To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

LENESAS

-
»
9
ﬁ\
7
<
Q
-
c
)

R32C Simulator Debugger V.1.01

User’'s Manual

Renesas Microcomputer Development
Environment System

Renesas Electronics
WWW.renesas.com ReV. 1.00 2009.07

Notes regarding these materials

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any intellectual
property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light
of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products
are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of
which may cause a direct threat to human life or create a risk of human injury or which require especially high
quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you
are considering the use of our products for such purposes, please contact a Renesas sales office beforehand.
Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:

(1) artificial life support devices or systems

(2) surgical implantations

(3) healthcare intervention (e.g., excision, administration of medication, etc.)

(4) any other purposes that pose a direct threat to human life
Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who
elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to
the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products
are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You
should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

For inquiries about the contents of this document or product, fill in the text file the installer generates in the following directory and email to your
local distributor.

\SUPPORT\Product-name\SUPPORT.TXT

Renesas Tools Homepage http://www.renesas.com /tools

Overview

The High-performance Embedded Workshop is a Graphical User Interface intended to ease the
development and debugging of applications written in C/C++ programming language and assembly
language for Renesas microcomputers. Its aim is to provide a powerful yet intuitive way of accessing,

observing and modifying the debugging platform in which the application is running.

This help explains the function as a "debugger" of High-performance Embedded Workshop.

Target System

The Debugger operates on the simulator system.

Supported CPU

This help explains the debugging function corresponding to the following CPUs.
e R32C/100 Series
Note: In this help, the information which depends on this CPU is described as "for R32C".
e M32C/80, M16C/80 Series
Note: In this help, the information which depends on this CPU is described as "for M32C".
e M16C/60, M16C/50, M16C/30, M16C/Tiny, M16C/20, M16C/10 Series, R8C Family
Note: In this help, the information which depends on this CPU is described as "for M16C/R8C".
e 740 Family
Note: In this help, the information which depends on this CPU is described as "for 740".

Active X, Microsoft, MS-DOS, Visual Basic, Visual C++, Windows and Windows NT are either registered trademarks or
trademarks of Microsoft Corporation in the United States and other countries.

IBM and AT are registered trademarks of International Business Machines Corporation.

Intel and Pentium are registered trademarks of Intel Corporation.

Adobe and Acrobat are registered trademarks of Adobe Systems Incorporated.

All other brand and product names are trademarks, registered trademarks or service marks of their respective holders.

For inquiries about the contents of this document or product, fill in the text file the installer generates in the following
directory and email to your local distributor.

¥SUPPORT¥Product-name¥SUPPORT.TXT

Renesas Tools Homepage http://www.renesas.com/en/tools

Setup of Debugger

1.

Features 3
1.1 Real-Time RAM Monitor FUNCEION.........ccoiiiiiiiiei ettt ettt e e e e e e ennaes 3
1.1.1 RAM MONIEOT ATEA ..vveiiiiiiiiiiiieee e ettt eeette e e e e e eetae e e e e e e eetaaaeeeeeeeeeasaseeeeeeesennranes 3
1.1.2 SamMPUNEG Perioduvviiiiiiiiiiiiieee et e e et e e e e et a e e e e e e eenaranes 4
1.1.3 Related WINAOWSuuviiiiiiiiiiiiecee ettt e ettt e e e e e e ettt e e e e e e e eeaaareeeeeeesennnanes 4
1.2 Break FUNCEIONS . .eiiiiiiiiiiiiiee ettt e e e e ettt e e e e e e eearbaaeeeeeeesenatrareeaeeesennnenes 5
1.2.1 Software Breaks FUNCEION...........cooiiiiiiiiiiiic et ettt 5
1.2.2 Hardware Breaks FUNCEION.........coooiiiiiiiiicc ettt e e e e eeanaees 6
1.3 Real-Time Trace FUNCEIONcooociiiiiiiii e e e ettt e e e e e arra e e e e e e e e annanes 7
1.8.1 THACE AT@A..eeeiiiieiiiiiiieee et e et e ettt e e e e e e et a e e e e e e e e setaaaaaeeeeeeeassrseeaeeesennaranes 7
1.3.2 Trace Condition SEtEINGcc.uveiiieiiieiiiiiiie e e ettt e eeeete e e e e e e etrer e e e e e e eeearareeeeeeesesnraees 8
1.3.3 Trace Data Write COnditioncccceuiiiiieeiieiiiiiiiieeeeeecciiee e e eeectiee e e e e e e e eeaaareeeeeeeseneneaees 8
1.4 Coverage FUNCEIONcccuiiiiii e e ettt e e e e e e et e e e e e e e e s atraeeaeeeeeennnranes 9
1.4.1 Coverage Measurement ATccccuvieiieeeieiiiiiieeeeeeeeciiieeeeeeeeeeiaeeeeeeeeeeeaaareeeeeeeeeenraees 9
1.4.2 Related WINAOWSuvviiiiiiiiiiiiiie ettt e ettt e e e e e e etaae e e e e e e e eeanareeeaeeesennranes 9
1.5 Real-Time OS Debug@ing FUNCEION........ccccciiiiiiii ettt etva e e e e e e e e eanaaes 9
1.6 GUI Input/Output FUNCEION ...ccoiiiiiiiiee ettt e e et e e e e e e earae e e e e e e e eeannanes 9
1.7 I/O Simulation FUNCEIONcciiii ittt e e e ettt e e e e e e e araaeeeeeeeeeeanees 10
1.8 Time Measurement FUNCEIONeeiiiiiiiiiiiiiiiec et e e et e e e e e e enans 11
1.9 Stack Utilization Monitor FUNCEIONccoiiiiiiiiiiiiiciee et 11
Simulation Specifications 12
2.1 Simulation Specifications for R32C.............cooiiiiiiiiiiiiiiieiiieeee e e 12
2.1.1 Operation of INSEIUCEIONSuvviiieiiiiiiiiiiieee e eeeeite e e e eeeettte e e e eeeeetrreeeeeeeeeeaaaaeeeeeeeeeennnes 12
2.1.2 RESEUEING covvvviiiiiiiiiiiiiiiiieieieieeetteeeeerereeeeeeeseaaasaesasssassssssssssssssssassssssssssssssssssssssssssssssssssssresne 13
bR RS T\ =5 4 Vo) AP PPPPPUPPPPPPPPPRE 14
DA T/O oo e e et e e e e e ——aa e e e e e e e etarraaaeeeaaaes 15
2.1.5 Cycle Count: The CYcle (CY) COMMAN.c.eoveeeieeeeeeeeeeeeeeeeeeeee et 18
2.1.6 Stack Utilization Monitor: The StackMonitor (SM) Command................c.ccoeverrerennenn. 18
2.2 Simulation Specifications for IMB2Ciiiiiiiiiiiiieee e eeeaae e e e e errreee e e 19
2.2.1 Operation of INSEIUCEIONSuuvviieiiiiieiiiiieee e e eeeete e eeeecttee e e e eeeeetrreeeeeeeeeearaeeeeeeeeeennnes 19
R Y=t v b s VPP PPUPUPPPPPPPPPRE 20
2.2.8 IMLBINIOTY .vvvvvvvrirerireeerererereeeseresesesssesesessssssssssssasssessssseran 21
D204 T1O et e e et e e e htt e e e tbae e e tbteeatraeeattaeeeatbaeeetbaeeeanraeannns 22
2.2.5 Cycle Count: The CYcle (CY) COMMAN.c.ooveeeeeeeeeeeeeeeeeeeeeeeee e 25
2.2.6 Stack Utilization Monitor: The StackMonitor (SM) Command................ccccevverrerennenn. 25
2.3 Simulation Specifications for MIGC/REC........cccoovviiiiiiieiiiieiee e 26
2.3.1 Operation of INSEIUCEIONSuvvviieiiiiiiiiiieee e e eeceire e e eeeecttee e e e eeeeearreeeeeeeeeearaeeeeeeeeeennes 26
2.3.2 RESEUEING c.vvvviiiiiiiiiiiiiiiiieiieeteteeeee e e ereeteeeeeeseaeaesssassssasssssssssssssassssssssssssssssssssssssssssssssssssrernn 27
B TR T\ =5 1 o) AP PPPUPUPPPPPPPPPRE 28
D.BuA T/O oot e e ettt e e hae e e e tbae e e —bteeatataeattaeeeatbaeeetbaaeeanrbeannns 29
2.3.5 Cycle Count: The CYcle (CY) COMMAN.c.eoveeeeeeeeeeeeeeeeeeeeeeeeee e 32
2.3.6 Stack Utilization Monitor: The StackMonitor (SM) Command.............c..c.ccvvverrerennenn. 32
2.4 Simulation Specifications fOr T4coiivieiiiiiiiiiiiieee e eeeeeaa e e e e e eeetarreeeeeeens 33
2.4.1 Operation of INSEIUCEIONSuuviiiiiiiiieiiiiieee e e eeeeiite e e e eeeetee e e e eeeeearreeeeeeeeeeaaraereeeeeesennes 33
2.4, 2 RESEUEINIG ..vvviiiiiiiiiiiiiiiiiieieieteeeereeeeerereseeereaesrssassssassssssssssassssssrasasssssssssssssssssasssssssssssessssresnn 34
B S\ =5 4 Vo) AP PPUPUPPPPPPPPPRE 34
D O O USSR UPRRUSROt 35
2.4.5 Cycle Count: The CYcle (CY) COMMAN.c.eoveeeieeeeeeeeeeeeeeeeeeeee et 37
2.4.6 Stack Utilization Monitor: The StackMonitor (SM) Command................c.ccovvereerennenn. 37
Preparation before Use 38

3.1 Workspaces, Projects, and FIlesiuiiiiiiiiiiiiiiiiiiiiinineiennnenennnnnnnnnnnnnnnnnnnnnnnnnnnnnnnns 38

3.2 Starting the High-performance Embedded Workshopc.cooeviiiiiiiiieiiiiiiiiieeeee e 39
3.2.1 Creating a New Workspace (Toolchain Used)cocoeeeuieieieeeeeeeeeeeee e 40
3.2.2 Creating a New Workspace (Toolchain Not Used)ccccoeveieieoeeeeeeeeeeeeeeeeeeeeeeenens 45

3.3 Starting the DEDUGGETcooviiiiriieeie et e e e e e e e e et aaaeeeeas 50
3.3.1 Connecting the SIMULATOTcooiiiuiiiiiiieiecciee e e eeeaaraee s 50
3.3.2 Ending the SimULator...........ociiiiiiiiiiiieee ettt e e e e eeeanrreee s 50

4. Setup the Debugger 51

0 I o N A) =1 Lo 3OS 51
.11 IMOU TaD ettt ettt et e et e e ta e e bt eestbeetbeesabeesbeessbeessseesaseensseessseenasens 52
4.1.2 Debugging Information Tabccccveeiiiiiiiiiiiiiieec e 54
.13 SCTIPE TAD ...t e e e e e e e e e e e e e e e eabr e e e e e e e anrreeens 56
O I b T = o TSP PRSPPI 57
4. 1.5 T/O SCIIPE TAD .evvvviiiiieeeeceeeeee et e et e e e e e et e e e e e e anrraeens 57

4.2 MCU Setting Dialog (for MLIGC/REC)c.cueueuruririiieeeeieieieirineritieeeieaessesenessssessesssseneseessseseseseens 58
2 WL =) 4o Vo) o A0 - 1 o SO PRPPPPPRPPPRE 59

4.3 SIMUIALOT ENGINIE SEEUP ...cciiiiiitiiiieee e e et e e e eeee e e e ee ettt e e e e e eeeettaeeeeeeeeeeeataaeeeeeeeeeetarreeaeeeens 61

4.4 Method of maKking MOCU fI1€ccooiiiiiiiiieiii ettt e e et e e e e e e etaareeeeeeens 62
4.4.1 Method of making MCU file (the R32C DebUZZETr)c.ecvevuieeeieeeeeeeeeeeeeeeeeeeeeeeeeeens 62
4.4.2 Method of making MCU file (the M32C DebUgger)ccceevevrireerereerererriiereeriesesennnns 63
4.4.3 Method of making MCU file (the M16C/R8C DebUgEer)ccvevveeeeeeeeereeereeeeeenenns 64
4.4.4 Method of making MCU file (the 740 DebDUZZET)ccvevveeuieeeeeeeeeeeeeeeeee et 65

Tutorial

5. Tutorial 69
ST B 0N oY LE et o} o B PU O PPPRRINt 69

B.2 TUSAEE coeieieiiieieiiieiiieeeeeeeeeeeeeeeeeeereeererararesesasarasasasssasasasasasasa s e s s s e s s rasa s e s e s s e e aa e et e batatataaaantatatararbeaeaaaraaaes 70
5.2.1 Stepl : Starting the DebUZZETvevviiiiiiiiiiiiiee e 70

5.2.2 Step2 : Checking the Operation of RAM..........cccooiiiiiiiiiiieeieeiiiieeeeee et 71

5.2.3 Step3 : Downloading the Tutorial Programcccccevvvevieeiiiiiiiiiieeeeeeceiiieeeee e 72

5.2.4 Step4 : Setting a Breakpoint......cccvveiiiiiiiiiiiiiiiee et 74

5.2.5 Stepb : Executing the Programccooooiviiiiiiiii e 75

5.2.6 Step6 : Reviewing Breakpointsccoiiiiiiiiieieeieiiiiieeeeee et eeeetare e e 77

5.2.7 StepT 1 VIEWING REGISTET ..vvviiiiiiiiiiiiieeee ettt e e e eeearrreee s 78

5.2.8 Step8 : VIEWING IMEIMOLY ...eeeeeiieeiiiiiiieeeeeeeeiitieeeee e e e eeeeteee e e e e eeeetttaeeeeeeeeeeetaaeeeeeeeeeeanrreeens 79

5.2.9 Step9 : Watching Variables........ccciveiiiiiiiiiiiiiiiee et 80

5.2.10 Stepl0 : Stepping Through a Programccooeviviiiiiiiiiiiiiiiieec e 82

5.2.11 Stepll : Forced Breaking of Program EXecutions...........ccccoevvvvvieeiieeiiiinneeeeeeeecciinneen... 85

5.2.12 Stepl2 : Displaying Local Variablescccccoeiiiiiiiiiiiiiieeiieciiiieeeee e 86

5.2.13 Stepl3 : Stack Trace FUNCEIONcccoiiiiiiiiiiiie et 87

5.2.14 WRAE INEXE? ..veiiiiiiieeeiiieeeiiee et ee e ettt e ettt e e e s bt eeeetbeeessasbeeesssseaeasssaeeessssaeesnsseaeasssseesnssnes 88
Reference 89
6. Windows/Dialogs 91
6.1 RAM MONIEOr WINAOW ..eeiuiviiieiiiiieeiiieeeeiieeeesitteeesiteeestseeeesesaeesssssaeesssseeeassssesessseessssssesssssseeennes 92
6.1.1 EXteNded MENUS ...ciiiiiiiiiiiiiiieeeeeiiiieeee e e ettt e e e e e ettt ee e e e e s nbaaeeeeesessnnssaeeeeeesennnreeeeas 94

6.1.2 Setting the RAM IMONILOT ATuuveieeeeeiiiiiiriiieeeeeeeiiitreeeeeeeeeeeitereeeeeeeeeetrreeeeeeeeesanreeeens 95

6.2 I/O Timing Setting WINAOWceeeiiiiiiiiiiiiiiie e ceiiiieee e eeecree e e eeeeta et e e e e e eeetaaeeeeeeeeeeanraeeeeeeens 96
6.2.1 Virtual Port INPUb........oooiiiiiiieeeeeeeeeeeeeeeeeeee e eeeeeeee e e e e e e e e e aaaraaaes 97

6.2.2 Virtual Port OUEPUL....ccccivviiiiee e eeeear e e e e et e e e e e e e eeanrreeeas 929

ii

6.2.3 VIrtual INterTUDL ..ooeeieieiiiiiiee ettt e e e ettt e e e e e st ee e e e e nnnreaeeas 99

6.2.4 Structure of Virtual Port INput SCreencooevviviiieeiieeiiiiiieee et 101
6.2.5 Structure of Virtual Port OUutput SCIreen............cooviiuviiieeiiiiiiiiiieeee e eeeeireeene 105
6.2.6 Structure of Virtual Interrupt SCreemnccvveiiiieeiiiiiieee e 107
6.2.7 EXEENAEA IMENUS ..eeiiiiiiiiiiiiiie e ettt e e ettt e e e e ettt e e e e e e ssntbteeeeeeesensnbaaeeeeesennnnsseeens 109
6.2.8 Setting Virtual Port INPuUts.......cccoviiiiiiiiiii e 110
6.2.9 Setting Virtual Port OULPULS ...ccccuvviiiiiiieciiiieeee e e 118
6.2.10 Setting Virtual INterruptS......cooiiiiiiiii i e e 120
6.2.11 Regarding Evaluation Timings of Virtual Port Inputs,Virtual Interrupts, and I/O
SCLIPE FILES SO o.oiiiiiiiiiee et et e e e e e e e e et e e e e e e e e anareeens 130
6.3 OULPUL POXt WINAOW ...vviiiiiiiieiiiiiiee ettt e e e e et aa e e e e e e eetarreeeeeeeeeanraeeens 131
6.3.1 EXteNded MENUS ..coiiieiiiiiiiiiiie ettt e e e ettt e e e e ettt e e e e e e setbteeeeeeesennnsaaeeeessesnnnsreeeas 132
6.4 ASM Watch WINAOWeeiiiiiiieiiiiieeciiieeeiie e et e e e et e e eteeeesitaeeeestbeeeesaaaaeesstseeeassseeenssseesssseeens 133
6.4.1 EXteNded MENUS ..coiiiiiiiiiiiiiiee ettt e ettt e e e e ettt e e e e e e st teeeeeeesennstaaeeeessennnsreeens 134
6.5 C Watch WINAOWcooiiiiiiiiiieciiee ettt et e e e st eeetba e e eaaaaeesstbeeeesssseeenssseeessseeens 135
6.5.1 EXteNded MENUS ..oeiiiiiiiiiiiiiiie ettt e ettt e e e e ettt e e e e e e st eeeeeeseanssaeeeeeesenannsreeeas 137
6.6 CoVEraZE WIILAOWuvvviiiiiiiiieiiiiieeee e eecce et ee ettt e e e e ee et e e e e e e eeeettaaeeeeeeeeenaasreeeeeeeeeanraeeens 138
6.6.1 EXteNded MENUS ...ciiiiiiiiiiiiiiee ettt e ettt e e e e ettt e e e e e sentbtreeeeeesennssaaeeeessennnnsreeens 139
6.6.2 Refer to the Source Line/the Executed Address........ccoocvvieiriieeeeiiiieeeriieeeeiieeeeivee e 140
6.7 SCIIPE WINAOW ..eeeiiieiiiiiiee ettt e e ee et e e e e e e et aeeeeeeeeeeaaarreeeeeeeeeansaeeens 141
6.7.1 EXEENdEd MENUS ..ooiiiiiiiiiiiiiiee ettt e e e ettt e e e e ettt e e e e e e s sntbteeeeeeeseannbaaeeeeesennnnsseeens 142
6.8 S/W Break Point Setting WINAOWcccvviiiiiiiiiiiiiieeee ettt eeeetaer e e e etanraee s 143
6.8.1 CommaNd BUbtOm.....ccccviiieiiiiiiiiiieeeiie et e eteeeesve e e eeereeesebeeeestbeeeessseeesssaeeesssseeeanes 144
6.8.2 Setting and Deleting a Break Points from Editor(Source) Window...........cccoveuvennee... 145
6.9 H/W Break Point Setting Dialog BoXcoooiiiiiiiiiiiiiiiciiiiiieeee e 146
6.9.1 SPecify the EVENTScccoiuviiiiiii e e e tareee s 147
6.10 Trace Point Setting WINAOWcccciviiiiiiiieiiiiieeeiieeeieeeesireeeeireeessvaeeestbeeeessseeenssseesssseeens 150
6.10.1 Specify the Trace EVENt.........ccooiiiiiiiiiiiiiiiiiiiee e 151
6.10.2 Specify the Combinatorial Condition...............coeviiivirieeeeeeiiiieeeeeeeeeeecireeeeeeeeeerreeeenes 154
6.10.3 Specify the Trace RANGEccooivviiiiiiieiiiiiieie e 155
6.10.4 Specify the Trace Write COndition.........ccoovvviieeieiiiiiiiieeeeeeeeiieeeeeeeeeeeiree e e eeeeearneee e 156
6.10.5 Command BuUtton.........ccoeiiiiiiiiiieciie ettt et e et e e et e e e etbee e etraeeesaraeeeenes 156
6.10.6 Specify the Events (Instruction Fetch)cccooveveieriieeieeieeeeeeeeeeeeeeeseeeenenes 157
6.10.7 Specify the Events (IMemory ACCESS)oovevereereeeeereeereereeeseeseseseeresseseesesseneesesens 161
6.10.8 Specify the Events (Bit ACCESS)c.cviviverierieeeereeeeereeteeeereeeseeseeereeseseseeseseneesesens 183
6.10.9 Specify the Events (INEEETUPL)cocveeviierierieiereereeeeeereeeeeereeeereeree e eresseneeresseneesenenes 185
6.10.10 Specify the Event Combination Conditioncccccceeeeeeeiiiiriieeeeeiiiiireeeeeeeeeeireeennn. 187
6.10.11 Specify the Write CONAILIONc..uvviiiieiieeiiiiiiee et e et e e e e earreee s 189
6.11 TTACE WINAOW ..eeeiiiiiiiiiiieeeeeiiit e e e ettt e e e e e sttt e e e e s eesastaeeeeeeeessnstnaeeaeesesnsnsssaeaeeeesennnnsnneeas 193
6.11.1 Configuration of Bus MOde........cc.ueeeiiiiiiiiiiiiiiec et 193
6.11.2 Configuration of Disassemble Modec....ceeeeeeiiiiieieeeieeiiiiieeee e 195
6.11.3 Configuration of Data Access MOdecccuvveieeieeiiiiiiieee e 196
6.11.4 Configuration of SOUTCE MOAE...........ccoeeiiriiiiieiieeiiiiieeee et eeeeerre e 197
6.11.5 Extended MENUScccoiiiiiiiiee ettt e e ettt e e e e ettt e e e e e st e e e e e e sentnbaaeeeeesennnnsneeeas 198
6.11.6 Display of bus information on the Simulator Debuggercccccceeevvreirrieeencrieeennns 199
6.12 Data Trace WINAOW......ccciiiiiiiiiiiiiee ettt e e e ettt e e e e e ee sttt e e e e eesntbaaeeeeeseesssssseeeeeeesesnnsaneeas 200
6.12.1 Extended MENUSccccuiiiiiiiee ettt e ettt e e e e ettt e e e e e st e e e e e e sennnbaaeeeeesennnneeeeas 201
6.13 GUT I/O WINAOW.....eiiiuiieeiiieiiiieeiieeiiteeeiteesiteeetteesiveestaeestbeeetseesabeesaseesssaessseesssaessseessseessseessseesssens 202
6.13.1 Extended MENUSccccuiiiiiiiee et ettt e e e ettt e e e e e e st eeeeeesennnbaaeeeeesennnnaeeeas 203
6.14 MR WINAOW ..eeiieiiiiiiiiiiiii e e ettt e e ettt e e e e e sttt e e e e e e eesnsbaeeeeeeaesnstsseeeeesesansssseeeeeesennssenees 204
6.14.2 Display the Task StatUSccooiiiiiiiiiiiiiiiiiiieiee e e e e e e e e eeaaraeee s 206
6.14.3 Display the Ready QUeUE Statusccccivviiiiiiiiiiiiiiiiee et 211
6.14.4 Display the Timeout QUEUe StAtUS........cccuvviiiiiieeiiiiiiiee e e 212
6.14.5 Display the Event FIag Status..........ccooeiiiiiiiiiiieiiiiiiiiee e 214
6.14.6 Display the Semaphore StAtUS...........ccooviiiiiiiiiieeiiiieeiee e e e 216
6.14.7 Display the Mailbox StatUS......cccuvviiiiiiiiiiiiiiiieee et e et e e e e eeaarreee s 218
6.14.8 Display the Data QUEUE SEALUSccoeviiiiiiiiiee et eeeeetre e e eeearaeee s 220

1ii

6.14.9 Display the Cycle Handler Statusccovvviiiiiiiiiiiiiiee e 222

6.14.10 Display the Alarm Handler Statuscccceeeeiieeiiiiiiieee e 224
6.14.11 Display the Memory Pool Statusccccvvviiiiiiiiiiiiiiee e 225
6.14.12 Display the Task COnteXt......cccvuviiiiiiiiiiiiiiiieee et eeeecre e eee e e e e e eearaeee s 227
6.15 MR TTaCe WINAOWuviiiiiieiiiiiiiiiiieeeeeieiiitieeeeeeseittteeeeessesastaeeeeeesesnstsaeeaeessssnsssreeeesesssnnnssnees 229
6.15.1 EXtended MENUScccciiiiiiiiie et e ettt e e e e ettt e e e e e st eeeeeesennntaaeeeeesennnraeeeas 231
6.15.2 Refer the Execution History of Task(MRXX Window)c.ccoevevvereereeereereeeeerennenns 232
6.16 MR ANAlyZe WINAOW.....cccuviieiiiiieeeiiieeeiiieeeeiieeeeve e e eteee e st eeeestbeeessasaaeesssseeeassseeensssaeesnsseeens 238
6.16.1 Configuration of CPU Occupancy Status Display Mode.........ccccccovvvrvrreeeeeeeecnnnnenn... 238
6.16.2 Configuration of Ready State Duration Display Modeccccovvieeviiieiriiieeeniieeeenes 239
6.16.3 Configuration of System Call History Display Mode........cccocvveeeeeeiiiinneeeeeeeecinnneenn... 239
6.16.4 EXtended MENUScoccuiiiiiiiee ettt ettt e e e e ettt e e e e e e st eeeeeesentnbeaeeeeesennnnreeeas 240
6.16.5 Analyze the Execution History of Taskcccoeeviviiiiiiiiiiiiiiiiee e 240
6.17 TasSk TTace WINAOW......ccciiiiriiiiiiiieeieeiiiitiee e e e e seiittee e e e e ee et e e e e eesntbnaeeeeesessnsssaeeeeeesesnnsaneeas
6.17.1 Extended Menus
6.17.2 Refer the Execution History of Task(Taskxx Window)...........ccccceevevveeeeereereeeenennn 245
6.18 Task ANALYZE WINAOW........eieiiiiiieeiiieeeiiee ettt e eeee e e esteeeestreeeetbeeeesabaeeesstseeeassseeensssaessssseeens 250
6.18.1 Extended MENUSccccuiiiiiiiiie ettt ettt e e e ettt e e e e e sttt eee e e e sentnbaaaeeeeeennnraeeeas 250
6.18.2 Analyze the Execution History of Taskcccoeeiiviiiiiiiiiiiiiiiiee e 251
Table of Script Commands 252
7.1 Table of Script Commands (classified by fUNCEION)c.ocveveevieerieriieeeereeeeeereeeeevee e 252
7.1.1 Execution COmMMANGS......cc.uieiiiiieeiiiiieeiiieeesiieeeeireeesireeestreseeeseeessssseeesssseeeessseeesnssees 252
7.1.2 File Operation ComMMAASc.veeeeeeeeeiiiirieeeeeeeeiiiieeeeeeeeeciireeeeeeeeeeiaraeeeeeeeeeerrreeeeeeeens 253
7.1.3 Register Operation COmMMANAScooiuriiiieeiiiiiiiiieeeeeeecitieeeeeeeeeeirreeeeeeeeeeerrrreeeeeeeans 253
7.1.4 Memory Operation CommandScocevureeeieeiiiiiiiieeeeeeeeiiireeeeeeeeeccareeeeeeeeeeerrereeeeeeeans 253
7.1.5 Assemble/Disassemble CommMANAScc.eeeirviieeriiiiieriiee e e e eeree e ereeeeraeeeeeeeeas 254
7.1.6 Software Break Setting Commands..............cooeriiiuiiiiieiieiiiiiiieeeeeeeciiieee e eeeeirreee e e 254
7.1.7 Hardware Break Setting Commands..............coovvvuviiiieiieiiiiiiieeeeeeeeciiieeeeeeeeeecireeeeeeeeen 254
7.1.8 Real-time Trace CommAaNdScccuiieeiiiieiiiiieeiiiieeeieeeesreeeesieeeeseaeeeeeseeeessssesssssseas 254
7.1.9 Coverage Measurement COmMMANASeeeeeieriiiuiiiieeeiiiiiiiiieeeeeeeeciiireeeeeeeeeerarreeeeeeenns 255
7.1.10 Stack Utilization Monitor Command.............cceeeuvirereiireiriieeesiiieeereeeereeeesreeeesenneas 255
7.1.11 Cycle Count Monitor Command..........cc.eeeeeeieeiiiiiireeeeeeeiiiieeeeeeeeeciiieeeeeeeeeeerarreeeeeeens 255
7.1.12 Script/Log File CommandScooeeiiuiiiiieeieiiiiiiiee e eeeciiiieee e e eeeeiiveeeeeeeeeeerarreeeeeeeans 255
7.1.13 Program Display COmImMANndSccooevuviiiieiiiiiiiiiiiieeeeeeciiieeeeeeeeeeeireeeeeeeeeeevrrreeeeeeeans 255
7.1.14 Map COMMEANASccuvviiieeeeeeeiiiieeeee e e eecctte et eeeeeeitee e e e e eeeettaaeeeeeeeeeetaaeeeeeeeeeeasrreeaeeeans 256
7.1.15 C Language Debugging Commands..............cooevvuririeeeieiiiiineeeeeeeeeiiireeeeeeeeeeivnneeeeeeeens 256
7.1.16 Real-time OS COmmMmANd........c.ceeeriuiiiieiiiieieiieeesiteeeereeeereeeesaeeeeeeaeeeeebeeeesssseeessseeas 256
7.1.17 Utility COMIMANAS ...vveiiieiiieiiiiieeeiiiieesiieeesiieeeeireeessbeeeestreeessaseeessssseeesssseeessssseesnssees 256
7.2 Table of Script Commands (alphabetical OFAer)cvvveeveeeeeeeeeeeeeeeeeeeeee et 257
Writing Script Files 259
8.1 Structural Elements of @ Script Fileccovvviiiiiiiiiiiiiiiiieceeee e 259
8.1.1 Script COMMANCceeeiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeee ettt ee e eeeeeeerereeeresesereresesereseresererererrrees 260
8.1.2 ASSIZN SEALEIMENT....ccciiiiiiiiiiiee ettt e e e e e ettt e e e e e serbrreeeeeeeestrraeaeaeeeennrraeees 260
8.1.3 Conditional StatemMENtcceveiiiiiiiiieeeieiiiieee e et e e e e e e errr e e e e e e eaeraeee s 260
8.1.4 Loop Statement(while,endw) and Break Statement...........ccooevveeviveeeiveeiievieeeeeeeeeens 260
8.1.5 Comment SEALEMENTSvviiiiiiiiiiiiiiiieeeeeeiiiie e e ee st e e e e e e srtbrreeeeeessanaseeaeeeesssnnssseneas 261
8.2 Writing EXPrESSIONS. . uuiiiiiiiiiiiiiiiiiieeeeeiiti et e e e e sttt teeeeeeeeetraaeeeeeeessstsaeeaeeeessssrssseaeeeesesssnssnees 261
8.2.1 COMSLANES 1.ieeeueiiiiiieieeeeeiiiiee e e e e ettt eeeeeeeestbaeeeeeeeesssbaseaeeesesasssssaaaeeeesassssssaseeeesessssssenes 261
8.2.2 Symbols and 1abelsuviiiiiiiiiiiiiiie e re e e e e s arrreee s 262
8.2.3 MACTO VATIADIES ...cciiiiiiiiiiiiiiiee ettt e e et e e e e e e st eeeeeesesstabaeaeeeesennnnaeeeas 263
8.2.4 Re@iSter variablesccoiiiiiiiieiciiieee e e e e e e et a e e e e e e nrraeaeas 264
8.2.5 MemOTY VATIADIESceiciiiiiiiiiieeeeiiiieeee e e eeiiie et e e e e e sttt e e e e e e sastbseeeeeeesesssnsaaaeeeesasnssssenes 264
8.2.6 LLINE INOS. 1iiiiiiiiiiiiiiei ettt e ettt e e e e ettt e e e e e e et b b e e e e e e st tbbaaaeeeeeantrrbaaaaeeeannrrraeeas 265
8.2.7 Character CONSLANESuviiiiieieiiiiiiiiieeeeeriiitteeeeeerirarreeeeeessttrereeeeeessssssseeaeeessasssssenes 265
B.2.8 OPBIALOLS ..eeeieieieiiieieieieeeeeeeee ettt ee e ee e e e e eeeeeeeeeererarererererarareraaararararararararararara————. 265

iv

10.

11.
12.

I/0 Script 266

9.1 Method for Writing I/O SCrIPtveeeeeuriieeiieeeeiiieeeieeeette e e st eeeetreeeesvaeeestbeeeesseeeesssseeessseeens 266
9.2 CompoSition Of I/O SCrIP....ueiiieriiieeiiieeeeiie ettt e eeiee e et e e e st e e e etbeeeesbaeeesstbeeeessseesssssaeesssseeens 267
9.2.1 PrOCEAUTE .ottt e e ettt e e e e e ettt e e e e e s stbbaeeeaeesenssbaaeeeeesennnnsseeeas 268
9.2.2 T/O SCript StALEIMENES .. .iiieiiiiieiiiiieeeiiieeerieeeeectteeeesreeeesebeeessebeeeessrseeeesseeesssseeeesssseeeanes 268
9.2.3 Judge Statements (f, €1SE)cveveovioueeeeeeeeeeeeeeee ettt 270
9.2.4 Repeat Statement (while) and break Statement............c..coccevveevviveeeeeveeeereseeerennnes 271
9.2.5 ComMmMENt StALEIMENTS ..viiiiiiiieiiiiieeeiieeesieeeeeitreeeesreeeesereeessabeeeessrseeessseeesssseeeesssseeennes 271
9.3 Method for Writing Right-side EXPressionsccceeeiieiiiiiiiieeeeeeeeiiiieeee e eeecciieeee e eeeeevnneee s 272
9.3.1 CONSEATIES 11ieeueviieeiiiieeeiiieeesiteeestieeeeireeeestbeeestreeeasraeeessssaeessseaeasssseeeasssasesnssaeeesssseeeanes 272
9.3.2 Symbols and LabelSccuvviiiiiiiiiiiiiiec e 272
9.3.3 MACTO VATIADLES ...eeiiiiiiiiiiiiie et e ettt e e e e e st e e e e e s tntra e e e e e e e nnrraeeas 273
9.3.4 Memory Variables.........cooiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e e e e e e e e e e e araraaaaaa 273
9.3.5 Character CONSTANEScccviiiiiiieeeiieeerieeeescieeeesreeeesereeessebeeeesssreeeessasesssseeessssseeeanes 273
9.3.6 OPETALOTS ..eeeeeiiiriiieeeeeeecittee e e e e eeeet et e e e e eeeetttareeeeeeeeeetareeeeeeeseetrareaeeeeeeetrrreeeeeeeennnsreeens 274
9.3.7 #isfetch, #isint, #isread, HISWIIEEcooviviiiiiiiiiiiees 274
9.4 Method for Writing Left-side EXpressions........cccovveiiiiiiiiiiiiieeee e et 276
LS R Y T Co Y Ta =1 o) [T U PUPR PP 276
9.4.2 MemoOry Variables.........ooiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et e e e e e e e e e ae e e r e araraaaaaa 276
C/C++ Expressions 277
10.1 Writing C/CH+ EXPIeSSIONS ..eiiiuiiiiiiiieeiiiiteeeiitee ettt ett et e e ettt e st e e s st e e e ebteeesaeees 277
10.1.1 ImMmediate ValUeS......ccciiiciiiiiiiie ettt ettt e e e e e ettt e e e e e eesavaeeeeeseessnnaaaeeaeesesnnnnns 277
10.1.2 SCOPE RESOIUTION ...uvvviiiiiiiiiiiiiiiiiiiiiitiitteittetereteaarereaaearaeaeenanennnnnnnnnnnnnnnennsnsnnnnnnnnnnnnnns 278
10.1.3 Mathematical OPeratorsu.ueueueururururirurirererrrerrrernrerernrererr...————————————————————.—...—. 278
T0.1.4 POINEETS ..vvvviiiieeeiiiiiieeeeeeeeititeeteeeeeibeeeeeeeeesaaraeeeeeeaassssssaaeaessesssnssnseaessesssssssseaeesessnnses
10.1.5 RETEIEINCE. ...ccciviiieeiiii ettt e e ettt e e e e e et e e e e eatbee e eebaeeasesseeeensseeeearaeaas
10.1.6 Sign Inversion
10.1.7 Member Reference Using Dot Operatorc.cccoccvieeieiiieeeiiiiee e eeiieeeeiveeeeeveee s 279
10.1.8 Member Reference USING ATTOWc.eieiiuiiieeiiiieiciiieeeiee et e eeivaeeeeireeeeeveeeeseveeeens 279
10.1.9 Pointers t0 Members........cuviiiiiiiiiiiiiiiee ettt e e ettt e e e e e raraeeeeeeeesaanaaaeeeeeesnnnns 280
10.1.10 ParenthieSes....ccuuviiiiiiieiciiiiee ettt ettt e e e e e e et et e e e e e eesaabbaeeaeeeesnntaaaaaeeeesnnnnes 280
B I AN 7 =TSP PUPUUPPPRRNt 280
10.1.12 Casting t0 Basic TYPES ...uuuviiiiieeiiiiiiieie e e ettt e e e eesiirreeeeeeeeseaareeeeeesessasseeeeeesesssnsses 280
10.1.13 Casting to tyPedef TYPESueeieriiieiiiie ettt e e e et e e eerae e esavaeeeas 281
10.1.14 Variable NAMEcccciiiiiiiiiiiiie et e ettt e e e e ettt e e e e e eesaraaeeeeeeesnssaaseaessesnnnses 281
10.1.15 Function NAMEccciiiiiiiiiiiiiie ettt e e e e ettt e e e e e eesaraaeeeeeeessnnssaeeaessesnnnnes 281
10.1.16 Character COnStANTS.........uuviiiieeiieiiiiieeeeeeeeiiieeeeeeeeirreeeeeeeesaaraeeeaeesesssnsereeessesssnses 281
10.1.17 Character String LiteralS........cccoccviiiiiiiiiiiiiiee e e e erree e e e e e 281
10.2 Display Format of C/C++ EXPreSSIONS ...c..vviiieuiiieiiiiieeeiiie et et eevee e e eiteeeeveeeesevaeeeeaeneas 282
10.2.1 ENumeration TYPescooccuuiiiiiieeiiiiiieee ettt e e e eeirteeee e e eesieraaeeeessessnnnnaeeeessesnnnnns 282
10.2.2 BASIC TIPS teiieeiiiiiiiiiie e ettt e ettt e e e e e ettt ee e e e e e e satbaaeeeeeeessssssaseaeesessnsssssaeeseesnnnses 282
10.2.3 POINEET TYPES .ceiiiiiiiiiieieeieiiiiiee e e e e eeiitee e e e e eeitrreeeeeeeesstabataeeeesesssssaaeaessessssssseeessessnnses 283
10.2.4 ATTaY TYPES.ciiieiiiiiiiiiee ettt ettt e e e e ettt e e e e e e sttbraeeeeeeessnraaeeaeseasnstbaaeaeeeesanne 284
10.2.5 FUNCEION TYPES ..evvviiiiiiiiiiiiiiiiee ettt e e e trtee e e e e e ettt e e e e e eesaaraaeeeeesesssnssaeeaessessnnses 284
10.2.6 REfErenCe TYPES..c.uuviiieiiiieiciiiie ettt e et e e e et eeetaee e saaveeeesereeeeeanseeeeasaeaas 284
10.2.7 Bit FIEId TYPES...uuuviiiiiiiiiiiiiiiiee e e ettt e e e eetrree e e e e s eitbreeeeeeeesanbsaeeaessesnsssaeeaeesessnses 284
10.2.8 When No C Symbol is Foundc..ooiiiiiiiiiiiiiic e 285
10.2.9 SYNEAX FFTOTS. .o iiiiiiiiiiieiiiiiiee et e e e e eettree e e e e e e etbateeeeeeesaassaseaessessssssseeaeesessnnses 285
10.2.10 Structure and Union TYPes.......ccccuiiiiiiieiiiiiiiieeee ettt eeeerireee e e e s esiarreeee e e s eseannes 285
Display the Cause of the Program Stoppage 286
Attention 287
12,7 CommON ATEENTION ...eouiiiiiiieie e ettt e e e e eeriiie e e e e e e e sitareeeeeeeesttabaaeeeeesasssnsaeeraessassssssaseeessanssnnns 287
12.1.1 File operation 0N WINAOWS..........uuuuuururuiuiiiiriiiiernieiniernrererererereeeeeeee..—.—————————— 287
12.1.2 Area where software breakpoint can be Stcoovvvvvveiiiiiiiiiineeieeeieeiiieeeeeeeeeeans 287
12.1.3 Get Or St € VATIADLES ...ccuevviiiiiiee ittt e e ettt et e e e e e abaeeeeeeeesanaaaaeeeesesnnnns 288

12.1.4 Function Name IN CH....uuueeeeeiieiiiiiiieiiiiiiiiiieaeesesasssaseeasaseeasaraaeaeeaaa———aaaa———a——————annnaannnnn.. 288

12.1.5 Option settings for download modules..........cc..eeeiiiieiiiiiiiiieiieiiiieeee e 288
12.1.6 Debugging multl MOAUIESuuuuuiuiiiiiiiiiiiiiiiiiiiiiiiiiieiirarararee ... 289
12.1.7 Synchronized debUg@Ing..........cccooviiiiiiieieiiiiiiieee ettt eeeee e e e ee et e e e e e eeennnes 289
12.1.8 Virtual port output fUNCEIONSoccuvviiiiii e e ee s 289
12.2 Attention of the R32C DEDUZEEYcccoieiiiiiiiiiee et e eeeanaes 290
12.2.1 Option of C Compiler/Assembler/Linkerc.cccoovviviiiiieiiieiiiiieee e 290
12.3 Attention of the M32C DeDUGEETcooeiiiiiiiiiiii e e e eeeannes 290
12.3.1 Option of C Compiler/Assembler/Linkerc..ccovviiivieiieiiiiiiiieeee e 290
12.4 Attention of the M16C/R8C DEDUZZETuvvveiiiiieeiiiiiiieee et e eeennaes 291
12.4.1 Options for compiler, assembler, and HNKETcccovvvveiieiiiiiiiiieee e 291
12.4.2 TASKING C COMPILET ...vvieiiiiieeiiiiieciiieeeeiteeeeivteeeiveeeestaeeeseseeessevaaeesesseesnssseeesnsseeens 291
12.4.3 Precautions on Using M16C/62 GLOUPcccovvveeeeeieeiiiieeieeeeeecireeeeeeeeeecrveeeeeeeeeennnes 291
12.5 Attention of the 740 DEDUZEZETovviiiiiiiiiiiiiiie et e e eeeeeannes 292
12.5.1 Options for compiler, assembler, and HINKeTcccovvvveiieiiiiiiiiieee e 292
12.5.2 Not SUPPOTt fUNCEIONSvviiiiiiieeeiiieeciie et et e s e e etaeeesebeeesseseeeeesbeeessssaeesnsseeens 292
12.6 Options for compiler, assembler, and HNKer..........ccocvveeiiiiiiiiiiiiiec e 293
12.6.1 When USING NOXX ..viieieiiieiiiiieeeiiieeeiiteeestteeesereeessseeessssaeessssesesssseesssssseesssssesssssseeens 293
12.6.2 When Using the Assembler Package for 740 Family...........ccccovvvveiiiiiiiiiiiieeieeieinnns 293
12.6.3 When Using the IAR EC++ Compiler (EW)ccooveiiviieiiiieeeeeeeeeeee e 294
12.6.4 When Using the IAR C Compiler (EW)cccoovviieiiriieeeeeeeeeeeeeeeeee e 294
12.6.5 When Using the IAR C Compiler (ICC).........cccoveveieeerieeeeeeeeeeeeeeeeeeeee e 295
12.6.6 When Using the TASKING C Compiler (EDE)ccocooovviiieeereeeeeeeeeeeeeeeeevenens 296
12.6.7 When Using the TASKING C Compiler (CIM)c..coooevveieveeeeereeeeeeeeeeeveeeeeerenens 296

vi

Setup of Debugger

(Blank Page)

1Features

1. Features

1.1 Real-Time RAM Monitor Function

This function allows you to inspect changes of memory contents without impairing the realtime

capability of target program execution.
The simulator system contains a 1-Kbyte RAM monitor area (which cannot be divided into smaller

areas).

1.1.1 RAM Monitor Area

This debugger provides a 1KB of RAM monitor area, which can be placed at any continuous

addresses.

Baze Address 000h Baze Addreszs 400h
0h lh

FaW Monitor Area

3FFh 400h

Ram Monitor Area

7FFh

1.1.2 Sampling Period

Sampling cycle means the display update interval.
You can specify this function in any window which supports the RAM monitor. (The interval of 100
ms is set by default.)
The actual sampling cycle may take longer time than the specified cycle depending on the operating
environment. (Sampling cycle depends on the following environments.)
e Communication interface
e Number of the RAM Monitor windows displayed
e Size of the RAM Monitor window displayed
e Number of ASM watch points within the RAM monitor area of the ASM Watch window
e Number of C watch points within the RAM monitor area of the C Watch window

1.1.3 Related Windows

The window where the function of the real time RAM monitor function can be used is shown below.
e RAM Monitor Window
e ASM Watch Window
e C Watch Window

1Features

1.2 Break Functions

1.2.1 Software Breaks Function

Software Break breaks the target program before execution of the command at the specified address.
This break point is called software breakpoint.

The software breakpoint is set/reset in the Editor (Source) window or in the S/W Breakpoint Setting
window. You can also disable/enable a software breakpoint temporarily.

You can specify up to 64 software breakpoints. When specifying two or more software breakpoints, the
breakpoint combination is based on the OR logic. (Arrival to any one of breakpoints breaks the target
program.)

1.2.1.1 Setting of software breakpoint

The software breakpoint can be set by the following windows.
e Editor (Source) Window
e S/W Break Point Setting Window

You can double-click the mouse to set/reset the software breakpoint in the Editor (Source) window.
You can also switch to temporarily disable/enable the software breakpoint in the S/W Breakpoint
Setting window.

1.2.1.2 Area where software breakpoint can be set

The area which can be set for software breakpoint varies depending on the product.
For the areas available for software breakpoint, see the following:

Refer to "12.1.2 Area where software breakpoint can be set"

1.2.2 Hardware Breaks Function

This function stops the target program upon detecting data read/writes to memory or instruction

execution.

The H/W Break Point Setting dialog box allows you to set hardware break points.

You can set up to 64 hardware break points.

You can set one hardware breakpoints with pass counts.

As hardware break point access types, you can specify writing data to the hardware
break point (Write), reading data from the hardware break point (Read), reading or
writing data (R/W), and fetching instructions (Fetch).

You can also specify that execution breaks if the data read from or written to the
hardware break point has a specific value.

If multiple hardware breakpoints have been set, a break occurs when one of the
hardware breakpoints is reached.

1Features

1.3 Real-Time Trace Function

The real-time trace function records the execution history of the target program.
The debugger for 740 doesn't support the real-time trace function.

The execution history is referred to in the tracing window.

The execution history can be referred to in the following mode.

BUS mode

This mode allows you to inspect cycle-by-cycle bus information. The display content
depends on the MCU and simulator system used. In addition to bus information, this
mode allows disassemble, source line or data access information to be displayed in
combination.

Disassemble mode

This mode allows you to inspect the executed instructions. In addition to disassemble
information, this mode allows source line or data access information to be displayed in
combination.

Data access mode

This mode allows you to inspect the data read/write cycles. In addition to data access
information, this mode allows source line information to be displayed in combination.
Source mode

This mode allows you to inspect the program execution path in the source program.

1.3.1 Trace Area

For the simulator debugger, as many cycles as specified on the Init dialog box can be recorded. The
trace area of the following 5 mode is being supported.

Break

the specified cycles before target program stops

Before

the specified cycles before trace point

About

the specified cycles either side of trace point

After

the specified cycles after trace point

Full

Until the specified cycles are written in the trace memory

Start Trace Event Stop Ewent

"Break" is set by default. To refer the execution history before stopping the target program, use
"Break" (designation of trace event is not required).

To refer the execution history at any position, or to continue execution of the target program, specify
the trace event and change the trance range.

1.3.2 Trace Condition Setting

The following designations are available as trace events:

Address designation

- Instruction fetch
- Memory access
- Bit access

External trigger designation (eight events)
Interruption

The number of events that can be specified are six events of all. These break events can be combined

as below:

Trace when all of the valid events are established (AND condition)

Trace when all of the valid events are established at the same time (And(same time)
comdition)

Trace when one of the valid events is established (OR condition)

Trace upon entering a break state during state transition (State Transition condition)

You can select "specified task only" (or "other than specified task") as the trace condition to meet the

real time OS.

1.3.3 Trace Data Write Condition

Trace data write conditions can be specified.

You can specify the following write conditions:

Write conditions unlimited (default)

Cycles from the start event established to the end event established

Only cycles where the start event is established

Cycles from the start event established to the start event unestablished

Other than cycles from the start event established to the end event established
Other than cycles where the start event is established

Other than cycles from the start event established to the start event unestablished

1Features

1.4 Coverage Function

Coverage Measurement is a function to record the addresses executed (accessed) by the target
program (CO coverage).

After stopping execution of the target program, you can understand which addresses are not executed
yet.

By using the coverage measurement function in the test process, you can check for missing test items.

1.4.1 Coverage Measurement Area

On simulator debugger, all the memory space is the coverage measurement area.

1.4.2 Related Windows

Refer to the coverage measurement result in the following windows.
e Editor (Source) Window
e Memory Window
e Coverage Window

1.5 Real-Time OS Debugging Function

This function debugs the realtime OS-dependent parts of the target program that uses the realtime
OS.

This function helps to show the status of the realtime OS and inspect a task execution history, etc.

The debugger for 740 doesn't support the real-time OS debugging function.

1.6 GUI Input/Output Function

This function simulates the user target system's key input panel (buttons) and output panel on a
window.

Buttons can be used for the input panel, and labels (strings) and LEDs can be used for the output
panel.

1.7 I/0 Simulation Function

e Virtual Port Inputs
This function lets you define changes of input port data. Use the I/O Timing Setting Window to define
changes of input port data. The contents thus defined can be simulated at the time:
- When the program execution reaches specified cycles
- When the program accesses a specified memory location for read
- When a specified virtual interrupt is generated

This function, when combined with the I/O script function, allows you to simulate at any time such as
when the program fetches an instruction or memory is accessed for write.

e Virtual Port Outputs
This function lets you record changes of output port data and the cycles in which changes occurred.
The recorded data can be verified in graphic or numeric forms on the I/O Timing Setting Window.

The number of data entries recorded is the number of entries specified on the Init dialog box's I/O
Script tab reckoning from when the program started to run. When reexecuted, the previous data is
cleared.

e Virtual Interrupts
This function lets you generate an interrupt (e.g., timer interrupt or key input interrupt). An
interrupt can be generated at the time:
- When the program execution reaches specified cycle
- When the program fetches an instruction from a specified address
- At a specified time interval

Use the I/O Timing Setting Window to define virtual interrupts. This function, when combined with
the I/O script function, allows you to generate an interrupt at any time such as when memory is
accessed for write or accessed for read.

e Simulating output ports
This function lets you record changes of output port data. The recorded data can be displayed in the
Output Port Window (or can be output to a file).

The number of data entries recorded is the number of entries specified on the Init dialog box's I/O
Script tab reckoning from when the program started to run.

e I/O Script
This function lets you execute virtual port input or virtual interrupt settings as a script. It provides a
more flexible way to define virtual port inputs and virtual interrupts than can be set from the I/O
Timing Setting Window.

Example: Read a set divide-by value from the timer register and generate a timer interrupt
periodically

10

1Features

1.8 Time Measurement Function

This function lets you measure an approximate number of cycles and the execution time spent by the
program you've run. The number of cycles are represented using the values listed in the

microcomputer's software manual.
The execution time is calculated from the cumulative number of cycles of the instructions executed

and the MCU clock frequency specified on the Init dialog box's MCU tab.

1.9 Stack Utilization Monitor Function

This function lets you detect the maximum and minimum addresses of the stack which the target

program used.

11

The simulation specifications vary with the type of simulator use.

2.1 Simulation Specifications for R32C

2.1.1 Operation of Instructions

Regarding the number of instruction cycles

Time management is exercised in units of cycles. The number of cycles is represented by the
values listed in the microcomputer's software manual.

However, this differs from the actual chip in the following points:

The bus width, queue, and wait states are not considered when measuring the number of
cycles.

The executed cycle of an interrupt sequence is not considered when measuring the number of
cycles.(When an interrupt occurs, the executed cycle of an interrupt sequence is 0.)

This debugger starts counting cycles immediately after a reset. (Cycles immediately after a

reset are 0.) The number of cycles needed to execute one machine instruction are added on for
each instruction executed. (See Figure shown below.)

Note

Because the number of cycles measured by the simulator does not take into account the bus width,

queue, wait cycles, etc., it includes some error when compared with the number of cycles in the
actual chip.

