status
The status between the memory and I/O.

•

Representation Status Factor
JMP Jump/Return Records as branch information.

Src is branch instruction address. Dest is jump address.
RD Read access Records as data access information.
WR Write access Records as data access information.

Jcnd
The status ('0' true or '1' false) of the condition branch instruction.

•

REJ10J2120-0100 Rev. 1.00 Page 115 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.9 GUI I/O Window
The GUI I/O window allows you for port input by creating a user target system key input panel (button) in the
window and clicking the created button. And this window also allows you to implement the user target system
output panel in the window.

You can arrange the following parts on the window. •

•
•

- Label (character string)
Displays/erases a character string specified by the user when any value is written to the specified address
(bit).

- LED
Changes the display color of any area when any value is written to the specified address (bit). (Substitution
for LED ON)

- Button
A virtual port input can be executed at the time the button is pressed.

- Text
Display the text string.

You can also save the created panel in a file and reload it.
You can set up to 200 address points to the created part. If different addresses are set to the
individual parts, you can arrange up to 200 parts.

REJ10J2120-0100 Rev. 1.00 Page 116 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.9.1 Extended Menus
This window has the following popup menus that can be brought up by right-clicking in the window.

Menu Function
Select Item Select an I/O item.
Delete Delete the selected I/O item.
Copy Copy the selected I/O item.
Paste Paste the copied I/O item.
Create Button Create a new button item.
Create Label Create a new label item.
Create LED Create a new LED item.
Create Text Create a new text item.
Display grid Display the grid line.
Save... Save I/O panel file.
Load... Load I/O panel file.
Sampling Period... Set RAM monitor sampling period.
Toolbar display Display toolbar.
Customize toolbar... Open toolbar customize dialog box.
Allow Docking Allow window docking.
Hide Hide window.

REJ10J2120-0100 Rev. 1.00 Page 117 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.10 MR Window
Use the MR Window to display the status of the realtime OS.

You can only use the MR Window when you have downloaded a program that uses the realtime OS (if the
downloaded program does not use the MR, nothing is displayed in the MR Window when it is opened.)

You can open the MR window as many as the number of display modes . •
•

•
•
•

•

By clicking the desired button, the MR window display mode changes and the display data also
changes.
By double-clicking the desired task line, you can display the context data of the task.
You can drag the cursor to change the width of the display area in each mode.
If the downloaded program does not use MR, you cannot select all the menu which will select the
display mode.
The usable display mode depends on MRxx.

ATTENTION
Please use the startup file (crt0mr.axx/start.axx) whose contents matches with the version of MRxx, when you
make downloaded program. The MR Window and MR command will not run properly if the startup file you uses
don't match with the version of MRxx.

REJ10J2120-0100 Rev. 1.00 Page 118 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.10.1 Extended Menus
This window has the following popup menus that can be brought up by right-clicking in the window.

Menu Function
Task Displays Task status.
Ready Queue Displays Ready status.
Timeout Queue Displays Timeout status.
Event Flag Displays Event Flag status.
Semaphore Displays Semaphore status.
Mailbox Displays Mailbox status.
Data Queue Displays Data Queue status.
Cyclic Handler Displays Cyclic Handler status.
Alarm Handler Displays Alarm Handler status.
Memory Pool Displays Memory Pool status.
Message Buffer* Displays Message Buffer status.
Port Displays Port status.

Mode

Mailbox(with Priority) Displays Mailbox(with Priority) status.
Context... Displays Context.
Layout Status Bar Switch display or non-display of status bar.
Refresh Refresh memory data.

Enable RAM Monitor Switch enable or disable RAM Monitor function. RAM Monitor
Sampling Period... Set RAM Monitor sampling period.

Toolbar display Display toolbar.
Customize toolbar... Open toolbar customize dialog box.
Allow Docking Allow window docking.
Hide Hide window.

*: Not supported.

REJ10J2120-0100 Rev. 1.00 Page 119 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.10.2 Display the Task Status
In the MR window, select Popup Menu - [Mode] -> [Task].

By double-clicking any line, the information on the task context is displayed in the Context dialog. For details on
the Context dialog, see "7.10.12 Display the Task Context"
The following data is displayed in the status bar.

7.10.2.1 Display the Task Status(When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)

All the tasks defined in the configuration are listed in the order of ID number. The function of each item is as
described below. (When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)

Items Contents
ID Task ID
StaAddr Starting address of task
(name) Task name
Pri Priority
Status*1 Task status
wup_count Wake-up count
timeout Timeout value
flg_ptn Wait bit pattern of event flag
flg_mode*2 Wait cancellation condition of event flag

REJ10J2120-0100 Rev. 1.00 Page 120 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

*1Task Status •

Display Status
RUN RUNNING state
RDY READY state
SUS SUSPENDED state
DMT DORMANT state
WAI(SLP) Sleeping state
WAI(SLP)-SUS Sleeping state (suspended)
WAI(SLP-TMO) Sleeping state with time-out
WAI(SLP-TMO)-SUS Sleeping state with time-out (suspended)
WAI(DLY) Delayed state due to dly_tsk
WAI(DLY)-SUS Delayed state due to dly_tsk (suspended)
WAI(FLG) Waiting state for an eventflag
WAI(FLG)-SUS Waiting state for an eventflag (suspended)
WAI(FLG-TMO) Waiting state for an eventflag with time-out
WAI(FLG-TMO)-SUS Waiting state for an eventflag with time-out (suspended)
WAI(SEM) Waiting state for a semaphore resource
WAI(SEM)-SUS Waiting state for a semaphore resource (suspended)
WAI(SEM-TMO) Waiting state for a semaphore resource with time-out
WAI(SEM-TMO)-SUS Waiting state for a semaphore resource with time-out (suspended)
WAI(MBX) Receiving waiting state for a mailbox
WAI(MBX)-SUS Receiving waiting state for a mailbox (suspended)
WAI(MBX-TMO) Receiving waiting state for a mailbox with time-out
WAI(MBX-TMO)-SUS Receiving waiting state for a mailbox with time-out (suspended)

*2Display the Wait Cancellation Condition of Event Flag •

flg_mode Status
TWF_ANDW Waits for all bits set in the wait bit pattern to be set (AND

wait)
TWF_ANDW+TWF_CLR Clears the event flag to 0 when an AND wait has occurred

and the task wait status has been cancelled
TWF_ORW Waits for any one bit set in the wait bit pattern to be set

(OR wait)
TWF_ORW+TWF_CLR Clears the event flag to 0 when an OR wait has occurred

and the task wait status has been cancelled

REJ10J2120-0100 Rev. 1.00 Page 121 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.10.2.2 Display the Task Status(When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

All the tasks defined in the configuration are listed in the order of ID number. The function of each item is as
described below. (When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

Items Contents
ID Task ID
Name Task name
Pri Priority
Status*1 Task status
Wupcnt Wake-up count
Actcnt Activated count
Tmout Timeout value
Flgptn Wait bit pattern of event flag
Wfmode*2 Wait cancellation condition of event flag

REJ10J2120-0100 Rev. 1.00 Page 122 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

*1Task Status •

Display Status
RUN RUNNING state
RDY READY state
SUS SUSPENDED state
DMT DORMANT state
WAI(SLP) Sleeping state
WAI(SLP)-SUS Sleeping state (suspended)
WAI(SLP-TMO) Sleeping state with time-out
WAI(SLP-TMO)-SUS Sleeping state with time-out (suspended)
WAI(DLY) Delayed state due to dly_tsk
WAI(DLY)-SUS Delayed state due to dly_tsk (suspended)
WAI(FLG) Waiting state for an eventflag
WAI(FLG)-SUS Waiting state for an eventflag (suspended)
WAI(FLG-TMO) Waiting state for an eventflag with time-out
WAI(FLG-TMO)-SUS Waiting state for an eventflag with time-out (suspended)
WAI(SEM) Waiting state for a semaphore resource
WAI(SEM)-SUS Waiting state for a semaphore resource (suspended)
WAI(SEM-TMO) Waiting state for a semaphore resource with time-out
WAI(SEM-TMO)-SUS Waiting state for a semaphore resource with time-out (suspended)
WAI(MBX) Receiving waiting state for a mailbox
WAI(MBX)-SUS Receiving waiting state for a mailbox (suspended)
WAI(MBX-TMO) Receiving waiting state for a mailbox with time-out
WAI(MBX-TMO)-SUS Receiving waiting state for a mailbox with time-out (suspended)
WAI(SDTQ) Sending waiting state for a data queue
WAI(SDTQ)-SUS Sending waiting state for a data queue (suspended)
WAI(SDTQ-TMO) Sending waiting state for a data queue with time-out
WAI(SDTQ-TMO)-SUS Sending waiting state for a data queue with time-out (suspended)
WAI(RDTQ) Receiving waiting state for a data queue
WAI(RDTQ)-SUS Receiving waiting state for a data queue (suspended)
WAI(RDTQ-TMO) Receiving waiting state for a data queue with time-out
WAI(RDTQ-TMO)-SUS Receiving waiting state for a data queue with time-out (suspended)
WAI(VSDTQ) Sending waiting state for an extended data queue
WAI(VSDTQ)-SUS Sending waiting state for an extended data queue (suspended)
WAI(VSDTQ-TMO) Sending waiting state for an extended data queue with time-out
WAI(VSDTQ-TMO)-SUS Sending waiting state for an extended data queue with time-out

 (suspended)
WAI(VRDTQ) Receiving waiting state for an extended data queue
WAI(VRDTQ)-SUS Receiving waiting state for an extended data queue (suspended)
WAI(VRDTQ-TMO) Receiving waiting state for an extended data queue with time-out
WAI(VRDTQ-TMO)-SUS Receiving waiting state for an extended data queue with time-out

 (suspended)
WAI(MPF) Waiting state for a fixed-sized memory block
WAI(MPF)-SUS Waiting state for a fixed-sized memory block (suspended)
WAI(MPF-TMO) Waiting state for a fixed-sized memory block with time-out
WAI(MPF-TMO)-SUS Waiting state for a fixed-sized memory block with time-out

 (suspended)

REJ10J2120-0100 Rev. 1.00 Page 123 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

*2 Display the Wait Cancellation Condition of Event Flag •

Wfmode Status
TWF_ANDW Waits for all bits set in the wait bit pattern to be set (AND wait)
TWF_ORW Waits for any one bit set in the wait bit pattern to be set (OR wait)

7.10.3 Display the Ready Queue Status
In the MR window, select Popup Menu - [Mode] -> [Ready Queue].

The following data is displayed in the status bar.

7.10.3.1 Display the Ready Queue Status(When the realtime OS is MRxx conformed to uITRON specifications
V.3.0.)

The function of each item is as described below. (When the realtime OS is MRxx conformed to uITRON
specifications V.3.0.)

Item Contents
Pri Displays priority
RdyQ Shows the ID Nos. and task names of tasks in the ready queue

Up to 8 characters of the task name is displayed in the RdyQ field. When the task name exceeds 8
characters, the extra characters are omitted.

•

7.10.3.2 Display the Ready Queue Status(When the realtime OS is MRxx conformed to uITRON specifications
V.4.0.)

The function of each item is as described below. (When the realtime OS is MRxx conformed to uITRON
specifications V.4.0.)

Item Contents
Pri Displays priority
Ready Queue Shows the ID Nos. and task names of tasks in the ready queue

Up to 8 characters of the task name is displayed in the Ready Queue field. When the task name
exceeds 8 characters, the extra characters are omitted.

•

REJ10J2120-0100 Rev. 1.00 Page 124 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.10.4 Display the Timeout Queue Status
In the MR window, select Popup Menu - [Mode] -> [Timeout Queue].

7.10.4.1 Display the Timeout Queue Status(When the realtime OS is MRxx conformed to uITRON specifications
V.3.0.)

The function of each item is as described below.
Tasks waiting at present are displayed in the descending order of timeout value. (When the realtime OS is MRxx
conformed to uITRON specifications V.3.0.)

Item Contents
Value Shows the timeout value of each task
ID(name) Shows the ID No. and task name of the tasks in the timeout queue

Following character strings are used to indicate the type of wait state.

•

Character string Wait state
[slp] Wait due to tslp_tsk
[dly] Wait due to dly_tsk
[flg] Wait due to twai_flg
[sem] Wait due to twai_sem
[mbx] Wait due to trcv_msg

When a task connected to the timeout queue is in the state of forced waiting (double waiting), a
string "[s]", which indicates double waiting, is appended to a string displayed in the ID (name) field.

•

Normal display 26(_task26)
Display when in WAIT-SUSPEND 26(_task26)[s]

REJ10J2120-0100 Rev. 1.00 Page 125 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.10.4.2 Display the Timeout Queue Status(When the realtime OS is MRxx conformed to uITRON specifications
V.4.0.)

The function of each item is as described below.
Tasks waiting at present are displayed in the descending order of timeout value. (When the realtime OS is MRxx
conformed to uITRON specifications V.4.0.)

