

Preliminary User's Manual

QB-V850ERX3

(IECUBE for V850E/RG3)

Target Devices: µPD70F3464 µPD70F3465 µPD70F3466 µPD70F3467 µPD70F3470 µPD70F3471 µPD70F3472

Document No. U20122EE1V0UM00 Date Published December 2009

NOTES FOR CMOS DEVICES —

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to V_{DD} or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

④ STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

(5) INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

All other product, brand, or trade names used in this publication are the trademarks or registered trademarks of their respective trademark owners.

Product specifications are subject to change without notice. To ensure that you have the latest product data, please contact your local NEC Electronics sales office.

- The information contained in this document is being issued in advance of the production cycle for the product. The parameters for the product may change before final production or NEC Electronics Corporation, at its own discretion, may withdraw the product prior to its production.
- Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics products depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

M5D 02.11-1

For further information, please contact:

NEC Electronics Corporation

1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8668, Japan Tel: 044-435-5111 http://www.necel.com/

[America]

NEC Electronics America, Inc.

2880 Scott Blvd. Santa Clara, CA 95050-2554, U.S.A. Tel: 408-588-6000 800-366-9782 http://www.am.necel.com/

[Europe]

NEC Electronics (Europe) GmbH

Arcadiastrasse 10 40472 Düsseldorf, Germany Tel: 0211-65030 http://www.eu.necel.com/

Hanover Office Podbielskistrasse 164

30177 Hannover Tel: 0 511 33 40 2-0

Munich Office

Werner-Eckert-Strasse 9 81829 München Tel: 0 89 92 10 03-0

Stuttgart Office

Industriestrasse 3 70565 Stuttgart Tel: 0 711 99 01 0-0

United Kingdom Branch Cygnus House, Sunrise Parkway

Linford Wood, Milton Keynes MK14 6NP, U.K. Tel: 01908-691-133

Succursale Française

9, rue Paul Dautier, B.P. 52180 78142 Velizy-Villacoublay Cédex France Tel: 01-3067-5800

Sucursal en España

Juan Esplandiu, 15 28007 Madrid, Spain Tel: 091-504-2787

Tyskland Filial

Täby Centrum Entrance S (7th floor) 18322 Täby, Sweden Tel: 08 638 72 00

Filiale Italiana

Via Fabio Filzi, 25/A 20124 Milano, Italy Tel: 02-667541

Branch The Netherlands

Limburglaan 5 5616 HR Eindhoven The Netherlands Tel: 040 265 40 10

[Asia & Oceania]

NEC Electronics (China) Co., Ltd 7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China TEL: 010-8235-1155 http://www.cn.necel.com/

NEC Electronics Shanghai Ltd.

Room 2509-2510, Bank of China Tower, 200 Yincheng Road Central, Pudong New Area, Shanghai P.R. China P.C:200120 Tel: 021-5888-5400 http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.

12/F., Cityplaza 4, 12 Taikoo Wan Road, Hong Kong Tel: 2886-9318 http://www.hk.necel.com/

Seoul Branch

11F., Samik Lavied'or Bldg., 720-2, Yeoksam-Dong, Kangnam-Ku, Seoul, 135-080, Korea Tel: 02-558-3737

NEC Electronics Taiwan Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwan, R. O. C. Tel: 02-2719-2377

NEC Electronics Singapore Pte. Ltd.

238A Thomson Road, #12-08 Novena Square, Singapore 307684 Tel: 6253-8311 http://www.sg.necel.com/

G05.11-1A

Introduction

Target Readers	This manual is intended for users who design and develop application systems using the V850E/RG3.	
Purpose	The purpose of this manual is to describe the proper operation of the QB-V850ERX3, and its basic specifications.	
Organization	This manual is broadly div	vided into the following parts.
	Overview	
	Setup procedure	
	Cautions	
How to read this ma	nual	
	It is assumed that the rea of electrical engineering explains the basic setup p QB-V850ERX3.	der of this manual has general knowledge in the fields , logic circuits, and microcontrollers. This manual procedure, so read this document before using the
	To learn about the basic s	pecifications and operation methods.
	ightarrow Read this manual i	in the order of the CONTENTS .
	To learn about software se tions.	ettings such as operation methods and command func-
	ightarrow Read the user's m	anual of the debugger that is used.
Logond	Symbols and potation are	used as follows:
Legend	Woight in data notation	· Loft is high-order column right is low order column
	Active low notation	: xxx (pin or signal name is over-scored) or /xxx (slash before signal name)
	Memory map address:	: High order at high stage and low order at low stage
	Note	: Explanation of (Note) in the text
	Caution	: Item deserving extra attention
	Remark	: Supplementary explanation to the text
	Numeric notation	: Binary xxxx or xxxB Decimal xxxx Hexadecimal xxxxH or 0x xxxx
	Prefixes representing pow	vers of 2 (address space, memory capacity) K (kilo): 2 ¹⁰ = 1024 M (mega): 2 ²⁰ = 1024 ² = 1,048,576 G (giga): 2 ³⁰ = 1024 ³ = 1,073,741,824

Terminology The meanings of terms used in this manual are listed below.

