Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 “Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

 “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(2012.4)
General Precautions for Handling This Product

1. Circumstances not covered by product guarantee
 - If the product was disassembled, altered, or repaired by the customer
 - If it was dropped, broken, or given another strong shock
 - Use at overvoltage, use outside guaranteed temperature range, storing outside guaranteed temperature range
 - If power was turned on while connection to the AC adapter, USB interface cable, or target system was in an unsatisfactory state
 - If the cable of the AC adapter, the USB interface cable, the emulation probe, or the like was bent or pulled excessively
 - If an AC adapter other than the supplied product was used
 - If the product got wet
 - If this product is connected to the target system when there is a potential difference between the GND of this product and GND of the target system.
 - If the connectors or cables are plugged/unplugged while this product is in the power-on state.
 - If excessive load is applied to the connectors or sockets (As for handling, please see 2.3 Mounting and Connecting Connectors (When Using S Type) or 2.4 Mounting and Connecting Connectors (When Using T Type).
 - If a metal part of the power switch, cooling fan, or another such part comes in contact with an electrostatic charge.
 - If the product is used or stored in an environment where an electrostatic or electrical noise is likely to occur.

2. Safety precautions
 - If used for a long time, the product may become hot (50°C to 60°C). Be careful of low temperature burns and other dangers due to the product becoming hot.
 - Be careful of electrical shock. There is a danger of electrical shock if the product is used as described above in 1. Circumstances not covered by product guarantee.
How to Use This Manual

Readers
This manual is intended for users who wish to perform debugging using the QB-RL78F14. The readers of this manual are assumed to be familiar with the device functions and usage, and to have knowledge of debuggers.

Purpose
This manual is intended to give users an understanding of the basic specifications and correct usage of the QB-RL78F14.

Organization
This manual is divided into the following sections.
• General
• Setup procedure
• Settings at product shipment
• Cautions

How to Read This Manual
It is assumed that the readers of this manual have general knowledge in the fields of electrical engineering, logic circuits, and microcontrollers.
This manual describes the basic setup procedures and how to set switches.

To understand the overall functions and usages of the QB-RL78F14
→ Read this manual in the order of the CONTENTS. The mark <R> shows major revised points. The revised points can be easily searched by copying an “<R>” in the PDF file and specifying it in the “Find what:” field.

To know the manipulations, command functions, and other software-related settings of the QB-RL78F14
→ See the user’s manual of the debugger (supplied with the QB-RL78F14) to be used.

Conventions
Note: Footnote for item marked with Note in the text
Caution: Information requiring particular attention
Remark: Supplementary information
Numeric representation:
Binary ... xxxx or xxxxB
Decimal ... xxxx
Hexadecimal ... xxxxH

Prefix indicating power of 2
(address space, memory capacity):
K (kilo): $2^{10} = 1,024$
M (mega): $2^{20} = 1,024^2$
Terminology

The meanings of the terms used in this manual are described in the table below.

<table>
<thead>
<tr>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target device</td>
<td>This is the device to be emulated.</td>
</tr>
<tr>
<td>Target system</td>
<td>This is the system to be debugged.</td>
</tr>
<tr>
<td></td>
<td>This includes the target program and the hardware provided by the user.</td>
</tr>
<tr>
<td>IECUBE™</td>
<td>Generic name for Renesas Electronics' high-performance / compact</td>
</tr>
<tr>
<td></td>
<td>in-circuit emulator.</td>
</tr>
</tbody>
</table>

Related Documents

Please use the following documents in conjunction with this manual.
The related documents listed below may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Development Tools (User’s Manuals)

<table>
<thead>
<tr>
<th>Document Name</th>
<th>Document Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>QB-RL78F14 In-Circuit Emulator</td>
<td>This manual</td>
</tr>
</tbody>
</table>

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing, etc.
CHAPTER 1 GENERAL

The QB-RL78F14 is an in-circuit emulator for emulating the RL78/F13, F14. Hardware and software can be debugged efficiently in the development of systems in which the RL78/F13, F14 is used. This manual describes basic setup procedures, hardware specifications, system specifications, and how to set switches.
1.1 Hardware Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target device</td>
<td>RL78/F13, RL78/F14</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>2.7 to 5.5V</td>
</tr>
<tr>
<td>Operating frequency</td>
<td></td>
</tr>
<tr>
<td>Main system clock</td>
<td></td>
</tr>
<tr>
<td>High-speed system clock</td>
<td>2.7 V ≤ VDD ≤ 5.5 V : 1 to 20 MHz</td>
</tr>
<tr>
<td>High-speed on-chip oscillator clock</td>
<td>2.7 V ≤ VDD ≤ 5.5 V : 1 to 32 MHz</td>
</tr>
<tr>
<td>Low-speed system clock</td>
<td>2.7 V ≤ VDD ≤ 5.5 V : 15 kHz</td>
</tr>
<tr>
<td>Subsystem clock</td>
<td>2.7 V ≤ VDD ≤ 5.5 V : 32.768 kHz</td>
</tr>
<tr>
<td>Phase lock loop circuit (PLL)</td>
<td>2.7 V ≤ VDD ≤ 5.5V : 24, 32, 48, 64 MHz</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>0 to 40°C (No condensation)</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>~15 to 60°C (No condensation)</td>
</tr>
<tr>
<td>External dimensions</td>
<td></td>
</tr>
<tr>
<td>Power consumption</td>
<td></td>
</tr>
<tr>
<td>Target system power supply</td>
<td>Voltage: 2.7 to 5.5 V</td>
</tr>
<tr>
<td></td>
<td>Current: approx. 200 mA MAX.</td>
</tr>
<tr>
<td>Weight</td>
<td>Approx. 400 g</td>
</tr>
<tr>
<td>Host interface</td>
<td>USB interface (1.1, 2.0)</td>
</tr>
</tbody>
</table>

Note1 Errors are within ±0.05%. However, this does not apply to errors of the oscillator or clock system on the target board.