Item Contents
Tmout Shows the timeout value (ms) of each task
ID(Name) Shows the ID No. and task name of the tasks in the timeout queue

Following character strings are used to indicate the type of wait state.

•

Character string Wait state
[slp] Wait due to tslp_tsk
[dly] Wait due to dly_tsk
[flg] Wait due to twai_flg
[sem] Wait due to twai_sem
[mbx] Wait due to trcv_mbx
[mpf] Wait due to tget_mpf
[sdtq] Wait due to tsnd_dtq
[rdtq] Wait due to trcv_dtq
[vsdtq] Wait due to vtsnd_dtq
[vrdtq] Wait due to vtrcv_dtq

When a task connected to the timeout queue is in the state of forced waiting (double waiting), a
string "[s]", which indicates double waiting, is appended to a string displayed in the ID(Name) field.

•

Normal display 26(_task26)
Display when in WAIT-SUSPEND 26(_task26)[s]

REJ10J2120-0100 Rev. 1.00 Page 126 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.10.5 Display the Event Flag Status
In the MR window, select Popup Menu - [Mode] -> [Event Flag].

7.10.5.1 Display the Event Flag Status(When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)

All the event flags defined in the configuration are listed in the order of ID number. The function of each item is
listed below. (When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)

Item Contents
ID ID No. of event flag
flg_ptn Bit pattern of each event flag
flagQ Task ID Nos. and task names in the event flag queue

When a task connected to the event flag queue is in the state of waiting with timeout enabled
(waiting in twai_flg), a string "[tmo]", which indicates a state of waiting with timeout enabled, is
appended to a string displayed in the flag Q field.
When a task connected to the event flag queue is in the state of forced waiting (double waiting), a
string "[s]", which indicates double waiting, is appended to a string displayed in the flag Q field.

•

Normal Display 26(_task26)
Display when in WAIT-SUSPEND 26(_task26)[s]
Display when in WAIT-SUSPEND with time out 26(_task26)[tmo][s]

Up to 8 characters can be displayed in the task name in the flag Q field.If a task name exceeds 8
characters, the extra characters are omitted.

•

7.10.5.2 Display the Event Flag Status(When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

All the event flags defined in the configuration are listed in the order of ID number. The function of each item is
listed below. (When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

Item Contents
ID ID No. of event flag
Flgatr Attribute of each event flag
Flgptn Bit pattern of each event flag
Flag Queue Task ID Nos. and task names in the event flag queue

REJ10J2120-0100 Rev. 1.00 Page 127 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

The following are displayed in the Flgatr area: •

TA_TFIFO Task wait queue is in FIFO order
TA_TPRI Task wait queue is in task priority order
TA_WSGL Only one task is allowed to be in the waiting state for the eventflag
TA_WMUL Multiple tasks are allowed to be in the waiting state for the eventflag
TA_CLR Eventflag's bit pattern is cleared when a task is released from the

waiting state for that eventflag

When a task connected to the event flag queue is in the state of waiting with timeout enabled
(waiting in twai_flg), a string "[tmo]", which indicates a state of waiting with timeout enabled, is
appended to a string displayed in the Flag Queue field.
When a task connected to the event flag queue is in the state of forced waiting (double waiting), a
string "[s]", which indicates double waiting, is appended to a string displayed in the Flag Queue
field.

•

Normal Display 26(_task26)
Display when in WAIT-SUSPEND 26(_task26)[s]
Display when in WAIT-SUSPEND with time out 26(_task26)[tmo][s]

Up to 8 characters can be displayed in the task name in the Flag Queue field.If a task name exceeds
8 characters, the extra characters are omitted.

•

REJ10J2120-0100 Rev. 1.00 Page 128 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.10.6 Display the Semaphore Status
In the MR window, select Popup Menu - [Mode] -> [Semaphore].

7.10.6.1 Display the Semaphore Status(When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)

All the SEMs defined in the configuration are listed in the order of ID number. The function of each item is listed
below. (When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)

Item Contents
ID ID No. of semaphore
Def_cnt Default value of semaphore counter
Count Semaphore count
semQ Task ID Nos. and task names in the semaphore queue

When a task connected to the SEM queue is in the state of waiting with timeout enabled (waiting in
twai_sem), a string "[tmo]", which indicates a state of waiting with timeout enabled, is appended to a
string displayed in the semQ field.
When a task connected to the SEM queue is in the state of forced waiting (double waiting), a string
"[s]", which indicates double waiting, is appended to a string displayed in the semQ field.

•

Normal Display 26(_task26)
Display when in WAIT-SUSPEND 26(_task26)[s]
Display when in WAIT-SUSPEND with time out 26(_task26)[tmo][s]

Up to 8 characters can be displayed in the task name in the semQ field.If a task name exceeds 8
characters, the extra characters are omitted.

•

7.10.6.2 Display the Semaphore Status (When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

All the SEMs defined in the configuration are listed in the order of ID number. The function of each item is listed
below. (When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

Item Contents
ID ID No. of semaphore
Sematr Attribute of each semaphore
Semcnt Semaphore count
Semaphore Queue Task ID Nos. and task names in the semaphore queue

REJ10J2120-0100 Rev. 1.00 Page 129 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

The following are displayed in the Sematr area: •

TA_TFIFO Task wait queue is in FIFO order
TA_TPRI Task wait queue is in task priority order

When a task connected to the SEM queue is in the state of waiting with timeout enabled (waiting in
twai_sem), a string "[tmo]", which indicates a state of waiting with timeout enabled, is appended to a
string displayed in the Semaphore Queue field.
When a task connected to the SEM queue is in the state of forced waiting (double waiting), a string
"[s]", which indicates double waiting, is appended to a string displayed in the Semaphore Queue
field.

•

Normal Display 26(_task26)
Display when in WAIT-SUSPEND 26(_task26)[s]
Display when in WAIT-SUSPEND with time out 26(_task26)[tmo][s]

Up to 8 characters can be displayed in the task name in the Semaphore Queue field.If a task name
exceeds 8 characters, the extra characters are omitted.

•

REJ10J2120-0100 Rev. 1.00 Page 130 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.10.7 Display the Mailbox Status
In the MR window, select Popup Menu - [Mode] -> [Mailbox].

7.10.7.1 Display the Mailbox Status (When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)

All the mail boxes defined in the configuration are listed in the order of ID number. The function of each item is
listed below. (When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)

Item Contents
ID ID No. of mailbox
Msg_cnt Number of messages in each mailbox
MAXmsg Maximum number of messages that can be contained in each mailbox
Wait Queue(Message) The messages stored in the mailbox or ID No. and task name of tasks

waiting for messages

The WaitQueue (Message) field shows a string "Msg" when a message is stored (when Msg_cont as
described above is non-zero), and then displays the stored message.
When no message is stored (when Msg_cont is zero), the WaitQueue field displays a string "Task" if a
task waiting for a message exists, and then displays the ID number and name of the task waiting for
a message.

•

• When a task connected to the mail box queue is in the state of waiting with timeout enabled (waiting
in trcv_msg), a string "[tmo]", which indicates the state of timeout enabled, is appended to a string
displayed in the WaitQueue (Message) field.
When a task connected to the mail box queue is in the state of forced waiting (Double waiting), a
string "[s]", which indicates the state of double waiting, is appended to a string displayed in the
WaitQueue (Message) field.

Normal Display 26(_task26)
Display when in WAIT-SUSPEND 26(_task26)[s]
Display when in WAIT-SUSPEND with time out 26(_task26)[tmo][s]

Up to 8 characters can be displayed in the task name in the WaitQueue (Message) field.
If a task name exceeds 8 characters, the extra characters are omitted.

•

REJ10J2120-0100 Rev. 1.00 Page 131 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.10.7.2 Display the Mailbox Status (When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

All the mail boxes defined in the configuration are listed in the order of ID number. The function of each item is
listed below. (When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

Item Contents
ID ID No. of mailbox
Mbxatr Attribute of each mailbox
Mailbox Queue (Wait) ID No. and task name of tasks waiting for messages
Mailbox Queue (Message) The messages stored in the mailbox

The following are displayed in the Mbxatr area: •

TA_TFIFO Task wait queue is in FIFO order
TA_TPRI Task wait queue is in task priority order
TA_MFIFO Message queue is in FIFO order
TA_MPRI Message queue is in message priority order

When a task connected to the mail box queue is in the state of waiting with timeout enabled (waiting
in trcv_mbx), a string "[tmo]", which indicates the state of timeout enabled, is appended to a string
displayed in the Mailbox Queue (Wait) field.
When a task connected to the mail box queue is in the state of forced waiting (Double waiting), a
string "[s]", which indicates the state of double waiting, is appended to a string displayed in the
Mailbox Queue (Wait) field.

•

Normal Display 26(_task26)
Display when in WAIT-SUSPEND 26(_task26)[s]
Display when in WAIT-SUSPEND with time out 26(_task26)[tmo][s]

Up to 8 characters can be displayed in the task name in the Mailbox Queue (Wait) field. If a task
name exceeds 8 characters, the extra characters are omitted.

•

REJ10J2120-0100 Rev. 1.00 Page 132 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.10.8 Display the Data Queue Status
In the MR window, select Popup Menu - [Mode] -> [Data Queue].

7.10.8.1 Display the Data Queue Status(When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

All the data queues defined in the configuration are listed in the order of ID number. The function of each item is
listed below. (When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

Item Contents
ID ID No. of data queue
Dtqatr Attribute of each date queue
Dtcnt Number of messages in each data queue
Dtqsz Maximum number of messages that can be contained in each data queue
Data Queue (Wait) ID No. and task name of tasks waiting for message transmission waiting

or message reception waiting
Data Queue (Data) The messages stored in the data queue

The display of the ID field varies depending on which one is specified, the standard data(32 bits) or
the extended data(16 bits).

•

•

MR100/4
- If the standard data(32 bits), the ID field displays a string "[32]" and data queue ID number.
- If the extended data(16 bits), the ID field displays a string "[16]" and data queue ID number.

The following are displayed in the Dtqatr area:

TA_TFIFO Task wait queue is in FIFO order
TA_TPRI Task wait queue is in task priority order

REJ10J2120-0100 Rev. 1.00 Page 133 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

The Data Queue (Wait) field displays a string "Send" if a task waiting for a message sending, and
then displays the ID number and name of the task waiting for a message sending. Also, if a task
waiting for a message receiving, displays a string "Receive" and then displays the ID number and
name of the task waiting for a message receiving.

•

• When a task connected to the date queue is in the state of waiting with timeout enabled , a string
"[tmo]", which indicates the state of timeout enabled, is appended to a string displayed in the Data
Queue (Wait) field.
When a task connected to the data queue is in the state of forced waiting (Double waiting), a string
"[s]", which indicates the state of double waiting, is appended to a string displayed in the Data
Queue (Wait) field.

Normal Display 26(_task26)
Display when in WAIT-SUSPEND 26(_task26)[s]
Display when in WAIT-SUSPEND with time out 26(_task26)[tmo][s]

Up to 8 characters can be displayed in the task name in the Data Queue (Wait) field. If a task name
exceeds 8 characters, the extra characters are omitted.

•

REJ10J2120-0100 Rev. 1.00 Page 134 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.10.9 Display the Cycle Handler Status
In the MR window, select Popup Menu - [Mode] -> [Cyclic Handler].

7.10.9.1 Display the Cycle Handler Status(When the realtime OS is MRxx conformed to uITRON specifications
V.3.0.)

All the cycle handlers defined in the configuration are listed in the order of ID number. The function of each item is
listed below. (When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)

Item Contents
ID ID No. of cycle handler
StaAddr Starting address of cycle handler
(name) Name of cycle handler
interval Interrupt interval
count Interrupt count
Status Activity status of cycle start handler

The following are displayed in the Status area: •

TCY_ON Cycle handler enabled
TCY_OFF Cycle handler disabled

REJ10J2120-0100 Rev. 1.00 Page 135 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.10.9.2 Display the Cycle Handler Status(When the realtime OS is MRxx conformed to uITRON specifications
V.4.0.)

All the cycle handlers defined in the configuration are listed in the order of ID number. The function of each item is
listed below. (When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

Item Contents
ID ID No. of cycle handler
Name Name of cycle handler
Cycphs The activation phase (by the millisecond)
Cyctim The activation cycle time (by the millisecond)
Tmout The amount of time by the millisecond remaining before the cyclic

handler's next activation time
Status Activity status of cycle start handler

The following are displayed in the Status area: •

TCYC_STA Cycle handler is in an operational state
TCYC_STP Cycle handler is in a non-operational state

REJ10J2120-0100 Rev. 1.00 Page 136 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.10.10 Display the Alarm Handler Status
In the MR window, select Popup Menu - [Mode] -> [Alarm Handler].

When the realtime OS is MRxx conformed to uITRON specifications V.3.0, the following data is displayed in the
status bar.

