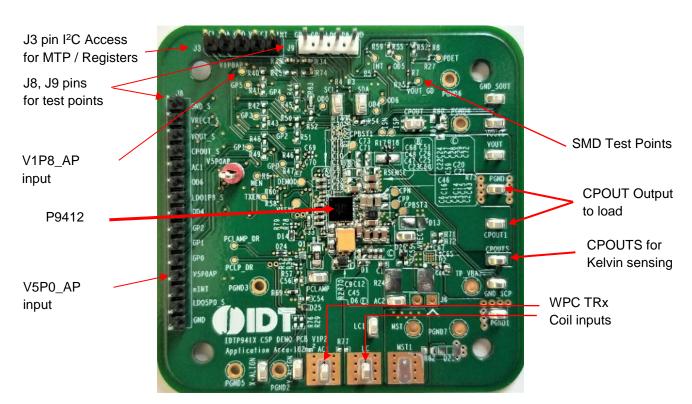
RENESAS

P9412

Wireless Power TRx WattShare[™] Solution for Wireless Charging for Wireless Power Charging


Description

The P9412 CSP TRx evaluation board can be used to demonstrate the features and performance of the P9412 Wireless Power Transceiver solution for Mobile Device with a custom Rx only or TRx coils. The intuitive top-level placement of components, layout, and controls simplify the design-in process, optimizes the user experience, and emphasizes the impressive level of integration and abundance of useful features that this device offers.

The device is powered by a Renesas Proprietary TRx coil that can be copied when used with Renesas products (Worldwide patent pending). The P9412 operates in RX mode or TX mode depending on the setting and the firmware loaded to its Multiple-Time Programmable memory (MTP).

Features

- P9412 CSP TRx WattShare[™] Wireless power Solution
- Delivers over 30W output power as a Receiver
- Delivers over 6W output power as Transmitter
- Integrated high-performance capacitor divider
- XY Position Sensing Technology
- I2C Connector
- Multiple-Time Programmable Memory (MTP)
- · Fully assembled with test points and coil fixture
- 6-layer PCB with 1oz. copper

Figure 1. P9412 CSP Demo Board v1.3

Contents

1.	Usag	ge Guide	7
	1.1	Quick-Start Guide for Rx and Tx Mode Operation	7
	1.2	Using the Windows GUI	8
		1.2.1. Using the GUI to Program the P9412	8
		1.2.2. Using the GUI to Read / Write to Registers	. 12
		1.2.3. Using the GUI to Run in High Power Capacitor Divider Mode	15
		1.2.4. Using the GUI to Run in TX Mode	. 18
	1.3	I ² C Function	21
		1.3.1. I2C Read back of MTP contents	22
2.	Reai	sters	. 23
		2.1.1. Identification and Revision Registers	
		2.1.1.1. Chip ID Register, Chip_ID_L (0x00), Chip_ID_H (0x01)	
		2.1.1.2. Chip Revision and Font Register, Chip_Rev (0x02)	
		2.1.1.3. Customer ID Register, Customer ID (0x03)	
		2.1.1.4. Firmware Major Rev. Registers, FW_Major_Rev_L (0x04), FW_Major_Rev_H (0x05)	23
		2.1.1.5. Firmware Minor Rev. Registers, Minor_Rev_L (0x06), FW_Minor_Rev_H (0x07)	23
		2.1.1.6. Firmware Date/Time Registers, FW_Date_Code (0x 08~13), FW_Timer_Code (0x 14~1B)	23
		2.1.1.7. Configuration Major Revision Registers, CFG_Major_Rev (0x1C)	24
		2.1.1.8. Configuration Minor Revision Registers, CFG_Minor_Rev (0x1D)	24
		2.1.1.9. Reference Design Version Register, RefDesignVer (0x4A)	24
		2.1.2. Status and Interrupt Registers	. 25
		2.1.2.1. Status Registers, Status_L (0x34), Status_H (0x35)	25
		2.1.2.2. Interrupt Registers, INT_L (0x36), INT_H (0x37)	25
		2.1.2.3. Interrupt Enable Registers, INT_Enable_L (0x38), INT_Enable_H (0x39)	26
		2.1.2.4. Interrupt Clear Registers, INT_Clear_L (0x3A), INT_Clear_H (0x3B)	
		2.1.2.5. TRX System Operating Mode Register, Sys_Op_Mode (0x4C)	
		2.1.2.6. Over-Current Status Register, OC_Status (0xB5)	
		2.1.3. Battery Status and Power Transfer Registers	
		2.1.3.1. Charge Status Register, CHG_Status (0x3E)	
		2.1.3.2. End of Power Transfer Register, EPT_Code (0x3F)	28
		2.1.4. Operation Parameters Registers	
		2.1.4.1. Vout Set Register, Vout_Set_L (0x6C), Vout_Set_H (0x6D)	
		2.1.4.2. TRX Vout Voltage Registers, Vout_L (0x42), Vout_H (0x43)	
		2.1.4.3. Iout Limit Set Register (0x3D)	
		2.1.4.4. TRX lout / lin Value Registers, lout / liin_L (0x44), lout / lin_H (0x45)	
		2.1.4.5. TRX Vrect Voltage Registers, Vrect_L (0x40), Vrect_H (0x41)	
		2.1.4.6. TRX Die Temperature Registers, DieTemp_L (0x46), DieTemp_H (0x47)	
		2.1.4.7. TRX AC Frequency Registers, AC_Freq_L (0x48), AC_Freq_H (0x49)	
		2.1.5. Command and Communication Registers	
		2.1.5.1. System Command Register, SYS_CMND_L (0x4E), SYS_CMND_H (0x4F)	
		2.1.5.2. Config Table Command Register, Config_CMND (0xCA)	
		2.1.5.3. TRX Header Register (PropPkt Send), TRX_Header_Out (0x50)	
		2.1.5.4. TRX Data Value1 Register (PropPkt Send), TRX_Data_VALUE1_Out (0x51)	
		 2.1.5.5. TRX Data Value 2~5 Reg. (PropPkt Send), TRX_Data_Value2_5_Out (0x52, 0x53, 0x54, 0x55) 2.1.5.6. TRX Header Register (PropPkt Received), TRX_Header_In (0x58) 	
		2.1.3.0. The leader register (1 top R received), TRA_Header_III (0830)	34

	2.1.5.7.	TRX Data Value 1~2 Register (PropPkt Received), TRX_Data_Value1_2_In (0x59, 0x5A)	34
	2.1.5.8.	Com Channel Send Size Register, CC_Send_Size_L (0x140), CC_Send_Size_H (0x141)	34
	2.1.5.9.	Com Channel Send Index Register, CC_Send_Index_L (0x142), CC_Send_Index_H (0x143)	34
	2.1.5.10.	Com Channel Receive Size Register, CC_Recv_Size_L (0x144), CC_Recv_Size_H (0x145)	35
	2.1.5.11.	Com Channel Receive Index Reg., CC_Recv_Index_L (0x146), CC_Recv_Index_H (0x147)	35
	2.1.5.12.	Com Channel Status Register, CC_Status (0x148)	35
	2.1.5.13.	Pending Packets Register, Pend_Pkts (0x149)	. 35
	2.1.5.14.	ADT Packet Time Out Register, ADT_Timeout_PKT (0x150)	35
	2.1.5.15.	ADT Stream Time Out Register, ADT_Timeout_STR (0x151)	35
	2.1.5.16.	ADT Error Code Register, ADT_Error_Code (0x14D)	36
	2.1.5.17.	ADT Buffer Registers, (0x0800 ~ 0x0FFF)	36
	2.1.5.18.	Frequency Shift Keyed modulation (FSK) Transmitter to Receiver Communication	37
	2.1.5.19.	FSK Communication Protocol	37
2	.1.6. H	W Control and Monitor Registers	. 37
	2.1.6.1.	Ping Frequency Register, PingFreq_L (0x6A), PingFreq_H (0x6B)	37
	2.1.6.2.	HW Flag Register, HW_Flag (0x81)	38
	2.1.6.3.	Over Voltage Protection Register, OV_Set (0xB3)	38
	2.1.6.4.	RX Mode Communication Modulation FET Register, CMFET_L (0xF4), CMFET_H (0xF5)	38
	2.1.6.5.	RX Mode AFC Communication Modulation FET Register, AFC_CMFET (0xB2)	38
	2.1.6.6.	RX Mode High Vout Communication Modulation FET Register, HiVout_CMFET (0x11B)	39
	2.1.6.7.	Align X Register, AlignX (0xB0)	39
	2.1.6.8.	Align Y Register, AlignY (0xB1)	39
	2.1.6.9.	Align adc Offset Registers, AlignAdcOffX (0x164), AlignAdcOffY (0x165)	40
	2.1.6.10.	Align Slope1 Registers, AlignSlope1X (0x166), AlignSlope1Y (0x167)	40
	2.1.6.11.	Align Slope2 Registers, AlignSlope2X (0x168), AlignSlope2Y (0x169)	40
	2.1.6.12.	Align Offset Registers, AlignOffX (0x16A), AlignOffY (0x16B)	
	2.1.6.13.	Align Threshold Registers, AlignThreshX (0x16C), AlignThreshY (0x16D)	
2	.1.7. V	rect Control Registers	. 41
	2.1.7.1.	Target_Vrect Register, Vrect_Target_L(0x90), VrectTarget_H (0x91)	
	2.1.7.2.	Vrect Knee Register, PwrKnee (0x92)	
	2.1.7.3.	Vrect Correction Factor Register, VrCorrFactor (0x93)	
	2.1.7.4.	Vrect Maximum Correction Register, VrMaxCorr_L (0x94), VrMaxCorr_H (0x95)	
	2.1.7.5.	Vrect Minimum Correction Register, VrMinCorr_L (0x96), VrMinCorr_H (0x97)	
	2.1.7.6.	Vrect Adjust Register, VRectAdj (0x5E)	
2		apacitor Divider Registers	
	2.1.8.1.	Capacitor Divider Mode Status Register, CDModeSts (0x100)	
	2.1.8.2.	Capacitor Divider Mode Request Register, CDModeReq (0x101)	
	2.1.8.3.	TRX CPout Voltage Registers, VCPout_L (0x10C), VCPout_H (0x10D)	
	2.1.8.4.	Capacitor Divider Vout Threshold Reg., CD_Vout_Thd_L (0x10A), CD_Vout_Thd _H (0x10B)	
	2.1.8.5.	Capacitor Divider Frequency Set Register, CD_Freq_L (0x108), CD_Freq_H (0x109)	
2		preign Object Detection Registers	
_	2.1.9.1.	RX FOD Adjustable Parameters Registers, (0x70 ~ 0x7F)	
	2.1.9.2.	TX FOD Threshold Registers, TX_FOD_Thrsh_L (0xD4), TX_FOD_Thrsh_H (0xD5)	
	2.1.9.3.	TX FOD Gain Register, TX_FOD_Gain (0xD1)	
	2.1.9.4.	TX FOD Offset Registers, TX_FOD_Offset_L (0xD2), TX_FOD_Offset_H (0xD3)	
	2.1.9.5.	TX FOD Offset Option Register, FOD_OffsetOpt (0XA3)	
2		/PC Basic and Extended Protocol Registers	
-	2.1.10.1.	EPP Q-Factor Register, EPP_Q_Factor (0x83)	

	2.1.10.2.	EPP Q-Factor A Register, EPP_Q_Fact_A (0x138)	. 46
	2.1.10.3.	EPP Q-Factor B Register, EPP_Q_Fact_B (0x139)	. 46
	2.1.10.4.	EPP TX Guaranteed Power Register, EPP_TXGuarPwr (0x84)	. 46
	2.1.10.5.	EPP TX Potential Power Register, EPP_TXPotentPwr (0x85)	. 46
	2.1.10.6.	EPP TX Capability Flag Register, EPP_TXCapaFlag (0x86)	. 46
	2.1.10.7.	EPP Renegotiation Status Register, EPP_RN_Sts (0x87)	. 46
	2.1.10.8.	EPP Current RPP Header Register, MPCur_RPP (0x88)	. 47
	2.1.10.9.	EPP Current Negotiated Power Register, MPCur_NegPwr (0x89)	. 47
	2.1.10.10.	EPP Current Maximum Power Register, MPCur_MaxPwr (0x8A)	. 47
	2.1.10.11.	EPP Current FSK Modulation Register, MPCur_FSK (0x8B)	. 47
	2.1.10.12.	EPP Request RPP Header Register, MPReq_RPP (0x8C)	. 47
	2.1.10.13.	EPP Request Re-Negotiated Power Register, MPReq_NegPwr (0x8D)	. 47
	2.1.10.14.	EPP Request Maximum Power Register, MPReq_MaxPwr (0x8E)	. 47
	2.1.10.15.	EPP Request FSK Modulation Register, MPReq_FSK (0x8F)	. 48
	2.1.10.16.	WPC Spec Revision Register, WPC_SpecRev (0xB9)	. 48
	2.1.10.17.	EPP Rx Manufacturer Code Reg., MpRxManufCode_L (0xBA), MpRxManufCode_H (0xBB)	. 48
	2.1.10.18.	WPC Identification Register, WPC_ID (0xE0 ~ 0XE3)	. 48
	2.1.10.19.	Extended Identification Packet Register, WPC_ExtID (0xE4 ~ 0xEB)	. 49
	2.1.10.20.	Signal Strength Packet Register, SSPValue (0xB4)	. 49
	2.1.10.21.	Control Error Packet Register, CEPValue (0x5F)	. 49
	2.1.10.22.	RX Power Register, Rx_Pwr_L (0xCE), Rx_Pwr_H (0xCF)	. 49
	2.1.10.23.	WPC Manufacturer ID Register, WPC_ManufID_L (0x15E), WPC_ManufID_H (0x15F)	. 50
2.	.1.11. Pro	oprietary High-Power Protocol Registers	. 50
	2.1.11.1.	Proprietary Tx Potential Power Register, PropTxPotenPwr (0xC4)	. 53
	2.1.11.2.	Proprietary Requested Power Register, PropReqPwr (0xC5)	. 53
	2.1.11.3.	Proprietary Current Power Register, PropCurrPwr (0xC6)	. 53
	2.1.11.4.	Proprietary Negotiated Power Step Size Register, PropModePwrStep (0xC7)	. 53
	2.1.11.5.	Proprietary Mode Status Register, PropModeStatus (0xC8)	. 53
	2.1.11.6.	Proprietary Mode Error Register, PropErrStatus (0xC9)	. 53
2.	.1.12. TX	Mode Registers	. 54
	2.1.12.1.	TX Status Registers, Status_L (0x34), Status_H (0x35)	. 54
	2.1.12.2.	TX Interrupt Registers, INT_L (0x36), INT_H (0x37)	
	2.1.12.3.	TX Interrupt Enable Registers, INT_Enable_L (0x38), INT_Enable_H (0x39)	. 55
	2.1.12.4.	TX Interrupt Clear Registers, INT_Clear_L (0x3A), INT_Clear_H (0x3B)	
	2.1.12.5.	System TX Command Register, TX_CMND (0x4D)	. 56
	2.1.12.6.	TX Mode System Command Register, TxSysCmnd_L (0x4E), TxSysCmnd_H (0x4F)	. 57
	2.1.12.7.	TX Mode CEP Threshold Register, TxCepThrshVal (0xD6)	. 57
	2.1.12.8.	TX Mode CEP Threshold Count Limit Register, TxCepThrshCntLmt (0xD7)	. 57
	2.1.12.9.	TX Mode API Current Limit Registers, I_API_Limit_L (0x56), I_API_Limit_H (0x57)	
	2.1.12.10.	TX Mode API Current Hysteresis Register, I_API_Hys (0x82)	. 59
	2.1.12.11.	TX Mode API Current Limit Offset Registers, I_API_Offset_L (0xF6), I_API_Offset_H (0xF7)	. 59
	2.1.12.12.	TX Ping Frequency (Period) Register, PingFreqPer_L (0x90), PingFreqPer_H (0x91)	. 59
	2.1.12.13.	TX Ping Duty Cycle Register, PingDC (0x92)	. 59
	2.1.12.14.	TX Minimum Duty Cycle Register, MinDC (0x93)	. 59
	2.1.12.15.	TX Minimum Frequency (Period) Register, MinFreqPer_L (0x94), MinFreqPer_H (0x95)	. 60
	2.1.12.16.	TX Maximum Frequency (Period) Register, MaxFreqPer_L (0x96), MaxFreqPer_H (0x97)	. 60
	2.1.12.17.	TX Mode Operating Period Register, TxPeriod_L (0xA4), TxPeriod_H (0xA5)	
	2.1.12.18.	TX Mode Operating Duty Cycle Register, TxDuty (0xA6)	

	2.1.12.19.	TX Mode Over-Voltage Protection Register, Tx_OVP_L (0x9E), TX_OVP_H (0x9F)	60
	2.1.12.20.	TX Mode Over-Current Protection Register, TX_OCP_L (0xA0), TX_OCP_H (0xA1)	61
	2.1.12.21.	TX Conflict Threshold Register, TxConfThrsh (0x134)	61
	2.1.12.22.	TX Conflict Count Register, TxConfCnt (0xAF)	61
	2.1.12.23.	TX Power Register, TX_Power_L (0xAC), TX_Power_H (0xAD)	61
	2.1.12.24.	TX Dead Time Register, TX_DeadTime (0x9C)	61
	2.1.12.25.	TX Control Delay Register, TX_ControlDelay (0xAE)	62
	2.1.13. Co	mmonly Used Registers	62
	2.1.13.1.	Monitoring, Status, Interrupt, and Operating Mode Registers	62
	2.1.13.2.	Settings and Command Registers	62
3.	Schematic Diagra	am	63
4.	Bill of Materials		64
5.	Board Lavout		
		Э	
_			
6.	Ordering Informa	tion	74
7.	Revision History		

Figures

Figure 1. P9412 CSP Demo Board v1.3	1
Figure 2. Capacitor Divider Mode Transition Sequence	7
Figure 3. GUI Software	8
Figure 4. FTDI USB-I2C Bridge Connected to I2C Terminal J3 of P9412 CSP TRx Demo Board	8
Figure 5. Initial Screen of P9412 GUI	
Figure 6. USB-Bridge is Detected, P9412 is Not Connected	9
Figure 7. P9412 MTP Programming using I ² C Slave Device Address 0x3C	10
Figure 8. MTP Programming Successful	10
Figure 9. GUI Detects an Unprogrammed Part and Issues a Warning	11
Figure 10. Firmware Program Verification Success	11
Figure 11. Verify FW Revision and Date Code	12
Figure 12. I2C Read / Write Registers	13
Figure 13. Basic 1 Tab, after a "Read 1 time" Operation	13
Figure 14. VOUT Adjustments Can be made in Three Ways	14
Figure 15. Check Cap Divider Mode	15
Figure 16. Enable Cap Divider Mode Operation	16
Figure 17. P9412 Successfully Enters Cap Div. Mode and is Ready to Transition to High-Power Operation	16
Figure 18. P9412 Transition to High Power Operation	17
Figure 19. Using the GUI to Manually Increase the RX Vout Voltage	17
Figure 20. Using the GUI to Manually Decrease the RX Vout Voltage	18
Figure 21. Basic Registers Initial Read Back; Before TX Mode Entry	19
Figure 22. Tx Mode Entry, Without an Rx Placed on the P9412 Coil; Vrect and Vout Voltage Read Back ~7V.	19
Figure 23. Tx Mode, With an Rx Placed on the P9412 Coil; Use the GUI to Monitor the Status	20
Figure 24. Exit Tx Mode, With an Rx Placed on the P9412 Coil; Use the GUI to Send Exit Command	20
Figure 25. Verify Exit TX Mode; Use the GUI to Read Mode	21
Figure 26. I2C Read Protocol using P9412	21

Figure 27. I2C Write Protocol using P9412	22
Figure 28. Example of differential bi-phase encoding.	37
Figure 29. Example of asynchronous serial byte format.	
Figure 30. Proprietary High Power Protocol Flow Chart	52
Figure 31. P9412 DEMO Board v1.3 Schematic	63
Figure 32. Top and Top Silkscreen Layer	66
Figure 33. Inner1 GND Layer	67
Figure 34. Inner2 POWER/Signal/GND Layer	68
Figure 35. Inner3 POWER/ GND Layer	69
Figure 36. Inner4 POWER/Signal/GND Layer	70
Figure 37. Bottom Layer	71
Figure 38. FTDI Dongle for Programming the Firmware into P9412 MTP	72
Figure 39. FTDI Dongle Schematic for Programming the Firmware into P9412 MTP and Reading Re	gisters73

Tables

e 1. Bill of Materials64

1. Usage Guide

The P9412 CSP TRx Demo board is designed to demonstrate the performance and functionality of the P9412 wireless transceiver in a lab bench test environment. For complex or electrically sensitive situations, it is recommended to use the reference layout to integrate this design into the final system in order to eliminate hardware limitations or signal degradation introduced by long leads.

With no computer interface, the demo board can function in its pre-programmed Rx mode of operation together with a WPC compatible Tx transmitter such as the P9235A, P9236A, P9247 Tx EVKIT, or the P9260 Automotive Tx.

1.1 Quick-Start Guide for Rx and Tx Mode Operation

The P9412, when used as a receiver (Rx), has three Capacitor Divider operating modes:

- · Disable: Vout is on, but CPout is off
- Bypass: CPout = Vout
- Cap Divider: CPout = Vout/2

Any mode change between Bypass and Cap divider mode must go through Disable (see Figure 2). Note that the firmware handles the transition through the Disable mode automatically and the information is being provided for reference. CPout must not be loaded during mode transitions between Bypass and Cap Divider.

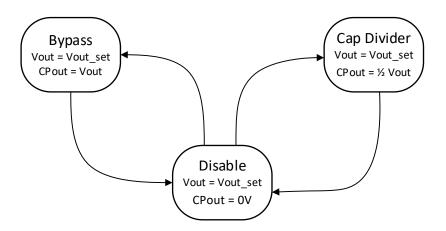


Figure 2. Capacitor Divider Mode Transition Sequence

The default configuration for the EVK demo board is for LDO1P8 to be connected to the SCL and SDA I2C lines only. To apply 1.8VDC from the target Application PCB, wire 1.8VDC to the V1P8_AP input test point and add a GND reference wire (can be shared with VBAT GND wire). In order for the P9412 Demo PCB to properly operate, the V1P8_AP pin should be powered by a 1.8VDC source at all times.

With no load applied to the VOUT or CPOUT pins, place the P9412 Rx coil with the windings facing down (toward the Tx coil) centered above a valid Tx unit with a 1mm non-metallic spacer placed between the Tx interface and the Rx coil. The charging pad can be a pre-powered WPC Tx, or can be powered after placing the Rx coil into position.

Verify that power is available at the Rx output by measuring the voltage at the CPOUT1 test point to ground (GND). The P9412 will start up in Bypass mode (i.e., Cap. Div. is not running and VOUT is transferred directly to the CPOUT node) and can deliver up to 1.5A at 12V (if the Tx can support this much power transfer). A heavy load (loads > 1A) should not be applied until the Cap Divider Bypass Mode has been verified (CPOUT = VOUT). Additionally, startup into heavy loads can cause the TX to fail to connect due to FOD or OC. If higher output power is desired, the integrated capacitor divider must be set into Cap Divider mode where up to 3A load can be

connected between CPOUT1 and the GND terminals. For more information, see "Using the GUI to run in high power Capacitor Divider mode".

The I2C connector J3 can be used to program the P9412 or R/W to any valid Read/Write registers. The included USB-I2C Bridge (FT4222 Dongle) and GUI for Windows PC allow reading, writing to registers, and programming new firmware into MTP.

GUI software is shown in Figure 3. Use this revision or higher (latest revision available).

P9412_Demo_GUI_v0.10r007exe	5/22/2020 10:10 AM	Application	6,346 KB

Figure 3. GUI Software

1.2 Using the Windows GUI

Connect the Bridge to PC via USB connector. Attach the Bridge to the I²C terminal J3 on the P9412 EVAL board as shown on Figure 44. Line up the GND (black) of the Dongle with the pin 3 of J3 connector.

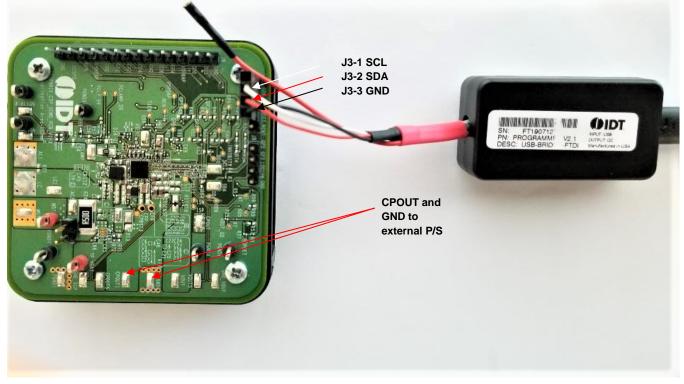


Figure 4. FTDI USB-I2C Bridge Connected to I2C Terminal J3 of P9412 CSP TRx Demo Board

1.2.1. Using the GUI to Program the P9412

To program the device, remove the P9412 demo board coil from the Tx, connect GND, SDA, SCL to the FTDI USB-I2C Bridge and power CPOUT from an external Power Supply set to 5V to 8V (see Figure 4).

Note: Field MTP updates are possible using the host AP using a similar method and I2C. Contact the factory for details.

1. Open the GUI program – P9412_Demo_GUI_v0.10r007_.exe or higher. The initial screen of the GUI is shown on Figure 5.

Dev, I ² C	FW Pgr	n Customer	QC Scrip	ts			
Device	P9412 R	х ~	Slave addr 0x 3C		+	Open script Save	Cript Dongle
Cmd	RW	Addr E	ata RunOnce	Status	Run	Comments	
1	Rd ~	0000		n/a	Run		
2	Rd ~	0001		n/a	Run		Run settings Loop wait 100 ms
3	Rd ~	0002		n/a	Run		Loop count 0
							Advanced Rd/Wr

Figure 5. Initial Screen of P9412 GUI

Note: Make sure the external power supply is turned on and the USB-I2C Bridge is connected to the PC. Verify that the Device selected is the P9412 at the top of screen. Check the "FTDI dongle detected" and "P9412 connected on FTDI dongle" messages are shown at the bottom of the screen. If you do not see these messages, unplug the USB cable at the PC side, plug it in again and then check all connections.

If the message indicates that the "FTDI dongle detected" but the P9412 is not connected, see Figure 6 – it may be necessary to select the P9412 again using the "Device" pull-down menu and clicking on "P9412 RX".

Dev, I ² C	-	W Pgm			QC Script		-		Company of the	Dongle
Crnd		12 R		Data	lave addr 0x 3C	Status	Run	Open script	Save script	FTDI DIDT1 DID
1	Rd	v	0000	Data		n/a	Run	comments	1	
2	Rd	÷	0001			n/a	Run			Run settings Loop wait 100 ms
3	Rd	v	0002		0	n/a	Run			Loop count 0 Save log Refresh Run loop Save csv
										Stop Clear csv Run 1 time

Figure 6. USB-Bridge is Detected, P9412 is Not Connected

2. To update the MTP program, select the "FW Pgm" tab. Then make sure the proper file type is selected, either HEX or BIN box is checked and Press the "Load File" button, a pop-up window will appear. Navigate to the current P9412 FW *.* file and Open the file. See Figure 7, which indicates the FW file was read successfully.

Eile Help Dev, PC FW Pgm Customer Q	Renesas P9412 GUI	<u>-</u> □× ∰ ⊷
Firmware Load file HEX	MTP/OTP read	
Program Verify Stop		
C:\/IDT_P9412_GUI\9412_0036.bin		
Firmware BIN 21436 bytes read successfu		
	Clear Save	

Figure 7. P9412 MTP Programming using I²C Slave Device Address 0x3C

3. After loading the file, press the "Program" button, the MTP will be programmed and the GUI will indicate if successful or if there were errors. See Figure 8, which indicates that the programming was successful. If there are any errors during programming, attempt to program again.

Eile Help	Renesas P9412 GUI	
Dev, I ² C FW Pgm Customer QC	Scripts	
- Firmware	MTP/OTP read	
Load file Program Verify Stop C:UDT_P9412_GUI(9412_0036.bin 100% Firmware programmed 21436 [0x538C] bytes succ	cessful	
	Clear Save	BIN TXT
01 dongle detected	P9412 connected on FTDI dongle	ver 0.10 r007 on May 21, 20

Figure 8. MTP Programming Successful

a. If an un-programmed part is detected, the GUI will issue a warning message (see Figure 9). Follow the instructions: Turn off the external P/S and connect to Vrect or Vout, wait for 20 seconds, then turn on the P/S and try to program again by "clicking" on the OK button. Failure to connect the external P/S to Vrect or Vout when programming a blank IC can result in damage to the part.

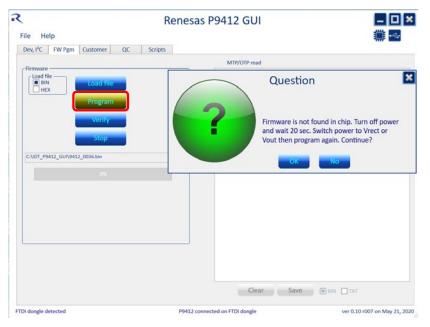


Figure 9. GUI Detects an Unprogrammed Part and Issues a Warning

4. If the firmware was programmed successfully, power cycle the external P/S (turn P/S off then on). Then press the "Verify" button. A total match should be indicated for successful programming (see Figure 10). If there are any errors, attempt to program again.

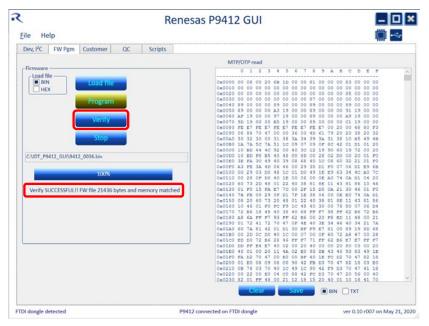


Figure 10. Firmware Program Verification Success

- 5. After programming and verification success.
 - a. Verify programming, it is recommended to select the "Basic 1" tab and press the "Read 1 time" button to check that the firmware revision and date code are correct.
 - b. Turn off the external Power Supply and either set up the P9412 for TRx mode (see "Using the GUI to run in TX mode" section), or remove the external power supply from CPOUT and place the P9412 on a compatible Tx.

Dev, I ² C FW Pgm C	ustor	ner	QC	Scrip	ts		
Basic 1 Basic 2	Ba	sic 3	FO	TX C	mode		
0x01-00 : Chip ID	0x	94	12				
0x02 : HW ver	0x	09					
0x03 : Customer ID	0x	02				Ox4A : Hef design ver Ox 01	
0x05-04 : FW ver major	0x	00	00				
0x07-06 : FW ver minor	0x	00	37				
Ox15F-15E : WPC PRMC	D Ox	00	50				
0x08-13 : FW date	0x	4D6	1-7920	-3232-2)32-3	32-3000 May 22 2020	
0x14-18 : FW time	0x	3132	2-3A30	-313A-3	234	12:01:24	
0x6B-6A : Ping freq	0x	00	00	0 kHz			
0x41-40 : Vrect	0x	00	00	0 mV)		
0x49-48 : AC freq	0x	00	00	0 kHz			
					1	Read 1 time	
Ox10C : CPout	0x	00	00	0 mV	<pre>></pre>		
0x43-42 : Vout	0x	00	00	0 mV	- 1	Read loop	
0x45-44 : lout	0x	00	00	0 mA			
0x67-66 : Temp die	0x	00	00	-189.1	·ci)		
						Clear Read 1 time Read loop Stop	

Figure 11. Verify FW Revision and Date Code

1.2.2. Using the GUI to Read / Write to Registers

Access to the P9412 status and control settings are done by reading and writing the I²C registers. The registers are described in "Registers." To read and write to the registers, use one of the following procedures:

1. Place the P9412 on a compatible Tx. The P9412 is configured as a BPP Rx and will connect and initially start in Bypass mode, where the Capacitor Divider is not running and VOUT is transferred directly to the CPOUT node. The voltage at CPOUT and VOUT should be 5V.

- 2. To read and write specific registers, select the "Dev, I2C" tab and click the "I2C reg Rd/Wr" box. The I2C Rd/Wr block will stay accessible when different tabs are selected (see Figure 12).
 - a. For example, to check the Rx mode CPout voltage, read the 16bit code of I²C register 0x10C. First enter 010C in the "Addr" field, select 2 "Bytes", then press the "Read" button.

ile I	Help			Renes	as P94	12 GUI	
Dev, I ² C	FW Pgr	n Custome	er QC Scrip	ots			
Device	P9412 R		Slave addr 0x 3	c	-	Open script Save scr	Dongle
Cmd	RW	Addr	Data RunOnce	Status	Run	Comments	
1	Rd *	0000		n/a	Run		100.000
2	Rd ~	0001		n/a	Run		Run settings
3	Rd *	0002		n/a	Run		Loop count 0
							X Save log X Refresh
							Run loop Save csv
							Stop Clear csv
							Run 1 time
							- Advanced Rd/Wr
							Bulk
							BUIK
	1.02	In CAIDT 5	9412_GUI\Script_Defau	dt mun		loop info	
	sci	npt <u>c:voi_</u> P	serra_contactipt_Delat	ALL OF			X I2C reg Rd
c12	C Rd/Wr —						
				81 13	EF	0 1 2 3 4	5 6 7 8 9 A B
	Clear	Vrite Re	ad 010C 2	81 13		Dec	
				1- 00 01	le Hes	C Dec	

Figure 12. I2C Read / Write Registers

3. For bulk reading of common operating registers, select the Basic 1 tab and select one of the "Read 1 time" buttons depending on what section the register of interest is in. The register values within the bracketed section can be constantly monitored by selecting "Read loop", and the monitoring can be stopped by selecting "Stop". Similarly, all the registers on this tab can be monitored continuously by selecting the "Read loop" button at the bottom.

Dev, I ² C FW Pgm	Custor	nor	QC	Scripts		
Basic 1 Basic 2		sic 3	FOD	TX mode		
				TATILOUE		
0x01-00 : Chip ID		94	12			
0x02 : HW ver		09				
0x03 : Customer ID		02			0x4A : Ref design ver 0x 01	
0x05-04 : FW ver ma		00	00			
0x07-06 : FW ver min		00	36			
0x15F-15E : WPC PR			50			
0x08-13 : FW date				2038-2032-3		
0x14-1B : FW time				893A-3138	18:49:18	
0x6B-6A : Ping freq	_	00	8F	143 kHz		
0x41-40 : Vrect	Ox	19	5F	6495 mV	Read	
0x49-48 : AC freq	Ox	00	8D	141 kHz	registers in	
					Read 1 time	
0x10C : CPout		13	81	4993 mV		
0x43-42 : Vout		13	7C	4988 mV	Read loop	
0x45-44 : lout		00	00	0 mA		
0x67-66 : Temp die	0x	0B	A7	41.2 [°C]		
					Clear Read 1 time Read loop Stop	
					Read or	
					Clear all	

Figure 13. Basic 1 Tab, after a "Read 1 time" Operation

4. Reciprocally, register 0x6C (valid for FW37 and above) is used to set the value of VOUT, as shown in Figure 14. Any register can be read (or written assuming it is a writeable register) from the I2C reg Rd/Wr tool at any time. Address is the starting address and the number of bytes should be specified prior to clicking "Read" for read, or "Write" for write operations.

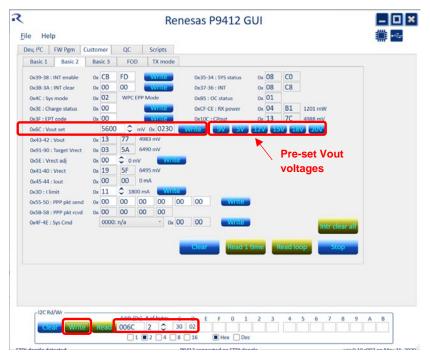


Figure 14. VOUT Adjustments Can be made in Three Ways

- Vout_Set = Value in 0.01V entered into 0x6C: From the "Basic 2" tab, Vout Set field, enter or select the voltage using the up/down arrows and then clicking Write, <u>or</u>
- Vout_Set = code_value (decimal value converted to hex) * 0.01 (V); 0x0230 corresponds to 5.6V and clicking Write in "I2C Rd/Wr" block, or
- Click on one of the pre-set values. When clicking a pre-set button it is not necessary to click the Write button.

Vout_Set in 40 mV step, 3.52 V ~ 20V range.

Note: The P9412 is configured as a BPP/EPP Rx and will connect and initially start in Bypass mode, CPOUT ≈ VOUT. In Bypass mode, the VOUT or CPOUT voltage is limited to a 12V maximum, and a standard BPP Tx is normally limited to 5W (typically CPOUT = 5V, 1A load on the Rx). In order to attain higher output power, an EPP TX or a proprietary TX, and running the P9412 in Cap Divider mode is required. For instructions on entering Cap Divider mode, see "Using the GUI to run in high power Capacitor Divider mode".

1.2.3. Using the GUI to Run in High Power Capacitor Divider Mode

When preparing to deliver higher power or to use the integrated Capacitor Divider (CD), the following steps should be taken to allow the Cap Divider the opportunity to soft-start safely without causing wireless connection interruptions or cause excessive current to flow during start-up:

- 1. Reduce the load on CPOUT to 0A.
- 2. Set the Cap Divider mode to "Cap Div".
- 3. Monitor the CD mode Status register for Cap Div Operation.
 - a. Or, check the INT register for the CD_MODECHANGE_INT (used to notify the AP).
- Increase the CPOUT voltage and proprietary Tx input voltage as required (during Cap Div mode, CPOUT ≈ VOUT / 2).

Note: VOUT is only allowed to be set above 12V in Cap Div mode. Also, VOUT must be below 12V when exiting Cap Div mode. CPout must not be loaded during any Cap Divider mode transitions. When in Cap Div mode, change the CPOUT voltage by changing Vout_set to 2x the CPOUT target voltage.

To transition from low power to high power operation, follow the procedure outlined. Low power operation is with the Capacitor Divider in Bypass mode. Check the Cap Divider mode by using the "Basic 3" tab, and reading the Cap Div mode (see Figure 15).

Eile Help	Renesas P9412 GUI	
Dev, I ² C FW Pgm Customer	C Scripts	
Basic 1 Basic 2 Basic 3	FOD TX mode	
0x83 : OV voltage Sh : 23.4V 0x75-F4 : COMFET 0x 0030 0x82 : AFC COMFET 0x 00 0x118 : HI Vout COMFET 0x CO 0x81[7] : EN V5p0AP AFC Vout	v 0x 05 Write Write Write Write Capdiv modes	Read all
Vout set 10	TX SV III TX SV III Current: bypass idead	
0x10C[15:0]: CPout 0x 156D 0x10A[11:0]: CD Vout Thrsh 0x 0885 0x108[15:0]: CD freq 0x 0258 0x83: EPP Q Factor 0x 60 0x138[15:0]: EPP Q (A/8) 0x 0000	S485 mV Write 12497	
TDI dongle detected	P9412 connected on FTDI dongle	ver 0.10 r007 on May 21, 20.

Figure 15. Check Cap Divider Mode

Check the VOUT voltage by measuring the VOUT test point or by using the GUI ("Basic 2" tab, Monitoring: Vout, and Vout_set). Once it is determined that the P9412 is in Bypass mode and the VOUT voltage is set to less than 12V, reduce the output load to 0mA.

Referring to Figure 16: select the QC tab, click the CD box, and then press the "Set Mode" button [step 1]. This is in preparation to set the P9247 QC TX to a higher input voltage and higher power transfer operation. By clicking the "Set Mode" button, the GUI is requesting a transition from Bypass mode to Cap Divider mode operation (see Figure 2). Verify Cap Divider operation by checking the voltage at VOUT and at CPOUT. The voltage at CPOUT should be half of the voltage at VOUT. Note that the lout check field is indicating "Add load" [step 2], this is normal and prevents the transition to high power operation (or the increase of RX Vout and TX Vin voltages) without first adding a 200mA load to CPOUT. The 200mA load is recommended to make the output

voltage transition smoother and to reduce the coupled spikes that occur when the TX input power supply is being adjusted.

Set n ICD Bypass rrent: B	s lypass	Ado	d lo	ad	_	_		Pout, click Contin t Load (mA) 200 Disable check	¢	
vout	All vin set -		[2			[3			Sequenti	ial steps
	ngle step incr	RX Vout (-	wait (m	5)	TX Vin (m	V)	Single step decr	Incr \downarrow	Decr 个
QC 1	$1 \rightarrow$	9000	\$	2000	\$	9000	\$	1 ←	X Up1	X Dn1
QC 2	$2 \rightarrow$	12000	0	2000	\$	12000	\$	2 ←	🗙 Up2	Dn2
QC 3	$3 \rightarrow$	12000	\$	2000	\$	12000	\$	3 ←	🗙 Up3	X Dn3
QC 4	$4 \rightarrow$	12000	0	2000	0	12000	$\hat{\mathbf{v}}$	4 ←	X Up4	X Dn4
QC 5	$5 \rightarrow$	12000	0	2000	\$	12000	\$	5 ←	🗙 Up5	X Dn5
QC 6	$6 \rightarrow$	12000	0	2000	¢	12000	\$	6 ←	X Up6	X Dn6
	Voltage jump p Disable pro		600	0				Defau		top □ → □ ←

Figure 16. Enable Cap Divider Mode Operation

Add a 200mA load and click the "Continue" button [step 3]. By clicking the "Continue" button while the P9412 is placed on the P9247 QC TX, a "Load OK" message should be displayed as shown in Figure 17. This indicates that the GUI is now able to change the P9412's VOUT voltage and send a command to the P9247 to change the TX input voltage after the time interval given. Note that if the RX Vout voltages indicate a maximum of 12V, it is necessary to press the "Default" button. The sequence the GUI follows for increasing the RX Vout and TX VIN voltages is: 1. Increase Vout_set to the level indicated; 2. Wait for the designated interval for the RX Vout to stabilize (Note: the wait period should not be less than 100ms for best results); 3. Increase the TX Vin voltage to increase the power transferred.

Figure 17. P9412 Successfully Enters Cap Div. Mode and is Ready to Transition to High-Power Operation

To increase the RX VOUT voltage and TX input voltage make sure all the Up and Down step boxes are checked. Then press the "Incr↓" button. The arrow direction indicates the sequence of the steps from Up1 to Up6. The step-up sequence may take several seconds to complete. Similarly, the system can be set back to 9Vout operation by clicking the "Decr↑" button.

<u>F</u> ile Help								
Dev, I ² C FW Pgm	Customer	QC	Scripts					
Set mode	lout check	_	Load is good					
CD Bypass current: CD	Load	ЮК	Continue	CPout Load (m				
RX Vout/TXTA Vin set -								
						tial steps		
Single step incr	RX Vout (m)					Decr ↑		
QC1	9000		\$ 9000	<u></u>		X Dn1		
QC 2 2->	12000	2000	\$ 12000	ି 🗘 🛃	< 🗶 Up2	X Dn2		
QC 3 📑 🔿	15000	2000	\$ 14000	D 🗘 📑	C 🗶 Up3	X Dn3		
QC4 4 >	16000	2000	\$ 16000	D 🗘 🔄	C Vp4	X Dn4		
QC 5 5 ->	18000	2000	\$ 1700	D 🗘 🔁	C 🗶 Up5	X Dn5		
QC 6 6 ->	20000	2000	\$ 19000	D 🗘 😈	C X Up6	Dn6		
High Vin (>= 15V) st	ep wait 15		Disable steps	setting	Default		L→R or L←R	
Voltage jump j		000 🗘					→ ■ ←	
Disable pro	otection							

Figure 18. P9412 Transition to High Power Operation

In addition to using the Incr↓ and Decr↑ buttons it is possible to manually control the sequence using the "Single step incr" buttons. For example, to increase the RX Vout from 9V to 12V, press the "2→" button. The sequence the GUI follows for increasing the RX Vout voltage is: 1. Increase Vout_set to the 12V; 2. Wait for the 2 second interval for RX Vout to stabilize; 3. Increase the TX Vin voltage to 12V to increase the power transferred.

Dev, I ² C FW Pgm	Customer	QC Scrip	Its					
Set mode	Load	OK	d is good ntinue	It Load (mA) 200	•			
RX Vout/TXTA Vin set -	[1	[2	[3		Sequenti	ial steps		
Single step incr	RX Vout (mV)	wait (ms)	TX Vin (mV)	Single step decr	Incr \downarrow	Decr 个		
QC1 1->	9000 🗘	2000 🗘	9000 2	10	X Up1	X Dn1		
QC 2 2->	12000 🗘	2000 🗘	12000 🗘	2 ←	X Up2	X Dn2		
QC 3 3 ->	15000 🗘	2000 🗘	14000 🗘	3 ←	X Up3	X Dn3		
QC4 4 ->	16000 🗘	2000 🗘	16000 🗘	4 <-	X Up4	X Dn4		
QC 5 5 ->	18000 🗘	2000 🗘	17000 🗘	5	X Up5	X Dn5		
QC 6 0 ->	20000 \$	2000 🗘	19000 \$	6 ←	X Up6	Din6		
High Vin (>= 15V) sto Voltage jump p Disable pro	rotection 600		able steps setting	Defa	ait S	top Down L	-→R or L←R ■ ←	

Figure 19. Using the GUI to Manually Increase the RX Vout Voltage

Similarly, the RX VOUT voltage can be manually decreased by using the "Single step decr" buttons. For example, to decrease the RX Vout from 18V to 16V, press the "4←" button. The sequence the GUI follows for decreasing the RX Vout voltage is: 1. Decrease TX Vin voltage from17V to 16V to lower the power transferred; 2. Wait for the 2 second interval for TX Vin and RX Vout to stabilize; 3. Decrease the RX Vout voltage to 16V.

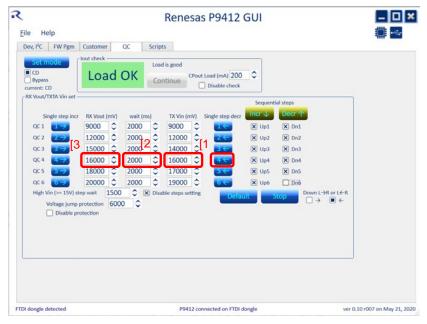


Figure 20. Using the GUI to Manually Decrease the RX Vout Voltage

1.2.4. Using the GUI to Run in TX Mode

Use the following procedure to enter TX mode operation:

- 1. Remove the P9412 from the TX pad. Remove load from the CPOUT pin.
- 2. Connect an external 7V Power supply to CPOUT and GND.
- 3. Turn on the external power supply.

4. Select the "Basic 1" Tab and check that the GUI is connected to the P9412 demo board by pressing the "Clear all" and then the "Read 1 time" button on the "Basic 1" tab. Check that the firmware revision and date code are reading correctly and that the Vrect, Vout, and VCPout voltages are all ~0V and that lout ~0mA.

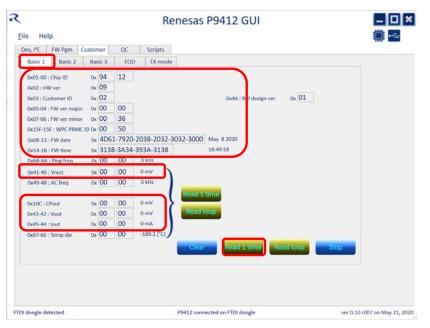


Figure 21. Basic Registers Initial Read Back; Before TX Mode Entry

If the registers look correct then change to the TX mode tab and press the "TX mode" button. Then press the "RD all" button. The Vrect, Vout, and VCPout voltages should be near the external power supply voltage applied to CPOUT as shown. The lout current should be low since the RX is not placed on the P9412 coil. Verify "TX mode" has been entered.

ile Help	Renesas P9412 GUI	
0x82: Hysteresis 73 0 0xF6: loffset 0096 0 0x90: Ping freq 0336 0 0x93: Nin duty 33 0 0x94: Min OP freq 0443 0	500 mA WKS 0x4E: TX mode emd 0000: n/a WKS 8 99 WKS 0x3-34: Status 00020 WKS 8 500 mA WKS 0x3-36: INT 0020 WKS 8 500 mA WKS 0x3-36: INT 0020 WKS 9 WKS 0x3-36: INT 0x3-36: INT <th>RD</th>	RD
	value to access tool tip	
DI dongle detected	P9412 connected on FTDI dongle	ver 0.10 r007 on May 21, 2020

Figure 22. Tx Mode Entry, Without an Rx Placed on the P9412 Coil; Vrect and Vout Voltage Read Back ~7V

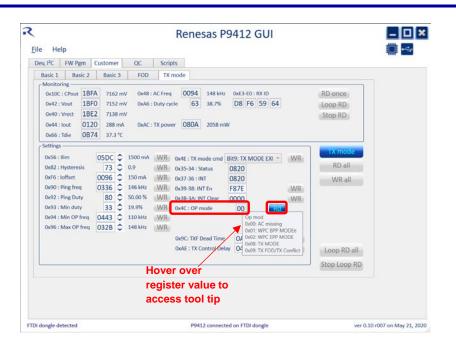
5. Place the Rx on the P9412's coil and check the output voltage of the Rx. If a connection is established, there should be ~5V present on the Rx output. Continue to monitor the P9412 Vrect, Vout, lout, and RX freq registers.

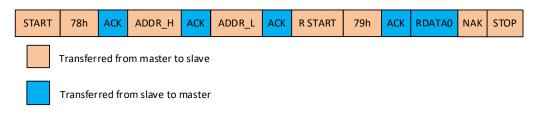
Figure 23. Tx Mode, With an Rx Placed on the P9412 Coil; Use the GUI to Monitor the Status

To exit TX mode operation, either use the "TX mode cmd" register to write a 0x02 to register 0x4F or the "Dis TX mode" button. Verify by reading the OP mode register 0x4C – it should read 0x00 or AC missing (see Figures 24 and 25).

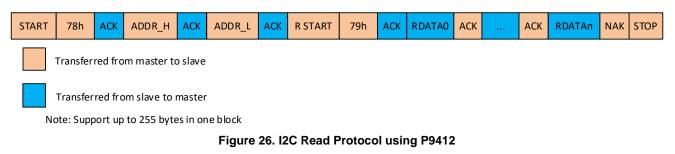
Dev, I ² C	FW Pg	m	Custome	er	QC	Script	s							
Basic 1	Bas	ic 2	Basic	: 3	FOD	TX n	ode							
Monito	ring —		-			_	-			-				
0x100	: CPout	1BF/	A 716	2 m)	/ 0x48 :	AC Freq	0094	148 kHz	OxE3-				RD once	
0x42 :	Vout	1BF	0 715	2 m)	/ 0xA6 :	Duty cycl	e 63	38.7%	D8	F6	59 64		Loop RD	
0x40 :	Vrect	1BE	2 713	8 m)	1								Stop RD	
0x44 :	lout	012	0 288	mA	OxAC :	TX powe	080A	2058 m\	N				A CONTRACTOR OF	
0x66 :	Tdie	0B7	4 37.3	3 °C										
Setting	s	_		_										
0x56 :	Ilim		05DC	\$	1500 mA	WR	Ox4E : TX	mode cmd	Bit9: TX	MO	DE EXI ~	WR	Dis TX mode	
0x82 :	Hysteres	is	73	\$	0.9	WR	0x35-34 :	Status	0820	011018	and the second second		RD all	
OxF6 :	loffset		0096	\$	150 mA	WR	0x37-36 :	INT	0820				WRall	
0x90 :	Ping free	1	0336	\$	146 kHz	WR	0x39-38:	INT En	F87E			WR		
0x92 :	Ping Dut	Y	80	٥	50.00 %	WR	0x3B-3A:	INT Clear	0000	2		WR		
0x93 :	Min duty	(33	٢	19.9%	WR	0x4C : OP	mode	08		Rd	_		
0x94 :	Min OP f	req	0443	٥	110 kHz	WR					1.000			
0x96 :	Max OP	freq	032B	\$	148 kHz	WR								
							0x9C: TXF	Dead Time	0A	\$	83.33 ns	WR	the second second	
							OxAE : TX	Control Dela	y 04	\$	33.33 ns	WR	Loop RD all	
													Stop Loop RD	

Figure 24. Exit Tx Mode, With an Rx Placed on the P9412 Coil; Use the GUI to Send Exit Command

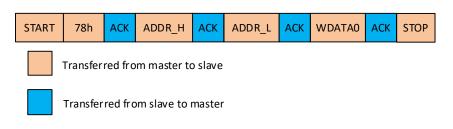


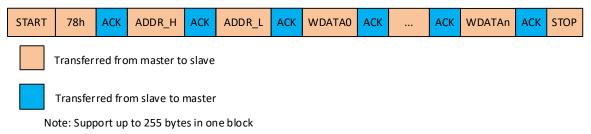

Figure 25. Verify Exit TX Mode; Use the GUI to Read Mode

1.3 I²C Function


The P9412 uses standard I²C slave implementation protocol to communicate with a host Application Processor (AP) or other I2C peripherals. The communication protocol is implemented using 8 bits for data and 16 bits for addresses. The P9412 registers are written using address 0x78 (Write) and read using address 0x79 (Read). The default slave address of the P9412 device is 0x3Ch.

When writing to the P9412, care should be taken to only write to registers marked exclusively as Read/Write ("RW"). Registers marked as Read Only ("R") should never be attempted to be written to. Likewise, register locations marked "Reserved", should not be written to. When writing to a RW register that contains a combination of RW fields and reserved fields, a read-modify-write should be performed to the intended bit/field only. All other bits/field, including reserved bits/field should NOT be modified.


Standard Single I2C Read


Standard Multiple I2C Read

Standard Single I2C Write

Standard Multiple I2C Write

Figure 27. I2C Write Protocol using P9412

The P9412 TRx device operates in Tx or Rx mode depending on the firmware (FW) loaded into memory by the AP, stored in Multiple-Time Programmable (MTP) registers, or updated in SRAM. Some registers are defined and implemented for Rx mode only, some registers are for Tx mode only, and some registers are common to both operating modes (TRx).

Additionally, the P9412 implements back channel communication following the Frequency Shift Keyed modulation interface (FSK). Details regarding FSK, timing, and encoding scheme can be found in the "FSK Communication".

An External Power Supply set to 1.8V should be connected to the V1P8_AP test point.

1.3.1. I2C Read back of MTP contents

In order to verify the contents of the P9412 in case the GUI is not available or cannot be used, the following commands can be used to read-back the memory contents. Do not attempt to write to memory this way. Refer to the *P9412 MTP Programming Guide* for details regarding writing to MTP using an AP, and great care should be taken to follow the detailed guide if updating MTP using an AP in a production environment or at production volumes.

Complete the following steps to read MTP:

- 1. Write I2C Byte (**0x4810**, **0x1**).
 - a. Once this is executed, I2C will only read MTP memory section where the FW binary is written. So to go back to regular I2C operation, the AP will need to do a power-cycle.
 - b. MTP memory is write-protected so I2C will only do reads, it cannot write to the memory during this setting.
 - c. To confirm that I2C is reading from MTP, the AP can check the first 4 bytes that should read: (0x00 0x08 0x00 0x20)
- 2. Read and dump whole FW memory into a binary/text file.
- 3. Power-cycle the P9412.

2. Registers

The following tables comprise the list of address locations, field names, available operations (R, W, or RW), default values, and functional descriptions of all internally accessible registers contained within the P9412 (FW Minor Revision 0038).

2.1.1. Identification and Revision Registers

2.1.1.1. Chip ID Register, Chip_ID_L (0x00), Chip_ID_H (0x01)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x00 [7:0]	Chip_ID_L	R	0x12	Chip ID low byte
0x01 [7:0]	Chip_ID_H	R	0x94	Chip ID high byte

2.1.1.2. Chip Revision and Font Register, Chip_Rev (0x02)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x02 [7:0]	Chip_Rev	R	09	Chip revision. P9412 = 09 = Rev D.

2.1.1.3. Customer ID Register, Customer ID (0x03)

	ddress and bit	Register Field Name	R/W	Default Value	Function and Description
0>	x03 [7:0]	Customer_ID	R	TBD	Read FW customization number

2.1.1.4. Firmware Major Rev. Registers, FW_Major_Rev_L (0x04), FW_Major_Rev_H (0x05)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x04 [7:0]	FW_Major_Rev_L	R/W	TBD	Major revision of firmware in low byte
0x05 [7:0]	FW_Major_Rev_H	R/W	TBD	Major revision of firmware in high byte

2.1.1.5. Firmware Minor Rev. Registers, Minor_Rev_L (0x06), FW_Minor_Rev_H (0x07)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x06 [7:0]	FW_Minor_Rev_L	R/W	TBD	Minor revision of firmware in low byte
0x07 [7:0]	FW_Minor_Rev_H	R/W	TBD	Minor revision of firmware in high byte

2.1.1.6. Firmware Date/Time Registers, FW_Date_Code (0x 08~13), FW_Timer_Code (0x 14~1B)

Address and bit	Register Field Name	R/W	Default Value		Function and Description	ı
0x 08 [7:0]	FW_Date_Code [7:0]	R/W	TBD	Date Code of firmware in	Flash or MTP	
0x 09 [7:0]	FW_Date_Code	R/W	TBD	Data Encoding Format : A	Ascii code	
	[15:8]			E.g.) May 8 2020(18:49:1	8)	
0x 0A [7:0]	FW_Date_Code [23:16]	R/W	TBD	Register	Value	ASCII
0x 0B [7:0]	FW_Date_Code [31:24]	R/W	TBD	0x 08	4D	М
0x 0C [7:0]	FW_Date_Code [39:32]	R/W	TBD	0x 09	61	а
0x 0D [7:0]	FW_Date_Code [47:40]	R/W	TBD	0x 0A	79	У
0x 0E [7:0]	FW_Date_Code	R/W	TBD	0x 0B	20	Space
	[55:48]			0x 0C	20	Space
0x 0F [7:0]	FW_Date_Code	R/W	TBD		20	Space
	[63:56]					

P9412 Evaluation Board Manual

Address and bit	Register Field Name	R/W	Default Value		Function and Description	1
0x 10 [7:0]	FW_Date_Code [71:64]	R/W	TBD	0x 0D	38	8
0x 11 [7:0]	FW_Date_Code [79:72]	R/W	TBD	0x 0E	20	Space
0x 12 [7:0]	FW_Date_Code [87:80]	R/W	TBD	0x 0F	32	2
0x 13 [7:0]	FW_Date_Code	R/W	TBD	0x 10	30	0
	[95:88]			0x 11	32	2
				0x 12	30	0
				0x 13	00	null
0x 14 [7:0]	FW_Timer_Code [7:0]	R/W	TBD	Time Code of firmware in	Flash or MTP	
0x 15 [7:0]	FW_Timer_Code [13:8]	R/W	TBD	Data Encoding Format : A E.g.) May 8 2020(18:49:1		
0x 16 [7:0]	FW_Timer_Code [23:16]	R/W	TBD	Register	Value	ASCII
0x 17 [7:0]	FW_Timer_Code [15:8]	R/W	TBD	0x 14	31	1
0x 18 [7:0]	FW_Timer_Code [31:24]	R/W	TBD	0x 15	38	8
0x 19 [7:0]	FW_Timer_Code [39:32]	R/W	TBD	0x 16	3A	:
0x 1A [7:0]	FW_Timer_Code	R/W	TBD	0x 17	34	4
0x 1B [7:0]	[47:40] 1B [7:0] FW_Timer_Code R/ [55:48]	R/W	TBD	0x 18	39	9
				0x 19	3A	:
				0x 1A	31	1
				0x 1B	38	8

2.1.1.7. Configuration Major Revision Registers, CFG_Major_Rev (0x1C)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x1C [7:0]	CFG_Major_Rev	R/W	TBD	Major revision of configuration table

2.1.1.8. Configuration Minor Revision Registers, CFG_Minor_Rev (0x1D)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x1D [7:0]	CFG_Minor_Rev	R/W	TBD	Minor revision of configuration table

2.1.1.9. Reference Design Version Register, RefDesignVer (0x4A)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x4A [7:0]	RefDesignVer	R	-	Reference design version number. If V1p8_AP is detected at startup then reference design version 2 is determined. 0x01 = Ref Design Version 1: SW Inhibit and GPIO Q factor functions are disabled 0x02 = Ref Design Version 2: SW Inhibit and GPIO Q factor functions are enabled

2.1.2. Status and Interrupt Registers

2.1.2.1. Status Registers, Status_L (0x34), Status_H (0x35)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x34 [7]	STAT_VOUT	R	0	Set when Vout is ON. Cleared when Vout is OFF. Interrupt event is generated on SET and CLR events.
0x34 [6]	STAT_VRECT	R	0	Indicates AC power is applied. The flag is set before the Configuration Packet. It is cleared on system reset or when power is removed. Interrupt event is generated on SET event.
0x34 [5]	MODE_CHANGE	R	0	No function attached. Refer to "TRX System Operating Mode Register, Sys_Op_Mode (0x4C)".
0x34 [4]	OVER_VOLTAGE	R	0	Set if Overvoltage Protection circuit is enabled. Cleared otherwise. Interrupt event is generated on SET and CLR events.
0x34 [3]	OVER_CURR	R	0	Set if Overcurrent Protection circuit is enabled. Cleared otherwise. Interrupt event is generated on SET and CLR events. For more information, see Over-Current Status Register, OC_Status (0xB5).
0x34 [2]	OVER_TEMP	R	0	Set if Internal temperature exceeds 130°C. Cleared otherwise. Interrupt event is generated on SET and CLR events.
0x34 [1]	Reserved	R	0	Reserved
0x34 [0]	ADT Error	R	0	Set if ADT Error condition exists, Cleared if error condition doesn't exists. Interrupt event is generated on SET event. ADT= Auxiliary Data Transport
0x35 [7]	Data Received	R	0	"1" indicates TX data is received when in RX mode or RX data received when in TX mode. "0" indicates no data is received.
0x35 [6]	CD_ERROR	R	0	Set if an error condition occurs while operating in capacitor divider mode. Possible error condition(s): Failure in exiting capacitor divider mode (2:1) because voltage on Vout is too high (above 12V) This bit is cleared together with the corresponding interrupt flag.
0x35 [5]	Reserved	R	0	Reserved
0x35 [4]	PropModeStat	R	0	No function attached. Refer to Proprietary Mode Status Register, PropModeStatus (0xC8) and Proprietary Mode Error Register, PropErrStatus (0xC9).
0x35 [3]	CD_MODECHANGE	R	0	No function attached. See Capacitor Divider Mode Status Register, CDModeSts (0x100).
0x35 [2]	AC Missing Detect	R	0	"1" indicates valid AC signal is not present, "0" indicates AC signals exist. Interrupt only generated after power up from battery (external source different from AC power).
0x35 [1]	ADT Received	R	0	"1" indicates TX ADT is received, "0" indicates no TX ADT is received. ADT= Auxiliary Data Transport
0x35 [0]	ADT Sent	R	0	"1" indicates RX ADT is sent, "0" indicates not all RX ADT has been sent.

2.1.2.2. Interrupt Registers, INT_L (0x36), INT_H (0x37)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x36 [7]	STAT_VOUT_INT	R	0	"1" indicates a pending interrupt for VOUT state change (off to on or on to off).
0x36 [6]	STAT_VRECT_INT	R	0	AC power applied and stable interrupt.
0x36 [5]	MODECHANGE_INT	R	0	"1" indicates a pending interrupt for Mode Change. Read current mode from System Mode Register
0x36 [4]	OVER_VOLT_INT	R	0	"1" indicates a pending interrupt for Over Voltage event.
0x36 [3]	OVER_CURR_INT	R	0	"1" indicates a pending interrupt for Over Current event. For more information, see Over-Current Status Register, OC_Status (0xB5).
0x36 [2]	OVER_TEMP_INT	R	0	"1" indicates a pending interrupt for Over Temperature event.
0x36 [1]	Reserved	R	0	Reserved
0x36 [0]	ADT_Error_INT	R	0	"1" indicates a pending interrupt for ADT Error event.
0x37 [7]	Data Received_INT	R	0	"1" indicates a pending interrupt for TX data received when in RX mode or RX data received when in TX mode. (No data received state change to data received state). When in RX mode this interrupt is set on any defined header.

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x37 [6]	CD_ERROR_INT	R	0	"1" indicates a pending interrupt for Capacitor Divider Error event
0x37 [5]	Reserved	R	0	Reserved
0x37 [4]	PropModeStat_INT	R	0	"1" indicates a pending interrupt for proprietary mode entry. Refer to System Mode register (0x4C) and Proprietary Mode Error Register (0xC9). If proprietary mode is enabled, "1" indicates a pending interrupt when the negotiation process is complete. Refer to Refer to Proprietary Mode Status Register, PropModeStatus (0xC8) and Proprietary Mode Error Register, PropErrStatus (0xC9).
0x37 [3]	CD_MODECHANGE_ INT	R	0	"1" indicates a pending interrupt for Capacitor Divider Mode Changed event
0x37 [2]	AC Missing _INT	R	0	"1" indicates a pending interrupt that valid AC does not exist, "0" indicates AC signals exist. Interrupt only generated after power up from battery (external source different from AC power).
0x37 [1]	ADT Received_INT	R	0	"1" indicates a pending interrupt for TX ADT Received. (No ADT received state change to ADT received state).
0x37 [0]	ADT Sent_INT	R	0	"1" indicates a pending interrupt for RX ADT Sent. (No ADT sent state change to ADT sent state).

2.1.2.3. Interrupt Enable Registers, INT_Enable_L (0x38), INT_Enable_H (0x39)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x38 [7]	STAT_VOUT_EN	RW	1	VOUT state change interrupt enable. Default value is "1". AP writes "0" to disable the interrupt.
0x38 [6]	STAT_VRECT_EN	RW	1	AC power applied and stable interrupt enable. Default value is "1".
0x38 [5]	MODECHANGE_EN	RW	1	Mode Changed interrupt enable. Default value is "1". AP writes "0" to disable the interrupt.
0x38 [4]	OVER_VOLT_EN	RW	1	Overvoltage condition ON/OFF interrupt enable. Default value is "1"
0x38 [3]	OVER_CURR_EN	RW	1	Overcurrent condition ON/OFF interrupt enable. Default value is "1"
0x38 [2]	OVER_TEMP_EN	RW	1	Over-temperature condition ON/OFF interrupt enable. Default value is "1"
0x38 [1]	Reserved	R	0	Reserved
0x38 [0]	ADT_Error_EN	RW	1	ADT Error interrupt enable. Default value is "1". AP writes "0" to disable the interrupt
0x39 [7]	Data Received_EN	RW	1	TX Data Received interrupt enable. Default value is "1". AP writes "0" to disable the interrupt
0x39 [6]	CD_ERROR_EN	RW	1	Capacitor Divider Mode Changed interrupt enable. Default value is "1". AP writes "0" to disable the interrupt.
0x39 [5]	Reserved	R	0	Reserved
0x39 [4]	PropModeStat_EN	R/W	1	Proprietary Mode Status interrupt enable. Default value is "1". AP writes "0" to disable the interrupt.
0x39 [3]	CD_MODECHANGE_ EN	RW	1	Capacitor Divider Mode Changed interrupt enable. Default value is "1". AP writes "0" to disable the interrupt.
0x39 [2]	AC Missing _EN	R/W	0	AP writes "1" is to enable the interrupt from the Interrupt Registers' corresponding bit, "0" is to disable the interrupt. Interrupt only generated after power up from battery (external source different from AC power).
0x39 [1]	ADT Received_EN	RW	1	Tx ADT Received interrupt enable. Default value is "1". AP writes "0" to disable the interrupt
0x39 [0]	ADT Sent_EN	RW	1	Rx ADT Sent interrupt enable. Default value is "1". AP writes "0" to disable the interrupt

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x3A [7]	STAT_VOUT_CLR	W	0	VOUT state change interrupt flag clear. AP writes "1" to clear the corresponding Interrupt Registers' bit and this bit is self-cleared to "0" (by MCU) afterwards.
0x3A [6]	STAT_VRECT_CLR	W	0	AC power applied and stable interrupt flag clear
0x3A [5]	MODECHANGE_CLR	W	0	Mode Changed interrupt flag clear
0x3A [4]	OVER_VOLT_CLR	W	0	Overvoltage condition ON/OFF interrupt flag clear
0x3A [3]	OVER_CURR_CLR	W	0	Overcurrent condition ON/OFF interrupt flag clear
0x3A [2]	OVER_TEMP_CLR	W	0	Over-temperature condition ON/OFF interrupt flag clear
0x3A [1]	Reserved	W	0	Reserved
0x3A [0]	ADT_Error_CLR	W	0	ADT Error interrupt flag clear. AP writes "1" to clear the corresponding Interrupt Registers' bit and this bit is self-cleared to "0" (by MCU) afterwards.
0x3B [7]	Data Received_CLR	W	0	Tx data received interrupt flag clear
0x3B [6]	CD_ERROR_CLR	W	0	Capacitor Divider Error interrupt flag clear.
0x3B [5]	Reserved	W	0	Reserved
0x3B [4]	PropModeStat_CLR	W	0	Proprietary Mode Status interrupt flag clear.
0x3B [3]	CD_MODECHANGE_ CLR	W	0	Capacitor Divider Mode Changed interrupt flag clear.
0x3B [2]	AC Missing _CLR	W	0	AC Missing interrupt flag clear. Interrupt only generated after power up from battery (external source different from AC power).
0x3B [1]	ADT Received_CLR	W	0	Tx ADT received interrupt flag clear.
0x3B [0]	ADT Sent_CLR	W	0	Rx ADT sent interrupt flag clear.

2.1.2.4. Interrupt Clear Registers, INT_Clear_L (0x3A), INT_Clear_H (0x3B)

Set bits in this register to clear corresponding interrupt flags. The register is self-cleared. Writing to this register does not invoke the clear by itself. The user must set BIT 5 in System Command Register (0x4E) to trigger the interrupt clear event (see System Command Register, SYS_CMND_L (0x4E), SYS_CMND_H (0x4F)).

2125	TRX System Operating Mode Register, Sys_Op_Mode (0x4C)
Z.I.Z.J.	TIXA System Operating Mode Register, Sys_Op_Mode (0x4C)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x4C [7:4]	Reserved	R	0	Reserved
0x4C [3:0]	Sys_Op_Mode	R	0000	0000 = AC Missing 0001 = WPC Basic Protocol 0010 = WPC Extended Protocol 0011 = Renesas Proprietary Protocol 1000 = TX Mode 1001 = TX FOD (Stop power transfer) / TX Conflict (Stop ping)

This register is cleared at entry to AC Missing State (DC power only), and will read back 0x0. This is the state when power is provided by the user to Vrect, Vout, or CPout and no AC signal is detected on the rectifier inputs. For Capacitor Divider mode status, see Capacitor Divider Mode Status Register, CDModeSts (0x100). For Tx mode status see TX Status Registers, Status_L (0x34), Status_H (0x35).

2.1.2.6. Over-Current Status Register, OC_Status (0xB5)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0xB5 [7:5]	Reserved	R	0	Reserved
0xB5 [4]	CDIV_OC	R	0	"1" indicates an Over-Current condition in the Cap Divider circuit block. Provides additional information on cause of the OC status or interrupt bit being set. Bit is cleared when OC_INT is cleared.
0xB5 [3:1]	Reserved	R	0	Reserved
0xB5 [0]	MLDO_OC	R	0	"1" indicates an Over-Current condition in the Main LDO circuit block. Provides additional information on cause of the OC status or interrupt bit being set. Bit is cleared when OC_INT is cleared.

2.1.3. Battery Status and Power Transfer Registers

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x3E [7:0]	CHG_Status	R/W	0x00	The AP writes this register with the value intended to be sent as payload to the Charge Status Packet as defined below. The FW does not verify or modify the value in any way. 0x0 = Reserved 0x1 = Charge status packet sent with parameter = 1 (1%) 0x2: Charge status packet send with parameter = 2 (2%) 0x64 = Charge status packet send with parameter = 100 (100%) $0x65 \sim 0xFE = Reserved$ 0xFF = No Battery Charge Device or Not Providing Charge Status Packet

2.1.3.1. Charge Status Register, CHG_Status (0x3E)

2.1.3.2. End of Power Transfer Register, EPT_Code (0x3F)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x3F [7:0]	EPT_Code	R/W	0x00	The AP writes this register with the value intended to be sent as payload to
				the End of Power Transfer Packet as defined below. The FW does not verify
				or modify the value in any way.
				0 = WPC mode, unknown EPT should be sent.
				1 = WPC mode, End of Charge EPT packet should be sent.
				2 = WPC mode, Internal Fault EPTpacket should be sent.
				3 = WPC mode, Over Temperature EPTpacket should be sent.
				4 = WPC mode, Over Voltage EPT packet should be sent.
				5 = WPC mode, Over Current EPTpacket should be sent.
				6 = WPC mode, Battery Failure EPTpacket should be sent.
				7 = WPC mode, Reconfiguration EPT packet should be sent.
				8 = WPC mode, No Response EPT packet should be sent.
				9 ~ 254 = Reserved

2.1.4. Operation Parameters Registers

Note: See Vrect Control Registers, Capacitor Divider Registers, and TX Mode Registers.

2.1.4.1. Vout Set Register, Vout_Set_L (0x6C), Vout_Set_H (0x6D)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x6C [7:0]	Vout_Set_L [7:0]	RW	0xF4	8 LSB of output voltage setting of the main LDO in 10mV units. Firmware increments in 40mV steps. Vout_Set range is from 3.52V to 20V. For EPP mode operation, it is recommended to increase Vout_Set after a connection is established.
0x6D [7:0]	Vout_Set_H [15:8]	RW	0x01	8 MSB of output voltage setting of the main LDO in 10mV units. Firmware increments in 40mV steps. Default value: 0x1F4 = 5V. <i>Example: To set Vout to 5.120V, write 0x200 (512 in decimal).</i>

Note: The Vout_Set registers at address 0x6C, applies to FW37 and above. GUI version v0.10r007 or higher is compatible with this register address as well as the earlier Vout_Set register address, 0x3C.

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x42 [7:0]	Vout L [7:0]	R	-	8 LSB of current main LDO Vout Voltage value.
				The AP may read this register to get current Vout level in mV.
0x43 [7:0]	Vout_H [15:8]	R	-	8 MSB of current main LDO Vout Voltage value.
				Example: If Vout = 0x1388h => 5000 = 5000mV = 5V

2.1.4.2. TRX Vout Voltage Registers, Vout_L (0x42), Vout_H (0x43)

2.1.4.3. Iout Limit Set Register (0x3D)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x3D [7:0]	ILim	RW	0x11	Set main LDO current limit. Current Limit = 100mA*(ILim+1) The maximum value of this register is 0x12 (18 in decimal) corresponding to a value of 1.9A

2.1.4.4. TRX lout / lin Value Registers, lout / liin_L (0x44), lout / lin_H (0x45)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x44 [7:0]	lout / liin_L [7:0]	R	-	8 LSB of RX lout / TX lin current value.
				The AP may read this register to get current lout / lin level in mA.
0x45 [7:0]	lout / lin_H [15:8]	R	-	8 MSB of lout / lin current value.
				Example: 0x3B6h => 950 950mA = 0.95A

2.1.4.5. TRX Vrect Voltage Registers, Vrect_L (0x40), Vrect_H (0x41)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x40 [7:0]	Vrect_L [7:0]	R	-	8 LSB of current Vrect Voltage value.
				The AP may read this register to get current Vrect level in mV.
0x41 [7:0]	Vrect_H [15:8]	R	-	8 MSB of current Vrect Voltage value.
				Example: If Vrect = 0x1828h => 6184 = 6184mV = 6.184V

2.1.4.6. TRX Die Temperature Registers, DieTemp_L (0x46), DieTemp_H (0x47)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x46 [7:0]	DieTemp_L [7:0]	R	-	8 LSB of current Die Temperature value.
				The AP may read this register to get current die temperature in degrees C.
0x47 [7:0]	DieTemp_H [15:8]	R	-	8 MSB of I current Die Temperature value.
				Example: 0x0037h => 55 = 55C

2.1.4.7. TRX AC Frequency Registers, AC_Freq_L (0x48), AC_Freq_H (0x49)

Address	Register Field Name	R/W	Default	Function and Description
and bit			Value	
0x48 [7:0]	AC_Freq_L [7:0]	R	-	8 LSB of current AC frequency value.
				The AP may read this register to get current frequency of the AC signal in
				kHz.
0x49 [7:0]	AC_Freq_H [15:8]	R	-	8 MSB of I current AC frequency value.
				Example: 0x0087h => 135 = 135kHz

2.1.5. Command and Communication Registers

Address	Register Field Name	R/W	Default	Function and Description
and bit			Value	
0x4E [7]	EPP RENEGOTIATE	RW	0	Initiate Renegotiation Request in EPP mode. The AP must configure the new
				requested parameters before setting this bit.
0x4E [6]				Initiate capacitor divider command. To request a mode change set the
	CD_CMND	RW	0	desired mode in the "Capacitor Divider Mode Request Register, CDModeReq (0x101)".
0x4E [5]	CLR_INT	RW	0	If AP sets this bit to "1" then MFC-IC MCU clears the interrupt corresponding
- [-]			-	to the bit(s) which has a value of "1" in Interrupt Clear Registers and then
				MFC's MCU sets the bit(s) in Interrupt Clear Registers to "0"
0x4E [4]	SEND_CSP	RW	0	If AP sets this bit to "1" then MFC-IC MCU sends the Charge Status packet
				(defined in the Battery Charge Status Register) to TX and then MFC's MCU
				sets this bit to "0"
0x4E [3]	SEND_EPT	RW	0	If AP sets this bit to "1" then MFC-IC MCU sends the End of Power packet
				(defined in the End of Power Transfer Register) to TX and then MFC's MCU
				sets this bit to "0"
0x4E [2]	CT_CMND	RW	0	Execute the config table command set with register 0xCA. See Config Table
				Command Register, Config_CMND (0xCA) and TRX Header Register
0.45 [4]			0	(PropPkt Send), TRX_Header_Out (0x50).
0x4E [1]	LDO_TGL	RW	0	If AP sets this bit to "1" then MFC-IC MCU toggles LDO output once (from on to off, or from off to on), and then MFC"s MCU sets this bit to "0". The result
				can be read from the System Status Register. Only toggles when Cap Divider
				is disabled.
0x4E [0]	SEND_PPP	RW	0	If AP sets this bit to "1" then MFC-IC MCU sends the Proprietary Packet
- [-]	_		-	(defined in the Proprietary Packet Registers) to TX and then MFC"s MCU
				sets this bit to "0".
0x4F [7:3]	Reserved	R	0	Reserved
0x4F [2]	SEND_ADT	RW	0	If AP sets this bit to "1" then MFC-IC MCU sends the ADT (defined in the
				Communication Channel Registers) to TX and then MFC"s MCU sets this bit
				to "0".
0x4F [1]	PROPPWRREQ	RW	0	Request power from TX based on PropReqPwr (0xC5).
0x4F [0]	PROPMODEEN	RW	0	Enable Proprietary Mode (TX power capability and authentication).

2.1.5.1. System Command Register, SYS_CMND_L (0x4E), SYS_CMND_H (0x4F)

 The AP sets any of the bits in this register to initiate the corresponding process. The register is self-cleared when the command is read by the FW and the process loaded in the execution queue. For TX mode commands see System TX Command Register, TX_CMND (0x4D) and TX Mode System Command Register, TxSysCmnd_L (0x4E), TxSysCmnd_H (0x4F).

2.1.5.2. Config Table Command Register, Config_CMND (0xCA)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0xCA [7:0]	Config_CMND	RW	0x0	Executes config table command once CT_CMND bit in System Command Register (0x4E) is set. 1: Get the default config table – available at address TBD 2: Get the custom config table – available at address TBD (Work In Progress) 3: Save the custom config table (Work In Progress)

The **Communication Channel** is designed to exchange data between the Tx and Rx. The Com Channel supports Proprietary Packets and ADT Communication Messages as payload. From the user point of view there should not be any difference related to the direction of the message, except for the speed.

The **Proprietary Packet** follows the WPC specification for its form. The FW does not check the content of the packet, so the AP may load any header and data, including the capability to simulate packets already defined by WPC for a special function. The AP's needed actions to send a Proprietary Packet are described below:

- Load the Proprietary Packet in the registers specified in TRX Header Register (PropPkt Send), TRX_Header_Out (0x50) and TRX Data Value 2~5 Reg. (PropPkt Send), TRX_Data_Value2_5_Out (0x52, 0x53, 0x54, 0x55), header first, followed by the packet data. The header and packet data follow WPC spec. The checksum is not needed – the FW will calculate it;
- 2. Set System Command register (0x4E [0]) to start the send process;
- 3. Check the Pending Pkts register (0x149 [0]) to indicate process completion;

Steps needed to be executed by the AP when Proprietary Packet is received:

- 1. Receive System interrupt, Data Received_INT (0x37 [9]);
- 2. Read the byte in the TRX Header Register (0x58). This is the proprietary packet header. Decode the packet header;
- 3. Read the two bytes from the TRX Data Value 1~2 registers (0x59 and 0x5A) to complete the packet. Alternatively, in step2, the AP may read all three bytes and execute step 3 only if needed;
- 4. Clear the Data Received_INT interrupt. This step is needed even if the interrupt is not enabled and the packet received event was recognized by polling the System Status register (0x34). No new packet will be accepted otherwise.

The **Communication Message** is transferred by a series of packets generated and handled by the FW state machine. The payload data is loaded/read to/from the communication data buffer, 2K bytes long. The steps needed to be executed by the AP to send a Communication message are similar to these in the Proprietary Packet:

- 1. Verify the Com Channel is not in use (Com Channel Status Register: receive busy 0x148 [1] and send busy 0x148 [0] are cleared);
- 2. Load the message in the ADT Data Buffer (0x0800);
- 3. The Com Channel Send Size Register (0x140) must be written with the size of the message in bytes (1 to 2K);
- 4. Set System Command register, SEND_ADT (0x4F [1]) to start the send process;
- 5. Wait for the ADT_Sent Interrupt (0x37 [0]) to indicate process completion and clear the interrupt. If there is a communication error, an ADT_Error_interrupt (0x36 [0]) will be set. ADT error codes can be read at the ADT Error Code register (0x14D [4;0])

Steps needed to be executed by the AP when Com Message is received:

- 1. Receive ADT Received interrupt (0x37 [1]);
- 2. Read the Com Channel Received Size register (0x144) to find the message size;
- 3. Read the message size number of bytes from the ADT Data buffer registers (0x0800);
- 4. Clear the ADT_Received interrupt;

The AP may monitor the data transfer progress by checking periodically index registers: Com Channel Send Index register (0x142) and the Com Channel Receive Index register (0x146) and verify the indexes are changing. The AP may also implement a Time Out function. It is possible the required time to send a message is

unusually longer if power level needs to be adjusted frequently. In any case, the AP may want to interrupt the Communication process at any time.

Address and bit	Register Field Name	R/W	Default Value	Function and Des	cription	
0x50 [7:0] RX Mode	RX Header Out	RW	0x00		ansfer; 0x05: for charge status The rest values are reserved.	oacket; 0x18 ~ 0xE2:
				Header'	Packet Types	Message Size
				ping phase		
				0x01	Signal Strength	1
				0x02	End Power Transfer	1
				identification & cor	nfiguration phase	
				0x06	Power Control Hold-off	1
				0x51	Configuration	5
				0x71	Identification	7
				0x81	Extended Identification	8
				power transfer pha	ase	
				0x02	End Power Transfer	1
				0x03	Control Error	1
				0x04	Received Power	1
				0x05	Charge Status	1
				identification & cor	nfiguration / power transfer phase	
				0x18	Proprietary	1
				0x19	Proprietary	1
				0x28	Proprietary	2
				0x29	Proprietary	2
				0x38	Proprietary	3
				0x48	Proprietary	4
				0x58	Proprietary	5
				0x68	Proprietary	6
				0x78	Proprietary	7
				0x84	Proprietary	8
				0xA4	Proprietary	12
				0xC4	Proprietary	16
				0xE2	Proprietary	20
				*Header values	not listed in this table correspond t	o reserved Packet types
0x50 [7:0]	TX Header Out	RW	0x00	0x01 = TX-ID		
TX Mode				0x02~0xFF = Rese	rved	

2.1.5.3. TRX Header Register (PropPkt Send), TRX_Header_Out (0x50)

Note: The contents of these registers is based on the most recently written value (for example, if a PPP packet is sent, the values stored in these registers will match those written by the P9412 FW or the AP, unless they are over-written (updated) or power is cycled).

This register's functionality depends on the operation mode (TX or RX Mode).

Address	Register Field Name	R/W	Default	Function and Description
and bit			Value	
0x51 [7:0]	RX Data_Value1 Out	RW	0x00	0x00 = Unknown
RX Mode				0x01 = Request_TX-ID
IXX MODE				0x05 = Charge Status
				0x06 = AFC_SET
				0x07 = AFC_Debounce
				0x08 = S-ID Tag
				0x09 = S-ID Token
				0x0A = TX Standby
				0x0B = LED Control
				* Corresponding RX Data_Value : LED Enable 0x00, LED Disable 0xFF
				0x0C = Request AFC_TX
				* Corresponding RX Data_Value : 0x00
				0x0D = Cooling Control
				* Corresponding RX Data_Value : ON 0x00, OFF 0xFF
				0x0F = Battery SOC
				0x18 = Power Hold
				0x10~0xFF = Reserved (unless listed)
0x51 [7:0]	TX Data_Value1 Out	RW	0x00	Bit [7:0] of TX Data_Value
TX Mode				

2.1.5.4. TRX Data Value1 Register (PropPkt Send), TRX_Data_VALUE1_Out (0x51)

Note: This register's functionality depends on the operation mode (TX or RX Mode).

2.1.5.5.	TRX Data Value 2~5 Reg.	(PropPkt Send), TRX_	Data_Value2_5	_Out (0x52, 0x53, 0x54, 0x55)
----------	-------------------------	----------------------	---------------	-------------------------------

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x52 [7:0] RX Mode	RX Data_Value2 Out [7:0]	RW	0x0	Bit [7:0] of RX Data_Value
0x53 [7:0] RX Mode	RX Data_Value3 Out [15:8]	RW	0x0	Bit [15:8] of RX Data_Value
0x54 [7:0] RX Mode	RX Data_Value4 Out [23:16]	RW	0x0	Bit [23:16] of RX Data_Value
0x55 [7:0] RX Mode	RX Data_Value5 Out [31:24]	RW	0x0	Bit [31:24] of RX Data_Value
0x52 [7:0] TX Mode	TX Data_Value2 Out [7:0]	RW	0x0	Bit [7:0] of TX Data_Value
0x53 [7:0] TX Mode	TX Data_Value3 Out [15:8]	RW	0x0	Bit [15:8] of TX Data_Value

Note: This register's functionality depends on the operation mode (TX or RX Mode).

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x58 [7:0]	TX Header In	R	0x00	0x00 = Unknown
RX Mode				0x01 = TX-ID
				0x02 = AFC_TX
				0x03 = ACK
				0x04 = NAK
				0x05 = Charge Stop
				0x18 = Power Hold
				0x06~0xFF = Reserved (unless listed)
0x58 [7:0]	RX Header In	R	0x00	0x18 = Proprietary Packet Header
TX Mode				0x28 = Proprietary Packet Header (TX_ID Request)

2.1.5.6. TRX Header Register (PropPkt Received), TRX_Header_In (0x58)

Note: This register's functionality depends on the operation mode (TX or RX Mode).

In TX mode, every time a Proprietary Packet 0x28 0x01 0x00 (TX_ID request) is received – for phone to phone, an interrupt is set and TX_ID FSK response is not automatically sent.

2457	TRY Date Value 1, 2 Pagister (PrenRkt Passived) TRY Date Value1, 2 In (0xE0, 0xEA)
Z.1.3./.	TRX Data Value 1~2 Register (PropPkt Received), TRX_Data_Value1_2_In (0x59, 0x5A)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x59 [7:0] RX Mode	TX Data_Value1 In [7:0]	R	0x0	Bit [7:0] of TX Data_Value
0x5A [7:0] RX Mode	TX Data_Value2 In [15:8]	R	0x0	Bit [15:8] of TX Data_Value
0x59 [7:0] TX Mode	RX Data_Value1 In [7:0]	R	0x0	Bit [7:0] of RX Data_Value 0x01: TX_ID Request
0x5A [7:0] TX Mode	RX Data_Value2 In [15:8]	R	0x0	Bit [15:8] of RX Data_Value 0x00: TX_ID Request

Note: This register's functionality depends on the operation mode (TX or RX Mode).

2.1.5.8. Com Channel Send Size Register, CC_Send_Size_L (0x140), CC_Send_Size_H (0x141)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x140 [7:0]	ccWrSize [7:0]	RW	0x00	8 LSB of Com Channel Send Size of the message to be sent. Maximum value is 2K.
0x141 [7:0]	ccWrSize [15:8]	RW	0x00	8 MSB of Com Channel Send Size.

2.1.5.9. Com Channel Send Index Register, CC_Send_Index_L (0x142), CC_Send_Index_H (0x143)

Address	Register Field Name	R/W	Default	Function and Description
and bit			Value	
0x142 [7:0]	ccWrIndx [7:0]	R	0x00	8 LSB of Current index of the message being transmitted.
0x143 [7:0]	ccWrIndx [15:8]	R	0x00	8 MSB of Current index of the message being transmitted.

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x144 [7:0]	ccRdSize [7:0]	RW	0x00	8 LSB of Com Channel Receive Size of the message to be received. Maximum value is 2044.
0x145 [7:0]	ccRdSize [15:8]	RW	0x00	8 MSB of Com Channel Send Size.

2.1.5.10. Com Channel Receive Size Register, CC_Recv_Size_L (0x144), CC_Recv_Size_H (0x145)

2.1.5.11. Com Channel Receive Index Reg., CC_Recv_Index_L (0x146), CC_Recv_Index_H (0x147)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x146 [7:0]	ccRdIndx [7:0]	R	0x00	8 LSB of Current index of the message being received.
0x147 [7:0]	ccRdIndx [15:8]	R	0x00	8. MSB of Current index of the message being received.

2.1.5.12. Com Channel Status Register, CC_Status (0x148)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x148 [7:2]	Reserved	R	0x0	Reserved
0x148 [1]	ADT_Rcv_Busy	R	0x0	"1" indicates that the Com Channel is busy with ADT receive
0x148 [0]	ADT_Send_Busy	R	0x0	"1" indicates that the Com Channel is busy with ADT send

2.1.5.13. Pending Packets Register, Pend_Pkts (0x149)

Address	Register Field Name	R/W	Default	Function and Description
and bit			Value	
0x149 [7:6]	Reserved	R	0x0	Reserved
0x149 [5]	Pend_DSR	R	0x0	"1" indicates Data Set Ready packets are pending to be sent
0x149 [4]	Pend_ADT	R	0x0	"1" indicates ADT packets are pending to be sent
0x149 [3]	Pend_Reneg	R	0x0	"1" indicates Renegotiation packets are pending to be sent
0x149 [2]	Pend_Charge	R	0x0	"1" indicates Charge status packets are pending to be sent
0x149 [1]	Pend_AckPkt	R	0x0	"1" indicates ACK is pending to be sent
0x149 [0]	Pend_Prop	R	0x0	"1" indicates Proprietary packets are pending to be sent

2.1.5.14. ADT Packet Time Out Register, ADT_Timeout_PKT (0x150)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x150 [7:0]	ADT_Timeout_PKT	R/W	0x00	ADT Timeout for sending a single packet.
	[7:0]			00: Disabled, 01: 50ms, FF: 12750 ms

2.1.5.15. ADT Stream Time Out Register, ADT_Timeout_STR (0x151)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x151 [7:0]	ADT_Timeout_STR [7:0]	R/W		ADT Timeout for sending a full message stream. 00: Disabled, 01: 500ms, FF: 127,500 ms

Address	Register Field Name	R/W	Default	Function and Description
and bit			Value	
0x14D [7:5]	Reserved	R/W	0x00	Reserved
0x14D [4]	ADT RCVD OVFLW	R/W	0	"1" indicates Received ADT OverFlow
0x14D [3]	ADT STR TO	R/W	0	"1" indicates ADT Stream TimeOut
0x14D [2]	ADT PKT TO	R/W	0	"1" indicates ADT Packet TimeOut
0x14D [1]	ADT BUSY ERR	R/W	0	"1" indicates ADT Busy Error
0x14D [0]	ADT FAULT	R/W	0	"1" indicates ADT Fault

2.1.5.16. ADT Error Code Register, ADT_Error_Code (0x14D)

2.1.5.17. ADT Buffer Registers, (0x0800 ~ 0x0FFF)

Address and	Register Field	R/W	Default	Function and Description
bit	Name		Value	
0x0800 [7:3]	ADT Type	R/W		End: 0x00; General Purpose: 0x01; Authentication: 0x02; Reset: 0x05
0x0800 [2:0]	ADT Message Size	R/W		MSB of the ADT message size in bytes
0x0801 [7:0]	ADT Message Size	R/W		LSB of the ADT message size in bytes
0x0802 [7:0]	ADT Parameters	R/W		This register is always "0"
0x0803 [7:0]	ADT Parameters	R/W		This register is always "0"
0x0804~	ADT Parameters	R/W		ADT Message Data
0x0FFF				

Examples of ADT message buffer:

Address	Value
0x0800	0x10
0x0801	0x01
0x0802	0x00
0x0803	0x00

0x0804

100-byte message:

ADT Reset message:

2011 hvto	message:
2044-0918	messaue:

1-byte message:

Address	Value
0x0800	0x17
0x0801	0xFB
0x0802	0x00
0x0803	0x00
0x0804	Data0
0x0FFF	Data2043

Data0

0x0800	0x10
0x0801	0x64
0x0802	0x00
0x0803	0x00
0x0804	Data0
Address	Value
	value
0x0800	0x28
0x0800 0x0801	
0.0000	0x28

Address Value

Note: TX Data Command and Value is transmitted in a packet format from TX to RX via a proprietary back channel, using FSK (less than 1% positive frequency deviation) modulation at the end (several ms later) of Control Error Packet, Received Power Packet or Charge Status Packet. The frequency deviation is calculated using the following formula:

Fm = 60000/((60000/F)-3) (kHz) - Equation 1

where, Fmod is the changed frequency in period to the PWM power transfer signal (kHz),

Fop is the base operating frequency of power transfer based on coupling and Rx loading condition (kHz)

60,000 is the trimmed frequency of the internal oscillator responsible for counting the period of the power transfer signal (FCLOCK_60). The counter divides this clock by 3 prior to implementing frequency adjustments.

Upon receiving such a packet, the MFC-IC will send an acknowledgement packet with WPC Proprietary Packet format and 0x18 as header and 0xFF as payload. MFC-IC does not require the check-sum of Tx FSK modulation packet.

2.1.5.18. Frequency Shift Keyed modulation (FSK) Transmitter to Receiver Communication

The MFC-IC implements FSK communication when used in conjunction with WPC compliant transmitters such as the P9235S. The FSK communication protocol allows the transmitter to send data to the receiver using the power transfer link in the form of modulating the power transfer signal. This modulation shall appear in the form of a change in the base operating frequency (Fop) to the modulated operating frequency (Fmod) in periods of 256 consecutive cycles. Equation 1 should be used to compute the modulated frequency based on any given operating frequency. The MFC-IC will only implement positive FSKPolarity adjustments, in other words, the modulated frequency will always be higher than the operating frequency during FSK communication.

2.1.5.19. FSK Communication Protocol

The FSK Byte encoding scheme and Packet Structure is similar to that defined in WPC specifications. The FSK communication will use a differential bi-phase encoding scheme to modulate data bits into the power transfer signal. The start bit will consist of 512 consecutive Fmod cycles (or a logic '0'). A logic '1' value will be sent by sending 256 consecutive Fop cycles followed by 256 Fmod cycles or vice versa, and a logic '0' is sent by sending 512 consecutive Fmod or Fop cycles.

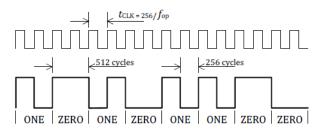


Figure 28. Example of differential bi-phase encoding.

Each byte will comply with the following start, data, Parity, stop asynchronous serial format structure:

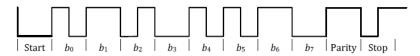


Figure 29. Example of asynchronous serial byte format.

Finally, the packet of each message will be composed of a single byte Header (0x2 in this case) and a single byte payload (0x0 or 0x1 in this case to indicate 5 V or 9 V adaptor).

2.1.6. HW Control and Monitor Registers

For Capacitor Divider HW registers, see Capacitor Divider Registers.

2.1.6.1. Ping Frequency Register, PingFreq_L (0x6A), PingFreq_H (0x6B)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x6A [7:0]	PingFreq_L [7:0]	R	-	8 LSB of the Tx frequency during the ping in kHz.
0x6B [7:0]	PingFreq_H [15:8]	R	-	8 MSB of the Tx frequency during the ping in kHz.
				Ping Frequency = 0x008F => 143 = 143 kHz

Address	Register Field Name	R/W	Default	Function and Description
and bit			Value	
0x81 [7]	VP5p0AP_EN[7]	RW	0	V5p0AP switch control. AP writes a "1" to enable the V5p0AP switch to power the P9412 from an external 5V supply. The P9412 is normally powered from Vrect.
0x81 [6:5]	Reserved	R	0x0	Reserved
0x81 [4]	ALIGN_EN	RW	0	XY Alignment enable. AP writes "1" to enable alignment FW. X align input on GP2 and Y align input on GP5.
0x81 [3:0]	Reserved	R	0x0	Reserved

2.1.6.2. HW Flag Register, HW_Flag (0x81)

2.1.6.3. Over Voltage Protection Register, OV_Set (0xB3)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0xB3[7:3]	Reserved	R	-0x00	Reserved
0xB3 [2:0]	OV_Set	RW	0x05 0x05	Set Overvoltage Protection level. The HW enables an additional DC Load when Vrect reaches the set level. The possible combinations are: 0h = 18.0V 1h = 21.3V 2h = 16.8V 3h = 14.7V 4h = 13.0V 5h = 23.4V 6h = 24.7V 7h = 26.0V BPP default value: 23.4V, and EPP default value: 23.4V.

2.1.6.4. RX Mode Communication Modulation FET Register, CMFET_L (0xF4), CMFET_H (0xF5)

Address	Register Field Name	R/W	Default	Function and Description
and bit			Value	
0xF4 [7]	CMA	RW	0x0	0 = Enable, 1 = Disable.
0xF4 [6]	CMB	RW	0x0	0 = Enable, 1 = Disable.
0xF4 [5]	CM1	RW	0x1	0 = Enable, 1 = Disable.
0xF4 [4]	CM2	RW	0x1	0 = Enable, 1 = Disable.
0xF4 [3:0]	Reserved	RW	0x0	Reserved
0xF5 [7:0]	Reserved	RW	0x0	Reserved

1. Register ADDR 0xF4 applies when VOUT \leq 8.5V OR 8.5V < VOUT < 12V AND IOUT \geq 320mA OR 12V < VOUT < 17.5V.

2.1.6.5.	RX Mode AFC Communication Modulation FET Register, AFC_CMFET (0xB2)
----------	---

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0xB2 [7]	CMA	RW	0x0	0 = Enable, 1 = Disable.
0xB2 [6]	CMB	RW	0x0	0 = Enable, 1 = Disable.
0xB2 [5]	CM1	RW	0x0	0 = Enable, 1 = Disable.
0xB2 [4]	CM2	RW	0x0	0 = Enable, 1 = Disable.
0xB2 [3:0]	Reserved	RW	0x0	Reserved

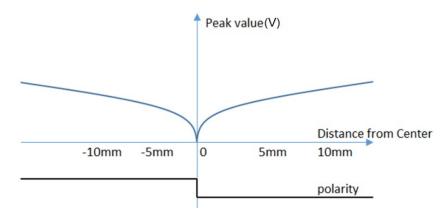
1. Register ADDR 0xB2 applies when 8.5V < VOUT < 12V AND IOUT < 320mA.

Address	Register Field Name	R/W	Default	Function and Description
and bit			Value	
0x11B [7]	CMA	RW	0x1	0 = Enable, 1 = Disable.
0x11B [6]	CMB	RW	0x1	0 = Enable, 1 = Disable.
0x11B [5]	CM1	RW	0x0	0 = Enable, 1 = Disable.
0x11B [4]	CM2	RW	0x0	0 = Enable, 1 = Disable.
0x11B [3:0]	Reserved	RW	0x0	Reserved

2.1.6.6. RX Mode High Vout Communication Modulation FET Register, HiVout_CMFET (0x11B)

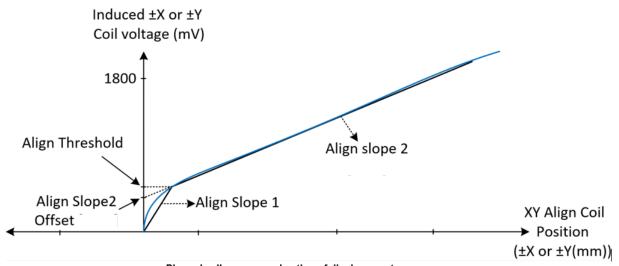
1. Register ADDR 0x11B applies when VOUT > 17.5V.

2.1.6.7. Align X Register, AlignX (0xB0)


Address and bit	Register Field Name	R/W	Default Value	Function and Description
0xB0 [7:0]	AlignX	R		8-bit signed integer representing the X position of the alignment coil connected to the GPIO2 input.

2.1.6.8. Align Y Register, AlignY (0xB1)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0xB1 [7:0]	AlignY	R		8-bit signed integer representing the Y position of the alignment coil connected to the GPIO5 input.


The alignment registers can be used to detect the current position of the Rx device's Rx Coil relative to the center of the Tx coil magnetic field source. To do this requires a special RX coil that includes XY position sensing coils. The position sensing coils are connected to the P9412's GP0 and GP1 pins which monitors the resulting voltage. When the coil is centered the voltage induced on the position coils will be 0V.

The induced voltage from one or both pairs of the XY coils it is observed to generally follow a voltage to distance relationship when the phone Rx coil center is moved out from center alignment along either the X or Y axis of the device.

Typical Voltage to Displacement Response of XY alignment coils

As seen by the graph, near the center alignment there is typically a region where the voltage to displacement slope of the curve is much steeper than the response of the induced voltage to distance of the XY coils at locations further from the aligned position. To account for these differences a piecewise linear approximation is used to correct for this non-linear response as shown below.

Piecewise linear approximation of displacement response

Where:

- Align Threshold is used to select between Slope1 and Slope2 for position calculation.
- Align Slope1 and Align Slope2 are determined based on characterization of XY coils under test
- Align Slope2 Offset is necessary to complete the slope-intercept form of a line equation used for Slope2.

2.1.6.9.	Align adc Offset Registers, AlignAdcOffX (0x164), AlignAdcOffY (0x165)
----------	--

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x164 [7:0]	AlignAdcOffX	R	0xDD	Signed 8 bit integer representing the ADC offset for X alignment input signal applied to GP2
0x165 [7:0]	AlignAdcOffY	R	0xDD	Signed 8 bit integer representing the ADC offset for Y alignment input signal applied to GP5

2.1.6.10.	Alian Slope1	Registers.	AlignSlope1X	(0x166). Ali	anSlope1Y (0x	(167)
	·				9	

Address	Register Field Name	R/W	Default	Function and Description
and bit			Value	
0x166 [7:0]	AlignSlope1X	RW	0x2B	First slope value of the 2-piece linear approximation for the X alignment value. Q5 Format.
				Slope1X = AlignSlope1 / 32.
0x167 [7:0]	AlignSlope1Y	RW	0x2B	First slope value of the 2-piece linear approximation for the Y alignment value. Q5 Format. Slope1Y = AlignSlope1 / 32.

2.1.6.11.	Align Slope2 Registers, A	AlignSlope2X (0x168),	AlignSlope2Y (0x169)
-----------	---------------------------	-----------------------	----------------------

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x168 [7:0]	AlignSlope2X	RW	0x45	Second slope value of the 2-piece linear approximation for the X alignment value. Q5 Format. Slope2X = AlignSlope2 / 32.
0x169 [7:0]	AlignSlope2Y	RW	0x45	Second slope value of the 2-piece linear approximation for the Y alignment value. Q5 Format. Slope2Y = AlignSlope2 / 32

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x16A [7:0]	AlignOffX	RW		Signed 8 bit integer representing the second line offset value of the 2-piece linear approximation for the X alignment value.
0x16B [7:0]	AlignOffY	RW	0xE8	Signed 8 bit integer representing the second line offset value of the 2-piece linear approximation for the Y alignment value.

2.1.6.12. Align Offset Registers, AlignOffX (0x16A), AlignOffY (0x16B)

2.1.6.13. Align Threshold Registers, AlignThreshX (0x16C), AlignThreshY (0x16D)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x16C [7:0]	AlignThreshX	RW	0x1E	ADC threshold value for the slope change for X alignment.
0x16D [7:0]	AlignThreshY	RW	0x1E	ADC threshold value for the slope change for Y alignment.

2.1.7. Vrect Control Registers

These registers define the behavior of Vrect Target above Vout. While Vout can be set by the AP directly, the Window between Vout and Vrect depends on the output power. Following algorithm is used to calculate Vrect Target:

OutputPower(0.1W) = Vout * Iout * 10;PowerDifference = PwrKnee – OutputPower; (if PwrKnee > OutputPower)

PowerDifference = 0; (if PwrKnee < OutputPower)

Window (adc codes) = PowerDifference^2 * VrCorrFactor / 32;

Window = Window + VrMinCorr;

if (Window > VrMaxCorr) Window = VrMaxCorr;

Window = Window + VRectAdj;

VrectTarget(adc codes) = Vout(adc codes) + Window;

2.1.7.1. Target_Vrect Register, Vrect_Target_L(0x90), VrectTarget_H (0x91)

Address	Register Field Name	R/W	Default	Function and Description
and bit			Value	
0x90 [7:0]	VrectTarget_L [7:0]	R	0x5B	8 LSB of current value of VrectTarget in ADC codes.
				Default value: 0x35B.
0x91 [7:0]	VrectTarget_H [15:8]	R	0x03	8 MSB of current value of VrectTarget in ADC codes.
				The ADC code to Voltage conversion formula is:
				Target Vrect (V) = VrectTarget [15:0] * 30.975(V) / 4095

2.1.7.2. Vrect Knee Register, PwrKnee (0x92)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x92 [7:0]	PwrKnee	RW	0x19	Threshold in units of 0.1W output power at which minimal window is applied. Default value: 0x19.

2.1.7.3. Vrect Correction Factor Register, VrCorrFactor (0x93)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x93 [7:0]	VrCorrFactor	RW	0x0C	Coefficient used in the Vrect Target calculation algorithm. Default value: 0x0C.

2.1.7.4. Vrect Maximum Correction Register, VrMaxCorr_L (0x94), VrMaxCorr_H (0x95)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x94 [7:0]	VrMaxCorr_L [7:0]	RW	0x9E	8 LSB of maximum width of the window in ADC codes.
0x95 [7:0]	VrMaxCorr_H [15:8]	RW	0x00	8 MSB of maximum width of the window in ADC codes. Default vale: 0x009E.

2.1.7.5. Vrect Minimum Correction Register, VrMinCorr_L (0x96), VrMinCorr_H (0x97)

Address	Register Field Name	R/W		Function and Description
and bit			Value	
0x96 [7:0]	VrMinCorr_L [7:0]	RW	0x09	8 LSB of minimum width of the window in ADC codes.
0x97 [7:0]	VrMinCorr_H [15:8]	RW	0x00	8 MSB of minimum width of the window in ADC codes.
				Default value: 0x0009.

2.1.7.6. Vrect Adjust Register, VRectAdj (0x5E)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x5E [7:0]	VRectAdj	RW	0x00	8-bit signed integer representing Vrect final adjustment in ADC codes (-128 to +127). The adjustment is applied during the final step of the VrectTarget calculation, thus overwriting Minimum and Maximum boundaries. Vrect_Adj (V) = VRectAdj [7:0] * 30.975 (V) / 4095 Vrect (V) = Target Vrect + Vrect_Adj

2.1.8. Capacitor Divider Registers

2.1.8.1. Capacitor Divider Mode Status Register, CDModeSts (0x100)

Address	Register Field Name	R/W		Function and Description
and bit			Value	
0x100 [7:2]	Reserved	R	-	Reserved
0x100 [1:0]	CD Mode Status	R	0	Indicates the firmware is running in Capacitor Divider mode.
				0x0 Cap Divider in Disable mode
				0x1 Cap divider in Bypass mode. CPout voltage is same as VOUT.
				0x2 Cap Divider in Cap Div mode. CPout voltage is half of VOUT.

2.1.8.2. Capacitor Divider Mode Request Register, CDModeReq (0x101)

Address	Register Field Name	R/W	Default	Function and Description
and bit			Value	
0x101 [7:2]	Reserved	R	-	Reserved
0x101 [1:0]	CD Mode Req	RW	0	Set this bit to request a Cap Divider mode change.
				0x0 Request Disable mode
				0x1 Request Bypass mode. CPout voltage is same as VOUT.
				0x2 Request Cap Div mode. CPout voltage is half of VOUT.

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x10C [7:0]	VCPout_L [7:0]	R	-	8 LSB of current VCPout voltage value. The AP may read this register to get current VCPout level in mV.
0x10D [7:0]	VCPout_H [15:8]	R	-	8 MSB of current VCPout voltage value.
				Example: If VCPout = 0x1388h => 5000 = 5000mV = 5V

2.1.8.3. TRX CPout Voltage Registers, VCPout_L (0x10C), VCPout_H (0x10D)

2.1.8.4. Capacitor Divider Vout Threshold Reg., CD_Vout_Thd_L (0x10A), CD_Vout_Thd _H (0x10B)

Address and bit	Register Field Name	R/W		Function and Description
and bit			Value	
0x10A [7:0]	CD_Vout_Thd_L	RW	0x85	8 LSB of CD_Vout_Thd. Pause capacitor divider mode transitions when Vout
	[7:0]			is above this threshold. Value is in ADC codes.
0x10B [7:4]	Reserved	R	0x0	Reserved
0x10B [3:0]	CD_Vout_Thd_H	RW	0x09	4 MSB of CD_Vout_Thd. Pause capacitor divider mode transitions when Vout
	[11:8]			is above this threshold. Value is in ADC codes.
				The ADC code to Voltage conversion formula is:
				Vout(V) = Vout(adc count) * 21.0(V) / 4095 = 2437 * 21 / 4095 = 12.5V

2.1.8.5. Capacitor Divider Frequency Set Register, CD_Freq_L (0x108), CD_Freq_H (0x109)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x108 [7:0]	CD_Freq_L [7:0]	RW	0x58	8 LSB of CD_Freq. Set frequency of the capacitor divider in kHz units.
0x109 [7:0]	CD_Freq_H [15:8]	RW	0x02	8 MSB of CD_Freq. Set frequency of the capacitor divider in kHz units.
				Default value: 600kHz.
				Example: 0x0258h => 600 = 600kHz

2.1.9. Foreign Object Detection Registers

The FOD Registers are divided into 8 pairs. Each pair has one byte for gain setting, and one byte for offset setting. The first 6 pairs control the Received Power calculation for 6 power sectors during Power Transfer phase. The seventh pair calibrates the internal DC Load, and the eighth pair is used during EPP Calibration Phase 1. The set values of the FOD Registers are found with the help of Renesas developed calibration procedure using the nok9 tester.

The FW initializes the FOD Registers from one of two sets default values, one for BPP mode, and one for EPP mode. The correct set is loaded at completion of the ID & Configuration Phase.

2.1.9.1. RX FOD Adjustable Parameters Registers, (0x70 ~ 0x7F)

Address	Register Field Name	R/W	Default	Function and Description
and bit			Value	
0x70 [7:0]	FOD_0_A	R/W	0xC0	FOD adjustable parameters, gain
0x71 [7:0]	FOD_0_B	R/W	0x16	FOD adjustable parameters, offset
0x72 [7:0]	FOD_1_A	R/W	0xAC	FOD adjustable parameters
0x73 [7:0]	FOD_1_B	R/W	0X1A	FOD adjustable parameters
0x74 [7:0]	FOD_2_A	R/W	0X98	FOD adjustable parameters
0x75 [7:0]	FOD_2_B	R/W	0X14	FOD adjustable parameters
0x76 [7:0]	FOD_3_A	R/W	0X94	FOD adjustable parameters
0x77 [7:0]	FOD_3_B	R/W	0X12	FOD adjustable parameters
0x78 [7:0]	FOD_4_A	R/W	0X92	FOD adjustable parameters
0x79 [7:0]	FOD_4_B	R/W	0X08	FOD adjustable parameters
0x7A[7:0]	FOD_5_A	R/W	0X92	FOD adjustable parameters
0x7B[7:0]	FOD_5_B	R/W	0X08	FOD adjustable parameters

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x7C[7:0]	FOD_6_A	R/W	0X14	FOD calibration parameters
0x7D[7:0]	FOD_6_B	R/W	0X00	FOD calibration parameters
0x7E[7:0]	FOD_7_A	R/W	0X01	FOD calibration parameters
0x7F[7:0]	FOD_7_B	R/W	0X50	FOD calibration parameters

For TX mode of operation, the FOD parameter is a single value and the threshold is set by the difference of the TX power (power transmitted) and the RX power (power received). Therefore the TxFodThreshold = TxPower – RxPower. Adjustments to the TxFodThreshold can be made using the TxFodGain and TxFodOffset registers.

2.1.9.2. TX FOD Threshold Registers, TX_FOD_Thrsh_L (0xD4), TX_FOD_Thrsh_H (0xD5)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0xD4[7:0]	TxFodThrsh L [7:0]	R/W		8 LSB of TX FOD Threshold. Default value TBD
0xD5[7:0]	TxFodThrsh_H [15:8]	R/W	0x05	8 MSB of TX FOD Threshold.
				TxFodThrsh = 0x05DC = 1500 mW

2.1.9.3. TX FOD Gain Register, TX_FOD_Gain (0xD1)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0xD1[7:0]	TxFodGain [7:0]	R/W	0x13	TX FOD Gain is used for the power calculation of the TX FOD Default value 0x13 TxFodGain = 0x13 = 19 x 1/100 = 0.19

2.1.9.4. TX FOD Offset Registers, TX_FOD_Offset_L (0xD2), TX_FOD_Offset_H (0xD3)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0xD2[7:0]	TxFodOffset_L [7:0]	R/W	0x64	8 LSB of the TX FOD offset. The TX FOD Offset is used in the power calculation of the TX FOD.
0xD3[7:0]	TxFodOffset_H [15:8]	R/W	0x00	8 MSB of the TX FOD offset. The offset is signed and needs to be converted in 2's compliment. Default is 100mW. Example: If 100mW then 100mW => 0x0064, -100mW => 0xFF9C

2.1.9.5. TX FOD Offset Option Register, FOD_OffsetOpt (0XA3)

Address	Register Field Name	R/W	Default	Function and Description
and bit			Value	
0XA3 [7:0]	FOD_OffsetOpt [7:0]	R/W	0x00	FOD_OffsetOpt adjusts the TxFodThrsh for phone to phone charging. The AP writes to this register to update this value as required. The byte is signed and needs to be converted in 2's compliment. The step
				size is 40 mW: FOD_OffsetOpt (mW) = 40 x FOD_OffsetOpt [7:0] in decimal. Examples: FOD_OffsetOpt = 0x50 = 40 x 80 = + 3200mW; Offset = 0xFE = 40 x -2 = - 80mW; Offset = 0x7F = Disable FOD

2.1.10. WPC Basic and Extended Protocol Registers

After the Rx has been placed on an EPP TX, the P9412 must report its Q-Factor to the Tx so the Tx may check for an Open FOD alarm event. The Tx is responsible for measuring the current quality factor of the Tx coil before connecting to the Rx device, and the P9412 will report the typical Q observed by the device. This will be compared to the Tx Q-factor measured value, and if within the Tx allowed range, charging will commence. If it is outside the allowable range the Tx will not power the Rx due to the suspected presence of a Foreign Object.

This feature applies to the EPP wireless power protocol and every phone or end product that is likely to need some tuning to the reported Quality Factor value. This can be programmed in one of two ways using:

- Two resistor dividers from LDO1P8 to IO0 (Q factor A) and IO1 (Q factor A) read-back by ADC, or
- Firmware register [0x83] programmed at the factory, which is selected by connecting GPIO0 to GND

The simplest and recommended method is to set the value using external resistors read by the ADC at startup to set the reported Q by hardware population option (recommended), or the value can be stored in a register to be sent to the Tx (requires custom firmware to be programmed at the factory). If the value is stored in a register, each device must be able to update the MTP register on the manufacturing floor to support device receiver type or model variations. When using the internal register option with IOO tied to GND, the IO1 input should also be biased to GND or LDO1P8 to conserve power and avoid a floating input. Since the result of IO1 is not used in this case (register will always be set to 0), it is permissible to leave the pin floating as well. The GPIO0 and GPIO1 pins are the inputs used to select the firmware register or hardware selection for the reported Q-factor value. The external resistor dividers should be biased by the LDO1P8 power supply to avoid incorrect ADC voltage from being read in the case of a dead battery. The following table defines the reported Q-factor as a function of voltage on IO0 and IO1. When selecting resistors, the values should be selected such that the typical voltage is centered within each range and the total resistance should be > 50k Ω to conserve power.

GP0 Volt (mV)	Q factor A	GP1 Volt (mV)	Q factor B *
GP0 < 300	0 (Default)	GP1 < 200	0
300 < GP0 < 550	30	200< GP1 < 400	1
550 < GP0 < 800	40	400 < GP1 < 600	2
800 < GP0 < 1050	50	600 < GP1 < 800	3
1050 < GP0 < 1300	60	800 < GP1 < 1000	4
1300 < GP0 < 1550	70	1000 < GP1 < 1200	5
1550 < GP0 < 1800	80	1200 < GP1 < 1400	6
GP0 > 1800	90	1400 < GP1 < 1600	7
		1600 < GP1 < 1800	8
		GP1 > 1800	9

* if Q factor A is 0, Q factor B will be set to 0 as well.

2.1.10.1. EPP Q-Factor Register, EPP_Q_Factor (0x83)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x83 [7:0]	EPP_Q_Factor	RW	0x60	If Q Factor A is non-zero, Q Factor = Q Factor A + Q Factor B. See EPP Q- Factor A Register, EPP_Q_Fact_A (0x138) and EPP Q-Factor B Register, EPP_Q_Fact_B (0x139) If Q Factor A is zero, the default value will be used. The AP can overwrite the Q Factor value by writing to this register within 300ms after Vrect ON interrupt is received.

2.1.10.2. EPP Q-Factor A Register, EPP_Q_Fact_A (0x138)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x138 [7:0]	EPP_Q_Fact_A	R	0x00	Q-Factor value using GPIO0 input, 10's unit. See Table below

1. This register is populated only for Reference Design Version 2 (see Reference Design Version Register, RefDesignVer (0x4A).

2.1.10.3. EPP Q-Factor B Register, EPP_Q_Fact_B (0x139)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x139 [7:0]	EPP_Q_Fact_B	R	0x00	Q-Factor value using GPIO1 input, 1's unit. See Table below

1. This register is populated only for Reference Design Version 2 (see Reference Design Version Register, RefDesignVer (0x4A)).

2.1.10.4. EPP TX Guaranteed Power Register, EPP_TXGuarPwr (0x84)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x84 [7:0]	EPP_TXGuarPwr	R	0x00	Tx Guaranteed Power Value as reported in the Capabilities packet (Header 0x31). Units of 0.5W. WPC spec 5.3.3.3, B_0

2.1.10.5. EPP TX Potential Power Register, EPP_TXPotentPwr (0x85)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x85 [7:0]	EPP_TXPotentPwr	R		Tx Potential Power Value as reported in the Capabilities packet (Header 0x31). Units of 0.5W. WPC spec 5.3.3.3, B ₁

2.1.10.6. EPP TX Capability Flag Register, EPP_TXCapaFlag (0x86)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x86 [7:0]	EPP_TXCapaFlag	R	0x00	Tx Capabilities packet flags as reported in the Capabilities packet (Header 0x31). See WPC spec 5.3.3.3, B_2

	b 7	b 6	b 5	b 4	b3	b ₂	b1	b ₀	
B ₀	Power	r Class	Guaranteed Power Value						
B 1	Rese	erved	Potential Power Value						
B ₂			Rese	erved	WPID	Not Res Sens			

2.1.10.7. EPP Renegotiation Status Register, EPP_RN_Sts (0x87)

Address	Register Field Name	R/W	Default	Function and Description
and bit			Value	
0x87 [7:3]	Reserved	R	0x00	Reserved
0x87 [2]	RN_ERROR	R	0x0	Re-Negotiation phase completed with error or NAK.
0x87 [1]	RN_DONE	R	0x0	Re-Negotiation phase completed with ACK.
0x87 [0]	RN_CapaREQ	R	0x0	Request to send General Request Capabilities Packet during Re-Negotiation
				phase. This bit is self-cleared upon exit from the phase.

2.1.10.8. EPP Current RPP Header Register, MPCur_RPP (0x88)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x88 [7:0]	MPCur_RPP	R	0x04	Current value of the Received Power Packet header.
0,00 [7.0]		K	0x31	BPP default value: 0x04; EPP default value: 0x31.

2.1.10.9. EPP Current Negotiated Power Register, MPCur_NegPwr (0x89)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x89 [7:0]	MPCur_NegPwr	R		Current value of the negotiated Guaranteed Power Value (Negotiated Power as a result of the power negotiation). Units of 0.5W. BPP default value: 0x0A; EPP default value: 0x0C.

2.1.10.10. EPP Current Maximum Power Register, MPCur_MaxPwr (0x8A)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x8A [7:0]	MPCur_MaxPwr	R	0x0A	Current value of the negotiated Maximum Power. Units of 0.5W.
			0x0C	BPP default value: 0x0A; EPP default value: 0x0C.

2.1.10.11. EPP Current FSK Modulation Register, MPCur_FSK (0x8B)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x8B [7:3]	Reserved	R	0x00	Reserved
0x8B [2]	FSK_POLARITY	R	0x0	Current value of the negotiated FSK modulation polarity.
0x8B [1:0]	FSK_DEPTH	R	0x0	Current value of the negotiated FSK modulation depth.

2.1.10.12. EPP Request RPP Header Register, MPReq_RPP (0x8C)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x8C [7:0]	MPReq_RPP	RW	0x31	Requested value to Re-Negotiate Received Power Packet header. This register is provided here for completeness. It is not used.

2.1.10.13. EPP Request Re-Negotiated Power Register, MPReq_NegPwr (0x8D)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x8D [7:0]	MPReq_NegPwr	RW	0x0C	Requested value to Re-Negotiate Guaranteed Power Value (Negotiated Power as a result of the power negotiation). Units of 0.5W. EPP default value: 0x0C.

2.1.10.14. EPP Request Maximum Power Register, MPReq_MaxPwr (0x8E)

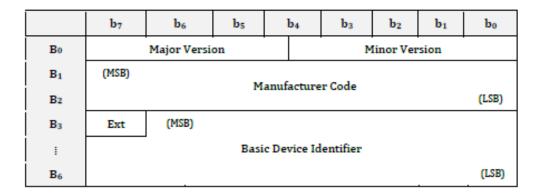
Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x8E [7:0]	MPReq_MaxPwr	RW	0x0C	Requested value to Re-Negotiate Maximum Power. Units of 0.5W. EPP default value: 0x0C.

2.1.10.15. EPP Request FSK Modulation Register, MPReq_FSK (0x8F)

Address	Register Field Name	R/W	Default	Function and Description
and bit			Value	
0x8F [7:3]	Reserved	R	0x00	Reserved
0x8F [2]	FSK_POLARITY	RW	0x0	Requested value to Re-Negotiate FSK modulation polarity.
0x8F [1:0]	FSK_DEPTH	RW	0x0	Requested value to Re-Negotiate FSK modulation depth.

2.1.10.16. WPC Spec Revision Register, WPC_SpecRev (0xB9)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0xB9 [7:0]	WPC_SpecRev	R	0x00	WPC Spec revision value. Value is updated once ID packet is received in TX mode or in RX mode during EPP negotiation. It is not updated in BPP RX mode. WPC_SpecRev = 0x12 = Spec revision 1.2.


2.1.10.17. EPP Rx Manufacturer Code Reg., MpRxManufCode_L (0xBA), MpRxManufCode_H (0xBB)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0xBA [7:0]	MpRxManufCode_L [7:0]	R	0x00	8 LSB of Rx WPC Manufacturer code. The code is assigned by WPC to each company producing compliant products.
0xBB [7:0]	MpRxManufCode_H [15:8]	R	0x00	8 MSB of Rx WPC Manufacturer code. Value is updated once ID packet is received in TX mode or in RX mode during EPP negotiation. It is not updated in BPP RX mode.

2.1.10.18. WPC Identification Register, WPC_ID (0xE0 ~ 0XE3)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0xE0 [7:0]	WPC_ID[0]	R	-	b4-b0 = Minor Version of WPC spec for power receiver
				b7-b5 : Major version of WPC spec for power receiver
0xE1 [7:0]	WPC_ID[1]	R	-	Manufacturer ID (MSB)
0xE2 [7:0]	WPC_ID[2]	R	-	Manufacturer ID (LSB)
0xE3 [7:0]	WPC_ID[3]	R	-	MSB of Device ID,
				if b7 is 0 then no Extended Device Identifier is used
				if b7 is 1 then Extended Device Identifier is used

1. This register displays the information of the Rx Identification packet (0x71) read during Identification phase. Valid in TX mode only.

Address	Register Field Name	R/W	Default	Function and Description
and bit			Value	
0xE4 [7:0]	WPC_ExtID[0]	R	-	MSB of Extended Device Identifier
0xE5 [7:0]	WPC_ExtID[1]	R	-	
0xE6 [7:0]	WPC_ExtID[2]	R	-	
0xE7 [7:0]	WPC_ExtID[3]	R	-	
0xE8 [7:0]	WPC_ExtID[4]	R	-	
0xE9 [7:0]	WPC_ExtID[5]	R	-	
0xEA [7:0]	WPC_ExtID[6]	R	-	
0xEB [7:0]	WPC_ExtID[7]	R	-	LSB of Extended Device Identifier

2.1.10.19. Extended Identification Packet Register, WPC_ExtID (0xE4 ~ 0xEB)

1. This register displays the information of the Rx Identification packet (0x81) read during Identification phase

	b ₇	b ₆	b ₅	b 4	b ₃	b ₂	b1	b ₀			
B ₀	(MSB)										
1		Extended Device Identifier									
B7								(LSB)			

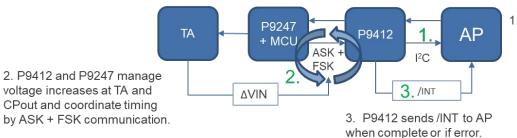
2.1.10.20. Signal Strength Packet Register, SSPValue (0xB4)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0xB4 [7:0]	SSPValue	R	0x00	The value of the signal strength packet. This is the first packet sent to the transmitter in the ping phase. Value is valid in both RX and TX modes. SS = SSPValue / 255. If SSPValue = $0x8F \Rightarrow 143 / 255 = 56.1\%$

2.1.10.21. Control Error Packet Register, CEPValue (0x5F)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x5F [7:0]	CEPValue	R	0x00	Control Error packet value. Value is valid in both RX and TX modes.

2.1.10.22. RX Power Register, Rx_Pwr_L (0xCE), Rx_Pwr_H (0xCF)


Address and bit	Register Field Name	R/W	Default Value	Function and Description
0xCE [7:0]	Rx_Pwr_L [7:0]	R	0x00	8 LSB of current unsigned integer value contained in this field indicating the average amount of power that the Rx receives from the Tx in mW. Valid in RX mode only.
0xCF [7:0]	Rx_Pwr_H [15:8]	R	0x00	8 MSB of current unsigned integer value contained in this field indicating the average amount of power that the Rx receives from the Tx in mW. Valid in RX mode only.

Address	Register Field Name	R/W	Default	Function and Description
and bit			Value	
0x15E [7:0]	WPC_ManufID_L [7:0]	R	0x50	8 LSB of WPC Manufacturer code. The code is assigned by WPC to each company producing compliant products.
0x15F [7:0]	WPC_ManufID_H [15:8]	R		8 MSB of WPC Manufacturer code. The code is assigned by WPC to each company producing compliant products. Valid in RX and TX modes. WPC_ManufID default is 0x50 = PRMC for Renesas. The AP must update this value within 300ms after Vrect ON interrupt for the new value to take effect.

2.1.10.23. WPC Manufacturer ID Register, WPC_ManufID_L (0x15E), WPC_ManufID_H (0x15F)

2.1.11. Proprietary High-Power Protocol Registers

The P9412 can run in a high-power mode when coupled to a Renesas Proprietary TX (P9247). A simplified flow chart is shown below. The AP is required to start the high power operation by sending a command to transition to cap divider mode (if not already operating in CD mode). Once verified that the P9412 is in CD mode, the AP sends a command to enable the Renesas proprietary mode. The AP will receive an interrupt when the TX responds and determine if the P9412 is connected to a Renesas proprietary TX. After confirmation, the AP sends a request for high power to the TX. The TX and RX begin power negotiation, and the P9412 will send an interrupt when the negotiation is complete.

1. AP sends enable Proprietary mode command (0x4E) and verifies connection to a proprietary TX. AP sets requested power and sends request to the TX. The detailed sequence of steps is as follows:

- 1. Clear all interrupts
 - a. Write 0xFFFF to register 0x3A
 - b. Write 0x20 to register 0x4E
- 2. Cap Divider mode should be enabled.
 - a. Read CD mode status register 0x100, it should read 0x02 if in Cap Divider mode.
 - b. If not, Write 0x02 to register 0x101
 - c. Write 0x40 to register 0x4E
 - d. Wait for CD_MODECHANGE_INT (0x37[3])
 - e. Clear CD_MODECHANGE interrupt
- 3. Enable Proprietary mode
 - a. Write 0x01 to register 0x4F
- 4. Wait for PropModeStatus interrupt, register 0x37[4].
 - a. Read the System Mode register 0x4C, it should read 0x03 if Proprietary mode is enabled.
 - b. If there was an error during Proprietary mode enable, Proprietary Error Status register (0xC9) is updated with the error code.
 - c. Clear the PropModeStatus interrupt
- 5. Read TX potential power register (0xC4) to see TX max power capability. Value is in 0.5W units.
- 6. Request power. Supported range is between 7.5W to 30W.
 - a. Write requested power to register 0xC5 (in 0.5W units)
 - b. Write 0x02 to register 0x4F
- 7. Wait for PropModeStatus interrupt, register 0x37[4].
 - a. AP read the final achieved power at register 0xC6 (in 0.5W units)
 - b. If there are any errors from Status registers PropModeStatus (0xC8) and PropErrStatus (0XC9)
 - c. Clear the PropModeStatus interrupt

Note: If any more power changes required, start from step 5. The first 4 steps are required only once for enabling the proprietary mode.

A detailed flow chart is provided below.

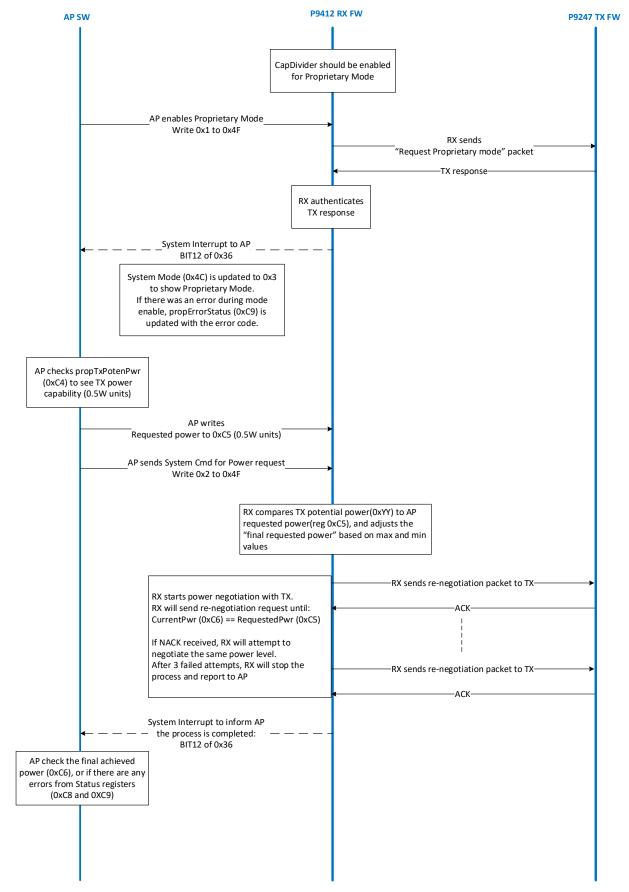


Figure 30. Proprietary High Power Protocol Flow Chart

2.1.11.1. Proprietary Tx Potential Power Register, PropTxPotenPwr (0xC4)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0xC4 [7:0]	PropTxPotenPwr	R		TX Potential Power value in 0.5W units. This is based on the TX response of "Proprietary Mode Request" packet

2.1.11.2. Proprietary Requested Power Register, PropReqPwr (0xC5)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0xC5 [7:0]	PropReqPwr	RW	0x60	AP requested power value in 0.5W units. Maximum value is 60 (30W), minimum value is 15 (7.5W).

2.1.11.3. Proprietary Current Power Register, PropCurrPwr (0xC6)

Address	Register Field Name	R/W		Function and Description
and bit			Value	
0xC6 [7:0]	PropCurrPwr	R	0x12	Current power value in 0.5W units. Updated on each negotiation stage

2.1.11.4. Proprietary Negotiated Power Step Size Register, PropModePwrStep (0xC7)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0xC7 [7:0]	PropModePwrStep	RW	0x00	Power ramp-up step per negotiation stage. In 0.5W units.

2.1.11.5. Proprietary Mode Status Register, PropModeStatus (0xC8)

Address	Register Field Name	R/W	Default	Function and Description
and bit			Value	
0xC8 [7:0]	PropModeStatus	R	0x00	BIT 0: PROPMODETXAUTH - TX authentication is successful and
				proprietary mode is enabled.
				BIT 1: PROPMODENEGINIT - Power re-negotiation is initialized.
				BIT 2: PROPMODEPWRNEG - Power re-negotiation is in progress.
				BIT 3: PROPMODEDONE - Power re-negotiation is done.
				BIT 4: PROPMODEERR - Error during proprietary mode operation. Check
				propErrorStatus (0xC9) for error details.

2.1.11.6. Proprietary Mode Error Register, PropErrStatus (0xC9)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0xC9 [7:0]	PropErrStatus	R	0x00	 BIT 0: PROPERRTXNACK - TX sent NACK for requested power after 3 tries. Check propCurrentPwr (0xC6) for achieved power level. BIT 1: PROPERRAUTH - Error during TX authentication. Either TX does not support Renesas Prop Protocol, or the authentication is failed. BIT 2: PROPERRNEGINPRG - Negotiation is in progress. New Power request is sent from AP during ongoing power negotiation. It does not stop the ongoing negotiation. BIT 3: PROPERRINIT - Proprietary mode initialization error. Currently returned when TX does not support EPP. BIT 4: PROPERRCAPDIV - Cap Divider is not enabled. BIT 5: PROPERRTXPWR - TX potential power is not enabled. Returned when AP makes a power request before enabling proprietary mode and authentication.

2.1.12. TX Mode Registers

2.1.12.1. TX Status Registers, Status_L (0x34), Status_H (0x35)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x34 [7]	Reserved	R	0	Reserved
0x34 [6]	CEP OVERDRIVE	R	0	"1" indicates a CEP Over Drive condition exists. See TX Mode CEP Threshold Register, TxCepThrshVal (0xD6) and TX Mode CEP Threshold Count Limit Register, TxCepThrshCntLmt (0xD7).
0x34 [5]	MODE_CHANGE	R	0	No function attached. Refer to "TRX System Operating Mode Register, Sys_Op_Mode (0x4C)".
0x34 [4]	OVER_VOLT	R	0	Set if Overvoltage Protection circuit is enabled. Cleared otherwise. Interrupt event is generated on SET and CLR events.
0x34 [3]	OVER_CURR	R	0	Set if Overcurrent Protection circuit is enabled. Cleared otherwise. Interrupt event is generated on SET and CLR events.
0x34 [2]	OVER_TEMP	R	0	Set if Internal temperature exceeds 130°C. Cleared otherwise. Interrupt event is generated on SET and CLR events.
0x34 [1]	TX_CONFLICT	R	0	Set if a foreign TX is detected in TX mode. See TX Conflict Threshold Register, TxConfThrsh (0x134) and TX Conflict Count Register, TxConfCnt (0xAF).
0x34 [0]	Reserved	R	0	Reserved
0x35 [7]	Data Received	R	0	"1" indicates TX data is received when in RX mode or RX data received when in TX mode. "0" indicates no data is received.
0x35 [6]	CD_ERROR	R	0	"1" indicates a Capacitor Divider error condition exists while operating in TX mode. Possible error condition(s): Failure to turn on Capacitor Divider bypass FETs when entering TX mode This bit is cleared together with the corresponding interrupt flag.
0x35 [5]	RX Not Detected	R	0	"1" indicates RX is not detected in 180 seconds after the first ping in TX mode, "0" indicates RX is detected in 180 seconds after the first ping in TX mode.
0x35 [4]	TX FOD	R	0	"1" indicates TX FOD condition exists, "0" indicates no such a condition exists.
0x35 [3]	RX Connected	R	0	"1" indicates RX and TX is connected (power transfer), "0" indicates TX and RX connection has not been established.
0x35 [2]	AC Missing Detect	R	0	"1" indicates valid AC signal is not present, "0" indicates AC signals exist. Interrupt only generated after power up from battery (external source different from AC power).
0x35 [1]	Reserved	R	0	Reserved
0x35 [0]	Reserved	R	0	Reserved

2.1.12.2. TX Interrupt Registers, INT_L (0x36), INT_H (0x37)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x36 [7]	Reserved	R	0	No function attached.
0x36 [6]	CEP_OVERDRV_INT	R	0	"1" indicates a pending interrupt for CEP Over Drive. See TX Mode CEP Threshold Register, TxCepThrshVal (0xD6) and TX Mode CEP Threshold Count Limit Register, TxCepThrshCntLmt (0xD7).
0x36 [5]	MODECHANGE_INT	R	0	"1" indicates a pending interrupt for Mode Change. Read current mode from "TRX System Operating Mode Register, Sys_Op_Mode (0x4C)".

P9412 Evaluation Board Manual

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x36 [4]	OVER_VOLT_INT	R	0	"1" indicates a pending interrupt for Over Voltage event.
0x36 [3]	OVER_CURR_INT	R	0	"1" indicates a pending interrupt for Over Current event.
0x36 [2]	OVER_TEMP_INT	R	0	"1" indicates a pending interrupt for Over Temperature event.
0x36 [1]	TX CONFLICT_INT	R	0	"1" indicates a pending interrupt when a foreign TX is detected. See TX Conflict Threshold Register, TxConfThrsh (0x134) and TX Conflict Count Register, TxConfCnt (0xAF).
0x36 [0]	Reserved	R	0	Reserved
0x37 [7]	Data Received_INT	R	0	"1" indicates a pending interrupt for TX data received when in RX mode or RX data received when in TX mode. (No data received state change to data received state). When in TX mode this interrupt is set only when PPP has header equal to 0x18, 0x28, and 0x05.
0x37 [6]	CD_ERROR_INT	R	0	"1" indicates a pending interrupt due to a Capacitor Divider Error when entering TX mode.
0x37 [5]	RX Not Detected_INT	R	0	"1" indicates a pending interrupt for RX is not detected in 180 seconds after the first ping in TX mode.
0x37 [4]	TX FOD_INT	R	0	"1" indicates a pending interrupt for TX FOD event.
0x37 [3]	RX Connected_INT	R	0	"1" indicates a pending interrupt for TX mode connection state change (connected to disconnected or vice versa).
0x37 [2]	AC Missing_INT	R	0	"1" indicates a pending interrupt that valid AC does not exist, "0" indicates AC signals exist. Interrupt only generated after power up from battery (external source different from AC power).
0x37 [1]	Reserved	R	0	Reserved
0x37 [0]	Reserved	R	0	Reserved

2.1.12.3. TX Interrupt Enable Registers, INT_Enable_L (0x38), INT_Enable_H (0x39)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x38 [7]	Reserved	R	0	Reserved
0x38 [6]	CEP_OVERDRV_EN	RW	1	CEP_OVERDRV interrupt enable. Default value is "1" AP writes "0" to disable the interrupt.
0x38 [5]	MODECHANGE_EN	RW	1	Mode Changed interrupt enable. Default value is "1". AP writes "0" to disable the interrupt.
0x38 [4]	OVER_VOLT_ EN	RW	1	Overvoltage condition ON/OFF interrupt enable. Default value is "1"
0x38 [3]	OVER_CURR_ EN	RW	1	Overcurrent condition ON/OFF interrupt enable. Default value is "1"
0x38 [2]	OVER_TEMP_ EN	RW	1	Over-temperature condition ON/OFF interrupt enable. Default value is "1"
0x38 [1]	TX CONFLICT_ EN	RW	1	Default value is "1" in TX mode. When powered-up in other modes, default value is "0".
0x38 [0]	Reserved	R	0	Reserved
0x39 [7]	Data Received_ EN	RW	1	TX Data Received interrupt enable. Default value is "1". AP writes "0" to disable the interrupt
0x39 [6]	CD_ERROR_ EN	RW	1	Capacitor Divider Mode Changed interrupt enable. Default value is "1". AP writes "0" to disable the interrupt.
0x39 [5]	RX Not Detected_ EN	RW	1	Default value is "1" in TX mode. When powered-up in other modes, default value is "0".
0x39 [4]	TX FOD_ EN	RW	1	Default value is "1" in TX mode. When powered-up in other modes, default value is "0".
0x39 [3]	RX Connected_ EN	RW	1	Capacitor Divider Mode Changed interrupt enable. Default value is "1" in TX mode. When powered-up in other modes, default value is "0".

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x39 [2]	AC Missing_ EN	R/W		AP writes "1" is to enable the interrupt from the Interrupt Registers' corresponding bit, "0" is to disable the interrupt. Interrupt only generated after power up from battery (external source different from AC power).
0x39 [1]	Reserved	R	0	Reserved
0x39 [0]	Reserved	R	0	Reserved

2.1.12.4. TX Interrupt Clear Registers, INT_Clear_L (0x3A), INT_Clear_H (0x3B)

Address	Register Field Name	R/W	Default	Function and Description
and bit			Value	
0x3A [7]	Reserved	R	0	Reserved
0x3A [6]	CEP_OVERDRV_CLR	RW	0	AP writes "1" to clear the corresponding Interrupt Registers' bit and this bit is
				self-cleared to "0" (by MCU) afterwards.
0x3A [5]	MODECHANGE_CLR	RW	0	Mode Changed interrupt flag clear
0x3A [4]	OVER_VOLT_ CLR	RW	0	Overvoltage condition ON/OFF interrupt flag clear
0x3A [3]	OVER_CURR_ CLR	RW	0	Overcurrent condition ON/OFF interrupt flag clear
0x3A [2]	OVER_TEMP_ CLR	RW	0	Over-temperature condition ON/OFF interrupt flag clear
0x3A [1]	TX CONFLICT_ CLR	RW	0	AP writes "1" to clear the corresponding Interrupt Registers' bit and this bit is
	_			self-cleared to "0" (by MCU) afterwards
0x3A [0]	Reserved	R	0	ADT Error interrupt flag clear. AP writes "1" to clear the corresponding
				Interrupt Registers' bit and this bit is self-cleared to "0" (by MCU) afterwards.
0x3B [7]	Data Received_ CLR	RW	0	Tx data received interrupt flag clear
0x3B [6]	CD_ERROR_CLR	RW	0	Capacitor Divider Error interrupt flag clear.
0x3B [5]	RX Not Detect_ CLR	RW	0	AP writes "1" to clear the corresponding Interrupt Registers' bit and this bit is
			0	self-cleared to "0" (by MCU) afterwards.
0x3B [4]	TX FOD_ CLR	RW	0	AP writes "1" to clear the corresponding Interrupt Registers' bit and this bit is
			0	self-cleared to "0" (by MCU) afterwards.
0x3B [3]	RX Connected_ CLR	RW	0	AP writes "1" to clear the corresponding Interrupt Registers' bit and this bit is
				self-cleared to "0" (by MCU) afterwards.
0x3B [2]	AC Missing_ CLR	RW	0	AC Missing interrupt flag clear. Interrupt only generated after power up from
				battery (external source different from AC power).
0x3B [1]	Reserved	R	0	Reserved
0x3B [0]	Reserved	R	0	Reserved

Set bits in this register to clear corresponding interrupt flags. The register is self-cleared. Writing to this register does not invoke the clear by itself. The user must set BIT 5 in System Command Register (0x4E) to trigger the interrupt clear event (see TX Mode System Command Register, TxSysCmnd_L (0x4E), TxSysCmnd_H (0x4F)).

2.1.12.5.	System TX Command Register, TX_CMN	D (0x4D)
		- ()

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x4D [7]	TXModeEn	W	0x0	Enable TX mode when in WPC mode (AC missing state)
0x4D [6:0]	Reserved	R	0x0	Reserved

The AP sets any of the bits in this register to initiate TX commands. The register is self-cleared when the command is read by the FW and the process loaded in the execution queue. The register is usually read within 1ms after it was modified and immediately cleared after that. It should be understood the clearing event does not mean command was already executed.

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x4E [7:6]	Reserved	R	0	Reserved
0x4E [5]	TX_CLR_INT	RW	0	If AP sets this bit to "1" then MFC-IC MCU clears the interrupt corresponding to the bit(s) which has a value of "1" in Interrupt Clear Registers and also sets the bit(s) in Interrupt Clear Registers to "0", as well as sets this bit to "0"
0x4E [4:2]	Reserved	R	0	Reserved
0x4E [1]	SEND_ACK	RW	0	If AP sets this bit to "1" then MFC-IC MCU sends the ACK (defined in the WPC spec) to RX and then MFC"s MCU sets this bit to "0"
0x4E [0]	TX SEND PPP	RW	0	If AP sets this bit to "1" then MFC-IC MCU sends the Proprietary Packet (defined in the Proprietary Packet Registers) to RX and then MFC"s MCU sets this bit to "0"
0x4F [7:2]	Reserved	R	0	Reserved
0x4F [1]	TXMODE_EXIT	RW	0	Set to exit TX Mode
0x4F [0]	Reserved	R	0	Reserved

2.1.12.6.	TX Mode System Command Register, 1	TxSysCmnd_L (0x4E), TxSysCmnd_H (0x4F)
-----------	------------------------------------	--

The AP sets any of the bits in this register to initiate the corresponding process. The register is self-cleared when the command is read by the FW and the process loaded in the execution queue. The register is usually read within 1ms after it was modified and immediately cleared after that. It should be understood the clearing event does not mean command was already executed.

2.1.12.7. TX Mode CEP Threshold Register, TxCepThrshVal (0xD6)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0xD6 [7:0]	TxCepThrshVal	R/W	0x7F	2's compliment signed integer representing values -128 ~ +127. The value sets the threshold for incrementing the CEP counter. Setting range is 0x00 to 0x7F. If the CEP value is greater or equal to the TxCepThrshVal for TxCepThrshCntLmt consecutive packets, a TX Mode CEP OVERDRV interrupt (0x36 [6]) is generated. Default value is TxCepThrshVal = 0x7F = 127

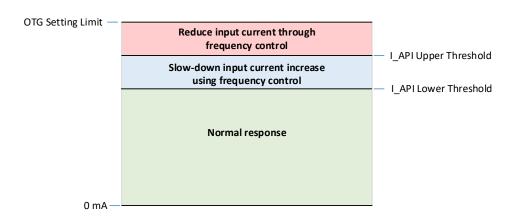
2.1.12.8. TX Mode CEP Threshold Count Limit Register, TxCepThrshCntLmt (0xD7)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0xD7 [7:0]	TxCepThrshCntLmt	R/W	0x7F	The value sets the limit for the number of consecutive CEP packets with values that meet or exceed the threshold value. Setting range is 0x00 to 0xFF. If the CEP value is greater or equal to the TxCepThrshVal for TxCepThrshCntLmt consecutive packets, a TX Mode CEP OVERDRV interrupt (0x36 [6]) is generated. Default value is TxCepThrshCntLmt = 0x7F = 127

1. Need to set register 0xD7 to 0x00h(reset) before setting real max counter number. (Step1 0xD7h=0x00h, Step2 0xD7h=0x7Fh (127 count)).

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x56 [7:0]	I_API_Limit [7:0]	RW	0xDC	8 LSB of the TX mode input current limit. The AP writes to this register to update this value as required. Default is 1500mA.
0x57 [7:0]	I_API_Limit [15:8]	RW	0x05	8 MSB of the TX mode input current limit. The AP writes to this register to update this value as required. Default is 1500mA. <i>Example: If 1.5A = 1500mA, 1500 => 0x5DCh</i>

2.1.12.9. TX Mode API Current Limit Registers, I_API_Limit_L (0x56), I_API_Limit_H (0x57)


Note: API current limit is not a hardware limit control and input currents that are above the API current limit can result due to:

- 1. Large load transients that start below the hysteresis level and end above the current limit setting (I_API_Limit I_API_Offset) causing a current overshoot response.
- 2. The TX mode frequency is at its maximum limit (register 0x96) and the duty is at its minimum limit (register 0x93), then the firmware is unable to reduce the input current further.

When operating in TX mode, the FW monitors the ADC TX input current and determines how the TX responds to increasing input current. The ADC TX input current is divided into three regions defined by the I_API_Limit (register 0x56), I_API_Offset (register 0xF6), and I_API_Hys (register 0x82) parameters. These parameters define an upper and lower threshold level:

I_API Upper Threshold = I_API_Limit (0x56) – I_API_Offset (0xF6) I_API Lower Threshold = I_API Upper Threshold x I_API_Hys (0x82) / 128

I_API Current Limit

If the ADC Input current is below the I_API Lower Threshold, the FW will operates in the normal TX mode and has a normal response to increasing input current. If the ADC Input current is above the I_API Lower threshold but below the I_API Upper threshold then the FW has a slow response to increasing input current to minimize overshoot. If the ADC Input current is above the I_API Upper threshold then the FW increases the frequency until the ADC Input current drops below the I_API Upper threshold.

In the large transient case #1 above, the ADC Input current starts out in "normal response" region. So when a large load step is applied to the RX, the TX will respond with a large input current increase. When the RX sends the next CEP, the ADC Input current may still be in the "normal response" region and the TX will respond with another large input current increase. On the following RX CEP, the ADC Input current may have skipped the "slow-down input current" region and enters the "reduce input current" region. By this time the TX input current has overshot the I_API Upper threshold and the FW will now begin to increase the frequency until the ADC Input current drops below the I_API Upper threshold.

In the maximum frequency case #2 above, the same sequence of events of case #1 occurs. However, when the TX is in the "reduce input current" region it is unable to increase the frequency beyond the maximum frequency

limit set by TX Mode Max Operating Frequency Register (0x96) and reduce the duty below the minimum duty set by the TX Mode Minimum Duty Setting Register (0x93). In this case the FW is unable to force the TX input current below the I_API Upper threshold level.

2.1.12.10. TX Mode API Current Hysteresis	Register, I_API_Hys (0x82)
---	----------------------------

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x82 [7:0]	I_API_Hys [7:0]	RW	0x73	TX mode input current limit hysteresis. The AP writes to this register to update this value as required. Default is 90%. Example: I_API_Hys = 0x73 => 115/128 => 0.90, so hysteresis level is I_API_Limit x I_API_Hys, or 1500 x 0.90 = 1350mA

2.1.12.11. TX Mode API Current Limit Offset Registers, I_API_Offset_L (0xF6), I_API_Offset_H (0xF7)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0xF6 [7:0]	I_API_Offset [7:0]	RW	0x96	8 LSB of the TX mode input current limit offset. The AP writes to this register to update this value as required. Default is 150mA.
0xF7 [7:0]	I_API_Offset [15:8]	RW	0x00	8 MSB of the TX mode input current limit offset. The offset is signed and needs to be converted in 2's compliment. The AP writes to this register to update this value as required. Default is 150mA. Example: If 150mA 150 => 0x0096, -150mA => 0xFF6A

2.1.12.12. TX Ping Frequency (Period) Register, PingFreqPer_L (0x90), PingFreqPer_H (0x91)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x90 [7:0]	PingFreqPer_L [7:0]	RW	0x36	Ping frequency in number of 120MHz clock cycles Default value of 146 kHz
0x91 [7:0]	PingFreqPer_H [15:8]	RW	0x03	Ping frequency in number of 120MHz clock cycles
				PingFreqPer (cnts) = 120x10^3 (kHz) / Ping Freq (kHz) = 120,000 / 146 = 821 dec = 0x0336

2.1.12.13. TX Ping Duty Cycle Register, PingDC (0x92)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x92 [7:0]	PingDC [7:0]	RW	0x80	TX Ping Duty Cycle.
				Default value of 50%
				PingDC / 256 = Duty Cycle (e.g. 128 = 50%)

2.1.12.14. TX Minimum Duty Cycle Register, MinDC (0x93)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x93 [7:0]	MinDC [7:0]	RW	0x4C	TX Minimum Duty Cycle. Default value of 30% MinDty / 256 = Duty Cycle (e.g. 51 = 20%)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x94 [7:0]	MinFreqPer_L [7:0]	RW	0x43	TX mode minimum allowable frequency in number of 120MHz clock cycles Default value of 110 kHz
0x95 [7:0]	MinFreqPer_H [15:8]	RW	0x04	TX mode minimum allowable frequency in number of 120MHz clock cycles MinFreqPer (cnts) = 120x10^3 (kHz) / Min Freq (kHz) = 120,000 / 110 = 1090 dec = 0x0443

2.1.12.15. TX Minimum Frequency (Period) Register, MinFreqPer_L (0x94), MinFreqPer_H (0x95)

2.1.12.16. TX Maximum Frequency (Period) Register, MaxFreqPer_L (0x96), MaxFreqPer_H (0x97)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x96 [7:0]	MaxFreqPer_L [7:0]	RW	0x2B	TX mode maximum allowable frequency in number of 120MHz clock cycles Default value of 148 kHz
0x97 [7:0]	MaxFreqPer_H [15:8]	RW	0x03	TX mode maximum allowable frequency in number of 120MHz clock cycles MaxFreqPer (cnts) = 120x10^3 (kHz) / Max Freq (kHz) = 120,000 / 148 = 811 dec = 0x032B

2.1.12.17. TX Mode Operating Period Register, TxPeriod_L (0xA4), TxPeriod_H (0xA5)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0xA4 [7:0]	TxPeriod_L [7:0]	R	-	TX mode operating period in number of 120MHz clock cycles
0xA5 [7:0]	TxPeriod_H [15:8]	R	-	TX mode operating period in number of 120MHz clock cycles TX mode operating freq (kHz) = 120x10^3 (kHz) / TxPeriod (cnts) Example: Tx operating freq = 120,000 / 923 = 130 kHz

2.1.12.18. TX Mode Operating Duty Cycle Register, TxDuty (0xA6)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0xA6 [7:0]	TxDuty [7:0]	R	-	TX mode operating Duty Cycle. Tx operating Duty Cycle =TxDuty / 256
				Example: Tx operating duty = $128 / 256 = 50\%$

2.1.12.19. TX Mode Over-Voltage Protection Register, Tx_OVP_L (0x9E), TX_OVP_H (0x9F)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x9E [7:0]	Tx_OVP_L [7:0]	R	0x10	8 LSB of current unsigned integer value contained in this field indicating the Tx Mode Over-voltage protection threshold.
0x9F [7:0]	Tx_OVP_H [15:8]	R	0x27	8 MSB of current unsigned integer value contained in this field indicating the Tx Mode Over-voltage protection threshold. Tx_OVP = $0x2710 = 10,000 \text{ dec mV} = 10V.$

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0xA0 [7:0]	Tx_OCP_L [7:0]	RW	0x34	8 LSB of current unsigned integer value contained in this field indicating the Tx Mode Over-current protection threshold.
0xA1 [7:0]	Tx_OCP_H [15:8]	RW	0x08	8 MSB of current unsigned integer value contained in this field indicating the Tx Mode Over-current protection threshold. Tx_OCP = $0x0834 = 2,100 \text{ dec mA} = 2.1\text{A}.$

2.1.12.20. TX Mode Over-Current Protection Register, TX_OCP_L (0xA0), TX_OCP_H (0xA1)

2.1.12.21. TX Conflict Threshold Register, TxConfThrsh (0x134)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x134 [7:0]	TxConfThrsh [7:0]	RW	0xA0	8 LSB of current unsigned integer value contained in this field indicating the Tx Conflict threshold. When a phone, in TX Mode, is placed on or near a foreign TX, an AC voltage is generated on the DEMOD pin. If the DEMOD voltage is greater or equal to the TxConfThrsh value for TxConfCnt consecutive times, a TX Conflict interrupt is generated.
0x135 [7:0]	TxConfThrsh [15:8]	RW	0x04	8 MSB of current unsigned integer value contained in this field indicating the Tx Conflict threshold. TxConfThrsh = 0x04A0 = 1184 dec => 1184 * 2.1 / 4095 = 0.607 V.

2.1.12.22. TX Conflict Count Register, TxConfCnt (0xAF)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0xAF [7:0]	TxConfCnt [7:0]	RW	0x10	TX Conflict count sets the limit for the number of consecutive times the TX Conflict threshold is exceeded before an interrupt is triggered and the TX pings are stopped

2.1.12.23. TX Power Register, TX_Power_L (0xAC), TX_Power_H (0xAD)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0xAC [7:0]	TX_Power_L [7:0]	RW	0x00	8 LSB of current unsigned integer value contained in this field indicating the TX Power in mW.
0xAD [7:0]	TX_Power_H [15:8]	RW	0x00	8 MSB of current unsigned integer value contained in this field indicating the TX Power in mW. TX_Power = 0x1388 = 5000 dec mW = 5W.

2.1.12.24. TX Dead Time Register, TX_DeadTime (0x9C)

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0x9C [7:0]	TX_DeadTime [7:0]	RW	0x0A	Sets the dead time of the rectifier switches in TX mode.
				Default value is 0x0A= 83.3 ns
				TX_DeadTime (s) = TX_DeadTime (decimal) / 120MHz = 10 / 120M = 83.3ns

Note: TX dead time register is only populated in TX mode.

Address and bit	Register Field Name	R/W	Default Value	Function and Description
0xAE [7:0]	TX_ControlDelay [7:0]	RW	0x04	Sets the delay time of the rectifier switches in TX mode. Default value is 0x04 = 33.3 ns TX_ControlDelay (s) = TX_ControlDelay (decimal) / 120MHz = 4 / 120M = 33.3ns

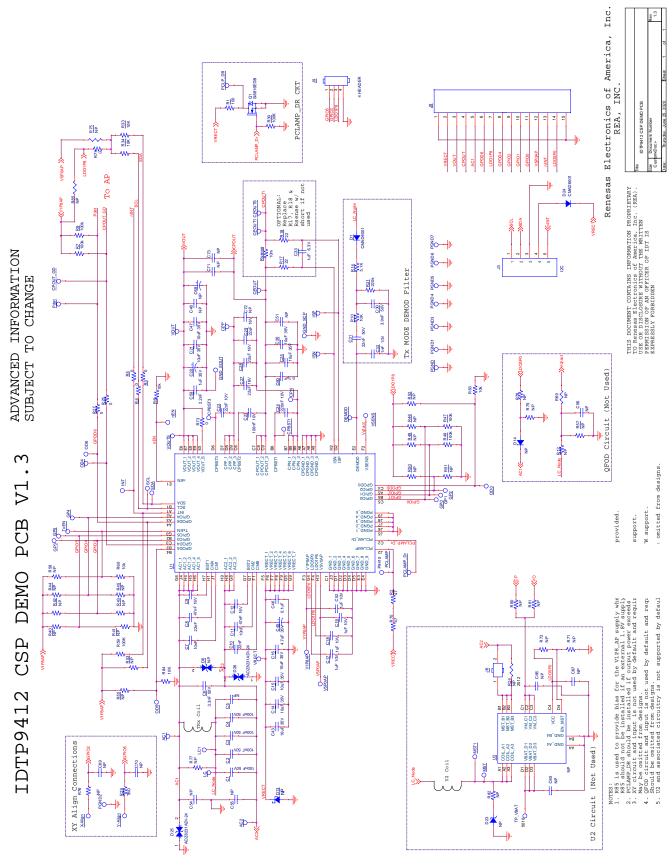
2.1.12.25. TX Control Delay Register, TX_ControlDelay (0xAE)

Note: TX Control Delay register is only populated in TX mode.

2.1.13. Commonly Used Registers

2.1.13.1. Monitoring, Status, Interrupt, and Operating Mode Registers

Parameter	Register Address	R/W	Operating Modes	Reference Table No.
Vout	0x42 (2 bytes)	R	Rx, TRx	2.1.4.2
lout / lin	0x44 (2 bytes)	R	Rx, TRx	2.1.4.4
CPout	0x10C (2 bytes)	R	Rx, TRx	2.1.8.3
Vrect	0x40 (2 bytes)	R	Rx, TRx	2.1.4.5
DieTemp	0x46 (2 bytes)	R	Rx, TRx	2.1.4.6
AC Frequency	0x48 (2 bytes)	R	Rx, TRx	2.1.4.7
Duty Cycle	0xA6 (1 byte)	R	TRx	2.1.12.18
System Status	0x34 (2 bytes)	R	Rx, TRx	2.1.2.1 (Rx), 2.1.12.1 (TRx)
Interrupts	0x36 (2 bytes)	R	Rx, TRx	2.1.2.2 (Rx), 0 (TRx)
Interrupt Enables	0x38 (2 bytes)	R	Rx, TRx	2.1.2.3 (Rx), 2.1.12.3 (TRx)
Interrupt Clear	0x3A (2 bytes)	R	Rx, TRx	2.1.2.4 (Rx), 2.1.12.4 (TRx)
System Op Modes	0x4C (1 byte)	R	Rx, TRx	2.1.2.5
CD Mode Status	0x100 (1 byte)	R	Rx	2.1.8.1


2.1.13.2. Settings and Command Registers

Parameter	Register Address	R/W	Operating Modes	Reference Table No.
Vout_Set	0x6C (2 bytes)	RW	Rx,	2.1.4.1
ILim	0x42 (1 byte)	RW	Rx	2.1.4.3
Vrect_Adj	0x5E (signed 1 byte)	RW	Rx	2.1.7.6
System Commands	0x4E (2 bytes)	RW	Rx,	2.1.5.1
CD Mode Request*	0x101 (1 byte)	RW	Rx	2.1.4.6
Tx Command	0x4D (1 byte)	RW	TRx	2.1.12.5
TX Mode System Commands	0x4E (2 bytes)	RW	TRx	2.1.12.6

* For AP control of CD mode transitions from Bypass to Cap Divider mode or from Cap Divider mode to Bypass. The following procedure should be used:

- 1. Read the CD Mode Status register 0x100. If the value is 0x01 then operating in Bypass mode.
- 2. To transition from Bypass to Cap Divider mode, enter a value of 0x02 to the CD Mode Request register (0x101) to request Cap Divider mode operation.
- 3. Execute the change by writing 0x40 to the System Command Register (0x4E).
- 4. Verify the CD mode change by reading the CD Mode Status register 0x100.

3. Schematic Diagram

4. Bill of Materials

Item	Quantity	Reference	Part	PCB Footprint	Part Number
1	19	PGND1,LC1,CPOUT1, AC1, AC2, Y-Align, X-Align, VRECT,VOUTS,VOUT,SDA,SCL,PGND, PCLAMP,LC,GND_SOUT,GND_SCP, CPOUTS,CPOUT	TP	test_pt_sm_135 x70	
2	6	CPBST1,CPBST3, CPP,CPN, VSENS,DEMOD	NP	tp_sm_45D	SMD_Pad_Only
3	4	C1,C2,C3,C4	100nF 50V	0402	GRM155R61H104KE19D
4	1	C5	NP	0402	GRM155R61H104KE19D
5	1	C6	3.3nF 50V	0402	CL05B332KB5NNNC
6	2	C7, C11	10nF	0402	CL05B103KB5NNNC
7	2	C8,C10	22nF	0402	GCM155R71H223KA55D
8	2	C9,C12	47nF 16V	0201	GRM033R61C473KE84D
9	8	C14,C15,C16,C21,C25,C26, C43,C47	10uF 35V	0603	GRM188R6YA106MA73D
10	4	C17,C18,C19,C52	1uF 10V	0201	GRM033R61A105ME15D
11	1	C20	1uF 35V	Cap_pol_2p0x1 p25mm	T58W9105M035C0500
12	1	C22	22nF 10V	0201	CL03A223KP3NNNC
13	1	C23	100nF 10V	0201	CL03A104MP3NNNC
14	1	C24	220nF 10V	0201	CL03A224KP3NNNC
15	3	C27,C28, C29	22uF 16V	0603	CL10A226MO7JZNC
16	1	C30	3.9nF, 50V	0402	CL05B392JB5NNNC
17	1	C31	22nF 50V	0402	GCM155R71H223KA55D
18	1	C32	1nF 10V	0201	0201ZD102KAT2A
19	1	C33	1uF 6.3V	0402	CL05A105MQ5NNNC
20	1	C45	4.7uF 35V	Cap_pol_3p5x2 p8mm	TCNL475M035R0300
21	2	C46,C60	0.1uF	0201	GRM033R6YA104KE14D
22	4	C48,C51,C71,C73	NP	0603	GRM188R6YA106MA73D
23	17	R40,R41,R42,R43,R44,R45, R46,R48,R50,R51,R52,C54, C55,C56,R71,R76,R77	NP	0402	NP
24	1	C59	2.2nF	0201	GRM033R71E222KA12J
25	2	C65,C67	NP	0201	GRM033R61A105ME15D
26	1	C66	NP	0402	CL05A105KA5NQNC
27	1	C68	NP	Cap_pol_2p0x1 p25mm	T529P475M025AAE300
28	2	C69,C70	NP	0201	0201ZD102KAT2A
29	1	C72	NP	0603	CL10A226MO7JZNC
30	2	D1,D24	CMAD6001	sod923	CMAD6001 TR
31	1	D6	NP	SOD323	SD24C-01FTG
32	1	D13	NP	POWER DI123	DFLT24A
33	1	D14	NP	sod923	CMAD6001 TR
34	1	D23	NP	SMini2-F5-B	DZ2J360M0L
35	2	D25,D26	AOZ8231ADI-24	dfn1006_ 2ld_diode	AOZ8231ADI-24

Table 1. Bill of Materials

Item	Quantity	Reference	Part	PCB Footprint	Part Number
36	17	GP1,GP2,GP3,OD4,GP4,OD5, GP5,OD6,OD0,CPOUT_GD, nEN,VOUT_GD, TxEN, Pdet, INT, PCLP_DR, PCLAMP_Dr, GP0	NP	TP_SM_ 30CIR	SMD_Pad_Only
37	2	ISP,ISN	NP	TP_SM_ 30CIR	SMD_Pad_Only
38	1	J3	I2C	sip5	901200765
39	1	J6	NP	jumper2pin01in	68000-102HLF
40	1	J8	Header15	header_1x15_0 p1Pitch60p42d	TSW-115-14-T-S
41	1	J9	4 HEADER	sip-4	3-644456-4
42	2	TP_VBAT,MST	NP	test_pt90_ 65d	
43	1	MST1	NP	test_pt_sm_135 x70	
44	2	PGND2,PGND4	NP	test_pt90_65d	
45	4	PGND3,PGND5,PGND6,PGND7	TP	test_pt90_65d	
46	2	V1P8AP,V5P0AP	TP	test_pt90_65d	
47	1	Q1	Si8816EDB	BGA-4	SI8816EDB-T2-E1
48	1	Rsense	10m	0402_0603_0805	LVT04R0100FER
49	1	R1	100	0805	CRGH0805F100R
50	2	R2,R70	47	0603	CRGP0603F47R
51	6	R3,R4,R5,R25,R27,R73	0	0201	ERJ-1GN0R00C
52	2	R6,R60	10k	0201	RC0603J103CS
53	4	R7,R8,R39,R59	100K	0201	RC0201JR-07100KL
54	1	R10	10K	0201	RMCF0201FT10K0
55	3	R12,R78,R79	NP	0201	RMCF0201FT10K0
56	1	R14	5.1K	0201	RC0201JR-075K1L
57	2	R17,R18	22	0201	CRCW020122R0FNED
58	1	R21	220K	0201	AC0201FR-07220KL
59	1	R24	NP	2512	CSRN2512FKR500
60	1	R29	TBD	0402	NP
61	3	R33,R34, R84	10K	0402	TRR01MZPF1002
62	2	R47,R49	100K	0402	RC0402FR-07100KL
63	1	R53	NP	0402	RC0402JR-07100KL
64	1	R55	NP	0402	RC0603J103CS
65	1	R57	NP	0201	RC0201FR-071ML
66	1	R58	NP	0201	
67	3	R69,R75,R85	NP	0402	RMCF0402ZT0R00
68	1	R72	NP	0402	RC0201JR-075K1L
69	1	R74	0	0402	RMCF0402ZT0R00
70	2	R80,R81	NP	0603	RC1608J000CS
71	1	R82	NP	0402_0603	RC1608J000CS
72	1	R83	10K	0402	RC0603J103CS
73	1	U1	P9412	DSBGA81LD_9 x9_0p4mm	P9412-1AWQI8

 Recommended capacitor temperature/dielectric and voltage ratings for WPC resonance capacitors is 50 V with low ESR capacitors. Furthermore, C0G/NPO-type capacitor values stay constant with voltage while X7R and X5R capacitor values derate over the working voltage range at 40% to over 80%.

5. Board Layout

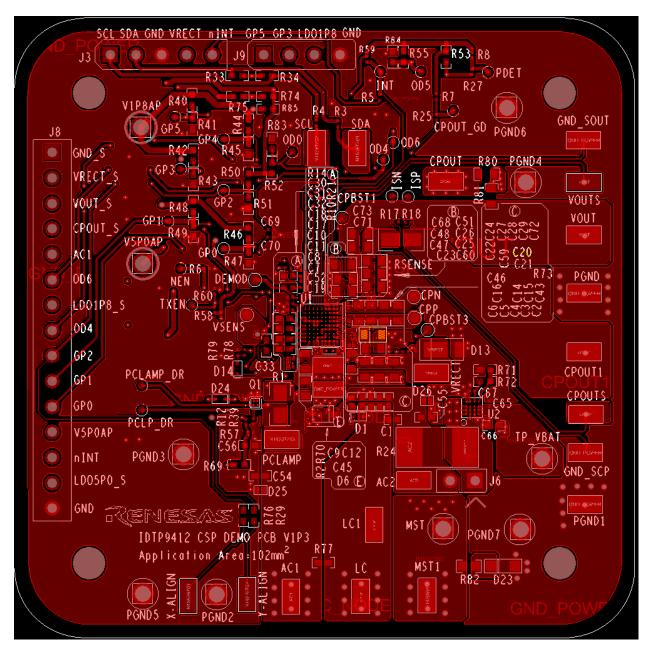


Figure 32. Top and Top Silkscreen Layer

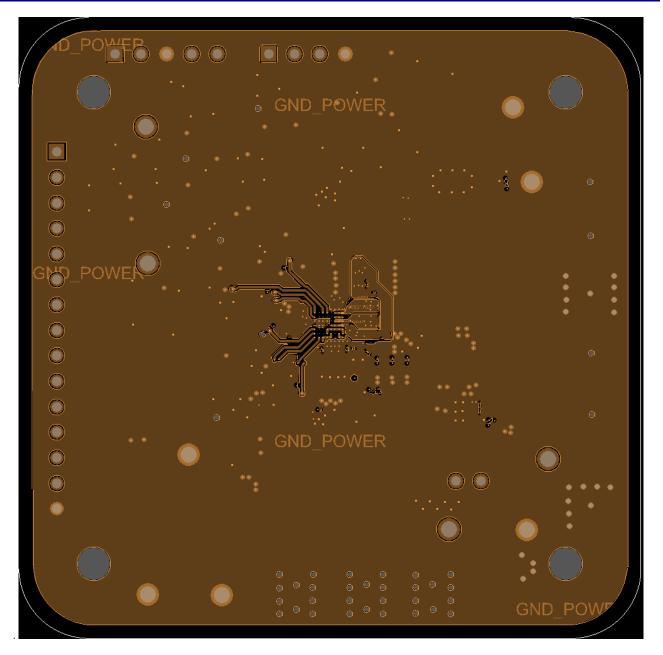


Figure 33. Inner1 GND Layer

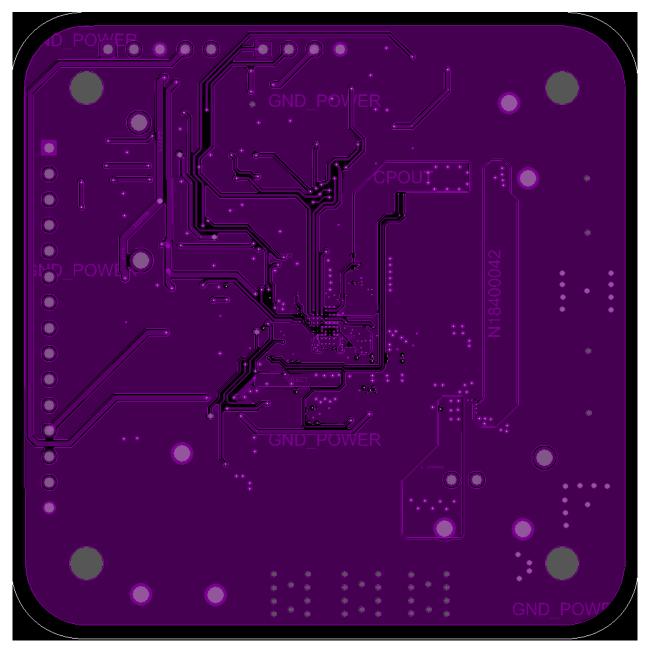


Figure 34. Inner2 POWER/Signal/GND Layer

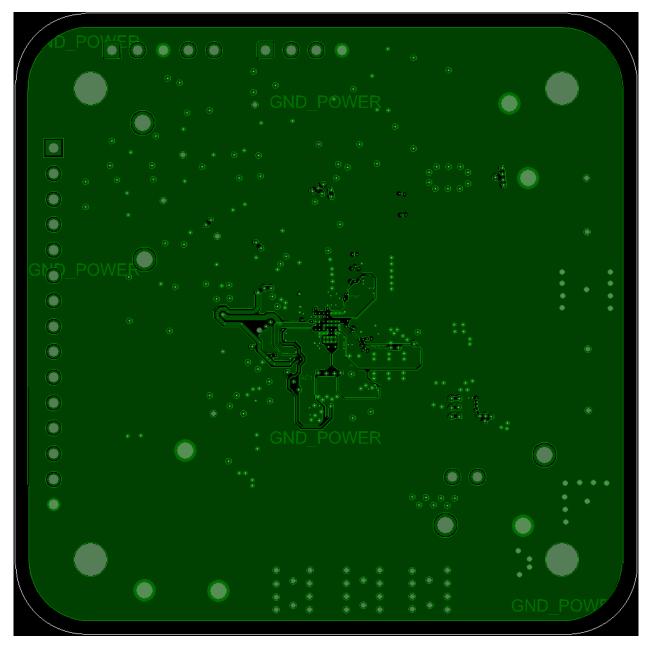


Figure 35. Inner3 POWER/ GND Layer

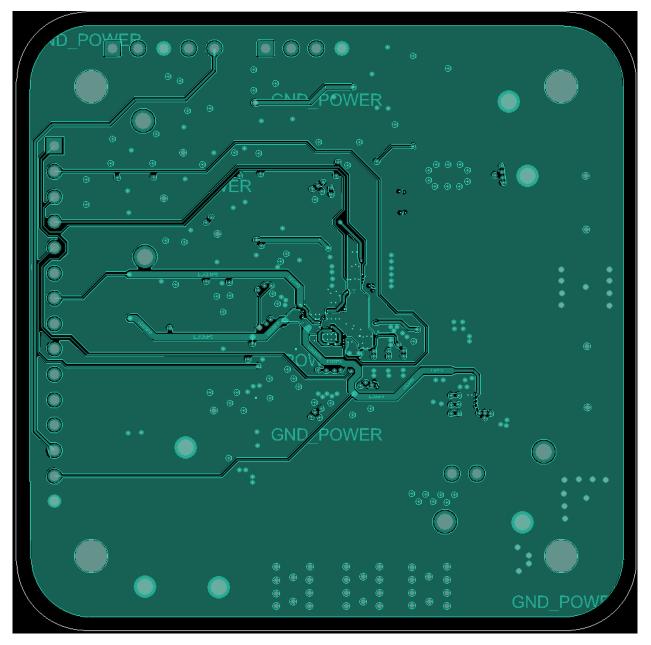


Figure 36. Inner4 POWER/Signal/GND Layer

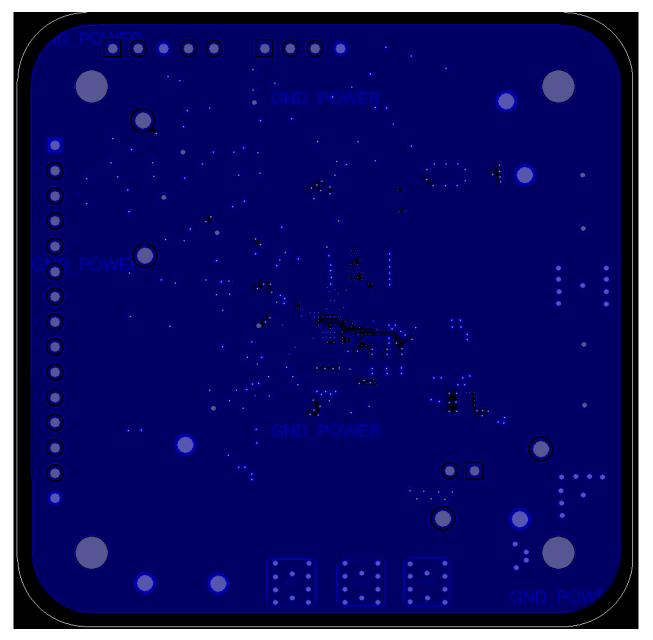


Figure 37. Bottom Layer

5.1 FTDI Dongle

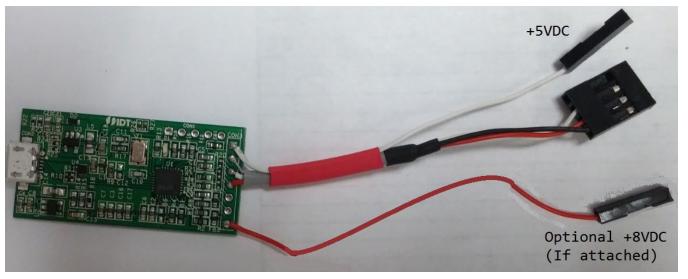


Figure 38. FTDI Dongle for Programming the Firmware into P9412 MTP

Caution: The +5V and +8V DC power supplies are intended for I2C rail bias only and current consumption must be limited to less than 50mA. These power supplies should not be loaded except for programming or register polling to prevent damage to the dongle.

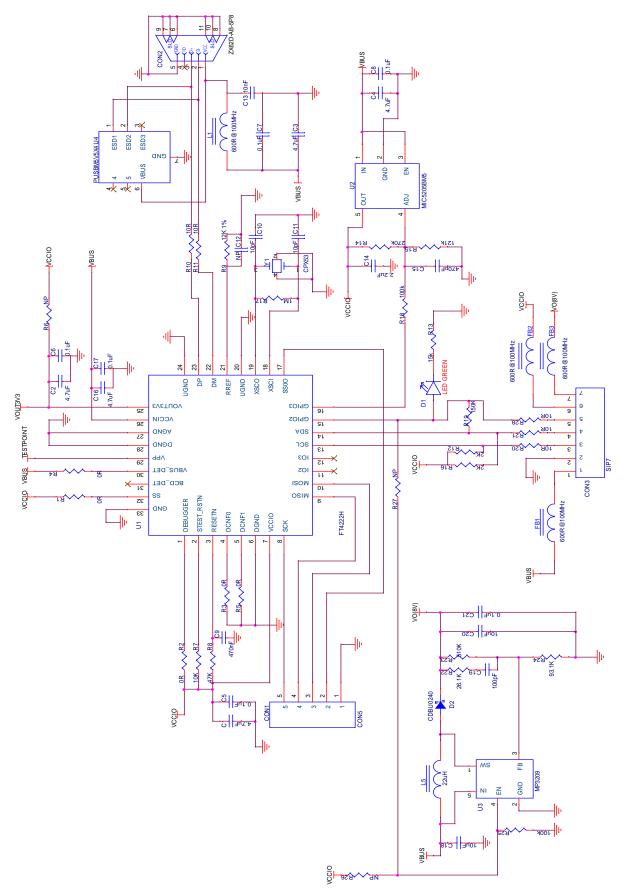


Figure 39. FTDI Dongle Schematic for Programming the Firmware into P9412 MTP and Reading Registers

6. Ordering Information

Part Number	Temperature Range (°C)
P9412-EVK	0°C to +85°C

7. Revision History

Revision	Date	Description
1.7	Jul.8.20	Added Proprietary High Power ProtocolRemoved raw ADC registers

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.