Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

User's Manual

Notes regarding these materials

- This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
- Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
- 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
- 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
- Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
- 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
- 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
- Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below: (1) artificial life support devices or systems
 - (2) surgical implantations
 - (3) healthcare intervention (e.g., excision, administration of medication, etc.)

(4) any other purposes that pose a direct threat to human life Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

- You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
 Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
- 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
- 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
- 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

Preface

The Peripheral Driver Generator (hereafter referred to as PDG) is a tool that supports the development of a driver for a peripheral I/O module in a microcomputer.

The PDG, which contains peripheral I/O module API libraries, allows users to design and automatically generate functions for calling the libraries via its user interface.

It runs on a Microsoft[®] Windows[®] operating system with an IBM PC compatible machine.

The supported microcomputers are the H8S/Tiny, SH/Tiny, H8/300H Tiny, R8C/Tiny, and M16C/Tiny series, and main groups of the M16C/60 series. For details, refer to "Overview" in this manual.

Usage Precautions

Even though we carefully evaluate the API libraries and functions generated by the PDG, <u>fully examine</u> <u>your application on your own responsibility</u> when using this software to develop your application.

IBM is a registered trademark of International Business Machines Corporation.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States and other countries.

All brand or product names used in this manual are trademarks or registered trademarks of their respective companies or organizations.

For inquiries about the contents of this document or product, email to your local distributor.

Renesas Tools Homepage http://www.renesas.com/en/tools

Contents

1.	Ove	erview	1-1
1	.1	PDG Features	1-1
1	.2	PDG Project	1-1
1	.3	Roles of the PDG	
1	.4	Operating Environment	
1	.5	Compiler Combinations	
1	.6	API Libraries	
1	.7	Main Window	1-4
	1.7.	1 Setting Details Display Window	1-4
	1.7.	2 New Setup Pattern Creation Window	
	1.7.	3 Generated File Information Window	1-5
1	.8	Menu	1-7
1	.9	Toolbar	
2.	Pre	paration for Using the PDG	2-1
2	2.1	Installing the PDG	2-1
2	2.2	Setting an Editor	2-1
2	.3	Registering the PDG in the HEW	
2	2.4	Setting HewTargetServer	
3.	Но	w to Operate the PDG	3-1
3	.1	Developing an Application with the PDG	
3	.2	PDG Operation Flow	
3	.3	Creating/Opening a Project	
	3.3.	1 Creating a New Project	
	3.3.	2 Opening an Existing Project	
	3.3.	3 Setting CPU Clocks	
3	.4	Selecting/Setting Peripheral I/O Modules	
	3.4.	1 Creating a New Setup Pattern of Peripheral I/O Modules	
	3.4.		
	3.4.		
	3.4.		
3	.5	Allocating and Deleting a Resource	
	3.5.	e e	
	3.5.	e e e e e e e e e e e e e e e e e e e	
	.6	Generating Sources Collectively	
	.7	Viewing Generated Function Information in CSV Format	
	.8	Updating a Generated Function Information	
3	.9	Registering Generated Files in a HEW Project	
	3.9.	C	
	3.9.		
	3.9.	3 Canceling Registration of Files	

4. Ho	ow to Set up Clocks and Peripheral I/O Modules	4-1
4.1	Setting Clocks	4-1
4.1	1.1 Setting Clocks for M16C/62P, M16C/28, M16C/28B, and M16C/29	4-1
4.1	.2 Setting Clocks for R8C/13	4-4
4.1	.3 Setting Clocks for R8C/22-23	4-6
4.1	.4 Setting Clocks for R8C/24-25	4-8
4.1	1.5 Setting Clocks for R8C/26-29, R8C/2A-2D	
4.1	1.6 Setting Clocks for H8/3687, H8/36049	
4.1	1.7 Setting Clocks for H8/36077, H8/36109	4-16
4.1	1.8 Setting Clocks for SH7125	
4.1	1.9 Setting Clocks for H8S/20103, H8S/20203, H8S/20223	
4.2	Setting Serial Interface	
4.2	2.1 Synchronous Serial Communication Interface	
4.2	2.2 Asynchronous Serial Communication Interface	
4.3	Setting I/O Ports	
4.4	Setting Timer	
4.4	4.1 Timer Mode	
4.4	4.2 Event Counter Mode	
4.4	4.3 Pulse Width Modulation Mode	
4.4	4.4 Pulse Period Measurement Mode	
4.4	4.5 Pulse Width Measurement Mode	
4.4	4.6 Input Capture Mode	
4.4	4.7 Output Compare Mode	
4.5	Setting Interrupt	
4.6	Setting A/D converter	
4.7	Setting DTC	
4.8	Setting ELC	
5. Ge	enerated Functions Reference	5-1
5.1	Generated function of for M16C/60, M16C/Tiny, R8C/Tiny, and H8/300H Tiny	5-1
5.2	Generated function of for SH/Tiny	
6. Co	onverting a Project	6-1
6.1	Project Conversion Function	6-1
6.2	Modifying and Displaying the Settings through Project Conversion	6-1
6.3	How to Convert a Project	

1. Overview

1.1 PDG Features

The PDG allows users to specify settings of microcomputer peripheral I/O modules such as serial, timer, and IO via its GUI and to generate functions, which reflect the settings, for calling API libraries for those modules.

- [1] Assists in setting up each peripheral IO via GUI.
- [2] Outputs the set contents as functions.
- [3] Registers automatically-generated sources collectively into a project of the High-performance Embedded Workshop (hereafter referred to as HEW).

Peripheral Driver Generator - [default *] File(F) Function(U) Display(V) Tool(T) Window(W) Help(H)		and the second					
CPU Serial Timer Timer mode Trone mode LO Interrupt A/D CPU Serial Timer V0 Ir	Item Bit number Bit register setting value Clock polarity selection Reverse data logic C15/R15 function L58 first, M58 first selection Parity bit Clock selection BIG count source Notification function name Transmit interrupt Transmit interrupt Errupt AD	Setting value 8 bit 123 Do not use CTS/RTS func LSB first Parity disable One stop bit Internal clock fi - Transmit interrput inhibit 0						
Civeness/PDG_p C	micro sec. Clock output function: Auto reload function: Control to write to timer:	interruption evet: 0						
🛃 start 🛛 🌄 Peripheral Driver Gen			🔣 🕵 🍫 9:28 AM					

Figure 1.1-1 Example of PDG Display

[4] Supports conversion of the contents set by GUI for diverted use between microcomputers. Note: The conversion may not be supported depending on the microcomputer.

1.2 PDG Project

The PDG manages the generated software based on the concept of "project." Following are managed as project:

- [1] Setup information on each peripheral IO
- [2] Function management information on set content

1.3 Roles of the PDG

The user incorporates functions for calling API libraries, which are generated by the PDG, into a user program to create an application.

The following schematically shows the relationship between the PDG and the API libraries and applications.

Figure 1.3-1 Roles of the PDG

1.4 Operating Environment

The PDG has been confirmed to be capable of operating properly on the host machines under the OS versions listed below.

Table 1.4-1	Host Machine
--------------------	---------------------

Host machine	OS version
	Microsoft [®] Windows [®] 2000
compatibles	Microsoft [®] Windows [®] XP

If the PDG is to be run on any other host machine or under other OS that you are using, please consult the manufacturer of your host machine or OS to confirm whether the PDG will operate properly on it. The recommended hardware specifications are listed below.

Table 1.4-2	Recommended Hardware Specifications
-------------	--

Main memory	Sufficient memory capacity for the OS to operate normally is recommended (256 Mbytes or more)	
Free disk space	70 Mbytes or more	
Resolution of display	1024×768 or greater is recommended	

1.5 Compiler Combinations

The PDG operates normally in combination with the compilers listed below.

Table 1.5-1 Compiler Package

Microcomputer Series	Compiler products
M16C/Tiny, M16C/60, R8C/Tiny	C Compiler Package M3T-NC30WA V.5.40 Release 00 for M16C series
H8/300H Tiny	C/C++ Compiler Package for H8SX, H8S, H8 family V.6.01 Release 02
SH/Tiny	C/C++ Compiler Package for SuperH Family V.9.02 Release00
H8S Tiny	C/C++ Compiler Package for H8SX, H8S, H8 family V.6.02 Release 01

1.6 API Libraries

The API libraries packaged in the PDG are listed below.

Series	Directory	Library file name
H8/300H Tiny	lib\H8_Tiny	rapi_h8_3687.lib
		rapi_h8_36049.lib
		rapi_h8_36077.lib
		rapi_h8_36109.lib
R8C/Tiny	lib\R8C_Tiny	rapi_r8c_13.lib
		rapi_r8c_22_23.lib
		rapi_r8c_24_25.lib
		rapi_r8c_26_27.lib
		rapi_r8c_28_29.lib
		rapi_r8c_2A_2B.lib
		rapi_r8c_2C_2D.lib
M16C/Tiny	lib\M16C_Tiny	rapi_m16c_28.lib
		rapi_m16c_29.lib
M16C/60	lib\m16c	rapi_m16c_62p.lib
SH/Tiny	lib\SH_Tiny	rapi_sh7125.lib
H8S/Tiny	lib\H8S_Tiny	rapi_h8s_20103.lib
		rapi_h8s_20203.lib
		rapi_h8s_20223.lib

Table 1.6-1List of API Libraries

These libraries are built with the compilers shown in Table 1.5-1. When using these libraries, use the same version of the compilers shown in Table 1.5-1. For reference, the source files of the API libraries are stored in the "source" directory.

RENESAS

1.7 Main Window

1.7.1 Setting Details Display Window

This window displays the setting details of the currently opened project file.

The tabs at the bottom, the trees in the left, and the list in the right show functions, created setup pattern, and the details of the currently selected setting in the trees, respectively. Double-clicking on [Setting] in the trees or any one of the setting items in the list shows a dialog box for specifying the corresponding setting.

Figure 1.7-1 Setting Details Display Window

1.7.2 New Setup Pattern Creation Window

When a project file is opened, buttons in this window are enabled.

Selecting a function and then clicking on a mode button opens a function setup dialog box that enables user to create a new setup pattern.

Figure 1.7-2 New Setup Pattern Creation Window

1.7.3 Generated File Information Window

(1) Displayed contents

The generated file information on each function and each mode in the currently opened project file is displayed.

The following are listed as the generated source information:

- Generated file name
- Generated function name
- Functional description of function
- Related item name

Double-clicking on a generated file name opens the corresponding file by using a specified editor.

Section 1 Overview

Figure 1.7-3 Generated File Information Window

(2) Changing Character Size

- [1] Right-click on the generated file information window or select [Display] -> [Character size of the generated file information window].
- [2] Select a size from [Large], [Medium], and [Small].
- [3] The character size will be changed in the list.

1.8 Menu

The menu items are listed in Table 1.8-1.

Main menu	a Sub-menu			Description
File (F)	Create New Project (N)		(N)	Creates a new project. Always available.
	Open Project (O)			Opens an existing project.
				Always available.
	Save Proj	Save Project (S)		Saves the currently opened project.
				Always available.
	Save Project As (A)			Saves the currently opened project under a new name.
				Always available.
	Project Co	onvert (C)		Converts an existing project into a new project with a different CPU.
				Only available when a project is opened. *2
	Generate	Sources C	ollectively (S)	Generates source files.
				Available when peripheral I/O settings are completed.
	Delete So	urces Coll	ectively (D)	Deletes all the generated files.
				Available after source generation is performed.
	History			Lists projects that were opened.
				Always available.
	Exit (X)			Exits the PDG.
				Always available.
Function	CPU(C)) Modify setting (M)		Modifies settings for a CPU.
(U)				Only available when a project is opened.
	Serial	Newly	Synchronous (S)	Creates a new setup pattern of serial synchronous. *1
	(S)	create		Only available when a project is opened.
		setting	Asynchronous (A)	Creates a new setup pattern of serial asynchronous. *1
		(N)		Only available when a project is opened.
		Duplica	te setting (C)	Duplicates a setup pattern of serial. *1
				Only available when serial setting is selected.
		Delete s	etting (D)	Deletes a setup pattern of serial. *1
				Only available when serial setting is selected.
		Modify	setting (M)	Modifies serial settings.
				Only available when serial setting is selected.
		Set UAI	RT number (S)	Sets a UART for a setup pattern of serial. *1
				Only available when serial setting is selected.
		Delete UART number (L)		Deletes a UART from a setup pattern of serial. *1
				Only available when UART is selected.
	A/D (A)	Newly	Single-shot Mode (S)	Creates a new setup pattern of A/D single mode. *1
		create		Only available when a project is opened.

Table 1.8-1 Menu List

setting Repeat Mode (R) Creates a new setup pattern of A/D repeat mode. *1 (N) Only available when a project is opened. *2 Single Sweep Mode (G) Creates a new setup pattern of A/D single sweep mode. *1 Only available when a project is opened. *2 Repeat Sweep Mode 0 (W) Creates a new setup pattern of A/D repeat sweep mode 0. *1 Only available when a project is opened. *2 Repeat Sweep Mode 1 (E) Creates a new setup pattern of A/D repeat sweep mode 1. *1 Only available when a project is opened. *2 Simultaneous Sampling Sweep Creates a new setup pattern of A/D simultaneous sampling setup Mode (P) Mode (P) mode. *1 Only available when a project is opened. *2 Delay Trigger Mode 0 (D) Creates a new setup pattern of A/D delay trigger mode 0. *1	
Single Sweep Mode (G) Creates a new setup pattern of A/D single sweep mode. *1 Only available when a project is opened. *2 Repeat Sweep Mode 0 (W) Creates a new setup pattern of A/D repeat sweep mode 0. *1 Only available when a project is opened. *2 Repeat Sweep Mode 1 (E) Creates a new setup pattern of A/D repeat sweep mode 1. *1 Only available when a project is opened. *2 Simultaneous Sampling Sweep Creates a new setup pattern of A/D simultaneous sampling smode. *1 Mode (P) Mode. *1 Only available when a project is opened. *2	
Only available when a project is opened. *2 Repeat Sweep Mode 0 (W) Creates a new setup pattern of A/D repeat sweep mode 0. *1 Only available when a project is opened. *2 Repeat Sweep Mode 1 (E) Creates a new setup pattern of A/D repeat sweep mode 1. *1 Only available when a project is opened. *2 Simultaneous Sampling Sweep Creates a new setup pattern of A/D simultaneous sampling smode. *1 Mode (P) mode. *1 Only available when a project is opened. *2	
Repeat Sweep Mode 0 (W) Creates a new setup pattern of A/D repeat sweep mode 0. *1 Only available when a project is opened. *2 Repeat Sweep Mode 1 (E) Creates a new setup pattern of A/D repeat sweep mode 1. *1 Only available when a project is opened. *2 Simultaneous Sampling Sweep Creates a new setup pattern of A/D simultaneous sampling s Mode (P) mode. *1 Only available when a project is opened. *2	
Only available when a project is opened. *2 Repeat Sweep Mode 1 (E) Creates a new setup pattern of A/D repeat sweep mode 1. *1 Only available when a project is opened. *2 Simultaneous Sampling Sweep Creates a new setup pattern of A/D simultaneous sampling s Mode (P) mode. *1 Only available when a project is opened. *2	
Repeat Sweep Mode 1 (E) Creates a new setup pattern of A/D repeat sweep mode 1. *1 Only available when a project is opened. *2 Simultaneous Sampling Sweep Mode (P) Mode. *1 Only available when a project is opened. *2	
Only available when a project is opened. *2 Simultaneous Sampling Sweep Mode (P) Mode. *1 Only available when a project is opened. *2	
Simultaneous Sampling Sweep Creates a new setup pattern of A/D simultaneous sampling s Mode (P) mode. *1 Only available when a project is opened. *2	weep
Mode (P) mode. *1 Only available when a project is opened. *2	weep
Only available when a project is opened. *2	
Delay Trigger Mode 0 (D) Creates a new setun nattern of A/D delay trigger mode 0 *1	
Only available when a project is opened. *2	
Delay Trigger Mode 1 (L) Creates a new setup pattern of A/D delay trigger mode 1.*1	
Only available when a project is opened. *2	
2-channel scan mode Creates a new setup pattern of 2-channel scan mode. *1	
settings(H) Only available when a project is opened. *2	
2-channel continuous scan Creates a new setup pattern of 2-channel continuous scan m	ode. *1
mode settings(T) Only available when a project is opened. *2	
4-channel scan mode Creates a new setup pattern of 4-channel scan mode setting	3. *1
settings(F) Only available when a project is opened. *2	
4-channel continuous scan Creates a new setup pattern of 4-channel continuous scan m	ode. *1
mode settings(O) Only available when a project is opened. *2	
Duplicate setting (C) Duplicates a setup pattern of A/D. *1	
Only available when A/D setting is selected.	
Delete setting (D) Deletes a setup pattern of A/D. *1	
Only available when A/D setting is selected.	
Modify setting (M) Modifies A/D settings.	
Only available when A/D setting is selected.	
Set input group and pin (I) Sets an input group and pin for a setup pattern of A/D. *1	
Only available when A/D setting is selected.	
Delete input group and pin (L) Deletes an input group and pin from a setup pattern of A/D.	*1
Only available when an input group and pin are selected.	
I/O (I) Newly create setting (N) Creates a new setup pattern of I/O. *1	
Only available when a project is opened.	
Duplicate setting (C) Duplicates a setup pattern of I/O. *1	
Only available when I/O setting is selected.	
Delete setting (D) Deletes a setup pattern of I/O. *1	
Only available when I/O setting is selected.	
Modify setting (M) Modifies I/O settings.	
Only available when I/O setting is selected.	

Main menu	Sub-menu	1		Description
		Set port (P)		Sets a port for a setup pattern of I/O. *1
		/		Only available when I/O setting is selected.
		Delete p	port (L)	Deletes a port from a setup pattern of I/O. *1
				Only available when a port is selected.
	Timer	Newly	Timer Mode (T)	Creates a new setup pattern of timer mode. *1
	(T)	create		Only available when a project is opened.
		setting	Event Counter Mode (E)	Creates a new setup pattern of event counter mode. *1
		(N)		Only available when a project is opened.
			Pulse Width Modulation Mode	Creates a new setup pattern of pulse width modulation mode. *1
			(M)	Only available when a project is opened.
			Pulse Period Measurement	Creates a new setup pattern of pulse period measurement mode. *1
			Mode (P)	Only available when a project is opened.
			Pulse Width Measurement	Creates a new setup pattern of pulse width measurement mode. *1
			Mode (W)	Only available when a project is opened.
			Input Capture Mode (I)	Creates a new setup pattern of input capture mode. *1
				Only available when a project is opened. *2
			Output Compare Mode (O)	Creates a new setup pattern of output compare mode. *1
				Only available when a project is opened. *2
	Only available v		te setting (C)	Duplicates a setup pattern of a timer. *1
				Only available when timer setting is selected.
		Delete s	tetting (D)	Deletes a setup pattern of a timer. *1
				Only available when timer setting is selected.
		Modify	setting (M)	Modifies timer settings.
				Only available when timer setting is selected.
		Set time	er (T)	Sets a timer type for a setup pattern of a timer. *1
				Only available when timer setting is selected.
		Delete t	imer (L)	Deletes a timer type from a setup pattern of a timer. *1
				Only available when a timer is selected.
	INT (N)	Newly create setting (N)		Creates a new setup pattern of external interrupt. *1
				Only available when a project is opened.
		Duplica	te setting (C)	Duplicates a setup pattern of external interrupt. *1
				Only available when external interrupt setting is selected.
		Delete s	tetting (D)	Deletes a setup pattern of external interrupt. *1
				Only available when external interrupt setting is selected.
		Modify setting (M)		Modifies settings for external interrupt setting.
				Only available when external interrupt setting is selected.
		Set inter	rrupt (I)	Sets an interrupt type for a setup pattern of external interrupt. *1
				Only available when external interrupt setting is selected.
		Delete i	nterrupt (L)	Deletes an interrupt type from a setup pattern of external interrupt.
				*1
			Only available when external interrupt type is selected.	

Main menu	Sub-menu	L	Description	
	ELC(E)	Modify setting (M)	Modifies settings for ELC setting. *1	
			Only available when a project is opened.	
	DTC(D)	Newly create setting (N)	Creates a new setup pattern of DTC. *1	
			Only available when a project is opened.	
		Delete setting (D)	Deletes a setup pattern of DTC. *1	
			Only available when DTC setting is selected.	
		Modify setting (M)	Modifies settings for DTC setting.	
			Only available when DTC setting is selected.	
Display (V)	Toolbar (T)		Displays/undisplays the toolbar.	
	Newly Create toolbar (B)		Displays/undisplays the Create New toolbar.	
	Status bar (S)		Displays/undisplays the status bar.	
	New setting window (N)		Displays/undisplays the new setting window.	
	Generated	file information window (F)	Displays/undisplays the generated file information window.	
	Character	size of the generated file information	Changes the character size of the generated file information	
	window (C)	window.	
			Selectable from large, medium, or small.	
			Only available when a project is opened.	
Tool (T)	Setting (S)		Sets an editor to open generated files.	
	Option (O)		Unsupported.	
	Register file in HEW project (R)		Registers generated files in a HEW project.	
	Display output function list (D)		Lists output functions in CSV file format.	
	Place output function in the latest status (P)		Updates the output function list.	
Window	-		Unsupported.	
(W) Help (H)	About Per	ripheral Driver Generator (A)	Shows the version information of the PDG.	

*1 "Setup pattern" refers to the details of peripheral I/O settings.

*2 This item may be unselectable depending on the microcomputer type.

1.9 Toolbar

The toolbar icons are listed in Table 1.9-1.

Table 1.9-1	List of Toolbar Icons	
-------------	-----------------------	--

Button Name	Icon	Operation	Situation in which button is available
New project	0	Creates a new project.	Always
Open	W	Opens an existing project.	Always
Save		Saves the open project.	When a project is opened.
Project Convert		Converts the open project for use in other	When a project is opened. *
		microcomputers.	
Batch source generate	N.	Generates the sources for each setup-completed	When peripheral I/O settings are

Button Name	Icon	Operation	Situation in which button is available
Button Name	ICOII	1	
	Ħ	peripheral IO collectively.	completed.
Output function list display		Displays output function list.	After batch source generation is
	Ø		performed.
Output function list update	1921	Updates output function list.	After batch source generation is
	Ø		performed.
Help	8	Shows the version of the PDG.	Always
CPU setting	*	Modifies settings for a CPU.	When a project is opened.
New serial synchronous		Creates a new setup pattern of serial synchronous	When a project is opened.
mode setup creation		mode.	
New serial asynchronous		Creates a new setup pattern of serial asynchronous	When a project is opened.
mode setup creation	_	mode.	
New A/D single-shot mode	-	Creates a new setup pattern of A/D single-shot	When a project is opened.
setup creation		mode.	
New A/D repeat mode setup	nn	Creates a new setup pattern of A/D repeat mode.	When a project is opened. *
creation			
New A/D single sweep mode	-	Creates a new setup pattern of A/D single sweep	When a project is opened. *
setup creation		mode.	
New A/D repeat sweep mode	Ы	Creates a new setup pattern of A/D repeat sweep	When a project is opened. *
0 setup creation		mode 0.	
New A/D repeat sweep mode	21	Creates a new setup pattern of A/D repeat sweep	When a project is opened. *
1 setup creation		mode 1.	
New A/D simultaneous	11	Creates a new setup pattern of A/D simultaneous	When a project is opened. *
sampling sweep mode setup		sampling sweep mode.	
creation			
New A/D delay trigger mode	lil	Creates a new setup pattern of A/D delay trigger	When a project is opened. *
0 setup creation		mode 0.	
New A/D delay trigger mode	2	Creates a new setup pattern of A/D delay trigger	When a project is opened. *
1 setup creation		mode 1.	······································
2-channel scan mode setup	251	Creates a new setup pattern of 2-channel scan	When a project is opened. *
creation	_	mode.	
2-channel continuous scan	Set.	Creates a new setup pattern of 2-channel	When a project is opened. *
mode setup creation		continuous scan mode.	
4-channel scan mode setup	4 <u>et</u>	Creates a new setup pattern of 4-channel scan	When a project is opened. *
creation		mode.	when a project is opened.
4-channel continuous scan	4.ch	Creates a new setup pattern of 4-channel	When a project is opened. *
			when a project is opened.
mode setup creation	8	continuous scan mode.	When a project is
New I/O setup creation	8	Creates a new setup pattern of I/O.	When a project is opened.
New timer mode setup	<u></u>	Creates a new setup pattern of timer mode.	When a project is opened.
creation	8		
New timer event count mode	1	Creates a new setup pattern of timer event counter	When a project is opened.
setup creation		mode.	

Button Name	Icon	Operation	Situation in which button is available
New timer pulse width	10	Creates a new setup pattern of timer pulse width	When a project is opened.
modulation mode setup		modulation mode.	
creation			
New timer pulse period	8	Creates a new setup pattern of timer pulse period	When a project is opened.
measurement mode setup		measurement mode.	
creation			
New timer pulse width	8	Creates a new setup pattern of timer pulse width	When a project is opened.
measurement mode setup		measurement mode.	
creation			
New timer input capture	8	Creates a new setup pattern of timer input capture	When a project is opened. *
mode setup creation		mode.	
New timer output compare	3	Creates a new setup pattern of timer output	When a project is opened. *
mode setup creation		compare mode.	
New external interrupt setup		Creates a new setup pattern of external interrupt.	When a project is opened.
creation			
ELC setting		Modifies settings for a ELC.	When a project is opened. *
New DTC setup creation	4	Creates a new setup pattern of DTC.	When a project is opened. *

* This item may be unselectable depending on the microcomputer type.

2. Preparation for Using the PDG

You will install the PDG, and specify an editor to be used via the PDG and other settings necessary for the PDG to collaborate with the HEW. Note that screen images of the HEW may differ depending on the version you are using.

2.1 Installing the PDG

After the installer launches, follow the instructions to install the PDG with administrator right.

Figure 2.1-1 Installer after Launched

2.2 Setting an Editor

Any editor can be used to open generated source files in a project on the generated file information window.

- [1] Select [Tool] -> [Setting] from the menu to open the [Setting] dialog box.
- [2] Specify the name of the editor program that you wish to use when opening source files.
- [3] Specify the parameters of the program according to its specifications. Replace file names and line numbers in the parameters with "%F" and %L, respectively, if necessary.

Click [OK] to close the dialog box and complete the settings.

Setting
Editor:
C:\Program Files\MIW7\MIW.EXE Ref
Parameters: (File name=%F_Line=%L) %F]+%L 0K

Figure 2.2-1 [Setting] Dialog Box

2.3 Registering the PDG in the HEW

You will register the PDG in the HEW menu so that the PDG can launch from it.

- [1] Launch the HEW. If it has already launched, close all the workspaces.
- [2] Click [Administration...] in the [Welcome!] dialog box.

W	elcome!		? 🛛
	- Options: -	C <u>C</u> reate a new project workspace	OK Cancel
	<u>م</u>	Dpen a recent project workspace: C:\WorkSpace\testtast123\testtest12	Administration
		C Browse to another project workspace	

Figure 2.3-1 [Welcome!] Dialog Box in the HEW

[3] If the HEW has already launched, select [Administration...] from the tool menu.

Figure 2.3-2 HEW Tool Menu

RENESAS

[4] Click on the [Register] button.

Tools Administration		? 🛛
Registered components:		OK OK
Component	Version	_ Cancel
Utility Phases		<u>R</u> egister
Debugger Components Extension Components		∐nregister
Communication Tools		Properties
		E <u>x</u> port
		<u>S</u> earch disk
		Tool information
4	Þ	Uninstaller
Show all components		
Current HEW tools database location:		
C:\Program Files\Renesas\Hew		Modify

Figure 2.3-3 [Tools Administration] Dialog Box

[5] Select the "PDG.hrf" file in the directory where the PDG is installed. By default, the directory is "C:/Renesas/PDG".

Select HEW	Registration File		? 🗙
Look jn: ଢ	PDG	-	-111
ChipDll	Source SrcGenerator Startup_files		
File <u>n</u> ame:	PDG.hrf		Select
Files of <u>type</u> :	HEW Registration Files (*.hrf)	•	Cancel

Figure 2.3-4 [Select HEW Registration File] Dialog Box

[6] Make sure that the PDG is registered in [System Tools] in the [Tools Administration] dialog box.

Tools Administration		? 🛛
Registered components:		ок
Component	Version	Cancel
🖅 💼 Toolchains		
😑 🔄 System Tools		(The side of the second
Call Walker	1.6	(<u>R</u> egister
H Series Librarian Interface	1.1	Unregister
	1.0	Dundana
Peripheral Driver Generator	1.02.000	Properties
Components		
Extension Components		Export
		Construction 1
Help System Tools		<u>S</u> earch disk
		Tool information
I		Uninstaller
G Show all components		
Current HEW tools database location:		
C:\Program Files\Renesas\Hew		Modify

Figure 2.3-5 [Tools Administration] Dialog Box

[7] Click [OK] to close the [Tools Administration] dialog box.

2.4 Setting HewTargetServer

In order to register sources generated by the PDG in the HEW, HewTargetServer in the HEW requires to be set properly. Set HewTargetServer as follows.

- [1] Select [Administration...] from the tool menu.
- [2] Make sure that the HewTargetServer version is 1.05.00 in [Extension Components].

When earlier version than 1.05.00 is shown, select HewTargetServer and click [Unregister] to unregister it.

Tools Administration		? 🔀
Registered <u>c</u> omponents:	ОК	
Component	Version	Cancel
🖅 🧰 Toolchains		
🗄 📄 System Tools		Desister
Utility Phases		<u>R</u> egister
Debugger Components		
Difference ECX	1.05.00	
Generic RTOS Debug Interface ECX	1.01.01	Properties
Generic TCL Toolkit View ECX	1.03.01	Export
HewTargetServer	1.04.00	<u>CDpon</u>
Communication Tools		Search disk
Help System Tools		
		<u>T</u> ool information
۲		▶ Uninstaller
Show all components		
Current HEW tools database location:		
C:\Program Files\Renesas\Hew		Modify

Figure 2.4-1 [Tools Administration] Dialog Box

[3] Click on the [Search disk...] button in the [Tools Administration] dialog box.

Tools Administration			? 🗙
Registered components:		OK I	
Component	Version		Cancel
			<u>R</u> egister
			University
Extension Components Communication Tools			<u>U</u> nregister
Communication Loois Help System Tools			Properties
			Export
		\langle	<u>S</u> earch disk
			\underline{I} ool information
•		Þ	Uninstaller
Show all components			
Current HEW tools database location:			
C:\Program Files\Renesas\Hew			<u>M</u> odify

Figure 2.4-2 [Tools Administration] Dialog Box

[4] Enter the directory where the HEW is installed in the [Search Disk for Components] dialog box and click on the [Start] button to search for HewTargetServer.

Select t he directory in	which to begin the sea	rob:		[/////
C:\Program Files\Re	-		Browse	<u>S</u> tart Close
Include subfolder	3			
Located components				
Component	Version HRF Locati	on		<u>R</u> egister
				Register <u>A</u> ll
<			>	

Figure 2.4-3 [Search Disk for Components] Dialog Box

[5] From [Located components], select HewTargetServer 1.05.00 and click on the [Register] button.

_	Select the directory in which to begin the search:				
Í	C:\Program Files\Rei		-	Browse	<u>S</u> tart
	✓ Include subfolders Located components:				Close
li	Component	Version	HRF Location		<u>R</u> egister
2	HewTargetServer	1.05.00	C:\Program Files\Renes		<u>n</u> egister
	Pd1 argetServer	1.00.00	C:\Program Files\Renes		Register All
	Generic TCL Too	1.03.01	C:\Program Files\Renes	as\Hew\Syst	
	Call Walker	1.6	C:\Program Files\Renes	as\Hew\Tool.	
	Call Walker	1.6	C:\Program Files\Renes		
	H8S,H8/300 Sta		C:\Program Files\Renes		
	H8S,H8/300 Sta		C:\Program Files\Renes		
	H8S,H8/300 Sta H Series Libraria		 C:\Program Files\Renes C:\Program Files\Renes 		
	H Series Libraria	1.1	C:\Program Files\Renes		
		1.1		33 11 CVV 11 UUL.	
	Search status: 75 fil	es found			

Figure 2.4-4 [Search Disk for Components] Dialog Box

- [6] Click on the [close] button to close the [Search Disk for Components] dialog box.
- [7] Click [OK] to close the [Tools Administration] dialog box.
- [8] Execute REGISTERSERVER.bat in the directory where the HEW is installed.
 - By default, the directory is as follows:

 $c: \label{eq:log_result} c: \label{eq:log_result} result = \label{eq:log_result} c: \label{eq:log_result} c: \label{eq:log_result} result = \label{eq:log_result} c: \label{eq:log_result} result = \label{eq:log_resul$

Figure 2.4-5 Example of the Directory where the HEW is Installed

3. How to Operate the PDG

3.1 Developing an Application with the PDG

The PDG generates C source files that contain functions reflecting settings for peripheral I/O modules. An application that operates peripheral I/O modules can be developed by calling functions generated by the PDG. The following gives an overview of the application development with the PDG.

- Creating a workspace for the application development in the HEW.
 You will create a workspace for the application to be developed by selecting a menu item such as [Create a new project workspace] in the HEW.
- [2] Creating a PDG project for driver development You will select a microcomputer and create a project in the PDG.
- [3] Setting peripheral I/O modules You will set peripheral I/O modules in the created project in the PDG, beginning with CPU settings.
- [4] Generating and registering sources in the workspace After setting the peripheral I/O modules, you will generate source files collectively in the PDG and then register them in the created HEW workspace from the PDG.
- [5] Creating the application

You will call the functions, which are written in the source files generated by the PDG and which operate the peripheral I/O modules, in the right places of the application. <u>Note that when the operation functions are called, the header files generated by the PDG must be included in advance.</u>

[6] Build

You will build the application in the HEW. <u>Note that before performing a build, the following settings are required,</u> and that the HEW V.4.02 or later automatically specifies library files.

- Specifying the directory path to the header files generated by the PDG (-I option)
- Specifying library files to link API libraries (-L option)

If build errors occur in the operation functions generated by the PDG, make sure that the functions are called.

[7] Debug

You will debug the application built with the HEW.

[8] Evaluation

You will evaluate the application to make sure that it functions as expected.

3.2 PDG Operation Flow

This section explains how to operate the PDG.

You will begin with settings for determining how to use peripheral I/O module functions, and then generate and use source files to develop drivers, as follows.

Figure 3.2-1 PDG Operation Flow

3.3 Creating/Opening a Project

3.3.1 Creating a New Project

Create a new project through the following steps.

[1] Select [File] -> [Create New Project] to open the [Create New] dialog box (see Figure 3.3-1).

Project new	X
Project name: default	
Directory:	
c:\renesas\PDG_proj\default	Ref
Type of CPU	
Series: M16C/Tiny	-
Group: M16C/28	•
Type No.: M30280F6	•
ROM capacity: 48K+4K	oyte(s)
RAM capacity: 4K E	oyte(s)
OK	Cancel

Figure 3.3-1 [Project new] Dialog Box

- [2] Enter the name of the project to be created and specify the directory where the project is stored.
- [3] Select the CPU series, group, and type No. (see Table 3.3-1)

Series	Group	Type No.
M16C/Tiny	M16C/28	M30280F6, M30280F8, M30280FA, M30280FC, M30281F6, M30281F8
		M30281FA, M30281FC
	M16C/28B	M30280FCB, M30281FCB
	M16C/29	M30290FA, M30290FC, M30291FA, M30291FC
H8/300H Tiny	H8/3687	HD64F3687, HD64F3684
	H8/36077	HD64F36077, HD64F36074
	H8/36049	HD64F36049
	H8/36109	HD64F36109
R8C/Tiny	R8C/13	R5F21132, R5F21133, R5F21134
	R8C/22	R5F21226, R5F21227, R5F21228, R5F2122A, R5F2122C
	R8C/23	R5F21236, R5F21237, R5F21238, R5F2123A, R5F2123C
	R8C/24	R5F21244, R5F21245, R5F21246, R5F21247, R5F21248
	R8C/25	R5F21254, R5F21255, R5F21256, R5F21257, R5F21258

Series	Group	Type No.
	R8C/26	R5F21262, R5F21264, R5F21265, R5F21266
	R8C/27	R5F21272, R5F21274, R5F21275, R5F21276,
	R8C/28	R5F21282, R5F21284
	R8C/29	R5F21292, R5F21294
	R8C/2A	R5F212A7, R5F212A8, R5F212AA, R5F212AC
	R8C/2B	R5F212B7, R5F212B8, R5F212BA, R5F212BC
	R8C/2C	R5F212C7, R5F212C8, R5F212CA, R5F212CC
	R8C/2D	R5F212D7, R5F212D8, R5F212DA, R5F212DC
M16C/60	M16C/62P	M30622F8PFP, M30622F8PGP, M30623F8PGP, M30620FCPFP
		M30620FCPGP, M30621FCPGP, M3062LFGPFP, M3062LFGPGP
		M30625FGPGP, M30626FHPFP, M30626FHPGP, M30627FHPGP
		M30626FJPFP, M30626FHPGP, M30627FJPGP
SH/Tiny	SH7125	R5F71253N50FP, R5F71253D50FP, R5F71253N50FA, R5F71253D50FA,
		R5F71252N50FP, R5F71252D50FP, R5F71252N50FA, R5F71252D50FA
H8S/Tiny	H8S/20103	R4F20103NFA, R4F20102NFA, R4F20103NFB, R4F20102NFB, R4F20103DFA,
		R4F20102DFA, R4F20103DFB, R4F20102DFB
	H8S/20203	R4F20203NFC, R4F20202NFC, R4F20203NFD, R4F20202NFD, R4F20203DFC,
		R4F20202DFC, R4F20203DFD, R4F20202DFD
	H8S/20223	R4F20223NFC, R4F20222NFC, R4F20223NFD, R4F20222NFD, R4F20223DFC,
		R4F20222DFC, R4F20223DFD, R4F20222DFD

[4] Click [OK] to create a new project.

[5] Immediately after the creation of a new project, the [CPU clock setting] dialog box opens automatically. Proceed to setting CPU clocks.

🍄 Peripheral Driver Generator - [default.pdg]		
File(F) Function(U) Display(V) Tool(T) Window(W)	CPU clock setting	L
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	System clock selection: Main clock Main clock Main clock Vest as peripheral function clock source Input frequency to main clock circuit: 20.000000 MHz	_
CPU setting	On chip oscillator clock Use as peripheral function clock source Frequency selection: Frequency adjustment value: Divider selection:	
Serial Timer I/O Interrupt	On-chip oscillator frequency: 0.000000 MHz PLL clock Use as peripheral function clock source Input frequency to PLL circuit: 10.000000 MHz Selection of multiplication:	Supplied clock to CPU and peripheral:
A/D ELC DTC CPU Serial Tim	PLL frequency: 0.0000000 MHz Sub clock Use as peripheral function clock source	CPU Peripheral Clock divider selection: Divided by 1 •
Source file name No source is generated yet. The generated sour	Input frequency to sub clock circuit: 0.032768 MHz Divider selection: Sub clock: 0.000000 MHz	Input Clock: 20.00000 MHz Period: 50.00000 ns
Cother Files		Modify setting Cancel

Figure 3.3-2 [CPU clock setting] Dialog Box

3.3.2 Opening an Existing Project

Open an existing project through the following steps.

- [1] Select [File] -> [Open] from the menu to open the [Open File] dialog box.
- [2] Select a project that you wish to open, and click on the [Open] button or double-click on the file name.
- [3] The selected project opens.

Figure 3.3-3 Existing Project

3.3.3 Setting CPU Clocks

After a new project is created, the [CPU clock setting] dialog box opens automatically. Perform setting for CPU clocks.

CPU clock setting	X
System clock selection: Main clock Main clock Main clock Use as peripheral function clock source Input frequency to main clock circuit: 20.000000 MHz	
On chip oscillator clock Use as peripheral function clock source Frequency selection: Frequency adjustment value: Divider selection: On-chip oscillator frequency: 0.000000 MHz	
On-chip oscillator frequency: 0.000000 MHz PLL clock Use as peripheral function clock source Input frequency to PLL circuit: 10.000000 MHz Selection of multiplication: PLL frequency: 0.000000 MHz	Supplied clock to CPU and peripheral: 20.000000 MHz System clock, divider selection:
Sub clock Use as peripheral function clock source Input frequency to sub clock circuit: Divider selection: Sub clock: 0.000000 MHz	Clock divider selection: Divided by 1 Input Clock: 20.000000 MHz Period: 50.000000 ns
	Modify setting Cancel

Figure 3.3-4 [CPU clock setting] Dialog Box

3.4 Selecting/Setting Peripheral I/O Modules

3.4.1 Creating a New Setup Pattern of Peripheral I/O Modules

Create a new setup pattern of peripheral I/O modules through the following steps.