Note2 Errors are within ±0.005%. However, this does not apply to errors of the oscillator or clock system on the target board.

Note3 When selecting 64MHz or 48MHz for timer RD, 32MHz or 24MHz is supplied to the other functions (including the CPU).

Note4 Does not include projection of power switch

Note5 Includes projection of screw that fixes rear space adapter

Note6 Rear space adapter can adjust the height from 30 mm (longest) to 0 mm (shortest)

Note7 Front space adapter can adjust the height from 20 mm (longest) to 5 mm (shortest)
1.2 Names and Functions of Hardware

Figure 1-1. Names of Parts of QB-RL78F14

Power switch
TARGET (Green LED)
Power supply connector
USB connector
Cooling fan

POWER (Red LED)
TCN1
TCN2
TCN3
TCN4
OSC1
CN6
(1) TCN1, TCN2, TCN3
 These are connectors for connecting a check pin adapter or emulation probe.

(2) OSC1
 This is a socket for mounting the oscillator.

(3) CN6, TCN4
 This is a connector for the shipment inspection. It is not something that the user will need.

(4) POWER (Red LED)
 This is an LED that shows whether the power supply of the QB-RL78F14 is switched on.

<table>
<thead>
<tr>
<th>LED State</th>
<th>QB-RL78F14 State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lit</td>
<td>Power switch ON</td>
</tr>
<tr>
<td>Not lit</td>
<td>Power switch OFF or AC adapter not connected to QB-RL78F14</td>
</tr>
<tr>
<td>Blinking</td>
<td>Internal error occurred (Contact an Renesas Electronics sales representative or distributor)</td>
</tr>
</tbody>
</table>

(5) TARGET (Green LED)
 This is an LED that shows whether the power supply of the target system is switched on.

<table>
<thead>
<tr>
<th>LED State</th>
<th>Target System State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lit</td>
<td>Target system power supply ON</td>
</tr>
<tr>
<td>Not lit</td>
<td>Target system power supply OFF or target system not connected</td>
</tr>
</tbody>
</table>

(6) Power switch
 This is the power switch of the QB-RL78F14.
 It is OFF at shipment.

(7) Cooling fun
 This is the cooling fun of the QB-RL78F14.
 It works when the power supply of the QB-RL78F14 is switched on.
1.3 System Specifications

This section shows the QB-RL78F14 system specifications.

Table 1-2. QB-RL78F14 System Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emulation memory capacity</td>
<td></td>
</tr>
<tr>
<td>Internal ROM</td>
<td>512 KB (MAX.)</td>
</tr>
<tr>
<td>Internal RAM</td>
<td>61.75 KB (MAX.)</td>
</tr>
<tr>
<td>Program execution functions</td>
<td></td>
</tr>
<tr>
<td>Real-time execution function</td>
<td>Go, Start from Here, Come Here, Restart, Return Out, Ignore break points and Go</td>
</tr>
<tr>
<td>Non-real-time execution function</td>
<td>Step In, Next Over, Slow motion, Go & Go</td>
</tr>
<tr>
<td>Memory manipulation</td>
<td>Available (initialize, copy, compare)</td>
</tr>
<tr>
<td>Register manipulation</td>
<td>Available (general-purpose registers, control registers, SFRs)</td>
</tr>
<tr>
<td>Disassembler function</td>
<td>Available</td>
</tr>
<tr>
<td>Local variable view</td>
<td>Local variables</td>
</tr>
<tr>
<td>Watch data view</td>
<td>Local variables, global variables, or else</td>
</tr>
<tr>
<td>Stack trace view</td>
<td>Available</td>
</tr>
<tr>
<td>Break functions</td>
<td></td>
</tr>
<tr>
<td>Event break</td>
<td>Execution: 8 points</td>
</tr>
<tr>
<td></td>
<td>Access: 8 points</td>
</tr>
<tr>
<td>Software break</td>
<td>2000 points</td>
</tr>
<tr>
<td>Pre-execution break</td>
<td>4 points</td>
</tr>
<tr>
<td>Fail-safe break</td>
<td>Non-map, write protect, SFR illegal access, stack overflow, or else</td>
</tr>
<tr>
<td>Other</td>
<td>Forcible break, trace full break, trace delay break, timeout break, timer overflow break</td>
</tr>
<tr>
<td>Trace functions</td>
<td></td>
</tr>
<tr>
<td>Trace data types</td>
<td>Program address, program data, access address, access data, status, time tag</td>
</tr>
<tr>
<td>Trace modes</td>
<td>Unconditional trace, section trace, qualify trace, delay trigger trace</td>
</tr>
<tr>
<td>Trace functions</td>
<td>Non-stop, full stop, full break, delay trigger stop, delay trigger break</td>
</tr>
<tr>
<td>Memory capacity</td>
<td>128K frames</td>
</tr>
<tr>
<td>Real-time RAM monitoring function</td>
<td>All internal RAM spaces</td>
</tr>
<tr>
<td>Time measurement functions</td>
<td></td>
</tr>
<tr>
<td>Measurement clock</td>
<td>120 MHz</td>
</tr>
<tr>
<td>Measurement objects</td>
<td>Start through end of program execution</td>
</tr>
<tr>
<td></td>
<td>Start event through end event</td>
</tr>
<tr>
<td>Maximum measurement time</td>
<td>Approx. 40 hours and 43 minutes</td>
</tr>
<tr>
<td>Minimum resolution</td>
<td>8ns</td>
</tr>
<tr>
<td>Number of timers for measurement</td>
<td>Start through end of program execution: 1</td>
</tr>
<tr>
<td></td>
<td>Start event through end event: 2</td>
</tr>
<tr>
<td>Measurement results</td>
<td>Execution time (start through end of execution)</td>
</tr>
<tr>
<td></td>
<td>Maximum, minimum, average, total, pass count (between events)</td>
</tr>
<tr>
<td>Other</td>
<td>Timer overflow break function, timeout break function</td>
</tr>
<tr>
<td>Other functions</td>
<td>Command functions set in the console, mapping function, event function, coverage function, snapshot function, DMM function, power-off emulation function, pin mask function, flash self programming emulation function</td>
</tr>
</tbody>
</table>
1.4 System Configuration

This section shows the system configuration when using the QB-RL78F14 connected to a PC (Windows™ PC, PC/AT™ compatible). Connection is possible even without optional products.

