
078-0402-01D

Warning and error message descriptions for
Echelon development tools.

Neuron Tools
Errors Guide

Echelon, LONWORKS, LONMARK, NodeBuilder, IzoT, LonTalk,

Neuron, 3120, 3150, 3120, ShortStack, LonMaker, and the

Echelon logo are trademarks of Echelon Corporation that

may be registered in the United States and other countries.

Other brand and product names are trademarks or

registered trademarks of their respective holders.

Neuron Chips and other OEM Products were not designed

for use in equipment or systems, which involve danger to

human health or safety, or a risk of property damage and

Echelon assumes no responsibility or liability for use of the

Neuron Chips in such applications.

Parts manufactured by vendors other than Echelon and

referenced in this document have been described for

illustrative purposes only, and may not have been tested

by Echelon. It is the responsibility of the customer to

determine the suitability of these parts for each

application.

ECHELON MAKES AND YOU RECEIVE NO WARRANTIES OR

CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR IN ANY

COMMUNICATION WITH YOU, AND ECHELON SPECIFICALLY

DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY

OR FITNESS FOR A PARTICULAR PURPOSE.

No part of this publication may be reproduced, stored in a

retrieval system, or transmitted, in any form or by any means,

electronic, mechanical, photocopying, recording, or

otherwise, without the prior written permission of Echelon

Corporation.

Printed in the United States of America.

Copyright © 1997, 2010, 2014 Echelon Corporation.

Echelon Corporation

www.echelon.com

http://www.echelon.com/

Neuron Tools Errors Guide iii

Welcome
This document describes various warning and error messages that can occur

when using Echelon® development tools, such as the IzoT™ NodeBuilder® FX

Development Tool, , ShortStack® Developer’s Kit, FTXL™ Developer’s Kit, and

LonTalk® Interface Developer (LID) utility.

Audience
This guide is intended for users of Echelon development tools.

Content
This guide describes the error messages that you can encounter while using

Echelon development tools. This guide organizes the errors into separate

chapters with each chapter containing errors applicable to a single software

component. For example, compiler errors are in one chapter and IzoT

NodeBuilder interface errors are in another chapter.

The error messages described in this document include hints, warnings, errors,

and fatal errors:

 Hints are informative messages that suggest improvements for your

implementation.

 Warnings are not severe enough to prevent successful compilation, but

they should each be examined, and corrected as appropriate. Any code

that is flagged by the compiler with a warning message should be viewed

as a potential programming error, or at least as a poor programming

practice.

 Errors result from code constructs that cannot be interpreted by the

compiler, or indicate situations that are expressly prohibited by either

the ANSI C language standard, or by the Neuron® C language. A

compilation with one or more error messages results in build failure.

If you need help resolving an error, contact LonSupport; see For More

Information and Technical Support on page v.

 Fatal Errors prevent the compiler from performing any further

translation. These messages result from resource problems (out of

memory, disk full, and so on) or from internal checking on the compiler

itself. Fatal errors might also appear in the form ***TRAP n***, where

n is a decimal number.

Traps report unexpected internal errors, and should be reported to

LonSupport; see For More Information and Technical Support on page v.

Each chapter lists the error messages in numerical order by message code. This

ordering allows for possible future minor wording changes without interfering

with your ability to locate the documentation for a particular message code.

Each error message has a category acronym and a message code. The following

message is typical:

The directive '#pragma num_alias_table_entries' is required [NCC#456]

iv

For this message, NCC is the category acronym, 456 is the error code, and the

text summarizes the error condition. Table 1 lists the acronyms, what tool

categories they represent, and the chapter of this manual that describes the error

and warning messages for that category.

Table 1. Error Categories

Acronym Category Chapter

DBG NodeBuilder Debugger Chapter 1

DEP Dependency Utility Chapter 2

LCL Communication Parameter Calculator Chapter 3

LID LonTalk Interface Developer Utility Chapter 4

LWX LONWORKS® XML module Chapter 5

NAS Neuron Assembler Chapter 6

NCC Neuron Compiler Chapter 7

NEX Neuron Exporter Chapter 8

NLD Neuron Linker

Chapter 9

NLB Neuron Librarian

PMK NodeBuilder Project Make Chapter 10

UCL Common command line Chapter 11

— Neuron Firmware Chapter 12

Related Documentation

The following manuals are available from the Echelon Web site

(www.echelon.com/docs) and provide additional information about the tools

mentioned in this manual:

 FTXL User’s Guide (078-0363-01A). This manual describes how to

develop an application for a LONWORKS device using Echelon’s FTXL

Transceiver. It describes the architecture of an FTXL device and how to

develop the software for an FTXL device.

 I/O Model Reference for Smart Transceivers and Neuron Chips (078-

0392-01C). This manual provides information about the I/O models used

by Echelon’s Neuron Chips and Smart Transceivers. It includes

hardware and software considerations for each of the I/O models.

 SmartServer Programming Tools User’s Guide (078-0349-01C). This

manual describes how to write custom embedded applications called

http://www.echelon.com/docs

Neuron Tools Errors Guide v

Freely Programmable Modules (FPMs) and deploy them on the

SmartServer. FPMs let you implement custom functionality and tailor

the SmartServer to meet your needs.

 Neuron C Programmer’s Guide (078-0002-02I). This manual describes

how to write programs using the Neuron C Version 2.2 programming

language.

 Neuron C Reference Guide (078-0140-02G). This manual provides

reference information for writing programs using the Neuron C Version

2.2 programming language.

 IzoT NodeBuilder FX User’s Guide (078-0516-01). This manual describes

how to develop a LONWORKS device using the IzoT NodeBuilder tool.

 ShortStack User's Guide (078-0365-01B). This manual describes how to

develop an application for a LONWORKS device using Echelon’s

ShortStack FX Micro Server. It describes the architecture of a

ShortStack device and how to develop a ShortStack device.

All of the Echelon documentation is available in Adobe PDF format. To view the

PDF files, you must have a current version of the Adobe Reader, which you can

download from Adobe at: www.adobe.com/products/acrobat/readstep2.html.

For More Information and Technical Support

If you need help resolving an error, you observe an internal error, or you have

technical questions that are not answered by this manual, you can contact

Echelon technical support. To receive technical support from Echelon, you must

purchase support services from Echelon or an Echelon support partner. See

www.echelon.com/support for more information about Echelon support and

training services.

You can also enroll in training classes at Echelon or an Echelon training center to

learn more about developing devices. You can find additional information about

device development training at www.echelon.com/training.

You can obtain technical support by telephone, fax, or e-mail from your closest

Echelon support center, as listed in Table 2 on page vi.

http://www.adobe.com/products/acrobat/readstep2.html
http://www.echelon.com/support
http://www.echelon.com/training

vi

Table 2. Support Contact Information

Region

Languages

Supported Contact Information

The Americas

English

Japanese

Echelon Corporation

Attn. Customer Support

550 Meridian Avenue

San Jose, CA 95126

Phone: +1-408-938-5200

Toll Free (US): 1-800-258-4LON

 (258-4566)

Fax: +1-408-790-3801

lonsupport@echelon.com

Europe

English

German

French

Italian

Echelon Europe Ltd.

Suite 12

Building 6

Croxley Green Business Park

Hatters Lane

Watford

Hertfordshire WD18 8YH

United Kingdom

Phone: +44 (0)1923 430200

Fax: +44 (0)1923 430300

lonsupport@echelon.co.uk

Japan

Japanese Echelon Japan

Holland Hills Mori Tower, 18F

5-11-2 Toranomon, Minato-ku

Tokyo 105-0001

Japan

Phone: +81-3-5733-3320

Fax: +81-3-5733-3321

lonsupport@echelon.co.jp

China

Chinese

English

Echelon Greater China

Rm. 1007-1008, IBM Tower

Pacific Century Place

2A Gong Ti Bei Lu

Chaoyang District

Beijing 100027, China

Phone: +86-10-6539-3750

Fax: +86-10-6539-3754

lonsupport@echelon.com.cn

Other Regions

English

Japanese

Phone: +1-408-938-5200

Fax: +1-408-328-3801

lonsupport@echelon.com

mailto:lonsupport@echelon.com
mailto:sales@echelon.co.uk
mailto:lonsupport@echelon.co.jp
mailto:lonsupport@echelon.com.cn
mailto:lonsupport@echelon.com

Neuron Tools Errors Guide vii

Table of Contents
Welcome ... iii
Audience .. iii
Content .. iii
Related Documentation .. iv
For More Information and Technical Support ... v

NodeBuilder Debugger Errors (DBG) .. 1

DBG Errors ... 2

Dependency Utility Errors (DEP) ... 9

DEP Errors ... 10

Communication Parameter Calculator Errors (LCL) 13

LCL Errors ... 14

LonTalk Interface Developer Errors (LID) .. 17

Overview ... 18
LID Errors .. 18

LonWorks XML Errors (LWX) .. 33

LWX Errors .. 34

Neuron Assembler Errors (NAS) ... 37

NAS Errors ... 38

Neuron C Compiler Errors (NCC) ... 45

NCC Errors ... 46

Neuron Exporter Errors (NEX).. 129

NEX Errors ... 130

Neuron Linker (NLD) and Neuron Librarian (NLIB) Errors 143

Overview ... 144
NLD and NLIB Errors ... 144

Project Make Errors (PMK) .. 159

PMK Errors .. 160

Common Command Line Errors (UCL) ... 167

UCL Errors ... 168

Neuron Firmware Error Codes ... 171

Overview ... 172
Neuron Firmware Errors ... 172

Neuron Tools Errors Guide 1

1

NodeBuilder Debugger Errors
(DBG)

This chapter describes errors that can be reported by the

NodeBuilder Debugger.

2 NodeBuilder Debugger Errors (DBG)

DBG Errors
Table 3 lists the DBG error codes.

Table 3. DBG Error Codes

DBG# Description

2 Memory allocation failed [DBG#2]

An internal memory allocation operation failed.

Save your work and restart the debugger.

3 Cannot open a needed file [DBG#3]

This error can occur if a debug information file or a source file could not be

opened.

Clean, rebuild, load and restart the debugger.

4 Invalid DBT file format or DBT file is corrupt [DBG#4]

Debug information file is invalid.

Clean, rebuild, load and restart the debugger. If this persists, you may

need to re-install IzoT NodeBuilder tool.

6 Cannot communicate with the device over the network [DBG#6]

Verify that your device is connected and any intervening routers are

configured and online.

7 Cannot find the requested symbol [DBG#7]

Re-enter the correct symbol name. The DBT file might be out-of-date, and

you may need to clean, rebuild, load and restart the debugger.

8 Source line translates to less than 2 bytes of object code, so a breakpoint

cannot be placed here [DBG#8]

For Series 3100 chips, every instruction in the application has to be at least

2 bytes long in order to be able to set breakpoints successfully. Single-byte

instructions need to be padded using the Expand Statements feature for

the device template.

Enable the Expand Statements feature and re-build if you need to set a

breakpoint at this location. To enable the Expand Statements feature,

right click the target, click Settings on the shortcut menu, then select the

Compiler tab in the NodeBuilder Device Template Target Properties dialog.

In the Debug Kernel Options box, select the Expand Statements check box,

and then click OK.

Note: This diagnostic does not apply to Series 5000 and Series 6000 Chips.

Neuron Tools Errors Guide 3

DBG# Description

9 Object code at breakpoint is not in writable memory, so a breakpoint

cannot be set [DBG#9]

NodeBuilder debugger modifies program memory when it sets breakpoints.

Breakpoints can only be set in writeable memory.

To debug code that is designed to execute from ROM (or other, non-

writeable memory types), consider executing the same application on

suitable development hardware which supports memory suitable for

debugging.

10 No instruction for BP at this location [DBG#10]

This error can occur if the source file is not in sync with the application in

the device.

Verify that the build status is up-to-date. Try closing and re-opening the

source file.

12 Command is only legal when debugger is suspended [DBG#12]

Some commands such as writing a value to an output network variable are

available when the debugger suspended.

Try the operation when the debugger is halted or suspended.

13 Failed in file read/write [DBG#13]

File operation failed on debug information file.

Rebuild and load the application and try again.

16 Debug kernel version not supported by debugger [DBG#16]

The debug kernel loaded into the device is not supported by this version of

the NodeBuilder debugger.

Link your application with the correct debug library.

17 Feature is not included in the version of the debug kernel included in

the target device [DBG#17]

Some features (for example, function execution) were excluded at compile

time with various debug kernel options or #pragma debug <option>

statements. The operation the debugger attempted will not work with the

target’s application.

Right click the target, click Settings on the shortcut menu, then select the

Compiler tab in the NodeBuilder Device Template Target Properties dialog.

In the Debug Kernel Options box, select the required options, and then

click OK.

19 Bad parameter passed to method [DBG#19]

Program error.

4 NodeBuilder Debugger Errors (DBG)

DBG# Description

20 Debug session start failed or not done yet [DBG#20]

Exit and restart the program and try to debug the device again. Verify that

you can communicate with the device being debugged.

21 Command is invalid in the current dbgDebugStatus [DBG#21]

The command being sent is invalid given the current state of the debugger.

For example, you cannot halt a device which is currently in the

DS_SUSPENDED state.

22 Command invalid until pending command completes [DBG#22]

Some commands cannot be sent while the debugger is still processing a

previous request. For example, you cannot send a Resume command while

a restart is pending. This error could occur because the device could be

taking longer than expected to complete its reset processing.

Check whether the device is operational.

23 The target has been built since it was last loaded. Reload it and try

again [DBG#23]

The dependency checker keeps track of all source files, resources, hardware

templates, and so on. The debug file (.DBT) must be kept in sync with the

loaded application to allow the debugger to function.

Clean, rebuild, load and restart the debugger.

24 Device initialization failed or not done yet. [DBG#24]

The debug file information could not be found, possibly because

initialization did not complete successfully.

Clean, rebuild, load and restart the debugger.

25 The source file specified is not in the debugger's application image

[DBG#25]

The debugger tells the editor to load the top-level .nc file when it starts. In

this case the debug file (.DBT) does not agree with the built image.

Clean, rebuild, load and restart the debugger.

26 The source file specified has been modified from the version in the debug

application image. [DBG#26]

A dependency check indicated that you need to re-build, load and start the

debugger again.

Clean, rebuild, load and restart the debugger.

27 Maximum number of breakpoints already set [DBG#27]

The debugger supports up to 100 concurrent breakpoints. Open the

breakpoint list and delete some or all of the existing breakpoints.

Neuron Tools Errors Guide 5

DBG# Description

28 Communication with device timed out before a response was received

A call made using function execution did not return or did not return valid

data.

Verify that the device is operational and communicating with the network.

Rebuild and load the device and try again.

29 Bad format found when reading [debug] NXE [DBG#29]

The .NXE file might be corrupt; possibly it was hand-edited.

Clean, rebuild, load and restart the debugger.

31 Operation requested on symbol that is out of context, e.g. a local

variable in a routine that is not in the current calling sequence

[DBG#31]

This error can happen if the operation attempted on a symbol is not

permitted because the symbol is out of context.

The symbol will be evaluated correctly when available. Using a local

variable for example, the current value will be displayed when the

debugger is suspended within the scope where the local variable is in

context.

32 Cannot read/write timers while running [DBG#32]

The value of a timer variable cannot be evaluated while the debugger is

running.

You can see the correct value of a timer variable when the debugger is in

suspended state.

33 Cannot write this variable[DBG#33]

An attempt was made to update a variable that is read-only or resides in

read-only memory.

34 No remote procedure calls while running [DBG#34]

The debugger uses remote procedure calls or function execution to

accomplish certain tasks while it is not running. Invoking function

execution while running is not allowed.

35

36

Not enough memory in debug kernel to pass RPC parameters [DBG#35]

Not enough Neuron stack space left for RPC [DBG#36]

A remote procedure call failed because of a lack of memory on the device.

Rebuild and load the device and try again. You may need to reduce your

application size in order to debug this device.

6 NodeBuilder Debugger Errors (DBG)

DBG# Description

37 Cannot add to watchlist, limit reached [DBG#37]

You can concurrently view a maximum of 100 objects in the Watch List

pane.

Remove some or all of the entries in the Watch List pane and try again.

38 Can only watch network variables, variables and timer object types

[DBG#38]

39 Cannot debug a read/write protected device [DBG#39]

The NodeBuilder debugger modifies program memory when it sets

breakpoints. You cannot debug a device that has its read/write protect bit

set.

Clear the read/write protect bit in your application, re-build and load the

device, and try again.

40 Cannot refer to a memory area that is not in the Neuron memory map

[DBG#40]

Pointer type variables that reside in unmapped areas cannot be watched by

the debugger.

41 The debugger uses memory blocks to enable peek and poke operations.

These blocks must completely reside within one memory area. Areas

include: ROM, onchip EEPROM, offchip EEPROM, onchip RAM, offchip

RAM and memory mapped I/O. Different memory areas have different

read/write capabilities, etc. [DBG#41]

42 Peek/poke tried to access a code area that is not readable. [DBG#42]

43 There is no debug kernel on the device The debug kernel must be present

in order to perform network debugging. Verify that the Use debug

kernel option is set for the build target [DBG#43]

44 Cannot activate a breakpoint or a steppoint at the current location

because it would overlap with a currently-active breakpoint [DBG#44]

The NodeBuilder debugger executes single-step operations by setting

implicit breakpoints at the next statement in each possible code path. If

the NodeBuilder debugger finds user breakpoints at one of these

statements that would overlap with an implicit breakpoint, this error will

be encountered.

Remove the user breakpoint and try the step operation again.

45 Peek/poke operation attempted in a system area that is not readable.

[DBG#45]

Neuron Tools Errors Guide 7

DBG# Description

47 Variant data too large for provided buffer [DBG#47]

Internal error. The size of a variable encountered was greater than the

buffer provided for it.

49 Failed to get IDispatch pointer [DBG#49]

This is internal error in the COM subsystem.

50 Device did not send a response message [DBG#50]

The debugger sent a request that was not honored. Did the network

buffers overflow? Was the device detached from the network?

51 Device sent an unexpected response message [DBG#51]

Are there two devices with the same subnet/device addresses?

52 Response datapoint not returned [DBG#52]

This error can occur because of communication problems with the device or

problems with OpenLNS.

Check that your device is functioning properly and that the network is not

flooded. Verify that you have the latest versions of OpenLNS and the IzoT

Commissioning tool installed on your computer.

53

55

Request datapoint not returned [DBG#53]

Output datapoint not returned [DBG#55]

This error can occur because of problems with OpenLNS.

Verify that you have the latest versions of OpenLNS and the IzoT

Commissioning tool installed on your computer

56 Debugger feature not yet implemented [DBG#56]

57 Debugger feature not implemented [DBG#57]

58 Failed to remove breakpoints while stopping the debugger [DBG#58]

This error can occur if you modified the source file during a debug session.

If you do not clear all breakpoints at the end of a debugging session, it can

cause the device to not function properly.

Clean, re-build, load and restart the debugger.

59 Debug file is not available [DBG#59]

The Debug file information was not loaded successfully during the

debugger initialization.

Verify that you have the correct debug settings selected for your device

template. Clean, re-build, load and restart the debugger.

8 NodeBuilder Debugger Errors (DBG)

DBG# Description

60 Cannot debug this device because it is not responding. Please make sure

that it is attached to the network and powered on [DBG#60]

61 Cannot debug this device because it has not been commissioned. Use

LonMaker to commission it and try again [DBG#61]

62 Network interface must be configured to run VNI [DBG#62]

Use the control panel to select a VNI network image. The name depends on

which network interface you use. For the PCLTA-20 use: PCL10VNI. Do

not use NSIPCLTA or PCC10L7.

63 Device not found in network database [DBG#63]

Remove the device from the NodeBuilder project tree view. You can then

right-click the Devices folder, click Insert on the shortcut menu, and then

select the device you want to debug. You may have to re-drop the target

device shape with the IzoT Commissioning Tool.

64 Cannot debug this device because it is unconfigured. Use the LonMaker

Commission command to commission it and try again [DBG#64]

65 Cannot debug this device because it is applicationless. Use the

LonMaker Load command to load the application image and try again

[DBG#65]

66 Cannot debug this device because it is hard-offline. Use the LonMaker

Device Manage command to put it online and try again [DBG#66]

67 Cannot debug this device because it is soft-offline Either reset it or use

the LonMaker Device Manage command to put it online [DBG#67]

68 Failed to write device memory. Please try again [DBG#68]

69 Failed to read device memory. Please try again [DBG#69]

70 A device being debugged either stopped communicating or was deleted.

The debug session will stop [DBG#70]

71 Device did not respond to Query Status command [DBG#71]

Probably not a serious problem. The device may not have responded

because of a lost packet.

Neuron Tools Errors Guide 9

2

Dependency Utility Errors (DEP)

This chapter lists and describes the errors that can be reported by the

Dependency Utility component. The Dependency Utility is used by

several build tools, including the compiler, assembler, linker, exporter,

and project make; therefore, these errors could appear when using any

of these tools.

10 Dependency Utility Errors (DEP)

DEP Errors
Table 4 lists the DEP error codes.

Table 4. DEP Error Codes

DEP# Description

1 An error occurred accessing file <file>: <reason> [DEP#1]

A system error occurred when accessing a dependency file, see the error

message for details provided as <reason>.

2 An error occurred when processing dependency information: <reason>

[DEP#2]

A system error not related to file I/O occurred, see the error message for

details provided in <reason>.

3 An error occurred, but no details are available

An unknown error occurred.

You should try to clean and rebuild.

4 malformed record '<tag>' in dependency file <file> [DEP#4]

This error denotes a malformed dependency file.

You should try to clean and rebuild.

5 file <file> can't be referenced in dependency file (might cause build

status calculation to become incorrect). (<reason>) [DEP#5]

A file cannot be referenced when being added to a dependency file, or a non-

recoverable problem occurs when investigating the file described by an

existing dependency file record. This might be caused by the file being

present but corrupt, or being locked by some other process. See <reason>

provided in the message for failure details.

You can ignore this message unless it persists; however, you should try to

perform an unconditional rebuild because the missing data could cause the

Project Make Facility to incorrectly determine the device’s build status.

6 missing separator in clause '<tag>' [DEP#6]

The dependency file is missing a separator in a key/value pair.

You should try to clean and rebuild.

7 index <idx> is unsuitable for section <section> [DEP#7]

A bad index value has been detected within the dependency file (see error

message for section details).

You should try to clean and rebuild.

Neuron Tools Errors Guide 11

Neuron Tools Errors Guide 13

3

Communication Parameter
Calculator Errors (LCL)

This chapter lists and describes errors that can be reported by the

communication parameter calculator.

14 Communication Parameter Calculator Errors (LCL)

LCL Errors
Table 5 lists the LCL error codes.

Table 5. LCL Error Codes

LCL# Description

1 Can not compute communication port control byte. [LCL#1]

The tool failed to compute the communication port (CP) control byte.

Verify that your standard transceiver database (stdxcvr.xml) has not been

corrupted. Re-install the product and choose the Repair option when

prompted.

2 Unrecognized encoded clock rate value <id> [LCL#2]

An unrecognized encoded value was for clock speed (5 for 10MHz, 6 for

20MHz, and so on). Re-install the product and choose the Repair option

when prompted.

3 The transceiver's general purpose data record seems malformed: <gp

data> [LCL#3]

The xcvr_gp_data in STDXCVR.XML seems malformed. Verify that your

standard transceiver database (stdxcvr.xml) has not been corrupted. Re-

install the product and choose the Repair option when prompted.

4 The device's clock rate (encoded value <id>) and the transceiver's

communication rate (encoded value <id>) result in an invalid

communication clock divider value. One of the two input rates might be

invalid [LCL#4]

The device's clock rate and the transceiver's communication rate result in

an invalid communication clock divider value. One of the two input rates

might be invalid. See the error message for failure details. Try increasing

or lowering the Neuron clock speed.

5 Unable to determine <attribute> using transceiver <xcvr name> [LCL#5]

The aspect described as <attribute> cannot be computed as part of the

communication parameter calculations. Verify that your standard

transceiver database (stdxcvr.xml) has not been corrupted. Re-install the

product and choose the Repair option when prompted.

6 The transceiver requires a minimum clockrate which is higher than the

device's configured input clock speed. [LCL#6]

The target chip’s system clock speed for the MAC context is lower than the

required minimum for this transceiver. Choose a higher clock rate where

possible, or choose a different transceiver type.

Neuron Tools Errors Guide 15

LCL# Description

7 The encoded value for the device's clock input of <id> is not within the

supported range of <min> to <max> [LCL#7]

An invalid encoded clock value has been used to describe the hardware

clock speed. See LCL#2.

8 The encoded value for the channel's minimum clock rate of <id> is not

within the supported range of <min> to <max> [LCL#8]

An invalid encoded clock value has been specified for the channel's

minimum clock speed. This value originates from the standard transceiver

database, and the presence of this problem indicates a corrupted or

incorrect database record. Verify that your standard transceiver database

(stdxcvr.xml) has not been corrupted. Re-install the product and choose the

Repair option when prompted.

9 Unable to compute media access control values (raw transceiver data):

the specified Neuron clock frequency is too high for the transceiver

[LCL#9]

This error condition is unavoidable for some combinations of (typically)

high Neuron clock rates and (typically) slow channels. A different

operating mode of the same transceiver or a lower Neuron clock rate might

solve the problem.

Neuron Tools Errors Guide 17

4

LonTalk Interface Developer Errors
(LID)

This chapter lists the LonTalk Interface Developer utility

error and warning messages that are applicable to the

ShortStack Developer’s Kit, FTXL Developer’s Kit, and

i.LON SmartServer LonTalk Interface Developer tool. This

chapter offers suggestions for how to correct the indicated

problems.

18 LonTalk Interface Developer Errors (LID)

Overview
The LID error messages described in this chapter do not necessarily include the

same wording that is shown at runtime. Instead, this chapter provides a

summary of the message’s meaning for each message, followed by a brief

discussion of possible reasons and remedies. In all cases, be sure to consult the

actual message reported by the utility at runtime, because the actual message is

likely to contain additional details (for example, the name of the specific file for

which the message is issued, or more details about the precise failure reason).

A numbering convention is used to identify the LID error messages as errors (1-

3999), warnings (4000-7999), or hint codes (8000-9999). Not all messages are

displayed in all contexts, but the numerical message identifier is always unique

and unambiguous.

LID Errors
Table 6 lists the LID error codes.

Table 6. LID Error Codes

LID# Description

1 An NV, CP, or MT item was expected but not present – internal error

Remove the device interface files (.xif and .xfb extension), and re-run the

LonTalk Interface Developer utility to see if the problem persists. Use the

Trace verbosity level to help track down the problem.

2 A file cannot be opened for read access

See the error message received for details of the offending file. Verify that

the file is available and readable and the path is accessible.

3 A file cannot be opened for write access

See the error message received for details of the offending file. Verify that

the file is available and writable and the path is accessible.

4 A property value is required but has not been obtained from any data

source

This is an internal error, probably a result of an earlier failure. A non-fatal

error during the creation of the device interface file might lead to this error.

Re-run the LonTalk Interface Developer utility in Trace verbosity mode

and carefully examine the LonTalk Interface Developer utility Summary

window to determine the root cause of the failure.

5 An error occurred when reading a device interface file

This is an internal error, probably a result of an earlier failure. A non-fatal

error during the creation of the device interface file might lead to this error.

Re-run the LonTalk Interface Developer utility in Trace verbosity mode

and carefully examine the LonTalk Interface Developer utility Summary

window to determine the root cause of the failure.

Neuron Tools Errors Guide 19

LID# Description

6 An error occurred when reading a device interface file

This is an internal error, probably a result of an earlier failure. A non-fatal

error during the creation of the device interface file might lead to this error.

Re-run the LonTalk Interface Developer utility in Trace verbosity mode

and carefully examine the LonTalk Interface Developer utility Summary

window to determine the root cause of the failure.

(This error is similar to LID#5, but refers to a different internal component

recognizing the error.)

7 A device interface file appears malformed

This is an internal error, probably a result of an earlier failure. A non-fatal

error during the creation of the device interface file might lead to this error.

Re-run the LonTalk Interface Developer utility in Trace verbosity mode

and carefully examine the LonTalk Interface Developer utility Summary

window to determine the root cause of the failure.

8 An unrecognized escape character has been detected in a file or NVVAL

data record

This is an internal error, probably a result of an earlier failure during the

creation of an intermediate file with a .bif file extension. Re-run the

LonTalk Interface Developer utility in Trace verbosity mode and carefully

examine the LonTalk Interface Developer utility Summary window to

determine the root cause of the failure. After the build, make sure the file

with the .bif extension exists and can be read.

9 A FILE or NVVAL value record cannot be read due to an unsupported

construct

This is an internal error, probably a result of an earlier failure during the

creation of an intermediate file with a .bif file extension. Re-run the

LonTalk Interface Developer utility in Trace verbosity mode and carefully

examine the LonTalk Interface Developer utility Summary window to

determine the root cause of the failure. After the build, make sure the file

with the .bif extension exists and can be read.

10 Failure to attach to LONUCL32 service DLL

The LonTalk Interface Developer utility or one of its components failed to

locate a file by name of “LONUCL32.DLL.” This file usually resides in the

same folder that contains the LID.exe application, but can be in any folder

in your current user search path. This file is typically installed into the

LonWorks Bin folder.

12 Failure reading stdxcvr.xml file

The standard transceiver definition file, stdxcvr.xml, cannot be found or

cannot be read. The stdxcvr.xml file is usually installed into the

LonWorks Types folder. Ensure that the file exists and can be read.

This error code applies only to a ShortStack Micro Server.

20 LonTalk Interface Developer Errors (LID)

LID# Description

13 Non-standard transceivers are not supported – the Micro Server uses one

of these and no alternative xcvr has been explicitly specified

This error can occur if the Micro Server does not specify a standard

transceiver as the default, and no standard transceiver has been specified.

Use a standard Micro Server and specify a standard transceiver to avoid

this problem.

This error code applies only to a ShortStack Micro Server.

14 Standard transceiver cannot be found by ID

The standard transceiver requested cannot be found in the standard

transceiver definition file, stdxcvr.xml. Ensure that the stdxcvr.xml file

is present and can be read.

This error code applies only to a ShortStack Micro Server.

15 Standard transceiver cannot be found by name

The standard transceiver requested cannot be found in the standard

transceiver definition file, stdxcvr.xml. Ensure that the stdxcvr.xml file

is present and can be read.

16 A field in the xcvr data appears to be corrupted

The error message contains details about the field. The standard

transceiver definition file, stdxcvr.xml, might be corrupt. Ensure that the

stdxcvr.xml file is present and can be read.

This error code applies only to a ShortStack Micro Server.

17 The specified clock rate is too low for the specified transceiver

The transceiver specified requires a higher clock speed; therefore, you

cannot use the specified combination of clock speed and transceiver.

Change either the Micro Server clock speed or use a different transceiver.

This error code applies only to a ShortStack Micro Server.

18 An error occurred when composing the application XIF file: the data

merge target is ill-chosen (must be the BIF file)

This is an internal error that should not normally occur. However, it could

be a result of an earlier failure. For example, a non-fatal error during the

creation of the device interface file might lead to this error. Re-run the

LonTalk Interface Developer utility in Trace verbosity mode and carefully

examine the LonTalk Interface Developer utility Summary window to

determine the root cause of the failure.

19 File I/O error when writing XIF file

Refer to the error message for details about the failure cause. The error

message contains details such as “disk full,” or “file access denied”.

Neuron Tools Errors Guide 21

LID# Description

20 Error (non-file I/O) when writing XIF file

Refer to the error message for details about the failure cause. The error

message contains details such as “disk full,” or “file access denied”.

21 The xif32bin.exe utility returned an error, indicating failure when

converting XIF to XFB

The binary device interface file (.xfb extension) could not be created. Verify

that a previously existing binary device interface file is not write-protected.

Also make sure the XIF32Bin.exe utility, which is used to create the binary

device interface file, is available in a folder that is part of the system or

current user search path. By default, the utility can be found in your

LonWorks Bin folder.

22 An error occurred when reading a type info file (.NCT)

This is an internal error, possibly resulting from an earlier failure. The

.nct file is an intermediate file used by the LonTalk Interface Developer

utility. Re-run the LonTalk Interface Developer utility in Trace verbosity

mode and carefully examine the LonTalk Interface Developer utility

Summary window to determine the root cause of the failure.

23 An error occurred when reading a type info file (.NCT)

This is an internal error, possibly resulting from an earlier failure. The

.nct file is an intermediate file used by the LonTalk Interface Developer

utility. Re-run the LonTalk Interface Developer utility in Trace verbosity

mode and carefully examine the LonTalk Interface Developer utility

Summary window to determine the root cause of the failure. This error is

similar to LID#22, but refers to different internal software components.

24 Type info (.NCT) file seems corrupted

This is an internal error, possibly resulting from an earlier failure. The

.nct file is an intermediate file used by the LonTalk Interface Developer

utility. Re-run the LonTalk Interface Developer utility in Trace verbosity

mode and carefully examine the LonTalk Interface Developer utility

Summary window to determine the root cause of the failure.

25 Unexpected end of type info file (.NCT)

This is an internal error, possibly resulting from an earlier failure. The

.nct file is an intermediate file used by the LonTalk Interface Developer

utility. Re-run the LonTalk Interface Developer utility in Trace verbosity

mode and carefully examine the LonTalk Interface Developer utility

Summary window to determine the root cause of the failure.

26 Specified target language does not match an implemented code

generator

Choose a different target host language.

22 LonTalk Interface Developer Errors (LID)

LID# Description

27 Unexpected file I/O error when reading a file

Refer to the error message for details of the failure cause.

28 Unexpected error (not a file I/O error) when reading a file

Refer to the error message for details of the failure cause.

29 Unexpected file I/O error when writing a file

Refer to the error message for details of the failure cause.

30 Unexpected error (not a file I/O error) when writing a file

Refer to the error message for details of the failure cause. The error

message contains details such as “disk full” or “file access denied”.

31 A type definition cannot be generated: the type is referenced but not

defined

A type that you have referenced is missing from the NCT file, and

intermediate file used by the LonTalk Interface Developer utility. This is

an internal error. Delete all intermediate files. Re-run the LonTalk

Interface Developer utility in Trace verbosity mode and carefully examine

the LonTalk Interface Developer utility Summary window to determine the

root cause of the failure. If the problem persists, contact Echelon technical

support, submitting all files produced by the LonTalk Interface Developer

utility when running in Trace verbosity level.

32 A type definition is provided but seems incomplete -- an element is

missing

This is an internal error. Delete all intermediate files. Re-run the LonTalk

Interface Developer utility in Trace verbosity mode and carefully examine

the LonTalk Interface Developer utility Summary window to determine the

root cause of the failure. If the problem persists, contact Echelon technical

support, submitting all files produced by the LonTalk Interface Developer

utility when running in Trace verbosity level.

33 Anonymous types are not supported

Any type used for network variables or configuration properties must have

a name. The use of constructs such as, “network input struct { int a, b; }

nviZorro;” is not permitted.

34 A compiler feature cannot be selected

Refer to the error message for details of the failure cause. This error might

be the result of conflicting preferences in the default command file,

LonNCC32.def, located in the LonTalk Interface Developer utility's project

file. Refer to the Neuron C Programmer's Guide and Neuron C Reference

Guide for more details about the command line tools and script files.

Neuron Tools Errors Guide 23

LID# Description

35 Configuration parameters are in use, but no template file has been

found

This might be the result of an earlier error. Delete all intermediate files.

Re-run the LonTalk Interface Developer utility in Trace verbosity mode

and carefully examine the LonTalk Interface Developer utility Summary

window to determine the root cause of the failure.

If the problem persists, contact Echelon technical support, submitting all

files produced by the LonTalk Interface Developer utility when running in

Trace verbosity level.