7.10.10.1 Display the Alarm Handler Status(When the realtime OS is MRxx conformed to uITRON specifications
V.3.0.)

Of all the cycle start handlers defined in the configuration, only those which are not started yet at present are
listed in the ascending order of start time. The function of each item is listed below. (When the realtime OS is
MRxx conformed to uITRON specifications V.3.0.)

Item Contents
ID ID No. of alarm handler
StaAddr Starting address of alarm handler
(name) Name of alarm handler
AlarmTime Starting time of alarm handler

7.10.10.2 Display the Alarm Handler Status(When the realtime OS is MRxx conformed to uITRON specifications
V.4.0.)

Of all the cycle start handlers defined in the configuration, only those which are not started yet at present are
listed in the ascending order of start time. The function of each item is listed below. (When the realtime OS is
MRxx conformed to uITRON specifications V.4.0.)

Item Contents
ID ID No. of alarm handler
Name Name of alarm handler
Almtim The amount of time by the millisecond remaining before the alarm

handler's activation time
Status Activity status of alarm handler

The following are displayed in the Status area: •

TALM_STA Alarm handler is in an operational state
TALM_STP Alarm handler is in a non-operational state

REJ10J2120-0100 Rev. 1.00 Page 137 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.10.11 Display the Memory Pool Status
In the MR window, select Popup Menu - [Mode] -> [Memory Pool].

7.10.11.1 Display the Memory Pool Status(When the realtime OS is MRxx conformed to uITRON specifications
V.3.0.)

All the memory pools defined in the configuration are listed in the order of ID number. (The fixed length data
comes first, and the optional length data comes after the fixed length data.) The function of each item is listed
below. (When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)

Item Contents
ID ID No. of memory pool
BaseAddr Base address of memory pool
Blk_Size Block size of memory pool
Total Blk_cnt Tot a l block count of memory pool
Free Blk_cnt(map) Number of unused blocks and information on unused memory blocks

(bit information)

The display of the ID field varies depending on which one is specified, fixed length or optional length. •

•

•

- If the data is of fixed length, the ID field displays a string "[F]" and memory pool ID number.
- For an arbitrary length, the contents displayed on the first line are the character string "[V]," a memory pool

ID number, and a block ID number. Displayed on the second to fourth lines are the memory pool ID and
block ID numbers. The block ID numbers are enclosed in parentheses.

When specifying the optional length memory pool, "--" is displayed in the Total Mlk_cut field.
No bit information is displayed in the Free Blk_cnt (map) field.

When specifying the fixed-length memory pool, the display format of each bit in the memory block
information in Free Blk_cnt (map) is as shown below:

item Contents
'0' Memory block in use (busy)
'1' Memory block not in use (ready)
'-' No memory block

REJ10J2120-0100 Rev. 1.00 Page 138 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.10.11.2 Display the Memory Pool Status(When the realtime OS is MRxx conformed to uITRON specifications
V.4.0.)

All the memory pools are listed in the order of ID number. The function of each item is listed below. (When the
realtime OS is MRxx conformed to uITRON specifications V.4.0.)

Item Contents
ID ID No. of memory pool
Mplatr Attribute of each memory pool
Mpladr Base address of memory pool
Mplsz Size of memory pool
Blkcnt Total block count of fixed length memory pool
Fblkcnt Number of unused blocks and information on unused memory blocks
Memory Pool Queue Displays the ID number and name of tasks waiting in the memory

pool.

The following are displayed in the Mplatr area: •

TA_TFIFO Task wait queue is in FIFO order
TA_TPRI Task wait queue is in task priority order

The display of the ID field varies depending on which one is specified, fixed length or optional length. •

- If the data is of fixed length, the ID field displays a string "[F]" and memory pool ID number.
- For an arbitrary length, the contents displayed on the first line are the character string "[V]," a memory pool

ID number, and a block ID number. Displayed on the second to fourth lines are the memory pool ID and
block ID numbers. The block ID numbers are enclosed in parentheses.

REJ10J2120-0100 Rev. 1.00 Page 139 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.10.12 Display the Task Context

7.10.12.1 Display the Task Context

In the MR window, select Popup Menu - [Context...].
The Context dialog box is opened. The Context dialog box is used to reference/specify the context information of the
specified task.
You can also open the Context dialog box by double-clicking the data display area in the task state display mode .

Enter the task ID number in the Task ID field and click the View button (or press the Enter key).
The context of the specified task appears in the Context field.

If the task entered in the Task ID field is "RUN" or "DMT" when clicking the View button, the
context is not displayed. (In the Context field, only the task ID and task state are displayed.)

•

• If a task ID number which does not exist is entered in the Task ID field when clicking the View
button, an error occurs.

REJ10J2120-0100 Rev. 1.00 Page 140 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.10.12.2 Change the task context

Enter the task ID number in the Task ID field in the Context dialog and click the Set button. The Set Context
dialog is opened.
The Set Context dialog is used to set the specified context register value of the specified task.

Specify the register to be changed in the Register field list box and enter the value to be set in the "Value:" field.
If an expression description set in the "Value:" field is wrong, or if the specified value is outside the allowable range
set for the specified register, an error occurs.

REJ10J2120-0100 Rev. 1.00 Page 141 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.11 MR Trace Window
The MR Trace window measures the task execution history of a program using the real time OS and displays the
result graphically.
In addition to the task execution history, a history of various other operations each are traced and displayed,
including interrupt processing, task state transition, and system call issuance.
This window is available only when a target program which uses our real time OS (MRxx) is downloaded.

For MR100/4

For MR100/4, this function is available for V.1.01 or later version. If a target program created on MR100/4
V.1.00 is downloaded, this function does not work and nothing is displayed in the MR Trace window.

•

•

•
•
•

Use the timer A or timer B as the system clock. If you use another timer as the system clock or do not use the
system clock, histories cannot be measured and displayed correctly.
A history of high-speed interrupts cannot be measured and displayed.
A history of interrupts using the fixed vector table cannot be measured and displayed.
A history of non-kernel interrupts cannot be measured and displayed. However, it can be measured and
displayed by invoking macros for measurement from non-kernel interrupt handlers. For details, refer to the
MR100/4 User’s Manual.

The content of each item is as follows.

Items Contents
VEC*1 Indicates a software interrupt number.
table Indicates the interrupt vector table number.
ID Indicates a task ID number.
(name) Indicates an interrupt routine name, task name, idle processing

(display "Idle"), and unknown name(displayed "Unknown").

REJ10J2120-0100 Rev. 1.00 Page 142 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

When moving the mouse to the information displayed in the window, the pop up window as below is opened,
showing the detailed information.

Interrupt handling or task execution history

System call issue history

Task state transition history

Following information is displayed in the status bar.

Time value at which start marker is positioned •
•
•
•
•
•
•

Time value at which end marker is positioned
Time width of a range indicated by start and end markers
Time value at which indicator is positioned
Scale factor of display
Time width of grid line interval
Range of measurement (trace) result

The grid lines are displayed using the start marker as the radix point.
The grid lines are displayed using the start marker as the radix point. The scale is displayed, using the time at
which the start marker is positioned as 0, with the left (forward in time) set to "minus" and the right (backward in
time) set to "plus".
The grid lines allow you to roughly understand the interrupt occurrence cycle and process time.
The interval time width of the displayed grid lines appears in the "Grid" area of the status bar.

The time value in the MR Trace window indicates an elapsed execution time from where the beginning data of the
measurement results recorded in the trace memory is counted as 0. On the contrary, the numeric value above the
grid lines (scale) in the MR Trace window is a relative value using the start marker as 0 (the grid interval is
specified in the Value dialog).
It has nothing to do with the time value. (This is provided so that you can see the window easily.)

Note
The software interrupt number*1 is different according to product. For details about which interrupt number is
assigned to which system call, refer to the MRxx Reference Manual, "Assemble Language Interface."

ATTENTION
Only when Trace mode is selected in the Debugging Mode tab of the Init dialog, MR Trace window can be used. •

• In the MR Trace window, the trace mode is set to Trace priority mode. Therefore, the MCU execution may be
delayed.

REJ10J2120-0100 Rev. 1.00 Page 143 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.11.1 Extended Menus
This window has the following popup menus that can be brought up by right-clicking in the window.

Menu Function
Start Marker Move the start marker in the display area.
End Marker Move the end marker in the display area.
Indicator Move the indicator in the display area.
Adjust Adjust range of start and end marker to full width of display

area Adjust.
Expand Expand scale factor of display.
Reduce Reduce scale factor of display.
Trace Stop *2 Stop measuring.
Trace Restart *2 Restarts measuring.
Search... Search for history of system calls.

After Set measurement range condition to After. Trace Range
Break Set measurement range condition to Break.

Value... Set value.
Color... Change display color.
Init Order... Reset the task order on the display.
Toolbar display Display toolbar.
Customize toolbar... Open toolbar customize dialog box.
Allow Docking Allow window docking.
Hide Hide window.

*2: Not supported.

REJ10J2120-0100 Rev. 1.00 Page 144 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.11.2 Refer the Execution History of Task(MRxx Window)
You can reference the task execution history in the MR Trace window. You can reference the execution history
statistical processing result in the MR Analyze window. These windows are available for a target program using
our real time OS (MRxx).

7.11.2.1 Select the Trace Range

To measure the task execution history, the real time trace function is used. Click the "After" button (or, select
Menu - [Trace Range] ->[After]) or "Break" button (or, select Menu - [Trace Range] -> [Break]) in the MR Trace
window.

After Record the task execution history until the trace memory is filled.
Break Record the task execution history until the target program stops (up to the maximum size

of the trace memory)

Execute the target program. Record the information required to know the task execution history in the trace
memory.

ATTENTION
The event set in the Event Setting Window is disabled.

7.11.2.2 Stop the Task Execution History Measurement

Click the "Stop" button in the MR Trace window. (Or, select Menu - [Trace Stop].) The measurement results so far
are displayed in the MR Trace window.
(Not supported.)

7.11.2.3 Restart the Task Execution History Measurement

Click the "Restart" button in the MR Trace window. (Or, select Menu - [Trace Restart].) When restarting the trace
measurement, all the measurement results so far are deleted.
(Not supported.)

REJ10J2120-0100 Rev. 1.00 Page 145 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.11.2.4 Refer the Execution History of Task

You can reference the task execution transition in the MR Trace window.

By moving the mouse to any information displayed in the window, the following window is opened, showing the
detailed information.

Interrupt handling or task execution history

System call issue history

Task state transition history

REJ10J2120-0100 Rev. 1.00 Page 146 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.11.2.4.1. Search the History of System Call Issue
Click the "Search" button in the tool bar. The Search dialog is opened. (Or, select Menu - [Search ...].)

Specify the search condition.
With the function code (R0: Function Code) and error code (R0: Error Code), you can specify multiple values (OR
condition). Other items are searched based on the AND condition.
Then, specify the search direction. The debugger searches the items in the direction specified in the dialog, using
the position pointed by the indicator as the radix point.
When the debugger does not check all the search items, the subsequent system call issuance history in the search
direction will be a search result. Click the Find Next button. The debugger searches the system call issuance
history corresponding to the specified condition. The specified items are searched using the AND condition.
If the search condition is met, the indicator is moved to that point.

REJ10J2120-0100 Rev. 1.00 Page 147 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.11.2.4.2. Change the display magnification
Click the "Expand" button or "Reduce" button in the tool bar. (Or, select Menu - [Expand] or [Reduce].)
The display is expanded or reduced using the left corner of the graph area as the radix point. By default, the
display is expanded or reduced with display scale of 1.5.
The display scale appears in the "Scale:*" field in the status bar.

The default expansion/reduction scale is 1.5. To change the scale, select Menu - [Value ...].
The Value dialog is opened. Specify the display expansion/reduction scale.

7.11.2.4.3. Change the grid line display interval
Select Menu - [Value ...]. The Value dialog is opened. Specify the display time interval.

REJ10J2120-0100 Rev. 1.00 Page 148 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.11.2.4.4. Change the task display order
Drag the task/interrupt routine to be moved (the left portion of the graph) to the destination.

To initialize the display order, select Menu - [Init Order].

7.11.2.4.5. Display the specific task only
Click the task/interrupt routine to be hidden (the left portion of the graph). Every time you click, the setting is
switched between "Display" and "Hide".

7.11.2.4.6. Change the display color
Select Menu - [Color...]. The Color dialog is opened.
Click the button corresponding to the desired item. The Color Setting dialog is opened. Change the display color in
the dialog.

REJ10J2120-0100 Rev. 1.00 Page 149 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.11.2.5 Measure the Execution Time of Task

You can measure the execution time between the markers by changing the positions of start marker and end
marker in the MR Trace window.

Drag the start marker position and end marker position.
The time interval between the markers is displayed in the status bar.