If four cycles are reguired for the ENTER instruction,
cycles are added at this point in time.

If two cycles are reguired for the
MOV Instruction, cycles
are added at this peint in time.

ENTER instruction l
A
instruction
I I | I I I I I I I
I [I [[[[[[[
0 1 9 3 4 B 6 T 3 Bxecution

cycles

In the above example, no cycles are added while the ENTER or MOV instruction is being
executed. The cycles required for each instruction are added after instruction execution.

12

2Simulation Specifications

e Target program execution time measurement
The target program execution time measurement is calculated from the number of cycles
described above and the MCU clock and divide-by ratio specified on the MCU tab of the Init
dialog box.

Note

Because the simulator's execution time measurement is calculated using the number of cycles
described above, it includes some error when compared with the actual chip's execution time.

e STOP, WAIT, BRK2
Executed as an NOP instruction.
Other instructions operate the same as those of the actual MCU.

e INT, INTO, UND, BRK
As with the actual MCU, these instructions generate interrupts. (The INTO instruction only
generates an interrupt when the O flag is 1.)

2.1.2 Resetting
e The SFR area is nonexistent in the debugger, so the initialization as in the actual chip is not
performed.

e The cycle count is initialized to 0.
Resetting is performed in the same way as the actual MCU.
A reset is also performed when the debugger starts. The value FFFF0000h is set in the reset vector

(FFFFFFFCh to FFFFFFFFh) immediately after starting. The program counter is therefore set to
FFFF0000h immediately after the debugger starts.

13

2.1.3 Memory

e Memory Space

There is no processor mode. If mapped for memory, the whole 4GB of memory from 00000000h
to FFFFFFFFh can be read from and written to as RAM.

Note, however, that in the initial state, memory between 00010000h and 0003FFFFh and
memory between 00050000h and FFFEFFFFh is not secured and an error will result if an
attempt is made to access this part of memory. If this occurs while a program is running, the
program will stop with an illegal memory access error. Use the map function, described later, to
map this part of memory.

e Memory Structure and Initial Values Immediately after Starting
The memory is set up as follows immediately after starting the debugger.

00000000h to 000003FFh (SFR1 area) Filled with 00h.

00000400h to 0000FFFFh Filled with FFh.

00010000h to 0003FFFFh No memory immediately after starting
00040000h to 0004FFFFh (SFR2 area) Filled with 00h.

00050000h to FFFEFFFFh No memory immediately after starting
FFFF0000h to FFFFFFFBh Filled with FFh

FFFFFFFCh to FFFFFFh (reset vector) Set to FFFF0000h.

e The Map Function: MAP Command
The simulator divides the memory between 00000000h and FFFFFFFFh into 65536 equal parts,
so that the memory space can be mapped in 64KB blocks. Note that the blocks with the lowest
address (00000000h to 0000FFFFh) and the next address (00040000h to 0004FFFFh) with the
highest address (FFFF0000h to FFFFFFFFh) are already mapped when the simulator starts.
Use the MAP command to map the simulator memory. Memory mapped using this command is
initialized with the value FF16 immediately after being allocated.

When downloading a target program, the memory is mapped automatically.

Note

Memory space that has been mapped cannot be deleted.

e Accessing an Area Without Memory
There is no actual memory in the memory blocks between 00010000h and 0003FFFFh and
between 00050000h and FFFEFFFFh unless memory is secured. If an attempt is made to access
this area, an illegal memory access error occurs and execution of the command or program
stops.

14

2Simulation Specifications

2.141/0

SFR

The actual chip's peripheral I/Os other than the CPU core, such as the timers, DMAC, and
serial I/0, are not supported. The SFR area to which the peripheral I/Os are connected is also
handled as RAM by the simulator.

However, a method is available that allows you to materialize data input to memory such as the
SFR or interrupts such as timer interrupt in an artificial manner. For details about this method,
see "I/O Script" and "Interrupts" described later.

1/0 Script
Virtual Port Input Function
This function defines changes of the data that is input from external devices to a specified
memory address. Using this function you can simulate data inputs to the ports defined in SFR.
The following shows timings at which data can be input to memory:

1. When program execution has reached a specified number of cycles

2. When a specified memory location is accessed for read by a program

3. When a specified virtual interrupt is generated

Virtual interrupts at the above timings can be defined from the I/O Timing Setting Window.
Use of the I/O script function (the function that allows users to define virtual port input or
virtual interrupt) makes it possible to specify more elaborate data input timing such as when
the program performs fetch or writes to memory or when it executed an instruction a specified
number of times.

Virtual Port Output Function

When a data write to some memory address by the program occurs, this function records the
written data value and the cycle at which the data was written.

The recorded data can be verified in graphic or numeric format from the I/O Timing Setting
Window.

The number of data entries that can be recorded by this function equals the number of data
entries specified on the Init dialog box's I/0 script tab reckoning from the time at which the
program started running. When reexecuted, the previous data is cleared.

The output port simulate function

The output port simulate function provides an efficient means of simulation. When data are
written to some memory addresses by a program, it allows you to record the written data
values. The recorded data can be displayed on a window or output to a file.

Also, you can verify the data which are output to UARTSs by the Printf function.

The number of data entries that can be recorded by this function equals the number of data
entries specified on the Init dialog box's I/0O script tab reckoning from the time at which the
program started running. When reexecuted, the previous data is cleared.

15

Interrupts

In the actual MCU, peripheral I/O (including external interrupt signals) are generating factors
for interrupts. However, the simulator has nothing corresponding to peripheral I/O.

This simulator provides another method in place of this, which allows you to generate
interrupts in a simulated manner (virtual interrupt function). Virtual interrupts can be
generated at any time, e.g., in a specified cycle or at an executed address.

Virtual Interrupt Function
This function defines interrupt generation. Using this function you can generate timer
interrupts and key input interrupts in a simulated manner without having to actually generate
them.
The following shows timings at which virtual interrupts can be generated:

1. When program execution has reached a specified number of cycles.

2. When the program has executed a specified address.

3. Every specified time interval

Virtual interrupts at the above timings can be defined from the I/O Timing Setting Window.
Use of the I/O script function (the function that allows uses to define virtual port input or
virtual interrupt) makes it possible to write timer interrupt.

Differences between Virtual Interrupts and Interrupts in Actual Chip

Virtual interrupts differ from interrupts in the actual chip in the following points:
1. Special hardware interrupts cannot be generated as virtual interrupts.
2. High Speed interrupt cannot be generated as virtual interrupts.
3. If virtual interrupts of the same priority occur simultaneously

If in the actual chip, multiple interrupts of the same priority occur
simultaneously,they are resolved according to the priority levels set in hardware
so that an interrupt of the highest priority is accepted. For virtual interrupts,
however, all interrupts belonging to one interrupt type (e.g., peripheral I/O
interrupt) are handled as having the same priority. Therefore, if virtual
interrupts of the same priority occur simultaneously, the order in which they
are accepted is indeterminate.

There are following two methods to set virtual interrupts.

1. By using the I/O Timing Setting Window
2. By using the I/O script function

16

2Simulation Specifications

With either method, the virtual interrupts are subject to the following limitations.

1.

Virtual interrupts set by using the I/O Timing Setting Window

[Regarding interrupt control for virtual interrupts generated]
Each Interrupt Control Register's interrupt request bit is not set to 1.
The priority levels set in each Interrupt Control Register's interrupt priority level
select bit are not referenced.
The priority of virtual interrupts can be specified when setting virtual interrupts on
the I/O Timing Setting Window.
The Flag Register (FLG)'s interrupt enable flag (I flag) and processor interrupt priority
level (IPL) are referenced as in the actual chip.

Virtual interrupts set by using the I/O script function

[Regarding interrupt control for virtual interrupts generated |
A statement can be written so that when an interrupt occurs, each Interrupt Control
Register's interrupt request bit is set to 1.
The priority levels set in each Interrupt Control Register's interrupt priority level
select bit can be referenced. However, once a virtual interrupt is generated and
registered in the simulator, the priority of the virtual interrupt cannot be altered even
when the priority levels specified with the interrupt priority level select bit is changed
by the user program.
The Flag Register (FLG)'s interrupt enable flag (I flag) and processor interrupt priority
level (IPL) are referenced as in the actual chip.

- 1/0O Script Function
This function allows you to write virtual port input and virtual interrupt settings to a file in
script form. Therefore, it provides a more flexible way to define virtual port inputs and virtual
interrupts than can be set from the I/O Timing Setting Window. Specifically, this includes, for
example, reading the divide-by-N ratios you've set in the timer register and generating a timer

interrupt periodically.

Note

The virtual port input/output and virtual interrupt functions are processed after instruction

execution is completed.

17

e Port input/output
- GUI input function
The GUI input function refers to simulating the user target system's simple key input panel on
a window. The key input panel is created from the GUI input window.
The input panel can have the following parts placed on it:

[Buttons]

Virtual port input or virtual interrupt can be performed by pressing the button. The
following actions can be set for the button:

- Enter data to a specified memory address (virtual port input)

- Generate a specified virtual interrupt

- Generate a specified virtual interrupt and virtual port input at the same time

[Text]
Display a text string.

- GUI output function
The GUI output function refers to simulating the user target system's simple key output panel
on a window. The key output panel is created from the GUI output window.
The following parts can be arranged on this output panel:

[Character string |

User-specified character strings are displayed or erased when some value is written to a
specified memory address or according to logic 1 or O in bits.

[LED]

LEDs are lit when some value is written to a specified memory address or according to
logic 1 or 0 in bits.

[Text]

Display a text string.

2.1.5 Cycle Count: The CYcle (CY) Command

Use of the CYcle command allows you to know an approximate number of cycles and the execution
time of the program you've executed.

The number of cycles are represented using the values listed in the microcomputer's software manual.
The execution time refers to the target program's execution time calculated from the cumulative
number of cycles of the CPU instructions executed and the MCU clock and divide-by ratio specified on
the Init dialog box's MCU tab.

2.1.6 Stack Utilization Monitor: The StackMonitor (SM) Command

Use the StackMonitor command to check the maximum and minimum addresses of the stack, and to
determine how much the program has used of what part of the stack.

The stack monitoring continues from the time that a Go or GoFree command is invoked until it is
interrupted, the maximum and minimum values being recorded for the two stack pointers (USP and
ISP registers).

If, while the program is running, it causes a change in the value of a stack pointer,monitoring of stack
utilization of that stack stops at that point.

18

2Simulation Specifications

2.2 Simulation Specifications for M32C

2.2.1 Operation of Instructions

¢ Regarding the number of instruction cycles

Time management is exercised in units of cycles. The number of cycles is represented by the
values listed in the microcomputer's software manual.

However, this differs from the actual chip in the following points:

The bus width, queue, and wait states are not considered when measuring the number of
cycles.

The executed cycle of an interrupt sequence is not considered when measuring the number of
cycles.(When an interrupt occurs, the executed cycle of an interrupt sequence is 0.)

This debugger starts counting cycles immediately after a reset. (Cycles immediately after a
reset are 0.) The number of cycles needed to execute one machine instruction are added on for
each instruction executed. (See Figure shown below.)

Note

Because the number of cycles measured by the simulator does not take into account the bus width,

queue, wait cycles, etc., it includes some error when compared with the number of cycles in the
actual chip.

If four cycles are reguired for the ENTEER instruction,
cycles are added at thiz peint in time.

If twe cyecles are regquired for the
MOV instruction, cycles
are added at this point in time.

ENTEER instruction l
bAOY
instruction
I I I I I I I I I I
[[[[[[[[[I
0 1 2 3 4 & & 7T 8 Execution

cycles

In the above example, no cycles are added while the ENTER or MOV instruction is being
executed. The cycles required for each instruction are added after instruction execution.

e Target program execution time measurement
The target program execution time measurement is calculated from the number of cycles

described above and the MCU clock and divide-by ratio specified on the MCU tab of the Init
dialog box.

19

Note

Because the simulator's execution time measurement is calculated using the number of cycles
described above, it includes some error when compared with the actual chip's execution time.

e WAIT, BRK2
Executed as an NOP instruction.
Other instructions operate the same as those of the actual MCU.

e INT, INTO, UND, BRK
As with the actual MCU, these instructions generate interrupts. (The INTO instruction only
generates an interrupt when the O flag is 1.)

2.2.2 Resetting

e The SFR area is nonexistent in the debugger, so the initialization as in the actual chip is not
performed.
e The cycle count is initialized to 0.

Resetting is performed in the same way as the actual MCU.
A reset is also performed when the debugger starts. The value FFO000h is set in the reset vector

(FFFFFCh to FFFFFFh) immediately after starting. The program counter is therefore set to FFO000h
immediately after the debugger starts.

20

2Simulation Specifications

2.2.3 Memory

e Memory Space
There is no processor mode. If mapped for memory, the whole 16 MB of memory from 000000h to
FFFFFFh can be read from and written to as RAM.
Note, however, that in the initial state, memory between 020000h and FEFFFFh is not secured
and an error will result if an attempt is made to access this part of memory. If this occurs while
a program is running, the program will stop with an illegal memory access error. Use the map
function, described later, to map this part of memory.

e Memory Structure and Initial Values Immediately after Starting
The memory is set up as follows immediately after starting the debugger.

000000h to 0003FFh (SFR area) Filled with 00h.

000400h to 01FFFFh Filled with FFh.

020000h to FEFFFFh No memory immediately after starting
FF0000h to FFFFFBh Filled with FFh

FFFFFCh to FFFFFFh (reset vector) Set to 0000FF00h.

e The Map Function: MAP Command
The simulator divides the memory between 000000h and FFFFFFh into 256 equal parts, so that
the memory space can be mapped in 64KB blocks. Note that the blocks with the lowest address
(000000h to O0FFFFh) and the next address (010000h to 01FFFFh) with the highest address
(FF0000h to FFFFFFh) are already mapped when the simulator starts.
Use the MAP command to map the simulator memory. Memory mapped using this command is
initialized with the value FF16 immediately after being allocated.

When downloading a target program, the memory is mapped automatically.

Note

Memory space that has been mapped cannot be deleted.

e Accessing an Area Without Memory
There is no actual memory in the 253 memory blocks between 020000h and FEFFFFh unless
memory is secured. If an attempt is made to access this area, an illegal memory access error
occurs and execution of the command or program stops.

21

2.241/0

SFR

The actual chip's peripheral I/Os other than the CPU core, such as the timers, DMAC, and
serial I/O, are not supported. The SFR area (000000h to 0003FFh) to which the peripheral I/Os
are connected is also handled as RAM by the simulator.

However, a method is available that allows you to materialize data input to memory such as the
SFR or interrupts such as timer interrupt in an artificial manner. For details about this method,
see "I/O Script" and "Interrupts" described later.

1/0 Script
Virtual Port Input Function
This function defines changes of the data that is input from external devices to a specified
memory address. Using this function you can simulate data inputs to the ports defined in SFR.
The following shows timings at which data can be input to memory:

1. When program execution has reached a specified number of cycles

2. When a specified memory location is accessed for read by a program

3. When a specified virtual interrupt is generated

Virtual interrupts at the above timings can be defined from the I/O Timing Setting Window.
Use of the I/O script function (the function that allows users to define virtual port input or
virtual interrupt) makes it possible to specify more elaborate data input timing such as when
the program performs fetch or writes to memory or when it executed an instruction a specified
number of times.

Virtual Port Output Function

When a data write to some memory address by the program occurs, this function records the
written data value and the cycle at which the data was written.

The recorded data can be verified in graphic or numeric format from the I/O Timing Setting
Window.

The number of data entries that can be recorded by this function equals the number of data
entries specified on the Init dialog box's I/0 script tab reckoning from the time at which the
program started running. When reexecuted, the previous data is cleared.

The output port simulate function

The output port simulate function provides an efficient means of simulation. When data are
written to some memory addresses by a program, it allows you to record the written data
values. The recorded data can be displayed on a window or output to a file.

Also, you can verify the data which are output to UARTSs by the Printf function.

The number of data entries that can be recorded by this function equals the number of data
entries specified on the Init dialog box's I/0O script tab reckoning from the time at which the
program started running. When reexecuted, the previous data is cleared.

22

2Simulation Specifications

Interrupts

In the actual MCU, peripheral I/O (including external interrupt signals) are generating factors
for interrupts. However, the simulator has nothing corresponding to peripheral I/O.

This simulator provides another method in place of this, which allows you to generate
interrupts in a simulated manner (virtual interrupt function). Virtual interrupts can be
generated at any time, e.g., in a specified cycle or at an executed address.

Virtual Interrupt Function
This function defines interrupt generation. Using this function you can generate timer
interrupts and key input interrupts in a simulated manner without having to actually generate
them.
The following shows timings at which virtual interrupts can be generated:

1. When program execution has reached a specified number of cycles.

2. When the program has executed a specified address.

3. Every specified time interval

Virtual interrupts at the above timings can be defined from the I/O Timing Setting Window.
Use of the I/O script function (the function that allows uses to define virtual port input or
virtual interrupt) makes it possible to write timer interrupt.

Differences between Virtual Interrupts and Interrupts in Actual Chip
Virtual interrupts differ from interrupts in the actual chip in the following points:
1. Special hardware interrupts cannot be generated as virtual interrupts.
Reset, NMI, DBC, watchdog timer, single-step, address match interrupts cannot
be generated as virtual interrupts.
2. High Speed interrupt cannot be generated as virtual interrupts.
3. If virtual interrupts of the same priority occur simultaneously

If in the actual chip, multiple interrupts of the same priority occur
simultaneously,they are resolved according to the priority levels set in hardware
so that an interrupt of the highest priority is accepted. For virtual interrupts,
however, all interrupts belonging to one interrupt type (e.g., peripheral I/O
interrupt) are handled as having the same priority. Therefore, if virtual
interrupts of the same priority occur simultaneously, the order in which they
are accepted is indeterminate.

There are following two methods to set virtual interrupts.

1. By using the I/O Timing Setting Window
2. By using the I/O script function

23

With either method, the virtual interrupts are subject to the following limitations.

1.

Virtual interrupts set by using the I/O Timing Setting Window

[Regarding interrupt control for virtual interrupts generated]
Each Interrupt Control Register's interrupt request bit is not set to 1.
The priority levels set in each Interrupt Control Register's interrupt priority level
select bit are not referenced.
The priority of virtual interrupts can be specified when setting virtual interrupts on
the I/O Timing Setting Window.
The Flag Register (FLG)'s interrupt enable flag (I flag) and processor interrupt priority
level (IPL) are referenced as in the actual chip.

Virtual interrupts set by using the I/O script function

[Regarding interrupt control for virtual interrupts generated |
A statement can be written so that when an interrupt occurs, each Interrupt Control
Register's interrupt request bit is set to 1.
The priority levels set in each Interrupt Control Register's interrupt priority level
select bit can be referenced. However, once a virtual interrupt is generated and
registered in the simulator, the priority of the virtual interrupt cannot be altered even
when the priority levels specified with the interrupt priority level select bit is changed
by the user program.
The Flag Register (FLG)'s interrupt enable flag (I flag) and processor interrupt priority
level (IPL) are referenced as in the actual chip.

- 1/0O Script Function
This function allows you to write virtual port input and virtual interrupt settings to a file in
script form. Therefore, it provides a more flexible way to define virtual port inputs and virtual
interrupts than can be set from the I/O Timing Setting Window. Specifically, this includes, for
example, reading the divide-by-N ratios you've set in the timer register and generating a timer

interrupt periodically.

Note

The virtual port input/output and virtual interrupt functions are processed after instruction

execution is completed.

24

2Simulation Specifications

e Port input/output
- GUI input function
The GUI input function refers to simulating the user target system's simple key input panel on
a window. The key input panel is created from the GUI input window.
The input panel can have the following parts placed on it:

[Buttons]

Virtual port input or virtual interrupt can be performed by pressing the button. The
following actions can be set for the button:

- Enter data to a specified memory address (virtual port input)

- Generate a specified virtual interrupt

- Generate a specified virtual interrupt and virtual port input at the same time

[Text]
Display a text string.

- GUI output function
The GUI output function refers to simulating the user target system's simple key output panel
on a window. The key output panel is created from the GUI output window.
The following parts can be arranged on this output panel:

[Character string |

User-specified character strings are displayed or erased when some value is written to a
specified memory address or according to logic 1 or O in bits.

[LED]

LEDs are lit when some value is written to a specified memory address or according to
logic 1 or 0 in bits.

[Text]

Display a text string.

2.2.5 Cycle Count: The CYcle (CY) Command

Use of the CYcle command allows you to know an approximate number of cycles and the execution
time of the program you've executed.

The number of cycles are represented using the values listed in the microcomputer's software manual.
The execution time refers to the target program's execution time calculated from the cumulative
number of cycles of the CPU instructions executed and the MCU clock and divide-by ratio specified on
the Init dialog box's MCU tab.

2.2.6 Stack Utilization Monitor: The StackMonitor (SM) Command

Use the StackMonitor command to check the maximum and minimum addresses of the stack, and to
determine how much the program has used of what part of the stack.

The stack monitoring continues from the time that a Go or GoFree command is invoked until it is
interrupted, the maximum and minimum values being recorded for the two stack pointers (USP and
ISP registers).

If, while the program is running, it causes a change in the value of a stack pointer,monitoring of stack
utilization of that stack stops at that point.

25

2.3 Simulation Specifications for M16C/R8C

2.3.1 Operation of Instructions

Regarding the number of instruction cycles
Time management is exercised in units of cycles.

[Simulation Speed Mode]

The number of cycles is represented by the values listed in the microcomputer's software manual.

However, this differs from the actual chip in the following points:

- The bus width, queue, and wait states are not considered when measuring the number of
cycles.

- The executed cycle of an interrupt sequence is not considered when measuring the number of
cycles.(When an interrupt occurs, the executed cycle of an interrupt sequence is 0.)

- This debugger starts counting cycles immediately after a reset. (Cycles immediately after a
reset are 0.) The number of cycles needed to execute one machine instruction are added on for
each instruction executed. (See Figure shown below.)

Note

Because the number of cycles measured by the emulator does not take into account the bus width,
queue, wait cycles, etc., it includes some error when compared with the number of cycles in the
actual chip.

The cycles count indicated for the R8C Family is the number of cycles it takes to read or write 8
bits of data to or from the memory with no wait when the instruction codes are lined up in the
instruction cue buffer.

Therefore, depending on the conditions of the instruction cue buffer, etc., when the program is
run on the simulator debugger, the results may show half the number of cycles in comparison to
the results when using the emulator debugger. Please keep this in mind when using these
measurements.

If four cycles are reguired for the ENTER instruction,
cycles are added at this point in time.
If two cwcles are reguired for the
l MOV instruction, cvcles
are added at this point in time.

ENTEE instruction

MOY
instruction

Bxecution
] 1 2 d 4] &} T a g cycles

In the above example, no cycles are added while the ENTER or MOV instruction is being
executed. The cycles required for each instruction are added after instruction execution.

[Cycle Accuracy Mode]

The bus width, the state of instruction queues, and the software wait for instructions are
considered when measuring the number of cycles. The number of cycles, however, still might not
match the result on the actual chip. To calculate the exact number of execution cycles, we
recommend that you use the full-spec emulator or the compact emulator.

26

2Simulation Specifications

e Target program execution time measurement
The target program execution time measurement is calculated from the number of cycles
described above and the MCU clock and divide-by ratio specified on the MCU tab of the Init
dialog box.

Note

Because the simulator's execution time measurement is calculated using the number of cycles
described above, it includes some error when compared with the actual chip's execution time.

e WAIT
Executed as an NOP instruction.
Other instructions operate the same as those of the actual MCU.

e INT, INTO, UND, BRK
As with the actual MCU, these instructions generate interrupts. (The INTO instruction only
generates an interrupt when the O flag is 1.)

2.3.2 Resetting

e The SFR area is nonexistent in the debugger, so the initialization as in the actual chip is not
performed.
e The cycle count is initialized to 0.

Resetting is performed in the same way as the actual MCU.

A reset is also performed when the debugger starts. The value 000F000016 is set in the reset vector
immediately after starting. The program counter is therefore set to FO00016 immediately after the
debugger starts.

27

2.3.3 Memory

e Memory Space
There is no processor mode. If mapped for memory, the whole 1IMB of memory from 00000h to
FFFFFh can be read from and written to as RAM.
Note, however, that in the initial state, memory between 10000h and EFFFFh is not secured
and an error will result if an attempt is made to access this part of memory. If this occurs while
a program is running, the program will stop with an illegal memory access error. Use the map
function, described later, to map this part of memory.

e Memory Structure and Initial Values Immediately after Starting
The memory is set up as follows immediately after starting the debugger.

00000h to 003FFh Filled with 00h.

00400h to OFFFFh Filled with FFh.

10000h to EFFFFh No memory immediately after starting
F0000h to FFFFFh Filled with FFh.

Reset Vector Set to 000F0000h.

e The Map Function: MAP Command

The simulator divides the memory between 00000h and FFFFFh, so that the memory space can
be mapped in 256 byte blocks. Note that the blocks with the lowest address (00000h to OFFFFh)
and with the highest address (FO0O0Oh to FFFFFh) are already mapped when the simulator
starts.

Use the MCU Setting dialog box's Memory tab or the MAP command to map the simulator
memory. Memory mapped using these function is initialized with the value FFh immediately
after being allocated.

When downloading a target program, the memory is mapped automatically.

Note

- Memory space that has been mapped cannot be deleted.
- You can not use MCU Setting dialog box's Memory tab to map the simulator memory when the
Simulation Speed Mode is selected on the Init dialog box's MCU tab.

e Accessing an Area Without Memory
There is no actual memory between 10000h and EFFFFh unless memory is secured. If an
attempt is made to access this area, an illegal memory access error occurs and execution of the
command or program stops.

28

2Simulation Specifications

2.3.41/0

SFR

The actual chip's peripheral I/Os other than the CPU core, such as the timers, DMAC, and
serial I/0, are not supported. The SFR area to which the peripheral I/Os are connected is also
handled as RAM by the simulator.

However, a method is available that allows you to materialize data input to memory such as the
SFR or interrupts such as timer interrupt in an artificial manner. For details about this method,
see "I/O Script" and "Interrupts" described later.

1/0 Script

Virtual Port Input Function

This function defines changes of the data that is input from external devices to a specified
memory address. Using this function you can simulate data inputs to the ports defined in SFR.
The following shows timings at which data can be input to memory:

1. When program execution has reached a specified number of cycles
2. When a specified memory location is accessed for read by a program
3. When a specified virtual interrupt is generated

Virtual interrupts at the above timings can be defined from the I/O Timing Setting Window.
Use of the I/O script function (the function that allows users to define virtual port input or
virtual interrupt) makes it possible to specify more elaborate data input timing such as when
the program performs fetch or writes to memory or when it executed an instruction a specified
number of times.

Virtual Port Output Function

When a data write to some memory address by the program occurs, this function records the
written data value and the cycle at which the data was written.

The recorded data can be verified in graphic or numeric format from the I/O Timing Setting
Window.

The number of data entries that can be recorded by this function equals the number of data
entries specified on the Init dialog box's I/0O script tab reckoning from the time at which the
program started running. When reexecuted, the previous data is cleared.

The output port simulate function

The output port simulate function provides an efficient means of simulation. When data are
written to some memory addresses by a program, it allows you to record the written data
values. The recorded data can be displayed on a window or output to a file.

Also, you can verify the data which are output to UARTSs by the Printf function.

The number of data entries that can be recorded by this function equals the number of data
entries specified on the Init dialog box's I/0O script tab reckoning from the time at which the
program started running. When reexecuted, the previous data is cleared.

29

Interrupts
In the actual MCU, peripheral I/O (including external interrupt signals) are generating factors
for interrupts. However, the simulator has nothing corresponding to peripheral I/O.
This simulator provides another method in place of this, which allows you to generate
interrupts in a simulated manner (virtual interrupt function). Virtual interrupts can be
generated at any time, e.g., in a specified cycle or at an executed address.
Virtual Interrupt Function
This function defines interrupt generation. Using this function you can generate timer
interrupts and key input interrupts in a simulated manner without having to actually generate
them.
The following shows timings at which virtual interrupts can be generated:

1. When program execution has reached a specified number of cycles.

2. When the program has executed a specified address.

3. Every specified time interval

Virtual interrupts at the above timings can be defined from the I/O Timing Setting Window.
Use of the I/O script function (the function that allows uses to define virtual port input or
virtual interrupt) makes it possible to write timer interrupt.

Differences between Virtual Interrupts and Interrupts in Actual Chip
Virtual interrupts differ from interrupts in the actual chip in the following points:
1. Special hardware interrupts cannot be generated as virtual interrupts.
Reset, NMI, DBC, watchdog timer, single-step, address match interrupts cannot
be generated as virtual interrupts.
2. If virtual interrupts of the same priority occur simultaneously
If in the actual chip, multiple interrupts of the same priority occur
simultaneously,they are resolved according to the priority levels set in hardware
so that an interrupt of the highest priority is accepted. For virtual interrupts,
however, all interrupts belonging to one interrupt type (e.g., peripheral I/O
interrupt) are handled as having the same priority. Therefore, if virtual
interrupts of the same priority occur simultaneously, the order in which they
are accepted is indeterminate.

There are following two methods to set virtual interrupts.
1. By using the I/O Timing Setting Window
2. By using the I/O script function

30

2Simulation Specifications

With either method, the virtual interrupts are subject to the following limitations.

1. Virtual interrupts set by using the I/O Timing Setting Window
[Regarding interrupt control for virtual interrupts generated]

- Each Interrupt Control Register's interrupt request bit is not set to 1.

- The priority levels set in each Interrupt Control Register's interrupt priority level
select bit are not referenced.

The priority of virtual interrupts can be specified when setting virtual interrupts on
the I/O Timing Setting Window.

- The Flag Register (FLG)'s interrupt enable flag (I flag) and processor interrupt
priority level (IPL) are referenced as in the actual chip.

2. Virtual interrupts set by using the I/O script function
[Regarding interrupt control for virtual interrupts generated |

- A statement can be written so that when an interrupt occurs, each Interrupt Control
Register's interrupt request bit is set to 1.

- The priority levels set in each Interrupt Control Register's interrupt priority level
select bit can be referenced. However, once a virtual interrupt is generated and
registered in the simulator, the priority of the virtual interrupt cannot be altered
even when the priority levels specified with the interrupt priority level select bit is
changed by the user program.

- The Flag Register (FLG)'s interrupt enable flag (I flag) and processor interrupt
priority level (IPL) are referenced as in the actual chip.

- 1/0O Script Function
This function allows you to write virtual port input and virtual interrupt settings to a file in
script form. Therefore, it provides a more flexible way to define virtual port inputs and virtual
interrupts than can be set from the I/O Timing Setting Window. Specifically, this includes, for
example, reading the divide-by-N ratios you've set in the timer register and generating a timer
interrupt periodically.

Note

The virtual port input/output and virtual interrupt functions are processed after instruction
execution is completed.

31

e Port input/output
- GUI input function

The GUI input function refers to simulating the user target system's simple key input panel on

a window. The key input panel is created from the GUI input window.

The input panel can have the following parts placed on it:
[Buttons]
Virtual port input or virtual interrupt can be performed by pressing the button. The
following actions can be set for the button:
- Enter data to a specified memory address (virtual port input)
- Generate a specified virtual interrupt
- Generate a specified virtual interrupt and virtual port input at the same time
[Text]
Display a text string.

- GUI output function
The GUI output function refers to simulating the user target system's simple key output panel
on a window. The key output panel is created from the GUI output window.
The following parts can be arranged on this output panel:

[Character string |

User-specified character strings are displayed or erased when some value is written to a
specified memory address or according to logic 1 or O in bits.

[LED]

LEDs are lit when some value is written to a specified memory address or according to
logic 1 or 0 in bits.

[Text]

Display a text string.

2.3.5 Cycle Count: The CYcle (CY) Command

Use of the CYcle command allows you to know an approximate number of cycles and the execution
time of the program you've executed.

The number of cycles are represented using the values listed in the microcomputer's software manual.
The execution time refers to the target program's execution time calculated from the cumulative
number of cycles of the CPU instructions executed and the MCU clock and divide-by ratio specified on
the Init dialog box's MCU tab.

2.3.6 Stack Utilization Monitor: The StackMonitor (SM) Command

Use the StackMonitor command to check the maximum and minimum addresses of the stack, and to
determine how much the program has used of what part of the stack.

The stack monitoring continues from the time that a Go or GoFree command is invoked until it is
interrupted, the maximum and minimum values being recorded for the two stack pointers (USP and
ISP registers).

If, while the program is running, it causes a change in the value of a stack pointer,monitoring of stack
utilization of that stack stops at that point.

32

2Simulation Specifications

2.4 Simulation Specifications for 740

2.4.1 Operation of Instructions

e Regarding the number of instruction cycles
Time management is exercised in units of cycles. The number of cycles is represented by the
values listed in the microcomputer's software manual.
However, this differs from the actual chip in the following points:
- The 740 debugger starts counting cycles immediately after a reset. (Cycles immediately after a

reset are 0.) The number of cycles needed to execute one machine instruction are added on for
each instruction executed. (See Figure shown below.)

Note

Because the number of cycles measured by the emulator does not take into account the bus width,

queue, wait cycles, etc., it includes some error when compared with the number of cycles in the
actual chip.

If two cycles are required for the LDA
instruction, cycles are added at this

paintin ime. If four cycles are required for the CMP
instruction, cycles are added at this
¥ paint in time,
LDA
instruction v
CMP
instruction

| | | | | | | |
| | | | | | | |
0 1 2 3 4 5 6 7 8]

In the above example, no cycles are added while the LDA or CMP instruction is being executed. The
cycles required for each instruction are added after instruction execution.

e Target program execution time measurement

The target program execution time measurement is calculated from the number of cycles

described above and the MCU clock and divide-by ratio specified on the MCU tab of the Init
dialog box.

Note

Because the simulator's execution time measurement is calculated using the number of cycles
described above, it includes some error when compared with the actual chip's execution time.

e WIT,STP
Executed as an NOP instruction.
Other instructions operate the same as those of the actual MCU.

33

2.4.2 Resetting

e Sregister is set to FF16, only 'T' flag is set to 1 about PS register, and Program Counter is set to
the value of the reset vector. Other registers are set to 0.

e SFR area is not initialized.

e Executed cycle count is set to 0.

Resetting is performed in the same way as the actual MCU. A reset is also performed when the
debugger of 740 starts. The value 0000h is set in the reset vector immediately after starting. The
program counter is therefore set to 0000h immediately after the debugger of 740 starts.

2.4.3 Memory

e Memory Space
The entire memory space (0000h to FFFFh) functions as RAM. At startup, memory is allocated
for the entire area.

e Memory Structure and Initial Values Immediately after Starting
The memory is set up as follows immediately after starting the debugger.

0000h to FFFFh Filled with 00h

34

2Simulation Specifications

2.441/0

SFR

No peripheral I/Os such as timers and serial I/O in the actual chip are supported. Only the CPU
core is supported. Consequently, the 740 debugger handles the SFR area to which peripheral
1/Os are connected simply as RAM.

However, the CPU Mode Register's stack page select bit and the Interrupt Control Register
each are handled as SFR. (For details about each register location, refer to the user's manual of
your chip.) When the stack page select bit is set to 1, one page of RAM can be used as a stack
area. When a bit of the Interrupt Control Register is set to 1, the corresponding interrupt of
that bit is enabled. Moreover, a method is provided that allows you to accomplish interrupts,
e.g., a timer interrupt, and data input to SRF or other memory by simulating these operations
without having to actually execute them. For details about this method, refer to the virtual port
input/output and virtual interrupt functions described later in this manual.

1/0 Script
Virtual Port Input Function
This function defines changes of the data that is input from external devices to a specified
memory address. Using this function you can simulate data inputs to the ports defined in SFR.
The following shows timings at which data can be input to memory:

1. When program execution has reached a specified number of cycles

2. When a specified memory location is accessed for read by a program

3. When a specified virtual interrupt is generated

The input data at the above timings can be defined from the I/O Window. Furthermore, this
function can be used in combination with the I/O script function, a function that allows you to
define virtual port inputs and virtual interrupts. (For details, refer to "High-end Debugging"
described later in this manual.) Using this I/O script function, you can specify more precise
data input timings such as when the program fetches an instruction, when the program writes
to memory, or when the program has executed instructions a specified number of times.

Virtual Port Output Function

When a data write to some memory address by the program occurs, this function records the
written data value and the cycle at which the data was written. The recorded data can be
verified in graphic or numeric format from the I/O Window. The maximum number of data that
can be recorded by this function is 30,000 entries counted from the beginning of program
execution.

35

Interrupts
This function defines interrupt generation. Using this function you can generate timer
interrupts and key input interrupts in a simulated manner without having to actually generate
them. The following shows timings at which virtual interrupts can be generated:
- Virtual Interrupt Function

This function defines interrupt generation. Using this function you can generate timer
interrupts and key input interrupts in a simulated manner without having to actually generate
them.
The following shows timings at which virtual interrupts can be generated:

1. When program execution has reached a specified number of cycles.

2. When the program has executed a specified address.

3. Every specified time interval

Virtual interrupts at the above timings can be defined from the I/O Timing Setting Window.

Furthermore, this function can be used in combination with the I/O script function, a function

that allows you to define virtual port inputs and virtual interrupts. (For details, refer to

"High-end Debugging" described later in this manual.) Using this I/O script function, you can

specify more precise interrupt generation timings such as when the program reads or writes to

memory or when the program has executed instructions a specified number of times.

- Differences between Virtual Interrupts and Interrupts in Actual Chip
Virtual interrupts differ from interrupts in the actual chip in the following points:
About the Interrupt Control and Interrupt Request Registers

When a virtual interrupt is generated, PD38SIM looks up the Interrupt Control
Register's interrupt control bit as it simulates virtual interrupt generation. If a
virtual interrupt occurs when interrupt generation is disabled, the interrupt
request is saved inside the simulator so that a virtual interrupt is generated
after interrupt generation is enabled. However, since the interrupt request bit is
not simulated, the interrupt request bit is not set even when an interrupt
request is saved. Nor can the virtual interrupts that have been saved be deleted
by clearing the interrupt request bit. (The virtual interrupts saved in the
simulator are deleted when the device is reset.) Note that you can use the I/O
script function to write a statement to the effect that the interrupt request bit is
set when an interrupt occurs.

Reset interrupts cannot be generated.
There are following two methods to set virtual interrupts.

1. By using the I/O Timing Setting Window
2. By using the I/O script function

- 1/0O Script Function
This function allows you to write virtual port input and virtual interrupt settings to a file in
script form. Therefore, it provides a more flexible way to define virtual port inputs and virtual
interrupts than can be set from the I/O Timing Setting Window. Specifically, this includes, for
example, reading the divide-by-N ratios you've set in the timer register and generating a timer
interrupt periodically.

Note

The virtual port input/output and virtual interrupt functions are processed after instruction
execution is completed.

36

2Simulation Specifications

e Port input/output
- GUI input function

The GUI input function refers to simulating the user target system's simple key input panel on

a window. The key input panel is created from the GUI input window.

The input panel can have the following parts placed on it:
[Buttons]
Virtual port input or virtual interrupt can be performed by pressing the button. The
following actions can be set for the button:
- Enter data to a specified memory address (virtual port input)
- Generate a specified virtual interrupt
- Generate a specified virtual interrupt and virtual port input at the same time
[Text]
Display a text string.

- GUI output function
The GUI output function refers to simulating the user target system's simple key output panel
on a window. The key output panel is created from the GUI output window.
The following parts can be arranged on this output panel:
[Character string |
User-specified character strings are displayed or erased when some value is written to a
specified memory address or according to logic 1 or O in bits.
[LED]
LEDs are lit when some value is written to a specified memory address or according to
logic 1 or 0 in bits.
[Text]
Display a text string.

2.4.5 Cycle Count: The CYcle (CY) Command

Use of the CYcle command allows you to know an approximate number of cycles and the execution
time of the program you've executed.

The number of cycles are represented using the values listed in the microcomputer's software manual.
The execution time refers to the target program's execution time calculated from the cumulative
number of cycles of the CPU instructions executed and the MCU clock and divide-by ratio specified on
the Init dialog box's MCU tab.

2.4.6 Stack Utilization Monitor: The StackMonitor (SM) Command

Use the StackMonitor command to check the maximum and minimum addresses of the stack, and to
determine how much the program has used of what part of the stack.

The stack monitoring continues from the time that a Go or GoFree command is invoked until it is
interrupted, the maximum and minimum values being recorded for the two stack pointers (USP and
ISP registers).

If, while the program is running, it causes a change in the value of a stack pointer,monitoring of stack
utilization of that stack stops at that point.

37

3. Preparation before Use

Please run the High-performance Embedded Workshop and connect the emulator .
In addition, in order to debug with this product, it is necessary to create a workspace.

3.1 Workspaces, Projects, and Files

Just as a word processor allows you to create and modify documents, this product allows you to create
and modify workspaces.

A workspace can be thought of as a container of projects and, similarly, a project can be thought of as
a container of project files. Thus, each workspace contains one or more projects and each project

contains one or more files.

project

workspace

Workspaces allow you to group related projects together. For example, you may have an application
that needs to be built for different processors or you may be developing an application and library at
the same time. Projects can also be linked hierarchically within a workspace, which means that when
one project is built all of its "child" projects are built first.

However, workspaces on their own are not very useful, we need to add a project to a workspace and
then add files to that project before we can actually do anything.

38

3Preparation before Use

3.2 Starting the High-performance Embedded Workshop

Activate the High-performance Embedded Workshop from [Programs] in the [Start] menu.
The [Welcome!] dialog box is displayed.

[oRens
{* Treate a new project workspace Ciancel |
=

=

=

{~ Cpen a recent praject workspace: Adminiztration.. |
| =

" Browse to another project workspace

In this dialog box, A workspace is created or displayed.

e [Create a new project workspace] radio button:
Creates a new workspace.

e [Open a recent project workspace] radio button:
Uses an existing workspace and displays the history of the opened workspace.

e [Browse to another project workspace] radio button:
Uses an existing workspace;
this radio button is used when the history of the opened workspace does not remain.

In the case of Selecting an Existing Workspace, select [Open a recent project workspace] or [Browse to
another project workspace] radio button and select the workspace file (hws).

Please refer to the following about the method to create a new workspace.
e Refer to "3.2.1 Creating a New Workspace (Toolchain Used)"
e Refer to "3.2.2Creating a New Workspace (Toolchain Not Used)"

* When debugging the existing load module file with this product, a workspace is created by this
method.

The method to create a new workspace depends on whether a toolchain is or is not in use. Note that
this product does not include a toolchain. Use of a toolchain is available in an environment where the
C/C++ compiler package for the CPU which you are using has been installed.

For details on this, refer to the manual attached to your C/C++ compiler package.

39

3.2.1 Creating a New Workspace (Toolchain Used)

3.2.1.1 Step1 : Creation of a new workspace

In the [Welcome!] dialog box that is displayed when the High-performance Embedded Workshop is
activated, select the [Create a new project workspace] radio button and click the [OK] button.
Creation of a new workspace is started.

The following dialog box is displayed.

Workspace Mame:
[Empty Application |SampIeD1
T@Impnrt Makefile Birellaet, (e
G Library ISampIem

Directary:

ID:¥work¥ HEWd¥Samples¥m1 6C¥Sample0l Browse... |
CPLU family:

MGG =]

Tool chain:

IF{enesas M16C Standard ;I

Properties... |

0K I Cancel

1. Select the target CPU family
In the [CPU familyl combo box, select the target CPU family.
2. Select the target toolchain
In the [Tool chain] combo box, select the target toolchain name when using the toolchain.
3. Select the project type
In the [Project typel list box, select the project type to be used.
In this case, select "Application" .
(Please refer to the manual attached to your C/C++ compiler package about the details of the
project type which can be chosen.)
4. Specify the workspace name and project name
- In the [Workspace Name] edit box, enter the new workspace name.
- In the [Project Name] edit box, enter the project name. When the project name is the same as
the workspace name, it needs not be entered.
- In the [Directory] edit box, enter the directory name in which the workspace will be created.
Click the [Browse...] button to select a directory.

After a setting, click the [OK] button.

40

3Preparation before Use

3.2.1.2 Step?2 : Setting for the Toolchain

A wizard for the project creation starts.

Mew F'r|:|j|3|::t—1 i

Toolchain version :
R~ |
Which CPU do vou want to use for this
project?

CPU Series:

M16G/30
M160/20
MI6G/D
MGG Tiny [

CPU Type:

If there iz no GPU tvpe to be selected, zelect
the “CPU Type” that a similar to hardware
specification or select “Other”™.

<Back |[MNext> | Finish Gancel

Here, the following contents are set.
e toolchain
e the setting for the real-time OS (when using)
e the setting for the startup file, heap area, stack area, and so on

Please set required information and click the [Next] button.

The contents of a setting change with C/C++ compiler packages of use. Please refer to the manual
attached to your C/C++ compiler package about the details of the contents of a setting.

41

3.2.1.3 Step 3: Selecting of the Target Platform

Select the target system used for your debugging (emulator, simulator).
When the setting for the toolchain has been completed, the following dialog box is displayed.

Mew Project-5/7-5Setting the Target System for Debugeing '_ e |

— Targets :
WIM1GC PC4701 Emulator
[w]h16C FAC Compact Emulator
[WIM1GC REC FolUSBAUART
[wIM65 RBC PCTE0T Emulator
[w]M16C REC Simulator

—External Debugger :

Tareet type : IM'I G660 LI

Mext > | Finizh Cancel |

1. Selecting of the Target type
In the [Target typel list box, select the target CPU type.
2. Selecting of the Target Platform
In the [Targets] area, the target for the session file used when this debugger is activated must be
selected here.
Check the box against the target platform. (And choose other target as required.)

And click the [Next] button.

42

3Preparation before Use

3.2.1.4 Step4 : Setting the Configuration File Name

Set the configuration file name for each of the all selected target.
The configuration file saves the state of High-performance Embedded Workshop except for the target
(emulator, simulator).

Mew Project tting the Debugeer Options

Target name :

7601 Emulator

Configuration name :
|Debug_M1 GG _FAC_PCTE0T_Emulator

— Detail options :

Item | Setting

e |

<Back [[MNext> | = Finishn | cancel |

The default name is already set. If it is not necessary to change, please click the [next] button as it is.

43

3.2.1.5 Step5 : The check of a created file name

Finally, confirm the file name you create. The files which will be generated by the High-performance
Embedded Workshop are displayed If you want to change the file name, select and click it then enter

the new name.

Mew Project=7/7-Changing the File Names to be Created

The fallowing source filez will be

generated:

File Ma.. | Ext. | Description
Sample0l ¢ Main Program
ncrid a30 Start up file

zectd0 1313 Start up file

‘| | 0

[Esct | Finigh I Cancel I

This is the end of the emulator settings.
Exit the Project Generator following the instructions on the screen.

44

3Preparation before Use

3.2.2 Creating a New Workspace (Toolchain Not Used)

When debugging the existing load module file with this product, a workspace is created by this
method.(It can work even if the tool chain is not installed.)

3.2.2.1 Step1 : Creation of a new workspace

In the [Welcome!] dialog box that is displayed when the High-performance Embedded Workshop is
activated, select the [Create a new project workspace] radio button and click the [OK] button.
Creation of a new workspace is started. The following dialog box is displayed.

k7 4701 . Workzpace Mame:
P Debueser only - MI6G PO7501 . D05amplelT
v Debueger anly — M16G Starterk.. Froject Mame:
#» Debugger only - RBGC E7 SYSTEM IDOSampIeD‘I

#» Debugeer only - RBC E8 SYSTEM

Directory:

ID:¥WDrk¥HEW4¥SampIES¥M1 AC¥DOZample Browze. . |

CGPLU family:
[GEE =l

Tool chain:

Mone -

Properties... |

0].4 I Cancel

1. Select the target CPU family
In the [CPU family] combo box, select the target CPU family.
2. Select the target toolchain
In the [Tool chain] combo box, select "None". In this case, toolchain is not used.
(When the toolchain has not been installed, the fixed information is displayed in this combo box.)
3. Select the project type
(When the toolchain is not used, it is displayed on a [Project Typel] list box as "Debugger only -
Target Name". Select it. (When two or more project types are displayed, please select one of
them.)
4. Specify the workspace name and project name
- In the [Workspace Name] edit box, enter the new workspace name.
- In the [Project Name] edit box, enter the project name. When the project name is the same as
the workspace name, it needs not be entered.
- In the [Directory] edit box, enter the directory name in which the workspace will be created.
Click the [Browse...] button to select a directory.

After a setting, click the [OK] button.

45

3.2.2.2 Step 2: Selecting of the Target Platform

Select the target system used for your debugging (emulator, simulator).
A wizard starts and the following dialog box is displayed.

m for Debuegeing

— Targets :
[wIMIGC PC4701 Emulator
w165 RBC Compact Emulator
[WM16C RBC FolUSB/UART
[wIMIGC RAC PCTE0T Emulator

Tarest type : |M1 BC.A60 ;I

Mesxct | Finigh Cancel I

1. Selecting of the Target type
In the [Target typel list box, select the target CPU type.
2. Selecting of the Target Platform
In the [Targets] area, the target for the session file used when this debugger is activated must be
selected here.
Check the box against the target platform. (And choose other target as required.)

And click the [Next] button.

46

3Preparation before Use

3.2.2.3 Step3 : Setting the Configuration File Name

Set the configuration file name for each of the all selected target.
The configuration file saves the state of High-performance Embedded Workshop except for the target
(emulator, simulator).

Mew Project tting the Debugeer Options

Target name :

7601 Emulator

Configuration name :
|Debug_M1 GG _FAC_PCTE0T_Emulator

— Detail options :

Item | Setting

e |

<Back [[MNext> | = Finishn | cancel |

The default name is already set. If it is not necessary to change, please click the [next] button as it is.
This is the end of the emulator settings.

Exit the Project Generator following the instructions on the screen.

And the dialog for the setup of a debugger is also displayed at this time . If preparation of an emulator
is completed, set up the debugger in this dialog box and connect with an emulator.

47

3.2.2.4 Step4 : Registering the Load modules to be downloaded

Finally, register the load module file to be used.

Select [Debug Settings...] from the [Debug] menu to open the [Debug Settings] dialog box.

|SessionM16G_REC_PGTE0T_Emulatar | Tareet | Options |

------ I@ DoSampledl gt
|m16C REC PCTE0T Emulator =l
Default Debug Format:
|IEEER9S RENESAS =l
Download Modules:
File Mame [Otfset Address [Format Add..
D#¥work¥HEW4¥Samples¥M1 6C¥Sampled] x30 00000000 IEEERC

adify... |
Hemoyve |

1 | i

Cancel |

1. Select the product name to be connected in the [Target] drop-down list box.
2. Select the format of the load module to be downloaded in the [Default Debug Format] drop-down
list box.

Format Name Contents
IEEE695_RENESAS IEEE-695 format file (When Using Renesas toolchain)
IEEE695_IAR IEEE-695 format file (When Using IAR toolchain)
IEEE695_TASKING IEEE-695 format file (When Using Tasking toolchain)
ELF/DWARF2 ELF/DWARF?2 format file (When Using Renesas toolchain)
ELF/DWARF2_TAR ELF/DWARF2 format file (When Using IAR toolchain)
ELF/DWARF2_TASKING ELF/DWARF?2 format file (When Using Tasking toolchain)
ELF/DWARF2_KPIT ELF/DWARF2 format file (When Using KPIT toolchain)
Intel-Hex+Sym Intel Hex format file with Symbol format file (When Using Renesas
toolchain “SRA74”)
IEEE695_ICC740 IEEE-695 format file (When Using Renesas toolchain "ICC740")

This debugger does not support the object formats, which are not shown in the drop down list.

48

3Preparation before Use

3. Then register the corresponding download module in the [Download Modules] list box.
A download module can be specified in the dialog opened with a [Add...] button.

Download Module x|

Offset: [00000000 =] ok |
Format. |[IEEE695_REMESAS =] Cancel |

Filzname: |D:¥HEW4¥sam|:ules¥M1EO¥demD.x3El | 3 | Browsze.. |
Bocess size: |1 vl

[~ Download debue information anly

[~ Berform memary verify during download

[~ Download automatically on target connection

- Select the format of the download module in the [Format] edit box. Please refer to the upper
table about the format name of a download module.

- Enter the full path and filename of the download module in the [Filename] edit box.

- Specifies the access size for the current download module in the [Access size] list box.

After that, click the [OK] button.

ATTENTION
"Offset", "Access size" and "Perform memory verify during download" is ignored. The offset is always
set to 0, the access size is always set to 1 and the verification does not work.

49

3.3 Starting the Debugger

The debugging can be started by connecting with an simulator.

3.3.1 Connecting the Simulator

Connect the simulator by simply switching the session file to one in which the setting for the
simulator use has been registered.

The session file is created by default. The session file has information about the target selected when
a project was created.

In the circled list box in the following tool bars, select the session name including the character string
of the target to connect.

DefaultS eszion

After the session name is selected, the dialog box for setting the debugger is displayed and the
simulator will be connected.
When the dialog box is not displayed, select [Connect] from the [Debug] menu.

kU8 z(H)

3.3.2 Ending the Simulator

The simulator can be exited by using the following methods:

1. Selecting the “Disconnect”
Select [Disconnect] from the [Debug] menu.

B 108 2
2. Selecting the "DefaultSession"

Select the "DefaultSession" in the list box that was used at the time of simulator connection.

3. Exiting the High-performance Embedded Workshop
Select [Exit] from the [File] menu. High-performance Embedded Workshop will be ended.