Figure 1-2. System Configuration

<1> Host machine : Windows PC, IBM PC/AT compatible can be used
<2> USB interface cable : Cable connecting QB-RL78F14 to host machine
<3> AC adapter : AC adapters classified by region
<4> QB-RL78F14 : This product
<5> Check pin adapter (optional) : Adapter used for monitoring waveforms with oscilloscope
<6> Emulation probe : High-characteristic FPC type emulation probe
<7> Exchange adapter : Adapter that performs pin conversion
<8> Space adapter (optional) : Adapter used for height adjustment
<9> YQ connector : Connector that connects exchange adapter to target connector
<10> Target connector : Connector soldered to target system
<11> Mount adapter (optional) : Adapter used for mounting target device into socket
<12> Device : Target device
<13> Target system
Remarks 1. Refer to 1.6 Package Contents for the purchase forms of the above products.

2. As for handling of connectors, refer to 2.3 Mounting and Connecting Connectors (When Using S Type) or 2.4 Mounting and Connecting Connectors (When Using T Type).

3. The part number of <4> differs depending on the region of use. See Table 1-5 Part Numbers of AC Adapter for IECUBE Classified by Region for the part numbers. The IECUBE requires an AC adapter that must be purchased separately.

4. See Table 1-4 Common Probe and Adapter for the part numbers of <5> and <6>.

5. The combination of <7>, <8>, <9>, <10>, and <11> varies depending on the emulation device. See Table 1-3 Adapters and Connectors for Each Target Device for the combinations.

6. To determine the T Type socket or the S Type socket, check for "T" or "S" at the end of the socket product name.

 Example:
 QB-64FB-EA-01T -> T Type
 QB-48NA-EA-02S -> S Type

7. Even with the T Type socket, there may not be a space adapter/YQ connector/mount adapter. In this case, the device cannot be mounted in the socket. Check Table 1-3 Adapters and Connectors for Each Target Device.
1.5 System Configuration for Each Target Device

The following table lists the system configuration for each target device of the QB-RL78F14. The adapter and connector for each device, and common probe and adapter are sold separately. An exchange adapter, a YQ connector, a target connector, and an emulation probe are included, depending on the order product name. For details, refer to 1.6 Package Contents.

Remark For the package drawings of the connector, adapter and probe, refer to the following URL.

http://www.renesas.com/iecube/rl78

Table 1-3. Adapters and Connectors for Each Target Device

<table>
<thead>
<tr>
<th>Target Device</th>
<th>Package</th>
<th>Exchange Adapter</th>
<th>Space Adaptor</th>
<th>YQ Connector</th>
<th>Target Connector</th>
<th>Mount Adaptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL78/F13</td>
<td>20SP</td>
<td>QB-20SP-EA-05T</td>
<td>-</td>
<td>-</td>
<td>QB-20SP-NQ-01T</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>30SP</td>
<td>QB-30SP-EA-04T</td>
<td>QB-30SP-YS-01T</td>
<td>QB-30SP-YQ-01T</td>
<td>QB-30SP-NQ-01T</td>
<td>QB-30SP-HQ-01T</td>
</tr>
<tr>
<td></td>
<td>32NA</td>
<td>QB-32NA-EA-05S</td>
<td>-</td>
<td>-</td>
<td>QB-32NA-TC-01S</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>48NA</td>
<td>QB-48NA-EA-03S</td>
<td>-</td>
<td>-</td>
<td>QB-48NA-TC-01S</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>64FB</td>
<td>QB-64FB-EA-04T</td>
<td>QB-64FB-YS-01T</td>
<td>QB-64FB-YQ-01T</td>
<td>QB-64FB-NQ-01T</td>
<td>QB-64FB-HQ-01T</td>
</tr>
</tbody>
</table>

RL78/F14	30SP	QB-30SP-EA-04T	QB-30SP-YS-01T	QB-30SP-YQ-01T	QB-30SP-NQ-01T	QB-30SP-HQ-01T
	32NA	QB-32NA-EA-05S	-	-	QB-32NA-TC-01S	-
	48NA	QB-48NA-EA-03S	-	-	QB-48NA-TC-01S	-
	64FB	QB-64FB-EA-04T	QB-64FB-YS-01T	QB-64FB-YQ-01T	QB-64FB-NQ-01T	QB-64FB-HQ-01T
	100FB	QB-100FB-EA-02T	QB-100FB-YS-01T	QB-100FB-YQ-01T	QB-100FB-NQ-01T	QB-100FB-HQ-01T

Table 1-4. Common Probe and Adapter

<table>
<thead>
<tr>
<th>Name</th>
<th>Part Number</th>
<th>Target Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check pin adapter</td>
<td>QB-144-CA-01</td>
<td>RL78/F13, RL78/F14</td>
</tr>
<tr>
<td>Emulation probe</td>
<td>QB-80-EP-01T</td>
<td>Under 80pin of RL78/F14, RL78/F13</td>
</tr>
<tr>
<td></td>
<td>QB-144-EP-02S</td>
<td>Over 100pin of RL78/F14</td>
</tr>
</tbody>
</table>
1.6 Package Contents

The included products are described for each order product name.