Note
[Definition of time value in the MR Trace window]
The time value in the MR Trace window indicates an elapsed execution time from where the beginning data of the
measurement results recorded in the trace memory is counted as 0. On the contrary, a numeric value above the
grid line (scale) in the MR Trace window is a relative value which sets the start marker to 0 (the grid interval is
specified in the Value dialog), which has nothing to do with the time value. (It is provided so that you can see the
window easily.)

7.11.2.5.1. Move the Marker
Each marker can be moved by dragging. When moving the mouse on the marker, the cursor shape changes. Then,
start dragging.

The start marker moves into the window (left portion) by clicking the "Start Marker" button in the tool bar. (Or,
select Menu - [Start Marker].)
The end marker moves into the window (right portion) by clicking the "End Marker" button. (Or, select Menu -
[End Marker].)
The indicator moves into the window (center) by clicking the "Indicator" button. (Or, select Menu - [Indicator].)
The other markers can move only to the specified positions listed below.

Position to which the interrupt processing or task execution transits •
•
•

Position to which the task state transits
Position where the system call issuance history is displayed

REJ10J2120-0100 Rev. 1.00 Page 150 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.12 MR Analyze Window
The MR Analyze window displays the result of the measurement data statistically analyzed within the range
specified by the start marker and the end marker in the MR Trace window.
The MR Analyze window supports three display mode as below:

CPU occupation state by interrupt/task •
•
•

Ready time by task
List of system call issuance histories (You can extract and display the history based on the specific condition.)

The MR Analyze window functions together with the MR Trace window.
This window is available only when a target program using our real time OS (MRxx) is downloaded.

7.12.1 Configuration of CPU Occupancy Status Display Mode
The CPU occupation state display mode is used to display the CPU occupation time and ratio by interrupt/task.
The MR Trace window shows the statistical results within the range specified by the start marker and end marker.

By clicking the maximum execution time/minimum execution time display area of each line, you can search
interrupt to the clicked line or process history at the maximum/minimum execution time of the task.
The search result is pointed by the indicator which moves to the target position in the MR Trace window.

REJ10J2120-0100 Rev. 1.00 Page 151 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.12.2 Configuration of Ready State Duration Display Mode
The ready state time display mode by task is used to display the results generated from statistical process of the
time required from execution ready to transition to execution by task.
The statistical result is displayed within the range specified by the start marker and end marker in the MR Trace
window.

By clicking the maximum ready time/minimum ready time display area of the desired line, you can search the
process history of the maximum ready time/minimum ready time of the task corresponding to the clicked line.
The search result is pointed by the indicator which moves to the target position in the MR Trace window.

7.12.3 Configuration of System Call History Display Mode
The system call issuance history list mode is used to list the system calls issued.
The system call issuance history is listed within the range specified by the start marker and end marker in the MR
Trace window.
The number indicates a numeric value counted from the top system call within the measurable range.

By clicking the desired line, you can search the system call issuance history to the clicked line.
The search result is pointed by the indicator which moves to the target position in the MR Trace window.

REJ10J2120-0100 Rev. 1.00 Page 152 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.12.4 Extended Menus
This window has the following popup menus that can be brought up by right-clicking in the window.

Menu Function
Run Time CPU occupancy status display mode.
Rdy->Run Ready state duration display mode.
System Call System call history display mode.
Pick Up System Call... Extract specified system calls display mode.
Save... Save analysis data to file.
Toolbar display Display toolbar.
Customize toolbar... Open toolbar customize dialog box.
Allow Docking Allow window docking.
Hide Hide window.

7.12.5 Analyze the Execution History of Task
You can reference the execution history statistical processing in the MR Analyze window. The MR Analyze window
functions together with the MR Trace window. If the MR Trace window is not open, or the MR Trace window does
not show any data, the MR Analyze window will not function.

The execution history statistical processing function allows you to reference the following topics.

7.12.5.1 Refer the CPU Occupation State

Click the Run Time button in the tool bar. (Or, select Menu - [Run Time].) The MR Analyze window changes to the
CPU occupation state display mode.

The window shows the CPU occupation time and ratio by interrupt processing and by task.
The data displayed is the statistical results for the range specified with the start marker and end marker in the MR
Trace window.

By clicking the maximum execution time/minimum execution time display field of each line, you can search the
processing history at the maximum execution time/minimum execution time of the task corresponding to the
clicked line.
The search result is pointed by the indicator in the MR Trace window after the indicator moves to the destination
position.

REJ10J2120-0100 Rev. 1.00 Page 153 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.12.5.2 Refer the Ready Queue Time

Click the Ready->Run button in the tool bar. (Or, select Menu - [Rdy -> Run].)

The time required from execution ready state to transition to execution state by task is processed statistically and
displayed.
The data displayed is the statistical results of the range specified with the start marker and end marker in the MR
Trace window.

By clicking the maximum ready time/minimum ready time display field of each line, you can search the processing
history at the maximum ready time/minimum ready time of the task corresponding to the clicked line.
The search result is pointed by the indicator in the MR Trace window after the indicator moves to the destination
position.

7.12.5.3 Refer the System Call Issuance History

Click the "System Call" button in the tool bar. (Or, select Menu - [System Call].)

The issued system calls are listed in chronological order of system call.
The data displayed is the statistical results for the range specified with the start marker and end marker in the MR
Trace window.

By clicking each line, you can search the system call issuance history corresponding to the clicked line. The search
result is pointed by the indicator in the MR Trace window after the indicator moves to the destination position.

REJ10J2120-0100 Rev. 1.00 Page 154 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 7 Windows/Dialogs

7.12.5.3.1. Extract the Issuance History
Click the "Pick Up" button in the tool bar. (Or, select Menu - [Pick Up System Call...].)
The dialog shown below is opened. Specify the search condition of the system call to be extracted and displayed.

Extract the issuance history of the system call which meets the specified condition and display it.

REJ10J2120-0100 Rev. 1.00 Page 155 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 8 Table of Script Commands

8. Table of Script Commands

The following script commands are prepared.
The commands with yellow color displaying can be executed at run time.
The command to which "*" adheres behind is not supported according to the product.

8.1 Table of Script Commands (classified by function)

8.1.1 Execution Commands

Command Name Short Name Contents
Go G Program execution with brea points k
GoFree GF Free run program execution
GoProgramB k* rea GPB Run target program with software break point
GoBreakAt* GBA Run target program with ftware break point so
Stop - Stops program execution
Status - Checks the operating status of the MCU
Step S Step execution of source line
StepInstruction S I Step execution of instructions
OverStep O Overstep execution of source lines
OverStepInstruaction OI Overstep execution of instruct ns io
Return RET Executes a source line return
ReturnInstruction RETI Executes an instruction return
Reset - Resets the target MCU
Time - Sets the run time display and checks the current setting

8.1.2 File Operation Commands

Com and Name m S ort Name h Contents
Load L Downloads the target program
LoadHex LH Downloads an Intel HEX-format file
LoadMot* LM Downloads a Motorola S-format file
LoadSymbol LS Loads source line/ASM symbol information
Reload - Re-downloads the target program
UploadHex UH Outputs data to an Intel HEX-format fil e
UploadMot* UM Outputs data to a Motorola S-format file

REJ10J2120-0100 Rev. 1.00 Page 156 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 8 Table of Script Commands

8.1.3 Register Operation Commands

Comman Name d S ort Name h Contents
Register R Checks and sets a register value

8.1.4 Memory Operation Commands

Command ame N Short Name Contents
DumpByte DB Displays the contents of memory (in 1-byte units)
DumpWord* DW Displays the contents of memory (in 2-byte units)
DumpLword* DL Displays the contents of memory (in 4-byte units)
SetMemoryByte MB Checks and changes memory contents (in 1-byte units)
SetMemoryWord* MW Checks and changes memory contents (in 2-byte units)
SetMemoryLword* ML Checks and changes memory contents (in 4-byte units)
FillByte FB Fills a memory block with the specified data (in 1-byte units)
FillWord* FW Fills a memory block with the specified data (in 2-byte units)
FillLword* FL Fills a memory block with the specified data (in 4-byte units)
Move - Moves memory blocks
MoveLord* MOVEL Moves memory blocks(in 4-byte units)
MoveWord* MOVEW Moves memory blocks(in 2-byte units)

8.1.5 Assemble/Disassemble Commands

Command me Na S ort Name h Contents
Assemble A Line-by-line assembly
DisAsse ble m DA Disassembles memory contents line by line
Modu le MOD Displays modules names
Scope - Sets and checks the effective local symbol scope
Sect n io SEC Checks section information
Bit* - Checks and sets bit symbols
Symbol SYM Checks assembler symbol s
Label - Checks assembler labels
Express EXP Displays an assembler expression

8.1.6 Software Break Setting Commands

Command Name Sh t Name or Contents
SoftwareBreak SB Sets and checks software breaks
SoftwareBreakClear SBC Clears software breaks
SoftwareBreakClearAll SBC A Clears all software breaks
SoftwareBreakDisable SBD Disables software breakpoint s
SoftwareBreakDisable ll A SBD A Disables all software breaks
SoftwareBreakEnable SBE Enables software breakpoint s
SoftwareBreakEnableAll SBEA Enables all software breaks
BreakAt - Sets a software breakpoint by specifying a line No.
BreakIn - Sets a software breakpoint by specifying a function

REJ10J2120-0100 Rev. 1.00 Page 157 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 8 Table of Script Commands

8.1.7 Real-time Trace Commands

Command Name Short Name Contents
TraceData* TD Realtime trace data display
TraceList* TL Displays disassembled realtime trace data

8.1.8 Event Setting Commands

Comm nd Name a Short Name Contents
EVent EV Sets and checks events

8.1.9 Script/Log File Commands

Comm nd Name a Short Name Contents
Script - Opens and executes a script file
Exit - Exits the script file
Wait - Waits for an event to occur before command input
Pause - Waits for user input
Sleep - Halts for user input until the specified time has elapsed
Logon - Outputs the screen display to a log file
Logo ff - Stops the output of the screen isplay to a log file d
Exec - Executes external application

8.1.10 Program Display Commands

Command Name Short Name Contents
Func - Checks function names and displays the contents of functions
Up* - Displays the calling function
Down* - Displays a called function
Where* - Displays a function call status
Path - Sets and checks the search path
AddPath - Adds the search path
File - Checks a filename and displays the contents of that file

8.1.11 Clock Command

Comm nd Name a Shor Name t Contents
Clock CLK Checks the clock

REJ10J2120-0100 Rev. 1.00 Page 158 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 8 Table of Script Commands

8.1.12 C Language Debugging Commands

Command Name Short Name Contents
Print - Check value of specified C variable expression
Set - Set specified data in specified C variable expression

8.1.13 Real-time OS Command

Command Name Short Name Contents
MR* - Displays status of realtime OS (MRxx)

8.1.14 Utility Commands

Comm nd Name a Short Name Contents
Radix - Sets and checks the radix for numerical input
Alias - Specifies and checks command alias definitions
UnAlias - Cancels the alias defined for a command
UnAlias ll A - Cancels all aliases define for commands d
Version VER Displays the version No.
Date - Displays the date
Ech o - Displays mes ges sa
CD - Window open

REJ10J2120-0100 Rev. 1.00 Page 159 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 8 Table of Script Commands

8.2 Table of Script Commands (alphabetical order)

Command Name Short Name Contents
AddPath - Adds the search path
Alias - Specifies and checks command alias definitions
Asse ble m A Line-by-line assembly
Bit* - Checks and sets bit symbols
BreakAt - Sets a software breakpoint by specifying a line No.
BreakIn - Sets a software breakpoint by specifying a nction fu
CD - Specifies and checks the current directory
Clock CLK Checks the clock
Date - Displays the date
DisAss mble e DA Disassembles memory contents line by line
Down* - Displays a called function
DumpByte DB Displays the contents of memory (in 1-byte units)
DumpLword * DL Displays the contents of memory (in 4-byte units)
DumpWord* DW Displays the contents of memory (in 2-byte units)
Echo - Displays messages
EVen t EV Sets and checks events
Exe c - Executes external application
Exit - Exits the script file
Express EXP Displays an assembler expression
File - Checks a filename and displays the contents of that file
FillByte FB Fills a memory block with the specified data (in 1-byte

units)
FillLword* FL Fills a memory block with the specified data (in 4-byte

units)
FillWord* FW Fills a memory block with the specified data (in 2-byte

units)
Func - Checks function names and displays the contents of

functions
Go G Program execution with breakpoints
GoBreakAt* GBA Run target program with software break point
GoFree GF Free run program execution
GoProgramBreak* GPB Run target program with oftware break point s
Labe l - Checks assembler labels
Load L Downloads the target program
LoadHex LH Downloads an Intel HEX-format file
LoadMot* LM Downloads a Motorola S-format file
LoadSymbol LS Loads source line/ASM symbol information
Logoff - Stops the output of the screen display to a log file
Logon - Outputs the screen display to a log file
Module MOD Displays modules names
Move - Moves memory blocks
MoveLord* MOVEL Moves memory blocks(in 4-byte units)
MoveWord* MOVEW Moves memory blocks(in 2-byte units)
MR* - Displays status of realtime OS (MRxx)
OverStep O Overstep execution of source lines
OverStepInstruaction OI Overstep execution of instructions
Path - Sets and checks the search path
Pause - Waits for user input