36 The program ID found in the XIF file seems malformed and cannot be

used to produce the niAppinit data

Use the LonTalk Interface Developer utility and the Standard Program ID

calculator to produce a good program ID record. Delete all intermediate

files. Re-run the LonTalk Interface Developer utility in Trace verbosity

mode and carefully examine the LonTalk Interface Developer utility

Summary window to determine the root cause of the failure.

If the problem persists, contact Echelon technical support, submitting all

files produced by the LonTalk Interface Developer utility when running in

Trace verbosity level.

37 Malformed communication parameters

This is an internal error, which only occurs as a result of an unrecognized

previous error.

This error code applies only to a ShortStack Micro Server.

38 Cannot calculate communication parameters

Refer to the error message for details of the failure cause. Delete all

intermediate files from the LonTalk Interface Developer project directory.

Re-run the LonTalk Interface Developer utility in Trace verbosity mode

and carefully examine the LonTalk Interface Developer utility Summary

window to determine the root cause of the failure.

If the problem persists, contact Echelon technical support, submitting all

files produced by the LonTalk Interface Developer utility when running in

Trace verbosity level.

This error code applies only to a ShortStack Micro Server.

24 LonTalk Interface Developer Errors (LID)

LID# Description

39 Cannot locate Micro Server’s symbol file

Refer to the error message for the filename. A Micro Server has three

groups of files: image files that get loaded into the Smart Transceiver (.nei,

.nxe, or .nri extension), device interface files (.xif or .xfb extension), and

symbol files (.sym extension). All of these files must share the same base

name, and they must reside in the same location. This error describes a

problem in locating the symbol file. The expected name and location is

detailed in the error message.

This error code applies only to a ShortStack Micro Server.

40 Cannot find required symbol in Micro Server's symbol file

Refer to the error message for the symbol name. The Micro Server's symbol

table can be read but lacks a required symbol. Be sure to use a standard

Micro Server.

This error code applies only to a ShortStack Micro Server.

42 A type definition cannot be generated -- the type definition has more

elements than expected

Delete all intermediate files. Re-run the LonTalk Interface Developer

utility in Trace verbosity mode and carefully examine the LonTalk

Interface Developer utility Summary window to determine the root cause of

the failure. If the problem persists, contact Echelon technical support,

submitting all files produced by the LonTalk Interface Developer utility

when running in Trace verbosity level.

43 Explicit addressing is requested by the user or required by the model file

but is not supported by the Micro Server

Choose a different Micro Server, or remove the need for explicit addressing.

This error concerns “explicit addressing” and not “explicit messages.” A

Micro Server must explicitly support explicit addressing of explicit

messages (unbound messages). Explicit messages that use implicit

addressing (bound messages) can be used with any Micro Server.

This error code applies only to a ShortStack Micro Server.

44 A custom image is required for the chosen transceiver type

The ShortStack Micro Server images included with the ShortStack

Developer's Kit can only be used with FT and PL Smart Transceivers.

This error code applies only to a ShortStack Micro Server.

45 The selected Micro Server image cannot be used with a clock rate

derived from 6.5536 MHz

This error code applies only to a ShortStack Micro Server.

Neuron Tools Errors Guide 25

LID# Description

46 One or more configuration parameters implemented within a file are

present, FTP or DMF must be implemented

Alternatively, you can declare configuration properties as configuration

network variables.

47 The file transfer protocol (FTP) and direct memory files (DMF) access

mechanisms are mutually exclusive

48 The chosen Micro Server is based on firmware version <v>. This version

does not support the direct memory files

This error code applies only to a ShortStack Micro Server.

49 The FTP server interface is partially implemented, missing the specified

member of the device object

50 Data files and file directory are too big for the available space.

Available: <n> bytes, required: <m> bytes (missing: <p> bytes) [LID#50]

Possible remedies: reduce the size of files by removing extraneous data

files, or by sharing CP, or implement FTP.

51 Malformed XML data (cannot convert to expected type)

52 The specified application framework type is unknown

53 No target framework has been supplied, or the requested framework is

not registered with, or not known to, the Builder

54 No code generator found for the selected target framework

57 Required source file missing

58 The specified Micro Server image file cannot be copied into the project

folder

This error code applies only to a ShortStack Micro Server.

59 Too many network variables. The sum of static and dynamic variables

cannot exceed <s>.

The message text specifies the value of s. In general, the total number of

network variables cannot exceed 4096.

26 LonTalk Interface Developer Errors (LID)

LID# Description

60 Insufficient number of addresses

This message includes how many addresses are required for the

application, and how many were specified.

Whereas one or more network variables can share an address table entry

(although such sharing might limit the versality of network variable

connections), each bindable message tag requires its own one address table

entry. The address table must provide at least one entry for each bindable

message tag, plus at least one address table entry for all network variables

implemented (if any).

To avoid this error, you must allocate a larger address table, or declare

fewer bindable message tags.

Note that although message tags cannot share an address table entry,

multiple application messages can share the same message tag (if they all

communicate with the same target devices).

61 The DMF window specification is invalid, as it exceeds the 64 KB

address range

62 Insufficient buffer space

The message includes the total number of bytes available for transceiver

buffers and how many additional bytes your selected configuration

requires.

This error occurs because you specified that the LonTalk Interface

Developer utility declare more buffers than the available memory space

within the device.

To avoid this error, supply or declare more RAM, or request fewer or

smaller buffers.

63 Malformed data: <d> is not a <t>

Data d does not meet expectations t. For unmodified data, this error

condition should not occur.

Re-install the product, and choose the repair option when prompted.

64 Failure loading neuron.xml

The neuron.xml database, located in the Types folder within your local

LonWorks folder, is a central repository of data that describes the various

attributes and capabilities of Neuron Chips and Smart Transceivers. A

failure to load this database indicates a fundamental error.

Re-install the product, and choose the repair option when prompted.

65 The chosen clocking scheme (ID <s>) doesn't support external clock <c>

with a clock multiplier of <m>

This error indicates inconsistent and incorrect clocking specifications.

Verify your clocking-related preferences.

Neuron Tools Errors Guide 27

LID# Description

66 The <s> Micro Server does not support clock multiplier <m> in the

chosen configuration

This error can occur if you specify incorrect clocking details for the LonTalk

Interface Builder (the command-line interface for the LonTalk Interface

Developer utility). Check your preferences.

This error code applies only to a ShortStack Micro Server.

67 The <s> Micro Server does not support clock <c> in the chosen

configuration

This error can occur if you specify incorrect clocking details for the LonTalk

Interface Builder (the command-line interface for the LonTalk Interface

Developer utility). Check your preferences.

This error code applies only to a ShortStack Micro Server.

68 The <s> Micro Server does not support transceiver <t> in the chosen

configuration

This error can occur if you specify incorrect clocking details for the LonTalk

Interface Builder (the command-line interface for the LonTalk Interface

Developer utility). Check your preferences.

This error code applies only to a ShortStack Micro Server.

69 The <s> Micro Server is not supported by the Micro Server database

This error can occur if you incorrectly specify the Micro Server for the

LonTalk Interface Builder (the command-line interface for the LonTalk

Interface Developer utility). Check your preferences.

This error code applies only to a ShortStack Micro Server.

70 Error loading the Micro Server database: <detail>

This error occurs upon a particular failure when loading the Micro Server

database, as detailed in the error message. Unless the error detail suggests

a different remedy, you should re-install the product and choose the

Repair option when prompted.

Also, temporarily remove any user-defined extensions to the Micro Server

database (that is, remove or rename the UserServers.xml file).

This error code applies only to a ShortStack Micro Server.

71 Clock multiplier <m> is not supported in this configuration

This error can occur if you specify an incorrect set of arguments for the

LonTalk Interface Builder command line interface (the command-line

interface for the LonTalk Interface Developer utility). Check your

arguments.

28 LonTalk Interface Developer Errors (LID)

LID# Description

72 <f> external clock is not supported in this configuration

This error can occur if you specify an incorrect set of arguments for the

LonTalk Interface Builder command line interface (the command-line

interface for the LonTalk Interface Developer utility). Check your

arguments.

Note that the -clock parameter refers to the external clock, not the system

clock.

4001 An XIF file contains more fields than expected

Refer to the warning message for line # and filename. This might result in

an automatic downgrading of the device interface file to the version

supported by the FTXL or FTXL tools. Check www.echelon.com for

available updates.

4002 An intermediate file cannot be removed in the sweep-phase. See message

for details

Refer to the warning message for details about the warning cause. The

sweep occurs when the utility’s operation is complete and the utility did not

run in the Trace verbosity level. The warning indicates that an

intermediate file cannot be removed.

4004 The Micro Server's default clock rate does not match the explicitly

specified clock speed

A Micro Server image supports a default clock rate. You might have to

reconsider your clock rate selection. Otherwise, consult your Micro Server

documentation for possible clock rate restrictions and make sure your

chosen clock rate matches the hardware.

This warning code applies only to a ShortStack Micro Server.

4006 A file cannot be copied

This is possibly, but not necessarily, fatal. When the LonTalk Interface

Developer utility creates the host framework, it produces several files based

on input provided by the user. It also copies the necessary files into the

destination folder. The utility-generated files refer to these files, which are

required to build the host application. Thus, this issue is non-fatal for the

LonTalk Interface Developer utility, but probably fatal when building the

host application. See also warning LID#4017.

4007 One or more configuration properties implemented within a file are

present – LW-FTP must be implemented

Alternatively, you can declare configuration properties as configuration

network variables.

This warning code applies only to a ShortStack Micro Server.

http://www.echelon.com/

Neuron Tools Errors Guide 29

LID# Description

4009 One or more configuration properties are present but the LW-FTP-

related network variables are not

This warning indicates that the LONWORKS file transfer protocol (LW-FTP)

must be implemented (because of the presence of configuration properties

that are held in files), but the absence of the LW-FTP-related network

variables indicates that LW-FTP has not been implemented.

Change the declaration of your configuration properties to configuration

network variables (if possible), or complete the implementation of LW-FTP.

See www.echelon.com for more information about the file transfer protocol

(LW-FTP).

This warning code applies only to a ShortStack Micro Server.

4011 The .NCT file references a built-in type with no host equivalent known to

LonTalk Interface Developer utility

This condition is unlikely to occur and does report an internal error. Check

www.echelon.com for available software updates that address the problem,

or contact LonSupport@Echelon.com. This message is a warning rather

than an error because the condition does not prevent your application from

working. Carefully check the type definitions provided in LonNvTypes.h

and LonCpTypes.h (both generated by LonTalk Interface Developer

utility) and correct the offending type. Continue using these files and build

your FTXL device.

4012 The channel type specified in the standard program ID does not match

the channel type served by the transceiver in use

This message reminds you to correct the transceiver choice or the program

ID. While the mismatch does not cause the device to malfunction, it breaks

the interoperability of the device and might cause a network tool to prevent

installation of the device.

This warning code applies only to a ShortStack Micro Server.

4013 Explicit addressing not requested but seems required

The presence of message tags with the bind_info(nobind) modifier in the

model file indicates that explicit addressing is probably required. Enable

explicit addressing and re-generate the application framework using the

LonTalk Interface Developer utility. See also the LID#4014 and LID#4015

warnings.

This warning code applies only to a ShortStack Micro Server.

http://www.echelon.com/
http://www.echelon.com/
mailto:LonSupport@Echelon.com

30 LonTalk Interface Developer Errors (LID)

LID# Description

4014 Explicit addressing specified but not required

This warning reminds you that you have requested support for explicit

addressing, although it does not seem to be required. Explicit addressing

requires larger buffers on the host, therefore support for explicit addressing

is advisable only when needed. Message tag declarations that are intended

for use with explicit addressing should be marked with the

bind_info(nobind) modifier to signal the use of explicit messaging. See

also the LID#4013 and LID#4015 warnings.

4015 Explicit addressing specified but neither supported nor required

Although support for explicit addressing has been requested, it does not

appear to be required. See also the LID#4013 and LID#4014 warnings.

4016 FTP implementation suspect -- no message tag but SNVT_file_*

implemented

The implementation of the file transfer protocol is suspect, as the FTP-

related network variables are present but no message tag has been

declared.

4017 Files cannot be made writable

When the LonTalk Interface Developer utility creates the host framework,

it produces several files based on input provided by the user. It copies the

necessary files into the destination folder. These files are made writable

after they are copied, unless this warning indicates it is not possible. See

also the LID#4006 warning.

4018 The --extApi command is deprecated; use --queryapi and --updateapi

instead

This warning code applies only to a ShortStack Micro Server.

4019 No image file for the specified Micro Server could be found

This warning code applies only to a ShortStack Micro Server.

4020 Existing Micro Server image not overwritten

This warning code applies only to a ShortStack Micro Server.

4021 Application message support has been enabled to meet the application's

requirements

This warning code applies only to a ShortStack Micro Server.

4022 Application messaging support has been requested, but no message tag

is declared

This warning code applies only to a ShortStack Micro Server.

Neuron Tools Errors Guide 31

LID# Description

4023 Insufficient addresses are implemented for the specified number of

network variables

For more robust device behavior, increase the number of addresses.

4024 The DMF window is too large and is unlikely to be supported by your

Micro Server hardware.

This warning code applies only to a ShortStack Micro Server.

4025 The program ID's channel identifier should be set to 0x04 (TP/FT-10)

4026 Your transceiver buffer configuration leaves a number of bytes unused

8001 Your device supports the file transfer protocol, but no configuration

property files are available

8002 The Micro Server's default transceiver does not match the explicitly

specified transceiver

A Micro Server image supports a default transceiver type. This warning

indicates that a different transceiver has been chosen. The LonTalk

Interface Developer utility calculates the correct communication

parameters for the desired transceiver. Consult your Micro Server

documentation for possible restrictions of supported transceiver types.

This hint code applies only to a ShortStack Micro Server.

8003 Persistent network variables were declared – some mechanism to

implement data persistency must be provided

When the LonTalk Interface Developer utility recognizes a network

variable that has been declared with an eeprom modifier, or when the

LonTalk Interface Developer utility recognizes non-constant configuration

network variables, the utility issues this warning to remind you to provide

persistent data storage for these items. Such data storage also applies to

configuration properties implemented within configuration files, unless

they are read-only.

The type of persistent data storage that you provide depends on the

application. For example, you could use special, non-volatile memory

devices (such as EEPROM, flash, or NVRAM), or some other non-volatile

storage media (such as floppy disk drives, hard disk drives, or solid-state

drives).

This hint code applies only to a ShortStack Micro Server.

8004 Copied the specified Micro Server image file into the project folder

This hint code applies only to a ShortStack Micro Server.

8005 Your transceiver buffer configuration leaves a number of bytes unused

32 LonTalk Interface Developer Errors (LID)

LID# Description

8006 Your application supports direct memory files, but no configuration

property files are implemented

Your model file contains a network variable of type SNVT_address, but

your project does not include a configuration property file. Remove the

SNVT_address network variable if it is not used.

Neuron Tools Errors Guide 33

5

LonWorks XML Errors (LWX)

This chapter lists and describes the errors that can be

reported by the LONWORKS XML software component. This

software component is used by multiple other components,

including the Neuron Linker, the Project Make utility, the

IzoT NodeBuilder software, and others. Therefore, these

errors can be reported when using any of these tools.

34 LonWorks XML Errors (LWX)

LWX Errors
Table 7 lists the LWX error codes.

Table 7. LWX Error Codes

LWX# Description

101 Unexpected non-numeric value found in XML data <string> [LWX#101]

This might happen if an XML file was edited outside of IzoT NodeBuilder

tool. If the file is saved through the IzoT NodeBuilder tool and its

components, it might be fixed up, but data may be lost.

Open the file with an editor, find the noted string and see if there is

anything obviously wrong with the text and try to fix it.

120 Unexpected code path [LWX#120]

Only a program error can cause this. Re-install the product and choose the

Repair option when prompted.

121 Failed to create COM object [LWX#121]

Verify that the MSXML3.DLL file is in the system folder. Attempt to fix

the problem by manually re-registering the MSXML3.DLL with the

Windows REGSVR32.EXE utility. Open a command prompt and enter the

following command:

 Regsvr32 msxml3.dll

122 Overwrite tried on a write-protected file [LWX#122]

Perhaps a file was not checked out of source code control. Clear the read-

only attribute, and try again if you need to update the file.

123 Uninitialized pointer [LWX#123]

Only a program error can cause this. Re-install the product and choose the

Repair option when prompted.

124 File not found [LWX#124]

Check your settings to make sure the file path is correct and verify that the

file exists.

125 Unexpected data [LWX#125]

This could be due to a renamed file, a hand edited file or a program error.

Re-install the product and choose the Repair option when prompted.

128 Non-unique XML key found [LWX#128]

Collections need unique key values. The file was probably edited by hand.

Edit the file to remove the duplicate so it may be loaded.

Neuron Tools Errors Guide 35

LWX# Description

131 Expected format attribute not found [LWX#131]

Either the file was added by hand or there is a program error. Re-install

the product and choose the Repair option when prompted.

132 Unrecognized boolean constant'<v>’ [LWX#132]

A malformed value was read for a Boolean element or attribute. The utility

recognizes 1, TRUE and YES for logical true values, 0, FALSE and NO for

logical false values.

The related XML data was probable edited by hand. Try to revert or

correct these changes, or re-install the product and choose the Repair

option when prompted.

Neuron Tools Errors Guide 37

6

Neuron Assembler Errors (NAS)

This chapter lists and describes the errors that can be

reported by the Neuron Assembler.

38 Neuron Assembler Errors (NAS)

NAS Errors
Table 8 lists the NAS error codes.

Table 8. NAS Error Codes

NAS# Description

1 Too many predefined symbols [NAS#1]

The assembler encountered too many symbols. Try reducing your source in

size and complexity (for example, you could split your source into multiple

modules.

2

3

Out of memory [NAS#2]

Out of memory [NAS#3]

The assembler failed to allocate required memory from the operating

system. Close the IzoT NodeBuilder tool, IzoT Commissioning tool, and

other applications, and then try again.

4 Program error code <code> [NAS#4]

An internal error occurred.

5 Too many errors [NAS#5]

The assembler stopped assembling your code after too many errors were

encountered. Address the errors reported and try again.

6 Division by zero in expression [NAS#6]

The expression results in a division by zero. Review your expression.

7 Expression list is too long [NAS#7]

The expression is too complex.

8 Unknown op ‘z’ in emit_expr [NAS#8]

An internal error occurred.

9 Label <s> is already defined [NAS#9]

Label names must be unique for each module. Rename the duplicate name.

10 List of symbols is too long [NAS#10]

See NAS#1

11 Keyword EXPORT must be preceded by label or followed by symbol

[NAS#11]

A syntax error was detected in your use of the EXPORT directive. It must

be followed by a symbol, or it must be preceded by a label definition.

Neuron Tools Errors Guide 39

NAS# Description

12 Symbol <s> is used but never defined [NAS#12]

An unknown symbol was used. For symbols defined within the same

module, check the spelling of the symbol definition and reference. For

symbols referring to items defined in other modules, make sure to IMPORT

the symbol.

13 Symbol <s> past end of relocatable segment [NAS#13]

14 Too many search paths [NAS#14]

Too many search paths were specified with the –s (--search) command line

option. Specify fewer search paths.

15 Include files are too deeply nested [NAS#15]

Include files are too deeply nested, or deep nesting occurs due to include file

recursion. Review your INCLUDE statements and include files.

16 Too many input files [NAS#16]

Too many input files. Reduce the number of include files.

17 System open file limit exceeded [NAS#17]

The assembler could not open a file due to an operating system restriction.

18 Cannot open <file> [NAS#18]

The assembler failed to open the file described in the message. Check to

see if the file exists and is accessible.

19 Cache error for file <file> [NAS#19]

An internal error occurred. Close the tool and try again.

20 IF[[N]DEF] too deeply nested [NAS#20]

Too many nested IF, IFDEF or IFNDEF expressions. Reduce the

complexity of your conditional assembly.

21 ELSE without matching IF[[N]DEF] [NAS#21]

An ELSE directive was encountered without a matching IF, IFDEF or

IFNDEF directive. Review your conditional assembly expression.

22 ENDIF without matching IF[[N]DEF] [NAS#22]

An ENDIF directive was encountered without a matching IF, IFDEF or

IFNDEF directive. Review your conditional assembly expression.

40 Neuron Assembler Errors (NAS)

NAS# Description

23 IF[[N]DEF] is never terminated [NAS#23]

A conditional expression using the IF, IFDEF or IFNDEF directive was

recognized, but the terminating ENDIF was never encountered. Review

your conditional assembly expression.

24 Too many conditional assembly directives [NAS#24]

Too many conditional assembly directives were encountered. Try reducing

the complexity of your conditional assembly, or split the module into two.

25 Unexpected character <c> in input [NAS#25]

A general parser error occurred due to invalid input. Review your source

code and correct the misspelled directive or instruction.

26 An invalid radix character was selected [NAS#26]

NAS supports b, d, h and o radix indicators for binary, decimal,

hexadecimal and octal constants, only. The radix indicator provided was

none of those.

27 An invalid constant was input [NAS#27]

The constant is invalid.

28 The constant does not match the radix setting [NAS#28]

Use digits 0 and 1 for binary constants, 0-7 for octal, 0-9 for decimal, and 0-

9 and A-F (case insensitive) for hexadecimal constants.

29 This constant is too large <value> [NAS#29]

The constant’s value exceeds the limits of its type

30 Truncating long name <name> [NAS#30]

The name provided is too long. NAS truncates the name and continues to

operate; however, the truncation may cause follow-on errors if it results in

symbol duplication.

31 Cannot use keywords as labels [NAS#31]

Choose a different label.

32 Unterminated string constant [NAS#32]

You must enclose strings with a pair of quotes.

33 <radix> is not a valid radix name [NAS#33]

Use only BINARY, OCTAL, DECIMAL or HEX with the RADIX directive.

Neuron Tools Errors Guide 41

NAS# Description

34 Invalid name for the SEG directive [NAS#34]

You specified an invalid segment type. See the Neuron Assembly Language

Reference for a discussion of the SEG directive.

35

36

RESOURCE directive requires expression [NAS#35]

RESOURCE expression must be a constant [NAS#36]

A RESOURCE directive is being used incorrectly. RESOURCE directives

are reserved for use by the Neuron C Compiler. Do not specify RESOURCE

directives in your Neuron Assembly code.

37 ORG value must be a constant [NAS#37]

You must use a constant value (or none) with the ORG directive. You

cannot use expressions with the ORG directive.

38 Cannot evaluate IF expression [NAS#38]

A problem occurred when evaluating an IF expression. Check your

conditional assembly code.

39 EQU requires a label [NAS#39]

Provide the missing label.

40 Cannot resolve EQU expression [NAS#40]

A problem was encountered with an EQU directive. Review your code.

41 RES value must be a constant [NAS#41]

A problem was encountered with a RES directive. Review your code.

42 Pointer number must be a constant [NAS#42]

Pointer registers can only be referenced using constant identifiers in the

0..3 range.

43 Pointer value is out of 0..3 range [NAS#43]

Pointer registers can only be referenced using constant identifiers in the

0..3 range.

44 Small immediate field must be a constant [NAS#44]

Only constant values are supported with the PUSHS instruction.

45 Constant is out of 1..8 range [NAS#45]

A constant was outside the supported value range.

46 Constant is out of 0..7 range [NAS#46]

A constant was outside the supported value range.

42 Neuron Assembler Errors (NAS)

NAS# Description

47 Offset must be a constant [NAS#47]

48

49

50

51

52

Constant is out of -1..-8 range [NAS#48]

Offset value is out of 0..255 range [NAS#49]

Offset value is out of 8..23 range [NAS#50]

First operand is out of 0..255 range [NAS#51]

Second operand is out of 0..255 range [NAS#52]

A constant, offset value or operand was outside the supported value range.

53 <f> is an unknown function name [NAS#53]

See the Neuron Assembly Language Reference for a list of supported

function names.

54 Invalid resource name [NAS#54]

A RESOURCE directive is being used incorrectly. RESOURCE directives

are reserved for use by the Neuron C Compiler. Do not specify RESOURCE

directives in your Neuron Assembly code.

55 Constant is too large [NAS#55]

56 Could use small branch instruction [NAS#56]

A performance warning. Smaller branch instructions use less code space

and execute faster.

57 Could use smaller 'PUSHS' instead [NAS#57]

You can use PUSHS to push immediate constants in the 0..7 range.

PUSHS uses less code space and executes faster than PUSH.

58 Useless instruction [NAS#58]

The instruction has no effect.

59

60

61

62

63

64

65

66

Could use smaller 'INC' instead [NAS#59]

Could use smaller ‘DEC’ instead [NAS#60]

Could combine ‘RET’ with previous instruction [NAS#61]

Could replace ‘CALLR’+’RET’ with ‘SBR’ [NAS#62]

Could replace ‘CALLR’+’RET’ with ‘BR’ [NAS#63]

Could replace ‘CALL’+’RET’ with ‘BRF’ [NAS#64]

Could replace ‘CALLF’+’RET’ with ‘BRF’ [NAS#65]

Could use immediate-operand instruction with previous push [NAS#66]

These suggestions are provided for more efficient code.

Neuron Tools Errors Guide 43

NAS# Description

67

68

69

70

71

72

73

74

Value <v> is larger than 0x1FFF [NAS#67]

Offset <o> is out of 0..15 range [NAS#68]

Offset <o> is out of -128..127 range [NAS#69]

Value <v> is out of 0..255 range [NAS#70]

Offset <o> is out of 8..23 range [NAS#71]

First value <v> is out of 0..255 range [NAS#72]

Second value <v> is out of 0..255 range [NAS#73]

Constant <c> too large [NAS#74]

75 Zero-length segment discarded [NAS#75]

This diagnostic is not in use.

76 Invalid global expression [NAS#76]

77 Cannot create listing file - disk full? [NAS#77]

The tool cannot create the listing file. The disk might be full, or the path is

inaccessible.

78 Cannot write listing file - disk full? [NAS#78]

The tool cannot create the listing file. The disk might be full, or the path is

inaccessible.

89

90

Cannot create file <file> [NAS#89]

Write error [NAS#90]

The tool cannot create or write to a file. The disk might be full, or the path

not accessible.

44 Neuron Assembler Errors (NAS)

NAS# Description

106

107

108

109

Cannot write dependency file .nadep (might cause build status

calculation to become incorrect) [NAS#106]

Cannot add switch record to dependency file .nadep (might cause build

status calculation to become incorrect) [NAS#107]

Cannot add input file record to dependency file .nadep (might cause

build status calculation to become incorrect) [NAS#108]

Cannot add output file record to dependency file .nadep (might cause

build status calculation to become incorrect) [NAS#109]

A file cannot be referenced when being added to a dependency file, or a non-

recoverable problem occurs when investigating the file described by an

existing dependency file record. This might be caused by the file being

present but corrupt, or being locked by some other process. See <reason>

provided in the message for failure details.

You can ignore this message unless it persists; however, you should try to

perform an unconditional rebuild because the missing data could cause the

Project Make Facility to incorrectly determine the device’s build status.

110 Unspecified error in option processing [NAS#110]

111 Unspecified error in execution of assembler [NAS#111]

115 <message as defined by user via ERROR directive> [NAS#115]

This is a user-defined error message that you have defined in your source

code with the ERROR directive.

116 Too many libraries. Ignoring <library> [NAS#116]

Too many libraries are listed with the LIBRARY directive. List additional

libraries explicitly when linking.

Neuron Tools Errors Guide 45

7

Neuron C Compiler Errors (NCC)

This chapter lists Neuron C compiler warning and error

messages, and offers suggestions for how to correct the

indicated problems.

46 Neuron C Compiler Errors (NCC)

NCC Errors
Table 9 lists the NCC error codes.

Table 9. NCC Error Codes

NCC# Description

1 Maximum token length exceeded [NCC#1]

Neuron C tokens are limited to a maximum of 256 characters. This applies

to identifiers, numbers, string constants, and so on. There is no limit on

the lengths of Neuron C comments.

2 Character in input is not acceptable for C source [NCC#2]

The Neuron C compiler uses only the minimum ANSI C standard character

set. Additionally, the characters $, @, and `(accent-grave) can be used in

string and character constants. All other non-standard characters are

treated as white space, except for ^D and ^Z. Appearance of either of these

two characters in the input file is taken to be an end-of-file marker.

3 Float constants are not supported [NCC#3]

4 Float exponent too big [NCC#4]

5 The 'expand_array_info' option does not apply to a msg_tag [NCC#5]

6 Comment not properly terminated [NCC#6]

An end-of-file condition was discovered in the middle of a comment. This is

an unterminated comment condition and is an error. The error message

contains the beginning of the comment.

7 Comment may not be properly terminated [NCC#7]

This warning may be useful in discovering unintentional comments in your

Neuron C program. The definition of C does not permit nesting of

comments. Any text of the form shown below is treated as a single

comment.

 /* <text> /* <text> */

Note, however, that this particular pattern may indicate a condition where

there are actually two comments intended, but the first is unterminated.

Thus, the compiler detects this condition and prints a warning message.

The comment text is printed also, for up to 256 characters.

8 Character constant is too long [NCC#8]

Neuron C only supports single-character constants (this does not apply to

use of the \ escape character sequence).

Neuron Tools Errors Guide 47

NCC# Description

9 String constant is not terminated [NCC#9]

ANSI C does not permit a string constant to span lines; nor can a string

constant be terminated by end-of-file. To create a very long string constant,

use the ANSI C string constant concatenation feature, demonstrated below.

Note that the parts of the string are concatenated without insertion of any

white space, newline, or other separator character.

 "This is a long string constant "

 "split across two source lines."

Note that this error message may also indicate mismatched quotes in

strings.

Use \" to include a quote character in a string constant.

10 Preprocessor directives cannot be nested in macros [NCC#10]

A macro cannot contain the character # outside of the text of a string or a

character constant.

11 Directive #else/#endif without corresponding #if/#ifdef/#ifndef [NCC#11]

The preprocessor directives controlling conditional compilation must

always exist in matching pairs, similar to the open brace { and close brace }

in a C program. For example, the pair #ifdef and #endif must match. An

optional #else may be contained in between the #ifdef and #endif

directives.

12 Unrecognized or ill-formed pragma was ignored [NCC#12]

The pragma referenced by the error message is not one which is recognized

or supported by the Neuron C compiler.

13 Cannot enable micro_interface with Net Vars or msg_tags declared

[NCC#13]

The #pragma micro_interface can only appear in a program if there

have not been any prior declarations of network variables or message tags.

This pragma can only be used with the LonBuilder Microprocessor

Interface Program (MIP).

14 Invalid value for this pragma [NCC#14]

The numeric value following the pragma that the message refers to is not of

appropriate value. Consult the documentation for the specific pragma to

ascertain the applicable valid values. Pragmas are documented in the

Compiler Directives chapter of the Neuron C Reference Guide.

48 Neuron C Compiler Errors (NCC)

NCC# Description

15 Cannot repeat this pragma [NCC#15]

The following compiler directives can only be used once:

 codegen

 num_addr_table_entries

 num_alias_table_entries

 num_domain_entries

 one_domain

 receive_trans_count

 set_guidelines_version

 set_id_string

 set_netvar_count

 set_device_sd_string

 set_std_prog_id

 specify_io_clock

16 Macro name, macro parameter name, or macro argument is too long

[NCC#16]

No identifier in Neuron C can exceed 256 characters

17 Line too long in macro definition [NCC#17]

No input line in Neuron C can exceed 256 characters. You can use the line

continuation feature of ANSI C to extend the line. This feature is activated

by using a \ character at the end of the line.

18 Invalid preprocessor directive syntax [NCC#18]

This error indicates one of any number of syntax problems in the compiler

directive of the line indicated. The proper syntax is:

 #directive [value]

where the optional value is dependent on the particular directive.

19 Extra entries in preprocessor directive [NCC#19]

This error indicates that, although the preprocessor directive was of the

correct syntax, there are additional entries on the line that were not part of

the directive.

20 Empty input source file

Check for the existence of the file that is being compiled. Is the file name

and path name correct?

21 Unexpected END-OF-FILE in source file [NCC#21]

An incomplete source construct unexpectedly ended in an end-of-file

condition. This may indicate mismatched brace characters { and } or may

indicate the use of a function macro with an insufficient number of right

(ending) parentheses.

Neuron Tools Errors Guide 49

NCC# Description

22 Repeated keyword was ignored [NCC#22]

The keyword const or volatile is used more than once in modification of a

pointer type.

23

24

Not enough address table entries [NCC#23]

Not enough address table entries for optimum efficiency [NCC#24]

Most LONWORKS devices are limited to 15 address table entries. Each

bindable message tag consumes one address table entry, whether bound or

not. Network variables can share address table entries, but there must be

at least one available.

If there aren’t enough address table entries for all the message tags plus at

least one for network variables, you get the error [NCC#23].

However, if there aren’t enough entries available for each output network

variable to have its own address table entry, you get the warning [NCC#24]

(unless you already have the maximum number of address table entries in

your program). This is because the network variable binder would then

have to share the remaining address table entries among the network

variables.

Example:

If there are three network variables (each going to a different destination)

and there are only two address table entries, then at least two of the

network variables would have to use the same address table entry (if they

are all connected). Now let’s assume that all the variables are connected,

each point-to-point to a different device. If each variable had its own

address table entry, the LonTalk messages would all use subnet/device

(that is, point-to-point) addressing.

However, for the two variables sharing the same entry, a group will be

constructed. This means that, when either variable is updated, the updates

will go to all members in the group. This does not necessarily cause a

problem, as the nodes that don’t have the variable will discard the update.

The major inefficiency the compiler is warning about, though, is that each

destination in the group, regardless of whether it uses the message, will

respond with an acknowledgment message. This situation thus leads to

increased unnecessary acknowledgements, and extra network traffic.

25 Cannot open assembly output file [NCC#25]

The compiler cannot open the output file for code generation. This could be

caused by an existing file being marked as read-only, or a missing folder, or

a problem with the operating system.

26 Cannot open bplate.ns [NCC#26]

During compiler initialization, the compiler attempts to open several

support files. One of these files is named bplate.ns. This file should reside

in NodeBuilder system include directory (default location is

\Lonworks\NeuronC\Include). This message could indicate a disk error.

50 Neuron C Compiler Errors (NCC)

NCC# Description

27 Special event & init code block exceeds size limitation [NCC#27]

The tasks corresponding to the reset, online, offline, and wink events, as

well as any when clause arbitrary expressions all generate code in a

special area known as the APINIT block. If #pragma

disable_mult_module_init (see the Compiler Directives chapter of the

Neuron C Reference Guide) is used, any non-zero initialization of global

RAM variables and I/O objects place code here as well. This block is limited

in size to 255 bytes.

If you exceed the size of this block, try moving the bulk of code in any tasks

that correspond to reset, online, offline, and wink events to functions

that are called from these tasks. If you are using the #pragma

disable_mult_module_init directive, remove the pragma.

28 Incorrect I/O object type for io_changes event [NCC#28]

See the description of the event in the Predefined Events chapter of the

Neuron C Reference Guide. Verify that your I/O object type supports this

event.

29 Use only 15000, 10000, or 1000 for I/O object's baud [NCC#29]

The bitshift I/O object types can have their bit rates specified with either

the baud or kbaud I/O declaration modifier. If kbaud is used, the only

legal values are 15, 10, and 1. If baud is used, the only legal values are

15000, 10000, and 1000. The default bit rate for these I/O object types is

15kbps, and need not be specified.

30 Use only 15, 10, or 1 for kbaud rate value [NCC#30]

The bitshift I/O object types can have their bit rates specified with either

the baud or kbaud I/O declaration modifier. If kbaud is used, the only

legal values are 15, 10, and 1. If baud is used, the only legal values are

15000, 10000, and 1000. The default bit rate for these I/O object types is

15kbps, and need not be specified.