Products supplied with QB-RL78F14-ZZZ
1: QB-RL78F14
2: USB interface cable (2 meters)
3: Online user registration card (warranty card and software contract in one)
4: Probe holder (For QB-144-EP-02S)
5: Packing list
6: Safety Precautions (IECUBE) information (document)
7: EMC regulation (VCCI, FCC) (document)
8: Table of Toxic and Hazardous Substance and elements

Products supplied with QB-RL78F14-T20SP
1 to 8
10: Exchange adapter QB-20SP-EA-05T
11: Target connector QB-20SP-NQ-01T

Products supplied with QB-RL78F14-T30SP
1 to 8
10: Exchange adapter QB-30SP-EA-04T
11: YQ connector QB-30SP-YQ-01T
12: Target connector QB-30SP-NQ-01T

Products supplied with QB-RL78F14-S32NA
1 to 8
10: Exchange adapter QB-32NA-EA-05S
11: Target connector QB-32NA-TC-01S

Products supplied with QB-RL78F14-T48FB
1 to 8
10: Exchange adapter QB-48FB-EA-05T
11: YQ connector QB-48FB-YQ-01T
12: Target connector QB-48FB-NQ-01T

Products supplied with QB-RL78F14-S48NA
1 to 8
10: Exchange adapter QB-48NA-EA-03S
11: Target connector QB-48NA-TC-01S
Products supplied with QB-RL78F14-T64FB
1 to 8
10: Exchange adapter QB-64FB-EA-04T
11: YQ connector QB-64FB-YQ-01T
12: Target connector QB-64FB-NQ-01T

Products supplied with QB-RL78F14-T80FB
1 to 8
10: Exchange adapter QB-80FB-EA-04T
11: YQ connector QB-80FB-YQ-01T
12: Target connector QB-80FB-NQ-01T

Products supplied with QB-RL78F14-T100FB
1 to 8
9: Emulation probe QB-144-EP-02S
10: Exchange adapter QB-100FB-EA-02T
11: YQ connector QB-100FB-YQ-01T
12: Target connector QB-100FB-NQ-01T
1.7 AC Adapter for IECUBE

The specifications of the AC adapter for IECUBE differ depending on the region of use. Be sure to use an AC adapter corresponding to the region of use.

Table 1-5. Part Numbers of AC Adapter for IECUBE Classified by Region

<table>
<thead>
<tr>
<th>Product</th>
<th>Destination (Region)</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC adapter</td>
<td>Japan</td>
<td>QB-COMMON-PW-JP</td>
</tr>
<tr>
<td>(sold separately)</td>
<td>USA</td>
<td>QB-COMMON-PW-EA</td>
</tr>
<tr>
<td></td>
<td>China</td>
<td>QB-COMMON-PW-CN</td>
</tr>
<tr>
<td></td>
<td>Hong Kong</td>
<td>QB-COMMON-PW-HK</td>
</tr>
<tr>
<td></td>
<td>Korea</td>
<td>QB-COMMON-PW-KR</td>
</tr>
<tr>
<td></td>
<td>Singapore</td>
<td>QB-COMMON-PW-SG</td>
</tr>
<tr>
<td></td>
<td>Taiwan</td>
<td>QB-COMMON-PW-TW</td>
</tr>
</tbody>
</table>

Notes

1. Products are shipped only on order from each region.
2. Contact a distributor or a Renesas Electronics representative for information on regions other than the above.
3. Only the AC adapter usable in each region can be ordered.
CHAPTER 2 SETUP PROCEDURE

This chapter explains the QB-RL78F14 setup procedure.
Setup can be completed by performing installation setup in the order in which it appears in this chapter.
Perform setup along the lines of the following procedure.
See 1.2 Names and Functions of Hardware for clock positions.

- **Software settings**
 - 2.1 Software Settings.

- **Clock settings**
 - 2.2 See Clock Settings.

- **Mounting and connecting connectors**
 - When using the S Type, see 2.3 Mounting and Connecting Connectors (When Using S Type)
 - When using the T Type, see 2.4 Mounting and Connecting Connectors (When Using T Type)

- **Connecting QB-RL78F14 to target system**
 - 2.5 See Connecting QB-RL78F14 to target system.

- **Connecting USB interface cable and AC adapter**
 - 2.7 See Connecting USB interface cable and AC adapter.

- **Switching power on and off**
 - 2.8 See Switching power on and off.
2.1 Software Settings

Check the user's manual for the debugger that will be used.

2.2 Clock Settings

The QB-RL78F14 clock must be set to the clock used by the target device. For details about how to set the clock, check the user’s manual for the debugger that will be used.

QB-RL78F14 clock settings for the clock used by the target device are shown below. Oscillation with the resonator on the target system is not supported. Therefore, the in-circuit emulator cannot emulate the oscillation operation of the clock on the target system.

<table>
<thead>
<tr>
<th>Clock Used</th>
<th>Clock Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) High-speed system clock (X1 oscillator or External input)</td>
<td>(a) When the clock generated within the emulator is used</td>
</tr>
<tr>
<td></td>
<td>(b) When the clock (a square wave) is supplied from the target system</td>
</tr>
<tr>
<td></td>
<td>(c) When the oscillator (OSC1) mounted onto the emulator is used</td>
</tr>
<tr>
<td>(2) Internal high-speed oscillation clock</td>
<td>Uses the clock internally generated from the emulator</td>
</tr>
<tr>
<td>(3) Internal low-speed oscillation clock</td>
<td>Uses the clock internally generated from the emulator</td>
</tr>
<tr>
<td>(4) Subsystem clock (XT1 oscillator or External input)</td>
<td>(a) When the clock generated within the emulator is used</td>
</tr>
<tr>
<td></td>
<td>(b) When the clock (a square wave) is supplied from the target system</td>
</tr>
</tbody>
</table>
(1) High-speed system clock

The clock settings are listed below.

<table>
<thead>
<tr>
<th>Type of Clock to Be Used</th>
<th>OSC1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) When the clock generated within the emulator is used</td>
<td>–</td>
</tr>
<tr>
<td>(b) When the clock (a square wave) is supplied from the target system</td>
<td>Note –</td>
</tr>
<tr>
<td>(c) When the oscillator (OSC1) mounted onto the emulator is used</td>
<td>Oscillator mounted</td>
</tr>
</tbody>
</table>

Note This setting is not possible when TARGET LED is not lit.

Remarks
1. Settings other than the above are prohibited.
2. Selection of (a) or (b) is possible regardless of whether the oscillator is not mounted in the OSC1 socket.