[1] Click on the button (see Figure 3.4-1) corresponding to the peripheral I/O module to be controlled, or select [Function] -> [Serial, A/D, I/O, Timer, INT, or DTC] -> [Create New Setting] to select a mode.

Figure 3.4-1 New Setup Pattern Creation Window

[2] After setting functions of each peripheral I/O modules (see Figure 3.4-2), clicking on the [Setting] button lists the setting details (setup pattern) in the right of the main window (see Figure 3.4-3).

Clock asynchronous SIO mode setting			
Serial port: <u>No setting</u> Bit number: Stop bit: Parity bit:	▼ 8 bit ▼ One stop bit ▼ Parity disable ▼	BRG register BRG register setting value: 129 BRG count source: f1 Baud rate: 9600 bps Set details	
Clock selection: Clock polarity selection: LSB first, MSB first selection: Reverse data logic: CTS/RTS function:	Internal clock	Interrupt enable Permit transmit interruption Transmit interruption level: Permit receive interruption Receive interruption level: Permit SI/O interruption	
Noise canceller: Notification function name: Transmit-Receive pins sele Clock pin select:		SI/O interruption level:	

Figure 3.4-2 [Clock asynchronous SIO mode setting] Dialog Box

Peripheral Driver Generator - [default *]			
🔛 Fle(E) Function(U) Display(V) Tool(T) Window(W) Help(H) 📃 🗗 🗙			
D 🖆 🖬 😫 😰 🎟 🔯 ?] 🚸 ?? 📜		i 🐱 🐱 🗟 🗟 🛎 🛎 🦉	
CPU Serial Clock synchronous SIO Clock asynchronous SIO mode Clock asynchronous SIO mode		ing walue ection in it selection e on name level level el	Setting value 8 bit 129 Do not reverse Do not use CTS/RTS function LSB first Parity disable One stop bit Intermal clock f1 Transmit interrput inhibit 0 Receive interrupt inhibit 0 9600
Timer I∕O Interrupt À∕D CPU Serial Timer №	Interrupt A/D		Setting details
No source is generated yet. The generated sour	ted function name	Functional explanetion of functions	Related item
Clock synchronous SIO mode (Clock asynchronous SIO	mode (Others
Ready			

Figure 3.4-3 Setup Pattern Display Window

3.4.2 Modifying a Setup Pattern of Peripheral I/O Modules

Modify an existing setup pattern through the following steps.

- Double-click on [Setting] on the trees in the left of the main window, or double-click on the name of the setting item on the list in the right. Or, select [Function] -> [CPU, Serial, A/D, I/O, Timer, or INT] -> [Modify setting].
- [2] The dialog box corresponding to the selected peripheral I/O module opens. Modify the settings.
- [3] Click on the [Setting] button to close the dialog box. The list in the right of the main window reflects the modification to the settings.

Clock asynchronous S	ilO mode setting	X
Serial port: No setting	-	BRG register BRG register setting value: 129
Bit number:	8 bit 💌	
Stop bit:	One stop bit	BRG count source: 11
Parity bit:	Parity disable	Baud rate: 9600 bps Set details
Clock selection:	Internal clock	Interrupt enable
Clock polarity selection:		Transmit interruption level: 0
LSB first, MSB first selection:	LSB first	Permit receive interruption
Reverse data logic:	Do not reverse	Receive interruption level: 0
CTS/RTS function:	Do not use CTS/RTS function 💌	Permit SI/O interruption
Noise canceller:	v	SI/O interruption level: 0
Notification function name	:	
Transmit-Receive pins sele	ect: 🗸	
Clock pin select:	···	
	🔽 Ge	nerate batch source(<u>M</u>) Setting Cancel

Figure 3.4-4 [Clock asynchronous SIO mode setting] Dialog Box

3.4.3 Duplicating a Setup Pattern of Peripheral I/O Modules

You can duplicate an existing setup pattern. When a resource is allocated to a setting to be duplicated, the resource setting is also duplicated.

A setup pattern can be duplicated only when [Setting] is selected on the trees in the left of the main window.

- [1] Select [Setting] on the trees in the left of the main window and then select [Function] -> [Serial, A/D, I/O, Timer, or INT] -> [Duplicate setting] from the menu, or right-click on [Setting] and then select [Duplicate setting] from the pop-up menu.
- [2] A duplicated setup pattern is shown at the bottom of the mode that the original setup pattern belongs to.

3.4.4 Deleting a Setup Pattern of Peripheral I/O Modules

You can delete an existing setup pattern. When a resource is allocated to a setting to be deleted, the resource setting is also deleted.

A setup pattern can be deleted only when [Setting] is selected on the trees in the left of the main window.

- [1] Select [Setting] on the trees in the left of the main window and then select [Function] -> [Serial, A/D, I/O, Timer, or INT] -> [Delete setting] from the menu, or right-click on [Setting] and then select [Delete setting] from the pop-up menu.
- [2] The selected setup pattern is deleted.

3.5 Allocating and Deleting a Resource

3.5.1 Allocating a Resource

You can allocate a resource (peripheral I/O module) to a setup pattern to which no resource is allocated, according to each peripheral function.

Only one resource can be allocated to each setup pattern. A resource can be allocated only when [Setting] is selected on the

trees in the left of the main window.

- [1] Select [Setting] (except for CPU clock) on the trees in the left of the main window and then select [Function] -> [Serial, A/D, I/O, Timer, or INT] -> [UART number setting, Input group/pin setting, Port setting, Timer setting, or Interrupt setting] from the menu, or right-click on [Setting] on the trees in the left of the main window and then select [(Resource) setting] from the pop-up menu.
- [2] Select a resource that you wish to allocate to the selected setup pattern in the [(Resource) setting] dialog box.
- [3] After clicking on [OK] closes the dialog box, the resource is allocated to the selected setup pattern. At the same time, a message appears if allocating the resource disables some items. Also, note that after the resource is allocated, settings that require to be modified are marked with ? icons in the setting list.

3.5.2 Deleting a Resource

You can delete a resource allocated in [(Resource) setting].

An allocated resource can be deleted only when it is selected on the trees in the left of the main window.

- [1] Select [<resource name>] on the trees in the left of the main window and then select [Function] -> [Serial, A/D, I/O, Timer, or INT] -> [Delete UART number, Delete input group/input pin, Delete port, Delete timer, or Delete interrupt] from the menu, or right-click on [<resource name>] on the trees in the left of the main window and then select [Delete (resource)] from the pop-up menu.
- [2] The selected resource is deleted.
3.6 Generating Sources Collectively

You can generate source codes according to the function settings of the currently opened project.

- Source codes can be generated when a resource is allocated to at least one of the created setup patterns.
 - [1] Select [File] -> [Generate Sources Collectively] from the menu.
 - [2] Source files are generated and stored in the same directory as the currently opened project. At the same time, information on those files is shown in the [Generated File Information] window.
 - * If you create a setup pattern and check the [Generate batch source] check box in the peripheral I/O function setting dialog box, source files are generated automatically after the dialog box is closed.
 - * To delete generated source files collectively, select [File] -> [Delete Sources Collectively] from the menu.

3.7 Viewing Generated Function Information in CSV Format

Function information generated collectively by the PDG can be listed in CSV file format after source files are generated collectively.

- [1] Select [Tool] -> [Display output function list] from the menu.
- [2] A generated function list is displayed by the program associated with the *.csv file.

3.8 Updating a Generated Function Information

You can update function information generated collectively by the PDG after source files are generated collectively.*

- [1] Select [Tool] -> [Place output function list in the latest status].
- [2] The CSV file of the generated function list is updated.
- * The CSV file is updated when sources are generated collectively. Note that when sources are generated while the CSV file is opened, it may not be updated. In this case, close the CSV file and follow the steps above.

3.9 Registering Generated Files in a HEW Project

3.9.1 Registration Function

You can register all source files generated by the PDG collectively in an existing HEW project automatically. At the same time, API libraries used in the source files are registered in library options, and the intprg.c file is excluded from the build target when it is already registered in the HEW project so that no collision between interrupt functions occurs.

* When the already registered intprg.c file contained user codes, it is required that the user codes be manually copied into the newly registered intprg.c.

3.9.2 How to Register Generated Files

Generated files can be registered by the steps below when the sources has already been generated.

- [1] Select [Tool] -> [Register file in HEW project] from the menu.
- [2] When the HEW is not launched, the message dialog box appears asking whether to launch it or not. Click [Yes].

Figure 3.9-1 Message Asking whether to Launch the HEW (PDG)

[3] The message dialog box appears asking whether to register the files or not.

PDG 🛛 🔀			
When the work space is being opened with HEW, the source file thus generated is registered in the active project. When no work space is opened with HEW, the generated source file is registered in the active project after the work space was selected. When several work spaces are being opened, note that a file is registered in all work spaces.			
Do you really want to start source file registration?			
Yes <u>(Y</u>)			

Figure 3.9-2 Message Asking whether to Register the Files (PDG)

- When a HEW workspace in which the files are to be registered has already been opened,
 [4] Click [Yes].
- When a HEW workspace in which the files are to be registered is an existing workspace,
 - [4] Click [Yes] to open the [Open File] dialog box. Specify a HEW workspace in which the files are to be registered. Click [Open] to open the workspace.
- When a HEW workspace in which the files are to be registered is not created,
 - [4] Do not close the dialog box. In the HEW, create a new HEW workspace and leave the workspace open. In the message dialog box of the PDG, click [Yes].

[5] The [Library link priority setup] dialog box appears. Move the libraries up and down according to their priorities. When [OK] is clicked, the files begin to be registered in the HEW project.*

Library li	ink priority setup			
Set the priority in which order libraries are linked.				
Priority high	nc30lib.lib C:\Renesas\PDG\lib\M16C_Tiny\rapi_m16c_28.lib			
_		Up		
		†		
		¥		
Priority Iow		Dowr		
	ОК	Cancel		

Figure 3.9-3 [Library link priority setup] Dialog Box

- * When several HEW workspaces are opened, files are registered in all active projects, as stated in the dialog box that asks whether to register the files. Close workspaces in which you do not register the files before performing registration.
 - [6] The message dialog box appears telling you that the registration is completed.

Figure 3.9-4 Message Telling Completion of the Registration (PDG)

Note: When using SH7125 with HEW V.4.04 or earlier version, it is necessary to register the include file path of vect.h that is startup program of HEW manually for intprg_sh7125.c and intprg_sh7125_pdg.c generated by PDG. When using HEW V.4.05 or later, the include path is registered automatically.

3.9.3 Canceling Registration of Files

Once source files are registered in the HEW, you cannot cancel their registration via the PDG.

When you cancel them, in the project tab of the HEW workspace window, select a source file that you wish to cancel and right-click on the file to open a pop-up menu. Then, select [Remove File] or [Exclude Build].

4. How to Set up Clocks and Peripheral I/O Modules

4.1 Setting Clocks

After creation of a new project, the [CPU clock setting] dialog box opens. Before setting up peripheral I/O modules, specify the clocks for the CPU and peripheral modules. The settings in the [CPU clock setting] dialog box are reflected in the peripheral I/O module settings.

* The [CPU clock setting] dialog box only specifies the clock information necessary for peripheral I/O module settings; no source code for clock settings is generated by the [CPU clock setting] dialog box. Be sure to make initial clock settings in the user program.

The following describes how to set up the clocks for each CPU.

4.1.1 Setting Clocks for M16C/62P, M16C/28, M16C/28B, and M16C/29

Figure 4.1-1 shows the [CPU clock setting] dialog box for the M16C/62P, M16C/28, M16C/28B, and M16C/29.

CPU clock setting	
System clock selection: Main clock ▼ Main clock ✓ Use as peripheral function clock source	
Input frequency to main clock circuit: 16.000000 MHz	
– On chip oscillator clock –	
Use as peripheral function clock source	
Frequency selection:	
Frequency adjustment value:	
Divider selection:	
On-chip oscillator frequency: 0.000000 MHz	
_ PLL clock	Supplied clock to CPU and peripheral:
Use as peripheral function clock source	16.000000 MHz
Input frequency to PLL circuit: 12.000000 MHz	System clock, divider selection:
Selection of multiplication:	
PLL frequency: 0.000000 MHz	
	CPU Peripheral
Sub clock Use as peripheral function clock source	Clock divider selection: Divided by 1
Input frequency to sub clock circuit: 0.032768 MHz	, , , , , , , , , , , , , , , , , , , ,
Divider selection: Divided by 1 -	Input Clock: 16.000000 MHz
Sub clock: 0.032768 MHz	Period: 62.500000 ns
	Modify setting Cancel

Figure 4.1-1 CPU Clock Setting Dialog Box (M16C/62P,28,28B,29)

RENESAS

Peripheral Driver Generator

(1) System clock selection

Select a clock to be used as the CPU clock. The main clock, on-chip oscillator clock, PLL clock, or sub clock can be selected. The clocks selectable in [System clock selection] correspond to the clock sources shown in Table 4.1-1.

Item	Clock sources
Main clock	Main Clock Oscillation Circuit
On chip oscillator clock	On-chip Oscillator
PLL clock	PLL Frequency Synthesizer
Sub clock	Sub Clock Oscillation Circuit

Table 4.1-1 Clock Sources of M16C/62P, M16C/28, M16C/28B, M16C/29

(2) Each clock setting

Make the necessary settings for [Main clock], [On chip oscillator clock], [PLL clock], or [Sub clock] selected in [System clock selection]. The CPU clock selected in [System clock selection] is also used as the peripheral clock. Note that only the sub clock is allowed as fC32, which can be selected as the count source for timers A and B. When using fC32 while a clock other than the sub clock is selected as the CPU clock, make settings also for the sub clock. If the sub clock is not set up, fC32 cannot be selected as the count source in timer settings.

Table 4.1-2 shows the available combinations of clock sources for the CPU and peripheral functions.

Table 4.1-2Combinations of Clock Sources for CPU and Peripheral Functions (M16C/62P, M16C/28, M16C/28B, M16C/29)

CPU clock	Peripheral clock		
	f1 to f32	fC32	
Main clock	Main clock	Sub clock	
On chip oscillator clock	On chip oscillator clock	Sub clock	
PLL clock	PLL clock	Sub clock	
Sub clock	Main clock, On chip oscillator	Sub clock	
	clock, or PLL clock		

[Main clock]

Make settings for this item when the main clock is selected as the CPU clock or when the sub clock is selected as the

CPU clock and the main clock is used as the peripheral function clock except for fC32.

- [Use as peripheral function clock source]: This check box is always selected automatically when the main clock is used as the CPU clock. Select this box manually when using the sub clock as the CPU clock and using the main clock as the peripheral function clock except for fC32.
- [Input frequency to main clock circle]: Specify the frequency of the main clock.

[On-chip oscillator clock]

Make settings for this item when the on-chip oscillator clock is selected as the CPU clock or when the sub clock is selected as the CPU clock and the on-chip oscillator clock is used as the peripheral function clock except for fC32.

- [Use as peripheral function clock source]: This check box is always selected automatically when the on-chip oscillator clock is used as the CPU clock. Select this box manually when using the sub clock as the CPU clock and using the on-chip oscillator clock as the peripheral function clock except for fC32.
- [Frequency selection]: Specify the oscillation frequency of the on-chip oscillator clock.
- [Periodic value]: Leave this item unspecified.
- [Divider selection]: Specify the divider of on-chip oscillator.
- [On-chip oscillator frequency]: This box shows the on-chip oscillator frequency calculated from the oscillation frequency and clock division ratio.

[PLL clock]

Make settings for this item when the PLL clock is selected as the CPU clock or when the sub clock is selected as the CPU clock and the PLL clock is used as the peripheral function clock except for fC32.

- [Use as peripheral function clock source]: This check box is always selected automatically when the PLL clock is used as the CPU clock. Select this box manually when using the sub clock as the CPU clock and using the PLL clock as the peripheral function clock except for fC32.
- [Input frequency to PLL circle]: Specify the frequency of the XIN input to the PLL frequency synthesizer.
- [Selection of multiplication]: Select the multiplication ratio of the PLL frequency synthesizer.
- [PLL frequency]: This box shows the frequency of the PLL clock, which is calculated from the frequency of the input clock and the multiplication ratio.

[Sub clock]

Make settings for this item when the sub clock is selected as the CPU clock or when a clock other than the sub clock is selected as the CPU clock and fC32 is used as the peripheral function clock.

- [Use as peripheral function clock source]: This check box is always selected automatically when the sub clock is used as the system clock. Select this box manually to use fC32 as the count source for timers A and B when using a clock other than the sub clock as the system clock.
- [Input frequency to sub clock circle]: The sub clock frequency is fixed at 0.03276 MHz.
- [Sub clock divider]: Only "Divided by 1" can be specified.
- [Sub clock]: This box shows the sub clock frequency calculated from the sub clock input frequency and clock division ratio. It is fixed at 0.03276 MHz.

(3) System clock setting

Specify the frequency division ratio used to supply the clock selected in (1) [System clock selection] to the CPU.

- [CPU and peripheral clock frequency]: This box shows the frequency of the clock specified in (1) [System clock selection].
- [System clock divider selection]: Leave this item unspecified.
- [CPU] and [Peripheral] tabs: Make the necessary settings for the CPU and peripheral function clocks. Table 4.1-3 shows the details of each item.

Item		Settings
CPU Clock divider Select the freque selection CPU.		Select the frequency division ratio for the clock to be supplied to the CPU.
	Input Clock	Shows the frequency of the clock to be supplied to the CPU, which is calculated from the [CPU and peripheral clock frequency] and [Clock divider selection] values.
	Period	Shows the period of a clock cycle to be supplied to the CPU, which is calculated from the [CPU and peripheral clock frequency] and [Clock divider selection] values.
Peripheral	Clock divider selection	Leave this item unspecified. The clock selected in [System clock selection] after being divided by the various division ratios are supplied to the peripheral I/O modules. The clock to be used in each peripheral I/O module should be separately specified in each peripheral I/O module setting dialog box. The frequency of fC32 is determined according to the settings in [Sub clock].
	Input Clock	Shows the frequency of the clock selected in [System clock selection].
	Period	Shows the period of a clock cycle selected in [System clock selection].

RENESAS

Table 4.1-3 System Clock Settings (M16C/62P, M16C/28, M16C/28B, M16C/29)

4.1.2 Setting Clocks for R8C/13

Figure 4.1-2 shows the [CPU clock setting] dialog box for the R8/13.

CPU clock setting	X
System clock selection: Main clock Main clock ✓ ✓ Use as peripheral function clock source Input frequency to main clock circuit: 20.000000	
On chip oscillator clock Use as peripheral function clock source Frequency selection: High speed Frequency adjustment value: Divider selection: On-chip oscillator frequency: 16.393443 MHz	
PLL clock Use as peripheral function clock source Input frequency to PLL circuit: 0.000000 MHz Selection of multiplication:	Supplied clock to CPU and peripheral: 20.000000 MHz System clock divider selection:
Sub clock Use as peripheral function clock source Input frequency to sub clock circuit: 0.000000 MHz Divider selection:	CPU Peripheral Clock divider selection: Divided by 1 Input Clock: 20.000000 MHz Period: 50.000000 ns
	Modify setting Cancel

Figure 4.1-2 CPU Clock Setting Dialog Box (R8C/13)

(1) System clock selection

Select a clock to be used as the CPU clock. The main clock or on-chip oscillator clock can be selected. The clocks selectable in [System clock selection] correspond to the clock sources shown in Table 4.1-4.

Table 4.1-4Clock Sources of R8C/13

Item	Clock sources	
Main clock	Main Clock Oscillation Circuit	
On chip oscillator clock	On-chip Oscillator High-speed On-Chip Oscillator	
		Low-speed On-Chip Oscillator

(2) Each clock setting

Make the necessary settings for [Main clock] or [On chip oscillator clock] selected in [System clock selection]. The CPU clock selected in [System clock selection] is also used as the peripheral clock. Note that only the on-chip oscillator clock is allowed as fRING, which can be selected as the count source for timer. When using fRING while the main clock is selected as the CPU clock, make settings also for the on-chip oscillator clock. If the on-chip oscillator clock is not set up, fRING cannot be selected as the count source in timer settings.

Table 4.1-5 shows the available combinations of clock sources for the CPU and peripheral functions.

CPU clock	Peripheral clock	Peripheral clock	
	f1 to f32, fAD	fRING	
Main clock	Main clock	On chip oscillator clock	
On chip oscillator clock	On chip oscillator clock	On chip oscillator clock	

Table 4.1-5 Combinations of Clock Sources for CPU and Peripheral Functions (R8C/13)

[Main clock]

Make settings for this item when the main clock is selected as the CPU clock.

- [Use as peripheral function clock source]: This check box is always selected automatically when the main clock is used as the CPU clock.
- [Input frequency to main clock circle]: Specify the frequency of the main clock.

[On-chip oscillator clock]

Make settings for this item when the on-chip oscillator clock is selected as the CPU clock or when the main clock is

selected as the CPU clock and the fRING is used as the count source for timer.

- [Use as peripheral function clock source]: This check box is always selected automatically when the on-chip oscillator clock is used as the CPU clock. Select this box manually when using the main clock as the CPU clock and using the fRING.
- [Frequency selection]: Select the high speed or low speed, which respectively corresponds to the high-speed on-chip oscillator or low-speed on-chip oscillator.
- [Periodic value]: Specify this value when using the high-speed on-chip oscillator. Specify the value to be set in the high-speed on-chip oscillator control register 1 (HR1) to determine the period of a high-speed on-chip oscillator cycle.
- [Divider selection]: Specify the divider of on-chip oscillator. Only "Divided by 1" can be specified when using the low-speed on-chip oscillator.
- [On-chip oscillator frequency]: This box shows the on-chip oscillator frequency calculated from the oscillation frequency, periodic value, and clock division ratio.

(3) System clock setting

Specify the frequency division ratio used to supply the clock selected in (1)[System clock selection] to the CPU.

- [CPU and peripheral clock frequency]: This box shows the frequency of the clock specified in (1) [System clock selection].
- [System clock divider selection]: Leave this item unspecified.
- [CPU] and [Peripheral] tabs: Make the necessary settings for the CPU and peripheral function clocks. Table 4.1-6 shows the details of each item.

Item		Settings
CPU	Clock divider selection	Select the frequency division ratio for the clock to be supplied to the CPU.
	Input Clock	Shows the frequency of the clock to be supplied to the CPU, which is calculated from the [CPU and peripheral clock frequency] and [Clock divider selection] values.
	Period	Shows the period of a clock cycle to be supplied to the CPU, which is calculated from the [CPU and peripheral clock frequency] and [Clock divider selection] values.
Peripheral	Clock divider selection	Leave this item unspecified. The clock selected in [System clock selection] after being divided by the various division ratios are supplied to the peripheral I/O modules. The clock to be used in each peripheral I/O module should be separately specified in each peripheral I/O module setting dialog box. The frequency of fRING is determined according to the settings in [On-chip oscillator clock].
	Input Clock	Shows the frequency of the clock selected in [System clock selection].
	Period	Shows the period of a clock cycle selected in [System clock selection].

 Table 4.1-6
 System Clock Settings (R8C/13)

RENESAS

4.1.3 Setting Clocks for R8C/22-23

Figure 4.1-3 shows the [CPU clock setting] dialog box for the R8C/22-23.

CPU clock setting	X
System clock selection: Main clock Main clock Main clock Use as peripheral function clock source Input frequency to main clock circuit: 20.000000 MHz	
On chip oscillator clock Use as peripheral function clock source Frequency selection:	
Frequency adjustment value: Divider selection: Divided by 2	
On-chip oscillator frequency: 20.000000 MHz	
PLL clock Use as peripheral function clock source	Supplied clock to CPU and peripheral:
Input frequency to PLL circuit: 0.000000 MHz Selection of multiplication:	System clock, divider selection:
PLL frequency: 0.000000 MHz	CPU Peripheral
Sub clock Use as peripheral function clock source	Clock divider selection: Divided by 1
Input frequency to sub clock circuit: 0.000000 MHz	Input Clock: 20.000000 MHz
Divider selection:	Period: 50.000000 ns
	Modify setting Cancel

Figure 4.1-3 CPU Clock Setting Dialog Box (R8C/22-23)

(1) System clock selection

Select a clock to be used as the CPU clock. The main clock or on-chip oscillator clock can be selected. The clocks selectable in [System clock selection] correspond to the clock sources shown in Table 4.1-7.

Table 4.1-7 Clock Sources of R8C/22-23

Item	Clock sources	
Main clock	XIN Clock Oscillation Circuit	
On chip oscillator clock	On-chip Oscillator High-speed On-Chip Oscillator	
		Low-speed On-Chip Oscillator

(2) Each clock setting

Make the necessary settings for [Main clock] or [On chip oscillator clock] selected in [System clock selection]. The CPU clock selected in [System clock selection] is also used as the peripheral clock. Note that only the on-chip oscillator clock is allowed as fOCO40M, fOCO, and fOCO-F, which can be selected as the count source for timer or operating clock for A/D converter. When using fOCO40M, fOCO, or fOCO-F while the main clock is selected as the CPU clock, make settings also for the on-chip oscillator clock. If the on-chip oscillator clock is not set up, fOCO40M, fOCO, and fOCO-F cannot be selected as the count source in timer settings or operating clock in A/D converter settings.

Table 4.1-8 shows the available combinations of clock sources for the CPU and peripheral functions.

CPU clock	Peripheral clock	Peripheral clock	
	f1 to f32, fAD	fOCO40M, fOCO, fOCO-F	
Main clock	Main clock	On chip oscillator clock	
On chip oscillator clock	On chip oscillator clock	On chip oscillator clock	

Table 4.1-8	Combinations o	f Clock Sources fo	r CPU and Peripher	al Functions (R8C/22-23)
-------------	-----------------------	--------------------	--------------------	--------------------------

[Main clock]

Make settings for this item when the main clock is selected as the CPU clock.

- [Use as peripheral function clock source]: This check box is always selected automatically when the main clock is used as the CPU clock.
- [Input frequency to main clock circle]: Specify the frequency of the main clock. The frequency from 0 MHz to 20MHz can be set.

[On-chip oscillator clock]

Make settings for this item when the on-chip oscillator clock is selected as the CPU clock or when the main clock is

selected as the CPU clock and the on-chip oscillator clock is used as fOCO40M, fOCO, or fOCO-F.

- [Use as peripheral function clock source]: This check box is always selected automatically when the on-chip oscillator clock is used as the CPU clock. Select this box manually when using the main clock as the CPU clock and using the on-chip oscillator clock as fOCO40M, fOCO, or fOCO-F.
- [Frequency selection]: Select the high speed or low speed, which respectively corresponds to the high-speed on-chip oscillator or low-speed on-chip oscillator.
- [Periodic value]: Leave this item unspecified.
- [Divider selection]: Specify the divider of on-chip oscillator. Only "Divided by 1" can be specified when using the low-speed on-chip oscillator.
- [On-chip oscillator frequency]: This box shows the on-chip oscillator frequency calculated from the oscillation frequency and clock division ratio.

(3) System clock setting

Specify the frequency division ratio used to supply the clock selected in (1)[System clock selection] to the CPU.

- [CPU and peripheral clock frequency]: This box shows the frequency of the clock specified in (1)[System clock selection].
- [System clock divider selection]: Leave this item unspecified.
- [CPU] and [Peripheral] tabs: Make the necessary settings for the CPU and peripheral function clocks. Table 4.1-9 shows the details of each item.

Item		Settings
CPU	Clock divider selection	Select the frequency division ratio for the clock to be supplied to the CPU.
	Input Clock	Shows the frequency of the clock to be supplied to the CPU, which is calculated from the [CPU and peripheral clock frequency] and [Clock divider selection] values.
	Period	Shows the period of a clock cycle to be supplied to the CPU, which is calculated from the [CPU and peripheral clock frequency] and [Clock divider selection] values.
Peripheral	Clock divider selection	Leave this item unspecified. The clock selected in [System clock selection] after being divided by the various division ratios are supplied to the peripheral I/O modules. The clock to be used in each peripheral I/O module should be separately specified in each peripheral I/O module setting dialog box. The frequency of fOCO40M, fOCO, and fOCO-F are determined according to the settings in [On-chip oscillator clock].
	Input Clock	Shows the frequency of the clock selected in [System clock selection].
	Period	Shows the period of a clock cycle selected in [System clock selection].

Table 4.1-9 System Clock Settings (R8C/22-23)

4.1.4 Setting Clocks for R8C/24-25

Figure 4.1-4 shows the [CPU clock setting] dialog box for the R8C/24-25.

CPU clock setting	<u> </u>
System clock selection: Main clock Main clock Main clock Use as peripheral function clock source Input frequency to main clock circuit: 20.000000 MHz	
On chip oscillator clock Use as peripheral function clock source Frequency selection: High speed Frequency adjustment value: Divider selection: Divided by 2	
On-chip oscillator frequency: 20.000000 MHz	
PLL clock Use as peripheral function clock source Input frequency to PLL circuit: 0.000000 MHz Selection of multiplication:	Supplied clock to CPU and peripheral: 20.000000 MHz System clock: divider selection:
Sub clock	CPU Peripheral
✓ Use as peripheral function clock source	Clock divider selection: Divided by 1
Input frequency to sub clock circuit: 0.032768 MHz Divider selection: Divided by 1 Image: Compared to the selection of the selecti	Input Clock: 20.000000 MHz Period: 50.000000 ns
	Modify setting Cancel

Figure 4.1-4 CPU Clock Setting Dialog Box (R8C/24-25)

(1) System clock selection

Select a clock to be used as the CPU clock. The main clock, on-chip oscillator clock, or sub clock can be selected. The clocks selectable in [System clock selection] correspond to the clock sources shown in Table 4.1-10.

Table 4.1-10	Clock Sources of R8C/24-25	

Item	Clock sources	
Main clock	XIN Clock Oscillation Circuit	
Sub clock	XCIN Clock Oscillation Circuit	
On chip oscillator clock	On-chip Oscillator	High-speed On-Chip Oscillator
		Low-speed On-Chip Oscillator

(2) Each clock setting

Make the necessary settings for [Main clock], [Sub clock], or [On chip oscillator clock] selected in [System clock selection]. The CPU clock selected in [System clock selection] is also used as the peripheral clock. Table 4.1-11 shows the clocks that each clock source can supply.

Clock source		Clocks
Main clock		CPU clock, Peripheral clock (f1-f32)
Sub clock		CPU clock, Peripheral clock (fC4, fC32)
On-chip oscillator	High-speed	CPU clock, Peripheral clock (f1 to f32, fOCO, fOCO-F, fOCO40M)
clock	Low-speed	CPU clock, Peripheral clock (f1 to f32, fOCO, fOCO-S)

 Table 4.1-11
 Clocks each clock source can supply (R8C/24-25)

When it is necessary to use another clock in addition to those supplied by the clock source selected in [System clock selection], select the [Use as peripheral function clock source] check box for that additional clock and make the necessary settings.

Table 4.1-12 shows the available combinations of clock sources for the CPU and peripheral functions.

Table 4.1-12 Combinations of Clock Sources for CPU and Peripheral Functions (R8C/24-25)

CPU clock	Peripheral clock		
	f1 to f32	fC4, fC32	fOCO40M, fOCO, fOCO-F
Main clock	Main clock	Sub clock	On chip oscillator clock
On chip oscillator clock	On chip oscillator clock	Sub clock	On chip oscillator clock
Sub clock	Main clock	Sub clock	On chip oscillator clock
	On chip oscillator clock	Sub clock	On chip oscillator clock

[Main clock]

Make settings for this item when the main clock is selected as the CPU clock or when the sub clock is selected as the

CPU clock and the main clock is used as the peripheral function clock f1-f32.

- [Use as peripheral function clock source]: This check box is always selected automatically when the main clock is used as the CPU clock. Select this box manually when using the sub clock as the CPU clock and using the main clock as the peripheral function clock f1-f32.
- [Input frequency to main clock circle]: Specify the frequency of the main clock.

[On-chip oscillator clock]

Make settings for this item when the on-chip oscillator clock is selected as the CPU clock or when the on-chip

oscillator clock is used as the peripheral function clock.

- [Use as peripheral function clock source]: This check box is always selected automatically when the on-chip oscillator clock is used as the CPU clock. Select this box manually when using the clock other than the on-chip oscillator clock as the CPU clock and using the on-chip oscillator clock as the peripheral function clock.
- [Frequency selection]: Select the high speed or low speed, which respectively corresponds to the high-speed on-chip oscillator or low-speed on-chip oscillator.
- [Periodic value]: Leave this item unspecified.
- [Divider selection]: Specify the divider of on-chip oscillator. Only "Divided by 1" can be specified when using the low-speed on-chip oscillator.
- [On-chip oscillator frequency]: This box shows the on-chip oscillator frequency calculated from the oscillation frequency and clock division ratio.

[Sub clock]

Make settings for this item when the sub clock is selected as the CPU clock or when the sub clock is used as the peripheral function clock.

- [Use as peripheral function clock source]: This check box is always selected automatically when the sub clock is used as the system clock. Select this box manually to use fC4 or fC32 as the count source for timers RA and RE when using a clock other than the sub clock as the system clock.
- [Input frequency to sub clock circle]: The sub clock frequency is fixed at 0.03276 MHz.
- [Sub clock divider]: Only "Divided by 1" can be specified.
- [Sub clock]: This box shows the sub clock frequency calculated from the sub clock input frequency and clock division ratio. It is fixed at 0.03276 MHz.

(3) System clock setting

Specify the frequency division ratio used to supply the clock selected in (1)[System clock selection] to the CPU.

- [CPU and peripheral clock frequency]: This box shows the frequency of the clock specified in (1) [System clock selection].
- [System clock divider selection]: Leave this item unspecified.
- [CPU] and [Peripheral] tabs: Make the necessary settings for the CPU and peripheral function clocks. Table 4.1-13 shows the details of each item.

Item		Settings
CPU Clock divider selection		Select the frequency division ratio for the clock to be supplied to the CPU. The division ratio cannot be specified when the sub clock is selected as CPU clock because sub clock is not divided by the divider.
	Input Clock	Shows the frequency of the clock to be supplied to the CPU, which is calculated from the [CPU and peripheral clock frequency] and [Clock divider selection] values.
	Period	Shows the period of a clock cycle to be supplied to the CPU, which is calculated from the [CPU and peripheral clock frequency] and [Clock divider selection] values.
Peripheral	Clock divider selection	Leave this item unspecified. The clock selected in [System clock selection] after being divided by the various division ratios are supplied to the peripheral I/O modules. The clock to be used in each peripheral I/O module should be separately specified in each peripheral I/O module setting dialog box.
	Input Clock	Shows the frequency of the clock selected in [System clock selection].
	Period	Shows the period of a clock cycle selected in [System clock selection].

Table 4.1-13 System Clock Settings (R8C/24-25)

4.1.5 Setting Clocks for R8C/26-29, R8C/2A-2D

Figure 4.1-5 shows the [CPU clock setting] dialog box for the R8C/26-29,R8C/2A-2D.

CPU clock setting	×
System clock selection: Main clock ▼ Main clock ✓ Use as peripheral function clock source Input frequency to main clock circuit: 20.000000 MHz	
On chip oscillator clock Use as peripheral function clock source Frequency selection:	
Frequency adjustment value: 0 Divider selection: Divided by 2	
On-chip oscillator frequency: 20.000000 MHz	
PLL clock Use as peripheral function clock source Input frequency to PLL circuit: 0.000000 MHz	Supplied clock to CPU and peripheral: 20.000000 MHz System clock, divider selection:
Selection of multiplication:	CPU Peripheral
Sub clock	Clock divider selection: Divided by 1
Input frequency to sub clock circuit: 0.032768 MHz Divider selection:	Input Clock: 20.000000 _{MHz} Period: 50.000000 _{ns}
10112	Modify setting Cancel

Figure 4.1-5 CPU Clock Setting Dialog Box (R8C/26-29,R8C/2A-2D)

(1) System clock selection

Select a clock to be used as the CPU clock. The main clock, on-chip oscillator clock, or sub clock can be selected. The clocks selectable in [System clock selection] correspond to the clock sources shown in Table 4.1-14.

Table 4.1-14 Clock Sources of R8C/26-29, R8C/2A-2D

Item	Clock sources		
Main clock	XIN Clock Oscillation C	XIN Clock Oscillation Circuit	
Sub clock	XCIN Clock Oscillation	XCIN Clock Oscillation Circuit	
On chip oscillator clock	On-chip Oscillator	On-chip Oscillator High-speed On-Chip Oscillator	
		Low-speed On-Chip Oscillator	

(2) Each clock setting

Make the necessary settings for [Main clock], [Sub clock], or [On chip oscillator clock] selected in [System clock selection]. The CPU clock selected in [System clock selection] is also used as the peripheral clock. Table 4.1-15 shows the clocks that each clock source can supply.

RENESAS

Clock source		Clocks
Main clock		CPU clock, Peripheral clock (f1-f32)
Sub clock		CPU clock, Peripheral clock (f1-f32, fC4, fC32)
On-chip oscillator	High-speed	CPU clock, Peripheral clock (f1-f32, fOCO, fOCO-F, fOCO40M)
clock	Low-speed	CPU clock, Peripheral clock (f1-f32, fOCO, fOCO-S)

 Table 4.1-15
 Clocks each clock source can supply (R8C/26-29,R8C/2A-2D)

When it is necessary to use another clock in addition to those supplied by the clock source selected in [System clock selection], select the [Use as peripheral function clock source] check box for that additional clock and make the necessary settings. Note that the main clock and sub clock cannot be used at the same time.

Table 4.1-16 shows the available combinations of clock sources for the CPU and peripheral functions.

 Table 4.1-16
 Combinations of Clock Sources for CPU and Peripheral Functions (R8C/26-29,R8C/2A-2D)

CPU clock	Peripheral clock		
	f1 to f32	fC4, fC32	fOCO40M, fOCO, fOCO-F
Main clock	Main clock	-	On chip oscillator clock
On chip oscillator clock	On chip oscillator clock	Sub clock	On chip oscillator clock
Sub clock	Main clock	Sub clock	On chip oscillator clock
	On chip oscillator clock	Sub clock	On chip oscillator clock

[Main clock]

Make settings for this item when the main clock is selected as the CPU clock.

- [Use as peripheral function clock source]: This check box is always selected automatically when the main clock is used as the CPU clock.
- [Input frequency to main clock circle]: Specify the frequency of the main clock.

[On-chip oscillator clock]

Make settings for this item when the on-chip oscillator clock is selected as the CPU clock or when the on-chip oscillator

clock is used as the peripheral function clock.

- [Use as peripheral function clock source]: This check box is always selected automatically when the on-chip oscillator clock is used as the CPU clock. Select this box manually when using the clock other than the on-chip oscillator clock as the CPU clock and using the on-chip oscillator clock as the peripheral function clock.
- [Frequency selection]: Select the high speed or low speed, which respectively corresponds to the high-speed on-chip oscillator or low-speed on-chip oscillator.
- [Periodic value]: Leave this item unspecified.
- [Divider selection]: Specify the divider of on-chip oscillator. Only "Divided by 1" can be specified when using the low-speed on-chip oscillator.
- [On-chip oscillator frequency]: This box shows the on-chip oscillator frequency calculated from the oscillation frequency and clock division ratio.

[Sub clock]

Make settings for this item when the sub clock is selected as the CPU clock or when the sub clock is used as the peripheral function clock.

- [Use as peripheral function clock source]: This check box is always selected automatically when the sub clock is used as the system clock. Select this box manually to use fC4 or fC32 as the count source for timers RA and RE when using the on-chip oscillator clock as the system clock.
- [Input frequency to sub clock circle]: The sub clock frequency is fixed at 0.03276 MHz.
- [Sub clock divider]: Only "Divided by 1" can be specified.
- [Sub clock]: This box shows the sub clock frequency calculated from the sub clock input frequency and clock division ratio. It is fixed at 0.03276 MHz.

(3) System clock setting

Specify the frequency division ratio used to supply the clock selected in (1) [System clock selection] to the CPU.

- [CPU and peripheral clock frequency]: This box shows the frequency of the clock specified in (1) [System clock selection].
- [System clock divider selection]: Leave this item unspecified.
- [CPU] and [Peripheral] tabs: Make the necessary settings for the CPU and peripheral function clocks. Table 4.1-17 shows the details of each item.