31 Too many ‘when’ clauses [NCC#31]

Neuron C places entries representing the when clauses in a table that is

interpreted by the Neuron Chip firmware scheduler. The table's entries are

variable sized, as some event expressions are more complex than others.

The table size is limited to 256 bytes. When the table is full, no more when

clauses can be accepted. Note that the limit is on the number of when

clauses and not on the number of when tasks.

32 Cannot open binder interface file(s) [NCC#32]

This problem could occur when the compiler attempts to open files with

.BIF or .BF2 extension, but the file cannot be opened properly with write

access. It is possible that the file is marked read-only, or that the output

folder does not exist, or there is a disk or operating system problem.

Neuron Tools Errors Guide 51

NCC# Description

33 Cannot open assembly include file named in pragma directive [NCC#33]

There is a #pragma include_assembly_file that can be used to include

an assembly source file in the compiler code generator’s assembly code

output file. The named file cannot be found or opened.

34 Attempt to divide by the constant zero [NCC#34]

The compiler detected that a constant expression contains a division by

zero. Constant expressions are evaluated at compile time by the Neuron C

compiler. Correct the expression.

35 SD string supplied exceeds 1023 character limit [NCC#35]

The sd_string option for a network variable declaration is limited to a

string of no more than 1023 characters (plus NUL terminator). It is

possible, using the bind_info(expand_array_info) declaration option for

a network variable array, that the string would be limited to less than 1023

characters in some situations.

36 Message object reference has no value [NCC#36]

The message objects, msg_out, msg_in, resp_out, and resp_in, have no

value in themselves. They only have meaning when they are accessed

using the dot operator (.) and a field name. Only certain predefined field

names apply.

37 This field must be indexed [NCC#37]

The message objects, msg_out, msg_in, resp_out, and resp_in, have no

value in themselves. They only have meaning when they are accessed

using the dot operator (.) and a field name. Only certain predefined field

names apply. The particular data field referred to by this message is an

array, and access to it must be by index, except when used with

memcpy().

38 Possible data truncation [NCC#38]

This message results from an automatic conversion of a long variable to a

short. To make this warning go away, modify the variable declarations or

use an explicit cast operator, which disables the compiler warning.

39 Cannot open debug output info file [NCC#39]

This problem could occur when the compiler attempts to open the output

file with .DBG extension, but the file cannot be opened properly with write

access. It is possible that the file is marked read-only, or that the output

folder does not exist, or there is a disk or operating system problem.

52 Neuron C Compiler Errors (NCC)

NCC# Description

40 Enum list has more values than the debug info supports [NCC#40]

The range of enum values in Neuron C is from -128 to 127 because ANSI C

dictates an enum should be implemented using a (signed) int base type.

According to the definition of ANSI C, multiple enumerated constant names

may appear in an enum type for the same constant value; thus there is

really no limit to the number of names in an enum value list.

However, the Neuron C Debugger only supports a maximum of 255

enumerated constant names in a given enum type. An enum that

contains more names than this is still perfectly acceptable to the compiler;

however, the debugger is only capable of using the first 255 names in the

enum type.

41 Too many function parameters for debug info [NCC#41]

The Neuron C Debugger can only support functions with 14 or fewer

parameters. Use of functions with more than 14 parameters may result in

strange or incorrect results when using the debugger to display stack

contents, and so on. Note that this is a limitation on number of

parameters, and not on the number of bytes used to store those parameters.

42 Too many include search directories specified [NCC#42]

A maximum of 20 directories may be specified in the include-directory

search list, 18 of which are available to the programmers.

43 Cannot open output dependency-file [NCC#43]

The compiler opens several output files as part of its initialization. All the

files are placed in the intermediate folder. In the IzoT NodeBuilder

development tool, the intermediate folder is the IM subfolder in each target

folder ("Release", "Development", and so on). This error may indicate that

the disk is full, or may indicate a disk error, or may indicate a read-only

disk condition (if for example, the project directory and its subdirectories

are on a floppy disk and the disk is write-protected). Also, confirm that the

project folder contains a subfolder named IM.

44 Too many include files [NCC#44]

A maximum of 254 files may be opened in a single compilation. The source

file and the three compiler helper files count as four files altogether, thus

there may be no more than 250 application include files. (An include file

included from another include file counts as a separate file.)

45 System open file limit exceeded [NCC#45]

This problem should not be seen under modern Windows operating systems

because there is no hard limit on open files.

46 Class ‘register’ was ignored [NCC#46]

This keyword has no effect in Neuron C.

Neuron Tools Errors Guide 53

NCC# Description

47 Type qualifier ‘volatile’ was ignored [NCC#47]

This keyword has no effect in Neuron C. To work with variables that are

asynchronously accessed from interrupt-tasks and when-tasks, use the

__lock construct for coordinated access.

48 Floating point is not supported [NCC#48]

Neuron C does not support floating point built-in data types and operators.

Use the floating point library functions instead. See the Functions chapter

in the Neuron C Reference Guide for more information on using the floating

point library, and the standard include file <float.h>.

49 Invalid array bounds [NCC#49]

In Neuron C, an array bound constant-expression must resolve to a positive

integer no larger than 32767.

50 Bitfield size must be from 0 to 8 bits [NCC#50]

A bitfield must fit inside an int type. Since in Neuron C an int is 8 bits,

the bitfield is also limited to 8 bits. Note that in ANSI C a bitfield size of 0

bits is legal for an unnamed bitfield. Such a bitfield forces alignment to the

next storage unit boundary (which is a byte in Neuron C, since the Neuron

Chip architecture does not force any multi-byte data alignment.).

51 Bitfield type is incorrect [NCC#51]

A bitfield may only be declared using only a combination of the type

keywords int, signed, unsigned, long, short, and char. Bitfields may

not be arrays, pointers, structures, unions, or any other Neuron C type.

52 Bitfield size cannot be 0 unless unnamed [NCC#52]

In ANSI C a bitfield size of 0 bits is legal for an unnamed bitfield. Such a

bitfield forces alignment to the next storage unit boundary (which is a byte

in Neuron C, since the Neuron Chip architecture does not force any multi-

byte data alignment.).

53 Keyword ‘polled’ is ignored for input network variable [NCC#53]

The polled keyword only applies to output network variables. This

restriction does not apply to the case of model file compilation that is used

within the ShortStack, FTXL, or LIBILON development environment.

54 Repeated bind_info option [NCC#54]

The bind_info keyword is followed by a parenthesized list of one or more

options, some with associated values. Each keyword may appear at most

once.

54 Neuron C Compiler Errors (NCC)

NCC# Description

55 Storage class on struct/union field not permitted [NCC#55]

A field in a struct or union may not have a storage class, and may not

contain the word typedef. Nor can it be a message tag, a timer object, nor

a network variable, nor can it have bind_info. Note also that a union

may not contain bitfields.

56 Enum constant out of range [NCC#56]

In Neuron C as in ANSI C, an enumerated type, declared using the enum

keyword, is equivalent to an int type. The int type is signed. In Neuron

C, an int is implemented using 8-bit signed two’s complement

representation. Thus, the valid range of enumerated type values is –128 to

+127.

57 Enum value wrapped around to negative [NCC#57]

The enumerated type automatically assigns consecutive integers as the

values of the named constants unless specifically given a value for a

constant. When literal-constant-n has the value 127, and literal-constant-

n+1 appears, the compiler automatically assigns it the “next” value. In

Neuron C, this value is -128 (since the enum type is signed in ANSI C).

The compiler issues a warning diagnostic for this condition, and proceeds.

58 Nothing was declared [NCC#58]

Similar to Declaration defaults to ‘int’, No declaration for formal parameter

- int assumed, in a situation like the following:

 long; int j;

This is legal C, but may not be what the programmer intended. Thus, for

the “first” declaration (the statement long;) this diagnostic is produced.

Many C compilers do not issue a warning in these circumstances. Note

that Neuron C will not issue a warning in the following cases, since

something is being declared (namely the enum's or the struct field names,

respectively):

 enum { FALSE, TRUE } ;

 struct { int a; int b; };

59 Expression type mismatch [NCC#59]

These error diagnostics result from combining expressions of conflicting

types, such as assigning an int to a pointer, or a pointer of one type to a

pointer to another type, or in using objects that have no value (such as

message tags or I/O object names) in expressions.

In many cases in ANSI C, you must use an explicit type cast. However,

note that casting should be avoided if possible, as it is often masking poor

programming practice.

Neuron Tools Errors Guide 55

NCC# Description

60 Invalid subscript operation [NCC#60]

The compiler outputs this diagnostic when an array-index operator

[expr] is applied to a variable that is not a pointer or an array.

61 Object is not a struct/union pointer [NCC#61]

The compiler outputs this message when the left-hand side of the ->

operator is not a pointer to a struct or union type.

62 Object is not a structure or union [NCC#62]

The compiler outputs this message when the left-hand side of the dot (.)

operator is not a struct or union type.

63 Invalid cast operation [NCC#63]

Some conversions between data types are not permitted, even through an

explicit cast. For example, an object cannot be cast if its base type is not

known. Nor can an object be cast to void and then used in an expression.

64 Cannot remove ‘const’ attribute via cast operation [NCC#64]

To prevent data that is declared constant from being modified, Neuron C

will not permit pointers including the const attribute from being cast such

that the const attribute is removed. Neither does the compiler permit an

implicit conversion of pointer (for example, by a function call) such that the

const attribute would be removed. However, use of the #pragma

relaxed_casting_on changes this error into a warning. See the Compiler

Directives chapter in the Neuron C Reference Guide for more information on

this pragma.

65 Cannot compute ‘sizeof’ for object [NCC#65]

The compiler attempted to calculate the size of a type, but did not have

enough information. This could result from a sizeof expression for an

object like a timer object, or a message tag, or a typedef name which is a

bind_info, or some similar circumstance.

66 Message object reference cannot be assigned to [NCC#66]

The message objects msg_in and resp_in are read-only. Attempts to use

these objects on the left side of an assignment statement result in the

diagnostic message above.

67 Pulsecount I/O object cannot use clock 0 [NCC#67]

The pulsecount I/O object does not support use of clock 0. Its use will

produce an indeterminate number of output pulses.

56 Neuron C Compiler Errors (NCC)

NCC# Description

68 Message event code must be in range 0..127 [NCC#68]

The event msg_arrives accepts one optional parameter, which is a

message event code. This code must be a compile-time constant integer

expression with a value from 0 to 127, inclusive.

69 Parameter must be a msg_tag [NCC#69]

The events msg_completes, msg_succeeds, and msg_fails all accept one

optional parameter, which must have previously been declared as a

message tag.

70

71

72

73

74

75

Parameter must be an I/O object name [NCC#70]

I/O events only apply to input objects [NCC#71]

Incorrect I/O object type for changes-by event [NCC#72]

Incorrect I/O object type for changes-to event [NCC#73]

Incorrect I/O object type for I/O update-occurs event [NCC#74]

Too many I/O object change events used [NCC#75]

The Neuron C event expressions for io_update_occurs and io_changes

(with its various options) only apply to I/O objects that are inputs.

Furthermore, some events are not applicable to some input object types.

Only one form of event expression can be used per I/O object. A maximum

of 15 I/O objects can have io_update_occurs and io_changes events. The

syntax of the event expressions requires the event type to be followed by

the object name, in parentheses. For more information, see the I/O Objects

chapter of the Neuron C Reference Guide.

76 Event ‘nv_update_occurs’ only applies to input variables [NCC#76]

The nv_update_occurs event accepts one optional parameter, which must

be the name of a previously declared input network variable.

77 Parameter must be a network variable [NCC#77]

The nv_update_completes, nv_update_fails, and nv_update_succeeds

events all accept one optional parameter, which must be the name of a

previously declared network variable.

78 Parameter must be a timer name [NCC#78]

The event timer_expires accepts one optional parameter, which, if

supplied, must be the name of a previously declared timer object.

79 Invalid use of VOID type [NCC#79]

The void type has no size. It cannot be used as an argument of the sizeof

operator, nor can it be used to declare a variable. Its only legal uses are in

declaring function return types, declaring that a function has no

parameters, and in combination with * to define a type void * (a wildcard

pointer type).

Neuron Tools Errors Guide 57

NCC# Description

80 Use only 4800, 2400, 1200, or 600 for I/O object’s baud [NCC#80]

The serial I/O object type can only have a bit rate value of 600, 1200, 2400,

or 4800. The bit rate value defaults to 2400 if not specified.

81 Use only 20000, 10000, or 1000 for I/O object's baud [NCC#81]

The neurowire I/O object types can have their bit rates specified with

either the baud or kbaud I/O declaration modifier. If kbaud is used, the

only legal values are 20, 10 and 1. If baud is used, the only legal values

are 20000, 10000, and 1000. The default bit rate for these I/O object types

is 20 kbps, and need not be specified.

82 Use only 20, 10, or 1 for kbaud rate value [NCC#82]

The neurowire I/O object types can have their bit rates specified with

either the baud or kbaud I/O declaration modifier. If kbaud is used, the

only legal values are 20, 10 and 1. If baud is used, the only legal values

are 20000, 10000, and 1000. The default bit rate for these I/O object types

is 20 kbps, and need not be specified.

83 Invalid use of type [NCC#83]

The compiler attempted to calculate the size of a type, but did not have

enough information. This could result from a sizeof expression for an

object like a timer object, or a message tag, or a typedef name which is a

bind_info, or some similar circumstance.

84 Offline does not apply to a msg_tag [NCC#84]

Some of the options in the bind_info declaration modifier only apply to

network variables, some only apply to output network variables, and some

only apply to message tags. The offline keyword only applies to a network

input config variable.

85 Service types may not be specified for a msg_tag [NCC#85]

Some of the options in the bind_info declaration modifier only apply to any

network variable, some only apply to an output network variable, and some

only apply to a message tag. Service types only apply to output network

variables.

86 Network variable array bound is incorrect [NCC#86]

This error message can arise from a few different situations. First, the

declaration of a network variable array may be a single-dimensioned array

only (no larger-dimensioned arrays are supported). The other sources of

this message are from attempting to use an index expression with a

network variable that is not an array. This message can also indicate that

the array bound portion of a network variable declaration, or a network

variable event expression, is not in the valid range, or not of the proper

format (for example, zero or a negative number is used).

58 Neuron C Compiler Errors (NCC)

NCC# Description

87 Too many msg-tags declared [NCC#87]

A maximum of 15 message tags can be declared per device. These can be

any combination of bindable and nonbindable message tags.

88 Network variables cannot be declared as non-bindable [NCC#88]

Some of the options in the bind_info declaration modifier only apply to any

network variable, some only apply to an output network variable, and some

only apply to a message tag. The nonbind modifier can only be used with

a message tag declaration.

89 Input network variables cannot have service-type [NCC#89]

Some of the options in the bind_info declaration modifier only apply to any

network variable, some only apply to an output network variable, and some

only apply to a message tag. Service types only apply to output network

variables.

90 Base type of network variable is too large [NCC#90]

A network variable array element, structure, or union is limited to 31

bytes.

91 Too many initializers [NCC#91]

A set of initializers (in braces { and }) has too many members for the

aggregate (array, structure, or union) being initialized.

Neuron Tools Errors Guide 59

NCC# Description

92 Too many network variables declared [NCC#92]

Each device has a maximum number of network variables that it can

support in principle. That maximum number is a function of the chip

model, the system firmware version, and the device technology.

For example, most Series 3100 Neuron Chips and some Series 3100 Smart

Transceivers are limited to 62 network variables. Series 5000 and Series

600 Chips, and other Neuron Chips and Smart Transceiver that support

version 16 system firmware (or later), support up to 254 static network

variables. Other devices, such as those based on a ShortStack Micro Server

or those implemented on a SmartServer, could implement a different

network variable maximum.

These can be any combination of input and output variables. Each element

of an array network variable counts separately.

The NCC#92 message indicates that the application may implement too

many network variables because the implemented number of network

variables exceeds the maximum number of network variables for the

selected target platform.

Note that the absence of error NCC#92 does not guarantee the successful

compilation of your code. Several conditions can lead to later build failure

related to an excessive network variable count. These include the use of a

system firmware version that is limited to fewer network variables than

foreseen at compile time, and include memory allocation problems at link

time.

See Chapter 8 of the Neuron C Programmer’s Guide for more information

on managing memory resources.

93 Network variable declaration not permitted if micro_interface [NCC#93]

Once the #pragma micro_interface directive appears, the program

cannot declare any network variables or message tags. See the Compiler

Directives chapter in the Neuron C Reference Guide.

94 Network variable base type cannot contain unbounded array [NCC#94]

Network variable arrays must be declared with a fixed bound that is a

compile-time constant.

95

96

Network variable base type cannot contain function [NCC#95]

Network variable base type cannot contain pointer [NCC#96]

A network variable type cannot contain pointer types, addresses or function

address types.

97 Too many timers declared [NCC#97]

Neuron C supports a maximum of 15 application timer objects of all types

together.

60 Neuron C Compiler Errors (NCC)

NCC# Description

98 I/O objects can only be declared at file scope [NCC#98]

Some Neuron C objects may only be declared at file scope. Thus, they are

restricted to being globals, not automatics. These objects are timer objects,

message tags, I/O objects, and network variables.

99

100

101

This I/O object type can only be ‘output’ [NCC#99]

This I/O object type can only be ‘input’ [NCC#100]

Must specify ‘input’ or ‘output’ for this I/O object type [NCC#101]

Some Neuron C I/O object types can only be input, some can only be

output, and some can be either. For the case where the direction is known

from the I/O object type, the programmer need not specify the direction, but

if specified, it must be the correct direction. For the case where the

direction is not known from the I/O object type, the programmer must

specify it.

102

103

104

105

106

107

108

109

110

111

I/O object type restricted to pins IO_0 through IO_4 [NCC#102]

I/O object type restricted to pin IO_0 [NCC#103]

I/O object type restricted to pins IO_0 through IO_7 [NCC#104]

I/O object type restricted to pins IO_0 or IO_1 [NCC#105]

I/O object type restricted to pins IO_4 through IO_7 [NCC#106]

I/O object type restricted to pins IO_4 or IO_6 [NCC#107]

I/O object type restricted to pin IO_10 [NCC#108]

I/O object type not allowed on pin IO_7 or IO_10 [NCC#109]

I/O object type restricted to pin IO_8 [NCC#110]

I/O object type restricted to pin IO_4 [NCC#111]

Different I/O object types are permitted on different subsets of the Neuron

Chip’s I/O pins. For more information, see the I/O Model Reference.

112 All names beginning with the characters 'SNVT_' are reserved

[NCC#112]

The program should not declare any identifiers, types, and so on, that begin

with the characters SNVT_, to avoid any future compatibility problems

with Standard Network Variable Types.

113 Two-way I/O device should not be declared 'input' or 'output' [NCC#113]

The declaration syntax of I/O objects permits the specification of input or

output. However, some devices are actually bi-directional, for example the

parallel I/O object. Neither the input nor the output keyword should be

specified in the declaration of a bi-directional I/O object.

Neuron Tools Errors Guide 61

NCC# Description

114 Pin IO_4 needs ‘mux’ or ‘ded’ specification [NCC#114]

For I/O object types that use a timer/counter, the timer/counter used is

dependent on the pin assigned to the I/O object. There are two

timer/counters, the dedicated (abbreviated ded) and the multiplexed

(abbreviated mux). The dedicated circuit uses pin IO_1 for output and pin

IO_4 for input. The multiplexed circuit uses pin IO_0 for output and

multiplexes among pins IO_4, IO_5, IO_6, and IO_7 for input.

For input objects using a timer/counter, the programmer need not specify

which timer/counter circuit is being used except when the input I/O object

is assigned to pin IO_4. Then, either the mux or ded keyword must be

included in the declaration of the I/O object.

115 Pins IO_5...IO_7 must use ‘mux’ timer [NCC#115]

For I/O object types that use a timer/counter, the timer/counter used is

dependent on the pin assigned to the I/O object. There are two

timer/counters, the dedicated (abbreviated ded) and the multiplexed

(abbreviated mux). The dedicated circuit uses pin IO_1 for output and pin

IO_4 for input. The multiplexed circuit uses pin IO_0 for output and

multiplexes among pins IO_4, IO_5, IO_6, and IO_7 for input.

For input objects using a timer/counter, the programmer need not specify

which timer/counter circuit is being used except when the input I/O object

is assigned to pin IO_4. Then, either the mux or ded keyword must be

included in the declaration of the I/O object.

116 I/O object requires ‘sync’ pin specification [NCC#116]

The triac I/O object type declaration must include an assignment for a

sync pin. Since the triac type uses a timer/counter output, the sync pin

must use a corresponding input on the same timer/counter. If the

dedicated timer/counter is used, only IO_4 can be used for the sync pin. If

the multiplexed timer/counter is used, any of IO_4, IO_5, IO_6, or IO_7

can be used.

117 I/O object requires ‘sync’ pin on one of IO_4...IO_7 [NCC#117]

The neurowire I/O object type declaration must also include specification

of a pin to be used for an I/O object select. Only a pin from IO_0 through

IO_7 may be used for a select pin.

118 I/O object requires ‘sync’ pin on IO_4 [NCC#118]

The neurowire I/O object type declaration must also include specification

of a pin to be used for an I/O object select. Only a pin from IO_0 through

IO_7 may be used for a select pin.

119 I/O object requires ‘select’ pin specification [NCC#119]

The neurowire I/O object type declaration must also include specification

of a pin to be used for an I/O object select. Only a pin from IO_0 through

IO_7 may be used for a select pin.

62 Neuron C Compiler Errors (NCC)

NCC# Description

120 The ‘select’ pin must be one of IO_0...IO_7 [NCC#120]

The neurowire I/O object type declaration must also include specification

of a pin to be used for an I/O object select. Only a pin from IO_0 through

IO_7 may be used for a select pin.

121 I/O object requires ‘master’, ‘slave’, or ‘slave_b’ [NCC#121]

The parallel I/O object type declaration must be qualified with one of the

keywords master, slave, or slave_b to specify which parallel I/O protocol

is to be used.

122

123

I/O object type not available on requested pin [NCC#122]

Pin/resource conflict with a previous I/O object [NCC#123]

In several cases, more than one Neuron Chip I/O object type can be

assigned to a single pin within a single application. The rules for

overlaying I/O object declarations are discussed in Chapter 2 of the Neuron

C Programmer's Guide.

124 Incorrect ‘clock’ select value [NCC#124]

For I/O objects that accept a clock modifier in their declaration, the legal

values are from 0 to 7, inclusive, except for the pulsecount output object,

which uses only 1 to 7. The clock value must be a constant expression.

125 Incorrect ‘numbits’ value or type [NCC#125]

The bitshift I/O object type declaration can optionally specify the number

of bits to be specified. This numbits modifier has as an argument that

must be a compile-time integer constant expression with a value from 1 to

128.

126 Bad I/O modifier for this I/O object type [NCC#126]

Several of the I/O object declarations permit or require modifiers, like mux,

ded, sync, and so on. These are permitted or required on a per I/O object-

type basis. At most one of each type of modifier is permitted in a single

declaration.

127 Duplicate I/O object modifier not allowed [NCC#127]

Several of the I/O object declarations permit or require modifiers, like mux,

ded, sync, and so on. These are permitted or required on a per I/O object-

type basis. At most one of each type of modifier is permitted in a single

declaration.

128 I/O object type cannot have an initial-pin-level [NCC#128]

Most output object types permit specification of an initial pin-level value to

be assumed by the pin on power up or chip reset, until the application

program takes over. However, the I/O object for which this message is

being output does not permit an initial pin level.

Neuron Tools Errors Guide 63

NCC# Description

129

130

131

Initial-pin level must be in range 0...255 [NCC#129]

Initial-pin level must be in range 0...15 [NCC#130]

Initial-pin level must be 0 or 1 [NCC#131]

Most output object types permit specification of an initial pin-level value to

be assumed by the pin on power up or chip reset, until the application

program takes over. All single-pin initial levels must be either 0 or 1. The

nibble I/O object type, which uses four consecutive pins, can have initial

values from 0 to 15, with the values being mapped as a binary number onto

the four pins. Likewise, the byte I/O object type can have initial values

from 0 to 255.

132 Unacceptable function return type [NCC#132]

A function in Neuron C cannot return an object that is a struct or union

type, nor can it return an array type. However, a function can return

pointers to such objects.

133 Explicit addressing requires inclusion of <msg_addr.h> [NCC#133]

An attempt to use the msg_out.dest_addr field or the msg_in.addr field

has been detected, but cannot be compiled because the include file

<msg_addr.h> was not included by the programmer. Note that the

include directive must appear prior to the first such field reference. The

include file is not needed for references to other fields of the msg_out or

msg_in objects.

134 Call only applies to bindable msg_tag [NCC#134]

The is_bound() built-in function returns TRUE (nonzero) if the requested

object has been bound. Otherwise, it returns FALSE. The function applies

only to network variables and to bindable message tags. A bindable

message tag is a message tag declared without the bind_info (nonbind)

option.

135 Parameter must be either a msg_tag name or an NV name [NCC#135]

The is_bound(), addr_table_index(), and nv_table_index() built-in

functions return TRUE (nonzero) if the requested object is bound

(connected). Otherwise, they return FALSE. The functions apply only to

network variables and to bindable message tags. A bindable message tag is

a message tag declared without the bind_info (nonbind) option.

136 Incorrect number of parameters [NCC#136]

The compiler outputs these diagnostics when the number of actual

parameters, or the actual parameter types, do not match those in the

function prototype and they cannot be automatically converted.

137 Parameter to ‘poll’ must be input network variable [NCC#137]

The built-in function poll() takes as its only argument the name of an

input network variable. See the Functions chapter of the Neuron C

Reference Guide for a definition of this function.

64 Neuron C Compiler Errors (NCC)

NCC# Description

138 Invalid 2nd argument to ‘sleep’ [NCC#138]

The built-in function sleep() has an optional second parameter which may

be a previously declared Neuron C I/O object name or an I/O pin name. If

an I/O object name is specified, the object's primary pin will be monitored

for a wakeup condition. Alternately, a pin name may be explicitly specified.

In both cases, this pin must be one of IO_4, IO_5, IO_6, or IO_7.

139 Sleep wakeup I/O object must be an input pin on one of IO_4..IO_7

[NCC#139]

The built-in function sleep() has an optional second parameter which may

be a previously declared Neuron C I/O object name or an I/O pin name. If

an object name is specified, the object’s primary pin will be monitored for a

wakeup condition. The primary pin must be one of IO_4, IO_5, IO_6, or

IO_7.

140 Incorrect message object field reference [NCC#140]

The message objects, msg_out, msg_in, resp_out, and resp_in have no

value in themselves. They only have meaning when they are accessed

using the dot operator (.) and a field name. Only certain predefined field

names apply. The data field is an array, and access to it must be by index,

except when used with the memcpy() function.

141 Not a field in specified struct/union [NCC#141]

The compiler outputs this message when the right-hand side of the

-> or . operator is not a field in the struct or union type that corresponds to

the left-hand-side expression.

142 Invalid storage class combination [NCC#142]

This diagnostic results from incorrect or conflicting combinations of storage

class keywords, such as eeprom and ram. The error is used for more than

just conflicting memory types. For example, an attempt to use the cp or

cp_family keyword with a timer or a msg_tag, or any invalid combination

of declaration class keywords could cause this error message.

143 Repeated storage class keyword was ignored [NCC#143]

Repeated keywords are ignored (for example, const const is the same as

const), but a diagnostic message is printed.

144 The 'quad' type is not supported. [NCC#144]

Neuron C does not support the quad type, but quad is a reserved word for

future support of a 32-bit signed int type. The keyword quad refers to the

four bytes of data for the 32-bit signed integer. This type could also be

called a double long int.

Neuron Tools Errors Guide 65

NCC# Description

145 Invalid data type combination [NCC#145]

This diagnostic message results from incorrect or conflicting type

combinations. For example, short and long is a conflicting type

combination. Combining timer object declarations with the keyword

msg_tag, for example, is an incorrect result type.

146 Repeated data type keyword was ignored [NCC#146]

Repeated keywords are ignored (for example, int int is the same as int),

but a diagnostic message is printed.

147 Type defaults to ‘int’ [NCC#147]

The definition of ANSI C permits a declaration at file scope without a type.

Likewise, functions may be declared without a return type. Such

declarations must default to int, by the ANSI definition. However, such

declarations are poor programming practice, and may even indicate an

error, thus the compiler issues a warning diagnostic.

Consider the following example:

 unsigned long x1, x2; x3;

Note the semicolon following x2. This is most likely a typographical error,

however, ANSI C permits this and results in x3 being declared by default

as an int. Due to white space rules, this appears the same to the compiler

as the following declaration:

 unsigned long x1, x2;

 x3;

This is almost certainly not what the programmer intended, yet most C

compilers do not issue a warning in these circumstances.

148

149

Class ‘config’ can only be used with network variables [NCC#148]

Class ‘config’ applies only to ‘input’ variables [NCC#149]

The config keyword only applies to input network variables. However, in

Neuron C Version 2, use of the config_prop (or cp) keyword declares a

fully managed configuration property, whereas the config keyword

declares a legacy configuration network variable. The legacy variable

requires that the programmer must manually code the SD information

necessary to make the config network variable known to a network

management tool. More information on configuration properties can be

found in the Neuron C Programmer’s Guide and the Neuron C Reference

Guide.

150 Cannot re-declare ‘bind_info’ [NCC#150]

The bind_info modifier can appear at most once in the declaration of a

network variable or a message tag. The bind_info cannot be combined

with other bind_info by concatenation.

66 Neuron C Compiler Errors (NCC)

NCC# Description

151 I/O function call requires arguments [NCC#151]

Insufficient arguments (or no arguments) were passed to the I/O built-in

call flagged by the compiler diagnostic. All I/O functions require at least

one argument, namely the I/O object name.

152 Name is not an I/O object name [NCC#152]

The first argument passed to the flagged I/O built-in call is not a properly

declared I/O object name. Note that in ANSI C, a general rule is that an

object must be declared before its first use.

153 I/O function not valid for this I/O object [NCC#153]

Some built-in functions, such as io_set_clock() and io_select(), cannot

be used on all I/O object types.

154 This event cannot be duplicated [NCC#154]

There are three special events in Neuron C which can only appear in at

most one when clause. These events are reset, offline, and online.

155 The ‘priority’ is ignored for this ‘when’ clause [NCC#155]

There are three special events in Neuron C, namely reset, offline, and

online, for which the declaration of priority has no effect. This is because,

due to the special times at which these clauses are executed, they always

have priority.

156 Function must return a value [NCC#156]

The function, whose declared return data type is not void, does not have a

return statement (in every possible path to the end of the function) that

returns a value of the appropriate type.

157 Expression for switch must be a ‘short’ [NCC#157]

The switch statement can handle values only in the range of the int data

type, which is from -128 to 127 inclusive in Neuron C.

158 Improper context for ‘break’ statement [NCC#158]

A break statement can only occur inside a do, for, or while loop, or inside

a switch statement.

159 Object being declared cannot be initialized [NCC#159]

Declaration-time initialization cannot be used for typedefs, timer objects,

message tags, function parameters, structure tags, union tags, and enum

tags.

Neuron Tools Errors Guide 67

NCC# Description

160 This declaration may only be at file scope [NCC#160]

Some Neuron C objects may only be declared at file scope. Thus, they are

restricted to being globals, not automatics. These objects are timer objects,

message tags, I/O objects, and network variables.

161 Type mismatch in function redeclaration [NCC#161]

This diagnostic indicates that a function prototype does not match a

subsequent prototype, or the definition of the function. The prototypes and

definition must match in terms of their storage class (for example, static,

eeprom, ram) as well as their return types and their number and types of

parameters.

162 Array must have bound [NCC#162]

Use of the array type in a declaration must include a constant expression

which is the array bound. The only time this bound may be omitted is in

the declaration of a function parameter. In this case, use of the bound is

ignored, and the parameter is actually treated as a pointer.

163

164

Invalid struct/union field declaration [NCC#163]

Invalid struct/union field type [NCC#164]

A field in a struct or union may not have a storage class, and may not

contain the word typedef. Nor can it be a message tag, a timer object, nor

a network variable, nor can it have bind_info. Note also that a union may

not contain bitfields.

165 Invalid type for bitfield [NCC#165]

A bitfield may only be declared using only a combination of the type

keywords int, signed, unsigned, long, short, and char. Bitfields may

not be arrays, pointers, structures, or any other Neuron C type.

166 Field name in struct/union cannot be repeated [NCC#166]

Each field name at a given level of a struct or union declaration must be

unique. Names are case sensitive.

167 Extern declarations cannot have initializers [NCC#167]

The semantics of an extern declaration and an initialized declaration are

incompatible. An extern declaration is intended to reference an object

defined elsewhere (usually in another module, although it may be a forward

reference). An initialized declaration is intended to be the defining

declaration of the object. Only one such initialized declaration should

appear for each object.

168 Const variables require initialization [NCC#168]

A variable declared with the const attribute must have an initializer. Note

that this does not apply to a typedef that includes the const attribute.

68 Neuron C Compiler Errors (NCC)

NCC# Description

169 Call to ‘io_out’ requires output value parameter [NCC#169]

The built-in function call io_out(), which is used to initiate an output to a

Neuron I/O object, must be given at least two parameters, the first being

the I/O object name, and the second being the value to be output.

170 Cannot have ‘io_changes’ & ‘io_update_occurs’ on same I/O object

[NCC#170]

The Neuron C event expressions for io_update_occurs and io_changes

(with its various options) only apply to I/O objects that are inputs.

Furthermore, some events are not applicable to some input object types.

Only one form of event expression can be used per I/O object. A maximum

of 15 I/O objects can have io_update_occurs and io_changes events. The

syntax of all the event expressions requires the event type to be followed by

the object name, in parentheses.

171 Improper context for ‘continue’ statement [NCC#171]

A continue statement can only occur inside a do, for, or while statement.

It causes execution to immediately branch back to the first statement of the

loop statement that contains the continue statement.

172 Function definition does not allow return value [NCC#172]

The function, whose declared return data type is void, has a statement of

the form return expression.

173 Expression has no effect - discarded [NCC#173]

The compiler outputs this warning diagnostic when the optimizer discards

an expression. Examples of such expressions are:

 x = y-1, z; /* y-1 is discarded */

 a+3; /* a+3 is discarded */

 x == 1? y: z; /* z is discarded */

174 Return value of function was ignored [NCC#174]

A function that has a return type (other than void) is used in an

expression, but the caller discards the return value without it being used or

stored. The warning can be removed by casting the return of the function

to void.

Example:

int f(void) {return 0;}

when (reset) {

 (void)f();

}

Neuron Tools Errors Guide 69

NCC# Description

175 This event will never be reached [NCC#175]

This message warns of the use of a specific, qualified event following a

generic, unqualified event in the same class. As the generic one will catch

the event first, the specific one will never evaluate to TRUE. This condition

can only occur when using the scheduler_reset feature. (Failure to use

the scheduler_reset feature with multiple event expressions that are not

exclusive can result in unstable behavior.)

176 This event duplicates or overlaps a previous one [NCC#176]

In many cases, use of a when clause containing an event that is a duplicate

or an overlap of a previous event expression would prevent the associated

task from being executed, or may cause anomalous behavior, with one task

being executed sometimes, and the other being executed the rest of the

time.

(This latter behavior would occur as the result of round-robin execution by

the Neuron Chip firmware scheduler, if the scheduler_reset feature were

not used.)

177 Recommend use of ‘scheduler_reset’ feature [NCC#177]

The compiler makes this recommendation when there is a possibility of

anomalous execution of different tasks because the tasks' respective when

clauses are not mutually exclusive.

178 Cannot have any non-polled output network variables when more than

14 bindable message tags are defined [NCC#178]

A Neuron Chip has up to 15 address table entries. Each bindable message

tag consumes one address table entry, whether bound or not. Network

variables can share address table entries, but there must be at least one

available. This message indicates that there are no entries available for

network variables because message tags are consuming all of the address

table entries.