(a) When the clock generated within the emulator is used

This method uses the clock generated inside the emulator.

The oscillation frequency that will be used must be set in the debugger. For details about how to set the oscillation frequency, check the user's manual for the debugger that will be used.

(b) When the clock (a square wave) is supplied from the target system

The clock input from the target system is then used.

To input a clock from the target system, input to the clock pin (X2) the square-wave signal with the same voltage potential as that of the target device supply voltage (VDD). Inputting the inverted signal to X1 is not necessary.

The selectable frequencies are same as those of the target device.

For debugger settings, check the user's manual for the debugger that will be used. Oscillation by a resonator in the target system is not supported.

(c) When the oscillator (OSC1) mounted onto the emulator is used

Mount an oscillator in the OSC1 socket in the emulator and then select the "Clock socket" in the debugger.

The clock generated from the oscillator mounted on the emulator is used.

The selectable frequencies are same as those of the target device.

To modify the clock setting, the acrylic board on the bottom of the QB-RL78F14 must be removed.

The acrylic board can be removed by lifting it up.

For debugger settings, check the user's manual for the debugger that will be used.
As an oscillator to be mounted in the OSC1 socket in the emulator, use the one that satisfies the following specifications.
- Supply voltage: 5.0 V
- Output level: CMOS

Note An oscillation circuit that uses a resonator cannot be used.

Remark Insert the oscillator into the socket, take care for the pin 1 position.
(2) Internal high-speed oscillation clock

This method uses the clock inside the emulator by configuring the use of the high-speed oscillation clock in the user program.

(3) Internal low-speed oscillation clock

This method uses the clock inside the emulator by configuring the use of the low-speed oscillation clock in the user program.

(4) Subsystem clock

The clock settings are listed below.

<table>
<thead>
<tr>
<th>Type of Clock to Be Used</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) When the clock generated within the emulator is used</td>
<td>Uses the subsystem clock inside the emulator. For debugger settings, check the user's manual for the debugger that will be used.</td>
</tr>
<tr>
<td>(b) When the clock (a square wave) is supplied from the target system</td>
<td>Uses the target system's square wave. The selectable frequencies are the same as those of the target device. For debugger settings, check the user's manual for the debugger that will be used. Oscillation by a resonator in the target system is not supported.</td>
</tr>
</tbody>
</table>

(a) When the clock generated within the emulator is used

This method uses the clock inside the emulator by configuring the use of the subsystem clock in the user program. For debugger settings, check the user's manual for the debugger that will be used.

(b) When the clock (a square wave) is supplied from the target system

The clock input from the target system is then used.

To input a clock from the target system, input to the clock pin (XT2) the square-wave signal with the same voltage potential as that of the target device supply voltage (VDD). Inputting the inverted signal to XT1 is not necessary.

The selectable frequencies are the same as those of the target device.

For debugger settings, check the user's manual for the debugger that will be used. Oscillation by a resonator in the target system is not supported.
2.3 Mounting and Connecting Connectors (When Using S Type)

This section describes the methods of connecting the QB-RL78F14 and target system. Make connections with both the QB-RL78F14 and target system powered OFF.

The following abbreviations are used in this section:
- TC: Target connector
- EA: Exchange adapter
- CA: Check pin adapter

2.3.1 Mounting TC to target system

(1) Apply cream solder to the foot pattern of the target system for mounting an IC

(2) There is a circular protrusion (Figure 2-4) in middle of the bottom of the TC. The center of this cylinder is a metallic component (metal plated) for the GND connection. In the same manner as the IC pad, the TC GND is connected to the target board GND by applying cream solder to the pad in the center of the recommended IC foot pattern and then reflow soldering.

(3) Soldering condition of TC
 (a) Reflow soldering
 At 235°C for a maximum of 10 seconds (main heating)
 (b) Manual soldering
 At 320°C for a maximum of 5 seconds (per pin)

(4) Precautions on flux splatter
 If the solder flux splatters when the connector is soldered, faulty contact may occur. Be sure to cover the upper part of the connector with aluminum foil. Do not clean the connector because the flux solvent may remain inside the connector.
2.3.2 Mating the TC to EA

Mate the TC and EA by following the procedure below.

(1) Check the orientation of pin 1, align the TC guide pin to the guide hole at the tip of the EA flexible printed circuit (FPC), and then insert it. (See Figure 2-5)

(2) Check conductivity between the TC and EA at this time.

(3) Solder the TC to the guide locking pad that can be seen from the FPC tip flexible guide hole using a soldering iron with a tip radius of φ1.0 mm or smaller. (Once soldered, the TC and EA cannot be removed from each other.)

(4) Use extreme care so that the EA (FPC cable) does not apply stress to the TC. If the EA applies even a small amount of stress to the TC, we recommend securing the section soldered to the TC board with adhesive.

Figure 2-5 Magnified guide hole view when TC and EA are mated & mating diagram.
2.3.3 General Precautions when Using the EA, TC

(1) Causes of connector conductivity problems

(a) When flux gets inside the connector when mounting the TC

Since flux easily rises into the connector, if it gets into the connector, completely wash it out using a solvent such as alcohol. Wash it at least five or six times. If conductivity is unstable, repeatedly wash it.

(b) Debris gets inside the connector

If debris such as fuzz gets inside the connector, it will cause conductivity problems. Clear out the debris with a brush.

(c) Precautions when using the CA

When using the CA, while minor, signal propagation delay and capacitance occurs by inserting each adapter. Connect the CA to the target system and fully evaluate it before use.

(2) CA

The CA is an optional product for IECUBE, and can be used to measure the waveform between IECUBE and the target system.

Since the pins on the CA do not correspond to the pin layout in each device, the pin header cover must be mounted according to the device to be used. For mounting methods of the pin header cover, refer to URL.

http://japan.renesas.com/qb_144_ca_01
2.4 Mounting and Connecting Connectors (When Using T Type)

This section describes the methods of connecting the QB-RL78F14 and target system. Make connections with both the QB-RL78F14 and target system powered OFF.

