To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 - “Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - “Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
User’s Manual

QB-78K0SKX1
In-Circuit Emulator

Target Devices
78K0S/KU1+
78K0S/KY1+
78K0S/KA1+
78K0S/KB1+
[MEMO]
Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

IECUBE is a registered trademark of NEC Electronics Corporation in Japan and Germany.

PC/AT is a trademark of International Business Machines Corporation.

- The information in this document is current as of June, 2007. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.

- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.

- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.

- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.

- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

 Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.

 Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).

 Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.

2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).
General Precautions for Handling This Product

1. Circumstances not covered by product guarantee
 • If the product was disassembled, altered, or repaired by the customer
 • If it was dropped, broken, or given another strong shock
 • Use at overvoltage, use outside guaranteed temperature range, storing outside guaranteed
 temperature range
 • If power was turned on while connection to the AC adapter, USB interface cable, or target system
 was in an unsatisfactory state
 • If the cable of the AC adapter, the USB interface cable, the target cable, the emulation probe, or the
 like was bent or pulled excessively
 • If an AC adapter other than the supplied product was used
 • If the product got wet
 • If this product is connected to the target system when there is a potential difference between the
 GND of this product and GND of the target system.
 • If the connectors or cables are plugged/unplugged while this product is in the power-on state.
 • If excessive load is applied to the connectors or sockets (As for handling, please see 2.6 Mounting
 and Connecting Connectors).
 • If a metal part of the power switch, cooling fan, or another such part comes in contact with an
 electrostatic charge.

2. Safety precautions
 • If used for a long time, the product may become hot (50°C to 60°C). Be careful of low temperature
 burns and other dangers due to the product becoming hot.
 • Be careful of electrical shock. There is a danger of electrical shock if the product is used as
 described above in 1. Circumstances not covered by product guarantee.
 • The AC adapter supplied with the product is exclusively for this product, so do not use it with other
 products.
INTRODUCTION

Readers
This manual is intended for users who wish to perform debugging using the QB-78K0SKX1. The readers of this manual are assumed to be familiar with the device functions and usage, and to have knowledge of debuggers.

Purpose
This manual is intended to give users an understanding of the basic specifications and correct usage of the QB-78K0SKX1.

Organization
This manual is divided into the following sections.

• General
• Setup procedure
• Settings at product shipment
• Restrictions

How to Read This Manual
It is assumed that the readers of this manual have general knowledge in the fields of electrical engineering, logic circuits, and microcontrollers.
This manual describes the basic setup procedures and how to set switches.

To understand the overall functions and usages of the QB-78K0SKX1
→Read this manual in the order of the CONTENTS. The mark “<R>” shows major revised points. The revised points can be easily searched by copying an “<R>” in the PDF file and specifying it in the “Find what:” field.

To know the manipulations, command functions, and other software-related settings of the QB-78K0SKX1
→See the user’s manual of the debugger (supplied with the QB-78K0SKX1) to be used.

Conventions

Note: Footnote for item marked with Note in the text
Caution: Information requiring particular attention
Remark: Supplementary information
Numeric representation:
 Binary ... xxxx or xxxxB
 Decimal ... xxxx
 Hexadecimal ... xxxxH
Prefix indicating power of 2 (address space, memory capacity):
 K (kilo): \(2^{10} = 1,024\)
 M (mega): \(2^{20} = 1,024^2\)
Terminology

The meanings of the terms used in this manual are described in the table below.

<table>
<thead>
<tr>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target device</td>
<td>This is the device to be emulated.</td>
</tr>
<tr>
<td>Target system</td>
<td>This is the system to be debugged. This includes the target program and the hardware provided by the user.</td>
</tr>
<tr>
<td>78K0S/Kx1+</td>
<td>Generic name indicating 78K0S/KU1+, 78K0S/KY1+, 78K0S/KA1+, and 78K0S/KB1+.</td>
</tr>
<tr>
<td>IECUBE™</td>
<td>Generic name for NEC Electronics’ high-performance/compact in-circuit emulator.</td>
</tr>
</tbody>
</table>

Related Documents

Please use the following documents in conjunction with this manual.

The related documents listed below may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Development Tools (User’s Manuals)

<table>
<thead>
<tr>
<th>Document Name</th>
<th>Document Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>QB-78K0SKX1 In-Circuit Emulator</td>
<td>This manual</td>
</tr>
<tr>
<td>RA78K0S Ver. 2.00 Assembler Package</td>
<td>Operation: U17391E</td>
</tr>
<tr>
<td></td>
<td>Language: U17390E</td>
</tr>
<tr>
<td></td>
<td>Structured Assembler Language: U17389E</td>
</tr>
<tr>
<td>CC78K0S Ver. 2.00 C Compiler</td>
<td>Operation: U17416E</td>
</tr>
<tr>
<td></td>
<td>Language: U17415E</td>
</tr>
<tr>
<td>ID78K0S-QB Ver. 3.00 Integrated Debugger</td>
<td>Operation: U18493E</td>
</tr>
<tr>
<td>PM plus Ver. 6.30</td>
<td>U18416E</td>
</tr>
</tbody>
</table>