The message box, that asks whether to save a session, will be displayed when an simulator is exited.
If necessary to save it, click the [Yes] button. If not necessary, click the [No] button.

50

4Setup the Debugger

4. Setup the Debugger

4.1 Init Dialog

The Init dialog box is provided for setting the items that need to be set when the debugger starts up.
The contents set from this dialog box are also effective the next time the debugger starts. The data set
in this dialog remains effective for the next start.

Init (M16C RBG Simulator?

MGU | Debugging Information | Seript | Trace | 140 Seript |

MCLE M1 GcGx meu Refer... |

—Time Count Fesource

MCU CGlock: I'IEI MHz I'I

—Simulation Mode

&+ Simulation Speed " Cycle Accuracy

Ok I Cancel Help

[T Do not show this dialog box again.

The tabs available on this dialog box vary with each product used. For details, click the desired tab
name shown in the table below.

Tab Name Product Name
The debugger The debugger The debugger The debugger
for R32C for M32C for M16C/R8C for 740
MCU exist exist exist exist
Debugging exist exist exist exist
Information
Script exist exist exist exist
Trace exist exist exist
I/0 Script exist exist exist

You can open the Init dialog using either one of the following methods:
e After the debugger gets started, select Menu - [Setup] -> [Simulator] -> [System...].
e Start Debugger while holding down the Ctrl key.

51

4.1.1 MCU Tab

The specified content becomes effective when the next being start.

MCLE M1 GoGx mou Refer... |

— Time Count Besource

MCU Clock: I'IEI MHz I'I

—aimulation Mode

% Simulation Speed = Cycle Accuracy

4.1.1.1 Specifying the MCU file

MCLE M30626.MCL Refer.. |

Click the "Refer" button.
The File Selection dialog is opened. Specify the corresponding MCU file.
e An MCU file contains the information specific to the target MCU.
e The specified MCU file is displayed in the MCU area of the MCU tab.

If the corresponding MCU file is not contained in the debugger/emulation pod, you must create a new
MCU file. To do this, see the following:

Refer to "4.4 Method of making MCU file"

4.1.1.2 Specifying Clock Frequency

Specify the operation clock of the target MCU within the MCU Clock field in the Time Count
Resource group (in units of MHz).

Rezource
’7MGLI Clock: [10.0 MHz # |4|

Specify the MCU clock and the clock divide ratio.
If you are using the MCU at 10 MHz divided by 4, for example, enter "10" on the left side and "4" on
the right side of the text box.

If no values are set in the clock divide ratio specifying area, it is assumed that the clock is not divided
(i.e., the same as you would specify the value 1).

This setting becomes effective when the debugger is connected the next time.

52

4Setup the Debugger

4.1.1.3 Selection of the Simulation Mode (for M16C/R8C)

Select the simulation mode.

Simulation Maode

& Simulation Speed " Cwele Accuracy

® Simulation Speed Mode
The bus width, queue, and wait states are not considered when measuring the number of cycles in
the Simulation Speed Mode. The number of cycles is represented by the values listed in the
microcomputer's software manual.

® C(Cycle Accuracy Mode
The bus width, the state of instruction queues, and the software wait for instructions are
considered when measuring the number of cycles in the Cycle Accuracy Mode. Therefore, this
mode can measure close number of cycles to the actual chip.
However, simulation speed of the Cycle Accuracy Mode slows than the Simulation Speed Mode.

The contents set here are reflected at only startup time.

53

4.1.2 Debugging Information Tab

The specified content becomes effective when the next being start.

Compiler: | J

Object Format: | J
[On Demand
v Digplay the instruction format specifier in
dizazzembly

= Blways treat variables of enumerator tvpe
with unknown zize az 1 byte

4.1.2.1 display the compiler used and its object format

Display the compiler used and its object file format.

Compiler: | HC3UA NGB =

Object Format: [IEEE-G55 =

Please specify the compiler used and its object file format in the dialog opened by menu [Debug] ->
[Debug Settings...].

4.1.2.2 Specify the Storing of Debugging Information

There are two methods for storing debugging information: on-memory and on-demand.
Select one of these two methods. (The on-memory method is selected by default.)
To select the on-demand method, click the On Demand check box.

Notes

On-memory method

Debugging information is stored in the internal memory of your computer.

Usually, select this method.

On-demand method

Debugging information is stored in a reusable temporary file on the hard disk of your
computer.

Because the stored debugging information is reused, the next time you download the
same load module it can be downloaded faster.

This method is suitable when it takes so long time to download the debugging
information, because the PC has less memory against the load module file size.

If the load module size is large, the on-memory method may be inefficient because it
requires a very large amount of time for downloading. In such a case, select the
on-demand method.

In the on-demand method, a folder in which to store a reusable temporary file is
created in the folder that contains the downloaded load module. This folder is named
after the load module name by the word "~INDEX_" to it. If the load module name is
"sample.abs", for example, the folder name is "~INDEX_sample". This folder is not
deleted even after quitting the debugger.

54

4Setup the Debugger

4.1.2.3 Specify whether to display the instruction format specifier

Specify whether to display the instruction format specifier in the disassembled display.
The debugger for 740 doesn't support this function.

v Dizplay the inztruction format specifier in
dizazsembly

Select the above check box when you display the instruction format specifier.
This specification can only be set or changed when you start the debugger.

4.1.2.4 To treat size of enumeration type as 1 byte

You can specify whether your debugger treat all sizes of enumeration types whose size is unknown in
the debugging information as 1 byte. For reducing memory consumption, NC30, NC308 and NC100
have an option to treat the sizes of enumerator types as 1 byte and not as same size of 'int'. Note that
NC30, NC308 and NC100 don't output the sizes of enumerator types in debugging information and
debuggers consider the size as same size of 'int'.

Therefore you may not correctly refer the values of enumeration types in the target programs which
were compiled with the above option. This function is for resolving the above issue. See the users'
manual of each compiler for details of the above option

The debugger for 740 doesn't support this function.

B flmays treat variables of enumerator tvpe
with unknown zize az 1 byte

Check the above check box if you would like to treat all sizes of enumeration types as 1 byte. It is
necessary to load the debugging information again in order to reflect this setting.

55

4.1.3 Script Tab

The specified content becomes effective when the next being start.

Ihit File: I Refer |

4.1.3.1 Automatically Execute the Script Commands

To automatically execute the script command at start of Debugger, click the "Refer" button to specify
the script file to be executed.

Ihit File: | Refer. |

By clicking the "Refer" button, the File Selection dialog is opened.

The specified script file is displayed in the "Init File:" field.

To disable auto-execution of the script command, erase a character string displayed in the "Init File:"
field.

56

4Setup the Debugger

4.1.4 Trace Tab

Specify whether or not to enable trace measurement, and when you chose to enable, specify the trace
buffer size.
In the 740 debugger, this tab is not displayed.

The contents you specified here are also effective the next time you start the debugger.

Trace Buffer Size: |32 —| K Cwveles
{1 - 2560 K Cycles

To perform trace measurement, check Use Trace Function.

If trace measurement is disabled, you cannot open the Trace Window and Trace Point Setting
Window.

In the Trace Buffer Size area, specify the size of the buffer in which to store the traced data (in K
Cycles).

4.1.5 I/O Script Tab

Specify the number of data to be recorded by the I/O Window or Output Port Window's port output
function.
In the 740 debugger, this tab is not displayed and the maximum number of data is 30000.

The contents you specified here are also effective the next time you start the debugger.

Output Data Hum: [30000 = Data
{1 - 1000000 » Data

In the Output Data Num area, specify the number of output data to be recorded.

57

4.2 MCU Setting Dialog (for M16C/R8C)

In the MCU Setting dialog box, setting information on the user target. The MCU Setting dialog box

opens after closing the Init dialog box.

MCU Setting
fle maty |
femory fap:
Eegin | End | Width | Read | Write | fidd..
Q00000 QO03FF 16 2 2
000400 OOFFFF 16 1 1 :
0FO000 OFFFFF 16 1 1 Hadify.
Feset
(0] I Cancel Help
[T Do not show this dialog box again.

You can open the Init dialog using either one of the following methods:
After the debugger gets started, select Menu - [Setup] -> [Simulator] -> [Target...].

Note
You can open the MCU Setting dialog when the Cycle Accuracy Mode is selected on the Init dialog

box’s MCU tab..

58

4Setup the Debugger

4.2.1 Memory Tab

The specified content becomes effective when the next being start.
Memaory Map:
Beein | End | fidth | Read | wiite | Add..
Q00000 Q003FF 1a 2 2 -
Q00400 OOFFFF 1a 1 1 -
QFO000 OFFFFF 16 1 1 w

Feset

4.2.1.1 Setting the memory map

Set the memory area in 256 byte units into which you want the memory to be mapped.
The blocks with the lowest address (00000h to OFFFFh) and with the highest address (FOO00Oh to
FFFFFh) are already mapped when the simulator starts.

Notes

Memory space that has been mapped cannot be deleted.

The memory map can be specified or modified.

Clicking [Add] button opens the Memory Map dialog box, and memory map items can be added.

Select an item to be modified in the list box and click the [Modify] button. The Memory Map dialog
box opens and memory map items can be modified.

[Memory Map] can be reset to the default value by the [Reset] button. The Reset button cannot click
when you opened the MCU Setting dialog box by selecting menu- [Setup] -> [Simulator] -> [Target...].

Clicking the [OK] button stores the settings.
Clicking the [Cancel] button closes this dialog box without modifying the settings.

59

42.1.1.1. Memory Map Dialog box
The Memory Map dialog box specifies the memory map.
The simulator debugger uses the specified data to calculate the number of cycles for memory accesses.

hemory Map |

Begin Address: [000000 =]
End Address: [DOFFFF =]
Bus Width: [18 |
Read Cycle: fi
Wite Cycle: fi

| oK | Cancel

Please specify the following items.

Ttems Contents

Begin Address Begin address of the memory

End Address End address of the memory

Bus Width Bus width of the memory (8 / 16 bit)
Read Cycle Number of memory read cycles (1 to 255)
Write Cycle Number of memory write cycles (1 to 255)

Clicking the [OK] button stores the settings.
Clicking the [Cancel] button closes this dialog box without modifying the settings.

60

4Setup the Debugger

4.3 Simulator engine setup

When Simulator engine simxx starts up, it is registered in the system tray.

(B

Right-clicking on the running simxx and selecting [Version...] from the menu bar will open up the
Version Information dialog box. Use this Version Information dialog box to set up simxx.

(Shown below is the Version Information dialog box of the simulator engine for the M16C and M32C
series debugger.)

Verszion Information

: Sim 20 — M1BC, RAEC simulator engine
Simg[] Version 5,00.00

E xit
Copyright [C] 1957, 2004 Reneszaz Technology Corp. and _—I
Fienezaz Solutions Corp.

Application [nformation :

Interface ; CuT " Option

v Auto exit

MCL Skatuz . STOP

e Auto Exit Switch Setting
By checking the Auto exit check box, simxx can be terminated at the same time the
simulator debugger front-end finishes.
¢ Communications Connection Status
CONNECT is displayed when connected to the simulator debugger. CUT is displayed
when there is no connection.
e Simulator MCU Status (RUN/STOP)
RUN is displayed when the simulator MCU is running, STOP when stopped.
¢ OKbutton
Closes the Version Information dialog box
e Exit button
Exits simxx.

61

4.4 Method of making MCU file

4.4.1 Method of making MCU file (the R32C Debugger)

In the MCU file, write the following contents in the order listed below.

For the file name, specify the MCU name. For the extension, specify ".mcu".
1. UARTO Transmit/Receive Control Register 1 address

2. UART1 Transmit/Receive Control Register 1 address

3. UARTO Transmit Buffer Register address

4. UART1 Transmit Buffer Register address

Write each address in hexadecimal. Do not add the prefix that represents the radix.

4.4.1.1 Example

365
36D
362
36A

62

4Setup the Debugger

4.4.2 Method of making MCU file (the M32C Debugger)

In the MCU file, write the following contents in the order listed below.

For the file name, specify the MCU name. For the extension, specify ".mcu".
MCU type ("0" or "1")

UARTO Transmit/Receive Control Register 1 address

UART1 Transmit/Receive Control Register 1 address

UARTO Transmit Buffer Register address

UART1 Transmit Buffer Register address

AN S

The MCU type only needs to be specified for the M32C Debugger.

"0" ... Selects the M16C/8x
"1" ... Selects the M32C/8x

Write each address in hexadecimal. Do not add the prefix that represents the radix.

4.4.2.1 Example

0

3A5
3AD
3A2
3AA

63

4.4.3 Method of making MCU file (the M16C/R8C Debugger)

In the MCU file, write the following contents in the order listed below.
For the file name, specify the MCU name. For the extension, specify ".mcu".
MCU type

UARTO Transmit/Receive Control Register 1 address

UART1 Transmit/Receive Control Register 1 address

UARTO Transmit Buffer Register address

UART1 Transmit Buffer Register address

Reset Vector address

Undefined Instruction Interrupt Vector address

Overflow Interruput Vector address

BRK Instruction Interrupt Vector address

© X oo e

Always be sure to add a semicolon (;) before the MCU type.
e ;8" - R8C Family
e ;16" - M16C Series
Write each address in hexadecimal. Do not add the prefix that represents the radix.

4.4.3.1 Example

;16
3A5
3AD
3A2
3AA
FFFFC
FFFDC
FFFEO
FFFE4

64

4Setup the Debugger

4.4.4 Method of making MCU file (the 740 Debugger)

In the MCU file, write the following contents in the order listed below. For the file name, specify the
MCU name. For the extension, specify ".mcu". Write each address in hexadecimal. Do not add the

p

refix that represents the radix.

Please describe information on 3-6 referring to the data book on MCU used.

1.

S R

4

MCU name

Reserved number

CPU mode register address and stack page select bit number
Reset vector address information

BRK vector address information

Interrupt vector address information

e MCU name and Reserved number
Always be sure to add a semicolon (;) before the CPU name and the reserved number.
e CPU mode register address and stack page select bit number
Separate the CPU mode register address and the stack page select bit number with a colon (:).
e Reset vector address information
Add the word ":RST" after the reset vector address.
e BRK vector address information
Add the word ":BRK" after the BRK vector address.
e Interrupt vector address information
Separate between the interrupt vector address and interrupt control register address, and
between the interrupt control register address and interrupt control bit number with a colon ().
Interrupt vector information can be writennen for up to 32 points.

.4.4.1 Example

;M38000
;1

3B:2
FFFC:RST
FFDC:BRK
FFFA:3E:
FFF8:3E:
FFF6:3E:
FFF4:3E:
FFF2:3E:
FFFO:3E:
FFEE:3E:
FFEC:3E:
FFEA:3F:
FFE8:3F:
FFE6:3F:
FFE4:3F:
FFE2:3F:
FFEO:3F:

OORrWONRFRPO~NOURMWNEO

65

[MEMO]

66

Tutorial

67

(Blank Page)

68

5Tutorial

5. Tutorial

5.1 Introduction

This section describes the main functions of this debugger by using a tutorial program. The tutorial
programs are installed to the directory ¥WorkSpace¥Tutorial of the drive you installed
High-performance Embedded Workshop. There are workspaces for each targets and each MCUs.
Please select the corresponding one to your system, and open the workspace file (* hws) from the
menu [Open Workspace...].
The tutorial program is based on the C program that sorts ten random data items in ascending or
descending order.
The tutorial program performs the following actions:

e The tutorial function generates random data to be sorted.

e The sort function sorts the generated random data in ascending order.

e The change function then sorts the data in descending order.

Note

After recompilation, the addresses may differ from those given in this section.
When using the assembler package for 740 family

The tutorial program for the assembler package for 740 family is prepared. If you use the
assembler package for 740 family, please use it.
e Please read this tutorial with replacing function names with subroutine name. (e.g.
replace "function sort()" with "subroutine sort")
e About the source file name, also please replace it with the corresponding one.
e The diagrams in this tutorial are for C program. The displayed diagram for the
assembler program may different from them.
e Step9 and Step12 are descriptions of C program.

69

5.2 Usage

Please follow these instructions:

5.2.1 Step1l : Starting the Debugger

5.2.1.1 Preparation before Use

To run the High-performance Embedded Workshop and connect the emulator, refer to "3 Preparation
before Use".

5.2.1.2 Setup the Debugger

If it connects with an emulator, the dialog box for setting up a debugger will be displayed. Please set
up the debugger in this dialog box.

To setup the debugger in this dialog box, refer to "4 Setup the Debugger".

After the setup of a debugger, it will function as a debugger.

70

5Tutorial

5.2.2 Step2 : Checking the Operation of RAM

Check that RAM is operating correctly. Display and edit the contents of the memory in the [Memory]
window to check that the memory is operating correctly.

Note

The memory can be installed on the board in some microcomputers. In this case, however, the above
way of checking the operation of memory may be inadequate. It is recommended that a program for
checking the memory be created.

5.2.2.1 Checking the Operation of RAM

Select [Memory] from the [CPU] submenu of the [View] menu and enter the RAM address (Here,
enter “400”) in the [Display Address] edit boxes. The [Scroll Start Address] and [Scroll End Address]
editing box is left to a default setting. (By default, the scroll range is set to Oh to the maximum
address of MCU.)

Display Address I 2] x|
Digplay Address: Im vI
Scroll Start Address: IUUUUDD LI
Scroll End Address: [OFFFFF =]

oK I Cancel |

Note

The settings of the RAM area differ depending on the product. For details, refer to the hardware
manual.
Click the [OK] button. The [Memory] window is displayed and shows the specified memory area.

< Memory [000400] . i] [
oz D8 2 A BHBE £ a2 | B

fddress | Label | Rezister | +0 +1 +2 +3 +4 +5 +6 47 +8 +8 +4 +B 40 +D +E +F | ASCII Iﬂ
000400 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000410 DF D& F& OF 20 04 00 OO 20 04 OO0 00 00 03 00 00
000420 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0nn4an FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFuuus
000440 FF FF[ZH)FF FF FF FF FF FF FF FF FF FF FF FF FF ..H......
000460 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFuu..
000480 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFuu.s
000470 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

00n4a0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

000440 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

000440 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0004E0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0004co FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

000400 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

2|

Placing the mouse cursor on a point in the display of data in the [Memory]l window and
double-clicking allows the values at that point to be changed.

71

5.2.3 Step3 : Downloading the Tutorial Program

5.2.3.1 Downloading the Tutorial Program

Download the object program to be debugged. The download file and the address to be downloaded
will depends on the target mcu you uses. Please replace the screen image and addresses with
corresponding one to your target mcu.

e The Debugger for M16C/R8C, M32C or R32C
Select [Download module] from [Tutorial.x30] under [Download modules].

e The Debugger for 740
If you use the C Compiler Package for 740 Family, select [Download module] from
[Tutorial.695] under [Download modules].
If you use the Assembler Package for 740 Family, select [Download module] from
[Tutorial.hex] under [Download modules].

E@ Tutorial

EI@ Tutorial

=3 Azsembly zource file

ncrt0.a30
-3 C souree file

zort.c
Tutorialc
=23 Download modules

=23 Dependencic :
- [B] ne_defin Download (Debug Data Only)

sectdit Urload
zorth

Download & MNew Module..
Bemove

Debug Settings..

Configure Wiem..

IT Bllow Dockine
Hide

FProperties...

72

5Tutorial

5.2.3.2 Displaying the Source Program

This debugger allows the user to debug a user program at the source level.
Double-click [tutorial.c] under [C source file]l. A [Editor(Source)] window opens and the contents of a
"Tutorial.c" file are displayed.

E@ Tutorial ||
=-[E Tutorial .
Ea fzsembly source file Line Sour.. | 5. Source
Lo ncrt0.a3l 13
=3 G source file }g L??ﬁc?[égi, le st:
sort.c 18 F ’
Titorialc 17 void mainivoid)
Ea Diownload modules 18 |F4214 i .
- Tutarialx30 - OOOOOO0O0 19 |F4214 while (1){
£-£3 Dependencies 20 [F421E tutorial();
= Zep 1% 21 |Fd4221 1
ne_define.inc 29 |F4z2g 1
: gectiling 23
. sorth 24 void tutorialivoid)
25 [(F4224 i
25 lomg J:
27 int i;
28 ztruct Zample far #p_sam:
24
30 |F4227 p_zam= kst
31 [F4231 init{p_sam);
3z
33 |F4z23D far(i=0: i<10; i++ 3
<] |
e [B [[Bre] || & Twoalc |

Select the [Format Views...] option from the [Setup] menu to set a font and size that are legible, if
necessary.

Initially the [Editor(Source)] window shows the start of the user program, but the user can use the
scroll bar to scroll through the user program and look at the other statements.

73

5.2.4 Step4 : Setting a Breakpoint

A software breakpoint is a basic debugging function.
The [Editor(Source)] window provides a very simple way of setting a software breakpoint at any point
in a program.

5.2.4.1 Setting a Software Breakpoint

For example, to set a software breakpoint at the sort function call:
Double-click the [S/W breakpoints] column on the line containing the sort function call.

« Tutorial.c P =10l %]
= &l
Line Sour.. | 5. Source |

i1 |F4231 init{p_sam);

32 j

33 |F423D for i=0: i<10: i++)

34 (F4248 i = rand();

ah |Fd42h4 ifii < 031

36 |F4259 = -i:

a7 h

a8 |F42B2 alil = J:

ER| !

a0 |(F4276 | 4 sortial;

41 |F427E change(al;

42

43 |F42486 p_zam-+sl=a[0];

44 |F42498 F_sam-»s1=al[1]:

45 |F42aE p_sam-»=z2=al2];

48 |F42CE p_san->s3=a[3]; bl
< | 4

The red symbol will appear on the line containing the sort function call. This shows that a
softwarebreak breakpoint has been set.

74

5Tutorial

5.2.5 Step5 : Executing the Program

Execute the program as described in the following:

5.2.5.1 Resetting of CPU

To reset the CPU, select [Reset CPU] from the [Debug] menu, or click the [Reset CPU] button T
on the toolbar.

5.2.5.2 Executing the Program

To execute the program, select [Go] from the [Debug] menu, or click the [Gol button on the

toolbar.
The program will be executed up to the breakpoint that has been set, and an arrow will be displayed
in the [S/W Breakpoints] column to show the position that the program has halted.

« Tutorial.c i —I—I' 0 EI
Bl
Line Sour.. | 5. Source |

31 |F42d1 init{p_zam);

a2 g

33 |Fa2iD farf i=0; i<10; i++)i

34 |F4248 i = randi};

a5 |F42h4 ifCi < 0]

36 |F4253 i=-i:

a7 !

a8 |F4262 alil = i:

a4 !

40 |F4276 | & sort{a);

41 |F427E changelal;

42

43 |F4288 p_zam-rsl=a[0]:

44 |F4298 p_zam-»=zl1=a[1];

45 |F424E p_sam-rsi=al2];

46 |F42CE p_sam->zi=a[3]; hal
4| | 4

Note

When the source file is displayed after a break, a path of the source file may be inquired. In this case,
please specify the location of a source file.

75

5.2.5.3 Reviewing Cause of the Break

The break factor is displayed in the [Output] window.

Hoioraar|2igt|o|=d|?

Connected

Cause of break: 3/W break

1A I :I;. Build }-.Debug ;'{ Find iin Files }H. Mzcro }-.. Tast }H. Version Control f

The user can also see the cause of the break that occurred last time in the [Status] window.

Select [Status] from the [CPU] submenu of the [View] menu. After the [Status] window is displayed,
open the [Platform] sheet, and check the Status of Cause of last break.

The debugger for 740 doesn't support this function.

- Status

Item | Status |
Connected to MiaZ RSC PCY501 Emulator

CPU Miac

Fun Ztatus Feady

Cause of last break 3/ bhreak

Fun time count 00 h 00 t OO0 sec 001 mwmsec 991 usec

A B 1% Memory A Platform f{. Ewents j‘

Please refer to "11 Display the Cause of the Program Stoppage" about the notation of a break factor.

76

5Tutorial

5.2.6 Step6 : Reviewing Breakpoints

The user can see all the breakpoints set in the program in the [Breakpoints] dialog box.

5.2.6.1 Reviewing Breakpoints

Push the key Ctrl+B, and the [Breakpoints] dialog box will be displayed.
Breakpoints i ilil
Cancel |
Edit Gode |
Bemowve |
Femowve Al |

This window allows the user to delete, enable, or disable breakpoints.

77

5.2.7 Step7 : Viewing Register

The user can see all registers/flags value in the [Register] window.

5.2.7.1 Viewing Register

Select [Registers] from the [CPU] submenu of the [View] menu. The [Register] window is displayed.
The figure below shows a Register window of the debugger for M16C/R8C.

0 BANK — Reeister E |

H...l Valus | E..
RO ooz4 Hex
Rl oFao Hex
R ooao Hex
B3 ooao Hex
AD OEEE Hex
Al aooo Hex
FE o7r1a Hex
o3p 0a/CZ Hex
ISP DAZ0 Hex
=l OFO0Z6F Hex
3B o400 Hex
INTE OFFDOO Hex

ren| u| 1] o] 8 = 2| 2] <]
0 10000101

5.2.7.2 Setting the Register Value

You can change a register/flag value from this window.
Double-click the register line to be changed. The dialog is opened. Enter the value to be changed.

PG - Set Value ed |

Radix : [Hex =

et A I'I.I'I.I'I'u:nle Fegizter ll

(0] 8 I Cancel |

78

5Tutorial

5.2.8 Step8 : Viewing Memory

When the label name is specified, the user can view the memory contents that the label has been

registered in the [ASM Watch] window.

5.2.8.1 Viewing Memory

For example, to view the memory contents corresponding to __msize in word size:

Select [ASM Watch] from the [Symbol] submenu of the [View] menu, open the [ASM Watch] window.
And click the [ASM Watch] window with the right-hand mouse button and select [Add...] from the
popup menu, enter __msize in the [Address] edit box, and set Word in the [Size] combo box.

21 x]
fddress: |_msize| ;l

Size: I'I.I'I.I'u:uru:l ;I

Radix: ¢ Hex Dec & Bin

0] 4 I Cancel

Click the [OK] button. The [ASM Watch] window showing the specified area of memory is displayed.

« ASMWatch

o X K| /4 20 6|8

=10l x|

Address:Eit I Expression | Zize | Radix I Data

ooog1c _ m=ize Word Hex Q300

79

5.2.9 Step9 : Watching Variables

As the user steps through a program, it is possible to watch that the values of variables used in the
user program are changed.

If the downloaded program is the program generated by the assembler package for 740 family, you
can not watch variables in C watch window.

5.2.9.1 Watching Variables

For example, set a watch on the long-type array a declared at the beginning of the program, by using
the following procedure:

Click the left of displayed array a in the [Editor(Source)] window to position the cursor, and select
[Add C Watch...] with the right-hand mouse button. The [Watch] tab of [C watch] window in which
the variable is displayed opens.

= A P = N

Watch | Local | File Local | Global |
Hame | Value | Bddress | Scope |
+({=2zigned long [10]) a Q00414 [Bmato]

The user can click mark '+ at the left side of array a in the [C Watch] window to watch all the
elements.

K|
= oS A Pl = B |
Watch | Local | File Local | Global |
Name |¥alue |Address |Sccpe |
- {=2igned long [10]) a 200414 [Bmto]

{zigned long} (a) [0] 16838 Q00414
(signed long)} (a)[1] ST3E Q00418
(signed long} (a)[2] 10113 20041cC
(2igned long) (a) [3] 17515 Q00420
{signed long} (a)[4] 31051 a004z4
(signed long} (a)[3] 627 Q00428
(signed long} (a) [6] 23010 20042C
(zigned long) (2} [7] 7419 Q00430
{zigned long) (a) [B] 1e212 Q00434
(signed long} (a) [2] 40Ee 000438

80

5Tutorial

5.2.9.2 Registering Variable

The user can also add a variable to the [C Watch] window by specifying its name.
Click the [C Watch] window with the right-hand mouse button and select [Add...] from the popup

menu.

The following dialog box will be displayed. Enter variable i.

Add new watch point

X R4 6 2| @S

Watch | Local | File Local | Global |

Name | Value | Lddress | Scope |
+(signed long [10]) a 200414 [Zuto]
(signed int) i 10 Q00462 [Zmto]

81

5.2.10 Step10 : Stepping Through a Program

This debugger provides a range of step menu commands that allow efficient program debugging.

1. StepIn
Executes each statement, including statements within functions(subroutines).
2. Step Out

Steps out of a function(subroutine), and stops at the statement following the statement in the
program that called the function(subroutine).

3. Step Over
Executes a function(subroutine) call in a single step.
4. Step...

Steps the specified times repeatedly at a specified rate.

5.2.10.1 Executing [Step In] Command

The [Step In] command steps into the called function(subroutine) and stops at the first statement of

the called function(subroutine).

To step through the sort function, select [Step In] from the [Debug] menu, or click the [Step In] button
&

on the toolbar.

The PC cursor moves to the first statement of the sort function in the [Editor(Source)] window.

TS _lojx
= &le
Line Sour.. | 5. Source |

18 [F40B7 p_zam-»=s7 = 0; j

13 |F40CF p_zam-»s8 = [; -

20 |(F40ET p_sam-»sq = 0;

21 |F40FF h

22

23 sort(long #a)

24 [F4102 | 2 |f

2h long t;

25 int i, J. k., zap:

27

28 |Fatns gap = b;

23 |F410B whilel gap » 0 7

30 |F4114 for{ k=03 kigap: k++){

31 Fa12i farf i=ktzap; i<10; i=itgap 1{

22 |[F4131 for{izi-zap: j»=k: j=i-zap){

33 |Fa140 iflalilrali+zap]if

34 Fa161 tfﬂa[_i]:r . -
*| | M 4

82

5Tutorial

5.2.10.2 Executing [Step Out] Command

The [Step Out] command steps out of the called function(subroutine) and stops at the next statement

of the calling statement in the main function.

To step out of the sort function, select [Step Out] from the [Debugl menu, or click the [Step Out]

{"'l

button on the toolbar.

The PC cursor slips out of a sort function, and moves to the position before a change function.

<& Tutorial.c

=10 x|

Line Sour.. | 5. Source
219
a0 |(Faz27 F_zam= kst
31 |F4231 init{p_sam):
az
33 |F423D farf i=0; 1<10;
34 |(F4243 i = rand():
35 |F42h4 ifi) < 0
36 [F42517 I =-i;
ar
ag |[F42g? alil = i;
a1 !
40 |(FA2T76 | i sart(a):
41 [F427E| 2| chanzelal;
42
43 |F4288 p_zam-»=z0=al0];
44 |F423% p_zam-rsl=all];
45 |F42AE p_zam-rsi-a [2] :
1| |

i++

Note

It takes time to execute this function. When the calling source is clarified, use [Go To Cursor].

83

5.2.10.3 Executing [Step Over] Command

The [Step Over] command executes a function(subroutine) call as a single step and stops at the next
statement of the main program.
To step through all statements in the change function at a single step, select [Step Over] from the

n
[Debugl] menu, or click the [Step Over] button i on the toolbar.
The PC cursor moves to the next position of a change function.

«# Tutorial.c E 10| x|
[E¥=ll=]
Line Sour.. | 5. Source |

24

a0 |F4227 p_zam= fkst} j

31 |Fd4z231 init{p_sam);

a2

33 |F423D fart i=0; i<10: i++ 31

34 |F4244 i = rand(};:

a6 |F4254 ifli <0

36 |F4254 i=-i:

a7 h

a8 |F42g2 alil = i;

a4 1

A0 |FA276 | i sort(a);

41 |F427E chanzela);

42

43 (F4286 | | p_zam-»s0=a[0]:

44 |F4294 p_zam-rsl=all]:

45 |Fazae p_san->s2zal2] -
< | M 4

84

5Tutorial

5.2.11 Step11 : Forced Breaking of Program Executions

This debugger can force a break in the execution of a program.

5.2.11.1 Forced Breaking of Program Executions

Cancel all breaks.
To execute the remaining sections of the main function, select [Gol from the [Debugl menu or the [Go]

button on the toolbar.
The program goes into an endless loop. To force a break in execution, select [Halt Program] from the

di

[Debugl menu or the [Halt] button on the toolbar.

85

5.2.12 Step12 : Displaying Local Variables

The user can display local variables in a function using the [C Watch] window.
If the downloaded program is the program generated by the assembler package for 740 family, you
can not watch variables in C watch window.

5.2.12.1 Displaying Local Variables

For example, we will examine the local variables in the tutorial function, which declares three local
variables: 1, j, and p_sam.

Select [C Watch] from the [Symbol] submenu of the [View] menu. The [C Watch] window is displayed.
By default, [C watch] window has four tabs as following:
e [Watch] tab
Only the variable which the user registered is displayed.
e [Locall tab
All the local variables that can be referred to by the scope in which the the PC exists
are displayed. If a scope is changed by program execution, the contents of the [Locall
tab will also change.
e [File Local] tab
All the file local variables of the file scope in which the PC exists are displayed. If a file
scope is changed by program execution, the contents of the [File Locall tab will also
change.
e [Global] tab
All the global variables currently used by the downloaded program are displayed.

Please choose the [Local] tab, when you display a local variable.

X E| 7 b 2[E B |

Watch Local | File Local | Global |

Name Value Bddress |
{zigned imt) i 10 Q00Re2
{zigned long) 28824 000RSR

+{struct Sample *) p sam Ox43C Q00RSE

Double-click the mark '+ at the left side of pointer p_sam in the [Locals] window to display the

structure *(p_sam).
When the user refers to the members of the structure at the end of the Tutorial function, it is clarified

that random data is sorted in descending order.

86

5Tutorial

5.2.13 Step13 : Stack Trace Function

The debugger uses the information on the stack to display the names of functions in the sequence of
calls that led to the function to which the program counter is currently pointing.
The debugger for 740 doesn't support the stack trace function.

5.2.13.1 Reference the function call status

Double-click the [S/W Breakpoints] column in the sort function and set a software breakpoint.

=10l x|

IEfsli=]
Line Jour.. | 5. Source |

22

23 sort(long #a) g

24 |Fa102

25 long t;

2B int i, J. k. zap;

27

28 |F410%8 gap = b;

29 |F410B whilef gap > 0 3

a0 (F4114 forf k=0; k<gap; k++){

31 (F4121 fort i=kt+gap: (<107 i=itgap O

22 [F4131 for(izi-gap: j2»=k: j=j-gap){

33 (F4140 | o iftalil=alitzap]l i

34 |F4161 | t o= alil;

35 |F4170 alil = ali+zap]:

36 [F4181 alitzap] = t;

a7 !

aa elze -
1| | M 4

To executes the user program from the reset vector address, select [Reset Gol from the [Debugl] menu,

or click the [Reset Go] button on the toolbar.
After the break in program execution, select [Stack Trace] from the [Code] submenu of the [View]
menu to open the [Stack Trace] window.

StackTrace

K:‘Lnd| Hame | Value |
F sort { 0p4l140]

F tutorial { 0F4z278

F main { OF4Z1E

The upper figure shows that the position of the program counter is currently at the selected line of the
sort() function, and that the sort() function is called from the tutorial() function.

87

5.2.14 What Next?

This tutorial has described the usage of this debugger.

Sophisticated debugging can be carried out by using the emulation functions that the emulator offers.
This provides for effective investigation of hardware and software problems by accurately isolating
and identifying the conditions under which such problems arise.

88

Reference

89

(Blank Page)

90

6Windows/Dialogs

6. Wmndows/Dialogs

The window of this debugger is shown below.
When the window name is clicked, the reference is displayed.

Window Name View Menu

RAM Monitor Window [View]->[CPU]->[RamMonitor]

I/O Timing Setting Window [View]->[CPU]->[I/O Timing Setting]
Output Port Window * [View]->[CPU]->[OutputPort]

ASM Watch Window [View]->[Symboll->[ASMWatchl]

C Watch Window [View]->[Symboll->[CWatchl]
Coverage Window [View]->[Code]->[Coveragel

Script Window [View]->[Scriptl

S/W Break Point Setting Window [View]->[Break]->[S/W Break Points]
H/W Break Point Setting Dialog Box [View]->[Break]->[H/W Break Points]
Trace Point Setting Window * [View]->[Trace]->[Trace Points]
Trace Window * [View]->[Trace]->[Tracel

Data Trace Window * [View]->[Trace]->[Data Trace]

GUI I/O Window [View]->[Graphic]->[GUI /O]

MR Window * [View]->[RTOS]->[MR]

MR Trace Window # * [View]->[RTOS]->[MR Tracel

MR Analyze Window # * [View]->[RTOS]->[MR Analyze]
Task Trace Window # * [View]->[RTOS]->[Task Trace]

Task Analyze Window # * [View]->[RTOS]->[Task Analyze]

#: The R32C debuggers are not supported
*: The 740 debuggers are not supported.

For the reference of the following windows, refer to the help attached to a High-performance
Embedded Workshop main part.

e Differences Window
e Map Window

e Command Line Window
e Workspace Window

e Output Window

e Disassembly Window
e Memory Window

e 10 Window

e Status Window

e Register Window

e Image Window

e Waveform Window

e Stack Trace Window

91

6.1 RAM Monitor Window

The RAM monitor window is a window in which changes of memory contents are displayed while
running the target program.

The relevant

memory contents are displayed in dump form in the RAM monitor area by using the

realtime RAM monitor function. The displayed contents are updated at given intervals (by default,
while running the target program.

every 100 ms)

+d EE® s nmaz 5 0408 2 |aBHEHL
[79ms] Label Rezister | +0 +1 +2 +3 +4 45 4B 47 +8 +9 +& +B +0 +D +E +F | ASCIT Iﬂ
0003E0
_00o400. | poal [2E]

041

042 41 42 44 A3 44 45 48 47 48 A9 ABDCDEFGHI

043 44 04 B4 B3 B3 73 20 B3 73 20 V4 BR 73 74 2E DA J.This iz test..

044 00 DE YF AC 44 CR 700 CA 17 22 8% &2 0 47 C1 8D L...l.p..tl2lGes
_ooo4sn | 3C DD F9 21 76 94 B0 83 81 98 OF E0 AC BE &3 F7 <.Iv......n..

046 72 FB EF BA 9B 84 9% 00 34 33 FB CA 2C 2C BB AR ro.v.ovauidiisaas

047 CF 4C BE 36 FO 02 13 B9 36 EB 9C BE &F 7F C3 7F ...B...iB..n....
_noo4sn | 2 7B F7 77 9F 45 28 13 3B F0 DB FE 8B EV BE 77 .{.wFl.i...... w
_ooodan | B5 4D 02 8 50 83 EA DC 22 05 35 06 D3 1B OE FF .M..P...".5.....

044 51 4F G5 40 FC F3 0D AC 84 83 53 A3 63 A7 D0 58 oove...... YoGau

048 Th 28 41 93 05 CB B1 &7 21 89 BD E FA 44 5F 50 (A ..aWl.m..D ¥ j

This system provides a 1Kbytes of RAM monitor area, which can be placed at any
continuous addresses.

The RAM monitor area can be changed to any desired address range.

Refer to "6.1.2 Setting the RAM monitor area" for details on how to change the RAM
monitor area.

The default RAM monitor area is mapped into a 1-Kbyte area beginning with the start
address of the internal RAM.

The display content updating interval can be set for each window individually.

The actual updating interval at which the display contents are actually updated while
running the target program is shown in the title field of the Address display area.

The background colors of the data display and code display areas are predetermined by
access attribute, as shown below.

Access attribute Background color
Read accessed address Green

Write accessed address Red
Non-accessed address White

The background colors can be changed.

ATTENTION

The RAM monitor window shows the data that have been accessed through the bus.
Therefore, changes are not reflected in the displayed data unless they have been
accessed via the target program as in the case where memory is rewritten directly from
an external /0.

If the data in the RAM monitor area are displayed in lengths other than the byte, it is
possible that the data will have different memory access attributes in byte units. If
bytes in one data have a different access attribute as in this case, those data are
enclosed in parentheses when displayed in the window. In that case, the background
color shows the access attribute of the first byte of the data.

92

6Windows/Dialogs

0018 00Cs 00Dz 000D
0000 0000 0000 000D
0000 [(OOFCYNERSEN 0000
0000 0000 0000 0050

a07c
0000
0000
0000

93

e The displayed access attributes are initialized by downloading the target program.
e The interval time at which intervals the display is updated may be longer than the
specified interval depending on the operating condition (shown below).
- Host machine performance/load condition
- Communication interface
- Window size (memory display range) or the number of windows displayed

6.1.1 Extended Menus

This window has the following popup menus that can be brought up by right-clicking in the window.

Menu

Function

RAM Monitor Area...

Set RAM monitor base address.

Sampling Period...

Set RAM monitor sampling period.

Clear

Clear access attribute.

Up Moves display position to the immediately preceding RAM
monitor area (smaller address)

Down Moves display position to the immediately following RAM
monitor area (larger address)

Address... Display from specified address.

Scroll Area... Specify scroll range.

Data Length 1byte Display in 1Byte unit.
2bytes Display in 2Byte unit.
4bytes Display in 4Byte unit.
8bytes Display in 8Byte unit.
Radix Hex Display in Hexadecimal.
Dec Display in Decimal.
Single Dec Display in Signed Decimal.
Oct Display in Octdecimal.
Bin Display in Binary.
Code ASCII Display as ASCII character.
SJIS Display as SJIS character.
JIS Display as JIS character.
UNICODE Display as UNICODE character.
EUC Display as EUC character.
Float Display as Floating-point.
Double Display as Double Floating-point.
Layout Label Switch display or non-display of Label area.
Register Switch display or non-display of Register area.
Code Switch display or non-display of Code area.
Column... Set the number of columns displayed on one line.
Split Split window.

Toolbar display

Display toolbar.

Customize toolbar...

Open toolbar customize dialog box.

Allow Docking

Allow window docking.

Hide

Hide window.

94

6Windows/Dialogs

6.1.2 Setting the RAM monitor area

Choose the popup menu [RAM Monitor Area...] in the RAM monitor window.

The Set RRAM Area dialog box shown below will appear.
The start address of the currently set RAM monitor area and the range of the RAM monitor area are

displayed in the Start and the Area fields of this dialog box. (No values can be entered in the Size
field.)

Set RRAM Area

Start [310 -

Siee: 1 = blocks
Area: 000370 - 0ODCOF

Cancel |

Use this dialog box to change the position of the RAM monitor area.
Specify the RAM monitor area by its start address. The size cannot be changed (fixed to 1 Kbyte).
The start address can be specified in 0x10 byte units.

If you specify a non-aligned address value, it is rounded off to the nearest address value in 0x10 byte
units before being set.

6.1.2.1 Changing the RAM Monitor Area

The start address of the RAM monitor area can be changed.

Specify the start address of the RAM monitor area in the Start field of the Set RRAM Area dialog box.
(No values can be entered in the Size field.)

95

6.2 I/0 Timing Setting Window

The I/O Timing Setting Window is used to set and display virtual port input/outputs or virtual
interrupts.

Virtual port inputs, virtual interrupt settings, and virtual port output results can be displayed for
your reference in numeric or graphic mode.

This window is split into three sections, each displaying the setup contents of virtual port inputs, the
output results of virtual port outputs, and the setup contents of virtual interrupts.

“ I/0 Timing Setting

HER 2 Fa@ GE
Input: cycle Cycle ~
Address Bit 10 70 140 210 280 350 420 490 560 630
cooico | ¢7 [R SRR RS SRS S R R
ooo100 | 46 [R R R S R
oooio0 | 45 (R R R B RS R
ooo100 | #¢ (R T R S S R
ooo1oo | #5 | R S RS R S S R S
oooioo | ¢z | S S R S S R
ooo100 #1
'
output: cycle Cycle A
Address Bit 414| 450 500 550 600 650 700 | 750 800 &50 900 950
3e0 #7
3ed #e
3e0 #5
3e0 #4
3el #3
3el #2
3e0 #1
3el #0
<
Interrupt: cycle Cycle
Vec. Pri. 1314|1516 17|16 |19 20|21 |22 |23 |24|25/26|27)/26|29|30|31 32|33
13 7
<

96

6Windows/Dialogs

6.2.1 Virtual Port Input

Virtual Port Input refers to a function that defines changes in the data that is input from external
sources to a specified memory address. Use of this function makes it possible to simulate data inputs
to the ports defined in the SFR. The defined input data can be referenced by displaying it in chart,
numeric (hexadecimal),or graphic mode. There are following three types of virtual port inputs:
1. Cycle synchronized input
The input data can be written to memory when program execution has reached a specified
number of cycles. The data size that can be input is one byte. The diagram below shows an
example of a virtual port input that is synchronized to machine cycles.

Data 20 is input Data FF is input Data 1D is input
in the 2,000th in the 5,000th in the 9,000th
cycle, cycle cycle.

! } !

oo 2000 3000 4000 5000 G000 TOOO EOOO 9000 10000

Number of cycles executed

As shown above, data can be input to memory address 3EO in any desired cycle as specified by the
user.
2. Read access synchronized input
Data can be input when the program accesses a specified memory location for read.
The data size that can be input is one byte.
The diagram below shows an example of a virtual port input that is synchronized to memory
accesses for read.

#Fpragma ADDRESS portd = Je(H
char port;

read port)
char kew;

key=portd; /+ Input from port O %/

This function aims to assign the value of port 0 to variable key. In such a case, a value can be
assigned to variable key by entering it to port 0 when the program accesses port 0 (address 3E0) for
read.

To support processing of functions like this, this debugger provides a function that allows you to
define the data to be input according to a number of times the specified memory address is read (a
virtual input port synchronized to memory accesses for read). By using this function, you can perform
an operation where data 0x10 is input to memory address 3EO when address 3EO is read first and
data 0x20 is input to said memory address when the address is read next.

97

Number of times the address 3EQ is read Data input to address 3EQ

First 0x10
Second 0x20

Third 0x30

3. Interrupt synchronized input
Data can be input to a specified memory location when a virtual interrupt occurs. The data size
that can be input is one byte. The diagram below shows an example of a virtual port input that is
synchronized to interrupts.
Shown in the sample program below is the case where data is read from port 1 (address 3E1)
using an interrupt handler routine (in this case, a timer interrupt handler routine).

#Fpragma ADDRESS portl = 3elH

char portl;
#Fpragma I[INTERRUFET read_port
S Interrupt handler for polling port 1 */
read port)

char key;

key=portl; /« Input from port 1 */

This interrupt handler routine aims to assign the value of port 1 to variable key when a virtual
interrupt is generated. In such a case, a value can be assigned to variable key by entering it to port 1
when a virtual interrupt (in this case, a timer interrupt) is generated.

It is assumed that timer interrupts are generated using a separately available virtual interrupt
function. (For details, refer to the virtual interrupt function described later in this manual.)

To support processing of interrupt handlers like this, this debugger provides a function that allows
you to define the data to be input according to a number of times a virtual interrupt is generated (a
virtual input port synchronized to virtual interrupts). By using this function, you can perform an
operation where data OxFF is input to memory address 3E1 when the virtual interrupt occurs first
and data OxFE is input to said memory address when the virtual interrupt occurs next time.

Number of times a virtual interrupt is generated | Data input to address 3E1

First 0xFF
Second 0xFE

Third 0xFD

98

6Windows/Dialogs

6.2.2 Virtual Port Output

Virtual Port Output is a function that when data is written to some memory address by the program,
allows the written data value to be recorded along with the cycle in which the data was written. The
recorded data can be displayed for your reference in chart, numeric, or graphic mode. The number of
data entries recorded is the number of entries specified on the Init dialog box's I/O Scrip tab
reckoning from when the program started to run.

For example, if data is written to port 0 (address 3E0) by executing a program like the one shown
below,

#Fpragma ADDRESS portd = 3=0H

char porti;
out_portichar data)
{
portd =data; /# Data iz output to port 0 */
1

the data written to address 3EO is recorded along with the cycle count in which the data was written.

6.2.3 Virtual Interrupt

This function defines interrupt generation. Using this function, you can generate timer interrupts or

key input interrupts in a simulated manner without having to actually generate them.

There are following three types of virtual interrupts:

1. Cycle synchronized interrupt
A specified virtual interrupt can be generated when program execution has reached a specified
number of cycles. The diagram below shows an example of a virtual interrupt that is
synchronized to machine cycles.

Example where wirtual interrupt of software mterrupt Mao. 21 (timer AQ) iz defined

“irtnal interrpt “irtnal interrpt Wirtual interrupt
iz generated in iz generated in the iz generated in
the 3,000th eycle 6,000th cycle the 9,000th oycle

' ' .

1000 2000 Jooo 4000 5000 6000 To0a0 goon [000 10000

MNumber of cycles exeouted

As shown above, virtual interrupts (in this case, timer A0 interrupt) can be generated in any desired
cycle.

99

2. Executed address synchronized interrupt
Virtual interrupts can be generated when the program has executed a specified address. The
diagram below shows an example of a virtual interrupt that is synchronized to executed
addresses.

func()

Virtual interrupt is generated

{
Address » Processing; #— 2Z—"| when program execution has
FOQ00 : moved into address FOO00Q.

As shown above, a specified virtual interrupt can be generated when program execution has moved
into address F0000.

By using this function, you can specify that a virtual interrupt be generated when address F0000 is
executed first by the program, and that no virtual interrupt be generated when the address is
executed next, as shown below.

Number of times the address F0000 is executed Whether virtual interrupt is generated

First Virtual interrupt is generated
Second Virtual interrupt is not generated
Third Virtual interrupt is generated

3. Interval-synchronized interrupts
A virtual interrupt can be generated at specified intervals.
The following shows an example of a virtual interrupt which is synchronized to a specified
interval time.

Example where wirtual interrupt of software interrupt No. 21 (timer AQ) iz defined

Wirtual mterrupt
iz generated
every 200mz

0 100 200 300 400 500 G0 o a00 g00

Execution time {(mz)

As shown above, virtual interrupts (in this case, timer AO interrupt) can be generated in
interval-synchronized.

100

6Windows/Dialogs

6.2.4 Structure of Virtual Port Input Screen

6.2.4.1 Screen structure for cycle-synchronized inputs

If you've set virtual port inputs that are synchronized to machine cycles, they can be displayed in one
of the three modes shown below. The display modes can be changed from the Mode menu.
1. Chart mode (displayed in units of bits)

The virtual port input that has been set is displayed in chart mode in units of bits.

Cvcle count display area

Cycle = 0COODOO04T, Daza = 0x01

10 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100

Irput: cycle
budress Bil
QO0EED 7
QO02ED ft&
Qo0EED #5
O003ED f4
O003ED #3
DO03ED 7
]

Bit rumber display area

bddress display area Input data display area

e Address display area displays the memory address to which a virtual port is input.
e Bit number display area displays bit numbers of memory to which a virtual port is

input.

e Input data display area displays the virtual port input data that has been set in chart

mode in units of bits.

I

This means that memory bits are in the state of logic 1.

This means that memory bits are in the state of logic O.

The short white lines appearing at the bottom of the input data display area indicate
points at which data are input.

To reference data values, move the mouse cursor into this area and the value and the
cycle count of the data at which the cursor is positioned will be displayed in the cycle
count display area.

e Cycle count display area displays cycle counts.

101

2.

Graphic mode (displayed in units of bytes)
The virtual port input that has been set is displayed in graphic mode in units of bytes.

Cwcle count display area

[rput: cucle Cycle = 0000070054, Data = (Oxb0
Addrsss (000001002002004008006007006009C1001 101201
O0DZE] | | :

&

Address display area
Irput data diselay area

e Address display area displays the memory address to which a virtual port is input.

e Input data display area displays the virtual port input data that has been set in
graphic mode.
The peaks in this graph represent data values derived by equally dividing the height of
the data-displaying area by 255 (maximum value of 1-byte data).
The short white lines appearing at the bottom of the input data display area indicate
points at which data are input.
To reference data values, move the mouse cursor into this area and the value and the
cycle count of the data at which the cursor is positioned will be displayed in the cycle
count display area.

e Cycle count display area displays cycle counts.

Hexadecimal mode
The virtual port input that has been set is displayed in hexadecimal mode.

[nau: cvcle Cvcle
b ress 112,41 4/5/617.819/1011121314151€1 7181920 a—Cyet 0wt
0005ED i “
&
Addresz dizplay area Input data display area

e Address display area displays the memory address to which a virtual port is input.

e Input data display area displays the virtual port input data that has been set by
hexadecimal numbers.
To reference data values, move the mouse cursor into this area and the value and the
cycle count of the data at which the cursor is positioned will be displayed in the cycle
count display area.

e Cycle count display area displays cycle counts.

102

6Windows/Dialogs

6.2.4.2 Screen structure for read access-synchronized inputs

When you've set virtual port inputs that are synchronized to memory accesses for read, a display
screen configured as shown below will appear.

[nput

read Mimbe- of tines

fddre=s | Read 70 %1 4 | K | F | 7 | @ | Q. Feadaccesscount

dizplay area

oTeun | OCToon

Input data display area

Addresz Fead addresz dizplay

dizplay
area

area

e Address display area displays the memory address to which a virtual port is input.
e Read address display area displays the address to be monitored for read access.
e Input data display area displays the virtual port input data that has been set by

hexadecimal numbers.

To reference data values, move the mouse cursor into this area and the value and the
read access count of the data at which the cursor is positioned will be displayed in the
read access count display area.

e Read access count display area displays read access counts.

6.2.4.3 Screen structure for interrupt-synchronized inputs

When you've set virtual port inputs that are synchronized to virtual interrupts, a display screen
configured as shown below will appear.