The following abbreviations are used in this section:
- NQ: Target connector
- YQ: YQ connector
- EA: Exchange adapter
- MA: Mount adapter
- CA: Check pin adapter
- SA: Space adapter

2.4.1 Mounting NQ to target system

(1) Thinly apply a two-component epoxy adhesive (hardeni ng time at least 30 minutes) to the ends of the four projections on the base of the NQ and adhere the NQ to the user board (clean the surface of the target system board using alcohol or the like). If alignment of target system pads to NQ leads is difficult, align them as in (2).

(2) Align by inserting the guide pins for alignment for the NQ (NQGUIDE) through the pin holes on the top of the NQ. Accessory holes are $\phi 1.0$ mm non-through holes in two or three places.

(For hole positions, see the particular NQ drawing.)

(3) Solder after fitting the MA to the NQ. This is to prevent troubles such as flux or solder splashing and adhering to the NQ contact pins when soldering.

- Soldering conditions
 - Solder reflow $260^\circ C \times 10$ seconds or less
 - Manual soldering $350^\circ C \times 5$ seconds or less (1 pin)

 Caution Do not perform washing by flux immersion or vapor.

(4) Take away the guide pins.
2.4.2 Mounting YQ to NQ

(1) After confirming that there are no broken or bent YQ contact pins, fit the YQ in the NQ and fasten it using the supplied YQGUIDE (for the fastening method, see the next step, (2)). If repeatedly inserting and removing, be sure to inspect the YQ pins before fitting. If pins are bent, correct them using something thin and flat such as the edge of a knife.

(2) Fasten YQ to the NQ on the target system using the supplied YQGUIDE. Fasten the screws equally in the four corners using the supplied flat-blade screwdriver or a torque driver. The tightening torque of the YQGUIDE is 0.054 Nm (MAX.). Too great tightening causes bad connections. However, four screws for fitting to the NQ (M2 x 10 mm / 4 units) are included with the YQ.

2.4.3 Plugging EA into YQ

Match the pin 1 position of the YQ or SA (corner cuts match in both) to the pin 1 position of the EA and plug in.
- When plugging or unplugging, press on the NQ, YQ, and SA with a finger so that there is no force on the NQ.
- When plugging or unplugging, be careful of the direction of wiggling.

As a tool when unplugging, insert some kind of thin non-conductive material such as a wooden stick between the YQ (SA) and EA and wiggle while slowly unplugging. Be careful since the connector will be damaged if this is done in the wrong direction.
2.4.4 Precautions for handling NQ, YQ, SA, and CA

(1) When taking the NQ from the box, press down on the body and take out the sponge first.

(2) Since the pins of the YQ are thin and easily bent, be careful. When inserting it in the NQ, confirm that there are no bent pins.

(3) When screwing a YQ soldered to a board to the NQ, fasten the screws in four places in turn using a #0 or #1 Phillips precision screwdriver or torque driver after tentatively tightening them. Fix the torque at 0.054 Nm (MAX.).

If just one place is overtightened, it may cause poor contact. Moreover, a board being connected to the YQ must have accessory holes in prescribed positions (four places: φ2.3 mm or φ3.3 mm). The φ3.8 mm or φ4.3 mm that is the screw head size is an area where wiring is prohibited.

(4) In YQ and SA removal, since there is a danger of YQ pins being bent or broken when prying and wiggling, remove them gradually using a flatbladed screwdriver from four directions. Moreover, to connect and use the YQ and SA, screw the YQ to the NQ according to the YQGUIDE (included with the YQ) using a 2.3 mm flatbladed screwdriver and then connect it to the SA. Fix the torque at 0.054 Nm (MAX.). If even one place is overtightened, it may cause poor contact.

(5) For the NQ, YQ, and SA, since there is a danger that washing fluid on the structure will remain in the connector, do not perform washing.

(6) NQ, IC, and YQ cannot be used in combination.

(7) A NQ/YQ system cannot be used in an environment of vibrations or shocks.

(8) It is assumed that this product will be used in system development and evaluation. Moreover, when used in Japan, Electrical Appliance and Material Control Law and electromagnetic disturbance countermeasures have not been applied.

(9) Since there are rare cases of shape change if the box is left for a long time in a place where it is 50°C or higher, for safekeeping, store it in a place where it is no higher than 40°C and direct sunlight does not hit it.

(10) For details about handling the NQ, YQ, and SA, see the NQPACK series technical materials at the website of Tokyo Eletech Corporation.

URL: http://www.tetc.co.jp/

(11) CA

The CA is an optional product for IECUBE, and can be used to measure the waveform between IECUBE and the target system.

Since the pins on the CA do not correspond to the pin layout in each device, the pin header cover must be mounted according to the device to be used. For mounting methods of the pin header cover, refer to URL.

http://www.renesas.com/qb_144_ca_01
2.4.5 Precautions for mounting IC using NQ and MA

(1) Confirm that there is no weld flash in the resin (sealant part) of the IC. If there is weld flash, remove it using a knife or the like.

(2) Confirm that there is no weld flash breaking or bending of IC leads. In particular, confirm the planarity of IC leads. If there is abnormality in the planarity, correct that portion.

(3) Viewing the NQ contact pins from the top, if there are foreign bodies on them, remove them using a brush or the like. After confirming (1) to (3), fit the IC to the NQ. Also fit the MA.

(4) Put the supplied M2 x 6 mm screws in the four accessory holes of the MA and fasten the screws in opposite corners. At that time, use either the dedicated screwdriver that is supplied or a torque driver to fasten them equally in turn with a tightening torque of 0.054 Nm (MAX.). Since the contact is poor if tightening is too great, once you have lightly fastened the MA screws, tighten them again.

(5) Depending on the use environment, when starting up a device that has been left for a long time, starting it may be difficult. In this case, loosen the screws slightly and then retighten them.

(6) If startup still is difficult after (5) above, check (1) to (3) again.