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing, etc.
CHAPTER 1 GENERAL

The QB-78K0SKX1 is an in-circuit emulator for emulating the 78K0S/Kx1+.
Hardware and software can be debugged efficiently in the development of systems in which the 78K0S/Kx1+ is used. This manual describes basic setup procedures, hardware specifications, system specifications, and how to set switches.
1.1 Hardware Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target device</td>
<td>78K0S/KU1+, 78K0S/KY1+, 78K0S/KA1+, 78K0S/KB1+</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>2.0 to 5.5 V</td>
</tr>
<tr>
<td>Operating frequency</td>
<td>system clock: (2.7 , V \leq V_{DD} \leq 5.5 , V): 1 to 10 MHz</td>
</tr>
<tr>
<td></td>
<td>(2.0 , V \leq V_{DD} < 2.7 , V): 1 to 5 MHz</td>
</tr>
<tr>
<td></td>
<td>Internal high-speed oscillation clock: An 8 MHz clock (fixed) supplied from</td>
</tr>
<tr>
<td></td>
<td>the oscillation circuit in the QB-78K0SKX1</td>
</tr>
<tr>
<td></td>
<td>Internal low-speed oscillation clock: A 250 kHz clock (fixed) supplied from</td>
</tr>
<tr>
<td></td>
<td>the oscillation circuit in the QB-78K0SKX1</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>0 to 40°C (No condensation)</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>−15 to +60°C (No condensation)</td>
</tr>
<tr>
<td>External dimensions</td>
<td>See figure below</td>
</tr>
<tr>
<td>Power consumption</td>
<td>AC adapter for QB-78K0SKX1: Output: DC15 V, 1 A</td>
</tr>
<tr>
<td></td>
<td>Input: AC100 to 240 V</td>
</tr>
<tr>
<td>Target system power supply</td>
<td>Voltage: 2.0 to 5.5 V</td>
</tr>
<tr>
<td></td>
<td>Current: approx. 17 mA MAX.</td>
</tr>
<tr>
<td>Weight</td>
<td>Approx. 300 g</td>
</tr>
<tr>
<td>Host interface</td>
<td>USB interface (1.1, 2.0)</td>
</tr>
</tbody>
</table>

Notes

1. Does not include projection of power switch
2. Includes projection of screw that fixes rear spacer
3. Rear spacer can adjust the height from 30 mm (longest) to 0 mm (shortest)
4. Front spacer can adjust the height from 20 mm (longest) to 5 mm (shortest)
1.2 System Specifications

This section shows the QB-78K0SKX1 system specifications.

<table>
<thead>
<tr>
<th>Table 1-2. QB-78K0SKX1 System Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Emulation memory capacity</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Program execution functions</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Memory manipulation</td>
</tr>
<tr>
<td>Register manipulation</td>
</tr>
<tr>
<td>Disassemble function</td>
</tr>
<tr>
<td>Local variable view</td>
</tr>
<tr>
<td>Watch data view</td>
</tr>
<tr>
<td>Stack trace view</td>
</tr>
<tr>
<td>Break functions</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Trace functions</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pseudo-real-time RAM monitoring function</td>
</tr>
<tr>
<td>Time measurement functions</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Other functions</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 1-3. List of QB-78K0SKX1 Peripheral Break Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Peripheral Break: Peripheral function which stops when Break is set</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
1.3 System Configuration

This section shows the system configuration when using the QB-78K0SKX1 connected to a PC (Windows™ PC (Windows 98 SE or later), PC/AT™ compatible). Connection is possible even without optional products.

Figure 1-1. System Configuration

<1> Host machine : Windows PC (Windows 98 SE or later), IBM PC/AT compatible can be used
<2> ID78K0S-QB Disk/Accessory Disk : Debugger, USB drivers, manual, etc.
<3> USB interface cable : Cable connecting QB-78K0SKX1 to host machine
<4> AC adapter : Support input AC100 to 240 V
<5> QB-78K0SKX1 : This product
<6> Emulation probe : Flexible type emulation probe
<7> Exchange adapter : Adapter that performs pin conversion
 flexible type for 10-pin and 16-pin
 board type for 20-pin and 30-pin
<8> Target connector : Connector soldered to target system
<9> Target cables (30 single-wire cables)
<10> Target system (device foot pattern)
<11> Target system (pin header) : Recommended specification
 vertical 0.635 mm, horizontal 0.635 mm, height 6 mm

2. Refer to 1.5 Package Contents for the purchase forms of the above products.
3. As for handling of connectors, refer to 2.6 Mounting and Connecting Connectors.
1.4 System Configuration for Each Target Device

The following table lists the system configuration for each target device of the QB-78K0SKX1.

Table 1-4. Adapters and Connectors for Each Target Device

<table>
<thead>
<tr>
<th>Target Device Package</th>
<th>Target Connector</th>
<th>Note 1</th>
<th>Note 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>78K0S/KU1+</td>
<td>QB-10MA-EA-01T (sold separately)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78K0S/KY1+</td>
<td>QB-16GR-EA-01T (sold separately)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78K0S/KA1+</td>
<td>QB-20MC-EA-01T (sold separately)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78K0S/KB1+</td>
<td>QB-30MC-EA-04T (sold separately)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1-5. Common Probe

<table>
<thead>
<tr>
<th>Name</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emulation probe</td>
<td>QB-50-EP-01T (sold separately)</td>
</tr>
</tbody>
</table>

Notes
1. To develop WLBGA or SDIP, use the attached target cable (single-wire). Refer to 2.7.2 When using the single-wire target cables.
2. These items are included with the QB-78K0SKX1, depending on the ordering code.
 - If QB-78K0SKX1-ZZZ is ordered
 The emulation probe, exchange adapter, and target connector are not included.
 - If QB-78K0SKX1-T10MA is ordered
 - If QB-78K0SKX1-T16GR is ordered
 - If QB-78K0SKX1-T20MC is ordered
 - If QB-78K0SKX1-T30MC is ordered

Remark For notes on target system design and package drawings, refer to [Related Information] on the following URL:
1.5 Package Contents

The following items have been placed in the QB-78K0SKX1 packing box. Please check the contents.