Term	Meaning
Target device	Refers to the device targeted for emulation.
Target system	Refers to the system targeted for debugging. This includes the target program and the hardware created by the user. In the narrow sense, it means hardware only.

Related Documents When using this manual, refer to the following manuals.

The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

• Documents related to development tools (user's manuals)

Document Name	Document Number	
QB-V850ERX3 In-Circuit Emulator	This manual	
CPDW9X/NT-CDR-V85X	GHS integrated development environment (PC, MS Win- dows based)	Ver.4.2.4 or - current version
V850 Series CPDW9X/NT-CDR-V85X Operating Precautions MULTI 2000 Integrated Development Environment	Customer Notification	DTOP0010V30 - current version
850eserv / Detailed information listing	Read Me File for 850ESERV	850eserv.txt - current version
IEQBUTL / IECUBE Utility	Read Me File for IECUBE Util- ity IEQBUTL	IEQBUTL_E2.03c.txt or - current version

Note: Download the documents from the NEC Electronics (Europe) GmbH web site. URL: http://www.eu.necel.com/

General Cautions on handling this product

- 1. NEC Electronics' warranty does not cover the following cases:
 - When the QB-V850ERX3 is disassembled, reconstructed, or modified by the user
 - When the QB-V850ERX3 receives a heavy shock such as being dropped or falling down
 - When the QB-V850ERX3 is used with excessive voltage or is stored outside the guaranteed temperature range or guaranteed humidity range
 - When power is applied while the AC adapter, USB interface cable, or target system is not connected securely
 - When the AC adapter cable, USB interface cable, or extension probe is excessively twisted or stretched
 - When an AC adapter other than the one supplied with the QB-V850ERX3 is used
 - When water is spilled on the QB-V850ERX3
- 2. Cautions on safe use
 - The QB-V850ERX3 heats up (to approx. 50 to 60°C) when it operates for a long time. Take care not to receive injuries such as burns from a rise in the temperature.
 - Be very careful to avoid electric shocks. There is risk of electric shock if the product is used as described in item 1 above.

[MEMO]

	Introduction	. 5
Chapter 1	Overview	15
1.1	Hardware Specifications	16
1.2	System Specifications	17
1.3	System Configuration	19
1.4	Order code of target adapter	20
1.5	Packing Contents	22
Chapter 2	IECUBE Setup Procedure	23
2.1	Names and Functions of Hardware	24
2.2	Removing Acrylic Board	25
2.3	Clock Settings	26
2.4	Target IECUBE Settings	28
2.5	Software Setup	29
2.6	Connecting IECUBE to Target System.	30
2.7	Power Application/Shutdown	30
Chapter 3	List of Factory Settings	31
Chapter 4	Differences Between Target Device and IECUBE	33
4.1	Differences to device functions	33
4.2	Download of the software for debug	34
Chapter 5	Connector Package Drawings	35
5.1	Target Connector	35
5.2	Foot Patterns of Target Connectors.	36
5.3	Exchange Adapter	37
5.4	Mounting Adapter	38

List of Tables

Table 1-1:	QB-V850ERX3 Hardware Specifications	16
Table 1-2:	QB-V850ERX3 System Specifications	18
Table 3-1:	List of Factory Settings	31

List of Figures

Figure 1-1:	IECUBE	15
Figure 1-2:	Debug unit	17
Figure 1-3:	Typical System Configuration	19
Figure 1-4:	connection of the exchange adapter	20
Figure 2-1:	Names and Functions in QB-V850ERX3	24
Figure 2-2:	Removing Acrylic Board	25
Figure 2-3:	Clock Adapter Board - Parts Assembling	27
Figure 2-4:	Connector Position	30
Figure 5-1:	Target Connector for 100-pin	35
Figure 5-2:	Foot Pattern of Target Connector for 100-pin	36
Figure 5-3:	Exchange Adapter for 100-pin top view	37
Figure 5-4:	Exchange Adapter for 100-pin bottom view	37
Figure 5-5:	Top view Mounting Adapter for 100-pin	38
Figure 5-6:	Side view Mounting Adapter for 100-pin	39
Figure 5-7:	Bottom view Mounting Adapter for 100-pin	40

Chapter 1 Overview

The QB-V850ERX3 (IECUBE) is an in-circuit emulator used to emulate the V850E/RG3 devices. By using IECUBE, hardware and software can be debugged efficiently in system development.