REJ10J2120-0100 Rev. 1.00 Page 160 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 8 Table of Script Commands

Print - Check value of specified C variable expression.
Radix - Sets and checks the radix for numerical input
Register R Checks and sets a register value
Reloa d - Re-downloads the target program
Reset - Resets the target MCU
Return RET Executes a source line return
ReturnInstruction RETI Executes an instruction return
Scope - Sets and checks the effective local symbol scope
Script - Opens and executes a script file
Sec ion t SEC Checks section information
Set - Set specified data in specified C variable expression
SetMemoryByte MB Checks and changes memory contents (in 1-byte units)
SetMemoryLword * ML Checks and changes memory contents (in 4-byte units)
SetMemoryWord* MW Checks and changes memory contents (in 2-byte units)
Sleep - Halts for user input until the specified time has elapsed
SoftwareBreak SB Sets and checks software breaks
SoftwareBreakClear SBC Clears software breaks
SoftwareBreakClearAl l SBC A Clears software breaks
SoftwareBreakDisable SBD Disables software breakpoint s
SoftwareBreakDisable ll A SBD A Disables all software breaks
SoftwareBreakEnable SBE Enables software breakpoint s
SoftwareBreakEnableAll SBEA Enables all software breaks
Status - Checks the operating status of the MCU
Step S Step execution of source line
StepInstruction S I Step execution of instructions
Stop - Stops program execution
Symbol SYM Checks assembler symbols
Time - Sets the run time display and checks the current setting
TraceData * TD Realtime trace data display
TraceList* TL Displays disassembled realtime trace data
UnAlias - Cancels the alias defined for a command
UnAliasAll - Cancels all aliases defined fo commands r
Up* - Displays the calling function
UploadHex UH Outputs data to an Intel HEX-format fil e
UploadMot* UM Outputs data to a Motoro S-format file la
Version VER Displays the version No.
Wait - Waits for an event to occur before command input
Where* - Displays a function call status

REJ10J2120-0100 Rev. 1.00 Page 161 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 9 Writing Script Files

9. Writing Script Files

This debugger allows you to run script files in a Script Window. The script file contains the controls necessary for
automatically executing the script commands.

9.1 Structural Elements of a Script File
You can include the following in script files:

Script commands •
•
•

•

•

•

Assign statements
Conditional statements (if, else, endi)
Program execution branches to the statement(s) to be executed according to the result of the
conditional expression.
Loop statements (while, endw)
A block of one or more statements is repeatedly executed according to the expression.
break statement
Exits from the innermost loop.
Comment statements
You can include comments in a script file. The comment statements are ignored when the script
commands are executed.

Specify only one statement on each line of the script file. You cannot specify more than one statement on a line, or
write statements that span two or more lines.

Notes
You cannot include comments on the same lines as script commands. •

•
•
•

•

•

•

You can nest script files up to ten levels.
You can nest if statements and while statements up to 32 levels.
If statements must be paired with endi statements, and while statements with endw statements in
each script file.
Expressions included in script files are evaluated as unsigned types. Therefore, operation cannot be
guaranteed if you use negative values for comparison in if or while statements.
You can specify up to 4096 characters per line. An error occurs if a line exceeds this number of
characters.
When a script file containing illegal commands is automatically executed (when you select [Option]
-> [Script]-> [Run] from the Script Window menu after opening a script file, or click the button in
the Script Window), execution of the script file continues even after the error is detected, except
when the script line itself cannot be read. If an error is detected and the script file continues to be
executed, operation after detection of the error cannot be guaranteed. Reliability cannot therefore be
placed on the results of execution after an error has been detected.

REJ10J2120-0100 Rev. 1.00 Page 162 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 9 Writing Script Files

9.1.1 Script Command
You can use the same script commands that you enter in the Script Window. You can also call script files from
within other script files (nesting up to 10 levels).

9.1.2 Assign Statement
Assign statement s define and initialize macro variables and assign values. The following shows the format to be
used.

%macro-variable = expression

You can use alphanumerics and the underscore (_) in macro variable names. However , you cannot
use a numeric to start a macro variable name.

•

•

•
•

You can specify any expression of which the value is an integer between 0h and FFFFFFFFh to be
assigned in a macro variable. If you specify a negative number, it is processed as twos complement.
You can use macro variables within the expression.
Always precede macro variables with the "%" sign.

9.1.3 Conditional Statement
In a conditional statement, different statements are executed according to whether the condition is true or false.
The following shows the format to be used.

if (expression)
 statement 1
 else
 statement 2
 endi

If the expression is t rue (other than 0), statement 1 is executed. If false, (0), statement 2 is executed. •

•

•

You can omit the else statement. If omitted and the expression is false, execution jumps to the line
after the endi statement.
if statements can be nested (up to 32 levels).

REJ10J2120-0100 Rev. 1.00 Page 163 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 9 Writing Script Files

9.1.4 Loop Statement(while,endw) and Break Statement
In loop statements, execution of a group of statements is repeated while the expression is true. The following shows
the format to be used.

while (expression)
 statement
 endw

If the expression is t rue, the group of statements is repeated. If false, the loop is exited (and the
statement following the endw statement is executed).

•

•
•

You can nest while statements up to 32 levels.
Use the break statement to forcibly exit a while loop. If while statements are nested, break exits
from the inner most loop.

9.1.5 Comment statements
You can include comments in a script file. Use the following format.

;character string

Write the statement after a semicolon (;). You can include only spaces and tabs in front of the
semicolon

•

• Lines with comment statements are ignored when the script file is executed.

REJ10J2120-0100 Rev. 1.00 Page 164 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 9 Writing Script Files

9.2 Writing Expressions
This debugger allows you to use expressions for specifying addresses, data, and number of passes, etc. The
following shows example commands using expressions.

>DumpByte TABLE1
>DumpByte TABLE1+20

You can use the following elements in expressions:
Constants •

•
•
•
•
•
•
•

Symbols and labels
Macro variables
Register variables
Memory variables
Line Nos.
Character constants
Operators

9.2.1 Constants
You can use binary, octal, decimal, or hexadecimals. The prefix or suffix symbol attached to the numerical value
indicates which radix is used.
The debugger for M32C and M16C/R8C and 740

 Hexadecimal Decimal Octal Binary *
Prefix 0x,0X @ None %
Suffix h,H None o,O b,B
Examples 0xAB24

AB24h @1234 1234o %10010
10010b

*You can only specify % when the predetermined radix is hexadecimal.
If you are inputting a radix that matches the predetermined radix, you can omit the symbol that indicates the radix
(excluding binary).

Use the RADIX command to set the predetermined value of a radix. However, in the cases shown
below, the radix is fixed regardless of what you specify in a RADIX command.

•

Type Radix
Address Hex
Line No.
No. of executions
No. of passes

Dec

REJ10J2120-0100 Rev. 1.00 Page 165 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 9 Writing Script Files

9.2.2 Symbols and labels
You can include symbols and labels defined in your target program, or symbols and labels defined using the
Assemble command.

You can include alphanumerics, the underscore (_), period (.), and question mark (?) in symbols and
labels. However, do not start with a numeric.

•

•
•

Symbols and labels can consist of up to 255 characters.
Uppercase and lowercase letters are unique.

Product Name Notes
The debugger for M32R,
The debugger for R32C,
The debugger for M32C,
The debugger for M16C/R8C,

•

•

You cannot include the assembler structured
instructions, pseudo instructions, macro instructions,
operation code, or reserved words (.SECTION, .BYTE,
switch, if, etc.).
You cannot use strings that start with two periods (..)
for symbols or labels.

9.2.2.1 Local label symbol and scope

This debugger supports both global label symbols, which can be referenced from the whole program area, and local
label symbols, which can only be referenced within the file in which they are declared. The effective range of local
label symbols is known as the scope, which is measured in units of object files. The scope is switched in this
debugger in the following circumstances:

When a command is entered
The object file that includes the address indicated by the program counter becomes the current scope.
When the SCOPE command is used to set the scope, the specified scope is the active scope.

•

•

•

•

•

During command execution
The current scope automatically switches depending on the program address being handled by the
command.

9.2.2.2 Priority levels of labels and symbols

The conversion of values to labels or symbols, and vice versa, is subject to the following levels of priority:
Conversion of address values

1. Local labels
2. Global labels
3. Local symbols
4. Global symbols
5. Local labels outside scope
6. Local symbols outside scope

Conversion of data values
1. Local symbols
2. Global symbols
3. Local labels
4. Global labels
5. Local symbols outside scope
6. Local labels outside scope

Conversion of bit values
1. Local bit symbols
2. Global bit symbols
3. Local bit symbols outside scope

REJ10J2120-0100 Rev. 1.00 Page 166 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 9 Writing Script Files

9.2.3 Macro Variables
Macro variables are defined by assign statements in the script file. See Section "9.1.2 Assign Statement " in the
Reference part for details. Precede variables with '%' for use as macro variables.

You can specify alphanumerics and/or the underbar (_) in the variable name following the percent
sign (%). However , do not star t the names with a numeric.

•

•
•
•

You cannot use the names of registers as variable names.
Uppercase and lowercase letters are differentiated in variable names.
You can define a maximum of 255 macro variables. Once defined, a macro variable remains valid
until you quit the debugger.

Macro variables are useful for specifying the number of iterations of the while statement.

9.2.4 Register variables
Register variables are used for using the values of registers in an expression. Precede the name of the register with
'%' to use it as a register variable. Use the following format.

Product Name Register name
The debugger for R32C PC, USP, ISP, INTB, FLB, SVF, SVP, VCT,

 DMD0, DMD1, DMD2, DMD3, DCT0, DCT1, DCT2, DCT3,
 DCR0, DCR1, DCR2, DCR3, DSA0, DSA1, DSA2, DSA3,
 DSR0, DSR1, DSR2, DSR3, DDA0, DDA1, DDA2, DDA3,
 DDR0, DDR1, DDR2, DDR3,
 0R0, 0R1, 0R2, 0R3, 0R4, 0R5, 0R6, 0R7, <- Bank 0 Register
 0A0, 0A1, 0A2, 0A3, 0FB, 0SB <- Bank 0 Register
 1R0, 1R1, 1R2, 1R3, 1R4, 1R5, 1R6, 1R7, <- Bank 1 Register
 1A0, 1A1, 1A2, 1A3, 1FB, 1SB <- Bank 1 Register

Uppercase and lowercase letters are not unique in register names. You can specify either.

9.2.5 Memory variables
Use memory variables to use memory values in expressions. The format is as follows:
[Address].data-size

You can specify expressions in addresses (you can also specify memory variables). •
• The data size is specified as shown in the following table.

data L ngth e De ugger b Specif ation ic
1 Byte All B or b

The debugger for M32R H or h 2 Bytes
Other W or w
The debugger for M32R W or w4 bytes
The debugger for M32R, M16C/R8C L or l

Example: Referencing the contents of memory at address 8000h in 2 bytes

[0x8000].W

The default data size is word, if not specified. •

REJ10J2120-0100 Rev. 1.00 Page 167 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 9 Writing Script Files

9.2.6 Line Nos.
These are source file line Nos. The format for line Nos. is as follows:

#line_no
#line_no."source file name"

Specify line Nos. in decimal. •

•

•

•
•

•
•
•

•

You can only specify line Nos. in which software breaks can be set. You cannot specify lines in which
no assembler instructions have been generated, including comment lines and blank lines.
If you omit the name of the source file, the line Nos. apply to the source file displayed in active
Editor(Source) Window.
Include the file attribute in the name of the source file.
Do not include any spaces between the line No. and name of the source file.

9.2.7 Character constants
The specified character or character string is converted into ASCII code and processed as a constant.

Enclose characters in single quote marks.
Enclose character strings in double quote marks.
The character string must consist of one or two characters (16 bits max.). If more than two
characters are specified, the last two characters of the string are processed. For example, "ABCD"
would be processed as "CD", or value 4344h.

9.2.8 Operators
The table below lists the operators that you can use in expressions.

The priority of operators is indicated by the level, level 1 being the highest and level 8 the lowest. If
two or more operators have the same level of priority, they are evaluated in order from the left of the
expression.

Operator Function Priority level
() Brackets level 1
+, -, ~ Monadic positive, monadic

negative, monadic logical NOT
level 2

*, / Dyadic multiply, dyadic divide level 3
+, - Dyadic add, dyadic subtract level 4
>>, Right shift, left shift level 5
& Dyadic logical AND level 6
|, ^ Dyadic logical OR, dyadic

exclusive OR
level 7

<, <=, >, >=, ==, != Dyadic comparison level 8

REJ10J2120-0100 Rev. 1.00 Page 168 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 10 C/C++ Expressions

10. C/C++ Expressions

10.1 Writing C/C++ Expressions
You can use C/C++ expressions consisting of the tokens shown below for registering C watchpoints and for
specifying the values to be assigned to C watchpoints.