(7) Tightening the screws of the MA too much may give rise to cracks in the molded part of the MA (plastic part) and bend the mold into a bowed shape, making contact poor.

(8) After soldering the NQ, do not perform cleaning by flux immersion or vapor.
2.5 Connecting QB-RL78F14 to Target System

If connecting the emulation probe (QB-80-EP-01T, QB-144-EP-02S), connect it to the QB-RL78F14 and the target system by the following procedure.

(a) Connect the QB-RL78F14 to the probe.
Connect the emulation probe to the QB-RL78F14, as shown below.
Insert CN1 and CN2 of the probe into TCN1 and TCN3 of the QB-RL78F14.
In case of using QB-144-EP-02S, use probe holder.

![Figure 2-7. Connect the QB-RL78F14 to the probe](image)

(b) Connection of emulation probe GND wire
There are three GND wires in the emulation probe. Connect them to the QB-RL78F14 and target system.
<1> Fasten the GND wire on the QB-RL78F14 side of the emulation probe to the nut on the bottom of the QB-RL78F14 using a #0 or #1 Phillips precision screwdriver (connection of B to A in Figure 2-8).
<2> Next insert the connector on the top of the emulation probe into the connector at the opening on the bottom of the QB-RL78F14 from below being careful of the insertion direction.

![Figure 2-8. GND Wire](image)
<3> Connect the exchange adapter and emulation probe to the target connector.

<4> Connect the GND wires on the target system side of the emulation probe to the target system GND. If a pin or screw is fastened to the target system GND, remove the transparent terminal cover on the end of the GND wire and fasten the Y terminal of the GND wire to the target system (C in Figure 2-8). If the GND on the target system is an exposed pad, likewise fasten the Y terminal to the pad on the target system by soldering (recommended soldering iron temperature setting: 300°C).

<5> Since the length of the GND wire below the head (insulated part) is approximately 60 mm, there must be a GND to which it can be connected to within the range of the two approximately 60 mm radius sections of the target system for connecting the emulation probe, as shown in Figure 2-9.

(c) Ensuring isolation
Adjust the height of the QB-RL78F14 with the front space adapter and the rear space adapter and ensure isolation from the target system.

(d) Precautions related to emulation probe

<1> Be careful that stress of the emulation probe is not placed on the target connector. Moreover, when removing the emulation probe, remove it slowly while pressing down on the exchange adapter with a finger so that there is no stress on the target connector.

<2> Be sure to connect the GND wire of the emulation probe to the QB-RL78F14 and the target system. If it cannot be connected, the impedance of the cable is unstable and could bring about lowering of signal transmission characteristics or distortion of the output waveform for an input waveform.
2.6 Notes on Power Supply and GND Pin Connection

For power supplies and GND pins of the target device, be sure to connect all pins to each power supply or GND.

2.7 Connecting USB Interface Cable and AC Adapter

Plug the USB interface cable supplied with the QB-RL78F14 into the USB connector of the host machine, and plug the other side into the USB connector on the rear of the QB-RL78F14.

Plug the AC adapter into the power supply connector on the rear of the QB-RL78F14 and plug the other side into a receptacle.

For QB-RL78F14 connector positions, see Figure 2-10.

![Figure 2-10. Connector Positions](image)

2.8 Switching Power On and Off

Be sure to switch the power on and off according to the following procedures.

- Switching power on
 <1> QB-RL78F14 power on
 <2> Target system power on\(^{\text{Note}}\)
 <3> Debugger startup

- Switching power off
 <1> Debugger termination
 <2> Target system power off\(^{\text{Note}}\)
 <3> QB-RL78F14 power off

\(^{\text{Note}}\) In the procedures, <2> is unnecessary if the target system is not connected.

\(^{\text{Caution}}\) If the wrong sequence was used for the operation, the target system or QB-RL78F14 may fail...
Table 3-1. Settings at Shipment

<table>
<thead>
<tr>
<th>Item</th>
<th>Setting</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSC1</td>
<td>Not mounted</td>
<td>Oscillator can be mounted (^\text{Note}).</td>
</tr>
<tr>
<td>Power switch</td>
<td>Set to OFF at shipment.</td>
<td></td>
</tr>
</tbody>
</table>

\(^\text{Note}\) The oscillation circuit using an oscillation cannot be used.
CHAPTER 4 CAUTIONS

4.1 Cautions Regarding Differences Between Target Device and Emulator

When debugging is performed by connecting the QB-RL78F14 to the target system, the QB-RL78F14 emulates the target device as if it operates in the target system. However, the target device and the QB-RL78F14 operate differently in the following ways. Consequently, the target device should be used for final evaluation before launching mass production, and the customer is to be responsible for judging the appropriateness of applying the QB-RL78F14.

- On-chip debug function
 The on-chip debug function cannot be emulated.

- Oscillator
 The QB-RL78F14 does not support clock input by an oscillator in the target system. Consequently, the operation clock frequency when the target device is mounted in the target system may differ from the operation clock frequency when the QB-RL78F14 is connected.

- Pin characteristics
 The pin characteristics of the QB-RL78F14 slightly differ when the target device is mounted to the target system, because a connector, adapter, emulation probe, and circuit board exist between the QB-RL78F14 and the target system. In particular, note that the A/D converter conversion results are commonly-affected.

- Current consumption
 The current consumption of the QB-RL78F14 differs from that of the target device. The maximum current consumption is around 200 mA. In the same manner, the current consumption in standby mode also differs from that of the target device.

- A/D conversion error around 0[V] and 5.5[V]
 A/D conversion error around 0[V] and 5.5[V] on QB-RL78F14 is large.
 Use on-chip debugging or actual equipment for checking A/D conversion in 0.1[V] and under, or 5.36[V] and over.
- Change the positive reference voltage on the A/D converter
When change the positive reference voltage, after setting ADREFP1 and ADREFP0, stabilization wait time of emulator is different from that of the target device.