Products supplied with QB-78K0SKX1-ZZZ
1: QB-78K0SKX1
2: AC adapter
3: USB interface cable (2 meters)
4: Target cable (30 single-wire cables)
5: Online user registration card (warranty card and software contract in one)
6: ID78K0S-QB Disk (CD-ROM)
7: Accessory Disk (CD-ROM)
8: IECUBE Setup Manual (Japanese/English)
9: Pin header cover for QB-78K0SKX1 (Japanese/English)
10: Packing list
11: Simple programmer (QB-MINI2)

Products supplied with QB-78K0SKX1-T10MA
1 to 11
13: Exchange adapter QB-10MA-EA-01T
14: Target connector QB-10MA-NQ-01T

Products supplied with QB-78K0SKX1-T16GR
1 to 11
13: Exchange adapter QB-16GR-EA-01T
14: Target connector QB-16GR-NQ-01T

Products supplied with QB-78K0SKX1-T20MC
1 to 11
13: Exchange adapter QB-20MC-EA-01T
14: Target connector QB-20MC-NQ-01T

Products supplied with QB-78K0SKX1-T30MC
1 to 11
13: Exchange adapter QB-30MC-EA-04T
14: Target connector QB-30MC-NQ-02T
CHAPTER 2 SETUP PROCEDURE

This chapter explains the QB-78K0SKX1 setup procedure. Setup can be completed by performing installation setup in the order in which it appears in this chapter. Perform setup along the lines of the following procedure.
See 2.1 Names and Functions of Hardware for clock positions.

| Clock settings | Hardware settings are not required if the clock internally generated from the QB-78K0SKX1 is used. If an oscillator must be mounted, see 2.2 Removal of Acrylic Board and 2.3 Clock Settings. |
| ----------------- ---------------------------------- |
Target device settings	At shipment, the QB-78K0SKX1 is set to perform as the 78K0S/KA1+ or 78K0S/KB1+. To emulate the performance of the 78K0S/KU1+ or 78K0S/KY1+, See 2.4 Target Device Settings.
Power switch	See 2.5 Software settings.
Mounting and connecting connectors	See 2.6 Mounting and Connecting Connectors.
Connecting QB-78K0SKX1 to target system	See 2.7 Connecting QB-78K0SKX1 to Target System.
Connecting USB interface cable and AC adapter	See 2.9 Connecting USB Interface Cable and AC Adapter.
Switching power on and off	See 2.10 Switching Power On and Off.
2. 1 Names and Functions of Hardware

Figure 2-1. Names of Parts of QB-78K0SKX1

Note Pin 20 (N.C.) is a disconnected pin by default (at shipment).
(1) CN7
 This is a connector for connecting an emulation probe.

(2) 40-pin 2.54 mm pitch connector
 This is a connector for connecting target cables (30 single-wire cables).

(3) SW1
 This is a target device selection switch. The switch is set to use the 78K0S/KA1+ or 78K0S/KB1+ at shipment.

(4) OSC1
 This is a socket for mounting the oscillator.

(5) CN5
 This is a connector for the shipment inspection. It is not intended for users to use.

(6) POWER (Red LED)
 This is an LED that shows whether the power supply of the QB-78K0SKX1 is switched on.

<table>
<thead>
<tr>
<th>LED State</th>
<th>QB-78K0SKX1 State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lit</td>
<td>Power switch ON</td>
</tr>
<tr>
<td>Not lit</td>
<td>Power switch OFF or AC adapter not connected to QB-78K0SKX1</td>
</tr>
<tr>
<td>Blinking</td>
<td>Internal error occurred (Contact an NEC Electronics sales representative or distributor)</td>
</tr>
</tbody>
</table>

(7) TARGET (Green LED)
 This is an LED that shows whether the power supply of the target system is switched on.

<table>
<thead>
<tr>
<th>LED State</th>
<th>Target System State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lit</td>
<td>Target system power supply ON</td>
</tr>
<tr>
<td>Not lit</td>
<td>Target system power supply OFF or target system not connected</td>
</tr>
</tbody>
</table>

(8) Power switch
 This is the power switch of the QB-78K0SKX1.
 It is OFF at shipment.

(9) JP1
 This is a jumper for the shipment inspection.
 At shipment, it is set as 1-2, 3-4 and 5-6 short. The settings other than this are prohibited.
2. 2 Removal of Acrylic Board

To modify the clock setting, the acrylic board on the bottom of the QB-78K0SKX1 must be removed. The acrylic board can be removed by lifting it up.

Figure 2-2. Acrylic Board Removal Method

2. 3 Clock Settings

2.3.1 Overview of clock settings

The following four types of clock settings are available. Each clock setting is listed below.