Item		Settings
CPU	Clock divider selection	Select the frequency division ratio for the clock to be supplied to the CPU.
	Input Clock	Shows the frequency of the clock to be supplied to the CPU, which is calculated from the [CPU and peripheral clock frequency] and [Clock divider selection] values.
	Period	Shows the period of a clock cycle to be supplied to the CPU, which is calculated from the [CPU and peripheral clock frequency] and [Clock divider selection] values.
Peripheral	Clock divider selection	Leave this item unspecified. The clock selected in [System clock selection] after being divided by the various division ratios are supplied to the peripheral I/O modules. The clock to be used in each peripheral I/O module should be separately specified in each peripheral I/O module setting dialog box.
	Input Clock	Shows the frequency of the clock selected in [System clock selection].
	Period	Shows the period of a clock cycle selected in [System clock selection].

Table 4.1-17 System Clock Settings (R8C/26-29, R8C/2A-2D)

4.1.6 Setting Clocks for H8/3687, H8/36049

Figure 4.1-6 shows the [CPU clock setting] dialog box for the H8/3687, H8/36049.

I LE CION Use as peripheral function clock source Input frequency to PLL circuit: 0.000000 MHz Selection of multiplication:	
Use as peripheral function clock source Frequency selection: Frequency adjustment value: Divider selection: On-chip oscillator frequency: D.000000 MHz PLL clock PLL clock Use as peripheral function clock source Input frequency to PLL circuit: O.000000 MHz System cloc Selection of multiplication:	
PLL clock Supplied cl	
	ock to CPU and peripheral: 20.000000 MHz k divider selection:
Sub clock	Divided by 1
Input frequency to sub clock circuit: 0.032768 MHz Divider selection: Divided by 2 Input Clock Sub clock: 0.016384 MHz	20.000000 _{MHz}

Figure 4.1-6 CPU Clock Setting Dialog Box (H8/3687, H8/36049)

(1) System clock selection

Select a clock to be used as the CPU clock. Only main clock can be selected.

(2) Each clock setting

Make the clock settings for [Main clock] and [Sub clock]. These clocks correspond to the clock sources shown in Table 4.1-18.

Table 4.1-18 Clock Sources of H8/3687, H8/36049

Item	Clock sources
Main clock	System clock oscillator
Sub clock	Sub clock oscillator

[Main clock]

Specify the frequency of main clock (ϕ OSC).

- [Use as peripheral function clock source]: Main clock works as the basic clock necessary for the CPU and peripheral functions to operate. This check box is always selected automatically.
- [Input frequency to main clock circle]: Specify the frequency of the main clock (φOSC). The division ratio for the system clock frequency, which determines the frequency of the system clock (φ), should be selected in the system clock setting, which is described later.

[Sub clock]

Specify the frequency of sub clock (ϕ SUB).

- [Use as peripheral function clock source]: Sub clock works as the basic clock necessary for the peripheral functions to operate. This check box is always selected automatically.
- [Input frequency to sub clock circle]: The sub clock frequency is fixed at 0.03276 MHz.
- [Sub clock divider]: Specify the division ratio for the sub clock divider.
- [Sub clock]: This box shows the sub clock frequency (ϕ SUB) calculated from the sub clock input frequency and clock division ratio. The clocks generated by dividing the sub clock (ϕ SUB) in prescaler W are supplied to each peripheral function.
- (3) System clock setting

Make the necessary settings for the basic clock (ϕ) to be supplied to the CPU and peripheral modules.

- [CPU and peripheral clock frequency]: This box shows the frequency of the main clock.
- [System clock divider selection]: Specify the divider of system clock divider.
- [CPU] and [Peripheral] tabs: Make the necessary settings for the CPU and peripheral function clocks. Table 4.1-19 shows the details of each item.

Table 4.1-19 System Clock Settings (H8/3687, H8/36049)

Item		Settings
CPU	Clock divider selection	Leave this item unspecified.
	Input Clock	Shows the frequency of system clock (ϕ), which is calculated from the [CPU and peripheral clock frequency] and [System clock divider selection] values.
	Period	Shows the period of system clock (ϕ), which is calculated from the [CPU and peripheral clock frequency] and [System clock divider selection] values.
Peripheral	Clock divider selection	Leave this item unspecified.
		The clocks generated by dividing the system clock (ϕ) in prescaler S are supplied to each peripheral function.
	Input Clock	Shows the frequency of the system clock (
	Period	Shows the period of the system clock (ϕ).

4.1.7 Setting Clocks for H8/36077, H8/36109

Figure 4.1-7 shows the [CPU clock setting] dialog box for the H8/36077, H8/36109.

CPU clock setting	×
System clock selection: Main clock Main clock Main clock Use as peripheral function clock source Input frequency to main clock circuit: 20.000000 MHz	
On chip oscillator clock Use as peripheral function clock source Frequency selection: Frequency adjustment value: Divider selection: On-chip oscillator frequency: O.000000 MHz	
PLL clock-	Supplied clock to CPU and peripheral: 20.000000 MHz
Input frequency to PLL circuit: 0.000000 MHz Selection of multiplication: PLL frequency: 0.000000 MHz	System clock divider selection: Divided by 1
Sub clock Use as peripheral function clock source Input frequency to sub clock circuit: 0.032768 MHz	Clock divider selection:
Divider selection: Divided by 2 Sub clock: 0.016384	Input Clock: 20.000000 MHz Period: 50.000000 ns
	Modify setting Cancel

Figure 4.1-7 CPU Clock Setting Dialog Box (H8/36077,H8/36109)

(1) System clock selection

Select a clock to be used as the system clock (ϕ). The main clock or on-chip oscillator clock can be selected. The clocks selectable in [System clock selection] correspond to the clock sources shown in Table 4.1-20.

Table 4.1-20 Clock Sources of H8/36077, H8/36109

Item	Clock sources
Main clock	External clock oscillator
On chip oscillator clock	On-chip Oscillator

(2) Each clock setting

Make the necessary settings for the clock selected in [System clock selection] and the sub clock.

[Main clock]

Specify the frequency of ϕ OSC when the main clock is selected in [System clock selection].

- [Use as peripheral function clock source]: System clock φ works as the basic clock necessary for the CPU and peripheral functions to operate. This check box is always selected automatically when the main clock is selected as the source of system clock φ in [System clock selection].
- [Input frequency to main clock circle]: Specify the frequency of the main clock (φOSC). The division ratio for the system clock frequency, which determines the frequency of the system clock (φ), should be selected in the system clock setting, which is described later.

Peripheral Driver Generator

[On-chip oscillator clock]

Make settings for the frequency of ϕRC when the on chip oscillator clock is selected in [System clock selection].

- [Use as peripheral function clock source]: System clock φ works as the basic clock necessary for the CPU and peripheral functions to operate. This check box is always selected automatically when the on-chip oscillator clock is selected as the source of system clock φ in [System clock selection].
- [Frequency selection]: Specify the frequency of the on-chip oscillator clock (ROSC).
- [Periodic value]: Leave this item unspecified.
- [Divider selection]: Specify the division ratio for the RC clock divider.
- [On-chip oscillator frequency]: This box shows the on-chip oscillator frequency calculated from the oscillation frequency and clock division ratio. The division ratio for the system clock frequency, which determines the frequency of the system clock (φ), should be selected in the system clock setting, which is described later.

[Sub clock]

Specify the frequency of sub clock (ϕ SUB).

- [Use as peripheral function clock source]: Sub clock works as the basic clock necessary for the peripheral functions to operate. This check box is always selected automatically.
- [Input frequency to sub clock circle]: The sub clock frequency is fixed at 0.03276 MHz.
- [Sub clock divider]: Specify the division ratio for the sub clock divider.
- [Sub clock]: This box shows the sub clock frequency (ϕ SUB) calculated from the sub clock input frequency and clock division ratio. The clocks generated by dividing the sub clock (ϕ SUB) in prescaler W are supplied to each peripheral function.

(3) System clock setting

Make the necessary settings for the basic clock (ϕ) to be supplied to the CPU and peripheral modules.

- [CPU and peripheral clock frequency]: This box shows the frequency of the system clock (φ) specified in (1) [System clock selection].
- [System clock divider selection]: Specify the divider of system clock divider.
- [CPU] and [Peripheral] tabs: Make the necessary settings for the CPU and peripheral function clocks. Table 4.1-21 shows the details of each item.

Table 4.1-21 System Clock Settings (H8/36077, H8/36109)

Item		Settings
CPU	Clock divider selection	Leave this item unspecified.
	Input Clock	Shows the frequency of system clock (ϕ), which is calculated from the [CPU and peripheral clock frequency] and [System clock divider selection] values.
	Period	Shows the period of system clock (ϕ), which is calculated from the [CPU and peripheral clock frequency] and [System clock divider selection] values.
Peripheral	Clock divider selection	Leave this item unspecified.
		The clocks generated by dividing the system clock (ϕ) in prescaler S are supplied to each peripheral function.
	Input Clock	Shows the frequency of the system clock (ϕ).
	Period	Shows the period of the system clock (ϕ).

4.1.8 Setting Clocks for SH7125

Figure 4.1-8 shows the [CPU clock setting] dialog box for the SH7125.

CPU clock setting		×
System clock selection: PII clock Main clock Use as peripheral function clock s Input frequency to main clock circuit		
On chip oscillator clock Use as peripheral function clock s Frequency selection: Frequency adjustment value: Divider selection: On-chip oscillator frequency:	ource	
PLL clock Use as peripheral function clock s Input frequency to PLL circuit:		Supplied clock to CPU and peripheral: 80.000000 MHz System clock divider selection:
Selection of multiplication: PLL frequency: Sub clock	Multiplied by 8 80.000000 MHz	CPU Peripheral Timer
Use as peripheral function clock s Input frequency to sub clock circuit: Divider selection: Sub clock:		Clock divider selection: Divided by 4 Input Clock: 20.000000 MHz Period: 50.000000
		Modify setting Cancel

Figure 4.1-8 CPU Clock Setting Dialog Box (SH7125)

(1) System clock selection

This box specifies the source of the CPU clock and peripheral function clock. As only the PLL circuit can be used as the clock source for the SH7125, the PLL clock is always selected automatically.

(2) PLL clock setting

Specify the frequency of the input to the PLL circuit in [PLL clock].

[PLL clock]

Specify the frequency of the output from the PLL circuit. The frequencies of the internal clock (Iø), peripheral clock

(P\$), and MTU2 clock (MP\$) should be specified in the system clock setting, which is described later.

- [Use as peripheral function clock source]: The PLL clock is supplied to the CPU and peripheral functions. This check box is always selected automatically.
- [Input frequency to PLL circle]: Specify the frequency of the input to the PLL circuit.
- [Selection of multiplication]: The PLL circuit multiplies the input clock by eight and outputs the resultant clock. Only multiplication by 8 can be selected here.
- [PLL frequency]: This box shows the frequency of the output from the PLL circuit, which is calculated from the frequency of the input to the PLL circuit and the multiplication ratio.

Peripheral Driver Generator

(3) System clock setting

Specify the division ratio for each clock frequency to determine the frequencies of the internal clock ($I\phi$), peripheral clock ($P\phi$), and MTU2 clock ($MP\phi$).

- [CPU and peripheral clock frequency]: This box shows the frequency of the output from the PLL circuit.
- [System clock division selection]: Leave this item unspecified.
- [CPU], [Peripheral], and [Timer] tabs: Make the necessary settings for the internal clock (Ιφ), peripheral clock (Pφ), and MTU2 clock (MPφ). Table 4.1-22 shows the details of each item.

Item Settings CPU Clock divider Select the division ratio for the internal clock (Io) frequency. selection Input Clock Shows the frequency of the internal clock (Io) calculated from the frequency of the output from the PLL circuit and the division ratio selected in [Clock divider selection]. Peripheral Peripheral Clock divider Select the division ratio for the peripheral clock (Po) frequency. selection Input Clock Shows the frequency of the peripheral clock (Po) calculated from the frequency of the output from the PLL circuit and the division ratio selected in [Clock divider selection]. Peripheral Shows the period of a peripheral clock ($P\phi$) cycle. Timer Clock divider Select the division ratio for the MTU2 clock (MPo) frequency. selection Input Clock Shows the frequency of the MTU2 clock (MP
) calculated from the frequency of the output from the PLL circuit and the division ratio selected in [Clock divider selection]. Peripheral Shows the period of an MTU2 clock (MP() cycle.

Table 4.1-22 System Clock Settings (SH7125)

4.1.9 Setting Clocks for H8S/20103, H8S/20203, H8S/20223

Figure 4.1-9 shows the [CPU clock setting] dialog box for the H8S/20103, H8S/20203, H8S/20223.

CPU clock setting		X
System clock selection: Main clo Main clock Use as peripheral function clock Input frequency to main clock circ	k source	
On chip oscillator clock	k source	
Frequency selection: Frequency adjustment value:		
Divider selection: On-chip oscillator frequency:	•	
PLL clock Use as peripheral function clock	< source	Supplied clock to CPU and peripheral: 20.000000 MHz
Input frequency to PLL circuit: Selection of multiplication:	0.000000 MHz	System clock divider selection:
PLL frequency:	0.000000 MHz	CPU/DTC Peripheral
Sub clock Use as peripheral function clock		Clock divider selection: Divided by 1
Input frequency to sub clock circu Divider selection:	it: 0.032768 MHz Divided by 1	Input Clock: 20.000000 MHz
Sub clock:	0.032768 MHz	Period: 50.000000 ns
		Modify setting Cancel

Figure 4.1-9 CPU Clock Setting Dialog Box (H8S/20103, H8S/20203, H8S/20223)

(1) System clock selection

Select a clock to be used as the system operation clock (ϕ). The main clock, on-chip oscillator clock, or sub clock can be selected. The clock selectable in [System clock selection] correspond to the clock sources shown in Table 4.1-23.

Table 4.1-23 Clock Sources of H8S/20103, H8S/20203, H8S/20223

Item	Clock sources	Clock sources		
Main clock	Main clock oscillator	Main clock oscillator		
Sub clock	Sub-clock oscillator	Sub-clock oscillator		
On chip oscillator clock	On-chip Oscillator	On-chip Oscillator High-speed On-Chip Oscillator		
		Low-speed On-Chip Oscillator		

(2) Each clock setting

Make the necessary settings for [Main clock], [Sub clock], or [On chip oscillator clock] selected in [System clock selection]. The CPU/DTC clock selected in [System clock selection] is also used as the peripheral clock. Table 4.1-24 shows the clocks that each clock source can supply.

	~		
Table 4.1-24	Clocks each clock source can sup	only (H8S/20103.	. H88/20203. H88/20223)
	eroens each eroen source ean su		,

Clock source		Clocks
Main clock		CPU/DTC clock (φs), Peripheral clock (φ-φ/8192)
Sub clock		CPU/DTC clock (φs), Peripheral clock (φ-φ/8192, φsub)
On-chip oscillator	High-speed	CPU/DTC clock (φs), Peripheral clock (φ-φ/8192, φ40)
clock	Low-speed	CPU/DTC clock (φs), Peripheral clock (φ-φ/8192)

When it is necessary to use another clock in addition to those supplied by the clock source selected in [System clock selection], select the [Use as peripheral function clock source] check box for that additional clock and make the necessary settings.

Table 4.1-25 shows the available combinations of clock sources for the CPU/DTC and peripheral functions.

Table 4.1-25Combinations of Clock Sources for CPU/DTC and Peripheral Functions (H8S/20103, H8S/20203,H8S/20223)

CPU/DTC clock (\phis)	Peripheral clock			
	φ-φ/8192 φsub φ40			
Main clock	Main clock	Sub clock	On chip oscillator clock	
On chip oscillator clock	On chip oscillator clock	Sub clock	On chip oscillator clock	
Sub clock	Sub clock	Sub clock	On chip oscillator clock	

[Main clock]

Make settings for this item when the main clock is selected in [System clock selection].

- [Use as peripheral function clock source]: This check box is always selected automatically when the main clock is used as source of system operation clock ϕ in [System clock selection].
- [Input frequency to main clock circle]: Specify the frequency of the main clock. The division ratio for the system clock frequency, which determines the frequency of the system operation clock (φ), should be selected in the system clock setting, which is described later.

[On-chip oscillator clock]

Make settings for this item when the on-chip oscillator clock is selected in [System clock selection] or when $\phi 40$ is used as the timer clock source.

- [Use as peripheral function clock source]: This check box is selected automatically when the on-chip oscillator
 - clock is selected as the source of system operation clock ϕ in [System clock selection]. Select this box manually when selecting a clock source other than the on-chip oscillator clock in [System clock selection] and using timer clock source ϕ 40 as the on-chip oscillator clock.
 - [Frequency selection]: Select the frequency of the on-chip oscillator. Selectable values depend on the selection made for [System clock selection]. For details on the values, see table 4.1-26.
 - [Periodic value]: Leave this item unspecified.
 - [Divider selection]: Specify the divider of on-chip oscillator. Selectable values depend on the selections made for [System clock selection] and [Frequency selection]. For details on the values, see table 4.1-26.
 - [On-chip oscillator frequency]: This box shows the on-chip oscillator frequency calculated from the oscillation frequency and clock division ratio.

Table 4.1-26Values Selectable for [Frequency selection] and [Divider selection] (H8S/20103, H8S/20203,H8S/20223)

System clock selection	Frequency selection	Divider selection	Description
Main clock or Sub clock	High speed (40 MHz)*	Divided by 1	The high-speed (40-MHz) on-chip oscillator provides the timer clock source ϕ 40. The clock source is not divided. No low-speed on-chip oscillator is available.
	High speed (32 MHz) *	Divided by 1	The high-speed (32-MHz) on-chip oscillator provides the timer clock source ϕ 40. The clock source is not divided. No low-speed on-chip oscillator is available.
On chip oscillator clock	Low speed (f-40 = 40 MHz)	Divided by 1	The low-speed on-chip oscillator provides the system clock ϕ . The clock source is not divided and is fixed to 0.125 MHz. The high-speed (40-MHz) on-chip oscillator provides the timer clock source ϕ 40.
	Low speed (f-40 = 32 MHz)	Divided by 1	The low-speed on-chip oscillator provides the system clock ϕ . The clock source is not divided and is fixed to 0.125 MHz. The high-speed (32-MHz) on-chip oscillator provides the timer clock source ϕ 40.
	High speed (40 MHz)	Divided by 2	The high-speed (40-MHz) on-chip oscillator provides the system clock ϕ and timer clock source ϕ 40. The frequency of ϕ is 20 MHz, i.e. the high-speed oscillator clock divided by 2. ϕ 40 is not divided. No low-speed on-chip oscillator is available.
	High speed (32 MHz)	Divided by 2	The high-speed (32-MHz) on-chip oscillator provides the system clock ϕ and timer clock source ϕ 40. The frequency of ϕ is 16 MHz, i.e. the high-speed oscillator clock divided by 2. ϕ 40 is not divided. No low-speed on-chip oscillator is available.

* Only available when the [Use as peripheral function clock source] checkbox has been selected for [On chip oscillator clock].

[Sub clock]

Specify the frequency of sub clock (\$\phisub).

- [Use as peripheral function clock source]: This check box is always selected automatically when the Sub clock is used as source of system operation clock φ in [System clock selection]. Even if another clock source has been selected for [System clock selection], this checkbox is automatically selected because the sub clock is used as a peripheral clock (\$\operatorname{sub}\$).
- [Input frequency to sub clock circle]: The sub clock frequency is fixed at 0.03276 MHz.
- [Sub clock divider]: Only "Divided by 1" can be specified.
- [Sub clock]: This box shows the sub clock frequency calculated from the sub clock input frequency and clock division ratio. It is fixed at 0.03276 MHz.

(3) System clock setting

Specify the frequency division ratio used to supply the clock selected in (1) [System clock selection] to the CPU and peripheral function clocks.

- [CPU and peripheral clock frequency]: This box shows the frequency of the clock specified in (1) [System clock selection] (\$\phi\$ base).
- [System clock divider selection]: Specify the divider of system clock divider. The output clock of system clock divider is φ.
- [CPU/DTC] and [Peripheral] tabs: Make the necessary settings for the CPU and peripheral function clocks. Table 4.1-27 shows the details of each item.

Item		Settings
CPU/DTC Clock divider selection		Select the frequency division ratio for the clock to be supplied to the CPU and the DTC. The divided clock is ϕ s.
	Input Clock	Shows the frequency of ϕ s to be supplied to the CPU, which is calculated from the [CPU and peripheral clock frequency] and [Clock divider selection] values.
	Period	Shows the period of ϕ s to be supplied to the CPU, which is calculated from the [CPU and peripheral clock frequency] and [Clock divider selection] values.
Peripheral	Clock divider selection	Leave this item unspecified. The clock selected in [System clock selection] after being divided by the various division ratios are supplied to the peripheral I/O modules. The clock to be used in each peripheral I/O module should be separately specified in each peripheral I/O module setting dialog box.
	Input Clock	Shows the frequency of the clock selected in [System clock selection].
	Period	Shows the period of a clock cycle selected in [System clock selection].

Table 4.1-27 System Clock Settings (H8S/20103, H8S/20203, H8S/20223)

4.2 Setting Serial Interface

For the serial interface, two communication types, synchronous and asynchronous types, are available. Table 4.2-1 shows the communication modes available in the serial communication resources in each microcomputer.

Microcomputer Group	Serial Communication Resources	Communication Type	
M16C/62p	UARTi (i=0 to 2)	Synchronous, Asynchronous	
	SI/O3,SI/O4	Synchronous	
M16C/28,28B,29	UARTi (i=0 to 2)	Synchronous, Asynchronous	
	SI/O3,SI/O4	Synchronous	
R8C/13,22,23,28,29	UART0	Synchronous, Asynchronous	
	UART1	Asynchronous	
R8C/24-27	UART0	Synchronous, Asynchronous	
	UART1	Synchronous, Asynchronous	
R8C/2A-2D	UART I (i=0 to 2)	Synchronous, Asynchronous	
H8/3687,36077	SCI3 Channel 1	Synchronous, Asynchronous	
	SCI3 Channel 2	Synchronous, Asynchronous	
H8/36049,36109	SCI3 Channel 1	Synchronous, Asynchronous	
	SCI3 Channel 2	Synchronous, Asynchronous	
	SCI3 Channel 3	Synchronous, Asynchronous	
SH7125	Channel 0-2	Synchronous, Asynchronous	
H8S/20103, 20203,	SCI3 Channel 1	Synchronous, Asynchronous	
20223	SCI3 Channel 2	Synchronous, Asynchronous	
	SCI3 Channel 3	Synchronous, Asynchronous	

 Table 4.2-1
 Serial Communication Resources in Each CPU

The following explains how to set each communication mode.

4.2.1 Synchronous Serial Communication Interface

Figure 4.2-1 shows the [Clock synchronous SIO mode setting] dialog box.

Clock synchronous S	IO mode setting	
Serial port: UART0	T	Bit rate register
Clock selection:	Internal clock 🔹	Bit rate register settings: 129
External clock frequency:	10.000000 MHz	Clock source selection: f8
Stop bit:		Bit Rate: 9600 bps Set details
Parity bit:		
Clock polarity selection:	No clock polarity reversed	Interrupt enable
Bit number:		Transmit interruption level: 7
LSB first, MSB first selection:	LSB first	Permit receive interruption
Reverse data logic:		Receive interruption level:
CTS/RTS function:	Do not use CTS/RTS function 💌	Permit transmit-receive interruption
		Transmit-Receive interruption level:
Noise canceller:		Permit SI/O interruption
Transmit-Receive pins se	iect:	SI/O interruption level:
Clock pin select:		Interrupt function name:
Break data:		SerialNotificationFunc
Clock port output data:		
	🔽 Ge	nerate batch source(<u>M</u>) Setting Cancel

Figure 4.2-1 [Clock synchronous SIO mode setting] dialog box

The following explains how to set each items.

[Serial port]

Select the serial communication interface resource to be set up. Selecting [No setting] allows the interface setting to be made with no resource being selected here and any resource can be assigned to the setting. Note that [No setting] is not available for the SH7125 or H8S/Tiny.

[Clock selection]

Select the internal clock or external clock for the transfer clock.

[Stop bit]

Leave this item unspecified.

[Parity bit]

Leave this item unspecified.

[Clock polarity selection]

Select the polarity of the transfer clock. This item may be unselectable depending on the microcomputer type. Table 4.2-2 shows the settings available for [Clock polarity selection].

Table 4.2-2	[Clock polarity selection]	settings
-------------	----------------------------	----------

Microcomputer	Itom	Description	
Group	Item	Description	
M16C/62p	[No clock polarity reversed]	Transmit data is output at falling edge of transfer	
M16C/28,28B,29		clock and receive data is input at rising edge.	
R8C/13,22-29,2A-2D	[Clock polarity reversed]	Transmit data is output at rising edge of transfer	
		clock and receive data is input at falling edge.	

[Bit number]

Leave this item unspecified.

[LSB fist, MSB fist selection]

Select the transfer format. This item may be unselectable depending on the microcomputer type. Table 4.2-3 shows the settings available for [LSB fist, MSB fist selection].

Microcomputer Group	Item	Description
M16C/62p	LSB first	Selects LSB first as transfer format
M16C/28,28B,29 R8C/13,22-29,2A-2D	MSB first	Selects MSB first as transfer format

[Reverse data logic]

Select the data logic. This item may be unselectable depending on the microcomputer type. Table 4.2-4 shows the settings available for [Reverse data logic].

Table 4.2-4 [Reverse data logic] settings

Microcomputer	Item	Description
M16C/62p *1 M16C/28,28B,29 *2	Reverse	Reverses the logic value of the transmit/receive data.
	Do not reverse	Does not reverse the logic value of the transmit/receive data.

*1 Valid only when any of UART0 to UART2 is selected.

*2 Valid only when UART2 is selected.

[CTS/RTS function]

Specify whether to use the CTS/RTS function. This item may be unselectable depending on the microcomputer type or selected serial resource. Table 4.2-5 shows the settings available for [CTS/RTS function].

Table 4.2-5	[CTS/RTS	function]	settings
1 abie 4.2-3		runcuonj	settings

Microcomputer	Item	Description
M16C/62p *1	Do not use CTS/RTS function	Does not use CTS/RTS function
M16C/28,28B,29 *1	Select CTS function	Uses CTS function
	Select RTS function *2	Uses RTS function

*1 Valid only when any of UART0 to UART2 is selected.

*2 Cannot be selected when the internal clock is selected in the clock synchronous serial communication mode.

[Noise canceller]

Leave this item unspecified.

[Clock pin select]

Select the pins to be used for transfer clock input/output. This item may be unselectable depending on the microcomputer type and the selected serial communication resource. Table 4.2-6 shows the settings available for [Clock pin select].

Table 4.2-6[Clock pin select] settings

Microcomputer	Item	Description
R8C/2A,2B,2C,2D *	P0_5	Uses P0_5 pin for transfer clock input/output
	P6_5	Uses P6_5 pin for transfer clock input/output

* Valid only when any of UART1 is selected.

[Transmit-Receive pins select]

Select the pins to be used for transmission and reception. This item may be unselectable depending on the microcomputer type and the selected serial communication resource. Table 4.2-7 shows the settings available for [Transmit-Receive pins select].

Microcomputer	Item	Description
M16C/26,27 *	Tx1_P0_0,	Liese D2, 7/TVD1/DVD1) his feattenentiation and recention
	RX1_P3_7	Uses P3_7(TXD1/RXD1) pin for transmission and reception
	Tx1_P3_7,	Lines D2 7/TVD1) D4 5(DVD1) air for transmission and recention
	RX1_P4_5	Uses P3_7(TXD1), P4_5(RXD1) pin for transmission and reception
	Tx1_P0_0,	
	Rx1_P3_6	Uses P3_6(TXD1/RXD1) pin for transmission and reception

Table 4.2-7 [Transmit-Receive pins select] settings

* Valid only when any of UART1 is selected.

[Break data]

Leave this item unspecified.

[Clock port output data]

Leave this item unspecified.

[Bit rate register]

Specify the following items to determine the transfer rate.

[Bit rate register settings]

This box shows the value of the bit rate register. This value is automatically calculated from the baud rate determined according to the [Count source] and [Set details] settings described below.

[Clock source selection]

Select the count source for the bit rate register when the internal clock is selected. Although this box indicates [f1] when the external clock is selected, the count source actually used is the external clock.

[Bit Rate]

This box shows the baud rate value calculated from the bit rate register value and the frequency of the selected count source or the external clock frequency.

[Set details]

Use this button to calculate the bit rate register value and error ratio, to modify the baud rate value, or to select the count source. Clicking on this button opens the [Bit rate register setting value calculation] dialog box shown in Figure 4.2-2.

Bit rate register setting val	ue calculation	×
	Г	Trial
Source clock frequency:	20.000000	MHz
Bit Rate:	9600	bps
Bit rate register settings:	129	
Error ratio:	0.156250 %	
Clock source:	8	
Set	Clear C	ancel

Figure 4.2-2 Bit rate register setting value calculate dialog box

The following describes the items in the [Bit rate register setting value calculation] dialog box.

[Trial]

This check box works only when the internal clock is used. Selecting this box allows the main clock frequency to be modified. When the error ratio is high at the specified baud rate, select this box to estimate the error ratio with a different temporary frequency of the input clock. When this box is selected, the [Set] button becomes unselectable and the values specified in this dialog box cannot be applied to the actual settings. When this box is deselected, the main clock frequency is restored to the initial value. To modify the actual input clock frequency when the internal clock is selected, modify the CPU clock settings.

[Clock frequency]

When the internal clock is used, this box shows the frequency of the clock input to the serial communication module, which is specified in the CPU clock settings. This value can be modified by selecting the [Trial] box.

When the external clock is used, specify the external clock frequency here.

[Bit Rate]

Specify the baud rate for the serial communication. According to the specified baud rate, the optimum count source and bit rate register value are selected and the error ratio is calculated.

[Bit rate register settings]

This box shows the optimum value for the bit rate register, which is calculated from the input clock frequency and specified baud rate.

[Error ratio]

This box shows the error ratio calculated from the input clock frequency and specified baud rate.

[Clock source]

When the internal clock is used, this box shows the optimum division ratio for the count source, which is determined according to the input clock frequency and specified baud rate.

When the external clock is used, this box always indicates 1.

[Interrupt enable]

This item enables detection of transmit, receive, and SI/O interrupt occurrence. Select the interrupts to be detected and specify the interrupt priority levels; the user-created interrupt function will be called when an interrupt occurs. The following explains how to set each item.

[Permit <interrupt type> interruption]

Select the check box for each interrupt type to detect occurrence of the corresponding interrupt. Table 4.2-8 shows the interrupt types that can be selected for each microcomputer.

[<interrupt type> interruption level]

Specify the priority level for the enabled interrupt type. The priority may not be specified depending on the microcomputer or interrupt type.

Table 4.2-8 shows the interrupt types that can be enabled and the condition for calling the interrupt notification function in each microcomputer.

Microcomputer	Communication	Interrupt Enable	Condition for Calling Interrupt
·	Resource	Setting	Notification Function
M16C/62p	UART0 to UART2	Transmit interrupt	End of transmission
M16C/28, 28B,		Receive interrupt	End of reception
29			Receive error occurrence
	SI/O3, SI/O4	SI/O interrupt	End of transmission
			End of reception
R8C/13, 22 to 29	UARTi *1	Transmit interrupt	End of transmission
R8C/2A to 2D		Receive interrupt	End of reception
			Receive error occurrence
H8/3687, 36077	SCI3 channel i	Transmit interrupt	End of transmission
H8/36049,	*2	Receive interrupt	End of reception
36109			Receive error occurrence
SH7125	Channel i (i = 0 to 2)	Transmit-receive	Receive error (ERI)
		interrupt	Receive data full (RXI)
			Transmit data empty (TXI)
			End of transmission (TEI)
H8S/20103,	SCI3 channel i	Transmit interrupt	End of transmission
20203, 20223	(i = 1 to 3)	Receive interrupt	End of reception
			Receive error occurrence

Table 4.2-8	Available Interrupt Types and Condition for Calling Interrupt Notification Function in Each
	Microcomputer

*1 R8C/13, 22, 23, 28, 29: i = 0; R8C/24, 25: i = 0 or 1; R8C/2A to 2D: i = 0 to 2

*2 H8/3687, 36077: i = 1 or 2; H8/36049, 36109: i = 1 to 3

[Interrupt function name]

Specify the interrupt notification function to be called when the enabled interrupt occurs. When using an interrupt notification function, add to the user program the function with the name specified here. One notification function can be specified for each serial communication resource. When multiple interrupt types are enabled, the same function is called for all interrupts in the resource; to change the processing depending on the interrupt or error type, the interrupt or error type should be detected in the notification function.

RENESAS

Table 4.2-9 shows the declaration of the interrupt function.

Table 4.2-9 Interrupt Function Declaration

Microcomputer	Function Declaration
M16C/62p	
M16C/28, 28B, 29	
R8C/13, 22 to 29, 2A to 2D	void [specified notification function name](unsigned char notify);
H8/3687, 36077, 36049, 36109	
H8S/20103, 20203, 20223	
SH7125	void [specified notification function name](void);

[Generate batch source]

Select this check box to create the driver source code for all peripheral I/O modules when clicking on the [Setting] button.

[Setting]

Clicking on this button stores the settings and closes the dialog box. When [Generate batch source] is selected, the driver source code is created.

[Cancel]

Clicking on this button closes the dialog box without storing the settings.

4.2.2 Asynchronous Serial Communication Interface

Figure 4.2-3 shows the [Clock asynchronous SIO mode setting] dialog box.

Clock asynchronous S	SIO mode setting	×
Serial port: UART0 Clock selection:	▼ Internal clock	Bit rate register Bit rate register settings: 129
External clock frequency: Stop bit:	10.000000 MHz	Clock source selection: f1 Bit Rate: 9600 bps Set details
Parity bit: Clock polarity selection:	Parity disable 💽	Interrupt enable
Bit number: LSB first, MSB first selection:	8 bit 💌 LSB first 💌	Transmit interruption level: 7 ⁺⁺
Reverse data logic: CTS/RTS function:	Do not use CTS/RTS function	Receive interruption level: 0
Noise canceller:	ect -	Permit SI/D interruption SI/D interruption level:
Clock pin select: Break data:	·· V	Interrupt function name: SerialNotificationFunc
Clock port output data:		nerate batch source(M) Setting Cancel

Figure 4.2-3 [Clock asynchronous SIO mode setting] dialog box

The asynchronous serial interface setting differs from the synchronous interface setting in the following items. For the items not described here, refer to section 4.2.1, Synchronous Serial Interface.

[Bit number]

Select the transfer data length. This item may be unselectable depending on the microcomputer type. Table 4.2-10 shows the settings available for [Bit number].

Table 4.2-10 [Bit number] settings	Table 4.2-10	[Bit number] settings
------------------------------------	--------------	-----------------------

Microcomputer	Item	Description
M16C/62p	7 bits	Transfer data is 7 bits long
M16C/28,28B,29	8 bits	Transfer data is 9 bits long
R8C/13,22-29,2A-2D	9 bits	Transfer data is 9 bits long
H8/3687,36077,36049,36109 SH7125	7 bits	Transfer data is 7 bits long
H8S/20103, 20203, 20223	8 bits	Transfer data is 8 bits long

[Stop bit]

Select the number of stop bits. One stop bit or two stop bits can be selected.

[Parity bit]

Select whether parity is included and whether odd or even.

[Clock polarity selection]

Leave this item unspecified.

[LSB fist, MSB fist selection]

Select the transfer format. This item may be unselectable depending on the microcomputer type. Table 4.2-11 shows the settings available for [LSB fist, MSB fist selection].

Table 4.2-11 [LSB fist, MSB fist selection] settings

Microcomputer	Item	Description
M16C/62p *	LSB first	Selects LSB first as transfer format
M16C/28,28B,29 * R8C/13,22-29,2A-2D *	MSB first	Selects MSB first as transfer format

* Selectable when the transfer bit number is set to eight bits.

[Noise canceller]

Specify whether to use the noise canceller. This item may be unselectable depending on the microcomputer type. Table 4.2-12 shows the settings available for [Noise canceller].

Table 4.2-12[Noise canceller] settings

Microcomputer	Item	Description
H8/36049,36109 *	Noise canceling function available	Takes noise from the RXD_3 input signal
	Noise canceling function not available	Does not use noise canceller

* Selectable when the SCI channel 3 is selected.

[Break data]

Select the break output level at the end of serial transmission. This item may be unselectable depending on the microcomputer type. Table 4.2-13 shows the settings available for [Break data].

Table 4.2-13[Break data] settings

Microcomputer	Item	Description				
SH7125	Low output	Sets the TXD pin as low-level output				
	High output	Sets the TXD pin as high-level output				

[Clock port output data]

Specifies the data output through the SCK pin in the serial port. This item may be unselectable depending on the microcomputer type. Table 4.2-14 shows the settings available for [Clock port output data].

 Table 4.2-14 [Clock port output data] settings

Microcomputer	Item	Description
SH7125	Low output *	Outputs low-level through the SCK pin
	High output *	Outputs high-level through the SCK pin
	Clock output *	Outputs the clock with a frequency 16 times the bit rate.
* When the exter	nal clock is used the	SCK pin always works as the external clock input pin (clock with

When the external clock is used, the SCK pin always works as the external clock input pin (clock with a frequency of bit rate x 16) regardless of this setting.

4.3 Setting I/O Ports

Figure 4.3-1 shows the [I/O port setting] dialog box.

/O port setti	ing								Đ
Port 1	•							Show	pin function list
- Terminal use	d	P10	P11 P12	2 P13 I	P14 P15	P16 P1	7		
₽10	✓ P14								
₽11	✓ P15		Pir	n function:			-		
✓ P12	P16		e	Used as an	input port				
✓ P13	✓ P17		C	Used as an	output port				
-		P10	P11	P12	P13	P14	P15	P16	P17
- Function Don't care th	e initial output:	Г	Г		Г	Г	Г	Г	Г
Upgrade driv	e capacity:		V						
Pull-up availa	able:								V
Read port lat	ich regardless of I/O ports	: []						Г	
						Generate bate	ch source(<u>M)</u>	Setting	Cancel

Figure 4.3-1 [I/O port setting] dialog box

The following explains how to set each items.

[Port]

Specify the port group to be set up.

In the SH7125 or H8S/Tiny, a number is assigned for each port group; when a number is selected, the corresponding port group is shown in the dialog box.

[Terminal used]

The pins in the group selected in [Port] are shown here. Select the pins to be set up. Selecting a check box opens the setting tab for the corresponding pin.

Pin setting tab

- [Pin function]

This item can be specified only in the SH7125 or H8S/Tiny. Select the desired one of the multiple functions assigned to the pin.

- [Used as an input/Used as an output]

Select whether to use the pin as an input or output port. This item may be unselectable depending on the port.

[Function]

Specify the following functions for the port.

[Don't care the initial output]

Specify the initial output from the pin that is set to an output port in the input/output selection. This item may be unselectable depending on the microcomputer type. Table 4.3-1 shows the available settings.
Microcomputer	Description
SH7125	Not selected:
H8S/20103,	The initial output from the corresponding output port is set to high.
20203, 20223	Selected:
	The initial output from the corresponding output port is not controlled.

Table 4.3-1 Initial Output Settings

[Upgrade driver capacity]

Specify the output transistor drive capacity. This item may be unselectable depending on the microcomputer type and port. Table 4.3-2 shows the available settings.

 Table 4.3-2
 Output transistor drive capacity settings

Microcomputer	Port	Description
R8C/13,26-29	1	Not selected:
		Output drive capacity low
R8C/24-25,2A-2D	2	Selected: Output drive capacity high
H8S/20103, 20203, 20223	*	Output unve capacity high

* Valid only when [General I/O port] is selected for [Pin function] and the [Used as an output] radio button is selected regardless of the port selection (however, P56 and P57 are always invalid).

[Pull-up available]

Select this check box when pull-up the port. This item may be unselectable depending on the microcomputer type and port. Table 4.3-3 shows the available settings.

Microcomputer	Pin	Description
M16C/62P	Except P70, P71, and P85	Not selected:
M16C/Tiny	All pins	Disables pull-up
R8C/13	Except P46 and P47	Calastad
R8C/22-29	Except P42, P46, and P47	Selected: Enables pull-up for the pin set as
R8C/2A-2D	Except P42, P46, and P47	the input port
H8/3687,H8/36049, H8/36077,H8/36109	Port1 and P50 to P55	
H8S/20103,	Except P56 and P57	
H8S/20203, H8S/20223	Pins set as the input ports	

Table 4.3-3 Pull-up available settings

[Read port latch regardless of I/O ports]

Specify the operation performed when the P1 register is read. This item may be unselectable depending on the microcomputer type and port. Table 4.3-4 shows the available settings.