<table>
<thead>
<tr>
<th>ADM2 register (value after change)</th>
<th>stabilization wait time</th>
<th>Target devices</th>
<th>QB-RL78F14</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADREFP1 1</td>
<td>ADREFP0 0</td>
<td>1μs</td>
<td>400μs</td>
</tr>
<tr>
<td>ADREFP1 0</td>
<td>ADREFP0 0</td>
<td>No</td>
<td>400μs</td>
</tr>
<tr>
<td>ADREFP1 0</td>
<td>ADREFP0 1</td>
<td>No</td>
<td>400μs</td>
</tr>
</tbody>
</table>

- P122 input characteristics
The P122 input characteristics differ between the target device and the emulator.

<table>
<thead>
<tr>
<th>Item</th>
<th>Input Characteristics of P122 Pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target device</td>
<td>VIH MIN 0.8VDD</td>
</tr>
<tr>
<td></td>
<td>VIL MAX 0.2VDD</td>
</tr>
<tr>
<td>QB-RL78F14</td>
<td>VIH MIN (2.7V ≤ VDD ≤ 5.5V)</td>
</tr>
<tr>
<td></td>
<td>VIL MAX (2.7V ≤ VDD ≤ 5.5V)</td>
</tr>
</tbody>
</table>

- Power-on-reset (POR) voltage value
The power-on-reset (POR) voltage value differs from that of the target device.

<table>
<thead>
<tr>
<th>Item</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target device</td>
<td>POR 1.48 V 1.51 V 1.54 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PDR 1.47 V 1.50 V 1.53 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QB-RL78F14</td>
<td>POR 1.54 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PDR 1.47 V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- **TTL input buffer characteristics**
 If the port input mode register (PIM) is used to set the input of a pin that can be set for the TTL buffer to the TTL level, the high-level input voltage characteristics differ between the target device and emulator. See Table 4-4 for details. The following pins can be set for the TTL buffer.

<table>
<thead>
<tr>
<th>Item</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target device VIH MIN</td>
<td>2.2V (4.0 V ≤ VDD ≤ 5.5 V) 2.0V (2.7 V ≤ VDD < 2.7 V)</td>
</tr>
<tr>
<td></td>
<td>0.8V (4.0 V ≤ VDD ≤ 5.5 V) 0.5V (2.7 V ≤ VDD < 4.0 V)</td>
</tr>
<tr>
<td>QB-RL78F14 VIH MIN</td>
<td>2.0V (2.7 V ≤ VDD ≤ 5.5 V)</td>
</tr>
<tr>
<td></td>
<td>0.8V (2.7 V ≤ VDD ≤ 5.5 V)</td>
</tr>
</tbody>
</table>

- **The detection voltage value of the voltage detector (LVD)**
 The value of the detection voltage differs from that of target device.

<table>
<thead>
<tr>
<th>Target device</th>
<th>QB-RL78F14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rising edge</td>
<td>Failing edge</td>
</tr>
<tr>
<td>2.81V</td>
<td>2.75V</td>
</tr>
<tr>
<td>3.02V</td>
<td>2.96V</td>
</tr>
<tr>
<td>3.22V</td>
<td>3.15V</td>
</tr>
<tr>
<td>4.42V</td>
<td>4.32V</td>
</tr>
<tr>
<td>4.62V</td>
<td>4.52V</td>
</tr>
<tr>
<td>4.74V</td>
<td>4.64V</td>
</tr>
<tr>
<td>2.76V</td>
<td>2.97V</td>
</tr>
<tr>
<td>3.14V</td>
<td>4.29V</td>
</tr>
<tr>
<td>4.50V</td>
<td>4.60V</td>
</tr>
</tbody>
</table>

- **I/O port output signal level detection function**
 I/O port output signal level detection function emulation is not supported.
 Even if you set as “Output data is read (PMS0=1)” at port mode select register (PMS), the value of the port register (Pmn) is read.
 Remark m = 0 to 8, 10 to 12, 14, 15, n = 0 to 7

- **Oscillation stopped detection function**
 No supported. IECUBE cannot stop operation clock.

- **RAM-ECC function**
 No supported.
4.2 Note of Debugging

- **Operation after target system power application**
 After power application, a program will be executed for the target device mounted in the target system when reset is released. However, with the QB-RL78F14, the program does not start until an operation to start execution is performed after the program is downloaded using the debugger.

- **Relation between Standby function and Break function**
 The break is interrupt function of CPU. The standby mode is released by the break for using the following debug function.
 - Stops execution of the user program.
 - Step execution of the standby instruction (Stops user program after execution instruction)
 - Pseudo real-time RAM monitor function (Break When Readout)
 - Pseudo Dynamic Memory Modification (Break When Write)
 - Breakpoint setting executing of the user program.

- **Invalid memory access detection function (IAW)**
 The behavior when detecting an invalid memory access is different between target device and emulator.
 Target device : Reset
 QB-RL78F14 : Fail-safe break

- **CRC calculation function**
 When using the CRC calculation function, do not set software breaks. Differing calculation results will be output.
<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>August 10, 2012</td>
<td>-</td>
<td>First Edition issued</td>
</tr>
<tr>
<td>2.00</td>
<td>August 22, 2013</td>
<td>-</td>
<td>Change of document format</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P14</td>
<td>Addition of QB-32NA-TC-01S and QB-48NA-TC-01S to Table 1-3, Adapters and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Connectors for Each Target Device</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P34</td>
<td>Addition of “A/D conversion error around 0[V] and 5.5[V]” to Chapter 4 Cautions</td>
</tr>
<tr>
<td>3.00</td>
<td>October 31, 2013</td>
<td>P15</td>
<td>Addition of the followings to 1.6 Package Contents</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Safety Precautions (IECUBE) information (document)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- EMC regulation (VCCI, FCC) (document)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Table of Toxic and Hazardous Substance and elements</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P32</td>
<td>Change of connection procedure of AC adapter and QB-RL78F14 in 2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Connecting USB Interface Cable and AC Adapter</td>
</tr>
</tbody>
</table>