<table>
<thead>
<tr>
<th>Clock Used</th>
<th>Clock Supply</th>
<th>Debugger Setting (in Configuration Dialog Box)</th>
</tr>
</thead>
<tbody>
<tr>
<td>System clock</td>
<td>Uses the clock internally generated from the QB-78K0SKX1</td>
<td>System (5.00, 8.00, 10.00 [MHz])</td>
</tr>
<tr>
<td></td>
<td>Uses the clock generated from the oscillator (OSC1) mounted on the QB-78K0SKX1</td>
<td>Clock Socket</td>
</tr>
<tr>
<td>Internal high-speed oscillation</td>
<td>Uses the clock internally generated from the QB-78K0SKX1</td>
<td>System (None)</td>
</tr>
<tr>
<td>Internal low-speed oscillation</td>
<td>System (None)</td>
<td></td>
</tr>
</tbody>
</table>

The clock to be used is selected depending on the setting of the option byte. To select crystal/ceramic oscillation circuit or external clock input circuit, see 2.3.2 How to set system clock.

When the internal high-speed oscillation clock is selected, see 2.3.3 How to set internal high-speed oscillation clock.

Oscillation with the resonator on the target system and an external input clock are not supported.

Remark If an oscillation circuit having an oscillator or resonator is mounted in OSC1, “Clock Socket” is automatically selected, thus “System” is not available.
2.3.2 How to set system clock

The clock settings are listed below.

Table 2-2. Settings for System Clock

<table>
<thead>
<tr>
<th>Type of Clock to Be Used</th>
<th>OSC1</th>
<th>Debugger Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Using the clock internally generated from the QB-78K0SKX1</td>
<td>Nothing is mounted</td>
<td>System (5.00, 8.00, 10.00 [MHz])</td>
</tr>
<tr>
<td>(2) Using the oscillation circuit (OSC1), having an oscillator or resonator, mounted on the QB-78K0SKX1</td>
<td>The oscillation circuit having an oscillator or resonator is mounted</td>
<td>Clock Socket</td>
</tr>
</tbody>
</table>

Remarks

1. If “None” is selected without the internal high-speed oscillation clock being selected by the option byte setting, the CPU operates at 8.00 MHz.

2. If an oscillation circuit having an oscillator or resonator is mounted in OSC1, “Clock Socket” is automatically selected.

(1) Using the clock internally generated from the QB-78K0SKX1

Select the “System” in the debugger and select the desired frequency from the drop-down list.

The following frequencies are selectable.

5.00, 8.00, 10.00 [MHz]

(2) Using the oscillation circuit (OSC1), having an oscillator or resonator, mounted on the QB-78K0SKX1

OSC1 of the QB-78K0SMINI does not mount an oscillator or an oscillation circuit at shipment. OSC1 specifications are shown in (a) to (d) of Figure 2-3.

Note that an oscillation circuit can also be configured by mounting a parts board such as the 160-90-314 (product of PRECI-DIP) in OSC1. The capacitors and resistors mounted on the parts board should be used at the constants recommended by the resonator manufacturer. A diagram of the parts board mounted in OSC1 is shown in (e) of Figure 2-3.

Caution

Be sure to mount the clock on and remove it from OSC1 with the power supply of the QB-78K0SKX1 switched off.
Mount an oscillator in OSC1 in the QB-78K0SKX1 and then select the “Clock socket” in the debugger. The clock generated from the oscillator mounted on the QB-78K0SKX1 is used. The selectable frequencies are same as those of the target device.
As an oscillator to be mounted in OSC1 in the QB-78K0SKX1, use the one that satisfies the following specifications.
- Supply voltage: 5 V
- Output level: CMOS

Figure 2-4. Mapping of Oscillator to OSC1

Remark
Watch out for the pin 1 position and insert the oscillator into the socket.

2.3.3 How to set internal high-speed oscillation clock
Select “System” in the debugger and select “None” from the drop-down list. By the setting of the option byte, 8 MHz from the oscillation circuit in the QB-78K0SKX1 is used.

Figure 2-5. Debugger Configuration Dialog Box Setting

Remark
If the internal high-speed oscillation clock is selected by the option byte setting without selecting “None”, the CPU operates at 8.00 MHz after reset.

2.3.4 Internal low-speed oscillation clock
The debugger setting is not necessary. 250 MHz from the oscillation circuit in the QB-78K0SKX1 is used.
2.4 Target Device Settings

The target device is set by using SW1 on the QB-78K0SKX1.
When emulating the 78K0S/KA1+ or 78K0S/KB1+: Set to KA1+/KB1+ side
When emulating the 78K0S/KU1+ or 78K0S/KY1+: Set to KU1+/KY1+ side

![Figure 2-6. SW1 Setting](image)

Caution Be sure to switch off the power supply of the QB-78K0SKX1 before changing the setting.

2.5 Software Settings

For details, see the **ID78K0S-QB Ver. 3.00 Integrated Debugger Operation User's Manual (U18493E)**.
2.6 Mounting and Connecting Connectors

This section describes the methods of connecting the target connector and exchange adapter to target system. Make connections with both the power supplies of the QB-78K0SKX1 and target system switched off.

The following abbreviations are used in this section:
- TC: Target connector
- EA: Exchange adapter

2.6.1 Mounting TC to target system

1. Thinly apply an adhesive to the back of the TC and adhere the TC to the target system. In addition, be sure to clean the back of the TC as well as the surface of the target system using alcohol or the like. Align the TC leads along the target system pads.