Token Example
Immediate values 10, 0x0a, 012, 1.12, 1.0E+3
Scope ::name, classname::member
Mathematical operators +, -, *, /
Pointers *, **, ...
Reference &
Sign inversion -
Member reference using dot operator Object.Member
Member reference using arrow Pointer->Member, this->M mber e
Pointers to Members Ob ct.*var, Pointer->*var je
Parentheses (,)
Arrays Array[2], DArray[2] [3] , ...
Casting to basic types (int), (char*), (unsigned long *), ...
Casting to typedef types (DWORD), (ENUM), ...
Variable names and function names var, i, j, func, ...
Character constants 'A', 'b', ...
Character string literals "abcdef", "I am a boy.", ...

10.1.1 Immediate Values
You can use hexadecimals, decimals, octals as immediate values. Values starting with 0x are processed as
hexadecimals, those with 0 as octals, and those without either prefix as decimals.
Floating-point numbers can also be used to assign values to variables.

Notes
You cannot register only immediate values as C watchpoints. •

• The immediate value is effective only when it is used in C/C++ language expressions that specify
C/C++ watchpoints or when it is used to specify the value to be assigned to those expressions. When
using floating-point numbers, operation cannot be performed on an expression like 1.0+2.0.

REJ10J2120-0100 Rev. 1.00 Page 169 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 10 C/C++ Expressions

10.1.2 Scope Resolution
The scope resolution operator :: is available as following.
Global scope: ::valiable name

::x, ::val
Class scope: class name::member name, class name::class name::member name, e.g.

T::member, A::B::member

10.1.3 Mathematical Operators
You can use the addition (+), subtraction (-), multiplication (*), and division (/) mathematical operators. The
following shows the order of priority in which they are evaluated.

(*), (/), (+), (-)

Notes
There is no support currently for mathematical operators for floating point numbers. •

10.1.4 Pointers
Pointers are indicated by the asterisk (*). You can use pointer to pointers **, and pointer to pointer to pointers ***,
etc.

Examples: "*variable_name", "**variable_name", etc.

Notes
Immediate values cannot be processed as pointers. That is, you cannot specify *0xE000, for example. •

10.1.5 Reference
References are indicated by the ampersand (&). You can only specify "&variable_name".

REJ10J2120-0100 Rev. 1.00 Page 170 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 10 C/C++ Expressions

10.1.6 Sign Inversion
Sign inversion is indicated by the minus sign (-). You can only specify "-immediate_value" or "-variable_name". No
sign inversion is performed if you specify 2 (or any even number of) minus signs.

Notes
There is no support currently for sign inversion of floating point numbers. •

10.1.7 Member Reference Using Dot Operator
You can only use "variable_name.member_name" for checking the members of structures and unions using the dot
operator.
Example:

class T {
public:
int member1;
char member2;
};
class T t_cls;
class T *pt_cls = &t_cls;

In this case, t_cls.member1, (*pt_cls).member2 correctly checks the members.

10.1.8 Member Reference Using Arrow
You can only use "variable_name->member_name" for checking the members of structures and unions using the
arrow.
Example:

class T {
public:
int member1;
char member2;
};
class T t_cls;
class T *pt_cls = &t_cls;

In this case, (&t_cls)->member1, pt_cls->member2 correctly checks the members.

REJ10J2120-0100 Rev. 1.00 Page 171 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 10 C/C++ Expressions

10.1.9 Pointers to Members
Pointers to members using the ".*" or "->*" operator can be refered only in the forms of variable name .* member
name or variable name ->* member name.
Example:

class T {
public:
int member;
};
class T t_cls;
class T *pt_cls = &t_cls;

int T::*mp = &T::member;

In this case, t_cls.*mp and tp_cls->*mp can correctly reference the variable of pointer-to-member type.

Note
Note that the expression *mp cannot considered as the variable of pointer-to-member type. •

10.1.10 Parentheses
Use the '(' and ')' to specify priority of calculation within an expression.

10.1.11 Arrays
You can use the ' [' and '] ' to specify the elements of an array. You can code arrays as follows: "variable_name
[(element_No or variable)] ", "variable_name [(element_No or variable)] [(element_No or variable)] ", etc.

10.1.12 Casting to Basic Types
You can cast to C basic types char, short, int, and long, and cast to the pointer types to these basic types. When
casting to a pointer type, you can also use pointers to pointers and pointers to pointers to pointers, etc.
Note that if signed or unsigned is not specified, the default values are as follows:

Basic type Default
char unsigned
short signed
int signed
long signed

Notes
Of the basic types of C++, casts to bool type, wchar_t type, and floating-point type (float or double)
cannot be used.

•

• Casts to register variables cannot be used.

REJ10J2120-0100 Rev. 1.00 Page 172 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 10 C/C++ Expressions

10.1.13 Casting to typedef Types
You can use casting to typedef types (types other than the C basic types) and the pointer types to them. When
casting to a pointer type, you can also use pointers to pointers and pointers to pointers to pointers, etc.

Notes
You cannot cast to struct or union types or the pointers to those types. •

10.1.14 Variable Name
Variable names that begin with English alphabets as required
under C/C++ conventions can be used.
The maximum number of characters for variable name is 255.
And 'this' pointer is available.

10.1.15 Function Name
Function names that begin with English alphabets as required
under C conventions can be used.
In the case of C++, no function names can be used.

10.1.16 Character Constants
You can use characters enclosed in single quote marks (') as character constants. For example, 'A', 'b' , etc. These
character constants are converted to ASCII code and used as 1-byte immediate values.

Notes
You cannot register character constants only as C watchpoints. •

• Character constants are valid only when used in a C/C++ expression that specifies a C watchpoint,
and when specifying a value to be assigned (character constants are processed in the same manner
as immediate values).

10.1.17 Character String Literals
You can use character strings enclosed in double quote marks (") as character string literals. Examples are "abcde",
"I am a boy.", etc.

Notes
Character string literals can only be placed on the right side of an assignment operator in an
expression. They can only be used when the left side of the assignment operator is a char array or a
char pointer type. In all other cases, a syntax error results.

•

REJ10J2120-0100 Rev. 1.00 Page 173 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 10 C/C++ Expressions

10.2 Display Format of C/C++ Expressions
C/C++ expressions in the data display areas of the C Watch Windows are displayed as their type name, C/C++
expression (variable name), and result of calculation (value), as shown below.
The following describes the display formats of the respective types.

10.2.1 Enumeration Types
•
(DATE) date = Sunday(all Radices)

When the result (value) of calculation has been defined, its name is displayed.

•
(DATE) date = 16 (when Radix is in initial state)
(DATE) date = 0x10(when Radix is hex)
(DATE) date = 0000000000010000B(when Radix is binary)

If the result (value) of calculation has not been defined, it is displayed as follows:

10.2.2 Basic Types
When the result of calculation is a basic type other than a char type or floating point type, it is
displayed as follows:

•

(unsigned int) i = 65280(when Radix is in initial state)
(unsigned int) i = 0xFF00(when Radix is hex)
(unsigned int) i = 1111111100000000B(when Radix is binary)
When the result of calculation is a char type, it is displayed as follows:
(unsigned char) c = 'J'(when Radix is in initial state)
(unsigned char) c = 0x4A(when Radix is hex)
(unsigned char) c = 10100100B(when Radix is binary)
•
(double) d = 8.207880399131839E-304(when Radix is in initial state)
(double) d = 0x10203045060708(when Radix is hex)
(double) d = 0000000010.....1000B(when Radix is binary)
(..... indicates abbreviation)

When the result of calculation is a floating point, it is displayed as follows:

REJ10J2120-0100 Rev. 1.00 Page 174 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 10 C/C++ Expressions

10.2.3 Pointer Types
When the result of calculation is a pointer type to other than a char* type, it is displayed in
hexadecimal as follows:

•

•
(unsigned int *) p = 0x1234(all Radices)

When the result of calculation is a char* type, you can select the display format of the string or a
character in the C Watch window's menu [Display String].

- string types
(unsigned char *) str = 0x1234 "Japan"(all Radices)

- character types
(unsigned char *) str = 0x1234 (74 'J')(all Radices)

l When the result of calculation is a char* type, it is displayed as follows:
(unsigned char *) str = 0x1234 "Jap(all Radices)

If the string contains a non-printing code prior to the code to show the end of the string (0), it is displayed up to the
non-printing character and the closing quote mark is not displayed.

You can double-click on lines indicated by a '+' to see the members of that structure or union. The '+' changes to a '-'
while the members are displayed. To return to the original display, double click the line, now indicated by the '-'.

REJ10J2120-0100 Rev. 1.00 Page 175 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 10 C/C++ Expressions

10.2.4 Array Types
When the result of calculation is an array type other than a char [] type, the starting address is
displayed in hex as follows:

•

(signed int [10]) z = 0x1234(all Radices)
•
(unsigned char [10]) str = 0x1234 "Japan"(all Radices)

When the result of calculation is a char [] type, it is displayed as follows:

If the string contains a non-printing code prior to the code to show the end of the string (0), it is displayed up to the
non-printing character and the closing quote mark is not displayed.

(unsigned char [10]) str = 0x1234 "Jap(all Radices)
Also if the string contains more than 80 characters, the closing quote mark is not displayed. When the C/C++
expression is an array type as same as pointer type, a '+' is display to the left of the type name. You can see the
elements of the array by using this indicating. (for the details, refer"10.2.3 Pointer Types") When the number of the
array elements is more than 100, the following dialog box open. Specify the number of the elements in the dialog
box.

The elements from the index specified in "Start" to the index specified in "End" are displayed. If you specify the
value more than the max index of the array, the value is regarded as max index of the array. When you click the
"Cancel" button, the elements are not displayed.

10.2.5 Function Types
•
(void()) main = 0xF000(all Radices)

When the result of calculation is a function type, the starting address is displayed in hex as follows:

10.2.6 Reference Types
When the result of calculation is a reference type, the reference address is displayed in hex as
follows:

•

(signed int &) ref = 0xD038(all Radices)

10.2.7 Bit Field Types
•
(unsigned int :13) s.f = 8191(when Radix is in initial state)
(unsigned int :13) s.f = 0x1FFF(when Radix is hex)
(unsigned int :13) s.f = 1111111111111B(when Radix is binary)

When the result of calculation is a bit field type, it is displayed as follows:

REJ10J2120-0100 Rev. 1.00 Page 176 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 10 C/C++ Expressions

10.2.8 When No C Symbol is Found
If the calculated expression contained a C symbol that could not be found, it is displayed as follows:

() x = <not active>(all Radices)

10.2.9 Syntax Errors
•
() str*(p = <syntax error>(all Radices)
(where str*(p is the syntax error)

When the calculated expression contains a syntax error, it is displayed as follows:

10.2.10 Structure and Union Types
•
(Data) v = 0x1234 (all Radices)

When the result of calculation is a structure or union type, the address is displayed in hex as follows:

If, as in structures and unions, the C/C++ expression consists of members, a '+' is displayed to the left of the type
name (tag name).

You can double-click on lines indicated by a '+' to see the members of that structure or union. The '+' changes to a '-'
while the members are displayed. To return to the original display, double click the line, now indicated by the '-'.
This function allows you to check the members of structures and unions.

Attention
If a variable is declared with the same name as the type definition name declared by typedef, you cannot reference
that variable.

Register Variables •
When the result of calculation is a register variable, "register" is displayed to the left of the type name as follows:

(register signed int) j = 100

REJ10J2120-0100 Rev. 1.00 Page 177 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 11 Display the Cause of the Program StoppageAttention

REJ10J2120-0100 Rev. 1.00 Page 178 of 193
Dec. 01, 2010

11. Display the Cause of the Program Stoppage

If the program is stoped by the debug function, the cause of the stoppage is displayed in the Output window or
Status window ([Platform] sheet).
The contents of a display and the meaning of "the cause of the stoppage" are as follows.

Disp y la The cause of the stoppage
Halt The stop by the [Halt Program] button/menu
Program Program break(software break) or Instruction Execution break(event

break)
Event, Data Access Memory Access break(event break)

R32C/100 E30A Emulator Debugger Chapter 12 Attention

REJ10J2120-0100 Rev. 1.00 Page 179 of 193
Dec. 01, 2010

12. Attention

12.1 Common Attention

12.1.1 File operation on Windows
1. File Name and Directory Name

- Operation is not guaranteed if your directory names and filenames include kanji.
- Use only one period in a filename.

2. Specify the File and Directory
- You cannot use "..." to specify two levels upper directories.
- You cannot use a network pathname. You must allocate a drive.

12.1.2 Area where software breakpoint can be set
The area where the software breakpoint can be set is different according to the product.

12.1.2.1 The debugger for R32C

Software breakpoints can be set in the MCU's internal RAM area, MCU's internal flash ROM area, and the RAM
area in the user target.

ATTENTION
•

•

If a breakpoint in the MCU's internal flash ROM area is specified, it is necessary that instructions be
rewritten or written back in block units. Therefore, no software breakpoints can be set while the
target program is running.
If the area is an instruction non-rewritable area such as the ROM area in the user target, no
software breakpoints can be set.

R32C/100 E30A Emulator Debugger Chapter 12 Attention

12.1.3 Get or set C variables
If a variable is declared with the same name as the type definition name declared by typedef, you
cannot reference that variable.

•

•
•
•
•

•
•
•
•
•
•

•
•

•
•

•

•
•

•

•

•
•
•

Values cannot be changed for register variables.
Values cannot be changed for 64 bit width variables (long long, double, and so on).
Values cannot be changed for C/C++ expressions that do not indicate the memory address and size.
For the sake of optimization, the C compiler may place different variables at the same address. In
this case, values of the C variable may not be displayed correctly.
Literal character strings can only be substituted for char array and char pointer type variables.
No arithmetic operations can be performed on floating point types.
No sign inversion can be performed on floating point types.
Casting cannot be performed on floating point types.
Casting cannot be performed on register variables.
Casting cannot be performed on structure types, union types, or pointer types to structure or union
types.
Character constants and literal character strings cannot contain escape sequences.
The following values can be substituted for the bit-fields.

- integer constants, character constants, and enumerators
- variables of bool types, characters types, integers types, and enumeration types
- bit-field
When the substituted value is larger than the size of the bit-field, it will be truncated.

The bit-field member allocated in the SFR area might not be transformed into a correct value.
While the target program is running, values of local variables and bit-fields cannot be modified.

12.1.4 Function name in C++
When you input the address using the function name in setting display address, setting break points,
and so on, you can not specify the member function, operator function, and overloaded function, of a
class.
You can not use function names for C/C++ expression
No script commands (e.g., breakin and func) can be used in which function names are specified for
arguments.
In address value specifying columns of dialog boxes, no addresses can be specified using function
names.
The pointers for a member function can not be referred correctly in C watch window.

12.1.5 Option settings for download modules
These options, which can be set in "Debug Settings" dialog box, are invalid for this debugger:

Offset : specified value is regarded as ‘0’
Access size : specified value is regarded as ‘1’
Perform memory verify during download : Not supported.

12.1.6 Debugging multi modules
If you register two or more absolute module file in one session, you can download only one file in same time.
If you register one absolute module file and one or more machine language file in one session, you can download all
file in same time.

REJ10J2120-0100 Rev. 1.00 Page 180 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 12 Attention

REJ10J2120-0100 Rev. 1.00 Page 181 of 193
Dec. 01, 2010

12.1.7 Synchronized debugging
Synchronized debugging function is not available.

12.1.8 Down-load of Firmware
The emulator must have the suitable firmware downloaded into it. The debugger inspects the version of the
emulator's internal firmware as it starts up. If it is found that the emulator does not have the firmware files needed
for it, the emulator enters a mode in which the firmware is forced to be downloaded at the debugger startup.

12.1.9 Check of ID Code
Checks the ID code written in the flash memory at the debugger startup. When the ID code is written in the flash
memory, a dialog box to input the ID code appears. Enter the correct ID code in the dialog box. If the ID code you
have supplied does not match, the debugger will not start.

12.1.10 ID code write to flash memory
The ID code is written into the flash memory only when the program was downloaded in writer mode. When
operating in other than the writer mode, no ID code is written into the flash memory even when the program is
downloaded. In that case, an ID code consisting entirely of FFh is assumed.

12.1.11 The start procedure of debugger.
To start the debugger, follow one of the procedures described below.
•

•

Turn on the power for the emulator and target -> Start the debugger -> Set up the Init dialog box -> Reset the
target in hardware
Turn on the power for the emulator -> Start the debugger -> Set up the Init dialog box -> Turn on the power for
the target

If the target needs to be reset in hardware or the power for the target needs to be turned on, the dialog box to
inform that thing appears. In that case, reset the target in hardware or turn on the power for the target and then
click the OK button.

12.1.12 Use of Watch dog timer
You can debug a program making use of the watchdog timer. Only when the watchdog timer is active, the
emulator's monitor program performs refreshing.

12.1.13 Debugging Resource on MCU
Since the MCU's internal break events share trace events and time measurement events, there is a total of 8 break
events.

12.1.14 Setting of break point on MCU's internal RAM area
Please use the software breakpoint to the MCU's internal RAM area to use the hardware break resource effectively.

R32C/100 E30A Emulator Debugger Chapter 12 Attention

12.2 Attention of the R32C Debugger

12.2.1 Stack area used by the emulator
The emulator uses the interrupt stack area as its work area (MAX 52 bytes).
When debugging, allocate a sufficient interrupt stack area consisting of the regularly used size plus 52 bytes.

12.2.2 Interrupt stack pointer when resetting the target program
The emulator sets the interrupt stack pointer (ISP) to 0500h when resetting the target program.
Remember that the interrupt stack pointer (ISP) is set to 0000h on a unit at the production stage.

12.2.3 RAM area used by the data compare break function
Be aware that when you are using the data comparison break function based on event E5, 8 bytes from the
beginning of the MCU's internal RAM (address 0400h) are used.

12.2.4 Option of C Compiler/Assembler/Linker
The information may not be downloaded/debugged normally depending on the option designation of the compiler,
assembler, and linker.
Refer to "12.3 Option of C Compiler/Assembler/Linker"

The compiler that can be used by R32C debugger:

NCxx •
•
•

the IAR EC++ Compiler
the IAR C Compiler

REJ10J2120-0100 Rev. 1.00 Page 182 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 12 Attention

REJ10J2120-0100 Rev. 1.00 Page 183 of 193
Dec. 01, 2010

12.2.5 Downloading a program to external flash memory
Only flash memory with 4096 or fewer sectors can be registered. If flash memory with more sectors is connected,
programming cannot be guaranteed.

A script specified by the USD file corresponds to the executable memory_fill command of the
High-performance Embedded Workshop debugger. However, note that some options are not available.

The format to be used for script is as follows.

mf<start><end><data>[<mode>]

<start> start address
<end> end address
<data> data value
<mode> BYTE (one byte)

WORD (two byte)
LONG (four byte)
Abbreviation: (same as BYTE)

S/W breakpoints cannot be set in external flash memory.

Data in external flash memory cannot be changed by using the Memory window.

R32C/100 E30A Emulator Debugger Chapter 12 Attention

12.3 Option of C Compiler/Assembler/Linker
We do not evaluate other settings, so we can not recommend to append other options.

12.3.1 When Using NCxx
When -O, -OR or -OS option is specified at compilation, the source line information may not be generated normally
due to optimization, causing step execution to be operated abnormally.
To avoid this problem, specify -ONBSD (or -Ono_Break_source_debug) option together with -O, -OR or OS option.

12.3.2 When Using the IAR EC++ Compiler (EW)
Please specify the project setting by following process.
1. The Setting in the IAR Embedded Workbench

When you select the menu [Project] -> [Options...], the dialog for "Options For Target " target"" will open. In
this dialog, please select the "XLINK" as category, and set the project setting.

- Output Tab
In the "Format" area, check the "Other" option, and select the "elf/dwarf" as "Output Format".

- Include Tab
In the "XCL File Name" area, specify your XCL file (ex: lnkm32cf.xcl).

2. Edit the XCL file
Add the command line option "-y" to your XCL file. The designation of "-y" option varies depending on the
product.

Product Name -y Option
The debugger for R32C -yspc

3. Build your program after the setting above.

In the options other than the above-mentioned, the operation check is not done. Please acknowledge that the
options other than the above-mentioned cannot be recommended.

REJ10J2120-0100 Rev. 1.00 Page 184 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger Chapter 12 Attention

REJ10J2120-0100 Rev. 1.00 Page 185 of 193
Dec. 01, 2010

12.3.3 When Using the IAR C Compiler (EW)
Please specify the project setting by following process.
1. The Setting in the IAR Embedded Workbench

When you select the menu [Project] -> [Options...], the dialog for "Options For Target " target"" will open. In
this dialog, please select the "XLINK" as category, and set the project setting.

- Output Tab
In the "Format" area, check the "Other" option, and select the "ieee-695" as "Output Format".

- Include Tab
In the "XCL File Name" area, specify your XCL file (ex: lnkm16c.xcl).

2. Edit the XCL file
Add the command line option "-y" to your XCL file. The designation of "-y" option varies depending on the
product.

Product Name -y Option
The debugger for R32C -ylmba

3. Build your program after the setting above.

In the options other than the above-mentioned, the operation check is not done. Please acknowledge that the
options other than the above-mentioned cannot be recommended.

R32C/100 E30A Emulator Debugger Chapter 12 Attention

12.3.4 When Using the IAR C Compiler (ICC)

12.3.4.1 Specify the Option

Please compile according to the following procedures and link.

At compilation •

•

Specify the "-r" option.

Before linking
Open the linker's option definition file (extension .xcl) to be read when linking and add "-FIEEE695" and "-y"
options. The designation of "-y" option varies depending on the product.

Product Name -y Option
The debugger for R32C -ylmba

•

•

At link
Specify the linker's option definition file name using "-f" option.

In the options other than the above-mentioned, the operation check is not done. Please acknowledge that the
options other than the above-mentioned cannot be recommended.

12.3.4.2 Command Execution Examples

The following shows examples of entering commands depending on the product

The debugger for M32C
>ICCR32C -r file1.c<Enter>
>ICCR32C -r file2.c<Enter>
>XLINK -o filename.695 -f lnkr32c.xcl file1 file2<Enter>

The XCL file name varies depending on the product and memory model. For details, see the ICCxxxx manual.

REJ10J2120-0100 Rev. 1.00 Page 186 of 193
Dec. 01, 2010

R32C/100 E30A Emulator Debugger V.1.02
User’s Manual

Publication Date: Dec 01, 2010 Rev.1.00

Published by: Renesas Electronics Corporation

Edited by: Microcomputer Tool Development Department 2
Renesas Solutions Corp.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2010 Renesas Electronics Corporation and Renesas Solutions Corp. All rights reserved.
Colophon 1.0

R32C/100 E30A Emulator Debugger V.1.02
User’s Manual

 REJ10J2120-0100

	1. Features
	1.1 RAM Monitor Function
	1.1.1 RAM Monitor Area
	1.1.2 Sampling Period
	1.1.3 Related Windows

	1.2 Break Functions
	1.2.1 Software Breaks Function
	1.2.1.1 Setting of software breakpoint
	1.2.1.2 Area where software breakpoint can be set

	1.2.2 Hardware Break

	1.3 Real-Time Trace Function
	1.3.1 Trace Area
	1.3.2 Trace Condition Setting

	1.4 Time Measurement Function
	1.4.1 The Measurement Condition

	1.5 Real-Time OS Debugging Function
	1.6 GUI Input/Output Function

	2. About the Emulator E30A
	2.1 Communication method
	2.2 Function table

	3. Before starting the debugger
	3.1 Communication method by emulator
	3.1.1 USB Interface

	3.2 Download of Firmware
	3.3 Setting before emulator starts
	3.3.1 USB communication
	3.3.1.1 Install of USB device driver

	4. Preparation before Use
	4.1 Workspaces, Projects, and Files
	4.2 Starting the High-performance Embedded Workshop
	4.2.1 Creating a New Workspace (Toolchain Used)
	4.2.1.1 Step1 : Creation of a new workspace
	4.2.1.2 Step2 : Setting for the Toolchain
	4.2.1.3 Step 3: Selecting of the Target Platform
	4.2.1.4 Step4 : Setting the Configuration File Name
	4.2.1.5 Step5 : The check of a created file name

	4.2.2 Creating a New Workspace (Toolchain Not Used)
	4.2.2.1 Step1 : Creation of a new workspace
	4.2.2.2 Step 2: Selecting of the Target Platform
	4.2.2.3 Step3 : Setting the Configuration File Name
	4.2.2.4 Step4 : Registering the Load modules to be downloaded

	4.3 Starting the Debugger
	4.3.1 Connecting the Emulator
	4.3.2 Ending the Emulator

	5. Setup the Debugger
	5.1 Init Dialog
	5.1.1 MCU Tab
	5.1.1.1 Specifying the MCU file
	5.1.1.2 Setting of the Communication Interface
	5.1.1.3 Choosing to use or not to use CPU rewrite mode
	5.1.1.4 Choosing to use or not to use ECC in the E2 Data Flash
	5.1.1.5 Specifying the Start Address of the Debug Monitor Program

	5.1.2 Debugging Information Tab
	5.1.2.1 display the compiler used and its object format
	5.1.2.2 Specify the Storing of Debugging Information
	5.1.2.3 Specify whether to display the instruction format specifier
	5.1.2.4 To treat size of enumeration type as 1 byte

	5.1.3 Emulator Tab
	5.1.3.1 Specify the Target Clock
	5.1.3.2 Setting of PLL circuit
	5.1.3.3 Specifying Memory Data Acquisition Intervals during Target Program Execution
	5.1.3.4 Choosing to communicate or not to communicate with MCU while executing target program

	5.1.4 Script Tab
	5.1.4.1 Automatically Execute the Script Commands

	5.1.5 Debugging Mode Tab
	5.1.5.1 Selecting of the Debugging Mode
	5.1.5.2 Setting of Download to Flash ROM Area
	5.1.5.3 Specifying Writer Mode

	5.2 Setting of the Communication Interface
	5.2.1 Setting of the USB Interface

	5.3 Setup the Debugger for R32C
	5.3.1 Emem Dialog
	5.3.1.1 Internal flash memory overwrite Tab
	5.3.1.1.1. Setting to clear the MCU's internal flash ROM
	5.3.1.1.2. Setting to clear the E2 Data Flash

	5.3.1.2 External flash memory Tab
	5.3.1.2.1. Registering Information on External Flash Memory
	5.3.1.2.2. Deleting Information on the External Flash Memory
	5.3.1.2.3. Detail Setting of the External Flash Memory

	5.3.1.3 Ext Port Tab
	5.3.1.3.1. Setting to extension port

	6. Tutorial
	6.1 Introduction
	6.2 Usage
	6.2.1 Step1 : Starting the Debugger
	6.2.1.1 Preparation before Use
	6.2.1.2 Setup the Debugger

	6.2.2 Step2 : Checking the Operation of RAM
	6.2.2.1 Checking the Operation of RAM

	6.2.3 Step3 : Downloading the Tutorial Program
	6.2.3.1 Downloading the Tutorial Program
	6.2.3.2 Displaying the Source Program

	6.2.4 Step4 : Setting a Breakpoint
	6.2.4.1 Setting a Software Breakpoint

	6.2.5 Step5 : Executing the Program
	6.2.5.1 Resetting of CPU
	6.2.5.2 Executing the Program
	6.2.5.3 Reviewing Cause of the Break

	6.2.6 Step6 : Reviewing Breakpoints
	6.2.6.1 Reviewing Breakpoints

	6.2.7 Step7 : Viewing Register
	6.2.7.1 Viewing Register
	6.2.7.2 Setting the Register Value

	6.2.8 Step8 : Viewing Memory
	6.2.8.1 Viewing Memory

	6.2.9 Step9 : Watching Variables
	6.2.9.1 Watching Variables
	6.2.9.2 Registering Variable

	6.2.10 Step10 : Stepping Through a Program
	6.2.10.1 Executing [Step In] Command
	6.2.10.2 Executing [Step Out] Command
	6.2.10.3 Executing [Step Over] Command

	6.2.11 Step11 : Forced Breaking of Program Executions
	6.2.11.1 Forced Breaking of Program Executions

	6.2.12 Step12 : Displaying Local Variables
	6.2.12.1 Displaying Local Variables

	6.2.13 Step13 : Stack Trace Function
	6.2.13.1 Reference the function call status

	6.2.14 What Next?

	7. Windows/Dialogs
	7.1 RAM Monitor Window
	7.1.1 Extended Menus
	7.1.2 Setting the RAM monitor area
	7.1.2.1 Changing the RAM Monitor Area
	7.1.2.2 Adding RAM Monitor Areas
	7.1.2.3 Deleting RAM Monitor Areas
	7.1.2.4 Setting the RAM monitor event

	7.2 ASM Watch Window
	7.2.1 Extended Menus

	7.3 C Watch Window
	7.3.1 Extended Menus

	7.4 Script Window
	7.4.1 Extended Menus

	7.5 S/W Break Point Setting Window
	7.5.1 Command Button
	7.5.2 Setting and Deleting a Break Points from Editor(Source) Window

	7.6 Event Setting Window
	7.6.1 Specify the Event
	7.6.1.1 Select the access condition
	7.6.1.2 Select address match or range specification

	7.6.2 Select the action condition by which an event is assumed to have occurred
	7.6.3 Select the Combinatorial Condition
	7.6.4 Setting the RAM monitor event
	7.6.5 Select the Trace Range
	7.6.6 Select the Trace Mode
	7.6.7 Setting the execution time measurement
	7.6.8 Command Button
	7.6.9 Setting and Deleting a Break Points from Editor(Source) Window
	7.6.10 Specify the Break Events
	7.6.10.1 Instruction Execution of Specified Address
	7.6.10.2 Writing/Reading a Specified Address
	7.6.10.3 Reading/writing data to the specified address range
	7.6.10.4 Entering to specified function

	7.6.11 Specify the Event Combination Condition
	7.6.11.1 Select OR
	7.6.11.2 Select Sequential

	7.6.12 Specify the Trace Events
	7.6.12.1 Specifying a trace range for the trace event to be set

	7.6.13 Specify the Time Measurement Events
	7.6.13.1 Specify the Execution Time Measurement Events
	7.6.13.2 Specify the Interval Time Measurement Events

	7.7 Time Measurement Window
	7.7.1 Specify the Time Measurement Event
	7.7.2 Time Measurement Condition
	7.7.3 Command Button
	7.7.4 Set the Measurement Condition
	7.7.4.1 Measure the execution time between the events
	7.7.4.2 Measure the event occurrence cycle

	7.7.5 Reference the time measurement results
	7.7.5.1 Reference the execution time measurement results
	7.7.5.2 Reference the interval time measurement results
	7.7.5.3 Clear the measurement results

	7.8 Trace Window
	7.8.1 Configuration of Bus Mode
	7.8.2 Configuration of Disassemble Mode
	7.8.3 Configuration of Data Access Mode
	7.8.4 Configuration of Source Mode
	7.8.5 Extended Menus
	7.8.6 Display of bus information on the R32C Debugger

	7.9 GUI I/O Window
	7.9.1 Extended Menus

	7.10 MR Window
	7.10.1 Extended Menus
	7.10.2 Display the Task Status
	7.10.2.1 Display the Task Status(When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)
	7.10.2.2 Display the Task Status(When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	7.10.3 Display the Ready Queue Status
	7.10.3.1 Display the Ready Queue Status(When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)
	7.10.3.2 Display the Ready Queue Status(When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	7.10.4 Display the Timeout Queue Status
	7.10.4.1 Display the Timeout Queue Status(When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)
	7.10.4.2 Display the Timeout Queue Status(When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	7.10.5 Display the Event Flag Status
	7.10.5.1 Display the Event Flag Status(When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)
	7.10.5.2 Display the Event Flag Status(When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	7.10.6 Display the Semaphore Status
	7.10.6.1 Display the Semaphore Status(When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)
	7.10.6.2 Display the Semaphore Status (When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	7.10.7 Display the Mailbox Status
	7.10.7.1 Display the Mailbox Status (When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)
	7.10.7.2 Display the Mailbox Status (When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	7.10.8 Display the Data Queue Status
	7.10.8.1 Display the Data Queue Status(When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	7.10.9 Display the Cycle Handler Status
	7.10.9.1 Display the Cycle Handler Status(When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)
	7.10.9.2 Display the Cycle Handler Status(When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	7.10.10 Display the Alarm Handler Status
	7.10.10.1 Display the Alarm Handler Status(When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)
	7.10.10.2 Display the Alarm Handler Status(When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	7.10.11 Display the Memory Pool Status
	7.10.11.1 Display the Memory Pool Status(When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)
	7.10.11.2 Display the Memory Pool Status(When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	7.10.12 Display the Task Context
	7.10.12.1 Display the Task Context
	7.10.12.2 Change the task context

	7.11 MR Trace Window
	7.11.1 Extended Menus
	7.11.2 Refer the Execution History of Task(MRxx Window)
	7.11.2.1 Select the Trace Range
	7.11.2.2 Stop the Task Execution History Measurement
	7.11.2.3 Restart the Task Execution History Measurement
	7.11.2.4 Refer the Execution History of Task
	7.11.2.4.1. Search the History of System Call Issue
	7.11.2.4.2. Change the display magnification
	7.11.2.4.3. Change the grid line display interval
	7.11.2.4.4. Change the task display order
	7.11.2.4.5. Display the specific task only
	7.11.2.4.6. Change the display color

	7.11.2.5 Measure the Execution Time of Task
	7.11.2.5.1. Move the Marker

	7.12 MR Analyze Window
	7.12.1 Configuration of CPU Occupancy Status Display Mode
	7.12.2 Configuration of Ready State Duration Display Mode
	7.12.3 Configuration of System Call History Display Mode
	7.12.4 Extended Menus
	7.12.5 Analyze the Execution History of Task
	7.12.5.1 Refer the CPU Occupation State
	7.12.5.2 Refer the Ready Queue Time
	7.12.5.3 Refer the System Call Issuance History
	7.12.5.3.1. Extract the Issuance History

	8. Table of Script Commands
	8.1 Table of Script Commands (classified by function)
	8.1.1 Execution Commands
	8.1.2 File Operation Commands
	8.1.3 Register Operation Commands
	8.1.4 Memory Operation Commands
	8.1.5 Assemble/Disassemble Commands
	8.1.6 Software Break Setting Commands
	8.1.7 Real-time Trace Commands
	8.1.8 Event Setting Commands
	8.1.9 Script/Log File Commands
	8.1.10 Program Display Commands
	8.1.11 Clock Command
	8.1.12 C Language Debugging Commands
	8.1.13 Real-time OS Command
	8.1.14 Utility Commands

	8.2 Table of Script Commands (alphabetical order)

	9. Writing Script Files
	9.1 Structural Elements of a Script File
	9.1.1 Script Command
	9.1.2 Assign Statement
	9.1.3 Conditional Statement
	9.1.4 Loop Statement(while,endw) and Break Statement
	9.1.5 Comment statements

	9.2 Writing Expressions
	9.2.1 Constants
	9.2.2 Symbols and labels
	9.2.2.1 Local label symbol and scope
	9.2.2.2 Priority levels of labels and symbols

	9.2.3 Macro Variables
	9.2.4 Register variables
	9.2.5 Memory variables
	9.2.6 Line Nos.
	9.2.7 Character constants
	9.2.8 Operators

	10. C/C++ Expressions
	10.1 Writing C/C++ Expressions
	10.1.1 Immediate Values
	10.1.2 Scope Resolution
	10.1.3 Mathematical Operators
	10.1.4 Pointers
	10.1.5 Reference
	10.1.6 Sign Inversion
	10.1.7 Member Reference Using Dot Operator
	10.1.8 Member Reference Using Arrow
	10.1.9 Pointers to Members
	10.1.10 Parentheses
	10.1.11 Arrays
	10.1.12 Casting to Basic Types
	10.1.13 Casting to typedef Types
	10.1.14 Variable Name
	10.1.15 Function Name
	10.1.16 Character Constants
	10.1.17 Character String Literals

	10.2 Display Format of C/C++ Expressions
	10.2.1 Enumeration Types
	10.2.2 Basic Types
	10.2.3 Pointer Types
	10.2.4 Array Types
	10.2.5 Function Types
	10.2.6 Reference Types
	10.2.7 Bit Field Types
	10.2.8 When No C Symbol is Found
	10.2.9 Syntax Errors
	10.2.10 Structure and Union Types

	11. Display the Cause of the Program Stoppage
	12. Attention
	12.1 Common Attention
	12.1.1 File operation on Windows
	12.1.2 Area where software breakpoint can be set
	12.1.2.1 The debugger for R32C

	12.1.3 Get or set C variables
	12.1.4 Function name in C++
	12.1.5 Option settings for download modules
	12.1.6 Debugging multi modules
	12.1.7 Synchronized debugging
	12.1.8 Down-load of Firmware
	12.1.9 Check of ID Code
	12.1.10 ID code write to flash memory
	12.1.11 The start procedure of debugger.
	12.1.12 Use of Watch dog timer
	12.1.13 Debugging Resource on MCU
	12.1.14 Setting of break point on MCU's internal RAM area

	12.2 Attention of the R32C Debugger
	12.2.1 Stack area used by the emulator
	12.2.2 Interrupt stack pointer when resetting the target program
	12.2.3 RAM area used by the data compare break function
	12.2.4 Option of C Compiler/Assembler/Linker
	12.2.5 Downloading a program to external flash memory

	12.3 Option of C Compiler/Assembler/Linker
	12.3.1 When Using NCxx
	12.3.2 When Using the IAR EC++ Compiler (EW)
	12.3.3 When Using the IAR C Compiler (EW)
	12.3.4 When Using the IAR C Compiler (ICC)
	12.3.4.1 Specify the Option
	12.3.4.2 Command Execution Examples