 Table 4.3-4
 Port register read settings

Microcomputer	Port	Description
---------------	------	-------------

M16C/62P 1 M16C/28,28B,29	 Not selected: When the port is set for input, the input levels of P1 0 to P17 pins are read. When set for output, the port latch is read. Selected: The port latch is read regardless of whether the port is set for input or output.
------------------------------	--

[Show pin function list]

This button works only in the SH7125 or H8S/Tiny. Clicking on this button shows the list of functions selected for each port.

4.4 Setting Timer

The following modes are available in the timers.

- Timer mode
 - Time is counted with the internally generated count source to generate interrupts.
- Event counter mode External signals, or overflows or underflows in other timers are counted.
- Pulse width modulation mode
 - Pulses with a given width are output in succession.
- Pulse period measurement mode
 - The period of an external signal pulse is measured.
- Pulse width measurement mode
 - The width of an external signal pulse is measured.
 - Input capture mode
 - Time is measured by detecting edges of the external or internal signal.
- Output compare mode

•

The signal level output from a pin is modified or an interrupt is generated with a given timing.

Table 4.4-1 to Table 4.4-5 show the available timer resources and modes in each microcomputer.

M16C/62p	M16C/28,28B,29
A0-4, B0-5	A0-4, B0-2
A0-4, B0-5	A0-4, B0-2
A0-4	A0-4
B0-5	B0-2
B0-5	B0-2
_	S
—	S
	A0-4, B0-5 A0-4, B0-5 A0-4 B0-5

 Table 4.4-1
 Available timer modes (N16C/60 series, M16C/Tiny series)

Table 4.4-2	Available timer	modes	(R8C/Tiny s	eries)
-------------	-----------------	-------	-------------	--------

	R8C/13	R8C/22-25	R8C/26-29	R8C/2A-2D
Timer mode	X,Y,Z	RA,RB	RA,RB	RA,RB
Event counter mode	X,Y	RA	RA	RA
Pulse width modulation mode	Y,Z	RB	RB	RB
Pulse period measurement	Х	RA	RA	RA
mode				
Pulse width measurement mode	Х	RA	RA	RA
Input capture mode	С	RD0-1	RC	RC,RD0-1,RF
Output compare mode	С	RD0-1,RE	RC,RE	RC,RD0-1,RE

Table 4.4-3 Available timer modes (H8/300H Tiny series)

	H8/3687	H8/36077	H8/36049	H8/36109
Timer mode	B1,V	B1,V	B1,V	B1,V
Event counter mode	B1,V	B1,V	B1,V	B1,V
Pulse width modulation mode	V	V	V	V
Pulse period measurement	Z0,Z1	Z0,Z1	W,Z0,Z1	RC,RD0-3
mode				
Pulse width measurement mode	Z0,Z1	Z0,Z1	W,Z0,Z1	RC,RD0-3
Input capture mode	Z0,Z1	Z0,Z1	W,Z0,Z1	RC,RD0-3
Output compare mode	Z0,Z1	Z0,Z1	W,Z0,Z1	RC,RD0-3

	SH7125
Timer mode	Channel 0-5
Event counter mode	Channel 0-4
Pulse width modulation mode	Channel 0-4
Pulse period measurement	Channel 0-5
mode	
Pulse width measurement mode	Channel 0-5
Input capture mode	Channel 0-5
Output compare mode	Channel 0-4

Table 4.4-4 Available timer modes (SH/Tiny series)

 Table 4.4-5
 Available timer modes (H8S/Tiny series)

	H8S/20103	H8S/20203, 20223
Timer mode	RA,RB	RA,RB
Event counter mode	RA	RA
Pulse width modulation mode	RB	RB
Pulse period measurement mode	RA	RA
Pulse width measurement mode	RA	RA
Input capture mode	RC,RD0-1,RG	RD0-3,RG
Output compare mode	RC,RD0-1,RE, RG	RD0-3RE, RG

The following explains how to set up each mode.

4.4.1 Timer Mode

Table 4.4-6 shows the timer resources that can be set to the timer mode in each microcomputer.

Series	Group	Timer resources
N16C/60	M16C/62p	A0-4,B0-5
M16C/Tiny	M16C/28,28B,29	A0-4,B0-2
R8C/Tiny	R8C/13	X,Y,Z
	R8C/22-29, 2A-2D	RA,RB
H8/300H Tiny	H8/3687, 36077, 36049, 36109	B1,V
SH/Tiny	SH7125	Channel 0-5
H8S/Tiny	H8S/20103, 20203, 20223	RA, RB

 Table 4.4-6
 Timer Resources Supporting Timer Mode in Each Microcomputer

The following gives an overview of the timer mode settings for each microcomputer.

- M16C/62P, M16C/28, 28B, 29, R8C/13, 22 to 29, 2A to 2D, H8S/20103, 20203, 20223

The counter counts down until it underflows, then it reloads the reload register value and restarts counting-down. The reload register value is calculated from the specified period and the frequency of the count source. When the counter underflows, an underflow interrupt can be detected.

- H8/3687, 36049, 36077, 36109

The counter in timer B1 or timer V counts up with the internal clock.

For timer B1, the interval timer or auto-reload timer operation can be selected. In interval timer operation, the counter starts counting up from 0; it overflows when the count source clock is input after the count reaches H'FF. The overflow interval is determined by the frequency of the count source. In auto-reload timer operation, the timer load register value is loaded to the counter, and the counter starts counting up from that value. The timer load register value is calculated from the specified overflow interval and the frequency of the count source. In either operation, overflow interrupts can be detected.

In timer V, the counter starts counting up from 0 and continues counting until it overflows. The overflow interval is determined by the frequency of the count source. Overflow interrupts can be detected.

- SH7125

The counter counts up with the internal clock; the free-running or periodic counter operation is done as the basic timer operation in the SH7125.

In free-running operation, the counter continues counting up until it overflows. The overflow interval is determined by the frequency of the count source. Overflow interrupts can be detected.

In periodic counter operation, the counter is cleared by a compare match between the counter and the specified general register and then the counter restarts counting up. At a compare match, a compare match interrupt can be detected and a desired signal can be output from a pin. The general register value is calculated from the specified period and the frequency of the count source.

Figure 4.4-1 shows the [Timer mode setting] dialog box.

Timer mode setting	X
Timer type: B1	Operation during initialization: Operation start
Operation: 🗸	Counter clear function:
Count source: f4	Timer output:
Frequency of count source: 5.000000 MHz	Clock output function:
Clock edge:	Auto reload function: Use
,	Control to write to timer:
Period: 20 µs	Gate function:
Result of calculation	A/D Converter Start:
The values in this frame are set.	
Period: 20.000000 µs	Enable Overflow interruption
(Error: 0.000000 %)	Interruption priority level:
Setting value:	Interruption function name: TimerIntFunc
Reload value 156	
	Generate batch source(<u>M</u>) Setting Cancel

Figure 4.4-1 [Timer mode setting] dialog box

The following explains how to set each items.

[Timer type]

Select the timer resource to be set up. Selecting [Timer type none] allows the timer setting to be made with no resource being selected here and any resource can be assigned to the setting. Note that [Timer type none] is not available for the SH7125 or H8S/Tiny.

[Operation]

Specify the count operation. This item may be unselectable depending on the microcomputer type. Table 4.4-7 shows the settings available for [Operation].

Table 4.4-7[Operation] settings

	Microcomputer	Item	Description
--	---------------	------	-------------

SH7125	Free-running *	The counter continues counting up until it overflows. The overflow interval cannot be specified; it is determined by the frequency of the count source.
	Periodic	The counter is cleared by a compare match with the general register. A compare match can be generated at specified intervals.

* Valid only when any of channel 0 to 4 is selected.

[Count source]

Select the count source for the counter.

[Frequency of count source]

This box shows the frequency of the selected count source.

[Clock edge]

Select the clock edge to be used for count. This item may be unselectable depending on the microcomputer type.

[Period]

Specify the period of overflow, underflow, or compare match.

[Result of calculation]

This box shows the optimum register value, actual period, and error ratio as a result of calculation from the selected count source and input frequency.

- [Period]

This box shows the actual time to be obtained by applying the optimum register value calculated from the specified period.

- [Error]

This box shows the error ratio of the actual time to the specified period.

- [Setting value]

This box shows the optimum register value calculated from the specified period.

[Operation during initialization]

Select [Operation start] or [Operation stop] for the timer operation immediately after the initial setting. The available settings depend on the microcomputer or timer resource.

[Counter clear function]

Select the counter clearing source. This item may be unselectable depending on the microcomputer type.

[Timer output]

Set up the timer pins. The available settings depend on the microcomputer. Table 4.4-9 shows the settings available for [Timer output].

Table 4.4-8	[Timer output]	settings
-------------	----------------	----------

Microcomputer	Item	Description
M16C/62p *1 M16C/28 *1	Pulse is output	Uses TAiOUT pin for input/output port
M16C/28B *1 M16C/29 *1	Pulse is not output	Uses TAiOUT pin for pulse output
SH7125 *2	Output retained	TIOCij(*4) output level is retained
	Initial output is 0, 0 output at compare	TIOCij(*4) initial output value is 0, 0 output at compare
	match *3	match
	Initial output is 0, 1 output at compare	TIOCij(*4) initial output value is 0, 1 output at compare
	match *3	match
	Initial output is 0, Toggle output at compare	TIOCij(*4) initial output value is 0, Toggle output at
	match *3	compare match

Initial output is 1, 0 output at compare	TIOCij(*4) initial output value is 1, 0 output at compare
match *3	match
Initial output is 1, 1 output at compare	TIOCij(*4) initial output value is 1, 1 output at compare
match *3	match
Initial output is 1, Toggle output at compare	TIOCij(*4) initial output value is 1, Toggle output at
match *3	compare match

*1 Valid only when timer A is selected

*2 Valid only when any of channel 0 to 4 is selected

*3 Selectable when periodic is selected as operation.

*4 i = 0 to 4, j = A to D

[Clock output function]

Leave this item unspecified.

[Auto reload function]

Specify whether to use the auto reload function. This item may be unselectable depending on the microcomputer type. Table 4.4-9 shows the settings available for [Auto reload function].

 Table 4.4-9 [Auto reload function] settings

Microcomputer	Item	Description
H8/3687 H8/36077 H8/36049 H8/36109	Do not use	The timer works as an interval timer. The counter starts counting up from 0. The overflow interval is determined by the frequency of the count source. The actual overflow interval differs from the value specified in [Period].
	Use	The timer works as an auto-reload timer. The load register is set to a value optimum for the specified period, and the counter overflows at the intervals shown in [Result of calculation]-[Period].

[Control to write to timer]

Set up the timer write control. This item may be unselectable depending on the microcomputer type. Table 4.4-10 shows the settings available for [Control to write to timer].

Table 4.4-10 [Control to write to timer] settings

Microcomputer	Item	Description
R8C/13 *1	Write only reload register	When writing to the prescaler or timer, value is written to
R8C/22-29 *2		the reload register only.
R8C/2A-2D *2	Write to both reload	When writing to the prescaler or timer, values are written
	register and counter	to both the reload register and counter.
H8S/20103,	Write to both reload	When writing to the prescaler or timer, values are written
20203, 20223	register and counter	to both the reload register and counter.

*1 Timer Y, Z

*2 Timer RA,RB

[Gate function]

Set up the gate function. This item may be unselectable depending on the microcomputer type or timer resource. Table 4.4-11 shows the settings available for [Gate function].

Microcomputer	Item	Description
M16C/62P *	Do not use gate function	Counts regardless of TailN pin input.
M16C/28-29 *	Count while input on the TailN pin is low	Counts while input on the TailN pin is low.
	Count while input on the TailN pin is	Counts while input on the TAiIN pin is high.
	high	

Table 4.4-11 [Gate function] settings

* Valid only when timer A is selected.

[A/D Converter Start]

Set up the A/D converter start request. This item may be unselectable depending on the microcomputer type. Table 4.4-12 shows the settings available for [A/D Converter Start].

Table 4.4-12 [A/D Converter Start] settings

Microcomputer	Item	Description
SH7125	Disabled A/D	Disables generation of A/D converter start request by TGRA
	converter start	compare match.
	request	
	Enable A/D converter	Enables generation of A/D converter start request by TGRA
	start request *	compare match. To start A/D conversion by a TGRA compare
		match, specify TGRA as a trigger in the A/D settings.

* Selectable when periodic is selected as operation.

[Interruption]

This item enables detection of overflow, underflow, and compare match interrupt occurrence. Select the interrupts to be detected and specify the interrupt priority levels; the user-created interrupt function will be called when an interrupt occurs. The following explains how to set each item.

- [Permit <interrupt type> interruption]

Select the check box for each interrupt type to detect occurrence of the corresponding interrupt. The detectable interrupts depend on the timer type.

- [<interrupt type> interruption level]

Specify the priority level for the enabled interrupt type. The priority may not be specified depending on the microcomputer or interrupt type.

- [Interrupt function name]

Specify the interrupt notification function to be called when the enabled interrupt occurs. When using an interrupt notification function, add to the user program the function with the name specified here. The declaration of the interrupt function is as follows.

Function Declaration void [specified notification function name](void);

[Generate batch source]

Select this check box to create the driver source code for all peripheral I/O modules when clicking on the [Setting] button.

[Setting]

Clicking on this button stores the settings and closes the dialog box. When [Generate batch source] is selected, the driver source code is created.

[Cancel]

Clicking on this button closes the dialog box without storing the settings.

4.4.2 Event Counter Mode

Table 4.4-13 shows the timer resources that can be set to the event counter mode in each microcomputer.

Series	Group	Timer resources
N16C/60	M16C/62p	A0-4, B0-5
M16C/Tiny	M16C/28,28B,29	A0-4, B0-2
R8C/Tiny	R8C/13	X,Y
	R8C/22-29, 2A-2D	RA
H8/300H Tiny	H8/3687, 36077, 36049, 36109	B1,V
SH/Tiny	SH7125	Channel 0-4
H8S/Tiny	H8S/20103, 20203, 20223	RA

Table 4.4-13	Timer Resources Supporting Event Counter Mode in Each Microcom	puter
	The first and supporting it the obtained in the second	-p

The following gives an overview of the event counter mode settings for each microcomputer.

- M16C/62P, M16C/28, 28B, 29

The counter in timer A or B counts the overflows or underflows in other timers or specified edges of the external signal.

Timer A can be set to an up-counter or a down-counter. An interrupt occurs when the counter underflows or overflows. It can be selected whether the reload register value is loaded to the counter at an overflow or an underflow. A desired value can be specified as the reload register value.

For timer B, underflow interrupts during counting-down can be detected. The reload register value is loaded to the counter at an underflow. A desired value can be specified as the reload register value.

- R8C/13

The counter counts down at specified edges of the external signal input to the CNTR0 pin. Underflow interrupts can be detected. The counter reloads the reload register value at an underflow interrupt and then it continues counting. A desired value can be specified as the reload register value.

- R8C/22 to 29, 2A to 2D, H8S/20103, 20203, 20223

The counter counts down at specified edges of the external signal input to the TRAIO pin. Underflow interrupts can be detected. The counter reloads the reload register value at an underflow interrupt and then it continues counting. A desired value can be specified as the reload register value.

- H8/3687, 36049, 36077, 36109

The counter in timer B1 or timer V counts up at specified edges of the external signal.

For timer B1, the interval timer or auto-reload timer operation can be selected. In interval timer operation, the counter starts counting up from 0; it overflows when the count source clock is input after the count reaches H'FF. In auto-reload timer operation, the timer load register value is loaded to the counter, and the counter starts counting up from that value. A desired value can be specified as the timer load register value. Each operation is available for detecting overflow interrupts.

In timer V, the counter starts counting up from 0 and continues counting until it overflows. Overflow interrupts can be detected.

- SH7125

The counter counts up with the external clock; the free-running or periodic counter operation is done as the basic timer operation in the SH7125.

In free-running operation, the counter continues counting up until it overflows. The overflow interval is determined by the frequency of the count source. Overflow interrupts can be detected.

In periodic counter operation, the counter is cleared by a compare match between the counter and the specified general register and then the counter restarts counting up. At a compare match, a compare match interrupt can be detected and a desired signal can be output from a pin. The general register value is calculated from the specified period and the frequency of the count source.

In channels 1 and 2, the timer can be set to an up-counter or a down-counter of phase differences between two pins (TCLKA and TCLKB in channel 1 or TCLKC and TCLKD in channel 2) in phase counting mode. In this case, counter overflow or underflow interrupts can be detected.

Figure 4.4-2 shows the [Event counter mode setting] dialog box.

Event counter mode setting		
Timer type: B1	Operation during initialization:	Operation start
Operation:	Counter clear function:	
Phase Counting Mode:	Output function:	Ţ
Count source: External signal	Auto reload function:	
Frequency of count source: MHz	Up/down switching cause:	
Clock edge:	Count direction:	
Setting value: Timer setting value 100	External event count polarity:	Falling edge
- Interruption	Control to write to timer:	Ţ
Enable Underflow interruption	Filter function:	··
Interruption function name: TimerIntFunc	Input pin:	
	Gate function:	Ŧ
Interruption priority level: 1	🔽 Generate batch source	ce(<u>M)</u> SettingCancel

Figure 4.4-2 [Event counter mode setting] dialog box

The following explains how to set each items.

[Timer type]

Select the timer resource to be set up. Selecting [No setting] allows the timer setting to be made with no resource being selected here and any resource can be assigned to the setting. Note that [No setting] is not available for the SH7125 or H8S/Tiny.

[Operation]

Specify the count operation. This item may be unselectable depending on the microcomputer type. Table 4.4-14 shows the settings available for [Operation].

 Table 4.4-14 [Operation] settings

Microcomputer	Item	Description	
SH7125	Free-running	The counter continues counting up until it overflows. The overflow	
		interval cannot be specified; it is determined by the frequency of the	
		count source.	
	Periodic	The counter is cleared by a compare match with the general	
		register. A compare match can be generated at specified intervals.	
	Phase Counting	The counter counts up or down upon detecting phase differences	
	Mode *	between TCLKA and TCLKB in channel 1 or TCLKC and TCLKD in	
		channel 2.	

* Selectable when channel 1 or 2 is selected.

[Phase Counting Mode]

This item can be specified only when the phase counting mode is specified for [Operation] in channel 1 or 2 in the SH7125. Table 4.4-15 shows the each phase counting mode setting.

Table 4.4-15	[Phase Counting Mode] settings
--------------	--------------------------------

Microcomputer	Item	Description
SH7125 *	Phase Counting Mode 1	Select a mode. Table 4.4.15 shows the counting
	Phase Counting Mode 2	conditions in each mode.
	Phase Counting Mode 3	
	Phase Counting Mode 4	

* Valid only when phase counting mode is selected as operation.

Table 4.4-16 Up/Down-Count Conditions in Phase Counting Mode (SH7125)

Mode	TCLKA(Channel 1)	TCLKB(Channel 1)	Operation
	TCLKC(Channel 2)	TCLKD(Channel 2)	
Phase Counting Mode 1	High level	Rising edge	Up-count
	Low level	Falling edge	
	Rising edge	Low level	
	Falling edge	High level	
	High level	Falling edge	Down-count
	Low level	Rising edge	
	Rising edge	High level	
	Falling edge	Low level	
Phase Counting Mode 2	High level	Rising edge	Don't care
	Low level	Falling edge	Don't care
	Rising edge	Low level	Don't care
	Falling edge	High level	Up-count
	High level	Falling edge	Don't care
	Low level	Rising edge	Don't care
	Rising edge	High level	Don't care
	Falling edge	Low level	Up-count
Phase Counting Mode 3	High level	Rising edge	Don't care
	Low level	Falling edge	Don't care
	Rising edge	Low level	Don't care
	Falling edge	High level	Up-count
	High level	Falling edge	Down-count
	Low level	Rising edge	Don't care
	Rising edge	High level	Don't care
	Falling edge	Low level	Don't care
Phase Counting Mode 4	High level	Rising edge	Up-count
	Low level	Falling edge	
	Rising edge	Low level	Don't care
	Falling edge	High level	
	High level	Falling edge	Down-count
	Low level	Rising edge	
	Rising edge	High level	Don't care
	Falling edge	Low level	

[Count source]

Select the target event to be counted.

[Frequency of count source]

Leave this item unspecified.

[Clock edge]

Select the edge of the clock to be counted when the external signal is selected as the target event.

[Setting value]

Specify the value to be set to each register. The necessary settings depend on the microcomputer type. Table 4.4-17 shows the necessary settings for each microcomputer.

Microcomputer	Set value	Description
M16C/62p	Timer setting value	Counter reload value
M16C/28,28B,29	Timer setting value	Counter reload value
R8C/13	Prescaler setting	Prescaler (X or Y) register reload value
	value	
	Timer setting value	Timer (X or Y) register reload value
R8C/22-29, 2A-2D	Prescaler setting	Timer RA prescaler register reload value
	value	
	Timer setting value	Timer RA timer register reload value
H8/3687, 36077, 36049, 36109 *1	Reload value	Counter reload value
SH7125 *2	Comparative value	General register value
H8S/20103, 20203, 20223	Prescaler setting	Timer RA prescaler register reload value
	value	
	Timer setting value	Timer RA timer register reload value

Table 4.4-17 [Setting value] settings

*1 Valid only when timer B1is selected.

*2 Valid only when periodic is selected as operation.

[Interruption]

This item enables detection of overflow, underflow, and compare match interrupt occurrence. Select the interrupts to be detected and specify the interrupt priority levels; the user-created interrupt function will be called when an interrupt occurs. The following explains how to set each item.

- [Permit <interrupt type> interruption]

Select the check box for each interrupt type to detect occurrence of the corresponding interrupt. The detectable interrupts depend on the timer type.

- [<interrupt type> interruption level]

Specify the priority level for the enabled interrupt type. The priority may not be specified depending on the microcomputer or interrupt type.

- [Interrupt function name]

Specify the interrupt notification function to be called when the enabled interrupt occurs. When using an interrupt notification function, add to the user program the function with the name specified here. The declaration of the interrupt function is as follows.

F	unction Declaration
	void [specified notification function name](void);

[Operation during initialization]

Select [Operation start] or [Operation stop] for the timer operation immediately after the initial setting. The available settings depend on the microcomputer or timer resource.

[Counter clear function]

Select the source for clearing the counter. This item may be unselectable or the available settings may differ depending on the microcomputer or selected timer operation.

[Output function]

Set up the timer pins. The available settings depend on the microcomputer. Table 4.4-19 shows the settings available for [Timer output].

Microcomputer	Item	Description
M16C/62p *1	Pulse is output	Uses TAiOUT pin for input/output port
M16C/28 *1		
M16C/28B *1	Pulse is not output	Uses TAiOUT pin for pulse output
M16C/29 *1		
R8C/22-29,	Pulse is output	Uses TRAO pin for input/output port
R8C/2A-2D	Pulse is not output	Uses TRAO pin for pulse output
SH7125 *2	Output retained	TIOCij(*4) output level is retained
	Initial output is 0, 0 output at compare	TIOCij(*4) initial output value is 0, 0 output at compare
	match *3	match
	Initial output is 0, 1 output at compare	TIOCij(*4) initial output value is 0, 1 output at compare
	match *3	match
	Initial output is 0, Toggle output at compare	TIOCij(*4) initial output value is 0, Toggle output at
	match *3	compare match
	Initial output is 1, 0 output at compare	TIOCij(*4) initial output value is 1, 0 output at compare
	match *3	match
	Initial output is 1, 1 output at compare	TIOCij(*4) initial output value is 1, 1 output at compare
	match *3	match
	Initial output is 1, Toggle output at compare	TIOCij(*4) initial output value is 1, Toggle output at
	match *3	compare match
H8S/20103,	Pulse is output	Uses TRAO pin for input/output port
H8S/20203,	Pulse is not output	Uses TRAO pin for pulse output
H8S/20223		

Table 4.4-18 [Timer output] settings

*1 Valid only when timer A is selected

*2 Valid only when any of channel 0 to 4 is selected

*3 Selectable when periodic is selected as operation.

*4 i= 0 to 4, j= A to D

[Auto reload function]

Specify whether to use the auto reload function. This item may be unselectable depending on the microcomputer type. Table 4.4-19 shows the settings available for [Auto reload function].

Microcomputer	Item	Description
M16C/62p *1 M16C/28,28B,29 *1	Do not use	The counter does not reload the reload register value when it overflows or underflows.
H8/3687,36077,36049,36109 *2	Use	The counter reloads the reload register value when it overflows or underflows, and then it continues counting.

*1 Valid only when timer A is selected

*2 Valid only when timer B1 is selected

[Up/down switching cause]

Select how to specify the count direction. This item may be unselectable depending on the microcomputer type or timer resource. Table 4.4-20 shows the settings available for [Auto reload function].

Table 4.4-20	[Up/down switching cause] settings
--------------	------------------------------------

Microcomputer	Item	Description
M16C/62pl * M16C/28,28B,29 *	UDF register The count direction is determined by the UDF register value. When the UDF register is selected, the count direction can be switched by a program; counting-up or counting-down can be selected in [Count direction], which is described later.	
	Input signal to TAiOUT pin	The count direction is determined by external signal TAiOUT. When a low level is input to the TAiOUT pin, the counter counts down; when a high level is input, the counter counts up.

*1 Valid only when timer A is selected

[External event count polarity]

Select the rising edge, falling edge, or both edges as the clock edge used for counting when the external signal is selected as the target event. This item may be unselectable or the available settings may differ depending on the microcomputer or selected timer resource.

[Control to write to timer]

This item controls write access to the registers. This item may be unselectable depending on the microcomputer type. Table 4.4-21 shows the settings available for [Control to write to timer].

Table 4.4-21 [Control to write to timer] settings

Microcomputer	Item	Description
R8C/13 *	Write only reload register	When writing to the prescaler or timer, value is written to the reload register only.
	Write to both reload register and counter	When writing to the prescaler or timer, values are written to both the reload register and counter.
R8C/22-29 * R8C/2A-2D *	Write to both reload register and counter	When writing to the prescaler or timer, values are written to both the reload register and counter.
H8S/20103, H8S/20203, H83/20223	Write to both reload register and counter	When writing to the prescaler or timer, values are written to both the reload register and counter.

* Valid only when timer Y is selected

[Filter function]

Select the sampling frequency for the filter when the filter function is used. This item may be unselectable depending on the microcomputer type.

[Input pin]

Select the input pin for external signals This item may be unselectable depending on the microcomputer type.

[Gate function]

Set up the gate function. This item may be unselectable depending on the microcomputer type or timer resource. Table 4.4-22 shows the settings available for [Gate function].

 Table 4.4-22
 [Gate function] settings

Microcomputer	Item	Description
H8S/20103,	Do not use gate function	The gate function will not be used.
H8S/20203, H83/20223	Count while input on the IRQ2 pin is high	An external event input is enabled when the IRQ2 pin is at a high level.

[Generate batch source]

Select this check box to create the driver source code for all peripheral I/O modules when clicking on the [Setting] button.

[Setting]

Clicking on this button stores the settings and closes the dialog box. When [Generate batch source] is selected, the driver source code is created.

[Cancel]

Clicking on this button closes the dialog box without storing the settings.

4.4.3 Pulse Width Modulation Mode

Table 4.4-23 shows the timer resources that can be set to the pulse width modulation mode in each microcomputer.

Series	Group	Timer resources
N16C/60	M16C/62p	A0-4
M16C/Tiny	M16C/28,28B,29	A0-4
R8C/Tiny	R8C/13	Y,Z
	R8C/22-29, 2A-2D	RB
H8/300H Tiny	H8/3687, 36077, 36049, 36109	V
SH/Tiny	SH7125	Channel 0-4
H8S/Tiny	H8S/20103, 20203, 20223	RB

 Table 4.4-23
 Timer Resources Supporting Event Counter Mode in Each Microcomputer

The following gives an overview of the pulse width modulation mode settings for each microcomputer.

- M16C/62P, M16C/28, 28B, 29

Timer A outputs PWM waveforms from the TAiOUT pin in succession in pulse width modulation mode (PWM mode). The counter functions as a 16-bit pulse width modulator or an 8-bit pulse width modulator. The timer generates a waveform with the specified period and high-level width. Interrupts at the falling edges of the PWM pulse (at the end of the high-level duration) can be detected.

- R8C/13

Timer Y or Z outputs PWM waveforms in succession in programmable waveform generation mode. In this mode, the signal output from the CNTR1 or TZOUT pin is inverted every time the counter underflows, while the values in the timer primary register and timer secondary register are counted alternately. The timer primary register and timer secondary register are automatically calculated from the specified period and duty. Timer Y or Z interrupts generated at the end of the secondary period can be detected.

- R8C/22 to 29, 2A to 2D, H8S/20103, 20203, 20223

Timer RB outputs PWM waveforms in succession in programmable waveform generation mode. In this mode, the signal output from the TRBO pin is inverted every time the counter underflows, while the values in the timer primary register and timer secondary register are counted alternately. The timer primary register and timer secondary register values are automatically calculated from the specified period and duty. Timer RB interrupts generated at the end of the secondary period can be detected.

- H8/3687, 36049, 36077, 36109

Timer V generates pulses with a desired duty cycle by controlling the output through a compare match between time constant registers A and B and the counter. The values of timer constant registers A and B are automatically calculated from the specified period and duty. Time constant register B is always used as the period setting register in this mode. Compare match interrupts (CMFB and CMFA) generated by time constant registers A and B can be detected.

- SH7125

The timer outputs PWM waveforms from output pins in the PWM mode in the SH7125. A maximum of 8-phase PWM waveforms in the range of 0% to 100% duty can be generated by selecting the output level as 0, 1, or toggle output in response to a compare match of each TGR.

The settings in the pulse width modulation mode dialog box differ between the SH7125 and other microcomputers; the following describes each dialog box separately.

(1) SH7125

Table 4.4-3 shows the	[Pulse width	modulation	mode setting]	dialog bo	ox for SH7125

Pulse width modulation mode setting	
Timer type: 0	Counter clear function: Clears by GRA compare match
Pwm mode selection: Mode 2	Channel used I GRA I GRB I GRC I GRD
Count source: MPf/1	GRA GRB GRC GRD
Frequency of count source: 20.000000 MHz	Time till compare match: 0.040000 ms Practical time: 0.040000 ms
Clock edge: Rising edge	GRB setting 799
	Initial output: 0 output
	Output waveform: Toggle output
	Interruption 🔽 Enable Compare matching interruption
	Interruption function name: TimerIntFunc
	Interruption priority level: 15
	Output waveform width / nerind
	Period: GRA
Operation during initialization: Operation stop	(Frequency: GRD
Timer synchronization: Operate independently	20000.0000C Hz)
Output pin select:	Duty: TIOCIA
External trigger polarity:	
External trigger (Count start conditions):	Generate batch source(M)
Output function: 🔤	Setting Cancel

Figure 4.4-3 Pulse width modulation mode setting dialog box (SH7125)

Note: General register names GRA, GRB, GRC, and GRD used in the dialog box and the following description correspond to TGRA, TGRB, TGRC, and TGRD in the SH7125.

[Timer type]

Select the timer resource to be set up.

[PWM mode selection]

Select the PWM mode. Table 4.4-24 shows the settings available for [PWM mode selection].

Table 4.4-24 [PWM mode selection] settings

Item	Description
Mode 1	PWM waveforms are output from the TIOCA and TIOCC pins by pairing TGRA with TGRB and TGRC with TGRD. The values specified in GRA and GRC are output as the initial values from the TIOCA and TIOCC pins. Specified values are output from the TIOCA pin at compare matches specified in TGRA and TGRB and output from the TIOCC pin at compare matches specified in TGRC and TGRD. The TGR specified as the counter clearing source works as the period setting register. Independent operation or synchronous operation can be specified between channels.
Mode 2	PWM waveforms are output using one TGR as the period setting register and the others as duty registers. At a compare match specified in each TGR, a specified value is output from the pin assigned to that TGR. Upon counter clearing by a compare match with the TGR specified as the period setting register, the value output from each pin changes to the initial value set in the corresponding TGR. Independent operation or synchronous operation can be specified between channels.

Peripheral Driver Generator

[Count source]

Select the count source for the counter.

[Frequency of count source]

This box shows the frequency of the selected count source.

[Clock edge]

Select the clock edge to be used for count. This item may be unselectable depending on the microcomputer type.

[Operation during initialization]

Select [Operation start] or [Operation stop] for the timer operation immediately after the initial setting. The available settings depend on the microcomputer or timer resource.

[Timer synchronization]

Specify synchronous operation between channels. Table 4.4-25 shows the settings for [Timer synchronization].

Item	Description
Operate	The channel operates independently of the others. Specify a TGR in the channel as the
independently	counter clearing source in [Counter].
Master of timer	The channel operates in synchronization with other channels. The counter clearing source
synchronous	specified in [Counter] also clears the counters in the other synchronized channels.
operation	
Performs	This setting can be selected only when [Master of timer synchronous operation] is selected
synchronous	in another channel. The counter is cleared by the counter clearing source specified in the
operation	channel set as [Master of timer synchronous operation]. Only [Clear synchronization] can be
	selected as the counter clearing source in [Counter clear function].

Table 4.4-25 [Timer synchronization] settings

[Output pin select]

Leave this item unspecified.

[External trigger polarity]

Leave this item unspecified.

[External trigger (Count start conditions)]

Leave this item unspecified.

[Output function]

Leave this item unspecified.

[Counter clear function]

Specify the counter clearing source. Table 4.4-26 shows the settings for [Timer synchronization].

Table 4.4-26 [Timer synchronization] settings

Item	Description
Clears by GRA compare match	The selected TGR in the channel works as the counter clearing source.
Clears by GRB compare match	When [Master of timer synchronous operation] is selected in [Timer
Clears by GRC compare match *1	synchronization], the specified TGR also works as the counter clearing
Clears by GRD compare match *2	source for the other synchronized channels.
Clear synchronization *2	This setting is always selected automatically when [Performs synchronous
	operation] is selected in [Timer synchronization]. The counter is cleared by
	the counter clearing source in the channel set as [Master of timer
	synchronous operation] in [Timer synchronization].

*1 These settings are not available in channels 1 and 2.

*2 This setting is available only when [Performs synchronous operation] is selected in [Timer synchronization].

Peripheral Driver Generator

[Channel used]

Select the TGRs to be used for PWM waveform generation. The TGR selected in [Counter] is automatically selected. In PWM mode 1, TGRA operates in pair with TGRB, and TGRC operates in pair with TGRD. Selecting a TGR opens the tab for setting up that TGR; make necessary detailed settings in the tab.

TGR setting tab

The tabs for setting up the TGRs selected in [Channel used] are shown. Specify the following TGR-related items.

- [Time till compare match]

Specify the time between the start of counting and a compare match. From the time specified here and the frequency of the count source, an optimum TGR value is calculated.

- [Practical time]

This box shows the actual time between the start of counting and a compare match, which is calculated from the TGR value and the frequency of the count source.

- [GRi setting] (i: A, B, C, or D)

This box shows the TGR value calculated from the time specified in [Time till compare match] and the frequency of the count source. If this value falls outside the allowed setting range, the settings in this dialog box are not applied when the [Setting] button is clicked. This value is written to the corresponding register when the driver source code created according to this dialog box setting is used.

- [Initial output]

Specify the initial value to be output from the pin assigned to the TGR.

- [Output waveform]

Specify the value to be output at a compare match from the pin assigned to the TGR.

- [Interruption]

This item enables detection of compare match interrupt occurrence. Select this item and specify the interrupt priority levels; the user-created interrupt function will be called when an interrupt occurs.

[Enable Compare matching interruption]

Select the check box to detect occurrence of the compare match interrupt.

[Interruption function name]

Specify the interrupt notification function to be called when the enabled interrupt occurs. When using an interrupt notification function, add to the user program the function with the name specified here. The declaration of the interrupt function is as follows.

Function Declaration void [specified notification function name](void);

[Interruption priority level]

Specify the compare match interrupt priority level when enabling the compare match interrupt in the TGR setting tab. The priority level setting is shared by all TGR setting tabs.

[Output waveform width / period]

The information of PWM pulse generated by the above settings are shown here.

- [Period]

This box shows the period of PWM pulse.

- [Frequency]

This box shows the frequency of PWM pulse.

- [Duty]

Leave this item unspecified.

- Waveform display area

The PWM waveform to be generated is displayed. Figure 4.4-4 and Figure 4.4-5 are examples of display.

Figuro 1 1 1	Example of DWM	nulso display	(PWM Mode 1)
r igure 4.4-4	Example of PWM	puise display	(P w w w would t)

Figure 4.4-5 Example of PWM pulse display (PWM Mode 2)

[Generate batch source]

Select this check box to create the driver source code for all peripheral I/O modules when clicking on the [Setting] button.

[Setting]

Clicking on this button stores the settings and closes the dialog box. When [Generate batch source] is selected, the driver source code is created.

RENESAS

[Cancel]

Clicking on this button closes the dialog box without storing the settings.

(2) M16C/60, M16C/Tiny, R8C/Tiny, H8/300H Tiny, and H8S/Tiny

Figure 4.4-6 shows the [Pulse width modulation mode setting] dialog box for M16C/60, M16C/Tiny, R8C/Tiny, H8/300H Tiny, and H8S/Tiny.

Pulse width modulation mode setting	×
Timer type: Y	Counter clear function:
Count source: 11 Frequency of count source: 20.000000 MHz Clock edge:	Time till compare match:ms Practical time:ms Setting value:
Interruption Enable Underflow interruption Interruption priority level: 7	Initial output:
Interruption function name: TimerIntFunc	Output waveform width / period Period: 12 The values in this frame are set.
Operation during initialization: Operation start	(Frequency: Period: 1.200000 833.33333 Hz) Setting value: Prescaler setting value 124 Duty: Timer setting value(primary) 95
External trigger polarity:	Timer setiting value(secondary) 95
Output function: Primary period "H" output - Secondary period "L" output -	"L" output at timer stop Cancel Cancel

Figure 4.4-6 Pulse width modulation mode setting dialog box (M16C/60, M16C/Tiny, R8C/Tiny, H8/300H Tiny and H8S/Tiny)

[Timer type]

Select the timer resource to be set up. Selecting [Timer type none] allows the timer setting to be made with no resource being selected here and any resource can be assigned to the setting. Note that [Timer type none] is not available for the H8S/Tiny.

[Count source]

Select the count source for the counter.

[Frequency of count source]

This box shows the frequency of the selected count source.

[Clock edge]

Leave this item unspecified.

[PWM mode selection]

Specify the operation of the pulse width modulator. The available output pulses depend on the operation of the pulse width modulator. The available settings depend on the microcomputer. Table 4.4-27 shows the settings available for [PWM mode selection].

RENESAS

Microcomputer	Item	Description
M16C/62P	Function as a 16-bit	The following gives "H" width and the period of the period.
M16C/28,28B,29	pulse width modulator	High level width : n / fj
		n : set value of TAi register (i=o to 4) *
		Cycle time : (2 ¹⁶ -1) / fj fixed
		fj: count source frequency (f1, f2, f8, f32, fC32)
	Function as an 8-bit	The following gives "H" width and the period of the period.
	pulse width modulator	High level width : n x (m+1) / fj
		n : set value of TAi register high-order address *
		Cycle time (28-1) x (m+1) / fj
		m : set value of TAi register low-order address *

Table 4.4-27M mode selection] settings

* Each register value will be automatically calculated in [Result of calculation], which is described later.

[Interruption]

This item enables detection of interrupt occurrence. Select the interrupts to be detected and specify the interrupt priority levels; the user-created interrupt function will be called when an interrupt occurs. The following explains how to set each item.

- [Enable <interrupt type> interruption]

Select the check box for each interrupt type to detect occurrence of the corresponding interrupt. The detectable interrupts depend on the timer type. Table 4.4-30 shows the interrupt types that can be enabled in each microcomputer.

Table 4.4-28	Available Interrupt Types in Each Microcomputer
--------------	---

	1	
Microcomputer	Interrupt Type	Description
M16C/62P	Interrupt at PWM	This interrupt is issued at the falling edge of the PWM
M16C/28,28B,29	pulse falling edge	pulse after the high-level period.
R8C/13	Underflow interrupt	This interrupt is issued at an underflow in the
R8C/22-29,		secondary period; that is, at the same time as the
R8C/2A-2D		change in the signal output from the pin at the end of
		the secondary period.
H8/3687,36077	Compare match A	This interrupt is issued at a compare match between
H8/36049,36109	interrupt	time constant register A and timer counter.
	Compare match B	This interrupt is issued at a compare match between
	interrupt	time constant register B and timer counter.
H8S/20103,	Underflow interrupt	This interrupt is issued at an underflow in the
H8S/20203,		secondary period; that is, at the same time as the
H8S/20223		change in the signal output from the pin at the end of
		the secondary period.