2. Preserve the soldering conditions (use Sn-3.5Ag-0.5Cu) and solder carefully to prevent troubles such as flux or solder splashing and adhering to the contact pins.

 Solder reflow:
 Preheating: 150 to 170°C
 120 seconds or less
 Heating: 220°C
 60 seconds or less
 Maximum temperature: 240°C or below

The above profile represents the temperature around the soldering pins.

 Manual soldering:
 350°C × 5 seconds or less (1 pin)

2.6.2 Plugging EA into TC

Check the pin 1 position of the EA and the pin 1 mark (silk) of the pin 1 position of the TC and plug in.
2.6.3 Precautions for handling TC

(1) Do not perform cleaning by flux immersion or vapor.
(2) Prying at insertion/removal might break the connector, therefore be sure to insert/remove vertically.
(3) This system cannot be used in an environment of vibrations or shocks.
(4) It is assumed that this product will be used in system development and evaluation. Moreover, when used in Japan, Electrical Appliance and Material Control Law and electromagnetic disturbance countermeasures have not been applied.
(5) Since there are cases of shape change if the packing case is left for a long time in a place where it is 50°C or higher, for safekeeping, store it in a place where it is no higher than 40°C and direct sunlight does not hit it.

2.7 Connecting QB-78K0SKX1 to Target System

2.7.1 When using the emulation probe

If connecting the emulation probe (QB-50-EP-01T), connect it to the QB-78K0SKX1 and the target system by the following procedure.

(a) Connecting the emulation probe

Connect the emulation probe to the QB-78K0SKX1.

Figure 2-7. Using the Emulation Probe

Insert matching CN7 of the QB-78K0SKX1 and CN1 of the probe
(b) Ensuring isolation

When connecting the target system to the QB-78K0SKX1 using the emulation probe, perform height regulation using the front spacer or rear spacer of the QB-78K0SKX1 and ensure isolation from the target system.

![Connection Using the Emulation Probe](image)

(c) Precautions related to emulation probe

Be careful that stress of the emulation probe is not placed on the target connector. Moreover, when removing the emulation probe, remove it slowly while pressing down on the exchange adapter with a finger so that there is no stress on the target connector.
2.7.2 When using the single-wire target cables

Connect the QB-78K0SKX1 to the target system using the target cable (supplied), etc.

The 40-pin 2.54 mm pitch connector of the QB-78K0SKX1 incorporates a male pin header, so be sure to mount a male pin header on the target system connector. Connect corresponding pins to each other using a target cable with female connectors on each end.

- Specifications of target cables (single-wire cables)
 - Red: 250 mm cable for power supply line (connected to VDD and AVREF pins) × 2
 - Black: 250 mm cable for GND line (connected to VSS and AVSS pins) × 2
 - Yellow: 250 mm cable for general signals × 26

- Specifications of target system pin header:
 - 0.635 mm × 0.635 mm (height: 6 mm)
 - When mounting the pin header, ensure that the pin pitch is at least 2.54 mm.

The 40-pin 2.54 mm pitch connector of the QB-78K0SKX1 incorporates a 40-pin pin header, so by mounting an IDE connector on the target system, the QB-78K0SKX1 can also be connected to the target system using a commercial IDE cable (ATA33 standard).

The pins in the 40-pin 2.54 mm pitch connector correspond functionally to the pins of the target device (pins 10, 16, 20, and 30). The functions of the target device pins can be switched using the target device selection switch (SW1). The attached product “Pin header cover for QB-78K0SKX1” that indicates the signal name of the target device pins is provided.

Use the appropriate cover by cutting it off from the product along the lines with scissors or a cutter, and cover the side of the QB-78K0SKX1 with it.

Cautions
1. Be careful not to hurt yourself with scissors or a cutter when cutting off the “Pin header cover for QB-78K0SKX1”.
2. When emulating products other than the 78K0S/KB1+, do not connect anything to the target I/F (pin header) pins that have not been assigned any pin functions (unused pins).
Figure 2-9. Connection of QB-78K0SKX1 (40-pin 2.54 mm pitch connector) to Target System

Connect the 40-pin 2.54 mm pitch connector on the QB-78K0SKX1 to the target board connector using the target cables in accordance with the pin assignment of the target device. Be sure that both the power supplies of the target system and QB-78K0SKX1 are switched off.
Table 2-3. Pin Correspondence