Triput :
Address

interrupt Mumber of times

0071000

e, ? 3 -. .. a g Wirtual interrupt

~ ocourrence count
1 3 dizplay area

Addresz
dizplay
area

Input data display area

Yector
dizplay
area

e Address display area displays the memory address to which a virtual port is input.
e Vector number display area displays the virtual interrupt vector number to be

monitored.

e Input data display area displays the virtual port input data that has been set by

hexadecimal numbers.

To reference data values, move the mouse cursor into this area and the value and the
virtual interrupt occurrence count of the data at which the cursor is positioned will be
displayed in the virtual interrupt occurrence count display area. Virtual interrupt
occurrence count display area It displays virtual interrupt occurrence counts.

e Virtual interrupt occurrence count display area displays virtual interrupt occurrence

103

counts.

104

6Windows/Dialogs

6.2.5 Structure of Virtual Port Output Screen

Virtual port output results can be displayed in one of the three modes shown below. The display
modes can be changed from the Mode menu.
1. Chart mode (displayed in units of bits)

Virtual port output results are displayed in chart mode in units of bits.

Output: cvcle Cwcle = 0000004778, Data = 0x30
Address | Bit 5060517052805380550056 | _
00J3ED B/ display area
00J3ED i
00J3E0 #h
O0J3ED #4
00J3ED i3
0033ED 2
00J3ED #1
00J3ED #0
]
‘ddtlg]?lraifs Egpfﬁl}flb BY Cutput data display area

e Address display area displays the address to be monitored for virtual port output.

e Bit number display area displays bit numbers of memory being monitored for virtual
port output.

e Output data display area displays the data as virtual port output results in chart mode
in units of bits.

—I_l— This means that memory bits are in the state of logic 1.

This means that memory bits are in the state of logic 0.
The short white lines appearing at the bottom of the output data display area indicate
points at which data are output.
To reference data values, move the mouse cursor into this area and the value and the
cycle count of the data at which the cursor is positioned will be displayed in the cycle
count display area.

e Cycle count display area displays cycle counts.

105

2.

Graphic mode (displayed in units of bytes)
Virtual port output results are displayed in graphic mode in units of bytes.

Output: cvcle svele
Address 1044280 462049505280 5310 584062 7066006930 i oo
1 | | _:.rcecn:lunt
OCOAC0 | [S S dizplay area
F 3

N 4 -
A_ddress
dizplay area Output data display area

e Address display area displays the address to be monitored for virtual port output.
e QOutput data display area displays the data as virtual port output results in graphic
mode in units of bytes.
The peaks [] in this graph represent data values derived by equally dividing the height
of the data-displaying area by 255 (maximum value of 1-byte data).
The short white lines appearing at the bottom of the output data display area indicate
points at which data are output.
To reference data values, move the mouse cursor into this area and the value and the
cycle count of the data at which the cursor is positioned will be displayed in the cycle
count display area.
e Cycle count display area displays cycle counts.
Hexadecimal mode
Virtual port output results are displayed in hexadecimal mode.

Outzut: cvcle Cucle
Address 13ﬂ3ﬂ3ﬂ3ﬂSﬂSEBH31313131313131313131333333351—513;;11;;2?;‘:
O003ED 01 .

Y-

Addresz display area

1
e

1

:
Fy

|

Cutput data display area

e Address display area displays the address to be monitored for virtual port output.

e Qutput data display area displays the data as virtual port output results by
hexadecimal numbers.
To reference data values, move the mouse cursor into this area and the value and the
cycle count of the data at which the cursor is positioned will be displayed in the cycle
count display area.

e Cycle count display area displays cycle counts.

106

6Windows/Dialogs

6.2.6 Structure of Virtual Interrupt Screen

6.2.6.1 Screen structure for cycle-synchronized interrupts

When you've set virtual interrupts that are synchronized to machine cycles, a display screen
configured as shown below will appear.

[nterrupt: cvcla Cvcle

Ve, Pri. 10000200000000600C000070307030103C70107070; *-—_ gg;llz;z;l;‘:
13 b

Vector Prinrity level Wirtnal interrupt display area

dizplay display area

area

e Vector number display area displays the vector number of a virtual interrupt.
e Priority level display area displays the priority level of a virtual interrupt.

e Virtual interrupt display area displays timing at which the virtual interrupt you've set
is generated.

L

This means that a virtual interrupt is generated.

This means that a virtual interrupt is not generated.
e Cycle count display area displays cycle counts.

6.2.6.2 Screen structure for executed address-synchronized interrupts

When you've set virtual interrupts that are synchronized to executed addresses, a display screen
configured as shown below will appear.

nterrupt: address Humber of times _
dddress | Yec. i Lz sl sl T gy uphe FE:EE‘:'C?;;M
(04444 14 7 | RIS oo

ared

Executed Yectar Prinrity lewel Wirtnal imterrapt display area
address dizplay dizplay area
dizplay area

ared

e Executed address display area displays the fetch address (the address where the
program is executed) at which time a virtual interrupt is generated.

e Vector number display area displays the vector number of a virtual interrupt.

e Priority level display area displays the priority level of a virtual interrupt.

e Virtual interrupt display area displays timings by an asterisk (*) at which the virtual
interrupt you've set is generated.
When an asterisk (*) is indicated, it means that a virtual interrupt is generated. When
an asterisk (*) is not indicated, it means that a virtual interrupt is not generated.

e Execution count display area displays execution counts or a number of times the
program has executed a specified address.

107

6.2.6.3 Screen configuration for interval-synchronized interrupts

To set a virtual interrupt which is synchronized to a specified interval time, click the Timer button
and use the Timer dialog box that appears. The Timer dialog box has a display screen configuration
similar to the one shown below.

et Timer Dialog

Load.. | Save.

interval: [i00 =

" usec
Wectar: |23 Cloze |

Priority: |5

Temp Directory: |O:¥'u'u'IND01-'u'S¥TEMP Fefer.. |

Timer:
Uec[?ﬂ Prm[?] T|me|:8[][]:|usec Del
. e

Del All |
Enable |
All Enable |
Disable |
All Dizable |

e In the virtual interrupt register area, specify the virtual interrupt you want to set and
the interval time at which intervals you want to generate the interrupt.

e The interval time is calculated from the number of execution cycles and the MCU clock
and divide-by ratio specified on the MCU tab of the Init dialog box.

e The virtual interrupt display area shows the registered virtual interrupts and the
specified interrupt generation intervals.

e The operation buttons for virtual interrupts can be used to delete or disable/enable
each virtual interrupt.

e The operation buttons to save/load virtual interrupts can be used to save the virtual
interrupt information to a file, as well as load the saved virtual interrupt information
from the file.

108

6Windows/Dialogs

6.2.7 Extended Menus

This window has the following popup menus that can be brought up by right-clicking in the window.

Menu Function

Setup... Sets up data(virtual port input, virtual port output, or virtual
interrupt).

Modify... Changes the setup data.

Delete... Deletes the setup data.

Load... Loads the saved setup data or I/0 script file.

Mode... Changes display mode.

Scale... Changes display scale.

Color... Changes display color.

Timer... Sets the interval-synchronized interrupts.

1/0O Script Files...

Lists registered I/0 script files.

Previous Input data

Find the previous input data.

Next Input data

Find the next input data.

Previous Output data

Find the previous output data.

Next Output data

Find the next output data.

Previous Interrupt data

Find the previous interrupt data.

Next Interrupt data

Find the next interrupt data.

Toolbar display Display toolbar.

Customize toolbar... Open toolbar customize dialog box.
Allow Docking Allow window docking.

Hide Hide window.

109

6.2.8 Setting Virtual Port Inputs

The Virtual Port Input function allows you to simulate data inputs and similar other operations
performed on the ports defined in the SFR. Data can be input to memory at one of the following
timings:

1.

If you want data to be input to some memory location with the lapse of time Data can be input
when program execution has reached a specified number of cycles. In this case, set
cycle-synchronized inputs.

If you want data to be input when some memory location is read Data can be input when the
program accesses a specified memory location for read. For example, this method can be used in
cases where you want a variable (e.g.,global variables located at fixed addresses) to be assigned a
value when it is read. In this case, set read access-synchronized inputs.

If you want data to be input when some virtual interrupt occurs Data can be input when a
specified virtual interrupt is generated. For example, this method can be used in cases where
memory for the SFR is referenced in an interrupt handler. In this case, set
interrupt-synchronized inputs.

ATTENTION

Up to a total of 50 virtual port input, virtual interrupt, and I/O script procedures can be set. However,
if you are using the Printf function output function in the Output Port Window, the number of virtual
port input, virtual interrupt, and I/O script procedures that can be set is limited to a total of 48.

6.2.8.1 Setting Cycle-synchronized Inputs

To set cycle-synchronized virtual port inputs, choose the [Setup...] menus in the I/O Timing Setting
Window. The dialog box shown below will appear.

Setup Dialog

~Select Tvpe
set this item. — | & Set Virtual Port Input

 Sef Yirtua Fort Output

e Set Yirtual Interrupt

2 Prey Ne><+> ancel |

Here, choose the item Set Virtual Port Input and press the Next button. (Or press the Cancel button if
you want cancel the setup session and close the dialog box.) A dialog box for setting up virtual port
input timings will appear.

110

6Windows/Dialogs

Setup Dialog

Data Input Timing

¢ kead Access
~ Cyce
 Interrupt

Input Address: |SeD -
freadl fddress: |
Start cvcle: |1DDEID
End cycle: ||1DDDDD |
SErian: I

< Prey | Mesd »

Cancel |

Expressions
can be input
here.

First, choose Cycle in the Data Input Timing column. Next, enter an address for virtual port input in
the Input Address column (the address to which you want data to be input) using a hexadecimal
number. Then enter the cycles at which you want the virtual port input to be started and ended for
Start cycle and End cycle, respectively, using decimal numbers. Then press the Next button. (Or press
the Prev button here if you want to return to the previous dialog box.)
A matrix dialog box for setting the virtual port input data will appear.

111

Setup Dialog

Firds the previous
data wou've set (LP)
or the next data

F 3

Lp |Down|

Cycle DII1||2||3||4||5||6||?||8||9 - (DO)
:UUUU L A S S The setup example
oomoc| oo 22 e in this element
00z00 T T gpggigies J{hai Jtﬁata
oo 33 Lo | X e setoa e
T T e A 10,016th cwecle.”
T Y N A S S S S S)
: ---L---L---L———L———L———E— P Double-click on an
00O ¢ 0o | j'_"_'____'____ element wou want
0070 e and set the desired
T O R N N S A R T input value in it.
0L S RS S S SN S S S . |

< Prevw | Went » | Cancel |

In this dialog box, set the data you want to be actually input to memory.

Follow the procedure below to set data:

1. Move the mouse cursor to the "cycles" location (called an element) where you want data to be set,
then double-click the left mouse button. (Or you can scroll the screen to go to the desired
location.)

2. Input data in the selected place using a hexadecimal number. The data size that can be input is
one byte (from 0x0 up to OxFF).

3. Repeat steps 1 and 2 as many times as the number of data you want to set.

When you finished entering all data, press the Next button.
A dialog box for saving the virtual port input data you've set to a file (virtual port input file) will
appear.

Save Data 2] x|
Save ir: I@ by Computer j & o ER-

@3% Floppy (423
= 3VYSTEM (C:)
\=IDATA (D)
@Cumpact Disc (E:)
@Cumpact Disc (F:)
(=)SUBSYS (G2

File name: Iinputiu&l |£I
Save as type: |I£EI Seript Files [®ioz] ﬂ ﬂl
o

Here, enter the directory and file names in which you want the data you've set to be saved. The saved
file can be loaded into the simulator debugger back again by using the [Load...] menus in the I/O
Timing Setting window.

When you've input a file name, press the Save button.

Thus, you've finished setting the cycle-synchronized virtual port inputs.

112

6Windows/Dialogs

6.2.8.2 Setting Read Access-synchronized Inputs

To set read access-synchronized virtual port inputs, choose the [Setup...] menus in the I/O Timing
Setting Window. The dialog box shown below will appear.

et this item.

Setup Dialog

Select Tvpe
@ Set Wirtua Port [nput

© Set Virtual Port Output

© Set Yirtual Interrupt

2 Py

Cancel |

Here, choose the item Set Virtual Port Input and press the Next button. (Or press the Cancel button if
you want cancel the setup session and close the dialog box.) A dialog box for setting up virtual port
input timings will appear.

Setup Dialog

Data Input Timing
& Read Accass
C Cyzle
 Intarrupt

Input Address: lSeD ‘4___ Erorecsions
: /f can be input

Read Address: “390 ‘ here.

Start zyelz: |

i Gyeles |

=l I

< Prev | Meawt > I Cancel |

First, choose Read Access in the Data Input Timing column. Next, enter an address for virtual port
input in the Input Address column (the address to which you want data to be input) using a
hexadecimal number. Then enter the address to be accessed for read (to read data from memory) in
the Read Address column. (Virtual port inputs are executed when the memory address you've
specified here is accessed for read.) Then press the Next button. (Or press the Prev button here if you
want to return to the previous dialog box.)

A matrix dialog box for setting the virtual port input data will appear.

113

Virtual irterruet counts

Setup Dialog

Finds the previous

Up [Desnfpe—=5 3t ke

(DOMN

M @[0012374766789]= The set e in this el ;
C20 030 40 R0 B0 T0 q e setup example in this elemen
}ET 10..20.:30.: 46, 20,602 70.. 80 |0 specifies that “data 0xFF_be set when
20 virtual interrupt occurs 7 times.
an
40
Bl L Double-click on an element wou want
80 and set the desired input value in it.
70
80
190 |

2 Prew | Wext > I Cancel |

In this dialog box, set the data you want to be actually input to memory.

Follow the procedure below to set data:

1. Move the mouse cursor to the "read access counts" location (called an element) where you want
data to be set, then double-click the left mouse button. (Or you can scroll the screen to go to the
desired location.)

2. Input data in the selected place using a hexadecimal number. The data size that can be input is
one byte (from 0x0 up to 0xFF).

3. Repeat steps 1 and 2 as many times as the number of data you want to set.

When you finished entering all data, press the Next button.
A dialog box for saving the virtual port input data you've set to a file (virtual port input file) will
appear.

21

Save in:l@I My Computer j “ ¢ ER-

é‘S‘x‘z Floppy (A0
(=ASVSTEM (C:)
=A0DATA (D)
@Compact Disc (E:)
@Compact Disc (F:)
=151B5YS (G:)

File name: finputiod Save I
Save as hpe: IIJD Script Files [%oz | j Cancel |/
7

Here, enter the directory and file names in which you want the data you've set to be saved.

The saved file can be loaded into the simulator debugger back again by using the [Load...] menus in
the I/O Timing Setting window.

When you've input a file name, press the Save button.

Thus, you've finished setting the read access-synchronized virtual port inputs.

114

6Windows/Dialogs

6.2.8.3 Setting Interrupt-synchronized Inputs

To set interrupt-synchronized virtual port inputs, choose the [Setup...] menus in the I/O Timing
Setting Window. The dialog box shown below will appear.

Set this item.

Setup Dialog

~Select Type
& Sot Virtual Port Input

© Setf Virtual Port Qutaut

et Virtual Inferrupt

< Prety hesd > Cancel |

Here, choose the item Set Virtual Port Input and press the Next button. (Or press the Cancel button if
you want cancel the setup session and close the dialog box.) A dialog box for setting up virtual port
input timings will appear.

115

Setup Dialog

Data Input Timing

¢ Read Accass
 Cyzle
& Intzrrupt

Input &ddress: "392

fiedd Address:

S Cyele:

|

!
[l cyele: |

|13

Yector: i

/ here.
|

Expressions
can be irput

< Prev | ’Wl

Cancel |

First, choose Interrupt in the Data Input Timing column. Next, enter an address for virtual port input
in the Input Address column (the address to which you want data to be input) using a hexadecimal
number. Then enter the vector number of a virtual interrupt that signals timing for virtual port input
in the Vector column. (For PD32RSIM, the vector addresses are fixed.) Then press the Next button.
(Or press the Prev button here if you want to return to the previous dialog box.)

A matrix dialog box for setting the virtual port input data will appear.

Setup Dialog

Virtual interrupt counts

070100 e
A A7 A3 A [Fle.

S S S

Firds the previous
data vou've set (UP)
or the next data

(DO

- The setup example
in this element
specifies that “data
UxFF be set when
virtual interrupt
occurs {1 times.

Double-click on an
. elemert wou want
and set the desired
inout value in it.

< Prev | Wesdt > I

Cancel |

In this dialog box, set the data you want to be actually input to memory. Follow the procedure below
to set data:

1.

When you finished entering all data, press the Next button.

Move the mouse cursor to the "virtual interrupt counts" location (called an element) where you
want data to be set, then double-click the left mouse button. (Or you can scroll the screen to go to
the desired location.)
Input data in the selected place using a hexadecimal number. The data size that can be input is
one byte (from 0x0 up to 0xFF).
Repeat steps 1 and 2 as many times as the number of data you want to set.

A dialog box for saving the virtual port input data you've set to a file (virtual port input file) will

appear.

116

6Windows/Dialogs

21|

Savein: IE-EJ, by Computer j & & Eo-

@3‘:& Floppy (4:)
I=ASYSTEM (C:)
\=IDATA (D
@Compact Disc (E:)
@Compact Disc (F:)
=ISUESYS (G

File name: Iinputim{ m
Save a type: IIf-'IZI Script Files [*.ios) ﬂ ﬂl
o

Here, enter the directory and file names in which you want the data you've set to be saved.

The saved file can be loaded into the simulator debugger back again by using the [Load...] menus in
the I/O Timing Setting window.

When you've input a file name, press the Save button.

Thus, you've finished setting the virtual interrupt-synchronized virtual port inputs.

117

6.2.9 Setting Virtual Port Outputs

The Virtual Port Output function allows data values written to some memory address by a program to
be recorded along with cycles at which data was written. The recorded data can be displayed for
verification in graphic or numeric form.

ATTENTION

e The number of data entries recorded is the number of entries specified on the Init
dialog box's I/O Scrip tab reckoning from when the program started to run. When
reexecuted, the previous data is cleared.

e Up to 200 instances of virtual port output can be set. However, if you are using the
Output Port Window, the number of virtual port outputs that can be set is limited to
199.

6.2.9.1 Setting Virtual Port Outputs

To set virtual port outputs, choose the [Setup...] menus in the I/O Timing Setting Window. The dialog
box shown below will appear.

Select this item.

~Select Type
© Sot Virtual Pérf Input

& Bef Virlual orf Ouioul

 Set Virtual Interrupt

< Prew et > iZancel |

Here, choose the item Set Virtual Port Output and press the Next button. (Or press the Cancel button
if you want cancel the setup session and close the dialog box.) A dialog box for setting the address you
want to be monitored for virtual port output will appear.

118

6Windows/Dialogs

Setup Dialog

Irput the address
vou want to be
monitored for
output,

F 3

Output Address: |365|

< Prey Wesd » Cancel |

Input the address you want to be monitored for virtual port output in the Output Address column.
Then press the Next button.

A dialog box for specifying a file (virtual port output file) to which you want the virtual port output
results to be saved (recorded) will appear. (This simulator debugger saves the virtual port output
results that have occurred during program execution to this file and references it when the program
stops running.)

Save Data ﬂ il
Save in: IEQ_.], by Comnputer j = a5 Ex-

153':& Floppy (4:)
=1 5YSTEM (20
\=ADATA (D)
@Cumpact Disc (E:)
@Cumpact Disc (F:)
I=151BSYS (&)

File narne: Inutput.ins Save I
Save as hype: II.-’EI Script Files [®.ios | j Cancal |
o

Here, choose the item Set Virtual Port Output and press the Next button. (Or press the Cancel button
if you want cancel the setup session and close the dialog box.) A dialog box for setting the address you
want to be monitored for virtual port output will appear.

119

6.2.10 Setting Virtual Interrupts

The Virtual Interrupt function allows you to generate interrupts in a simulated manner without
having to actually generate them. Using this function you can generate timer interrupts or key input
interrupts in a simulated manner.

Virtual interrupts can be generated at one of the following timings:

1.

If you want virtual interrupts to be generated with the lapse of time
Virtual interrupts can be generated when program execution has reached a specified number of
cycles.
In this case, set cycle-synchronized interrupts.
If you want virtual interrupts to be generated when the program executes a specified address Use
this method if you want virtual interrupts to be generated when some specific function is
executed.

n this case, set executed address-synchronized interrupts.
When generating a virtual interrupt at fixed intervals
Use the virtual interrupt function when you want to generate a virtual interrupt at fixed
intervals.
In this case, set the interval-synchronized interrupts.

ATTENTION

Up to a total of 50 virtual port input, virtual interrupt, and I/O script procedures can be set. However,
if you are using the Printf function output function in the Output Port Window, the number of virtual
port input, virtual interrupt, and I/O script procedures that can be set is limited to a total of 48.

6.2.10.1 Setting Cycle-synchronized Interrupts

To set cycle-synchronized virtual interrupts, choose the [Setup...] menus in the I/O Timing Setting
Window. The dialog box shown below will appear.

Select this itenm.

alog

Select Type
< Sot Virtua Port [nput

 Set Virtual Fort Output

& Set yirtud Interrupt

2 Prey | Mewt > | Cancel |

Here, choose the item Set Virtual Interrupt and press the Next button. (Or press the Cancel button if
you want cancel the setup session and close the dialog box.) A dialog box for setting up virtual
interrupt timings will appear.

120

6Windows/Dialogs

Setup Dialog

Interrupt Genzration Timing

 Executed Address
= Cyzle

[Erecuted Address: I

| Expression

et e ‘|1DDDD |+—_—_—_—"”” ﬁan be input
End cycle: 100000 ere.
Yector: ‘|13 |

Priority: |5

< Prev | Mewt > Cancel |

First, choose Cycle in the Interrupt Generation Timing column. Next, specify the cycles at which you
want a virtual interrupt to be started and ended for Start cycle and End cycle, respectively, using
decimal numbers. Then specify the vector number and the priority of the virtual interrupt to be
generated for Vector and Priority, respectively, using decimal numbers. Then press the Next button.
(Or press the Prev button here if you want to return to the previous dialog box.)

A matrix dialog box for setting virtual interrupts will appear.

121

Setup Dialog

/Finds the previous
& | data vou've set (LUP) or
Up |D0wn| the next data (DOWN).
= | The setup example in this element
Gicle U8 T 28 [B e R A specifies that "wirtual interrust be

gg?g RS S T | S sererated at the 10,007th cycle.
0020 L
0030 L I S . . | Foint to the desired

000 Lk (e elenent and click the

050 T e ' mouse button. The
T R R R e R selected element is
0070 [T EeEereereenes mirked by an asterisk
011 S S S S N BN B .

10090 R S RO S S N S B .1

< Prevw | Went » | Cancel |

In this dialog box, set the virtual interrupts you want to be actually generated. Follow the procedure

below to set virtual interrupts:

1. Move the mouse cursor to the "cycles" location (called an element) where you want a virtual
interrupt to be generated, then click the left mouse button. (Or you can scroll the screen to go to
the desired location.)

2. The element is marked by an asterisk (*) when you've clicked. Click at the same place again if
you want the virtual interrupt you've set to be canceled. In this case, the asterisk goes out.

3. Repeat steps 1 and 2 as many times as the number of virtual interrupts to be generated.

When you finished setting all virtual interrupts, press the Next button.

A dialog box for saving the virtual interrupts you've set to a file (virtual interrupt file) will appear.

Save Data 2] x|
Save ir: I@ by Computer j & o ER-

@3% Floppy (423
= 3VYSTEM (C:)
\=IDATA (D)
@Cumpact Disc (E:)
@Cumpact Disc (F:)
(=)SUBSYS (G2

File narne: Iinput.iu:us Save I
Save as type: II;-'EI Script Files [®ioz] j Cancel |
s

Here, enter the directory and file names in which you want the data you've set to be saved.

The saved file can be loaded into the simulator debugger back again by using the [Load...] menus in
the I/O Timing Setting window.

When you've input a file name, press the Save button.

Thus, you've finished setting cycle-synchronized virtual interrupts.

122

6Windows/Dialogs

6.2.10.2 Setting Executed Address-synchronized Interrupts

To set executed address-synchronized virtual interrupts, choose the [Setup...] menus in the I/O
Timing Setting Window. The dialog box shown below will appear.

Select this item.

T |

~Select Type
© ot Virtual Port Input

© Set Yirtual Port Outaut
3

r

< Preny M est iZancel |

Here, choose the item Set Virtual Interrupt and press the Next button. (Or press the Cancel button if
you want cancel the setup session and close the dialog box.) A dialog box for setting up virtual
interrupt timings will appear.

123

Setup Dialog

Interrupt Genzration Timing
& Executed Address

C Cyzle

Crecuted Address: IEDUES + [~ Expressions
ﬁan he input

Start cyeles | e

il eyele: |

YVector: 13

Priority:]

< Prevw | Mewut > I Cancel |

First, choose Executed Address in the Interrupt Generation Timing column. Next, specify the
executed address (i.e., the address at which a virtual interrupt is generated when it is executed) for
Executed Address. Then specify the vector number and the priority of the virtual interrupt to be
generated for Vector and Priority, respectively, using decimal numbers. Then press the Next button.
(Or press the Prev button here if you want to return to the previous dialog box.)

A matrix dialog box for setting virtual interrupts will appear.

Setup Dialog

| Finds the previous data vou've set (UP)
or the next data (DOWND.

fum

The setup exanple in this element
specifies that “data 0x22 he set at the
™ 10,016th cvele.”

- Double-click on an element wou want
and set the desired input value in it.

< Presy Mewt > Cancel
| | I

In this dialog box, set the virtual interrupts you want to be actually generated. Follow the procedure

below to set virtual interrupts:

1. Move the mouse cursor to the "cycles" location (called an element) where you want a virtual
interrupt to be generated, then click the left mouse button. (Or you can scroll the screen to go to
the desired location.)

2. The element is marked by an asterisk (*) when you've clicked. Click at the same place again if
you want the virtual interrupt you've set to be canceled. In this case,the asterisk goes out.

3. Repeat steps 1 and 2 as many times as the number of virtual interrupts to be generated.

When you finished setting all virtual interrupts, press the Next button.
A dialog box for saving the virtual interrupts you've set to a file (virtual interrupt file) will appear.

124

6Windows/Dialogs

21|

Save i"“l@. My Computer J = o -

é‘S'ﬁz Floppy (f:)
(=ASVSTEM (C:)
=ADATA (D)
@Compact Disc (E:)
@Compact Disc (F:)
(=51B5YS (5:)

File: narne: |input.ios Save I
Save az ype; II;’D Secript Files [*ioz] j Cancel |
&

Here, enter the directory and file names in which you want the data you've set to be saved.

The saved file can be loaded into the simulator debugger back again by using the [Load...] menus in
the I/O Timing Setting window.

When you've input a file name, press the Save button.

Thus, you've finished setting executed address-synchronized virtual interrupts.

6.2.10.3 Setting interval-synchronized interrupts

To set virtual interrupts which are synchronized to fixed intervals, choose the [Timer...] menus in the
I/O Timing Setting window. This opens a dialog box necessary to set virtual interrupts which are
synchronized to fixed intervals.
In this dialog box, you can set the following items:

e Setting a virtual interrupt

e Deleting a virtual interrupt

e Temporarily disabling a virtual interrupt

e Reenabling a disabled virtual interrupt

e Saving a virtual interrupt

e Loading a virtual interrupt

The following shows how to specify each item.

125

621081 Setting a virtual interrupt
Shown below is an example specification with the M16C/6X simulator debugger.
Example: Generate an interrupt of vector number 21 with priority level (IPL) = 7 every 200 ms

Fill out the dialog box as shown below. For the Temp Directory area, set a writable directory because
it is a temporary area used internally by the debugger to set virtual interrupts.

Set Timer Dialog

Load... | SaE. |

Interval |2IJD o sz
Wectaor: |2'|

Priarity: I'."

Temp Ditectory: | ¥WINDOWSETEMP

Timer:

[e]

Del &l |
Enatle |
Al Enatile |
Digable |
Al Dizable |

Click the Add button, and the virtual interrupt you've set is added to the list of virtual interrupts in
the lower part of the dialog box.
When you've finished setting virtual interrupts, click the Close button

126

6Windows/Dialogs

6210382 Deleting a virtual interrupt
Click to select the virtual interrupt you want to delete from the list of virtual interrupts in the lower
part of the dialog box. Then click the Del button

Set Timer Dialog

Load... | Save.. |
{* mzec
Int 3 I
Brva " uzec
Wectaor: I
Priarity: I
Temp Ditectory: JC¥MINDOWSETEMP

Timer:

Yec[21] Priol7] Time[200 Insec

22] Priol5] Timel500 Insec Del &l |
Enable |

All Enable |

Digable |

All Dizable |

To delete all virtual interrupts, click the DelAll button.
When you've finished deleting virtual interrupts, click the Close button.

127

621033 Temporarily disabling a virtual interrupt

Click to select the virtual interrupt you want to temporarily disable from the list of virtual interrupts
in the lower part of the dialog box. Then click the Disable button.

Or you can double-click on a virtual interrupt to temporarily disable it.

Set Timer Dialog

Load... | Save.. |

Tt 3 I— + msec Add |
Brva " uzec

Wectaor: I Cloge |

Priarity: I

Temp Directory: |O:¥MNDOWS¥TEMP Fefer.. |

Dl

Uec[??] Pr|[5] Tlm[5UU]msec Del Al |

Enable |
&1l Enable |

&l Dizable |

The temporarily disabled virtual interrupt is marked with an asterisk (*) to the left of the virtual
interrupt list.

To temporarily disable all virtual interrupts, click the All Disable button.

When you've finished setting virtual interrupts, click the Close button.

128

6Windows/Dialogs

621034 Reenabling a disabled virtual interrupt

Click to select the virtual interrupt you want to reenable from the list of virtual interrupts in the
lower part of the dialog box. Then click the Enable button. Or you can double-click on a virtual
interrupt to reenable it.

Set Timer Dialog

Load... | Save.. |

Tt 3 I— + msec Add |
Brva " uzec

Wectaor: I Cloge |

Priarity: I

Temp Directory: |O:¥MNDOWS¥TEMP Fefer.. |

Timer:

Dl

- Uec[??] Prlo[5] Tlm[5UU]msec Del Al |

&1l Enable |
Dizable |
&l Dizable |

The reenabled virtual interrupt has its asterisk (*) shown to the left of the virtual interrupt list
disappeared. To reenable all virtual interrupts, click the All Enable button. When you've finished
setting virtual interrupts, click the Close button.

6210356, Saving a virtual interrupt

Click the Save button on the dialog box. A file selection dialog box appears. In this dialog box, specify
the file name to which to save virtual interrupts. If the extension is omitted, the extension ".stm" is
automatically added.

6.2.108.6. Loading a virtual interrupt

Click the Load button on the dialog box. A file selection dialog box appears. In this dialog box, specify
the file name from which to load virtual interrupts. The virtual interrupts loaded from the file are
added to the currently set virtual interrupts.

129

6.2.11 Regarding Evaluation Timings of Virtual Port Inputs,Virtual
Interrupts, and I/O Script Files Set

The virtual port inputs, virtual interrupts, and I/O script files you've set are evaluated at the
following timings:

6.2.11.1 Evaluation timings

When program is executed (continuously); when come is executed
When program is single-stepped
When program is overstepped

LS.

When control is returned

6.2.11.2 Processing when program is reset

The virtual port inputs, virtual interrupts, and I/O script files that you've set are reevaluated.
Namely, when a program is reset, the virtual port inputs, virtual interrupts, and I/O script files
you've set are set newly again.

6.2.11.3 Processing when I/O Window is closed

If the I/O Window is closed, the virtual port inputs, virtual interrupts, and I/O script files that you've
set are not evaluated. This case is the same as when their settings have been deleted.

130

6Windows/Dialogs

6.3 Output Port Window

The Output Port Window is used to display the data to be output to ports on a window or output the
data to a file.
The debugger for 740 doesn't support this function.

It also allows you to verify the data that is output to UARTS by the Printf function.

Output Destination Format
Window ASCII display
Hexadecimal display
File ASCII output
Hexadecimal output
Binary output (Not including data output for the Printf function, however)

- OutputPort
HEERE EFE
Port: TARTI Log File: =
Muaeber | ————+————1-——+—
1 | ABDCDEFGHIT
Z | Thi=z is test.
3 | ABDCDEFGHIT
4 | This i= test.
S | ABDCDEFGHIT
6 | Thiz is test.
7 | ABDCDEFGHIT
8 | Thi=s i= test.
9 | ABDCDEFGHIT ;I

e For the output port, you can select any port or UARTO or UART1 which is the output
destination for the Printf function. For details about the Printf function output
destination, see the User's Manual of your Renesas C Compiler NCxx.

e The data which are output to ports can be saved to a specified file (log file) before being
presented to the Output Port Window.

e The Output Port Window has a buffer that contains 10,000 bytes of the latest execution
result. Even when you forgot to specify a log file, the data which are output to ports can
be saved to a file (view file).

e The output data is displayed on a window or output to a file when the target program
has stopped.

131

6.3.1 Extended Menus

This window has the following popup menus that can be brought up by right-clicking in the window.

Menu Function

Set... Sets output port.

Colm... Sets column.

Log On... Open log file and start recording (start output to file).
Off Close log file and end recording (stop output to file).

View Save... Save view buffer to file.
Clear Clear view buffer.

Toolbar display Display toolbar.

Customize toolbar... Open toolbar customize dialog box.

Allow Docking Allow window docking.

Hide Hide window.

132

6Windows/Dialogs

6.4 ASM Watch Window

The ASM watch window is a window in which you can register specific addresses as watchpoints and
inspect memory contents at those addresses.

If a registered address resides within the RAM monitor area, the memory content at that address is
updated at given intervals (by default, every 100 ms) during program execution.

Toolbar
=] 3

= S A R

tddressiBit Expression Size Fadix [ata |

ngoonn __RUnt=lk Bute Hex n4

180655 _Buf Tak7+1 Byte Hex n4

084620 __[bg_cnt Bute Hex n4

D108CB:4 _ Dbg_mode? Byte Bit 1

Addrezs/Eit No. Data Length T Dats
Expression Radix

The addresses to be registered are called the "watchpoints." One of the following can be
registered:

- Address (can be specified using a symbol)
- Address + Bit number
- Bit symbol

The registered watchpoints are saved in the debugger when the ASM watch window is
closed and are automatically registered when the window is reopened.

If symbols or bit symbols are specified for the watchpoints, the watchpoint addresses
are recalculated when downloading the target program.

The invalid watchpoints are marked by "-<not active>-" when displayed on the screen.
The order in which the watchpoints are listed can be changed by a drag-and-drop
operation.

The watchpoint expressions, sizes, radixes and datas can be changed by in-place
editing.

ATTENTION

The RAM monitor obtains the data accessed through the bus. Any change other than
the access from the target program will not be reflected.

If the display data length of the RAM monitor area is not 1 byte, the data's access
attribute to the memory may varies in units of 1 byte. In such a case that the access
attribute is not unified within a set of data, the data's access attribute cannot be
displayed correctly. In this case, the background colors the access attribute color of the
first byte of the data.

133

6.4.1 Extended Menus

This window has the following popup menus that can be brought up by right-clicking in the window.

Menu Function
Add... Add watchpoint.
Add Bit... Add bit-lebel watchpoint.
Remove Remove the selected watchpoint.
Remove All Remove all watchpoints.
Set... Set new data to selected watchpoint.
Radix Bin Display in Binary.
Dec Display in Decimal.
Hex Display in Hexadecimal.
Refresh Refresh memory data.
Layout Address Area Switch display or non-display of Address area.
Size Area Switch display or non-display of Size area.
RAM Monitor Enable RAM Monitor Switch enable or disable RAM moniter function.

Sampling Period...

Set RAM monitor sampling period.

Toolbar display

Display toolbar.

Customize toolbar...

Open toolbar customize dialog box.

Allow Docking

Allow window docking.

Hide

Hide window.

134

6Windows/Dialogs

6.5 C Watch Window

The C Watch Window displays C/C++ expressions and their values (results of calculations).

The C/C++ expressions displayed in the C Watch Window are known as C watchpoints. The displays
of the results of calculating the C watchpoints are updated each time a command is executed.

When RAM monitor function is effective and the C watch points are within the RAM monitor area,
the displayed values are updated during execution of the target program.

Chilfatch |
EX Bl £ B 2 [0 || S B
'I.I'l.l'atu:hl Local I File Local Glabal |
Narne | Value Address |;
- [struct tag = *) ps Ox1 ooo41a0
+istruct tag = | * (ps) ooooo1
(signed short) global short 0 ooo41z
(gigned long] global long -1 ooo414
—-(=zigned int [3][3]) global array 15 ooo41a
—(zigned int [D]} [(global array) [0] 15 ooo41a
(zigned int) [(global array) [0])[0] 15 ooo41a
(signed int) [(global array) [0])[1] Z649 oo041a
(2igned int) [(global array) [0])[2] O ooo41c |-
(zigned int) [(global array) [0])[3] 26458 OO041E
(zigned int) [(gleobhal array)[0])[4] O ooo4z0
+(aigned int [3]) (global array) [1] Te8 ooo4zz
+({signed int [51) (global array)[2] 31843 o004z [

e Variables can be inspected by scope (local, file local or global).
e The display is automatically updated at the same time the PC value changes.
e Variable values can be changed.
e The display radix can be changed for each variable individually.
The initial display radix can be changed.
Leading-zero suppression is selectable in hexadecimal display.
e Any variable can be registered to the Watch tab, so that it will be displayed at all
times:
The registered content is saved for each project separately.
If two or more of the C watch window are opened at the same time, the registered.
The reference scope of the variable is selectable from current scope, global scope and each file's
scopes.
e The C watchpoints can be registered to separate destinations by adding Watch tabs.
e Variables can be registered from another window or editor by a drag-and-drop
operation.
e The C watchpoints can be sorted by name or by address.
e Values can be inspected in real time during program execution by using the RAM
monitor function.
e The RAM monitor can be allocated to the address of specified variable

135

ATTENTION

You cannot change the values of the C watch points listed below:

- Register variables
- C watch point which does not indicate an address(invalid C watch point)

If a C/C++ language expression cannot be calculated correctly (for example, when a
C/C++ symbol has not been defined), it is registered as invalid C watch point.

It is displayed as "--<not active>--". If that C/C++ language expression can be
calculated correctly at the second time, it becomes an effective C watch point.

The display settings of the Local, File Local and Global tabs are not saved. The
contents of the Watch tab and those of newly added tabs are saved.

The RAM monitor obtains the data accessed through the bus. Any change other than
the access from the target program will not be reflected.

The variables, which are changed in real-time, are global variables and file local
variables only.

If the display data length of the RAM monitor area is not 1 byte, the data's access
attribute to the memory may varies in units of 1 byte. In such a case that the access
attribute is not unified within a set of data, the data's access attribute cannot be
displayed correctly. In this case, the background colors the access attribute color of the
first byte of the data.

About more information for C variables, please refer to "12.1.3 Get or set C variables"

136

6Windows/Dialogs

6.5.1 Extended Menus

This window has the following popup menus that can be brought up by right-clicking in the window.

Menu Function

Add... Add C watchpoint.

Remove Remove the selected C watchpoint.
Remove All Remove all C watchpoints.

Initialize Reevaluates the selected C watchpoint.

Set New Value...

Set new data to selected C watchpoint.

Radix

Hex Display in Hexadecimal.
Bin Display in Binary.
Default Display in Default Radix.
Toggle(All Variables) Change radix (toggle).

Set initial...

Set initial radix.

Refresh

Refresh memory data.

Hide type name

Hide type names from variables.

Show char* as string

Selects whether to display char* type as a string.

Zero suppress in Hex display

Suppress zero in Hex display.

Sort Sort by Name Sort variables by its name.
Sort by Address Sort variables by its address.

RAM Monitor Enable RAM Monitor Switch enable or disable RAM monitor function.
Sampling Period... Set RAM monitor sampling period.
Arrange a RAM monitor | Arrange a RAM monitor area around this variable.
area around this variable
Start Recording... Start to record the updated values.
Stop Recording Stop recording the updated values.

Add New Tab... Add new tab.

Remove Tab

Remove the selected tab.

Copy

Copy the selected item to the clipboard.

Copy All

Copy the all items in the sheet to the clipboard.

Toolbar display

Display toolbar.

Customize toolbar...

Open toolbar customize dialog box.

Allow Docking

Allow window docking.

Hide

Hide window.

137

6.6 Coverage Window

The Coverage window allows you to reference the coverage measurement result of the functions of the
target program downloaded. The coverage which can be measured is CO coverage.

Two types of windows are provided: the Coverage window in which you can check the start
address/end address of the functions and coverage measurement results; and the Editor window in
which you can check execution/non-execution by source line.

Toolhar
[For Al Files]

%> e%e
Coverage Base Address @ OC0000 - OFFFFF |
Funct fon Start | End Coveraze |
main 0Fo042 OF00&C 3600 ¥
randam_access OFO0EE OFaaci o.oo0 %
Func_Glaobal OF0OC2 OF0124 | (100,00 &
Func_Local OF012C OF0142 33.61 %
Func_Static OF01 44 OF0iDC | 100,00 &
Func_Exe OF01DE OF023E | (100,00 &
exe_stub OF0240 OF025C | [100.00 &

L A

| |
Function Mame Coverage of Each Function

Function Scope

e All of the memory space is the target for coverage measurement.

e By double-clicking any function line, the corresponding function appears in the
Editor(Source) window.

e During coverage measurement, "-%" appears in the coverage display area.

e You can change the display ratio between the function name display area and the
function range display area, using the mouse.

138

6Windows/Dialogs

6.6.1 Extended Menus

This window has the following popup menus that can be brought up by right-clicking in the window.

Menu

Function

Select source file...

Select a source file for checking the coverage.

Auto Refresh Refresh coverage measurement result automatically.
Refresh Refresh coverage measurement result.
Clear Clear coverage measurement result .
Base... Change coverage base address.
File Save... Save coverage measurement result to file.
Load... Load coverage measurement result from file.
Layout Address Switch display or non-display of Address area.
Toolbar display Display toolbar.

Customize toolbar...

Open toolbar customize dialog box.

Allow Docking

Allow window docking.

Hide

Hide window.

*:'The simulator debugger doesn't support, because the entire memory area is coverage area.

139

6.6.2 Refer to the Source Line/the Executed Address

It is possible to refer in the Editor(Source) Window or Memory Window.

6.6.2.1 Refer in the Editor(Source) Window

In the Editor(Source) window, a display of Coverage Measurement is set to "Disable" by default.

To enable the display, check the [Coverage] check box in the dialog box opened by choosing the main
menu - [Edit] -> [Define Column Format]. The column for a coverage measurement display is
displayed on all Editor (Source) windows.

And select popup menu - [Columns] -> [Coverage] in the Editor (Source) window, A column can be set
up for each Editor (Source) windows.

I_l||

37 j

38 | £0O037 Tnit(); =

39

40 | £003a T

41 | foO03d while(1) {

4z | £0041 for {0 = 0; i < DATA_SIZE ; i++) {

43 | £004e datalil++;

44 | £0O05¢ datali+1]4+4; J

45 | £0068 datali+2]++;

46 | £0075 & data[i+3]++:

17 1

43 | £0087 sub();

49 | fO08a 1

S0 | £008c i

51

2 -
il 5P

6.6.2.2 Refer in the Memory Window

In the Memory window, a display of Coverage Measurement is set to "Disable" by default.
To enable the display, select popup menu - [Coverage] -> [On/Off] in the Memory window.

ry [datal
’_" ||||::::’_lﬂilﬂ] 2“:&5&&1&.16&2|@|%ﬁ.
fddress | Label | Register | +0 +1 +2 +3 +] 48 9 4 B 0+ +E
000410 | data 01 01 01 00 UU UU UU 00 oo 00 00 0o ooo0n 0o
ono4z0 oo oo 00 00 oo 0o 00 00 00 0D 00 0D OO OO0 AR .. .
ono430 00 0o 85 0A& 00 OO0 00 03 00 00 41 42 44 43 44 45 L l....... ABDCDE
ono440 46 47 48 43 44 0A B4 BB B3 Y3 X0 RS T3 20 74 BE FGHIJ.Thiz is te
00450 73 74 ZE OA OO0 OO 00 03 00 OO0 78 HE V& GBE 78 RE st........ ey
ono4e0 78 GE T8 BE T8 BE 78 BE THE BE 78 AE OV OBE 78 BE xWaMxMaWaMeMieWaW
0n0470 78 BE Y8 BE Y8 BB V3 BB V8 BE VB BE YB BE VB BB xMuMuMuWahaWalad
0n0480 78 BE Y3 BB T8 BB 73 BE T8 BE VB BE YR BE V3 BB xWuMuWWuhheWaWad
o430 12 12 12 12 12 12 12 12 1* 12 12 12 1 12 12 12
o440 12 12 12 12 1: 12 12 12 1* 12 12 12 1: 12 12 12
0n04e0 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 ;I

140

6Windows/Dialogs

6.7 Script Window

The Script Window displays the execution of text -format script commands and the results of that
execution.

Script commands can be executed using a script file or interactively. You can also write script
commands in the script file so that they are automatically executed. The results of script command
execution can also be stored in a previously specified log file.

Toolbar

P REHE N

Script: Script File Name Loe: Log File Mame

razzemble _main
ADDRESS> LABEL FROGRAM
OF0042 _main:
>

Execution Result Ares

<] | ||

assenble _main ;l
Command History Area

K b

Enter Cammand: Command Input Area

e The Script Window has a view buffer that stores the results of executing the last 1000
lines. The results of execution can therefore be stored in a file (view file) without
specifying a log file.

e When a script file is opened, the command history area changes to become the script
file display area and displays the contents of the script file. When script files are nested,
the contents of the last opened script file are displayed. The script file display area
shows the line currently being executed in inverse vide.

e When a script file is open, you can invoke script commands from the command input
area provided the script file is not being executed.

e The Script Window can record the history of the executed commands to a file. This
function is not the same as the log function. This function records not the result but
only the executed commands, so the saved files can be used as the script files.

141

6.7.1 Extended Menus

This window has the following popup menus that can be brought up by right-clicking in the window.

Menu Function
Script Open... Open script file.
Run Run script file.
Step One step execution of script file.
Close Close script file.
View Save... Save view buffer to file.
Clear Clear view buffer.
Log On... Open log file and start recording (start output to file).
Off Close log file and end recording (stop output to file).
Record On... Record the executed commands to a file.
Off Stop recording the executed commands.
Copy Copy the selection and put it on the Clipboard.
Paste Insert Clipboard contents.
Cut Cut the selection and put it on the Clipboard.
Delete Erase the selection.
Undo Undo the last action.

Toolbar display

Display toolbar.

Customize toolbar...

Open toolbar customize dialog box.

Allow Docking

Allow window docking.

Hide

Hide window.

142

6Windows/Dialogs

6.8 S/W Break Point Setting Window

The S/W Break Point Setting window allows you to set software break points.
Software breaks stop the execution of instructions immediately before the specified break point.

Save/Load Break Point Buttons
Set Break Point Area

B CW Break Points

losd. | Save. | |
+ Address: |

™ Filename: [

Lire: [Cloze

S/W Break Point:
OF0000 Delete All
OFoocz [36] GLOBAL.C ——
OF012C [22] LOCAL.C

All Enable

Display Break Points

All Disable

F Y

Operation Buttons to Break Points

e If you have set multiple software breakpoints, program execution stops when any one
software break address is encountered (OR conditions).

¢ You can continue to set software breakpoints until you click the "Close" button to close
the S/'W Break Point Setting Window.

e You can clear, enable or disable software breakpoints selected by clicking in the
software breakpoint display area. You can also enable and disable software
breakpoints by double-clicking on them.

e Click on the "Save" button to save the software break points in the file. To reload
software break point settings from the saved file, click the "Load" button. If you load
software break points from a file, they are added to any existing break points.

143

6.8.1 Command Button

The buttons on this window has the following meanings.

Button Function

Load... Load setting information from a file in which it was saved.
Save... Save the contents set in the window to a file.

Help Display the help of this window.

Add Add the break point.

Refer... Open file selection dialog box.

Close Close the window.

Delete Remove the selected break point.

Delete All Remove all break points.

Enable Enable the selected break points.

All Enable Enable all break points.

Disable Disable the selected break point.

All Disable Disable all break points.

View Shows the selected breakpoint positions in the Editor(Source) window.

144

6Windows/Dialogs

6.8.2 Setting and Deleting a Break Points from Editor(Source) Window

The area which can be set in the software breakpoint is different according to the product. Please
refer to "12.1.2 Area where software breakpoint can be set" for details.

You can set break points in the Editor(Source) Window. To do so, double-click the break point setting
area ("S/W breakpoints" column) for the line in which you want to set the break. (A red marker is
displayed on the line to which the break point was set.)

- Sample.c

40 [fO03a = 0; j

41 | foo3d while(1) {

42 | fo041 for €0 = 0; i < DATA_SIZE & i++) {

43 | fO04c datali]+:

44 | f005¢c || data[i+1]+;

45 | fO0ES data[i+2]++; J

48 | f0075 data[i+3]++;

47 ™ }

48 | fo087 subl);

45 | f008a

B0 [fO0Bc: 1

b1

i -
] M

Douhle click

You can delete the break point by double-clicking again in the break point setting area ("S/W
breakpoints" column).

In the Editor(Source) window, a display of "S/W breakpoints" column is set to "Enable" by default. To
erase this column, deselect the [S/W breakpoints] check box in the dialog box opened by choosing the
main menu - [Edit] > [Define Column Format]. The "S/W breakpoints" column is erased from all
Editor (Source) windows. And select popup menu - [Columns] -> [S/W breakpoints] in the Editor
(Source) window, A column can be set up for each Editor (Source) windows.

145

6.9 H/'W Break Point Setting Dialog Box

The H/W Break Point Setting dialog box allows you to set hardware break points.

HAn Break Paint
HAW Break: " Dizable = Enable
Address: Im Pazz Gount: |‘|
Access Type: — [yiite v | Leneth: Byte

Data Compare

[Mot Specify Data: IEI

(== = (Ol [= <=

Help

e

Ciloze

—H Break Point
Label Addr Cnt Size Data Twpe Cmp

main OFO02C D07 sewrx ek FETCH Del
_key_input OF0346 00T BYTE 0000 Del Al

:

e The hardware break point of 64 points can be set up. You can set one address
breakpoints with pass counts.

e As address break point access types, you can specify writing data to the address break
point (Write), reading data from the address break point (Read), reading or writing
data (R/W), and fetching instructions (Fetch).

e You can also specify that execution breaks if the data read from or written to the
address break point has a specific value. Moreover, you can specify valid and invalid
bits for the specific value.

e If you have set multiple hardware breakpoints, program execution stops when any one
hardware break address is encountered (OR conditions).

146

6Windows/Dialogs

6.9.1 Specify the Events

6.9.1.1 Instruction Fetch

Set as below.
Example) Executing a instruction at address FO003h

H/W Ereak: {" Dizable {* Enzhle

Address: IFDDD3 vl Pass Count: IJ_
booess Type: IFet.ch vl Lenogtliz Byte -

Data Compare

Help I
|7 Not EBpecd f Data: ID

Add

¥ == = 1= [l = == () ==

Close I

—H/W Break Point

Label Addr Cnt Size Data Type Cmp
OFO003 007 skkex sk FETCH D=l
Del AllI

mn b

When the Add button is clicked, the breakpoint is added to the breakpoint list under the dialog.
Please click the Close button after completing the hardware breakpoint setting.

147

6.9.1.2 Memory Access

Set as below.
Example) Reading to even address 400h

H:W Break Point
H/W Ereak: {" Disable {¢ Enahle
Address: - Pass Count: IJ_

booess Type: IRead vl Lengtliz Byte -
Data Compare
|7 Not Specify Data: ID— ﬁl
Add
¥ == = 1= [l = == () == Closel
—H/W Break Point
Label Addr Cnt Size Data Twpe Cip
data_SE_to 000400 001 BYTE seexx READ LEY

mn b

Del AllI

Example) Writing byte length data 3Fh to even address 400h

HA W Break Point
H/W Break: {" Disable {¢ Enahle
Address: 400 - Pass Count: Il

Aoocess Type: Iwri“ vl Length: Bvte -
—Data Compare
. Help I
I_ Not Specify Data: |3F T
v == 1= [[== 2=
Close I
—H/W Break Point
Labe| Addr Cnt Size Data Tvpe Cmp
data_SE_to 000400 001 BYTE 003F WRITE == Lzl

Del AllI

148

6Windows/Dialogs

Example) Write data equal to or greater than 3Fh to address 400h

H/W Ereak: {" Dizable {* Enzhle

Address: 400 - Pass Count: IJ_
booess Type: I{.]rite vl Lengtliz Byte -

Data Compare

Help I
[~ Mot Specify Data: |3F

Add

== 1= [l = (v == <=

Close I

—H/W Break Point

Labe| Addr Crt Size Data Twpe Cmp
data SE_to 000400 007 BYTE 003F WRITE »>= D=l
Del Alll

149

6.10 Trace Point Setting Window

The Trace Point Setting window is used to set trace points.

The debugger for 740 doesn't support this function.