- [<interrupt type> interruption level]

Specify the priority level for the enabled interrupt type. The priority may not be specified depending on the microcomputer or interrupt type.

- [Interrupt function name]

Specify the interrupt notification function to be called when the enabled interrupt occurs. When using an interrupt notification function, add to the user program the function with the name specified here. The declaration of the interrupt function is as follows.

Function Declaration void [specified notification function name](void);

[Operation during initialization]

Select [Operation start] or [Operation stop] for the timer operation immediately after the initial setting. The available settings depend on the microcomputer or timer resource.

[Timer synchronization]

Leave this item unspecified.

[Output pin select]

Select the pins to be used for pulse output. This item may be unselectable depending on the microcomputer type and the selected serial communication resource. Table 4.4-29 shows the settings available for [Output pin select].

Table 4.4-29 [Output pin select] settings

Microcomputer	Item	Description
R8C/26,27	P3_0	Uses P3_0 pin for pulse output
	P1_3	Uses P1_3 pin for pulse output

[External trigger polarity]

Select the effective edge when external trigger is selected in [External trigger (Count start conditions)]. The available settings depend on the microcomputer.

[External trigger (Count start conditions)]

Specify the count start conditions. The available settings depend on the microcomputer.

[Output function]

This item specifies the output waveform. The available settings depend on the microcomputer. Table 4.4-30 shows the settings available for [Output pin select].

Table 4.4-30	[Output function]	settings
--------------	-------------------	----------

Microcomputer	Item	Description
M16C/62p	Pulse is output	Pulse is output
M16C/28,28B,29		Outputs "H" for primary period
		(TAiOUT pin functions as a pulse output
		pin)
	Pulse is not output	Pulse is not output
		(TAiOUT pin functions as I/O port)
R8C/13,22-29	Outputs "H" for primary period	Specify the output level during primary and
R8C/2A-2D	Outputs "L" for secondary period	secondary periods.
	Outputs "L" w hen the timer is stopped	
	Outputs "L" for primary period	
	Outputs "H" for secondary period	
	Outputs "H" w hen the timer is stopped	
H8/3687,36077	Outputs "H" for primary period	Specify the output level during primary and
H8/36049,36109	Outputs "L" for secondary period	secondary periods.
	Outputs "L" for primary period	
	Outputs "H" for secondary period	
H8S/20103,	Outputs "H" for primary period	Specify the output level during primary and
H8S/20203,	Outputs "L" for secondary period	secondary periods.
H8S/20223	Outputs "L" w hen the timer is stopped	
	Outputs "L" for primary period	
	Outputs "H" for secondary period	
	Outputs "H" w hen the timer is stopped	

RENESAS

[Output waveform width/period]

Specify the PWM waveform to be generated.

- [Period]

Specify the period of the output waveform.

- [Frequency]

This box shows the frequency of the output waveform.

- [Duty]

Specify the duty of the output waveform; that is, the ratio of the primary period to the waveform period.

- [Result of calculation]

The optimum register values calculated from the [Period] and [Duty] values and the frequency of the count source are shown here.

[Period]

This box shows the actual period when the calculated register values are applied.

[Setting value]

Each register value is calculated from the [Period] and [Duty] values and shown here. If a register value falls outside the allowed setting range, the settings in this dialog box are not applied when the [Setting] button described later is clicked. Each value is written to the corresponding register when the driver source code created according to this dialog box setting is used. The necessary register settings depend on the microcomputer type.

[Generate batch source]

Select this check box to create the driver source code for all peripheral I/O modules when clicking on the [Setting] button.

[Setting]

Clicking on this button stores the settings and closes the dialog box. When [Generate batch source] is selected, the driver source code is created.

[Cancel]

Clicking on this button closes the dialog box without storing the settings.

4.4.4 Pulse Period Measurement Mode

Table 4.4-31 shows the timer resources that can be set to the pulse period measurement mode in each microcomputer.

Microcomputer Series	Microcomputer Group	Timer Resource
N16C/60	M16C/62p	B0-5
M16C/Tiny	M16C/28,28B,29	B0-2
R8C/Tiny	R8C/13	Х
	R8C/22-29, 2A-2D	RA
H8/300H Tiny	H8/3687, 36077	Z0,Z1
	36049	W,Z0,Z1
	36109	RC,RD0-3
SH/Tiny	SH7125	Channel 0-5
H8S/Tiny	H8S/20103, 20203, 20223	RA

 Table 4.4-31
 Timer Resources Supporting Pulse Period Measurement Mode in Each Microcomputer

The following gives an overview of the pulse period measurement mode settings for each microcomputer.

- M16C/62P, M16C/28, 28B, 29

Timer B measures the period of the external signal pulse in pulse period measurement mode. The counter starts counting up from 0 and transfers the count value to the reload register at an effective edge of the measurement pulse. At this time, the counter is cleared to 0 and then continues counting up. The period of the input pulse can be calculated from the transferred reload register value and the period of the count source. When an effective edge of the measurement pulse is input or the counter overflows, an interrupt can be detected.

- R8C/13, 22 to 29, 2A to 2D, H8S/20103, 20203, 20223

Timer RA (timer X in the R8C/13) measures the period of the external signal pulse in pulse period measurement mode. The counter reloads the reload register value and starts counting-down. It stores the counter value in the read-out buffer when an effective edge is input. The period of the input pulse can be calculated from the buffer value, reload value, and the period of the count source. When the counter underflows or reloads a value, a timer RA interrupt (a timer X interrupt in R8C/13) can be detected.

- H8/3687, 36049, 36077, 36109

The basic functions are the same for timers Z, W, RC, and RD. Each timer measures the period of the external signal pulse by using the input capture function. Upon detecting an effective edge, the timer transfers the counter value to the general register assigned to the target pin. The counter clearing source cannot be specified in this mode; the counter is not cleared and continues counting up. At the next effective edge, the timer transfers the counter value again to the general register. The period of the input pulse can be calculated from the difference between the counter values obtained at two detection edges and the period of the count source. Counter overflow interrupts can be detected.

- SH7125

The timer transfers the counter value to the general register assigned to the external signal input pin when an effective edge is detected. Setting the counter clearing source to the input capture in the general register assigned to the pulse input pin causes the counter to be cleared when an effective edge is detected. The period of the input pulse can be calculated from the obtained general register value and the period of the counter overflow interrupts and input capture interrupts for the measurement pin can be detected.

Pulse period measurement mode setting				
Timer type: RA	Operation during initialization:	Operation start	•	
Count source: f1	Counter clear function: Effective edge of measuremen	∫ ht pulse:		
Frequency of count source: 20.000000 MHz	Measurement between a risin	g edge and the next rising edge of measured pulse	-	
Period: 20 µs	Input pin:	Set P1_7 for TRAID pin		
Result of calculation The values in this frame are set. Period: 20.000000 μs (Error: 0.000000 %) Setting value: Prescaler setting value 199 Timer setting value 1	Gate function: Interruption ✓ Enable Underflow interr Interruption priority level: Interruption function name: ✓ Gene	7 .		

Figure 4.4-7 shows the [Pulse Period Measurement Mode] dialog box.

Figure 4.4-7 [Pulse Period Measurement Mode] dialog box

[Timer type]

Select the timer resource to be set up. Selecting [Timer type none] allows the timer setting to be made with no resource being selected here and any resource can be assigned to the setting. Note that [Timer type none] is not available for the SH7125 or H8S/Tiny.

[Count source]

Select the count source for the counter.

[Frequency of count source]

This box shows the frequency of the selected count source.

[Clock edge]

Select the clock edge to be used for count. This item may be unselectable depending on the microcomputer type.

[Period]

Specify the period of underflow. The available settings depend on the microcomputer. Table 4.4-32 shows the settings available for [Period].

Table 4.4-32	[Period]	setting
--------------	----------	---------

Microcomputer	Description
R8C/13,22-29,2A-2D	Specify the period until the counter underflows. The optimum register values for the
H8S/20103, 20203,	prescaler and timer are calculated from the specified value and the frequency of the count
20223	source and shown in [Result of calculation] described below. When the counter
	underflows or an effective edge is detected, the counter reloads the calculated value and
	continues counting-down.

[Result of calculation]

The optimum register values are calculated from the specified [Period] value and shown here. This item is not displayed depending on the CPU type.

[Period]

This box shows the actual time to be obtained by applying the optimum register values calculated from the specified period.

[Error]

This box shows the error ratio of the actual time to the specified period.

[Setting value]

This box shows the optimum register values calculated from the specified period. The registers shown here depend on the microcomputer type. Table 4.4-33 shows the register settings.

Microcomputer	Item	Description
R8C/13,22-29,2A-2D H8S/20103, 20203, 20223	Prescaler	Prescaler value used for counting-up. The measurement pulse should be longer than twice the prescaler period.
	Timer	Value to be reloaded when the counter underflows or an effective edge is detected.

Table 4.4-33 [Setting value] settings

[Operation during initialization]

Select [Operation start] or [Operation stop] for the timer operation immediately after the initial setting.

[Counter clear function]

Select the source for clearing the counter. The available settings depend on the microcomputer. Table 4.4-34 shows the settings available for [Counter clear function].

 Table 4.4-34
 [Counter clear function] settings

Microcomputer	Item	Description
SH7125	GRx input capture (x: A to D,U,V,W)	The input capture in the selected general register is used as the counter clearing source. Specifying the target pin in [Input pin], which is described later, causes the counter value to be saved in the general register and then cleared to 0 when an effective edge of the measurement pulse is input to the pin.

[Effective edge of measurement pulse]

Select [Measurement between a rising edge and the next rising edge of measured pulse] or [Measurement between a falling edge and the next falling edge of measured pulse] as the range of pulse period measurement.

[Filter function]

Select the sampling frequency for the filter when the filter function is used. This item may be unselectable depending on the microcomputer type. Table 4.4-35 shows the settings available for [Filter function].

Table 4.4-35	[Filter function] settings
--------------	------------------	------------

Microcomputer	Item	Description
R8C/22-29	No digital filter	The filter function is not used.
R8C/2A-2D	f1	The external signal is sampled with the frequency of
H8S/20103,	f8	the selected signal. When the same value is sampled
20203, 20223	f32	three consecutive times, it is detected as the correct
H8/36109	f1	input signal.
	f8	
	f32	
	Same as count source	

[Input pin]

Select the input pin for pulse. This item may be unselectable depending on the microcomputer type. Table 4.4-36 shows the settings available for [Input pin].

Microcomputer	Item	Description
R8C/22-29	Set P1_7 for TRAIO pin	The period of the pulse input through the selected pin is
R8C/2A-2D	Set P1_5 for TRAIO pin	measured.
H8/3687	Measurement input from	The period of the pulse input through the FTIOA(i) (i:
H8/36077	FTIOA(i) pin	channel) pin is measured. When an effective edge is
H8/36049 H8/36109		detected, the counter value is transferred to GRA.
110/30109	Measurement input from	The period of the pulse input through the FTIOB(i) (i:
	FTIOB(i) pin	channel) pin is measured. When an effective edge is
		detected, the counter value is transferred to GRB.
SH7125	TIOCixA input pulse	The period of the pulse input through the selected pin is
	(GRx)	measured. When an effective edge is detected, the counter
	(x:A to D,U,V,W)	value is transferred to the corresponding general register
		(GRx).

Table 4.4-36 [Input pin] settings

[Gate function]

Set up the gate function. This item may be unselectable depending on the microcomputer type or timer resource. Table 4.4-37 shows the settings available for [Gate function].

Table 4.4-37[Gate function] settings

Microcomputer	Item	Description
H8S/20103,	Do not use gate function	The gate function will not be used.
H8S/20203,	Count while input on the	An external event input is enabled when the IRQ2
H83/20223	IRQ2 pin is high	pin is at a high level.

[Interruption]

This item enables detection of interrupt occurrence. Select the interrupts to be detected and specify the interrupt priority levels; the user-created interrupt function will be called when an interrupt occurs. The following explains how to set each item.

- [Enable <interrupt type> interrupt]

Select the check box for each interrupt type to detect occurrence of the corresponding interrupt. The detectable interrupts depend on the timer type. Table 4.4-38 shows the interrupt types that can be enabled in each microcomputer.

Table 4.4-38 Available Interrupt Types in Each Microcomputer

Microcomputer	Interrupt Type	Description
M16C/62P M16C/28,28B,29	Interrupt at overflow / effective edge input	This interrupt is issued when an effective edge of the measurement pulse is input or
100/20,200,20	chective edge input	the counter overflows.
R8C/13,22-29, 2A-2D	Underflow interrupt	This interrupt is issued when the counter
H8S/20103, 20203, 20223		underflows or an effective edge is input.
H8/3687,36077	Overflow interrupt	This interrupt is issued when the counter
H8/36049,36109		overflows.

SH7125	Overflow interrupt	This interrupt is issued when the counter overflows.
	Input capture interrupt	This interrupt is issued when an input
		capture occurs (an effective edge is input)
		on the measurement pin.

- [<interrupt type> interruption level]

Specify the priority level for the enabled interrupt type. The priority may not be specified depending on the microcomputer or interrupt type.

- [Interrupt function name]

Specify the interrupt notification function to be called when the enabled interrupt occurs. When using an interrupt notification function, add to the user program the function with the name specified here. The declaration of the interrupt function is as follows.

Fund	ction Declaration
	void [specified notification function name](void);

[Generate batch source]

Select this check box to create the driver source code for all peripheral I/O modules when clicking on the [Setting] button.

[Setting]

Clicking on this button stores the settings and closes the dialog box. When [Generate batch source] is selected, the driver source code is created.

[Cancel]

Clicking on this button closes the dialog box without storing the settings.

4.4.5 Pulse Width Measurement Mode

Table 4.4-39 shows the timer resources that can be set to the pulse width measurement mode in each microcomputer.

Microcomputer Series	Microcomputer Group	Timer Resource
N16C/60	M16C/62p	B0-5
M16C/Tiny	M16C/28,28B,29	B0-2
R8C/Tiny	R8C/13	X
	R8C/22-29, 2A-2D	RA
H8/300H Tiny	H8/3687, 36077	Z0,Z1
	36049	W,Z0,Z1
	36109	RC,RD0-3
SH/Tiny	SH7125	Channel 0-5
H8S/Tiny	H8S/20103, 20203, 20223	RA

 Table 4.4-39
 Timer Resources Supporting Pulse Width Measurement Mode in Each Microcomputer

The following gives an overview of the pulse width measurement mode settings for each microcomputer.

- M16C/62P, M16C/28, 28B, 29

Timer B measures the width of the external signal pulse in pulse width measurement mode. The counter transfers the counter value to the reload register at an effective edge of the measurement pulse. At this time, the counter is cleared to 0 and then continues counting up. The width of the input pulse can be calculated from the transferred reload register value and the period of the count source. Both the rising and falling edges are effective edges. It is not possible to measure the high-level width and low-level width separately. To measure them separately, check the input level on the pin. When an effective edge of the measurement pulse is input or the counter overflows, an interrupt can be detected.

- R8C/13, 22 to 29, 2A to 2D, H8S/20103, 20203, 20223

Timer RA (timer X in the R8C/13) measures the width of the external signal pulse in pulse width measurement mode. The high-level width and low-level width can be separately measured. The counter reloads the reload register value and continues counting down while the input pulse is at a specified level. When measurement ends at the rising or falling edge of the input pulse, an interrupt is generated and the counter stops counting down. The width of the input pulse can be calculated from the obtained buffer value, reload value, and the period of the count source. When the counter underflows or the measurement period ends, a timer RA interrupt (timer X interrupt in R8C/13) can be detected.

- H8/3687,36049,36077,36109

The basic functions are the same for timers Z, W, RC, and RD. Each timer measures the width of the external signal pulse by using the input capture function. Upon detecting an effective edge, the timer transfers the counter value to the general register assigned to the target pin. The counter clearing source cannot be specified in this mode; the counter is not cleared and continues counting up. At the next effective edge, the timer transfers the counter value again to the general register. The width of the input pulse can be calculated from the difference between the counter values obtained at two detection edges and the period of the count source. It is not possible to measure the high-level width and low-level width separately. To measure them separately, check the input level on the pin. Counter overflow interrupts can be detected.

Peripheral Driver Generator

- SH7125

The timer transfers the counter value to the general register assigned to the external signal input pin when an effective edge is detected. Setting the counter clearing source to the input capture in the general register assigned to the pulse input pin causes the counter to be cleared when an effective edge is detected. The width of the input pulse can be calculated from the obtained general register value and the period of the count source. Both the rising and falling edges are effective edges. It is not possible to measure the high-level width and low-level width separately. To measure them separately, check the input level on the pin. Counter overflow interrupts and input capture interrupts for the measurement pin can be detected.

Figure 4.4-8 shows the [Pulse Width Measurement Mode] dialog box.

Pulse width measurement mode setting	ng		×
Timer type: RA	Operation during initialization:	Operation start	•
Count source: f1	Counter clear function:		-
	Effective edge of measuremen	t pulse:	
Frequency of count source: 20.000000 MHz	Measurement between a rising	g edge and the next falling edge of measured pulse	•
Clock edge: 🕞 🕶	Filter function:	No digital filter	•
	Input pin:	Set P1_7 for TRAIO pin	-
Period: 20 μs	Gate function:		
Result of calculation The values in this frame are set. Period: 20.000000 μs (Error: 0.000000 %) Setting value: Prescaler setting value 199	Interruption Enable Underflow inter Interruption priority level: Interruption function name	7	
Timer setting value 1	🔽 Gener	ate batch source(<u>M</u>) Setting Cance	:

Figure 4.4-8 Pulse width measurement mode setting dialog box

The pulse width measurement mode setting differs from the pulse period measurement mode setting in the following items. For the items not described here, refer to section 4.4.4, Pluse period measurement mode.

[Effective edge of measurement pulse]

Select [Measurement between a rising edge and the next falling edge of measured pulse] or [Measurement between a falling edge and the next rising edge of measured pulse] as the range of pulse width measurement. This item may be unselectable depending on the microcomputer type. Table 4.4-40 shows the settings available for [Effective edge of measurement pulse].

Table 4.4-40	[Effective edge of measurement pulse] settings
--------------	--

Microcomputer	Item	Description
R8C/13,22-29	Measurement between a rising edge	The high-level period is measured. The counter
R8C/2A-2D	and the next falling edge of	counts down only while the input signal is at a
H8S/20103,	measured pulse	high level.
20203, 20223		
20200, 20220	Measurement between a falling edge	The low-level period is measured. The counter
	and the next rising edge of measured	counts down only while the input signal is at a low
	pulse	level.

4.4.6 Input Capture Mode

Table 4.4-41 shows the timer resources that can be set to the input capture mode in each microcomputer.

Microcomputer Series	Microcomputer Group	Timer Resource
N16C/60	M16C/62p	-
M16C/Tiny	M16C/28,28B,29	S
R8C/Tiny	R8C/13	С
	R8C/22-25	RD0-1
	R8C/26-29	RC
	R8C/2A-2D	RC,RD0-1,RF
H8/300H Tiny	H8/3687, 36077	Z0,Z1
	H8/36049	W,Z0,Z1
	H8/36109	RC,RD0-3
SH/Tiny	SH7125	Channel 0-5
H8S/Tiny	H8S/20103	RC,RD0-1,RG
	H8S/20203, 20223	RD0-3,RG

Table 4.4-41 Timer Resources Supporting Input Capture Mode in Each Microcomputer

The following gives an overview of the input capture mode settings for each microcomputer.

- M16C/28, 28B, 29

Timer S measures the interval of changes in the external signal by using the time measurement function. At an effective edge of the external signal, the timer transfers the base timer value to the G1TMj (j = 0 to 7) register. The effective edge (rising, falling, or both), interrupt, and filter function can be specified separately for each of eight channels. The interval time can be calculated from the base timer values at the time measurement start and end points, which are obtained through the G1TMj (j = 0 to 7) register, and the period of the count source. The counter is always used as an up-counter and the counter-clearing source cannot be specified in this mode. Base timer overflow interrupts and compare match interrupts 0 and 1 can be detected.

- R8C/13

Timer C measures the interval of changes in the external signal in input capture mode. At an effective edge of the external signal, the timer stores the counter value in the TM0 register. The counter starts counting from 0 and continues until it overflows. The counter cannot be cleared. The interval time can be calculated from the base timer values at the time measurement start and end points, which are obtained through the TM0 register, and the period of the count source. Overflow interrupts can be detected.

- R8C/22 to 29, 2A to 2D, H8S/20103, 20203, 20223

Each timer measures the interval of changes in the external signal in input capture mode. When an effective edge is detected, the timer transfers the counter value to the register assigned to the target pin. The interval time can be calculated from the base timer values at the time measurement start and end points, which are obtained through the register, and the period of the count source. The counter starts counting from 0 and continues until it overflows, but only in timer RD in the R8C/22 to 25 and 2A to 2D, H8S/20103, 20203, 20223, the counter clearing source can be specified. Counter overflow interrupts and input capture interrupts for each pin can be detected.

- H8/3687, 36049, 36077, 36109

The basic functions are the same for timers Z, W, RC, and RD. Each timer measures the interval of changes in the external signal in input capture mode. When an effective edge is detected, the timer transfers the counter value to the general register assigned to the target pin. The counter starts counting from 0 and continues until it overflows, but in timer Z in the H8/3687, 36077, and 36049 and in timer RD in the H8/36109, it can be specified to clear the counter by an input capture. Counter overflow interrupts and input capture interrupts for each pin can be detected.

- SH7125

The timer transfers the counter value to the general register assigned to the external signal input pin when an effective edge is detected. Setting the counter clearing source to the input capture in the general register assigned to the pulse input pin causes the counter to be cleared when an effective edge is detected. The interval between the changes in the external signal can be calculated from the obtained general register value and the period of the count source. Counter overflow interrupts and input capture interrupts for the measurement pin can be detected.

Figure 4.4-9 shows the [Input capture mode setting] dialog box.

Input capture mode se	tting	X
Timer type: S	•	Channel used
Count source:	Divide ratio of f1 by (n+1)	🔽 Channel0 🔽 Channel1
Count source divider(n):	1	Channel2 🔽 Channel3
Frequency of count source:	MHz	🔽 Channel4 🔽 Channel5
Clock edge:	-	Channel6 🔽 Channel7
Interruption: 🔽 Enable Ov	erflow interruption	Channel3 Channel4 Channel5 Channel6 C
Overflow interruption function TimerIntFuncOF	n name:	Interruption: 🔽 Enable Input capture 0 interruption
Input capture 0 interruption TimerIntFuncIC0	function name:	✓ Enable Input capture 1 interruption
Input capture 1 interruption TimerIntFuncIC1	function name:	
, Overflow interruption priority	level: 7 *	Digital filter function: f1 or f2
Input capture 0 interruption		Gate function: Used at channel 6
Input capture 1 interruption	priority level: 7 +	Gate function clear: Cleared at channel 6
Operation during initialization	n: Operation start	Prescaler: Used at channel 6
Timer synchronization:	_	Prescaler period: 10
Counter clear function:	··	External event Falling edge
Base timer:	Bit 14 overflow	External trigger:
Digital filter function based clock:	··	Capture input edge:
	🔽 Ge	nerate batch source(M) Setting Cancel

Figure 4.4-9 [Input capture mode setting] dialog box

[Timer type]

Select the timer resource to be set up. Selecting [Timer type none] allows the timer setting to be made with no resource being selected here and any resource can be assigned to the setting. Note that [Timer type none] is not available for the SH7125 or H8S/Tiny.

[Count source]

Select the count source for the counter.

[Count source divider (n)]

Specify the divider register value. This item may be unselectable depending on the microcomputer type. Table 4.4-42 shows the settings available for [Count source].

 Table 4.4-42
 Divider register value settings

Microcomputer	Description
M16C/28,28B,29	When value n is specified here, counting is done with the frequency obtained by
	dividing the count source by (n + 1). A value from 0 to 255 can be specified. When 0 is
	specified, the count source frequency is not divided.

[Frequency of count source]

This box shows the frequency of the selected count source. This item may not be enabled depending on the microcomputer type. This item is not available for the 16C/Tiny series.

[Clock edge]

Select the edge of the clock to be counted. This item may be unselectable depending on the microcomputer type. Table 4.4-43 shows the settings available for [Clock edge].

Table 4.4-43 [Clock edge] setting

Microcomputer	Item	Description
SH7125	Rising edge	Counted at rising edges of the count source.
	Falling edge *	Counted at falling edges of the count source.
	Both edges *	Counted at both rising and falling edges of the count source.

 * These settings cannot be selected when MP $\phi/1$ is specified as the count source.

[Interruption]

This item enables detection of interrupt occurrence. Select the interrupts to be detected and specify the interrupt priority levels; the user-created interrupt function specified in [<Interrupt type> Interrupt function name] will be called when an interrupt occurs. The interrupt function can be specified by selecting [Enable <interrupt type> interruption]. The detectable interrupts depend on the microcomputer type. The following explains how to set each item.

[Enable overflow interruption]

Select the check box to detect occurrence of overflow interrupt. The input capture interrupt can be setup for each channel or general register in the channel or general register tab described later.

[<Interrupt type> interruption level]

Specify the priority level for the enabled interrupt type. The priority may not be specified depending on the microcomputer or interrupt type.

[<Interrupt type> interrupt function name]

Specify the interrupt notification function to be called when the enabled interrupt occurs. When using an interrupt notification function, add to the user program the function with the name specified here. If <Interrupt type> is not shown, the function is called when any of all enabled interrupts occurs. The declaration of the interrupt function is as follows.

Function Declaration		
void [specified notification function name](void);		

[Operation during initialization]

Select [Operation start] or [Operation stop] for the timer operation immediately after the initial setting. The available settings depend on the microcomputer or timer resource.

[Timer synchronization]

Specify synchronous operation between channels. This item may be unselectable depending on the microcomputer type. Table 4.4-44 shows the settings for [Timer synchronization].

Microcomputer	Item	Description
R8C/22-25 R8C/2A-2D H8/3687 H8/36077 H8/36049 H8/36109	No synchronize timers on channel 0 and 1	The counters in channels 0 and 1 operate independently.
	Synchronize timers on channel 0 and 1	The counters in channels 0 and 1 are synchronously preset. When the counter in one channel (RD0 or RD1) is written to, the same value is also written to the counter in the other channel. To operate the two channels synchronously, specify [Synchronize timers on channel 0 and 1] in both channels 0 and 1. To clear the counters synchronously, select [Synchronize timers on channel 0 and 1] and then specify [Clear
SH7125 H8S/20103, 20203, 20223	Operate independently	synchronization] in [Counter clear function]. The channel operates independently of the others. Specify a TGR in the channel as the counter clearing source in [Counter clear function].
	Master of timer synchronous operation	The channel operates in synchronization with other channels. The counter clearing source specified in [Counter clear function] also clears the counters in the other synchronized channels.
	Performs synchronous operation	This setting can be selected only when [Master of timer synchronous operation] is selected in another channel. The counter is cleared by the counter clearing source specified in the channel set as [Master of timer synchronous operation]. Only [Clear synchronization] can be selected as the counter clearing source in [Counter clear function].
	Operate independently Master of timer synchronous operation	The timer counter operates independently of the others. The timer counter operates in synchronization with the others. (RD0 with RD1, or RD2 with RD3)The counter clearing source specified in [Counter clear function] also clears the counters in the other synchronized timer.
	Performs synchronous operation	This setting can be selected only when [Master of timer synchronous operation] is selected in another timer. The counter is cleared by the counter clearing source specified in the timer set as [Master of timer synchronous operation]. Only [Clear synchronization] can be selected as the counter clearing source in [Counter clear function].

 Table 4.4-44
 [Timer synchronization] settings

[Counter clear function]

Select the counter clearing source. This item may be unselectable depending on the microcomputer type. Table 4.4-45 shows the settings available for [Counter clear function].

RENESAS
Microcomputer	Item	Description
R8C/22-25	Disable clearing	The counter is not cleared.
R8C/2A-2D	Clears by <general register<="" td=""><td>The counter is cleared by input capture of selected</td></general>	The counter is cleared by input capture of selected
H8/3687	name> input capture	general register.
H8/36077	Clear synchronization	The counter is cleared in synchronization with the
H8/36049		counter in the other channel. Specify the counter
H8/36109		clearing source in the other channel.
SH7125	Clears by <general register<="" td=""><td>The counter is cleared by input capture of selected</td></general>	The counter is cleared by input capture of selected
	name> input capture	general register.
H8S/20103	Disable clearing	The counter is not cleared.
H8S/20203	Clears by <general register<="" td=""><td>The counter is cleared by input capture of selected</td></general>	The counter is cleared by input capture of selected
H8S/20223	name> input capture	general register.
	Clear synchronization	The counter is cleared in synchronization with the
		counter in the other timer. Specify the counter clearing
		source in the other timer.

Table 4.4-45 [Counter clear function] settings

[Base timer]

Specify the timing for the base timer overflow interrupt. This item may be unselectable depending on the microcomputer type. Table 4.4-46 shows the settings available for [Base timer].

Table 4.4-46 [Base timer] settings

Microcomputer	Item	Description		
M16C/28,28B,29	Bit 14 overflow	Bit 14 in the base timer overflows		
	Bit 15 overflow	Bit 15 in the base timer overflows		

[Digital filter function based clock]

Specify the clock to be used for the digital filter function. This item may be unselectable depending on the microcomputer type. To use the digital filter function, select [Digital filter] in [Digital filter function] (described later) in each channel or the general register setting tab. This item is invalid for a microcomputer in which the digital filter function clock can be specified separately for each input pin; select the clock in [Digital filter function] in each channel or general register setting tab.

[Channel used]

The available channels or general registers are shown. Select the desired channels or general registers. Multiple channels or registers can be selected. Selecting a channel or register opens the tab for setting up that channel or register; make necessary detailed settings in the tab.

Channel or general register setting tab

Make the necessary settings for the channel or general register selected in [Channel used].

[Enable input capture interrupt]

This item enables detection of input capture interrupt occurrence in the channel or general register. Select this item; the user-created interrupt function will be called when an input capture interrupt occurs. In some microcomputers, the notification function and interrupt level settings are shared with the overflow interrupt; specify [<interrupt type> interruption priority level] and [<interrupt type> interruption function name] described before.

[Digital filter function]

Specify this item when using the filter function. This item may be unselectable depending on the microcomputer type. When using the filter function with the clock selected in [Digital filter function based clock], select [Digital filter enable]. For the microcomputer in which a different clock can be specified for each channel, select desired clocks separately.

[Gate function]

Specify this item when using the gate function. This item may be unselectable depending on the microcomputer type. Table 4.4-47 shows the settings available for [Gate function].

Microcomputer	Item	Description
M16C/28,28B,29 *	Do not use	The gate function is not used.
	gate function	
	Used at	The gate function is used. After time measurement by the first
	channel i	trigger input, accepting trigger inputs is prohibited. To clear
		the gate function, specify [Gate function clear].

Table 4.4-47 [Gate function] settings

* Valid only when Timer S / channel 6 or 7 is selected.

[Gate function clear]

Specify this item when using the gate function. This item may be unselectable depending on the microcomputer type. Table 4.4-48 shows the settings available for [Gate function clear].

Table 4.4-48 [Gate function clear] settings

Microcomputer	Item	Description
M16C/28,28B,29 *	Not used	Select this setting when [Do not use gate function] is selected in [Gate function].
	Clear at channel i	When the gate function is used, select this setting to again accept triggers. After this setting is selected, a trigger input is accepted again when the G1Pop register value ($p = 4$ in channel 6, or $p = 5$ in channel 7) matches the base timer value. When using the gate function clear setting, select [Used at channel i] in [Gate function].

* Valid only when Timer S / channel 6 or 7 is selected.

[Prescaler]

Specify this item when using the prescaler. This item may be unselectable depending on the microcomputer type. Table 4.4-49 shows the settings available for [Prescaler].

Table 4.4-49 [Prescaler] settings

Microcomputer	Item	Description
M16C/28,28B,29 *	Not used	The prescaler function is not used. Time measurement is
		executed every time a trigger signal is applied.
	Clear at	The prescaler function is used. Time measurement is
	channel i	executed every prescaler register value +1 times a trigger
		signal is applied. Specify the prescaler register value in
		[Prescaler period].

* Valid only when Timer S / channel 6 or 7 is selected.

[Prescaler period]

Specify the prescaler period when using the prescaler. This item may be unselectable depending on the microcomputer type. Table 4.4-50 shows the settings available for [Prescaler period].

Table 4.4-50 [Prescaler period] settings

Microcomputer	Description
M16C/28,28B,29	Specify the prescaler register value. When using the prescaler
	function, time measurement is executed every prescaler register
	value +1 times a trigger signal is applied.

[External event polarity]

Select the rising edge, falling edge, or both edges as the clock edge used for time measurement.

[External trigger]

This item is selectable when the input pin is selectable. Select the pin used for pulse measurement. This item may be unselectable depending on the microcomputer type, channel, or general register.

[Generate batch source]

Select this check box to create the driver source code for all peripheral I/O modules when clicking on the [Setting] button.

[Setting]

Clicking on this button stores the settings and closes the dialog box. When [Generate batch source] is selected, the driver source code is created.

[Cancel]

Clicking on this button closes the dialog box without storing the settings.

4.4.7 Output Compare Mode

Table 4.4-51 shows the timer resources that can be set to the output compare mode in each microcomputer.

Microcomputer Series	Microcomputer Group	Timer Resource	
N16C/60	M16C/62p	-	
M16C/Tiny	M16C/28,28B,29	S	
R8C/Tiny	R8C/13	С	
	R8C/22-25	RD0-1,RE	
	R8C/26-29	RC,RE	
	R8C/2A-2D	RC,RD0-1,RE	
H8/300H Tiny	H8/3687, 36077	Z0,Z1	
	H8/36049	W,Z0,Z1	
	H8/36109	RC,RD0-3	
SH/Tiny	SH7125	Channel 0-4	
H8S/Tiny	H8S/20103	RC,RD0-1, RE, RG	
	H8S/20203, 20223	RD0-3, RE, RG	

 Table 4.4-51
 Timer Resources Supporting Output Compare Mode in Each Microcomputer

The following gives an overview of the output compare mode settings for each microcomputer.

- M16C/28, 28B, 29,

Timer S generates a maximum of 8-channel waveforms by using the waveform generating function. Single-phase waveform output mode, phase-delayed waveform output mode, or set/reset waveform output (SR waveform output) mode can be selected. When the waveform generation register value in one of channels 0 to 7 matches the value of the base timer acting as an up-counter, the timer controls the output level in that channel. Overflow interrupts and compare match interrupts 0 and 1 can be detected.

- R8C/13

Timer C generates waveforms in output compare mode. When the compare 0 or 1 register value matches the value of the counter acting as an up-counter, the timer controls the output level. Overflow interrupts and compare match interrupts for each register can be detected.

- R8C/22 to 29, 2A to 2D, H8S/20103, 20203, 20223

Each timer generates waveforms in output compare mode. When the general register or compare register value matches the value of the counter acting as an up-counter, the timer controls the output level on the pin assigned to the register. In timers RC and RD, the compare match can be specified as the counter clearing source. In timer RE, the counter is always cleared to 0 by a compare match between the compare register and the counter. Overflow interrupts and compare match interrupts for each register can be detected.

- H8/3687, 36049, 36077, 36109

When the general register value matches the value of the counter acting as an up-counter in each timer, the timer controls the output level on the pin assigned to the general register. The compare match can be specified as the counter clearing source. Overflow interrupts and compare match interrupts for each general register can be detected. - SH7125

When the general register value matches the value of the counter acting as an up-counter in each channel, the timer controls the output level on the pin assigned to the general register. The compare match can be specified as the counter clearing source. Overflow interrupts and compare match interrupts for each general register can be detected.

Output compare mo	de setting				
Timer type: RD0 Count source:	• f4	•	Interruption: 🔽 Enable Over Overflow interruption function TimerIntFunc		
Count source divider(n):					
Frequency of count sour	ce: 5.000000	MHz			
Clock edge:		-			
Operation during initializa	tion: Operation stop	•			
Timer Opera	te independently	-	Overflow interruption priority le	vel:	0
synchronizadon.			Compare matching interruption	priority level:	
Counter clear function:	Disables clearing	•			,
Base timer:		~			
4-bit counter:		~	Channel used	GRC	□ GRD
Action stop condition:		~			
Output level select:		~	GRA		
Cutput port			Interruption: 🔽 Enable Comp	pare matching int	erruption
CMP0 Channel 0	🔲 CMP1 Channel 0		interreption. JF Erreption		
CMP0 Channel 1	CMP1 Channel 1				
CMP0 Channel 2	CMP1 Channel 2		Compare matching interruption TimerIntFunc	ו <u> </u>	
Comparative value A	100		·	itput	
Comparative value B	120			itput	
Comparative value C	0		Compare 0 output mode:	·	
Comparative value D	0		Cmpare 1 output mode:		
			(CMP0)Inverse output function	n:	
			CMP1 Inverse output function	n:	
			Counter reload:		

Figure 4.4-10 shows the [Output compare mode setting] dialog box

Figure 4.4-10 Output compare mode setting dialog box

Generate batch source(M)

A/D Converter Start: Not generated by compare match 🔫

Setting

Cancel

[Timer type]

Select the timer resource to be set up. Selecting [Timer type none] allows the timer setting to be made with no resource being selected here and any resource can be assigned to the setting. Note that [Timer type none] is not available for the SH7125 or H8S/Tiny.

[Count source]

Select the count source for the counter.

[Count source divider (n)]

Specify the divider register value. This item may be unselectable depending on the microcomputer type. Table 4.4-52 shows the settings available for [Count source divider (n)].

 Table 4.4-52
 Divider register value settings

Microcomputer	Description
M16C/28,28B,29	When value n is specified here, counting is done with the frequency obtained by dividing the count source by $(n + 1)$. A value from 0 to 255 can be specified. When 0 is specified, the count source frequency is not divided.

[Frequency of count source]

This box shows the frequency of the selected count source. This item may not be enabled depending on the microcomputer type. This item is not available for the 16C/Tiny series.

[Operation during initialization]

Select [Operation start] or [Operation stop] for the timer operation immediately after the initial setting. The available settings depend on the microcomputer or timer resource.

[Clock edge]

Select the clock edge to be used for count. This item may be unselectable depending on the microcomputer type. [Timer synchronization]

Specify synchronous operation between channels. This item may be unselectable depending on the microcomputer type. Table 4.4-53 shows the settings for [Timer synchronization].

Microcomputer	Item	Description			
R8C/22-25 R8C/2A-2D	No synchronize timers on channel 0 and 1	The counters in channels 0 and 1 operate independently.			
H8/3687 H8/36077 H8/36049 H8/36109	Synchronize timers on channel 0 and 1	The counters in channels 0 and 1 are simultaneously preset. When the counter in one channel (RD0 or RD1) is written to, the same value is also written to the counter in the other channel. To operate the two channels synchronously, specify [Synchronize timers on channel 0 and 1] in both channels 0 and 1. To clear the counters simultaneously, select [Synchronize timers on channel 0 and 1] and then specify [Clear synchronization] in [Counter clear function].			
SH7125	Operate independently	The channel operates independently of the others. Specify a TGR in the channel as the counter clearing source in [Counter clear function].			
	Master of timer synchronous operation	The channel operates in synchronization with other channels. The counter clearing source specified in [Counter clear function] also clears the counters in the other synchronized channels.			
	Performs synchronous operation	This setting can be selected only when [Master of timer synchronous operation] is selected in another channel. The counter is cleared by the counter clearing source specified in the channel set as [Master of timer synchronous operation]. Only [Clear synchronization] can be selected as the counter clearing source in [Counter clear function].			
H8S/20103 H8S/20203 H8S/20223	Operate independently Master of timer synchronous operation	The timer counter operates independently of the others. The timer counter operates in synchronization with the others. (RD0 with RD1, or RD2 with RD3)The counter clearing source specified in [Counter clear function] also clears the counters in the other synchronized timer.			
	Performs synchronous operation	This setting can be selected only when [Master of timer synchronous operation] is selected in another timer. The counter is cleared by the counter clearing source specified in the timer set as [Master of timer synchronous operation]. Only [Clear synchronization] can be selected as the counter clearing source in [Counter clear function].			

Table 4.4-53 [Timer synchronization] settings

[Counter clear function]

Select the counter clearing source. This item may be unselectable depending on the microcomputer type. Table 4.4-54 shows the settings available for [Counter clear function].