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>78K0S/KU1+ (10 Pins)</th>
<th>78K0S/KY1+ (16 Pins)</th>
<th>78K0S/KA1+ (20 Pins)</th>
<th>78K0S/KB1+ (30 Pins)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KU1+/KY1+ Mode</td>
<td>KA1+/KB1+ Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>−</td>
<td>−</td>
<td>AV REF(20)</td>
<td>AV REF(28)</td>
</tr>
<tr>
<td>2</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>AVss(29)</td>
</tr>
<tr>
<td>3</td>
<td>P20/ANI0/TO00/TOH1(1)</td>
<td>P20/ANI0/TO00/TOH1(1)</td>
<td>P20/ANI0(19)</td>
<td>P20/ANI0(27)</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>5</td>
<td>P21/ANI1/TO10/TO/INTP0(10)</td>
<td>P21/ANI1/TO10/TO/INTP0(16)</td>
<td>P21/ANI1(18)</td>
<td>P21/ANI1(26)</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>10</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>11</td>
<td>Vcc(4)</td>
<td>Vcc(5)</td>
<td>Vcc(5)</td>
<td>Vcc(7)</td>
</tr>
<tr>
<td>12</td>
<td>Vss(3)</td>
<td>Vss(4)</td>
<td>Vss(1)</td>
<td>Vss(6)</td>
</tr>
<tr>
<td>13</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>P120(30)</td>
</tr>
<tr>
<td>14</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>15</td>
<td>−</td>
<td>−</td>
<td>P121/X1(2)</td>
<td>P121/X1(8)</td>
</tr>
<tr>
<td>16</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>17</td>
<td>−</td>
<td>−</td>
<td>P122/X2(3)</td>
<td>P122/X2(9)</td>
</tr>
<tr>
<td>18</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>19</td>
<td>−</td>
<td>−</td>
<td>P123(4)</td>
<td>P123(5)</td>
</tr>
<tr>
<td>20</td>
<td>N.C.</td>
<td>N.C.</td>
<td>N.C.</td>
<td>N.C.</td>
</tr>
<tr>
<td>21</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>P00(4)</td>
</tr>
<tr>
<td>22</td>
<td>P40(2)</td>
<td>P40(3)</td>
<td>P40(9)</td>
<td>P40(15)</td>
</tr>
<tr>
<td>23</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>P01(3)</td>
</tr>
<tr>
<td>24</td>
<td>−</td>
<td>P41(2)</td>
<td>P41/INTP3(10)</td>
<td>P41/INTP3(16)</td>
</tr>
<tr>
<td>25</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>P02(2)</td>
</tr>
<tr>
<td>26</td>
<td>−</td>
<td>P42(15)</td>
<td>P42/TOH1(11)</td>
<td>P42/TOH1(17)</td>
</tr>
<tr>
<td>27</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>P03(1)</td>
</tr>
<tr>
<td>28</td>
<td>P43(9)</td>
<td>P43(14)</td>
<td>P43/Tx6/INTP1(12)</td>
<td>P43/Tx6/INTP1(18)</td>
</tr>
<tr>
<td>29</td>
<td>−</td>
<td>−</td>
<td>P130(15)</td>
<td>P130(23)</td>
</tr>
<tr>
<td>30</td>
<td>−</td>
<td>P44(11)</td>
<td>P44/Rx6D(13)</td>
<td>P44/Rx6D(19)</td>
</tr>
<tr>
<td>31</td>
<td>−</td>
<td>−</td>
<td>P30/Ti000/INTP0(8)</td>
<td>P30/Ti000/INTP0(14)</td>
</tr>
<tr>
<td>32</td>
<td>−</td>
<td>P45(10)</td>
<td>P45(14)</td>
<td>P45(20)</td>
</tr>
<tr>
<td>33</td>
<td>−</td>
<td>−</td>
<td>P31/Ti010/TO00/INTP2(7)</td>
<td>P31/Ti010/TO00/INTP2(13)</td>
</tr>
<tr>
<td>34</td>
<td>−</td>
<td>P46(7)</td>
<td>−</td>
<td>P46(21)</td>
</tr>
<tr>
<td>35</td>
<td>P32/INTP1(8)</td>
<td>P32/INTP1(13)</td>
<td>−</td>
<td>P32(12)</td>
</tr>
<tr>
<td>36</td>
<td>−</td>
<td>P47(6)</td>
<td>−</td>
<td>P47(22)</td>
</tr>
<tr>
<td>37</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>P33(11)</td>
</tr>
<tr>
<td>38</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>39</td>
<td>P34/RESET(7)</td>
<td>P34/RESET(12)</td>
<td>P34/RESET(6)</td>
<td>P34/RESET(10)</td>
</tr>
<tr>
<td>40</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
</tbody>
</table>

Remark: −: Pins not required in target device
GND: Connected to Vss (pin 12) on the QB-78K0SKX1
(): The number in the parentheses indicates the pin number in the target device.
2.8 Notes on Power Supply and GND Pin Connection

Be sure to connect all the power supplies and GND pins of the target device to each power supply or GND of the QB-78K0SKX1.

2.9 Connecting USB Interface Cable and AC Adapter

Plug the USB interface cable supplied with the QB-78K0SKX1 into the USB connector of the host machine, and plug the other side into the USB connector on the rear of the QB-78K0SKX1.

Plug the AC adapter supplied with the QB-78K0SKX1 into a receptacle and plug the other side into the power supply connector on the rear of the QB-78K0SKX1.

For QB-78K0SKX1 connector positions, see Figure 2-10.

![Figure 2-10. Connector Positions](image)

2.10 Switching Power On and Off

Be sure to switch the power on and off according to the following procedures.

- Switching power on
 - QB-78K0SKX1 power switch ON
 - Debugger startup

- Switching power off
 - Debugger termination
 - Target system power switch OFF
 - QB-78K0SKX1 power switch OFF

Note <2> is unnecessary if the target system is not connected.

Caution If the wrong sequence was used for the operation, the target system or the QB-78K0SKX1 may fail.
CHAPTER 3 SETTINGS AT PRODUCT SHIPMENT

Table 3-1. Settings at Shipment

<table>
<thead>
<tr>
<th>Item</th>
<th>Setting</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP1</td>
<td></td>
<td>Set as 1-2, 3-4 and 5-6 short. Do not change the settings.</td>
</tr>
<tr>
<td>OSC1</td>
<td>Not mounted</td>
<td>Oscillation circuit using an oscillator or resonator can be mounted.</td>
</tr>
<tr>
<td>SW1</td>
<td>KA1+/KB1+</td>
<td>Target device selection switch. Set to use the 78K0S/KA1+ or 78K0S/KB1+ at shipment.</td>
</tr>
<tr>
<td>Power switch</td>
<td></td>
<td>Set to OFF at shipment.</td>
</tr>
</tbody>
</table>
CHAPTER 4 RESTRICTIONS

The following restrictions apply to the QB-78K0SKX1.

○ Clock oscillation or clock input via a resonator on the target system is not supported. The clock differs between the device and the tool (QB-78K0SKX1) according to the option byte (OSCSEL1, OSCSEL0) setting as follows.

<table>
<thead>
<tr>
<th>Option Byte</th>
<th>Device</th>
<th>Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>Crystal/ceramic oscillation clock</td>
<td>System clock on QB-78K0SKX1</td>
</tr>
<tr>
<td>0 1</td>
<td>External clock input</td>
<td>System clock on QB-78K0SKX1</td>
</tr>
<tr>
<td>1 x</td>
<td>Internal high-speed oscillation clock</td>
<td>Internal high-speed oscillation clock of QB-78K0SKX1</td>
</tr>
</tbody>
</table>

When the target device is the µPD78F950x

<table>
<thead>
<tr>
<th>Option Byte</th>
<th>Device</th>
<th>Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>Internal high-speed oscillation clock</td>
<td>System clock on QB-78K0SKX1</td>
</tr>
<tr>
<td>0 1</td>
<td>External clock input</td>
<td>System clock on QB-78K0SKX1</td>
</tr>
<tr>
<td>1 x</td>
<td>Internal high-speed oscillation clock</td>
<td>Internal high-speed oscillation clock of QB-78K0SKX1</td>
</tr>
</tbody>
</table>

Note If OSCSEL1 and 0 are set to 0 and 0, set the setting in the Configuration dialog box of the debugger to “None” or “8 MHz”.

○ The oscillation circuit on the QB-78K0SKX1 generates a 250 kHz clock as the internal low-speed oscillation clock, and an 8 MHz clock as the internal high-speed oscillation clock. Note that the clock characteristics differ from those of the target device.

○ The QB-78K0SKX1 has 256 KB of RAM. However, unfortunately the 256 KB RAM area can be accessed normally from the user program even when a 128 KB device is being emulated, so be aware that problems such as stack overflow may occur unnoticed.

○ The characteristics of the A/D converter, LVI, and ports are not fully equivalent to those of the device. Moreover, pull-down resistors have also been inserted at the port signals to protect the target interface. See APPENDIX A CHARACTERISTICS OF TARGET INTERFACE for details.

○ AVSS and VSS are equivalent on the QB-78K0SKX1.

○ When using the QB-78K0SKX1, a correct A/D conversion result can be obtained even without waiting for 1 μs to elapse after setting bit 0 (ADCE) of the A/D converter mode register (ADM) to 1. When using the actual device, however, be sure to execute processing such as reading and discarding this result.

○ The internal functions (registers, peripheral macro, multiplier, etc.) of the QB-78K0SKX1 always operate for the 78K0S/KB1+. Therefore, while the emulation is performed for the 78K0S/KA1+, KU1+, or KY1+, if the bit of the register which exists only in the 78K0S/KB1+ is accessed from the program, it can be read or written even if access to the bit is disabled under normal conditions. In addition, the multiplication instruction execution can also be enabled while the emulation is performed for the 78K0S/KA1+, KU1+, or KY1+.
Device file versions

Use the combinations that satisfy the table below.
The device files can be downloaded from the following page on NEC Electronics Microcontrollers and
Microprocessors website.

<table>
<thead>
<tr>
<th>Target Device</th>
<th>Control Code</th>
<th>Usable Device File</th>
</tr>
</thead>
<tbody>
<tr>
<td>78K0S/KA1+: µPD78F9221, 78F9222</td>
<td>A or later</td>
<td>DF789222 V2.00 or DF789234 V2.00 or later</td>
</tr>
<tr>
<td>78K0S/KU1+: µPD78F9200, 78F9201, 78F9202</td>
<td>A or later</td>
<td>DF789234 V2.11 or later</td>
</tr>
</tbody>
</table>
APPENDIX A CHARACTERISTICS OF TARGET INTERFACE

This chapter explains the differences between the signal lines of the target interface circuit of the QB-78K0SKX1 and the signal lines of the target device.

Although the target device is a CMOS circuit, the target interface circuit of the QB-78K0SKX1 consists of an emulation circuit that depends on the emulation CPU, TTL, CMOS-IC, etc.

When the target system is debugged by connecting it to the QB-78K0SKX1, the QB-78K0SKX1 emulates just as if the actual target device were operating on the target system.

However, small differences arise because the QB-78K0SKX1 actually is emulating.

The target interface equivalent circuit of the QB-78K0SKX1 is shown in Figure A-1.