In this manual, the basic setup procedure, hardware specifications, system specifications, and switch settings are described.

This document describes the QB-V850ERX3 as IECUBE.

Figure 1-1: IECUBE

1.1 Hardware Specifications

The IECUBE for V850E/RG3 will support both devices version : the umbrella supports two IO-buffer areas, one for 3.3V and one for 5.0V. Depending on the used exchange adapters, either 5V buffers are active or 3V.

The QB-V850ERX3-ZZZ-EE full in-circuit emulator emulates the following devices:

- (RG3-F512-3V) μPD70F3464, μPD70F3465,μPD70F3466
- (RG3-F768-3V) μPD70F3467
- (RG3-F512-5V) μPD70F3470 μPD70F3471 μPD70F3472

Item		Specification	
Target device		V850E/RG3 • (RG3-F512-3V) μPD70F3464, μPD70F3465, μPD70F3466 • (RG3-F768-3V) μPD70F3467 • (RG3-F512-5V) μPD70F3470, μPD70F3471, μPD70F3472	
Target system interface voltage (unit: V)		$\begin{split} MV_{DD5} &= 3.0 \ V \sim 5.5 \ V, \ DV_{DD5} = 3.0 \ V \sim 5.5 \ V, \\ BV_{DD5} &= 3.0 \ V \sim 5.5 \ V, \\ AV_{DD} &= 3.2 \ V \sim 5.5 \ V, \\ SW_{DD5} &= 3.2 \ V \sim 5.5 \ V, \\ V_{DD5} &= 3.2 \ V \sim 5.5 \ V, \\ V_{SS5} &= BV_{SS5} = DV_{SS5} = SMV_{SS5} = MV_{SS5} = AV_{SS} = 0 \ V \end{split}$	
Maximum operating frequency		80 MHz	
Clock Function		8Mhz and 16Mhz selectable on IO-board. Default setting 8 MHz	
Operating temp	erature range	0 to 40°C (without condensation)	
Storage temper	rature range	-15 to 60°C (without condensation)	
Package dimensions		See below	
Power	AC adapter for IECUBE	15 V, 1 A	
consumption	Target system power supply	Lower than that of target device	
Weight		475 g - 537 g	
Host interface		USB interface (1.1 and 2.0)	

Table 1-1:	QB-V850ERX3 Hardware Specifications

1.2 System Specifications

The QB-V850ERX3 function will be realized with the Rx3 umbrella device, which is a special debug device for the Rx3 device family. Compared to a standard IECUBE structure, the QB-V850ERX3-IO with the Rx3 umbrella on it will replace the –EM and –IO board function on one board.

New Exchange Adapter's are required : the interface to the 3V or 5V buffer of the Rx3 umbrella device is realized by the related EA-adapter. The target adapter is identical to the standard V850 IECUBE family adapter line.

For the target function emulation, the Rx3 umbrella provides the function/pins of the Rx3 device for 3.3V and alternative for 5.0V.

Figure 1-2: Debug unit

Function		Specification	
Emulation	Internal ROM	1 Mbyte (Maximum)	
Memory canacity	Internal RAM	60 Kbyte (Maximum)	
Memory capacity	External memory	16Mbyte (Maximum) on MM-board	
Program execu-	Real-time execution function	Go, Start From Here, Go & Go, Come Here, Restart, Return Out	
	Non-real-time execution function	Step In, Next Over, Slow Motion	
	Hardware break	Execution: 10 points Access: 6 points	
Break function	Software break	2000 points (debugger related)	
	Fail-safe break	Non-map, I/O illegal, write protect	
	Other	Trace full break, Manual Break, Timer Over Flow Break	
	Trace data type	Branch source PC, branch destination PC, all PCs, all execution data, access data, access address, R/W status, time stamp, DMA point (start/end)	
Trace function	Trace mode	Speed Priority, Trace Priority	
	Trace event	Delay trigger, section, qualify	
	Memory capacity	256k frames	
Real-time RAM monitor function		256 bytes \times 8 points	
	Measurement clock	Measurement-dedicated clock or CPU clock	
	Measurement target	Program execution start to end Start event to end event	
	Maximum measurement time	About 195 hours (when measurement-dedicated clock is used)	
lime measurement	Minimum resolution	20 ns	
	Number of timers used for meas- urement	8	
	Measurement result	Execution time (execution start to end) Max., min., Average, pass count (between events)	
	Other	Timer overflow break function (1 point)	
Coverage function		Optional (under development)	
Other functions		Mapping function, event function, register manipulation function, memory manipulation function	