Setting modification flag
Setting the effective events

Current event list

M Trace Fointz Setting *
— Event otatus
| E. | ADDRESS | ACGE. | CONDITION I
|1 Bl _main FETCH (addr) == DFO042
M| 1 B2 _FuncStatic FETCH (addr) == OFO1A4
M| 1 B2 _elobalfloat WRITE (addr} == 000400, 042G <= (data) <= D4FF
|1 B4 000000 FETCH (addr) == 000000
|1 B5 000000 FETCH (addr) == 000000
O/ 1 B& 000000 FETCH (addr) == 000000
—Lombination — Fil
In\'-\ND LI Detail | [Enable [etail I
— Trace Area ~Write Condition
|About 16K --- 16K | Total =| | Detafl I
I Reset | Save.. | Lopd.. [[[778e™)| Close l

Setting of trace area

Setting of trace write condition

Setting of combination condition

e The events listed below can be specified as trace events. If the contents of events are
altered, they are marked by an asterisk (*) on the title bar. The asterisks (*) are not

Setting of Process ID

displayed after setting up the simulator.
Fetch, Memory Access, Bit Access, Interrupt

e Events at up to six points can be used.

e These events can be combined in one of the following ways:
Trace when all of the valid events are established (AND condition)

Trace when all of the valid events are established at the same time (simultaneous AND

condition)

Trace when one of the valid events is established (OR condition)

Trace upon entering a break state during state transition (State Transition condition)

150

6Windows/Dialogs

6.10.1 Specify the Trace Event

To set events, double-click to select the event you want to set from the event setting area of the Trace
Point Setting Window. This opens the dialog box shown below.

Event name

l Specify the event type

Event Twpe: | |31l -

Fetch]

—Setting -
Range: |(addr) == Address]

Addressl: |_main - | Addrese?

[~ Function:
Source File I

Function : I

ACCESS: FETCH
ADDRESS: _main
MNDITION: (addr} == OF002C

| 0K I Gancel

Contents change with the setting of Event Type.

Following events can be set by specifying Event Type in this dialog box.
e When FETCH is selected

Traces for the instruction fetch.

Fetch I
—Setting
Rangs: | laddr) == Address1 =]
fiddress1: I_main vl Address?: IDDDDDD vI
[~ Functiom:
Source File : | ﬂ
Function : | |

ACCESS: FETCH
BDDRESS: _main
COMDITION: (addr} == OFO02C

151

e When DATA ACCESS is selected
Traces for the memory access.

Datal <= (data) <= Data? -
0ooo 0o0o
FFFF

e When BIT SYMBOL is selected
Traces for the bit access.

152

6Windows/Dialogs

e When INTERRUPT is selected
Traces for the interrupt occurrence or termination.

153

6.10.2 Specify the Combinatorial Condition

To specify a combinatorial condition, specify the desired condition from the combinatorial condition
specification area.
e When AND or OR is selected
In the event specification area, the event used and a pass count for that event can be
specified. To alter the pass count, while the event to alter is being selected, click the
pass count value of that event.

— Event Status ——

PASS | EVENT
B 1 B
0O 1 ez
B 1 B3
O 1 B4
0O 1 Es
O 1 Es

e When AND (Same Time) is selected
In the event specification area, the event used can be specified. No pass counts can be
specified.

— Event Statusz ——

PASS | EVENT
B 1 Bl
0O 1 ez
B 1 B3
0O 1 Bd
O 1 E5
O 1 Es

154

6Windows/Dialogs

When State Transition is selected

Click the Details... button, and the dialog box shown below appears. Sequential
specification can be used. If the content of any event is altered, it is marked with an
asterisk (*) on the title bar. Once conditions are set in the simulator, asterisks are not
displayed.

o — o
Bl: _main (FETGH?
B2 000410 OWRITEY

B3 OFEOOO (FETCH)

Bd4: 000000 (FETCH?

~ Time Cut BS: 000000 (FETGH?
& Mot User €0 Start 0] Statell (0] Statel Time o Br: 000000 (FETGHD 10uzec
| Mot Use
— ¥ Sequential
Spn e Bl I iy B2 I iy Pazs Count...

(0] 4 I Cancel

6.10.3 Specify the Trace Range

For the simulator debugger, as many cycles as specified on the Init dialog box's Trace tab can be
recorded. (Descriptions below are written assuming 32K cycles.)

Trace frea

fbout 16K —— 16K
ffter (0 ——— 32K
Full

Break Stores the 32K cycles (-32K to 0 cycles) to the point at which the target
program stops.

Before Stores the 32K cycles (-32K to 1 cycles) to the point at which the trace
point is passed.

About Stores the 32K cycles (-16K to 16K cycles) either side of the trace point.

After Stores the 32K cycles (0 to 32K cycles) of trace data after the trace point.

Full Stores the 32K cycles (-32K to 0 cycles) of trace data after the trace starts.

155

6.10.4 Specify the Trace Write Condition

Conditions for cycles to be written to trace memory can be specified.

Realtime-trace Write G

— Getting
Mode: | _=——¥1 |
Start: End:
= O/
ez =
[Oes= B3
B4 B4
BA [es
Bf [Oes

(0] 4 I Ciancel

Total Writes all cycles.
Pick up Writes only the cycles where specified condition holds true.
Exclude Writes only the cycles where specified condition does not hold true.

Also, following three write modes are supported.

n—

Only cycles where specified event is established

I

Cycles from where specified event is established
to where specified event is not established

[—1

Cycles from where start event is established to

[

where end event is established

6.10.5 Command Button

The buttons on this window has the following meanings.

Button Function

Reset Discards the contents being displayed in the
window and loads contents from the simulator in
which they were set.

Save... Saves the contents set in the window to a file.

Load... Loads event information from a file in which it
was saved.

Set Sends the contents set in the window to the
simulator.

Close Closes the window.

156

6Windows/Dialogs

6.10.6 Specify the Events (Instruction Fetch)

To specify an instruction fetch event, change the event select dialog box's Event Type to "FETCH".
The event is established when instruction is fetched from the specified address or any address in the
specified address range.

6.10.61.1 Instruction Fetch of Specified Address
Set as below.
Example) Instruction fetch at address 80000h

A1 - Set Event Status

Event Tvpe: [{RSLeg! -
Fetch I
—Getting
Range: | laddr) == AddressT =]
Addressl: [B00D0 =] Addressz: 00000]
™ Function:
Source File : I LI
Functian : I LI
BCGESS: FETCH
AODRESS: 030000
COMNDITION: (adde) == DB0000

(0] 4 I Cancel

157

6.10.6.2 Instruction Fetch of Specified Address Area(In)

Set as below.

Example) Instruction fetch at address 80000h to SOFFFh

Event Tyvpe: |{jl=11eyl -
Fetch |
—Betting

Rarge:

|Adderss1 <= faddr) <= Address2

|

Address1: [B0000 =] Address2 [BOFFF =]

I~ Function:
Source File : | =l
Function : I ;I
SCCESS: FETCH
ADDRESS: 030000
COMDITION: 030000 <= taddry <= DSO0FFF
0] 4 I

158

6Windows/Dialogs

6.10.6.3 Instruction Fetch of Specified Address Area(Out)

Set as below.
Example) Instruction fetch at any address other than the range 80000h to SOFFFh

Event Tyvpe: |{jl=11eyl -
Fetch |
—Betting

Range: I(addr) < Addrezs1 || Address? < (adde) LI

Address1: [B0000 =] Address2 [BOFFF =]

I~ Function:
Source File : | =l
Function : I ;I

ACCESS: FETCH
ADDRESS: 050000
COMNDITION: (addr) < 080000 || OB0FFF < tadd:)

0] % I Cancel

159

6.10.6.4 Entering/exiting to specified function

Set as below.
Example) Entering a break to function name "wait"

Event Type: |igSn(sy] -
Fetch |
—Setting
Rangs: | Adderss] <= (addr) <= Address? =]
fiddress1: I_wait vl fiddress2: IFE”SS vl
W Function:
Source File : |main.c =]
Function : Iwait LI
ACCESS: FETCGH
ADDRESS: wait
COMDITION: OF0172 <= {addr) <= OF0183

0] % I Cancel

160

6Windows/Dialogs

Example) Exiting from function name "wait"

A1 - Set Event Status

Event Type: [y, -
Fetch |
—aetting

Range: |laddr) < Addressl || Address? < (addr) =]

fiddress1: I_wait vl Address2: IFD188 vI

¥ Function:
Source File : |main.c =l
Function : Iwait LI

ACCESS: FETCH
ADDRESS: wait
CONDITION: taddr) < OFO172 || OFO188 < (addr)

(0] 8 I Cancel

6.10.7 Specify the Events (Memory Access)

To specify a memory access event, change the event select dialog box's Event Type to "DATA
ACCESS". The event is established when memory is accessed at the specified address or under
conditions set for the specified address range.

161

6.10.7.1 Memory Access(The debugger for R32C)

6.10.7.1.1 Wrting/Reading a Specified Address
Set as below.
Example) Writing to even address 400h

A1 - Set Event 5

Event Tvpe: IDHTP- ACCESS VI

fddress |Data |

—aetting
Rangs: | (addr) == Address] =]
fddrezsl: I4UU vl Address2: Im
I~ Function:
Source File : | =]
Function : I ;I
SCCESS: WRITE

ADDRESSE: 000400
COMNDITION: (addr} == 000400

0] % I Cancel

Event Tvpe: IDHTP- ACCESS VI

Address Data |

Setting
Rarge: INDt Specify ;I
Data 1: IDDDD Data 2: IDDDEI
fccess: IWRHE 'I ™| ask: IDDDD

ACCESS: WRITE
ADDRESS: 000400
COMNDITION: (addr} == 000400

0] % I Cancel

162

6Windows/Dialogs

Example) Writing byte length data 32h to even address 400h

Event Tvpe: IDHTP- ACCESS VI

fddress |Data |

—aetting

Rangs: | (addr) == Address] =]

Addrezzl: |nnn4ua -] Address2: IDDEIEIIJD |

[~ Functiom:
Source File : | =l
Function : I ;I

SCCESS: WRITE

ADDRESSE: 000400
COMNDITION: (addr) == 000400, (data&00FF) == 0032

0] % I Cancel
Al - Set Event Status
Event Tvpe: IDF'.TP. ACCESS vl
Address Data |
Setting
Range: I(data) == Diatal LI
Data 1: |32 Diata 2: IDDDEI
fccess: IWRHE 'I [~ Mask: IDDDD
ACCESS: WRITE
ADDRESS: 000400
CONDITION: {addr} == 000400, idata? == 0032
a] 4 I Cancel

163

Example) Writing byte length data 32h to odd address 401h

Event Tvpe: IDHTP- ACCESS VI

fddress |Data |

—aetting

Rangs: | (addr) == Address] =]

Addrezzl: |nnn4m -] Address2: IDDEIEIIJD |

[~ Functiom:
Source File : | =l
Function : I ;I

SCCESS: WRITE

ADDRESSE: 000407
COMNDITION: (addr) == 000407, (data&00FF) == 0032

o]

Cancel

Event Tvpe: IDHTP- ACCESS VI

Address Data |

Setting
Range: |{data) == Datal =]
Data 1: |32 Data 2: IDDDEI

fccess: IWRHE 'I v Maszk: [00FF

ACCESS: WRITE
ADDRESSE: 000407
COMNDITION: (addr) == 000407, (data&00FF) == 0032

o]

Cancel

164

6Windows/Dialogs

Example) Writing word length data 1234h to even address 400h

Event Tvpe: IDHTP- ACCESS VI

fddress |Data |

—aetting

Rangs: | (addr) == Address] =]

AddressT: [400 -] Address2: 00000 -]

[~ Functiom:
Source File : | =l
Function : I ;I

SCCESS: WRITE

ADDRESSE: 000400
COMNDITION: (addr) == 000400, (datal == 1234

o]

Cancel

Event Tvpe: IDHTP- ACCESS VI

Address Data |

Setting
Range: |{data) == Datal =]
Data 1: |1 234 Data 2: IDDDEI

Access: IWFUTE vI ¥ Mask: [FFFF

ACCESS: WRITE
ADDRESS: 000400
COMNDITION: (addr) == 000400, (datal == 1234

o]

Cancel

165

Example) Writing data 10h - 3Fh to even address 400h

Event Tvpe: IDHTP- ACCESS VI

fddress |Data |

—aetting
Rangs: | (addr) == Address] =]
fddrezsl: I4UU vl Address2: Im
I~ Function:
Source File : | =]
Function : I ;I
SCCESS: WRITE

ADDRESSE: 000400
CONDITION: (addr) == 000400, D010 <= (data&00FF) <= O03F

0] % I Cancel

Event Tvpe: IDHTP- ACCESS VI

Address Data |

Setting
Range: IData1 <= data) <= DataZ ;I
Data 1: |1EI Data 2: ISF
fccess: IWRHE 'I [Mask: IDDDD

ACCESS: WRITE
ADDRESS: 000400
COMNDITION: (addr) == 000400, 0010 <= (datal <= DOSF

0] % I Cancel

166

6Windows/Dialogs

6.10.7.1.2. Reading/writing data to the specified address range

Set as below.
Example) Writing data to addresses ranging from 400h to 40Fh

Event Tvpe: IDHTP- ACCESS VI

fddress |Data |

—Setting
Rangs: |Adderssl <= (addr) <= Address? =]
AddressT: [400 -] Address2: [40F -]
I~ Function:
Source File - | ;l
Function : I ;I
BOCESS: WRITE

ADDRESS: 000400
COMNDITION: 000400 <= faddr} <= DOD40F

0] % I Cancel

Event Tvpe: IDHTP- ACCESS VI

Address Data |

Setting
Rarge: INDt Specify ;I
Data 1: IDDDD Data 2: IDDDEI
fccess: IWRHE 'I ™| ask: IDDDD

ACCESS: WRITE
ADDRESS: 000400
COMNDITION: 000400 <= faddr} <= DOD40F

0] % I Cancel

167

6.10.7.1.3 Reading/writing data to addresses outside the specified range
Set as below.
Example) Writing data to addresses below 7FFh

Event Tvpe: IDHTP- ACCESS VI

fddress |Data |

—aetting
Rangs: | (addr) <= Address] =]
AddressT: [TFF -] Address2: 00007 |
I~ Function:
Source File : | =]
Functiar : I ;I
&CCESS: WRITE

ADDRESS: N007FF
COMNDITION: (addr) <= 00O7FF

0] % I Cancel

Event Tvpe: IDHTP- ACCESS VI

Address Data |

Setting
Rarge: INDt Specify ;I
Data 1: IDDDD Data 2: IDDDEI
fccess: IWRHE 'I ™| ask: IDDDD

ACCESS: WRITE
ADDRESS: N007FF
COMNDITION: (addr) <= 00O7FF

0] % I Cancel

168

6Windows/Dialogs

6.10.7.2 Memory Access(The debugger for M32C)

6.10.7.2.1 Wrting/Reading a Specified Address
Set as below.
Example) Writing to even address 400h

A1 - Set Event 5

Event Tvpe: IDHTP- ACCESS VI

fddress |Data |

—aetting
Rangs: | (addr) == Address] =]
fddrezsl: I4UU vl Address2: Im
I~ Function:
Source File : | =]
Function : I ;I
SCCESS: WRITE

ADDRESSE: 000400
COMNDITION: (addr} == 000400

0] % I Cancel

Event Tvpe: IDHTP- ACCESS VI

Address Data |

Setting
Rarge: INDt Specify ;I
Data 1: IDDDD Data 2: IDDDEI
fccess: IWRHE 'I ™| ask: IDDDD

ACCESS: WRITE
ADDRESS: 000400
COMNDITION: (addr} == 000400

0] % I Cancel

169

Example) Writing byte length data 32h to even address 400h

Event Tvpe: IDHTP- ACCESS VI

fddress |Data |

—aetting

Rangs: | (addr) == Address] =]

Addrezzl: |nnn4ua -] Address2: IDDEIEIIJD |

[~ Functiom:
Source File : | =l
Function : I ;I

SCCESS: WRITE

ADDRESSE: 000400
COMNDITION: (addr) == 000400, (data&00FF) == 0032

0] % I Cancel
Al - Set Event Status
Event Tvpe: IDF'.TP. ACCESS vl
Address Data |
Setting
Range: I(data) == Diatal LI
Data 1: |32 Diata 2: IDDDEI
fccess: IWRHE 'I [~ Mask: IDDDD
ACCESS: WRITE
ADDRESS: 000400
CONDITION: {addr} == 000400, idata? == 0032
a] 4 I Cancel

170

6Windows/Dialogs

Example) Writing byte length data 32h to odd address 401h

Event Tvpe: IDHTP- ACCESS VI

fddress |Data |

—aetting

Rangs: | (addr) == Address] =]

Addrezzl: |nnn4m -] Address2: IDDEIEIIJD |

[~ Functiom:
Source File : | =l
Function : I ;I

SCCESS: WRITE

ADDRESSE: 000407
COMNDITION: (addr) == 000407, (data&00FF) == 0032

o]

Cancel

Event Tvpe: IDHTP- ACCESS VI

Address Data |

Setting
Range: |{data) == Datal =]
Data 1: |32 Data 2: IDDDEI

fccess: IWRHE 'I v Maszk: [00FF

ACCESS: WRITE
ADDRESSE: 000407
COMNDITION: (addr) == 000407, (data&00FF) == 0032

o]

Cancel

171

Example) Writing word length data 1234h to even address 400h

Event Tvpe: IDHTP- ACCESS VI

fddress |Data |

—aetting
Rangs: | (addr) == Address] =]
fddrezsl: I4UU vl Address2: Im
I~ Function:
Source File : | =]
Function : I ;I
SCCESS: WRITE

ADDRESSE: 000400
COMNDITION: (addr) == 000400, (datal == 1234

0] % I Cancel

Event Tvpe: IDHTP- ACCESS VI

Address Data |

Setting
Range: |{data) == Datal =]
Data 1: |1 234 Data 2: IDDDEI
fccess: IWRHE 'I v Mask: [FFFF

ACCESS: WRITE
ADDRESS: 000400
COMNDITION: (addr) == 000400, (datal == 1234

0] % I Cancel

172

6Windows/Dialogs

Example) Writing data 10h - 3Fh to even address 400h

Event Tvpe: IDHTP- ACCESS VI

fddress |Data |

—aetting

Rangs: | (addr) == Address] =]

AddressT: [400 -] Address2: 00000 -]

[~ Functiom:
Source File : | =l
Function : I ;I

SCCESS: WRITE

ADDRESSE: 000400
CONDITION: (addr) == 000400, D010 <= (data&00FF) <= O03F

o]

Cancel

Event Tvpe: IDHTP- ACCESS VI

Address Data |

Setting
Range: IData1 <= data) <= DataZ ;I
Data 1: |1EI Data 2: ISF

fccess: IWRHE 'I [Mask: IDDDD

ACCESS: WRITE
ADDRESS: 000400
COMNDITION: (addr) == 000400, 0010 <= (datal <= DOSF

o]

Cancel

173

6.10.7.22. Reading/writing data to the specified address range

Set as below.
Example) Writing data to addresses ranging from 400h to 40Fh

Event Tvpe: IDHTP- ACCESS VI

fddress |Data |

—Setting
Rangs: |Adderssl <= (addr) <= Address? =]
AddressT: [400 -] Address2: [40F -]
I~ Function:
Source File - | ;l
Function : I ;I
BOCESS: WRITE

ADDRESS: 000400
COMNDITION: 000400 <= faddr} <= DOD40F

0] % I Cancel

Event Tvpe: IDHTP- ACCESS VI

Address Data |

Setting
Rarge: INDt Specify ;I
Data 1: IDDDD Data 2: IDDDEI
fccess: IWRHE 'I ™| ask: IDDDD

ACCESS: WRITE
ADDRESS: 000400
COMNDITION: 000400 <= faddr} <= DOD40F

0] % I Cancel

174

6Windows/Dialogs

6.10.7.2.3 Reading/writing data to addresses outside the specified range
Set as below.
Example) Writing data to addresses below 7FFh

Event Tvpe: IDHTP- ACCESS VI

fddress |Data |

—aetting
Rangs: | (addr) <= Address] =]
AddressT: [TFF -] Address2: 00007 |
I~ Function:
Source File : | =]
Functiar : I ;I
&CCESS: WRITE

ADDRESS: N007FF
COMNDITION: (addr) <= 00O7FF

0] % I Cancel

Event Tvpe: IDHTP- ACCESS VI

Address Data |

Setting
Rarge: INDt Specify ;I
Data 1: IDDDD Data 2: IDDDEI
fccess: IWRHE 'I ™| ask: IDDDD

ACCESS: WRITE
ADDRESS: N007FF
COMNDITION: (addr) <= 00O7FF

0] % I Cancel

175

6.10.7.3 Memory Access(The debugger for M16C/R8C)

6.10.7.3.1 Wrting/Reading a Specified Address
Set as below.
Example) Writing to even address 400h

A1 - Set Event 5

Event Tvpe: IDHTP- ACCESS VI

fddress |Data |

—aetting
Rangs: | (addr) == Address] =]
fddrezsl: I4UU vl Address2: Im
I~ Function:
Source File : | =]
Function : I ;I
SCCESS: WRITE

ADDRESSE: 000400
COMNDITION: (addr} == 000400

0] % I Cancel

Event Tvpe: IDHTP- ACCESS VI

Address Data |

Setting
Rarge: INDt Specify ;I
Data 1: IDDDD Data 2: IDDDEI
fccess: IWRHE 'I ™| ask: IDDDD

ACCESS: WRITE
ADDRESS: 000400
COMNDITION: (addr} == 000400

0] % I Cancel

176

6Windows/Dialogs

Example) Writing byte length data 32h to even address 400h

Event Tvpe: IDHTP- ACCESS VI

fddress |Data |

—aetting

Rangs: | (addr) == Address] =]

Addrezzl: |nnn4ua -] Address2: IDDEIEIIJD |

[~ Functiom:
Source File : | =l
Function : I ;I

SCCESS: WRITE

ADDRESSE: 000400
COMNDITION: (addr) == 000400, (data&00FF) == 0032

0] % I Cancel
Al - Set Event Status
Event Tvpe: IDF'.TP. ACCESS vl
Address Data |
Setting
Range: I(data) == Diatal LI
Data 1: |32 Diata 2: IDDDEI
fccess: IWRHE 'I [~ Mask: IDDDD
ACCESS: WRITE
ADDRESS: 000400
CONDITION: {addr} == 000400, idata? == 0032
a] 4 I Cancel

177

Example) Writing byte length data 32h to odd address 401h

Event Tvpe: IDHTP- ACCESS VI

fddress |Data |

—aetting

Rangs: | (addr) == Address] =]

Addrezzl: |nnn4m -] Address2: IDDEIEIIJD |

[~ Functiom:
Source File : | =l
Function : I ;I

SCCESS: WRITE

ADDRESSE: 000407
COMNDITION: (addr) == 000407, (data&00FF) == 0032

o]

Cancel

Event Tvpe: IDHTP- ACCESS VI

Address Data |

Setting
Range: |{data) == Datal =]
Data 1: |32 Data 2: IDDDEI

fccess: IWRHE 'I v Maszk: [00FF

ACCESS: WRITE
ADDRESSE: 000407
COMNDITION: (addr) == 000407, (data&00FF) == 0032

o]

Cancel

178

6Windows/Dialogs

Example) Writing word length data 1234h to even address 400h

Event Tvpe: IDHTP- ACCESS VI

fddress |Data |

—aetting

Rangs: | (addr) == Address] =]

AddressT: [400 -] Address2: 00000 -]

[~ Functiom:
Source File : | =l
Function : I ;I

SCCESS: WRITE

ADDRESSE: 000400
COMNDITION: (addr) == 000400, (datal == 1234

o]

Cancel

Event Tvpe: IDHTP- ACCESS VI

Address Data |

Setting
Range: |{data) == Datal =]
Data 1: |1 234 Data 2: IDDDEI

Access: IWFUTE vI ¥ Mask: [FFFF

ACCESS: WRITE
ADDRESS: 000400
COMNDITION: (addr) == 000400, (datal == 1234

o]

Cancel

179

Example) Writing data 10h - 3Fh to even address 400h

Event Tvpe: IDHTP- ACCESS VI

fddress |Data |

—aetting
Rangs: | (addr) == Address] =]
fddrezsl: I4UU vl Address2: Im
I~ Function:
Source File : | =]
Function : I ;I
SCCESS: WRITE

ADDRESSE: 000400
CONDITION: (addr) == 000400, D010 <= (data&00FF) <= O03F

0] % I Cancel

Event Tvpe: IDHTP- ACCESS VI

Address Data |

Setting
Range: IData1 <= data) <= DataZ ;I
Data 1: |1EI Data 2: ISF
fccess: IWRHE 'I [Mask: IDDDD

ACCESS: WRITE
ADDRESS: 000400
COMNDITION: (addr) == 000400, 0010 <= (datal <= DOSF

0] % I Cancel

180

6Windows/Dialogs

6.10.7.32. Reading/writing data to the specified address range

Set as below.
Example) Writing data to addresses ranging from 400h to 40Fh

Event Tvpe: IDHTP- ACCESS VI

fddress |Data |

—Setting
Rangs: |Adderssl <= (addr) <= Address? =]
AddressT: [400 -] Address2: [40F -]
I~ Function:
Source File - | ;l
Function : I ;I
BOCESS: WRITE

ADDRESS: 000400
COMNDITION: 000400 <= faddr} <= DOD40F

0] % I Cancel

Event Tvpe: IDHTP- ACCESS VI

Address Data |

Setting
Rarge: INDt Specify ;I
Data 1: IDDDD Data 2: IDDDEI
fccess: IWRHE 'I ™| ask: IDDDD

ACCESS: WRITE
ADDRESS: 000400
COMNDITION: 000400 <= faddr} <= DOD40F

0] % I Cancel

181

6.10.7.3.3 Reading/writing data to addresses outside the specified range
Set as below.
Example) Writing data to addresses below 7FFh

Event Tvpe: IDHTP- ACCESS VI

fddress |Data |

—aetting
Rangs: | (addr) <= Address] =]
AddressT: [TFF -] Address2: 00007 |
I~ Function:
Source File : | =]
Functiar : I ;I
&CCESS: WRITE

ADDRESS: N007FF
COMNDITION: (addr) <= 00O7FF

0] % I Cancel

Event Tvpe: IDHTP- ACCESS VI

Address Data |

Setting
Rarge: INDt Specify ;I
Data 1: IDDDD Data 2: IDDDEI
fccess: IWRHE 'I ™| ask: IDDDD

ACCESS: WRITE
ADDRESS: N007FF
COMNDITION: (addr) <= 00O7FF

0] % I Cancel

182

6Windows/Dialogs

6.10.8 Specify the Events (Bit Access)

To specify a bit access event, change the event select dialog box's Event Type to "BIT SYMBOL". The
event is established when the specified bit at the specified address or specified bit symbol is accessed
under specified conditions.

6.10.8.1 Writing/Reading a Specified Bit

Set as below.
Example) Writing "0" to bit 2 at address 400h

Event Tvpe: IEIlT SYMBOL VI

— Bit
@ [o00400 -] Bit No: £ =
i Bit Symbal: I vl
—Condition
ficcess: WRITE hd
Walue: IU "I
ACCESS: WRITE
ADDRESS: 000400
COMDITIONM: {addr? == 000400, idata&0004» == 0000

0] % I Cancel

183

6.10.8.2 Writing/Reading a Specified Bit Symbol

Set as below.
Example) Writing "1" to bit symbol "bitsym"

Event Tvpe: IEIlT SYMBOL VI

— Bit
" Address: IDUU4UU vl Bit Mo: |2 _l::i
= Bif Symbali |pitsym =l
—Condition
ficcess: WRITE -
Walue: |'| "I
ACCESS: WRITE
ADDRESS: 000400
COMNDITION: {addr} == 000400, idata&0004) == 0004

0] % I Cancel

184

6Windows/Dialogs

6.10.9 Specify the Events (Interrupt)

To specify an interrupt event, change Event Type in the event select dialog box to "INTERRUPT".
When an interrupt is generated or finished, the event is established.

6.10.9.1 Interrupt Occurrence

Set as below.

A1 - Set Event Status

Event Twpe: |INTERRUFT =]

Interrupt

f+ Occurence

" Termination

e T Gancel

185

6.10.9.2 Interrupt Termination

Set as below.

A1 - Set Event Status

Event Tvpe: NANEGESINERN -

Interrupt

" Cccurence

f* Termination

] 4 | Cancel

186

6Windows/Dialogs

6.10.10 Specify the Event Combination Condition

Use the Combination group of the event setting windows to specify the combinatorial conditions of
events.

The combination of two or more events can be used.

One of the following combinatorial conditions can be selected.

AND All of the specified events are established

AND(Same Time) The specified events are established at the same
time

OR One of the specified events is established

STATE TRANSITION Established upon entering a break state in the
state transition diagram

Pass counts (number of times passed) can be specified for each event (1-255). If the specified
combinatorial condition is AND (Same Time), no pass counts can be set (fixed to 1).

6.10.10.1 Select AND, OR

Change the Combination group to "AND" to specify AND for the combinatorial condition, or "OR" to
specify OR for the combinatorial condition. Next, check (turn on) an event in the event specification
area that you want to use, and specify a pass count for that event. To alter the pass count, while the
event to alter is being selected, click the pass count value of that event.

Bl HA W Break Points Set

¥ Enable HA Break

PASS | E. | ADDRE. | AGGE.. | GOMDITION |
A1 000400 WRITE {addr) == 000400, {data) == 0032
f2 OF0528 FETGH (addr) == OF0528

f3 000000 FETGH {addr == 000000

f4 000000 FETGH (addr) == 000000

f5 000000 FETGH (addr) == 000000

A6 000000 FETGH {addr) == 000OOO

OO0O0m@

— Combination ’, FID

AND =l PeEE [Enable _ Detail |

~{AMD] |
AND {Same Time) Save.. | Load... | Set Ciloze |
atate Tranzition

187

6.10.10.2 Select AND(Same Time)

Change the Combination group to "AND (Same Time)". Next, check (turn on) an event in the event
specification area that you want to use. No pass counts can be specified (fixed to 1).

B H.W Break Pain

¥ Enable H/AW Break

PASS | E. | ADDRE. | ACCE. | CONDITION |
£1 000400 WRITE {addr) == 000400, (data) == 0032
A2 OF0528 FETGH (addr) == OF0528

£3 000000 FETGH (addr) == 000000

A4 000000 FETGH {addr) == 000DOO

A5 000000 FETGH {addr) == 000000

f5 000000 FETGH (addr) == 000000

OO0O000&

— Cambination FID
[AND (Same Time) =] Detail | L‘ Enatle Detail. |

Reset | Save.. | Load... | """"" St Cilose |

6.10.10.3 Select State Transition

Change the Combination group to "State Transition". The Detail... button included in the
Combination group becomes useful, so click that button. This opens the State Setting window. In this
window, State Transition can be specified using sequentially.

Use the buttons included in the Sequential group. Pass counts can be specified from the popup menu
that appears when selecting an event. The contents set here are reflected in the state transition
diagram.

Example: Events B1, and B2 that occur successively in that order are established

— Time Out
= Notllee 0 Start € State]) StateZ Time Counttl-65535} |1 % 10uzec

— [+ Sequential
Start --—-» __B11 |- B2 |- | - Erd

Cancel

188

6Windows/Dialogs

6.10.11 Specify the write condition

Trace data write conditions can be specified.
You can specify the following write conditions:

Write conditions unlimited (default)

Cycles from the start event established to the end event established

Only cycles where the start event is established

Cycles from the start event established to the start event unestablished

Other than cycles from the start event established to the end event established
Other than cycles where the start event is established

Other than cycles from the start event established to the start event unestablished

No oA W

To specify condition 1, choose "Total" from the list box of the window's "Write Condition" item.

Wirite Condition

Total = DEtail |

To specify conditions 2 to 4, choose "Pick Up" and click the "Detail..." button to open the
"Realtime-trace Write Condition" dialog box.

Wikite Crondition

Fick up

e For condition 2, choose the Mode shown below and set the Start and End events.

Realtime-trace White Condition

—oetting
Mode: | __[H=—H1 j
Start: End:
= Oe
Oe:z B2
Oe3 Oes
OB O+
Oes Oes
Oes Oes

0] 8 I Cancel

189

e For condition 3, choose the Mode shown below and set the Start event.

Realtime-trace Write Condition

—oetting
ode: || ||4: | j
Start: End:
Bl Og1
Oe:z OBz
Oes Oe3
= =
Oes =i
Oes Oe&s
(0] 8 I Cancel

e For condition 4, choose the Mode shown below and set the Start event.

Realtime-trace Wite Condition

—oetting
ode: Iﬁ' -
Start: End:
Bl O&1
Oe:z =
Oes Oe3
Oe4 e+
Oes | =i
Oes Oes
0] 8 I Cancel

Similarly, when specifying conditions 5 to 7, choose "Exclude" and click the "Detail..." button to open
the Realtime-trace Write Condition dialog box.

Wk ite Condition

Exclude ;I

190

6Windows/Dialogs

e For condition 5, choose the Mode shown below and set the Start and End events.

Realtime-trace Write Condition

—oetting
Mode: | M= .|
Start: End:
Bl Ogn
Oe:z B2
Oes Oes3
= =
Oes Oes
Oes Oes

(0] 8 I Cancel

e For condition 6, choose the Mode shown below and set the Start event.

Realtime-trace Wite Condition

—oetting
ode: || ||4: | j
Start: End:
Bl O&1
Oe:z =
Oes Oe3
Oe4 e+
Oes | =i
Oes Oes
ITI Cancel

191

e For condition 7, choose the Mode shown below and set the Start event.

Realtime-trace Write Condition

—oetting
ode: Iﬁ' -
Start: End:
Bl Og1
Oe:z OBz
Oes Oe3
= =
Oes =i
Oes Oe&s
(0] 8 I Cancel

192

6Windows/Dialogs

6.11 Trace Window

The Trace Window is used to display the results of real-time trace measurement.
The debugger for 740 doesn't support this function.
The measurement result can be displayed in the following display modes.

Bus mode

This mode allows you to inspect cycle-by-cycle bus information. The display content
depends on the MCU and simulator system used. In addition to bus information, this
mode allows disassemble, source line or data access information to be displayed in
combination.

Disassemble mode

This mode allows you to inspect the executed instructions. In addition to disassemble
information, this mode allows source line or data access information to be displayed in
combination.

Data access mode

This mode allows you to inspect the data read/write cycles. In addition to data access
information, this mode allows source line information to be displayed in combination.
Source mode

This mode allows you to inspect the program execution path in the source program.

The measurement result is displayed when a trace measurement has finished. When a trace
measurement restarts, the window display is cleared.

The range of a trace measurement can be altered in the Trace Point Setting Window. For details
about this window, refer to "6.10 Trace Point Setting Window." With default settings, the trace
information immediately before the program has stopped is recorded.

6.11.1 Configuration of Bus Mode

When bus mode is selected, trace information is displayed in bus mode. Bus mode is configured as

shown below.

The display content in bus mode differs depending on the MCU or simulator system used.

(5) H) .
Range —32511, 00000 |Brea: Break] File: [Cycle: -07958 | fddress 000426 [Time: 114

[TEEED rZddrEss Data T BUS B IU R/ W RWI CEU O BT 0=Tr 76548210 [Th” W sr mes us||
00042¢ OODE 16b DW R 0 mW O 1 1 11111111 ||00700'00:055.114
OFO1DC 7AF3 16b IW R 0 -- 2z 1 1 11111111 ||[00"00'00:055.114

_Punc_Exe ||OFO1DE F27¢ 16b IW R ¢ -- 4 1 1 11111111 ||00"00'00:055.115
00042C OODF 16b DW W 0 cE 3 1 1 11111111 ||00"00'00:055.115
0007ES 0083 16k DW R o =t < 1 4 11111111 00"00'00:055.115
0007EA FFOF 1leb DB R Q 3 1 : 11 11193% 00™00'00:055.115
0007EA FFOF 16b -- - 1 -- 3 1 1 11111111 ||00”00'00:055.115 |—i
OFO083 FDFF 16b IB R 0 e 1 1 1 11111111 ||00"D0'00:055.115
OFO084 012¢ 16b M R 0 -- 3 1 1 11111111 ||00"00'00:055.115
OFO0S6 FSOF 16b M R 0 e 4 1 1 11111111 ||00"00'00:085.115 =

@) (3 @

193

10.

Cycle display area:

Shows trace cycles. Double-click here to bring up a dialog box to change the displayed cycle.

Label display area:

Shows labels corresponding to address bus information. Double-click here to bring up a dialog box

to search for addresses.

Bus information display area:

The content displayed here differs depending on the MCU or simulator system used.

- "6.11.6 Display of bus information on the Simulator Debugger"

Time information display area:

Shows time information of trace measurement result. One of the following three modes can be

selected from the menu.

- Absolute Time:Shows an elapsed time from the time the program started running up to now in
terms of absolute time (default).

- Differences:Shows a differential time from the immediately preceding cycle.

- Relative Time:Shows a relative time from the selected cycle. Note, however, that this mode
changes to the absolute time display mode when the trace measurement result is updated.

Acquired range of trace measurement result:

Shows the currently acquired range of trace measurement result.

Trace measurement range:

Shows the currently set range of trace measurement.

First line cycle:

Shows the cycle of the first line displayed.

First line address:

Shows the address of the first line displayed.

First line time:

First line time: Shows the time information of the first line displayed.

Window splitting box:

Double-clicking this box splits the window into parts.

In addition to bus information, the window can display disassemble, source line or data access

information in combination. In this case, the display will be similar to the one shown below.

»ve/ a8 va5Sxe nv

Range: 32511, 00000 !P.rea: Break |File: Cyole:-32380 [Address: OF0107 |Time: 0070000053587

Cyzle Lakel | hddress | Dats | BUS | BIU | R/W | EWT | cPU| @M | B-T | @-T | 76543210 | Datalecess | B" m 5: ms. us |4
GLOBAL.C, 52: for (3 =0; 3 < 5: 3++ { ~
OFO107 CHE. W #5H, ~4H[FE]

OO07EZ 0000 16b DU W o cw 1 1 b 11111111 (0007EZ 0000 W) OO"0O0'00:053.587
0007EZ 0000 16k DW R o EE o i 4 b5 Gl (0007EZ 0000 R) 0O"0O0'00:053.588
OFO010L CATD 1eb IV R o == Z 1 1 11111111 0o"0o'00:053. 588
OFD10C 7318 1ebh IV R o = 4 1 pi 11111111 0o"00' 00:053. 588 ;l

194

6Windows/Dialogs

6.11.2 Configuration of Disassemble Mode

When disassemble mode is selected while bus mode is unselected, trace information is displayed in
disassemble mode. Disassemble mode is configured as shown below.

dddress | | Obj-code | | Label Mnemonic | nmt s s us | [a]
OF0198 730BFO MOV, W RO,=10H[FE] 00"00'00:054.427
OF015C CO1BFD ADD.W #1H,-3H[FE] 00"00'00:054.427
OF019F FEC1 JHP. B FO161H 00"00'00:054.427
OF0161 T78BFDOAOO CHP.W #O00AH,-3H[FE] 00"00'00:054.4286
OFQ0166 TDCA39 JGE FO1h1H 00"00'00:054.428
OF0141 7DF2 EXITD 00"00'00:054.428
OFQoe7 FS0600 JSR. W _randam_ FOOSEH Q0"00'00:054.429
OFQ00GE TCFz04 _randam_access|| ENTER H#O4H Q0"00'00:054.429

= OF0091 FDD40BOF JSR.A _rand FOBD4H 00"00'00:054.430
06 | OFOBD4 75CO6D4E _rand HOV. W #4EEDH, RO 00”00 00:054.430
OFOBDE 75C2CE41 HOV. W #41CEH, R2 0000 00:054.430
OFOEDC 754F4004 PUSH. W 0440H ooro0'00:054.430
OFOEEDQ 754F3E04 PUSH. W O43EH oo"00'00:054.431
OFOEE4 FEO1 JHP.B FOEEEH 0o"™00'00:054.431
OFOEE& FD1COCOF JSR. A _ i4mulU FOCICH oo™00'00:054.431
OFOC1C EC50 __i4mmlU PUSHM R1,R3 0o"00'00:054.432
OFOC1E 758107 MOV, W 7H[SP] ,R1 00™00'00:054.432
OFOC21 7121 HULU. W Rz, ,R1 00™00'00:054.432
OFOCZ23 7312 HOV. W R1,R2 00™00'00:054.433
OFOCZ5 75E109 HOV. W 9H[SF] ,R1 00™00'00:054.433
OFOCZ8 7101 NULU. W FO,R1 0o"00'00:054.433

OFOCZA A112 ADD.W R1,R2 00™00'00:054.433 d

() (2) 3) 1)

1. Address display area:
Shows addresses corresponding to instructions. Double-click here to bring up a dialog box to
search for addresses.

2. Object code display area:
Shows the object codes of instructions.

3. Label display area:
Shows labels corresponding to instruction addresses. Double-click here to bring up a dialog box to
search for addresses.

4. Mnemonic display area:
Shows the mnemonics of instructions.

Other display areas are the same as in bus mode.

In addition to disassemble information, the window can display source line or data access information
in combination. In this case, the display will be similar to the one shown below.

< Trace L=10]x]
wvip/ @86 vayxiuy
Range: 32511, 00000 [Area Break [File: [Gycle: 19026 |[Address: OFOTET [Time: 00°D0T0054.423
Cycle bddress | Chj-code | Lemel | Mnemonic | Datsiccess [t s e, us]
LociL.¢, 42 for (i =0: 1 < 10: i++) {
—1802 6 OF0161 TIEEFDOADD CHMP. W #000AH, -3H[FE] 0o"00'00:054. 423
{0007E3 09 R
(0OD7EZ 00 R) [
=19021 OF0166 7DCA3S JGE FO1A1H ooroo'o0: 054,423
LOciL. o, 43; char localScope char = 'a';
-18018 OF0169 Ce61FF MOV.E #61H, -1H[FE] 0o"00'00:054. 423
LOCAL.C, 44: long localScope long = O
=19017 OF016C DOOEFS Hnov. w #0H, -7TH[FE] (0007ES 61 W) ooro0'00:054,423
—19014 OF016F DS0EFE MOV. W #0H, -SH[FE] (D007DF oo w) 00"00'00:054. 423 j

195

6.11.3 Configuration of Data Access Mode

When data access mode is selected while bus mode and disassemble mode are unselected, trace
information is displayed in data access mode. Data access mode is configured as shown below.

=vVpelsraat veas =z nw

Range: -32511, 00000 |Ares Break File (Cycle -05012 |Address: 00047G | Time: 007 00'00:056.209

ooro0'00:055.303

Cycle | Label [Tatakiceess h' m! s: ms. us | ||
=05012 | global struect | (00047C 42 W } | 00"00'00:055,299
-osoo7 | {00D47D 05 W) | 0O"00'00:055.299
-osoos | {OOD47E 00 W) | 0Q"00'00:0S55.299
-0so01 | (O0047F 06 W) | 00"00'00:055.299
-0so00 | (000480 00 W) | 00"00'00:055.299

=gasesi| (000481 00 W) | 0O"00'00:055.300

 -04994 | {0op4s2 00 W) | 00"00'00:0S55.300

_ =oa58g9 | (000483 10 W } | 0O"00'00:055.300

=g4gea| {000484 0020 W) | OO"DO'00:055.300

_ —04977 | (000486 0030 W) | O0"00'00:055.301

_ -o4972 | {ODO7E4 0DOOO W) | 0O"00'00:055.301
-04971 {0OO7E4 0OOO R) | 0OO"OD'00:055.301
-04564 {0007EZ2 0000 i 00"00'00:055.302
-045963 {OOO7EZ 0OOC R) | OO"0D'00:055.302
048957 {DOO7E4 0OOO R) | 0O"OD'00:055.302
-04545 {ODO7EZ 0OOO R) | OO"00'00:055.302

)
)
)
)
)
1

TR IEdarirvEanEaEs

|
|
|
|
|
-04939 | _global array (000444 0000
I
:
1

04938 {0ODO7EZ 0000 ooroo'00:055.303 —1
-04835 (0DO7E2 0001 aoro0'00:055.303
~-04529 (ODO7EZ2 0001 aoro0'00:055.304
04924 {(0OD07E4 0000 ooroo'00:055.304
—n491n (NONTZEZ N0 OOTOnNY O 055 3S :I

(1)

1. Data access display area:
Shows data access information. If the information displayed here is "000400 1234 W," for example,
it means that data "1234H" was written to the address 000400H in 2-byte width.

Other display areas are the same as in bus mode.

In addition to data access information, the window can display source line information in combination.
In this case, the display will be similar to the one shown below.

o Trace
=Vps/ ot | vias =z |nw
Range: -32611, 00000 [Area: Break [File: [Gycle: ~05012 [Address: OFO0DF [Time: 00" 00'00:055 299
Cycle Lakel | Databecess | m™ m' s: ms. us | |«]
GLOBAL.C, 44: global struet.m short = 5;
—O5012 _global struct (00o47cC 4z W] BRTE0Y 055299
GLOBAL.C, 45: global struct.m long = 6;
—osooy (00047D 05 BRTE0Y 055299
—05006 (O0O047E oo o BRTE0Y 055299
—osomo1 (O0047F OB] BRTE0Y 055299
—os50oo [(00o4s0 oo o BRTE0Y 055299
GLOBAL.C, 47: global struct.m struct.m _uchar = 0x10; |
—04395 (000431 oo o aoroo'o0:055.300
—04594 (000432 oo o aoroo'o0:055.300 LI

196

6Windows/Dialogs

6.11.4 Configuration of Source Mode

When only source mode is selected, trace information is displayed in source mode. Source mode is
configured as shown below.

=VE/ QG v a5 M)y €] @

Range: -32511, 00000 |Area: Break |File: GLOBALC |[Gycle: 05012 ||{Address: DFOODF, [Time: 000000055299 |

“Line |[Eddress | [Wow]|[Zource 1=
00038, | -

00034 (| OFOOCE ||| = f global char = 'A'

ooo4n || oFoocE ||| - | global short = 2:

o0go4i || oroops [l = | global long = 3;

00042 I

_Opo43 || OFOODE || = | global struct.m char = 'B';

Qo044 ____O__F_C_I_G_I_.'l_l;‘____m global_struct.m_short = 5;

00045 (| OFOOES ||| - | global struct.m_long = 6;

00046]

00047 OFOOEE ||| - global scruct.m struct.m uchar = 0x10;

00048 (| OF00EF = global struct.m struct.m ushort = 0xi0;

00043 (| OFO0FS E global struct.m struct.m uint = 0Ox30;

0gosa]

00051 || OFCOFB || - for (i = 0; 1 < 5; i++) {

oopsz || oFoios ||| - for (3 = 0; 3 < 5; 3++) |

00053 BEOI0D i = global array[i] [3] = O: _'J
(1) 2 @ 4P

1. Line number display area:
Shows the line number information of the displayed file. Double-click here to bring up a dialog
box to change the displayed file.
2. Address display area:
Shows addresses corresponding to source lines. Double-click here to bring up a dialog box to
search for addresses.
3. Referenced cycle display area:
Shows the currently referenced cycle that is marked by ">>." Furthermore, the addresses
corresponding to source lines, if any, are marked by "-."
4. Source display area:
Shows the content of the source file.
5. File name:
Shows the file name of the currently displayed source file.
6. Referenced cycle:
Shows the currently referenced cycle.
7. Referenced address:
Shows the address corresponding to the currently referenced cycle.
8. Referenced time:
Shows the time information corresponding to the currently referenced cycle.

Other display areas are the same as in bus mode.

197

6.11.5 Extended Menus

This window has the following popup menus that can be brought up by right-clicking in the window.

Menu Function
BUS Display the information of BUS mode.
DIS Display the information of Disassemble mode.
SRC Display the information of Source mode.
DATA Display the information of Data access mode.
View Cycle... Changes the displayed position by specifying a cycle.
Address... Changes the displayed position by searching an address.
Source... Display a selected source file.
Time Absolute Time Shows elapsed time from the time the program started
running up to now in terms of absolute time.
Differences Shows a differential time from the immediately preceding
displayed cycle.
Relative Time Shows a relative time from the currently selected cycle.
Trace Forward Changes the direction of search to forward direction.
Backward Changes the direction of search to reverse direction.
Step Searches in Step mode in the specified direction of search.
Come Searches in Come mode in the specified direction of search.
Stop Stops trace measurement in the middle and displays the
measured content at the present point of time.
Restart Restarts trace measurement.
Layout... Change layout of the corrent view.
Copy Copy selected lines.
Save... Save trace data to file.
Load... Load trace data from file.

Toolbar display

Display toolbar.

Customize toolbar...

Open toolbar customize dialog box.

Allow Docking

Allow window docking.

Hide

Hide window.

198

6Windows/Dialogs

6.11.6 Display of bus information on the Simulator Debugger

From left to right, the contents are as follows:

e Address

The status of the address bus

e Data

The status of the data bus

e Size

Indicates the data access size.

Product Display format Size
the R32C Debugger DB 8bit
DW 16bit
DL 32bit
the M32C Debugger DB 8bit
the M16C/R8C Debugger DW 16bit
e Type

Indicates that data has been accessed.

Display format Status
Code *1 Instruction fetch
Data Data access

*1 The Code data displayed by the R32C Debugger are fixed to 32 bits long, with the rest of data

omitted.

The Code data displayed by the M32C Debugger, M16C/R8C Debugger are fixed to 16 bits long, with

the rest of data omitted.

e R/W

Indicates the data access status.

Display format Status

R

Read

W

Write

If Type is Code, the status is always R (code read).

e h"m's!ms.us

Show the elapsed time from the target program beginning.

The value enclosed in () that follows indicates a total amount of instruction execution

cycles reckoning from when the program started to run.

199

6.12 Data Trace Window

The Data Trace Window is used to analyze the results of real-time trace measurements and
graphically show data access information.

It operates in conjunction with Trace Window.

The debugger for 740 doesn't support this function.

Time at indicator{cycle) Time at makers Grid interval Scale

- Data Trace
e BEAOB v myocn[e
Gurrent: 00" 0000:661 845 (-29300 cycle) |Mark: 007D0'00:661 989 - 00"0000:661.750 = 00" 00'00:000.258 Grid: 1000 us Scale: 412 %
Harie | value | Bl
- (union tag U) b0 Ox458
- [struct tag Bit) .bit 0458
[unsigned char :1) (({b0).bit).b0 1
[unsigned char :1) ((bD}).bit).bl O
[unsigned char :1) ((bD).bit).b2 O
[unsigned char :1) ((bD).bit).b3 1
“[signed char :4) ((bD).bit}).b4 7 &
(utsigned char) (bO).all 105 *'4it .J
Memanh C watch /4 an

(iB0y ity b2 ‘

([(B0} [bit) .b3 ‘ HHHHHH(HHHHHHH(
(b0} Jbit) .b4_T | = _‘_‘_‘_I_,_,—I—F-

« ' »

Data Reference T Indicator Markers
Access history reference area

e In the data reference area, you can inspect memory values at the point of a cycle
currently in interest or the values of registered C variables.

e In the access history reference area, you can see the history of accesses to registered
addresses in chart form.

e In conjunction with the Trace Window, you can inspect memory values at the point of a
cycle you are watching in the Trace Window. Conversely, you can show the cycle in the
Trace Window which you are watching in the Data Trace Window.

200

6Windows/Dialogs

6.12.1 Extended Menus

This window has the following popup menus that can be brought up by right-clicking in the window.

Menu

Function

Analyze Trace Data

Analyze the realtime-trace data.

Set Cycle... Specify the display cycle.
Sync with Trace Window Synchronize with Trace Window.
Data Length 1byte Display in 1Byte unit.
2bytes Display in 2Byte unit.
4bytes Display in 4Byte unit.
Radix Hex Display in Hexadecimal.
Dec Display in Decimal.
Address... Display from specified address.
Add C Watch Add C watchpoint.
Remove C Watch Remove the selected C watchpoint.
Hide Type Name Hide type names from variables.
Add... Adds new watch item into Access History Reference Area.
Remove Removes the selected watch item from Access History
Reference Area.
Zoom Zoom In Increase the display scale.
Zoom Out Decrease the display scale.
Zoom... Specify the display scale.
Marker Start Marker | Move the start marker in the display area.
End Marker Move the end marker in the display area.
Indicator Move the indicator in the display area.
Adjust Set cycle range between markers.

Change Grid Interval...

Change the grid interval.

Change Row Setting...

Change setting of the selected row.

Color...

Change the display color.

Toolbar display

Display toolbar.

Customize toolbar...

Open toolbar customize dialog box.

Allow Docking

Allow window docking.

Hide

Hide window.

201

6.13 GUI IO Window

The GUI I/O window allows you for port input by creating a user target system key input panel
(button) in the window and clicking the created button. And this window also allows you to implement
the user target system output panel in the window.

- GUIL 10 - Samplepnl

A X G E®=S B

T i 9
4 3 i
1 2 3

0 .

Irput Parel

. | o

e You can arrange the following parts on the window.
- Label (character string)
Displays/erases a character string specified by the user when any value is written to the
specified address (bit).
- LED
Changes the display color of any area when any value is written to the specified address (bit).
(Substitution for LED ON)
- Button
A virtual port input or virtual interrupt (the simulator debugger only for the latter) can be
executed at the time the button is pressed.
- Text
Display the text string.
e You can also save the created panel in a file and reload it.
e You can set up to 200 address points to the created part. If different addresses are set
to the individual parts, you can arrange up to 200 parts.

202

6Windows/Dialogs

6.13.1 Extended Menus

This window has the following popup menus that can be brought up by right-clicking in the window.

Menu Function

Select Item Select an I/0 item.

Delete Delete the selected I/0 item.
Copy Copy the selected I/0 item.
Paste Paste the copied I/0 item.

Create Button

Create a new button item.

Create Label

Create a new label item.

Create LED

Create a new LED item.

Create Text

Create a new text item.

Display grid

Display the grid line.

Save...

Save I/0 panel file.

Load...

Load I/O panel file.

Sampling Period...

Set RAM monitor sampling period.

Toolbar display

Display toolbar.

Customize toolbar...

Open toolbar customize dialog box.

Allow Docking

Allow window docking.

Hide

Hide window.

203

6.14 MR Window

Use the MR Window to display the status of the realtime OS.

The debugger for 740 doesn't support this function.

You can only use the MR Window when you have downloaded a program that uses the realtime OS Gf
the downloaded program does not use the MR, nothing is displayed in the MR Window when it is

opened.)

MR

wmiOP=@HOTHO BB R

Current Pun Task:[1] (main)
ID | Stadddr | [name] | Pri| Status | Wup count Eimeout | flg ptn | flg mode ﬂ
1 OF17F8H [_wain) 1 RUN O00DH
3 OFLAGBH | _taskZ) 3 RDY 0000H
3 OFLA76H | task3) 2 sus 0000H
4 OF1284H | taskd) 1 WAT{SLE) 0000
5 OFIASAH [_taskS) 1 WAI([SLP)-SUS O000H
6 OFIABOH [_taské) 1 WAI(DLY) O000H TFFFH
7 OFIACAH [_taskT) 1 WAI[DLE)-SUS O000H TFFFH
8 OFLAE4H | tasks) 1 WAI(FLG) OO00H ~ ————- 1111H TWF_ORW
9 OF1BOZH [taskd) 1 WAI[FLE)-SUS O000H ~ ————- 1111H TWF ORW hd
4 I I 4
¢ You can open the MR window as many as the number of display modes .
e By clicking the desired button, the MR window display mode changes and the display
data also changes.
e By double-clicking the desired task line, you can display the context data of the task.
¢ You can drag the cursor to change the width of the display area in each mode.
e If the downloaded program does not use MR, you cannot select all the menu which will
select the display mode.
e The usable display mode depends on MRxx.
ATTENTION

Please use the startup file (crtOmr.axx/start.axx) whose contents matches with the version of MRxx,
when you make downloaded program. The MR Window and MR command will not run properly if the

startup file you uses don't match with the version of MRxx.

204

6Windows/Dialogs

6.14.1.1 Extended Menus

This window has the following popup menus that can be brought up by right-clicking in the window.

Menu Function
Mode Task Displays Task status.

Ready Queue Displays Ready status.

Timeout Queue Displays Timeout status.

Event Flag Displays Event Flag status.

Semaphore Displays Semaphore status.

Mailbox Displays Mailbox status.

Data Queue Displays Data Queue status.

Cyclic Handler Displays Cyclic Handler status.

Alarm Handler Displays Alarm Handler status.

Memory Pool Displays Memory Pool status.

Message Buffer*® Displays Message Buffer status.

Port Displays Port status.

Mailbox(with Priority) Displays Mailbox(with Priority) status.
Context... Displays Context.
Layout | Status Bar Switch display or non-display of status bar.
Refresh Refresh memory data.
RAM Monitor Enable RAM Monitor Switch enable or disable RAM Monitor function.

Sampling Period...

Set RAM Monitor sampling period.

Toolbar display

Display toolbar.

Customize toolbar...

Open toolbar customize dialog box.

Allow Docking

Allow window docking.

Hide

Hide window.

*: The R32C debuggers are not supported.

205

6.14.2 Display the Task Status
In the MR window, select Popup Menu - [Mode] -> [Task].

WIOP=QHUODTHLO-WEB®

| Pri | status

| Wip count

[_main} 1
[_taski)
[_task3)
[_task4)
[_taskd)
[_taskb)
[_task7?)
[_taskd)
[task9)

N e e

MR
Gurrent Fun Task:[1] _main}
10 | Stadddr | (name)
1 O0OF17F8H
2 O0FlAcSH
3 OF1ATEH
4 0OrFlab4H
5 O0F1la9aH
& OF1AEBOH
7 OF1lACAH
8 OFlAE4H
Jj OF1BOZH
]

RUNH QoooE 00 ————= m—ee e
RDE ooooHE 0 ————— mmmem e
3U3 ooooE 0 ——=——= 0 mmmmm e
WAT [SLP) oooog 0 ————— 0 —m—e—— e
WAL [SLP) -SUS 0000 ————— mmmme e
WAL [DLE) Q000" 7FFFE =~ ————— ———m——m——
WAT(DLY) -3US 0000H TFFFH =~ ————— ———————— e
WAT |FLG) ooooE 0 —-——- 1111H TWF_ORW

WAT (FLG) -SUS 0000H

————— 1111H TWF ORW _ILI
k

By double-clicking any line, the information on the task context is displayed in the Context dialog.
For details on the Context dialog, see "6.14.12 Display the Task Context"
The following data is displayed in the status bar.

|Ourrent Fun Task:[1] {_main}

6.14.2.1 Display the Task Status(When the realtime OS is MRxx conformed to uITRON specifications

v.3.0)

All the tasks defined in the configuration are listed in the order of ID number. The function of each
item is as described below. (When the realtime OS is MRxx conformed to uITRON specifications

V.3.0.)

Ttems Contents

1D Task ID

StaAddr Starting address of task

(name) Task name

Pri Priority

Status*1 Task status

wup_count Wake-up count

timeout Timeout value

flg_ptn Wait bit pattern of event flag
flg_mode*2 Wait cancellation condition of event flag

206

6Windows/Dialogs

e *1Task Status

Display Status

RUN RUNNING state
RDY READY state

SUS SUSPENDED state
DMT DORMANT state
WAI(SLP) Sleeping state

WAI(SLP)-SUS

Sleeping state (suspended)

WAI(SLP-TMO)

Sleeping state with time-out

WAI(SLP-TMO)-SUS

Sleeping state with time-out (suspended)

WAI(DLY) Delayed state due to dly_tsk
WAI(DLY)-SUS Delayed state due to dly_tsk (suspended)
WAI(FLG) Waiting state for an eventflag

WAI(FLG)-SUS

Waiting state for an eventflag (suspended)

WAI(FLG-TMO)

Waiting state for an eventflag with time-out

WAI(FLG-TMO)-SUS

Waiting state for an eventflag with time-out (suspended)

WAI(SEM) Waiting state for a semaphore resource
WAI(SEM)-SUS Waiting state for a semaphore resource (suspended)
WAI(SEM-TMO) Waiting state for a semaphore resource with time-out

WAI(SEM-TMO)-SUS

Waiting state for a semaphore resource with time-out (suspended)

WAI(MBX)

Receiving waiting state for a mailbox

WAI(MBX)-SUS

Receiving waiting state for a mailbox (suspended)

WAI(MBX-TMO)

Receiving waiting state for a mailbox with time-out

WAIMMBX-TMO)-SUS

Receiving waiting state for a mailbox with time-out (suspended)

e *2Display the Wait Cancellation Condition of Event Flag

flg_mode Status
TWF_ANDW Waits for all bits set in the wait bit pattern to be set (AND
wait)

TWF_ANDW+TWF_CLR

Clears the event flag to 0 when an AND wait has occurred
and the task wait status has been cancelled

TWF_ORW

Waits for any one bit set in the wait bit pattern to be set
(OR wait)

TWF_ORW+TWF_CLR

Clears the event flag to 0 when an OR wait has occurred
and the task wait status has been cancelled

207

6.14.2.2 Display the Task Status(When the realtime OS is MRxx conformed to ulTRON specifications
V.4.0)

All the tasks defined in the configuration are listed in the order of ID number. The function of each
item is as described below. (When the realtime OS is MRxx conformed to uITRON specifications
V.4.0.)

Ttems Contents

1D Task ID

Name Task name

Pri Priority

Status*1 Task status

Wupcent Wake-up count

Actent Activated count

Tmout Timeout value

Flgptn Wait bit pattern of event flag
Wfmode*2 Wait cancellation condition of event flag

208

6Windows/Dialogs

e *1Task Status

Display Status

RUN RUNNING state
RDY READY state

SUS SUSPENDED state
DMT DORMANT state
WAI(SLP) Sleeping state

WAI(SLP)-SUS

Sleeping state (suspended)

WAI(SLP-TMO)

Sleeping state with time-out

WAI(SLP-TMO)-SUS

Sleeping state with time-out (suspended)

WAI(DLY) Delayed state due to dly_tsk
WAI(DLY)-SUS Delayed state due to dly_tsk (suspended)
WAI(FLG) Waiting state for an eventflag

WAI(FLG)-SUS

Waiting state for an eventflag (suspended)

WAIL(FLG-TMO)

Waiting state for an eventflag

WAI(FLG-TMO)-SUS

Waiting state for an eventflag (suspended)

WAI(SEM)

Waiting state for a semaphore resource

WAI(SEM)-SUS

Waiting state for a semaphore resource (suspended)

WAI(SEM-TMO)

Waiting state for a semaphore resource with time-out

WAI(SEM-TMO)-SUS

Waiting state for a semaphore resource with time-out (suspended)

WAI(MBX)

Receiving waiting state for a mailbox

WAI(MMBX)-SUS

Receiving waiting state for a mailbox (suspended)

WAI(MBX-TMO)

Receiving waiting state for a mailbox with time-out

WAI(MMBX-TMO)-SUS

Receiving waiting state for a mailbox with time-out (suspended)

WAI(SDTQ)

Sending waiting state for a data queue

WAI(SDTQ)-SUS

Sending waiting state for a data queue (suspended)

WAI(SDTQ-TMO)

Sending waiting state for a data queue with time-out

WAI(SDTQ-TMO)-SUS

Sending waiting state for a data queue with time-out (suspended)

WAIRDTQ)

Receiving waiting state for a data queue

WAI(RDTQ)-SUS

Receiving waiting state for a data queue (suspended)

WAI(RDTQ-TMO)

Receiving waiting state for a data queue with time-out

WAIRDTQ-TMO)-SUS

Receiving waiting state for a data queue with time-out (suspended)

WAI(VSDTQ)

Sending waiting state for an extended data queue

WAI(VSDTQ)-SUS

Sending waiting state for an extended data queue (suspended)

WAI(VSDTQ-TMO)

Sending waiting state for an extended data queue with time-out

WAI(VSDTQ-TMO)-SUS

Sending waiting state for an extended data queue with time-out
(suspended)

WAI(VRDTQ)

Receiving waiting state for an extended data queue

WAI(VRDTQ)-SUS

Receiving waiting state for an extended data queue (suspended)

WAI(VRDTQ-TMO)

Receiving waiting state for an extended data queue with time-out

WAI(VRDTQ-TMO)-SUS

Receiving waiting state for an extended data queue with time-out
(suspended)

WAI(MPF) Waiting state for a fixed-sized memory block
WAI(MPF)-SUS Waiting state for a fixed-sized memory block (suspended)
WAI(MPF-TMO) Waiting state for a fixed-sized memory block with time-out

WAI(MMPF-TMO)-SUS

Waiting state for a fixed-sized memory block with time-out
(suspended)

WAI(SMBF) *

Sending waiting state for a message buffer

WAI(SMBF)-SUS *

Sending waiting state for a message buffer (suspended)

WAI(SMBF-TMO) *

Sending waiting state for a message buffer with time-out

WAI(SMBF-TMO)-SUS *

Sending waiting state for a message buffer with time-out (suspended)

WAI(RMBF) *

Receiving waiting state for a message buffer

WAI(RMBF)-SUS *

Receiving waiting state for a message buffer (suspended)

209

WAI(RMBF-TMO) * Receiving waiting state for a message buffer with time-out

WAIL(RMBF-TMO)-SUS * Receiving waiting state for a message buffer with time-out
(suspended)

WAIMTX) * Waiting state for a mutex

WAIMTX)-SUS * Waiting state for a mutex (suspended)

WAIMTX-TMO) * Waiting state for a mutex with time-out

WAIMTX-TMO)-SUS * Waiting state for a mutex with time-out (suspended)

*: The debugger for M32C doesn't support these states.
*: The debugger for M16C/R8C doesn't support these states.

e *2Display the Wait Cancellation Condition of Event Flag

Wifmode Status
TWF_ANDW Waits for all bits set in the wait bit pattern to be set (AND wait)
TWF_ORW Waits for any one bit set in the wait bit pattern to be set (OR wait)

210

6Windows/Dialogs

6.14.3 Display the Ready Queue Status

In the MR window, select Popup Menu - [Mode] -> [Ready Queuel.

MF

WiOP=duOFTHLcWEL

Current Bun Task:[1]1 {maind |Number of Priority:100
Pri | Rdyo
1 1(_wain|
2 2(taski)
o 13(taskl3)
10 16(_taskle)
15 17 taskl?)
20 18(_tasklg)
<] | 2

The following data is displayed in the status bar.

Current Fun Tagk:[1] € main |Num|:uer of Priarity:100

6.14.3.1 Display the Ready Queue Status(When the realtime OS is MRxx conformed to ulTRON
specifications V.3.0.)

The function of each item is as described below. (When the realtime OS is MRxx conformed to
ulTRON specifications V.3.0.)

Item Contents
Pri Displays priority
RdyQ Shows the ID Nos. and task names of tasks in the ready queue

Up to 8 characters of the task name is displayed in the RdyQ field. When the task
name exceeds 8 characters, the extra characters are omitted.

6.14.3.2 Display the Ready Queue Status(When the realtime OS is MRxx conformed to ulTRON
specifications V.4.0.)

The function of each item is as described below. (When the realtime OS is MRxx conformed to
ulTRON specifications V.4.0.)

Ttem

Contents

Pri

Displays priority

Ready Queue

Shows the ID Nos. and task names of tasks in the ready queue

Up to 8 characters of the task name is displayed in the Ready Queue field. When the
task name exceeds 8 characters, the extra characters are omitted.

211

6.14.4 Display the Timeout Queue Status

In the MR window, select Popup Menu - [Mode] -> [Timeout Queue].

MR,

wWioPe=@u OFTHEHL«VEEE

Value | ID [name |

TOFFH
TFOOH
TFOFH
TFFOH
TFFFH
TFFFH
TFFFH

21(taskz1) [dly]
24(taskz4) [dly]
22| task22) [dly]
23 _task23) [dly]
61 tasks) [dly]

T _task?) [dly] [=]

20 taskz0) [dly]

6.14.4.1 Display the Timeout Queue Status(When the realtime OS is MRxx conformed to ulTRON

specifications V.3.0.)

The function of each item is as described below.

Tasks waiting at present are displayed in the descending order of timeout value. (When the realtime
0OS is MRxx conformed to uITRON specifications V.3.0.)

Ttem Contents
Value Shows the timeout value of each task
ID(name) Shows the ID No. and task name of the tasks in the timeout queue

e Following character strings are used to indicate the type of wait state.

Character string Wait state

[slp] Wait due to tslp_tsk
[dly] Wait due to dly_tsk
[flg] Wait due to twai_flg
[sem] Wait due to twai_sem
[mbx] Wait due to trcv_msg

e When a task connected to the timeout queue is in the state of forced waiting (double
waiting), a string "[s]", which indicates double waiting, is appended to a string

displayed in the ID (name) field.

Normal display

26(_task26)

Display when in WAIT-SUSPEND

26(_task26)[s]

212

6Windows/Dialogs

6.14.4.2 Display the Timeout Queue Status(When the realtime OS is MRxx conformed to ulTRON

specifications V.4.0.)

The function of each item is as described below.
Tasks waiting at present are displayed in the descending order of timeout value. (When the realtime
08 is MRxx conformed to uITRON specifications V.4.0.)

Ttem Contents
Tmout Shows the timeout value (ms) of each task
ID(Name) Shows the ID No. and task name of the tasks in the timeout queue

e Following character strings are used to indicate the type of wait state.

Character string Wait state

[slp] Wait due to tslp_tsk
[dly] Wait due to dly_tsk
[flg] Wait due to twai_flg
[sem] Wait due to twai_sem
[mbx] Wait due to trev_mbx
[mpf] Wait due to tget_mpf
[sdtql Wait due to tsnd_dtq
[rdtq] Wait due to trev_dtq
[vsdtq] Wait due to vtsnd_dtq
[vrdtq] Wait due to vtrev_dtq
[smbf] * Wait due to tsnd_mbf
[rmbf] * Wait due to trev_mbf
[mtx] * Wait due to tloc_mtx

*: The debugger for M32C doesn't support these states.
*: The debugger for M16C/R8C doesn't support these states.

e When a task connected to the timeout queue is in the state of forced waiting (double
waiting), a string "[s]", which indicates double waiting, is appended to a string
displayed in the ID(Name) field.

Normal display

26(_task26)

Display when in WAIT-SUSPEND 26(_task26)[s]

213

6.14.5 Display the Event Flag Status
In the MR window, select Popup Menu - [Mode] -> [Event Flag].

MR x|
WO PHEDTHEHE - DEEE

| flg_ptnl flagd

0000H BI_tasks)
D000H

0000H 91 taskd) (=]
0000H

0000H

0000H

0000H

[« | H

=1 N e Wk

6.14.5.1 Display the Event Flag Status(When the realtime OS is MRxx conformed to ulTRON
specifications V.3.0.)

All the event flags defined in the configuration are listed in the order of ID number. The function of
each item is listed below. (When the realtime OS is MRxx conformed to ulTRON specifications V.3.0.)

Ttem Contents

1D ID No. of event flag

flg_ptn Bit pattern of each event flag

flagQ Task ID Nos. and task names in the event flag queue

e When a task connected to the event flag queue is in the state of waiting with timeout
enabled (waiting in twai_flg), a string "[tmo]", which indicates a state of waiting with
timeout enabled, is appended to a string displayed in the flag Q field.

When a task connected to the event flag queue is in the state of forced waiting (double
waiting), a string "[s]", which indicates double waiting, is appended to a string

displayed in the flag Q field.

Normal Display 26(_task26)

Display when in WAIT-SUSPEND 26(_task26)[s]

Display when in WAIT-SUSPEND with time out | 26(_task26)[tmol[s]

e Up to 8 characters can be displayed in the task name in the flag Q field.
If a task name exceeds 8 characters, the extra characters are omitted.

214

6Windows/Dialogs

6.14.5.2 Display the Event Flag Status(When the realtime OS is MRxx conformed to ulTRON
specifications V.4.0.)

All the event flags defined in the configuration are listed in the order of ID number. The function of
each item is listed below. (When the realtime OS is MRxx conformed to ulTRON specifications V.4.0.)

Ttem Contents

1D ID No. of event flag

Flgatr Attribute of each event flag

Flgptn Bit pattern of each event flag

Flag Queue Task ID Nos. and task names in the event flag queue

e The following are displayed in the Flgatr area:

TA_TFIFO Task wait queue is in FIFO order

TA_TPRI Task wait queue is in task priority order

TA_WSGL Only one task is allowed to be in the waiting state for the eventflag

TA_WMUL Multiple tasks are allowed to be in the waiting state for the eventflag

TA_CLR Eventflag's bit pattern is cleared when a task is released from the
waiting state for that eventflag

e When a task connected to the event flag queue is in the state of waiting with timeout
enabled (waiting in twai_flg), a string "[tmol", which indicates a state of waiting with
timeout enabled, is appended to a string displayed in the Flag Queue field.

When a task connected to the event flag queue is in the state of forced waiting (double
waiting), a string "[s]", which indicates double waiting, is appended to a string
displayed in the Flag Queue field.

Normal Display 26(_task26)

Display when in WAIT-SUSPEND 26(_task26)ls]

Display when in WAIT-SUSPEND with time out | 26(_task26)[tmo][s]

e Up to 8 characters can be displayed in the task name in the Flag Queue field.
If a task name exceeds 8 characters, the extra characters are omitted.

215

6.14.6 Display the Semaphore Status

In the MR window, select Popup Menu - [Mode] -> [Semaphore].

MR E3
WEOPmAHOTHO - HEE S
10 | Def cnt | count | semo

1 0000H 0000H 10(_taskl0y, 11(taskll)[=]
2 D0D003H 0003H
3 0D00sH 0003H
4 0005H 0005H
3 0007H 0007H
& OO00ZH 0002ZH
7 0003H 0003H

[« | H

6.14.6.1 Display the Semaphore Status(When the realtime OS is MRxx conformed to ulTRON
specifications V.3.0.)

All the SEMs defined in the configuration are listed in the order of ID number. The function of each
item is listed below. (When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)

Ttem Contents

1D ID No. of semaphore

Def_cnt Default value of semaphore counter

Count Semaphore count

semQ@ Task ID Nos. and task names in the semaphore queue

e When a task connected to the SEM queue is in the state of waiting with timeout

enabled (waiting in twai_sem), a string "[tmo]", which indicates a state of waiting with
timeout enabled, is appended to a string displayed in the semQ field.
When a task connected to the SEM queue is in the state of forced waiting (double
waiting), a string "[s]", which indicates double waiting, is appended to a string
displayed in the semQ field.

Normal Display 26(_task26)

Display when in WAIT-SUSPEND 26(_task26)ls]

Display when in WAIT-SUSPEND with time out 26(_task26)[tmo][s]

e Up to 8 characters can be displayed in the task name in the semQ field.
If a task name exceeds 8 characters, the extra characters are omitted.

216

6Windows/Dialogs

6.14.6.2 Display the Semaphore Status (When the realtime OS is MRxx conformed to uITRON

specifications V.4.0.)

All the SEMs defined in the configuration are listed in the order of ID number. The function of each
item is listed below. (When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

Ttem Contents

1D ID No. of semaphore
Sematr Attribute of each semaphore
Semcnt Semaphore count

Semaphore Queue

Task ID Nos. and task names in the semaphore queue

e The following are displayed in the Sematr area:

TA_TFIFO

Task wait queue is in FIFO order

TA_TPRI

Task wait queue is in task priority order

e When a task connected to the SEM queue is in the state of waiting with timeout
enabled (waiting in twai_sem), a string "[tmo]", which indicates a state of waiting with
timeout enabled, is appended to a string displayed in the Semaphore Queue field.
When a task connected to the SEM queue is in the state of forced waiting (double
waiting), a string "[s]", which indicates double waiting, is appended to a string
displayed in the Semaphore Queue field.

Normal Display 26(_task26)
Display when in WAIT-SUSPEND 26(_task26)[s]
Display when in WAIT-SUSPEND with time out | 26(_task26)[tmo]ls]

e Up to 8 characters can be displayed in the task name in the Semaphore Queue field.
If a task name exceeds 8 characters, the extra characters are omitted.

217

6.14.7 Display the Mailbox Status

In the MR window, select Popup Menu - [Mode] -> [Mailbox].

P

WEQP=HguOTHLO-OEE

ID

| Msg ent | MAIS of | WaitQueue (Message)

S I S i (R SO U I % Y

[« |

0O00H O00RH Task 1Z{ tasklZ)
O00ZH 0014H Msg 0033H, O055H
0O00H D00AH Task 13| taskl3)[s]
0O00H 003CH

0O00H O0ZZH

0O00H OOOFH

0O00H O0Z8H

6.14.7.1 Display the Mailbox Status (When the realtime OS is MRxx conformed to ulTRON
specifications V.3.0.)

All the mail boxes defined in the configuration are listed in the order of ID number. The function of
each item is listed below. (When the realtime OS is MRxx conformed to ulTRON specifications V.3.0.)

Ttem

Contents

ID

ID No. of mailbox

Msg _cnt

Number of messages in each mailbox

MAXmsg

Maximum number of messages that can be contained in each mailbox

Wait Queue(Message) The messages stored in the mailbox or ID No. and task name of tasks

waiting for messages

The WaitQueue (Message) field shows a string "Msg" when a message is stored (when
Msg_cont as described above is non-zero), and then displays the stored message.

When no message is stored (when Msg_cont is zero), the WaitQueue field displays a
string "Task" if a task waiting for a message exists, and then displays the ID number
and name of the task waiting for a message.

When a task connected to the mail box queue is in the state of waiting with timeout
enabled (waiting in trcv_msg), a string "[tmo]", which indicates the state of timeout
enabled, is appended to a string displayed in the WaitQueue (Message) field.

When a task connected to the mail box queue is in the state of forced waiting (Double
waiting), a string "[s]", which indicates the state of double waiting, is appended to a
string displayed in the WaitQueue (Message) field.

Normal Display 26(_task26)

Display when in WAIT-SUSPEND 26(_task26)ls]

Display when in WAIT-SUSPEND with time out | 26(_task26)[tmol[s]

Up to 8 characters can be displayed in the task name in the WaitQueue (Message) field.
If a task name exceeds 8 characters, the extra characters are omitted.

218

6Windows/Dialogs

6.14.7.2 Display the Mailbox Status (When the realtime OS is MRxx conformed to ulTRON

specifications V.4.0.)

All the mail boxes defined in the configuration are listed in the order of ID number. The function of
each item is listed below. (When the realtime OS is MRxx conformed to ulTRON specifications V.4.0.)

Ttem Contents
ID ID No. of mailbox
Mbxatr Attribute of each mailbox

Mailbox Queue (Wait)

ID No. and task name of tasks waiting for messages

Mailbox Queue (Message)

The messages stored in the mailbox

e The following are displayed in the Mbxatr area:

TA_TFIFO Task wait queue is in FIFO order
TA_TPRI Task wait queue is in task priority order
TA_MFIFO Message queue is in FIFO order
TA_MPRI

Message queue is in message priority order

e When a task connected to the mail box queue is in the state of waiting with timeout
enabled (waiting in trcv_mbx), a string "[tmo]", which indicates the state of timeout
enabled, is appended to a string displayed in the Mailbox Queue (Wait) field.

When a task connected to the mail box queue is in the state of forced waiting (Double waiting), a
string "[s]", which indicates the state of double waiting, is appended to a string displayed in the

Mailbox Queue (Wait) field.

Normal Display

26(_task26)

Display when in WAIT-SUSPEND

26(_task26)ls]

Display when in WAIT-SUSPEND with time out | 26(_task26)[tmo][s]

e Up to 8 characters can be displayed in the task name in the Mailbox Queue (Wait) field.
If a task name exceeds 8 characters, the extra characters are omitted.

219

6.14.8 Display the Data Queue Status

In the MR window, select Popup Menu - [Mode] -> [Data Queue].

MR x|
BEOPuHuOTHOCIBEY
ID | DEgate | DEcnt | DEgss | Data Queus (Wait) | Data Queus [Data)
[32]1 Ta_TFIFC O u] Send 23 (_teaskZ3d), 24| taskz4) [s], Z5
[32]2 Ta _TFIFO O u} Receive Z7(_taskiZ7), Z8(_taskid)[s],
[16]1 Ta TFIFD O u] Send 31(_task3l), 3Z(_taskii)[s], 33
[le]2 TA_TFRI u} u} Receive 35(_task3id), 36(_taskie)[s],
KN i

6.14.8.1 Display the Data Queue Status(When the realtime OS is MRxx conformed to uITRON
specifications V.4.0.)

All the data queues defined in the configuration are listed in the order of ID number. The function of
each item is listed below. (When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

Ttem Contents

ID ID No. of data queue

Dtqatr Attribute of each date queue

Dtent Number of messages in each data queue

Dtqgsz Maximum number of messages that can be contained in each data queue

Data Queue (Wait) ID No. and task name of tasks waiting for message transmission waiting
or message reception waiting

Data Queue (Data) The messages stored in the data queue

e The display of the ID field varies depending on which one is specified, the standard
data or the extended data.

MR100/4

- If the standard data(32 bits), the ID field displays a string "[32]" and data queue ID number.
- If the extended data(16 bits), the ID field displays a string "[16]" and data queue ID number.
MR308/4

- If the standard data(32 bits), the ID field displays a string "[32]" and data queue ID number.
- If the extended data(16 bits), the ID field displays a string "[16]" and data queue ID number.
MR30/4

- If the standard data(16 bits), the ID field displays a string "[16]" and data queue ID number.
- If the extended data(32 bits), the ID field displays a string "[32]" and data queue ID number.

220

6Windows/Dialogs

e The following are displayed in the Dtqatr area:

TA_TFIFO Task wait queue is in FIFO order

TA_TPRI Task wait queue is in task priority order

e The Data Queue (Wait) field displays a string "Send" if a task waiting for a message
sending, and then displays the ID number and name of the task waiting for a message
sending. Also, if a task waiting for a message receiving, displays a string "Receive" and
then displays the ID number and name of the task waiting for a message receiving.

e When a task connected to the date queue is in the state of waiting with timeout
enabled , a string "[tmo]", which indicates the state of timeout enabled, is appended to
a string displayed in the Data Queue (Wait) field.

When a task connected to the data queue is in the state of forced waiting (Double
waiting), a string "[s]", which indicates the state of double waiting, is appended to a
string displayed in the Data Queue (Wait) field.

Normal Display 26(_task26)

Display when in WAIT-SUSPEND 26(_task26)ls]

Display when in WAIT-SUSPEND with time out | 26(_task26)[tmol[s]

Up to 8 characters can be displayed in the task name in the Data Queue (Wait) field.
If a task name exceeds 8 characters, the extra characters are omitted.

221

6.14.9 Display the Cycle Handler Status
In the MR window, select Popup Menu - [Mode] -> [Cyclic Handler].

MR, | x]
WiOP=fHuOTHLcOEEE
I0 | Staiddr | (name) | interwal | count | Status | |
1 O0OF1cSeH (_cyolel) 0064H 0064H TCY _ON
2 O0F1C38H [_cyclel) O3EEH 03E8H TCY_OFF
3 O0F1ciaH [cycled) D1F4H 01F4H TCY ON
4 O0FI1CSCH [_cyoled) DZ58H QZ58H TCY_ON
53 O0FI1CSEH |_cyolel) 00c8H OOCEH TCY_OFF
& OF1CeDH [_cyclef) 01ZcH D1Z2CH TCY_ON
7 OF1c6ZH [cycled) 0190H 0190H TCY ON
8 O0Flced4H [_cyeoled) 015EH Q1SEH TCY _ON

6.14.9.1 Display the Cycle Handler Status(When the realtime OS is MRxx conformed to uITRON
specifications V.3.0.)

All the cycle handlers defined in the configuration are listed in the order of ID number. The function
of each item is listed below. (When the realtime OS is MRxx conformed to uITRON specifications
v.3.0.)

Ttem Contents

ID ID No. of cycle handler

StaAddr Starting address of cycle handler
(name) Name of cycle handler

interval Interrupt interval

count Interrupt count

Status Activity status of cycle start handler

e The following are displayed in the Status area:

TCY_ON Cycle handler enabled

TCY_OFF Cycle handler disabled

222

6Windows/Dialogs

6.14.9.2 Display the Cycle Handler Status(When the realtime OS is MRxx conformed to ulTRON
specifications V.4.0.)

All the cycle handlers defined in the configuration are listed in the order of ID number. The function
of each item is listed below. (When the realtime OS is MRxx conformed to uITRON specifications
V.4.0.)

Ttem Contents

1D ID No. of cycle handler

Name Name of cycle handler

Cycphs The activation phase (by the millisecond)

Cyctim The activation cycle time (by the millisecond)

Tmout The amount of time by the millisecond remaining before the cyclic
handler's next activation time

Status Activity status of cycle start handler

The following are displayed in the Status area:

TCYC_STA Cycle handler is in an operational state

TCYC_STP Cycle handler is in a non-operational state

223

6.14.10 Display the Alarm Handler Status

In the MR window, select Popup Menu - [Mode] -> [Alarm Handler].

MR x|
WEO P DTHO-OEEE

Remain Handler:? { Mow System Clock Gount = Q000HO000H:0134&H
ID | Staiddr | (name) | 2larmTime
2 O0F1CEBH |_alarmz) 0O000H : 0000H : ABCDH
B OF1C70H | alarmb) 0000H @ 1000H : 0O003H
1 OFI1C6EH [_alarml) Q000" : ABCDH : 1000H
7 OF1CTZH [_alarm7) 0o00pH @ 0013H =@ 1001H
3 O0FI1C6AH |_alarmi) 0OCDH @ 0003H =@ O003H
4 OF1cecH [alarmd) 00CDH : O0003H : 03533H
3 OFICEEH [_alarm3) 00CDH @ OAAZH : 0001H

When the realtime OS is MRxx conformed to uITRON specifications V.3.0, the following data is
displayed in the status bar.

Remain Handler:? © Mow System Clock Count = D000HO000HO184&H »

6.14.10.1 Display the Alarm Handler Status(When the realtime OS is MRxx conformed to ulTRON
specifications V.3.0.)

Of all the cycle start handlers defined in the configuration, only those which are not started yet at
present are listed in the ascending order of start time. The function of each item is listed below.
(When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)

Item Contents

ID ID No. of alarm handler

StaAddr Starting address of alarm handler
(name) Name of alarm handler
AlarmTime Starting time of alarm handler

6.14.10.2 Display the Alarm Handler Status(When the realtime OS is MRxx conformed to ulTRON
specifications V.4.0.)

Of all the cycle start handlers defined in the configuration, only those which are not started yet at
present are listed in the ascending order of start time. The function of each item is listed below.
(When the realtime OS is MRxx conformed to ulTRON specifications V.4.0.)

Ttem Contents

ID ID No. of alarm handler

Name Name of alarm handler

Almtim The amount of time by the millisecond remaining before the alarm
handler's activation time

Status Activity status of alarm handler

The following are displayed in the Status area:

TALM_STA Alarm handler is in an operational state

TALM_STP Alarm handler is in a non-operational state

224

6Windows/Dialogs

6.14.11 Display the Memory Pool Status

In the MR window, select Popup Menu - [Mode] -> [Memory Pooll.

MR, | x]
WiOP=fHUOTHEHLcWEEE
ID | Baseaddr | BElk size | Total Elk cnt | Free Blk cnt (map)
[F]1 O007VEZH a0 4 2 [1100)
[F]Z O00BFZH 10 10 9 [--—— 1111111110}
[F]3 O00956H 30 16 15 (11111111111111104
[VI1({1l) OO18EcH 24 - 1
1(Z) 000000H 56 -]
1(3) 000000H 1zo -]
1(4) 0O01A96H 248 - 6
<] | 2

6.14.11.1 Display the Memory Pool Status(When the realtime OS is MRxx conformed to uITRON
specifications V.3.0.)

All the memory pools defined in the configuration are listed in the order of ID number. (The fixed
length data comes first, and the optional length data comes after the fixed length data.) The function
of each item is listed below. (When the realtime OS is MRxx conformed to uITRON specifications
v.3.0.)

Ttem Contents

ID ID No. of memory pool

BaseAddr Base address of memory pool

Blk_Size Block size of memory pool

Total Blk_cnt Tot a I block count of memory pool

Free Blk_cnt(map) Number of unused blocks and information on unused memory blocks
(bit information)

e The display of the ID field varies depending on which one is specified, fixed length or
optional length.

- If the data is of fixed length, the ID field displays a string "[F]" and memory pool ID number.

- For an arbitrary length, the contents displayed on the first line are the character string "[V]

memory pool ID number, and a block ID number. Displayed on the second to fourth lines are

," a
the memory pool ID and block ID numbers. The block ID numbers are enclosed in parentheses.
e When specifying the optional length memory pool, "--" is displayed in the Total Mlk_cut
field.
No bit information is displayed in the Free Blk_cnt (map) field.

e When specifying the fixed-length memory pool, the display format of each bit in the
memory block information in Free Blk_cnt (map) is as shown below:

item Contents

'0' Memory block in use (busy)

"1 Memory block not in use (ready)
- No memory block

225

6.14.11.2 Display the Memory Pool Status(When the realtime OS is MRxx conformed to ulTRON

specifications V.4.0.)

All the memory pools are listed in the order of ID number. The function of each item is listed below.
(When the realtime OS is MRxx conformed to ulTRON specifications V.4.0.)

Ttem Contents

1D ID No. of memory pool

Mplatr Attribute of each memory pool

Mpladr Base address of memory pool

Mplsz Size of memory pool

Blkent Total block count of fixed length memory pool
Fblkent

Number of unused blocks and information on unused memory blocks

Memory Pool Queue

Displays the ID number and name of tasks waiting in the memory

pool.

e The following are displayed in the Mplatr area:

TA_TFIFO

Task wait queue is in FIFO order

TA_TPRI

Task wait queue is in task priority order

e The display of the ID field varies depending on which one is specified, fixed length or

optional length.

- If the data is of fixed length, the ID field displays a string "[F]" and memory pool ID number.

- For an arbitrary length, the contents displayed on the first line are the character string "[V]," a
memory pool ID number, and a block ID number. Displayed on the second to fourth lines are
the memory pool ID and block ID numbers. The block ID numbers are enclosed in parentheses.

226

6Windows/Dialogs

6.14.12 Display the Task Context

6.14.12.1 Display the Task Context

In the MR window, select Popup Menu - [Context...].

The Context dialog box is opened. The Context dialog box is used to reference/specify the context
information of the specified task.

You can also open the Context dialog box by double-clicking the data display area in the task state
display mode .

Cortext

Task ID: 14 Oy Set.
Context:

Task ID = 14 taskld |
Status = WAI([SEM)

Priority = 15

PC: FFZ8EB3

RO: 0000

El: 0001

RZ: 0000

R3: 0014 b
AQ: 000001

Al: 0OO000O5C

SB: DDO40E hd

Cloge I

Enter the task ID number in the Task ID field and click the View button (or press the Enter key).
The context of the specified task appears in the Context field.

e If the task entered in the Task ID field is "RUN" or "DMT" when clicking the View
button, the context is not displayed. (In the Context field, only the task ID and task
state are displayed.)

e If a task ID number which does not exist is entered in the Task ID field when clicking
the View button, an error occurs.

227

6.14.12.2 Change the task context

Enter the task ID number in the Task ID field in the Context dialog and click the Set button. The Set
Context dialog is opened.
The Set Context dialog is used to set the specified context register value of the specified task.

Task ID = 14
Reeister: Ip;| LI
Walue: |-| 234

(0] 4 I Cancel I

Specify the register to be changed in the Register field list box and enter the value to be set in the
"Value:" field.

If an expression description set in the "Value:" field is wrong, or if the specified value is outside the
allowable range set for the specified register, an error occurs.

228

6Windows/Dialogs

6.15 MR Trace Window

The MR Trace window measures the task execution history of a program using the real time OS and
displays the result graphically.

The debugger for R32C doesn't support this function.

The debugger for 740 doesn't support this function.

In addition to the task execution history, a history of various other operations each are traced and
displayed, including interrupt processing, task state transition, and system call issuance.

This window is available only when a target program which uses our real time OS (MRxx) is
downloaded.

For MR30
e For MR30, this window is available for V. 2.00 or later version. If a target program
created on MR30 V. 1.00 is downloaded, the MR Trace window will not function and
not display any data.

For MR308
e The history of the high-speed interrupt can not record and display.

8- MR Trace
FEHODERa vy oy B
Mark: 00" 0000020160 ~ 0070000131908 = 00"00'00:111.749 [Indicator: 00" 0000052734 [Scale: * 2401435 [Grid 00" 0000052332 |Area Eraak
VEC | table | ID Iname) il 1 2 3 4 |
32 | OFFDE0 | SYSCALLO) ; . i
32 | OFFDE4 [S¥SCALLL)
38 | OFFDI3 | SYSCALLI)
Idle [o}
1| [taski) [o}
2z [taskZ)
3| | task3) [
4| | taskd) o
5| | tasks) o)
Tnknown |-
2l '

The content of each item is as follows.

Ttems Contents

VEC*1 Indicates a software interrupt number.

table Indicates the interrupt vector table number.

1D Indicates a task ID number.

(name) Indicates an interrupt routine name, task name, idle processing
(display "idle"), and unknown name(displayed "unknown").

229

When moving the mouse to the information displayed in the window, the pop up window as below is
opened, showing the detailed information.

Interrupt handling or task execution history

ID=0" & {_fask3)
begin:00"00°00:003.005
end:00700°00:005.015
{end—begin):00"00°00:000.007

System call issue history

rov_msg

mbxid=0"1

E OK
pk_msgiR1)=H"1234
pk_msg(R2)=H"54678
beqin:007 00" 00:002.841

Task state transition history

WATIMBR)
begin:00"00°00:002.860
end:00700°00:005. 147
lend-begin}:00”00"00:000. 284

Following information is displayed in the status bar.
e Time value at which start marker is positioned
e Time value at which end marker is positioned
¢ Time width of a range indicated by start and end markers
e Time value at which indicator is positioned
e Scale factor of display
¢ Time width of grid line interval
¢ Range of measurement (trace) result

The grid lines are displayed using the start marker as the radix point.

The grid lines are displayed using the start marker as the radix point. The scale is displayed, using
the time at which the start marker is positioned as 0, with the left (forward in time) set to "minus"
and the right (backward in time) set to "plus".

The grid lines allow you to roughly understand the interrupt occurrence cycle and process time.

The interval time width of the displayed grid lines appears in the "Grid" area of the status bar.

The time value in the MR Trace window means the execution elapsed time using the program
execution start time as O in all the cases. On the contrary, the numeric value above the grid lines
(scale) in the MR Trace window is a relative value using the start marker as 0 (the grid interval is
specified in the Value dialog).

It has nothing to do with the time value. (This is provided so that you can see the window easily.)

Note

The software interrupt number*1 is different according to product. For details about which interrupt
number is assigned to which system call, refer to the MRxx Reference Manual, "Assemble Language
Interface."

230

6Windows/Dialogs

6.15.1 Extended Menus

This window has the following popup menus that can be brought up by right-clicking in the window.

Menu Function

Start Marker Move the start marker in the display area.

End Marker Move the end marker in the display area.

Indicator Move the indicator in the display area.

Adjust Adjust range of start and end marker to full width of display
area Adjust.

Expand Expand scale factor of display.

Reduce Reduce scale factor of display.

Trace Stop Stop measuring.

Trace Restart

Restarts measuring.

Search...

Search for history of system calls.

Trace Range After Set measurement range condition to After.
Break Set measurement range condition to Break.

Value... Set value.

Color... Change display color.

Init Order... Reset the task order on the display.

Toolbar display

Display toolbar.

Customize toolbar...

Open toolbar customize dialog box.

Allow Docking

Allow window docking.

Hide

Hide window.

231

6.15.2 Refer the Execution History of Task(MRxx Window)

You can reference the task execution history in the MR Trace window. You can reference the
execution history statistical processing result in the MR Analyze window. These windows are
available for a target program using our real time OS (MRxx).

6.15.2.1 Select the Trace Range

To measure the task execution history, the real time trace function is used. Click the "After" button
(or, select Menu - [Trace Range] ->[After]) or "Break" button (or, select Menu - [Trace Range] ->
[Break]) in the MR Trace window.

After Stores the cycles of trace data after the trace point.

Break Stores the cycles to the point at which the trace point is passed.

Execute the target program. Record the information required to know the task execution history in
the trace memory.

ATTENTION
A trace point set in the Trace Point Setting dialog is disabled.

6.15.2.2 Stop the Task Execution History Measurement

Click the "Stop" button in the Task Trace window. (Or, select Menu - [Trace Stopl.) The measurement
results so far are displayed in the MR Trace window.

6.15.2.3 Restart the Task Execution History Measurement

Click the "Restart” button in the Task Trace window. (Or, select Menu - [Trace Restart].) When
restarting the trace measurement, all the measurement results so far are deleted.

232

6Windows/Dialogs

6.15.2.4 Refer the Execution History of Task

You can reference the task execution transition in the MR Trace window.

o MR Trace

FEME& & el b

Ev BHdno

Mark: 007 00°00:020.160 - 00°00'00:131.909 = 00700°00:111.749 |Indicator: 00700'00:052.734 |Scale: # 2401435 |Grid: 0070000:032.832 | Area: Break

VEC | table | 1D | (name) 0 1 2 3 E |
32 | OFEDEO | sYscATLO) " : ;
33 | OFFDE4 [ST¥SCALLI)

38 | OFED98 [SI¥SCALLZ)
Idle o}
1| (taski) o)
Z [taskZ)
3 | [task3) o)
4 | [taskd) o)
5 | [_tasks) o)
Tnknown |-
21 '

By moving the mouse to any information displayed in the window, the following window is opened,
showing the detailed information.

Interrupt handling or task execution history

System call issue history

Task state transition history

ID=0" & {_fask3)
begin:00"00°00:003.005
end:00700°00:005.015
{end—begin):00"00°00:000.007

rcy_msg
mbxid=0"1

8 R
pk_msq(R

[
el
= |
3
=
=
H
=
3
=
=
=
=
ra
f'n)
-
=

WATIMBR)
begin:00"00°00:002.860
end:00700°00:005. 147
lend-begin}:00”00"00:000. 284

233

6.1524.1 Search the History of System Call Issue
Click the "Search" button in the tool bar. The Search dialog is opened. (Or, select Menu - [Search ...].)

]|

Parameter: Feturn Parameter:

— RO{Errar Code?

= S
u EOBJ

— RO{Function Coded

ECOVR
S
~R1 R
re: rer:[
~R2 ~R2
il e I ol " E—
—R3 ~Ra

rel |re

— A0{0bject IO
[AD:

Direction
’7 * Forward " Backward

Find Mext I Cloge |

Specify the search condition.

With the function code (R0O: Function Code) and error code (RO: Error Code), you can specify multiple
values (OR condition). Other items are searched based on the AND condition.

Then, specify the search direction. The debugger searches the items in the direction specified in the
dialog, using the position pointed by the indicator as the radix point.

When the debugger does not check all the search items, the subsequent system call issuance history
in the search direction will be a search result. Click the Find Next button. The debugger searches the
system call issuance history corresponding to the specified condition. The specified items are searched
using the AND condition.

If the search condition is met, the indicator is moved to that point.

234

6Windows/Dialogs

615242 Change the display magnification
Click the "Expand" button or "Reduce" button in the tool bar. (Or, select Menu - [Expand] or

[Reducel.)

The display is expanded or reduced using the left corner of the graph area as the radix point. By
default, the display is expanded or reduced with display scale of 1.5.

The display scale appears in the "Scale:*" field in the status bar.

The default expansion/reduction scale is 1.5. To change the scale, select Menu - [Value ...].
The Value dialog is opened. Specify the display expansion/reduction scale.

—Grid Time

|EI h |D m |EI = |32 mz |832 uz
— Rate

Expand: 1.500000 Reduce: I'I A0ooon

i Cancel |

6.15.24.3 Change the grid line display interval
Select Menu - [Value ...]. The Value dialog is opened. Specify the display time interval.

—Grid Time

Jo h |0 m 0 s |32 ms [332 Uz
— Rate

Expand: 1.500000 Reduce: I'I A00oo0

Cance| |

235

6.15.24.4 Change the task display order
Drag the task/interrupt routine to be moved (the left portion of the graph) to the destination.

MR Trace

FEHODERa vy oy B
Mark: 00°00'00:020.160 - 00°00'00:121.909 = 007 0000:111.740 [Indicatar: 00"00'00:052.734 [Scale: * 2401435 [Grid: 00" 0000032832 |Area: Ereak
VEC | table | ID Iname) il 1 2 3 4 |
3Z | OFFDE0O [SYSCALLAOY f-------p--- T T .
33 | OFFD84 | s¥scALLl) f-------f---
38 | OFFDI8 | SYSCALLZ) f-------f---
Idle [
4| [taskd) [o}
Tnknown I ----------
1| [_tasklj o
2 [taska)
5| [task5) o}
3| [task3) o} ; | ;
A ' -

To initialize the display order, select Menu - [Init Order].

6.15.24.6. Display the specific task only
Click the task/interrupt routine to be hidden (the left portion of the graph). Every time you click, the
setting is switched between "Display" and "Hide".

6.1524.6. Change the display color

Select Menu - [Color...]. The Color dialog is opened.

Click the button corresponding to the desired item. The Color Setting dialog is opened. Change the
display color in the dialog.

236

6Windows/Dialogs

6.15.2.5 Measure the Execution Time of Task

You can measure the execution time between the markers by changing the positions of start marker
and end marker in the MR Trace window.

- MR Trace

EOD B ey BIo
Mark: 00"00'00:078.808 - 00"00'00:131.909 = 007 00'00:053.101 |Indicator: 00" 00'00:184.063 |Scale: * 2401435 |Grid: 00" 00'00:032.832 |P|rea: Break
VEC | table ID [name | -1 u] 1 2
37 | orEDEO | =YScALLO) . . .
32 | OFEDS4 { S¥YSCALLL)
38 | OFFDOE | SYSCATLZ)
Idle
4 | | task4)
Tnknomwn
[taskl)

taska)
taski)]
taskd) .

o n |

n N

Drag the start marker position and end marker position.
The time interval between the markers is displayed in the status bar.

Note

[Definition of time value in the MR Trace window]

The time value in the MR Trace window indicates the execution elapsed time which sets the program
execution start point to 0 in all the cases.

On the contrary, a numeric value above the grid line (scale) in the MR Trace window is a relative
value which sets the start marker to 0 (the grid interval is specified in the Value dialog), which has
nothing to do with the time value. (It is provided so that you can see the window easily.)

6.156256.1 Move the Marker
Each marker can be moved by dragging. When moving the mouse on the marker, the cursor shape
changes. Then, start dragging.

The start marker moves into the window (left portion) by clicking the "Start Marker" button in the
tool bar. (Or, select Menu - [Start Marker].)
The end marker moves into the window (right portion) by clicking the "End Marker" button. (Or,
select Menu - [End Marker].)
The indicator moves into the window (center) by clicking the "Indicator" button. (Or, select Menu -
[Indicator].)
The other markers can move only to the specified positions listed below.

e Position to which the interrupt processing or task execution transits

e Position to which the task state transits

e Position where the system call issuance history is displayed

237

6.16 MR Analyze Window

The MR Analyze window displays the result of the measurement data statistically analyzed within
the range specified by the start marker and the end marker in the MR Trace window.

The debugger for R32C doesn't support this function.

The debugger for 740 doesn't support this function.

The MR Analyze window supports three display mode as below:
e CPU occupation state by interrupt/task
e Ready time by task
e List of system call issuance histories (You can extract and display the history based on
the specific condition.)

The MR Analyze window functions together with the MR Trace window.
This window is available only when a target program using our real time OS (MRxx) is downloaded.

6.16.1 Configuration of CPU Occupancy Status Display Mode

The CPU occupation state display mode is used to display the CPU occupation time and ratio by
interrupt/task.

The MR Trace window shows the statistical results within the range specified by the start marker
and end marker.

EEAIE
Mark: 00700'00:000.335 - 00*0000:164.498 = 00° 00'00:164.163
VEC | table D [name) Hum Max Bun Time Min Bun Time Avg Bun Tiwme Total Run Time Fatic% 0 25 50 75 lth
32 | OFFDAD [SYSCALLOY 17| 00700 '00:000.033 | 00700 '00:000.013 | 00700 '00:000.022 | 00700 '00:000.378 0.23 H H H
323 | OEFDE4 [S¥SCALLLY 5| 00700 '00:000.020 | 00700 '00:000.019 | 00700 '00:000.019 | 00700 '00: 000, 039 0.0
38 | OFFD98 [SYSCALLI) 3| 00"00'00:000.028 | OO"00'00:000.028 | 00"00'00:000.028 | 00700 '00:000.084 0.05
Idle 6| DO"00'00:000.017 | 00700 '00:000.002 | 00700 '00:000.006 | 00700 '00:000.036 0.02
1| (_taskl) 11| 00”00 '00:014.003 | 00700 '00:000.001 | 00700 '00:008.957 | 00700 '00:038. 528 60.02
2| [taska) 3| 00700 '00:013.003 | 00700 '00:000.001 | 00700 '00:008. 669 | 00700 '00: 02 6. 003 15.684 mm
3| [_task3d) 2| 00700 '00:013.006 | 00700 '00:000.003 | 00700 '00:006. 504 | 00700 '00:013 . 009 7.0z =
4| [taskd) 2| 00"00'00:013.003 | 00700 '00:000.001 | 00700 '00:006. 502 | 00700 '00:013.005 7.0: m
S| [_tasko) 2| 00700 '00:013.007 | 00700 '00:000.003 | 00700 '00:006. 505 | 00700 '00:013.011 7.02 m
nknonmn 0| 00"00'00:000.000 | 00"00'00:000.000 | 00"00'00:000.000 | 00700 '00:000. 000 0.00

By clicking the maximum execution time/minimum execution time display area of each line, you can
search interrupt to the clicked line or process history at the maximum/minimum execution time of the
task.

The search result is pointed by the indicator which moves to the target position in the MR Trace
window.

238

6Windows/Dialogs

6.16.2 Configuration of Ready State Duration Display Mode

The ready state time display mode by task is used to display the results generated from statistical
process of the time required from execution ready to transition to execution by task.

The statistical result is displayed within the range specified by the start marker and end marker in
the MR Trace window.

- MR Ar
BRI
Mark: 00" 00'00:000.335 — 007 00'00:164.498 = 00" 00'00:164.163
ID [name) Hurm Plax Min Aoy
1| | taskl) 11 | DOMO0'00:013.06% | O0"00'D0:000. 013 | 00™00'00:005.5961
Z | | taskz) 3 | 00'00'00:000,.080 | D000 '00: 000,008 | 0O0™00'00:000. 032
3| | task3) Z | 00"00'00:000,.083 | DO0™00'00:000.013 | 0O0™00'00:000. 048
4 | | task4) Z | 00'00'00:000.093 | 0000 '00: 000,009 | 0000 '"00: 000,051
5 | | taski) Z | 00'00'00:000.098 | 0000 '00:000.012 | 0O0™00'00:000.056

By clicking the maximum ready time/minimum ready time display area of the desired line, you can
search the process history of the maximum ready time/minimum ready time of the task corresponding
to the clicked line.

The search result is pointed by the indicator which moves to the target position in the MR Trace
window.

6.16.3 Configuration of System Call History Display Mode

The system call issuance history list mode is used to list the system calls issued.

The system call issuance history is listed within the range specified by the start marker and end
marker in the MR Trace window.

The number indicates a numeric value counted from the top system call within the measurable range.

=lh Yk
Mark: 00%00'00:000.335 - 00700001 64.493 = 007000164163

No | 8ystem Call | Parameter Beturn Parameter TIME -
7 wai flog Wimode=H'S waiptn=H'l flgid=D'l | E oK flgptn=H'l oo"o0'o0:000m,. 501

8 wWai sem sewid=D'1 E 0K o0"oo0'o0:0om. 533

=] ECW_mSg) mhxid=D'1 E 0K pk msg(Rl)=H'1234 pk | 00700'00:000.565

10 | wup tsk tekid=D'2 E OK 00"oo'00:000. 554

11 | slp tsk E 0K 0oroo'00:013. 620

12 | rsm tsk tskid=D'2 E OBJ ooroo'o0:020. 147

13 | set flg setptrn=H'l flgdid=D'1l E 0K ooroo'00:033. 163

14 | wai flg wimode=H'3 waiptn=H'l flgid=D'l | ercd=227 flgptn=2727 oo"o0'oo: 046,203 -J
15 | rsm tsk tskid=D'3 E OEJ 0o"oo'00:052. 734

16 | 5ig sem semid=D"'1 E OK oo"o0'o0:065. 75l

17 | wai sem semid=D'1 ercd=2727 oo"oo'o0:0v7se. 780

18 | rsm tsk tekid=D'4 E OBJ ooroo'00:085.310

19 | snd mag pk meg(R1)=H'5678 pk msg(R3j=H'li E OK ooro0'oo:098,327

20 | Eow msg rbxid=D"'1 ercd=2722 pk msg(R1)=272 pk 007"00'00:111.362 |«

==\

By clicking the desired line, you can search the system call issuance history to the clicked line.
The search result is pointed by the indicator which moves to the target position in the MR Trace
window.

239

6.16.4 Extended Menus

This window has the following popup menus that can be brought up by right-clicking in the window.

Menu Function

Run Time CPU occupancy status display mode.
Rdy->Run Ready state duration display mode.

System Call System call history display mode.

Pick Up System Call... Extract specified system calls display mode.
Toolbar display Display toolbar.

Customize toolbar... Open toolbar customize dialog box.

Allow Docking Allow window docking.

Hide Hide window.

6.16.5 Analyze the Execution History of Task

6.16.5.1 Analyze the Execution History of Task

You can reference the execution history statistical processing in the MR Analyze window. The MR
Analyze window functions together with the MR Trace window. If the MR Trace window is not open,
or the MR Trace window does not show any data, the MR Analyze window will not function.

The execution history statistical processing function allows you to reference the following topics.

6.1656.1.1. Refer the CPU Occupation State
Click the Run Time button in the tool bar. (Or, select Menu - [Run Time].) The MR Analyze window
changes to the CPU occupation state display mode.

Mark: 00700'00:000.335 - 00*0000:164.498 = 00° 00'00:164.163

VEC | table D [name) Hum Max Bun Time Min Bun Time Avg Bun Tiwme Total Run Time Fatic% 0 25 50 75 lth
32 | OFFDAD [SYSCALLOY 17| 00700 '00:000.033 | 00700 '00:000.013 | 00700 '00:000.022 | 00700 '00:000.378 0.23 H H H
323 | OEFDE4 [S¥SCALLLY 5| 00700 '00:000.020 | 00700 '00:000.019 | 00700 '00:000.019 | 00700 '00: 000, 039 0.0
38 | OFFD98 [SYSCALLI) 3| 00"00'00:000.028 | OO"00'00:000.028 | 00"00'00:000.028 | 00700 '00:000.084 0.05

Idle 6| DO"00'00:000.017 | 00700 '00:000.002 | 00700 '00:000.006 | 00700 '00:000.036 0.02
1| (_taskl) 11| 00”00 '00:014.003 | 00700 '00:000.001 | 00700 '00:008.957 | 00700 '00:038. 528 60.02
2| [taska) 3| 00700 '00:013.003 | 00700 '00:000.001 | 00700 '00:008. 669 | 00700 '00: 02 6. 003 15.684 mm
3| [_task3d) 2| 00700 '00:013.006 | 00700 '00:000.003 | 00700 '00:006. 504 | 00700 '00:013 . 009 7.0z =
4| [taskd) 2| 00"00'00:013.003 | 00700 '00:000.001 | 00700 '00:006. 502 | 00700 '00:013.005 7.0: m
S| [_tasko) 2| 00700 '00:013.007 | 00700 '00:000.003 | 00700 '00:006. 505 | 00700 '00:013.011 7.02 m
nknonmn 0| 00"00'00:000.000 | 00"00'00:000.000 | 00"00'00:000.000 | 00700 '00:000. 000 0.00

The window shows the CPU occupation time and ratio by interrupt processing and by task.
The data displayed is the statistical results for the range specified with the start marker and end
marker in the MR Trace window.

By clicking the maximum execution time/minimum execution time display field of each line, you can
search the processing history at the maximum execution time/minimum execution time of the task
corresponding to the clicked line.

The search result is pointed by the indicator in the MR Trace window after the indicator moves to the
destination position.

240

6Windows/Dialogs

6.16.5.2 Refer the Ready Queue Time

Click the Ready->Run button in the tool bar. (Or, select Menu - [Rdy -> Runl.)

BRI
Mark: 00" 00'00:000.335 — 007 00'00:164.498 = 00" 00'00:164.163

ID [name) Hurm Plax Min Aoy
1| | taskl) 11 | DOMO0'00:013.06% | O0"00'D0:000. 013 | 00™00'00:005.5961
Z | | taskz) 3 | 00'00'00:000,.080 | D000 '00: 000,008 | 0O0™00'00:000. 032
3| | task3) Z | 00"00'00:000,.083 | DO0™00'00:000.013 | 0O0™00'00:000. 048
4 | | task4) Z | 00'00'00:000.093 | 0000 '00: 000,009 | 0000 '"00: 000,051
5 | | taski) Z | 00'00'00:000.098 | 0000 '00:000.012 | 0O0™00'00:000.056

The time required from execution ready state to transition to execution state by task is processed
statistically and displayed.

The data displayed is the statistical results of the range specified with the start marker and end
marker in the MR Trace window.

By clicking the maximum ready time/minimum ready time display field of each line, you can search
the processing history at the maximum ready time/minimum ready time of the task corresponding to
the clicked line.

The search result is pointed by the indicator in the MR Trace window after the indicator moves to the
destination position.

6.16.5.3 Refer the System Call Issuance History

Click the "System Call" button in the tool bar. (Or, select Menu - [System Call].)

=l Yk
Mark: 0070000000335 - 00°00'00:1 64.498 = 007 00'00:164.163

No | System Call | Farameter Return FParameter TIME <
7 wai flg wimode=H'3 waiptn=H'l flgid=D'l | E oK flgptn=H'l oo"o0'oo:000m, 501

a8 Wai sem semid=D'1 E 0K oo"o0'o0: 000, 533

g ECV Mg mbxid=D"1 E OE pk mag(R1)=H'1234 pk | 00"00'00:000.565

10 | wup tsk tekid=D'3 E OK 00"oo'00:000. 554

11 | slp tsk E OK 0oroo'00:013. 620

12/ | rsm tsk tekid=D'2 E OBJ ooroo'00:020. 147

13 | set flg setptn=H'l flgid=D'1l E OK 00roo'00:033. 163

14 | wai flg wimode=H'3 waiptn=H'l {flgid=D'l | ered=237 flgptn=237 oo"oo'on: 046, 203 —I
15 | rsm tsk tskid=D'3 E OBJ ooroo'00:052. 734

16 | sig sem semid=D'1l E 0K oo"oo'o0:065. 751

17 | wai sem semid=D'1 erocd=222 oo"oo'o0:0ve. 780

18 | rsm tsk tskid=D'4 E OEJ oo"oo'00:085.310

19 | snd msg, pk msg(R1)=H'5678 pk msg(R3Ij=H'lZ E OK ooro0'oo:098.327

20 | rev msg mbxid=D"1 ercd=222 pk msg(R1)=222 pk O00700'00:111.362 -

The issued system calls are listed in chronological order of system call.
The data displayed is the statistical results for the range specified with the start marker and end
marker in the MR Trace window.

By clicking each line, you can search the system call issuance history corresponding to the clicked line.
The search result is pointed by the indicator in the MR Trace window after the indicator moves to the
destination position.

241

6.16.5.3.1. Extract the Issuance History

Click the "Pick Up" button in the tool bar. (Or, select Menu - [Pick Up System Call...].)

The dialog shown below is opened. Specify the search condition of the system call to be extracted and
displayed.

MR System Call Pick Up
Parameter: Feturn Parameter:
— RO{Function Code) — R0{Error Codel
. [Eor
LR m EQBJ
E_CIOWE,
E TMOUT
==1RT
—R1 —R1
[Ri: I [Rl I
—R2 — Rz
—R3 —Ra3
— B00kject 100
[AD:

K I Cancel |

Extract the issuance history of the system call which meets the specified condition and display it.

242

6Windows/Dialogs

6.17 Task Trace Window

The Task Trace window measures the task execution history of a program using the real time OS and
display it graphically.

This window is available even when a target program using an OS other than our real time OS
(MRxx) is downloaded.

The debugger for R32C doesn't support this function.
The debugger for 740 doesn't support this function.

ace
EAOR&a vy 6w
Matk: 00" 00'00:000.442 - 00"00'01:347.056 = 00°00'01:846612 |Indicator: 00"00'00:540.805 |Scale: * £.939931 |Grid: 00 00'01:850.572 |P.rea: Break
ID [name) [u}
O || f======== !
1 [D AHCE ENT)
Z | [taskZ)
3| [task3)
4 | [taskd)
5| [taski)
6 | [taskb)
T | [taskT)
2 | [taszks)
Q| [taskd)
10 | [tasklO)
227 | Unknown
2

The content of each item is as follows.

Items Contents

1D Indicates a task ID number.

(name) Indicates an interrupt routine name, task name, idle processing (display "idle"),
and unknown name(displayed "unknown").

When moving the mouse to the information displayed in the window, the pop up window as below is
opened, showing the detailed information.

ID=0' 7 [_task7)
begin:00"00'00:722.055
end:00™00'00: 753 .3205
{end-begin) :00"00'00:031.250

The following information is displayed in the status bar.

e Time value at the start marker position

e Time value at the end marker position

e Time interval between the start marker and the end marker
e Time value at the indicator position

e Display scale

e Time width at grid line interval

e Measurement (trace) range

243

The grid lines are displayed using the start marker as the radix point.

The scale is displayed, using the time at which the start marker is positioned as 0, with the left
(forward in time) set to "minus" and the right (backward in time) set to "plus".

The grid lines allow you to roughly understand the interrupt occurrence cycle and process time.

The interval time width of the displayed grid lines appears in the "Grid" area of the status bar.

The time value in the Task Trace window means the execution elapsed time using the program
execution start time as 0 in all the cases.

On the contrary, the numeric value above the grid lines (scale) in the Task Trace window is a relative
value using the start marker as 0 (the grid interval is specified in the Value dialog). It has nothing to
do with the time value. (This is provided so that you can see the window easily.)

6.17.1 Extended Menus

This window has the following popup menus that can be brought up by right-clicking in the window.

Menu Function

Start Marker Move the start marker in the display area.

End Marker Move the end marker in the display area.

Indicator Move the indicator in the display area.

Adjust Adjust range of start and end marker to full width of display area
Adjust.

Expand Increase scale factor of display.

Reduce Decrease scale factor of display.

Trace Stop Stop measuring.

Trace Restart

Restarts measuring.

Trace Range After Set measurement range condition to After.
Break Set measurement range condition to Break.

Value... Set value.

Color... Change display color.

RTOS... Set target RTOS information.

Toolbar display

Displays the toolbar.

Customize toolbar...

Opens the toolbar customize dialog box.

Allow Docking

Allows the window docking.

Hide

Hides the window.

244

6Windows/Dialogs

6.17.2 Refer the Execution History of Task(Taskxx Window)

You can reference the task execution history in the Task Trace window.

You can reference the execution history statistical processing result in the Task Analyze window.
These windows are also available for a target program using an OS other than our real time OS
(MRxx).

6.17.2.1 Prepare the Measurement

To measure the task execution history of the program using the real time OS, you must select the
trace range in the Task Trace window and then execute the target program.

617211 Set the Information of Realtime OS.
To use the Task Trace window, you must set the following information concerning the real time OS
(the target real time OS) which are used by the downloaded program.

e Label name (address value) of the execution task ID storage area and its size

e Task start address expression

Open the Task Trace window. Select Menu - [View] -> [RTOS] -> [Task Tracel.
When you select this menu at first time after starting PDxx, the RTOS Information dialog is opened
before the Task Trace window is opened.

RTOE Information
FID
Address: I_RUNtSk LI
fiooess Size: IBYtB vI
Task Entry: |_D_TCE_ENT+®TaskID-1)+@!
default | 0K I Cancel

e When using our real time OS (MRxx)
1. Click the "default" button. The MRxx information is set.
Click the OK button. The Task Trace window is opened.

e When using a real time OS other than MRxx
1. Specify the label (address is also available) of the execution task ID storage area in the PID
Address field ; specify the size of the execution task ID storage area in the Size list box.
If this information is not set correctly, you cannot use the Task Trace window.
2. Specify the task start address expression in the Task Entry field.
Describe the expression in the format in accordance with the description rules.
Use a macro variable [% TaskID] in the address where the task ID number is supposed to assign.
If this information is not set correctly, the task name is not displayed in the Task Trace window.
3. Click the OK button. The Task Trace window is opened.

On debuger for 740, simply by clicking the default button, the OSEK OS information is set.

Once the real time OS information is set in this dialog, the information becomes effective from the
next time.

To change the setting data, select [RTOS...] from popup menu by right-clicking on the window. The
RTOS Information dialog is re-opened.

245

ATTENTION

When specifying WORD in the access size when performing PID setting in the RTOS Information
dialog, you must observe the following limits. (If these conditions are not met, the system does not
operate normally.)
e The PID information storage area is allocated to an even address.
e The PID information storage area is allocated to an area accessed with 16-bit bus
width.

617212 Select the Trace Range

The real time trace function is used for task execution history measurement.

Click the After button (or select [After] from popup menu by right-clicking on the window) or Break
button (or or select [Break] from popup menu) in the Task Trace window.

After Records a task execution history until the trace memory is filled with recorded data.

Break Records a task execution history (as much as trace memory available) until before
the target program stops.

Only an specific cycle required to know the task execution history is recorded in the trace memory.

ATTENTION
A trace point set in the Trace Point Setting dialog is disabled.

617213 Start the Target Program

Execute the target program. Record the information required to know the task execution history in
the trace memory.

When you select After for the trace range, the execution history is displayed in the Task Trace
window immediately after the trace memory is filled or immediately after the target program stops.
When you select Break for the trace range, the execution history is displayed in the Task Trace
window immediately after the target program stops.

You can stop task execution history measurement.
To do this, click the Stop button in the Task Trace window. (Or, select [Trace Stop] from popup menu
by right-clicking on the window.)

To restart task execution history measurement, click the Restart button in the Task Trace window.
(Or, select [Trace Restart] from popup menu by right-clicking on the window.)

246

6Windows/Dialogs

6.17.2.2 Refer the Execution History of Task

You can reference task trace transition in the Task Trace window.

o Tazk Trace
EAOR&a vy 6w
Matk: 00" 00'00:000.442 - 00"00'01:347.056 = 00°00'01:846612 |Indicator: 00"00'00:540.805 |Scale: * £.939931 |Grid: 00 00'01:850.572 |P.rea: Break
ID [name) [u}
O || f======== !
1 [D AHCE ENT)
Z | [taskZ)
3| [task3)
4 | [taskd)
5| [taski)
6 | [taskb)
T | [taskT)
2 | [taszks)
Q| [taskd)
10 | [tasklO)
227 | Unknown
o

By moving the mouse to the information displayed in the window, a window of the following example
is opened, showing the detailed information.

ID=D' 7 |_task?)
begin:00"00' 00:722.055
end:00"00 ' 00:753.305
(end-begin) :00"00'00:031.250

617221 Change the display magnification

Click the Expand button or Reduce button in the tool bar. (Or, select [Expand] or [Reduce] from popup
menu by right-clicking on the window.)

The display is expanded or reduced using the left corner of the graph area as the radix point. By
default, the display is expanded or reduced with display scale of 1.5.

The display scale appears in the "Scale:*" field in the status bar.

The default expansion/reduction scale is 1.5. To change the scale, select [Value ...] from popup menu
by right-clicking on the window. The Value dialog is opened. Specify the display expansion/reduction
scale.

Yalue..

—Girid Time

|IZI h |EI m |‘| s |563 e |'."2 s
— Rate

Expand: IE.EI Reduce: Iﬂ

0] 4 I Cancel

247

6.17.22.2. Change the grid line display interval
Select [Value ...] from popup menu by right-clicking on the window. The Value dialog is opened.

Specify the time interval in the display.

—Girid Time

ID h |E'] |':' s Im ms I':' uE
— Rate

Expand: |‘|.5EIEIEIEIEI Feduce: |1.5EIEIEIEID

0] 4 I Cancel

6.17.223 Change the task display order

Select [Color ...] from popup menu by right-clicking on the window. The Color dialog is opened.

Click the button corresponding to the desired item. The Color Setting dialog is opened. Change the
display color in the dialog.

248

6Windows/Dialogs

617224 Measure the Execution Time of Task
By changing the start marker position and end marker position in the Task Trace window, you can
measure the execution time between the markers.

- Tazk Trace

EEOBE&& | M §w
Mark: 00" 000101801 802 ~ 007 0000784 555 = 00" 0000553752 indicator: 007 0001472065 |Scale: * GAO0414 [Grid: 00700
ID | (meme) 0 |

I_LHCE ENT)
taska) I
taskd)
task4)
tasks)
tasks)
task?)
taskd)
taskd)
tasklo)
Inknowm

00 (= |@ | | (e (e (S

w

{
[
[
[
[
[
[
[
[
[

=
=

3
3
)

L

Drag the start marker position and end marker position.
The time interval between the markers is displayed in the status bar.

Note

e Definition of time value in the Task Trace window
The time value in the Task Trace window indicates the execution elapsed time which
sets the program execution start point to 0 in all the cases.
On the contrary, a numeric value above the grid line (scale) in the Task Trace window
is a relative value which sets the start marker to O (the grid interval is specified in the
Value dialog), which has nothing to do with the time value. (It is provided so that you
can see the window easily.)

617225 Move the Marker
Each marker can be moved by dragging. When moving the mouse on the marker, the cursor shape
changes. Then, start dragging.

The start marker moves into the window (left portion) by clicking the Start Marker button in the tool
bar. (Or, select [Start Marker] from popup menu by right-clicking on the window.)

The end marker moves into the window (right portion) by clicking the End Marker button. (Or, select
[End Marker] from popup menu.)

The indicator moves into the window (center) by clicking the "Indicator" button. (Or, select [Indicator]
from popup menu.)

Note that each marker can move only to the point where an event is established.

249

6.18 Task Analyze Window

The Task Analyze window displays the result of the measurement data statistically analyzed within
the range specified by the start marker and the end marker in the Task Trace window.

The Task Analyze window displays the CPU occupation state.

The Task Analyze window functions together with the Task Trace window.

The debugger for R32C doesn't support this function.
The debugger for 740 doesn't support this function.

This window is available even when a target program using an OS other than our real time OS
(MRxx) is downloaded.

The CPU occupation state display mode is used to display the CPU occupation time and ratio by task.
This mode shows the statistical result within the range specified by the start marker and end marker
in the Task Trace window.

Mark: 00" 00'00:000.672 - 00" 00'0:569.272 = 00" 00'D1 568,600
I (name | Hum Max Bun Time Min Bun Time Awey Fun Time Total Fun Time Ratio% 0 25 50 75 1DE‘
0| f========] 1| 00700'00:005.185 | 00"00'00:005.195 | 00™00'00:005.195 | 00700'00:005.195 0.33 H H H
1| [main] 115 | 00™00'00: 007,305 | 00"00'00:000,767 | 00700'00:001, 541 | 00700'00: 177,287 11.30 wm | 1 '
2 | [task0OZ) 12 | 00700'00:012.06% | 00700'00:005.915 | 00700'00:011.552 | O0700'00: 136. 530 G.54 =\ E B
3| [task0O3) 12 | 00700'00:012. 587 | 00700 '00: 006,892 | 00700'00:012,111 | 00700'00: 145, 332 9,27 H
4| [_task00d4) 12 | 00700'00:012.170 | 00700'00:006.505 | 00"00'00:011.604 | 00700'00:139. 252 g.55 m ' :
5| [taskDOS5) 12 | 00700'00:012. 297 | 007"00'00:005. 577 | 00700'00:011.745 | 00700'00: 141, 540 9.0z m H H
6 | [_taskDO6) 11 | 0D07"00'00:013.435 | 00700 '00: 006,480 | 00700'00: 012,353 | 00700'00: 135,685 S.66 = E H
7| [_task0Oo7) 11 | 00700'00:013. 020 | 00700'00:006.780 | 00700'00:012. 431 | 00700'00: 136. 745 G.72 = H
8 | [task0DO&) 11 | 00700'00:014. 080 | 007"00'00:008.055 | 00700'00:013. 232 | 00700'00: 145,552 9.25 = E H
9 | [_taskDoo) 11 | 007"00'00:013. 642 | 00700 '00:007.277 | 00700'00: 012,663 | 00700'00: 139, 295 6.8 = 1 '
10| f_task0l0) 11 | 00700'00:015. 710 | 00700'00:008.070 | 00700'00: 012,795 | 00700'00: 140. 752 §.97 = . E B
11 | [taskOll) 11 | 00700'00:011.8582 | 00700 '00:006.2590 | 00700'00:011,193 | 00700'00: 123,132 7.65 = H
222 | Unknown 0 | 00"00'00:000.000 | 00700'00:000.000 | 00700'00:000.000 | 00700'00:000.000 0.00 : ' :

By clicking the maximum execution time/minimum execution time display area of each line, you can
search process history of the task for the clicked line at the maximum/minimum execution time.

The search result is pointed by the indicator which moves to the target position in the Task Trace
window.

6.18.1 Extended Menus

This window has the following popup menus that can be brought up by right-clicking in the window.

Menu Function
Allow Docking Allows the window docking.
Hide Hides the window.

250

6Windows/Dialogs

6.18.2 Analyze the Execution History of Task

You can reference the execution history statistical processing in the Task Analyze window. This
window shows the CPU occupation time and ratio by task.

The Task Analyze window functions together with the Task Trace window. If the Task Trace window
is not open, or the Task Trace window does not show any data, the Task Analyze window will not
function.

Mark: 00" 00'00:000.672 - 00" 00'0:569.272 = 00" 00'D1 568,600
I (name | Hum Max Bun Time Min Bun Time Awey Fun Time Total Fun Time Ratio% 0 25 50 75 1DE‘
0| f========] 1| 00700'00:005.185 | 00"00'00:005.195 | 00™00'00:005.195 | 00700'00:005.195 0.33 H H H
1| [main] 115 | 00™00'00: 007,305 | 00"00'00:000,767 | 00700'00:001, 541 | 00700'00: 177,287 11.30 wm | 1 '
2 | [task0OZ) 12 | 00700'00:012.06% | 00700'00:005.915 | 00700'00:011.552 | O0700'00: 136. 530 G.54 =\ E B
3| [task0O3) 12 | 00700'00:012. 587 | 00700 '00: 006,892 | 00700'00:012,111 | 00700'00: 145, 332 9,27 H
4| [_task00d4) 12 | 00700'00:012.170 | 00700'00:006.505 | 00"00'00:011.604 | 00700'00:139. 252 g.55 m ' :
5| [taskDOS5) 12 | 00700'00:012. 297 | 007"00'00:005. 577 | 00700'00:011.745 | 00700'00: 141, 540 9.0z m H H
6 | [_taskDO6) 11 | 0D07"00'00:013.435 | 00700 '00: 006,480 | 00700'00: 012,353 | 00700'00: 135,685 S.66 = E H
7| [_task0Oo7) 11 | 00700'00:013. 020 | 00700'00:006.780 | 00700'00:012. 431 | 00700'00: 136. 745 G.72 = H
8 | [task0DO&) 11 | 00700'00:014. 080 | 007"00'00:008.055 | 00700'00:013. 232 | 00700'00: 145,552 9.25 = E H
9 | [_taskDoo) 11 | 007"00'00:013. 642 | 00700 '00:007.277 | 00700'00: 012,663 | 00700'00: 139, 295 6.8 = 1 '
10| f_task0l0) 11 | 00700'00:015. 710 | 00700'00:008.070 | 00700'00: 012,795 | 00700'00: 140. 752 §.97 = . E B
11 | [taskOll) 11 | 00700'00:011.8582 | 00700 '00:006.2590 | 00700'00:011,193 | 00700'00: 123,132 7.65 = H
222 | Unknown 0 | 00"00'00:000.000 | 00700'00:000.000 | 00700'00:000.000 | 00700'00:000.000 0.00 : ' :

The displayed data is the statistical results of the range specified by the start marker and the end
marker in the Task Trace window.

By clicking the maximum ready time/minimum ready time display field of each line, you can search
the processing history at the maximum ready time/minimum ready time of the task corresponding to
the clicked line.

The search result is pointed by the indicator in the Task Trace window after the indicator moves to
the destination position.

251

7. Table of Script Commands

The following script commands are prepared.
The commands with yellow color displaying can be executed at run time.
The command to which "*" adheres behind is not supported according to the product.

7.1 Table of Script Commands (classified by function)

7.1.1 Execution Commands

Command Name Short Name Contents

Go G Program execution with breakpoints

GoFree GF Free run program execution
GoProgramBreak* GPB Run target program with software break point
GoBreakAt* GBA Run target program with software break point
Stop - Stops program execution

Status - Checks the operating status of the MCU

Step S Halts for user input until the specified time has elapsed
Steplnstruction SI Step execution of instructions

OverStep (0] Overstep execution of source lines
OverSteplInstruaction (0] Overstep execution of instructions

Return RET Executes a source line return
Returnlnstruction RETI Executes an instruction return

Reset - Resets the target MCU

252

TTable of Script Commands

7.1.2 File Operation Commands

Command Name Short Name Contents

Load L Downloads the target program

LoadHex LH Downloads an Intel HEX-format file
LoadMot* LM Downloads a Motorola S-format file
LoadSymbol LS Loads source line/ASM symbol information
Loadleee* LI Downloads IEEE-695 absolute-format files
Reload Re-downloads the target program
UploadHex UH Outputs data to an Intel HEX-format file
UploadMot* UM Outputs data to a Motorola S-format file

7.1.3 Register Operation Commands

Command Name

Short Name

Contents

Register

R

Checks and sets a register value

7.1.4 Memory Operation Commands

Command Name Short Name Contents

DumpByte DB Displays the contents of memory (in 1-byte units)

DumpWord* DW Displays the contents of memory (in 2-byte units)

DumpLword* DL Displays the contents of memory (in 4-byte units)

SetMemoryByte MB Checks and changes memory contents (in 1-byte units)

SetMemoryWord* MW Checks and changes memory contents (in 2-byte units)

SetMemoryLword* ML Checks and changes memory contents (in 4-byte units)

FillByte FB Fills a memory block with the specified data (in 1-byte
units)

FillWord* FW Fills a memory block with the specified data (in 2-byte
units)

FillLword* FL Fills a memory block with the specified data (in 4-byte
units)

Move - Moves memory blocks

MoveWord* MOVEW Moves memory blocks(in 2-byte units)

MoveLword* MOVEL Moves memory blocks(in 4-byte units)

253

7.1.5 Assemble/Disassemble Commands

Command Name Short Name Contents

Assemble A Line-by-line assembly

DisAssemble DA Disassembles memory contents line by line
Module MOD Displays modules names

Scope Sets and checks the effective local symbol scope
Section SEC Checks section information

Bit* Checks and sets bit symbols

Symbol SYM Checks assembler symbols

Label Checks assembler labels

Express EXP Displays an assembler expression

7.1.6 Software Break Setting Commands

Command Name Short Name Contents

SoftwareBreak SB Sets and checks software breaks
SoftwareBreakClear SBC Clears software breaks

SoftwareBreakClearAll SBCA Clears all software breaks

SoftwareBreakDisable SBD Disables software breakpoints
SoftwareBreakDisableAll | SBDA Disables all software breaks

SoftwareBreak Enable SBE Enables software breakpoints

SoftwareBreak EnableAll SBEA Enables all software breaks

BreakAt - Sets a software breakpoint by specifying a line No.
BreaklIn Sets a software breakpoint by specifying a function

7.1.7 Hardware Break Setting Commands

Command Name Short Name Contents

HardwareBreak HB Sets and checks a hardware break
HardwareBreakClear HBC Clears hardware breaks
HardwareBreakClearAll HBCA Clears all hardware breaks
BreakMode BM Sets and checks hardware break mode

7.1.8 Real-time Trace Commands

Command Name Short Name Contents

TracePoint* TP Sets and checks a trace points

TraceData* TD Realtime trace data display

TraceList* TL Displays disassembled realtime trace data

254

TTable of Script Commands

7.1.9 Coverage Measurement Commands

Command Name

Short Name

Contents

Coverage

Cv

Specifies and displays coverage measurement

7.1.10 Stack Utilization Monitor Command

Command Name

Short Name

Contents

StackMonitor

SM

Sets and checks stack utilization measurement

7.1.11 Cycle Count Monitor Command

Command Name

Short Name

Contents

Cycle

CY

Sets and checks cycle counting

7.1.12 Script/Log File Commands

Command Name

Short Name

Contents

Script - Opens and executes a script file

Exit - Exits the script file

Wait - Waits for an event to occur before command input
Pause - Waits for user input

Sleep = Halts for user input until the specified time has elapsed
Logon = Outputs the screen display to a log file

Logoff o Stops the output of the screen display to a log file

Exec - Executes external application

7.1.13 Program Display Commands

Command Name

Short Name

Contents

Func - Checks function names and displays the contents of
functions

Up* - Displays the calling function

Down* - Displays a called function

Where* - Displays a function call status

Path = Sets and checks the search path

AddPath - Adds the search path

File - Checks a filename and displays the contents of that file

255

7.1.14 Map Commands

Command Name

Short Name

Contents

Map*

Checks and sets mapping data

7.1.15 C Language Debugging Commands

Command Name

Short Name

Contents

Print

Check value of specified C variable expression

Set

Set specified data in specified C variable expression

7.1.16 Real-time OS Command

Command Name

Short Name

Contents

MR*

Displays status of realtime OS (MRxx)

7.1.17 Utility Commands

Command Name Short Name Contents

Radix Sets and checks the radix for numerical input
Alias Specifies and checks command alias definitions
UnAlias Cancels the alias defined for a command
UnAliasAll Cancels all aliases defined for commands
Version VER Displays the version No.

Date Displays the date

Echo Displays messages

CD Window open

256

TTable of Script Commands

7.2 Table of Script Commands (alphabetical order)

Command Name Short Name Contents

AddPath Adds the search path

Alias Specifies and checks command alias definitions

Assemble A Line-by-line assembly

Bit* Checks and sets bit symbols

BreakAt Sets a software breakpoint by specifying a line No.

Breakln Sets a software breakpoint by specifying a function

BreakMode BM Sets and checks hardware break mode

CD Specifies and checks the current directory

Coverage Cv Specifies and displays coverage measurement

Cycle CY Sets and checks cycle counting

Date Displays the date

DisAssemble DA Disassembles memory contents line by line

Down* Displays a called function

DumpByte DB Displays the contents of memory (in 1-byte units)

DumpLword* DL Displays the contents of memory (in 4-byte units)

DumpWord* DW Displays the contents of memory (in 2-byte units)

Echo Displays messages

Exec Executes external application

Exit Exits the script file

Express EXP Displays an assembler expression

File Checks a filename and displays the contents of that file

FillByte FB Fills a memory block with the specified data (in 1-byte
units)

FillLword* FL Fills a memory block with the specified data (in 4-byte
units)

FillWord* FW Fills a memory block with the specified data (in 2-byte
units)

Func Checks function names and displays the contents of
functions

Go G Program execution with breakpoints

GoBreakAt* GBA Run target program with software break point

GoFree GF Free run program execution

GoProgramBreak* GPB Run target program with software break point

HardwareBreak HB Sets and checks a hardware break

HardwareBreakClear HBC Clears hardware breaks

HardwareBreakClearAll HBCA Clears all hardware breaks

Label - Checks assembler labels

Load L Downloads the target program

LoadHex LH Downloads an Intel HEX-format file

Loadleee* LI Downloads IEEE-695 absolute-format files

LoadMot* LM Downloads a Motorola S-format file

LoadSymbol LS Loads source line/ASM symbol information

Logoff Stops the output of the screen display to a log file

Logon Outputs the screen display to a log file

Map* Checks and sets mapping data

Module MOD Displays modules names

Move - Moves memory blocks

MoveLword* MOVEL Moves memory blocks(in 4-byte units)

MoveWord* MOVEW Moves memory blocks(in 2-byte units)

257

MR* - Displays status of realtime OS (MRxx)

OverStep 0 Overstep execution of source lines
OverSteplInstruaction Ol Overstep execution of instructions

Path = Sets and checks the search path

Pause = Waits for user input

Print - Check value of specified C variable expression.
Radix - Sets and checks the radix for numerical input
Register R Checks and sets a register value

Reload - Re-downloads the target program

Reset - Resets the target MCU

Return RET Executes a source line return

Returnlnstruction RETI Executes an instruction return

Scope - Sets and checks the effective local symbol scope
Script - Opens and executes a script file

Section SEC Checks section information

Set - Set specified data in specified C variable expression
SetMemoryByte MB Checks and changes memory contents (in 1-byte units)
SetMemoryLword* ML Checks and changes memory contents (in 4-byte units)
SetMemoryWord* MW Checks and changes memory contents (in 2-byte units)
Sleep - Halts for user input until the specified time has elapsed
SoftwareBreak SB Sets and checks software breaks
SoftwareBreakClear SBC Clears software breaks

SoftwareBreakClearAll SBCA Clears software breaks

SoftwareBreakDisable SBD Disables software breakpoints
SoftwareBreakDisableAll | SBDA Disables all software breaks

SoftwareBreak Enable SBE Enables software breakpoints

SoftwareBreak EnableAll SBEA Enables all software breaks

StackMonitor SM Sets and checks stack utilization measurement
Status - Checks the operating status of the MCU

Step S Step execution of source line

Steplnstruction SI Step execution of instructions

Stop - Stops program execution

Symbol SYM Checks assembler symbols

TraceData* TD Realtime trace data display

TraceList* TL Displays disassembled realtime trace data
TracePoint* TP Sets and checks a trace points

UnAlias - Cancels the alias defined for a command
UnAliasAll - Cancels all aliases defined for commands

Up* - Displays the calling function

UploadHex UH Outputs data to an Intel HEX-format file
UploadMot* UM Outputs data to a Motorola S-format file

Version VER Displays the version No.

Wait - Waits for an event to occur before command input
Where* - Displays a function call status

258

8Writing Script Files

8. Wrtng Script Files

This debugger allows you to run script files in a Script Window. The script file contains the controls

necessary for automatically executing the script commands.

8.1 Structural Elements of a Script File

You can include the following in script files:

Script commands

Assign statements

Conditional statements (f, else, endi)

Program execution branches to the statement(s) to be executed according to the result
of the conditional expression.

Loop statements (while, endw)

A block of one or more statements is repeatedly executed according to the expression.
break statement

Exits from the innermost loop.

Comment statements

You can include comments in a script file. The comment statements are ignored when
the script commands are executed.

Specify only one statement on each line of the script file. You cannot specify more than one statement
on a line, or write statements that span two or more lines.

Notes

You cannot include comments on the same lines as script commands.

You can nest script files up to five levels.

You can nest if statements and while statements up to 32 levels.

If statements must be paired with endi statements, and while statements with endw
statements in each script file.

Expressions included in script files are evaluated as unsigned types. Therefore,
operation cannot be guaranteed if you use negative values for comparison in if or while
statements.

You can specify up to 4096 characters per line. An error occurs if a line exceeds this
number of characters.

When a script file containing illegal commands is automatically executed (when you
select [Option | -> [Script]-> [Run] from the Script Window menu after opening a
script file, or click the button in the Script Window), execution of the script file
continues even after the error is detected, except when the script line itself cannot be
read. If an error is detected and the script file continues to be executed, operation after
detection of the error cannot be guaranteed. Reliability cannot therefore be placed on
the results of execution after an error has been detected.

259

8.1.1 Script Command

You can use the same script commands that you enter in the Script Window. You can also call script
files from within other script files (nesting up to 10 levels).

8.1.2 Assign Statement

Assign statement s define and initialize macro variables and assign values. The following shows the
format to be used.

| %macro-variable = expression

e You can use alphanumerics and the underscore () in macro variable names. However ,
you cannot use a numeric to start a macro variable name.

e You can specify any expression of which the value is an integer between Oh and
FFFFFFFFh to be assigned in a macro variable. If you specify a negative number, it is
processed as twos complement.

e You can use macro variables within the expression.

e Always precede macro variables with the "%" sign.

8.1.3 Conditional Statement

In a conditional statement, different statements are executed according to whether the condition is
true or false. The following shows the format to be used.

if (expression)
statement 1
else
statement 2
endi

e If the expression is t rue (other than 0), statement 1 is executed. If false, (0), statement
2 is executed.

e You can omit the else statement. If omitted and the expression is false, execution
jumps to the line after the endi statement.

e if statements can be nested (up to 32 levels).

8.1.4 Loop Statement(while,endw) and Break Statement

In loop statements, execution of a group of statements is repeated while the expression is true. The
following shows the format to be used.

while (expression)
statement
endw

e If the expression is t rue, the group of statements is repeated. If false, the loop is exited
(and the statement following the endw statement is executed).

e You can nest while statements up to 32 levels.

e Use the break statement to forcibly exit a while loop. If while statements are nested,
break exits from the inner most loop.

260

8Writing Script Files

8.1.5 Comment statements

You can include comments in a script file. Use the following format.

| ;character string

e Write the statement after a semicolon (;). You can include only spaces and tabs in front
of the semicolon
e Lines with comment statements are ignored when the script file is executed.

8.2 Writing Expressions

This debugger allows you to use expressions for specifying addresses, data, and number of passes, etc.

The following shows example commands using expressions.
>DumpByte TABLE1l
>DumpByte TABLE1+20

You can use the following elements in expressions:

e Constants

e Symbols and labels
e Macro variables

e Register variables

e Memory variables

e Line Nos.

e Character constants
e Operators

8.2.1 Constants

You can use binary, octal, decimal, or hexadecimals. The prefix or suffix symbol attached to the
numerical value indicates which radix is used.
The debugger for M32C and M16C/R8C and 740

Hexadecimal Decimal Octal Binary *
Prefix 0x,0X @ None %
Suffix h,H None 0,0 b,B
Examples 0xAB24 @1234 12340 %10010

AB24h 10010b

*You can only specify % when the predetermined radix is hexadecimal.

e If you are inputting a radix that matches the predetermined radix, you can omit the
symbol that indicates the radix (excluding binary).

e Use the RADIX command to set the predetermined value of a radix. However, in the
cases shown below, the radix is fixed regardless of what you specify in a RADIX

command.
Type Radix
Address Hex
Line No. Dec

No. of executions
No. of passes

261

8.2.2 Symbols and labels

You can include symbols and labels defined in your target program, or symbols and labels defined
using the Assemble command.
¢ You can include alphanumerics, the underscore (), period (.), and question mark (?) in
symbols and labels. However, do not start with a numeric.
e Symbols and labels can consist of up to 255 characters.
e Uppercase and lowercase letters are unique.

Product Name Notes

The debugger for M32R, e You cannot include the assembler structured
The debugger for R32C, instructions, pseudo instructions, macro instructions,
The debugger for M32C, operation code, or reserved words
The debugger for M16C/R8C, (.SECTION, .BYTE, switch, if, etc.).

e You cannot use strings that start with two periods (..)
for symbols or labels.

The debugger for 740 e You cannot use the register name.(A,X,Y,S,PC,PS,P)

e You cannot include the assembler structured
instructions, pseudo instructions, macro instructions,
operation code, or reserved words
(.SECTION, .BYTE, switch, if, etc.).

e You cannot use strings that start with two periods (..)
for symbols or labels.

.DO to .D65535, .FO to .F65535, .10 to .I56635, .S0
to .S65535, ..0 to ..65535, 7?70 to 7765535

8.2.2.1 Local label symbol and scope

This debugger supports both global label symbols, which can be referenced from the whole program
area, and local label symbols, which can only be referenced within the file in which they are declared.
The effective range of local label symbols is known as the scope, which is measured in units of object
files. The scope is switched in this debugger in the following circumstances:
e When a command is entered
The object file that includes the address indicated by the program counter becomes the
current scope. When the SCOPE command is used to set the scope, the specified scope
is the active scope.
e During command execution
The current scope automatically switches depending on the program address being
handled by the command.

262

8Writing Script Files

8.2.2.2 Priority levels of labels and symbols

The conversion of values to labels or symbols, and vice versa, is subject to the following levels of
priority:
e Conversion of address values
Local labels
Global labels
Local symbols
Global symbols
Local labels outside scope
Local symbols outside scope

S e

e Conversion of data values
Local symbols
Global symbols
Local labels
Global labels
Local symbols outside scope
Local labels outside scope

SR e

e Conversion of bit values
Local bit symbols
Global bit symbols
3. Local bit symbols outside scope

DN

8.2.3 Macro Variables

Macro variables are defined by assign statements in the script file. See Section "8.1.2 Assign
Statement" in the Reference part for details. Precede variables with '%' for use as macro variables.
e You can specify alphanumerics and/or the underbar () in the variable name following
the percent sign (%). However , do not star t the names with a numeric.
¢ You cannot use the names of registers as variable names.
e Uppercase and lowercase letters are differentiated in variable names.
e You can define a maximum of 32 macro variables. Once defined, a macro variable
remains valid until you quit the debugger.

Macro variables are useful for specifying the number of iterations of the while statement.

263

8.2.4 Register variables

Register variables are used for using the values of registers in an expression. Precede the name of the
register with '%' to use it as a register variable. Use the following format. (The debugger for 740 can
use '_'instead of '%'.)

Product Name Register name

The debugger for R32C PC, USP, ISP, INTB, FLB, SVF, SVP, VCT,

DMDO, DMD1, DMD2, DMD3, DCT0, DCT1, DCT2, DCT3,
DCRO, DCR1, DCR2, DCR3, DSA0, DSA1, DSA2, DSA3,
DSRO0,DSR1, DSR2, DSR3, DDAO, DDA1, DDA2, DDAS3,
DDRO,DDR1, DDR2, DDR3,

0RO, OR1, OR2, OR3, 0R4, OR5, OR6, OR7, 0AOQ, 0A1, 0A2, 0A3,
0FB, 0SB <- Bank 0 Register

1RO, 1R1, 1R2, 1R3, 1R4, 1R5, 1R6, 1R7, 1A0, 1A1, 1A2, 1A3,
1FB, 1SB <- Bank 1 Register

The debugger for M32C PC, USP, ISP, INTB, FLB, SVF, SVP, VCT,
DMDO0,DMD1, DCTO0, DCT1, DRCO, DRC1,
DMAO,DMA1, DCAO, DCA1, DRAO, DRA1,
0RO, OR1, OR2, OR3, 0AO, 0A1, OFB, 0SB <- Bank 0 Register
1RO, 1R1, 1R2, 1R3, 1A0, 1A1, 1FB, 1SB <- Bank 1 Register

The debugger for M16C/R8C PC, USP, ISP, SB, INTB, FLG
0RO, OR1, OR2, OR3, 0A0, 0A1, 0FB <- Bank 0 Register
1RO, 1R1, 1R2, 1R3, 1A0, 1A1, 1FB <- Bank 1 Register

The debugger for 740 PC,A X Y, S, PS

Uppercase and lowercase letters are not unique in register names. You can specify either.

8.2.5 Memory variables

Use memory variables to use memory values in expressions. The format is as follows:
[Address].data-size
e You can specify expressions in addresses (you can also specify memory variables).
e The data size is specified as shown in the following table. (The debugger for 740 doesn't
support four byte length.)

data Length Debugger Specification

1 Byte All Borb

2 Bytes The debugger for M32R Horh
Other Wor w

4 bytes The debugger for M32R Worw
The debugger for R32C, M32C, Lorl
M16C/R8C

Example: Referencing the contents of memory at address 8000h in 2 bytes
[0x8000].W

e The default data size is word, if not specified.

264

8Writing Script Files

8.2.6 Line Nos.

These are source file line Nos. The format for line Nos. is as follows:
#line_no
#line_no."source file name"

Specify line Nos. in decimal.

You can only specify line Nos. in which software breaks can be set. You cannot specify
lines in which no assembler instructions have been generated, including comment lines
and blank lines.

If you omit the name of the source file, the line Nos. apply to the source file displayed
in active Editor(Source) Window.

Include the file attribute in the name of the source file.

Do not include any spaces between the line No. and name of the source file.

8.2.7 Character constants

The specified character or character string is converted into ASCII code and processed as a constant.

Enclose characters in single quote marks.

Enclose character strings in double quote marks.

The character string must consist of one or two characters (16 bits max.). If more than
two characters are specified, the last two characters of the string are processed. For
example, "ABCD" would be processed as "CD", or value 4344h.

8.2.8 Operators

The table below lists the operators that you can use in expressions.

The priority of operators is indicated by the level, level 1 being the highest and level 8
the lowest. If two or more operators have the same level of priority, they are evaluated
in order from the left of the expression.

Operator Function Priority level

O Brackets level 1

+, -, ~ Monadic positive, monadic | level 2
negative, monadic logical NOT

*/ Dyadic multiply, dyadic divide level 3

+, - Dyadic add, dyadic subtract level 4

>> Right shift, left shift level 5

& Dyadic logical AND level 6

[, Dyadic logical OR, dyadic | level 7
exclusive OR

<, <=, > >= == != Dyadic comparison level 8

265

9. IO Scrpt

Settings of virtual port inputs or virtual interrupts can be written to a file in script form.

This script is called the "I/O script." Also, the files that contain a description of I/O scripts are called
the "I/O script file."

Using I/0 scripts, you can set virtual port inputs and virtual interrupts in a more flexible manner
than can be set from the I/O Timing Setting Window. For example, you can make the following
settings that cannot be made from the I/O Timing Setting Window:

e If you want to generate a cyclic virtual interrupt like timer interrupts, you can use the
while statement to specify a repetition of virtual interrupt generation.

e You can specify that the priority levels set in the interrupt control register's interrupt
priority level select bits be referenced to resolve the interrupt priority of virtual
interrupts generated.

e As conditions for entering virtual port inputs or generating virtual interrupts, you can
specify a combination of program fetch, memory access for read/write, or memory
comparison.

In addition to the above, various other I/O settings are possible.

9.1 Method for Writing 1/O Script

This section explains the method for defining virtual port inputs, virtual interrupts, and other I/Os to
be written in I/O script by using definition examples. To define an I/O script, write a procedure for it.
Enclose a procedure with braces "{ }" as you write it. Multiple procedures can be written in one file. In
each procedure, write settings, timings, etc. of virtual port inputs or virtual interrupts. Each of the
multiple procedures thus defined are processed in parallel with program execution. However, the
order in which each procedure is evaluated is indeterminate. Register the I/O script file you've created
in debugger using the popup menus [Load] in the I/O Timing Setting Window. Multiple I/O script files
can be registered.

However, the total number of procedures that can be registered is limited to 50. Also, if you are using
the Printf function output function in the Output Port Window, the number of virtual port input,
virtual interrupt, and I/O script procedures that can be set is limited to a total of 48.

266

91/0 Script

e Procedure 1 in the example below defines the timer mode of timer AQ.
In this example, a timer AO interrupt is generated every divide-by-ratio (number of
cycles) specified for the timer A0Q. The value specified in the interrupt control register is
referenced to determine the priority of this timer interrupt.

e Procedure 2 in the example below defines a cycle-synchronized virtual port input.
In this example, data is input from virtual port to memory when the program has been
executed 10,000 cycles. Although the I/O Timing Setting Window supports virtual port
inputs in only bytes, I/O scripts allow for virtual port inputs in words or long words.

; Defiration example of I'0 zerpt file — Comment statement.
; Definition of procedure | (example for wirtual interrpt)
{ — Beginning of procedure 1.
wrkiled 134 — while statement.
iff ([0x380]b & 0x01) = 0x01){ — Checks tmer A0°s count start: flag.
wraite [OxS86E]w+ 1 — KEeeps execution of [0 script waiting for the number
%fmc}m,%\%s equal to the divide—by—ratio that i= set for
er Al
int 21, [0=5A] & 0xT — zeneratez a timer AQ virtual interrupt.
{Interrupt control register is referenced to determine
lelsef priority.)
waiti 100 — Keeps execution of IFD zeript waiting for
1 100 inztrctons.
1
h — Terminates procedure 1.
; Defirdtion of procedure 2 {example for virtual port input)
{ — Beginning of procedure 2.
wraite 10000 — Eeepz executon of [0 zeript waiting for 10,000 cycles.
set [Oxde0] = 0x20 — Inpute 020 in addressz Qx3el.
vraite 10000+
set [Oxde0]w=0xd143 — Inputs Z2-byte data Oxd143 from address Dx3e0.
1 — Terminates procedure 2.

9.2 Composition of I/O Script

Following statements can be written in I/0 script:

e Procedure

e I/O script statement

e Judgment (if, else)
Execution statements are branched off by judging the evaluation result of expression.

e Repeat statement (while) and Break statement
Statements are executed repeatedly by judging the evaluation result of expression.

e Comment statement
Comments can be written in I/O script. Comment statements are ignored when
executing I/O script.

267

9.2.1 Procedure

Procedures specify a definition block of an I/O script. Multiple procedures can be written in one file.
However, the total number of procedures that can be registered is limited to 50. Also, if you are using
the Printf function output function in the Output Port Window, the number of virtual port input,
virtual interrupt, and I/O script procedures that can be set is limited to a total of 48. The following
shows a description format.

{

}
{

}

In the same way, multiple procedures can be defined below.

Statements

Statements

9.2.2 I/O Script Statements

Following five statements can be used in I/O script:

9.2.2.1 waiti statement

Format: waiti number of machine instructions

Function:

Execution of the next statement is kept waiting for a specified number of machine instructions.
Right-side expressions can be used to specify the number of machine instructions.
(Specification of right-side expressions is described later.)

For example, if following statements are written

waiti 100
set [0x800] = 0x10

the set statement is executed only after executing 100 machine instructions.

9.2.2.2 waitc statement

Format: waitc number of cycles

Function:

Execution of the next statement is kept waiting for a specified number of cycles.

Right-side expressions can be used to specify the number of cycles. (Specification of right-side
expressions is described later.)

For example, if following statements are written

waitc 10000
set [0x800] = 0x10

the set statement is executed only after executing the program 10,000 cycles.

268

91/0 Script

9.2.2.3 int statement

Format: int vector number , priority

Function:

The virtual interrupt of a specified vector number is generated in a specified order of priority.
Right-side expressions can be used to specify the vector number and priority.

(Specification of right-side expressions is described later.)

For example, if following statements are written

int2l ,5

a timer A0 (vector number 21) interrupt is generated at priority level 5.

9.2.2.4 set statement

There are following three formats for the set statement:

Format 1: set memory address = input value

Function:

The input value is input to a specified memory address (virtual port input to memory).

Left-side expressions can be used to specify the memory address, and right-side expressions can be
used to specify the input value. (Specifications of left-side and right-side expressions are described
later.)

For example, if following statements are written

set [0x3e0] = 0Ox1d
data 0x1d is input to memory address 0x3e0.

Format 2: set condition expression, memory address = input value 1,input value 2, ...

Function:

The input value 1, input value 2, etc. are sequentially input to a specified memory address each time
the conditional expression is established.

Left-side expressions can be used to specify the memory address, and right-side expressions can be
used to specify the conditional expressions and input values.

(Specifications of left-side and right-side expressions are described later.)

For example, if following statements are written

set #isfetch:0xfO000 , [0x3el] = 0x10 , 0x20
; #isfetch becomes true (established) when the program executes a specified address.

data 0x10 and 0x20 are sequentially input to memory address 0x3el each time the program executes
address 0xf0000.

Namely, data 0x10 is input to memory address 0x3el when address 0xf0000 is executed first, and
data 0x20 is input when the address is executed next.

Format 3: set % macro variable = right-side expression

Function:

The right-side expression is placed in a specified macro variable. (Specification of macro variables is
described later.)

For example, following macro variables can be written:

set %val
set %val

10; Macro variable val is initialized to 10.
%val + 1; Value of the macro variable is incremented by 1.

269

9.2.2.5 pass statement

Format: pass conditional expression, pass count

Function:

Execution of the next statement is skipped a number of times as specified by the pass count until the
conditional expression is met.

Right-side expressions can be used to specify the conditional statement and pass count. (Specification
of right-side expressions is described later.)

For example, if following statements are written

pass #isint:21 , 3
; #isint becomes true (established) when a specified virtual interrupt is generated.
set [0x800] = 0x10

The set statement is executed only after a timer AQ interrupt (vector number 21) occurs three times.

9.2.3 Judge Statements (if, else)

Judge statements judge the results of expressions, thereby causing the statements to be executed to
branch off. The following shows a description format.

if (conditional expression) {
Statement 1

} else if (conditional expression) {
Statement 2

} else {
Statement 3

b3

e When if (conditional expression) is true (not 0) statement 1 is executed. If the
conditional expression is false (= 0), else if (conditional expression) is evaluated to see
whether it is true or false. If the conditional expression is true, statement 2 is executed.
Otherwise, statement 3, the else statement, is executed.

e The else if and else statements can be omitted.

e The if statement can be nested in up to 32 levels.

e Right-side expressions can be used for the conditional expression.

e The conditional expressions written in I/O script are calculated as unsigned type.
Therefore, if negative values are compared in an if statement, the operation to be
performed by this debugger is indeterminate.

270

91/0 Script

9.2.4 Repeat Statement (while) and break Statement

Repeat statements judge the results of expressions, thereby executing statements repeatedly. The
following shows a description format.

while (conditional expression) {
statement or break statement
bs

e If the conditional expression is true, the statement is executed repeatedly. If the
conditional expression is false, program execution exits from the loop.

e The while statement can be nested in up to 32 levels.

e A break statement is used if it is necessary to forcibly exit the while statement. If the
while statement is nested, program execution exits from the innermost loop.

e Right-side expressions can be used for the conditional expression.

e The conditional expressions written in I/O script are calculated as unsigned type.
Therefore, if negative values are compared in an while statement, the operation to be
performed by this debugger is indeterminate.

9.2.5 Comment Statements

Comment statements are used to write comments in I/O script. The following shows a description
format.

| ;character string

e A comment statement starts from a semicolon ().

e A range of statement from the semicolon (;) till the end of the line is handled as a
comment.

e Lines of comment statements are ignored when executing I/O scripts.

271

9.3 Method for Writing Right-side Expressions

Right-side expressions can be used to write the number of machine instructions or cycles,vector
numbers, priority levels, input values, conditional expressions, or pass counts in I/O script statements,
as well as write expressions in if and while statements. The following shows an example of an I/O

script statement written using right-side expressions.

waitc LABEL
waiti [0x800] + 20
if([Ox1ff] == 0x30)

while(#isfetch:0xf0000)

Right-side expressions may be composed of the following:

Constant

Symbol and label
Macro variable
Memory variable
Character constant
Operator

#isfetch, #isint, #isread, #iswrite

Each part of right-side expressions are described below.

9.3.1 Constants

Binary, decimal, and hexadecimal numbers can be input. The radix of numerals is discriminated by a
symbol added at the beginning or end of a numeric value.

Hexadecimal Decimal Binary
Beginning 0x,0X None %
Example 0xAB24 1234 %10010

9.3.2 Symbols and Labels

The global symbols and global labels defined in the target program can be used.
Symbol and label names may consist of alphanumeric characters, underscore (),period
(), and question mark (?). However, numbers cannot be used at the beginning of

symbol and label names.

Symbol and label names can be written in up to 255 characters.

Symbol and label names are discriminated between uppercase and lowercase letters.
The structured instructions, pseudo-instructions, macro-instructions, and reserved
op-code words of assembler asxx cannot be used in symbol and label names.(These, for

example, include .SECTION, .BYTE, switch, and if.)

Character strings that begin with ".." cannot be used in symbol and label names.

272

91/0 Script

9.3.3 Macro Variables

Macro variables are used by adding "%" at the beginning of each variable name.

e Variable names following the percent character (%) may consist of alphanumeric
characters and underscore (). However, numbers cannot be used at the beginning of
macro variable names.

e Register names cannot be used in variable names.

e Variable names are discriminated between uppercase and lowercase letters.

e Up to 32 macro variables can be defined. Once defined, the macro variables remain
effective until the debugger is terminated.

9.3.4 Memory Variables

Memory variables are used when using memory values in expressions. The following shows a format
of memory variables.
[address].data-size

e Expressions can be written in address. (Memory variables also can be used.)

e Specify data size as shown in the table below.

For byte size Borb
For word (2-byte) size W or w
For long word (4-byte) size Lorl

o If specification of data size is omitted, the data size is assumed to be byte long.

Example 1: To reference memory contents at address 800016 in bytes
[0x8000]-B or [0x8000]

Example 2: To reference memory contents at address 800016 in words
[0x8000] -w

Example 3: To reference memory contents at address 800016 in long words
[0x8000] -L

9.3.5 Character Constants

Specified characters or character strings are handled as constants after being converted into ASCII
code.

e Characters must be enclosed with single quotations.

e Character strings must be enclosed with double quotations.

e Character strings must be within 2 characters (16 bits in length).

If a character string consists of more than two characters, only the last two characters written in the
string are operated on. For example, if you write "ABCD," only the last two characters in this string,
i.e., "CD," are operated on, the value of which is 434416.

273

9.3.6 Operators

The following lists the operators that can be written in expressions.

The priorities of operators are such that level 1 is the highest, and level 12, the lowest.

If operators in an expression have the same priority, they are calculated sequentially from left to
right.

Operator Meaning Priority
@) Parentheses Level 1
+, -, ~ Unary plus, unary minus, unary bit logic | Level 2
*/ Binary multiplication, binary division Level 3
+, - Binary addition, binary subtraction Level 4
>> Shift right, shift left Level 5
<, <=, > >= Binary comparison Level 6
==, I= Binary comparison Level 7
& Binary logical AND Level 8
A Binary exclusive OR Level 9
| Binary logical OR Level 10
&& Logical AND Level 11
| Logical OR Level 12

9.3.7 #isfetch, #isint, #isread, #iswrite

These statements are used in conditional expressions of I/O script statements and if and while
statements.

9.8.7.1 #isfetch expression

Format: #isfetch: address
Function:
The value of the expression becomes true (= 1) when the program's PC value goes to a specified

address. Otherwise, the expression is false (= 0). For example, the if statement below
if (#isfetch:0xfc000)

becomes true (= 1) when the program's address (PC value) becomes 0xfc000.

9.3.7.2 #isint expression

Format: #isint: vector number
Function:
The value of the expression becomes true (= 1) immediately after a virtual interrupt of a specified
vector number is generated. Otherwise, the expression is false (= 0).
For example, the if statement below
if (#isint:13)
becomes true (= 1) if a virtual interrupt of vector number 13 had occurred immediately before the if
statement was evaluated.

274

91/0 Script

9.3.7.3 #isread expression

Format: #isread: address

Function:

The value of the expression becomes true (= 1) immediately after a specified memory address is
accessed for read (to read data from memory). Otherwise, the expression is false (= 0).

For example, the if statement below
if (#isread:0x800)

becomes true (= 1) if memory at address 0x800 had been accessed for read immediately before the if
statement was evaluated.

9.3.7.4 #iswrite expression

Format: #iswrite: address
Function:
The value of the expression becomes true (= 1) immediately after a specified memory address is
accessed for write (to write data to memory). Otherwise, the expression is false (= 0).
For example, the if statement below
if (#iswirte:0x800)
becomes true (= 1) if memory at address 0x800 had been accessed for write immediately before the if
statement was evaluated.

275

9.4 Method for Writing Left-side Expressions

Left-side expressions can be written in memory addresses and macro variables of the set statement in
I/0 script statements. The following shows an example of an I/O script statement using left-side

expressions.
set [0x3e0] = Oxla
set %val = 10

Left-side expressions may be composed of the following:

e Macro variable
e Memory variable

Each part of left-side expressions are described below.

9.4.1 Macro Variables

Macro variables are used by adding "%" at the beginning of each variable name.

e Variable names following the percent character (%) may consist of alphanumeric

characters and underscore (). However, numbers cannot be used at the beginning of

macro variable names.

e The values that can be handled by an expression that is substituted for macro

variables are integers in the range of 0 to FFFFFFFF16. If negative numbers are used,

they are handled as 2's complements.

When specifying a repeat count for the while statement, use of macro variables should prove

convenient.

set %val = 0

;Macro variable %val is assigned 0.

while(%val

;while statement is repeated until %val = 10.

waitc 10000

int 13,5

set %val = %val + 1

;%val is incremented by 1.

}

9.4.2 Memory Variables

This variable is used when writing values in memory. The following shows a format of memory

variables.
[address].data-size

e Expressions can be written in address. (Memory variables cannot be used.)
e Specify data size as shown in the table below.

For byte size Borb
For word (2-byte) size W or w
For long word (4-byte) size Lorl

e If specification of data size is omitted, the data size is assumed to be byte long.

Example 1: When writing to memory at address 0x8000 in bytes
set [0x8000]-B = 0x10 or set [0x8000] = 0x10

Example 2: When writing to memory at address 0x8000 in words

set [0x8000].w = 0x1234

Example 3: When writing to memory at address 0x8000 in long words

set [0x8000].-L = 0x12345678

276

10C/C++ Expressions

10. C/C+ Expressions

10.1 Writing C/C++ Expressions

You can use C/C++ expressions consisting of the tokens shown below for registering C watchpoints
and for specifying the values to be assigned to C watchpoints.

Token Example

Immediate values 10, 0x0a, 012, 1.12, 1.0E+3
Scope ‘'name, classname::member
Mathematical operators + %1

Pointers w kR

Reference &

Sign inversion -

Member reference using dot operator Object.Member

Member reference using arrow

Pointer->Member, this->Member

Pointers to Members

Object.*var, Pointer->*var

Parentheses

G)

Arrays

Array[2], DArray[2] [3] , ...

Casting to basic types

(int), (char®), (unsigned long ¥), ...

Casting to typedef types

(DWORD), (ENUM),

Variable names and function names

var, i, j, func, ...

Character constants

‘A, ', ...

Character string literals

"abedef", "I am a boy.", ...

10.1.1 Immediate Values

You can use hexadecimals, decimals, octals as immediate values. Values starting with Ox are
processed as hexadecimals, those with 0 as octals, and those without either prefix as decimals.
Floating-point numbers can also be used to assign values to variables.

Notes

¢ You cannot register only immediate values as C watchpoints.

e The immediate value is effective only when it is used in C/C++ language expressions
that specify C/C++ watchpoints or when it is used to specify the value to be assigned to
those expressions. When using floating-point numbers, operation cannot be performed
on an expression like 1.0+2.0.

277

10.1.2 Scope Resolution

The scope resolution operator :: is available as following.

Global scope: :ivaliable name
:x, ::val

Class scope: class name::member name, class name::class name::member name, e.g.
T::member, A::B::member

10.1.3 Mathematical Operators

You can use the addition (+), subtraction (-), multiplication (¥*), and division (/) mathematical
operators. The following shows the order of priority in which they are evaluated.

™. . .

Notes
e There is no support currently for mathematical operators for floating point numbers.

10.1.4 Pointers

Pointers are indicated by the asterisk (*). You can use pointer to pointers **, and pointer to pointer to

EX 3
, etc.
Examples: "*variable_name', "**variable_name", etc.

pointers

Notes

e Immediate values cannot be processed as pointers. That is, you cannot specify *0xE000,
for example.

10.1.5 Reference

References are indicated by the ampersand (&). You can only specify "&variable_name".

278

10C/C++ Expressions

10.1.6 Sign Inversion

Sign inversion is indicated by the minus sign (-). You can only specify "-immediate_value" or
"-variable_name". No sign inversion is performed if you specify 2 (or any even number of) minus signs.

Notes

e There is no support currently for sign inversion of floating point numbers.

10.1.7 Member Reference Using Dot Operator

You can only use "variable_name.member_name" for checking the members of structures and unions
using the dot operator.
Example:

class T {

public:

int memberl;

char member2;

};

class T t_cls;

class T *pt_cls = &t_cls;

In this case, t_cls.memberl, (*pt_cls).member2 correctly checks the members.

10.1.8 Member Reference Using Arrow

You can only use "variable_name->member_name" for checking the members of structures and unions
using the arrow.
Example:

class T {

public:

int memberl;

char member2;

}:

class T t_cls;

class T *pt_cls = &t_cls;

In this case, (&t_cls)->memberl, pt_cls->member2 correctly checks the members.

279

10.1.9 Pointers to Members

Pointers to members using the ".*" or "->*" operator can be refered only in the forms of variable
name .* member name or variable name ->* member name.
Example:

class T {

public:

int member;

};

class T t_cls;

class T *pt_cls = &t_cls;

int T::*mp = &T::member;

In this case, t_cls.*mp and tp_cls->*mp can correctly reference the variable of pointer-to-member type.

Note
e Note that the expression *mp cannot considered as the variable of pointer-to-member
type.
10.1.10 Parentheses

Use the '(' and ") to specify priority of calculation within an expression.

10.1.11 Arrays

You can use the ' [' and '] ' to specify the elements of an array. You can code arrays as follows:
"variable_name [(element No or variable)] ", "variable_ name [(element_No or variable)]
[(element_No or variable)] ", etc.

10.1.12 Casting to Basic Types

You can cast to C basic types char, short, int, and long, and cast to the pointer types to these basic
types. When casting to a pointer type, you can also use pointers to pointers and pointers to pointers to
pointers, etc.

Note that if signed or unsigned is not specified, the default values are as follows:

Basic type Default
char unsigned
short signed
int signed
long signed

Notes

e Of the basic types of C++, casts to bool type, wchar_t type, and floating-point type (float
or double) cannot be used.
e Casts to register variables cannot be used.

280

10C/C++ Expressions

10.1.13 Casting to typedef Types

You can use casting to typedef types (types other than the C basic types) and the pointer types to
them. When casting to a pointer type, you can also use pointers to pointers and pointers to pointers to
pointers, etc.

Notes

e You cannot cast to struct or union types or the pointers to those types.

10.1.14 Variable Name

Variable names that begin with English alphabets as required
under C/C++ conventions can be used.

The maximum number of characters for variable name is 255.
And 'this' pointer is available.

10.1.15 Function Name

Function names that begin with English alphabets as required
under C conventions can be used.
In the case of C++, no function names can be used.

10.1.16 Character Constants

You can use characters enclosed in single quote marks () as character constants. For example, 'A', 'b',
etc. These character constants are converted to ASCII code and used as 1-byte immediate values.

Notes

¢ You cannot register character constants only as C watchpoints.

e Character constants are valid only when used in a C/C++ expression that specifies a C
watchpoint, and when specifying a value to be assigned (character constants are
processed in the same manner as immediate values).

10.1.17 Character String Literals

You can use character strings enclosed in double quote marks (") as character string literals.
Examples are "abcde", "I am a boy.", etc.

Notes

e Character string literals can only be placed on the right side of an assignment operator
in an expression. They can only be used when the left side of the assignment operator
is a char array or a char pointer type. In all other cases, a syntax error results.

281

10.2 Display Format of C/C++ Expressions

C/C++ expressions in the data display areas of the C Watch Windows are displayed as their type
name, C/C++ expression (variable name), and result of calculation (value), as shown below.
The following describes the display formats of the respective types.

10.2.1 Enumeration Types

e When the result (value) of calculation has been defined, its name is displayed.
(DATE) date = Sunday(all Radices)

e If the result (value) of calculation has not been defined, it is displayed as follows:
(DATE) date = 16 (when Radix is in initial state)

(DATE) date 0x10(when Radix is hex)

(DATE) date = 0000000000010000B(when Radix is binary)

10.2.2 Basic Types

e When the result of calculation is a basic type other than a char type or floating point
type, it is displayed as follows:

(unsigned int) i 65280(when Radix is in initial state)

(unsigned int) i OxFFOO(when Radix is hex)

(unsigned int) i 1111111100000000B(when Radix is binary)

e When the result of calculation is a char type, it is displayed as follows:

(unsigned char) c = *"J"(when Radix is in initial state)

(unsigned char) c = O0x4A(when Radix is hex)

(unsigned char) c = 10100100B(when Radix is binary)

e When the result of calculation is a floating point, it is displayed as follows:

(double) d = 8.207880399131839E-304(when Radix is in initial state)
(double) d = 0x10203045060708(when Radix is hex)

(double) d = 0000000010. 1000B(when Radix is binary)

C----. indicates abbreviation)

282

10C/C++ Expressions

10.2.3 Pointer Types

e When the result of calculation is a pointer type to other than a char* type, it is

displayed in hexadecimal as follows:
(unsigned int *) p = 0x1234(all Radices)

e When the result of calculation is a char* type, you can select the display format of the
string or a character in the C Watch window's menu [Display String].
- string types
(unsigned char *) str

- character types
(unsigned char *) str = 0x1234 (74 “J")(all Radices)

1 When the result of calculation is a char* type, it is displayed as follows:
(unsigned char *) str = 0x1234 "Jap(all Radices)

If the string contains a non-printing code prior to the code to show the end of the string (0), it is
displayed up to the non-printing character and the closing quote mark is not displayed.

0x1234 "Japan'(all Radices)

+7 indicating pointer type

: ChWatch
X |/ 6z @&

atch | Local | File Local | Global |

W ELtnE | Value |
+lunsigned char *) str OxFOO0O (89 'T')
—lstruct DATA *) pData Ox408
- {struct DATA | *(plakta) 0x408
[signed int) nID u}
+junsigned char *) str OxFOO0S (83 's')

You can double-click on lines indicated by a '+' to see the members of that structure or union. The '+'
changes to a '-' while the members are displayed. To return to the original display, double click the
line, now indicated by the '-'.

283

10.2.4 Array Types

e When the result of calculation is an array type other than a char [] type, the starting

address is displayed in hex as follows:
(signed int [10]) z = 0x1234(all Radices)

e When the result of calculation is a char [] type, it is displayed as follows:
(unsigned char [10]) str = 0x1234 "Japan'(all Radices)

If the string contains a non-printing code prior to the code to show the end of the string (0), it is

displayed up to the non-printing character and the closing quote mark is not displayed.
(unsigned char [10]) str = 0x1234 "Jap(all Radices)

Also if the string contains more than 80 characters, the closing quote mark is not displayed. When the
C/C++ expression is an array type as same as pointer type, a '+' is display to the left of the type name.
You can see the elements of the array by using this indicating. (for the details, refer 10.2.3 Pointer
Types) When the number of the array elements is more than 100, the following dialog box open.
Specify the number of the elements in the dialog box.

Flease set array area.

Start: ||]

End: [1023

Zancel

The elements from the index specified in "Start" to the index specified in "End" are displayed. If you
specify the value more than the max index of the array, the value is regarded as max index of the
array. When you click the "Cancel" button, the elements are not displayed.

10.2.5 Function Types

e When the result of calculation is a function type, the starting address is displayed in

hex as follows:
(void()) main = OxFOOO(all Radices)

10.2.6 Reference Types

e When the result of calculation is a reference type, the reference address is displayed in

hex as follows:
(signed int &) ref = 0xD038(all Radices)

10.2.7 Bit Field Types

e When the result of calculation is a bit field type, it is displayed as follows:
(unsigned int :13) s.f = 8191(when Radix is in initial state)
(unsigned int :13) s.f = Ox1FFF(when Radix is hex)

(unsigned int :13) s.f = 1111111111111B(when Radix is binary)

284

10C/C++ Expressions

10.2.8 When No C Symbol is Found

If the calculated expression contained a C symbol that could not be found, it is displayed as follows:
(O x = <not active>(all Radices)

10.2.9 Syntax Errors

e When the calculated expression contains a syntax error, it is displayed as follows:
(O str*(p = <syntax error>(all Radices)
(where str*(p is the syntax error)

10.2.10 Structure and Union Types

e When the result of calculation is a structure or union type, the address is displayed in

hex as follows:
(Data) v = 0x1234 (all Radices)

If, as in structures and unions, the C/C++ expression consists of members, a '+' is displayed to the left
of the type name (tag name).

& L]
+ indicating structure or union

x| 46 2w @S

Wiatch | Local | File Local | Global |

Matne | Values | =
Tlunsigned char *) str OxFOOO0 (89 '¥')
h 4 [unsigned char} *(str) ag 'y
+|lstruct DATA *) pData Ox408
- (struct Answer | ans OxB8ZE e
[unsigned char) ch 100 'd!’
[zigned int) nID 3880 LI

You can double-click on lines indicated by a '+' to see the members of that structure or union. The '+'
changes to a '-' while the members are displayed. To return to the original display, double click the
line, now indicated by the '-'. This function allows you to check the members of structures and unions.

Attention

If a variable is declared with the same name as the type definition name declared by typedef, you
cannot reference that variable.

e Register Variables
When the result of calculation is a register variable, "register" is displayed to the left of the type name

as follows:
(register signed int) j = 100

285

11. Display the Cause of the Program Stoppage

If the program is stoped by the debug function, the cause of the stoppage is displayed in the Output
window or Status window ([Platform] sheet).

The debugger for 740 doesn't support this function.

The contents of a display and the meaning of "the cause of the stoppage" are as follows.

Display The cause of the stoppage

Halt The stop by the [Halt Program] button/menu
S/W break Software break

H/W break Hardware break

Memory access error Memory access error break

Undefined instruction Undefined instruction break

286

12Attention

12. Attention

12.1 Common Attention

12.1.1 File operation on Windows

The following points should be noted:
1. File Name and Directory Name
- Operation is not guaranteed if your directory names and filenames include kanji.
- Use only one period in a filename.
2. Specify the File and Directory
- You cannot use "..." to specify two levels upper directories.
- You cannot use a network pathname. You must allocate a drive.

12.1.2 Area where software breakpoint can be set

Software breakpoints can be set in the entire area.

287

12.1.3 Get or set C variables

If a variable is declared with the same name as the type definition name declared by
typedef, you cannot reference that variable.

Values cannot be changed for register variables.

Values cannot be changed for 64 bit width variables (long long, double, and so on).
Values cannot be changed for C/C++ expressions that do not indicate the memory
address and size.

For the sake of optimization, the C compiler may place different variables at the same
address. In this case, values of the C variable may not be displayed correctly.

Literal character strings can only be substituted for char array and char pointer type
variables.

No arithmetic operations can be performed on floating point types.

No sign inversion can be performed on floating point types.

Casting cannot be performed on floating point types.

Casting cannot be performed on register variables.

Casting cannot be performed on structure types, union types, or pointer types to
structure or union types.

Character constants and literal character strings cannot contain escape sequences.

The following values can be substituted for the bit-fields.

- integer constants, character constants, and enumerators

- variables of bool types, characters types, integers types, and enumeration types

- bit-field

When the substituted value is larger than the size of the bit-field, it will be truncated.

The bit-field member allocated in the SFR area might not be transformed into a correct
value.

While the target program is running, values of local variables and bit-fields cannot be
modified.

12.1.4 Function name in C++

When you input the address using the function name in setting display address, setting
break points, and so on, you can not specify the member function, operator function,
and overloaded function, of a class.

You can not use function names for C/C++ expression

No script commands (e.g., breakin and func) can be used in which function names are
specified for arguments.

In address value specifying columns of dialog boxes, no addresses can be specified
using function names.

The pointers for a member function can not be referred correctly in C watch window.

12.1.5 Option settings for download modules

These options, which can be set in "Debug Settings" dialog box, are invalid for this debugger:

Offset : specified value is regarded as ‘0’
Access size : specified value is regarded as ‘1’
Perform memory verify during download : Not supported.

288

12Attention

12.1.6 Debugging multi modules

If you register two or more absolute module file in one session, you can download only one file in same

time.
If you register one absolute module file and one or more machine language file in one session, you can

download all file in same time.

12.1.7 Synchronized debugging

Synchronized debugging function is not available.

12.1.8 Virtual port output functions

The maximum number of data that can be acquired on I/O timing setting window's virtual port output
or output port windows can be specified in the Init dialog box. We recommend specifying a value less
than 500,000 for this data count. In the 740 debugger, the maximum number of data is 30000.
Specifying any value greater than that may cause the performance of the simulator debugger or
Windows to drop.

289

12.2 Attention of the R32C Debugger

12.2.1 Option of C Compiler/Assembler/Linker

The information may not be downloaded/debugged normally depending on the option designation of
the compiler, assembler, and linker.

Please refer to the following for the option specification.

Refer to "12.6 Options for compiler, assembler, and linker"

The compiler that can be used by R32C debugger:
e NCxx
e the IAR EC++ Compiler
e the IAR C Compiler

12.3 Attention of the M32C Debugger

12.3.1 Option of C Compiler/Assembler/Linker

The information may not be downloaded/debugged normally depending on the option designation of
the compiler, assembler, and linker.

Please refer to the following for the option specification.

Refer to "12.6 Options for compiler, assembler, and linker"

The compiler that can be used by M32C debugger:
e NCxx
e the IAR EC++ Compiler
e the IAR C Compiler

290

12Attention

12.4 Attention of the M16C/R8C Debugger

12.4.1 Options for compiler, assembler, and linker

The information may not be downloaded/debugged normally depending on the option designation of
the compiler, assembler, and linker.

Please refer to the following for the option specification.

Refer to "12.6 Options for compiler, assembler, and linker"

The compiler that can be used by M16C/R8C debugger:
e NCxx
e the IAR EC++ Compiler
e the IAR C Compiler
e the TASKING C Compiler

12.4.2 TASKING C Compiler

When you debug programs compiled by the TASKING C Compiler "CCM16", the type of bit field is
fixed on "unsigned short int". Because CCM16 outputs the debug information for the type of bit field
as "unsigned short int."

12.4.3 Precautions on Using M16C/62 Group

This debugger does not support the M16C/62 group's memory extension mode. (Only the normal mode
is supported.)

291

12.5 Attention of the 740 Debugger

12.5.1 Options for compiler, assembler, and linker

The information may not be downloaded/debugged normally depending on the option designation of
the compiler, assembler, and linker.

Please refer to the following for the option specification.

Refer to "12.6 Options for compiler, assembler, and linker"

The compiler that can be used by 740 debugger:
e the Assembler Package for 740 Family SRA74
e the IAR C Compiler

12.5.2 Not support functions

e The simulator debugger for 740 does not support the real-time tracing. The following
windows and script commands are not available.
- Output Port Window
- Trace Point Setting Window
- Trace Window
- Data Trace Window
- TracePoint Command
- TraceData Command
- TraceList Command

e The whole of the memory range is available for debugging with the simulator debugger
for 740.
- The MAP command to assign memories is not supported.
- It is not necessary to specify a range for coverage.

e The simulator engine for 740 can not detect factors of breaks. Therefore, the factors are
not displayed in the Output window and the Status window([Platform] sheet).

e The debugger for 740 does not support stack tracing. Therefore, the following windows
and script commands are not available.
- Stack Trace Window
- Up command
- Down command
- Where command

292

12Attention

12.6 Options for compiler, assembler, and linker

The information may not be downloaded/debugged normally depending on the option designation of
the compiler, assembler, and linker.
Please refer to the following for the option specification.

In the options other than the above-mentioned, the operation check is not done. Please acknowledge
that the options other than the above-mentioned cannot be recommended.

12.6.1 When Using NCxx

When -0, -OR or -OS option is specified at compilation, the source line information may not be
generated normally due to optimization, causing step execution to be operated abnormally.

To avoid this problem, specify -ONBSD (or -Ono_Break_source_debug) option together with -O, -OR
or -OS option.

12.6.2 When Using the Assembler Package for 740 Family

Please assemble according to the following procedures and link.

At assemble
e "-¢"option
outputs debugging information concerned with source line to a relocatable file.

Note

When the directive comand .FUNC is specified to a function in a source file, if "-¢" option is used, the
name of the function will be not available. Please do not use the option to make the name available.

e "-g" option
outputs local labels, local .equ symbols and local .bequ symbols to a relocatable file.

At link
e "-g" option
generates a symbol file.

In the options other than the above-mentioned, the operation check is not done. Please acknowledge
that the options other than the above-mentioned cannot be recommended.

12.6.2.1 Command Execution Examples

The following shows examples of entering commands depending on the product
e The Debugger for 740
>sra74 -c -s main.a74<Enter>
>sra74 -c -s sub.a74<Enter>
>1ink74 main sub ,,,-s<Enter>

293

12.6.3 When Using the IAR EC++ Compiler (EW)

Please specify the project setting by following process.

1. The Setting in the IAR Embedded Workbench

When you select the menu [Project] -> [Options...], the dialog for "Options For Target " target"
will open. In this dialog, please select the "XLINK" as category, and set the project setting.

e OQOutput Tab

In the "Format" area, check the "Other" option, and select the "elf/dwarf" as "Output

Format".
e Include Tab

In the "XCL File Name" area, specify your XCL file (ex: Inkm32cf.xcl).

2. Edit the XCL file

Add the command line option "-y" to your XCL file. The designation of "-y" option varies

depending on the product.

Product Name -y Option
The debugger for R32C -yspc
The debugger for M32C -yspc
The debugger for M16C/R8C -yspc

3. Build your program after the setting above.

In the options other than the above-mentioned, the operation check is not done. Please acknowledge
that the options other than the above-mentioned cannot be recommended.

12.6.4 When Using the IAR C Compiler (EW)

Please specify the project setting by following process.

1. The Setting in the IAR Embedded Workbench

When you select the menu [Project] -> [Options...], the dialog for "Options For Target " target"
will open. In this dialog, please select the "XLINK" as category, and set the project setting.

- Output Tab

In the "Format" area, check the "Other" option, and select the "ieee-695" as "Output Format".

- Include Tab

In the "XCL File Name" area, specify your XCL file (ex: Inkm16¢c.xcl).

2. Edit the XCL file

Add the command line option "-y" to your XCL file. The designation of "-y" option varies

depending on the product.

Product Name -y Option
The debugger for R32C -ylmba
The debugger for M32C -ylmb
The debugger for M16C/R8C -ylmb
The debugger for 740 -ylmba

3. Build your program after the setting above.

In the options other than the above-mentioned, the operation check is not done. Please acknowledge
that the options other than the above-mentioned cannot be recommended.

294

12Attention

12.6.5 When Using the IAR C Compiler (ICC)

12.6.5.1 Specify the Option

Please compile according to the following procedures and link.

e At compilation
Specify the "-r" option.

e Before linking
Open the linker's option definition file (extension .xcl) to be read when linking and add
"-FIEEE695" and "-y" options. The designation of "-y" option varies depending on the

product.
Product Name -y Option
The debugger for R32C -ylmba
The debugger for M32C -ylmb
The debugger for M16C/R8C -ylmb
The debugger for 740 -ylmba
e Atlink

Specify the linker's option definition file name using "-f" option.

In the options other than the above-mentioned, the operation check is not done. Please acknowledge
that the options other than the above-mentioned cannot be recommended.

12.6.5.2 Command Execution Examples

The following shows examples of entering commands depending on the product

e The debugger for R32C

>I1CCR32C -r filel.c<Enter>

>ICCR32C -r file2.c<Enter>

>SXLINK -o Filename.695 -f Inkr32c.xcl filel file2<Enter>

e The debugger for M32C

>ICCMC80 -r filel.c<Enter>

>ICCMC80 -r file2.c<Enter>

>XLINK -o filename.695 -f Inkm80.xcl filel file2<Enter>

e The debugger for M16C/R8C
>ICCM16C -r filel.c<Enter>
>ICCM16C -r file2.c<Enter>
>XLINK -o Ffilename.695 -f Inkml6c.xcl filel file2<Enter>

e The debugger for 740

>1CC740 -r filel.c<Enter>

>I1CC740 -r file2.c<Enter>

>XLINK -o Ffilename.695 -f Ink7400t.xcl filel file2<Enter>

The XCL file name varies depending on the product and memory model. For details, see the ICCxxxx
manual.

295

12.6.6 When Using the TASKING C Compiler (EDE)

Please specify the project setting by following process.

1. Select menu - [EDE]->[C Compiler Option]->[Project Options...]. The "M16C C Compiler Options

[Project Name]" dialog opens.

Please set as follows by this dialog.

- Optimeze Tab
Please specify "No optimization" by Optimization level.

- Debug Tab
Please check only ""Enable generation of any debug information(including type checkeing)™
and "Genarate symbolic debug information".

2. Select menu - [EDE]->[Linker/Locator Options...]. The "M16C Linker/Locator Options [Project
Name]" dialog opens.
Please set as follows by this dialog.
- Format Tab
Please specify "IEEE 695 for debuggers(abs)" by Output Format.

3. Build your program after the setting above.

In the options other than the above-mentioned, the operation check is not done. Please acknowledge
that the options other than the above-mentioned cannot be recommended.

12.6.7 When Using the TASKING C Compiler (CM)

12.6.7.1 Specify the Option

Please specify "-g" and "- 00" options when compiling.
In the options other than the above-mentioned, the operation check is not done. Please acknowledge
that the options other than the above-mentioned cannot be recommended.

12.6.7.2 Command Execution Examples

The following shows examples of entering commands.
>CM16 -g -00 filel.c<Enter>

296

R32C Simulator Debugger V.1.01
User's Manual

Publication Date: Jul. 01, 2009 Rev.1.00
:) Sales Strategic Planning Div.
Published by: Renesas Technology Corp.
Edited by: Microcomputer Tool Development Department

Renesas Solutions Corp.

© 2009. Renesas Technology Corp. and Renesas Solutions Corp., All rights reserved. Printed in Japan.

R32C Simulator Debugger V.1.01
User’s Manual

RENESAS

Renesas Electronics Corporation
1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan REJ10J1988-0100

	1. Features
	1.1 Real-Time RAM Monitor Function
	1.1.1 RAM Monitor Area
	1.1.2 Sampling Period
	1.1.3 Related Windows

	1.2 Break Functions
	1.2.1 Software Breaks Function
	1.2.1.1 Setting of software breakpoint
	1.2.1.2 Area where software breakpoint can be set

	1.2.2 Hardware Breaks Function

	1.3 Real-Time Trace Function
	1.3.1 Trace Area
	1.3.2 Trace Condition Setting
	1.3.3 Trace Data Write Condition

	1.4 Coverage Function
	1.4.1 Coverage Measurement Area
	1.4.2 Related Windows

	1.5 Real-Time OS Debugging Function
	1.6 GUI Input/Output Function
	1.7 I/O Simulation Function
	1.8 Time Measurement Function
	1.9 Stack Utilization Monitor Function

	2. Simulation Specifications
	2.1 Simulation Specifications for R32C
	2.1.1 Operation of Instructions
	2.1.2 Resetting
	2.1.3 Memory
	2.1.4 I/O
	2.1.5 Cycle Count: The CYcle (CY) Command
	2.1.6 Stack Utilization Monitor: The StackMonitor (SM) Command

	2.2 Simulation Specifications for M32C
	2.2.1 Operation of Instructions
	2.2.2 Resetting
	2.2.3 Memory
	2.2.4 I/O
	2.2.5 Cycle Count: The CYcle (CY) Command
	2.2.6 Stack Utilization Monitor: The StackMonitor (SM) Command

	2.3 Simulation Specifications for M16C/R8C
	2.3.1 Operation of Instructions
	2.3.2 Resetting
	2.3.3 Memory
	2.3.4 I/O
	2.3.5 Cycle Count: The CYcle (CY) Command
	2.3.6 Stack Utilization Monitor: The StackMonitor (SM) Command

	2.4 Simulation Specifications for 740
	2.4.1 Operation of Instructions
	2.4.2 Resetting
	2.4.3 Memory
	2.4.4 I/O
	2.4.5 Cycle Count: The CYcle (CY) Command
	2.4.6 Stack Utilization Monitor: The StackMonitor (SM) Command

	3. Preparation before Use
	3.1 Workspaces, Projects, and Files
	3.2 Starting the High-performance Embedded Workshop
	3.2.1 Creating a New Workspace (Toolchain Used)
	3.2.1.1 Step1 : Creation of a new workspace
	3.2.1.2 Step2 : Setting for the Toolchain
	3.2.1.3 Step 3: Selecting of the Target Platform
	3.2.1.4 Step4 : Setting the Configuration File Name
	3.2.1.5 Step5 : The check of a created file name

	3.2.2 Creating a New Workspace (Toolchain Not Used)
	3.2.2.1 Step1 : Creation of a new workspace
	3.2.2.2 Step 2: Selecting of the Target Platform
	3.2.2.3 Step3 : Setting the Configuration File Name
	3.2.2.4 Step4 : Registering the Load modules to be downloaded

	3.3 Starting the Debugger
	3.3.1 Connecting the Simulator
	3.3.2 Ending the Simulator

	4. Setup the Debugger
	4.1 Init Dialog
	4.1.1 MCU Tab
	4.1.1.1 Specifying the MCU file
	4.1.1.2 Specifying Clock Frequency
	4.1.1.3 Selection of the Simulation Mode (for M16C/R8C)

	4.1.2 Debugging Information Tab
	4.1.2.1 display the compiler used and its object format
	4.1.2.2 Specify the Storing of Debugging Information
	4.1.2.3 Specify whether to display the instruction format specifier
	4.1.2.4 To treat size of enumeration type as 1 byte

	4.1.3 Script Tab
	4.1.3.1 Automatically Execute the Script Commands

	4.1.4 Trace Tab
	4.1.5 I/O Script Tab

	4.2 MCU Setting Dialog (for M16C/R8C)
	4.2.1 Memory Tab
	4.2.1.1 Setting the memory map
	4.2.1.1.1. Memory Map Dialog box

	4.3 Simulator engine setup
	4.4 Method of making MCU file
	4.4.1 Method of making MCU file (the R32C Debugger)
	4.4.1.1 Example

	4.4.2 Method of making MCU file (the M32C Debugger)
	4.4.2.1 Example

	4.4.3 Method of making MCU file (the M16C/R8C Debugger)
	4.4.3.1 Example

	4.4.4 Method of making MCU file (the 740 Debugger)
	4.4.4.1 Example

	5. Tutorial
	5.1 Introduction
	5.2 Usage
	5.2.1 Step1 : Starting the Debugger
	5.2.1.1 Preparation before Use
	5.2.1.2 Setup the Debugger

	5.2.2 Step2 : Checking the Operation of RAM
	5.2.2.1 Checking the Operation of RAM

	5.2.3 Step3 : Downloading the Tutorial Program
	5.2.3.1 Downloading the Tutorial Program
	5.2.3.2 Displaying the Source Program

	5.2.4 Step4 : Setting a Breakpoint
	5.2.4.1 Setting a Software Breakpoint

	5.2.5 Step5 : Executing the Program
	5.2.5.1 Resetting of CPU
	5.2.5.2 Executing the Program
	5.2.5.3 Reviewing Cause of the Break

	5.2.6 Step6 : Reviewing Breakpoints
	5.2.6.1 Reviewing Breakpoints

	5.2.7 Step7 : Viewing Register
	5.2.7.1 Viewing Register
	5.2.7.2 Setting the Register Value

	5.2.8 Step8 : Viewing Memory
	5.2.8.1 Viewing Memory

	5.2.9 Step9 : Watching Variables
	5.2.9.1 Watching Variables
	5.2.9.2 Registering Variable

	5.2.10 Step10 : Stepping Through a Program
	5.2.10.1 Executing [Step In] Command
	5.2.10.2 Executing [Step Out] Command
	5.2.10.3 Executing [Step Over] Command

	5.2.11 Step11 : Forced Breaking of Program Executions
	5.2.11.1 Forced Breaking of Program Executions

	5.2.12 Step12 : Displaying Local Variables
	5.2.12.1 Displaying Local Variables

	5.2.13 Step13 : Stack Trace Function
	5.2.13.1 Reference the function call status

	5.2.14 What Next?

	6. Windows/Dialogs
	6.1 RAM Monitor Window
	6.1.1 Extended Menus
	6.1.2 Setting the RAM monitor area
	6.1.2.1 Changing the RAM Monitor Area

	6.2 I/O Timing Setting Window
	6.2.1 Virtual Port Input
	6.2.2 Virtual Port Output
	6.2.3 Virtual Interrupt
	6.2.4 Structure of Virtual Port Input Screen
	6.2.4.1 Screen structure for cycle-synchronized inputs
	6.2.4.2 Screen structure for read access-synchronized inputs
	6.2.4.3 Screen structure for interrupt-synchronized inputs

	6.2.5 Structure of Virtual Port Output Screen
	6.2.6 Structure of Virtual Interrupt Screen
	6.2.6.1 Screen structure for cycle-synchronized interrupts
	6.2.6.2 Screen structure for executed address-synchronized interrupts
	6.2.6.3 Screen configuration for interval-synchronized interrupts

	6.2.7 Extended Menus
	6.2.8 Setting Virtual Port Inputs
	6.2.8.1 Setting Cycle-synchronized Inputs
	6.2.8.2 Setting Read Access-synchronized Inputs
	6.2.8.3 Setting Interrupt-synchronized Inputs

	6.2.9 Setting Virtual Port Outputs
	6.2.9.1 Setting Virtual Port Outputs

	6.2.10 Setting Virtual Interrupts
	6.2.10.1 Setting Cycle-synchronized Interrupts
	6.2.10.2 Setting Executed Address-synchronized Interrupts
	6.2.10.3 Setting interval-synchronized interrupts
	6.2.10.3.1. Setting a virtual interrupt
	6.2.10.3.2. Deleting a virtual interrupt
	6.2.10.3.3. Temporarily disabling a virtual interrupt
	6.2.10.3.4. Reenabling a disabled virtual interrupt
	6.2.10.3.5. Saving a virtual interrupt
	6.2.10.3.6. Loading a virtual interrupt

	6.2.11 Regarding Evaluation Timings of Virtual Port Inputs,Virtual Interrupts, and I/O Script Files Set
	6.2.11.1 Evaluation timings
	6.2.11.2 Processing when program is reset
	6.2.11.3 Processing when I/O Window is closed

	6.3 Output Port Window
	6.3.1 Extended Menus

	6.4 ASM Watch Window
	6.4.1 Extended Menus

	6.5 C Watch Window
	6.5.1 Extended Menus

	6.6 Coverage Window
	6.6.1 Extended Menus
	6.6.2 Refer to the Source Line/the Executed Address
	6.6.2.1 Refer in the Editor(Source) Window
	6.6.2.2 Refer in the Memory Window

	6.7 Script Window
	6.7.1 Extended Menus

	6.8 S/W Break Point Setting Window
	6.8.1 Command Button
	6.8.2 Setting and Deleting a Break Points from Editor(Source) Window

	6.9 H/W Break Point Setting Dialog Box
	6.9.1 Specify the Events
	6.9.1.1 Instruction Fetch
	6.9.1.2 Memory Access

	6.10 Trace Point Setting Window
	6.10.1 Specify the Trace Event
	6.10.2 Specify the Combinatorial Condition
	6.10.3 Specify the Trace Range
	6.10.4 Specify the Trace Write Condition
	6.10.5 Command Button
	6.10.6 Specify the Events (Instruction Fetch)
	6.10.6.1.1. Instruction Fetch of Specified Address
	6.10.6.2 Instruction Fetch of Specified Address Area(In)
	6.10.6.3 Instruction Fetch of Specified Address Area(Out)
	6.10.6.4 Entering/exiting to specified function

	6.10.7 Specify the Events (Memory Access)
	6.10.7.1 Memory Access(The debugger for R32C)
	6.10.7.1.1. Writing/Reading a Specified Address
	6.10.7.1.2. Reading/writing data to the specified address range
	6.10.7.1.3. Reading/writing data to addresses outside the specified range

	6.10.7.2 Memory Access(The debugger for M32C)
	6.10.7.2.1. Writing/Reading a Specified Address
	6.10.7.2.2. Reading/writing data to the specified address range
	6.10.7.2.3. Reading/writing data to addresses outside the specified range

	6.10.7.3 Memory Access(The debugger for M16C/R8C)
	6.10.7.3.1. Writing/Reading a Specified Address
	6.10.7.3.2. Reading/writing data to the specified address range
	6.10.7.3.3. Reading/writing data to addresses outside the specified range

	6.10.8 Specify the Events (Bit Access)
	6.10.8.1 Writing/Reading a Specified Bit
	6.10.8.2 Writing/Reading a Specified Bit Symbol

	6.10.9 Specify the Events (Interrupt)
	6.10.9.1 Interrupt Occurrence
	6.10.9.2 Interrupt Termination

	6.10.10 Specify the Event Combination Condition
	6.10.10.1 Select AND, OR
	6.10.10.2 Select AND(Same Time)
	6.10.10.3 Select State Transition

	6.10.11 Specify the write condition

	6.11 Trace Window
	6.11.1 Configuration of Bus Mode
	6.11.2 Configuration of Disassemble Mode
	6.11.3 Configuration of Data Access Mode
	6.11.4 Configuration of Source Mode
	6.11.5 Extended Menus
	6.11.6 Display of bus information on the Simulator Debugger

	6.12 Data Trace Window
	6.12.1 Extended Menus

	6.13 GUI I/O Window
	6.13.1 Extended Menus

	6.14 MR Window
	6.14.1.1 Extended Menus
	6.14.2 Display the Task Status
	6.14.2.1 Display the Task Status(When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)
	6.14.2.2 Display the Task Status(When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	6.14.3 Display the Ready Queue Status
	6.14.3.1 Display the Ready Queue Status(When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)
	6.14.3.2 Display the Ready Queue Status(When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	6.14.4 Display the Timeout Queue Status
	6.14.4.1 Display the Timeout Queue Status(When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)
	6.14.4.2 Display the Timeout Queue Status(When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	6.14.5 Display the Event Flag Status
	6.14.5.1 Display the Event Flag Status(When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)
	6.14.5.2 Display the Event Flag Status(When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	6.14.6 Display the Semaphore Status
	6.14.6.1 Display the Semaphore Status(When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)
	6.14.6.2 Display the Semaphore Status (When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	6.14.7 Display the Mailbox Status
	6.14.7.1 Display the Mailbox Status (When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)
	6.14.7.2 Display the Mailbox Status (When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	6.14.8 Display the Data Queue Status
	6.14.8.1 Display the Data Queue Status(When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	6.14.9 Display the Cycle Handler Status
	6.14.9.1 Display the Cycle Handler Status(When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)
	6.14.9.2 Display the Cycle Handler Status(When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	6.14.10 Display the Alarm Handler Status
	6.14.10.1 Display the Alarm Handler Status(When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)
	6.14.10.2 Display the Alarm Handler Status(When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	6.14.11 Display the Memory Pool Status
	6.14.11.1 Display the Memory Pool Status(When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)
	6.14.11.2 Display the Memory Pool Status(When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	6.14.12 Display the Task Context
	6.14.12.1 Display the Task Context
	6.14.12.2 Change the task context

	6.15 MR Trace Window
	6.15.1 Extended Menus
	6.15.2 Refer the Execution History of Task(MRxx Window)
	6.15.2.1 Select the Trace Range
	6.15.2.2 Stop the Task Execution History Measurement
	6.15.2.3 Restart the Task Execution History Measurement
	6.15.2.4 Refer the Execution History of Task
	6.15.2.4.1. Search the History of System Call Issue
	6.15.2.4.2. Change the display magnification
	6.15.2.4.3. Change the grid line display interval
	6.15.2.4.4. Change the task display order
	6.15.2.4.5. Display the specific task only
	6.15.2.4.6. Change the display color

	6.15.2.5 Measure the Execution Time of Task
	6.15.2.5.1. Move the Marker

	6.16 MR Analyze Window
	6.16.1 Configuration of CPU Occupancy Status Display Mode
	6.16.2 Configuration of Ready State Duration Display Mode
	6.16.3 Configuration of System Call History Display Mode
	6.16.4 Extended Menus
	6.16.5 Analyze the Execution History of Task
	6.16.5.1 Analyze the Execution History of Task
	6.16.5.1.1. Refer the CPU Occupation State

	6.16.5.2 Refer the Ready Queue Time
	6.16.5.3 Refer the System Call Issuance History
	6.16.5.3.1. Extract the Issuance History

	6.17 Task Trace Window
	6.17.1 Extended Menus
	6.17.2 Refer the Execution History of Task(Taskxx Window)
	6.17.2.1 Prepare the Measurement
	6.17.2.1.1. Set the Information of Realtime OS.
	6.17.2.1.2. Select the Trace Range
	6.17.2.1.3. Start the Target Program

	6.17.2.2 Refer the Execution History of Task
	6.17.2.2.1. Change the display magnification
	6.17.2.2.2. Change the grid line display interval
	6.17.2.2.3. Change the task display order
	6.17.2.2.4. Measure the Execution Time of Task
	6.17.2.2.5. Move the Marker

	6.18 Task Analyze Window
	6.18.1 Extended Menus
	6.18.2 Analyze the Execution History of Task

	7. Table of Script Commands
	7.1 Table of Script Commands (classified by function)
	7.1.1 Execution Commands
	7.1.2 File Operation Commands
	7.1.3 Register Operation Commands
	7.1.4 Memory Operation Commands
	7.1.5 Assemble/Disassemble Commands
	7.1.6 Software Break Setting Commands
	7.1.7 Hardware Break Setting Commands
	7.1.8 Real-time Trace Commands
	7.1.9 Coverage Measurement Commands
	7.1.10 Stack Utilization Monitor Command
	7.1.11 Cycle Count Monitor Command
	7.1.12 Script/Log File Commands
	7.1.13 Program Display Commands
	7.1.14 Map Commands
	7.1.15 C Language Debugging Commands
	7.1.16 Real-time OS Command
	7.1.17 Utility Commands

	7.2 Table of Script Commands (alphabetical order)

	8. Writing Script Files
	8.1 Structural Elements of a Script File
	8.1.1 Script Command
	8.1.2 Assign Statement
	8.1.3 Conditional Statement
	8.1.4 Loop Statement(while,endw) and Break Statement
	8.1.5 Comment statements

	8.2 Writing Expressions
	8.2.1 Constants
	8.2.2 Symbols and labels
	8.2.2.1 Local label symbol and scope
	8.2.2.2 Priority levels of labels and symbols

	8.2.3 Macro Variables
	8.2.4 Register variables
	8.2.5 Memory variables
	8.2.6 Line Nos.
	8.2.7 Character constants
	8.2.8 Operators

	9. I/O Script
	9.1 Method for Writing I/O Script
	9.2 Composition of I/O Script
	9.2.1 Procedure
	9.2.2 I/O Script Statements
	9.2.2.1 waiti statement
	9.2.2.2 waitc statement
	9.2.2.3 int statement
	9.2.2.4 set statement
	9.2.2.5 pass statement

	9.2.3 Judge Statements (if, else)
	9.2.4 Repeat Statement (while) and break Statement
	9.2.5 Comment Statements

	9.3 Method for Writing Right-side Expressions
	9.3.1 Constants
	9.3.2 Symbols and Labels
	9.3.3 Macro Variables
	9.3.4 Memory Variables
	9.3.5 Character Constants
	9.3.6 Operators
	9.3.7 #isfetch, #isint, #isread, #iswrite
	9.3.7.1 #isfetch expression
	9.3.7.2 #isint expression
	9.3.7.3 #isread expression
	9.3.7.4 #iswrite expression

	9.4 Method for Writing Left-side Expressions
	9.4.1 Macro Variables
	9.4.2 Memory Variables

	10. C/C++ Expressions
	10.1 Writing C/C++ Expressions
	10.1.1 Immediate Values
	10.1.2 Scope Resolution
	10.1.3 Mathematical Operators
	10.1.4 Pointers
	10.1.5 Reference
	10.1.6 Sign Inversion
	10.1.7 Member Reference Using Dot Operator
	10.1.8 Member Reference Using Arrow
	10.1.9 Pointers to Members
	10.1.10 Parentheses
	10.1.11 Arrays
	10.1.12 Casting to Basic Types
	10.1.13 Casting to typedef Types
	10.1.14 Variable Name
	10.1.15 Function Name
	10.1.16 Character Constants
	10.1.17 Character String Literals

	10.2 Display Format of C/C++ Expressions
	10.2.1 Enumeration Types
	10.2.2 Basic Types
	10.2.3 Pointer Types
	10.2.4 Array Types
	10.2.5 Function Types
	10.2.6 Reference Types
	10.2.7 Bit Field Types
	10.2.8 When No C Symbol is Found
	10.2.9 Syntax Errors
	10.2.10 Structure and Union Types

	11. Display the Cause of the Program Stoppage
	12. Attention
	12.1 Common Attention
	12.1.1 File operation on Windows
	12.1.2 Area where software breakpoint can be set
	12.1.3 Get or set C variables
	12.1.4 Function name in C++
	12.1.5 Option settings for download modules
	12.1.6 Debugging multi modules
	12.1.7 Synchronized debugging
	12.1.8 Virtual port output functions

	12.2 Attention of the R32C Debugger
	12.2.1 Option of C Compiler/Assembler/Linker

	12.3 Attention of the M32C Debugger
	12.3.1 Option of C Compiler/Assembler/Linker

	12.4 Attention of the M16C/R8C Debugger
	12.4.1 Options for compiler, assembler, and linker
	12.4.2 TASKING C Compiler
	12.4.3 Precautions on Using M16C/62 Group

	12.5 Attention of the 740 Debugger
	12.5.1 Options for compiler, assembler, and linker
	12.5.2 Not support functions

	12.6 Options for compiler, assembler, and linker
	12.6.1 When Using NCxx
	12.6.2 When Using the Assembler Package for 740 Family
	12.6.2.1 Command Execution Examples

	12.6.3 When Using the IAR EC++ Compiler (EW)
	12.6.4 When Using the IAR C Compiler (EW)
	12.6.5 When Using the IAR C Compiler (ICC)
	12.6.5.1 Specify the Option
	12.6.5.2 Command Execution Examples

	12.6.6 When Using the TASKING C Compiler (EDE)
	12.6.7 When Using the TASKING C Compiler (CM)
	12.6.7.1 Specify the Option
	12.6.7.2 Command Execution Examples