Microcomputer	Item	Description	
R8C/22-25Disable clearingR8C/2A-2DClears by <general register<br=""></general> name> compare matchH8/36077Clear synchronizationH8/36109Clear synchronization	Disable clearing	The counter is not cleared.	
	, , , ,	The counter is cleared by compare match of selected general register.	
	The counter is cleared in synchronization with the counter in the other channel. Specify the counter clearing source in the other channel.		
SH7125	Clears by <general register<br="">name> compare match</general>	The counter is cleared by compare match of selected general register.	
H8S/20103	Disable clearing	The counter is not cleared.	
H8S/20203 H8S/20223	Clears by <general register<br="">name> compare match</general>	The counter is cleared by compare match of selected general register.	
	Clear synchronization	The counter is cleared in synchronization with the counter in the other timer. Specify the counter clearing source in the other timer.	

Table 4.4-54	[Counter	clear	function	settings
	loonno	cicai	runction	seemes

[Base timer]

Specify the timing for the base timer overflow interrupt. This item may be unselectable depending on the microcomputer type. Table 4.4-55 shows the settings available for [Base timer].

Table 4.4-55 [Base timer] settings

Microcomputer	Item	Description
M16C/28,28B,29	Bit 14 overflow	Bit 14 in the base timer overflows
	Bit 15 overflow	Bit 15 in the base timer overflows

[4-bit counter]

Specify whether to use the 4-bit counter. This item may be unselectable depending on the microcomputer type. Table 4.4-56 shows the settings available for [4-bit counter].

Table 4.4-56 [4-bit counter] settings

Microcomputer	Item	Description
R8C/22-29 *	Used	Counts the internal count source divided-by-2 using the 4-bit and 8-bit
R8C/2A-2D *		counter.
		The count period is as follows.
		1/fi x 32 x (n + 1)
		fi: Frequency of count source
		n: Setting value of TREMIN register
	Not used	Counts the internal count source divided-by-2 using the 8-bit counter.
		The count period is as follows.
		1/fi x 2 x (n + 1)
		fi: Frequency of count source
		n: Setting value of TREMIN register

* Valid only when timer RE is selected

[Action stop condition]

Select the count stop conditions. This item may be unselectable depending on the microcomputer type. Table 4.4-57 shows the settings available for [4-bit counter].

 Table 4.4-57 [Action stop condition] settings

Microcomputer	Item	Description
R8C/22-25 * R8C/2A-2D *	Stopped in software (TSTART bit)	The count stops by writing 0 to the TSTARTi bit in the TRDSTR register. The output compare output pin holds output level before the count stops.
	Stopped by GRA compare match	The count stops at the compare match in the TRDGRAi (i=0,1) register. The output compare output pin holds level after output change by the compare match.

* Valid only when timer RD is selected

[Output level select]

Select the output level when count stops. This item may be unselectable depending on the microcomputer type. Table 4.4-58 shows the settings available for [Output level select].

Table 4.4-58 [Output level select] settings

Microcomputer	Item	Description
R8C/2A-2D *	Low	"L" output w hen count stops
	High	"H" output w hen count stops
	Unchanged	Holds output level before count stops

* Valid only when timer RF is selected.

[Output port]

This item can be specified when the target output pin can be selected from multiple pins. This item may be unselectable depending on the microcomputer type. Table 4.4-59 shows the settings available for [Output port].

Table 4.4-59[Output port] settings

Microcomputer	Item	Description
R8C/13 *1	CMP0 Channel 0	Select this to enable the CMP00 output.
	CMP0 Channel 1	Select this to enable the CMP01 output.
	CMP0 Channel 2	Select this to enable the CMP02 output.
	CMP1 Channel 0	Select this to enable the CMP10 output.
	CMP1 Channel 1	Select this to enable the CMP11 output.
	CMP1 Channel 2	Select this to enable the CMP12 output.
R8C/2A-2D *2	CMP0 Channel 0	Select this to enable the TRFO00 output.
	CMP0 Channel 1	Select this to enable the TRFO01 output.
	CMP0 Channel 2	Select this to enable the TRFO02 output.
	CMP1 Channel 0	Select this to enable the TRFO10 output.
	CMP1 Channel 1	Select this to enable the TRFO11 output.
	CMP1 Channel 2	Select this to enable the TRFO12 output.

*1. Valid only when timer C is selected.

*2. Valid only when timer RF is selected.

[Comparative value]

Specify the value to be compared with the counter value to generate a compare match. Table 4.4-60 shows the settings available for [Comparative value].

Microcomputer	Comparative value	Description
M16C/28,28B,29	Comparative value	These values are used as waveform general register
(Timer S)	0-7	values (G1POj: $j = 0$ to 7) in channels 0 to 7. When
		one of these values matches the base timer value, a
		waveform can be output from the pin assigned to the
		corresponding channel and compare match interrupts
		0 and 1 can be generated. The details of the output
		waveform and interrupts should be specified in each
		channel setting.
R8C/13	Comparative value	These values are used as compare 0 and 1 register
(Timer C)	0-1	values. When either value matches the counter value,
		the corresponding compare i interrupt (i = 0 or 1) can
		be generated and a waveform can be output from
		CMPi (i = 0 or 1). The details of the output waveform
		and interrupt should be specified in each channel
	O a man a mati i sa a l	setting.
R8C/26-29 (Timer RC)	Comparative value A-D	These values are used as general register A to D values. When one of the values matches the counter
R8C/2A-2D (Timer RC) R8C/22-25 (Timer RD)	A-D	
R8C/22-25 (Timer RD) R8C/2A-2D (Timer RD)		value, a waveform can be output from the pin assigned to the general register and a compare match
		interrupt can be generated. The details of the output
		waveform and interrupt should be specified in each
		channel setting.
R8C/22-25 (Timer RE)	Comparative value	This value is used as the TREMIN register value.
R8C/2A-2D (Timer RE)		When it matches the 8-bit counter value, the output
		polarity on TREO can be inverted and a compare
		match interrupt can be generated. The details of the
		TREO output and interrupt should be specified in
		each channel setting
R8C/2A-2D (Timer RF)	Comparative value	These values are used as compare 0 and 1 register
	0-1	values. When either value matches the counter value,
		the corresponding compare i interrupt ($i = 0$ or 1) can
		be generated and waveforms can be output from
		TRFO00 to TRFO02 and TRFO10 to TRFO12. The details of the output waveforms and interrupt should
		be specified in each channel setting.
H8/3687, 36077	Comparative value	These values are used as general register A to D
H8/36049, 36109	A-D	values. When one of the values matches the counter
SH7125		value, a waveform can be output from the pin
		assigned to the general register and a compare match
		interrupt can be generated. The details of the output
		waveform and interrupt should be specified in each
		channel setting.

 Table 4.4-60 [Comparative value] settings

		1	
H8S/20103	Timer RC	Comparative value	These values are used as general register A to D
H8S/20203	Timer RD	A-D	values. When one of the values matches the counter
H8S/20223			value, a waveform can be output from the pin
			assigned to the general register and a compare match
			interrupt can be generated. The details of the output
			waveform and interrupt should be specified in each
			channel setting.
	Timer RE	Comparative value	This value is used as the TREMIN register value.
			When it matches the 8-bit counter value, the output
			polarity on TREO can be inverted and a compare
			match interrupt can be generated. The details of the
			TREO output and interrupt should be specified in
			each channel setting
	Timer RG	Comparative value	These values are used as general register A or B
		A,B	values. When one of the values matches the counter
			value, a waveform can be output from the pin
			assigned to the general register and a compare match
			interrupt can be generated. The details of the output
			waveform and interrupt should be specified in each
			channel setting.

[Interruption]

This item enables detection of interrupt occurrence. Select the interrupts to be detected and specify the interrupt priority levels; the user-created interrupt function specified in [<Interrupt type> Interrupt function name] will be called when an interrupt occurs. The interrupt function can be specified by selecting [Enable <interrupt type> interruption]. The detectable interrupts depend on the microcomputer type. The following explains how to set each item.

[Enable overflow interruption]

Select the check box to detect occurrence of overflow interrupt. The compare match interrupt can be setup for each channel or general register in the channel or general register tab described later.

[<Interrupt type> interruption level]

Specify the priority level for the enabled interrupt type. The priority may not be specified depending on the microcomputer or interrupt type.

[<Interrupt type> interrupt function name]

Specify the interrupt notification function to be called when the enabled interrupt occurs. When using an interrupt notification function, add to the user program the function with the name specified here. If <Interrupt type> is not shown, the function is called when any of all enabled interrupts occurs. The declaration of the interrupt function is as follows.

Function Declaration

void [specified notification function name](void);

Used channel

The available channels or general registers are shown. Select the desired channels or general registers. Multiple channels or registers can be selected. Selecting a channel or register opens the tab for setting up that channel or register; make necessary detailed settings in the tab.

Channel or general register setting tab

Make the necessary settings for the channel or general register selected in [Channel used].

[Enable compare match interrupt]

This item enables detection of input capture interrupt occurrence in the channel or general register. Select this item; the user-created interrupt function will be called when an input capture interrupt occurs. In some microcomputers, the notification function and interrupt level settings are shared with the overflow interrupt; specify [<interrupt type> interruption priority level] and [<interrupt type> interruption function

name] described before.

[Initial output]

Specify the initial output level; select 0 output or 1 output. This item may be unselectable depending on the microcomputer or timer resource.

[Output waveform]

Set up the output wave from. This item may be unselectable depending on the microcomputer type. Table 4.4-61 shows the settings available for [Output waveform].

Microcomputer Item Description M16C/28,28B,29 Single waveform Output signal level "H" when the base timer (Timer S) value matches the G1POi (i=0 to 7) register value. The signal switches to "L" when the base timer reaches "000016". Phase-delayed Output signal level is inversed every time the waveform base timer value matches the G1POj register value (j=0 to 7). SR waveform Output signal level "H" when the base timer value matches the G1POj register value (i=0, 2, 4, 6). The signal switches to "L" when the base timer value matches the G1POk(k=j+1) register value. R8C/26-29 (Timer RC) 0 output 0 output at compare match R8C/2A-2D (Timer RC) 1 output 1 output at compare match R8C/22-25 (Timer RD) Toggle output Toggle output at compare match R8C/2A-2D (Timer RD) H8/3687. 36077 H8/36049, 36109 R8C/22-25 (Timer RE) **Disable output** Disables clock output from the TREO pin. R8C/2A-2D (Timer RE) f2 output Outputs f2 from the TREO pin. f4 output Outputs f4 from the TREO pin. f8 output Outputs f8 from the TREO pin. Compare output Sets the TREO pin as the compare output pin. At every compare match, the output polarity is inverted. R8C/Tiny Can not be Specify the output waveform in [Compare 0 R8C/13 (Timer RC) specified output mode] and [Compare 1 output mode] R8C/2A-2D (Timer RF) described below. SH7125 0 output 0 output at compare match H8S/20103, 20203 1 output 1 output at compare match H8S/20223 Toggle output Toggle output at compare match

Table 4.4-61 [Output waveform] settings

[Compare 0 output mode], [Compare 1 output mode]

Set up the output at compare match. This item may be unselectable depending on the microcomputer type. Table 4.4-62 shows the settings available for [Compare 0 output mode] and [Compare 1 output mode].

 Table 4.4-62
 [Compare 0 output mode], [Compare 1 output mode] settings

Microcomputer	Item	Description
R8C/13 (Timer C)	Unchanged	Holds output level at compare i match. (i=0,1)
R8C/2A-2D (Timer RF)	Reversed	Invert the output level at compare i match. (i=0,1)
	Set to low	Outputs "L" at compare i match. (i=0,1)
	Set to high	Outputs "H" at compare i match. (i=0,1)

[(CMP0) Inverse output function]

Setup the inverse output function. This item may be unselectable depending on the microcomputer type. Table 4.4-63 shows the settings available for [(CMP0) Inverse output function].

Table 4.4-63	[(CMP0) Inverse output	function] settings
--------------	------------------------	--------------------

Microcomputer	Item	Description
M16C/28,28B,29	Output is inversed	Output level is inversed
Timer S	Output is not inversed	Output is not inversed
R8C/13	Output is inversed	CMP00 to CMP02 output inverted
Timer C	Output is not inversed	CMP00 to CMP02 output not inverted
R8C/2A-2D	Output is inversed	TRFO00 to TRFO02 output inverted
Timer RF	Output is not inversed	TRFO00 to TRFO02 output not inverted

[CMP1 Inverse output function]

Setup the CMP1 inverse output function. This item may be unselectable depending on the microcomputer type. Table 4.4-64 shows the settings available for [CMP1 Inverse output function].

Table 4.4-04 [Civil I liver se output function] setting	Table 4.4-64	[CMP1 Inverse output function] setting	gs
---	--------------	--	----

Microcomputer	Item	Description
R8C/13	Output is inversed	CMP10 to CMP12 output inverted
Timer C	Output is not inversed	CMP10 to CMP12 output not inverted
R8C/2A-2D	Output is inversed	TRFO10 to TRFO12 output inverted
Timer RF	Output is not inversed	TRFO10 to TRFO12 output not inverted

[Counter reload]

Set up the counter reload. This item may be unselectable depending on the microcomputer type. Table 4.4-65 shows the settings available for [Counter reload].

Table 4.4-65 [Counter reload] setting

Microcomputer	Item	Description
M16C/28,28B,29	Reload at writing	The written value is immediately reloaded to the
Timer S		waveform generation register (G1POj: j = 0 to 7) in
		each channel and is reflected in the output waveform.
	Relaod at base	The written value is reloaded to the waveform
	timer reset	generation register (G1POj: j = 0 to 7) in each channel
		when the base timer is reset.
R8C/13	No reload	The counter value is not reset at a compare 1 match.
	Reload	The counter value is cleared to 0 at a compare 1
		match.

[A/D Converter Start]

Set up the A/D converter start request. This item may be unselectable depending on the microcomputer type. Table 4.4-66 shows the settings available for [A/D Converter Start].

Microcomputer	Item	Description
H8S/20103 H8S/20203 H8S/20223	A/D conversion start trigger is not generated by compare match	A request to start A/D conversion is not generated by a compare match on each of the channels.
	A/D conversion start trigger is generated by compare match	 A request to start A/D conversion is generated by a compare match on each of the channels. If A/D conversion should be started by a compare match on a channel for timer RC, select [Conversion start trigger from timer RC] as the trigger of A/D conversion. If A/D conversion should be started by a compare match on a channel for timer RD0 or RD1, select [Conversion start trigger from timer RD_0] as the trigger of A/D conversion. If A/D conversion should be started by a compare match on a channel for timer RD0 or RD1, select [Conversion start trigger from timer RD_0] as the trigger of A/D conversion. If A/D conversion should be started by a compare match on a channel for timer RD2 or RD3, select [Conversion start trigger from timer RD_1] as the trigger of A/D conversion.

Table 4.4-66 [A/D Converter Start] setting

* Only for timers RC and RD0-3

[Generate batch source]

Select this check box to create the driver source code for all peripheral I/O modules when clicking on the [Setting] button.

[Setting]

Clicking on this button stores the settings and closes the dialog box. When [Generate batch source] is selected, the driver source code is created.

[Cancel]

Clicking on this button closes the dialog box without storing the settings.

4.5 Setting Interrupt

Table 4.5-1 shows the interrupt types that can be set in each microcomputer.

Table 4.5-1	Interrupt types in each CPU	

Microcomputer Series	Microcomputer Group	Interrupt type
N16C/60	M16C/62p	INT0 to INT5 interrupts
M16C/Tiny	M16C/28,28B,29	Key interrupt (KI0 to KI)
R8C/Tiny	R8C/13	INT0 to INT3 interrupts
	R8C/22-25, 2A-2D	Key interrupt (KI0 to KI3)
	R8C/26-29	INT0, INT1, and INT3 interrupts
	R8C/2A-2D	Key interrupt (KI0 to KI3)
H8/300H Tiny	H8/3687, 36077	IRQ0 to IRQ3 interrupts
	H8/36049, 36109	WKP interrupt (WKP0 to WKP5)
SH/Tiny	SH7125	IRQ0 to IRQ3 interrupts
		NMI interrupt
H8S/Tiny	H8S/20103, 20203, 20223	IRQ0 to IRQ7 interrupts

Figure 4.5-1	shows t	he	interrunt	setting	dialog box	
riguie 4.3-1	5110 w 5 t	шe	menupi	setting	ulaiog box.	

INT/key input interrupt setting		×
Interrupt: WKP	KI0 KI1	_KI2
	Enable input(0)	Enable input(2)
Interruption requested	Polarity switching Polarity switching	Polarity switching
Interrupt priority level:	Falling edge Falling edge	Falling edge
Interruption function name:	C Rising edge C Rising edge	C Rising edge
IntFunc		
Filter function:	KI3KI4	KI5
- Interfailedon.	Enable input(3)	Enable input(5)
Polarity switching:	Polarity switching Polarity switching	Polarity switching
INT1 pin select:	Falling edge Falling edge	Falling edge
INT2 pin select:	C Rising edge	C Rising edge
IRQOUT pin:		
	Generate batch source(M)	ing Cancel

Figure 4.5-1 Interrupt setting dialog box

Make the necessary settings for interrupt detection through the interrupt setting dialog box. By setting up an interrupt in this dialog box, the function with the name specified in [Interruption function name] is called when that interrupt occurs.

[Interrupt]

Select the interrupt type to be set up. Selecting [Timer type none] allows the timer setting to be made with no resource being selected here and any resource can be assigned to the setting. Note that [Timer type none] is not available for the SH7125 or H8S/Tiny.

[Interruption requested]

This item enables interrupt selected in [Interrupt]. This item may be unselectable depending on the microcomputer type. Table 4.5-2 shows the settings available for [Interruption requested].

 Table 4.5-2
 [Interruption requested] settings

Microcomputer	Description	
---------------	-------------	--

Section 4 How to Set up Clocks and Peripheral I/O Modules

H8/3687, 36077	Not selected:
H8/36049, 36109	The interrupt request selected in [Interrupt] is disabled.
H8S/20103, 20203, 20223	Selected:
	The interrupt request selected in [Interrupt] is enabled.
	H8/36049, 36109

[Interrupt priority level]

Specify the priority level for the enabled interrupt type. After 1 and above are specified as priority level, interrupt function name can be specified. The priority may not be specified depending on the microcomputer or interrupt type.

[Interruption function name]

Specify the interrupt notification function to be called when the enabled interrupt occurs. When using an interrupt notification function, add to the user program the function with the name specified here. The declaration of the interrupt function is as follows.

F	Function Declaration
	void [specified notification function name](void);

[Filter function]

Set up the filter function. This item may be unselectable depending on the microcomputer type. Table 4.5-3 shows the settings available for [Filter function].

Table 4.5-3 [Filter function] settings

Microcomputer	Item	Description
R8C/13 (INT0,3 Interrupt)	No filter provided	The filter function will not be used.
R8C/22-25 (INT0-3 Interrupt)	Sampling by f1	The signal level is sampled with the
R8C/2A-2D (INT0-3 Interrupt)	Sampling by f8	frequency of the selected sampling clock.
R8C/26-29 (INT0,1,3 Interrupt)	Sampling by f32	When the same level is sampled three
		times, an interrupt request is detected.
H8S/20103, 20203, 20223	Sampling by f1	Noise canceler will be used in the specified
	Sampling by f2	cancel performance setting.
	Sampling by f4	
	Sampling by f8	

[Polarity switching]

Select the interrupt polarity. This item may be unselectable depending on the microcomputer type.

[_INT1 pin select]

Select the INT1 interrupt input pin when _INT1 is selected in [Interrupt]. This item may be unselectable depending on the microcomputer type. Table 4.5-4 shows the settings available for [_INT1 pin select].

 Table 4.5-4
 [INT1 pin select] settings

Microcomputer	Item	Description
R8C/Tiny	P1_5 pin	Select the INT1 interrupt input pin.
(R8C/26-27)	P1_7 pin	
(R8C/2A-2D)	P3_6 pin	
R8C/Tiny	P1_5 pin	
(R8C/28-29)	P1_7 pin	

[_INT2 pin select]

Select the INT2 interrupt input pin when _INT2 is selected in [Interrupt]. This item may be unselectable depending on the microcomputer type. Table 4.5-5 shows the settings available for [_INT2 pin select].

Microcomputer	Item	Description
R8C/2A-2D	P3_2 pin	Select the INT2 interrupt input pin.
	P6_6 pin	

Table 4.5-5 [_INT2 pin select] settings

[IRQOUT pin]

Select the IRQOUT interrupt input pin when IRQ interrupt is selected in [Interrupt]. This item may be unselectable depending on the microcomputer type. Table 4.5-6 shows the settings available for [IRQOUT pin].

Table 4.5-6 [IRQOUT pin] settings

Microcomputer	Item	Description
SH7125	Interrupt request accept	Outputs a notification signal to IRQOUT pin when an
	signal output	interrupt has occurred.
	Always high-level output	Always outputs high-level to IRQOUT pin.

[KI0] - [KI5]

Select and set up the pins to be used when the key input or WKP interrupt is used. Table 4.5-7 shows the CPU corresponding to this setting.

Table 4.5-7[KI0]-[KI5] settings

Microcomputer	Item	Description
R8C/ 13,22-29, 2A-2D M16C/28,28B,29 M16C/62P	KI0 to KI3	These settings correspond to the KI0 to KI3 pins. Select [Enable input] for the pins to be used.
H8/3687, 36077,36049, 36109	KI0 to KI5	These settings correspond do the WKP0 to WKP5 pins. Select [Enable input] for the pins to be used.

[Polarity switching]

Specify the input polarity for the key input or WKP interrupt.

[Generate batch source]

Select this check box to create the driver source code for all peripheral I/O modules when clicking on the [Setting] button.

[Setting]

Clicking on this button stores the settings and closes the dialog box. When [Generate batch source] is selected, the driver source code is created.

[Cancel]

Clicking on this button closes the dialog box without storing the settings.

4.6 Setting A/D converter

The following modes are available in the A/D converter.

- Single mode
 - A/D conversion is done once for the input voltage on a selected single pin.
- Repeat mode
 - \hat{A}/D conversion is done repeatedly for the input voltage on a selected single pin.
- Single sweep mode
 - A/D conversion is done once for the input voltages on selected multiple pins.
- Repeat sweep mode 0
 - A/D conversion is done repeatedly for the input voltages on selected multiple pins.
- Repeat sweep mode 1
 - A/D conversion is done repeatedly for the input voltages on all pins, with priority given to selected pins.
- Simultaneous sample sweep mode
- A/D conversion is done once for the input voltages on selected pins. The input voltages of AN0 and AN1 are sampled simultaneously using two sample-and-hold circuits.
- Delayed trigger mode 0

This mode is available only in the M16C/28, 28B, and 29. Single-sweep A/D conversion begins when timer B0 underflows. After conversion on the AN0 pin is completed, the input to the AN1 pin is not sampled or converted until timer B1 underflows. Single-sweep conversion is restarted with the AN1 pin when timer B1 underflows.

• Delayed trigger mode 1

This mode is available only in the M16C/28, 28B, and 29. Single-sweep A/D conversion begins when the input to the ADTRG pin changes from a high level to a low level (at the falling edge). After conversion on the AN0 pin is completed, the input to the AN1 pin is not sampled or converted until the second falling edge on the ADTRG pin. Single-sweep conversion is restarted with the AN1 pin at the second falling edge on the ADTRG pin.

• 2-channel scan mode

In the SH7125, four channels of analog input in each A/D module (A/D module 0 or 1) are divided into groups 0 and 1, and triggers for activation of groups 0 and 1 are independently specifiable. An ADI interrupt request can be generated either on completion of group 0 or group 1 or on completion of both groups. Upon completion of conversion for the input pins in the selected group, the A/D converter enters the idle state.

• 2-channel continuous scan mode

A/D conversion continues even after conversion is completed in groups 0 and 1 in 2-channel scan mode.

• 4-channel scan mode

In the SH7125, A/D conversion is done selectively for one to four analog input channels in A/D module 0 (the AN0 to AN3 pins) or A/D module 1 (the AN4 to AN7 pins) in the ascending order of pin number. The results of A/D conversion are sequentially transferred to the A/D data register corresponding to the channel. When conversion of all the selected channels is completed, the A/D converter generates an ADI interrupt request and enters the idle state.

4-channel continuous scan mode As in 4-channel scan mode, A/D conversion is done selectively for a maximum of four analog input channels in the ascending order of pin number. When conversion of all the selected channels is completed, the A/D converter generates an ADI interrupt request and restarts A/D conversion from channel 1.

Table 4.6-1 show the available operating modes in each microcomputer.

	M16C/60	M16C/Tiny	R8C/Tiny		H8/300H Tiny	SH/Tiny	H8S/Tiny
	M16C/62p	M16C/28 M16C/28B M16C/29	R8C/13 R8C/22-29	R8C/2A R8C/2B R8C/2C R8C/2D	H8/3687 H8/36077 H8/36049 H8/36109	SH7125	H8S/20103 H8S/20203 H8S/20223
Single mode	•	•	•	•	•	•	•
Repetitive mode	•	•	•	•	•	-	•
Single sweeping mode	•	•	-	•	•	-	•
Repetitive sweeping mode 0	•	•	-	•	•	-	•
Repetitive sweeping mode 1	•	•	-	-	-	-	-
Simultaneous sample sweeping mode	-	•	-	-	-	-	-
Delay trigger mode 0	-	•	-	-	-	-	-
Delay trigger mode 1	-	•	-	-	-	-	-
2-channel scan mode	-	-	-	-	-	•	-
2-channel continuous scan mode	-	-	-	-	-	•	-
4-channel scan mode	-	-	-	-	-	•	-
4-channel continuous scan mode	-	-	-	-	-	•	-

Table 4.6-1 Available operating modes in each microcomputer

The setting dialog box is shared by all operating modes. Figure 4.6-1 shows the A/D converter setting dialog box.

Single mode	settin	9	×
Module:	AD_1	•	
Input group:	AN0 G	roup	
Input terminal:	ANO	Number of terminals: 1	
Sample and ho	old:	Sample and hold	•
Conversion spe	eed:	84 states	•
Conversion op	eration:	Conversion stop	•
Resolution:		10 bits	•
External Op-Ar	np:		Ŧ
(Group 0) Trigg	ger:	Software trigger	•
Group 1 trigger			•
Trigger polarity: Falling edge			•
ADF Control:			-
Interrupt			
Enable interrupt			
Interrupt priority level:			
Interrupt function name: AdIntFunc			
	Generate batch source(M) Setting Cancel		

Figure 4.6-1 A/D converter setting dialog box

[Module]

Specify the module that includes analog input pins to be set up. Table 4.6-3 shows how to set for each microcomputer.

Table 4.6-2 [Module] settings

Microcomputer	Settings	
SH7125	Select AD_0 or AD_1 as the module.	
H8S/20103,20223	AD_1 is always selected.	
H8S/20223	Select AD_1 or AD_2 as the module.	

[Input group]

Specify the port group that includes analog input pins to be set up. Table 4.6-3 shows how to set for each microcomputer.

Table 4.6-3 [Input group] settings

Microcomputer	Settings
M16C/62P	Select group Pi (i = 0, 2, or 10) as the ANEX group or port group that is also used
	as analog input pins.

M16C/28,28B	Select group P0, P10, or P1/P9 as the port group that is also used as analog input	
	pins.	
M16C/29	Select group P0, P10, P1/P9, or P9 as the port group that is also used as analog	
100/29		
	input pins.	
R8C/13,22-27, 2A-2B	Select group P0 or P1 as the port group that is also used as analog input pins.	
R8C/28-29	There is no analog input pin group. "-" (no group specified) is always selected.	
R8C/2C-2D	Select group Pi (i = 0, 1, 7, 12, or 16) as the port group that is also used as analog	
	input pin.	
H8/3687,	Select group AN0 or AN4 as the analog input pin group.	
36077,36049		
H8/36109	Select group any ($i = 0, 4, 8, or 12$) as the analog input pin group.	
SH7125	There is no port group. "-" (no group) is always selected.	
H8S/20103	Select group AN0 or AN4 as the analog input pin group.	
H8S/20203	Select group AN0, AN4 or AN8 as the analog input pin group.	
H8S/20223	Select group AN0 or AN4 or AN8 as the analog input pin group when "AD_1" is	
	selected on [Module]. AN0_2 is always selected when "AD_2" is selected on	
	[Module].	

[Input pin]

Select the analog input pins to be used. The selectable pins depend on the mode. Multiple pins can be selected in the mode that uses multiple pins.

Table 4.6-4 shows the details of [Input pin] settings for 2-channel scan mode and 2-channel continuous scan mode in SH7125.

Microcomputer	Module	Item	Setting
SH7125	A/D_0	AN0	Selects AN0
	A/D_0	AN0-AN1	Selects AN0 and AN1
	A/D_0	AN2	Selects AN2
	A/D_0	AN2-AN3	Selects AN2 and AN3
	A/D_1	AN4	Selects AN4
	A/D_1	AN4-AN5	Selects AN4 and AN5
	A/D_1	AN6	Selects AN6
	A/D_1	AN6-AN7	Selects AN6 and AN7
	A/D_0	AN0/AN2	Selects AN0 for group 0, selects AN2 for group 1
	A/D_0	AN0_1/AN2_3	Selects AN0 and AN1 for group 0, selects AN2 and AN3 for group 1
	A/D_1	AN4/AN6	Selects AN4 for group 0, selects AN6 for group 1
	A/D_1	AN4_5/AN6_7	Selects AN4 and AN5 for group 0, selects AN6 and AN7 for group 1

Table 4.6-4 [Input pin] settings

[Sample and hold]

This item specifies the sample-and-hold function. To use the function, select [Sample and hold]. [Conversion speed]

This item specifies the A/D conversion speed. Specify the operating clock or A/D conversion time. [Conversion operation] Select [Conversion start] or [Conversion stop] for the operation immediately after the A/D converter is initialized to the settings made in this dialog box. When [Conversion start] is selected while [Software trigger] is specified in [Trigger], conversion starts as soon as the initial setting. When [Conversion start] is selected while a trigger other than [Software trigger] is specified in [Trigger], conversion starts at the first trigger after the initial setting. When [Conversion storp] is selected, conversion does not begin regardless of the setting in [Trigger].

[Resolution]

Specify the resolution in bits. This item may be unselectable depending on the microcomputer type.

[External Op-Amp]

This item specifies use of an external operational amplifier to amplify the analog input. This item may be unselectable depending on the microcomputer type. Table 4.6-5 shows the settings available for [External Op-Amp].

Microcomputer	Item	Description
M16C/62P	ANEX0 and	Select this setting to convert the analog input to the specified pins without
	ANEX1are not used	amplification when the P10, P0, or P2 group is selected in [Input group].
	External Op-Amp	Select this setting to amplify the analog input to the specified pins through
	connection mode	an external operational amplifier when the P10, P0, or P2 group is
		selected in [Input group].
	ANEX0 input is A/D	This setting is always selected when ANEX0 is specified as the analog
	converted	input pin.
	ANEX1 input is A/D converted	This setting is always selected when ANEX1 is specified as the analog input pin.

Table 4.6-5 [External Op-Amp] settings

[(Group 0) Trigger]

Specify the condition for starting A/D conversion. In the SH7125, this item specifies the trigger for group 0 when 2-channel scan mode or 2-channel continuous scan mode is selected. Table 4.6-6 shows the settings available for [(Group 0) Trigger].

Microcomputer	Item	Description
All microcomputers	Software trigger	Conversion begins when the A/D conversion start bit in the register is set. If [Conversion start] is selected in [Conversion operation] described above, conversion begins as soon as the initial setting in the A/D conversion.

M16C/62P	Hardware trigger	Conversion begins at the falling edge of the input to the ADTRG pin.
M16C/28 M16C/28B	Hardware trigger	Conversion begins at the falling edge of the input to the ADTRG pin.
M16C/29	Timer B0 underflow Timer B2 interrupt Timer B2 interrupt	These settings can be selected only in simultaneous sample sweep mode. Set up the corresponding timer to use one of these settings.
	generation frequency setting counter underflow	
R8C/22-25 R8C/2A-2D	Timer RD (Complementary PWM mode)	Conversion is started by a timer RD interrupt.
H8/3687,36077 H8/36049,36109	Hardware trigger	Conversion is started by the input to the ADTRG pin. The rising or falling edge can be selected in [Trigger polarity], which is described later.
SH7125	External trigger input	Conversion is started by the input to the external trigger pin (ADTRG).
	TRGAN	Conversion is started by a TRGA input capture or compare match in an MTU2 channel, or a TCNT_4 underflow in complementary PWM mode in the MTU2.
	TRGON	Conversion is started by a compare match (TRG0N) in channel 0 of the MTU2.
	TRG4AN	Conversion is started by the A/D conversion start delayed signal (TRG4AN) from the MTU2.
	TRG4BN	Conversion is started by the A/D conversion start delayed signal (TRG4BN) from the MTU2.
H8S/20103	Conversion start trigger from timer RC	A compare-match interrupt generated by timer RC is the trigger to start A/D conversion. A/D conversion started by timer RC must be enabled in advance.
	Conversion start trigger from timer RD_0	A compare-match interrupt generated by timer RD0 or RD1 is the trigger to start A/D conversion. A/D conversion started by timer RD0 or RD1 must be enabled in advance.
	External trigger (ADTRG1 pin)	An input to the ADTRG1 pin is the trigger to start A/D conversion.
H8S/20203	Conversion start trigger from timer RD_0	A compare-match interrupt generated by timer RD0 or RD1 is the trigger to start A/D conversion. A/D conversion started by timer RD0 or RD1 must be enabled in advance.
	Conversion start trigger from timer RD_1	A compare-match interrupt generated by timer RD2 or RD3 is the trigger to start A/D conversion. A/D conversion started by timer RD2 or RD3 must be enabled in advance.
	External trigger (ADTRG1 pin)	An input to the ADTRG1 pin is the trigger to start A/D conversion.
H8S/20223	Conversion start trigger from timer RD_0	A compare-match interrupt generated by timer RD0 or RD1 is the trigger to start A/D conversion. A/D conversion started by timer RD0 or RD1 must be enabled in advance.
	Conversion start trigger from timer RD_1	A compare-match interrupt generated by timer RD2 or RD3 is the trigger to start A/D conversion. A/D conversion started by timer RD2 or RD3 must be enabled in advance.
	External trigger (ADTRG1 pin)*	An input to the ADTRG1 pin is the trigger to start A/D conversion. *Note: If [AD_2] has been selected as the module, the ADTRG2 pin is also available.

[Group 1 trigger]

This item specifies the trigger for group 1 in the SH7125 when 2-channel scan mode or 2-channel continuous scan mode is selected. Table 4.6-7 shows the settings available for [Group 1 Trigger].

Table 4.6-7[Group 1 trigger] settings

Microcomputer	Item	Description
SH7125	Software trigger	See Table 4.6-6 for details of the settings. Select a different
	TRGAN	trigger than that selected in [(Group 0) Trigger].
	TRG0N	
	TRG4AN	
	TRG4BN	

[Trigger polarity]

Select the trigger edge when external trigger is selected as A/D conversion start trigger. This item may be unselectable depending on the microcomputer type. Table 4.6-8 shows the settings available for [Trigger polarity].

Microcomputer	Item	Description
H8/3687 *	Rising edge	The rising edge on the ADTRG pin is specified as the
H8/36077 *		conversion start trigger.
H8/36049 *	Falling edge	The falling edge on the ADTRG pin is specified as the
H8/36109 *		conversion start trigger.
SH7125	Rising edge	The rising edge is always shown in this box, but this setting
		is not applied to the actual trigger polarity.
H8S/20103,	Falling edge	The falling edge is always shown in this box, but this setting
20203, 20223		is not applied to the actual trigger polarity.

Table 4.6-8 [Trigger polarity] settings

* Valid only when [Hardware trigger] is selected as A/D conversion start trigger.

[ADF Control]

When conversion pins are selected for groups 0 and 1 in 2-channel scan mode or 2-channel continuous scan mode in the SH7125, specify the timing for setting the A/D end flag (ADF) to generate an ADI interrupt. Table 4.6-9 shows the settings available for [ADF Control].

Table 4.6-9	[ADF Co	ntrol] settings
-------------	---------	-----------------

Microcomputer	Item	Description
SH7125	ADF is set when group	The ADF bit is set and ADI interrupt occurs when A/D
	0 or group 1 has	conversion started by the group 0 trigger or group 1 trigger
	finished	has finished.
	ADF is set when group	The ADF bit is set and ADI interrupt occurs when A/D
	0 and group 1 have	conversion started by the group 0 trigger and A/D
	both finished	conversion started by the group 1 trigger have both
		finished. Note that the triggering order has no affect.

[Interrupt]

This item enables detection of A/D conversion completed interrupt occurrence. Select [Enable interrupt] and specify the interrupt priority levels; the user-created interrupt function will be called when an interrupt occurs. The following explains how to set each item.

[Enable interrupt]

Select the check box to detect occurrence of the A/D conversion completed interrupt.

[Interrupt priority level]

Specify the priority level for the A/D conversion completed interrupt. The priority may not be specified depending on the microcomputer or interrupt type.

[Interrupt function name

Specify the interrupt notification function to be called when the A/D conversion completed interrupt occurs. When using an interrupt notification function, add to the user program the function with the name specified here. The declaration of the interrupt function is as follows.

Function Declaration

void [specified notification function name](void);	
--	--

[Generate batch source]

Select this check box to create the driver source code for all peripheral I/O modules when clicking on the [Setting] button.

[Setting]

Clicking on this button stores the settings and closes the dialog box. When [Generate batch source] is selected, the driver source code is created.

[Cancel]

Clicking on this button closes the dialog box without storing the settings.

4.7 Setting DTC

Table 4.7-1 shows the available microcomputers.

 Table 4.7-1
 Available microcomputers

	M16C/60	M16C/Tiny	R8C/Tiny	H8/300H Tiny	SH/Tiny	H8S/Tiny
	M16C/62P	M16C/28	R8C/13	H8/3687,	SH7125	H8S/20103,
		M16C/28B	R8C/22-29	H8/36077,		H83/20203,
		M16C/29	R8C/2A-2D	H8/36049,		H83/20223
				H8/36109		
DTC	-	-	-	-	-	•

Table 4.7-2 shows the activation sources that can be set in each microcomputer.

Table 4.7-2	Activation	sources in	each	microcomputer
--------------------	------------	------------	------	---------------

H8S/Tiny series				
IRQ0	IADEND_2 *1	IIC2/SSU_RXI	ITDMA0_1	ITDMC1_3 *3
IRQ1	IADCMP_2 *1	IIC2/SSU_TXI	ITDMB0_1	ITDMD1_3 *3
IRQ2	ELC1FP	ITCMA *2	ITDMC0_1	ITESC
IRQ3	ELC2FP	ITCMB *2	ITDMD0_1	ITEMI
IRQ4	SCI3_1 RXI	ITCMC *2	ITDMA1_2 *3	ITEHR
IRQ5	SCI3_1 TXI	ITCMD *2	ITDMB1_2 *3	ITEDY
IRQ6	SCI3_2 RXI	ITDMA0_0	ITDMC1_2 *3	ITEMK
IRQ7	SCI3_2 TXI	ITDMB0_0	ITDMD1_2 *3	ITGMA
IADEND_1	SCI3_3 RXI	ITDMC0_0	ITDMA1_3 *3	ITGMB
IADCMP_1	SCI3_3TXI	ITCMD0_0	ITDMB1_3 *3	SOFTWEAR

*1. Valid only when H8S/20223 is selected.

*2. Valid only when H8S/20103 is selected.

*3. Invalid only when H8S/20103 is selected.

Figure 4.7-1 shows the [DTC setting] dialog box.

DTC setting	
Activation source: IRQ0	v
Chain pattern No.	Register information
Chain pattern1	Start address of register information: 000000
	Source side Destination side Address: 000000 Operation: Fixed Operation: Fixed
	Transfer mode: Normal mode Interrupt select: After every transfer completion.
	Repeat area/Block area select:
	Transfer size: Byte-size Chain transfer
	Block-size counter: 0 Chain transfer enable
Delete last register information	Transfer counter: 0 Chain transfer select:
Pelete lastregister information	Generate batch source(M) Setting Cancel

Figure 4.7-1 DTC setting dialog box

[Start address of register information]

Specify the address located the register information in the on-chip RAM. Register information should be located at the address that is multiple of four.

[Source address (DTC)]

Specify the source address of data to be transferred by the DTC. For word-size transfer, specify an even source address.

[Source address operation]

Select the source address operation after data transfer. Fixed, Incremented or Decremented can be selected.

[Destination address (DTC)]

Specify the destination address of data to be transferred by the DTC. For word-size transfer, specify an even destination address.