Table 1-2:	QB-V850ER	X3 System	Specifications

Caution: Some of the functions may not be supported, depending on the debugger used.

1.3 System Configuration

The system configuration when connecting the QB-V850ERX3 to a PC (PC98 series or PC/AT compatible) is shown below. USB interface that enables communication based on USB (Ver1.1 or Ver2.0). The target connection usable is shown in the picture below.

1.4 Order code of target adapter

Adapter	Order code	
Exchange Adapter 3V/5V	QB-V850ERX3-EA-5V or QB-V850ERX3-EA-3VNote	mandatory
Exchange adapter	QB-100GC-EA-01S (sold separately)	mandatory
Target connector	QB-100GC-TC-01S (sold separately)	mandatory
Emulation probe	QB-144-EP-02S (sold separately)	optional
Check pin adapter	QB-144-CA-01S (sold separately)	optional
Check pin adapter	QB-100-CA-01S (sold separately)	optional
Space adapter	QB-100-SA-01S (sold separately)	optional

Table 1: Order code of adapters

Note: This is part of package content

Table 2: Order code of device adapter

Device adapter	Order code	
Mount Adpater	QB-100GC-MA-01S (sold separately)	optional

Figure 1-4: connection of the exchange adapter

On the previous figure (Figure 1-4: on page 20) a default setup is shown: QB-V850ERX3-EA-5V & QB-100GC-EA-01S

Please observe the unique usage for each exchange adapter as follow

- "QB-V850ERX3-EA-5V use only for 5V devices
- "QB-V850ERX3-EA-3V use only for 3V devices

1.5 Packing Contents

The packing box of the QB-V850RX3-ZZZ-EE contains the following. Make sure that these items are included.

- Items included with QB-V850RX3-ZZZ-EE
 - (1) QB-V850ERX3 In Circuit Emulator
 - (2) AC adapter
 - (3) USB interface cable
 - (4) QB-MINI2 flash programmer
 - (5) Exchange adapter (3V & 5V type)
 - (6) Clock adapter (8MHz & 16MHz)
 - (6) Readme First
 - (7) Registration Card
 - (8) CE "Note"
 - (9) QB-V850RX3-ZZZ-EE package contents list

Chapter 2 IECUBE Setup Procedure

This chapter describes the procedure for setting up the QB-V850ERX3.

Perform setup using the following procedure.

See 2.1 "Names and Functions of Hardware" on page 24 for the positions of switches and clocks.

(1) Device selection

The different Power for the IO-interface is selected by hardware via an EA-adapter connection. Two EA-adapter are required for adapting the QB-V850ERX3-IO board to the target connector. For the 3.3V or 5V I/O selection, each EA-adapter can be identified by a special pin. The selection is also checked by device file. If the device file selection does not match with the EA adapter, a message will appear. This is important to prevent damage of the IECUBE or target hardware by wrong voltage supply.

(2) Clock settings

A 16.000 MHz crystal is mounted at shipment for main clock. The Ring clock is generated internally only. There is no need to change the setting. When different type of crystal (e.g. same as on the target system) shall be used, follow instructions given in this manual. See **2.2** "**Removing Acrylic Board**" on page 25 and **2.3** "Clock Settings" on page 26 when changing the crystal.

(3) Software setup

See 2.5 "Software Setup" on page 29.

(4) Connecting IECUBE to target system See 2.6 "Connecting IECUBE to Target System" on page 30.

(5) Power application/shutdown

See 2.7 "Power Application/Shutdown" on page 30.

2.1 Names and Functions of Hardware

Figure 2-1: Names and Functions in QB-V850ERX3

(1) CN1, CN2, CN3

These are connectors used to connect the exchange adapter or extension probe.

(2) Clock adapter board connector (for clock) CN4

This is a clock connector used for mounting the crystal. A 16 MHz crystal and capacitors, that configure an oscillator circuit are mounted at shipment. (See **2.3** "Clock Settings" on page 26 for details.)

(3) SW1

This is a switch whose setting should be set in case of special emulation. It is set to default at shipment. (See **2.4** "Target IECUBE Settings" on page 28 for details.)

(4) POWER (red LED)

This is an LED that indicates whether or not the power to IECUBE is on.

LED Status	IECUBE Status				
Lit	The power supply is on.				
Extinguished	The power supply is off, or the AC adapter is not connected to IECUBE.				
Blinking	An error has occurred internally. (Contact an NEC Electronics sales representative or distributor.)				

(5) TARGET (green LED)

This is an LED that indicates whether or not the power to the target system is on.

LED Status	Target System Status				
Lit	The power supply to the target system is on.				
Extinguished	The power supply to the target system is off, or the target system is not connected.				

(6) Power supply switch

This is a power switch for IECUBE. This switch is turned off at shipment.

2.2 Removing Acrylic Board

Remove the acrylic board on the bottom surface of IECUBE before changing the settings of jumpers or clocks.

The acrylic board can be removed by pulling it up.

Figure 2-2: Removing Acrylic Board

2.3 Clock Settings

2.3.1 Overview of clock settings

Note: Default setting at shipment: clock adapter board is plugged in.There is no need to change the clock settings for standard use. Only in case of special setting required by customer this is described herewith.

The default setting is mounted with an 16.000MHz crystal. To make the adapatation to 16MHz, the crystal has to be changed.

- (1) Use the 16.000 MHz crystals mounted on the clock board on IECUBE as the internal clock for the V850E/RG3 3.3V derivate.
- (2) Mount a 8.000 MHz types of crystals onto the clock board on IECUBE. This configuration is used for the V850E/RG3 5V derivate.

(3) The clock input from target system without using clock board one IECUBE is not recommended $^{\mbox{Note}}$

The different settings are done with different crystals (8 or 16MHz) via the CN4. This is a single row connector of 2.54mm. The default is assembled with 8MHz crystal / 10pF ceramic capacitors.

Note: The IECUBE does not support clock input from the target system. The function by using target system clock is not guaranteed.

2.3.2 How to change crystal

<1> Remove the clock adapter board. Be careful not to damage IECUBE. Resolder the parts of X1 and X2 by another type. Plug in clock adapter board again.

Figure 2-3: Clock Adapter Board - Parts Assembling

The connection is done as follow

Pin	1	2	3	4	5
Signal	GND	X1	GND	X2	GND
Capacitor	x	х		х	х
Crystal		х		х	

2.4 Target IECUBE Settings

The SW1 is set to a reserved configuration. Please do not change the setting shown in the below table to avoid any function trouble with the IECUBE.

Position	1	2	3	4	5	6	7	8	9	10
On										
Off	x ^{note}									

Notes: 1. The setting is reserved

2.5 Software Setup

2.5.1 When a debugger other than ID850QB (such as Multi) is used

The GHS Multi version should be V4.2.3 or later (check for actual patches and updates). A preliminary device file including a header file is supplied e.g. df3472.800; Version E2.00a or later;

For connection to the IECUBE, please use actual files.

- 850eserv2.exe; Version V2.005 or later
- EX850G32.dll; Version V1.85c or later (version for Rx3)

For the connection of the emulator, use the following command line as an example:

The flash mask option are identical to the device

e.g. #define OPTION_BYTE 0x3C,0x7C,0x3C,0x7C,0x3C,0x7C -- 80MHz

2.6 Connecting IECUBE to Target System

2.6.1 Connecting USB Interface Cable and AC Adapter

Connect the computer and IECUBE using the USB interface cable supplied with IECUBE.

Insert the power supply connector on the rear side of IECUBE and insert the AC adapter plug supplied with IECUBE in the outlet. See Figure 2-4 for the connector position of IECUBE.

The AC adapter can support voltages from 100 V to 240 V by exchanging the AC plug. A 100 V AC plug is mounted at shipment. To use IECUBE with 220 V or 240 V, exchange the AC plug for one that supports 220 V or 240 V (both included with IECUBE).

Figure 2-4: Connector Position

2.7 Power Application/Shutdown

Be sure follow the sequence shown below when activating or terminating the emulator; otherwise the target system or IECUBE may be damaged.

- When activating the emulator:
 Apply power to IECUBE → Apply power to the target system^{Note} → Activates the debugger.
- When terminating the emulator: Terminate the debugger → Shut down power to the target system → Shut down power to IECUBE.

Note: This step is not required when the target system is not connected.

Chapter 3 List of Factory Settings

Item	Settings	Remark		
SW1	CN4	See 2.4 "Target IECUBE Settings" on page 28 for details. For QB-V850RX3-ZZZ-EE factory setting changed. See 2.4		
CN4		The clock adapter board is plugged on CN8. See 2.3 "Clock Settings" on page 26 for details.		
Power supply switch	ON/OFF-" DC:15V-" USB	This switch is turned off at shipment.		

Table 3-1: List of Factory Settings

[MEMO]

Chapter 4 Differences Between Target Device and IECUBE

This chapter explains the differences on using the IECUBE to the V850E/RG3 devices.

4.1 Differences to device functions

4.1.1 Interface pins, electrical characteristics

The electrical characteristic of the pins differ on these pins, not emulated directly by the peripheral emulation chip.

(1) Ports

- emulated by Rx3 umbrella (emulation chip)
- (2) Clock
 - XT1, XT2, X1, X2 not used
- (3) Power :
 - internal supply in standalone mode (no target connected)
 - External supply on AVDD, BVDD, VDD
- On both modes, the power consumption might differ to the device.

(4) Ground

- there is a common ground used
- One ground pin (VSS30/pin13) will be used for target connection detection. A pull up of 10K is used

(5) RESETZ

A pull down of 47K is used. The input characteristic differs from the microntroller.

(6) FLMD0

Not used.

(7) REGCx

Not used.

The electrical characteristic of all signals will be different to the device. This is based on the PCB wiring, all used connectors and the target probe wiring. These results in an additional load on all pins and therefore the characteristic and the timing of the signals will be influenced. This should be taken into consideration by using the ICE on the target board.

4.1.2 Functions different emulated

(1) iRAM

The content of the iRAM will be unchanged after a RESET/Power off/on.

This behaviour may differ from the real device. In the real device the content of the iRAM may change after a RESET/Power off/on.

(2) RESETZ1/RESETZ0

In Rx3 umbrella chip, the target reset input pins RESETZ0 (RESETZ of 3V i/f) and RESETZ1 (RESETZ of 5V i/f) does not latch the operation mode. In Rx3 umbrella chip, external target resets can be masked by extended DCU register function.

(3) Break function

Break can not be used during the self programming under debug.

(4) REGC

This pin is not connected to target hardware

4.1.3 Functions not supported

- ROM correction
- OCDM register function is not used in Rx3 umbrella device. The debug i/f is always enabled independent of OCDM register settings.
- External Flash programming : External Flash programming is not supported by the IECUBE.

4.2 Download of the software for debug

The download for program code might be longer than a standard IECUBE, because it uses the flash of the emulation device and not the RAM as the standard IECUBE. For timing programmation, please refer to the datasheet of the device.

5.1 Target Connector

5.2 Foot Patterns of Target Connectors

5.3 Exchange Adapter

Figure 5-3: Exchange Adapter for 100-pin top view

Figure 5-4: Exchange Adapter for 100-pin bottom view

5.4 Mounting Adapter

Figure 5-5: Top view Mounting Adapter for 100-pin

Figure 5-6: Side view Mounting Adapter for 100-pin

Figure 5-7: Bottom view Mounting Adapter for 100-pin

Facsimile Message

FAX

Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free and up-to-date, we readily accept that errors may occur. Despite all the care and precautions we've taken, you may encounter problems in the documentation. Please complete this form whenever you'd like to report errors or suggest improvements to us.

Address

Tel.

From:

Name

Company

Thank you for your kind support.

North America NEC Electronics America Inc. Corporate Communications Dept. Fax: 1-800-729-9288 1-408-588-6130	Hong Kong, Philippines, Oceania NEC Electronics Hong Kong Ltd. Fax: +852-2886-9022/9044	Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd. Fax: +65-6250-3583	
Europe NEC Electronics (Europe) GmbH Marketing Services & Publishing Fax: +49(0)-211-6503-1344	Korea NEC Electronics Hong Kong Ltd. Seoul Branch Fax: 02-528-4411	Japan NEC Semiconductor Technical Hotline Fax: +81- 44-435-9608	
	Taiwan NEC Electronics Taiwan Ltd. Fax: 02-2719-5951		

I would like to report the following error/make the following suggestion:

Document title: ____

Document number: _____

Page number: _____

If possible, please fax the referenced page or drawing.

Document Rating	Excellent	Good	Acceptable	Poor
Clarity				
Technical Accuracy				
Organization				

CS 99.1