179 Incorrect use of ‘void’ in function prototype [NCC#179]

The void type has no size. It cannot be used as an argument of the sizeof

operator, nor can it be used to declare a variable. Its only legal uses are in

declaring function return types, declaring that a function has no

parameters, and in combination with * to define a type void * (a wildcard

pointer type).

180 Function parameter may not be ‘struct’ or ‘union’ type [NCC#180]

Neuron C does not support passing struct or union types by value as

function parameters. You may use a pointer to the structure or union as a

function parameter.

70 Neuron C Compiler Errors (NCC)

NCC# Description

181 Function declarations must use prototypes [NCC#181]

Neuron C is more restrictive than ANSI C in this area. The Neuron Chip's

stack machine architecture does not permit calling undeclared functions

with unknown numbers of parameters.

182 No declaration for formal parameter - int assumed [NCC#182]

The definition of ANSI C permits a declaration at file scope without a type.

Likewise, functions may be declared without a return type. Also, it is

possible to construct a typecast that does not actually contain a type. Such

declarations must default to int, by the ANSI C definition. However, such

declarations are poor programming practice, and may even indicate an

error, thus the compiler issues a warning diagnostic.

Consider the following example:

 unsigned long x1, x2; x3;

Note the semicolon following x2. This is most likely a typo, however, ANSI

C permits this and results in x3 being declared by default as an int. Due to

white space rules, this appears the same to the compiler as the following

declaration:

 unsigned long x1, x2;

 x3;

This is almost certainly not what the programmer intended, yet most C

compilers do not issue a warning in these circumstances.

183 Mixing function prototypes and old-style parameter list not allowed

[NCC#183]

Pre-ANSI-C C function declaration syntax is supported, but it is not

recommended. Do not combine these two styles within a single function

definition.

184 No formal parameter matches the parameter declaration [NCC#184]

This diagnostic results from an error of the form shown below, where there

is no declaration for the parameter named b.

 void f(a,b) int a; { <fn body> }

185 Invalid parameter declaration in function [NCC#185]

This diagnostic results from certain errors in function definition syntax

such as in the example below:

 void f(int, long) { <fn body> }

186 Cannot have a 'timeout' pin on 'neurowire master' object [NCC#186]

The neurowire slave I/O object declaration permits a timeout value. The

neurowire master I/O object declaration does not.

Neuron Tools Errors Guide 71

NCC# Description

187 Expression must evaluate to a constant [NCC#187]

Expressions in certain Neuron C declarations and initialization statements

must evaluate to compile-time integer constants.

188 Cannot modify a constant object [NCC#188]

The Neuron C compiler enforces the const keyword strictly. In addition,

data or objects declared using const might be placed in read-only memory

areas by the compiler. However, const network input variables are not

placed in read-only memory, because their values are updated by network

variable messages from other devices. Furthermore, note that constant

configuration parameters are placed in read-only memory unless the

directive #pragma codegen put_read_only_cps_in_data_memory is

used.

189 Cannot modify via pointer-to-constant-object [NCC#189]

To prevent data that is declared const from being modified, Neuron C will

not permit constant objects to appear on the left-hand side of an

assignment statement, nor will it permit modification of the constant object

by a pointer with the const attribute, or by the ++ or - - operators.

Note that, in the case of network variables, a network variable declared as

const (or config, which implies const) cannot be modified in the device

where it is so declared, but it can be modified by other nodes in the

network.

190 Object is not a suitable assignment target [NCC#190]

The left-hand side of assignment operators, and the target of increment or

decrement operators must be nonconstant variables, or fields of

nonconstant structures or unions, or elements of arrays.

191 Object of call is not a function [NCC#191]

The syntax encountered is function call syntax, for example:

 expression ([expression-list])

however, the expression being called is not a function (or a pointer to a

function). Note that this error could occur by omitting an operator.

If the following were intended:

 int a, b, c, d;

 a = b * (c + d);

but the following were actually written (omitting the multiplication

operator):

 int a, b, c, d;

 a = b (c + d);

This would appear to be a function call, but b is not a function.

72 Neuron C Compiler Errors (NCC)

NCC# Description

192 Call to function without prototype [NCC#192]

Neuron C is more restrictive than ANSI C in this area. The Neuron Chip's

hardware architecture does not permit calling undeclared functions with

unknown numbers of parameters.

193 Function does not allow parameters [NCC#193]

The compiler outputs these diagnostics when the number of actual

parameters or the actual parameter types, do not match those in the

prototype, and they cannot be automatically converted.

194 Not enough parameters passed to function [NCC#194]

The compiler outputs these diagnostics when the number of actual

parameters or the actual parameter types, do not match those in the

prototype, and they cannot be automatically converted.

195 Object cannot be a function parameter [NCC#195]

Objects that have no type (such as message tags or I/O objects) cannot be

function parameters. Likewise, if p were declared void *, *p would not be

a valid function parameter (nor would it be any other valid expression, for

that matter).

196 Cannot convert address of const into non-const pointer [NCC#196]

To prevent data that is declared const from being modified, Neuron C will

not permit pointers including the const attribute from being cast such that

the const attribute is removed. Neither does the compiler permit an

implicit conversion of pointer (for example, through a function call) such

that the const attribute would be removed. However, these changes are

permitted (and this message will appear as a warning rather than an error)

if the compiler directive #pragma relaxed_casting_on is specified in the

program. See the Compiler Directives chapter of the Neuron C Reference

Guide for more details.

197 Implicit pointer conversion is not permitted [NCC#197]

ANSI C does not permit a pointer of one type to be implicitly converted to a

pointer of another type by assignment or by passing as a function

parameter. Use explicit casting.

198 Type mismatch in function parameter [NCC#198]

The compiler outputs these diagnostics when the number of actual

parameters or the actual parameter types, do not match those in the

prototype, and they cannot be automatically converted.

199 Too many parameters passed to function [NCC#199]

The compiler outputs these diagnostics when the number of actual

parameters or the actual parameter types, do not match those in the

prototype, and they cannot be automatically converted.

Neuron Tools Errors Guide 73

NCC# Description

200 Type mismatch in assignment expression [NCC#200]

These error diagnostics result from combining expressions of conflicting

types, such as assigning an int to a pointer, or a pointer of one type to a

pointer to another type, or in using objects that have no value (such as

message tags or I/O object names) in expressions.

In many cases in ANSI C, you must use an explicit type cast. However,

note that casting should be avoided if possible, as it is often poor

programming practice.

201 Invalid use of pointer in binary operation [NCC#201]

The only binary operations permitted on pointers are +, -, and comparisons.

A pointer can be added to a constant (or vice versa), and ANSI C scaling

rules apply to the constant. Likewise, a constant can be subtracted from a

pointer (but not vice versa). Finally, two pointers of the same type can be

subtracted, one from the other. The result is a difference scaled by the size

of the object type pointed to. Pointers cannot be used in unary expressions

other than with increment and decrement operators.

202 Type mismatch for binary operation [NCC#202]

This error can occur when the types of the operands being combined in the

binary operation are not compatible. For example, adding an int to a

structure, or comparing a pointer to a char, and so on.

203 Invalid type for subscript operation [NCC#203]

The object being subscripted (the “array”) must be either an array or a

pointer. The type of the subscript must be an integer type.

204 Invalid type for array index [NCC#204]

The array index of the subscript operator must be an int or char type. It

may be short or long, signed or unsigned.

205 Invalid operation on pointer [NCC#205]

The only binary operations permitted on pointers are +, -, and comparisons.

A pointer can be added to a constant (or vice versa), and ANSI C scaling

rules apply to the constant. Likewise, a constant can be subtracted from a

pointer (but not vice versa). Finally, two pointers of the same type can be

subtracted, one from the other. The result is a difference scaled by the size

of the object type pointed to. Pointers cannot be used in unary expressions

other than with increment and decrement operators.

206 Invalid indirection expression - not a pointer [NCC#206]

This error occurs when the operand of the * indirection operator is not a

pointer. This operator can only be applied to a pointer variable or a

constant typed as a pointer.

74 Neuron C Compiler Errors (NCC)

NCC# Description

207 Invalid operand for address operator [NCC#207]

The operand of the & address operator is not a variable, or is a variable

type for which addressing is not permitted. For example, you cannot take

the address of a numeric constant. In Neuron C, you also cannot take the

address of a timer object, a message tag, an I/O object, or a functional block.

208 The 'io_select' call for this device cannot specify a clock value

[NCC#208]

The io_select() function permits an optional second parameter used to

change the timer/counter internal clock setting (in a range from 0-7).

However, this clock option can only be used when selecting an I/O object

that permits a clock setting in that object's declaration. See the I/O Model

Reference for more information.

209

210

Bad type for operator [NCC#209]

Bad type for conditional expression [NCC#210]

These error diagnostics result from combining expressions of conflicting

types, such as assigning an int to a pointer, or a pointer of one type to a

pointer of another type, or in using objects that have no value (such as

message tags or I/O object names) in expressions.

However, note that casting should be avoided if possible, as it is often poor

programming practice.

211

212

Long constant value being converted to short [NCC#211]

Possible data loss converting long to short [NCC#212

These diagnostics result from an automatic conversion of a long variable to

a short. To make these warnings go away, modify the variable

declarations or use an explicit cast operator.

213 Cannot use address or index operator with message object [NCC#213]

The message objects, msg_out, msg_in, resp_out, and resp_in, have no

value in themselves. They only have meaning when they are accessed

using the dot operator (.) and a field name. Only certain predefined field

names apply. The data field is an array, and access to it must be by index,

except when used with memcpy().

214 If one priority count is zero, both must be zero [NCC#214]

The Neuron C application controls the counts and sizes of various buffers

used in sending and receiving messages and network variable updates.

There are two priority buffer pools, one at the network level, and one at the

application level. Either or both pools must be empty, or both pools must

contain buffers. A zero count cannot be specified for one priority pool and a

nonzero count for the other.

Neuron Tools Errors Guide 75

NCC# Description

215 Array in struct or union must have bounds [NCC#215]

An array declared at file scope (outside any other declarations or functions)

may be declared without an explicit bound expression, provided an

initializer is present. In ANSI C and in Neuron C, the compiler sets the

array bounds implicitly by using the count of initial value expressions in

the initializer list. However, this feature cannot be used with an array

nested inside a structure or union declaration.

216 Authenticated network variables require ‘ackd’ service type [NCC#216]

Some of the options in the bind_info declaration modifier only apply to

network variables, some only apply to output network variables, and some

only apply to message tags. The service type declaration is required to be

acknowledged when the authentication bind_info feature is used in a

network variable declaration.

217 Case value is out of range [NCC#217]

Valid range is -128 to +127. A switch statement expression and the

matching case label expressions are all of int type, which in Neuron C has

the range shown.

218 Use of Neuron C feature is not permitted [NCC#218]

This message occurs when compiling a file with a .C extension. The

Neuron C compiler will flag all uses of Neuron C features with this error

message. Normally, a Neuron C program has a .NC extension.

219 Pragmas ‘hidden’ and ‘no_hidden’ only allowed in ‘echelon.h’ [NCC#219]

The pragmas #pragma hidden and #pragma no_hidden are for internal

use from the standard include file <echelon.h> only. Do not use them

elsewhere.

220 Rate estimate value is out of valid range [NCC#220]

The bind_info permits specification of average and maximum message

rate estimates for each tag or network variable. The valid range of rate

estimate values is from 0 to 18780, in units of tenths of a message per

second. Thus, a specified value of 1043 indicates an actual value of 104.3

messages per second.

221

222

Cannot have more than one default label per switch statement

[NCC#221]

Cannot have duplicate case labels with same value [NCC#222]

A switch statement cannot have ambiguous labels. It can have no more

than one default label, and no two case labels may have the same value.

76 Neuron C Compiler Errors (NCC)

NCC# Description

223 Improper function definition - missing parameter list [NCC#223]

This message generally results from a syntax error of a specific kind. The

compiler's syntax-directed parser is fooled by the error into thinking there

is a function definition in progress, but the expected parameter list, in

parentheses, which follows a function definition, is not found. For example:

 static stuff i; // 'stuff' not defined

When a situation such as this arises, the compiler assumes 'stuff' is a

function name, since it has not been previously defined. This results in a

syntax error when 'i' is then read, since a function definition is supposed to

be followed by a parameter list.

224 Improper initializer format [NCC#224]

A set of initializers in braces has too many levels of braces, or is otherwise

incorrectly formulated. Initializers of aggregates (arrays, structures, or

unions) should have a set of braces for each level of aggregate, but

individual values should not have their own braces.

225 Cannot set array bound from initializers [NCC#225]

The C language provides two methods of specifying the bounds of an array.

The first method, explicit bounds, uses a constant expression in brackets

following the array name. The second method, implicit bounds, uses the

number of initializers in the initializer list to automatically set the array

bounds. This method indicates a problem in the initializer list such that

the array bound cannot be automatically set.

226 I/O object requires 'master' or 'slave' [NCC#226]

The neurowire I/O object being declared must have either master or

slave keywords after the neurowire keyword.

227 Cannot have a 'select' pin on 'neurowire slave' object [NCC#227]

The neurowire master I/O object declaration requires a select value. The

neurowire slave I/O object declaration does not.

228 The 'timeout' pin must be one of IO_0 ... IO_7 [NCC#228]

The neurowire slave's timeout pin option can only be one of the pins

IO_0 through IO_7.

229 Neurowire slave device cannot have a baud or kbaud specifier

[NCC#229]

The neurowire master device generates the clock used in the transfer.

Therefore, specification of a bit rate in the declaration of a slave

neurowire device is meaningless.

Neuron Tools Errors Guide 77

NCC# Description

230 Must specify 'enable_multiple_baud' prior to any I/O function [NCC#230]

The #pragma enable_multiple_baud directive must appear prior to the

use of any I/O function (for example, io_in(), io_out()). If this error

message appears, move the #pragma enable_multiple_baud directive to

the beginning of your program.

231 Specify '#pragma enable_multiple_baud' for correct I/O operation

[NCC#231]

Two or more I/O devices have been declared with conflicting bit rates. In

order for the compiler to generate correct code, it must know about the

conflicting devices in advance. Thus, the #pragma

enable_multiple_baud directive must be specified in advance.

232 Hex escape char code constant is too large [NCC#232]

A hex escape character inside a character or string constant exceeds the

value 0xFF. The Neuron C behavior is correct for ANSI C, but

programmers usually find the ANSI C behavior in this respect counter-

intuitive.

233 Buffer size too small for network management messages [NCC#233]

The compiler issues warnings when any of the buffer size pragmas are

used, and the resulting settings would be too small to accommodate all

possible network management messages from being properly received or

responded to.

234 Buffer size too small for interoperability [NCC#234]

The compiler issues warnings when any of the buffer size pragmas are

used, and the resulting settings would prohibit satisfying the

interoperability criteria.

235 Codegen buffer is full [NCC#235]

The compiler memory limitation has been exceeded and the procedure must

be split into two or more procedures.

236 Too many static declarations in this compilation [NCC#236]

A maximum of 32,767 static variables can be declared in a single module.

Each configuration parameter (member of a CP family) also counts as a

static variable.

78 Neuron C Compiler Errors (NCC)

NCC# Description

237 Unusual use of function address as value [NCC#237]

This message would occur in a situation like the following:

 int f(void) {return 0;}

 ...

 int g(void) {

 int x;

 x = 1;

 if (f) { // Unusual use of function

 // address

 x = 2;

 }

 return x;

 }

Technically, C permits such a use as shown. Such an expression has little

use in Neuron C, however. The programmer most likely wanted to specify

"if (f()) { ...". In other words, the syntax of ANSI C permits a construct that

is most likely a programming error, and the Neuron C compiler flags it for

you.

238 File write error - is disk full? [NCC#238]

The compiler encountered an error writing to the output file(s). Check that

the output media is not write-protected, and that sufficient disk space

exists. It is possible, for extremely large programs, that a megabyte or

more of temporary disk space would be needed during compilation.

239 A msg_tag declaration is not permitted if micro_interface [NCC#239}

Once the #pragma micro_interface appears, the program cannot declare

any network variables or message tags.

240 This event expression is not permitted - firmware restriction [NCC#240]

The special event keywords offline, online, and wink cannot be combined

into other expressions when used in the when clause. See the Additional

Predefined Events section in the Neuron C Programmer's Guide for more

explanation.

243 Keyword 'sync' was ignored for polled output network variable

[NCC#243]

A sync output network variable is propagated each time its value is

updated. A polled output network variable is never sent unless a reader

device requests its value with a network variable poll. The two options are

not compatible.

Neuron Tools Errors Guide 79

NCC# Description

244 Cannot disable netvar_processing with Net Vars declared [NCC#244]

The directive #pragma netvar_processing_off is not permitted once

network variables have already been declared in a program. Likewise,

declarations of network variables are not permitted in a program once this

directive has been encountered. This pragma can only be used with the

LonBuilder Microprocessor Interface Program (MIP).

245 Network variable declaration not permitted if netvar_processing off

[NCC#245]

Once the directive #pragma netvar_processing_off is encountered in a

program, network variable declarations are not permitted. This pragma

can only be used with the LonBuilder Microprocessor Interface Program

(MIP).

246 This I/O object type requires specification of a 'timeout' pin [NCC#246]

The I/O object being declared requires specification of an additional pin to

use as an external timeout signal. See the description of the I/O object

being declared in the I/O Model Reference for more information.

80 Neuron C Compiler Errors (NCC)

NCC# Description

247 Statement deleted by optimizer [NCC#247]

The Neuron C compiler's optimizer deletes statements for a variety of

reasons. For example, the statement may represent unnecessary work, the

statement may represent dead (unreachable) code, or the optimizer has

combined the statement with another statement. This informatory

message is issued for two reasons. First, to let the programmer know why

a breakpoint cannot be set on what looks like an acceptable statement.

Second, to point out code that may never be executed due to erroneous

program logic. Consider the following examples:

 <statements>

 goto LABEL;

 <statements> //deleted by optimizer

 LABEL:

 <statements>

Since the goto statement causes a branch around code such that it can

never be executed, the compiler issues a "Statement deleted" message for

each statement. The last example demonstrates an error in program logic

discovered by the compiler. The next example demonstrates unnecessary

statements deleted by the optimizer:

 int i;

 switch (i) {

 case 0:

 <statements>

 break;

 case 1:

 <statements>

 break;

 case 2:

 <statements>

 break; // deleted by optimizer

 }

In the above example, the last break statement in the switch statement is

unnecessary, since execution flow is the same with or without the break

statement. (However, it is recommended that the statement be coded as

shown anyway, because doing so will make future maintenance of the code

easier and less error-prone. It is good programming practice.)

The optimizer recognizes that any branch is unnecessary and eliminates

the unnecessary branch instruction. The informatory message is reported

to explain why a breakpoint cannot be set at what appears to be a valid

statement. No breakpoint can be set, since no code actually exists for this

statement. Note that informatory messages are not reported by the

compiler unless they are enabled by the #pragma fyi_on directive.

Neuron Tools Errors Guide 81

NCC# Description

248 Comparison is ineffective - result of comparison is a constant [NCC#248]

A conditional expression (comparison) which involves a constant value that

is out of the range of a variable value is an ineffective comparison; one that

always resolves to either the constant TRUE or the constant FALSE. The

Neuron C compiler detects such a condition and issues a warning assuming

that the comparison might be erroneous. This situation most commonly

occurs when an unsigned short is compared with a negative number, or a

short is compared with a constant that is a long. Recall that Neuron C

defines short to be 8 bits and long to be 16 bits.

void f(void) {

 int i;

 if (i < 300) {

 // The comparison shown above is an

 // ineffective comparison, since 'i'

 // can only be in the range -128..127.

 // The constant 300 is a long. This

 // is most likely a programming error.

 }

}

249

250

Loop, branch, or ‘when’ condition is always TRUE [NCC#249]

Loop, branch, or ‘when’ condition is always FALSE [NCC#250

The Neuron C compiler detects when some conditions are always FALSE or

always TRUE. This warning is generated to help programmers ensure that

their program is correct. A condition that is always FALSE, or TRUE, may

result from an erroneous conditional expression.

82 Neuron C Compiler Errors (NCC)

NCC# Description

251 Assignment operator at top level of conditional expression [NCC#251]

This warning is issued by the Neuron C compiler when it detects a use of

the assignment operator = in the top level of a conditional expression, for

example, in an if statement.

 int a, b;

 .

 .

 .

 if (a = b) // This is an assignment

Although such a code construct is legal and useful in C (it assigns the value

of 'b' to 'a' and tests that value for nonzero, simultaneously), it is also one of

the most common coding errors in C programs for novice and experienced

programmers alike. Almost all C programmers find themselves

occasionally making this error when an equality operator == is actually

intended.

The purpose of this warning is to assist programmers in finding

programming errors. The warning may be silenced by recoding the

conditional expression for an explicit test against zero. The Neuron C

compiler's optimizer will produce identical code with or without the explicit

test, due to special optimization logic for this case, thus the explicit test will

not decrease program efficiency.

 if ((a = b)!= 0)

252 Use of 'snvt_si_eecode' and 'snvt_si_ramcode' are exclusive [NCC#252]

The compiler directives #pragma snvt_si_eecode and #pragma

snvt_si_ramcode are mutually exclusive, since the two directives cause

the compiler to force the placement of the SNVT/Self-Identification

information in mutually exclusive areas of memory.

253 Triac level I/O object cannot use the 'clockedge(+-)' option [NCC#253]

The triac I/O object in level mode can only use the clockedge(+) or

clockedge(-) option.

254 Triac I/O object declaration defaults to triac 'pulse' object [NCC#254]

Either pulse or level mode can be selected explicitly using the appropriate

keyword in the I/O declaration for a triac object. A declaration without an

explicit keyword will default to using pulse mode. To silence the warning,

modify the declaration to explicitly specify the triac object's mode of

operation.

255 One or more unterminated #if/#ifdef/#ifndef directives [NCC#255]

The preprocessor directives controlling conditional compilation must

always exist in matching pairs, similar to the open brace { and close brace }

in a C program. The pairs #ifdef and #endif must match, for example,

with an optional #else contained in between.

Neuron Tools Errors Guide 83

NCC# Description

256 Attempt to #undef a name which is not a macro [NCC#256]

The preprocessor #undef command can only be applied to an identifier

which has previously been defined as a macro using the #define command.

257 Cannot redefine typedef name at file scope [NCC#257]

The rules of ANSI C permit redefinition of a typedef inside a nested scope

(for example, in a function), but not at file scope. For example:

typedef unsigned int ui;

// The following redefinition is not permitted

unsigned short ui;

void f (void) {

 // The following defines ui as a variable,

 // which hides the typedef inside the function

 unsigned short ui;

}

// The typedef ui is now no longer hidden

ui x;

258 Conditional compilation directives nested too deeply [NCC#258]

The maximum nesting level of the #ifdef/#ifndef/#if directives is 16.

Change your conditional compilation strategy if you are attempting to use

more than 16 levels of nested directives.

259 Misplaced #elif/#else directive [NCC#259]

The directive in question does not follow the appropriate #ifdef, or #ifndef

directive.

260 Too many arguments in macro being defined [NCC#260]

The maximum number of macro arguments that Neuron C supports is 16.

261 Macro argument name cannot be repeated [NCC#261]

Function-style macros (those which have a parameter list) must use a unique

name for each parameter.

262 Incorrect number of arguments for macro [NCC#262]

The invocation of the macro in question does not supply the correct number

of arguments. The number of arguments must be the same as the number

of formal parameters in the definition of the macro.

263 Array is too large for fastaccess feature [NCC#263]

An array declared with the optional fastaccess feature cannot exceed a

total size of 254 bytes.

84 Neuron C Compiler Errors (NCC)

NCC# Description

264 The fastaccess feature only applies to arrays [NCC#264]

The optional fastaccess feature should only be used in declarations of

array variable types. The feature does not apply to the indexing operator

applied to pointers.

265

266

267

The stack frame of this procedure is too large (>200 bytes) [NCC#265]

The stack frame of this procedure exceeds 100 bytes [NCC#266]

The stack frame of this procedure exceeds 7 bytes [NCC#267]

On Neuron Chips, references to variables near the top of the stack use the

most efficient instructions. The further down in the stack one goes, the less

efficient the instructions become. This inefficiency affects both the code

size and the code performance. A stack frame larger than seven bytes

begins to incur this penalty. The stack frame includes the parameters and

the local variables.

Neuron Chips do not have very large memory areas set aside for stacks.

Procedures whose stack frame exceed 200 bytes would fail to work;

therefore, this is a compile-time error. Procedures with stack frames in

excess of 100 bytes are flagged with a special warning message because

they use more than half of the stack resources, and nesting these functions

would cause a stack overflow. The compiler does not specifically check for

nesting, but it attempts to use this warning to catch large procedures.

Note that the Neuron chip’s hardware architecture suggests preferring a

large number of small functions over fewer, but larger, functions. Smaller

functions typically lead to much smaller stack frames for each function,

which also allows for more efficient code and thus results in a smaller code

footprint.

See Chapter 8 of the Neuron C Programmer’s Guide for more information

on managing memory resources.

268 Recommend use of an unqualified 'msg_arrives' event [NCC#268]

A program which receives explicit messages through the msg_arrives

event will be given all such messages which come into the device, whether

their message codes are expected or not. Any unexpected messages must

be handled by the program through a "catch-all" unqualified msg_arrives

event, otherwise such messages will get stuck at the head of the message

queue. See the chapter on messages in the Neuron C Programmer's Guide

for more information on processing incoming messages.

Neuron Tools Errors Guide 85

NCC# Description

273 Procedure code generation label resources exhausted [NCC#273]

Code generation is performed on a procedure-by-procedure basis. The

compiler reuses certain internal resources during code generation of each

procedure. One of these resources is internal label markers. There are

only a limited number of labels that can be used in a given procedure.

These labels are used in each possible branching scenario, in loops, if

statements, ?: operators, and switch statements. By far the most common

cause of this message is a very large procedure containing a switch

statement with many cases. The simplest recourse is to split the switch

statement into two or more switch statements, and move each to a

separate subprocedure.

274 Use of possibly unitialized variable [NCC#274]

The Neuron C compiler tracks the use of automatic variables (those which

are local to a function or procedure, or a sub-scope of a function or

procedure). If such a variable is accessed (read) prior to its having been

stored (written), this warning is issued. Structure fields and array

elements are not individually tracked.

275 Recommend use of 'fails' or 'succeeds' event instead [NCC#275]

This message indicates that the call to a completion event can be changed

to a fails or succeeds event as an efficiency consideration. See the

discussion on events in the Neuron C Programmer’s Guide or the Neuron C

Reference Guide.

276 The 'preempt_safe' keyword has no effect on this 'when' clause

[NCC#276]

Some when clauses and their associated tasks will be executed regardless

of preemption mode. Use of the preempt_safe keyword for this type of

when clause is unnecessary, and has no effect.

291 Improper binary constant ‘<value>’ [NCC#291]

A binary constant begins with 0b and is followed by one or more binary

digits (0 or 1).

292 Incomplete hexadecimal constant ‘<value>’ [NCC#292]

A hexadecimal constant begins with 0x and must be followed by one or

more hexadecimal digits (0-9 and the letters a-f or A-F).

293 Improper octal constant ‘<value>’ [NCC#293]

An octal constant begins with 0, and must be followed by one or more octal

digits (0-7).

86 Neuron C Compiler Errors (NCC)

NCC# Description

294 Unterminated character constant: ‘<value>’ [NCC#294]

The proper format of a character constant is ‘char’. The ‘char’ can either be

a single character (except another quote), or any of a number of ANSI C

escape sequences. Consult a basic text on ANSI C, such as one of those

listed in the Preface of the Neuron C Reference Guide, for more information.

295 Integer constant ‘<string>’ is too large [NCC#295]

Integer constants are limited to 5 characters, with a value of 65535 or less,

since the maximum size of an integer is 16 bits.

297 Cannot open <filetype> file: ‘<filename>’ [NCC#297]

The file that is named cannot be found. Check the spelling of the filename

and check the Application Directories’ and Include Directories’ search paths

in the development tool’s settings or the command line being used to

execute the compiler.

298 Recursive include file nesting (file ‘<filename>’) not allowed [NCC#298]

An include file cannot include itself, nor can any file B included from file A

then re-include file A, and so on.

299 Unsupported preprocessor directive: ‘<name>’ [NCC#299]

The following ANSI C preprocessor directives are not supported in Neuron

C:

 #elif

 #file

 #if

 #line

300 Access to stack variable is beyond end of stack [NCC#300]

The indicated fetch or store to a local variable or parameter on the stack is

beyond the possible end of the Neuron's stack. No instruction can be

generated for the indicated fetch or store. This could occur with an array

variable on the stack being indexed beyond the array bounds. This could

also occur as a result of incorrect direct address calculations on a stack

variable, such as a structure.

301 Invalid use of reserved word >> <token> << [NCC#301]

This error message occurs when the token causing the syntax error is a

reserved word (keyword) that is used out of context. Check the syntax of

not only the reported token, but also the syntax of a few of the previous

tokens. (A token is a grammatical unit, such as a keyword, or a comma or

semicolon.) Don’t forget that Neuron C has some extra reserved words, in

addition to those defined by ANSI C (these are listed in the Reserved Words

appendix in the Neuron C Reference Guide). Check that you haven’t

accidentally used a reserved word as a variable name or other identifier.

Neuron Tools Errors Guide 87

NCC# Description

302 Syntax error when reading >> <token> << [NCC#302]

Any syntax error is reported in this manner. Check the syntax of not only

the reported token, but the last few previous tokens. The Neuron C

grammar is explained in the Syntax Summary appendix in the Neuron C

Reference Guide.

303 Macro text for ‘<name>’ is too long for debug info [NCC#303]

The Neuron C debugger can understand macro names, but can only handle

the first 16Kbytes of text used in the definition of a macro.

304 Invalid typedef id ‘<name>’ [NCC#304]

Reference to symbol <name> seemed to be a reference to a typedef

identifier, but no such typedef was declared.

305 Integer constant ‘<value>’ is too large [NCC#305]

Integer constants are limited to 65535, since the maximum size of an

integer is 16 bits.

306 Symbol ‘<name>’ is not defined [NCC#306]

An identifier was used in an expression that was not previously declared or

defined. ANSI C requires that all identifiers be declared before their first

use.

307 Symbol ‘<name>’ is a restricted symbol [NCC#307]

The <name> shown cannot be used for a user-declared identifier, macro,

and so on. All such restricted names begin with ‘_’, although not all names

beginning with the ‘_’ character are reserved. To avoid this problem, as

well as to avoid future compatibility problems, don’t declare any names

beginning with the ‘_’ character.

308 Event conflict for I/O object ‘<name>’ [NCC#308]

A single I/O object cannot be used in both an io_update_occurs event and

an io_changes event.

309 Incomplete binary constant ‘<token>’ [NCC#309]

A binary constant begins with 0b and must be followed by one or more

binary digits (0 or 1).

88 Neuron C Compiler Errors (NCC)

NCC# Description

310 The symbol ‘<name>’ was declared but never used [NCC#310]

The compiler issues this warning for any run-time object that is declared,

but never used in the executable code. Run-time objects include anything

that consumes Neuron memory or other run-time resources, such as I/O

objects, variables, functions, timers, and so on. No warning is issued for

compile time objects, such as typedefs, structure tags, and so on, which are

not used. Some objects may be intentionally declared, but unused. If it is

desired to suppress this warning for a certain symbol, the following pragma

may be inserted following the declaration of the object in question:

 #pragma ignore_notused symbol

This directive may be used multiple times, for each symbol for which the

warning should be suppressed.

311

312

313

Redefinition of ‘<macroname>’ hides function [NCC#311]

Redefinition of ‘<macroname>’ hides enum value [NCC#312]

Redefinition of ‘<macroname>’ hides label [NCC#313]

The macro being defined, by the rules of ANSI C, will supersede any other

declarations of the same name. This may not be what the programmer

intended, so if a conflict is detected, to help with detection of inadvertent

programming errors, the above warning(s) will be printed.

314 Cannot redefine ‘<name>’ [NCC#314]

The name has been declared as a certain type of identifier more than once

in the scope. For example, it is illegal to define a variable twice at file

scope, or a function, or a macro, and so on (however, there may be multiple

extern declarations for the same variable). Note that a macro definition is

always considered to be at file scope, regardless of its placement in a file.

315

316

Name of network variable, ‘<name>’, exceeds 16 chars [NCC#315]

Name of msg_tag, ‘<name>’ exceeds 16 chars [NCC#316]

Any network variable or message tag name is limited to 16 characters.

Likewise, if a typedef name is used in declaration of a network variable, it

too must be 16 characters or less in length.

317 Label ‘<name>’ is not defined [NCC#317]

The specified label used in a goto statement is not defined in the current

procedure or task.

Neuron Tools Errors Guide 89

NCC# Description

318 Improper context for ‘<keyword>’ label [NCC#318]

Certain statements in ANSI C do not have meaning except within some

defined construct. The continue statement can only be used inside a loop

statement, which is either a for, a while, or a do-while. The break

statement can only be used inside a loop statement or inside a switch

statement.

The words case and default are reserved words in ANSI C, used as labels

inside of the scope of a switch statement. They cannot be used outside of a

switch statement.

This message indicates that the program being compiled has violated one of

these rules. Consult a basic text on ANSI C, such as one of those listed in

the Preface of the Neuron C Reference Guide, for more information.

319

320

321

322

323

324

Need to check nv_update_succeeds for <nv-name> [NCC#319]

Need to check nv_update_succeeds for <nv-name>[<index>] [NCC#320]

Need to check nv_update_fails for <nv-name> [NCC#321]

Need to check nv_update_fails for <nv-name>[<index>] [NCC#322]

Need to check msg_succeeds for tag <tag-name> [NCC#323]

Need to check msg_fails for tag <tag-name> [NCC#324]

Some events must occur in pairs. For a given network variable or message

tag, checking one event requires checking of a corresponding event, to have

a correct program.

325 The 'num_addr_table_entries' was adjusted upward to <value>

[NCC#325]

If there are one or more msg_tag declarations, or network variables are

declared, the compiler computes a minimum allowable number of address

table entries. There must be one entry per bindable msg_tag declared,

plus at least one entry if network variables are used. For some possible

connections, this may not be enough entries. However, this value is an

absolute minimum.

330 Symbol Table is full [NCC#330]

The compiler symbol table limit has been reached.

331 Optional parameters are not supported [NCC#331]

The standard C feature of a variable argument list through the ellipsis, also

called optional function parameters, is not supported in Neuron C.

332 Problem reading 'snvt.typ' [NCC#332]

This error is not applicable in version 4.00 or later versions of the Neuron C

Compiler.

90 Neuron C Compiler Errors (NCC)

NCC# Description

334 Specify 'idempotent_duplicate_<off,on>' pragma with 'micro_interface'

[NCC#334]

The Microprocessor Interface Program option for a Neuron C compilation

requires specification of one of the following two pragmas:

 #pragma idempotent_duplicate_off

 #pragma idempotent_duplicate_on

For more information, see Chapter 1 of the Neuron C Programmer's Guide.

335 Byte/Nibble output has no effect on timer/counter output pins [NCC#335]

A timer/counter output device has precedence over a byte or nibble output

device. The pin used by the timer/counter device, either IO_0 or IO_1, will

not be affected by any output operations on the byte or nibble device.

However, the remaining pins of the byte or nibble device will still

function. The declaration is permitted for situations such as a

timer/counter device on pin IO_0, and a 7-bit output device on pins IO_1

through IO_8, which could use a byte device declared on pin IO_0 to

accomplish the function.

336 Struct assign for EEPROM dest limited to 255 bytes [NCC#336]

The Neuron Chip firmware functions that copy blocks of memory to

EEPROM destination addresses support a maximum length of 255 bytes

per copy. Larger blocks can be copied by using multiple calls, substructure

assignments, and so on.

See Chapter 8 of the Neuron C Programmer’s Guide for more information

on managing memory resources.

337 Priority bind_info options ignored for NV ‘<name>’ [NCC#337]

Any explicit priority bind_info() options for network variables are ignored

when the number of priority buffers is zero. The number of priority buffers

is set to zero explicitly by the priority buffer count pragmas (see the

Compiler Directives chapter of the Neuron C Reference Guide and Chapter 8

of the Neuron C Programmer's Guide for more information).

338 The '#pragma codegen' directive must precede affected code [NCC#338]

The codegen pragma (see the Compiler Directives chapter of the Neuron C

Reference Guide) affects code generation for certain Neuron C features.

Selection of a codegen option must precede any generated code that would

be affected by the option. It is best to place these pragmas at the beginning

of a program.

Neuron Tools Errors Guide 91

NCC# Description

339 This program requires aliases:

'#pragma num_alias_table_entries' [NCC#339]

The program has referenced a firmware or library function which operates

on or requires one or more alias table entries, but the pragma which

allocates these alias table entries was not supplied, or the number of alias

table entries was specified as 0 (zero). See the Compiler Directives chapter

of the Neuron C Reference Guide for more information on the pragma.

340 Parameter to 'propagate' must be output network variable [NCC#340]

The built-in function propagate() takes as its only argument the name of

an output network variable. See the Functions chapter of the Neuron C

Reference Guide for more information on this built-in function.

342 I/O object type restricted to pins IO_0 through IO_6 [NCC#342]

Different I/O object types are permitted on different subsets of the Neuron

Chip’s I/O pins. For more information, see the I/O Objects chapter of the

Neuron C Reference Guide.

343 The '#pragma set_std_prog_id' conflicts with ID set via compile option

[NCC#343]

The compiler permits the program ID to be set in various ways, by compiler

directive (pragma) as well as by command-line or programmatic interface

option. The compiler will tolerate multiple attempts to set the program ID,

provided there is no conflict.

345 Array index is out of range of bounds declaration [NCC#345]

This warning is generated whenever a constant index is applied to an array

such that the index is negative, or is beyond the declared bounds of the

array.

346 This combination of debug options is not available [NCC#346]

The #pragma debug directive can be specified a number of times in a

given program, with various options. Some of these options can be

combined, and others cannot. Consult the Compiler Directives chapter of

the Neuron C Reference Guide for a complete explanation of the directive.

347 Need at least 3 application input buffers with debug kernel [NCC#347]

In order for the network debug kernel to function properly, a device must

have at least 3 application input buffers. The program being compiled with

the network debug kernel option selected does not have at least 3

application input buffers.

92 Neuron C Compiler Errors (NCC)

NCC# Description

349

350

Read error on cached file [NCC#349]

Write error on cached file [NCC#350]

A read error or a write error was reported while accessing a file. Check for

adequate disk space, or the possibility of loss of network connection (if a

networked file), or removal of removable media.

352 Array size exceeds 65535 [NCC#352]

The array variable being declared exceeds a total size of 65535 bytes. No

array, struct, or union variable in Neuron C can exceed 65535 bytes.

353 Variable being declared is too large for RAMNEAR. Use 'far'.

[NCC#353]

The variable being declared is larger than 256 bytes in size. The total

available size of the RAMNEAR area in the Neuron is 256 bytes, thus this

variable declaration must be placed in RAMFAR. Use the far keyword in

the declaration ("near" is the default). See Chapter 8 of the Neuron C

Programmer's Guide for more information.

354 Variable being declared is too large for EENEAR. Use 'far'.

The variable being declared is larger than 255 bytes in size. The total

available size of the EENEAR area in the Neuron is 255 bytes, thus this

variable declaration must be placed in EEFAR. Use the far keyword in the

declaration ("near" is the default). See Chapter 8 of the Neuron C

Programmer's Guide for more information.

357 The 'uninit' storage class requires use of 'eeprom' or 'config' or ‘cp’

[NCC#357]

The uninit storage class is used to tell the compiler not to provide any

initial value for the data item being declared, thus the loader will not

overwrite that area of memory when reloading the program. This feature is

only available for data items using EEPROM or Flash memory (the uninit

storage class does not apply to RAM variables). The uninit feature

requires the declaration to use one of the storage classes eeprom, config,

or config_prop (abbreviated cp). See the Neuron C Programmer’s Guide

for more information.

Neuron Tools Errors Guide 93

NCC# Description

358 The 'offchip' storage class requires use of 'far’ [NCC#358]

The Neuron Chip provides a “near” area of EEPROM memory and a "near"

area of RAM memory. Each of the “near” areas is located onchip, and

“near” is the default memory area used by a data declaration. When

writing a program for a Neuron 3150, which has external (off-chip)

memory, the offchip keyword can be used in the data declaration to force

the linker to place the data item in offchip memory. Since the data

declaration would default to the near area, which is located on-chip, the far

keyword must also be used in the data declaration. Add the far keyword to

the declaration.

See Chapter 8 of the Neuron C Programmer’s Guide for more information

on managing memory resources.

359 The keywords 'offchip' and 'onchip' are mutually exclusive [NCC#359]

As the message states, at most one of these storage classes may be used in

a data declaration.

387 File’s basename exceeding 52 characters may cause linker problems

[NCC#387]

In certain situations, including the use of configuration parameters and/or

variables declared static, the compiler may construct a “made-up-name” for

the variable that is, in part, based upon the basename portion of the

filename of the file that is being compiled. (The basename is the part of the

filename preceding a "." character.)

Because the maximum length of a symbol in the compiler, assembler, and

linker is 64 characters, and taking into account certain additional

characters added by the compiler in the process of creating a "made-up-

name", if the basename of the file exceeds a length of 52 characters, the

symbols passed to the assembler and linker may be too long, and link errors

may result. To avoid this problem, limit the basename of the file to 52

characters or less.

388 System error in Device Resource Files access [NCC#388]

The Neuron C compiler for the Neuron C Version 2 language uses the

LONMARK® Device Resource Files, including the catalog, and files such as

*.FPT, *.TYP, and so on. The Neuron C compiler uses the services of the

Device Resource Files API (DRF API) to provide access to the Resource

Files. If the DRF API reports an unexpected problem, the compiler prints

this message and stops the compilation.

Some possible causes of this problem are incorrect filenames or directory

paths in the catalog. Perform a catalog refresh to correct this situation.

(The IzoT Commissioning Tool will automatically refresh the catalog when

it starts up, as will the NodeBuilder Resource Editor).

94 Neuron C Compiler Errors (NCC)

NCC# Description

389 Typename ‘<name>’ not found in Device Resource Files; 'SNVT*',

'SCPT*', "UNVT*', "UCPT*' are reserved [NCC#389]

The Neuron C Compiler for the Neuron C Version 2 language uses the

LONMARK Device Resource Files to resolve all names beginning with the

prefixes 'SNVT*', 'SCPT*', 'UNVT*', and 'UCPT*', found in a Neuron C

program. The program should avoid using any names beginning with any

of these prefixes, for compatibility with names in the Resource Files.

Programs that were originally written in Neuron C Version 1 and use

typedef to define SCPT, UNVT, and UCPT types can still be compiled by

using the #pragma names_compatible compiler directive. In this case,

and matching type names in resource files will be hidden. See the Compiler

Directives chapter of the Neuron C Reference Guide for more information.

For more information about compiling legacy Neuron C applications with

the more recent version of the Neuron C Compiler (NCC version 4.0 or

later), and more information about converting a legacy application into one

that uses the Neuron C Version 2 language LONMARK features, please refer

to the IzoT NodeBuilder FX User’s Guide.

390 Could not open the LmRF catalog [NCC#390]

LmRF catalog means LONMARK Resource File catalog. The Neuron C

compiler for the Neuron C Version 2 language uses the LONMARK Device

Resource Files, including the catalog, and files such as *.FPT, *.TYP, and

so on. The Neuron C compiler uses the services of the Device Resource

Files API (DRF API) to provide access to the Resource Files. If the DRF

API cannot open the catalog, the compiler prints this message and stops the

compilation.

Possible causes of this problem are a missing \Lonworks\Types folder, or a

missing or corrupt catalog file (LDRF.CAT which is stored in the Types

folder). Perform a catalog refresh to correct this situation. The IzoT

Commissioning Tool will automatically refresh the catalog, or create one if

necessary, when it starts up; as will the NodeBuilder Resource Editor.

391 Use of NVT or CPT 'float' type requires prior #include <float.h>

[NCC#391]

Whenever a Network Variable Type (NVT) or a Configuration Property

Type (CPT) is retrieved from a LONMARK Device Resource File by the

Neuron C Compiler, and the type contains one or more references to the

float_type definition, the compiler checks that the floating point support

include file has been included in the compilation. Add #include <float.h>

to the beginning of your program.

Neuron Tools Errors Guide 95

NCC# Description

392 Use of NVT or CPT 'quad' type requires prior #include <s32.h>

[NCC#392]

Whenever a Network Variable Type (NVT) or a Configuration Property

Type (CPT) is retrieved from a LONMARK Device Resource File by the

Neuron C Compiler, and the type contains one or more references to the

s32_type definition, the compiler checks that the signed 32-bit support

include file has been included in the compilation.

This situation will occur when using any CPT of inherited type, because

prior to inheritance of type information, all inherited type CPTs default to

the 32-bit signed type s32_type. This is true even if the program does not

use any signed 32-bit data or arithmetic support functions. Add #include

<s32.h> to the beginning of your program.

393

394

395

396

Cannot add file record to dependency file (might cause build status

calculation to fail) [NCC#393]

Cannot add switch record to dependency file (might cause build status

calculation to fail) [NCC#394]

Cannot add parameter record to dependency file (might cause build

failure) [NCC#395]

Cannot write .ncdep dependency file (might cause build status

calculation to fail [NCC#396]

These problems are reported by the dependency utility. Although it will

not stop the compilation, the warning alerts the user to a potential problem

the next time a Project Make (or a build) is run, because the Project Make

utility may not be able to correctly calculate whether the project will need

to be rebuilt. To clear this condition, try a "clean" followed by an

"unconditional build".

397 Reference in NVT or CPT not found [NCC#397]

Some Network Variable Types (NVTs) or Configuration Property Types

(CPTs) can reference other NVTs. References can be nested. This message

indicates that the original type, or one of the types that it references,

references another type that does not exist in the applicable and available

resource files.

Use the NodeBuilder Resource Editor to examine the original type, and

then to observe whether all the types it references do, in fact, exist. This

problem may be caused by any of the following: one or more resource files

are missing, or the catalog does not list these resource files, some resource

files may be out of date, or possibly a resource file has been mis-edited.

398

399

Unspecified error in option processing [NCC#398]

Unspecified error in execution of compiler [NCC#399]

These messages result from an unknown program failure or anomaly that

has been caught by self-checking code in the compiler.

96 Neuron C Compiler Errors (NCC)

NCC# Description

401 Repeated declaration of CP family does not match previous declaration

[NCC#401]

In support of code modularity, it is possible that more than one file in a

compilation may declare a CP family of the same name, and with identical

properties. Rather than force the reorganization of the code or the creation

of artificially cryptic names, the compiler supports multiple identical

declarations, and will merge these declarations into a single declaration of

the family. This feature requires the two (or more) declarations being

merged to be identical in every aspect.

402

403

Invalid reference ‘<name>’ – must be an NV-CP or a CP family name

[NCC#402]

The property ‘<name>’ is not an NV-CP or a CP family name [NCC#403]

The compiler has determined that the <name> shown must be a reference

to a configuration property. The configuration property must have

previously been declared as a network variable using the config_prop or

cp option keyword in the declaration, or as a configuration parameter

family using the cp_family keyword. For more information on this topic,

see the chapter on configuration properties in the Neuron C Programmer's

Guide.

404

405

A device property cannot be ‘static’ [NCC#404]

A device property cannot be ‘global’ [NCC#405]

The device_properties list cannot contain any properties using the static

or global keyword as a modifier. Device properties are unique to the

device, and cannot be shared.

406 Device property is a duplicate [NCC#406]

The LONMARK Application Layer Interoperability Guidelines specify that no

more than one property of any particular SCPT or UCPT type may be used

as a device property. CPT names are the keys that LNS uses to retrieve

variable values. Consult that document for more information.

Neuron Tools Errors Guide 97

NCC# Description

407 A variable property list can only be used with a network variable

[NCC#407]

The Neuron C Version 2 syntax permits nonsense declarations like the

following examples, but the compiler later determines that the

nv_properties clause can only apply to a network variable declaration.

Improper uses of the nv_properties clause:

 static int abc nv_properties { heartbeatTime };

 SNVT_temp_f temperature

 nv_properties { heartbeatTime };

Proper use of the nv_properties clause:

 network output SNVT_temp_f temperature

 nv_properties { heartbeatTime };

In the second "improper use" example above, the declaration may be

confused with a network variable declaration, however, it is not. The

declaration actually is just a variable declaration using the type of the

SNVT (this is a legitimate declaration, but not a network variable, so it

cannot have a property list).

408 Array index for property or member cannot be used in this context

[NCC#408]

A reference to a property name in a property list contained an array index

expression, but the property is not an array.

409 A ‘cp’ network variable cannot have a variable property list [NCC#409]

The Neuron C Version 2 syntax permits nonsense declarations like the

following example, but the compiler later determines that the

nv_properties clause can only apply to a network variable declaration

that is not a configuration property. The LONMARK Application Layer

Interoperability Guidelines do not permit a configuration property to have

properties of its own.

Improper use of the nv_properties clause:

 network input cp SCPTdefOutput defaultValue

 nv_properties { heartbeatTime };

410 A ‘config’ network variable cannot have a variable property list

[NCC#410]

The Neuron C Version 2 syntax permits nonsense declarations like the

following examples, but the compiler later determines that the

nv_properties clause can only apply to a network variable declaration

that is not declared with the config keyword. The LONMARK Application

Layer Interoperability Guidelines do not permit a configuration property to

have properties of its own.

Improper use of the nv_properties clause:

 network input config SCPTdefOutput defaultValue

 nv_properties { heartbeatTime };

98 Neuron C Compiler Errors (NCC)

NCC# Description

411 Existing LonMark SD string info in NV will be overridden [NCC#411]

When a Neuron C program uses any of the new Neuron C Version 2

features that support the construction of a LONMARK device, the compiler

will create the SD and SI information for the device. When the compiler

attempts to insert this information into the SI and SD strings, if there is

already text present from the user's program, the compiler will insert the

LONMARK information at the front of the string, and will then use a

semicolon character to separate the automatically-generated string from

the user-specified string.

If the compiler detects that the existing string information started with the

special characters that would identify that information as LONMARK

information, the compiler then issues this warning, to let the programmer

know that the existing LONMARK information in the program was

overridden.

412 Too many errors – compilation halted [NCC#412]

To prevent a serious error early in the compilation, such as a missing

include file, or a missing brace or parenthesis, from creating a flood of

useless error messages, the compiler limits the number of error messages

reported to a small number. The next error after this limit is reached

causes the compiler to issue this message and halt the compilation.

417 Invalid declaration type for ‘properties’ clause [NCC#417]

The Neuron C Version 2 syntax permits nonsense declarations like the

following examples, but the compiler later determines that the

nv_properties clause can only apply to a network variable declaration.

Improper uses of the nv_properties clause:

 static int abc nv_properties { heartbeatTime };

 SNVT_temp_f temperature

 nv_properties { heartbeatTime };

Proper use of the nv_properties clause:

 network output SNVT_temp_f temperature

 nv_properties { heartbeatTime };

In the second "improper use" example above, the declaration may be

confused with a network variable declaration, however, it is not. The

declaration actually is just a variable declaration using the type of the

SNVT (this is a legitimate declaration, but not a network variable, so it

cannot have a property list).

Neuron Tools Errors Guide 99

NCC# Description

418 Cannot have multiple ‘properties’ clauses on a variable [NCC#418]

The Neuron C Version 2 syntax permits nonsense declarations like the

following example, but the compiler later determines that there are too

many properties clauses in the declaration.

Improper use of the nv_properties clause:

 network output SNVT_temp_f temperature

 nv_properties { heartbeatTime }

 nv_properties { defaultOutput };

The properties clause is a comma-separated list, and corrected use of the

declaration above is shown below:

 network output SNVT_temp_f temperature

 nv_properties { heartbeatTime,

 defaultOutput };

419 A ‘cp’ network variable cannot be an ‘output’ NV [NCC#419]

Configuration property network variables can only be declared as input

network variables. See the chapter describing the use of configuration

properties in the Neuron C Programmer's Guide.

420 Network variable’s property is a duplicate [NCC#420]

The LONMARK Application Layer Interoperability Guidelines specify that no

more than one property of any particular SCPT or UCPT type may be used

for a network variable. Consult that document for more information.

421 Overuse of ‘cp’ network variable [NCC#421]

A configuration property implemented using a network variable may not

appear in more than one property list, unless the property list also uses the

static or global keyword. The same network variable cannot be used as a

property for the device, network variables, and functional blocks

simultaneously. See the chapter describing the use of configuration

properties in the Neuron C Programmer's Guide.

422 Invalid property reference [NCC#422]

The item appearing in the property list is not a configuration property.

423 The scope value of the LonMark Resource File reference is out of range

[NCC#423]

The valid range of the scope value is 0 .. 6. The compiler has encountered

a resource file containing a scope value that is out of that range. Use the

NodeBuilder Resource Editor to examine the resource file and correct the

scope value if possible.

100 Neuron C Compiler Errors (NCC)

NCC# Description

424 Function type not correct for a fblock director function [NCC#424]

The director function for a functional block must be declared using a

specific function prototype. The function returns void, and it has two

parameters. The prototype must be in the form shown below:

 void f (unsigned index, int cmd);

For more information, see the Neuron C Programmer's Guide or the

Neuron C Reference Guide.

425 Director symbol is not defined or is not a function [NCC#425]

The initial declaration of the director function for a functional block must

appear prior to the declaration of the functional block. Since the director

function may very well make reference to the functional block declaration,

the initial declaration will probably need to be a function prototype

declaration, or a forward reference. For more information, see the

Neuron C Programmer's Guide.

426 Too many fblocks declared [NCC#426]

The Neuron Chip can support a maximum of 254 functional blocks. Note

that each element of an array of fblocks counts as one functional block.

427 The context for the ‘: :’ operator is not a valid context [NCC#427]

The :: operator can be used to access the members and the properties of a

functional block, as well as the properties of a network variable, or

properties of the device. This message indicates that the context, or the

portion of the property expression that precedes the :: operator, is neither a

functional block nor a network variable. A functional block array or a

network variable array requires an index expression in the context of the ::

operator. To access device properties, use the :: operator without a context

preceding it. See the examples and description of the :: operator in the

Neuron C Programmer's Guide and the Neuron C Reference Guide for more

information.

428 The specified fblock does not have a director function [NCC#428]

An attempt to access the director property of the functional block was

made, but no director function was declared for the functional block.

429 Incorrect number of arguments for the director function [NCC#429

The function returns void, and it has two parameters. The prototype for a

director function must be in the form shown below:

 void f (unsigned index, int cmd);

For more information, consult the Neuron C Programmer's Guide or the

Neuron C Reference Guide.

Neuron Tools Errors Guide 101

NCC# Description

430 Use of fblock_director function but no fblocks declared [NCC#430]

The compiler has detected an attempt to use the fblock_director() but no

functional blocks were declared in the program.

431 FPT name used to declare fblock is not in resource files [NCC#431]

Part of the declaration of a functional block refers to an FPT record in a

LONMARK Resource File, however, the name used in the program was not

found in the resource file. Check the spelling of the name (it is case-

sensitive) and check that the resource file containing the FPT is installed in

the resource file catalog on the computer. The catalog can be checked with

the NodeBuilder Resource Editor.

Verify that the program ID chosen for the project allows for the FPT

resource files to be accessed by the compiler. For example, in case the

desired FPT is implemented in an FPT device resource file, scope 3 or

higher, that applies to all code by manufacturer with ID 0x12345, this FPT

cannot be referenced from a project that uses a different manufacturer IF

value in its program ID.

432 The FPT used in fblock declaration is obsolete [NCC#432]

The LONMARK Device Resource Files permit FPT, NVT, and CPT

definitions to be marked as obsolete. This means that a replacement FPT,

NVT, or CPT is available, and the use of the obsolete item is discouraged

(though it is permitted). Contact LONMARK International for more

information on the obsolete FPT, NVT, or CPT.

433 NV member of an fblock cannot also be a CP [NCC#433]

A network variable that uses the config_prop (abbreviated cp) keyword in

its declaration is a configuration property network variable. Such a

network variable cannot be used as a member of a functional block, but can

be used as a property of a functional block.

434 The specified member of the fblock is not an NV [NCC#434]

Members of a functional block can only be network variables.

435 NV member of an fblock cannot also be declared ‘config’ [NCC#435]

A network variable that uses the config keyword in its declaration is a

Neuron C Version 1 configuration property. Such a network variable

cannot be used as a member of a functional block, nor can it be used as a

property of a functional block.

436 The specified NV has already been used as an fblock member [NCC#436]

A network variable (or element of a network variable array) can be a

member of at most one functional block.

102 Neuron C Compiler Errors (NCC)

NCC# Description

437 The member ‘<name>’ already has an NV implementation [NCC#437]

Each member of a profile can be implemented by a network variable in the

device's functional block declaration, but the member can only have one

implementation. See the chapter discussing the use of functional blocks in

the Neuron C Programmer's Guide.

438 The name ‘<name>’ is not a member of the FPT ‘<FPT-name>’ [NCC#438]

An implements statement appears in the member list of an fblock

declaration, and the member name (which follows the keyword

implements) does not exist in the FPT record. The FPT record is read

from the FPT resource file. Use the NodeBuilder Resource Editor to

examine the list of members for the FPT, and check the spelling of the

member name.

If you are trying to implement a custom member that is not in the FPT

record, you may use the implementation_specific keyword to accomplish

that. See the Neuron C Reference Guide for more details.

439 The FPT ‘<FPT-name>’ specifies that NV member ‘<name>’ must be

implemented [NCC#439]

Network variable members of the FPT are each marked as either

mandatory or optional. All mandatory members must have an

implementation, as declared using the implements statement in the

member list in the fblock declaration.

440

441

The FPT specifies that the NV member must be ‘input’ [NCC#440]

The FPT specifies that the NV member must be ‘output’ [NCC#441]

Network variable members of the FPT are each marked as either input or

output. The network variables that are used to implement the FPT

members must match the specification in the FPT record for that member.

Check the declared network variable direction.

442 User-defined interoperable node SD string will be ignored [NCC#442]

When a Neuron C program uses any of the Neuron C Version 2 features

that support the construction of a LONMARK device, the compiler creates

the SD and SI information for the device. When the compiler attempts to

insert this information into the SI and SD strings, if there is already text

present from the user’s program, the compiler inserts the LONMARK

information at the front of the string, and uses a semicolon character to

separate the automatically-generated string from the user-specified string.

If the compiler detects that the existing string information started with the

special characters that would identify that information as LONMARK

information, the compiler issues this warning. The existing LONMARK

information in the string is ignored.

Neuron Tools Errors Guide 103

NCC# Description

443 Insertion of LonMark device SD info truncates existing string

[NCC#443]

When a Neuron C program uses any of the new Neuron C Version 2

features that support the construction of a LONMARK device, the compiler

will create the SD and SI information for the device. When the compiler

attempts to insert this information into the SI and SD strings, if there is

already text present from the user's program, the compiler will insert the

LONMARK information at the front of the string, and will then use a

semicolon character to separate the automatically-generated string from

the user-specified string.

If the compiler detects that the addition of this information will cause the

string to exceed the limit of 1023 characters, the compiler will truncate the

string and issue this message.

444 The fblock external name string is invalid or is too long [NCC#444]

The LONMARK Application Layer Interoperability Guidelines state that the

external name of a functional block (the name which appears in the

LONMARK information in the device’s SD string) shall be 16 characters or

less. There are certain restrictions to the set of acceptable characters, too.

See the guidelines document, referenced above, for more information.

445 NV array element used as member of fblock requires an index [NCC#445]

A simple (non-array) functional block declaration requires network variable

members that are not arrays. These members can either be simple network

variables, or elements of network variable arrays. In the case of an

element of a network variable array, an index expression must be part of

the declaration in the implements statement, to identify the array

element to be used.

446 NV array elements used as members of fblock array require a starting

index [NCC#446]

A functional block array declaration must have its members implemented

using network variable arrays. The network variable arrays may be larger

than the functional block array, and the indices need not be identical

(between the functional block array and the various network variable

arrays). The reference to each array network variable in the implements

statements of the member list requires a starting index as part of the

declarations in the implements statements, to identify which array

element of the network variable corresponds to the 0th array element of the

functional block. The compiler then automatically distributes the following

elements of the network variable arrays to the following elements of the

functional block array.

447 The fblock reference requires an index[NCC#447]

Each element of a functional block array must be treated separately. An

index is always required to select an element of a functional block array.

104 Neuron C Compiler Errors (NCC)

NCC# Description

448 The fblock’s NV member array is not big enough for the FB

array[NCC#448]

A functional block array declaration must have its members implemented

using network variable arrays. The network variable arrays may be larger

than the functional block array, but may not be smaller. The network

variable array elements' indices need not start at 0 in correspondence with

the functional block array, but they must be consecutive. Thus, the

network variable array must be large enough to accommodate the

functional block array. For example, consider the following improper

declaration:

 network output SNVT_volt v[4];

 fblock SFPTwhatever {

 v[2] implements memberV;

 } fb[3];

The functional block array fb has three members, and the network variable

array v has four members. However, the declaration does not use v[0] nor

v[1], and it matches v[2] with fb[0], and v[3] with fb[1]. There are not

enough elements in the array v, because v[4] would be needed for fb[2], but

the array's last member is v[3].

449 The fblock or NV context requires an index[NCC#449]

A functional block array or a network variable array used as the context

(left-hand side) of the property operator :: must have an index expression.

An entire array cannot be used in this manner, only an individual element.

450 The fblock array requires NV array(s) as members [NCC#450]

A functional block array declaration must have its members implemented

using network variable arrays. The network variable arrays may be larger

than the functional block array, and the indices need not be identical

(between the functional block array and the various network variable

arrays). The reference to each array network variable in the implements

statements of the member list requires a starting index as part of the

declarations in the implements statements, to identify which array

element of the network variable corresponds to the 0th array element of the

functional block. The compiler then automatically distributes the following

elements of the network variable arrays to the following elements of the

functional block array.

451 A ‘device_specific’ CP is required to be ‘const’ as well [NCC#451]

The LONMARK Application Layer Interoperability Guidelines document

requires a configuration property that is declared with the device_specific

flag to also be declared const. CPs with these flags on are always read

from the device, they are considered read-only by LNS; thus the required

const.

Neuron Tools Errors Guide 105

NCC# Description

453 One or more code constructs have no effect and were ignored [NCC#453]

When compiling a program that is used as a model file for ShortStack,

FTXL, or i.LON SmartServer host development, the compiler could

encounter executable code or other Neuron C constructs that have no effect

for model file compilation. The construct is ignored by the compiler.

454 The construct is not acceptable in the current mode of operation code

[NCC#454]

Certain Neuron C features are not permitted in a program that is used as a

model file for host development with ShortStack, FTXL, or the i.LON

SmartServer. For example, the compiler directive #pragma

num_alias_table_entries is not permitted.

Consult your platform’s documentation for more information.

455 Cannot open NCT file [NCC#455]

The output *.NCT file (used during model file compilation) cannot be

opened. Perhaps a file already exists by that name, but it is open by

another Windows program, or it is marked read-only. Or, perhaps the

output directory does not exist.

456 The directive ‘#pragma num_alias_table_entries’ is required [NCC#456]

A Neuron C program must specify to the Neuron C Version 2 compiler how

much room is to be reserved for the alias table. The compiler does not

attempt to compute a default, so the programmer must specify a value for

this pragma. Previous versions of the Neuron C Compiler defaulted this

value to zero, but that is really not an appropriate default value.

The value 0 (zero), however, can still be used to effectively disable the use

of the alias feature; please see the Neuron C Reference Guide for more

about compiler directives.

457 The type used in the declaration is unnamed or unsupported [NCC#457]

Some types are not supported when compiling a program that is used as a

model file for host development with ShortStack, FTXL, or the i.LON

SmartServer. Consult the product documentation for more information.

458 The fblock’s property is a duplicate [NCC#458]

The LONMARK Application Layer Interoperability Guidelines specify that no

more than one property of any particular SCPT or UCPT type may be used

for a functional block. Consult that document for more information.

106 Neuron C Compiler Errors (NCC)

NCC# Description

459 Node object must be first fblock for LNS versions before 3.2 [NCC#459]

For LNS versions prior to version 3.2, if the device has a device object, that

device object must be the first functional block declared in the device (and

therefore be the functional block with global index zero).

You should implement the device object as the first functional block in the

device.

460 Cannot use an inheriting type to declare this object [NCC#460]

Some CPTs require inheritance of type information from a network

variable. Type inheritance is a feature that only applies to configuration

properties. Use of such a CPT for any other purpose (for example, declaring

a local or static variable in the program, or declaring a function parameter

or pointer) results in a declaration with incomplete type information(since

only a configuration property can inherit a type from a network variable).

A declaration with an incomplete type is not valid.

The CPT used in the declaration can only be used as part of a configuration

property declaration.

461 Cannot use an inheriting type CP as a device property [NCC#461]

A configuration property declared using a CPT type that inherits from a

network variable could not be a device property, because in that situation

there is no network variable from which to inherit.

462 Global property cannot inherit conflicting types [NCC#462]

When a configuration property is declared using the global keyword, it is

shared among multiple network variables (or functional blocks). Some

CPTs are incomplete type definitions, and the configuration properties that

use these CPTs in their declarations inherit their types from the network

variables they apply to. If a global configuration property is used as a

property of two or more network variables of different types, there is a

resulting conflict in the type inheritance. This situation is not permitted.

463

464

The ‘const’ attribute has been removed by cast operations [NCC#463]

Pointer to constant data has been cast into pointer to non-const data

[NCC#464]

These warning messages inform the programmer of a potential

programming error, because an attempt to write to read-only memory may

occur. Writes to read-only memory do not cause problems, other than that

the expected write does not occur.

Neuron Tools Errors Guide 107

NCC# Description

465

466

Interoperable user-defined SD string is not acceptable in model file

compilation [NCC#465]

Interoperable user-defined node SD string is not acceptable in model file

compilation [NCC#466]

The specified SD string is not acceptable in a program that is used as a

model file for ShortStack, FTXL, or i.LON SmartServer host development.

Consult the product documentation for more information.

467

468

Invalid fblock member number specification [NCC#467]

The implementation-specific member’s number conflicts with another

member [NCC#468]

A Neuron C program's implementation of an FPT (a profile) can add one or

more members not present in the FPT. These members are called

implementation-specific. Such members must specify a member name and

a member number since there is no FPT record to provide this information

for the compiler. The member name and member number supplied in the

implementation_specific statement must be unique, and must not

conflict with any FPT members, nor any other implementation-specific

members. Since a user FPT can inherit from a standard FPT, the

implementation-specific members must be unique within both the user FPT

and the standard FPT in this situation.

See also NCC#605.

469 The number of FPT members exceeds the compiler’s capacity [NCC#469]

The compiler accepts a maximum of 4,096 members per FPT.

470 The program ID for this program requires the changeable interface bit

[NCC#470]

A program that has one or more network variables declared as changeable-

type must also set the changeable interface bit in the program ID, to tell a

network management tool that the program interface is changeable. Use

the SPID Calculator in IzoT NodeBuilder tool to set the changeable

interface bit of the program ID. See the LONMARK Application layer

Interoperability Guidelines for more information on this topic.

471 The reference '<name>' is not a member of the fblock's FPT [NCC#471]

The context property expression uses a member name that does not exist in

the fblock declaration. A context property expression is of the form shown

below:

 fblock-name-with-index :: member-name

Check the fblock declaration and use a valid member name from the

functional block's member list. You cannot use a member from the FPT

that is not implemented in the fblock.

108 Neuron C Compiler Errors (NCC)

NCC# Description

472 An inheritable-type CP must be initialized in the properties clause

[NCC#472]

A configuration property declared with a SCPT that provides type

inheritance cannot be initialized in the CP family or network variable

declaration, because the type is not known and the initializer cannot be

processed. In fact, a CP family declared with a CPT that provides type

inheritance could have different family members with different types.

These types of properties must be initialized in the properties clause.

Properties declared with fixed, that is, non-inheriting types can be

initialized in either or both places, with the initializer in the properties

clause superseding the one in the declaration when both are present.

473 Global property cannot have conflicting initializers [NCC#473]

When a configuration property is declared using the global keyword, it is

shared among multiple network variables or functional blocks. A global

property that appears in two or more property lists could be initialized

differently in those property lists. This situation is not permitted.

474 The implementation-specific member’s name conflicts with another

member [NCC#474]

See the error description for [NCC#467], above.

475 Debug option set by pragma instead of by command option [NCC#475]

This warning is provided because the IzoT NodeBuilder (3 or later)

Development Tool has user-interface controls for the debug kernel options,

but the program is overriding them. Without this warning, a user of IzoT

NodeBuilder (3 or later) might think they turned off use of the debug kernel

when, in fact, the program is still turning these options on.

476 Codegen option set by pragma instead of by command option [NCC#476]

This warning is provided because the NodeBuilder 3 has user-interface

controls for certain code generation options, such as the disabling of the

compiler's optimizer, but the program is overriding them. Without this

warning, a user of the NodeBuilder 3 might think they turned off certain

compiler features when, in fact, the program is still turning these options

on.

477 Declaration of ‘cp’ or ‘cp_family’ requires use of a CPT [NCC#477]

A declaration of a configuration parameter must use a SCPT or UCPT type

in its declaration. This is required by the LONMARK Application Layer

Interoperability Guidelines.

Neuron Tools Errors Guide 109

NCC# Description

478 Declaration of ‘cp’ network variable should use a CPT referencing an

NVT [NCC#478]

When a program is using a standard program ID, all configuration property

network variables should be declared with a SCPT or UCPT type that is a

reference of a network variable type (SNVT or UNVT). Otherwise, the

network variable will appear to a network management tool to be of

"unknown type" rather than "interoperable type".

479 Network variable type is not a SNVT or UNVT [NCC#479]

When a program is using a standard program ID, all network variables

should be declared with a SNVT or UNVT type. Otherwise, the network

variable will appear to a network management tool to be of "unknown type"

rather than "interoperable type".

480 External resource string not found in any available string resource file

[NCC#480]

The external_resource_name feature in the declaration of a functional

block permits the lookup of a string (in US English) in a LONMARK Device

Resource File, and the compiler will automatically convert this string into

its <scope>:<index> reference. This message indicates that no device

resource file applying to this device contained the string.

481 String constant is too long [NCC#481]

No Neuron C string constant may exceed 65,000 characters.

482 The external name of fblock ‘<fb-name-1>’ is a duplicate of ‘<fb-name-2>’

[NCC#482]

Functional blocks must have unique external names. (All elements of a

functional block array have the same name, but the network management

tool makes these names unique by using the array index as part of the

name.)

483 The fblock’s FPT attempts to inherit from a standard FPT, but no

standard FPT was found with a matching key [NCC#483]

A user-level FPT may indicate (in the LONMARK Device Resource File that

contains it) that it inherits members and properties from a standard FPT.

The inheritance is by key, a 16-bit value associated with each FPT.

Standard FPTs have key values from 0-19999, and user FPTs that inherit

from standard FPTs must have matching keys. User FPTs that do not

inherit should have keys 20000 and above. This message either indicates a

problem with the key used for FPT inheritance, or it indicates that the

standard FPT is missing. Perhaps the standard file is out of date. The

latest standard LONMARK Device Resource Files can be downloaded from

the www.lonmark.org website.

http://www.lonmark.org/

110 Neuron C Compiler Errors (NCC)

NCC# Description

484 The FPT used in the fblock inherits from an obsolete FPT [NCC#484]

The LONMARK Device Resource Files permit FPT, NVT, and CPT

definitions to be marked as obsolete. This means that a replacement FPT,

NVT, or CPT is available, and the use of the obsolete item is discouraged

(though it is permitted). In this case, the user FPT is inheriting from a

standard FPT that has been marked as obsolete by LONMARK

International. Contact LONMARK International for more information about

the obsolete FPT, NVT, or CPT.

485 Cannot inherit type for property from principal NV because principal

NV of FPT is unimplemented [NCC#485]

A configuration property that uses type inheritance from a network

variable can also inherit from a functional block. In this latter case, the

FPT must designate one of its network variables as the principal network

variable. The principal network variable designation is solely for the

purposes of type inheritance. In the case of FPT inheritance, if the user

FPT overrides the standard FPT's principal network variable, but does not

designate one of its own, this leaves the principal NV as unimplemented.

Then, a configuration property for that functional block, using type

inheritance, has nothing to inherit from.

486 The fblock uses an FPT that has advanced features and requires LNS

versions 3.2 or later [NCC#486]

FPT inheritance and FPT records whose member numbers do not match

the member indices are not fully supported in LNS prior to LNS version

3.2. This might result in parts of the devices not being fully or correctly

recognized when deploying this device in a network managed with an

earlier version of LNS.

488 NV ‘<nv-name>’ is not an fblock member, and is not a ‘cp’, so the

‘changeable_type’ keyword is ignored [NCC#488]

The only support for changeable-type network variables is through the

LONMARK information for the variables. The only network variables with

LONMARK information are members of functional blocks and configuration

property network variables. Put the network variable in a functional

block's member list, or declare it as a configuration property network

variable of the device.

489 NV ‘<nv-name>’ requires a SCPTnvType property, since it is changeable-

type [NCC#489]

The changeable-type network variable mechanism requires that such

network variables each have a SCPTnvType property. The

SCPTnvMaxLength property is only needed if the network variable also

supports changeable-types of various lengths.

Neuron Tools Errors Guide 111

NCC# Description

490 NV ‘<nv_name>’ is an array of changeable-type NVs, so

‘expand_array_info’ is recommended [NCC#490]

A network variable array that is declared as changeable-type should use

the bind_info(expand_array_info) feature so each element of the

variable can have a different type. Otherwise, certain network variable

information is shared amongst the members of the array, and in that case,

all elements of the array must change type together.

491 The ‘nv_len’ property must be used with a ‘changeable_type’ NV

[NCC#491]

Only network variables that are declared as changeable-type my use the

nv_len property.

492 The ‘nv_len’ property requires a prior ‘#include <modnvlen.h>’

[NCC#492]

Use of the nv_len property requires the include file shown.

493

494

495

496

497

498

The FPT specifies that the NV member must be ‘polled’ [NCC#493]

The FPT specifies that the NV member use the ‘ackd’ service type

[NCC#494]

The FPT specifies that the NV member use the ‘unackd_rpt’ service type

[NCC#495]

The FPT specifies that the NV member use the ‘unackd’ service type

[NCC#496]

The FPT specifies that the NV member use request/response service type

[NCC#497]

The FPT specification of the NV member’s type does not match the NV

[NCC#498]

The FPT record (used in the functional block declaration) may specify

several restrictions on the network variable that implements the member.

The messages above result from compiler validations that test whether the

network variable used in the fblock member list implements the member

as required by the FPT.

499 NV array element used as a property requires an index [NCC#499]

A functional block declaration may have its properties implemented using

configuration parameters or configuration network variables. A simple

(non-array) functional block requires any configuration property network

variables to be simple NVs, or NV array elements. These properties can

either be simple network variables, or elements of network variable arrays.

In the case of an element of a network variable array, an index expression

must be part of the declaration in the fb_properties list, to identify the

array element to be used.

112 Neuron C Compiler Errors (NCC)

NCC# Description

500 NV array elements used as properties of an array require a starting

index [NCC#500]

A functional block array declaration may have its properties implemented

using configuration parameters or configuration property network variable

arrays. The network variable arrays may be larger than the functional

block array, and the indices need not be identical (between the functional

block array and the various network variable arrays). The reference to

each array network variable in the fb_properties list requires a starting

index as part of the declarations in the implements statements, to identify

which array element of the network variable corresponds to the 0th array

element of the functional block. The compiler then automatically

distributes the following elements of the network variable arrays to the

following elements of the functional block array.

501 Non-shared NV used as property of array must itself be an array

[NCC#501]

A functional block array declaration may have its properties implemented

using configuration parameters or configuration property network variable

arrays. The non-shared properties using network variables must be

implemented using network variable arrays. The network variable arrays

may be larger than the functional block array, and the indices need not be

identical (between the functional block array and the various network

variable arrays). The reference to each array network variable in the

fb_properties list requires a starting index as part of the declarations in the

implements statements, to identify which array element of the network

variable corresponds to the 0th array element of the functional block. The

compiler then automatically distributes the following elements of the

network variable arrays to the following elements of the functional block

array.

Neuron Tools Errors Guide 113

NCC# Description

502 NV array used as property is too small [NCC#502]

A functional block array declaration may have its properties implemented

using configuration parameters or configuration property network variable

arrays. The network variable arrays may be larger than the functional

block array, but may not be smaller. The network variable array elements'

indices need not start at 0 in correspondence with the functional block

array, but they must be consecutive. Thus, the network variable array

must be large enough to accommodate the functional block array. For

example, consider the following erroneous declaration:

 network output SNVT_volt v[4];

 network input cp SCPTdefOutput defOut[6];

 fblock SFPTwhatever {

 v[1] implements memberV;

 } fb[3]

 fb_properties {

 defOut[4]

 };

The functional block array fb has three members, and the network variable

array v has four members. The compiler matches v[1] with fb[0], v[2] with

fb[1], and v[3] with fb[2], and this is fine. However, the property array

starts with defOut[4] matched with fb[0], and defOut[5] is therefore

matched with fb[1] (The array elements defOut[0], defOut[1], defOut[2],

and defOut[3] are not used in this declaration.) There are not enough

elements in the array defOut, because defOut[6] would be needed for fb[2],

but the array's last member is defOut[5].

503 Global property cannot have conflicting range modification strings

[NCC#503]

A global property may be shared between two or more network variables, or

between two or more functional blocks. The shared property may have a

range-modification specifier assigned in each property list where it appears,

but these range-modification specifiers are not permitted to conflict.

504 The file for scope ‘<value>’ of the external name reference is not

available [NCC#504]

The external_resource_name feature of the fblock declaration specifies

a <scope>:<index> reference to a string, but when the compiler attempted

to check the validity of the reference by checking the existence of the string,

the applicable resource file for scope <value> was not available.

505 The string at index ‘<value>’ is not present in the file for scope ‘<value>’

[NCC#505]

The external_resource_name feature of the fblock declaration specifies a

<scope>:<index> reference to a string, but when the compiler attempted to

check the validity of the reference by checking the existence of the string,

the string was not present in the specified resource file.

114 Neuron C Compiler Errors (NCC)

NCC# Description

506 The ‘cp’ network variable is of inheriting type, but no type has been

inherited at this point [NCC#506]

A reference to a configuration property network variable has been

encountered but the configuration property has not yet inherited a type.

The reference in the executable code cannot be compiled, because the

variable does not yet have a type.

507

508

509

510

511

512

The FPT requires that this property be declared as ‘const’ [NCC#507]

The FPT requires that this property be declared as ‘device_specific’

[NCC#508]

The FPT requires that this property be declared as ‘manufacturing_only’

[NCC#509]

The FPT requires that this property be declared as ‘object_disabled’

[NCC#510]

The FPT requires that this property be declared as ‘offline’ [NCC#511]

The FPT requires that this property be declared as ‘reset_required’

[NCC#512]

The FPT record (used in the functional block declaration) may specify

several restrictions on the configuration properties that appear in its

property list. The messages above result from compiler validations that

test whether the configuration property used in the fb_properties list of the

fblock declaration properly implements the FPT property.

513 The FPT ‘<FPT-name>’ specifies that the CP member ‘<name>’ is

mandatory, but no corresponding property was found [NCC#513]

Configuration properties of the FPT are each marked as either mandatory

or optional. All mandatory properties must have an implementation, by

appearing in the fb_properties list of the functional block, or in the

nv_properties list of the member NV to which the property applies.

514 The FPT’s inherited mandatory CP member ‘<name>’ could not be

implemented because the inherited NV member ‘<name>’ was overridden

[NCC#514]

A user FPT has inherited a standard FPT with a mandatory configuration

property applying to a network variable, but the standard FPT's network

variable member is overridden in the user FPT. The user FPT needs to

also override the problematic configuration property, and either make it

optional, or make it apply to a mandatory member of the user FPT or to

another NV member of the standard FPT that is not overridden.

515 The FPT’s mandatory CP member ‘<name>’ applies to an unimplemented

NV member ‘<name>’ [NCC#515]

You should review the definition of this CP member within the functional

profile definition.

Neuron Tools Errors Guide 115

NCC# Description

516 The FPT specifies that mandatory CP member ‘<name>’ applies to NV

member ‘<name>’, but no corresponding property was found [NCC#516]

The compiler did not find the mandatory property appearing in the

nv_properties list of the member network variable.

517 Global property cannot have conflicting initializers from FPT

definitions [NCC#517]

518 The ‘cp’ network variable is of inheriting type, but no type was inherited

[NCC#518]

At the end of the program compilation, the compiler verifies that all

configuration property network variables have inherited a type (by being

used as the property of a network variable, or as the property of a

functional block with a principal NV). Any configuration property network

variables that have not inherited a type cannot be allocated space, and the

compilation cannot complete successfully.

519 The ‘changeable_type’ network variable array element

‘<nv-name>[<index>]’ was not used; therefore the type for that element

cannot be changed [NCC#519]

If an element of a network variable array declared as changeable-type is

not used, it will have no LONMARK information, thus, a network

management tool cannot change its type.

520 An address constant initializer cannot be used in model file compilation

mode, and was ignored [NCC#520]

A program that is used as a model file for host development with

ShortStack, FTXL, or the i.LON SmartServer cannot use address constants

as initializers.

521 Network variable property cannot inherit conflicting types [NCC#521]

A configuration property network variable may be shared among multiple

network variables (or among multiple functional blocks). Some SCPT types

are not actual type definitions, and the configuration properties that use

these SCPTs in their declarations inherit their types from the network

variables they apply to. If a configuration property network variable were

to be used as a property of two or more network variables of different types,

there would be a conflict in the type inheritance. This situation is not

permitted.

522 SD string supplied exceeds the 1023 character limit after the

‘expand_array_info’ fixup. [NCC#522]

The bind_info(expand_array_info) causes certain fixups to be applied to

the SD strings of network variable array elements to make each string

unique. These alterations (fixups) could increase the length of the string

beyond the 1023 character limit for such strings.

116 Neuron C Compiler Errors (NCC)

NCC# Description

525 Cannot have the '#pragma skip_ram_test_except_on_power_up' because

it conflicts with '#pragma ram_test_off' [NCC#525]

You cannot choose both options, since they would be logically contradictory

with each other.

526 Cannot have the '#pragma ram_test_off' because it conflicts with

'#pragma skip_ram_test_except_on_power_up' [NCC#526]

You cannot choose both options, since they would be logically contradictory

with each other.

528 The FPT does not permit this property to be an array [NCC#528]

Neuron C Version 2.1 introduced configuration properties that are arrays.

In other words, the entire array is treated as a single property. The FPT

resources (SFPT*, UFPT*) designate, for each property, whether that

property may not, may, or must be an array. This error message indicates

that the program attempted to use an array property for an FPT CP

member, but the FPT does not permit that particular CP member to be an

array.

529 The FPT requires that this property be an array of <count>elements

[NCC#529]

Neuron C Version 2.1 introduced configuration properties that are arrays.

In other words, the entire array is treated as a single property. The FPT

resources (SFPT*, UFPT*) designate, for each property, whether that

property may not, may, or must be an array. In the case of properties that

must be an array, the FPT can specify a fixed array bound, or a variable

array bound within a range. This error message indicates that the program

attempted to instantiate a property for an FPT CP member, but the FPT

requirement that the array bound be of a certain fixed size was not met.

530 The FPT requires that this property array have at least <minimum>

elements [NCC#530]

Neuron C Version 2.1 introduced configuration properties that are arrays.

In other words, the entire array is treated as a single property. The FPT

resources (SFPT*, UFPT*) designate, for each property, whether that

property may not, may, or must be an array. In the case of properties that

must be an array, the FPT can specify a fixed array bound, or a variable

array bound within a range. This error message indicates that the program

attempted to instantiate a property for an FPT CP member, but the

property does not meet the minimum array bound requirement of the FPT

(the property is too small).

Neuron Tools Errors Guide 117

NCC# Description

531 The FPT requires that this property array have no more than

<maximum> elements [NCC#531]

 Neuron C Version 2.1 introduced configuration properties that are arrays.

In other words, the entire array is treated as a single property. The FPT

resources (SFPT*, UFPT*) designate, for each property, whether that

property may not, may, or must be an array. In the case of properties that

must be an array, the FPT can specify a fixed array bound, or a variable

array bound within a range. This error message indicates that the program

attempted to instantiate a property for an FPT CP member, but the

property does not meet the maximum array bound requirement of the FPT

(the property is too large).

532 The expand_array_info option is not compatible with use of the NV as

CP array [NCC#532]

Use of a network variable array as an array configuration property (the

entire array is a single property) cannot be used with a network variable

that is declared with the expand_array_info option.

533 The spi I/O object cannot use the 'clockedge(+-)' option [NCC#533]

For a spi I/O object, you must use either clockedge(+) or clockedge(-).

534 The select pin must be IO_7 for the 'spi' device type [NCC#534]

If a spi I/O object declaration uses the optional select pin, it must use

IO_7.

535 The baud rate specified is not a supported rate for the 'sci' device type

[NCC#535]

The sci I/O object supports only a certain predefined set of baud rates. See

the description of the sci I/O object in the I/O Model Reference.

536 The FPT requires that this property be an array of

<minimum>..<maximum> elements [NCC#536]

Neuron C Version 2.1 introduced configuration properties that are arrays.

In other words, the entire array is treated as a single property. The FPT

resources (SFPT*, UFPT*) designate, for each property, whether that

property may not, may, or must be an array. In the case of properties that

must be an array, the FPT can specify a fixed array bound, or a variable

array bound within a range. This error message indicates that the program

attempted to instantiate a property for an FPT CP member, but the

property's array bound does not fall within the required range of the array

bound as designated by the FPT.

118 Neuron C Compiler Errors (NCC)

NCC# Description

537 If I/O clock is specified, the pragma must precede the SCI device

declaration [NCC#537]

The sci I/O object declaration can (and in most cases does) specify an initial

baud rate. This baud rate is used to construct a register setting that is

dependent on the device's input clock. The #pragma specify_io_clock is

used to communicate the input clock value to the compiler, and it must

appear in the program before the declaration of the I/O object. See the I/O

Model Reference for more information.

538 The #pragma codegen no_cp_template_compression is incompatible with

#pragma codegen cp_family_space_optimization selected earlier

[NCC#538]

You cannot choose both options, since they would be logically contradictory

with each other.

539 The #pragma codegen cp_family_space_optimization is incompatible

with #pragma codegen no_cp_template_compression selected earlier

[NCC#539]

You cannot choose both options, since they would be logically contradictory

with each other.

540 I/O object type restricted to pins IO_0 or IO_8 [NCC#540]

The particular I/O object being declared must either be declared on IO_0 or

IO_8.

541 The output pin is restricted to pins IO_0 through IO_7 [NCC#541]

The particular I/O object being declared must be declared on one of the pins

IO_0 through IO_7.

542 Timing values for touch I/O object must be in range 1..256 [NCC#542]

As the message says, if you supply the optional timing values in the

declaration of the touch I/O object, these values must be in the range of 1 to

256. However, note that a zero value is interpreted as 256, so to use 256 as

a timing value you must actually supply a zero.

543 The SCPTnvType and SCPTmaxNVLength can only apply to

changeable_type NVs [NCC#543]

Properties of type SCPTnvType or SCPTmaxNVLength are only

permitted as a property of one or more network variables declared as

changeable_type. See How Devices Communicate Using Network

Variables in the Neuron C Programmers Guide for more information.

Neuron Tools Errors Guide 119

NCC# Description

544 The #pragma system_image_extensions nv_length_override must precede

all uses of the 'nv_len' property [NCC#544]

Use of the directive #pragma system_image_extensions

nv_length_override selects use of the user-written extension function

get_nv_length_override() when determining the length of a network

variable. Therefore this pragma must be used to select this method prior to

any attempts to get the length of the network variable. The pragma must

appear in the program before any use of the nv_len property. See How

Devices Communicate Using Network Variables in the Neuron C

Programmers Guide for more information.

545 Reading the nv_len property within the get_nv_length_override function

is prohibited [NCC#545]

The get_nv_length_override() function is provided by the application

programmer when using the system extension option

nv_length_override. This function is also called by the compiler to

evaluate the nv_len property for a network variable. Therefore, the

function may not contain any such references to the nv_len property, else

there would be an endless loop. See How Devices Communicate Using

Network Variables in the Neuron C Programmers Guide for more

information.

546 The #pragma system_image_extensions nv_length_override must precede

the get_nv_length_override function's definition [NCC#546]

Use of the directive #pragma system_image_extensions

nv_length_override selects use of the user-written function

get_nv_length_override() when determining the length of a network

variable. Therefore this pragma must be used to select this method prior to

the function definition, so the compiler can properly recognize the special

nature of this function definition. See How Devices Communicate Using

Network Variables in the Neuron C Programmers Guide for more

information.

547 AUTO initializers not implemented [NCC#547]

The Neuron C Compiler syntax does not permit use of initializers for

automatic variables in their declaration. (Automatic variables are

variables declared within a function scope, or a nested scope, or inside the

task body associated with a when clause.) Initialize the variables with

separate statements following the declaration of all automatic variables in

a function.

120 Neuron C Compiler Errors (NCC)

NCC# Description

548 The property '<property-name>' cannot be shared by changeable_type

NVs of differing initial types (<NV-name-1> and <NV-name-2>)

[NCC#548]

A configuration property of SCPTnvType that is shared by more than one

changeable_type network variable must be shared only by network

variables with the same initial type. The message lists two network

variables that share the property, but have differing initial types. See How

Devices Communicate Using Network Variables in the Neuron C

Programmers Guide for more information.

549 The property '<property-name>' cannot be shared by NVs with different

SCPTmaxNVLength properties (<NV-name-1> and <NV-name-2>)

[NCC#549]

A configuration property of SCPTnvType type that is shared by more than

one changeable_type network variable must be shared only by network

variables that all have the same property of SCPTmaxNVLength type, if

any of those network variables use a property of SCPTmaxNVLength

type. The message lists two network variables that share the property, but

have differing SCPTmaxNVLength.

550 The property '<property-name>' cannot be shared by NVs of differing

types (<NV-name-1> and <NV-name-2>) [NCC#550]

A configuration property that inherits its type from the network variable

that it applies to may not be shared by two or more network variables of

different type. The message lists two network variables that share the

property, but have differing types. See Using Configuration Properties to

Configure Device Behavior in the Neuron C Programmer's Guide for more

information.

551 The property '<property-name>' cannot be shared by NVs with different

SCPTnvType properties (<NV-name-1> and <NV-name-2>)" [NCC#551]

A configuration property that inherits its type from the network variable

that it applies to may not be shared by two or more network variables of

different type. The message lists two network variables that share the

property, but have differing SCPTnvType properties. See How Devices

Communicate Using Network Variables and Using Configuration Properties

to Configure Device Behavior in the Neuron C Programmer's Guide for more

information.

552 Symbol in preprocessor directive is not defined [NCC#552]

The message indicates that the symbol specified as the parameter for the

compiler directive #pragma ignore_notused is not defined. The directive

is ignored after the warning message is displayed.

Neuron Tools Errors Guide 121

NCC# Description

553 Symbol '<symbol>' in preprocessor directive is not permitted in this

directive [NCC#553]

The message indicates that the symbol specified as the parameter for the

compiler directive #pragma ignore_notused cannot be used with this

feature. This restriction applies to symbols that are the names of macros,

typedef names, and names of types from resource files (SNVT*, SCPT*,

UNVT*, UCPT*, SFPT*, and UFPT*).

554 The NVT (Network variable Type) is obsolete [NCC#554]

A resource file can optionally designate any of the network variable types

that it contains as being obsolete. This designation indicates that the

network variable type should no longer be used in new development. This

designation does not prevent its use, but it does display this warning

message.

555 The CPT (Configuration Property Type) is obsolete [NCC#555]

A resource file can optionally designate any of the configuration property

types that it contains as being obsolete. This designation indicates that the

configuration property type should no longer be used in new development.

This designation does not prevent its use, but it does display this warning

message.

556 Array size exceeds 65500 [NCC#556]

A configuration property array may not exceed 65500 bytes in total size,

determined as the product of the element size and the array bound. This

size is of no practical limit, since a Neuron does not have this much

contiguous memory space available for configuration properties.

557 The CP array construct is not acceptable in model files [NCC#557]

A program that is used as a model file for host development with

ShortStack, FTXL, or the i.LON SmartServer cannot use configuration

property arrays.

559 Duplicate/repeated cp_info keyword is ignored [NCC#559]

A configuration property declaration may optionally contain a

parenthesized list of keywords representing option flags. If one or more of

these keywords is repeated or duplicated, this warning message is

displayed and the repetition or duplication has no other effect.

562 The device SD string exceeds the limit of 1023 characters. Consider

using shorter external names, or fblock arrays [NCC#562]

563 Too many instructions. You need to reduce the size of your application,

or acquire an unlimited version of the Neuron C Compiler [NCC#563]

you can purchase an unrestricted compiler with the IzoT NodeBuilder FX

tool.

122 Neuron C Compiler Errors (NCC)

NCC# Description

567

568

569

Network variables maximum exceeds supported maximum in current

context [NCC#567]

Alias maximum exceeds supported maximum in current context

[NCC#568]

Fblock maximum exceeds supported maximum in current context

[NCC#569]

These errors indicate an attempt to configure the Neuron C compiler in an

unsupported fashion.

571 Too many libraries [NCC#571]

You cannot specify more than 20 libraries with the #pragma library

directive, but you can explicitly reference more libraries in the NodeBuilder

project, or when explicitly calling the Neuron Linker on the console.

572 Use of this pragma is restricted. Please contact Echelon for assistance

[NCC#572]

You are using a licensed feature, but you do not appear to have a valid

license for this feature.

573 Network variable size is greater than 31 bytes. This NV type is not

interoperable with LonMark-compliant devices [NCC#573]

Under certain conditions, network variable types can exceed the 31 byte

size limit. These network variables are not interoperable.

574 NV declaration should not be based on a CPT. Are you missing a 'cp'

modifier?[NCC#574]

Declare network variables using network variable types, and declare

configuration properties using configuration property types. For

configuration properties implemented as configuration network variables,

use configuration property types that reference a network variable type.

Do not declare network variables using configuration property types unless

you declare a configuration network variable.

575 The system timer interrupt is already used with a different interrupt

task [NCC#575]

You can only declare one interrupt task associated with the system timer

interrupt.

576 All available timer/counter interrupts are already used with different

interrupt tasks [NCC#576]

You can only declare up to two interrupt tasks associated with the

hardware timer or counter units.

Neuron Tools Errors Guide 123

NCC# Description

577 All available I/O interrupts are already used with different interrupt

tasks [NCC#577]

You can only declare up to two interrupt tasks associated with I/O.

578 Parser error (unexpected semantic device type) [NCC#578]

579 This I/O device cannot trigger an interrupt task; use a supported

timer/counter configuration or declare an I/O interrupt instead

[NCC#579]

Only the hardware timer and counter units can generate interrupts that

can be referenced through the I/O model, but you can reference all available

I/O pins in declarations of I/O interrupt tasks.

580 A single I/O interrupt cannot be triggered through both high and low

levels; use a single level trigger and define two I/O interrupts if needed

[NCC#580]

581 Malformed system timer frequency value [NCC#581]

When specifying the periodic system timer’s frequency in the declaration of

a system timer interrupt task, you can describe the frequency as a floating-

point constant in typical C notation. The value of this constant describes

the requested timer frequency in Hertz. Optionally, you can use one of the

following postfix modifiers for readability: “Hz,” “kHz,” “MHz” or “GHz.”

Note those postfix modifiers are case-sensitive.

The following frequency definitions result in the same value: “1e3,” “1000,”

“1kHz,” “1e-3MHz,” “1000Hz”.

The NCC#581 error related to an unrecognized postfix modifier.

582 System timer frequency is out of range [NCC#582]

The system timer’s frequency range is 2441.406 .. 625000 Hz. A 20% error

on either end of the scale is supported (1953.1248 .. 687500Hz).

See also NCC#583.

583 The resulting system timer interrupt frequency will be <f>, causing an

error of <p>% from the specified frequency [NCC#583]

The periodic system timer cannot be configured for every possible value

with the supported range of 2441.406 .. 625000 Hz. Instead of requiring

that you type one of 256 possible exact frequency values, the Neuron C

compiler accepts any value (within range), and corrects it to the nearest

true frequency value.

Variations between the desired and true frequency under 1% are ignored.

The NCC#583 warning occurs if the true frequency is more than 1%

different from the value specified in source code.

124 Neuron C Compiler Errors (NCC)

NCC# Description

584 The hardware timer/counter unit is already used with a different

interrupt task [NCC#584]

You cannot reuse the same hardware timer or counter with a second

interrupt task.

585 Nested ‘lock’ construct [NCC#585]

The Series 5000 and Series 6000 Chips support exactly one hardware

semaphore, and __lock constructs may not be nested, therefore.

Note this diagnostic only applies to explicit nesting. The following

hypothetical construct triggers this error:

void f(void) {

 __lock {

 __lock {

 …

 }

 }

}

However, it is possible for __lock constructs to nest at runtime by executing

two nested functions which both implement a lock. This error condition can

only be detected at runtime; the system firmware resolves the resulting

deadlock with a watchdog timer reset, and logs a system error code.

586 You cannot combine a falling edge with a dual-edge triggered I/O

interrupt [NCC#586]

587 Debugging of optimized code is not supported and not recommended.

You should disable debugger support, or disable the optimizer

[NCC#587]

588 Intermixing 'pragma optimization' with deprecated codegen options for

optimization control is not recommended [NCC#588]

You should use #pragma optimization.

589 This codegen option is deprecated and may be discontinued in a future

release. Use 'pragma optimization' instead [NCC#589]

590 Your optimization preferences in source code conflict with those

expressed on the command line or the IDE, and will be ignored

[NCC#590]

591 You cannot change a buffer size or count value once it has been

designated ‘final.’ Consider using the ‘minimum’ modifier or eliminate

the superfluous buffer control directive [NCC#591]

592 The 'minimum' buffer size or count value exceeds a previously requested

'final' value for the same aspect This is at the location of the ‘minimum’

request [NCC#592]

Neuron Tools Errors Guide 125

NCC# Description

593 The 'final' buffer size or count value doesn't meet the earlier 'minimum'

specification for the same aspect. This is at the location of the ‘final;

request [NCC#593]

594 The ‘level’ modifier is no longer supported, use ‘pulse’ or the

stretchedTriac output model instead [NCC#594]

595 This I/O object requires the 'frequency' modifier to denote the typical

power line frequency [NCC#595]

596 The specified frequency is out of range for the stretched triac I/O model

[NCC#596]

597 The ‘twostopbits’ option and the parity feature are mutually exclusive

[NCC#597]

598 The CP is declared with both 'object_disabled' and 'offline'. 'offline' has

higher priority; 'object_disabled' becomes ineffective [NCC#598]

599 The configuration network variable is declared constant, but may be

updated through network variable updates [NCC#599]

600 The 'specify_io_clock' directive has no effect unless an SCI I/O object is

being declared, and will be ignored [NCC#600]

601 I2C model modifiers cannot be repeated [NCC#601]

602 Modifiers <a> and are mutually exclusive [NCC#602]

603 The I2C I/O object <o> cannot use the version 1 I2C I/O model (as

requested with '#pragma codegen use_i2c_version_1'), because it uses

features not supported in version 1. The version 2 I2C I/O model is being

used instead [NCC#603]

604 The guideline version string <s> does not describe a guidelines version

in the major.minor format [NCC#604]

This warning can occur when specifying a guidelines version with the

#pragma set_guidelines_version directive. The Neuron C Compiler

supports any format for that string, but issues this warning if the format is

unexpected. A typical guidelines version string follows a major.minor

format (for example, “3.4”).

126 Neuron C Compiler Errors (NCC)

NCC# Description

605 The application is built for interoperability guidelines <v>, but

implements an implementation-specific member NV or CP. This

application will not pass certification [NCC#605]

If you use implementation-specific network varibales or configuration

properties in your device interface, your device will not comply with

interoperability guidelines version 3.4 (or later) and therefore cannot be

certified by LONMARK International.

A better alternative for adding members to a functional profile is to create a

user-defined functional profile template (UFPT) that inherits from an

existing standard functional profile template (SFPT), and then add new

mandatory or optional member network varibales and configuration

properties to the UFPT. This method results in a new functional profile

that you can easily reuse in new devices. See the NodeBuilder Resource

Editor User's Guide for more information on creating new functional

profiles.

Alternatively, you can remove the implementation-specific network varibles

and configuration propetrties from the device interface (because they are

not fully interoperable).

606 SCPTnwrkCnfg must be implemented as a configuration network

variable [NCC#606]

This warning is given when a SCPTnwrkCnfg configuration property that

has been implemented as a CP family is listed in a properties clause. This

warning is displayed in applications designed for interoperability

application layer guidelines 3.4 or better.

607 The use of infinite locks in a release build is not recommended

[NCC#607]

This warning is given when you are building a release target that contains

one or more infinite __lock constructs (a __lock construct that uses the

#pragma deadlock_is_infinite directive).

Use finite __lock constructs instead. To do this, replace all #pragma

deadlock_is_infinite directives in __lock constructs with the #pragma

deadlock_is_finite directive. Rebuild and then reload the release target.

For more information on the #pragma deadlock_is_infinite and

#pragma deadlock_is_finite directives, see the Neuron C Reference

Guide.

611 The --target command is not required in this mode, and will be ignored

[NCC#611]

This warning is given when the compiler is invoked from the console

using the --target command, but tasked with a pure C compilation (not a

.NC source file). The specification of a compilation target is not required

in pure C compilation and has no effect.

Neuron Tools Errors Guide 127

NCC# Description

612 The --target command is required in this mode [NCC#612]

This warning is given when the compiler is invoked for Neuron C

compilation from the console without using the --target command. The

Neuron C compiler version 6 or better requires the specification of the

compilation target for Neuron C (.NC) sources.

613 The target does not support freely programmable I/O pull-ups, or can't

support all which were requested [NCC#613]

This warning is given when the pragma enable_io_pullups directive is

not supported with the chosen compilation target, or the target does not

support the optional pull-up selection provided with this directive.

616 Can't execute external preprocessor lonmcpp32 [NCC#616]

This error results from a failure to launch lonmcpp32.exe, the Neuron C

preprocessor executable. To remedy this problem, try re-installing the

Neuron C development tool.

617 Directive '#pragma push' can't execute: stack is full [NCC#617]

The error occurs when a segment stack overflow occurs with pragma

segment directives. This directive is reserved for internal use.

618 Directive '#pragma pop' can't execute: stack is empty [NCC#618]

The error occurs when a segment stack underflow occurs with the

pragma segment directive. This directive is reserved for internal use.

622 pragma disable_mult_module_init cannot be used with --sysinit

[NCC#622]

The offending feature combination is reserved for internal use only.

624 Pointers to near system functions require resident mode [NCC#624]

In transient compilation mode, function pointers and indirect function

calls through pointers to near system functions are not supported.

627, 628 "The locate directive is malformed: <text>. Use #pragma locate <name>

{seg <s>} {org <o>} [NCC#627], [NCC#628]

Both errors indicate a syntax error in the specification of the pragma

locate directive. The two errors show the same message but relate to

different locations within the directive’s parser.

See the Neuron C Reference Guide for more details about this directive.

629 The locate directive cannot affect functions already implemented, or

declared 'extern' [NCC#629]

See the Neuron C Reference Guide for more details about this directive.

128 Neuron C Compiler Errors (NCC)

NCC# Description

630 The locate directive can only locate locally defined items which are not

already implemented [NCC#630]

See the Neuron C Reference Guide for more details about this directive.

631 The target does not support DHCP (ignoring directive #pragma dhcp

enabled) [NCC#631]

See the Neuron C Reference Guide for more details about this directive.

632 The target does not support enhanced mode (ignoring directive #pragma

enhanced_mode enabled) [NCC#632]

See the Neuron C Reference Guide for more details about this directive.

633 Pragma malformed. Use #pragma dhcp (enabled|disabled) [NCC#633]

See the Neuron C Reference Guide for more details about this directive.

634 Pragma malformed. Use #pragma enhanced_mode (enabled|disabled)

[NCC#634]

See the Neuron C Reference Guide for more details about this directive.

Neuron Tools Errors Guide 129

8

Neuron Exporter Errors (NEX)

This chapter lists and describes the errors that can be

reported by the Neuron Exporter.

130 Neuron Exporter Errors (NEX)

NEX Errors
Table 10 lists the NEX error codes.

Table 10. NEX Error Codes

NEX# Description

1 Numerical value out of range: <parameter>=<value> (<min>..<max>)

[NEX#1]

Numeric value out of range. See error message for details. A command

was specified correctly, but the parameter value given was invalid. Verify

that to correct your build scripts as appropriate.

2 Invalid record in <file>, line <lineno> [NEX#2]

Invalid record in input file, see error message for details.

3 Invalid record in <file>, line <line#>: too short [NEX#3]

Invalid record in input file (record too short), see error message for details.

4 Invalid record in <file>, line <line#>: bad checksum [NEX#4]

Invalid record in input file (bad checksum), see error message for details.

5 Unable to locate file '<file>' [NEX#5]

Unable to locate input file. See error message for details. You can attempt

to fix this problem by building the target unconditionally, and by making

sure the file does exist prior to invoking the tool.

6 Unable to allocate memory [NEX#6]

Out of memory. When running in a DOS virtual machine, make sure to

offer sufficient memory. When running in a Win32 environment, this

should not occur.

7 No valid records found in '<file>' [NEX#7]

No valid records in input file; see error message for details.

8 Unable to access file '<file>' for writing [NEX#8]

Unable to access file for writing. The file could be write-protected, or

locked by another process.

9 Attempt to write to unopened file [NEX#9]

Attempt to write to an unopened file. This is an internal error condition;

please contact LonSupport.

10 Writing to file '<file>' failed [NEX#10]

Writing to file failed. The file could be locked by some other process, and

the file could be write-protected.

Neuron Tools Errors Guide 131

NEX# Description

11 Attempt to read from an unopened file. [NEX#11]

This is an internal error condition; please contact LonSupport.

12 Reading from file '<file>' (read behind end of file) [NEX#12]

Reading from file failed (read behind end of file). This is an internal error

condition; please contact LonSupport.

13 Unexpected EOF in file '<file>' at line #<line> [NEX#13]

Unexpected end of file. See error message for details. Attempt fix-up with

rebuild.

14 Line # <line> in input file '<file>' is too long [NEX#14]

A record in an input file was longer than expected. See error message for

details. Attempt fix-up with rebuild.

15 Line # <line> in input file '<file>' is invalid [NEX#15]

A record in an input file is invalid. See error message for details. Attempt

fix-up with rebuild.

16 Line # <line> in input file '<file>', byte count is invalid [NEX#16]

A record in an input file is invalid due to an incorrect byte count. See error

message for details. Attempt fix-up with rebuild.

17 Line # <line> in input file '<file>', checksum is invalid [NEX#17]

A record in an input file is invalid, bad checksum. See error message for

details. Attempt fix-up with rebuild.

18 System image symbol table '<file>' is invalid: symbol '<symbol>' not

defined [NEX#18]

Missing a required symbol from the system image's symbol table. See

error message for details. Does the chosen system image support the

desired memory configuration? Change the firmware version and image

file to the default and perform an unconditional build.

19 Specified transceiver type has invalid clock/bit rate combination

[NEX#19]

Specified transceiver type has invalid clock/bit rate combination. Verify

that your hardware clock rate and transceiver preferences are correct.

20 Device's input clock is below minimum allowed for channel [NEX#20]

Device’s input clock is below the minimum allowed for the desired channel.

Choose a different transceiver or a faster clock rate.

132 Neuron Exporter Errors (NEX)

NEX# Description

21 Unable to compute device's Communication Parameters [NEX#21]

Unable to compute device’s communication parameters. Verify device

clock speed and transceiver preferences.

22 Out of memory while creating file '<file>' [NEX#22]

Out of memory when creating an output file. See error message for failure

details.

23 Cannot find file '<file>' [NEX#23]

Cannot find a required file. Attempt to fix with rebuild.

24 Cannot create file '<file>' [NEX#24]

Cannot create a file. Verify that the media is writable and the destination

folder has not been write-protected.

25 Cannot read file '<file>' [NEX#25]

Cannot read from a file. Attempt to fix with rebuild.

26 Cannot write file '<file>' [NEX#26]

Cannot write to a file. Verify that the media is writable and the

destination folder has not been write-protected.

27 Unable to copy file '<source>' to '<destination>' [NEX#27]

Unable to copy a file. Verify that the media is writable and the destination

folder has not been write-protected.

28 XIF version is <version>. Can only convert XIF versions 3.0 or later to

XFB [NEX#28]

Cannot process the external interface file due to outdated version. See

error message for failure details. Rebuilding unconditionally should fix

this by creating an up-to-date version 4 XIF file.

29 Line <line#> (<line>): Should have <count> fields, but actually has

<count> [NEX#29]

Bad external interface file, field count mismatch. See error message for

failure details. Attempt to fix with rebuild.

30 NV '<nvname>', <count> fields expected, <count> found in NV type info

[NEX#30]

Bad external interface file, NV field count mismatch. See error message

for failure details. Attempt to fix with rebuild.

Neuron Tools Errors Guide 133

NEX# Description

31 Transceiver type <id> is invalid [NEX#31]

Invalid transceiver type. Verify that to specify the correct transceiver

when launching the Exporter.

32 Unable to access Standard Xcvr Type file: '<file> [NEX#32]

Unable to access the standard transceiver database file. See error

message for failure details. An updated version of the standard

transceiver database file might be available from the www.lonmark.org

website.

33 Invalid xcvr type ID specified: '<id>' [NEX#33]

Invalid transceiver type. There is no such transceiver in the standard

transceiver database stdxcvr.xml.

34 Unable to access Neuron Type file: '<file>' [NEX#34]

Unable to access the Neuron type database. See error message for failure

details.

35 Invalid neuron model ID specified: '<id>' [NEX#35]

Invalid Neuron model specified; there is no such Neuron model defined in

the neuron.xml database. See error message for failure details.

36 Malformed record '<tag>' in dependency file <file> [NEX#36]

Malformed record in dependency file <file>. See error message for failure

details. Attempt to fix with an unconditional rebuild.

37 Unexpected end of dependency file <file> [NEX#37]

Unexpected end of dependency file <file>. Attempt to fix with an

unconditional rebuild.

38 Missing separator in clause '<tag>', dependency file <file> [NEX#38]

Missing separator in dependency file <file>. See error message for failure

details. Attempt to fix with an unconditional rebuild.

39 Bad section name '<section>' in dependency file <file> [NEX#39]

Bad section name in dependency file. See error message for failure details.

Attempt to fix with rebuild.

40 Error processing dependency file <file> [NEX#40]

Error processing dependency file <file>. See error message for failure

details. Attempt to fix with rebuild.

http://www.lonmark.org/

134 Neuron Exporter Errors (NEX)

NEX# Description

41 Malformed or missing record '<tag>=' in dependency file <file>

[NEX#41]

Malformed or missing record in dependency file <file>. See error message

for failure details. Attempt to fix with rebuild.

42 Malformed or missing parameter record '<tag>' in dependency file

<file> [NEX#42]

Malformed or missing parameter record in dependency file <file>. See

error message for failure details. Attempt to fix with clean and complete

rebuild.

43 Can not compute communication port control byte [NEX#43]

Cannot compute communication port control byte. Verify that your

standard transceiver parameter database (stdxcvr.xml) has not been

corrupted. An update might be available from the www.lonmark.org

website.

44 Unknown reason [NEX#44]

Failure to compute communication parameters, no reason given.

45 Internal error [NEX#45]

Internal error when calculating communication parameters.

46 Invalid data [NEX#46]

Invalid data caused error when calculating communication parameters.

Verify that your standard transceiver database (stdxcvr.xml) has not

been corrupted. An update might be available from the www.lonmark.org

website.

47 Unable to compute CP configuration for transceiver <xcvr> [NEX#47]

Unable to compute the CP (Communications Parameters) configuration.

See error message for failure details. Verify that your standard

transceiver database (stdxcvr.xml) has not been corrupted. An update

might be available from the www.lonmark.org website.

48 Unrecognized encoded clock rate value <value> [NEX#48]

Unrecognized clock ID. Currently supported encoded clock ID values

range from 0 (625kHz) to 7 (40MHz).

http://www.lonmark.org/
http://www.lonmark.org/
http://www.lonmark.org/

Neuron Tools Errors Guide 135

NEX# Description

49 Unable to compute end-of packet wait time for single-ended or

differential mode transceiver <xcvr> with hardware clock ID <id>

[NEX#49]

Unable to compute the end-of packet wait time for a single-ended or

differential mode transceiver. This is most likely caused by a very fast-

running Neuron chip, combined with a slow channel type. Reduce the

clock speed and see if the problem persists.

50 The transceiver's general purpose data record seems malformed: <gp

data> [NEX#50]

The transceiver’s general-purpose data record seems malformed. Verify

that your standard transceiver database (stdxcvr.xml) has not been

corrupted. An update might be available from the www.lonmark.org

website.

51 The device's clock rate (encoded value <id>) and the transceiver's

communication rate (encoded value <id>) result in an invalid

communication clock divider value. One of the two input rates might

be invalid [NEX#51]

The device's clock rate and the transceiver’s communication rate result in

an invalid communication clock divider value. One of the two input rates

might be invalid. See the error message for failure details. Try increasing

or lowering the Neuron clock speed.

52 The transceiver requires a minimum clockrate which is higher than the

device's configured input clock speed [NEX#52]

The transceiver requires a minimum clock-rate that is higher than the

device's configured input clock speed. This combination cannot be used;

you must choose a higher clock rate or a different transceiver.

53 The encoded value for the device's clock input of <id> is not within the

supported range of <min> to <max> [NEX#53]

The encoded value for the device’s clock input is not within the supported

range. See error message for failure details.

54 The encoded value for the channel's minimum clock rate of <id> is not

within the supported range of <min> to <max> [NEX#54]

The encoded value for the channel's minimum clock rate of <id> is not

within the supported range. See error message for failure details. Verify

that your standard transceiver database (stdxcvr.xml) has not been

corrupted. An update might be available from the www.lonmark.org

website.

http://www.lonmark.org/
http://www.lonmark.org/

136 Neuron Exporter Errors (NEX)

NEX# Description

55 Unable to determine preamble length using transceiver <xcvr>

[NEX#55]

Unable to determine the preamble length. See error message for failure

details. Verify that your standard transceiver database (stdxcvr.xml) has

not been corrupted. An update might be available from the

www.lonmark.org website.

56 Unable to determine packet cycle duration using transceiver <xcvr>

[NEX#56]

Unable to determine the packet cycle duration. See error message for

failure details. Verify that your standard transceiver database

(stdxcvr.xml) has not been corrupted. An update might be available from

the www.lonmark.org website.

57 Unable to determine beta-2 control value using transceiver <xcvr>

[NEX#57]

Unable to determine the beta-2 control value. See error message for

failure details. Verify that your standard transceiver database

(stdxcvr.xml) has not been corrupted. An update might be available from

the www.lonmark.org website.

58 Unable to determine transmit interpacket padding using transceiver

<xcvr> [NEX#58]

Unable to determine the transmit interpacket padding. See error message

for failure details. Verify that your standard transceiver database

(stdxcvr.xml) has not been corrupted. An update might be available from

the www.lonmark.org website.

59 Unable to determine receive interpacket padding using transceiver

<xcvr> [NEX#59]

Unable to determine the receive interpacket padding See error message for

failure details. Verify that your standard transceiver database

(stdxcvr.xml) has not been corrupted. An update might be available from

the www.lonmark.org website.

60 Unknown command ID <id> [NEX#60]

This is an internal error condition.

61 Cannot create file '<file>' (missing external utility <utility>) [NEX#61]

A file <file> cannot be created because tool <utility> is missing, or cannot

be found on the system search path.

http://www.lonmark.org/
http://www.lonmark.org/
http://www.lonmark.org/
http://www.lonmark.org/
http://www.lonmark.org/

Neuron Tools Errors Guide 137

NEX# Description

62 Cannot export 'clone domain' and 'no domain' (the two features are

mutually exclusive) [NEX#62]

When exporting an image as configured, this image can be exported with

domain information, without domain information ('no domain'), or into the

'clone domain'. These three scenarios are mutually exclusive. See the

Neuron chip or Smart Transceiver data book and the IzoT NodeBuilder FX

User’s Guide for details about exporting configured images.

63 The configured image can not be exported authenticated in the chosen

domain configuration [NEX#63]

For an image to be exported authenticated, a domain ID (with a length of

1, 3, or 6 bytes), and a subnet/device id (different from 0/0) must be used

unless the firmware supports open media authentication. See the Neuron

Chip or Smart Transceiver data book and the IzoT NodeBuilder FX User’s

Guide for details about exporting configured images.

64 An image can not be exported as configured, without domain, and with

a 96 bit authentication key [NEX#64]

Exporting configured and authenticated images requires the domain to be

specified if a 96-bit authentication key is to be used. See the Neuron Chip

or Smart Transceiver data book and the IzoT NodeBuilder FX User’s Guide

for details about exporting configured images.

65 The currently chosen firmware does not support 96 bit authentication

keys [NEX#65]

You must choose a firmware version that supports this feature, or use a

48-bit authentication key instead.

66 96 bit authentication keys requires two domain table entries [NEX#66]

You cannot reduce the size of the domain table to one entry (by using the

Neuron C compiler directive #pragma num_domain_entries 1 and still

export this device image using a 96-bit authentication key. You can use a

48-bit authentication key, or you must allow for both domain table entries

to be created.

67 At least one of domain ID, subnet ID, and device ID has not been

specified but is required for this export configuration [NEX#67]

The image cannot be exported as desired due to lack of data. For example,

this would occur if an image should be exported in the configured state,

and only the subnet and device ID, but no domain ID, was provided.

Verify that to specify all data required, or to specify the correct state of the

exported image.

68 The firmware does not support 96 bit authentication keys [NEX#68]

You must disable authentication, use a 48-bit authentication key, or use a

firmware version that does provide support for 96-bit authentication keys.

138 Neuron Exporter Errors (NEX)

NEX# Description

71 The chosen firmware does not support operation at 3.2768 or 6,5536MHz

[NEX#71]

The 6.5536 MHz clock rate is only supported in Version 14 firmware and

later.

73 The chosen combination of transceiver and Neuron model requires

operation at 3.2768 or 6.5536 MHz [NEX#73]

When using the PL31x0 chip, when combined with the PL-20A or PL-20A-

LOW transceiver, you must use the 6.5536 clock rate.

For other cases, please consult your Neuron Chip or Smart Transceiver

data book.

74 The <transceiver_name> transceiver requires a minimum clock rate of

<clock_rate> MHz [NEX#74]

The chosen transceiver requires the Neuron Chip or Smart Transceiver to

operate at a certain minimum clock rate; please consult your transceiver or

Smart Transceiver data book for details.

75 The <transceiver_name> transceiver supports a maximum clock rate of

<clock_rate> MHz[NEX#75]

The chosen transceiver requires the Neuron Chip or Smart Transceiver to

operate at a certain maximum clock rate; please consult your transceiver

or Smart Transceiver data book for details.

76 The <neuron_model> Neuron model requires a minimum clock rate of

<clock_rate> MHz[NEX#76]

The chosen Neuron or Smart Transceiver model cannot operate at the

selected clock rate; instead the minimum clock rate indicated in the

message is required.

77 The <neuron_model> Neuron model supports a maximum clock rate of

<clock_rate> MHz[NEX#77]

The chosen Neuron or Smart Transceiver model cannot operate at the

selected clock rate; the maximum clock rate is indicated in the message.

78 Transceiver doesn't support attenuation measurements[NEX#78]

Some powerline transceivers support an –attenuation command. This

error is returned when this command is invoked on a transceiver that does

not support it.

79 I/O clock selection doesn't match the hardware clock

This error occurs when the clock selection, defined with the pragma

specify_io_clock compiler directive, does not match the hardware clock.

This directive is generally not required for Series 5000 or 6000 chips,

because the I/O clock is fixed for those chips.

Neuron Tools Errors Guide 139

NEX# Description

80 The chosen external clock cannot be used to drive the UART

This error occurs when a clock selection, defined with the pragma

specify_io_clock compiler directive, is not suitable to drive the on-chip

UART. This directive is generally not required for Series 5000 or 6000

chips, because the I/O clock is fixed for those chips.

81 The target hardware doesn't support the combination of external clock,

clock multiplier and minor cycle divider

This error occurs when the target hardware does not support the clock

specified. This error usually indicates an incorrect build script or other

form of direct calls to the Neuron Exporter.

82 This version does not recognize size or format of this target's <system-

structure>

This error occurs as a result of a mismatch between the compiler, linker

and exporter, and these tools’ respective expectations of the target system.

This error usually indicates an incorrect build script or other form of direct

calls to the build tools.

83 Merging the transient image into <target-file> requires an Intel-Hex file

format

This error occurs when a transient application image needs processing and

a Motorola S-Record export file format has been requested. Some image

files, including the transient image, do not support the Motorola S-Record

file format natively. To generate application image files in this file format,

export all build artifacts using the Intel-hex format (the default), and use

third-party tools to convert the images which require the Motorola S-

Record format.

84 Application exceeds capacity by <num> bytes

This error occurs when the application’s transient image exceeds the

maximum size allowed. Consult the list of supported serial flash memory

parts in the series 6000 chip databook for alternative, larger, flash memory

parts.

4001 Inserting XIF appendix <filename> might have caused an unwanted

duplication of records. Verify the XIF file for correctness [NEX#4001]

Multiple XIF appendix files might have caused duplication of template and

value file records. More than one of the following files contributed to the

resulting XIF template and value file records: .BF2, .XF2, and a possible

explicit XIF extension file (--xifappendix command). Verify the resulting

XIF file, and remove explicit or implicit XIF appendix files if no longer

needed.

4002 Applicationless state disables some Reboot Options [NEX#4002]

A device has been exported as applicationless. Some of the reboot options

requested are meaningless for this configuration, and will be ignored.

140 Neuron Exporter Errors (NEX)

NEX# Description

4003 Specified Reboot Options will prevent network loading [NEX#4003]

The specified reboot options prevent loading of the application image over

the network.

4004 Old-style dependency file <filename>. Use .nxdep instead [NEX#4004]

Old-style dependency file was specified. This file format is obsolete and

should not be used any longer. Use --nxdep.

4005 Ignoring superfluous .phd file (<filename>) [NEX#4005]

Ignoring superfluous .phd file. Both a new and a legacy linker dependency

file have been specified; the old format (.phd) is being ignored.

4006 The selected feature requires exporting a configured image (feature

ignored) [NEX#4006]

A feature was requested that can only be used with a configured image;

use the --state command to request exporting of a configured image.

4007 Cannot update dependency file <file> (<reason>). This might cause the

build status calculator to fail [NEX#4007]

The Exporter’s dependency file cannot be written due to the reason given

in the message. The file should be made writable to prevent the build

status calculator from failing.

4008 No boot ID was specified. A random value (<value>) is being used

instead [NEX#4008]

A boot ID value was not explicitly specified. To prevent multiple versions

of the same device to be exported with the same boot ID, the Exporter

automatically allocates a boot ID randomly (value shown in the message).

It is recommended to use the --bootid command to explicitly specify the

desired boot ID value, or to use the Project Make Facilities’ boot ID

management feature.

4009 The export configuration does not permit the authentication key,

domain ID, subnet ID, or device ID to be set. These will be ignored and

the image will be exported in the requested state [NEX#4009]

The image cannot be exported in the desired state with all data provided.

Superfluous data is being ignored, as the state has priority over the other

parameters. For example, this could occur if an image is to be exported in

a ‘no domain’ configuration although a domain ID has been specified.

Neuron Tools Errors Guide 141

NEX# Description

4010 The subnet/device ID has not been specified for the desired

configuration. S/N = 1/1 is assumed [NEX#4010]

This warning will occur whenever an image is to be exported into the

cloned domain, without both subnet and device ID being given. A device

that has the clone domain flag raised must still have a valid

domain/subnet/device configuration. The warning indicates that the

problem has been recognized, subnet/device ID 1/1 are being assumed, and

the export continues.

4011 No domain ID was specified for the desired configuration. A zero-

length domain is assumed [NEX#4011]

This warning will occur whenever an image is to be exported into the

cloned domain, without a domain ID and/or domain ID length being given.

A device that has the clone domain flag raised must still have a valid

domain/subnet/device configuration. The warning indicates that the

problem has been recognized, a zero-length domain is being assumed, and

the export continues.

4012 Both subnet and device ID must be zero for the desired configuration.

The specified values are being ignored [NEX#4012]

A non-zero value for the subnet ID and/or device ID has been specified,

leading to an invalid configuration. These values are being ignored and

the image is exported in the desired state.

Verify that the image has been exported into the correct state, and/or

specify the correct subnet/device ID values as needed.

4014 The hardware semaphore and the__ lock{} construct are not

operational at this clock setting [NEX#4014]

The hardware semaphore (and the __lock{}construct) are only operational

in clock configurations in which the interrupts are executed in a separate

execution context from the application context. Requesting the semaphore

(entering the __lock clause) will always succeed immediately for a non-

operational semaphore.

Neuron Tools Errors Guide 143

9

Neuron Linker (NLD) and Neuron
Librarian (NLIB) Errors

This chapter lists and describes the errors that can be

reported by the Neuron Linker and Neuron Librarian.

144 Neuron Linker (NLD) and Neuron Librarian (NLIB) Errors

Overview
Message codes shown as [NLD#<number>] in this chapter are shown as

[NLIB#<number>] when they originate from the Neuron Librarian, but the

numerical message identifier is always unique and unambiguous.

NLD and NLIB Errors
Table 11 lists the NLD and NLIB error codes.

Table 11. NLD and NLIB Error Codes

NLD# Description

1 System file limit exceeded [NLD#1]

2 Cannot access or read file 'neuron.typ' [NLD#2]

3 Neuron type (-t switch) must be set [NLD#3]

4 Custom image creation incompatible with some switches [NLD#4]

5 Custom image creation requires NEURON external memory [NLD#5]

6 Custom image creation requires base image name [NLD#6]

7 No object files specified [NLD#7]

8 The 'nv_in_addr' feature is not available with the selected firmware

image [NLD#8]

9 The 'alias' feature is not available with the selected firmware image

[NLD#9]

10 The 'preempt_safe' feature is not available with the selected firmware

image [NLD#10]

11 The 'idempotent duplicate' feature is not available with the selected

firmware image [NLD#11]

12 The new msgin fields feature is not available with the selected firmware

image [NLD#12]

13 The 'transaction-by-address' feature is not available with the selected

firmware image [NLD#13]

14 The '#pragma codegen nosiofar' feature is not available with the

selected firmware image [NLD#14]

15 The '#pragma debug network_kernel' feature is not available with the

selected firmware image [NLD#15]

Neuron Tools Errors Guide 145

NLD# Description

16 The 'resp_in.addr' feature is not available with the selected firmware

image [NLD#16]

17 The EEPROM lock feature is not available with the selected firmware

image [NLD#17]

18 The 'msg_tag_index' and 'nv_in_index' feature is not available with the

selected firmware image [NLD#18]

19 The 'read_only_data_struct' version is not available with the selected

firmware image [NLD#19]

20 Write error on map file - disk full? [NLD#20]

21 Write error on sym file - disk full? [NLD#21]

22 Firmware symbol file did not specify system RAM usage [NLD#22]

23 Hardware or firmware selected does not support flash EEPROM

[NLD#23]

24 Cannot create link-dependency file: <s> [NLD#24]

25 Write failed - disk full? [NLD#25]

26 Cannot find required symbols for Eval Kit special fixup [NLD#26]

27 Program error, code <ld> [NLD#31]

32 Error for seek operation on cached file [NLD#32]

33 Error reading cached file [NLD#33]

34 Error writing cached file [NLD#34]

35 File already open in CacheOpen [NLD#35]

36 Cannot open library file <s> [NLD#36]

37 Cannot open file <s> [NLD#37]

38 Cannot open the output file <s> [NLD#38]

39 Cannot open output debug file <s> [NLD#39]

40 Error closing input file [NLD#40]

41 Write error on output composite debug file - disk full? [NLD#41]

146 Neuron Linker (NLD) and Neuron Librarian (NLIB) Errors

NLD# Description

42 Debug output file write failed - is disk full? [NLD#42]

43 Farmalloc not allowed, s <lu> c <lu>\n [NLD#43]

44 Alloc size <ld> exceeds 64K for single element [NLD#44]

45 Farmalloc called: size=<ld>, count=<ld> [NLD#45]

46 Alloc size <ld> exceeds 64K [NLD#46]

47 IBits not allocated? [NLD#47]

48 IBits(<ld>) not allocated? [NLD#48]

49 Cannot create IBits file: <s> [NLD#49]

50 Write error to IBits file: <s> -- disk full? [NLD#50]

51 Cannot open image IB file <s> [NLD#51]

52 Bad record in file <s> [NLD#52]

53 Linker symbol table is too big [NLD#53]

54 Invalid symbol file format (line <ld>) in <s> [NLD#54]

55 Redefinition of <s> in file <s> [NLD#55]

56 File <s> is corrupt [NLD#56]

57 Symbol file write failed - disk full ? [NLD#57]

58 Init segment named <s> in file <s> is invalid [NLD#58]

59 Insufficient RAM for system requirements [NLD#59]

60 Absolute address in RAMFAR conflicts with system [NLD#60]

61 Cannot locate a RAM buffer for flash of size <ld> [NLD#61]

On Neuron 3150 chips and 3150 Smart Transceivers that have off-chip

memory, the system requires a RAM buffer to construct a complete flash

page prior to writing. Failure to allocate this buffer is fatal; you must

provide more RAM or change declarations in your application so that your

application consumes less RAM, thus leaving more for the system.

Changing the buffers in size of number also can reclaim the missing

amount of RAM.

See Chapter 8 of the Neuron C Programmer’s Guide for more information

on managing memory resources.

Neuron Tools Errors Guide 147

NLD# Description

62

63

64

Writable data areas placed in Flash memory by linker [NLD#62]

Writing data to Flash memory can cause delays, potentially leading to

missed packets [NLD#63]

Writable data in Flash should be updated only rarely [NLD#64]

These three diagnostics refer to writing to flash memory during regular

application operation. When writing a flash page, the system must ignore

incoming network traffic. In applications with a lot of incoming network

traffic and small buffer counts, this might cause loss of an incoming packet.

Write operations to flash memory should be kept to a minimum where

possible.

65 Cannot locate a buffer for debug kernel of size 13 [NLD#65]

66 Cannot relocate segment in file <s> [NLD#66]

The NLD#66 error occurs when the linker has used up all available

memory, and fails to allocate memory for the current segment. On a Series

5000 or Series 6000 Chip, where the memory assignment between RAM

and non-volatile memory areas is controlled by software, you might be able

to improve the memory map to meet your application's (and the linker's)

requirements. In most cases, however, the memory map defines the

physically available resources, which cannot be increased by redefining the

hardware template. See Chapter 8 of the Neuron C Programmer’s Guide

for managing memory resources on a Neuron Chip.

67 Symbol <s> is undefined [NLD#67]

NLD#67 indicates that references to symbol <s> cannot be satisfied.

Typically, this symbol would be referred in your application using an

‘extern’ specification. Inspect the set of function libraries that you offer in

the link, or review the spelling of the symbol name in the ‘extern’

specification.

68 Cannot find address of APINIT/APINITV [NLD#68]

69 APINIT/APINITV symbol is not defined [NLD#69]

70 APINIT/APINITV address vector not correct [NLD#70]

71 Image and/or library inits cannot be done [NLD#71]

72 Page number must be one or two hex digits only [NLD#72]

73 ROM size is fixed - cannot use '-z' switch with this Neuron model

[NLD#73]

74 Page number for '-z' switch is too small for this Neuron model [NLD#74]

75 Offchip memory not permitted on <s> device [NLD#75]

148 Neuron Linker (NLD) and Neuron Librarian (NLIB) Errors

NLD# Description

76 Use of EEPROM for sys image requires 0 write time [NLD#76]

77 Off-chip ROM end must be at least page 0x<02X> [NLD#77]

78 Erroneous memory map settings [NLD#78]

79 Invalid memory map settings [NLD#79]

80 Cannot reserve onchip system RAM [NLD#80]

81 System RAM requirement exceeds available onchip RAM [NLD#81]

82 Unable to reserve space in EENEAR for system image [NLD#82]

83 Onchip EEPROM configuration memory requirement is excessive

[NLD#83]

84 Consider reducing the number of alias entries [NLD#84]

85 Out of room in on-chip EEPROM data area [NLD#85]

86 Onchip EE Data may not exceed <ld> bytes for this firmware [NLD#86]

87 Cannot find address of EENEARBYTES [NLD#87]

88 No room in on-chip EEPROM for application checksum of <ld> byte<s>

[NLD#88]

89 No room in on-chip EEPROM for memory map of <ld> bytes [NLD#89]

90 Application too large for on-chip EEPROM [NLD#90]

91 Cannot find address of BUFCOUNTS [NLD#91]

92 No Area in RelocSegment, segType=<c> [NLD#92]

93 Custom images may not use <s> area [NLD#93]

94 No more memory in offchip <s> area [NLD#94]

95 No more memory in onchip <s> area [NLD#95]

96 No more memory in <s> area [NLD#96]

97 Cannot have absolute addresses in CODE area [NLD#97]

98 Cannot have absolute addresses in EENEAR area [NLD#98]

99 Cannot have absolute addresses in RAMNEAR area [NLD#99]

Neuron Tools Errors Guide 149

NLD# Description

100 Custom images can have absolute addresses only in ROM [NLD#100]

101 Absolute address <X> conflict in <s> area [NLD#101]

102 Absolute block from <X> to <X> not available [NLD#102]

103 Absolute block does not fit in <s> area [NLD#103]

104 Uninitialized data areas in Flash memory -- Check for interleave

[NLD#104]

105 Too many search paths [NLD#105]

106 File <s> is not an object file [NLD#106]

107 File <s> is from an incompatible assembler [NLD#107]

108 Cannot link programs from Evaluation version LB [NLD#108]

109 The 'all_bufs_offchip' pragma requires Neuron with offchip RAM

[NLD#109]

110 Program being linked must be from Evaluation version LB [NLD#110]

111 No file name for output - use '-o' switch [NLD#111]

112 Cannot write symbol file [NLD#112]

113 Cannot open file <s> for writing [NLD#113]

114 Cannot open image NX file <s> [NLD#114]

115 Cannot get Neuron memory to read base image [NLD#115]

116 Bad hexfile format in <s> [NLD#116]

117 Bad checksum in <s> [NLD#117]

118 Unknown record format in <s> [NLD#118]

119 The file <s> is not a valid library file [NLD#119]

120 Constrained segment cannot exceed 256 bytes [NLD#120]

121 Segment cannot be both onchip and offchip [NLD#121]

122 Overflow in fixupCmdBuffer [NLD#122]

123 Overflow in fixupValueBuffer [NLD#123]

150 Neuron Linker (NLD) and Neuron Librarian (NLIB) Errors

NLD# Description

124 Short branch offset <ld> is out of 0..15 range [NLD#124]

125 Offset <ld> is out of 8..23 range [NLD#125]

126 CALL to <lX> is larger than 0x1FFF [NLD#126]

127 Could use relative branch [NLD#127]

128 Could use 'CALLR' [NLD#128]

129 Could use 'CALL' [NLD#129]

130 Could use smaller sequence [NLD#130]

131 Byte value <ld> is out of 0..255 range [NLD#131]

132 Could use 'PUSHS' [NLD#132]

133 Byte offset <ld> is out of -128..127 range [NLD#133]

134 Could use small branch [NLD#134]

135 DATA.B byte <lX> is larger than 255 [NLD#135]

136 Bad fixup code <c> [NLD#136]

138 Invalid NEAR reference [NLD#138]

139 Bad fixup expression from <s>(<ld>) [NLD#139]

326 Option switches specified are not compatible [NLD#326]

327 List of module names ignored - no action options [NLD#327]

328 Version <ld> is not supported [NLD#328]

329 No module names to add [NLD#329]

330 Module name <s> is too long [NLD#330]

331 Cannot add module <s> - already in library [NLD#331]

332 Cannot add module <s> debug info - version 1 lib [NLD#332]

333 Module <s> debug info already exists in library [NLD#333]

334 Cannot add debug info - module <s> not in library [NLD#334]

335 Unknown file type <s> [NLD#335]

Neuron Tools Errors Guide 151

NLD# Description

336 Too many object files (reading <s>) [NLD#336]

337 No module names to delete [NLD#337]

338 Did not find module <s>, cannot delete it [NLD#338]

339 Library does not contain debug info for <s> [NLD#339]

340 Cannot get file status for object file <s> [NLD#340]

341 Library symbol limit exceeded [NLD#341]

342 Library symbol character limit exceeded [NLD#342]

345 Cannot create a temporary file in PackLibrary [NLD#345]

346 Error writing temporary file in PackLibrary [NLD#346]

347 Error reading temporary file in PackLibrary [NLD#347]

348 Error in seek operation on library file [NLD#348]

349 Error reading library file [NLD#349]

350 Error writing library file - is disk full? [NLD#350]

351 Cannot open <s> file <s>: file missing or disk full [NLD#351]

352 Out of memory [NLD#352]

353 Out of memory - Use Extended Memory Option [NLD#353]

354 You must set the outfile name with the '-o' switch [NLD#354]

355 The '-o' switch has no effect with '-d' or '-s' switch [NLD#355]

356 Invalid input in switch file <s> [NLD#356]

357 Cannot nest switch files [NLD#357]

358 Cannot open switch file <s> [NLD#358]

359 You may only use -o once [NLD#359]

360 You MUST set the extension of the output file explicitly [NLD#360]

361 Did not find debug info for module <s> in library <s> [NLD#361]

362 Library <s> is an unsupported version [NLD#362]

152 Neuron Linker (NLD) and Neuron Librarian (NLIB) Errors

NLD# Description

363 Revision levels of files must match [NLD#363]

364 No control information available [NLD#364]

365 The '.dbt' extension can only be used for linked files [NLD#365]

366 Extended linked format requested, extended information not available

[NLD#366]

367 The linked info in the input files is not used for '.dbg' [NLD#367]

368 The extension <s> is not valid for a debug file [NLD#368]

369 Program error - Found an enum tag that is multiply resolved [NLD#369]

370 No enum tag reference [NLD#370]

371 Program error - Found a struct/union tag that is multiply resolved

[NLD#371]

372 No struct/union tag reference [NLD#372]

373 Tag <s> never got resolved [NLD#373]

374 Fixup list out of order [NLD#374]

375 Input file <s> is not a debug file [NLD#375]

376 Revision level <ld> of input file <s> is not supported [NLD#376]

377 The header in <s> conflicts with previous files [NLD#377]

378 The linked and header information will not be used [NLD#378]

379 The file <s> is not linked, unlike some previous files [NLD#379]

380 The linked information will not be used [NLD#380]

381 The file <s> is linked, but some previous files were not [NLD#381]

382 The extended header in <s> conflicts with previous files [NLD#382]

383 The extended header information will not be used [NLD#383]

384 File <s> has no name alpha table. [NLD#384]

385 File <s> has no name table. [NLD#385]

386 File <s> has no file name table. [NLD#386]

Neuron Tools Errors Guide 153

NLD# Description

387 File <s> has no string table. [NLD#387]

388 File <s> string table size exceeds maximum of <lu> chars. [NLD#388]

389 File <s> has no scope table. [NLD#389]

390 Multiple files contain 'when' clauses [NLD#390]

391 Too many name table entries [NLD#391]

392 Too many file name table entries [NLD#392]

393 New string pool is full [NLD#393]

394 Duplicate tag def for <lu>:<lX> [NLD#394]

395 Name strlen <lu> (index <lu>) > 100 [NLD#395]

396 Strings at index <lu> and <lu> are dup [NLD#396]

397 Name alpha table bad order: pos <lu> (index <lu>) [NLD#397]

398 The symbol type is undefined [NLD#398]

399 Too many functions [NLD#399]

400 Segment is too large - exceeds 65,000 bytes [NLD#400]

401 The highest image address this linker supports has been exceeded

[NLD#401]

402 The 'refresh_memory' feature is not available with the selected firmware

image [NLD#402]

406 Cannot access or read file 'neuron.xml' [NLD#406]

463 Unspecified error in option processing [NLD#463]

464 Unspecified error in execution of librarian [NLD#464]

465 Unspecified error in execution of linker [NLD#465]

466 Insufficient space in EEPROM area for SIDATA [NLD#466]

467 Flash sector size invalid (must be 64 or 128) [NLD#467]

468 Image base name should not have an extension [NLD#468]

469 Too many characters in M switch param [NLD#469]

154 Neuron Linker (NLD) and Neuron Librarian (NLIB) Errors

NLD# Description

470 Invalid NEURON CHIP model name (-t), <s> [NLD#470]

471 Invalid number of banks, <d>; must be 2..<d> [NLD#471]

472 EE Write time (-y) must be 0..255 [NLD#472]

473 Invalid custom version, <d>; must be 128..254 [NLD#473]

474 The change-nv_len feature (set_nv_length function) is not available with

the selected firmware image [NLD#474]

475 The system image extension 'proxy' is not available with the selected

firmware image [NLD#475]

476 The system image extension 'phase' (or 'inverted_phase') is not available

with the selected firmware image [NLD#476]

477 The system image extension 'nv_length_override' is not available with

the selected firmware image [NLD#477]

478 The system image extension 'future' is not available with the selected

firmware image [NLD#478]

479 The selected firmware image does not support the SCI or SPI I/O objects

[NLD#479]

480 The selected firmware image does not support the IO_11 extended I/O

pin [NLD#480]

481 The selected firmware image does not support the proxy route table

[NLD#481]

482 The custom MAC feature was not linked from the libraries [NLD#482]

483 The selected firmware image does not support the RAM Test on Power-up

only option [NLD#483]

486 The selected chip does not have extended RAM [NLD#486]

489 Can't allocate a RAM buffer for the ISR for SCI or SPI I/O device

[NLD#489]

494 The set_lvi() function is not available with the selected firmware image

[NLD#494]

500 The memory forwarding feature is not available with the selected

firmware image [NLD#500]

502 Too many nested macros in library path: <s> [NLD#502]

Neuron Tools Errors Guide 155

NLD# Description

503 Unauthorized attempt to use restricted feature. [NLD#503]

504 Resource <d> is not recognized and will be ignored [NLD#504]

505 The target chip does not support machine instruction set version <d>

[NLD#505]

506 The target chip does not support all semaphores or interrupt sources

required by this application [NLD#506]

507 The 'enable_io_pullups' directive is ineffective; there are no I/O pullups

on this chip [NLD#507]

508 The stretched triac output model is not available with the selected

firmware image [NLD#508]

509 The target hardware UART does not support all features required by a

SCI or SPI I/O object declared in this application [NLD#509]

511 Too many network variables declared. Please check the maximum

number of NVs allowed for the firmware version being used [NLD#511]

If your device is using ver 16 or higher firmware, you can declare a

maximum of 254 network variables and 127 aliases.

If your device is using a firmware version lower than ver 16, you can

declare a maximum of 62 network variables.

512 Too many aliases declared. Please check the maximum number of

aliases allowed for the firmware version being used [NLD#512]

If your device is using ver 16 or higher firmware, you can declare a

maximum of 127 aliases.

If your device is using a firmware version lower than ver 16, you can

declare a maximum of 62 aliases.

513 The onchip service pin pull-up resistor cannot be disabled with this chip

[NLD#513]

514 Flash driver symbol <s> not found [NLD#514]

515 Statement expansion must be turned on for this target in order to allow

debugging [NLD#515]

For Series 3100 Chips, you must enable the Expand Statements option in

the Compiler tab of the NodeBuilder Device Template Target

Properties dialog to debug this target. To open this dialog, right click the

target device, click Settings on the shortcut menu, then select the

Compiler tab.

156 Neuron Linker (NLD) and Neuron Librarian (NLIB) Errors

NLD# Description

516 Statement expansion is not required for this target [NLD#516]

For Series 5000 and Series 6000 Chips, you can reduce the size of your code

by clearing the Expand Statements option in the Compiler tab of the

NodeBuilder Device Template Target Properties dialog. To open this

dialog, right click the target device, click Settings on the shortcut menu,

then select the Compiler tab.

When the Expansion Statements option is enabled, all Neuron C

statements in your code are expanded to at least 2 bytes of machine code.

517 The 'disable_journal_reset' pragma requires a system firmware that

uses journaling [NLD#517]

Consult the Neuron C Reference Guide for more details about this

pragma directive.

518-519 Compilation and link target chip mismatch [NLD#518]

Compilation and link target system firmware version mismatch

[NLD#519]

Neuron C Compiler and Neuron Linker must be used with the same

target specification. When necessary, recompile for each target.

523 Transient segments must be relocatable [NLD#523]

The Neuron Linker cannot link absolute transient segments. This error

is probably caused by an incorrectly declared transient segment in

Neuron assembly source. The Neuron C Compiler only generates

relocatable transient segments.

526 Cannot access or write transient segment image file <name> [NLD#526]

This error occurs when the Neuron Linker cannot write the transient

segment image file, and intermediate output used by the Neuron

Exporter.

Check that the file with the name indicated with this diagnostic is not

write-protected and try to link again.

531-532 Transient application symbol <name> is undefined [NLD#531]

Transient system symbol <name> is undefined [NLD#532]

Neuron Tools Errors Guide 157

NLD# Description

536-541 <name> is declared as a transient application function but implemented

resident [NLD#536]

<name> is declared as a transient application function but implemented

as a transient system function [NLD#537]

<name> is declared as a transient system function but implemented

resident [NLD#538]

<name> is declared as a transient system funciton but implemented as a

transient application function [NLD#539]

<name> is declared resident but implemented as a transient application

function [NLD#540]

<name> is declared resident but implemented as a transient system

function [NLD#541]

Various linker diagnostics referring to a mismatch between declaration

and implementation of symbol <name>. The Neuron Linker attempts to

resolve the conflict (a warning is issued) or aborts with an error.

542 Generating I-Bits files (*.IB) is no longer supported [NLD#542]

The Neuron Linker’s -i (--ibits) option is no longer supported and

ignored.

5433 One or more memory boundaries have been specified but are ignored,

because the target chip supports auto-tuning memory maps [NLD#543]

Linking applications for a series 6000 Neuron Chip or Smart

Transceiver or compatible targets invokes the auto-tuning link

algorithm, which automatically allocates different memory types as

required.

The warning is given because memory boundaries were specified in the Neuron

Linker invocation for such a target.

544 Unknown link algorithm <id> [NLD#544]

This error occurs because the firmware requires a link algorithm not

recognized by this version of the Neuron Linker.

545 The system firmware does not support offchip persistent data storage

[NLD#545]

The error occurs when far eeprom variables were declared in the Neuron

C application (or EEFAR segments were used in Neuron assembly),

linked with targets without support for this

546 The application exceeds the supported offchip persistent data storage by

<number> bytes [NLD#546]

This error occurs when the amount of far eeprom variables exceeds the

maximum supported by the firmware.

158 Neuron Linker (NLD) and Neuron Librarian (NLIB) Errors

NLD# Description

550 Only <n> bytes remain for the heap. A minimum of <m> bytes is required

[NLD#550]

The heap is an area of memory within the Neuron Chip or Smart

Transceiver which is used for dynamic memory allocation, primarily

used for transient functions.

The heap is automatically sized as the largest contiguous memory area

after constant data, resident code and all eeprom and RAM segments are

relocated.

This error occurs because the resulting heap is insuffient. To increase

the heap or reduce the heap size requirement, you can reduce the

amount of resident code and data (for example by executing more code

as transient functions), or you can break up large transient functions

into multiple smaller functions.

553 Link algorithm <name> not recognized. Try 'auto' (or 2) or 'traditional'

(1) [NLD#553]

This error occurs when the Neuron Linker is invoked with an invalid

link algorithm identifier.

Neuron Tools Errors Guide 159

10

Project Make Errors (PMK)

This chapter documents and explains the warning and error

messages reported by the Project Make component of the

IzoT NodeBuilder software.

160 Project Make Errors (PMK)

PMK Errors
Table 12 lists the PMK error codes.

Table 12. PMK Error Codes

PMK# Description

100

101

102

Build failure [PMK#100]

Build failure [PMK#101]

Build failure [PMK#102]

These error codes are generic error codes, which occur as a natural result of

a build failure. The reason for the build failure will appear in one or more

error messages that precede the generic message (typically the most recent

message(s) before this message).

After a build failure that was determined by some other service used by the

make facility (such as the compiler, the assembler, the linker, or the

exporter), the "target service" should have already issued a more helpful

error message. Make aborts the build attempt and must return an error

indication. The Make facility error indication will be a PMK#100,

PMK#101, or PMK#102 message. In case this message occurs without any

other error given,

104 Can't find target '<target name>' in template <templatefile>. [PMK#104]

Build target invalid, probably caused by invalid target name (should be

"Development", "Release", and so on)

105 Can't load the device template file <filename>[PMK#105]

NodeBuilder device template file is invalid, does not exist, or is corrupt.

107 Don't know what to do. No action specified.[PMK#107]

No action given. Actions are "Build", "clean", and so on. See command line

usage of the PMK project make facility, or type 'PMK -?' to obtain on-screen

usage hints.

108 Don't know what to build. Target missing.[PMK#108]

No build target has been specified, but a build target is required for the

requested action. The tool cannot operate without a build target being

specified; use the -t (--target) command to specify the desired target.

Targets are "Release", "Development", and so on.

110 <Dependency message>[PMK#110]

A dependency file cannot be read, or the file is corrupt. To fix, attempt the

"clean" and "build unconditionally" commands. PMK combines error

messages caused by dependency file access routines into this PMK#110

error message, but provides the full detail of the failure cause in the error

message.

Neuron Tools Errors Guide 161

PMK# Description

111 Failure when launching LONUCL32.DLL[PMK#111]

Failure attaching to the LONUCL32.DLL - make sure LONUCL32.DLL

exists in the current Windows search path, and make sure no other

application is attempting to build a target at the same time.

112 Failure initializing <service>, code <code>.[PMK#112]

Failure initializing the internal service <service> with failure code <code>.

Verify that the target service exists in the current Windows search path

(for example, LONNCC32.DLL, LONNAS32.DLL, LONNEX32.DLL,

LONNLD32.DLL, and so on).

113 Unknown <command-type> command (<numerical command

id>)=<parameter>, or parameter is invalid or malformed. [PMK#113]

Perform a “clean” operation and attempt to re-build.

114 Cannot read hardware template file <file>.[PMK#114]

The hardware template file is either missing or corrupt. Verify that the

hardware template file <file> is present. Attempt to fix a possible

corrupted hardware template file using NodeBuilder's hardware template

editor.

115 Cannot read project file <file>[PMK#115]

Project file <file> is missing or corrupt.

116 Cannot read standard Neuron type file <file>. [PMK#116]

Neuron chip database file <file> cannot be found, is missing or is corrupt.

The default name for this file is 'neuron.xml', and the default location is

\LonWorks\Types (on whichever drive your LonWorks folder resides.

Attempt to correct by re-installing the IzoT NodeBuilder software.

117 Hardware template includes invalid Neuron key <key>. [PMK#117]

The Neuron model indicated by the hardware template file seems invalid,

or the neuron.xml database is corrupt. Also see discussion on PMK#116

above.

118 Cannot create folder <folder>: <failure reason> [PMK#118]

A folder <folder> needs to be created as part of the build process. This

operation fails with the reason given in the error message.

162 Project Make Errors (PMK)

PMK# Description

119 Cannot determine default firmware version for image <image>: <failure

reason> [PMK#119]

Failure to determine the firmware version to use as a default. The file

'default.ver', normally contained in the \Lonworks\images folder (on

whichever drive your LonWorks folder resides) could be missing or could be

corrupt. As a workaround, you can explicitly specify the firmware version

in the target device preferences, do not use 'Default' as a firmware version.

120 Cannot determine set of standard libraries from <liblistfile>: <failure

reason> [PMK#120]

Failure to determine standard neuron libraries from <liblistfile>. Verify

that <liblistfile> (a text file), which defaults to

\Lonworks\images\Stdlibs.lst, is present and is not corrupt.

121 Cannot determine transceiver type. Verify preferences in device

template and project. [PMK#121]

Failure to determine the transceiver type. The project file and/or device

template file might be corrupt. Edit these files and correct the transceiver

preferences, specifying an explicit transceiver type (other than 'Default'), if

needed.

122 Cannot calculate signature, <detail> [PMK#122]

The external interface signature cannot be calculated. This indicates

missing or corrupt intermediate files (.BIF and .BF2 extensions), or missing

or corrupt explicit XIF appendix files (XF2 extension). Verify the project

and device preferences, and attempt to build unconditionally.

124 Unknown macro switch record <record> received from <source> (try

performing unconditional build). [PMK#124]

Internal error: switch uses invalid macro value. To fix, attempt the "clean"

and "build unconditionally" commands and

125 Cannot compute dependency code for DRF catalog <catalog> and

program ID <id> (LDRF error <code>). Verify that your LDRF catalog is

valid and up-to-date. [PMK#125]

The LDRF catalog cannot be accessed. Use the Resource Editor utility to

make sure the catalog file is present and intact. The catalog file defaults to

LonWorks\Types\ldrf.cat (on whichever drive your LonWorks folder

resides). If the catalog file is missing, attempt to re-create one by using the

MKCAT.EXE utility, that is available for download from the

www.lonmark.org website.

126 Malformed min/max model number specified in <file>. Correct

preferences or disable automatic program ID management. [PMK#126]

The program ID data given in the NB device template file <file> appears

malformed. Edit and correct the preferences using NodeBuilder's device

template file editor, or disable automatic program ID management.

http://www.lonmark.org/

Neuron Tools Errors Guide 163

PMK# Description

127 The specified program ID <id> appears malformed and invalid.

[PMK#127]

Use a simple ASCII string, or a byte-array format, using a single colon as a

separator between each byte (for example, 94:56:78:9A:0B:0C:0D:0F).

130 Missing hardware template. You must assign a hardware template to

device <device>, build target <target>, first. [PMK#130]

A build was attempted on a build target <target>, that belongs to the

NodeBuilder device template <device>, where the hardware template has

not yet been specified. Use NodeBuilder's device template editor to specify

the hardware template, and re-attempt the build.

132 Cannot read the hardware platforms database <file>. [PMK#132]

Verify that the platform’s database file <file> exists. The default location

for this database file is

\LonWorks\NodeBuilder\Templates\Hardware\nbplatforms.xml

133 Library <lib> is required but cannot be found [PMK#133]

The Project Make Facility has aborted the build process because a library

<lib> is required, but cannot be found.

4001 An empty program ID has been specified. It is recommended to change

the program ID, using the device template editor [PMK#4001]

An empty program ID, that is, a program ID without a value, has been

specified. It is recommended to change the program ID, using the device

template editor. This might result in a compilation failure. This message

should not occur when using a machine-generated device template file.

4002 The configured program ID results in an unstable build status, and may

not suitable for automatic management. It is recommended to

reconsider the specified program ID, or to disable program ID

management. This might lead to a failure in the remaining build

process [PMK#4002]

This message indicates that program ID management causes an unstable

build status. This loop condition has been detected after three fix-up

compilation attempts, and the fix-up attempts have been aborted to prevent

an endless loop condition. A fix-up compilation might occur as a result of

automatic program ID management, where the PID manager detects an

interface change after the initial compilation, where the interface change

impacts the compiler's DRF lookup. Thus, a re-compilation is attempted

with the new program ID, and in this particular case, the problem persists.

This effect might be caused by the combination of automatic program ID

management and a DRF scope value 6. This combination is not

recommended for use in NodeBuilder 3, because program ID management

modifies the model field, and the scope 6 resource file expects the model

field not to change.

164 Project Make Errors (PMK)

PMK# Description

4003 Can't write file <make dependency file>. This might cause the build

status calculator to malfunction, but does not impact the build results

(system error code <code>) [PMK#4003]

Failure to write a .nkdep dependency file. Insufficient write-permission, or

a write-protected media could cause this effect. This failure does not harm

the build itself, but causes the build status calculator not being able to

determine the build status correctly. Solution: make .nkdep file writable,

or disable automatic program ID management.

4004 Can't delete intermediate folder <folder>: <reason> (system error code

<code>)[PMK#4004]

Failure to complete a "clean" command. Write-protected files or folders in

that area might cause this, or it could be caused by user-defined data in the

intermediate folder(s) ("IM" folder(s)) or in the target folders

("Development" or "Release" folder(s)). The IzoT NodeBuilder tool attempts

only to "clean" files produced by an IzoT NodeBuilder.

4005 Can't delete intermediate file <file>: <reason> [PMK#1005]

See PMK#4004, but for an individual file. Failure reasons include the file

being locked by another process, the file being write-protected, and so on.

Failure details are given in <reason>, part of the actual message being

displayed.

4006 The channel type number noted in the program ID <id> is <cid1>,

whereas the transceiver is designed for channel type <cid2> [PMK#4006]

The channel type ID field in the standard program ID describes a channel

type that is different from the one referred to by the transceiver used by the

current hardware template. This does not affect the build, but might result

in an improperly implemented LONMARK device. This warning may only

occur if a standard program ID is used (0x8* or 0x9* format).

4007 The program ID model number field has reached the configured

maximum of <maximum>. The previous program ID <previous_pid> will

be changed to use the configured minimum model number <minumum>.

Note that this might cause a failure when importing the external

interface template into LNS [PMK#4007]

Automatic program ID management detected a required program ID

change and reached the end of the configured range. Program ID

management proceeds by re-starting at the beginning of the specified

range. This is likely to cause a problem when importing the external

interface into LNS, you will have to delete the relevant LNS device

template objects and reattempt the build.

Neuron Tools Errors Guide 165

PMK# Description

4008 The file <file> (<full path>) was previously required for a build, but can

not be found. This might cause a build failure [PMK#4008]

The build status calculator recognizes a file that was required for a

previous build does not exist any more. This can possibly cause a build

failure, and it could be a normal situation after purposeful removal of the

file in question. For example, if the file in question were a .h file which is

no longer included by the NC code, then this would be normal. If the

#include statement still exists, then this might result in a compilation

failure.

4009 Unknown file type for <file> (<full path>) [PMK#4009]

The build status calculator was unable to determine the type of a file. This

indicates a corrupted dependency file. Proceed with build and attempt a re-

build.

4010 Can't open or write to build log file <file>. An existing build log file in

this location might be out-of-date as a result of this failure [PMK#4010]

Can't open or write to build log file <file>. An existing build log file in this

location might be out-of-date as a result of this failure. Verify that the

existing build log file is not write-protected.

4011 Cannot produce link summary. The linker mapfile <mapfilename> is

malformed. [PMK#4011]

Attempt to correct the problem with a "clean", followed by a re-build. If

PMK#4011 and PMK#4012 both appear together, attempt to address the

condition causing the PMK#4011 before attempting to address the

PMK#4012.

4012 Cannot produce link summary. The linker mapfile <mapfilename> is

missing [PMK#4012]

Attempt to correct the problem with a "clean", followed by a re-build. This

message might be a consequence of PMK#4011. If PMK#4011 and

PMK#4012 both appear together, attempt to address the condition causing

the PMK#4011 before attempting to address the PMK#4012.

4013 The requested action <action> overrides a previous choice. [PMK#4013]

This warning indicates that more than one, mutually exclusive, actions

have been requested on the command line. Actions are -build, -clean,

-compile, and -query. One and only one action must be given; a failure

occurs if none is given (PMK#107). The most recent action is performed if

more than one is given, noted with warning PMK#4013).

166 Project Make Errors (PMK)

PMK# Description

4014 The device template file <filename_here> could not be updated; the file

might be locked or write-protected. This does not impact the current

build, but the build status calculator might determine an incorrect

build status afterwards. It is recommended the file is made writeable,

or only unconditional builds are performed. [PMK#4014]

Write failure when updating the device template. This could be caused by a

write-protected or otherwise not writable NodeBuilder device template file

(.nbdt extension). The update failure causes a possible, subsequent, failure

in automatic boot ID management and automatic program ID management.

It is recommended to make the NodeBuilder device template file writable,

or to disable boot ID management and program ID management.

4015 The device template file <name> might be corrupted: property

<propertyname> can not be read correctly. A default value will be used

instead [PMK#4015]

A possible file corruption occurred in the NodeBuilder device template file

(.nbdt extension), a property cannot be read correctly. See warning

message for details. Attempt to correct the problem by opening the device

template file in a device template editor and save it again.

4016 Possible data corruption in device template, field <fieldname>

[PMK#4016]

See PMK#4015.

4017 Cannot copy file <sourcefile> to <destination>: <reason> [PMK#4017]

A file cannot be copied for reasons given in the actual message. Files are

only copied for convenience; copied files include the linker map or the

application symbol table.

4018 More than one XIF appendix file has been found in the source folder,

although only one can be added to the XIF file. The superfluous file

<filename> will be ignored [PMK#4018]

See documentation for more details about XIF appendix files and

recommended procedures when maintaining legacy applications.

4019 Library <lib> might be required but cannot be found [PMK#4019]

Library <lib> is recommended but may not be required. The build

proceeds. If the build fails with linker errors, reporting unresolved

references, this warning about the missing library file could be related to

the linker failure. Verify that the required library is present in the

expected folder.

Neuron Tools Errors Guide 167

11

Common Command Line Errors
(UCL)

This chapter lists and describes errors that can be reported

by the common command line system. The common

command line system is used in the commands “ncc”, “nas”,

“nld”, “nex”, “nlib”, “pmk”, and others.

168 Common Command Line Errors (UCL)

UCL Errors
Table 13 lists the UCL error codes.

Table 13. UCL Error Codes

UCL# Description

1 service is locked [UCL#1]

The UCL engine is locked. The UCL engine LONUCL32 cannot reference

itself. Verify that to specify the correct target UCL service other than

LONUCL32;

2 service not found. [UCL#2]

The targeted UCL service cannot be found. Verify that the service DLL is

in a folder contained within the current user's search path, and make sure

the DLL exists.

3 target service locked. [UCL#3]

The target UCL service is already in use, and does not support multiple

concurrent clients. Wait for the first client to detach, and attempt to re-

attach thereafter.

4 target service fails to initialize [UCL#4]

The target service cannot be initialized correctly. Such failure could be

caused by a required but missing DLL, or some other service-dependent

initialization failure.

5 invalid command, or malformed parameter [UCL#5]

Invalid option. An unknown command was sent to the target UCL service.

Check the service documentation for supported commands and options.

6 invalid value [UCL#6]

An invalid parameter value was provided. Check the service

documentation for supported commands and their parameters.

7 the requested feature is not available [UCL#7]

The targeted service does not support the feature required to fulfill the

request. For example, the targeted service might not provide help strings

for on-screen usage hints, or it might not support parameters with a

particular data type.

8 service not initialized. [UCL#8]

An attempt has been made to use an uninitialized UCL service. This is an

internal error condition.

Neuron Tools Errors Guide 169

UCL# Description

9 wrong context. [UCL#9]

A UCL server operation has been requested out of context. This is an

internal error condition.

10 Command not understood: <cmd> [UCL#10]

Failure in command parser – see error message for details. Commands on

the command line or in a command file cannot be understood due to a

syntax error. See on-screen usage hints or printed documentation for a

listing of supported command line parameters.

11 Bad command set [UCL#11]

Some commands are missing (but required), non-accumulative commands

have been given more than once, and so on. Check the target service

documentation for the supported and required commands. This is an

internal error condition,

12 Can't attach to command file <file> [UCL#12]

Service <service> has invalid VERSIONINFO resource [UCL#13]

An operating system error occurred when accessing a command file or a

UCL service. Check the filenames, and make sure that no other process

holds exclusive access rights to those files at the same time.

13 Fail to unload service DLL <service>: <reason> [UCL#13]

UCL failed to unload the UCL service named in the message, for reasons

detailed in the message.

100-999 These numbers are reserved for service-specific error codes, check the

documentation of the specific service for details.

4001 Can't open or write to build log file <filename>. An existing build log

file in this location might be out-of-date as a result of this failure

[UCL#4001]

Cannot create build log file. See warning message for detailed error

description. This message is benign as it doesn't affect the service's

operation at all, but it might lead to an incorrect or outdated log file.

4002 The service <servicename> was run on a possibly incorrect build script

<scriptfilename> [UCL#4002]

The automatically generated script might be based on a bad build. This

relates to a command script file that was produced with the --mkscript

command, and the build or build attempt which produced that command

script file did not complete without error. Warning UCL#4002 is given

when this command script file is used in an attempt to perform a script-

driven build (or whatever action the script requests), suggesting the script

might be bad.

170 Common Command Line Errors (UCL)

UCL# Description

4003 Skipping <file> to avoid endless recursion [UCL#4003]

Command file recursion. A loop condition was detected when parsing

command files, and the file named in the warning message was excluded

from repeated processing to prevent an endless command file loop to occur.

4004 The content of this warning is user-defined. A warning message has been

specified by the UCL client, using the --warning command. The message

content is controlled by the caller (a command script, for example), and not

under control of UCL.

Neuron Tools Errors Guide 171

12

Neuron Firmware Error Codes

This chapter lists and describes the Neuron Chip firmware

system error messages. These error messages do not have a

three-letter code associated with them.

172 Neuron Firmware Error Codes

Overview
Every application reserves one byte of on-chip EEPROM memory space to hold

the error log. If the firmware posts an error, it is usually due to a severe

problem. A network diagnostics tool could periodically collect the error log and

device statistics to monitor the health of the system.

An application can also post errors, using the error_log() function. Only the

last error posted is saved. Users are allocated error numbers 127 and below.

You can use the LonMaker Device Manager in the IzoT Commissioning tool to

fetch the error log and other statistics from a device. To do this, right-click the

device, click Manage on the shortcut menu, and then click Test in the

LonMaker Device Manager dialog. For more information on using the

LonMaker Device Manager, see Chapter 8 of the IzoT Commissioning Tool User’s

Guide.

The NodeBuilder Debugger shows any posted errors in the Events Log tab on

the Results pane.

Neuron Firmware Errors
Table 14 lists the Neuron Firmware error codes.

Table 14. Firmware Error Codes

Code Description

45 io_access() violation

A call to io_access() has occurred when the ISR context is not scheduled

(as would be the case for the two lowest clock rate settings). Executing the

io_access() functionality could deadlock the system, so it is skipped and

the error is logged.

46 Stack Collision/Underflow/Overflow

The data stack and return stack have collided, underflowed, or overflowed.

The system resets and post-reset this error is logged.

47 Illegal opcode executed.

Most likely a program crash. The system resets and post-reset this error is

logged.

48 ISR resource violation.

The following operations are forbidden from an ISR:

Allocation of an outgoing message buffer. The allocation fails.

Network variable updates or polls. The setting of the network variable

“update bit” is denied.

Any writes to non-volatile memory. The write operation is skipped.

Neuron Tools Errors Guide 173

Code Description

49 Breakpoint in an ISR.

The error is logged, and the ISR context resets the device. Post-reset the

error is detected and the device’s state is changed to hard-offline. This is to

prevent a possible endless repetition of this condition.

50 System Image Write Protect.

Writes to the system image are trapped, the error is logged, and the device

resets.

129 Bad event.

This run-time error is checked only in the development environment. This

error could occur if the network configuration is invalid, if the network

management tool is malfunctioning, or if the Neuron Chip firmware image

is corrupted. If this error occurs, try reloading the device.

130 NV length mismatch.

This error may occur rarely due to network transmission problems. The

length of the data in a network variable update message is inconsistent

with the length expected by the device. Rebuild and reload the images if

this error continues to occur.

Note this error does not get set in conjunction with the change of a network

variable type for a NV of changeable type. However, if such type change is

performed in an inappropriate manner, this error might be logged upon the

first arrival of the incorrectly sized network variable data.

131 NV message too short.

This error may occur rarely due to network transmission problems. This

error could occur if a network message is corrupted.

132 EEPROM write failure.

This error may occur rarely due to Neuron Chip, transceiver, or application

failure.

This error occurs if too many erase/write cycles have been performed on the

EEPROM or flash memory. Up to 10,000 erase/write cycles per byte can be

performed in the on-chip EEPROM. This error will also be logged if an

EEPROM write is attempted when a device is online and has EEPROM

locking enabled.

133 Bad address type.

This error could occur if the network configuration is invalid, if the network

management tool is malfunctioning, or if the Neuron Chip firmware image

is corrupted. If this error occurs, try reloading the device.

174 Neuron Firmware Error Codes

Code Description

134 Preemption mode timeout.

This system error is logged by the Neuron Chip firmware. The program

ran out of buffers and the system gave up trying to get them. Increase the

device timeout if this message occurs often. This error causes a reset.

135 Already preempted.

This system error is logged by the Neuron Chip firmware. If a program is

already in preemption mode and tries to initiate another message, this

error is generated. This error causes a Neuron Chip reset.

136 Synchronous NV update lost.

This system error is logged by the Neuron Chip firmware. This run-time

error is checked only in the development environment. A synchronous

network variable update was lost because the device was already in

preemption mode.

137 Invalid response allocation.

This system error is logged by the Neuron Chip firmware. This run-time

error is checked only in the development environment. This error occurs if

an application program tries to allocate (build) a response when it hasn’t

received a request.

138 Invalid domain.

This error could occur if the network configuration is invalid, if the network

management tool is malfunctioning, or if the Neuron Chip firmware image

is corrupted. If this error occurs, try reloading the device.

139 Read past end of message.

This system error is logged by the Neuron Chip firmware. This run-time

error is checked only in the development environment. This error occurs if

an application program tried to read beyond the specified length of the

message.

140 Write past end of message.

This system error is logged by the Neuron Chip firmware. This run-time

error is checked only in the development environment. This error occurs if

an application program tried to write past the specified end of the message.

141 Invalid address table index.

This error could occur if the network configuration is invalid, if the network

management tool is malfunctioning, or if the Neuron Chip firmware image

is corrupted. If this error occurs, try reloading the device.

Neuron Tools Errors Guide 175

Code Description

142 Incomplete message.

This system error is logged by the Neuron Chip firmware. This run-time

error is checked only in the development environment. This error occurs if

an application program tries to send a message without first setting the

code or data fields of the msg_out structure.

143 NV update received for output network variable.

This error may occur rarely due to network transmission problems.

Another device tried to update an output network variable.

144 No message available.

This system error is logged by the Neuron Chip firmware. This run-time

error is checked only in the development environment. This error occurs if

an application program tries to reference the msg_in message object when

no msg_arrives event has occurred.

145 Illegal send.

This system error is logged by the Neuron Chip firmware. This run-time

error is checked only in the development environment. This error occurs if

an application program tries to send a response or a message without first

building one.

146 Unknown PDU.

This error may occur rarely due to network transmission problems. This

run-time error is only checked in the development environment. This error

could occur if a packet was corrupted on the network, but the CRC was

valid.

147 Invalid NV index.

This run-time error is checked only in the development environment. This

error could occur if the network configuration is invalid, if the network

management tool is malfunctioning, or if the Neuron Chip firmware image

is corrupted. If this error occurs, try reloading the device.

148 Divide by zero error.

This system error is logged by the Neuron Chip firmware. The application

program executed a division by zero. This error is not reported by the

floating point or 32-bit extended arithmetic library functions

149 Invalid application error.

This system error is logged by the Neuron Chip firmware. This error

occurs if an application program tries to log an application error with an

error out of range. The legal range is 1 to 127.

176 Neuron Firmware Error Codes

Code Description

151 Write past end of network buffer.

This system error is logged by the Neuron Chip firmware. This run-time

error is checked only in the development environment. The outgoing

application message could not fit into the outgoing network buffer. The

maximum length is 255 bytes.

152 Checksum error over application program.

This error may occur rarely due to Neuron Chip, transceiver, or application

failure.

153 Checksum error over configuration data.

This error may occur rarely due to Neuron Chip, transceiver, or application

failure.

The Neuron Chip retains a checksum of the application program and of the

configuration data. If it is not the correct value, an error is logged, and the

device goes into a blank or unconfigured state. This is usually a hardware

problem, although it could be caused by the application writing over itself.

See the section Defining Reboot and Integrity Options in Chapter 7 of the

LonBuilder User's Guide for a discussion of checksums and other integrity

features.

154 Transceiver register address out of range.

This system error is logged by the Neuron Chip firmware. This run-time

error is checked only in the development environment. The valid range for

transceiver status information is 1 through 7.

155 Transceiver register operation timeout occurred. *

This error may occur rarely due to Neuron Chip, transceiver, or application

failure. A transceiver hardware failure occurred and the transceiver could

not be configured.

156 Application buffer too small.

This system error is logged by the Neuron Chip firmware. A message was

received into a network buffer but it could not fit into an application buffer.

May need to increase the buffer size with the #pragma app_buf_in_size

directive (see the Compiler Directives chapter in the Neuron C Reference

Guide).

157 io_in or io_out not ready.

This system error is logged by the Neuron Chip firmware. This run-time

error is checked only in the development environment. Function io_in() or

io_out() invoked for a parallel I/O object when not in the proper state for

input or output, respectively.

Neuron Tools Errors Guide 177

Code Description

158 Self test failed.

This error may occur rarely due to Neuron Chip, transceiver, or application

failure. The Neuron failed its self test. The self test includes tests of RAM

and internal timer and counter logic.

Note that this error code does not get set as a result of the RQ_SELF_TEST

command being sent to the device object of an interoperable device.

160 Authentication mismatch.

A network variable message or network management message was rejected

because of an authentication failure. Could be due to an authentication key

mismatch or a lack of an authentication indicator in the original message.

This error could indicate attempts of an intruder to "break in" to the

network.

This error could also occur if the network configuration is invalid, if the

network management tool is malfunctioning, or if the Neuron Chip

firmware image is corrupted. If this error occurs, try reloading the device.

161 Self-installation semaphore.

This value appears temporarily in the error log as part of normal Neuron

Chip operation and it should not be construed as an error. Can appear

during invocation of self-installation functions.

162 Read write semaphore.

This value appears temporarily in the error log as part of normal Neuron

Chip operation and it should not be construed as an error. Can appear

during reload of an application.

163 Application image inconsistency.

This system error is logged by the Neuron Chip firmware. This error

occurs if the application code in ROM is inconsistent with the code in

EEPROM. This is most likely due to an attempt to load a new application

over the network without first reprogramming the EEPROM.

164 Conflicting router S/W versions.

This system error is logged by the Neuron Chip firmware. This error

occurs when one attempts to connect two router halves with different

software versions. This error only occurs in routers.

166 EEPROM recovery occurred.

This error may occur rarely due to Neuron Chip, transceiver, or application

failure. This error is logged when the on-chip EEPROM is reloaded

following a system error as defined by the EEPROM reboot word.

178 Neuron Firmware Error Codes

Code Description

167 Triac clockedge +- not supported.

This system error is logged by the Neuron Chip firmware. This error is

logged when an application using the triac clockedge plus/minus feature

is loaded into a 3150, which does not support this feature.

168 Checksum error over system image.

This error may occur rarely due to Neuron Chip, transceiver, or application

failure. This error is logged when the device goes application-less following

a checksum error in the system image.

169 Invalid proxy routing table index.

This system error is logged by the Neuron Chip firmware.

170 Invalid version.

This system error is logged by the Neuron Chip firmware. Application was

linked for a different version of firmware than is in the device.

173 io_access() violation.

A call to io_access() occurred when the interrupt service routine (ISR)

context was not scheduled (that is, for the two lowest clock rate settings).

Completing the io_access() call could deadlock the system, so it is ignored

and the error is logged.

174 Stack Collision/Underflow/Overflow.

The data stack and return stack have collided, underflowed, or overflowed.

The system resets, and logs this error after the reset.

175 Illegal opcode executed.

Likely caused by a program crash. The system resets, and logs this error

after the reset.

176 ISR resource violation.

The following operations are not allowed within an interrupt service

routine (ISR):

 Allocation of an outgoing message buffer. The allocation fails.

 NV updates or polls. The setting of the NV “update bit” is denied.

 Any writes to non-volatile memory (NVM). The write operation is

ignored.

177 Breakpoint in an ISR.

The error is logged, and the interrupt service routine (ISR) context resets

the device. After the reset, the error is detected and the device’s state is

changed to hard-offline. The state change prevents a possible endless

repetition of this condition.

Neuron Tools Errors Guide 179

Code Description

178 System Image Write Protect.

Writes to the system image are trapped, the error is logged, and the device

resets.

192-223 State byte semaphore.

This value appears temporarily in the error log as part of normal Neuron

Chip operation and it should not be construed as an error. This appears

when a device’s state byte is being modified.

	Welcome
	Audience
	Content
	Related Documentation
	For More Information and Technical Support
	Table of Contents
	NodeBuilder Debugger Errors (DBG)
	DBG Errors

	Dependency Utility Errors (DEP)
	DEP Errors

	Communication Parameter Calculator Errors (LCL)
	LCL Errors

	LonTalk Interface Developer Errors (LID)
	Overview
	LID Errors

	LonWorks XML Errors (LWX)
	LWX Errors

	Neuron Assembler Errors (NAS)
	NAS Errors

	Neuron C Compiler Errors (NCC)
	NCC Errors

	Neuron Exporter Errors (NEX)
	NEX Errors

	Neuron Linker (NLD) and Neuron Librarian (NLIB) Errors
	Overview
	NLD and NLIB Errors

	Project Make Errors (PMK)
	PMK Errors

	Common Command Line Errors (UCL)
	UCL Errors

	Neuron Firmware Error Codes
	Overview
	Neuron Firmware Errors