Figure A-1. Equivalent Circuit (1/2)

![Equivalent Circuit Diagram](image)
Figure A-1. Equivalent Circuit (2/2)

Target system side

QB-78K0SKX1 side

Same voltage as AVREF

μPD7886 (Voltage level shifter)

$3.3\ \text{V}$

P20 to 23

$33\ \text{k}\Omega$

74HCT 4066 (Pull up)

74HCT 4066 (AN In)

$33\ \text{pF}$

$33\ \text{k}\Omega$

$1\ \text{M}\Omega$

XC3S1000 (FPGA)

$1\ \text{M}\Omega$

AD7813YR (A/D converter)

74HCT 4066 (Pull up)

V_{DD}

AD7813YR (A/D converter)

$4.3\ \text{k}\Omega$

$10\ \text{k}\Omega$

$\text{Target power supply detection}$

Same voltage as V_{DD}

NFE31PT222Z1E9L (Filter)

Same voltage as AVREF

Same voltage as V_{DD}

SW1

NFE31PT222Z1E9L (Filter)

SW1

SW1

SW1

KU1+/KY1+

KA1+/KB1+

V_{SS}

AV_{SS}
APPENDIX B REVISION HISTORY

B.1 Major Revisions in This Edition

<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p.12</td>
<td>Change of Table 1-4. Adapters and Connectors for Each Target Device</td>
</tr>
</tbody>
</table>

B.2 Revision History of Preceding Editions

<table>
<thead>
<tr>
<th>Edition</th>
<th>Description</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd</td>
<td>Addition of Note 1 to “78K0S/KA1+” in Table 1-4. Adapters and Connectors for Each Target Device</td>
<td>CHAPTER 1 GENERAL</td>
</tr>
<tr>
<td></td>
<td>Change of Remark of 1.4 System Configuration for Each Target Device</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Change of Table 2-1. Clock Settings</td>
<td>CHAPTER 2 SETUP PROCEDURE</td>
</tr>
<tr>
<td></td>
<td>Change of description of and addition of Remark to 2.3.1 Overview of clock settings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Change of Table 2-2. Settings for System Clock, figure, and Remarks 1 and 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Change of description of and addition of Figure 2-5 and Remark to 2.3.3 How to set internal high-speed oscillation clock</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Change and addition of description</td>
<td>CHAPTER 4 RESTRICTIONS</td>
</tr>
<tr>
<td></td>
<td>Deletion of chapter</td>
<td>APPENDIX B PACKAGE DRAWINGS in 1st edition</td>
</tr>
<tr>
<td></td>
<td>Addition of APPENDIX B REVISION HISTORY</td>
<td>APPENDIX B REVISION HISTORY</td>
</tr>
</tbody>
</table>
For further information, please contact:

NEC Electronics Corporation
1753, Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8668,
Japan
Tel: 044-435-5111
http://www.necel.com/

[America]

NEC Electronics America, Inc.
2880 Scott Blvd.
Santa Clara, CA 95050-2554, U.S.A.
Tel: 408-388-6000
800-366-9782
http://www.am.necel.com/

[Europe]

NEC Electronics (Europe) GmbH
Arcadiastrasse 10
40472 Düsseldorf, Germany
Tel: 0211-65030
http://www.eu.necel.com/

Hanover Office
Postbilsstrasse 166 B
30177 Hannover
Tel: 0 511 33 40 2-0

Munich Office
Werner-Eckert-Straße 9
81829 München
Tel: 0 89 92 10 03-0

Stuttgart Office
Industriestrasse 3
70565 Stuttgart
Tel: 0 711 99 01 0-0

United Kingdom Branch
Cygnus House, Sunrise Parkway
Linford Wood, Milton Keynes
MK14 6NP, U.K.
Tel: 01908-691-133

Succursale Française
9, rue Paul Dautier, B.P. 52
78142 Velizy-Villacoublay Cédex
France
Tel: 01-3067-5800

Sucursal en España
Juan Esplandiu, 15
28007 Madrid, Spain
Tel: 091-504-2787

Tyksland Filial
Täby Centrum
Entrance S (7th floor)
18322 Täby, Sweden
Tel: 08 638 72 00

Filiale Italiana
Via Fabio Filzi, 25/A
20124 Milano, Italy
Tel: 02-667541

Branch The Netherlands
Steigvenweg 6
5616 HS Eindhoven
The Netherlands
Tel: 040 265 40 10

[Asia & Oceania]

NEC Electronics (China) Co., Ltd
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: 010-8235-1155
http://www.cn.necel.com/

Shanghai Branch
Room 2509-2510, Bank of China Tower,
200 Yincheng Road Central,
Pudong New Area, Shanghai, P.R.China P.C:200120
Tel:021-5888-5400
http://www.cn.necel.com/

Shenzhen Branch
Unit 01, 39/F, Excellence Times Square Building,
No. 4068 Yi Tian Road, Futian District, Shenzhen,
P.R.China P.C:518048
Tel:0755-8282-9800
http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.
Unit 1601-1613, 16/F., Tower 2, Grand Century Place,
193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: 2886-9318
http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R. O. C.
Tel: 02-8175-9600
http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,
#12-08 Novena Square,
Singapore 307684
Tel: 6253-8311
http://www.sg.necel.com/

NEC Electronics Korea Ltd.
11F., Samik Lavied’or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku,
Seoul, 135-080, Korea
Tel: 02-558-3737
http://www.kr.necel.com/