[Destination address operation]

Select the destination address operation after data transfer. Fixed, Incremented or Decremented can be selected. [Transfer mode]

Select the DTC transfer mode. Table 4.7-3 shows the settings available for [Transfer mode].

Item	Description
Normal mode	One operation transfers one byte or one word of data.
Repeat mode	One operation transfers one byte or one word of data. Once the specified number of transfers has ended, the initial state is restored, and transfer is repeated.
Block transfer mode	One operation transfers specified one block of data.

Table 4.7-3 [Transfer mode] settings

[Repeat area/Block area select]

Select whether the source side or the destination side is set to be a repeat area or block area, in repeat mode or block transfer mode. Source side or Destination side can be selected.

[Transfer size]

Select the size of data to be transferred. Byte-size or Word-size can be selected.

[Block-size counter]

Specify the size of blocks in block transfer mode. The size of blocks from 0 to 255 can be set.

[Transfer counter]

Specify the number of times that data is to be transferred by the DTC. Table 4.7-3 shows the settings available for [Transfer counter].

Transfer mode	The range of setting
Normal mode	0 to 65535
Repeat mode	0 to 255
Block transfer mode	0 to 65535

[Interrupt select]

Select CPU interrupts be requested. [When transfer counter is 0]or [After every transfer completion] can be selected. In repeat mode, the transfer counter value does not reach H'00, When transfer counter is 0 cannot be selected. [Interrupt function name]

When you use software to activate the DTC, specify a function to be called on generation of a data-transfer end request interrupt (on the [Transfer pattern 1] page). When using an interrupt notification function, add to the user program the function with the name specified here. The declaration of the interrupt function is as follows.

Function Declaration	
void [specified notification function name](void);	

[Chain transfer enable]

When the checkbox is selected, the next set of register information will be saved at the address which follows the address specified for [Start address of register information].

To edit register information, select it from [Transfer pattern list].

The tick in the checkbox cannot be removed.

To delete register information, click on the [Delete last register information] button.

If the address specified for [Start address of register information] or its subsequent addresses have already been used

as [Start address of register information] for other activation sources, the chain transfer is not possible. [Chain transfer select]

Select [Consecutively] or [When transfer counter is 0] as the type of chain transfer. This option is only selectable when the [Chain transfer enable] checkbox has been selected.

[Transfer pattern list]

When a single activation source is used for continuous transfer of several data units, [Transfer pattern list] lists the corresponding sets of register information in the order that they are to be transferred.

To edit a set of register information, click on [Transfer pattern i] (i indicates the order) or select it by using the [Enter] key. The selected set of register information is displayed in the dialog box. When [Chain transfer enable] is not selected, only [Transfer pattern 1] is shown in [Transfer pattern list].

[Delete last register information]

Clicking on this button deletes the last element shown in [Transfer pattern list].

[Generate batch source]

Select this check box to create the driver source code for all peripheral I/O modules when clicking on the [Setting] button.

[Setting]

Clicking on this button stores the settings and closes the dialog box. When [Generate batch source] is selected, the driver source code is created.

* If the address specified for [Start address of register information] has already been used as [Start address of register

information] for other activation sources, the settings cannot be saved (i.e. you cannot close the dialog box). [Cancel]

Clicking on this button closes the dialog box without storing the settings.

4.8 Setting ELC

Table 4.8-1 shows the available microcomputers.

Table 4.8-1	Available microcomputers
-------------	--------------------------

	M16C/60	M16C/Tiny	R8C/Tiny	H8/300H Tiny	SH/Tiny	H8S/Tiny
	M16C/62P	M16C/28 M16C/28B M16C/29	R8C/13 R8C/22-29 R8C/2A-2D	H8/3687, H8/36077, H8/36049, H8/36109	SH7125	H8S/20103, H83/20203, H83/20223
ELC	-	-	-	-	-	•

Figure 4.8-1 shows the [ELC setting] dialog box. This dialog box lists the settings of all events being linked.

Event receive module	Furnit direct	0	Kana udaan a					
	Event signal	Upera	itions when e	ven 🗠				
Timer RA	No setting							
Timer RB	No setting				6	Eventlink	setting	
Timer RC	No setting				1		c securig	1
Timer RD_0 channel 0	Input edge detection o	Timer	counts even	ts				
Timer RD_0 channel 1	No setting					Event link r	ort setting	1
Timer RG	No setting			_		E FORK MINCE	on ootang	
AD converter unit 1	No setting							
Interrupts 1	SCI3_1 transmit end	Interru	ipt disable					
Output port-group 1	No setting							
Output port-group 2	No setting							
Input port-group 1	No setting							
	Ki			~	2			
<				>				
Event-Generation timer se	tting		Channel0	-				
Event-Generation timer se Count source:	ltting	•	Channel0 Event-Ge			Channel2 ner Interval S 6		
		•	Event-Ge	enerati	on Tim f25 on Tim	er Interval S 6 ner Delay Se	ietting:	
Count source:	[f] 20000.00	•	i Event-Ge Event-Ge	enerati enerati	on Tim f25i on Tim No	er Interval 9 6 er Delay Se delay	ietting:	
Count source: Period[ms]:	[f] 20000.00		Event-Ge	enerati enerati	on Tim f25i on Tim No	er Interval S 5 ner Delay Se delay erval[ms]:	Setting:	
Count source: Period[ms]:	[f] 20000.00		i Event-Ge Event-Ge	enerati enerati	on Tim f25i on Tim No	er Interval S 5 ner Delay Se delay erval[ms]:	ietting:	

Figure 4.8-1 ELC setting dialog box

[Event link setting]

Clicking on this button opens the [Event link setting] dialog box shown in Figure 4.8-2.

Event link setting		
Event receive module:	Timer RA	•
Event signal:	Input edge detection on single input port 1	-
Operations when event is input:	Timer counts events	•
_ Interrupt		
Interrupt source:		
Interruption function name:		
	OK.	Cancel

Figure 4.8-2 Event link setting dialog box

The following describes the items in the [Event link setting] dialog box.

[Event receive module]

Select the module to which an event is to be linked. The available settings depend on the microcomputer.

When the [Event link setting] dialog box is opened, the setting of the receive module selected in the [ELC setting] dialog box is automatically displayed here.

[Event signal]

Select the event signal. The available settings depend on the Event receive module.

[Operations when event is input]

Select the operation of the module when an event is input. The available settings depend on the Event receive module.

[Interrupt source]

If you have selected [Interrupt 1] or [Interrupt 2] for [Event receive module], the name of the interrupt source for the selected module is displayed here.

Table 4.8-2[Interrupt source]

Event receive module	Interrupt source
Interrupts 1	ELC1FP
Interrupts 2	ELC2FP

[Interruption function name]

If you have selected [Interrupt 1] or [Interrupt 2] for [Event receive module], enter the name of an interrupt function to be called.

[Setting]

Clicking on this button stores the settings and closes the dialog box.

[Cancel]

Clicking on this button closes the dialog box without storing the settings.

[Event link port setting]

Clicking on this button opens the [Event link port setting] dialog box shown in Figure 4.8-3.

Event link p	port settin	ng				×
Port-group/Si	ingle-port:	Input port-g	roup 1 or Output port-	group 1	•	
Port select:		Port 3	•			
Bit setting						
Bit number	Pin fun	ction	1/0 selection	Include in group	Status	
7	general I/	/O port	Used as an input		Input port-group 1	
6	general I/	/O port	Used as an input	Γ	No setting	
5	general I/	/O port	Used as an output		Output port-group 1	
4	general I/	/O port	Used as an input	Γ	No setting	
3	general I/	/O port	Used as an input	$\overline{\mathbf{v}}$	Input port-group 1	
2	IRQ2 ir	nput	Used as an input		Excluded from event link port setting	
1	general I/	/O port	Used as an output		Output port-group 1	
0	general I/	/O port	Used as an input	Γ	No setting	
Event output	edge: Risi	ng edge	•			
Status:			1-			-
Event link p			Port setting			
Output port- Input port-gr			P31, P35 P33, P37			_
Output port-			F33, F37			-
Input port-gr						
Single-port 1						
Single-port 2						_
Single-port 3						
Single-port-	•					
					Cancel	

Figure 4.8-3 Event link port setting dialog box

The following describes the items in the [Event link port setting] dialog box.

[Port-group/Single-port]

Select the port operation upon Event Input and Event Generation. Table 4.8-3 shows the settings for [Port-group/Single-port].

Table 4.8-3 [Port-group/Single-port] settings

Item	Description
Single-port 1	Port and bit of each single port
Single-port 2	
Single-port 3	
Single-port 4	
Input port-group 1 or Output port-group 1	Port group for port 3
Input port-group 2 or Output port-group 2	Port group for port 6

[Port select]

Specify the port group. Table 4.8-4 shows the settings for [Port select].

Table 4.8-4 [Port select] settings

[Port-group/Single-port]Item	Item
Single-port 1	No setting
Single-port 2	Port 3
Single-port 3	Port 6
Single-port 4	
Input port-group 1 or Output port-group 1	Port 3
Input port-group 2 or Output port-group 2	Port 6

[Pin function]

Shows the function of each of the port pins (input or output) selected for [Port select]. These settings cannot be modified.

[I/O selection]

Shows whether each of the port pins selected for [Port select] are used for input or output. These settings cannot be modified.

[Include in group](In port group), [Bit number specification](In Single Port)

Select the pins to be used as a port group selected in [Port-group/Single-port]. When a single port has been selected, you can only select one pin.

[Status]

Shows whether the pins will be used as the port group selected in [Port-group/Single-port]. These settings cannot be modified. The information displayed here depends on [Pin function], [I/O selection], and bit selection. Table 4.8-5 shows all items of [Status].

[Port-group/Single-port]	State	String in [State]
Single-port	The radio button is not selected.	No setting
	The radio button is selected and [Pin	Single-port 1 to 4
	function] is [General I/O port].	
	The radio button is selected and [Pin	Excluded from event link port
	function] is not [General I/O port].	setting
Port-group	The checkbox is not selected.	No setting
	The checkbox is selected and [Pin function]	Excluded from event link port
	is not [General I/O port].	setting
	The checkbox is selected, [Pin function] is	In port 3: Input port-group 1
	[General I/O port], and [I/O selection] is	In port 6: Input port-group 2
	[Used as an input].	
	The checkbox is selected, [Pin function] is	In port 3: Output port-group 1
	[General I/O port], and [I/O selection] is	In port 6: Output port-group 2
	[Used as an output].	

RENESAS

Table 4.8-5 [Status]

[Event output edge]

Select the type of output (i.e. the edge on which the event signal is to be output) for the port group designated as an output port group.

[Port settings]

Shows the current states of all single ports and port groups.

[Setting]

Clicking on this button stores the settings and closes the dialog box.

[Cancel]

Clicking on this button closes the dialog box without storing the settings.

[Event-Generation timer setting]

The event-generation timer can generate an event at specified interval. The generated event can be connected to another module. Four-channel event output is available. Table 4.8-6 shows event signals assigned to channels of the event-generation timer.

Table 4.8-6 Event signals assigned to channels of the event-generation timer

Channel	0	1	2	3
Event signal	Timer ELC event 0	Timer ELC event 1	Timer ELC event 2	Timer ELC event 3

[Count source]

Select the count source for the counter.

[Period]

This box shows the frequency of the selected count source.

[Activation in initialization]

Select [Operation start] or [Operation stop] for the timer operation immediately after the initial setting.

[Event-Generation Timer Interval Setting]

Select the event-generation interval and sets the division ratio for the clock source.

[Event-Generation Timer Delay Selection:]

Select the necessary delay time, which is the time from the specified eventgeneration timing (= interval) to the actual generation timing of the event in terms of the cycles of the selected clock source. No delay, 1 clock cycle, 2 clock cycle, or 3 clock cycle can be selected.

[Event-Generation interval]

This section shows the event-generation interval figured out by [Count source] and [Event-Generation Timer Interval Setting].

[Generate batch source]

Select this check box to create the driver source code for all peripheral I/O modules when clicking on the [Setting] button.

[Setting]

Clicking on this button stores the settings and closes the dialog box. When [Generate batch source] is selected, the driver source code is created.

[Cancel]

Clicking on this button closes the dialog box without storing the settings.

5. Generated Functions Reference

5.1 Generated function of for M16C/60, M16C/Tiny, R8C/Tiny, and H8/300H Tiny

Table 5.1.1 shows generated functions for M16C/60 series (M16C/62P), R8C/Tiny series (R8C/13, 22-29, 2A-2D), and H8/300H Tiny series (H8/3687, 36077, 36049, 36109).

No	Peripheral Module	Generated function name	Description
1-1	Serial Communication	OpenSerialDriver	Open(Initialize) the appointed serial I/F setting
1-2	Interface	CloseSerialDriver	Close the appointed serial I/F
1-3		ConfigSerialDriverNotify	Register the appointed type of notify function
			with driver
1-4		SetSerialFormat	Change serial setting
1-5		SetSerialInterrupt	Set up serial interrupt
1-6		StartSerialReceiving	Start receiving
1-7		StartSerialSending	Start transmitting
1-8		StopSerialReceiving	Stop receiving
1-9		StopSerialSending	Stop transmitting
1-10		PollingSerialReceiving	Polling reception
1-11		PollingSerialSending	Polling transmission
2-1	Interrupt	SetInterrupt	Set up external interrupt
2-2		EnableInterrupt	Control external interrupt (enable)
2-3		DisableInterrupt	Control external interrupt (disable)
2-4		GetInterruptFlag	Get the external interrupt flag status
2-5		ClearInterruptFlag	Clear the external interrupt flag
3-1	A/D Converter	CreateADC	Create A/D converter setting
3-2		EnableADC	Control A/D converter operation (enable)
3-3		DisableADC	Control A/D converter operation (disable)
3-4		DestroyADC	Destroy A/D converter setting
3-5		GetADC	Get the A/D conversion value (Register 0)
3-6		GetADCAII	Get the A/D conversion value (All registers)
3-7		GetADCStatus	Get the A/D converter status
3-8		ClearADCStatus	Clear the A/D converter status
4-1	I/O Port	SetIOPort	Create I/O ports setting
4-2		ReadIOPort	Read data from I/O ports
4-3		WriteIOPort	Write data to I/O ports
4-4		ReadIOPortRegister	Read data from I/O port register
4-5		WriteIOPortRegister	Write data to I/O port registers
5-1	Timer/Timer Mode	CreateTimer	Create timer mode setting
5-2		EnableTimer	Timer mode operation control (Operation start)
5-3		DisableTimer	Timer mode operation control (Operation stop)
5-4		DestroyTimer	Destroy timer mode
6-1	Timer/	CreateEventCounter	Create event counter mode setting
6-2	Event Counter Mode	EnableEventCounter	Event counter mode operation control
			(Operation start)
6-3		DisableEventCounter	Event counter mode operation control
			(Operation stop)
6-4		DestroyEventCounter	Destroy event counter mode
6-5		GetEventCounter	Get event counter mode counter value
7-1	Timer/ Pulse Width	CreatePulseWidthModulationMode	Create pulse width modulation mode setting
7-2	Modulation Mode	EnablePulseWidthModulationMode	Pulse width modulation mode operation control (Operation start)
7-3		DisablePulseWidthModulationMode	Pulse width modulation mode operation control (Operation stop)

Table 5.1-1 Generated function of for M16C/60, M16C/Tiny, R8C/Tiny, and H8/300H Tiny

Peripheral Driver Generator

		DestroyPulseWidthModulationMode	Destroy pulse width modulation mode
No	Peripheral Module	Generated function name	Description
8-1	Timer/ Pulse period measurement mode	CreatePulsePeriodMeasurementMode	Create pulse period measurement mode setting
8-2		EnablePulsePeriodMeasurementMode	Pulse period measurement mode operation control (Operation start)
8-3		DisablePulsePeriodMeasurementMode	Pulse period measurement mode operation control (Operation stop)
8-4		DestroyPulsePeriodMeasurementMode	Destroy pulse period measurement mode
8-5		GetPulsePeriodMeasurementMode	Get pulse period measurement mode measured value
9-1	Timer/ Pulse width	CreatePulseWidthMeasurementMode	Create pulse width measurement mode setting
9-2	measurement mode	EnablePulseWidthMeasurementMode	Pulse width measurement mode operation control (Operation start)
9-3		DisablePulseWidthMeasurementMode	Pulse width measurement mode operation control (Operation stop)
9-4		DestroyPulseWidthMeasurementMode	Destroy pulse width measurement mode
9-5		GetPulseWidthMeasurementMode	Get pulse width measurement mode measured value
10-1	Timer/	CreateInputCapture	Assigns event signals
10-2	Input capture mode	EnableInputCapture	Input capture mode operation control (Operation start)
10-3		DisableInputCapture	Input capture mode operation control (Operation stop)
10-4		DestroyInputCapture	Destroy input capture mode
10-5		GetInputCapture	Get input capture mode counter value
11-1	Timer/	CreateOutputCompare	Create output compare mode setting
11-2	Output compare mode	EnableOutputCompare	Output compare mode operation control (Operation start)
11-3		DisableOutputCompare	Output compare mode operation control (Operation stop)
11-4		DestroyOutputCompare	Destroy output compare mode
12-1	Event Link Controller	SetEventLink	Create ELC settings
12-2	(Only in H8S/Tiny)	DisableEventLink	Disable ELC settings
12-3		CreateEventGenerateTimer	Set event-generation timer
12-4		EnableEventGenerateTimer	Enable event-generation timer
12-5		DisableEventGenerateTimer	Disable event-generation timer
12-6		DestroyEventGenerateTimer	Destroy event-generation timer
12-7		ReadPortBufferRegister	Read from port buffer register
12-8		WritePortBufferRegister	Write to port buffer register
13-1	Data Transfer Controller	CreateDTC	Set DTC register information
13-2	(Only in H8S/Tiny)	EnableDTC	Enable DTC activation source
13-3	1	DisableDTC	Disable DTC activation source

The following shows the details of each function.

(1) Serial

1-1 _OpenSerialDriver

Generated function	BooleanOpenSerialDriver_[Mode]_U[Resource]_p[Setting No.] (void)
Peripheral Module	Serial Communication Interface
Description	Open (Initialize) the appointed serial I/F setting
Parameters	—
Return value	RAPI_TRUE is returned

1-2 __CloseSerialDriver

Generated function	BooleanCloseSerialDriver_[Mode]_U[Resource]_p[Setting No.] (void)
Peripheral Module	Serial Communication Interface
Description	Close the appointed serial I/F
Parameters	—
Return value	RAPI_TRUE is returned
	•

1-3 __ConfigSerialDriverNotify

Generated function	BooleanConfigSerialDriverNotify_[Mode]_U[Resource]_p[Setting No.] (void)
Peripheral Module	Serial Communication Interface
Description	Register the appointed type of notify function with driver
Parameters	—
Return value	RAPI_TRUE is returned

1-4 __SetSerialFormat

Generated function	BooleanSetSerialFormat_[Mode]_U[Resource]_p[Setting No.] (void)
Peripheral Module	Serial Communication Interface
Description	Change serial setting
Parameters	—
Return value	If serial communication was successfully set, RAPI_TRUE is returned; if settings failed, RAPI_FALSE is
	returned.

1-5 __SetSerialInterrupt

Generated function	BooleanSetSerialInterrupt_[Mode]_U[Resource]_p[Setting No.] (void)
Peripheral Module	Serial Communication Interface
Description	Set up serial interrupt
Parameters	_
Return value	RAPI_TRUE is returned

1-6 __StartSerialReceiving

Generated function	BooleanStartSerialReceiving_[Mode]_U[Resource]_p[Setting No.] (unsigned char wordNum, unsigned int	
	*dataBuf)	
Peripheral Module	Serial Communication Interface	
Description	Start receiving	
Parameters	wordNum : Number of words received	
	dataBuf : Pointer to the buffer in which received data is stored	
Return value	If data reception in serial communication was successfully started, RAPI_TRUE is returned; if failed,	
	RAPI_FALSE is returned.	

1-7 __StartSerialSending

Generated function	BooleanStartSerialSending_[Mode]_U[Resource]_p[Setting No.] (unsigned char wordNum, unsigned int
	*dataBuf)
Peripheral Module	Serial Communication Interface
Description	Start transmitting
Parameters	wordNum : Number of words transmitted
	dataBuf : Pointer to the transmit data
Return value	If data transmission in serial communication was successfully started, RAPI_TRUE is returned; if failed,
	RAPI_FALSE is returned.

1-8 __StopSerialReceiving

1	e
Generated function	BooleanStopSerialReceiving_[Mode]_U[Resource]_p[Setting No.] (void)
Peripheral Module	Serial Communication Interface
Description	Stop receiving
Parameters	—
Return value	If reception of serial communication was successfully stopped, RAPI_TRUE is returned; if failed, RAPI_FALSE
	is returned.
Remarks	This function is not generated for M16C/62P,M16C/28,28B,29.

1-9 __StopSerialSending

Generated function	BooleanStopSerialSending_[Mode]_U[Resource]_p[Setting No.] (void)
Peripheral Module	Serial Communication Interface
Description	Stop transmitting
Parameters	—
Return value	If transmission of serial communication was successfully stopped, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.
Remarks	This function is not generated for M16C/62P,M16C/28,28B,29, SI/O3,4.

1-10 _PollingSerialReceiving

Generated function	BooleanPollingSerialReceiving_[Mode]_U[Resource]_p[Setting No.] (void)
Peripheral Module	Serial Communication Interface
Description	Polling reception
Parameters	_
Return value	Out of the receive data counts requested, the number of unreceived data is returned.

1-11 __PollingSerialSending

Generated function	BooleanPollingSerialSending_[Mode]_U[Resource]_p[Setting No.] (void)
Peripheral Module	Serial Communication Interface
Description	Polling transmission
Parameters	_
Return value	Out of the transmit data counts requested, the number of untransmitted data is returned.

(2) Interrupt

2-1 __SetInterrupt

1	
Generated function	BooleanSetInterrupt_I[Resource]_p[Setting No.] (void)
Peripheral Module	Interrupt
Description	Set up external interrupt
Parameters	—
Return value	RAPI_TRUE is returned

2-2 __EnableInterrupt

Generated function	BooleanEnableInterrupt_I[Resource]_p[Setting No.] (void)
Peripheral Module	Interrupt
Description	Control external interrupt (enable)
Parameters	—
Return value	RAPI_TRUE is returned

2-3 _____DisableInterrupt

Generated function	BooleanDisableInterrupt_I[Resource]_p[Setting No.] (void)
Peripheral Module	Interrupt
Description	Control external interrupt (disable)
Parameters	_
Return value	RAPI_TRUE is returned

2-4 __GetInterruptFlag

Generated function	BooleanGetInterruptFlag_I[Resource]_p[Setting No.] (unsigned int *data)	
Peripheral Module	Interrupt	
Description	Get the external interrupt flag status	
Parameters	Data : Pointer to the buffer in which the acquired flag data is stored	
Return value	RAPI_TRUE is returned	

2-5 __ClearInterruptFlag

Generated function	BooleanClearInterruptFlag_I[Resource]_p[Setting No.] (void)
Peripheral Module	Interrupt
Description	Clear the external interrupt flag
Parameters	_
Return value	RAPI_TRUE is returned

(3) A/D Converter

3-1 __CreateADC

Generated function	BooleanCreateADC_[Mode]_[Pin No.]_[Number of Pins]_p[Setting No.] (void)
Peripheral Module	A/D Converter
Description	Create A/D converter setting
Parameters	—
Return value	If A/D converter was successfully set, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.

3-2 __EnableADC

Generated function	BooleanEnableADC_[Mode]_[Pin No.]_[Number of Pins]_p[Setting No.] (void)
Peripheral Module	A/D Converter
Description	Control A/D converter operation (enable)
Parameters	_
Return value	If A/D converter was successfully controlled, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.
Remarks	This function is not generated for delayed trigger mode 0,1 in M16C/28,28B,29.

3-3 _____DisableADC

Generated function	BooleanDisableADC_[Mode]_[Pin No.]_[Number of Pins]_p[Setting No.] (void)
Peripheral Module	A/D Converter
Description	Control A/D converter operation (disable)
Parameters	_
Return value	If A/D converter was successfully controlled, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.
Remarks	This function is not generated for delayed trigger mode 0,1 in M16C/28,28B,29.

3-4 ____DestroyADC

Generated function	BooleanDestroyADC_[Mode]_[Pin No.]_[Number of Pins]_p[Setting No.] (void)
Peripheral Module	A/D Converter
Description	Destroy A/D converter setting
Parameters	—
Return value	If converter setting was successfully discarded, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.

3-5 __GetADC

Generated function	BooleanGetADC_[Mode]_[Pin No.]_[Number of Pins]_p[Setting No.]_ad[Register] (unsigned int *data)
Peripheral Module	A/D Converter
Description	Get the A/D conversion value (Register 0)
Parameters	data : Pointer to the buffer in which A/D converted value is stored.
Return value	If A/D converted value was successfully acquired, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.

3-6 __GetADCAll

Generated function	BooleanGetADCAII_[Mode]_[Pin No.]_[Number of Pins]_p[Setting No.] (unsigned int *data)
Peripheral Module	A/D Converter
Description	Get the A/D conversion value (All registers)
Parameters	data : Pointer to the buffer in which A/D converted value is stored.
	For details, refer to the Renesas Embedded Application Programming Interface Reference Manual, _GetADCAll
	section.
Return value	If A/D converted values were successfully acquired, RAPI_TRUE is returned; if failed, RAPI_FALSE is
	returned.

3-7 __GetADCStatus

Generated function	BooleanGetADCStatus_[Mode]_[Pin No.]_[Number of Pins]_p[Setting No.] (unsigned int *data)
Peripheral Module	A/D Converter
Description	Get the A/D converter status
Parameters	data : Pointer to the buffer in which the register content indicating A/D converter status is stored. The status of interrupt bit (when using the M16C or R8C) or the value of A/D end flag (when using the H8S or H8/300H) is stored in the first low-order bit of *status. Furthermore, the status of A/D conversion start flag is stored in the second low-order bit of *status. When used in the M16C, the value of A/D conversion status register 0 is stored in the 8 high-order bits of *status.
Return value	If A/D converter status was successfully acquired, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.

3-8 ClearADCStatus

Generated function	BooleanClearADCStatus_[Mode]_[Pin No.]_[Number of Pins]_p[Setting No.] (unsigned int data)
Peripheral Module	A/D Converter
Description	Clear the A/D converter status
Parameters	data : Status of A/D converter. Clears the status flag of a specified A/D converter. Specify the status of interrupt
	bit (when using the M16C or R8C) or the value of A/D end flag (when using the H8S or H8/300H) in the first
	low-order bit of status. When used in the M16C, specify the value of A/D conversion status register 0 in the 8
	high-order bits of status. Write 0 to the bits to be cleared and 1 to the bits that do not need to be cleared.
Return value	If A/D converter status flag was successfully cleared, RAPI_TRUE is returned; if failed, RAPI_FALSE is
	returned.

(4) I/O Port

4-1 __SetIOPort

Generated function	BooleanSetIOPort_[Port]_[Pin No.]_p[Setting No.] (void)
Peripheral Module	I/O Port
Description	Create I/O ports setting
Parameters	
Return value	RAPI_TRUE is returned
Remarks	This function is not generated for RB pin in H8/3687,36049,36077, RF pin in H8/36109, P85 pin in M16C/62P,
	P46,47 pin in R8C/13,2A-2D, and P42,46,47 pin in R8C/22-29.

4-2 ___ReadIOPort

Generated function	BooleanReadIOPort_[Port]_[Pin No.]_p[Setting No.] (unsigned int *data)
Peripheral Module	I/O Port
Description	Read data from I/O ports
Parameters	data : Pointer to the variable in which the value read from I/O port is stored.
Return value	RAPI_TRUE is returned

4-3 __WriteIOPort

Generated function	BooleanWriteIOPort_[Port]_[Pin No.]_p[Setting No.] (unsigned int data)
Peripheral Module	I/O Port
Description	Write data to I/O ports
Parameters	data : Data to be written to I/O port
Return value	RAPI_TRUE is returned
Remarks	This function is not generated for RB pin in H8/3687,36049,36077, RF pin in H8/36109, P85 pin in M16C/62P,
	P46,47 pin in R8C/13,2A-2D, and P42,46,47 pin in R8C/22-29.

RENESAS

4-4 __ReadIOPortRegister

Generated function	BooleanReadIOPortRegister_[Port]_p[Setting No.] (unsigned int *data)
Peripheral Module	I/O Port
Description	Read data from I/O port register
Parameters	data : Pointer to the variable in which the value read from I/O port register is stored.
Return value	RAPI_TRUE is returned

4-5 __WriteIOPortRegister

Generated function	BooleanWriteIOPortRegister_[Port]_p[Setting No.] (unsigned int data)
Peripheral Module	I/O Port
Description	Write data to I/O port registers
Parameters	data : Data to be written to I/O port register
Return value	RAPI_TRUE is returned
Remarks	This function is not generated for RB pin in H8/3687,36049,36077, RF pin in H8/36109, P85 pin in M16C/62P,
	P46,47 pin in R8C/13,2A-2D, and P42,46,47 pin in R8C/22-29.

(5) Timer/Timer Mode

5-1 _CreateTimer

Generated function	BooleanCreateTimer_T[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Timer Mode
Description	Create timer mode setting
Parameters	—
Return value	RAPI_TRUE is returned

5-2 __EnableTimer

Generated function	BooleanEnableTimer_T[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Timer Mode
Description	Timer mode operation control (Operation start)
Parameters	—
Return value	RAPI_TRUE is returned
Remarks	This function is not generated for the timer B1 in H8/3687, 36049, 36077, 36109.

5-3 _____DisableTimer

Generated function	BooleanDisableTimer_T[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Timer Mode
Description	Timer mode operation control (Operation stop)
Parameters	—
Return value	RAPI_TRUE is returned
Remarks	This function is not generated for the timer B1 in H8/3687, 36049, 36077, 36109.

5-4 __DestroyTimer

Generated function	BooleanDestroyTimer_T[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Timer Mode
Description	Destroy timer mode
Parameters	—
Return value	RAPI_TRUE is returned

(6) Timer/Event Counter Mode

6-1 _CreateEventCounter

Generated function	BooleanCreateEventCounter_T[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Event Counter Mode
Description	Create event counter mode setting
Parameters	_
Return value	RAPI_TRUE is returned

6-2 __EnableEventCounter

Generated function	BooleanEnableEventCounter_T[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Event Counter Mode
Description	Event counter mode operation control (Operation start)
Parameters	_
Return value	RAPI_TRUE is returned
Remarks	This function is not generated for the timer B1 in H8/3687, 36049, 36077, 36109.

6-3 ____DisableEventCounter

Generated function	BooleanDisableEventCounter_T[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Event Counter Mode
Description	Event counter mode operation control (Operation stop)
Parameters	_
Return value	RAPI_TRUE is returned
Remarks	This function is not generated for the timer B1 in H8/3687, 36049, 36077, 36109.

6-4 __DestroyEventCounter

Generated function	BooleanDestroyEventCounter_T[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Event Counter Mode
Description	Destroy event counter mode
Parameters	—
Return value	RAPI_TRUE is returned

6-5 __GetEventCounter

Generated function	BooleanGetEventCounter_T[Resource]_p[Setting No.] (unsigned int *data)
Peripheral Module	Timer/Event Counter Mode
Description	Get event counter mode counter value
Parameters	data : Pointer to the buffer in which counter value is stored
Return value	RAPI_TRUE is returned

(7) Timer/Pulse Width Modulation Mode

7-1 __CreatePulseWidthModulationMode

Generated function	BooleanCreatePulseWidthModulationMode_T[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Pulse Width Modulation Mode
Description	Create pulse width modulation mode setting
Parameters	_
Return value	RAPI_TRUE is returned

7-2 ___EnablePulseWidthModulationMode

Generated function	BooleanEnablePulseWidthModulationMode_T[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Pulse Width Modulation Mode
Description	Pulse width modulation mode operation control (Operation start)
Parameters	—
Return value	RAPI_TRUE is returned

7-3 __DisablePulseWidthModulationMode

Generated function	BooleanDisablePulseWidthModulationMode_T[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Pulse Width Modulation Mode
Description	Pulse width modulation mode operation control (Operation stop)
Parameters	—
Return value	RAPI_TRUE is returned

7-4 __DestroyPulseWidthModulationMode

Generated function	BooleanDestroyPulseWidthModulationMode_T[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Pulse Width Modulation Mode
Description	Destroy pulse width modulation mode
Parameters	—
Return value	RAPI_TRUE is returned

(8) Timer/Pulse Period Measurement Mode

8-1 __CreatePulsePeriodMeasurementMode

Generated function	BooleanCreatePulsePeriodMeasurementMode_T[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Pulse Period Measurement Mode
Description	Create pulse period measurement mode setting
Parameters	—
Return value	RAPI_TRUE is returned

8-2 __EnablePulsePeriodMeasurementMode

Generated function	BooleanEnablePulsePeriodMeasurementMode_T[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Pulse Period Measurement Mode
Description	Pulse period measurement mode operation control (Operation start)
Parameters	—
Return value	RAPI_TRUE is returned

8-3 ___DisablePulsePeriodMeasurementMode

Generated function	BooleanDisablePulsePeriodMeasurementMode_T[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Pulse Period Measurement Mode
Description	Pulse period measurement mode operation control (Operation stop)
Parameters	_
Return value	RAPI_TRUE is returned

8-4 __DestroyPulsePeriodMeasurementMode

Generated function	BooleanDestroyPulsePeriodMeasurementMode_T[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Pulse Period Measurement Mode
Description	Destroy pulse period measurement mode
Parameters	_
Return value	RAPI_TRUE is returned

8-5 __GetPulsePeriodMeasurementMode

Generated function	BooleanGetPulsePeriodMeasurementMode_T[Resource]_p[Setting No.] (unsigned int *data)
Peripheral Module	Timer/Pulse Period Measurement Mode
Description	Get pulse period measurement mode measured value
Parameters	data : Pointer to the buffer in which counter value is stored
Return value	RAPI_TRUE is returned

(9) Timer/Pulse Width Measurement Mode

9-1 __CreatePulseWidthMeasurementMode

Generated function	BooleanCreatePulseWidthMeasurementMode_T[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Pulse Width Measurement Mode
Description	Create pulse width measurement mode setting
Parameters	_
Return value	RAPI_TRUE is returned

9-2 __EnablePulseWidthMeasurementMode

BooleanEnablePulseWidthMeasurementMode_T[Resource]_p[Setting No.] (void)
Timer/Pulse Width Measurement Mode
Pulse width measurement mode operation control (Operation start)
—
RAPI_TRUE is returned

9-3 ___DisablePulseWidthMeasurementMode

Generated function	Boolean DisablePulseWidthMeasurementMode T[Resource] p[Setting No.] (void)
Peripheral Module	Timer/Pulse Width Measurement Mode
Description	Pulse width measurement mode operation control (Operation stop)
Parameters	_
Return value	RAPI_TRUE is returned

9-4 __DestroyPulseWidthMeasurementMode

Generated function	BooleanDestroyPulseWidthMeasurementMode_T[Resource]_p[Setting No.] (void)	
Peripheral Module	Timer/Pulse Width Measurement Mode	
Description	Destroy pulse width measurement mode	
Parameters	—	
Return value	RAPI_TRUE is returned	

9-5 __GetPulseWidthMeasurementMode

Generated function	BooleanGetPulseWidthMeasurementMode_T[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Pulse Width Measurement Mode
Description	Get pulse width measurement mode measured value
Parameters	—
Return value	RAPI_TRUE is returned

(10) Timer/Input Capture Mode

10-1 __CreateInputCapture

Generated function	BooleanCreateInputCapture_T[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Input Capture Mode
Description	Create input capture mode setting
Parameters	—
Return value	RAPI_TRUE is returned

10-2 __EnableInputCapture

Generated function	BooleanEnableInputCapture_T[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Input Capture Mode
Description	Input capture mode operation control (Operation start)
Parameters	—
Return value	RAPI_TRUE is returned

10-3 _____DisableInputCapture

Generated function	BooleanDisableInputCapture_T[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Input Capture Mode
Description	Input capture mode operation control (Operation stop)
Parameters	—
Return value	RAPI_TRUE is returned

10-4 __DestroyInputCapture

Generated function	BooleanDestroyInputCapture_T[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Input Capture Mode
Description	Destroy input capture mode
Parameters	_
Return value	RAPI_TRUE is returned

10-5 __GetInputCapture

Generated function	BooleanGetInputCapture_T[Resource]_p[Setting No.] (unsigned int *data)
Peripheral Module	Timer/Input Capture Mode
Description	Get input capture mode counter value
Parameters	data : Specify a pointer to the array in which the acquired counter value is stored.
	(M16C)
	[0]: Stores the value of base timer register 0.
	[1]: Stores the value of time measurement register 0.
	[2]: Stores the value of time measurement register 1.
	[3]: Stores the value of time measurement register 2.
	[4]: Stores the value of time measurement register 3.
	[5]: Stores the value of time measurement register 4.
	[6]: Stores the value of time measurement register 5.

	[7]: Stores the value of time measurement register 6.
	[8]: Stores the value of time measurement register 7.
	(R8C)
	- When timer C is used (RAPI_TIMER_C specified)
	[0]: Stores the value of timer C counter.
	[1]: Stores the value of capture & compare 0 register.
	- When timer RD is used (RAPI_TIMER_RD0- RAPI_TIMER_RD1 specified)
	[0]: Stores the value of timer counter.
	[1]: Stores the value of general register A.
	[2]: Stores the value of general register B.
	[3]: Stores the value of general register C.
	[4]: Stores the value of general register D.
	(H8/300H)
	[0]: Stores the value of the timer counter.
	[1]: Stores the value of general register A.
	[2]: Stores the value of general register B.
	[3]: Stores the value of general register C.
	[4]: Stores the value of general register D.
Return value	RAPI_TRUE is returned

(11) Timer/Output Compare Mode

11-1 __CreateOutputCompare

Generated function	BooleanCreateOutputCompare_T[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Output Compare Mode
Description	Creates output compare mode setting
Parameters	—
Return value	RAPI_TRUE is returned

11-2 __EnableOutputCompare

Generated function	BooleanEnableOutputCompare_T[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Output Compare Mode
Description	Outputs compare mode operation control (Operation start)
Parameters	—
Return value	RAPI_TRUE is returned

11-3 __DisableOutputCompare

Generated function	BooleanDisableOutputCompare_T[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Output Compare Mode
Description	Output compare mode operation control (Operation stop)
Parameters	_
Return value	RAPI_TRUE is returned

11-4 __DestroyOutputCompare

Generated function	BooleanDestroyOutputCompare_T[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Output Compare Mode
Description	Destroys output compare mode
Parameters	—
Return value	RAPI_TRUE is returned

(12) Event Link Controller

12-1 __SetEventLink

Generated function	Boolean _SetEventLink_ALL(void)
Peripheral Module	Event Link Controller
Description	Set all event link, port group, and single port
Parameters	_
Return value	Returns RAPI_TRUE on success, a RAPI_FALSE on failure.

12-2 ____DisableEventLink

Generated function	Boolean _DisableEventLink_ALL(void)
Peripheral Module	Event Link Controller
Description	Disable event link settings
Parameters	_
Return value	Returns RAPI_TRUE on success, a RAPI_FALSE on failure.

12-3 __CreateEventGenerateTimer

Generated function	Boolean _CreateEventGenerateTimer_ALL (void)
Peripheral Module	Event Link Controller
Description	Set all event generate timer
Parameters	—
Return value	Returns RAPI_TRUE on success, a RAPI_FALSE on failure.

12-4 __EnableEventGenerateTimer

Generated function	Boolean _EnableEventGenerateTimer_ALL (void)
Peripheral Module	Event Link Controller
Description	Enables all event generate timer
Parameters	—
Return value	Returns RAPI_TRUE on success, a RAPI_FALSE on failure.

12-5 __DisableEventGenerateTimer

Generated function	Desiler Dischle Green Arter and All (anid)
Generated function	Boolean _DisableEventGenerateTimer_ALL (void)
Peripheral Module	Event Link Controller
Description	Disables all event generate timer
Parameters	_
Return value	Returns RAPI_TRUE on success, a RAPI_FALSE on failure.

12-6 __DestroyEventGenerateTimer

Generated function	Boolean _DestroyEventGenerateTimer_ALL (void)
Peripheral Module	Event Link Controller
Description	Destroys event generate timer
Parameters	_
Return value	Returns RAPI_TRUE on success, a RAPI_FALSE on failure.

12-7 __ReadPortBufferRegister

Generated function	Boolean _ReadPortBufferRegister_P[Port No.] (unsigned int * data)
Peripheral Module	Event Link Controller
Description	Reads data from a port-buffer register
Parameters	data : Pointer to a variable in which the read value will be stored
Return value	Returns RAPI_TRUE on success, a RAPI_FALSE on failure.

12-8 __WritePortBufferRegister

Generated function	Boolean _WritePortBufferRegister_P[Port No.] (unsigned int data)
Peripheral Module	Event Link Controller
Description	Writes data to a port-buffer register
Parameters	data : Data to be written to the port buffer register
Return value	Returns RAPI_TRUE on success, a RAPI_FALSE on failure.

(13) Data Transfer Controller

13-1 _CreateDTC

Generated function	Boolean _CreateDTC_[Activation Source](void)	
Peripheral Module	Data transfer controller	
Description	Set DTC's register information	
Parameters	—	
Return value	Returns RAPI_TRUE on success, a RAPI_FALSE on failure.	

13-2 __EnableDTC

Generated function	Boolean _EnableDTC_[Activation Source](void)	
Peripheral Module	Data transfer controller	
Description	Enable DTC transfer	
Parameters	—	
Return value	Returns RAPI_TRUE on success, a RAPI_FALSE on failure.	

13-3 _____DisableDTC

Generated function	Boolean _DisableDTC [Activation Source](void)
Peripheral Module	Data transfer controller
Description	Disable DTC transfer
Parameters	—
Return value	Returns RAPI_TRUE on success, a RAPI_FALSE on failure.

5.2 Generated function of for SH/Tiny

Table 5.2 shows generated functions for SH/Tiny series (SH7125).

Table 5.2-1 Generated function of for SH/Tiny

ripheral Module rial mmunication erface	Generated function nameCreateSCIDestroySCIStartSCIReceivingStartSCISendingStopSCIReceivingPollingSCIReceivingPollingSCISendingClearSCIStatusClearSCIStatus	Description Initialize serial communication Close the serial port Start reception of serial communication and get received data Start transmission of serial communication and write transmit data to transmit buffer Stop reception of serial communication Stop transmission of serial communication Perform reception of serial communication by polling Perform transmission of serial communication by polling Get transmit/receive information of serial communication
mmunication	DestroySCI StartSCIReceiving StartSCISending StopSCIReceiving StopSCISending PollingSCIReceiving PollingSCISending GetSCIStatus	Close the serial port Start reception of serial communication and get received data Start transmission of serial communication and write transmit data to transmit buffer Stop reception of serial communication Stop transmission of serial communication Perform reception of serial communication by polling Perform transmission of serial communication by polling Get transmit/receive information of serial communication
	StartSCIReceiving StartSCISending StopSCIReceiving PollingSCIReceiving PollingSCISending GetSCIStatus	Start reception of serial communication and get received data Start transmission of serial communication and write transmit data to transmit buffer Stop reception of serial communication Stop transmission of serial communication Perform reception of serial communication by polling Perform transmission of serial communication by polling Get transmit/receive information of serial communication
	StartSCISending StopSCIReceiving StopSCISending PollingSCIReceiving PollingSCISending GetSCIStatus	received data Start transmission of serial communication and write transmit data to transmit buffer Stop reception of serial communication Stop transmission of serial communication Perform reception of serial communication by polling Perform transmission of serial communication by polling Get transmit/receive information of serial communication
-	StopSCIReceiving StopSCISending PollingSCIReceiving PollingSCISending GetSCIStatus	Start transmission of serial communication and write transmit data to transmit buffer Stop reception of serial communication Stop transmission of serial communication Perform reception of serial communication by polling Perform transmission of serial communication by polling Get transmit/receive information of serial communication
-	StopSCIReceiving StopSCISending PollingSCIReceiving PollingSCISending GetSCIStatus	transmit data to transmit buffer Stop reception of serial communication Stop transmission of serial communication Perform reception of serial communication by polling Perform transmission of serial communication by polling Get transmit/receive information of serial communication communication
-	StopSCISending PollingSCIReceiving PollingSCISending GetSCIStatus	Stop reception of serial communication Stop transmission of serial communication Perform reception of serial communication by polling Perform transmission of serial communication by polling Get transmit/receive information of serial communication
-	StopSCISending PollingSCIReceiving PollingSCISending GetSCIStatus	Stop transmission of serial communication Perform reception of serial communication by polling Perform transmission of serial communication by polling Get transmit/receive information of serial communication
-	PollingSCIReceiving PollingSCISending GetSCIStatus	Perform reception of serial communication by polling Perform transmission of serial communication by polling Get transmit/receive information of serial communication
	PollingSCISending GetSCIStatus	Perform transmission of serial communication by polling Get transmit/receive information of serial communication
-	GetSCIStatus	polling Get transmit/receive information of serial communication
-	_	Get transmit/receive information of serial communication
-	_	communication
	ClearSCIStatus	
-		Clear transmit/receive information of serial
-		communication
	OutputSCISck	Control the output of SCK
	OutputSCITxd	Control the output of TXD
errupt	CreateInterrupt	Initialize external interrupt
	EnableInterrupt	Change the operating condition
-	- ,	Get the value of input pin status and external interrupt
		request flag
-	ClearInterruptElag ALL	Clear the external interrupt flag
) Converter	1 0=	Initialize A/D converter
		Control operation of A/D converter
-		Destroy the settings of the A/D converter
-	· · · · · · · · · · · · · · · · · · ·	Get the A/D converted value from a A/D register
-		Get status of the A/D converter
-		Clear status flag of the A/D converter
Port		Initialize I/O port
		Read the value of I/O port
-		Write data to I/O port
ner/Timer Mode		Initialize timer mode
		Timer mode operation control (start or stop operation)
-		Destroy timer mode
-		Destroy timer mode
-		Get the counter value of the timer
ner/		Initialize event counter mode
		Event counter mode operation control (start or stop
		operation)
	DestrovEventCounter	Destroy event counter mode
		Destroy event counter mode
-		Get the counter value of the timer
ripheral Module		Description
ner/		Initialize pulse width modulation mode
		Pulse width modulation mode operation control (start or
		stop operation)
	DestrovPWM	Destroy pulse width modulation mode
		Destroy pulse width modulation mode
	er/Timer Mode er/ nt Counter Mode	GetInterruptAndPinInfo_ALL

Peripheral Driver Generator

	_ , ,		
8-1	Timer/	CreatePulsePeriodMeasurementMode	Initialize pulse period measurement mode
8-2	Pulse period	EnablePulsePeriodMeasurementMode	Pulse period measurement mode operation control
	measurement mode		(start or stop operation)
8-3		DestroyPulsePeriodMeasurementMode	Destroy pulse period measurement mode
8-4		DestroyPulsePeriodMeasurementMode_A	Destroy pulse period measurement mode
		LL	
8-5		GetPulsePeriodMeasurementMode	Get the counter value of the timer
9-1	Timer	CreatePulseWidthMeasurementMode	Initialize pulse width measurement mode
9-2	Timer/ Pulse width	EnablePulseWidthMeasurementMode	Pulse width measurement mode operation control
9-3		DestroyPulseWidthMeasurementMode	Destroy pulse width measurement mode
9-4	measurement mode	DestroyPulseWidthMeasurementMode_A	Destroy pulse width measurement mode
		LL	
9-5		GetPulseWidthMeasurementMode	Get the counter value of the timer
10-1	Timer/	CreateInputCapture	Initialize input capture mode
10-2	Input capture mode	EnableInputCapture	Input capture mode operation control (start or stop
			operation)
10-3		DestroyInputCapture	Destroy input capture mode
10-4		DestroyInputCapture_ALL	Destroy input capture mode
10-5		GetCaptureValue	Get the counter value of the timer
11-1	Timer/	CreateOutputCompare	Initialize output compare mode
11-2	Output compare	EnableOutputCompare	Output compare mode operation control (start or stop
	mode		operation)
11-3		DestroyOutputCompare	Destroy output compare mode
11-4		DestroyOutputCompare_ALL	Destroy output compare mode
11-5		GetTimerFlag	Get the flag of timer
11-6		ClearTimerFlag	Clear the flag of timer

The following shows the details of each function.

(1) Serial Communication Interface

1-1 __CreateSCI

Generated function	BooleanCreateSCI_[Mode]_U[Resource]_p[Setting No.] (void)
Peripheral Module	Serial Communication Interface
Description	Initialize serial communication
Parameters	—
Return value	If SCI communication was successfully initialized, RAPI_TRUE is returned; otherwise, RAPI_FALSE is
	returned.

1-2 __DestroySCI

Generated function	BooleanDestroySCI_[Mode]_U[Resource]_p[Setting No.] (void)
Peripheral Module	Serial Communication Interface
Description	Close the serial port
Parameters	—
Return value	RAPI_TRUE is returned

1-3 __StartSCIReceiving

Generated function	BooleanStartSCIReceiving_[Mode]_U[Resource]_p[Setting No.]
	(unsigned char *data1, unsigned short data2, unsigned short *data3)
Peripheral Module	Serial Communication Interface
Description	Start reception of serial communication and get received data
Parameters	data1 : Pointer to buffer storing the received data
	data2 : Number of bytes received
	data3 : Pointer to address storing the number of actual received data
Return value	If start-up for SCI reception is successful, RAPI_TRUE is returned; otherwise, RAPI_FALSE is returned.

1-4StartSCISending		
Generated function	BooleanStartSCISending_[Mode]_U[Resource]_p[Setting No.]	
	(unsigned char *data1, unsigned short data2, unsigned short *data3)	
Peripheral Module	Serial Communication Interface	
Description Start transmission of serial communication and write transmit data to transmit buffer		
Parameters	data1 : Pointer to transmit data	
	data2 : Number of bytes transmitted	
	data3 : Pointer to address storing the number of the actual transmitted data	
Return value	If start-up for SCI transmission is successful, RAPI_TRUE is returned; otherwise, RAPI_FALSE is returned.	
1-5 StopSCIReceivin	ng	
Generated function	BooleanStopSCIReceiving_[Mode]_U[Resource]_p[Setting No.] (unsigned short data)	
Peripheral Module Serial Communication Interface		
Description	Stop reception of serial communication	
Parameters	data : Wait time until stopping SCI reception	
Return value		
Return value	If stop of SCI reception is successful and there are no receive errors, RAPI_TRUE is returned; otherwise, RAPI_FALSE is returned.	
1-6StopSCISending		
Generated function	BooleanStopSCISending_[Mode]_U[Resource]_p[Setting No.] (unsigned short data)	
Peripheral Module	Serial Communication Interface	
Description	Stop transmission of serial communication	
Parameters	data : Wait time until SCI transmission is stopped	
Return value	If stop of SCI transmission is successful, RAPI_TRUE is returned; otherwise, RAPI_FALSE is returned.	
1-7 PollingSCIRecei	iving	
Generated function	BooleanPollingSCIReceiving_[Mode]_U[Resource]_p[Setting No.] (void)	
Peripheral Module	Serial Communication Interface	
Description	Perform reception of serial communication by polling	
Parameters	_	
Return value	If the specification of serial port or the received data is invalid, RAPI_FALSE is returned; otherwise, RAPI_TRUE is returned.	
1-8 PollingSCISendi		
Generated function	BooleanPollingSCISending_[Mode]_U[Resource]_p[Setting No.] (void)	
Peripheral Module	Serial Communication Interface	
Description	Perform transmission of serial communication by polling	
Parameters		
Return value	RAPI_TRUE is returned	
1-9GetSCIStatus		
Generated function	BooleanGetSCIStatus_[Mode]_U[Resource]_p[Setting No.] (unsigned long data, unsigned char *status)	
Peripheral Module	Serial Communication Interface	
Description	Get transmit/receive information of serial communication	
Parameters	data : Flags to be acquired	
	(Set the following parameters. To set multiple parameters at the same time, use the symbol " " to separate each	
	specified parameter.)	
	RAPI_TDRE : Transmit-data-register empty flag	
	RAPI_RDRF : Receive-data-register full flag	
	RAPI_ORER : Overrun error flag	
	RAPI_FER : Framing error flag	
	RAPI_PER : Parity error flag	
	RAPI_TEND : Transmit end flag	
	RAPI_MPB : Multiprocessor bit flag for reception	
	RAPI_MPBT : Multiprocessor bit flag for transmission	
	RAPI_RECV_ERROR All : receive error flags	
	(Overrun, framing, and parity errors)	
	RAPI_ALL_FLAG : All status flags of SCI	
	status : Byte address to store the receive error flag	
Return value	RAPI_TRUE is returned	

RENESAS

1-10 __ClearSCIStatus

Generated function	BooleanClearSCIStatus_[Mode]_U[Resource]_p[Setting No.] (unsigned long data)
Peripheral Module	Serial Communication Interface
Description	Clear transmit/receive information of serial communication
Parameters	data : Flags to be cleared
	(Set the following parameters. To set multiple parameters at the same time, use the symbol " " to separate each
	specified parameter.)
	RAPI_TDRE : Transmit-data-register empty flag
	RAPI_RDRF : Receive-data-register full flag
	RAPI_ORER : Overrun error flag
	RAPI_FER : Framing error flag
	RAPI_PER : Parity error flag
	RAPI_TEND : Transmit end flag
	RAPI_MPB : Multiprocessor bit flag for reception
	RAPI_MPBT : Multiprocessor bit flag for transmission
	RAPI_RECV_ERROR : All receive error flags of SCI
	(Overrun, framing, and parity errors)
	RAPI_ALL_FLAG : All status flags of SCI
Return value	RAPI_TRUE is returned
1 OutputSCISck	

_OutputSCISck 1-11

Generated function	BooleanOutputSCISck_[Mode]_U[Resource]_p[Setting No.] (void)
Peripheral Module	Serial Communication Interface
Description	Control the output of SCK
Parameters	—
Return value	RAPI_TRUE is returned
Remarks	This function is generated in the asynchronous mode.
1-12OutputSCITxd	
Generated function	BooleanOutputSCITxd_[Mode]_U[Resource]_p[Setting No.] (void)
Peripheral Module	Serial Communication Interface
Description	Control the output of TXD

Beeenpaen	
Parameters	
Return value	RAPI_TRUE is returned
Remarks	This function is generated in the asynchronous mode.

(2) Interrupt

2-1 CreateInterrupt

~			
	Generated function	BooleanCreateInterrupt_I[Resource]_p[Setting No.] (void)	
	Peripheral Module	Interrupt	
	Description	Initialize external interrupt	
	Parameters	—	
	Return value	RAPI_TRUE is returned	

2-2 _EnableInterrupt

Generated function	BooleanEnableInterrupt_I[Resource]_p[Setting No.] (unsigned long data)
Peripheral Module	Interrupt
Description	Change the operating condition
Parameters	data : Operating condition
	(Set the following parameters. To set multiple parameters at the same time, use the symbol " " to separate each
	specified parameter.)
	Setting of status flag
	RAPI_INT_REQUEST_CLEAR : Clears the status flag of IRQi interrupt request (i = 0 to 3)
	(it is invalid if the low-level detection is set)
	RAPI_INT_REQUEST_REMAIN : Retains the status flag of IRQi interrupt request (i = 0 to 3)
	(it is invalid if the low-level detection is set)
	Enable or disable
	RAPI_IRQ_DIS : Disables interrupt
	RAPI_IRQ_ENA : Enables interrupt
Return value	RAPI_TRUE is returned

2-3 __GetInterruptAndPinInfo_ALL

Generated function	BooleanGetInterruptAndPinInfo_ALL (unsigned long data1, unsigned char *data2)
Peripheral Module	Interrupt
Description	Get the value of input pin status and external interrupt request flag
Parameters	data1 : Input-pin level and status flag of interrupt request to be acquired.
	(Set the following parameters. To set multiple parameters at the same time, use the symbol " " to separate each
	specified parameter.)
	RAPI_NMI_PIN : Input-pin level for NMI
	RAPI_IRQ0_PIN : Input-pin level for IRQ0
	RAPI_IRQ1_PIN : Input-pin level for IRQ1
	RAPI_IRQ2_PIN : Input-pin level for IRQ2
	RAPI_IRQ3_PIN : Input-pin level for IRQ3
	RAPI_IRQ0_FLAG : Status flag for IRQ0 interrupt request
	RAPI_IRQ1_FLAG : Status flag for IRQ1 interrupt request
	RAPI_IRQ2_FLAG : Status flag for IRQ2 interrupt request
	RAPI_IRQ3_FLAG : Status flag for IRQ3 interrupt request
	data2 : Pointer to the buffer in which input pin level and status flag are stored
Return value	RAPI_TRUE is returned

2-4 __ClearInterruptFlag

Generated function	BooleanClearInterruptFlag_ALL (unsigned long data)
Peripheral Module	Interrupt
Description	Clear the external interrupt flag
Parameters	data1 : Status flags to be cleared
	(Set the following parameters. To set multiple parameters at the same time, use the symbol " " to separate each
	specified parameter.)
	RAPI_IRQ0_FLAG Status flag for IRQ0 interrupt request
	RAPI_IRQ1_FLAG Status flag for IRQ1 interrupt request
	RAPI_IRQ2_FLAG Status flag for IRQ2 interrupt request
	RAPI_IRQ3_FLAG Status flag for IRQ3 interrupt request
Return value	RAPI_TRUE is returned

(3) A/D Converter

3-1 __CreateADC

5-		
	Generated function	BooleanCreateADC_[Mode]_RAPI_[Resource]_p[Setting No.] (void)
	Peripheral Module	A/D Converter
	Description	Initialize A/D converter
	Parameters	—
	Return value	If A/D converter is successfully set, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.
3-2EnableADC		
	Generated function	BooleanEnableADC_RAPI_[Module]_ALL (unsinged long data)
	Peripheral Module	A/D Converter
	Description	Control operation of A/D converter
	Parameters	data : Start/stop operation
		(Set the following parameters)

		(Set the following parameters.)
		RAPI_AD_ON : Sets the A/D converter to start operation
		RAPI_AD_OFF : Sets the A/D converter to stop operation
Retu	rn value	If A/D converter is successfully controlled, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.

3-3 ____DestroyADC

55.			
Ģ	Generated function	BooleanDestroyADC_RAPI_[Module]_ALL (void)	
P	Peripheral Module	A/D Converter	
D	Description	Destroy the settings of the A/D converter	
P	Parameters	_	
R	Return value	If A/D converter setting is successfully cleared, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.	

Generated function _GetADC_[Mode]_RAPI_[Resource]_p[Setting No.] (unsigned long data1, unsigned short* data2) Boolean Peripheral Module A/D Converter Get the A/D converted value from a A/D register Description Parameters data1 : A/D register to get the value (Set the following parameters. To set multiple parameters at the same time, use the symbol "|" to separate each specified parameter.) RAPI_ADDR0 A/D data register 0 RAPI_ADDR1 A/D data register 1 RAPI_ADDR2 A/D data register 2 RAPI_ADDR3 A/D data register 3 RAPI_ADDR4 A/D data register 4 RAPI_ADDR5 A/D data register 5 RAPI_ADDR6 A/D data register 6 RAPI_ADDR7 A/D data register 7 RAPI_ADDR_ALL All values in the A/D data registers 0 to 7 data2 : Pointer to the buffer in which A/D converted value is stored (After A/D conversion, the converted value is right-aligned, while that is left-aligned in the A/D data register.) Return value If A/D converted value is successfully acquired, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.

3-4 __GetADC

3-5 GetADCFlag

5-	-5GetADCFlag		
	Generated function	BooleanGetADCFlag_RAPI_[Module]_ALL (unsigned char* status)	
	Peripheral Module	A/D Converter	
	Description	Get status of the A/D converter	
	Parameters	Status : Pointer to the buffer in which the register content indicating A/D converter status is stored	
	Return value	If A/D converter status flag is successfully acquired, RAPI_TRUE is returned; if failed, RAPI_FALSE is	
		returned.	

3-6 _ClearADCFlag

Generated function	BooleanClearADCFlag_RAPI_[Module]_ALL (void)
Peripheral Module	A/D Converter
Description	Clear status flag of the A/D converter
Parameters	—
Return value	If A/D converter status flag is successfully cleared, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.

(4) I/O Port

4-1 __SetIOPort

Generated function	BooleanSetIOPortp[Setting No.]_[Port] (void)
Peripheral Module	I/O Port
Description	Initialize I/O port
Parameters	—
Return value	RAPI_TRUE is returned

4-2 __SetIOPort_ALL

Generated function	BooleanReadIOPort_ALL (unsigned long data1, void *data2)
Peripheral Module	I/O Port
Description	Read the value of I/O port
Parameters	Refer to the Renesas Embedded Application Programming Interface User's Manual for SH/Tiny,
	ReadIOPort section.
Return value	If the specification of I/O port is invalid, RAPI_FALSE is returned; otherwise, RAPI_TRUE is returned.

4-3 WriteIOPort ALL

Generated function	BooleanWriteIOPort_ALL (unsigned long data1, unsigned short data2)	
Peripheral Module	I/O Port	
Description	Write data to I/O port	
Parameters	Refer to the Renesas Embedded Application Programming Interface User's Manual for SH/Tiny,	
	WriteIOPort section.	
Return value	If the specification of I/O port is invalid, RAPI_FALSE is returned; otherwise, RAPI_TRUE is returned.	

(5) Timer/Timer Mode

5-1 __CreateTimer

5-1		
	Generated function	BooleanCreateTimer_Tch[Resource]_p[Setting No.] (void)
I	Peripheral Module	Timer/Timer Mode
1	Description	Initialize timer mode
I	Parameters	_
I	Return value	If timer was successfully initialized, RAPI_TRUE is returned; otherwise, RAPI_FALSE is returned.
5-2	5-2EnableTimer	
	Generated function	BooleanEnableTimer_Tch[Resource]_p[Setting No.] (unsigned long data)
I	Peripheral Module	Timer/Timer Mode
I	Description	Timer mode operation control (start or stop operation)
1	Parameters	data : Operation of the timer
		(Set the following parameters.)
		RAPI_TIMER_ON : Starts the timer in timer mode
		RAPI_TIMER_OFF : Stops the timer in timer mode
I	Return value	If timer is successfully controlled, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.

5-3 DestroyTimer

	Generated function	BooleanDestroyTimer_Tch[Resource]_p[Setting No.] (void)	
	Peripheral Module	Timer/Timer Mode	
	Description	Destroy timer mode	
[Parameters	—	
	Return value	If timer is successfully cleared, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.	

5-4 DestroyTimer ALL

5-	3-4DesitoyTimer_ALL		
	Generated function	BooleanDestroyTimer_ALL (void)	
	Peripheral Module	Timer/Timer Mode	
	Description	Destroy timer mode	
	Parameters	_	
	Return value	If timer is successfully cleared, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.	

5-5 __GetTimerCounter

Generated function	BooleanGetTimerCounter_Tch[Resource]_p[Setting No.] (unsigned short *data)	
Peripheral Module	Timer/Timer Mode	
Description	Get the counter value of the timer	
Parameters	data : Pointer to a buffer storing the timer counter value	
Return value	If timer counter value is successfully acquired, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.	

(6) Timer/Event Counter Mode

6-1 __CreateEventCounter

Generated function	BooleanCreateEventCounter_Tch[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Event Counter Mode
Description	Initialize event counter mode
Parameters	
Return value	If timer was successfully initialized, RAPI_TRUE is returned; otherwise, RAPI_FALSE is returned.

6-2 __EnableEventCounter

Generated function	BooleanEnableEventCounter_Tch[Resource]_p[Setting No.] (unsigned long data)	
Peripheral Module	Timer/Event Counter Mode	
Description	Event counter mode operation control (start or stop operation)	
Parameters	data : Operation of the timer	
	(Set the following parameters.)	
	RAPI_TIMER_ON : Starts the timer in event counter mode	
	RAPI_TIMER_OFF : Stops the timer in event counter mode	
Return value	If timer is successfully controlled, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.	

RENESAS

6-3 _____DestroyEventCounter

Generated function	BooleanDestroyEventCounter_Tch[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Event Counter Mode
Description	Destroy event counter mode
Parameters	
Return value	If timer is successfully cleared, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.

6-4 DestroyEventCounter ALL

Generated function	n BooleanDestroyEventCounter_ALL (void)	
Peripheral Module	e Timer/Event Counter Mode	
Description	Destroy event counter mode	
Parameters	—	
Return value	If timer is successfully cleared, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.	

6-5 __GetTimerCounter

Generated function	BooleanGetTimerCounter_Tch[Resource]_p[Setting No.] (unsigned short *data)	
Peripheral Module	Timer/Event Counter Mode	
Description	Get the counter value of the timer	
Parameters	data : Pointer to a buffer storing the timer counter value.	
Return value	If timer counter value is successfully acquired, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.	

(7) Timer/Pulse Width Modulation Mode

7-1 _CreatePWM

	Generated function	BooleanCreatePWM_Tch[Resource]_p[Setting No.] (void)
	Peripheral Module	Timer/Pulse Width Modulation Mode
	Description	Initialize pulse width modulation mode
	Parameters	—
	Return value	If timer was successfully initialized, RAPI_TRUE is returned; otherwise, RAPI_FALSE is returned.

7-2 __EnablePWM

Generated function	BooleanEnablePWM_Tch[Resource]_p[Setting No.] (unsigned long data)
Peripheral Module	Timer/Pulse Width Modulation Mode
Description	Pulse width modulation mode operation control (start or stop operation)
Parameters	data : Operation of the timer
	(Set the following parameters.)
	RAPI_TIMER_ON : Starts the timer
	RAPI_TIMER_OFF : Stops the timer
Return value	If timer is successfully controlled, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.

7.2 DestroyDWM

7-	7-3DestroyPWM		
	Generated function	BooleanDestroyPWM_Tch[Resource]_p[Setting No.] (void)	
	Peripheral Module	Timer/Pulse Width Modulation Mode	
	Description	Destroy pulse width modulation mode	
	Parameters	_	
	Return value	If timer is successfully cleared, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.	
7			

7-4 DestroyPWM ALL

/-	-4Desubyr wM_ALL		
	Generated function	BooleanDestroyPWM_ALL (void)	
	Peripheral Module	Timer/Pulse Width Modulation Mode	
	Description	Destroy pulse width modulation mode	
	Parameters	_	
	Return value	If timer is successfully cleared, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.	

(8) Timer/Pulse Period Measurement Mode

8-1 __CreatePulsePeriodMeasurementMode

· · ·		
	Generated function	BooleanCreatePulsePeriodMeasurementMode_Tch[Resource]_p[Setting No.] (void)
	Peripheral Module	Timer/Pulse Period Measurement Mode
	Description	Initialize pulse period measurement mode
	Parameters	—
	Return value	If timer was successfully initialized, RAPI_TRUE is returned; otherwise, RAPI_FALSE is returned.
8-	8-2 EnablePulsePeriodMeasurementMode	

Generated function	BooleanEnablePulsePeriodMeasurementMode_Tch[Resource]_p[Setting No.] (unsigned long data)	
Peripheral Module	Timer/Pulse Period Measurement Mode	
Description	Pulse period measurement mode operation control (start or stop operation)	
Parameters	data : Operation of the timer	
	(Set the following parameters.)	
	RAPI_TIMER_ON : Starts the timer	
	RAPI_TIMER_OFF : Stops the timer	
Return value	If timer is successfully controlled, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.	

8-3 __DestroyPulsePeriodMeasurementMode

Generated function	BooleanDestroyPulsePeriodMeasurementMode_Tch[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Pulse Period Measurement Mode
Description	Destroy pulse period measurement mode
Parameters	—
Return value	If timer is successfully cleared, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.

8-4 ___DestroyPulsePeriodMeasurementMode_ALL

÷.			
	Generated function	BooleanDestroyPulsePeriodMeasurementMode_ALL (void)	
	Peripheral Module	Timer/Pulse Period Measurement Mode	
	Description	Destroy pulse period measurement mode	
	Parameters	—	
	Return value	If timer is successfully cleared, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.	

8-5 __GetPulsePeriodMeasurementMode

Generated function	BooleanGetPulsePeriodMeasurementMode_Tch[Resource]_p[Setting No.] (unsigned short *data)
Peripheral Module	Timer/Pulse Period Measurement Mode
Description	Get the counter value of the timer
Parameters	data : Pointer to a buffer storing the timer counter value.
Return value	If timer counter value is successfully acquired, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.

(9) Timer/Pulse Wodth Measurement Mode

9-1 __CreatePulseWidthMeasurementMode

	Generated function	BooleanCreatePulseWidthMeasurementMode_Tch[Resource]_p[Setting No.] (void)
	Peripheral Module	Timer/Pulse Wodth Measurement Mode
	Description	Initialize pulse width measurement mode
	Parameters	—
	Return value	If timer was successfully initialized, RAPI_TRUE is returned; otherwise, RAPI_FALSE is returned.
9-2	9-2EnablePulseWidthMeasurementMode	

Generated function	BooleanEnablePulseWidthMeasurementMode_Tch[Resource]_p[Setting No.] (unsigned long data)
Peripheral Module	Timer/Pulse Width Measurement Mode
Description	Pulse width measurement mode operation control
Parameters	data : Operation of the timer
	(Set the following parameters.)
	RAPI_TIMER_ON : Starts the timer
	RAPI_TIMER_OFF : Stops the timer
Return value	If timer is successfully controlled, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.

9-3 __DestroyPulseWidthMeasurementMode

Generated function	BooleanDestroyPulseWidthMeasurementMode_Tch[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Pulse Width Measurement Mode
Description	Destroy pulse width measurement mode
Parameters	_
Return value	If timer is successfully cleared, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.
9-4DestroyPulseWidthMeasurementMode_ALL	

Generated function Boolean __DestroyPulseWidthMeasurement

Generated function	BooleanDestroyPulseWidthMeasurementMode_ALL (void)
Peripheral Module	Timer/Pulse Width Measurement Mode
Description	Destroy pulse width measurement mode
Parameters	—
Return value	If timer is successfully cleared, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.

9-5 GetPulseWidthMeasurementMode

Generated function	BooleanGetPulseWidthMeasurementMode_Tch[Resource]_p[Setting No.] (unsigned short *data)
Peripheral Module	Timer/Pulse Width Measurement Mode
Description	Get the counter value of the timer
Parameters	data : Pointer to a buffer storing the timer counter value.
Return value	If timer counter value is successfully acquired, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned

(10) Timer/Input Capture Mode

10-1 __CreateInputCapture

Generated function	BooleanCreateInputCapture_Tch[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Input Capture Mode
Description	Initialize input capture mode
Parameters	—
Return value	If timer was successfully initialized, RAPI_TRUE is returned; otherwise, RAPI_FALSE is returned.
10.2 EachleLeastContrac	

10-2 __EnableInputCapture

Generated function	BooleanEnableInputCapture_Tch[Resource]_p[Setting No.] (unsigned long data)
Peripheral Module	Timer/Input Capture Mode
Description	Input capture mode operation control (start or stop operation)
Parameters	data : Operation of the timer
	(Set the following parameters.)
	RAPI_TIMER_ON: Starts the timer
	RAPI_TIMER_OFF: Stops the timer
Return value	If timer is successfully controlled, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.

10-3 DestroyInputCapture

Generated function	BooleanDestroyInputCapture_Tch[Resource]_p[Setting No.] (void)
Peripheral Module	Timer/Input Capture Mode
Description	Destroy input capture mode
Parameters	—
Return value	If timer is successfully cleared, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.

10-4 DestroyInputCapture ALL

Generated function	BooleanDestroyInputCapture_ALL (void)
Peripheral Module	Timer/Input Capture Mode
Description	Destroy input capture mode
Parameters	—
Return value	If timer is successfully cleared, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.

10-5 __GetCaptureValue

Generated function	BooleanGetCaptureValue_Tch[Resource]_p[Setting No.] (unsigned short *data)
Peripheral Module	Timer/Input Capture Mode
Description	Get the counter value of the timer
Parameters	data : Pointer to a buffer storing the timer counter value.
Return value	If timer counter value is successfully acquired, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.

RENESAS

(11) Timer/Output Compare Mode

11-1 __CreateOutputCompare

	Generated function	BooleanCreateOutputCompare_Tch[Resource]_p[Setting No.] (void)	
	Peripheral Module	Timer/Output Compare Mode	
	Description	Initialize output compare mode	
	Parameters	—	
	Return value	If timer was successfully initialized, RAPI_TRUE is returned; otherwise, RAPI_FALSE is returned.	
1	11-2EnableOutputCompare		
	Generated function	BooleanEnableOutputCompare_Tch[Resource]_p[Setting No.] (unsigned long data)	
	Paripharal Modula	Timer/Output Compare Mede	

Peripheral Module	Timer/Output Compare Mode
Description	Output compare mode operation control (start or stop operation)
Parameters	data : Operation of the timer
	(Set the following parameters.)
	RAPI_TIMER_ON : Starts the timer
	RAPI_TIMER_OFF : Stops the timer
Return value	If timer is successfully controlled, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.

11-3 DestroyOutputCompare

Generated function	BooleanDestroyOutputCompare_Tch[Resource]_p[Setting No.] (void)	
Peripheral Module	Timer/Output Compare Mode	
Description	Destroy output compare mode	
Parameters	—	
Return value	If timer is successfully cleared, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.	

11-4 __DestroyOutputCompare_ALL

Generated function	BooleanDestroyOutputCompare_ALL (void)
Peripheral Module	Timer/Output Compare Mode
Description	Destroy output compare mode
Parameters	_
Return value	If timer is successfully cleared, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.

11-5 __GetTimerFlag

Generated function	BooleanGetTimerFlag_Tch[Resource]_p[Setting No.] (nsigned long data1, unsigned char *data2)
Peripheral Module	Timer/Output Compare Mode
Description	Get the flag of timer
Parameters	data1 : Status flags to be acquired
	(Set the following parameters. To set multiple parameters at the same time, use the symbol " " to separate each
	specified parameter.)
	RAPI_TGFA Input capture/Output compare flag A
	RAPI_TGFB Input capture/Output compare flag B
	RAPI_TGFC : Input capture/Output compare flag C
	RAPI_TGFD : Input capture/Output compare flag D
	RAPI_TCFD : Count direction flag
	RAPI_TCFV : Overflow flag
	RAPI_TCFU : Underflow flag
	RAPI_TGFE : Compare match flag E
	RAPI_TGFF : Compare match flag F
	RAPI_CMF : Compare match/Input capture flag
	data2 : Pointer to the buffer in which counter flag value is stored
Return value	If the status is successfully acquired, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.

11-6 __ClearTimerFlag

Generated function	BooleanClearTimerFlag_Tch[Resource]_p[Setting No.] (unsigned long data)		
Peripheral Module	Timer/Output Compare Mode		
Description	Clear the flag of timer		
Parameters	data1 : Status flags to be cleared		
	(Set the following parameters. To set multiple parameters at the same time, use the symbol " " to separate each		
	specified parameter)		
	RAPI_TGFA : Input capture/Output compare flag A		
	RAPI_TGFB : Input capture/Output compare flag B		
	RAPI_TGFC: Input capture/Output compare flag C		
	RAPI_TGFD : Input capture/Output compare flag D		
	RAPI_TCFV : Overflow flag		
	RAPI_TCFU : Underflow flag		
	RAPI_TGFE : Compare match flag E		
	RAPI_TGFF : Compare match flag F		
	RAPI_CMF : Compare match/Input capture flag		
Return value	If the status is successfully cleared, RAPI_TRUE is returned; if failed, RAPI_FALSE is returned.		

6. Converting a Project

6.1 Project Conversion Function

You can convert a project (setting) with a certain CPU model in order to use the project with another CPU model. When settings in the original are not appropriate in the converted project, they are modified according to the CPU model of the converted project. For information on the modification of the settings, refer to the next section.

Note: SH/Tiny and H8S/Tiny are not supported.

Figure 6.1-1 Project Conversion Overview

6.2 Modifying and Displaying the Settings through Project Conversion

- [1] Settings are modified in the following two methods.
 - i. Setting values are modified or new setting values are set
 - When the original setting values cannot be used in the converted project
 - When items are invalid in the original while new setting values are required in the converted project
 - ii. Setting items themselves are disabled
 - When the converted project CPU model does not support the setting items
- [2] Resource settings

All resource settings are deleted.

[3] Displaying Project Conversion Results

Conversion results are displayed using the icons listed in table 4-1.

Icon	Description	Item No.
•	The original setting values are used.	-
?	The program modified the setting values.	i. for [1]
0	The item itself was disabled through the conversion.	ii. for [1]
X	The original setting values are used.	-
	(The item itself is invalid both in the original and converted project)	

Table 6.2-1 Displaying Conversion Results

6.3 How to Convert a Project

- [1] Select [File] -> [Project Convert] from the menu to open the [Convert] dialog box.
- [2] Enter the names of the projects to be converted and newly created, and also enter the directory in which the new project is to be stored.
- [3] Select a series, group, and type No. of the CPU into which the original is to be converted from the pull-down menu. Then, click [OK].

Convert 🛛 🔀			
Convert source project name:			
C:\renesas\PDG_proj\default\default.pd Ref			
Γ			
	Convert destination project name:		
IL	project2		
Directory:			
IГ	C:\renesas\PDG_proj\project2 Ref		
Type of convert destination CPU			
	Series: M16C/Tiny		
	Group: M16C/28		
	Type No.: M30280F6 🗨		
	ROM capacity: 48K+4K byte(s)		
	RAM capacity: 4K byte(s)		
OK Cancel			

Figure 6.3-1 [Convert] Dialog Box

[4] A new project file is created in the specified directory. A message dialog box appears telling you that the conversion of the project is completed.

PDG	\times	
	Converting completed. Open new project?	
<u>Y</u> es	<u>N</u> o	

Figure 6.3-2 Message Telling Completion of Project Conversion (PDG)

Peripheral Driver Generator

- [5] Clicking on [Yes] opens the created project file.
- [6] Some of the settings may be disabled or may require to be modified depending on the CPU and other settings for the original project. Open setup pattern display window of each peripheral I/O module to check the setting details.

Peripheral Driver Generator - [H83687]							
File(E) Function(U) Display(Y) Tool(I) Window(W) Help(H)	- 6	X					
	Setting value						
CPU Setting Divide ratio of	of on-chip oscillator						
	k frequency(MHz) 20.000000						
Selection of	on-chip oscillator frequency						
CPU main clo	lock divider selection Divided by 1						
	PLL multiplier						
Periodic valu							
🔤 🖓 Sub clock	Used						
Sub clock di		_1					
	ncy to sub clock oscillation circuit 0.032768						
System clock		_1					
Main clock	Used	-1					
	ncy to main clock oscillation circuit 20.000000	-1					
On-chip oscil	Illater clock	-1					
	ncy to PLL circuit	-1					
	illator frequency	-1					
Timer PLL frequence		-1					
I/O		-1					
	clucitoy c.ciroso4						
Interrupt <u>A/D</u> Serial V Timer VO Interrupt A/D							
Source file name Generated function name	Functional explanetion of functions Relate(
No source is generated yet. The generated sour							
		60					
		Others					
		δ					
Timer mode /							
Ready	CAP						

Figure 6.3-3 Example of Displaying Project after Conversion

[7] **?** indicates that the corresponding item requires to be modified or checked because of the difference of the CPU specification or other reasons. Modify the setup pattern if necessary.

[8] After necessary modification is made, **?** becomes **•**.

📽 Peripheral Driver Generator - [H83687 *]					
File(E) Function(U) Display(V) Tool(I) Window(W) Help(H)					
CPU CPU: H8/3687 Item Setting v	alue				
System clock frequency [MHz] 20.0000	00				
CPU setting CPU setting Selection of PLI multiplier	oy 1				
Selector of PE Interplier Periodic value Used Used					
Sub clock dividing ratio	ער 2				
Input frequency to sub clock oscillation circuit 0.03276					
System clock selection Main clo	ck 🛛				
Main clock Used					
Input frequency to main clock oscillation circuit 20.0000	00				
On-chip oscillater clock					
PLL clock					
Input frequency to PLL circuit					
Serial On-chip oscillator frequency					
Timer PLL frequency					
I/O 0.01638-	4 [
Interrupt <u>A</u> /D <u>CPU</u> Serial Timer I/O Interrupt A/D					
Source file name Generated function name Functional explanation of function	ons Relater				
No source is generated yet. The generated sour	Others				
Timer mode /	2				
Ready					

Figure 6.3-4 Example of Displaying Project after Conversion

Peripheral Driver Generator V.1.04 User's Manual

Publication Date:	May. 29, 2009	Rev.1.00	
Published by:	Sales Strategic Planning Div. Renesas Technology Corp.		
Edited by:	Microcomputer Tool Tool Business Divis Renesas Solutions		

© 2009. Renesas Technology Corp. and Renesas Solutions Corp., All rights reserved. Printed in Japan.

Peripheral Driver Generator V.1.04 User's Manual

Renesas Electronics Corporation 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan