

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Mitsubishi
Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas

Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog

and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)

Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi

Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names

have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.

Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been

made to the contents of the document, and these changes do not constitute any alteration to the

contents of the document itself.

Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices

 and power devices.

Renesas Technology Corp.

Customer Support Dept.

April 1, 2003

To all our customers

NOTICES
On April 1, 2003, Mitsubishi Electric Semiconductor Application Engineering Corporation, a member of the Mitsubishi Electric group, joined the new Renesas Technology group and changed its name to Renesas Solutions Corp. Please note the following changes:

User Registration

Changed from: regist@tool.mesc.co.jp (not available)
 regist@tool.maec.co.jp (available until July 1, 2003)
 to: regist_tool@renesas.com

Tool Technical Support

Changed from: support@tool.msc.hoku.melco.co.jp (not available)
 support@tool.mesc.co.jp (not available)
 support@tool.maec.co.jp (available until July 1, 2003)
 to: support_tool@renesas.com

Tool Homepage

Changed from: http://www.tool-spt.mesc.co.jp/ (not available)
 http://www.tool-spt.maec.co.jp/ (available until July 1, 2003)
 to: http://www.renesas.com/en/tools

Company Name

Changed from: Mitsubishi Electric Semiconductor Software Corp.
 Mitsubishi Electric Semiconductor Systems Corp.
 Mitsubishi Electric Semiconductor Application Engineering Corp.
 to: Renesas Solutions Corp.

Tool news, "New Companies Established"
http://www.renesas.com/eng/products/mpumcu/toolhp/toolnews/n030401/tn1.htm

Product Name Changes of Tools

Regarding the products of software tools and some accessory tools, please note that product names have gradually been changed since April 2001. In some documents, the old product names may be used. We apologize to all of you for inconvenience that will be caused by this alteration. For the product name changes, please refer to this page.

http://www.renesas.com/eng/products/mpumcu/toolhp/henkou/index_e.htm

RASM77 V.5.10
User’s Manual

U
ser’s M

anual

Rev.1.00 2003.08

Relocatable Assembler for 77xx Series

 Microsoft, MS-DOS, Windows, and Windows NT are registered trademarks of Microsoft Corporation in the U.S. and other countries.
 Sun, Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. or
other countries, and are used under license.
 Linux is a trademark of Linus Torvalds.
 Turbolinux and its logo are trademarks of Turbolinux, Inc.
 IBM and AT are registered trademarks of International Business Machines Corporation.
 Intel and Pentium are registered trademarks of Intel Corporation.
 Adobe, Acrobat, and Acrobat Reader are trademarks of Adobe Systems Incorporated.
 All other brand and product names are trademarks, registered trademarks or service marks of their respective holders.

Keep safety first in your circuit designs!
 Renesas Technology Corporation and Renesas Solutions Corporation put the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to
personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with
appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention
against any malfunction or mishap.

Notes regarding these materials
 These materials are intended as a reference to assist our customers in the selection of the Renesas Technology product best suited to
the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to
Renesas Technology Corporation, Renesas Solutions Corporation or a third party.
 Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples
contained in these materials.
 All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information
on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation and Renesas
Solutions Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers
contact Renesas Technology Corporation, Renesas Solutions Corporation or an authorized Renesas Technology product distributor
for the latest product information before purchasing a product listed herein. The information described here may contain technical
inaccuracies or typographical errors. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility
for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by
Renesas Technology Corporation and Renesas Solutions Corporation by various means, including the Renesas home page
(http://www.renesas.com).
 When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and
algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the
information and products. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any
damage, liability or other loss resulting from the information contained herein.
 Renesas Technology semiconductors are not designed or manufactured for use in a device or system that is used under
circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation, Renesas Solutions
Corporation or an authorized Renesas Technology product distributor when considering the use of a product contained herein for any
specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
 The prior written approval of Renesas Technology Corporation and Renesas Solutions Corporation is necessary to reprint or reproduce
in whole or in part these materials.
 If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from
the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport
contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
 Please contact Renesas Technology Corporation or Renesas Solutions Corporation for further details on these materials or the
products contained therein.

For inquiries about the contents of this document or product, fill in the text file the installer generates in the following directory and email
to your local distributor.

¥SUPPORT¥Product-name¥SUPPORT.TXT

Renesas Tools Homepage http://www.renesas.com/en/tools

i

Preface
RASM77 is a relocatable assembler for the 7700 Family microcomputers. RASM77 creates ma-

chine language data files, debugging information files, etc. from source programs written in 7700

Family assembly language for the 7700 Family microcomputers. This user's manual describes the

functions and operation of the following programs that make up the software product RASM77:

1. Relocatable assembler RASM77

2. Structured preprocessor PRE77

3. Linkage editor LINK77

4. Librarian LIB77

5. Cross-referencer CRF77

This manual does not guarantee nor authorize the right to use the software.

Organization of RASM77 User's Manual

The RASM77 User's Manual consists of five parts as described below. Each part describes each of

the five programs that make up RASM77 Assembler in the same sequence as much as possible.

For example, explanation of environment variables for each program can be found in the chapter

that describes operation of that program.

• Part 1: RASM77 Operation Manual

Describes the method of using the relocatable assembler program RASM77 and the method

of coding source programs.

• Part 2: PRE77 Operation Manual

Describes method of using preprocessor language.

• Part 3: LINK77 Operation Manual

Describes method of executing the linker program LINK77 and the functions of its sections.

• Part 4: LIB77 Operation Manual

Describes the method of using the librarian program LIB77.

• Part 5: CRF77 Operation Manual

Describes the method of using the cross-referencer program CRF77.

PART 1PART 1
RELOCATABLE MACRO ASSEMBLER

FOR 7700 FAMILY

RASM77 OPERATION MANUAL

Table of Contents

Chapter 1. RASM77 User’s Manual Organization

Chapter 2. Overview
2.1 Functions .. 3

2.2 Files Created by RASM77 .. 4

2.3 Structure of PRN File ... 4

2.4 Structure of TAG File ...12

Chapter 3. Source Program Coding Method
3.1 Structure of Source Program .. 13

3.2 Line Formats ... 14
3.2.1 Instruction Line ... 14

3.2.2 Structured Preprocessor Instruction Line ... 14

3.2.3 Pseudo Instruction Line .. 14

3.2.4 Macro Instruction Line .. 15

3.2.5 Comment Line .. 15

3.3 Field Coding Method ..15
3.3.1 Symbol/Label Field ... 15

3.3.2 Op-code/Pseudo Instruction Field .. 16

3.3.3 Operand Field ... 16

3.3.4 Comment Field ... 16

3.4 Operand Field Coding Method ..16
3.4.1 Data Format .. 16

3.4.2 Instructions ... 17

Chapter 4. Instruction Coding Method
4.1 Addressing Mode ...19

4.2 Data Length Specification ...21

4.3 Setting Direct Page and Absolute Addressing 23

4.4 Addressing Mode Selection ..23
4.4.1 Setting the Direct Page Register and Data Bank Register 24

4.4.2 Addressing Mode During Symbol•Absolute Value Operation 25

4.4.3 Addressing Mode During Label Operation ... 26

4.4.4 Disabling Addressing Mode Selection .. 28

1-i

1-ii

Chapter 5. Pseudo Instruction Coding Method
5.1 Function of Pseudo Instructions ..30

5.2 Assembly Control Pseudo Instructions ...32
5.2.1 Data Length Declaration ... 32

5.2.2 DPR and DT Value Declaration .. 32

5.2.3 Conditional Assembly ... 32

5.2.4 Include File ... 32

5.2.5 Equation ... 32

5.2.6 Declare End of Assembly ... 32

5.2.7 Message Output ... 33

5.2.8 Assembly Error Output ... 33

5.2.9 Define String ... 33

5.3 Address Control Pseudo Instructions ..33
5.3.1 Address Declaration ... 33

5.3.2 Memory Allocation .. 33

5.3.3 Data Definition .. 33

5.3.4 Correct Address Alignment ... 33

5.4 Linkage Control Pseudo Instructions ..34
5.4.1 Section Name Specification .. 34

5.4.2 Global Label Name Specification ... 34

5.4.3 Linkage Filename Specification .. 34

5.4.4 Version Control ... 34

5.5 Listing Control Pseudo Instructions ..34

5.6 Source Level Debug Support ..35

5.7 Reserved Pseudo Instructions ..35

Chapter 6. Macro Instruction
6.1 Macro Instruction Functions ...36

6.2 Macro Instruction Types ..36

6.3 Macro Operators ...37

Chapter 7. Operation
7.1 Starting RASM77 ..41

7.2 Input Parameters ..41
7.2.1 Source Filename .. 41

7.2.2 Command Parameters ... 41

7.3 Input Method ...44

7.4 Errors ... 47
7.4.1 Error Types ... 47

7.4.2 Return Values to MS-DOS ... 49

7.5 Environment variables ...49

1-iii

Appendix A. Error Messages
A.1 System Error Messages ..50

A.2 Assembly Error Messages ..52

A.3 Warning Messages ..57

Appendix B. Pseudo Instructions
B.1 Conventions ... 59

B.2 Pseudo Instructions ..59

B.3 Debugging Pseudo Instructions .. 83

B.4 Reserved Pseudo Instructions ... 87

Appendix C. Macro Instructions
C.1 Conventions ... 93

C.2 Macro Instructions ...93

Appendix D. Instruction Set
D.1 Symbols ..105

D.2 Instruction Set .. 107

Appendix E. Instruction by Addressing Mode
E.1 Instruction by Addressing Mode .. 121

E.2 Addressing Mode Relationship Table .. 128

E.3 Selection of Addressing Mode ... 129

List of Figures

Figure 2.1 PRN File Example (Beginning of Source File) 6

Figure 2.2 PRN File Example (Middle of Source File) 7

Figure 2.3 PRN File Example (End of Source File)8

Figure 2.4 PRN File Example (Assembly Information)8

Figure 2.5 PRN File Example (Symbol and Label List) 9

Figure 2.6 PRN File Example (Macro and Include Expansion)............... 10

Figure 2.7 PRN File Example (Structured Preprocessor Section) 11

Figure 2.8 TAG File Example ... 12

Figure 4.1 Example of conditional assemble

 based on data and index lengths....................... 22

Figure 7.1 Example of RASM77 Startup Command Line 44

Figure 7.2 HELP Screen for Command Line Error 45

Figure 7.3 Normal Termination Screen .. 46

Figure 7.4 Error Display Example ...48

1-iv

List of Tables

Table 3.1 List of Operators ..18

Table 4.1 Association of CPU Internal Flags and Assembler 21

Table 4.2 Function of M_FLAG and X_FLAG ... 22

Table 4.3 Relationship between DPR, DT and Assembler 23

Table 6.1 List of Macro Instructions ...38

Table 7.1 List of Command Parameters ...42

Table 7.2 Listing of Error Levels ...49

Table A.1 List of System Error Messages ..51

Table A.2 List of Assembly Errors ..52

Table A.3 List of Warning Messages .. 58

Table B.1 Allowed Logical Instructions ...72

Table D.1 Symbols for Instruction List ... 106

Table D.2 Instructions .. 108

Table E.1 Addressing Mode Table ..128

1-v

1 - 1

CHAPTER 1

RASM77 User’s Manual Organization

The RASM77 Operation Manual consists of the following chapters:

• Chapter 2. Overview

Describes the basic functions of the RASM77 relocatable assembler and the files created by

RASM77.

• Chapter 3. Source Program Coding Method

Describes the structure of assembly language source programs that are processed by RASM77.

• Chapter 4. Instruction Coding Method

Explains how to code 7700 Family instructions that can be used by RASM77.

• Chapter 5. Pseudo Instruction Coding Method

Describes functions of and explains how to code the pseudo instructions provided by RASM77.

• Chapter 6. Macro Instruction

Describes the macro instructions available with RASM77.

• Chapter 7. Operation

Explains how to input RASM77 commands.

• Appendix A. Error Messages

Lists error messages output by RASM77 along with explanation of the errors and actions to

be taken.

• Appendix B. Pseudo Instructions

Lists and explains all pseudo instructions provided by RASM77.

• Appendix C. Macro Instructions

Lists and explains all pseudo instructions provided by RASM77.

• Appendix D. Instruction Set

Lists all 7700 Family instructions provided by RASM77.

1 - 2

• Appendix E. Instruction Sets by Addressing Modes

Lists the 7700 Family instructions provided by RASM77 in each addressing mode.

CHAPTER 1. RASM77 USER’S MANUAL ORGANIZATION

1 - 3

CHAPTER 2

Overview

RASM77 converts a source program written in assembly language (hereafter referred to as a

source file) into a relocatable file that can be processed by LlNK771 and LlB772. This step is

referred to as assembly. Relocatable files are converted into machine language data by LlNK77.

2.1 Functions

Development of a large software requires functions that enable several engineers to share pro-

gramming resources such as data and existing codes. RASM77 offers the following functions to

facilitate this task.

1. The user can specify any section name desired by the pseudo instruction, .SECTlON.

2. Because there is no limit to the number of sections that can be specified, address specifica-

tion is possible for linkage editing even on a user system that has ROM and RAM memories

that are divided into large number of separate areas.

3. Versions of the relocatable files being linked can be verified by specifying the version number

with the pseudo instruction .VER.

4. The relocatable files to be linked can be specified by the pseudo instructions .LIB and .OBJ.

(This feature eliminates the need for specifying filenames during linkage editing.)

RASM77 also has the following assembly functions:

1. The most efficient addressing mode is automatically selected based on the values in the

direct page register (DPR) and data bank register (DT).

2. A TAG3 file that stores error information can be created. (This feature enables efficient

assembly error correction.)

3. Because RAM and ROM areas can coexist in a file, RASM77 can also be used as an

absolute assembler. (Linkage is required.)
1 LINK77 is the program name of the Series 7700 Family linkage editor.
2 LIB77 is the program name of the Series 7700 Family librarian.
3 This file is called a TAG file because it contains “tags” that show the locations of errors and warnings.

2.1 Functions

1 - 4

2.2 Files Created by RASM77

RASM77 creates three types of files as described below.

1. Relocatable file

• A relocatable file contains machine language data and its relocation information.

• A relocatable file contains symbol information for use in symbolic debugging.

• A relocatable file can be linked by LlNK77 to create Intel HEX format machine language

data.

• Relocatable file is not created if an assembler error has occurred.

• File extension of relocatable file is .R77.

• Relocatable files should not be output to a printer or screen because they are in binary

format.

2. Print file (hereafter referred to as PRN file)

• A PRN file contains source file data, addresses of source file data locations and various

data created by RASM77.

• A PRN file can be printed and used for debugging.

• A PRN file is generated when the command parameter “-L” is specified.

• The file extension of PRN files is .PRN.

• The structure of PRN files is described in detail in Section 2.3.

3. TAG file

• A TAG file contains the assembly error messages and warning messages that were

generated during assembly.

• The file extension of TAG files is .TAG.

• TAG file should be referred to when making error corrections using an editor.

• A TAG file is generated when the command parameter “-E” is specified.

• The structure of TAG files is described in detail in Section 2.4.

2.3 Structure of PRN File

Figures 2.1 through 2.5 show sample PRN files. A PRN file contains the following information:

1. Source file data, addresses of source file data locations and data created by RASM77

(Figures 2.1 to 2.3 show this portion of PRN file.)

• A line that references an external label4 is marked by ‘E’ next to the source file data.

• A line that references a public label5 is marked by ‘P’ next to the source file data.

• A line that references a local label6 is marked by ‘L’ next to the source file data.

CHAPTER 2. OVERVIEW

1 - 5

• A line that is an expansion of a macro is marked by ‘+’ next to the source file data.

• A line that references a symbol defined with .DEFINE is marked by ‘-’ next to the source

file data.

• The .INCLUDE nesting level is marked by the number corresponding to the level next to

the source file data (Figure 2.6 shows this portion of PRN file).

• Structured description source lines are output to a print file as comment lines. (Figure 2.7

shows this portion of PRN file).

2. Assembly information (Figure 2.4 shows this portion of PRN file)

This portion of a PRN file shows the number of errors, number of warnings, total number of

lines, number of comment lines and the memory size of each section.

3. Symbols listing (Upper section of Figure 2.5 shows this portion of PRN file)

The number of symbols per line in the symbol list depends on the “.COL” pseudo instruction.

If the number of columns specified with “.COL” is 99 or less, the number of symbols output is

4, if it is between 100 and 119 columns, the number of symbols output is 5, if it is 120 or

more, the number of symbols output is 6.

This portion of a PRN file lists the symbols and their values as they are defined in the

program in three groups:

• -D OPTION

Each symbol in this group is defined by specifying the command parameter “- D” in the

command line and referenced within the program.

• EQUATE

Each symbol in this group is defined by the pseudo instruction .EQU and referenced

within the program.

• UNUSED

Each symbol in this group is defined by either the command parameter “-D” or .EQU but

not referenced in the program.

4. Labels list (Lower section of Figure 2.5 shows this portion of PRN file)

This portion of a PRN file lists the labels and their values as they are defined in the program

in two groups:

• USED

Each label in this group is defined and referenced in the program.

• UNUSED

Each label in this group is defined but not referenced in the program.

5. When the number of columns specified by the pseudo instruction .COL is 132, the assembly

execution date and time is placed in the header of the PRN file list in the following format:

Sun Mar 31 15:06:42 1991

4 Refers to a label that is defined in another file. External labels and public labels are referred to as global

labels.
5 Refers to a label that is defined in this file and can be referenced by other files.
6 Refers to a label that is defined in this file and can be referenced only within the file.

2.3 Structure of PRN File

1 - 6

 1 ;
 2 ; Start_up Routine
 3 ;
 4
 5 ;
 6 ; Data section
 7 ; Initialized static variable area
 8 ;
 9 .SECTION DATA
 10 .PUB DATATOP
 11 000000 DATATOP:
 12 (000000) 8H BYTE NULLDT: .BLKB 8
 13 (000008) 1AH BYTE TITLE: .BLKB 26
 14
 15 ;
 16 ; BSS section
 17 ; Unitialized static variable area
 18 ;
 19 .SECTION BSS
 20 .PUB BSSTOP
 21 000000 BSSTOP:
 22 (000000) 1H BYTE WORK1: .BLKB 1
 23 (000001) 1H BYTE WORK2: .BLKB 1
 24 (000002) 2H BYTE WORK3: .BLKW 1
 25
 26 ;
 27 ; HEAP section
 28 ; Area used by memory handling functions such as malloc
 29 ;
 30 .SECTION HEAP
 31 .PUB HEAPTOP
 32 000000 HEAPTOP:
 33 (000000) 1000H BYTE HEAP_A: .BLKB 1000H
 34
 35 ;
 36 ; STACK section
 37 ; stack area
 38 ;
 39 .SECTION STACK
 40 .PUB STKTOP
 41 (000000) 1000H BYTE .BLKB 1000H
 42 001000 STKTOP:

Figure 2.1 PRN File Example (Beginning of Source File)

CHAPTER 2. OVERVIEW

1 - 7

2.3 Structure of PRN File

 43 .PAGE
 44 ;
 45 ; PROGRAM section
 46 ; Program area
 47 ;
 48 .SECTION PROGRAM
 49 .EXT MAIN
 50 .DPEXT DPPAGE1:WK1,WK2
 51 .DTEXT DTPAGE1:TBL1,TBL2
 52 .PUB _INIT
 53 .DATA 16
 54 .INDEX 16
 55 E .DP OFFSET DPPAGE1

 ↑ Indicates external label reference
 56 E .DT BANK DTPAGE1
 57 000000 _INIT:
 58 000000 C2FF CLP #0FFH
 59 000002 A90010 P LDA A,#STKTOP

 ↑ Indicates public label reference
 60 000005 1B TAS
 61 000006 A90000 LDA A,#SIZEOF DATA
 62 000009 A20000 P LDX #OFFSET CONSTOP
 63 00000C A00000 P LDY #OFFSET DATATOP

Figure 2.2 PRN File Example (Middle of Source File)

1 - 8

 64 00000F 540000 P MVN BANK CONSTOP, BANK DATATOP
 65 000012 AD0000 E LDA A,DT:TBL1
 66 000015 *42AD0000 E LDA B,TBL2

↑ Indicates optimization
 67 000019 A20000 E LDX #WK1
 68 00001C 202200 L JSR _SUB

 ↑ References a local label
 69 00001F 4C0000 E JMP MAIN
 70 ;
 71 000022 _SUB:
 72 000022 9500 STA A,0,X
 73 000024 42950A STA B,10,X
 74 000027 60 RTS
 75
 76 ;
 77 ; CONST section
 78 ; Initialized data area
 79 ;
 80 .SECTION CONST
 81 .PUB CONSTOP
 82 000000
 83 000000 000000000000 .BYTE 0,0,0,0,0,0,0,0
 000006 0000
 84 000008 4D3337373030 .BYTE 'M37700 C Compiler Ver 1.0',0
 00000E 204320436F6D
 000014 70696C657220
 00001A 56657220312E
 000020 3000
 85 ;
 86 .END

Figure 2.3 PRN File Example (End of Source File)

 ERROR COUNT 00000 (0000H)
 WARNING COUNT 00000 (0000H)
 TOTAL LINE 00086 (0056H) LINES
 COMMENT LINE 00033 (0021H) LINES
 DATA 00000034 (000022H) BYTES

 ↑ Indicates the section name
 BSS 00000004 (000004H) BYTES
 HEAP 00004096 (001000H) BYTES
 STACK 00004096 (001000H) BYTES
 PROGRAM 00000040 (000028H) BYTES
 CONST 00000034 (000022H) BYTES

Figure 2.4 PRN File Example (Assembly Information)

CHAPTER 2. OVERVIEW

1 - 9

 *** SYMBOLS (TYPE = -d OPTION) ***

 *** SYMBOLS (TYPE = EQUATE) ***

 *** SYMBOLS (TYPE = UNUSED) ***

 *** LABELS (TYPE = USED) ***

 _SUB 000022' CONSTOP 000000p DATATOP 000000p DPPAGE1 000000e
↑ Indicates a local label

 DTPAGE1 000000e MAIN 000000e STKTOP 001000p TBL1 000000e
 ↑ Indicates a public label

 TBL2 000000e WK1 000000e
 ↑ Indicates an external label

 *** LABELS (TYPE = UNUSED) ***

 _INIT 000000p BSSTOP 000000p HEAP_A 000000' HEAPTOP 000000p
 NULLDT 000000' TITLE 000008' WK2 000000e WORK1 000000'
 WORK2 000001' WORK3 000002'

Figure 2.5 PRN File Example (Symbol and Label List)

2.3 Structure of PRN File

1 - 10

 31 000014 INITIAL:
 32 .section prog
 33 .include initial.a77
 34 1 .DATA 16
 35 1 .INDEX 16
 36 1 .DP 0
 37 1 .DT 0
 38 000000 78 1 SEI
 39 000001 C238 1 CLP m,x,D
 40 1
 41 .include clr_ram.a77; Call in
 ; initial.a77
 42 000003 A27F02 2 LDX #027FH
 43 000006 9A 2 TXS
 44 000007 A90000 2 LDA A,#0
 45 00000A 5B 2 TAD
 46 00000B 89C200 2 LDT #0
 47 00000E A90000 2 LDA A,#0
 48 000011 2 RAM_CLEAR:
 49 000011 *9500 2 STA A,0,X
 50 000013 CA 2 DEX
 51 000014 CA 2 DEX
 52 000015 E07E00 2 CPX #07EH
 53 000018 D0F7 L2 BNE RAM_CLEAR
 54 2
 55 1 .DATA 8
 56 00001A F8 1 SEM
 57 00001B 58 1 CLI
 ↑

Indicates .INCLUDE nesting level
 58 00001C MAIN:
 59 00001C A00A00 LDY #10
 60 00001F LOOP:
 61 00001F ADD A,WORK,Y ; Macro call
 62 00001F 18 + CLC
 63 + .IF "Y"
 64 000020 790000 L + ADC A,WORK,Y
 65 + .ELSE
 67 + .ENDIF
 68 + .ENDM
 ↑

 Indicates macro expansion
 69 000023 990A00 L STA A,DATA,Y
 70 000026 88 DEY
 71 000027 C00000 CPY #0
 72 00002A D0F3 L BNE LOOP
 73 .END

Figure 2.6 PRN File Example (Macro and Include Expansion)

CHAPTER 2. OVERVIEW

1 - 11

 1 ; *** 7700 Family PREPROCESSOR V5.00.00 ***
 2 .language PRE77_Rev01
 3 .source sample.p77
 4 .SECTION RAM
 5 .func _sample_0
 6 .ORG 0000H
 7 (000000) 1H BYTE WORK1: .BLKB 1
 8 (000001) 1H BYTE WORK2: .BLKB 1
 9 .endfunc _sample_0
 10 .SECTION INIT
 11 .func _sample_1
 12 ;FLAG_0 .EQU 0,WORK1 ← Structured code source line
 13 FLAG_0 .define WORK1 ← Structured code expansion
 14 ;FLAG_1 .EQU 1,WORK1
 15 FLAG_1 .define WORK1
 16 .endfunc _sample_1
 17 .section structprog
 18 .func _sample_2
 19 ; for [DP:FLAG_0] == 0
 20 .cline 9 ← Source level debugging information
 21 000000 ..F1: ← Structured code label
 22 000000 2400010011 -L BBS #00001H,DP:WORK1,..F2

 ↑ Indicates reference to string definition symbol
 23 ; if [DP:FLAG_1] == 1
 24 .cline 10
 25 000005 340002000A -L BBC #00002H,DP:WORK1,..I3
 26 ; [WORK1] = 0
 27 .cline 11
 28 00000A A90000 LDA A,#0
 29 00000D *8500 L STA A,WORK1
 30 ; [WORK2] = 0
 31 .cline 12
 32 00000F A90000 LDA A,#0
 33 000012 *8501 L STA A,WORK2
 34 ; endif
 35 .cline 13
 36 000014 ..I3:
 37 000014 80EA L BRA ..F1
 38 ; next
 39 .cline 14
 40 000016 ..F2:
 41 .endfunc _sample_2
 42 .end

Figure 2.7 PRN File Example (Structured Preprocessor Section)

2.3 Structure of PRN File

1 - 12

2.4 Structure of TAG File

Figure 2.6 shows a sample of a TAG file. A TAG file contains the following information:

1. Source information

For each occurrence of error or warning, list line number, location, object code and source

file contents are specified.

2. TAG information

For each occurrence of error or warning identified by source information, filename, line

number within the file, sequential line number, error number and error message are speci-

fied.

The TAG file should be printed and referenced when correcting errors with an editor.

 115 00F025 EAEA BCC LOOP2
TEST.ASM 115 (TOTAL LINE 115) Error 18: Relative jump is out of range
 127 00F031 EAEAEA LDA A,#data
TEST.ASM 127 (TOTAL LINE 127) Error 20: Reference to undefined label or symbol 'data'
 551 00F42B EAEA BRA TEST2
TEST.ASM 551 (TOTAL LINE 551) Error 20: Reference to undefined label or symbol 'TEST2'
 593 00F4FC EAEAEAEAEAEA LDA A,(work,x ; data set
TEST.ASM 593 (TOTAL LINE 593) Error 23: '()' format error ';'

Figure 2.8 TAG File Example

CHAPTER 2. OVERVIEW

1 - 13

CHAPTER 3

Source Program Coding Method

3.1 Structure of Source Program

A source program written in assembly language is made up of lines. Each source program line

must comply with the following rules:

1. Each line must be complete by itself, and an instruction cannot be coded on more than one

line.

2. Each line may contain no more than 256 characters. The assembler program ignores coding

beyond 256 characters.

3. Each line consists of the following fields:

• Symbol/label field

Label for referencing this line from other locations or symbol whose value is to be set by

the .EQU pseudo instruction is coded in this field.

• Op-code/pseudo instruction field

7700 Family instruction mnemonic (hereafter referred to as op-code) or pseudo instruction

is coded in this field.

• Operand field

Object of processing by op-code or pseudo instruction is coded in this field.

• Comment field

Specification in this field is not processed by the assembler, and the user can use this

field for any purpose.

There are five types of lines.

1. Instruction line

An instruction line specifies a 7700 Family instruction. The assembler converts the specifica-

tions on this line to machine language data.

2. Structured preprocessor instruction line

A structured preprocessor instruction line specifies the structured preprocessor language that

is processed by PRE77.

3. Pseudo instruction line

A pseudo instruction line specifies the information necessary for assembly.

3.1 Structure of Source Program

1 - 14

4. Macro instruction line

A macro instruction line specifies the macro definition. This line is processed by the assem-

bler.

5. Comment line

A comment line is not processed by the assembler. Therefore, it can be used by the user for

any purpose.

3.2 Line Formats

This section describes the format of each type of line. The following conventions are used for these

descriptions:

1. ▲▲ and ▲ specify space or tab code. ▲▲ is required, and ▲ is optional.

2. Colon (:) may be omitted when specifying a label, but if omitted, a space or a tab code must

be specified between label and pseudo instruction.

3.2.1 Instruction Line

Shown below is the format of an instruction line:

▲ Label: ▲ Op-code ▲▲ Operand ▲ ; Comment <RET>

▲† Op-code ▲▲ Operand ▲ ; Comment <RET>

† Because RASM77 identifies each instruction by its reserved word, a line can begin with an op-

code if there is no label.

3.2.2 Structured Preprocessor Instruction Line

This line is not processed by the assembler. Refer to Part 2. Chapter 3 for details concerning this

line.

3.2.3 Pseudo Instruction Line

Shown below is the format of pseudo instruction line:

 ▲Label: ▲ Pseudo-op ▲▲ Operand ▲ ; Comment <RET>

▲ Symbol ▲▲ .EQU ▲▲ Operand ▲; Comment <RET>

▲‡ Pseudo-op ▲▲ Operand ▲ ; Comment <RET>

CHAPTER 3. SOURCE PROGRAM CODING METHOD

1 - 15

Notes:
‡ Because RASM77 identifies each pseudo instruction by its reserved word, a line can begin with

an op-code if there is no label.

Also note that labels cannot be coded for some pseudo instructions. Refer to Chapter 5 and

Appendix B for details.

3.2.4 Macro Instruction Line

The format of a macro instruction line is shown below. Refer to Chapter 6 and Appendix E for

details concerning this line.

▲ Macro name:▲ Macro Instruction ▲▲ Operand ▲ ; Comment <RET>

Note:

If there are more than one data in the operand, they must be separated by a comma (,). Space or

tab can be coded on both sides of a comma.

3.2.5 Comment Line

Comment line must begin with a semicolon (;). Shown below is the format of a comment line:

▲ ; Comment <RET>

3.3 Field Coding Method

3.3.1 Symbol/Label Field

RASM77 manages symbols and labels separately1, but the same name coding format applies to

both. The coding format is described below.

1. A symbol or label can be specified using alphanumeric characters, special characters, under-

line (_) and question mark (?). The first character must be an alphabetic or special character.

2. Reserved words cannot be used as names. RASM77 processes register names, flag names,

op-code names, pseudo instruction names and operand description instructions (including

DP and DT) as reserved words.

3. Uppercase and lowercase are recognized. Therefore, “BIG” and “Big” are recognized as

different names.

4. A label or symbol may be no more than 255 characters long.

5. The following labels beginning with ‘..’ (two periods) must not be used because they are

labels generated by macro instructions and PRE772. Labels beginning with one or three

periods are also prohibited.

3.2 Line Formats

1 Names defined by the .EQU pseudo instruction or an instruction with the command parameter -D are treated

as symbols, and other names are treated as labels.
2 Preprocessor that processes structured code lines.

1 - 16

When specifying a label, it must be followed immediately by a colon (:). However, for compatibility

with previous version, the colon may be omitted if the command option “-U” is specified. If the colon

is omitted, a space or a tab code is required between the a label and pseudo instruction. It is

recommended that this colon be always specified to make it easier to differentiate labels from

symbols and to make label search by the editor more efficient.

3.3.2 Op-code/Pseudo Instruction Field

A 7700 Family instruction mnemonic or a pseudo instruction is specified in the op-code/pseudo

instruction field. The specification format is described below.

1. No distinction is made between uppercase and lowercase characters for op-codes and pseudo

instructions. Thus, both “NOP” and “nop” mean the same.

This field is described in more detail in Chapters 4 and 5.

3.3.3 Operand Field

Information regarding the target of op-code or pseudo instruction is specified in the operand field.

The specification format is described below.

1. If there are two or more operand data, they must be separated by a comma (,).

2. Space or tab code may be specified on either side of a comma.

This field is described in more detail in Section 3.4.

3.3.4 Comment Field

Any user information may be specified in the comment field. The specification format is described

below.

1. A comment field must begin with a semicolon (;).

2. Any character may be used in the comment field.

3.4 Operand Field Coding Method

3.4.1 Data Format

Operand field may be specified with data in any of the following four data formats:

1. Numeric constant

• A numeric constant can be specified as a positive or negative value by using the ‘+’ or ‘-’

instruction as prefix. If neither ‘+’ nor ‘-’ is specified, the numeric constant is processed as a

positive value.

• A binary, octal, decimal or hexadecimal number may be specified as a numeric constant.

• When specifying a binary numeric constant, the value must be followed by ‘B’ or ‘b’.

Example: .BYTE 100110B

CHAPTER 3. SOURCE PROGRAM CODING METHOD

1 - 17

• When specifying an octal numeric constant, the value must be followed by ‘O’ or ‘o’.

Example: .BYTE 70o

• When specifying a decimal numeric constant, only an integer value can be specified.

Example: .BYTE 100

• When specifying a hexadecimal numeric constant, the value must be followed by ‘H’ or ‘h’. If

the hexadecimal value begins with an alphabetic character (A to F), it must be prefixed with

0.

Example 1: .BYTE 64H

Example 2: .BYTE 0ABH

2. Character string constant

• Any ASCll code character may be used in a character string constant.

• Character string constant must be enclosed between single quotes (‘ ’)or double quotes (“ ”).

Example: .BYTE 'A' => Sets 41H.

• If '\' is used in a string literal, the character immediately following the '\' is processed as

character string data. When using '\' in a character string, write it as '\\.'

3. Label or symbol

• A label has a 24 bit data value, and a symbol has a 32 bit data value.

4. Expression

• Numeric expression can be specified as a combination of instructions, numeric constants,

character string constants, labels or symbols.

• An expression is calculated from left to right. (No operators priorities are recognized.)

Example 1: 2*3 => Result is 6.

Example 2: 2+6/2 => Result is 4.

3.4.2 Operators

Table 3.1 lists the operators that may be used with RASM77.

3.4 Operand Field Coding Method

1 - 18

CHAPTER 3. SOURCE PROGRAM CODING METHOD

Table 3.1 List of Operators
Operator 1 Description

+ Addition

- Subtraction

Multiplication

/ Divide

% Remainder of division

<< Left shift

>> Right shift

& Logical AND on bits

| Logical OR on bits

^ Logical exclusive-OR on bits

+ Unary operator specifying a positive number

- Unary operator specifying a negative number

~ Unary operator specifying bit inversion

@2 Operator that converts the immediately following symbol to character string

SIZEOF3,4 Unary operator to obtain section size

BANK4 Unary operator to extract high-order 8 bits of label or symbol

OFFSET4 Unary operator to extract low-order 16 bits of label or symbol

Notes:

1. Operation is executed from left to right. (No operator priorities are recognized.)

Example 1: 2+6/2 => Result is 4.

Example 2: 2*3 => Result is 6.

2. The symbols concatenated by the @ operator must be absolute values. If a forward-refer-

enced symbol is specified, an error occurs.

3. SlZEOF value is determined at link time regardless of whether the referenced section is

relocatable or absolute. Accordingly, the same limitations as for external labels apply to the

location where the SlZEOF instruction may be specified. (It cannot be specified in the oper-

and of pseudo instructions such as .ORG and .BLKB.)

4. A space must be specified between SIZEOF, BANK, or OFFSET instruction and label, sym-

bol or section name.

Example: .DT BANK DATA1

*

1 - 19

CHAPTER 4

Instruction Coding Method

4.1 Addressing Mode

The basic mode in which instructions specify the data to be processed is called an addressing

mode. 7700 Family supports 28 addressing modes, and the operand coding format is prescribed for

each of these addressing modes.

The following summarizes the characteristics of the addressing modes as they relate to operand

coding:

1. Accumulator addressing mode

This addressing mode is for processing the data in an accumulator. The Series 7700 Family

CPU has A and B accumulators, and the name of the accumulator to be used must be

specified at the beginning of the operand field. Note that, if accumulator B is specified, the

bytes count of machine language data will increase by 1 byte.

Example: LDA A,#IMMDATA

2. Immediate addressing mode

This addressing mode is for directly specifying the data to be processed in the operand field.

The value in the operand must be prefixed by “#“.

Example: LDM #IMMDATA,MEMORY

3. Direct addressing mode

This addressing mode is for using the 16 bit value in the direct page register (DPR) as the

base address and specifying an 8 bit offset value to the base address in the machine

language data. Bank address is fixed at 0. The method of coding direct addressing in

assembler instructions is described in detail in Section 4.3.

4. Absolute addressing mode

This addressing mode is for using the 8 bit value in the data bank register (DT) as the base

address and specifying the lower-level 16 bit address in the machine language data. The

method of coding absolute addressing in assembler instructions is described in detail in

Section 4.3.

5. Absolute long addressing mode

In this addressing mode, a 24 bit address value is specified in the operand field. (The entire

memory space of 7700 Family can be used.) This addressing mode is used when the label

specified in the operand field cannot be processed in the direct or absolute addressing mode.

The method of coding absolute long addressing in assembler instructions is described in

detail in Section 4.3.

4.1 Addressing Mode

1 - 20

6. Indexed addressing mode

In this addressing mode, address of the data to be processed is modified by the content of

register X or Y. Register name must be specified after a comma (,).

Example: ADC A,DATA1,X

7. Direct indirect addressing mode

In this addressing mode, the data to be processed is specified indirectly by memory address.

The memory location where the 2 byte address of the data to be processed is stored is

specified in the operand field. The high-order 8 bits contain the data bank register value. The

memory address is specified in the operand field by the same method as for direct address-

ing. The operand value must be enclosed in parentheses.

Example: LDA A,(INDATA)

When storing a 3 byte address in the memory location, “L”, must be added at the end of the

op-code.

Example: LDAL A,(INDATA)

8. Absolute indirect addressing mode

In this addressing mode, the data to be processed is specified indirectly by memory location.

The memory location where the 2 byte address of the data to be processed is stored is

specified in the operand field. The low-order 16 bits of memory address is specified in the

operand field, and the program bank register value is specified in the high-order 8 bits. The

operand value must be enclosed in parentheses.

Example: JUMP (PROCESS1)

When storing a 3 byte address in the memory location, “L” must be added at the end of the

op-code.

Example: JMPL (PROCESS2)

9. Relative addressing mode

In this addressing mode, the branch destination is specified by a relative byte count from the

current program counter value. The relative value itself cannot be specified in the source

program. If a label or object location is specified in the operand field, the assembler calcu-

lates the relative value.

Example: BBA LABEL

Refer to Appendix C for the coding format of each addressing mode.

CHAPTER 4. INSTRUCTION CODING METHOD

1 - 21

4.2 Data Length Specification

7700 Family CPU can control data length and index register length with the CPU internal flag.

Table 4.1 summarizes the association between the flags and the assembler.

Table 4.1 Association of CPU Internal Flags and Assembler

• Data length selection flag (m)

Flag status Meaning Reset state

m = 0 16 bit operation Reset state after CPU reset.

This is the default value when RASM77 is started.

m = 1 8 bit operation

• Index register length selection flag (x)

Flag status Meaning Reset state

x = 0 16 bits long Reset state after CPU reset.

This is the default value when RASM77 is started.

x = 1 8 bits long

4.2 Data Length Specification

Because the machine language code for each instruction is identical regardless of the flags, flags

do not affect assembler execution except in the case of immediate addressing. In the case of

immediate addressing, the bytes count of the immediate value data that must be specified in the

operand field depends on the data length. Therefore, the assembler must generate a code that is

appropriate for the flag. RASM77 allows specification of status by one of two methods:

1. Direct specification in instruction’s op-code

Example 1: LDA.B A,#50H ; Specifies an 8 bit immediate value (50H).

Example 2: LDA.W A,#50H ; Specifies a 16 bit immediate value (0050H).

2. Declaration of default value by pseudo instruction INDEX or .DATA

Example 1: .INDEX 16 ; Declares that the index length is 16 bits.

Example 2: LDX #200H ; Specifies processing at the default index length (16 bits).

RASM77 allows for assemble control by default values of data and index lengths.

If a command parameter "-F" is specified, symbols "M_FLAG" and "X_FLAG" are handled as

reserved words. If this command parameter is not specified, "M_FLAG" and "X_FLAG" can be

used as any symbols or labels.

These reserved words can be used to verify the content of the flag 'm' or 'x' that is currently

recognized by the assembler by using them along with a pseudo-instruction ".IF" that performs

conditional assembling.

The functions of "M_FLAG" and "X_FLAG" described in Table 4.2.

1 - 22

CHAPTER 4. INSTRUCTION CODING METHOD

Table 4.2 Function of M_FLAG and X_FLAG

Symbol Function

M_FLAG The value changes with the setup value of ".DATA."

The value of "M_FLAG" = 1 when the data length is set to 16 bits.

The value of "M_FLAG" = 0 when the data length is set to 8 bits.

X_FLAG The value changes with the setup value of ".INDEX."

The value of "X_FLAG" = 1 when the index length is set to 16 bits.

The value of "X_FLAG" = 0 when the index length is set to 8 bits.

Figure 4.1 shows an example of a conditional assemble program using "M_FLAG" and "X_FLAG."

BIT8: .MACRO
.DATA 8
.INDEX 8
.IF M_FLAG
sep m,x
.ELSE
clp m,x
.ENDIF

Figure 4.1 Example of conditional assemble based on data and index lengths

Notes:

1. Pseudo instructions do not generate instructions that manipulate the CPU internal flags.

Therefore, the user program must control the assembler’s default value to be consistent with

the processor status.

2. Immediate value must be used when specifying the data length directly in the operand of an

instruction.

1 - 23

4.3 Setting Direct Page and Absolute Addressing

the 7700 Family CPU has two internal registers named direct page register (DPR) and data bank

register (DT) to enable memory accessing with the least number of codes for each type of address

space. By using these registers, 7700 Family’s memory space (16M bytes) can be accessed more

efficiently. The functions of DPR and DT are described below.

1. Direct page register (DPR)

DPR is a 16 bit register. At the machine language data level, direct addressing specifies the

target address with an 8-bit offset to DPR. (Bank is always 0.)

If only a label is specified in the source program’s operand field, the assembler checks

whether the label is within offset values 00 to 0FFH from the current DPR value. When direct

addressing is possible, the assembler calculates the offset value and generates machine

language data.

2. Data bank register (DT)

DT is an 8 bit register. At the machine language data level, absolute addressing specifies a

low-order 16 bit address with the value in DT as the bank address. If only a label is specified

in the source program’s operand field, the assembler checks if the current DT value and the

label’s high-order 8 bit value are identical. When absolute addressing is possible, the assem-

bler calculates the low-order 16 bit value and generates machine language data. Table 4.3

summarizes the relations of DPR and DT to assembler.

Table 4.3 Relationship between DPR, DT and Assembler

Register Reset state

DPR 0000H is set in DPR after CPU reset.

This is the default value when RASM77 is started.

DT 00H is set in DT after CPU reset.

This is the default value when RASM77 is started.

4.4 Addressing Mode Selection

RASM77 provides the following three addressing modes when a symbol, label, or absolute value is

coded in the operand of an instruction:

1. Direct addressing mode

2. Absolute addressing mode

3. Absolute long addressing mode

4.3 Setting Direct Page and Absolute Addressing

1 - 24

CHAPTER 4. INSTRUCTION CODING METHOD

RASM77 allows the addressing mode to be selected from these three modes. The method of

selection depends on the symbol, absolute value, or label that is the target of the operation. For

label operation, the value in the direct page register (DPR) and data bank register (DT) directly

affects the selection of the addressing mode.

Described below are descriptions on how to set the DPR and DT registers followed by the descrip-

tion of addressing modes during symbol and absolute value, and label operations.

4.4.1 Setting the Direct Page Register and Data Bank Register

In order to change the direct page and bank to be used in RASM77, the value of the direct page

register and data bank register must be declared with the .DP and .DT pseudo instructions before-

hand as shown below.

Example:

 .DP 100 ← Set 100 in direct page register (100H to 1FFH)
 .DT 1 ← Set 1 in data bank register (bank 1)
 LDA A, #100H
 TAD
 LDT #1

The operand of the .DP and .DT pseudo instructions can be either a numeric value specifying the

direct page start address and bank address or a direct page name label and bank name label.

When referencing the labels DLAB and work coded in sample1.a77 from the PRO section of

samp2.a77 as shown in the example below, the value of DPR and DT registers can be declared

with the direct page name label DPR100 and bank name label BANK2.

Example:

[Source file for samp1.a77]
.SECTION DATA1
.ORG 100H

DPR100:
DLAB: .BLKW 2

 .SECTION DATA2
.ORG 20000H

BANK2:
work: .BLKB 2

1 - 25

[Source file for samp2.a77]
 .SECTION PRO
 .DPEXT DPR100:DLAB
 .DTEXT BANK2:work

 .DP OFFSET DPR100 ← Set 100 in direct page register (100H to 1FFH)
 .DT BANK BANK2 ← Set 1 in data bank register (bank 1)
 LDA A, #OFFSET DPR100
 TAD
 LDT #BANK BANK2

The scope of the direct page and bank coded in the operand of .DP and .DT is determined during

link.

4.4.2 Addressing Mode During Symbol•Absolute Value Operation

The addressing mode can be selected explicitly regardless of the value in the DPR and DT

registers when public specification pseudo instruction .PUB and external reference specification

pseudo instruction .EXT are used for data and one of the following addressing mode specifiers is

used in the symbol•absolute value in the operand (except when OFF is specified as the operand of

the .DP or .DT pseudo instruction.)

• DP: Direct addressing

• DT: Absolute addressing

• LG: Absolute long addressing

Example:

 .EXT SYM1 ← Specified as public (.PUB) in another file

 .SECTION PRO
 AND A, DP:SYM1 ← Direct addressing
 AND A, DT:SYM1 ← Absolute addressing
 AND A, LG:SYM1 ← Absolute long addressing

If an instruction can select direct mode, absolute mode, or absolute long mode and uses a symbol

that has an absolute value, the value is compared with the value in DPR and DT registers at the

location of the instruction and the addressing mode that provides the most efficient memory usage

is selected.

4.4 Addressing Mode Selection

1 - 26

CHAPTER 4. INSTRUCTION CODING METHOD

Example:

 .SECTION DATA
 .ORG 100H
LAB1 .BLKW 1

 .SECTION PRO
 .DT 0
 .DP 100H
 LDA A, #100H
 TDA
 LDT #0

 AND A, LAB1 ← Direct addressing

4.4.3 Addressing Mode During Label Operation

The addressing mode can be selected explicitly regardless of the value in the DPR and DT

registers when public specification pseudo instruction .PUB and external reference specification

pseudo instruction .EXT are used for data and one of the following addressing mode specifiers is

used in the label in the operand (except when OFF is specified as the operand of the .DP or .DT

pseudo instruction.)

• DP: Direct addressing

• DT: Absolute addressing

• LG: Absolute long addressing

Example:
 .EXT LAB1 ← Specified as public (.PUB) in another file

 .SECTION PRO
 AND A, DP:LAB1 ← Direct addressing
 AND A, DT:LAB1 ← Absolute addressing
 AND A, LG:LAB1 ← Absolute long addressing

In addition, the following external reference specification pseudo instructions can be used to specify

the addressing mode during data reference. In this case, the addressing mode specifier can be

omitted in the operand.

• .DPEXT Direct addressing

• .DTEXT Absolute addressing

• .EXT Absolute long addressing

1 - 27

Example:

 .DPEXT LAB1 ← Specified as public (.PUB) in another file
 .DTEXT LAB2 ← Specified as public (.PUB) in another file
 .EXT LAB3 ← Specified as public (.PUB) in another file
 .SECTION PRO
 AND A, LAB1 ← Direct addressing
 AND A, LAB2 ← Absolute addressing
 AND A, LAB3 ← Absolute long addressing

If an instruction can select direct mode, absolute mode, or absolute long mode and the data has a

relocatable value coded with the direct page name label or bank name label associated with

.DPEXT or .DTEXT, the appropriate addressing mode is selected by comparing them with the

direct page name label or bank name label coded with .DP or .DT.

Example:

 .DPEXT directpage_name:DPLAB ← directpage_name: Direct page name label
 .DTEXT databank_name:DTLAB ← databank_name: Bank name label
 .SECTION PRO
 .DP OFFSET directpage_name
 .DT BANK databank_name

 AND A, DPLAB ← Direct addressing
 AND A, DTLAB ← Absolute addressing

4.4 Addressing Mode Selection

1 - 28

Description format Processing by RASM77

DP:label Error

DP:symbol Selects direct addressing mode

DP:absolute value Selects direct addressing mode

DT:label Error

DT:symbol Selects absolute addressing mode

DT:absolute value Selects absolute addressing mode

Table 4.4 Rules for addressing mode selection

4.4.4 Disabling Addressing Mode Selection

The addressing mode selected by RASM77 can be explicitly disabled. To disable the use of direct

addressing mode, code OFF as the operand of .DT. To disable the use of absolute addressing

mode, code OFF as the operand of .DP.

When direct addressing mode is disabled, absolute or absolute long addressing mode is selected.

When absolute addressing mode is disabled, direct or absolute long addressing mode is selected.

If OFF is written in the operand of .DP or .DT, the rules described in Table 4.4 are followed when

assembling the source.

CHAPTER 4. INSTRUCTION CODING METHOD

Example:

 .DPEXT DPLAB
 .SECTION DATA
LAB: .BLKB 1

 .SECTION PRO
 .DP OFF ← Disable direct page addressing

 LDA A, DPLAB ← Absolute long addressing
 STA A, DP:ADDR1 ← Error 22: Value is out of range

1 - 29

Note:

1. When using a relocatable local label in direct or absolute addressing, write "DP:" or "DT:" in

the operand. If only a local label is written, the assembler uses absolute long addressing.

2. If a label specified with the pseudo instruction .DPEXT is coded in the operand and operation

is performed on that label, direct addressing is also used for the code generated as the result

of the operation.

Example:

 .DPEXT WORKA ; ← Specify external label of a direct page
 STA A,WORKA+1 ; ← Treat operation result as direct page

In this case, the instruction STA is assembled using direct addressing. However, whether the

operation result is within the scope of direct addressing is determined during linkage. The

same is true for the label specified with .DTEXT.

3. If the command option “-Q” is specified, a warning is issued for instruction lines that specify

other addressing mode with codes such as “LG:” for labels specified with .DPEXT or .DTEXT.

4.4 Addressing Mode Selection

1 - 30

CHAPTER 5

Pseudo Instruction Coding Method

5.1 Function of Pseudo Instructions

A pseudo instruction declares or specifies1 the assembler to generate the intended machine lan-

guage data. RASM77 offers 52 pseudo instructions, and they can be grouped into the following five

functional groups:

1. Assembly control pseudo instructions

• Does not generate data but controls generation of machine language data that corresponds

to the instruction.

• Does not affect address updating.

• There are 12 assembly control pseudo instructions:

.INDEX, .DATA Declares data length

.DT, .DP Declares DT or DPR value

.IF, (ELSE), .ENDIF Conditional assembly

.INCLUDE Declares file to be included in program

.EQU Equation

.END Declares end of program

.ASSERT Outputs a message

.ERROR Declares assembly error

.DEFINE Defines a string

1 The term “declare” is used when a pseudo instruction specifies a default to the assembler and the term

“specify” is used when a pseudo instruction specifies an instruction that affects the output file.

CHAPTER 5. PSEUDO INSTRUCTION CODING METHOD

1 - 31

2. Location control pseudo instructions

• Updates address.

• Data definition pseudo instruction generates constant data.

• There are 10 pseudo instructions in this group:

.ORG Declares location

.BLKB, .BLKW, .BLKA, . BLKD Allocates RAM area

.BYTE, .WORD, .ADDR, .DWORD Defines data

.EVEN Corrects location alignment

3. Linkage control pseudo instructions

• Performs controls related to linkage processing.

• There are 8 pseudo instructions in this group:

.SECTION Specifies section name

.DPEXT, .DTEXT, .EXT, PUB Specifies global label name

.OBJ, .LIB Specifies linkage filename

.VER Specifies version

4. Listing control pseudo instructions

• Performs controls related to output of PRN file.

• There are 7 pseudo instructions in this group:

.PAGE Specifies new page and title

.COL ,.LINE Specifies listing format (columns and row count)

. LIST, .NLIST Outputs/suppresses list

.LISTM, .NLISTM Outputs/suppresses macro expansion list

5. Source level debug support

• Outputs information necessary for source line debug to object file.

• There are 6 pseudo instructions in this group:

.CLINE Outputs column information

.FUNC, .ENDFUNC Specifies start/end of function

.LANGUAGE Outputs the language used

.POINTER Sets the pointer length

.SOURCE Sets the source file name

6. Reserved pseudo instructions

• A number of pseudo instructions are reserved for future use. These instructions do not affect

assembly.

• There are 9 pseudo instructions in this group:

.PROGNAME Declares program name

.IO, .ENDIO, .RAM, .ENDRAM Declares RAM area name

.PROCMAIN, .PROCSUB, .PROCINT, .ENDPROC Declares module name

Functions of each pseudo instruction group are described in the next section.

5.1 Function of Pseudo Instructions

1 - 32

5.2 Assembly Control Pseudo Instructions

5.2.1 Data Length Declaration

.INDEX

Declares the default value for the index register length selection flag (x). For details, see

Section 4.2.

.DATA

Declares the default value for the data length selection flag (m). For details, see Section 4.2.

5.2.2 DPR and DT Value Declaration

.DP

Declares the default value for the direct page register. The assembler selects the optimal

addressing mode based on the DPR value specified for this and subsequent lines. For

details, see Section 4.3.

.DT

Declares the default value for the data bank register. The assembler selects the optimal address-

ing mode based on the DT value declared for this and subsequent lines. For details, see

Section 4.3.

5.2.3 Conditional Assembly

.IF, (ELSE), .ENDIF

Instructs the assembler to select the assembly location based on the symbol value. This

pseudo instruction can be used to manage programs for different specifications by a single

source program, to control assembly of test routines, etc.

5.2.4 Include File

.INCLUDE

Instructs the assembler to include the contents of a file where this pseudo instruction is

specified. This pseudo instruction is useful when editing a large source program in parts.

5.2.5 Equation

.EQU

Defines an absolute value for a symbol. The same symbol can be redefined within the same

program. If a forward reference is made to a symbol that is redefined, the last definition takes

effect.

5.2.6 Declare End of Assembly

.END

Declares the end of source program to be assembled. The assembler does not process any

source data after this declaration.

CHAPTER 5. PSEUDO INSTRUCTION CODING METHOD

1 - 33

5.2.7 Message Output

.ASSERT

Displays the specifies string on the screen.

5.2.8 Assembly Error Output

.ERROR

Displays the specifies string on the screen and stops assembly. The assembler does not

process subsequent lines.

5.2.9 Define String

.DEFINE

Defines a string to a symbol.

5.3 Address Control Pseudo Instructions

5.3.1 Address Declaration

.ORG

Declares the address for the next line. The section in which this pseudo instruction is speci-

fied will have the absolute attribute, and address specification cannot be made for linkage

processing. This pseudo instruction can be used in areas where the address is fixed such as

an interrupt vector.

5.3.2 Memory Allocation

.BLKB, .BLKW, .BLKA, .BLKD

Allocates a RAM memory area of the size specified by operand.

5.3.3 Data Definition

.BYTE, .WORD, ADDR, DWORD

Generates data specified by operand in the ROM area.

5.3.4 Correct Address Alignment

.EVEN

Changes an odd numbered address to an even numbered address. Nothing occurs if the

current address is even numbered. This pseudo instruction can be used to set the beginning

of each data in a character string data in a byte-by-byte data area to an even numbered

address.

5.3 Address Control Pseudo Instructions

1 - 34

5.4 Linkage Control Pseudo Instructions

5.4.1 Section Name Specification

.SECTION

Specifies the section name for the program that follows this line. RASM77 requires specifica-

tion of a section name using this pseudo instruction at the beginning of every program.

5.4.2 Global Label Name Specification

.DPEXT, .DTEXT, .EXT

Specifies an externally referenced label or symbol name. The label names specified by these

pseudo instructions must be specified as public labels in other files.

.PUB

Specifies that a label or symbol defined in this file can be referenced by other files.

5.4.3 Linkage Filename Specification

.OBJ, .LIB

Specifies the name of relocatable file to be linked or the name of library file. The files

declared by these pseudo instructions are automatically referenced by the linker so that

linkage command specification is simplified.

5.4.4 Version Control

.VER

Specifies the version name of a relocatable file. Version name consistency between relocatable

files can be checked during linkage processing by specifying the version confirmation com-

mand parameter “-V”.

5.5 Listing Control Pseudo Instructions
.PAGE

Specifies new page and title of a listing.

.COL, LINE

Specifies the number of columns or rows for a listing. These pseudo instructions may be

specified only one time each in a source file.

.LIST, .NLIST

Specifies control of listing output to a PRN file. These pseudo instructions should be used

when only a portion of a listing is necessary as when partially debugging a program.

.LISTM, .NLISTM

Specifies whether to output macro expansion lines to PRN file.

CHAPTER 5. PSEUDO INSTRUCTION CODING METHOD

1 - 35

5.6 Source Level Debug Support

.CLINE

Sets the line number necessary for source debug.

.FUNC, .ENDFUNC

Specifies the start and end of function (subroutine).

.LANGUAGE

Sets the information concerning the language used.

.POINTER

Sets the byte length of pointer variable used by C compiler.

.SOURCE

Sets the source file name required for source debug.

Note:

Listed above are the pseudo-instructions output by PRE77 and C compiler. If these pseudo-

instructions are written in the source program, the assembler may output an error.

5.7 Reserved Pseudo Instructions

Reserved pseudo instructions are reserved for future expansion of the assembler. If these instruc-

tions are specified in a source file, they will not cause errors. They also will not affect the assembly

results. Reserved pseudo instructions may be used when checking a source file’s contents by

combining RASM77 and a commercially available character string search program.

Example: By specifying the pseudo instruction in .PROCMAlN a source file as shown below, a

listing of main program names for all source files in the current directory can be generated by

searching “.PROCMAIN” with a character string search program.

.PROCMAIN START_KEY_SCAN ; Key scan program entry.

5.6 Source Level Debug Support

1 - 36

CHAPTER 6

Macro Instruction

6.1 Macro Instruction Functions

Macro instruction enables programs written in series 7700 Family assembly language to be defined

as a macro and used in a user source program by coding its name as an instruction in the operand

field. This enables the 7700 Family to be used as an enhanced CPU during programming by

creating various macro definitions in advance. In this way, the macro function enables the user to

organize his own programming environment.

6.2 Macro Instruction Types

Macros can be classified into RASM77 provided macros and user defined macros.

1. System macros

• REPEATI - .ENDM

Repeats processing for the number of arguments specified in the operand.

• REPEATC - .ENDM

Repeats processing for the number of characters specified as argument in the operand.

• REPEAT - .ENDM

Repeats processing for the number of times specified in the operand.

2. User macros

• .MACRO - .ENDM

Defines a macro instruction.

• .EXITM

Forces termination of macro expansion.

• .LOCAL

Defines a label used within a macro as a local label.

CHAPTER 6. MACRO INSTRUCTION

1 - 37

Notes:

1. System macros can be used by itself or within a user macro definition.

2. User macros must be defined before it can be used. Therefore, macro definitions are nor-

mally placed at the beginning of a program or included at the beginning with the .INCLUDE

pseudo instruction. User macros can be nested up to 20 levels.

3. By providing macro definitions as separate files (macro library), they can be used simply by

including them at the beginning of a program, thus eliminating the need to define them in

each program.

4. Macro expansion lines are indicated with a ‘+’ sign next to them in the source file list.

5. Labels declared as local are assembled with labels ..n (n: 0 to 65535 in decimal) assigned in

the order of appearance. Labels beginning with .. are reserved for future use in RASM77.

Therefore, labels beginning with .. must not be used by the user.

6. Upper and lowercase characters are distinguished in macro names. Therefore, MAC and

Mac are assumed to be two separate macros.

6.3 Macro Operators

Table 6.1 lists the operators that can be used in macro instructions.

6.2 Macro Instruction Types

1 - 38

Table 6.1 List of Macro Operators

Operators Description

\1 Placed before a special character (such as ‘’’, ‘”’, ‘\’) that cannot be used as

macro argument to declare that character as argument.

[Format] \character

;;2 Defines a comment within a macro definition that is not to be expanded.

[Format] ;; comment

’’3 Used to enclose an argument in a macro call when the argument contains

space, tab, comma, or a reserved word.

[Format] “ character string”

$4 Used to concatenate a macro argument with a character string.

[Format] (1) character string$argument

(2) argument$character string

CHAPTER 6. MACRO INSTRUCTION

1 - 39

Notes:

1. Serves as an escape character and nullifies the special meaning of the character that fol-

lows.

Example:

[Macro Definition]

DATA: .MACRO VAL
 .BYTE VAL
 .ENDM

[Call example]

 DATA "\"HELLO !\""

[Macro expansion]

 .BYTE "HELLO !"
 .ENDM

2. When the macro expansion result is output to a print file, comments beginning with ‘;’ (one

semicolon) is output in the macro expansion, but comments beginning with ‘;;’ (two semico-

lons) are not.

[Macro Definition]

LOOP: .MACRO
 .LOCAL LOOP1
 LDA A,#20 ; COMMENT
LOOP1: DEC A ;; COMMENT
 BNE LOOP1 ;; COMMENT
 .ENDM

[Call example]

 LOOP

[Macro expansion]

 LDA A,#20 ; COMMENT
..0: DEC A
 BNE ..0
 .ENDM

6.3 Macro Operators

1 - 40

3. If an argument in the operand contains space, tab, comma, or reserved word, the argument

must be enclosed in ‘"’ (double quotes).

Example:

[Macro Definition]

SUB: .REPEATI INST,"NOP","LDA A,#1","RTS"
 INST
 .ENDM

[Macro expansion]

SUB:
 NOP
 LDA A,#1
 RTS
 .ENDM

4. The following code is allowed.

Example:

[Macro Definition]

W_LOAD: .MACRO MEM
 LDA A,MEM$_L
 LDA B,MEM$_H
 .ENDM

[Call example]

 W_LOAD DATA

[Macro expansion]

 LDA A,DATA_L
 LDA B,DATA_H
 .ENDM

CHAPTER 6. MACRO INSTRUCTION

1 - 41

CHAPTER 7

Operation

7.1 Starting RASM77

Before RASM77 can be executed, the following information (input parameters) must be input:

1. Source filename (required)

2. Command parameters

With RASM77, input parameters are input from a command line. Input parameters are described in

Section 7.2, and the command line input method is explained by referring to examples in Section

7.3.

7.2 Input Parameters

7.2.1 Source Filename

1. Name of source file to be assembled is specified. Source filename must always be specified.

Only one source filename may be specified.

2. If specification of file extension (.A77) is omitted, .A77 is selected as default.

3. By specifying full filenames, files with other file extensions (e.g., .ASM) can be assembled by

RASM77.

4. Filename can be specified with directory path. If only filename is specified, RASM77 pro-

cesses a file in the current drive’s current directory. The following example shows an ex-

ample of assembling TEST.A77 in directory WORK on drive C.

Example: A>RASM77 C:\WORK\TEST<RET>

7.2.2 Command Parameters

1. Command parameter may be specified in either uppercase or lowercase.

2. Each command parameter may be specified more than once at the same time. Each param-

eter must be delimited by a space.

Table 7.1 summarizes the functions of command parameters.

7.1 Starting RASM77

1 - 42

Table 7.1 List of Command Parameters

CHAPTER 7. OPERATION

Command parameter Description

-. Suppresses output of all messages to the screen. This command parameter should

be specified if no message display on the screen is desired as when executing an

RASM77 from a batch execution file.

-A Output no error message when any illegal descriptions are fined at condition is falt

of conditional assemble instruction.

-B Verifies the bit length1. When this parameter is specified, the bit length of local

labels declared with pseudo instructions “.BYTE”, “.WORD”, “.BLKB”, or “.BLKW”

are checked during reference with the bit length declared with “.DATA”, and “.IN-

DEX” and warning 6 is issued if they do not match.

-C Outputs source debug information to object file. Specify this option during assembly

to perform source debug during debugging.

-D Sets a numeric value for a symbol. The function is same as that of the pseudo

instruction . EQU. Specification format is as follows (multiple symbols can be

defined at one time by delimiting them by colon):

-D symbol=numeric-value [: symbol=numeric-value ... : symbol numeric-value]

Example: A>RASM77 SRCFILE -DS1=10:S2=20<RET>

-E Creates a TAG file and starts an editor. Editor’s program name is specified as

follows:

-E[editor-name]

Example: A>RASM77 SRCFILE -EMI<RET>

The item in [] may be omitted, and, if omitted, only TAG file creation is performed.

When an editor name is specified, the editor is started after termination of assembly

by using the TAG file that has been created as the argument. If no error occurs,

editor is not started.

-F The symbol "M_FLAG" or "X_FLAG" that holds the flag status of 'm' or 'x' that is

currently assumed by RASM77 is made usable.

By using this command parameter to perform conditional judgment of "M_FLAG" or

"X_FLAG" with '8' or '16' in the operand of conditional assemble pseudo-instruction

".IF," the status of the above flag assumed by RASM77 is determined (whether 8

bits or 16 bits long), making it possible to separate processing in a macro, etc.

-L Creates a PRN file. PRN file is not created unless this command parameter is

specified.

-LC Outputs to PRN file the false condition part when performing conditional assembly

with .IF instruction, and the conversion string in @ instruction and .DEFINE pseudo

instruction. These items are not output to the PRN file if this parameter is not

specified.

-LD and -LD0 For the lines using the ".DEFINE" pseudo-instruction and "@" operator, only the

replaced result lines are output to a print file.

-LD1 For the lines using the ".DEFINE" pseudo-instruction and "@" operator, both the

lines before replacement and the replaced result lines are output to a print file.

-M Outputs macro expansion to PRN file and generates the PRN file. Macro expan-

sions are not output to PRN file if this parameter is not specified.

1 - 43

7.2 Input Parameters

Command parameter Description

-N Suppresses output of symbol list at the end of PRN file.

-O Specifies the output destination path for the file to be created. Either directory or drive

name may be specified as the path. If this command parameter is not specified, the

file created is output to the same path as that of the source file. Specification format is

as follows:

-Opath-name

Example: A>RASM77 SRCFILE -OB:\WORK<RET>

-P Line numbers are not increase in macro expansion.

-Q Outputs warning 7 when the pseudo instruction “.EQU” is used to equate a symbol

that is already equated. No warning is issued when the same symbol is equated to a

different value if this parameter is not specified.

Warning 8 is issued if “LG:” is coded to selected absolute long addressing mode. No

warning is issued when “LG:” is coded if this parameter is not specified.

-S Outputs local symbol information to object file. Specify this option during assembly to

debug local symbols during debugging3.

-T If an error occurs in the user macro, the line number information of the macro call line,

and not a macro definition line, is output to a tag file.

-U Allows colon (‘;’) following a label to be omitted.

-V The version No. of RASM77 is output to the screen and the command is terminated.

-X Starts the cross-referencer CRF77 when assembly terminates4.

Example: A>RASM77 SRCFILE -X<RET>

Notes:

1. Bit length cannot be changed with instructions such as “SEM” or “CLM”. This is not appropri-

ate for external reference. The x flag is checked for addressing mode other than immediate

addressing mode of “CPX”, “CPY”, “LDX”, “LDY”, “STX”, and “STY”. m flag is checked for

direct, direct indexed X, indexed Y, absolute, absolute indexed X, absolute indexed Y, abso-

lute long, absolute long indexed X, direct bit, and absolute bit addressing mode.

2. An editor is started indirectly via the MS-DOS COMMAND.COM file, so that existence of

COMMAND.COM file in the MS-DOS command path must be verified in advance. When

working on a drive other than that in which COMMAND.COM file resides, the following

specification must be made in the CONFlG.SYS file:

Example) SHELL=A:\COMMAND.COM A:\ /P

When the editor cannot be found in the current directory or command path, MS DOS will

output an error message on the screen.

1 - 44

3. RASM77 does not output local symbol information if this option is not specified. Use this

option if local symbol information is necessary during debugging.

4. A system error will occur if CRF77 is not in the current directory or command path.

7.3 Input Method

RASM77 is started by entering a command line after the prompt. Figure 7.1 illustrates entry of

RASM77 startup command.

RASM77 TESTNAME -L -E <RET>
 ↑ ↑

 Name of source Command parameters

 to be assembled

Figure 7.1 Example of RASM77 Startup Command Line

If input error is detected on command line input, a HELP screen is displayed as shown in Figure 7.2

and assembly is canceled.

When a command line is input correctly, assembly begins. When assembly is completed, number

of errors, number of warnings, total number of lines assembled, number of comment lines and

memory size for each section are displayed on the screen. Figure 7.3 shows an example of screen

display when assembly has terminated normally.

CHAPTER 7. OPERATION

1 - 45

A>RASM77<RET>
7700 Family RELOCATABLE ASSEMBLER V.5.00.00
Copyright 1998, MITSUBISHI ELECTRIC CORPORATION
AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION
All Rights Reserved.

Usage: rasm77 <filename> [options]
 -. : all messages suppressed
 -a : don't care error at conditional assembly FALSE block
 -b : bit length check
 -c : source line information output to .r77 file
 -d : define symbol (syntax -dSYMBOL1=DATA1:SYMBOL2=DATA2)
 -e : make tag file
 -f : x, m flag information symbol enable
 -l : make list file
 -lc: conditional assembly statements output to .prn file
 -ld: .DEFINE statements output control
 -m : macro expansion statements output to .prn file
 -n : don't make symbol list to .prn file
 -o : select drive and directory for output (syntax -o/tmp)
 -p : print file number control
 -q : .EQU symbol multi define warning message output
 -s : local symbol data output to .r77 file
 -t : tag-file form change
 -u : don't care ':' at end of label
 -v : rasm77 version display
 -x : execute crf77

Figure 7.2 HELP Screen for Command Line Error

7.3 Input Method

1 - 46

>RASM77<RET>
7700 Family RELOCATABLE ASSEMBLER V.5.00.00
Copyright 1998, MITSUBISHI ELECTRIC CORPORATION
AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION
All Rights Reserved.
now processing pass 1 (TEST.A77)
--*--
now processing pass 2 (TEST.A77)
--*--

ERROR COUNT 00000 (0000H)
WARNING COUNT 00000 (0000H)
TOTAL LINE 00994 (03E2H) LINES
COMMENT LINE 00247 (00F7H) LINES
WORK 00000010 (00000AH) BYTES
DATA 00000054 (000036H) BYTES
PROG 00001938 (000792H) BYTES

A>

Figure 7.3 Normal Termination Screen

CHAPTER 7. OPERATION

1 - 47

7.4 Errors

7.4.1 Error Types

The following types of errors may occur during execution of RASM77:

1. OS errors

Errors related to the environment in which RASM77 is executed. These errors include disk

and memory shortages. When such an error occurs, the error message list in Appendix A

should be checked and the appropriate OS command should be entered.

2. RASM77 command line input errors

These are the errors in RASM77 startup command line input. Command line input should be

checked against the descriptions in this chapter, and a correct command line must be re-

input.

3. Assembly source file contents errors

These are errors in the contents of the source file being assembled such as duplicate label

definition and referencing of undefined symbol. The source file errors must be corrected, and

the source file must be reassembled. When an assembly error is detected, RASM77 does not

create a relocatable file.

When RASM77 detects an error or warning condition, it outputs error information in the format

shown in Figure 7.4 (filename, line number in file, sequential line number, error number and error

message) on the screen and to PRN file. The information should be checked against the error

message list (in error number order) in Appendix A, and appropriate action must be taken.

7.4 Errors

1 - 48

CHAPTER 7. OPERATION

A>RASM77 TEST<RET>
7700 Family RELOCATABLE ASSEMBLER V.5.00.00
Copyright 1998, MITSUBISHI ELECTRIC CORPORATION
AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION
All Rights Reserved.
now processing pass 1 (TEST.A77)
----*----
now processing pass 2 (TEST.A77)
-
 115 00F025 EAEA BCC LOOP2
TEST.ASM 115 (TOTAL LINE 115) Error 18: Relative jump is out of range
 127 00F031 EAEAEA LDA A,#data
TEST.ASM 127 (TOTAL LINE 127) Error 20: Reference to undefined label or symbol "data"
---*
 551 00F42B EAEA BRA TEST2
TEST.ASM 551 (TOTAL LINE 551) Error 20: Reference to undefined label or symbol "TEST2"
 593 00F4FC EAEAEAEAEAEA LDA A,(work,x ; data set
TEST.ASM 593 (TOTAL LINE 593) Error 23: "()" format error ";"

ERROR COUNT 00004 (0004H)
WARNING COUNT 00000 (0000H)
TOTAL LINE 00994 (03E2H) LINES
COMMENT LINE 00247 (00F7H) LINES
WORK 00000010 (00000AH) BYTES
DATA 00000053 (000035H) BYTES
PROG 00001938 (000792H) BYTES

A>

Figure 7.4 Error Display Example

1 - 49

7.4.2 Return Values to OS

When using an OS batch execution file, there are times when it is desirable to modify processing

according to results of execution. RASM77 returns one of four error level values to OS depending

on the result of execution as summarized in Table 7.2. For explanation of how to utilize these error

level return values, refer to an OS reference guide

.

Table 7.2 Listing of Error Levels

Error level Execution result

0 Normal termination

1 Assembly source file contents error

2 RASM77 command input error

3 OS error

4 Force termination by ^C (control C) input

7.5 Environment Variables

7.5 Environment Variables

RASM77 uses the following MS-DOS environment variables:

1. TMP77

This variable specifies the name of the directory in which temporary files are created during

assembly. If this environment variable is not set, the temporary files are created in the current

directory.

Example: SET TMP77=A:\TMP

2. INC77

This variable specifies the directory of the files included during assembly. If the file specified with

the .INCLUDE pseudo instruction cannot be found, it is loaded from this directory. However, this

environment variable is ignored if the “.INCLUDE” operand specifies a path.

Example: SET INC77=A:\INCLUDE

1 - 50

APPENDIX A

Error Messages

A.1 System Error Messages

When a system error is detected during assembly, RASM77 outputs an error message on the

screen and cancels assembly. Table A.1 lists the system error messages.

APPENDIX A. ERROR MESSAGES

1 - 51

Table A.1 List of System Error Messages

Error Message Description and User Action

Usage: rasm77 <fliename> [-.] Command input is invalid.

[-dSYMBOL1=DATA1] [-e] [-l]

[-oPATH] [-x] ⇒ Check the HELP screen, and reenter the command.

Can’t open xxx File cannot be found.

⇒ Check the source filename, and reenter correctly.

Can’t create xxx File cannot be created.

⇒ Check the -o parameter specification, and reenter cor-

rectly.

Out of disk space Disk space is insufficient for file output.

⇒ Provide sufficient free space on the disk.

Out of heap space Memory space is insufficient to execute the assembler.

⇒ Reduce the number of symbols or labels.

Can’t find crf77.exe CRF77 cannot be found.

⇒ Copy CRF77 to the current directory or a directory speci-

fied by MS-DOS command path.

Can’t find command.com for execute COMMAND.COM file necessary to start the editor specified

xxx by option

cannot be found.

⇒ Check MS-DOS command path specification.

A.1 System Error Messages

1 - 52

Error No. Error Message Meaning and Actions

1 Already had same statement A pseudo instruction that can be used only once in a

source file is used two or more time.

Example: LINE 60

 :

LINE 80

⇒ Correct declaration to only one.

2 Reference to forward label or symbol A pseudo instruction is referencing a label or symbol that

is defined later.

Example: .ORG TOP

TOP:

⇒ Define the label or symbol before it is referenced.

3 Division by 0 Arithmetic expression includes division by 0.

⇒ Check the arithmetic expression.

4 Illegal operand Operand specification contains illegal character.

Example: LDA A,#$10

⇒ Check operand specification.

5 Improper operand type Mnemonic and operand combination is invalid.

Example: ADC.B A, work

⇒ Check instruction specification format.

6 Invalid label definition Label is defined where it is not allowed.

Example 1: LABEL1: LINE 60

Delete the definition label.

Example 2: LABEL2: .EQU 100

⇒ Change the label to a symbol.

A.2 Assembly Error Messages

When an assembly error is detected, RASM77 outputs an error message to the screen and to a

PRN file. Table A.2 lists the assembly error messages.

Table A.2 List of Assembly Errors

APPENDIX A. ERROR MESSAGES

1 - 53

Error No. Error Message Meaning and Actions

7 Invalid symbol definition Symbol is defined where it is not allowed.

Example: SYMBOL LINE 60

⇒ Delete the symbol definition.

8 Out of maximum program size Address exceeds 0FFFFFFH.

Example:. ORG 0FFFFF0H

.WORD 1,2,3,4,5,6,7,8,9

⇒ Modify the program so that address will be within the

permitted range.

9 Label or symbol is multiple defined Same label or symbol is defined more than once.

Example: MAIN: NOP

MAIN: NOP

⇒ Check the label or symbol name.

10 Nesting error The pseudo instruction INCLUDE is nested.

⇒ Modify the program so than the pseudo instruction is

not nested.

11 No .END statement .END statement is missing in source file.

⇒ Specify the END statement at the end of program.

12 No symbol definition Symbol is not specified.

Example: .EQU 60

⇒ Specify the symbol

13 No ‘;’ at the top of comment Comment field specification does not begin with a semi-

colon (;)

Example: LDA A,#CNT counter set

⇒ Specify ‘;’ at the beginning of comment field.

A.2 Assembly Error Messages

1 - 54

Error No. Error Message Meaning and Actions

14 Not in conditional block ELSE or . ENDIF statement is specified without . IF

statement. (This error also occurs when the associated .

IF statement is erroneous.)

Example: IF DATA1

 :

.ENDIF

 :

ELSE

 :

.ENDIF

⇒ Check the . IF statement specification.

15 Operand is expected Required operand is missing for an instruction.

Example: .BYTE

⇒ Check the operand specification.

16 Questionable syntax A mnemonic is misspelled.

Example: ADD A,#DATA

⇒ Check the spelling.

17 Reference to multi defined label or Duplicate label or symbol is referenced.

symbol Example: MAIN: NOP

MAIN: NOP

BRA MAIN

⇒ Check the label or symbol name.

18 Relative jump is out of range Relative jump instruction’s destination address is out of

range.

⇒ Rearrange the program, or change the jump instruc-

tion.

19 Label or symbol is reserved word Register’s name is used as a label or symbol.

Example: A .EQU 1FFH

⇒ Change the label or symbol name.

20 Reference to undefined label or Undefined label or symbol is referenced.

symbol ⇒ Check the label or symbol.

APPENDIX A. ERROR MESSAGES

1 - 55

Error No. Error Message Meaning and Actions

21 Value error Data specification format is invalid.

Example: ADC A,#'A

⇒ Check the data specification format.

22 Value is out of range Data is out of range.

Example: ADC.B A,#100H

⇒ Check the operand specification format.

23 “()” format error Numbers of left and right parentheses are not equal.

Example: ADC A, (WORK

⇒ Check the operand specification.

24 Relocatable error Pseudo instruction . ORG is specified in the relocatable

section.

Example: .SECTION PROG

LDA A, WORK

 :

.ORG 1000H

LDA A, WORK

⇒ Make section division.

A relocatable value is coded as the operand of a pseudo

definition instruction .EQU.

Example: .EXT WORK0

.EXT WORK1

SYMBOL .EQU WORK0-WORK1

⇒ Code a local value as the operand of pseudo instruc-

tion .EQU.

25 No SECTION statement Pseudo instruction SECTION is not specified.

⇒ Specify SECTION statement in front of the program.

26 Reference to undefined section Undefined section name is referenced.

Example: LDA A,#SIZEOF UNDEF_SECT

⇒ Check the indicated section.

A.2 Assembly Error Messages

1 - 56

Error No. Error Message Meaning and Actions

27 Page error Direct page name or data bank name specified by exter-

nal referencing specifying pseudo instruction .DPEXT or

.DTEXT is not equal to the current DPR or DT value.

Example: .DPEXT PGl :LABEL

.DP BANK PG2

LDA A, LABEL

⇒ Either specify the DPR or DT value for external refer-

encing declaration or delete the direct page name or data

bank name from the operand of .DPEXT or .DTEXT. (In

the latter case, processing is executed using the current

DPR or DT value specified by the pseudo instruction .DP

or .DT.)

28 Section type mismatch Instruction or data definition pseudo instruction (e.g., .

BYTE) and memory allocation instruction (e.g., . BLKB)

are specified in same section.

Example: LDA A,#WORK

.BLKB 1

⇒ Split the section.

29 Function is multiple defined The name specified with .FUNC is defined more than

once.

Example: .FUNC FUNC_1

.FUNC FUNC_1

⇒ Check the label name.

30 Macro nesting error The macro instruction nesting level limit is exceeded.

Example: MAC: MACRO DATA

LDA A,DATA

MAC2

⇒ Reduce the macro instruction nesting level.

31 No .ENDM statement There is no .ENDM statement in the source file.

⇒ Code a .ENDM statement at the end of the macro

definition.

32 Illegal mnemonic The written mnemonic does not match the MCU.

⇒ Specify the correct MCU type by using the .MCU

pseudo-instruction.

33 Illegal processor type The MCU type written in the operand of .MCU is incor-

rect.

⇒ Specify the correct MCU type in the .MCU operand.

APPENDIX A. ERROR MESSAGES

1 - 57

A.3 Warning Messages

When a warning condition is detected, RASM77 outputs a warning message to the screen and to a

PRN file. Table A.3 lists the warning messages.

A.3 Warning Messages

1 - 58

Table A.3 List of Warning Messages

APPENDIX A. ERROR MESSAGES

Warning No. Warning Message Description and User Action

1 Phase warning 1) Pseudo instruction .ORG specifies an address smaller

than the previous address.

Example:

.ORG 0E000H

MAIN: LDA A, WORK

 :

.ORG 0C000H

2) Instruction references a label or symbol that is defined

later. (This warning message is output only for absolute

section.)

Example:

LDA A,TBL,X

:

TBL: .BYTE 0,1,2,3,4

⇒ Either define the label or symbol before the line that

references it, or specify DP: or DT: in operand.

2 .END statement in include file Pseudo instruction END is, specified in an include file.

⇒ Specify the END instruction in the source file.

3 Line number is out of range The operand of a .CLINE instruction exceeds 9999.

4 Too many actual macro The number of actual parameters for a macro

parameters call is greater than the number of dummy parameters.

5 Too few actual macro parameters The number of dummy parameters for a macro call is

less than the number of actual parameters.

6 Bit length is different from label or Length of label of symbol reference is different

symbol from its definition.

7 .EQU symbol is multiple defined The same symbol is used more than once in a .EQU

pseudo instruction.

8 Addressing mode warning Addressing mode other than the one specified with the

label is used.

9 Value warning An invalid operand is specified as operand.

1 - 59

APPENDIX B

Pseudo Instructions

B.1 Conventions

Pseudo instructions that can be used with RASM77 are explained alphabetically. The following

conventions are used in describing each pseudo instruction:

1. Item in [] may be omitted.

2. Space or tab code is indicated by ▲▲ or ▲. ▲▲ is a required space or tab code, and ▲ is an

optional space or tab code (i.e., may be omitted).

3. ▲ is used to separate a label from pseudo instruction. When specifying a label, a colon (:) is

not required, but if it is omitted, either a space or a tab code must be specified between the

label and pseudo instruction.

B.2 Pseudo Instructions

B.1 Conventions

1 - 60

.ADDR Define address data (3 byte)

Format:

▲[label:]▲.ADDR ▲▲expression

Description:

• Defines 3 byte constant data.

• Data is defined from low-order byte (it is defined from high-order byte in the OBJ field of the

PRN file).

• Up to 8 data can be defined, but each data must be delimited by ‘,’.

• A global label may be defined in the operand field.

Example:

TABLE: .ADDR sub1 ; Defines value of sub1 from low-order byte.

.ASSERT Output message

Format:

▲.ASSERT ▲▲’character-string’

Description:

• This instruction is used together with conditional assembly instruction (.IF).

• Outputs the specified character string to the screen.

Example:

 .IF JAPAN
 .ASSERT 'Assembly with domestic specification'
 :
 .ELSE
 .ASSERT 'Assembly with international specification'
 :
 .ENDIF

APPENDIX B. PSEUDO INSTRUCTIONS

1 - 61

.BLKA Allocate RAM area (in units of 3 bytes)

Format:

▲[label:]▲.BLKA▲▲expression

Description:

• Allocates a RAM area of the specified size in units of 3 bytes.

• Label or symbol used in expression must be defined before this line.

• Label with relocatable value may not be specified in the operand field.

Example:

label: .BLKA 10 ; Allocates a 30 byte RAM area.

.BLKB Allocate RAM area (in units of 1 byte)

Format:

▲[label:]▲.BLKB▲▲expression

Description:

• Allocates a RAM area of the specified size in units of 1 byte.

• Label or symbol used in expression must be defined before this line.

• Label with relocatable value may not be specified in the operand field.

Example:

label: .BLKB 10 ; Allocates a 10 byte RAM area.

B.2 Pseudo Instructions

1 - 62

.BLKD Allocate RAM area (in units of double-word)

Format:

▲[label:]▲.BLKD▲▲expression

Description:

• Allocates a RAM area of the specified size in units of double word.

• Label or symbol used in expression must be defined before this line.

• Label with relocatable value may not be specified in the operand field.

Example:

label: .BLKD 10 ; Allocates a 40 byte RAM area.

.BLKW Allocate RAM area (in units of word)

Format:

▲[label:]▲.BLKW▲▲expression

Description:

• Allocates a RAM area of the specified size in units of word.

• Label or symbol used in expression must be defined before this line.

• Label with relocatable value may not be specified in the operand field.

Example:

label: .BLKW 10 ; Allocates a 20 byte RAM area.

APPENDIX B. PSEUDO INSTRUCTIONS

1 - 63

.BYTE Define 1-byte data

Format:

▲[label:]▲.BYTE▲▲expression

Description:

• Defines 1-byte constant data.

• Up to 255 data may be specified, but each data must be delimited by ‘,’.

• Character strings must be enclosed in single quotes ‘’’.

• When using '\' in a character string, write it as '\\'.

• Global label may be specified in the operand field.

Example:

label1: .BYTE 10 ; Defines 0AH.
label2: .BYTE 'A','B' ; Defines 41H and 42H.
label3: .BYTE 'ABCD' ; Defines 41H, 42H, 43H and 44H.

.COL Specify columns count (default is 132)

Format:

▲.COL▲▲expression

Description:

• Specifies the number of characters per listing line (80 to 132).

• 80 is assumed if 79 or smaller value is specified; 132 is assumed if 133 or larger value is

specified.

• This pseudo instruction can be specified only once in a program.

Example:

.COL 100 ; Sets 100 column line.

B.2 Pseudo Instructions

1 - 64

.DATA Declare data length (default is 16)

Format:

▲.DATA▲▲expression

Description:

• Declares the internal CPU data length (8 or 16). Indicates an 8 bit data if the value of

expression is 8; 16 bit data if value of expression is 16.

• This pseudo instruction affects the data length of addressing modes related to the M flag.

• New data length must be declared by this pseudo instruction when changing data length by

the SEM or CLM instruction.

• Data length can be specified by adding the prefix “.B” or “.W” to op-code. If the data length

specified by op-code differs from that specified by this pseudo instruction, program is as-

sembled using the op-code specified data length.

• Note that this pseudo instruction only declares the data length for the assembler, and it does

not manipulate the data length selection flag (m) for the internal CPU processor status

register.

Example:

SEM ; Sets M flag.
.DATA8 ; Specifies data length.
ADC A,#DATA ; Executes 8 bit addition.

APPENDIX B. PSEUDO INSTRUCTIONS

1 - 65

.DEFINE Define a character string

Format:

symbol▲▲ .DEFINE▲▲character-string

Description:

• Defines a character string to a symbol.

• The string must be enclosed in single (‘ ‘) or double (“ ”) quotes if it contains space or tab

characters.

• Character strings defined within structure preprocessor code cannot be used in the operand.

• The data after replacement is output to the print file. However, if the command option “-LC” is

specified, the data before replacement is output.

• Symbol replacement is performed before macro expansion.

Note:

• The symbol defined with .DEFINE can only be used within the file where it is defined (it

cannot be used as the operand of the .EXT, .DPEXT, .DTEXT or .PUB).

Example:

 FLAG1 .DEFINE "#01H,DATA1" ; Set bit pattern 01H of DATA1 to FLAG1.
 ;
 CLB FLAG1 ; Clear lowermost bit of DATA1.

B.2 Pseudo Instructions

1 - 66

.DP Declare direct page register value (default is 0000H)

Format:

▲.DP▲▲numeric value or OFF

Description:

• Declares the direct page register (DPR) value (00000H-FFFFH).

• To change DPR value in a program, use this pseudo instruction to declare the new value.

• If “OFF” is specified in the operand field, the assembler does not use the direct addressing

mode. (Selects either absolute or absolute long addressing mode.)

Note:

• This pseudo instruction only declares the value of the direct page register to the assembler.

The actual value of the direct page register is unchanged.

Example:

.DP 1000H ; Declares 001000-0010FFH as DPR value.

.DP OFF ; Declares not to use direct addressing mode

.DPEXT Declare external reference (direct page)

Format:

▲.DPEXT▲▲ [direct-page-name-label:]label[,label,...,label]

Description:

• Declares external referencing of the labels specified in the operand field in the direct page

addressing mode.

• If a direct page name label is specified, the assembler uses the value of this label as the

direct page value. The instruction “OFFSET” must not be specified.

• If direct page name is not specified, the assembler executes processing assuming that the

label is included in the current DPR that has been declared by the pseudo instruction .DP.

• This pseudo instruction must be specified before the line referencing the label.

Example:

.DPEXT DRPG1:WORK1,WORK2,WORK3

APPENDIX B. PSEUDO INSTRUCTIONS

1 - 67

.DT Declare data bank register value (default is 00H)

Format:

▲.DT▲▲numeric value or OFF

Description:

• Declares the data bank register (DT) value (00H-0FFH).

• Use the instruction BANK to change the bank using the label in the source program.

• To change DT value in a program, use this pseudo instruction to declare the new value.

• If “OFF” is specified in the operand field, the assembler does not use the absolute address-

ing mode. (Selects either direct or absolute long addressing mode.)

Note:

• This pseudo instruction only declares the value of the direct page register to the assembler.

The actual value of the data bank register is unchanged.

Example:

.DT 01H ; Declares 010000-01FFFFH as DT value.

.DT BANK LABEL ; Sets the high-order 8-bits of LABEL as the
; value of data bank register

.DT OFF ; Declares not to use absolute addressing mode.

B.2 Pseudo Instructions

1 - 68

.DTEXT Declare external reference (data bank)

Format:

▲.DTEXT▲▲[bank-name-label:]label[,label,..,label]

Description:

• Declares external referencing of the labels specified in the operand field in the absolute

addressing mode.

• If a bank name label is specified, the assembler uses the value of this label as the data bank

value. The instruction “BANK” is not necessary.

• If bank name is not specified, the assembler executes processing assuming that the label is

included in the current DT value that has been declared by the pseudo instruction .DT.

• This pseudo instruction must be specified before the label referencing line.

Example:

.DTEXT DTPG1:WORK1,WORK2,WORK3

.DWORD Define double-word data

Format:

▲[label:]▲.DWORD▲▲expression

Description:

• Defines 1-double-word data.

• Up to 8 data may be specified, but each data must be delimited by ‘,’.

• Data is defined from low-order byte.

• Global label may be specified in the operand field.

Example:

label: .DWORD 0E1000H ; Defines 00H, 10H, 0EH and 00H.
.DWORD symbol ; Defines values of 'symbol' from low-order byte.

APPENDIX B. PSEUDO INSTRUCTIONS

1 - 69

.END Declare end of program

Format:

▲.END

Description:

• Declares the end of a source program.

• This pseudo instruction and subsequent lines are not assembled.

Example:

END ; Declares end of program.

.EQU Equation

Format:

symbol▲▲ .EQU▲▲expression

Description:

• Equates a numeric value (double-word value) to a symbol.

• Label or symbol used in expression must be defined before this line.

• Label with relocatable value may not be specified in the operand field.

• If the command option “-Q” is specified, a warning is issued when an attempt is made to

equate a symbol that has already been equated.

Note:

• If a numerical expression is written in a symbol where the result may take on a double-word or

greater value, the value of 4 low-order bytes becomes effective and no error is output.

Example:

SYMBOL .EQU 1 ; Equates SYMBOL to 1.
 :

SYMBOL .EQU 3 ; Equates SYMBOL to 3.
 :

SYMBOL .EQU SYMBOL+7 ; Equates SYMBOL to 10.

B.2 Pseudo Instructions

1 - 70

.ERROR Declare an assembly error

Format:

▲.ERROR▲▲’character-string’

Description:

• This instruction is used together with conditional assembly instruction (.IF).

• This instruction outputs the string specified as the operand to the screen and terminates

assembly if an invalid condition is specified.

Example:

 .IF MODE
 :
 .ELSE
 .ERROR 'Undefined assemble mode'
 .ENDIF

.EVEN Correct address alignment

Format:

▲.EVEN

Description:

• Corrects address to an even-numbered address.

• EAH is output when this pseudo instruction is used in a ROM attribute section (section for

instruction or data definition instruction); address update only is performed when this pseudo

instruction is used in a RAM section (memory allocation instruction section). Nothing is

performed if the address to be corrected is even.

Example:

.BYTE01H ; Defines 01H data.

.EVEN ; Corrects data location alignment (outputs EAH code).

APPENDIX B. PSEUDO INSTRUCTIONS

1 - 71

.EXT Declare external reference

Format:

▲.EXT▲▲label or symbol[label or symbol,..,label or symbol]

Description:

• Declares external referencing of the labels (or symbols) specified in the operand field.

• Direct or absolute addressing code is generated by “:DT” or “:DP” for external label refer-

enced by “.EXT”. If the command option “-Q” is specified, a warning is issued where “:DT”

and “:DP” are specified.

• An error will occur during linkage if the scope of direct or absolute addressing mode is

exceeded.

• This pseudo instruction must be specified before the lines that reference the labels or sym-

bols.

Note:

• If the label externally referenced by this pseudo instruction is used as operand other than

memory reference (such as destination of JMP instruction or for immediate addressing mode),

the low-order value of the label is used and no error occurs.

Example:

.EXT WORK1,WORK2,WORK3

.EXT E_LABEL ; Declares external reference label
 :

LDA A,E_LABEL ; Absolute long addressing
 :

LDA A,DP:E_LABEL ; Direct addressing
 :

LDA A,DT:E_LABEL ; Absolute addressing

B.2 Pseudo Instructions

1 - 72

.IF (.ELSE) .ENDIF Conditional assembly

Format:

▲.IF▲▲expression

<statement-1>

▲.ELSE

<statement-2>

▲.ENDIF

Description:

• Assembles statement-1 if the expression that follows .IF is true (not 0 or character string

data); assembles statement-2 if the expression is false (0 or no character string data).

• Assembles statement-1 if the expression that follows .IF is true; assembles statement-2 if the

expression is false.

• This instruction may be nested up to 20 levels.

• Multiple lines may be specified for statement-1 and -2.

• Label or symbol used in expression must be defined before this line.

• Label with relocatable value may not be specified in the operand field.

• The operand may contain the following logical instructions.

Table B.1 Allowed Logical Instructions

< Less than

> Greater than

== Equal

!= Not equal

<= Less than or equal

>= Greater than or equal

APPENDIX B. PSEUDO INSTRUCTIONS

1 - 73

Example:

(1)

IF FLAG ; Assembles lines through .ELSE if FLAG is true.
 :
 :
.ELSE ; Assembles lines through .ENDIF if FLAG is false.
 :
 :
.ENDIF

(2)
ADD: .MACRO OP1,OP2,OP3

.IF "OP3" ; Assemble through .ELSE if argument
; OP3 exists

ADC OP1,OP2,OP3
.ELSE
ADC OP1,OP2
.ENDIF

B.2 Pseudo Instructions

1 - 74

.INCLUDE Include a file

Format:

▲. INCLUDE▲▲file-name

Description:

• Includes the file specified by the operand where this pseudo instruction is specified.

• The full filename must be specified for file-name.

• This pseudo instruction may be nested up to 9 levels.

• The nesting level is output on the print file.

Example:

.INCLUDE TEST.INC ; Include contents of TEST.INC file.

.INDEX Declare index register length (default is 16)

Format:

▲.INDEX▲▲expression

Description:

• Declares the length (8 or 16) of CPU internal index register.

• The length is 8 bit if value of expression is 8; 16 bit if value of expression is 16.

• The new index register length must be declared with this pseudo instruction when changing

the index register length selection flag with the “CLP X” or “SEP X” instruction.

• Index register length can be specified by adding the prefix “.B” or “.W” to op-code. If the

length specified by op-code differs from that specified by this pseudo instruction, the program

is assembled using the op-code specified length.

• Note that this pseudo instruction only declares the index register length for the assembler,

and it does not manipulate the index register length selection flag (x) for the CPU internal

processor status register.

Example:

SEP X ; Sets X flag.
.INDEX 8 ; Specifies index register length.
LDX #DATA ; Executes 8 bit load.

APPENDIX B. PSEUDO INSTRUCTIONS

1 - 75

.LIB Specify library filename

Format:

▲.LIB▲▲file-name[,file-name,..,file-name]

Description:

• Specifies the names of the library files to be linked.

• Only files with extension .LlB may be specified. Linkage error will occur if other files are

specified.

• This pseudo instruction may not be placed in a nest.

• Directory path and file extension (.LlB) may not be specified for the filenames.

Example:

.LIB LIB1,LIB2,LIB3

.LINE Specify lines per page (default is 54)

Format:

▲.LINE▲▲expression

Description:

• Specifies the number of lines (5-255) per-listing page.

• This pseudo instruction may be specified only once in a program.

Example:

.LINE 60 ; Sets 60 lines per page.

B.2 Pseudo Instructions

1 - 76

.LIST Start list output (default)

Format:

▲.LIST

Description:

• Outputs list to a PRN file.

• This pseudo instruction is used to resume list output to PRN file after it has been interrupted

by .NLlST.

Example:

.NLIST ; Suppresses listing output.
 : ; No output to PRN file through "LIST".
 :
.LIST ; Start listing output.
 : ; Output subsequent lines to PRN file.

.LISTM Start list output of macro expansion

Format:

▲.LISTM

Description:

• Outputs macro expansion list to a PRN file.

Note:

• The .LISTM instruction is ignored if the entire list output is suppressed with the .NLIST

instruction.

• The .LISTM instruction is ignored if the command parameter “-M” is not specified.

Example:

 .NLISTM ; Suppresses list output of macro expansion.
 : ; List output of macro expansion is suppressed
 : ; until ".LISTM".
 .LISTM ; Starts list output of macro expansion.
 : ; Macro expansions are output after this instruction.

APPENDIX B. PSEUDO INSTRUCTIONS

1 - 77

.MCU Sets instruction generating MCU type

Format:

▲.MCU▲▲MCU Type

Description:

• Sets the MCU type for which instructions are generated.

• The following types can be written in the operand. (Types can be written in either uppercase

or lowercase letters.)

1. M37700

Generates the 7700-family instructions.

2. M37750

Generates the 7750-series instructions.

3. M37751

Generates the 7751-series instructions.

• The MCU type set by this pseudo-instruction remains effective until another type is set by

".MCU."

• If this pseudo-instruction is omitted, the assembler generates the 7700-family instructions.

(An error result if the written mnemonic for M37750 or M37751.)

Example:

.MCU M37750 ;Specifies generation of the M37750 instructions.

B.2 Pseudo Instructions

1 - 78

APPENDIX B. PSEUDO INSTRUCTIONS

.NLIST Suppress listing output

Format:

▲.NLIST

Description:

• Suppresses output to PRN file.

• List output can be resumed with the pseudo instruction LIST.

Example:

.NLIST ; Suppresses listing output.
 : ; Suppress output to PRN file until "LIST".
 :
.LIST ; Start list output.
 : ; Output subsequent lines to PRN file.
 :

.NLISTM Suppress macro expansion list

Format:

▲.NLISTM

Description:

• Suppresses output of macro expansion list to PRN file.

• List output can be resumed with the pseudo instruction LISTM.

Note:

• The .LISTM instruction is ignored if the command parameter “-M” is not specified.

Example:

 .NLISTM ; Suppresses list output of macro expansion.
 : ; List output of macro expansion is suppressed
 : ; until ".LISTM".
 .LISTM ; Starts list output of macro expansion.
 : ; Macro expansions are output after this instruction.

1 - 79

.OBJ Specify relocatable filename

Format:

▲.OBJ▲▲file-name[,file-name,..,file-name]

Description:

• Specifies the names of relocatable files to be linked.

• Only the files with extension .R77 may be specified. Linkage error will occur if other files are

specified.

• This pseudo instruction may not be placed in a nest.

• Directory path and file extension (.R77) may not be specified for the filenames.

Example:

.OBJ OBJ1,OBJ2,OBJ3

.ORG Declare location (default is 000000H)

Format:

▲.ORG▲▲expression

Description:

• Declares the starting address for the lines that follow this line.

• If this instruction is not specified, the assembler assumes 000000H as the starting address.

• Specification of this pseudo instruction results in assignment of the absolute attribute for the

section. A section without a specification of this pseudo instruction is relocatable.

• Label or symbol used in expression must be defined before this line.

• Label with relocatable value may not be specified in the operand field.

Example:

.ORG 0C000H ; Sets location as 0C000H.

B.2 Pseudo Instructions

1 - 80

APPENDIX B. PSEUDO INSTRUCTIONS

.PAGE Specify new page and title for listing

Format:

▲.PAGE▲▲[‘title’]

Description:

• Skips to new page immediately before this instruction, and outputs the title specified in the

operand field in the list’s header section. Title must be enclosed between single quotes (‘ ’) or

double quotes (“ ”).

• The maximum number of characters permitted in title is 20 if column specification is 80, 45 if

column specification is from 105 to 132, or 60 subtracted from the number of columns if

column specification is 81 to 104. If title is not specified, only skip to new page is performed.

Example:

PAGE 'PROG1' ; Outputs PROG1 to the PRN file header

.PUB Declare public label or symbol

Format:

▲.PUB▲▲label or symbol[,label or symbol,..,label or symbol]

Description:

• Declares that the symbols or labels specified in the operand field can be referenced from

other source files.

• This pseudo instruction must be specified before the lines that define the labels or symbols.

Example:

.PUB WORK1,WORK2,WORK3
WORK1: .BLKW 1
WORK2: .BLKW 1
WORK3: .BLKW 1

1 - 81

.SECTION Declare section name

Format:

▲. SECTION▲▲section-name

Description:

• RASM77 processes a source program in units called sections. This pseudo instruction de-

clares the section name specified in the operand field as the name of the program section

that begins on next line.

• Any name may be specified for section-name. There may be more than one section with

same section name in a file.

• This pseudo instruction must always be specified before starting the program code. (An error

occurs if it is not specified.)

Example:

.SECTION DATA ; DATA section begins.
datatop:
nulldt: .BLKB 8

 :
.SECTION STACK ; STACK section begins.
.BLKB1000H

stacktop:
 :
.SECTION PROG ; PROG section begins.

_init:
.DATA16
 .INDEX 16
CLP #0FFH
LDA A,#stacktop
TAS
LDA A,#SIZEOF DATA
LDX #OFFSET constop
LDY #OFFSET datatop
MVN BANK constop,BANK datatop
 :
.SECTION CONT ; CONT section begins.

constop:
.BYTE0,0,0,0,0,0,0,0
 :

B.2 Pseudo Instructions

1 - 82

APPENDIX B. PSEUDO INSTRUCTIONS

.VER Declare program version

Format:

▲.VER▲▲‘character-string’

Description:

• Declares the program version for relocatable files.

• When the “-V” parameter is specified, LlNK77 checks that relocatable files have the same

version. This feature enables confirmation of version consistency between relocatable files

that are being linked. For detailed explanation of the “- V” parameter, refer to “LlNK77

Operation Manual”.

• Version consistency check is performed by character string comparison. Note that LlNK77

recognizes uppercase and lowercase characters as different characters.

• This pseudo instruction may be specified only once in a program.

Example:

.VER ''V.1.0' ; Declares "V.1.0" as the program version.

.WORD Define word data

Format:

A [label:] ▲.WORD▲▲expression

Description:

• Defines the value of expression as a word data.

• Up to 16 data can be specified, but each data must be delimited by ‘,’.

• Data is defined from low-order byte (it is defined from the high-order byte in the OBJ field of

the PRN file).

• Global label may be specified in the operand field.

Example:

label: .WORD 0E000H ; Defines 00H and E0H.
.WORD OFFSET symbol ; Defines value of symbol

; from low-order byte.

1 - 83

B.3 Debugging Pseudo Instructions

The following pseudo instructions are for source line debugging. These pseudo instructions pass

source line debugging information of programs coded in 7700 Family C language and structured

proprocessor to debugger. These pseudo instructions are generated by the preprocessor.

B.3 Debugging Pseudo Instructions

1 - 84

APPENDIX B. PSEUDO INSTRUCTIONS

.CLINE Output line number information

Format:

▲.CLINE▲▲numeric-value

Description:

• Sets the source line information necessary during debugging.

• This pseudo instruction is output to assembly file compiled by C compiler or processed by

PRE77.

Notes:

• A number from 1 to 9999 can be specified as the operand.

• If a value greater than 9999 is specified, a warning is issued and the line number information

is not output to object file.

• The number specified in the operand is not checked for redefinition.

• This instruction is ignored if it is within a macro code.

Example:

 .CLINE 10
 JSR _SUB
 .CLINE 11
 :

.ENDFUNC Specify end of function

Format:

▲.ENDFUNC▲▲label

Description:

• Specifies the end of function (subroutine).

• This instruction enables source line debugging.

• This pseudo instruction cannot be nested.

Example:

 .FUNC SUB
SUB: LDA A,#0
 :
 RTS
 .ENDFUNC SUB ; Specifies the end of function

1 - 85

.FUNC Specify start of function

Format:

▲.FUNC▲▲label

Description:

• Specifies the start of function (subroutine).

• This instruction enables source line debugging.

• This pseudo instruction cannot be nested.

Example:

 .FUNC SUB ; Specifies the start of function
SUB: LDA A,#0
 :
 RTS
 .ENDFUNC SUB

.LANGUAGE Output language name

Format:

▲.LANGUAGE▲▲language-name

Description:

• Sets the language information necessary for source debugging.

Notes:

• Language information is not output to object file if the command line parameter “-C” is not

specified.

• This pseudo instruction is allowed only once in a source file.

Example:

 .LANGUAGE C

B.3 Debugging Pseudo Instructions

1 - 86

APPENDIX B. PSEUDO INSTRUCTIONS

.POINTER Define pointer length

Format:

▲.POINTER▲▲numeric-value

Description:

• Defines the byte length of pointer variable used with C compiler.

• A number from 1 to 255 can be specified as operand.

Note:

• This pseudo instruction is allowed only once in a source file.

Example:

 .POINTER 2

.SOURCE Define source file name

Format:

▲.SOURCE▲▲source-file-name

Description:

• Defines the file name necessary during source debugging.

Notes:

• Uppercase and lowercase characters are distinguished in the file name.

• This pseudo instruction must be coded before the .CLINE instruction.

Example:

 .SOURCE PROG1.C
 .CLINE 1
 :
 .SOURCE A:/INCLUDE/STDIO.H
 .CLINE 1

1 - 87

B.4 Reserved Pseudo Instructions

The pseudo instructions described below are reserved for future expansion of RASM77. These

pseudo instructions, even if specified, will not affect assembly.

Note:

Note that if only one of a combination of two pseudo-instructions ".IO - .ENDIO," ".PROCINT -

.ENDPROC," ".PROCMAIN - .ENDPROC," ".PROCSUB - .ENDPROC," or ".RAM - .ENDRAM" is

written or a combination of two pseudo-instructions is written in an incorrect sequence, RASM77

generates an assemble error.

B.4 Reserved Pseudo Instructions

1 - 88

APPENDIX B. PSEUDO INSTRUCTIONS

.ENDIO Declares end of I/O area (Reserved)

Format:

▲.ENDIO

Description:

• Declares the end of an I/O area.

• Labels and symbols that are specified between .I/O and .ENDIO are interpreted as an I/O

area.

Example:

 .IO
port0 .EQU 00H
port1 .EQU 01H
 .ENDIO

.ENDPROC Declares end of program module (Reserved)

Format:

▲.ENDPROC

Description:

• Declares the end of a main program module, a sub-program module, or an interrupt handler

module.

• The lines between .PROClNT, .PROCMAlN or PROCSUB and .ENDPROC are interpreted as

one program module.

Example:

 .PROCMAIN
MAIN:
 :
 JMP MAIN
 .ENDPROC

1 - 89

.ENDRAM Declares end of RAM area (Reserved)

Format:

▲.ENDRAM

Description:

• Declares the end of RAM area.

• The labels and symbols specified between RAM and .ENDRAM are interpreted as a RAM

area.

Example:

 .RAM
work0: .BLKB 1
work1: .BLKB 1
 .ENDRAM

.IO Declares start of I/O area (Reserved)

Format:

▲.IO

Description:

• Specifies start of an I/O area declaration.

• The labels and symbols specified between .IO and .ENDlO are interpreted as an I/O area.

Example:

.IO
port0 .EQU 00H
port1 .EQU 01H

.ENDIO

B.4 Reserved Pseudo Instructions

1 - 90

APPENDIX B. PSEUDO INSTRUCTIONS

.PROCINT Declares start of interrupt handler (Reserved)

Format:

▲.PROCINT▲▲[label]

Description:

• Declares the beginning of interrupt handler.

• The lines between .PROClNT and .ENDPROC are interpreted as the interrupt handler.

• RASM77 processes the label specified in the operand field as the label for this line.

Example:

.PROCINT INT
:
:
.ENDPROC

.PROCMAIN Declares start of main program (Reserved)

Format:

▲.PROCMAIN▲▲ [label]

Description:

• Declares the beginning of a main program.

• The lines between .PROCMAlN and .ENDPROC are interpreted as the main program.

• RASM77 processes the label specified in the operand field as the label for this line.

Example:

.PROCMAIN MAIN
:
.ENDPROC

1 - 91

.PROCSUB Declare beginning of sub-program (Reserved)

Format:

▲.PROCSUB▲▲ [label]

Description:

• Declares the beginning of a sub-program.

• The lines between .PROCSUB and .ENDPROC are interpreted as the subprogram.

• RASM77 processes the label specified in the operand field as the label for this line.

Example:

.PROCSUB SUB
:
:
.ENDPROC

.PROGNAME Declares program name (Reserved)

Format:

▲. PROGNAME▲▲program-name

Description:

• Declares a program name.

• Specification in the operand field is interpreted as the program title.

Example:

.PROGNAME 'printer control program'

B.4 Reserved Pseudo Instructions

1 - 92

.RAM Declares start of RAM area (Reserved)

Format:

▲.RAM

Description:

• Specifies start of declaration of a RAM area.

• The labels and symbols specified between.RAM and .ENDRAM are interpreted as the RAM

area.

Example:

.RAM
work0: .BLKB 1
work1: .BLKB 1

.ENDRAM

APPENDIX B. PSEUDO INSTRUCTIONS

1 - 93

APPENDIX C

Macro Instructions

C.1 Conventions

The macro instructions available with RASM77 are described in alphabetical order. The following

conventions are used in describing each macro:

1. Item in [] may be omitted.

2. Space or tab code is indicated by ▲▲ or ▲. ▲▲ is a required space or tab code, and ▲ is an

optional space or tab code (i.e., may be omitted).

3. ▲ is used to separate a label from macro instruction. When specifying a label, a colon (:) is

not required but, if it is omitted, either a space or a tab code must be specified between the

label and macro instruction.

C.2 Macro Instructions

C.1 Conventions

1 - 94

APPENDIX C. MACRO INSTRUCTIONS

.ENDM Declares end of macro

Format:

▲.ENDM

Description:

• This instruction specifies the end of all macro definitions.

Example:

 [Macro Definition]
 ADD: .MACRO VAL
 CLC
 ADC A,VAL
 .ENDM

 [Macro Call]
 ADD #10

 [Macro Expansion]
 CLC
 ADC A,#10
 .ENDM

1 - 95

.EXITM Exit from macro

Format:

▲.EXITM

Description:

• This instruction cancels macro expansion and passes control to the nearest .ENDM.

Example:

 [Macro Definition]
 DATA1: .MACRO VAL
 .IF LABEL
 .BYTE VAL
 .EXITM
 .ENDIF
 .WORD VAL
 .ENDM

 [Macro Call]
 LABEL .EQU 1
 DATA1 10

 [Macro Expansion]
 .IF LABEL
 .BYTE 10
 .EXITM
 .ENDIF
 .ENDM

C.2 Macro Instructions

1 - 96

APPENDIX C. MACRO INSTRUCTIONS

.LOCAL Defines macro local label

Format:

▲.LOCAL▲▲label,[label,..,label]

Description:

• This instruction defines a label defined within a macro as a local label.

• Labels declared as local are assigned labels ..n (n is decimal) in the order of appearance

during assembly. Therefore, the user must not use labels beginning with two periods (..).

• Local declaration must be made before a label is used.

Example:

 [Macro Definition]
 LOOP: .MACRO
 .LOCAL LOOP1
 LDA A,#20
 LOOP1: DEC A
 BNE LOOP1
 .ENDM

 [Macro Call]
 LOOP

 [Macro Expansion]
 LDA A,#20
 ..0: DEC A
 BNE ..0
 .ENDM

1 - 97

.MACRO - .ENDM Defines macro

Format:

▲macro-name▲.MACRO▲▲ [argument 1,argument 2,..,argument n]

Description:

• A macro definition starts with the line .MACRO and ends with the line .ENDM.

• The string assigned to the .MACRO line becomes the name of the macro definition.

• Macro definition can have arguments or no arguments. If arguments are used, the necessary

arguments must be passed during macro call.

• When a macro call is made, the arguments are passed in the order of dummy arguments in

the macro definition.

• Assembly language instructions, user macros, system macros, and pseudo instructions other

than .INCLUDE can be coded between .MACRO and .ENDM. Macro definitions can be

nested up to 20 levels.

• Macro calls can be made anywhere in the program as long as it is after the macro definition.

An error will occur if a macro call is issued before it is defined. Macro calls can be nested up

to 20 levels.

• The arguments specified in the macro call operand are replaced with the dummy arguments

in the macro definition from left to right. The number of arguments in the macro call and

macro definition need not be the same, but a warning is issued. If the number of arguments

on macro call is greater than the number of dummy arguments, the excess arguments are

ignored. If the number of arguments on macro call is less than the number of dummy

arguments, null character (string with length 0) is assigned to dummy arguments that have

no corresponding actual argument.

• Any number of arguments can be specified on macro call regardless of the number of dummy

arguments in the macro definition. However, all arguments must fit in one line. Each argu-

ment must be delimited by a comma. To pass a comma or space as argument, enclose it in

double quotes. Commas inside parentheses are not treated as delimiters.

• Macro expansion lines are indicated in the list file with a plus sign.

• The same macro name can be used to define more than one macro. In this case, the

definition immediately prior to the call takes effect when a call is made.

C.2 Macro Instructions

1 - 98

APPENDIX C. MACRO INSTRUCTIONS

Example:

Example 1) Macro definition without operand

 [Macro Definition]
 ADD1: .MACRO
 LDA A,ABC
 LDX #DEF
 CLC
 ADC A,TABLE,X
 STA A,GHI
 .ENDM

 [Macro Call]
 ADD1

 [Macro Expansion]
 LDA A,ABC
 LDX #DEF
 CLC
 ADC A,TABLE,X
 STA A,GHI
 .ENDM

Example 2) Macro definition with operand

 [Macro Definition]
 ADD2: .MACRO V1,IMM,V2
 ↑
 Dummy argument
 LDA A,V1
 LDX #IMM
 CLC
 ADC A,TABLE,X
 STA A,V2
 .ENDM

 [Macro Call]
 ADD2 WORK1,10,WORK2

 [Macro Expansion]
 LDA A,WORK1
 LDX #10
 CLC
 ADC A,TABLE,X
 STA A,WORK2
 .ENDM

1 - 99

Example:

Example 3) Macro nesting

 [Macro Definition]
 ADD: .MACRO OP1,OP2
 CLC
 ADC OP1,OP2
 .ENDM

 [Macro Call]
 ADD2: .MACRO OP1,OP2
 ADD OP1,OP2 ; Macro call within a macro
 ADC OP1+1,OP2+2
 .ENDM

Example 4) Recursive definition

 [Macro Definition]
 MAC: .MACRO ; First definition
 DATA: .BLKB 1
 MAC: .MACRO VALUE ; Second definition
 LDM #VALUE,DATA
 .ENDM
 .ENDM

 [Macro Call]
 MAC ; Reserve area and define new macro
 :
 MAC 10H ; Call newly defined macro

C.2 Macro Instructions

1 - 100

APPENDIX C. MACRO INSTRUCTIONS

.REPEAT - .ENDM Defines repeat macro

Format:

▲[label:]▲.REPEAT▲▲count

Description:

• Repeats assembly of 7700 Family instructions between .REPEAT and .ENDM for the number

of times specified with the operand.

• The instruction can be repeated up to 254 times.

• The label of the .REPEAT instruction is assigned as the label of the first generated line.

• Assembly language instructions, user macros, system macros, and pseudo instructions other

than .INCLUDE can be coded between .REPEAT and .ENDM.

• The operand may be a numeric constant or a symbol constant (label), a label with relocatable

value cannot be specified.

• Nesting is allowed up to 20 levels.

Example:

 [Source Code Example]
 TIME5: .REPEAT 5
 NOP
 .ENDM

 [After Macro Expansion]
 TIME5: .REPEAT 5
 NOP
 .ENDM
 TIME5:
 NOP
 NOP
 NOP
 NOP
 NOP
 .ENDM

1 - 101

.REPEATC - .ENDM Defines REPEATC macro

Format:

▲[label:]▲.REPEATC▲▲dummy-argument,actual-argument

Description:

• Repeats assembly of statements up to .ENDM for the number of times specified with the

actual argument.

• One character is extracted from actual argument and passed to the dummy argument each

time.

• The label of the .REPEATC instruction is assigned as the label of the first generated line.

• Assembly language instructions, user macros, system macros, and pseudo instructions other

than .INCLUDE can be coded between .REPEATC and .ENDM.

• If the character string contains special characters such as space, tab, or comma, the entire

string must be enclosed in double quotes. In this case, the string with the quotes removed is

used.

• Nesting is allowed up to 20 levels.

C.2 Macro Instructions

1 - 102

APPENDIX C. MACRO INSTRUCTIONS

Example:

Example 1)

 [Source Code Example]
 DATA: .REPEATC VAL,ABCDE
 ↑ ↑

 Dummy argument Actual argument
 .BYTE 'VAL'
 .ENDM

 [After Macro Expansion]
 DATA: .REPEATC VAL,ABCDE
 .BYTE 'VAL'
 .ENDM
 DATA:
 .BYTE 'A'
 .BYTE 'B'
 .BYTE 'C'
 .BYTE 'D'
 .BYTE 'E'
 .ENDM

Example 2)

 [Source Code Example]
 DATA: .REPEATC VAL,"ABC,;"
 ↑ ↑

 Dummy argument Actual argument
 .BYTE 'VAL'
 .ENDM

 [After Macro Expansion]
 DATA: .REPEATC VAL,"ABC,;"
 .BYTE 'VAL'
 .ENDM
 DATA:
 .BYTE 'A'
 .BYTE 'B'
 .BYTE 'C'
 .BYTE ','
 .BYTE ';'
 .ENDM

1 - 103

.REPEATI - .ENDM Defines REPEATI macro

Format:

▲[label:]▲.REPEATI▲▲dummy-argument,actual-argument[,dummy-argument,..actual-argument]

Description:

• Repeats assembly of statements up to .ENDM for the number of actual argument specified in

the operand.

• One actual argument is extracted and passed to the dummy argument each time.

• The label of the .REPEATI instruction is assigned as the label of the first generated line.

• Assembly language instructions, user macros, system macros, and pseudo instructions other

than .INCLUDE can be coded between .REPEATI and .ENDM.

• Numeric constant, character constant, symbol constant (label), and character string can be

specified for actual argument. Other macro instructions cannot be specified.

• If the actual argument contains special characters such as space, tab, or comma, the entire

string must be enclosed in double quotes. In this case, the string with the quotes removed is

used.

• Nesting is allowed up to 20 levels.

C.2 Macro Instructions

1 - 104

Example:

Example 1)

 [Source Code Example]
 SUB: .REPEATI INST,"NOP","LDA A,#1","JSR SUB1","RTS"
 ↑ ↑

Dummy argument Actual argument
 INST
 .ENDM

 [After Macro Expansion]
 SUB: .REPEATI INST,"NOP","LDA A,#1","JSR SUB1","RTS"
 INST
 .ENDM
 SUB:
 NOP
 LDA A,#1
 JSR SUB1
 RTS
 .ENDM

Example 2)

 [Source Code Example]
 DATA: .REPEATI VAL,0,1,2,"'HELLO !!'"
 ↑ ↑

 Dummy argument Actual argument
 .BYTE VAL
 .ENDM

 [After Macro Expansion]
 DATA: .REPEATI VAL,0,1,2,"'HELLO !!'"
 .BYTE VAL
 .ENDM
 DATA:
 .BYTE 0
 .BYTE 1
 .BYTE 2
 .BYTE 'HELLO !!'
 .ENDM

APPENDIX C. MACRO INSTRUCTIONS

1 - 105

APPENDIX D

Instruction Set

D.1 Symbols

Table D.1 lists the meaning of symbols used in the list of instructions.

D.1 Symbols

1 - 106

APPENDIX D. INSTRUCTION SET

Acc Accumulator A or accumulator B

X Index register X

Y Index register Y

S Stack pointer S

d8 8-bit data

d16 16-bit data

[DP:]zz 8-bit relative address from direct page register in direct addressing mode

[Dt:]hhll Low-order 16-bit address in absolute addressing mode

[LG:]hhmmll 24-bit address in absolute long addressing mode

imm 8-bit and 16-bit immediate data

rr Relative address from -128 to +127

rrll Relative address from -65535 to +65534

DPR Direct page register

PG Program bank register

DT Data bank register

PS Processor status register

C Carry flag

Z Zero flag

I Interrupt disable flag

D Decimal mode flag

X Index register length selection flag

M Data length selection flag

V Overflow flag

N Negative flag

DBR Data bank register

PBR Program bank register

PSR Processor status register

Table D.1 Symbols for Instruction List

1 - 107

Notes:

1. [DP:], [DT:], [LG:]

• Use these symbols to explicitly specify direct addressing, absolute addressing, or absolute

long addressing.

• zz or hhll is treated as offset from the beginning of the direct page or data bank register only

when symbol is specified (including symbol specified with the “-D” parameter).

• If label is specified for zz or hhll, the difference between the value of the label and the value

in the currently specified register is treated as offset.

2. Immediate (imm)

• Normally, the data length is the default length defined with the .DATA or .INDEX pseudo

instruction. However, it can be explicitly specified for each instruction by appending the

symbol “.B” or “.W” after the instruction code.

Example 1: ADC.B A,#data

=> Assembled as 8-bit data.

Example 2: ADC.W A,#data

=> Assembled as 16-bit data.

• RASM77 does not change the status of the CPU internal data length selection flag (m) and

index register length selection flag (x) . This is left up to the user.

3. The ‘X’ in the operand of the CLP or SEP instruction is assumed to be the index register

length selection flag.

D.2 Instruction Set

Table D.2 shows all of the instructions available with RASM77. The allowed data length specifica-

tion, addressing mode name, and coding format are shown next to each instruction.

D.1 Symbols

1 - 108

APPENDIX D. INSTRUCTION SET

Table D.2 Instructions

Instruction Data Length Addressing Mode Coding Format

ADC .B/.W Immediate ADC.B Acc,#imm

ADCL Direct ADC Acc,[DP:]zz

Direct X ADC Acc,[DP:]zz,X

Direct indirect ADC Acc,([DP:]zz)

Direct indirect X ADC Acc,([DP:]zz,X)

Direct indirect Y ADC Acc,((DP:]zz),Y

Direct indirect long ADCL Acc,([DP:]zz)

Direct indirect long Y ADCL Acc,([DP:]zz),Y

Absolute ADC Acc,(DT:]hhll

Absolute X ADC Acc,[DT:]hhll,X

Absolute Y ADC Acc,[DT:]hhll,Y

Absolute long ADC Acc,[LG:]hhmmll

Absolute long X ADC Acc,(LG:]hhmmll,X

Stack pointer relative ADC Acc,d8,S

Stack pointer relative indirect Y ADC Acc,(d8,S),Y

AND .B /.W Immediate AND.B Acc,#imm

ANDL Direct AND Acc,[DP:]zz

Direct X AND Acc,[DP:]zz,X

Direct indirect AND Acc,([DP:]zz)

Direct indirect X AND Acc,([DP:]zz,X)

Direct indirect Y AND Acc,([DP:]zz),Y

Direct indirect long ANDL Acc,([DP:]zz)

Direct indirect long Y ANDL Acc,([DP:]zz),Y

Absolute AND Acc,[DT:]hhll

Absolute X AND Acc,[DT:]hhll,X

Absolute Y AND Acc,[DT:]hhll,Y

Absolute long AND Acc,[LG:]hhmmll

Absolute long X AND Acc,[LG:]hhmmll,X

Stack pointer relative AND Acc,d8,S

Stack pointer relative indirect Y AND Acc,(d8,S),Y

1 - 109

Instruction Data Length Addressing Mode Coding Format

ASL Accumulator ASL Acc

Direct ASL [DP:]zz

Direct X ASL [DP:]zz,X

Absolute ASL [DT:]hhll

Absolute X ASL [DT:]hhll,X

ASR Accumulator ASR Acc

Direct ASR [DP:]zz

Direct X ASR [DP:]zz,X

Absolute ASR [DT:]hhll

Absolute X ASR [DT:]hhll,X

BBC .B/.W Direct Bit Relative BBC.B #imm,[DP:]ZZ,rr

.B/.W Absolute Bit Relative BBC.B #imm,[DT:]hhll,rr

BBS .B/.W Direct Bit Relative BBS.B #imm,[DP:]zz,rt

.B/.W Absolute Bit Relative BBS.B #imm,[DT:]hhll,rr

BCC Relative BCC rr

BCS Relative BCS rr

BEQ Relative BEQ rr

BMI Relative BMI rr

BNE Relative BNE rr

BPL Relative BPL rr

BRA Relative BRA rr

BRAL Relative BRAL rrll

BRK Implied BRK #d8

BVC Relative BCC rr

BVS Relative BCS rr

CLB .B/.W Direct Bit CLB.B #imm,[DP:]zz

.B/.W Absolute Bit CLB.B #imm,[DT:]hhll

CLC Implied CLC

CLI Implied CLI

CLM Implied CLM

CLP1 Immediate CLP #d8

CLV Implied CLV

Note:

1. The CLP instruction can have register names in the operand field.

Example: CLP C,Z,I,D,X,M,V,N

D.2 Instruction Set

1 - 110

APPENDIX D. INSTRUCTION SET

Instruction Data Length Addressing Mode Coding Format

CMP .B/.W Immediate CMP.B Acc,#imm

CMPL Direct CMP Acc,[DP:]zz

Direct X CMP Acc,[DP:]zz,X

Direct indirect CMP Acc,([DP:]zz)

Direct indirect X CMP Acc,([DP:]zz,X)

Direct indirect Y CMP Acc,([DP:]zz),Y

Direct indirect long CMPL Acc,([DP:]zz)

Direct indirect long Y CMPL Acc,([DP:]zz,Y

Absolute CMP Acc,[DT:]hhll

Absolute X CMP Acc,[DT:]hhll,X

Absolute Y CMP Acc,[DT:]hhll,Y

Absolute long CMP Acc,(LG:]hhmmll

Absolute long X CMP Acc,[LG:]hhmmll,X

Stack pointer relative CMP Acc,d8,S

Stack pointer relative indirect Y CMP Acc,(d8,S),Y

CPX .B/.W Immediate CPX.B #imm

Direct CPX [DP:]zz

Absolute CPX [DT:] hhll

CPY .B/.W Immediate CPY.B #imm

Direct CPY [DP:]zz

Absolute CPY [DT:]hhll

DEC Accumulator DEC Acc

Direct DEC [DP:]zz

Direct X DEC [DP:]zz,X

Absolute DEC [DT:)hhll

Absolute X DEC [DT:]hhll,X

DEX Implied DEX

DEY Implied DEY

1 - 111

Instruction Data Length Addressing Mode Coding Format

DIV .B/.W Immediate DIV.B #imm

DIVL Direct DIV [DP:]zz

Direct X DIV [DP:]zz,X

Direct indirect DIV ([DP:]zz)

Direct indirect X DIV ([DP:]zz,X)

Direct indirect Y DIV ([DP:]zz),Y

Direct indirect long DIVL ([DP:]zz)

Direct indirect long Y DIVL ([DP:]zz),Y

Absolute DIV [DT:]hhll

Absolute X DIV [DT:]hhll,X

Absolute Y DIV [DT:]hhll,Y

Absolute long DIV [LG:]hhmmll

Absolute long X DIV [LG:]hhmmll,X

Stack pointer relative DIV d8,S

Stack pointer relative indirect Y DIV (d8,s),Y

DIVS .B/.W Immediate DIVS.B #imm

DIVSL Direct DIVS [DP:]zz

Direct X DIVS [DP:]zz,X

Direct indirect DIVS ([DP:]zz)

Direct indirect X DIVS ([DP:]zz,X)

Direct indirect Y DIVS ([DP:]zz),Y

Direct indirect long DIVSL ([DP:]zz)

Direct indirect long Y DIVSL ([DP:]zz),Y

Absolute DIVS [DT:]hhll

Absolute X DIVS [DT:]hhll,X

Absolute Y DIVS [DT:]hhll,Y

Absolute long DIVS [LG:]hhmmll

Absolute long X DIVS [LG:]hhmmll,X

Stack pointer relative DIVS d8,S

Stack pointer relative indirect Y DIVS (d8,s),Y

D.2 Instruction Set

1 - 112

APPENDIX D. INSTRUCTION SET

Instruction Data Length Addressing Mode Coding Format

EOR .B/.W Immediate EOR.B Acc,#imm

EORL Direct EOR Acc,[DP:]zz

Direct X EOR Acc,[DP:]zz,X

Direct indirect EOR Acc,([DP:]zz)

Direct indirect X EOR Acc,([DP:]zz,X)

Direct indirect Y EOR Acc,((DP:]zz),Y

Direct indirect long EORL Acc,([DP:]zz)

Direct indirect long Y EORL Acc,([DP:]zz),Y

Absolute EOR Acc,[DT:]hhll

Absolute X EOR Acc,[DT:]hhll,X

Absolute Y EOR Acc,[DT:]hhll,Y

Absolute long EOR Acc,[LG:]hhmmll

Absolute long X EOR Acc,[LG:]hhmmll,X

Stack pointer relative EOR Acc,d8,S

Stack pointer relative indirect Y EOR Acc(d8,S),Y

EXTS Accumulator EXTS Acc

EXTZ Accumulator EXTZ Acc

1 - 113

Instruction Data Length Addressing Mode Coding Format

INC Accumulator INC Acc

Direct INC [DP:]zz

Direct X INC [DP:]zz,X

Absolute INC [DT:]hhll

Absolute X INC [DT:]hhll,X

INX Implied INX

INY Implied INY

JMP Absolute JMP hhll

JMPL Absolute long JMPL (LG:]hhmmll

Absolute indirect JMP (hhll)

Absolute Indirect Long JMPL (hhll)

Absolute Indirect Indexed X JMP (hhll,x)

JSR Absolute JSR hhll

JSRL Absolute long JSRL [LG:]hhmmll

Absolute indirect X JSR (hhll,x)

LDA .B/.W Immediate LDA.B Acc,#imm

LDAL Direct LDA Acc,[DP:]zz

Direct X LDA Acc,(DP:]zz,X

Direct indirect LDA Acc,([DP:]zz)

Direct indirect X LDA Acc,([DP:]zz,X)

Direct indirect Y LDA Acc,([DP:]zz),Y

Direct indirect long LDAL Acc,([DP:]zz)

Direct indirect long Y LDAL Acc,([DP:]zz),Y

Absolute LDA Acc,[DT:]hhll

Absolute X LDA Acc,[DT:]hhll,X

Absolute Y LDA Acc,[DT:]hhll,Y

Absolute long LDA Acc,[LG:]hhmmll

Absolute long X LDA Acc,(LG:]hhmmll,X

Stack pointer relative LDA Acc,d8,S

Stack pointer relative indirect Y LDA Acc,(d8,S),Y

LDT Immediate LDT #d8

D.2 Instruction Set

1 - 114

Instruction Data Length Addressing Mode Coding Format

LDM .B/.W Direct LDM.B #imm,[DP:]zz

.B/.W Direct X LDM.B #imm,[DP:]zz,X

.B/.W Absolute LDM.B #imm,[DT:]hhll

.B/.W Absolute X LDM.B #imm,[DT:]hhll,X

LDX .B/.W Immediate LDX.B #imm

Direct LDX [DP:]zz

Direct Y LDX [DP:]zz,Y

Absolute LDX [DT:]hhll

Absolute Y LDX [DT:]hhll,Y

LDY .B/.W Immediate LDY.B #imm

Direct LDY [DP:]zz

Direct X LDY [DP:]zz,X

Absolute LDY [DT:]hhll

Absolute X LDY [DT:]hhll,X

LSR Accumulator LSR Acc

Direct LSR [DP:]zz

Direct X LSR [DP:]zz,X

Absolute LSR [DT:]hhll

Absolute X LSR [DT:]hhll,X

APPENDIX D. INSTRUCTION SET

1 - 115

D.2 Instruction Set

Instruction Data Length Addressing Mode Coding Format

MPY .B/.W Immediate MPY.B #imm

MPYL Direct MPY [DP:]zz

Direct X MPY [DP:]zz,X

Direct indirect MPY ([DP:]zz)

Direct indirect X MPY ([DP:]zz,X)

Direct indirect Y MPY ([DP:]zz),Y

Direct indirect long MPYL ([DP:]zz)

Direct indirect long Y MPYL ([DP:]zz),Y

Absolute MPY [DT:]hhll

Absolute X MPY [DT:]hhll,X

Absolute Y MPY [DT:]hhll,Y

Absolute long MPY [LG:]hhmmll

Absolute long X MPY [LG:]hhmmll,X

Stack pointer relative MPY d8,S

Stack pointer relative indirect Y MPY (d8,S),Y

MPYS .B/.W Immediate MPYS.B #imm

MPYSL Direct MPYS [DP:]zz

Direct X MPYS [DP:]zz,X

Direct indirect MPYS ([DP:]zz)

Direct indirect X MPYS ([DP:]zz,X)

Direct indirect Y MPYS ([DP:]zz),Y

Direct indirect long MPYSL ([DP:]zz)

Direct indirect long Y MPYSL ([DP:]zz),Y

Absolute MPYS [DT:]hhll

Absolute X MPYS [DT:]hhll,X

Absolute Y MPYS [DT:]hhll,Y

Absolute long MPYS [LG:]hhmmll

Absolute long X MPYS [LG:]hhmmll,X

Stack pointer relative MPYS d8,S

Stack pointer relative indirect Y MPYS (d8,S),Y

1 - 116

APPENDIX D. INSTRUCTION SET

Instruction Data Length Addressing Mode Coding Format

MVN Block Transfer MVN d8,d8

MVP Block Transfer MVP d8,d8

NOP Implied NOP

ORA .B/.W Immediate ORA.B Acc,#imm

ORAL Direct ORA Acc,[DP:]zz

Direct X ORA Acc,[DP:]zz,X

Direct indirect ORA Acc,([DP:]zz)

Direct indirect X ORA Acc,([DP:]zz,X)

Direct indirect Y ORA Acc,([DP:]zz),Y

Direct indirect long ORAL Acc,([DP:]zz)

Direct indirect long Y ORAL Acc,([DP:]zz),Y

Absolute ORA Acc,[DT:]hhll

Absolute X ORA Acc,[DT:]hhll,X

Absolute Y ORA Acc,[DT:]hhll,Y

Absolute long ORA Acc,(LG:]hhmmll

Absolute long X ORA Acc,[LG:]hhmmll,X

Stack pointer relative ORA Acc,d8,S

Stack pointer relative indirect Y ORA Acc,(d8,S),Y

PEA Stack PEA #d16

PEI Stack PEI #d8

PER Stack PER #d16

PHA Stack PHA

PHB Stack PHB

PHD Stack PED

PHG Stack PHG

PHP Stack PEP

PHT Stack PHT

PHX Stack PEX

PHY Stack PHY

1 - 117

Instruction Data Length Addressing Mode Coding Format

PLA Stack PLA

PLB Stack PLB

PLD Stack PLD

PLP Stack PLP

PLT Stack PLT

PLX Stack PLX

PLY Stack PLY

PSH1 Stack PSH #d8

PUL2 Stack PUL #d8

RLA .B/.W Immediate RLA #imm

RMPA Immediate RMPA #imm

ROL Accumulator ROL Acc

Direct ROL [DP:]zz

Direct X ROL [DP:]zz,X

Absolute ROL [DT:]hhll

Absolute X ROL [DT:]hhll,X

ROR Accumulator ROR Acc

Direct ROR [DP:]zz

Direct X ROR [DP:]zz,X

Absolute ROR [DT:]hhll

Absolute X ROR [DT:]hhll,X

RTI Implied RTI

RTL Implied RTL

RTS Implied RTS

Note:

1.,2. The PSH and PUL instruction can have register names in the operand field.

Example 1: PSH A,B,X,Y,DPR, PG,DT,PS

Example 2: PUL A,B,X,Y,DPR, PG,DT,PS

D.2 Instruction Set

1 - 118

APPENDIX D. INSTRUCTION SET

Instruction Data Length Addressing Mode Coding Format

SBC .B/.W Immediate SBC.B Acc,#imm

SBCL Direct SBC Acc,[DP:]zz

Direct X SBC Acc,[DP:]zz,X

Direct indirect SBC Acc,([DP:]zz)

Direct indirect X SBC Acc,([DP:]zz,X)

Direct indirect Y SBC Acc,([DP:]zz),Y

Direct indirect long SBCL Acc,([DP:]zz)

Direct indirect long Y SBCL Acc,([DP:]zz),Y

Absolute SBC Acc,[DT:]hhll

Absolute X SBC Acc,[DT:]hhll,X

Absolute Y SBC Acc,[DT:]hhll,Y

Absolute long SBC Acc,[LG:]hhmmll

Absolute long X SBC Acc,[LG:]hhmmll,:

Stack pointer relative SBC Acc,d8,S

Stack pointer relative indirect Y SBC Acc,(d8,S),Y

SEB .B/.W Direct Bit SEB.B #imm,[DP:]zz

.B/.W Absolute Bit SEB.B #imm,[DT:]hhll

SEC Implied SEC

SEI Implied SEI

SEM Implied SEM

SEP1 Immediate SEP #d8

Note:

1. The SEP instruction can have register names in the operand field.

Example: SEP C,Z,I,D,X,M,V,N

1 - 119

Instruction Data Length Addressing Mode Coding Format

STA Direct STA Acc,[DP:]zz

STAL Direct X STA Acc,[DP:]zz,X

Direct indirect STA Acc,([DP:]zz)

Direct indirect X STA Acc,([DP:]zz,X)

Direct indirect Y STA Acc,((DP:]zz),Y

Direct indirect long STAL Acc,([DP:]zz)

Direct indirect long Y STAL Acc,([DP:]zz),Y

Absolute STA Acc,[DT:]hhll

Absolute X STA Acc,[DT:]hhll,X

Absolute Y STA Acc,[DT:]hhll,Y

Absolute long STA Acc,hhmmll

Absolute long X STA Acc,hhmmll,X

Stack pointer relative STA Acc,d8,S

Stack pointer relative indirect Y STA Acc,(d8,S),Y

STP Implied STP

STX Direct STX [DP:]zz

Direct Y STX [DP:]zz,Y

Absolute STX [DT:]hhll

STY Direct STY [DP:]zz

Direct X STY [DP:]zz,X

Absolute STY [DT:]hhll

TAD Implied TAD

TAS Implied TAS

TAX Implied TAX

TAY Implied TAY

TBD Implied TBD

TBS Implied TBS

TBX Implied TBX

TBY Implied TBY

D.2 Instruction Set

1 - 120

APPENDIX D. INSTRUCTION SET

Instruction Data Length Addressing Mode Coding Format

TDA Implied TDA

TDB Implied TDB

TSA Implied TSA

TSB Implied TSB

TSX Implied TSX

TXA Implied TXA

TXB Implied TXB

TXS Implied TXS

TXY Implied TXY

TYA Implied TYA

TYB Implied TYB

TYX Implied TYX

WIT Implied WIT

XAB Implied XAB

1 - 121

APPENDIX E

Instruction by Addressing Mode

E.1 Instruction by Addressing Mode

The coding format and instructions for each addressing mode are shown below. The symbols are

the same as those used in Appendix B.1.

1. Implied

Instruction Coding format

BRK, CLC, CLI, CLM, CLV CLC

DEX, DEY, INX, INY, NOP

SEC, SEI, SEM, STP, TAX

RTI, RTL, RTS, TAY, TAD

TAS, TBB, TBD, TBS, TBX

TBY, TDA, TDB, TSA, TSB

TSX, TXA, TXB, TXS, TXY

TYA, TYB, TYX, WIT, XAB

2. Immediate

Instruction Coding format

ADC, AND, CMP, EOR, LDA ADC Acc,#imm

ORA, SBC

DIV, DIVS, MPY, MPYS, RMPA DIV #imm

CPX, CPY, LDX, LDY CPX #imm

CLP, SEP CLP #d8

CLP C,I,M

LDT LDT #d8

E.1 Instruction by Addressing Mode

1 - 122

APPENDIX E. INSTRUCTION SETS BY ADDRESSING MODE

3. Accumulator

Instruction Coding format

ASL, ASR, DEC, EXTS, EXTZ ASL Acc

INC, LSR, ROL, ROR

RLA RLA #d8

4. Direct Bit

Instruction Coding format

 CLB, SEB CLB #imm,zz

CLB #imm,dp:zz

5. Absolute Bit

Instruction Coding format

CLB, SEB CLB #imm,hhll

CLB #imm,dt:hhll

6. Stack

Instruction Coding format

PHA, PHB, PHD, PHG, PHP PHA

PHT, PHX, PHY, PLA, PLB

PLD, PLP, PLT, PLX, PLY

PEI PEI #d8

PSH, PUL PSH #d8

PSH A,X,Y

PEA, PER PEA #d16

7. Relative

Instruction Coding format

BCC, BCS, BEQ, BMI, BNE BCC rr

BPL, BVC, BVS

BRA BRA rr

BRAL BRAL rrll

8. Block Transfer

Instruction Coding format

MVN, MYP MVN d8,da

1 - 123

9. Direct

Instruction Coding format

ADC, AND, CMP, EOR, LDA ADC Acc,zz

ORA, SBC, STA ADC Acc,dp:zz

DIV, DIVS, MPY, MPYS DIV ZZ

DIV dp:zz

ASL, CPX, CPY, DEC, INC ASL ZZ

LDX, LDY, LSR, ROL, ROR ASL dp:zz

STX, STY

LDM LDM #imm,zz

LDM #imm,dp:zz

10. Direct Index X

Instruction Coding format

ADC, AND, CMP, EOR, LDA ADC Acc,zz,X

ORA, SBC, STA ADC Acc,dp:zz,X

DIV, DIVS, MPY, MPYS DIV zz,X

DIV dp:zz,X

ASL, DEC, INC, LDY, LSR ASL zz,X

ROL, ROR, STY ASL dp:zz,X

LDM LDM #imm,zz,X

LDM #imm,dp:zz,X

11. Direct Index Y

Instruction Coding format

LDX, STX LDX zz,Y

LDX dp:zz,Y

12. Direct Indirect

Instruction Coding format

ADC, AND, CMP, EOR, LDA ADC Acc,(zz)

ORA, SBC, STA ADC Acc,(dp:zz)

DIV, DIVS, MPY, MPYS DIV (zz)

DIV (dp:zz)

E.1 Instruction by Addressing Mode

1 - 124

APPENDIX E. INSTRUCTION SETS BY ADDRESSING MODE

13. Direct Indirect Index X

Instruction Coding format

ADC, AND, CMP, EOR, LDA ADC Acc,(zz,X)

ORA, SBC, STA ADC Acc,(dp:zz,X)

DIV, DIVS, MPY, MPYS DIV (zz,X)

DIV (dp:zz,X)

14. Direct Indirect Index Y

Instruction Coding format

ADC, AND, CMP, EOR, LDA ADC Acc,(zz),Y

ORA, SBC, STA ADC Acc,(dp:zz),Y

DIV, DIVS, MPY, MPYS DIV (zz),Y

DIV (dp:zz),Y

15. Direct Indirect Long

Instruction Coding format

ADCL, ANDL, CMPL, EORL ADCL Acc,(zz)

LDAL, ORAL, SBCL, STAL ADCL Acc,(dp:zz)

DIVL, DIVSL, MPYL, MPYSL DIVL (zz)

DIVL (dp:zz)

16. Direct Indirect Long Index Y

Instruction Coding format

ADCL, ANDL, CMPL, EORL ADCL Acc,(zz),Y

LDAL, ORAL, SBCL, STAL ADCL Acc,(dp:zz),Y

DIVL, DIVSL, MPYL, MPYSL DIVL (zz),Y

DIVL (dp:zz),Y

1 - 125

17. Absolute

Instruction Coding format

ADC, AND, CMP, EOR, LDA ADC Acc,hhll

ORA, SBC, STA ADC Acc,dt:hhll

DIV, DIVS, MPY, MPYS DIV hhll

DIV dt:hhll

ASL, CPX, CPY, DEC, INC ASL hhll

LDX, LDY, LSR, ROL, ROR ASL dt:hhll

STX, STY

JMP, JSR JSR hhll

LDM LDM #imm,hhll

LDM #imm,dt:hhll

18. Absolute indexed X

Instruction Coding format

ADC, AND, CMP, EOR, LDA ADC Acc,hhll,X

ORA, SBC, STA ADC Acc,dt:hhll,X

DIV, DIVS, MPY, MPYS DIV hhll,X

DIV dt:hhll,X

ASL, DEC, INC, LDY, LSR ASL hhll,X

ROL, ROR ASL dt:hhll,X

LDM LDM #imm,hhll,X

LDM #imm,dt:hhll,X

19. Absolute indexed Y

Instruction Coding format

ADC, AND, CMP, EOR, LDA ADC Acc,hhll,Y

ORA, SBC, STA ADC Acc,dt:hhll,Y

DIV, DIVS, MPY, MPYS DIV hhll,Y

DIV dt:hhll,Y

LDX LDX hhll,Y

LDX dt:hhll,Y

E.1 Instruction by Addressing Mode

1 - 126

APPENDIX E. INSTRUCTION SETS BY ADDRESSING MODE

20. Absolute long

Instruction Coding format

ADC, AND, CMP, EOR, LDA ADC Acc,hhmmll

ORA, SBC, STA ADC Acc,lg:hhmmll

DIV, DIVS, MPY, MPYS DIV hhmmll

DIV lg:hhmmll

JMPL, JSRL JMPL hhmmll

JMPL lg:hhmmll

21. Absolute long indexed X

Instruction Coding format

ADC, AND, CMP, EOR, LDA ADC Acc,hhmmll,X

ORA, SBC, STA ADC Acc,lg:hhmmll,x

DIV, DIVS, MPY, MPYS DIV hhmmll,X

DIV lg:hhmmll,x

22. Stack pointer relative

Instruction Coding format

ADC, AND, CMP, EOR, LDA ADC Acc,d8,S

ORA, SBC, STA

DIV, DIVS, MPY, MPYS DIV d8,S

23. Stack pointer relative indirect indexed X

Instruction Coding format

ADC, AND, CMP, EOR, LDA ADC Acc,(d8,S),Y

ORA, SBC, STA

DIV, DIVS, MPY, MPYS DIV (d8,S),Y

24. Absolute indirect

Instruction Coding format

JMP JMP (hhll)

1 - 127

25. Absolute indirect indexed X

Instruction Coding format

JMP, JSR JMP (hhll,X)

26. Absolute indirect long

Instruction Coding format

JMPL JMPL (hhll)

27. Direct bit relative

Instruction Coding format

BBC, BBS BBC #imm,zz,rr

BBC #imm,dp:ZZ,rr

28. Absolute bit relative

Instruction Coding format

BBC, BBS BBC #imm,hhll,rr

BBC #imm,d:ihhll,rr

E.1 Instruction by Addressing Mode

1 - 128

APPENDIX E. INSTRUCTION SETS BY ADDRESSING MODE

E.2 Addressing Mode Relationship Table

Table E.1 shows the addressing mode selected by the assembler according to the data specified in

the operand and the error messages output by the assembler when an invalid data combination is

specified. Refer to this table when programming. The following symbols are used in the tables:

❍: Checks the scope of address.

❂: The specified addressing mode is selected unconditionally.

❏: Page boundary is checked.

▲: The maximum addressing mode allowed for the instruction is used.

PE: “Error 27: Page error” is output.

VO: “Error 22: Value is out of range” is output.

*1: The vertical column shows the addressing mode specified with the pseudo instruction

“.DT” and “.DP”.

*2: The horizontal column shows the addressing mode specified with the operand of the

instruction.

Table E.1 Addressing Mode Table
*1 LOC EXT

*2 OFF IMM SYM REL ABS DPEXT1 DPEXT2 DTEXT3 DTEXT4 EXT

IMM ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

SYM ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

DP: LOC REL VO ❂ ❂ ❂ ❂ ❂ ❂ ❂ ❂ ❂

specified ABS VO ❍ ❍ ❂ ❍ ❂ ❂ ❂ ❂ ❂

DPEXT1 VO ❂ ❂ ❂ ❂ ❂ ❂ ❂ ❂ ❂

DPEXT2 VO PE PE PE PE PE ❏ PE PE PE

EXT DTEXT3 VO VO VO VO VO VO VO VO VO VO

DTEXT4 VO VO VO VO VO VO VO VO VO VO

EXT VO VO VO VO VO VO VO VO VO VO

1 - 129

IMM ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

SYM ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

DT: LOC REL VO ❂ ❂ ❂ ❂ ❂ ❂ ❂ ❂ ❂

specified ABS VO ❍ ❍ ❂ ❍ ❂ ❂ ❂ ❂ ❂

DPEXT1 VO VO VO VO VO VO VO VO VO VO

DPEXT2 VO VO VO VO VO VO VO VO VO VO

EXT DTEXT3 VO ❂ ❂ ❂ ❂ ❂ ❂ ❂ ❂ ❂

DTEXT4 VO PE PE PE PE PE PE PE ❏ PE

EXT VO VO VO VO VO VO VO VO VO VO

IMM ▲ ❍ ❍ ▲ ❍ ▲ ▲ ▲ ▲ ▲

SYM ▲ ❍ ❍ ▲ ❍ ▲ ▲ ▲ ▲ ▲

DT: LOC REL ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

DP: ABS ▲ ❍ ❍ ▲ ❍ ▲ ▲ ▲ ▲ ▲

not DPEXT1 ▲ ❂ ❂ ❂ ❂ ❂ ❂ ❂ ❂ ❂

specified DPEXT2 ▲ PE PE PE PE PE ❏ PE PE PE

EXT DTEXT3 ▲ ❂ ❂ ❂ ❂ ❂ ❂ ❂ ❂ ❂

DTEXT4 ▲ PE PE PE PE PE PE PE ❏ PE

EXT ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

E.3 Selection of Addressing Mode

Addressing mode selection in RASM77 when using ".DP OFF" and ".DT OFF" is subject to the

following rules.

Description format Processing by RASM77

DP:label Error

DP:symbol Selects direct addressing mode

DP:absolute value Selects direct addressing mode

DT:label Error

DT:symbol Selects absolute addressing mode

DT:absolute value Selects absolute addressing mode

E.2 Addressing Mode Relationship Table

PART 2PART 2
STRUCTURED PREPROCESSOR

FOR 7700 FAMILY

PRE77 OPERATION MANUAL

Table of Contents

Chapter 1. Organization of PRE77 Operation Manual

Chapter 2. Overview
2.1 Function .. 2

2.2 Files Created ... 2

Chapter 3. Source Program Coding Method
3.1 Structure of Source Program .. 6

3.2 Line Formats ... 7
3.2.1 Instruction Line ... 7

3.2.2 Structured Preprocessor Instruction Line ... 7

3.2.3 Pseudo Instruction Line .. 8

3.2.4 Macro Instruction Line .. 8

3.2.5 Comment Line .. 8

3.3 Field Coding Method .. 8
3.3.1 Symbol/Label Field ... 8

3.3.2 Op-code/Pseudo Instruction Field .. 9

3.3.3 Operand Field ... 9

3.3.4 Comment Field ... 9

3.4 Operand Field Coding Method ..10
3.4.1 Data Format .. 10

Chapter 4. Structured Preprocessor Instructions
4.1 Function of Structured Instructions ...12

4.2 Statement Types ... 12

4.3 Coding Rules ..14

4.4 Operators in Structured Instruction ...19

4.5 Structured Instructions in Macros ..20

4.6 RASM77 Instruction Lines, Pseudo Instruction Lines 20

Chapter 5. Pseudo Instructions
5.1 Function of Pseudo Instructions .. 21

5.2 Preprocess Control ..21

2-i

Chapter 6. Operation
6.1 Starting PRE77 ...23

6.2 Input Parameters ..23
6.2.1 Source Filename .. 23

6.2.2 Command Parameters ... 23

6.3 Input Method ...25

6.4 Errors ... 26
6.4.1 Error Types ... 26

6.4.2 Error Information ... 26

6.5 Return Values to MS-DOS ...27

6.6 Environment Variables ..27

Appendix A. Error Messages
A.1 System Error Messages ..28

A.2 Preprocessor Error Messages ..29

A.3 Warning Messages ..32

Appendix B. Structured Preprocessor Instructions
B.1 Conventions ...33

B.2 Structured Preprocessor Instructions ...33

B.3 Structured Preprocessor Instruction Syntax Diagram56

Appendix C. Pseudo Instructions
C.1 Conventions ...69

C.2 Pseudo Instructions ..69

2-ii

List of Figures

Figure 2.1 Assembly File Example ... 3

Figure 2.2 Assembly File Example

(Source Level Debug InformationOutput) 4

Figure 2.3 Tag File Example .. 5

Figure 6.1 Example of PRE77 Startup Command Line25

Figure 6.2 MS-DOS Version Help Messages .. 25

Figure 6.3 Error Display Example ...26

2-iii

List of Tables

Table 3.1 List of Operators ..11

Table 4.1 Accumulator Bit Reference Reserved Words 14

Table 4.2 List of Generated Labels ...17

Table 4.3 List of Generated Branch Instructions17

Table 4.4 List of Operators that can be Used in

Structured Instructions ...19

Table 6.1 List of Command Parameters ...24

Table 6.2 Listing of Error Levels ...27

Table A.1 List of System Error Messages ..28

Table A.2 List of Preprocessor Error Messages 29

Table A.3 List of Warning Messages ..32

2-iv

2 - 1

CHAPTER 1

Organization of PRE77 Operation Manual

The PRE77 Operation Manual consists of the following chapters:

• Chapter 2. Overview

Describes the basic functions of the PRE77 and the files created by PRE77.

• Chapter 3. Source Program Coding Method

Describes how to code source programs containing structured preprocessor codes.

• Chapter 4. Structured Preprocessor Instructions

Describes the types of structure preprocessor instructions and how to code them.

• Chapter 5. Pseudo Instruction

Describes the preprocessor instructions that are processed by PRE77.

• Chapter 6. Operation

Describes how to enter PRE77 commands.

• Appendix A. Error Messages

Lists error messages output by PRE77 along with explanation of the errors and actions to be

taken.

• Appendix B. Structured Preprocessor Instructions

Lists and explains all structured preprocessor instructions provided by PRE77.

• Appendix C. Pseudo Instructions

Lists and explains all pseudo instructions provided by PRE77.

2 - 2

1 LINK77 is the name of the 7700 Family linkage editor program.
2 LIB77 is the name of the 7700 Family librarian program.
3 This file is called a TAG file because it contains “tags” that show the location of errors and warnings.

CHAPTER 2. OVERVIEW

CHAPTER 2

Overview

The structured preprocessor allows the use of structured programming statements such as if and

for which are not available in assembly language. This simplifies program development using the

source level debugging functions of the 7700 Family debugger control software and improves

development performance compared with development in straight assembly language.

2.1 Function

PRE77 converts programs written in 7700 Family structured preprocessor language into RASM77

assembly program. PRE77 can be used together with RASM77, LINK771, and LIB772. The following

functions are provided:

1. Process RASM77 pseudo instructions “.INCLUDE”, “.DATA”, “.INDEX”, and “.EQU”

2. Process files included with “.INCLUDE”.

3. Generate assembly language source program file that can be assembled by RASM77.

4. Output “.CLINE”, “.FUNC”, “.ENDFUNC” that can be used for source line debugging with

debugger.

5. Process structured preprocessor code within macro definitions.

In addition, the structure preprocessor generates a tag file3 containing error descriptions (facilitates

correction of preprocessor errors).

2.2 Files Created

PRE77 generates the following two types of files:

2 - 3

1. Assembly language source program file for RASM77 (hereafter referred to as assembler file)

• Contains RASM77 source level debugging pseudo instructions “.CLINE”, “.FUNC”,

.ENDFUNC”.

• Generates Intel HEX format machine language data processed by RASM77 and LINK77.

• The file extension is .A77.

• Figures 2.1 and 2.2 show examples of assembly files output by PRE77.

 ; *** 7700 Family PREPROCESSOR V.5.00.00 ***
 .language PRE77_Rev01
 ; sample list
 ;
 ;FLAG_0 .EQU 0,000H
 FLAG_0 .define 000H
 ;FLAG_1 .EQU 1,000H
 FLAG_1 .define 000H
 ;FLAG_2 .EQU 2,000H
 FLAG_2 .define 000H
 ;
 .EXT WORK1
 .EXT WORK2
 ;
 .SECTION PROGRAM
 ;
 ;for [DP:FLAG_0] == 1
 ..F1:
 BBC #00001H,DP:FLAG_0,..F2
 ; if [DP:FLAG_1] == 1
 BBC #00002H,DP:FLAG_1,..I3
 ; [DP:WORK1] = 0
 LDM #0,DP:WORK1
 ; if [DP:FLAG_2] == 1
 BBC #00004H,DP:FLAG_2,..I5
 ; [DP:WORK2] = 0
 LDM #0,DP:WORK2
 ; endif
 ..I5:
 ; endif
 ..I3:
 BRA ..F1
 ;next
 ..F2:
 .END

Figure 2.1 Assembly File Example

2.2 Files Created

2 - 4

 ; *** 7700 Family PREPROCESSOR V.5.00.00 ***
 .language PRE77_Rev01
 .source sample.p77
 ; sample list
 ;
 ;FLAG_0 .EQU 0,000H
 FLAG_0 .define 000H
 ;FLAG_1 .EQU 1,000H
 FLAG_1 .define 000H
 ;FLAG_2 .EQU 2,000H
 FLAG_2 .define 000H
 ;
 .EXT WORK1
 .EXT WORK2
 ;
 .SECTION PROGRAM
 .func _sample_0
 ;
 ;for [DP:FLAG_0] == 1
 .cline 12
 ..F1:
 BBC #00001H,DP:FLAG_0,..F2
 ; if [DP:FLAG_1] == 1
 .cline 13
 BBC #00002H,DP:FLAG_1,..I3
 ; [DP:WORK1] = 0
 .cline 14
 LDM #0,DP:WORK1
 ; if [DP:FLAG_2] == 1
 .cline 15
 BBC #00004H,DP:FLAG_2,..I5
 ; [DP:WORK2] = 0
 .cline 16
 LDM #0,DP:WORK2
 ; endif
 .cline 17
 ..I5:
 ; endif
 .cline 18
 ..I3:
 BRA ..F1
 ;next
 .cline 19
 ..F2:
 .endfunc _sample_0
 .END

Figure 2.2 Assembly File Example (Source Level Debug Information Output)

CHAPTER 2. OVERVIEW

2 - 5

2. Tag file

• This file contains error messages and warning messages generated during PRE77 pro-

cessing.

• The file extension is .PTG.

• The tag file should be referenced when correcting errors with an editor.

• The tag file is output when the command parameter “-E” is specified.

• Figure 2.3 shows an example of a tag file.

SAMPLE.P77 120 (TOTAL LINE 120) Error 9: else not associated with if
SAMPLE.P77 135 (TOTAL LINE 135) Error 13: break not inside for, do or switch
SAMPLE.P77 140 (TOTAL LINE 140) Error 6: Not in conditional block

Figure 2.3 Tag File Example

2.2 Files Created

2 - 6

CHAPTER 3

Source Program Coding Method

3.1 Structure of Source Program

A PRE77 source program is made up of lines. Each source program line must comply with the

following rules:

1. Each line must be complete by itself, and an instruction cannot be coded on more than one

line.

2. Each line may contain no more than 256 characters. The PRE77 ignores coding beyond 256

characters.

3. Each line consists of the following fields:

• Symbol/label field

Label for referencing this line from other locations or symbol whose value is to be set by

the .EQU pseudo instruction is coded in this field.

• Op-code/pseudo instruction field

7700 Family instruction mnemonic (hereafter referred to as op-code) or pseudo instruction

is coded in this field.

• Operand field

Object of processing by op-code or pseudo instruction is coded in this field.

• Comment field

Specification in this field is not processed by PRE77 and the user can use this field for

any purpose.

There are five types of lines.

1. Instruction line

An instruction line specifies an 7700 Family instruction. This line is not processed by PRE77.

2. Structured preprocessor instruction line

This line contains the 7700 Family structured preprocessor instruction. Assembly instruction

lines are generated from this line.

3. Pseudo instruction line

This line contains only pseudo instruction that is processed by PRE77.

4. Macro instruction line

A macro instruction line specifies the macro definition. This line is processed by the assem-

bler.

CHAPTER 3. Source Program Coding Method

2 - 7

5. Comment line

A comment line is not processed by PRE77. Therefore, it can be used by the user for any

purpose.

3.2 Line Formats

This section describes the format of each type of line. The following conventions are used for these

descriptions:

1. ▲▲ and ▲ specify space or tab code. ▲▲ is required, and ▲ is optional.

2. A colon (:) is required when coding a lebel.

3.2.1 Instruction Line

Shown below is the format of an instruction line:

▲ Label: ▲ Op-code ▲▲ Operand ▲ ; Comment <RET>

▲† Op-code ▲▲ Operand ▲ ; Comment <RET>

† Because PRE77 identifies each instruction as reserved word, a line can begin with an op-code if

there is no label.

3.2.2 Structured Preprocessor Instruction Line

Shown below is the format of the structured preprocessor instruction line.

▲ Label: ▲ structured-preprocessor-instruction ▲▲condition-expression▲ ; Comment <RET>

▲†structured-preprocessor-instruction ▲▲condition▲ ; Comment <RET>

1. Label field

Code the label for referencing this line from other parts of the program.

PRE77 processes the structured preprocessor instruction and outputs the content of this field

unchanged when generating the 7700 Family assembly language code.

2. Structured preprocessor instruction field

Code the 7700 Family structure preprocessor instruction. The structure preprocessor makes

no distinction between uppercase and lowercase characters. Therefore, IF and if are both

valid.

3. Condition expression field

Code the condition to be processed by the structured preprocess.

3.1 Structure of Source Program

2 - 8

4. Comment field

This field is not processed by the structure preprocessor. The user is free to use this field.

Note:
† Because PRE77 identifies each instruction as reserved word, a line can begin with an op-code if

there is no label.

3.2.3 Pseudo Instruction Line

Shown below is the format of pseudo instruction line:

 ▲Label: ▲ Pseudo-op ▲▲ Operand ▲ ; Comment <RET>

▲ Symbol ▲▲ .EQU ▲▲ Operand ▲; Comment <RET>

▲‡ Pseudo-op ▲▲ Operand ▲ ; Comment <RET>

Note:
‡ Because RASM77 identifies each pseudo instruction as reserved word, a line can begin with an

op-code if there is no label.

3.2.4 Macro Instruction Line

The format of a macro instruction line is shown below. This line is not processed by PRE77 (Refer

to Chapter 6 and Appendix E for details concerning this line).

▲ Macro name:▲ Macro Instruction ▲▲ Operand ▲ ; Comment <RET>

3.2.5 Comment Line

Comment line must begin with a semicolon (;). Shown below is the format of a comment line:

▲ ; Comment <RET>

3.3 Field Coding Method

3.3.1 Symbol/Label Field

PRE77 manages symbols and labels separately, but the same coding format applies to both. The

coding format is described below.

1. A symbol or label can be specified using alphanumeric characters, special characters, under-

line (_) and question mark (?). The first character must be an alphabetic or special character.

CHAPTER 3. Source Program Coding Method

2 - 9

2. Reserved words cannot be used as names. PRE77 processes register names, flag names,

op-code, pseudo instruction and operand description instructions (including DP, DT, LG) as

reserved words.

3. Uppercase and lowercase are distinguished. Therefore, “BIG” and “Big” are recognized as

different names.

4. A label or symbol may be no more than 255 characters long.

5. The following labels beginning with ‘..’ (two periods) must not be used because they are

labels generated by PRE77. Other labels beginning with ‘..’ must also be avoided because

they may be used by PRE77 or RASM77 in the future.

• ..D0 to ..D65535

• ..F0 to ..F65535

• ..I0 to ..I65535

• ..S0 to ..S65535

6. When coding a label, it must be followed immediately by a colon (:). However, a warning is

issued if a colon is coded immediately after a symbol.

3.3.2 Op-code/Pseudo Instruction Field

A 7700 Family instruction mnemonic or a pseudo instruction is specified in the op-code/pseudo

instruction field. The specification format is described below.

1. No distinction is made between uppercase and lowercase characters for instruction mne-

monic and pseudo instructions. Thus, both “NOP” and “nop” mean the same.

3.3.3 Operand Field

The target of instruction or pseudo instruction is specified in the operand field. The specification

format is described below.

1. If there are two or more operand data, they must be delimited by comma (,).

2. Space or tab code may be specified on either side of a comma.

3.3.4 Comment Field

Any user information may be specified in the comment field. The specification format is described

below.

1. A comment field must begin with a semicolon (;).

2. Any character may be used in the comment field.

3.3 Field Coding Method

2 - 10

3.4 Operand Field Coding Method

3.4.1 Data Format

Operand field may be specified with data in any of the following four data formats:

1. Numeric constant

• A numeric constant can be specified as a positive or negative value by using the ‘+’ or ‘-’

operator as prefix. If neither ‘+’ nor ‘-’ is specified, the numeric constant is processed as a

positive value.

• A binary, octal, decimal or hexadecimal number may be specified as a numeric constant.

• When specifying a binary numeric constant, the value must be followed by ‘B’ or ‘b’.

Example: DATA .EQU 100110B

• When specifying an octal numeric constant, the value must be followed by ‘O’ or ‘o’.

Example: DATA .EQU 70o

• When specifying a decimal numeric constant, only an integer value can be specified.

Example: DATA .EQU 100

• When specifying a hexadecimal numeric constant, the value must be followed by ‘H’ or ‘h’. If

the hexadecimal value begins with an alphabetic character (A to F), 0 must be specified at

the beginning.

Example 1: .EQU 64H

Example 2: .EQU 0ABH

2. Character string constant

• Any ASCll code character may be used in a character string constant.

• Character string constant must be enclosed between single quotes (‘ ’) or double quotes (“ ”).

Example: CHAR .EQU 'A' Sets 41H.

3. Label or symbol

• A label normally indicates an address, but they do not have any value because PRE77 does

not process labels. A symbol has a 32 bit data value.

4. Expression

• Numeric expression can be specified as a combination of operators, numeric constants,

character string constants, labels or symbols.

• An expression is calculated from left to right. (No operator priorities are recognized.)

Example 1: 2*3 => Result is 6.

Example 2: 2+6/2 => Result is 4.

Table 3.1 lists the operators that may be used with PRE77.

CHAPTER 3. Source Program Coding Method

2 - 11

Table 3.1 List of Operators

Operator 1 Description

+ Addition

- Subtraction

Multiplication

/ Division

% Remainder of division

<< Left shift

>> Right shift

& Logical AND on bits

| Logical OR on bits

^ Logical exclusive-OR on bits

+ Unary operator specifying a positive number

- Unary operator specifying a negative number

~ Unary operator specifying bit inversion

BANK3 Unary operator to extract high-order 8 bits of label or symbol

OFFSET3 Unary operator to extract low-order 16 bits of label or symbol

Note:

1. Operation is executed from left to right. (No operator priorities are recognized.)

Example 1: 2+6/2 => Result is 4.

Example 2: 2*3 => Result is 6.

2. Multiple unary operators written in one line are not accepted.

3.4 Operand Field Coding Method

*

2 - 12

CHAPTER 4

Structured Preprocessor Instructions

4.1 Function of Structured Instructions

Structured instructions enable the use of structured programming statements such as if and for

rather than goto type statements such as assembly language branch and jump instructions. With

structured programming, there is no need to search for branch destination.

4.2 Statement Types

The structured preprocessor language consists of the following seven types of statements. Append-

ing “l” or “ll” results in corresponding long branch. The details of each statement is described in

Appendix B.

1. Assignment statement

Assigns the right hand term to the left hand term.

2. if - (l(l))else - endif statement

3. lif - (l(l))else - endif statement

4. llif - (l(l))else - endif statement

The if statement changes the flow of control into two separate directions determined by the

condition expression.

5. for - next statement

6. lfor - next statement

7. llfor - next statement

The for statement controls program loop and repeats a group of statements while the speci-

fied condition is true.

8. do - while statement

9. ldo - while statement

10. lldo - while statement

The do statement repeats a group of statements while the specified condition is true.

CHAPTER 4. STRUCTURED PREPROCESSOR INSTRUCTIONS

2 - 13

11. switch - case - ends statement

12. lswitch - case - ends statement

13. llswitch - case - ends statement

The switch statement passes control to one of several statements according to the value of

the condition expression.

14. break statement

15. lbreak statement

16. llbreak statement

The break statement stops execution of for, do, or switch construct and passes control to the

next statement.

17. continue statement

18. lcontinue statement

19. llcontinue statement

The continue statement creates a dummy null statement at the end of the innermost for or do

construct containing the continue statement and passes control to that statement.

20. goto statement

21. lgoto statement

22. llgoto statement

The goto statement causes an unconditional jump to any address that is explicitly indicated

in the program.

4.3 Statement Types

2 - 14

4.3 Coding Rules

The rules for coding in structured preprocessor language are described below.

1. When coding memory that is referenced in each 7700 Family addressing mode in the condi-

tion expression of assignment statement or control statements (such as if), it must be en-

closed in “[]” or “{ }”.

Example 1:
[WORK] = 10

Example 2:
if [WORK]

 :

else

 :

endif

2. When coding any bit that can be referenced by a bit symbol in the condition expression of

assignment statement or control statements (such as if), it must be enclosed in “[]” or “{ }”.

However, the following reserved words are provided to reference an accumulator bit. In this

case, the “[]” or “{ }” are not necessary. Furthermore, no distinction is made between

uppercase and lowercase characters. Therefore, BIT_A0 and bit_a0 are both valid. Table 4.1

shows the accumulator bit reference reserved words.

Table 4.1 Accumulator Bit Reference Reserved Words

BIT_A0 Accumulator A bit 0 BIT_B0 Accumulator B bit 0

BIT_A1 Accumulator A bit 1 BIT_B1 Accumulator B bit 1

BIT_A2 Accumulator A bit 2 BIT_B2 Accumulator B bit 2

BIT_A3 Accumulator A bit 3 BIT_B3 Accumulator B bit 3

BIT_A4 Accumulator A bit 4 BIT_B4 Accumulator B bit 4

BIT_A5 Accumulator A bit 5 BIT_B5 Accumulator B bit 5

BIT_A6 Accumulator A bit 6 BIT_B6 Accumulator B bit 6

BIT_A7 Accumulator A bit 7 BIT_B7 Accumulator B bit 7

BIT_A8 Accumulator A bit 8 BIT_B8 Accumulator B bit 8

BIT_A9 Accumulator A bit 9 BIT_B9 Accumulator B bit 9

BIT_A10 Accumulator A bit 10 BIT_B10 Accumulator B bit 10

BIT_A11 Accumulator A bit 11 BIT_B11 Accumulator B bit 11

BIT_A12 Accumulator A bit 12 BIT_B12 Accumulator B bit 12

BIT_A13 Accumulator A bit 13 BIT_B13 Accumulator B bit 13

BIT_A14 Accumulator A bit 14 BIT_B14 Accumulator B bit 14

BIT_A15 Accumulator A bit 15 BIT_B15 Accumulator B bit 15

A bit symbol is defined with the pseudo instruction “.EQU”. This line is output as a command

line to the RASM77 assembler file. However, RASM77 coding lines are passed to RASM77

to be processed. PRE77 processes only pseudo instruction “.EQU” that is coded in the

following format.

CHAPTER 4. STRUCTURED PREPROCESSOR INSTRUCTIONS

2 - 15

Example 1: In the case of memory bit

BITSYM .EQU 1,1000h ; Defines a bit symbol

if [DP:BITSYM]

:

else

:

endif

Example 2: In the case of accumulator bit

if BIT_A0

 :

else

 :

endif

if BIT_B3

 :

else

 :

endif

3. 7700 Family registers are coded as follows in the condition expression of assignment state-

ment or each control statement (such as if statement). No distinction is made between

uppercase and lowercase characters so that A and a are both valid.

A Accumulator A B Accumulator B

X Index register X Y Index register Y

S Stack pointer DPR Direct page register

DT Data bank register PS Processor status register

4. The flags in 7700 Family status registers are coded as follows in the condition expression of

assignment statement or each control statement (such as if statement). No distinction is

made between uppercase and lowercase characters so that C and c are both valid.

C Carry flag Z Zero flag

I Interrupt disable flag D Decimal operation mode flag

XF Index register length selection flag M Data length selection flag

V Overflow flag N Negative flag

IPL Processor interrupt level

4.3 Coding Rules

2 - 16

Example 1:
C = 1

Example 2:
if C == 0

 :

else

 :

endif

5. PRE77 treats the following coding (forward reference) as label (expand into LDA instruction).

Therefore, if “BITSYM” is later defined as bit symbol, the expanded code will not match (this

results in PRE77 error). In this case, rewrite the program to define the bit symbol (BITSYM)

before it is referenced.

Example:
if [BITSYM]

 :

else

 :

endif

 :

BITSYM .EQU 1,10h

6. In the following code, PRE77 passes the pseudo instruction “.DEFINE” to RASM77 without

processing. Therefore, if a character string defined as character string appears in a struc-

tured preprocessor code, it is treated as a normal character string. In this case RASM77

outputs an error for “OTHER”.

Example:
OTHER .DEFINE else

 :

if BIT_A0

 :

OTHER

 :

endif

Refer to Appendix B for details concerning structure proprocessor instructions.

CHAPTER 4. STRUCTURED PREPROCESSOR INSTRUCTIONS

2 - 17

7. PRE77 generates the following labels when converting structured preprocessor codes to

RASM77. The user must not use these labels.

An error will occur if the number of labels exceeds the allowed maximum (65535). Table 4.2

shows the labels generated by PRE77.

Table 4.2 List of Generated Labels

..D0 - ..D65535 labels for do - while

..F0 - ..F65535 labels for for - next

..I0 - ..I65535 labels for if - else - endif

..S0 - ..S65535 labels for switch - case - ends

8. Structured preprocessor instructions that generate branch instructions produce different branch

instruction according to the instruction in order to use memory efficiently. Table 4.3 shows

the generated branch instructions.

Table 4.3 List of Generated Branch Instructions

Control Statement Generated Instruction Instruction Length

if,for,do,switch,break, BRA 2

continue,goto

lif,lfor,ldo,lswitch,lbreak, BRAL 3

lcontinue,lgoto

llif,llfor,lldo,llswitch, JMPL 4

llbreak,llcontinue,llgoto

9. Macro arguments cannot be coded as the operand of the following pseudo instructions or

structured preprocessor instructions because PRE77 does not perform macro expansion.

• Operand of .INDEX

• Operand of .DATA

• Operand of .EQU

• Condition expression of structured command

• CASE constant

10. When converting a condition expression to assembly language, a code using register A may

be generated. Note that the following code will result in code using register A.

• When condition expression is coded only with memory variable or memory bit variable.

Example:
if [MEM]

jar sub1

endif

• Memory bit variable assignment statement is coded in absolute long addressing mode.

4.3 Coding Rules

2 - 18

11. Assembly language instruction using register A will be generated if an expression containing

X and Y registers is coded.

12. PRE77 does not process the macro instruction itself. Therefore, structured descriptions

using macro arguments cannot be processed correctly.

13. The codes generated when writing multiply/divide instructions in the structured description

language are processed using the data length that is set in the 7700 family's data length

select flag. Consequently, the 8 or 16 high-order bits of the operation result are not taken

into account. For example, when using the value of 8 or 16 high-order bits derived from a

multiply operation, write an instruction to store the content of the B register in memory

immediately after the line where the multiply instruction is written, as shown below.

.data 16
mem1: .blkw 2
mem2: .blkw 1
mem3: .blkw 1

[mem1] = [mem2] * [mem3]
[mem1+2] = B

CHAPTER 4. STRUCTURED PREPROCESSOR INSTRUCTIONS

2 - 19

4.4 Operators in Structured Instruction

Table 4.4 shows the operators that can be used in structured preprocessor instructions.

Table 4.4 List of Operators that can be Used in Structured Instructions

Type Operator Description

Unary + Indicates a positive number

Operator - Indicates a negative number

~ Takes the complement of 1

++ Increment

-- Decrement

Diadic + Addition

Operator - Subtraction

Multiplication

/ Division

% Modulo division

& Logical AND on bits

| Logical OR on bits

^ Logical exclusive OR on bits

&& Logical AND

|| Logical OR

<< Shift left

>> Shift right

Comparison > Less than

Operator < Greater than

== Equal

!= Not equal

<= Less than or equal

>= Greater than or equal

4.4 Operators in Structured Instruction

*

2 - 20

Note:

1. All operations that generate the 7700 Family instructions are processed as unsigned numeric

values, and the bit lengths are processed using the bit length that is specified by ".DATA" or

".INDEX" when the processing is performed. However, if the result of an operation (only + or -) is

subjected to comparison, etc, whether the result has overflowed is not taken into account. There-

fore, when performing a comparison of whether large or small as shown below, be careful not to

cause an overflow. (In the example below, if the content of work is FE16, the operation results in

0016, so that conditions are not met.)

Example:
.DATA 16

if [work] + 2 > 10

:

else

:

endif

2. Several if statements can be grouped using diadic operators “&&” or “||”.

Example:
if [WORK] if [WORK] && [WORK2]

 if [WORK2] :

: :

 endif :

endif endif

4.5 Structured Instructions in Macros

Structured instructions are allowed within macros. In this case, the labels generated by the struc-

ture preprocessor within macro definition are defined as macro local labels with the “.LOCAL”

instruction.

PRE77 also generates codes for structured instructions within user macro definitions, but does not

perform macro expansion.

4.6 RASM77 Instruction Lines, Pseudo Instruction Lines

PRE77 outputs RASM77 instruction lines and pseudo instruction lines to the RASM77 assembly

source file without any change. Therefore, these lines are not checked for errors.

CHAPTER 4. STRUCTURED PREPROCESSOR INSTRUCTIONS

2 - 21

CHAPTER 5

Pseudo Instructions

5.1 Function of Pseudo Instructions

Pseudo instructions instruct the preprocessor or assembler to generate the target machine instruc-

tion data1.

The pseudo instructions that can be coded in source program using the structure preprocessor

language are the same as those allowed for RASM77. However, PRE77 processes only the follow-

ing pseudo instructions. The functions of pseudo instructions processed by PRE77 are not neces-

sary the same as that for RASM77.

1. Preprocessor control

.CLINE .DATA.END .ENDFUNC .EQU

.FUNC .INCLUDE .INDEX .SECTION .SOURCE

5.2 Preprocess Control

PRE77 processes pseudo instructions to control the preprocessing operation. Therefore, the func-

tions of the pseudo instructions are not necessary the same as that for RASM77.

.CLINE

Defines line numbers necessary for source level debugging.

.DATA

Declares the default value of the data length selection flag (m).

.END

Declares the end of preprocess. PRE77 does not process lines following this line.

1 Pseudo instructions that specify the default value to assembler are referred to as “declaration” and pseudo

instructions that affect the output file are referred to as “specification”.

5.1 Function of Pseudo Instructions

2 - 22

.EQU

Sets a numeric value (double word) to a symbol.

.FUNC .ENDFUNC

Declares the start and end of function necessary for source level debugging. These pseudo

instruction are generated by PRE77.

.INCLUDE

Loads another file in place of this pseudo instruction. This pseudo instruction is used to

divide large source program into manageable sections. PRE77 allows this pseudo instruction

to be nested up to 9 levels.

.INDEX

Declares the default value of the index register length flag (x).

.SECTION

Specifies the name of the program section following this line. This pseudo instruction must

be used to specify the section name before starting a program.

.SOURCE

Decalres the source file name necessary for source level debugging. This pseudo instruction

is generated by PRE77.

CHAPTER 5. PSEUDO INSTRUCTIONS

2 - 23

CHAPTER 6

Operation

6.1 Starting PRE77

Before PRE77 can be executed, the following information (input parameters) must be input:

1. Structured preprocessor source program filename (required)

2. Command parameters

6.2 Input Parameters

6.2.1 Source Filename

1. The name of the source file to be processed by the structured preprocessor is specified.

Source filename must always be specified. Only one source filename may be specified.

2. If the file extension (.P77) is omitted, .P77 is selected as default.

3. By specifying a full filename, files with other file extensions can be processed by PRE77.

However, an error will occur if ‘.A77’ is specified as the file extension because PRE77 uses

‘.A77’ as the extension of the generated files.

4. Filename can be specified with directory path. If only filename is specified, PRE77 processes

a file in the current drive’s current directory. The following example shows an example of

assembling TEST.P77 in directory WORK on drive C.

Example: A>PRE77 C:\WORK\TEST<RET>

6.2.2 Command Parameters

1. Command parameters may be specified in either uppercase or lowercase.

2. The same command parameter may be specified more than once. Each parameter must be

delimited by a space.

Table 6.1 summarizes the functions of command parameters.

6.1 Starting PRE77

2 - 24

Table 6.1 List of Command Parameters

Command parameter Description

-. Suppresses output of all messages to the screen.

-C Performs processing to enable source level debugging of structured preprocessor

instructions.

-E Creates a TAG file when an error occurs.

With the PC version, the program specified immediately after this option is started

using the tag file as argument.

With the UNIX version, an error occurs if anything is specified immediately after

this option.

-L When the structured instruction is converted into the assembly instructions, labels

are generated for the operand of the branch instruction. If it is no specification, a

relative address value is generated for the operand of the branch instruction.

-O Specifies the output destination path for the file to be created.

The full path must be specified.

-RASM77 Starts RASM77 after the preprocessor terminates.

The string specified after this command parameter is passed to RASM77 as

command parameters.

The following example starts RASM77 after processing “SAMPLE.P77” and obtains

the print file output by RASM77.

A>PRE77 SAMPLE -RASM77 -L

The -C parameter is automatically specified when RASM77 is started by PRE77.

-S The comment which shows to converted the structured instruction into the assem-

bly language are output.

-V The version No. of PRE77 is output to the screen and the command is terminated.

Note:

1. If the "-O" option is not specified, PRE77 generates the assembly file in the directory where

the structured description source exists.

CHAPTER 6. OPERATION

2 - 25

6.3 Input Method

PRE77 is started by entering a command line after the MS-DOS prompt. Figure 6.1 illustrates entry

of PRE77 startup command. If there is an error in the command line, a help screen shown in Figure

6.2 is output and the preprocessor is canceled.

A>PRE77 TESTNAME -C <RET>

 ↑ ↑
Name of source Command parameters

to be reprocessed

Figure 6.1 Example of PRE77 Startup Command Line

7700 Family PREPROCESSOR V.5.00.00

Copyright 1998, MITSUBISHI ELECTRIC CORPORATION

AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION

All Rights Reserved.

Usage: pre77 <filename> [-.][-e][-o][-rasm77 <rasm77 options>]

 -. : all messages suppressed

 -c : source line information output to .A77 file

 -e : make tag file and start editor (syntax -e or -eEDITOR_NAME)

 -o : select drive and directory for output (syntax -oA:\WORK)

 -l : make structured label

 -s : structured block message output to .a77 file

 -v : pre77 version display

 -rasm77 : rasm77 option select

Figure 6.2 PC Version Help Messages

6.3 Input Method

2 - 26

6.4 Errors

6.4.1 Error Types

The following types of errors may occur during execution of PRE77:

1. OS errors

Errors related to theenvironment in which PRE77 is executed. These errors include disk and

memory shortages.

2. PRE77 command line input errors

These are the errors in PRE77 startup command line input.

3. Preprocessor source file contents errors

These are errors in the contents of the source file being preprocessed (including files in-

cluded with the pseudo instruction .INCLUDE).

When PRE77 detects an error, it outputs error information in the format shown in Figure 6.3.

7700 Family PREPROCESSOR V.5.00.00

Copyright 1998, MITSUBISHI ELECTRIC CORPORATION

AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION

All Rights Reserved.

now processing (SAMPLE.P77) ← Name of file to be processed.
----*----*-- ← Indicates the processing progress with '-' for every 100 lines

and '*' for every 500 lines.)
if

SAMPLE.P77 1240 (TOTAL LINE 1240) Error 8: Questionable syntax

Figure 6.3 Error Display Example

6.4.2 Error Information

Information about the errors and warnings generated when executing PRE77 is output to the

assembly source file that is generated by PRE77.

CHAPTER 6. OPERATION

2 - 27

6.5 Return Values to OS

PRE77 returns the error level shown in Table 6.2 to indicate the execution result to OS.

Table 6.2 Listing of Error Levels

Error level Execution result

0 Normal termination

1 Preprocessor source file contents error

2 PRE77 command input error

3 OS error

4 Force termination by ^C (control C)

6.6 Environment Variables

PRE77 uses the following MS-DOS environment variables:

1. TMP77

This variable specifies the name of the directory in which temporary files are created during

preprocessing. If this environment variable is not set, the temporary files are created in the

current directory.

2. INC77

This variable specifies the directory of the files included during preprocessing. If the file

specified with the .INCLUDE pseudo instruction cannot be found, it is loaded from this

directory. However, this environment variable is ignored if the “.INCLUDE” operand specifies

a path.

3. BIN77

This variable specifies the directory in which RASM77 is searched when RASM77 is started

from the preprocessor. If RASM77 is not in the current directory, the directory specified with

this environment variable is searched.

6.4 Return Values to MS-DOS

2 - 28

APPENDIX A

Error Messages

A.1 System Error Messages

When a system error is detected during preprocessing, PRE77 outputs an error message on the

screen and cancels processing. Table A.1 lists the system error messages.

Table A.1 List of System Error Messages

Error Message Description and User Action

Usage:pre77..... Command input is invalid.

⇒ Check the HELP screen, and reenter the command.

Can’t open xxx File cannot be found.

⇒ Check the source filename, and reenter correctly.

Can’t create xxx File cannot be created.

⇒ Check the -o parameter specification, and reenter

correctly.

Out of disk space Disk space is insufficient for file output.

⇒ Provide sufficient free space on the disk.

Can’t find rasm77 RASM77.EXE cannot be found.

⇒ Copy RASM77.EXE to the current directory or a di-

rectory specified by MS-DOS command path.

Can’t find command.com for execute xxx COMMAND.COM file necessary to start the editor speci-

fied by the -E option cannot be found.

⇒ Check MS-DOS command path specification.

Out of heap space Memory space is insufficient to execute PRE77.

⇒ Reduce the number of symbols or labels.

APPENDIX A. ERROR MESSAGES

2 - 29

A.2 Preprocessor Error Messages

When a preprocessor error is detected, an error message is output on the screen. Table A.2 lists

the preprocessor error messages.

Table A.2 List of Preprocessor Error Messages

Error no. Error message Description

1 Division by 0 A division by 0 is performed.

⇒ Check the coding of expressions.

2 Nesting error Nesting level exceeds the allowed maximum.

⇒ Change the program and reduce the number of nests

to within the allowed levels.

3 No ‘;’ at the top of comment There is no ‘;’ in the comment field.

⇒ Code a ‘;’ at the beginning of the comment field.

4 Operand is expected A required operand is missing.

⇒ Check the operand coding.

5 Questionable syntax There is an error in the mnemonic coding.

⇒ Check the mnemonic coding.

6 Label or symbol is reserved word A reserved word is used as label or symbol.

⇒ Change the label or symbol.

7 Value is out of range The value exceeds the allowed limit.

⇒ Check the operand coding.

A.2 Preprocessor Error Messages

2 - 30

Error no. Error message Description

8 ELSE not associated with IF There is no IF statement corresponding to an ELSE

statement.

⇒ Check the program.

9 ENDIF not associated with IF There is no IF statement corresponding to an ENDIF

statement.

⇒ Check the program.

10 NEXT not associated with FOR There is no FOR statement corresponding to a NEXT

statement.

⇒ Check the program.

11 WHILE not associated with DO There is no DO statement corresponding to a WHILE

statement.

⇒ Check the program.

12 ENDS not associated with SWITCH There is no ENDS statement corresponding to a SWITCH

statement.

⇒ Check the program.

13 BREAK not inside FOR, DO or The location of the BREAK statement is invalid.

SWITCH ⇒ Check the program.

14 CONTINUE not inside FOR or DO The location of the CONTINUE statement is invalid.

⇒ Check the program.

15 CASE not inside SWITCH The CASE statement is outside the scope of SWITCH

statement.

⇒ Check the program.

16 DEFAULT not inside SWITCH The DEFAULT statement is outside the scope of

SWITCH statement.

⇒ Check the program.

17 Duplicate CASE value The same value is duplicated as CASE value.

⇒ Check the program.

18 More than one DEFAULT There is more than one DEFAULT in a SWITCH con-

struct.

⇒ Check the program.

19 Bit length is different type The data cannot be processed with the bit length speci-

fied with .INDEX or .DATA.

⇒ Change the bit length.

APPENDIX A. ERROR MESSAGES

2 - 31

Error no. Error message Description

20 Label or symbol is multiple defined The same symbol is defined more than once with the

pseudo instruction .EQU.

⇒ Check the program.

21 No .END statement There is no pseudo instruction .END in the source file.

⇒ Code .END in the source file.

22 Illegal assign An invalid assignment statement.

⇒ Check the program.

23 No endif statement There is no endif statement corresponding to an if state-

ment.

⇒ Check the program.

24 No next statement There is no next statement corresponding to a for state-

ment.

⇒ Check the program.

25 No while statement There is no while statement corresponding to a do

statement.

⇒ Check the program.

26 No ends statement There is no ends statement corresponding to a switch

statement.

⇒ Check the program.

27 can’t include .a77 file The extension of the specified include file is .a77.

⇒ Specify extension other than .a77 for an include file.

28 .ENDM not associated with macro The ".ENDM" for the macro instruction is not written.

⇒ Write ".ENDM."

29 No .SECTION statement The ".SECTION" instruction is preceded by a statement

that generates instruction code.

⇒ Write ".SECTION" before a statement to generate

instruction code.

A.2 Preprocessor Error Messages

2 - 32

A.3 Warning Messages

When a warning condition is detected, a warning message is output to the screen. Table A.3 shows

a list of possible warning messages.

Table A.3 List of Warning Messages

Warning no. Warning message Description

1 Statement has not effect The statement is meaningless.

2 Not CASE values for SWITCH There is no CASE statement within a SWITCH

statement construct.

3 Statement not preceded by There is an instruction before a CASE or

CASE or DEFAULT DEFAUT statement in a SWITCH construct.

4 .EQU operand is not symbol The operand of an .EQU instruction is not a symbol.

5 .END statement in include file The pseudo instruction .END is coded in an include file.

6 Different DATA or INDEX length The bit length specified with .DATA or .INDEX does not

match the actual length.

APPENDIX A. ERROR MESSAGES

2 - 33

APPENDIX B

Structured Preprocessor Instructions

B.1 Conventions

The structured instructions available with RASM77 are listed below in alphabetical order. The

following conventions are used in describing each pseudo instruction:

1. Space or tab code is indicated by ▲▲ or ▲. ▲▲ is a required space or tab code, and ▲ is an

optional space or tab code.

2. A colon (:) is required when specifying a label.

B.2 Structured Preprocessor Instructions

B.1 Conventions

2 - 34

BREAK BREAK statement

Format:

▲[label:]▲BREAK

Description:

• The break statement stops execution of the corresponding for, do or switch statement and

passes control to the next statement.

• It can be use only within a for, do, or switch construct.

• A relative address branch instruction BRA is generated.

Example:

 for [flag1]
 if [flag2]
 break
 endif
 jsr output
 next

APPENDIX B. STRUCTURED PREPROCESSOR INSTRUCTIONS

2 - 35

CONTINUE CONTINUE statement

Format:

▲[label:]▲CONTINUE

Description:

• The continue statement creates a dummy null statement at the end of the innermost for or do

construct containing this statement and passes control to that statement.

• It can be use only within a for or do construct.

• A relative address branch instruction BRA is generated.

Example:

 for [flag1]
 if [flag2]
 continue
 endif
 jsr output
 next

B.2 Structured Preprocessor Instructions

2 - 36

DO - WHILE DO statement

Format:

▲[label:]▲DO

<statement>

▲[label:]▲WHILE▲▲condition-expression

Description:

• The do statement repeats a group of statements while the specified condition-expression is

true. The decision to repeat or not is made after executing the statement. Therefore, the do

statement is useful in cases where the repeated statements are to be executed once more

after the condition is satisfied.

• An endless loop is formed if “ever” is specified as the condition expression.

• Refer to the syntax diagram for the details concerning the condition expression.

Example:

 do
 jsr output
 while [flag]

APPENDIX B. STRUCTURED PREPROCESSOR INSTRUCTIONS

2 - 37

FOR - NEXT FOR statement

Format:

▲[label:]▲FOR▲▲condition-expression

<statement>

▲[label:]▲NEXT

Description:

• The for statement repeats a group of statements while the specified condition expression is

true.

• An endless loop is formed if “ever” is specified as the condition expression.

• Refer to the syntax diagram for the details concerning the condition expression.

Example:

 for [flag]
 jsr output
 next

B.2 Structured Preprocessor Instructions

2 - 38

APPENDIX B. STRUCTURED PREPROCESSOR INSTRUCTIONS

GOTO GOTO statement

Format:

▲[label:]▲GOTO

Description:

• The goto statement causes an unconditional jump to any address that is explicitly indicated

in the program.

• This statement can be written at any position in the program.

• Use a label to specify the jump address.

• Relative address branch instruction BRA is generated.

Example:

for [flag1]
if [flag2]

goto LAB1
endif
jsr output

LAB1:
jsr inout

next

2 - 39

IF - (ELSE) - ENDIF IF statement

Format:

▲[label:]▲IF▲▲condition-expression

<statement>

▲[[label:]▲ELSE]

<statement>

▲[label:]▲ENDIF

Description:

• The if statement changes the flow of control into two directions. The branch direction is

determined by the condition expression. The branch is made according to whether the condi-

tion expression results in zero (false) or non-zero (true). If true, the immediately following

instruction is executed, if false, the instruction following else is executed if else is coded or

instruction following endif is executed if else is not coded.

• The else part may be omitted.

• There is no limit to the if statement nesting level.

• When if statements are nested, the closest if and else statements are paired.

• Refer to the syntax diagram for the details concerning the condition expression.

Example:

 if [flag]
 [work] = 1
 else
 [work] = 2
 endif

B.2 Structured Preprocessor Instructions

2 - 40

APPENDIX B. STRUCTURED PREPROCESSOR INSTRUCTIONS

LBREAK LBREAK statement

Format:

▲[label:]▲LBREAK

Description:

• The lbreak statement stops execution of the corresponding for, do or switch construct and

passes control to the next statement.

• It can be use only within a for, do, or switch construct.

• A relative address branch instruction BRAL is generated.

Example:

 for [flag1]
 if [flag2]
 lbreak
 endif
 jsr output
 next

2 - 41

LCONTINUE LCONTINUE statement

Format:

▲[label:]▲LCONTINUE

Description:

• The lcontinue statement creates a dummy null statement at the end of the innermost for or

do construct containing this statement and passes control to that statement.

• It can be use only within a for or do construct.

• A relative address branch instruction BRAL is generated.

Example:

 for [flag1]
 if [flag2]
 lcontinue
 endif
 jsr output
 next

B.2 Structured Preprocessor Instructions

2 - 42

APPENDIX B. STRUCTURED PREPROCESSOR INSTRUCTIONS

LDO - WHILE LDO statement

Format:

▲[label:]▲LDO

<statement>

▲[label:]▲WHILE▲▲condition-expression

Description:

• The ldo statement repeats a group of statements while the specified condition-expression is

true. The decision to repeat or not is made after executing the statement. Therefore, the ldo

statement is useful in cases where the repeated statements are to be executed once more

after the condition is satisfied.

• An endless loop is formed if “ever” is specified as the condition expression.

• Refer to the syntax diagram for the details concerning the condition expression.

Note:

• The generated branch instruction BRA is output as BRAL.

Example:

 ldo
 jsr output
 while [flag]

2 - 43

B.2 Structured Preprocessor Instructions

LFOR - NEXT LFOR statement

Format:

▲[label:]▲LFOR▲▲condition-expression

<statement>

▲[label:]▲NEXT

Description:

• The lfor statement repeats a group of statements while the specified condition expression is

true.

• An endless loop is formed if “ever” is specified as the condition expression.

• Refer to the syntax diagram for the details concerning the condition expression.

Note:

• The generated branch instruction BRA is output as BRAL.

Example:

 lfor [flag]
 jsr output
 next

2 - 44

APPENDIX B. STRUCTURED PREPROCESSOR INSTRUCTIONS

LGOTO LGOTO statement

Format:

▲[label:]▲LGOTO

Description:

• The lgoto statement causes an unconditional jump to any address that is explicitly indicated

in the program.

• This statement can be written at any position in the program.

• Use a label to specify the jump address.

• Relative address branch instruction BRAL is generated.

Example:

for [flag1]
if [flag2]

lgoto LAB1
endif
jsr output

LAB1:
jsr inout

next

2 - 45

LIF - (LELSE) - ENDIF LIF statement

Format:

▲[label:]▲LIF▲▲condition-expression

<statement>

▲[[label:]▲LELSE]

<statement>

▲[label:]▲ENDIF

Description:

• The lif statement changes the flow of control into two directions. The branch direction is

determined by the condition expression. The branch is made according to whether the condi-

tion expression results in zero (false) or non-zero (true). If true, the immediately following

instruction is executed, if false, the instruction following lelse is executed if lelse is coded or

instruction following endif is executed if lelse is not coded.

• The lelse part may be omitted.

• There is no limit to the lif statement nesting level.

• When lif statements are nested, the nearest lif and lelse statements are paired.

• Refer to the syntax diagram for the details concerning the condition expression.

Note:

• The generated branch instruction BRA is output as BRAL.

Example:

 lif [flag]
 [work] = 1
 lelse
 [work] = 2
 endif

B.2 Structured Preprocessor Instructions

2 - 46

LLBREAK LLBREAK statement

Format:

▲[label:]▲LLBREAK

Description:

• The llbreak statement stops execution of the corresponding for, do or switch construct and

passes control to the next statement.

• It can be use only within a for, do, or switch construct.

• A relative address branch instruction JMPL is generated.

Example:

 for [flag1]
 if [flag2]
 llbreak
 endif
 jsr output
 next

APPENDIX B. STRUCTURED PREPROCESSOR INSTRUCTIONS

2 - 47

LLCONTINUE LLCONTINUE statement

Format:

▲[label:]▲LLCONTINUE

Description:

• The llcontinue statement creates a dummy null statement at the end of the innermost for or

do construct containing this statement and passes control to that statement.

• It can be use only within a for or do construct.

• A relative address branch instruction JMPL is generated.

Example:

 for [flag1]
 if [flag2]
 llcontinue
 endif
 jsr output
 next

B.2 Structured Preprocessor Instructions

2 - 48

LLDO - WHILE LLDO statement

Format:

▲[label:]▲LLDO

<statement>

▲[label:]▲WHILE▲▲condition-expression

Description:

• The lldo statement repeats a group of statements while the specified condition-expression is

true. The decision to repeat or not is made after executing the statement. Therefore, the lldo

statement is useful in cases where the repeated statements are to be executed once more

after the condition is satisfied.

• An endless loop is formed if “ever” is specified as the condition expression.

• Refer to the syntax diagram for the details concerning the condition expression.

Note:

• The generated branch instruction BRA is output as JMPL.

Example:

 lldo
 jsr output
 while [flag]

APPENDIX B. STRUCTURED PREPROCESSOR INSTRUCTIONS

2 - 49

LLFOR - NEXT LLFOR statement

Format:

▲[label:]▲LLFOR▲▲condition-expression

<statement>

▲[label:]▲NEXT

Description:

• The llfor statement repeats a group of statements while the specified condition expression is

true.

• An endless loop is formed if “ever” is specified as the condition expression.

• Refer to the syntax diagram for the details concerning the condition expression.

Note:

• The generated branch instruction BRA is output as JMPL.

Example:

 llfor [flag]
 jsr output
 next

B.2 Structured Preprocessor Instructions

2 - 50

APPENDIX B. STRUCTURED PREPROCESSOR INSTRUCTIONS

LLGOTO LLGOTO statement

Format:

▲[label:]▲LLGOTO

Description:

• The llgoto statement causes an unconditional jump to any address that is explicitly indicated

in the program.

• This statement can be written at any position in the program.

• Use a label to specify the jump address.

• Relative address branch instruction JMPL is generated.

Example:

for [flag1]
if [flag2]

llgoto LAB1
endif
jsr output

LAB1:
jsr inout

next

2 - 51

LLIF - (LLELSE) - ENDIF LLIF statement

Format:

▲[label:]▲LLIF▲▲condition-expression

<statement>

▲[[label:]▲LLELSE]

<statement>

▲[label:]▲ENDIF

Description:

• The llif statement changes the flow of control into two directions. The branch direction is

determined by the condition expression. The branch is made according to whether the condi-

tion expression results in zero (false) or non-zero (true). If true, the immediately following

instruction is executed, if false, the instruction following llelse is executed if llelse is coded or

instruction following endif is executed if llelse is not coded.

• The llelse part may be omitted.

• There is no limit to the llif statement nesting level.

• When lif statements are nested, the nearest llif and llelse statements are paired.

• Refer to the syntax diagram for the details concerning the condition expression.

Note:

• The generated branch instruction BRA is output as JMPL.

Example:

 llif [flag]
 [work] = 1
 llelse
 [work] = 2
 endif

B.2 Structured Preprocessor Instructions

2 - 52

APPENDIX B. STRUCTURED PREPROCESSOR INSTRUCTIONS

SWITCH - CASE - ENDS SWITCH statement

Format:

▲[label:]▲SWITCH▲▲condition-expression

▲[label:]▲CASE▲▲constant

<statement>

▲[label:]▲CASE▲▲constant

<statement>

 :

▲[label:]▲DEFAULT

<statement>

▲[label:]▲ENDS

Description:

• The switch statement passes control to one of several statements according to the value of

the condition expression. The value of the expression is compared with the case constant at

the beginning of the statement and control is passed to the statement that matches. If there

is no case with matching value, control is passed to the default statement if it exists. If there

is no default statement, switch is exited without executing any statement.

• The default part may be omitted.

• After control is passed to the matching case statement, the subsequent case statements are

executed in sequence. The break, lbreak, or llbreak statement can be used to exit the switch

construct without executing the next case.

• Refer to the syntax diagram for the details concerning the condition expression and constant.

Note:

• Macro arguments cannot be coded in the condition expression of SWITCH or CASE con-

stant.

Example:

 switch [work]
 case 1
 jsr output1
 break
 case 2
 jsr output2
 break
 case 3
 jsr output3
 break
 default
 jsr output4
 ends

2 - 53

LSWITCH - CASE - ENDS LSWITCH statement

Format:

▲[label:]▲LSWITCH▲▲condition-expression

▲[label:]▲CASE▲▲constant

<statement>

▲[label:]▲CASE▲▲constant

<statement>

 :

▲[label:]▲DEFAULT

<statement>

▲[label:]▲ENDS

Description:

• The lswitch statement passes control to one of several statements according to the value of

the condition expression. The value of the expression is compared with the case constant at

the beginning of the statement and control is passed to the statement that matches. If there

is no case with matching value, control is passed to the default statement if it exists. If there

is no default statement, lswitch is exited without executing any statement.

• The default part may be omitted.

• After control is passed to the matching case statement, the subsequent case statements are

executed in sequence. The break, lbreak, or llbreak statement can be used to exit the lswitch

construct without executing the next case.

• Refer to the syntax diagram for the details concerning the condition expression and constant.

Note:

• If lswitch is coded, BRAL is generated by break.

• Macro arguments cannot be coded in the condition expression of SWITCH or CASE con-

stant.

Example:

 lswitch [work]
 case 1
 jsr output1
 break
 case 2
 jsr output2
 break
 case 3
 jsr output3
 break
 default
 jsr output4
 ends

B.2 Structured Preprocessor Instructions

2 - 54

APPENDIX B. STRUCTURED PREPROCESSOR INSTRUCTIONS

LLSWITCH - CASE - ENDS LLSWITCH statement

Format:

▲[label:]▲LLSWITCH▲▲condition-expression

▲[label:]▲CASE▲▲constant

<statement>

▲[label:]▲CASE▲▲constant

<statement>

 :

▲[label:]▲DEFAULT

<statement>

▲[label:]▲ENDS

Description:

• The llswitch statement passes control to one of several statements according to the value of

the condition expression. The value of the expression is compared with the case constant at

the beginning of the statement and control is passed to the statement that matches. If there

is no case with matching value, control is passed to the default statement if it exists. If there

is no default statement, llswitch is exited without executing any statement.

• The default part may be omitted.

• After control is passed to the matching case statement, the subsequent case statements are

executed in sequence. The break, lbreak, or llbreak statement can be used to exit the

llswitch construct without executing the next case.

• Refer to the syntax diagram for the details concerning the condition expression and constant.

Note:

• If llswitch is coded, JMPL is generated by break.

• Macro arguments cannot be coded in the condition expression of SWITCH or CASE con-

stant.

Example:

 llswitch [work]
 case 1
 jsr output1
 break
 case 2
 jsr output2
 break
 case 3
 jsr output3
 break
 default
 jsr output4
 ends

2 - 55

= Assignment statement

Format:

▲[label:]▲left-term▲=▲right-term

Description:

• The right term is assigned to the left term. Only numeric constant and symbol constant with

value of 0 or 1 can be assigned to memory bit variable, register bit variable, and flag variable.

• Refer to the syntax diagram for the details concerning the left and right terms.

Example:

 C = 0 ; Set carry flag to 0.
 BIT_A5 = 1 ; Set A register bit 5 to 1.
 [bit0] = 0 ; Set memory bit specified by bit0 to 0.
 [bit0] = 1 ; Set memory bit specified by bit0 to 1.
 X = Y ; Transfer the content of register Y to register X.
 [work] = 10 ; Transfer 10 to the memory specified by WORK.
 [work] = [work1] ; Transfer the content of memory specified by
 ; WORK1 to memory specified by WORK.

B.2 Structured Preprocessor Instructions

2 - 56

APPENDIX B. STRUCTURED PREPROCESSOR INSTRUCTIONS

B.3 Structured Preprocessor Instruction Syntax

Diagram

The syntax of structured instructions available with PRE77 is shown in the form of diagrams.

The following terms are used in the proceeding descriptions.

• Variable

A generic term for memory variable, memory bit variable, register variable, register bit variable, and

flag variable.

1. Memory variables

Any memory or stack that is referenced in each 7700 Family addressing mode. They must be

enclosed in “[]” or “{ }” when coding.

[ZZ] Direct [ZZ,X] Direct X

[ZZ,Y] Direct Y [(ZZ)] Direct indirect

[(ZZ,X)] Direct indirect X [(ZZ,Y)] Direct indirect Y

[HHLL] Absolute [HHLL,X] Absolute X

[HHLL,Y] Absolute Y [HHMMLL] Absolute long

[HHMMLL,X] Absolute long X [nn,S] Stack

[(nn,S),Y] Stack pointer relative indirect Y

2. Memory bit variable

Any bit referenced in 7700 Family bit addressing mode. It must be enclosed in “[]” or “{ }”

when coding. However, this variable must be defined prior to its reference with the pseudo

variable .EQU as follows:

Example:
BITSYM .EQU 1,1000H ; bit symbol definition

if [BITSYM] ; bit symbol reference
 :
else
 :
endif

3. Register variables

These variables refer to the various 7700 Family registers. These variables are reserved as

register names and should be codes as is. There is no need to enclose these variables in “[]”

or “{ }”. No distinction is made between uppercase and lowercase characters. Therefore, both

A and a are valid.

A Accumulator A B Accumulator B

X Index register X Y Index register Y

S Stack pointer PC Program counter

DT Data bank register DPR Direct page register

PS Processor status register

2 - 57

4. Register bit variables

Accumulator bits referenced in 7700 Family accumulator bit addressing mode. The following

names are reserved by PRE77. No distinction is made between uppercase and lowercase

characters. Therefore, both BIT_A0 and bit_a0 are valid.

Refer to table 4.1 for the list of reserved words.

5. Flag variables

These are the flags in the 7700 Family status register. The following names are reserved by

PRE77. No distinction is made between uppercase and lowercase characters. Therefore,

both C and c are valid.

C Carry flag Z Zero flag

I Interrupt disable flag D Decimal mode flag

XF Index register length selection flag M Data length selection flag

V Overflow flag N Negative flag

IPL Processor interrupt priority level

• WITH_C

Specifies an operation with carry. This is a reserved word. No distinction is made between upper-

case and lowercase characters. Therefore, both WITH_C and with_c are valid.

Example:
[work] = [work] << 2 with_c Shift left twice the content of work including

carry.

• EVER

Specifies an endless loop. This is a reserved word. No distinction is made between uppercase and

lowercase characters. Therefore, both EVER and ever are valid.

Example:
for ever ; loop endlessly

 :

next

• Constant

Generic term for numeric constant, character constant, symbol constants, and these combined with

instructions.

1. Numeric constant

Represents the number itself.

2. Character constant

The specified code is treated as ASCII code. It must be enclosed in single or double quotes

when coding.

3. Symbol constant

Specifies an alphanumeric character or a special symbol (*, _, ?, .). Refer to the syntax

diagram for the coding format.

• The coding formats of variables are shown below in the form of syntax diagram.

B.3 Structured Preprocessor Instruction Syntax Diagram

2 - 58

APPENDIX B. STRUCTURED PREPROCESSOR INSTRUCTIONS

■ Assignment statement

Memory variable = Expression 1

❍ Register variable assignment statement

Register variable A = Expression 1

Register variable B

Register variable X

Register variable Y

DPR

DT

S

PS

Register variable A=

Register variable B

Register variable X

Register variable Y

DPR

DT

S

PS

Constant

2 - 59

B.3 Structured Preprocessor Instruction Syntax Diagram

Register variable A = [S]

Register variable B

Register variable X

Register variable Y

DPR

DT

PS

❍ Memory bit variable assignment statement

Memory bit variable = 1

0

~ Memory bit variable that is the same as left them

Register bit variable = 1

0

~ Memory bit variable that is the same as left them

2 - 60

APPENDIX B. STRUCTURED PREPROCESSOR INSTRUCTIONS

❍ Flag variable assignment statement

C

Z

I

D

XF

M

V

N

= 1/0

❍ Stack frame variable assignment statement

Register variable A=[S]

Register variable B

Register variable X

Register variable Y

DPR

DT

PS

PG

2 - 61

B.3 Structured Preprocessor Instruction Syntax Diagram

■ if statement

if Expression 2 Statement

else

endif

Statement

■ for statement

for Expression 2 Statement next

ever

■ do statement

do Statement while Expression 2

ever

break

■ switch statement

switch Expression 3 Statement

default

ends

Statement

case Constant

■ break statement

■ continue statement

continue

■ goto statement

goto

2 - 62

APPENDIX B. STRUCTURED PREPROCESSOR INSTRUCTIONS

■ Expression 1

Constant

Expression 3

■ Expression 2

Memory bit variable

Register bit variable

Flag variable❈

= = ! =

0/1

Expression 3 Expression 3&&

| |

Expression 3

> < = = ! = > = < =

Constant

Memory variable

❈ 'XF' and 'M' flags are excluded from flag variable.

2 - 63

B.3 Structured Preprocessor Instruction Syntax Diagram

■ Expression 3

~ – + + – –

Memory variable

Register variable2

~ –

Memory variable

Register variable2

< <

> >

Constant with_c

~ –

Memory variable

Register variable2

+

–

Constant with_c

Memory variable

~ –

Memory variable

Register variable2 /

Constant

Memory variable

%

~ –

Memory variable

Register variable2

&

|

Constant

Memory variable

^

h

2 - 64

APPENDIX B. STRUCTURED PREPROCESSOR INSTRUCTIONS

■ Variable

❍ Memory variable

❍ Memory bit variable

{ Variable name

[DP:

DT:

LG:

}

]

{ Variable name

'[DP:

DT:

LG:

X

Y

}

]

(Variable name

DP:

)

,X)

),Y
Numeric variable, S

(Numeric variable, S), Y

2 - 65

B.3 Structured Preprocessor Instruction Syntax Diagram

A

❍ Register variable

B X Y DPR DT S PS PG

A

❍ Register variable 2

B X Y

2 - 66

APPENDIX B. STRUCTURED PREPROCESSOR INSTRUCTIONS

❍ Register variable

BIT_A0 BIT_A1 BIT_A2 BIT_A3 BIT_A4 BIT_A5

BIT_A6 BIT_A7 BIT_A8 BIT_A9 BIT_A10 BIT_A11

BIT_A12 BIT_A13 BIT_A14 BIT_A15

BIT_B0 BIT_B1 BIT_B2 BIT_B3 BIT_B4 BIT_B5

BIT_B6 BIT_B7 BIT_B8 BIT_B9 BIT_B10 BIT_B11

BIT_B12 BIT_B13 BIT_B14 BIT_B15

C

❍ Flag variable

Z I D XF M V N

2 - 67

B.3 Structured Preprocessor Instruction Syntax Diagram

❍ Constant

+

–

~

sizeof

BANK

OFFSET

Numeric constant

Character constant

Symbol constant

+ – h / & |

❍ Numeric constant

Binary

Octal

Symbol constantdecimal

Hexadecimal

Hexadecimal0 H

H

0

B

2 - 68

APPENDIX B. STRUCTURED PREPROCESSOR INSTRUCTIONS

❍ Character constant

' Character '

" Character "

❍ Symbol constant

h

_ ? . Alphabet _ ? . Alphabet Alphabet

❍ Variable name

+

–

~

sizeof

BANK

OFFSET

Numeric constant

Character constant

Symbol constant

+ – h / & |

2 - 69

APPENDIX C

Pseudo Instructions

C.1 Conventions

The pseudo instructions processed by PRE77 are described in alphabetical order. The following

conventions are used in describing each pseudo instruction:

1. Item in [] may be omitted.

2. Space or tab code is indicated by ▲▲ or ▲. ▲▲ is a required space or tab code, and ▲ is an

optional space or tab code (i.e., may be omitted).

3. ▲ is used to separate a label from pseudo instruction. A colon (:) is required when coding a

label.

C.2 Pseudo Instructions

C.1 Conventions

2 - 70

APPENDIX C. PSEUDO INSTRUCTIONS

.CLINE Output line number information

Format:

▲.CLINE▲▲numeric-value

Description:

• Defines the line number information necessary during structured preprocessor source debug-

ging.

• This pseudo instruction is generated automatically by PRE77.

Note:

• This pseudo instruction enables source debugging. If this instruction is explicitly coded, a

warning is issued and that line is changed to a comment.

.DATA Declare data length (default is 16)

Format:

.DATA▲▲expression

Description:

• Declares the CPU internal data length (8 or 16). Indicates an 8 bit data if the value of

expression is 8; 16 bit data if value of expression is 16.

• This pseudo instruction affects the immediate data length of immediate addressing modes

related to the M flag.

• The new data length must be declared with this pseudo instruction when changing data

length with the SEM or CLM instruction.

• Note that this pseudo instruction only declares the data length to PRE77 and assembler, and

it does not manipulate the data length selection flag (m) for the CPU internal processor

status register.

Note:

• Macro arguments cannot be coded as the operand of this pseudo instruction.

Example:

SEM ; Sets M flag.
.DATA8 ; Specifies data length.

 A = A + VALUE ; 8 bit addition

2 - 71

.END Declares the end of program

Format:

▲.END

Description:

• This pseudo instruction specifies the end of the source program.

• Lines after this pseudo instruction are not processed.

Example:

 .END ; Declares the end of program

.ENDFUNC Declares the end of structure preprocessor program

Format:

▲.ENDFUNC▲▲ label

Description:

• This pseudo instruction declares the end of structured preprocessor program.

• This instruction enables source line debugging.

• This pseudo instruction is generated automatically by PRE77.

Note:

• This pseudo instruction enables source debugging. If this instruction is explicitly coded, a

warning is issued and that line is made into a comment.

C.2 Pseudo Instructions

2 - 72

APPENDIX C. PSEUDO INSTRUCTIONS

.EQU Equation

Format 1:

symbol▲▲ .EQU▲▲expression

Format 2:

bit symbol▲▲ .EQU▲▲expression,expression

Description:

• Sets a numeric value to a symbol.

• Symbols used in the expression must be defined before this line.

• Format 1 assigns a double word numeric value to symbol. Format 2 assigns a 0 - 15 bit value

and an address to symbol.

Notes:

• Only already defined symbols can be used in expression. Labels are not allowed.

• Macro arguments cannot be coded as the operand of this pseudo instruction.

Example:

sym .EQU 1000H ; Assign sym to 01000H
flag .EQU 0,100H ; Assign flag to bit 0 of 100H

.FUNC Start structured preprocessor program

Format:

▲.FUNC▲▲label

Description:

• This pseudo instruction declares the start of structured preprocessor program.

• This instruction enables source line debugging.

• This pseudo instruction is generated automatically by PRE77.

Note:

• This pseudo instruction enables source debugging. If this instruction is explicitly coded, a

warning is issued and that line is made into a comment.

2 - 73

.INCLUDE Load a file

Format:

▲.INCLUDE▲▲ filename

Description:

• This pseudo instruction loads the structured preprocessor program file specified with the

operand at the point where this pseudo instruction is coded.

• The filename must be specified in full.

• This pseudo instruction can be nested up to 9 levels.

Example:

 .INCLUDE TEST.P77 ; Load the content of TEST.P77

C.2 Pseudo Instructions

2 - 74

APPENDIX C. PSEUDO INSTRUCTIONS

.INDEX Declare index register length (default is 16)

Format:

▲.INDEX▲▲expression

Description:

• Declares the CPU internal index register length (8 or 16).

• Indicates an 8 bit data if the value of expression is 8; 16 bit data if value of expression is 16.

• The index register length must be declared with this pseudo instruction when changing the

index register length with “CLM X” or “SEP X” instruction.

Note:

• Note that this pseudo instruction only declares the index register length to the assembler,

and it does not manipulate the index register length selection flag (m) of the CPU internal

processor status register.

• Macro arguments cannot be coded as the operand of this pseudo instruction.

Example:

 SEP X ; Set the X flag
 .INDEX 8 ; Specify the index register length
 X = VALUE ; 8 bit load

2 - 75

.SECTION Declare section name

Format:

▲.SECTION▲▲section name

Description:

• PRE77 recognizes lines following this pseudo instruction as structured preprocessor pro-

gram.

• Any name can be specified as section name. More than one section in the same file can

have the same name.

Note:

• This pseudo instruction must be coded at the beginning of the program (an error will occur if

it is missing).

• Do not write this pseudo-instruction in the processing line of RAMS77's conditional assemble

pseudo-instruction ".IF." Since conditional assemble is not processed by PRE77, an error

result if the assembly source that was generated after adding an option to output source line

information is processed by RASM77.

Example:

 .SECTION DATA ; Start DATA section
tabletop:
 .BYTE 'ABCDEFG'
 :
 .SECTION PROG ; Start PROG section
_init:
 .DATA 16
 .INDEX 16
 X = 0
 for X <= 20
 [PORT0] = tabletop,X
 X = X+1
 next

C.2 Pseudo Instructions

2 - 76

APPENDIX C. PSEUDO INSTRUCTIONS

.SOURCE Define source file name

Format:

▲.SOURCE▲▲source-filename

Description:

• This pseudo instruction defines the file name necessary for source debugging.

• This pseudo instruction is generated automatically by PRE77.

Note:

• This pseudo instruction enables source debugging. If this instruction is explicitly coded, a

warning is issued and that line is made into a comment.

PART 3PART 3
LINKAGE EDITOR FOR

7700 FAMILY

LINK77 OPERATION MANUAL

Table of Contents

Chapter 1. Organization of LINK77 Operation Manual

Chapter 2. Overview
2.1 Functions .. 2

2.2 Files Created ... 2

2.3 Organization of MAP File ... 3

Chapter 3. Function of Section
3.1 Purpose of Sections ... 5

3.2 Attributes of Sections .. 6
3.2.1 Address Attribute .. 7

3.2.2 Physical Attributes .. 7

3.3 Basic Functions of Sections ... 7

Chapter 4. Operation
4.1 Starting LlNK77 .. 8

4.2 Input Parameters .. 8
4.2.1 Relocatable Filename ... 8

4.2.2 Library Filename ... 9

4.2.3 Section Control ... 9

4.2.4 Command Parameters ... 10

4.3 Input Modes ..11
4.3.1 Prompt Mode .. 11

4.3.2 Command Line Input Mode .. 13

4.3.3 Command File Input Mode ... 14

4.4 Errors ... 15
4.4.1 Error Types ... 15

4.4.2 Return Values to MS-DOS ... 16

4.5 Environment Variables ..16

Appendix A. Error Messages
A.1 List of Link Errors .. 16

A.2 Warning Message .. 22

3-i

Appendix B. Original HEX Format for 7700 Family
B.1 Original HEX Format for 7700 Family ..23

B.2 HEXTOS2 ..24
B.2.1 Overview .. 24

B.2.2 Function ... 24

3-ii

List of Figures

Figure 2.1 MAP File Output Example .. 4

Figure 3.1 Configuration of Relocatable File ... 5

Figure 3.2 System Memory Map .. 6

Figure 4.1 LlNK77Starting Screen ..12

Figure 4.2 Screen for Prompt Mode Input ..12

Figure 4.3 Example of Command Line Input - 1 13

Figure 4.4 Example of Command Line Input - 2 (Parameters Omitted) . 13

Figure 4.5 Example of Command Line Input - 3

 (Command Parameters Omitted) ... 13

Figure 4.6 Specifying a Command File .. 14

Figure 4.7 Example of Command File Specification 14

Figure 4.8 Example of Error Display ...15

3-iii

List of Tables

Table 4.1 List of Command Parameters ...10

Table 4.2 Restricted Branch Instructions ..11

Table 4.3 List of Error Levels ..16

Table A.1 List of Link Error Messages ...18

Table A.2 List of Warning Message ..22

3-iv

3 - 1

CHAPTER 1

Organization of LINK77 Operation Manual

The LlNK77 Operation Manual consists of the following chapters:

• Chapter 2. Overview

Describes the basic functions of the LlNK77 linkage editor and the files created by LlNK77.

• Chapter 3. Function of Section

Describes section which is the basic unit in which LlNK77 manipulates programs.

• Chapter 4. Operation

Explains how to enter LlNK77 commands.

• Appendix A. Error Messages

Lists the messages output by LlNK77 along with explanation of the errors and the actions to

be taken.

• Appendix B. Original HEX Format for 7700 Family

Describes the original HEX format that is used to output 1 M bytes or larger machine

language data for 7700 Family.

3 - 2

CHAPTER 2

Overview

The LlNK77 linkage editor links relocatable files created by the RASM77 relocatable assembler

with library files, and creates a 7700 Family machine language data file.

2.1 Functions

LlNK77 can be used together with LIB771. To maximize the utility of these software products,

LlNK77 offers the following functions:

1. Places the sections of different relocatable files that have the same section name at contigu-

ous locations in the linked file.

2. The sequence in which sections2 are to be placed in the linked file can be specified. Also, the

starting address for each section can be specified.

3. Library files created by LIB77 can be used.

4. Machine language data for the entire (16M byte) memory space of 7700 Family can be

generated.

5. Map file which is useful for debugging is created.

6. Symbolic file that is necessary for symbolic debugging by debugger is created.

2.2 Files Created

LlNK77 creates three types of files:

1. Machine language data file (hereafter referred to as HEX file)

• HEX file is output in the extended Intel hexadecimal format when the address range is

within 1 M bytes. When the address range exceeds 1 M bytes, HEX file is output in the

original 7700 Family HEX format3.

1 LIB77 is the name of the 7700 Family librarian program.
2 Sections are the basic units that make up a program. Physically different units such as ROM areas and RAM

areas are sections. For more detailed explanation, see Chapter 4.
3 For the specifications of the original HEX format for 7700 Family, see Appendix B.

CHAPTER 2. OVERVIEW

3 - 3

• The output format is automatically selected based on the address range size.

• HEX files have the extension, .HEX.

2. Mapping file (hereafter referred to as MAP file)

• MAP file contains the final location information for the sections of files that have been

linked.

• MAP file can be printed for use in debugging and for determining the memory size of each

section.

• MAP file is output when the command parameter “-M” is specified.

• MAP file has the extension, MAP.

• Organization of MAP file is described in the next section.

3. Symbolic file (hereafter referred to as SYM file)

• SYM file contains various information necessary for symbolic debugging.

• SYM file is output when the command parameter “-S” is specified.

• SYM file has the extension, .SYM.

The above output file names (excluding extension) can be specified with the command option “-F”.

2.3 Organization of MAP File

Figure 2.1 is a sample printout of a MAP file. A MAP file includes the following information:

1. Information, for each section, concerning how much data has been linked from which relocat-

able file. This portion of MAP file contains the following:

• ATR: Specifies either relative or absolute5 attribute. REL specifies relocatable attribute,

and ABS specifies absolute attribute.

• TYPE: Specifies either RAM or ROM area.

• START: Indicates the start address.

• LENGTH: Specifies the area size in bytes.

• ALIGNMENT: Specifies “WORD” if word alignment6 was performed during linkage.

• When a library file has been linked, both library filename and relocatable filename are

shown. Relocatable filename is indicated in parentheses.

5 An assembly language source file in which starting address is specified by the pseudo instruction .ORG has

the absolute attribute.
6 Word alignment is pertormed when the “-W’ parameter is specified for a linkage command.

2.2 Files Created

3 - 4

2. Global labels table

Global labels table lists the global labels7 used in the program along with their absolute

addresses. This portion of the MAP file is output only when the command parameter “-MS” is

specified.

3. Global symbols table

Global symbols table lists the global symbols8 used in the program along with their absolute

addresses. This portion of the MAP file is output only when the command parameter “-MS” is

specified.

7700 Family LINKER V.2.02.10 MAP FILE Thu Jul 31 10:41:53 1997

SECTI0N FILENAME ATR. TYPE START LENGTH ALIGNMENT

WORK MAIN.R77 ABS RAM 000000 000080
 SUB.R77 REL RAM 000080 000100
 UTIL.LIB REL RAM 000180 000008
 (CALC.R77)
PR0M MAIN.R77 REL ROM 00C000 001800
 SUB.R77 REL ROM 00D800 001500
 UTIL.LIB REL ROM 00ED00 000820
 (CALC.R77)
DR0M MAIN.R77 ASS ROM 00F520 000023 W0RD
 SUB.R77 REL ROM 00F544 000030

GLOBAL LABEL INFORMATION

ACNT 000030 C0UNT 00009C DATA0 0000A4
DATA1 0000A6 MAIN 00C000 TIME 0000C6

GLOBAL SYMB0L INF0RMATI0N

Figure 2.1 MAP File Output Example

7 Global label is a label that has been defined in another file.
8 Global symbol is a label that has been defined by the pseudo instruction .EQU in another file

CHAPTER 2. OVERVIEW

3 - 5

CHAPTER 3

Function of Section

3.1 Purpose of Sections

A program written in assembly language typically consists of a RAM area, program area and fixed

data area. When RASM77 assembles a source file, it creates a relocatable file which contains at

least one of these areas. Each of these areas is called a section. The contents and purpose of

sections are described below by referring to specific examples.

Two relocatable files shown in Figure 3.1, MAlN.R77 and SUB.R77, provide the most clear ex-

amples of sections. Each of these relocatable files has a RAM area, program area and fixed data

area.

Relocatable file Relocatable file

MAIN.R77 SUB.R77

RAM area RAM area

Section name: WORKRAM Section name: WORKRAM

Program area Program area

Section name: PROM Section name: PROM

Fixed data area Fixed data area

Section name: DROM Section name: DROM

Figure 3.1 Configuration of Relocatable File

To arrange these relocatable files in the memory space as illustrated in Figure 3.2, the sections to

be linked together must be assigned an identical section name in advance with the pseudo instruc-

tion SECTION. Then, the sections with identical section name are placed in a contiguous area by

the linkage process. LlNK77 allows specification of the starting address for each section at the time

of linkage.

3.1 Purpose of Sections

3 - 6

 Section control command: WORKRAM=10016 PROM=C00016 DROM

Output file (HEX file) name

MAIN.HEX

Section name: WORKRAM

WORKRAM of MAIN.R77

WORKRAM of SUB.R77

00020016

Free area

Section name: PROM

PROM of MAIN.R77

PROM of SUB.R77

Section name: PROM

PROM of MAIN.R77

DRROM of SUBB.R77

Figure 3.2 System Memory Map

In this way, LlNK77 commands enable generation of machine language data corresponding to the

final locations on the user system.

3.2 Attributes of Sections

Each section has two types of basic information called address attribute and physical attribute.

These attributes are explained in details below.

00C00016

CHAPTER 3. FUNCTION OF SECTION

Address

00010016

3 - 7

3.2.1 Address Attribute

Address attribute of a section is determined by whether or not the pseudo instruction .ORG is

specified in the section in the source program. There are two types of location attribute:

1. Relocatable attribute

• A section that does not include the pseudo instruction .ORG has the relocatable attribute.

2. Absolute attribute

• A section that includes the pseudo instruction .ORG has the absolute attribute.

• Starting address cannot be specified for a section with the absolute attribute at the time of

linkage.

3. Sections having an identical section name but existing in different relocatable files can have

different address attributes.

3.2.2 Physical Attributes

Physical attribute specifies the physical property of the area where a section is placed. There are

two types of physical attribute:

1. ROM attribute

• A section with the ROM attribute is converted to a HEX file by linkage editing.

• A section of assembly language source file that contains a code generating statement has

the ROM attribute.

• To avoid confusion with address attribute, ROM attribute is referred to as ROM type

hereafter.

2. RAM attribute

• A section with the RAM attribute is not converted to a HEX file by linkage editing.

• A section of assembly language source file that contains the area allocation pseudo

instruction .BLKB, .BLKW, etc. has the RAM attribute.

• To avoid confusion with address attribute, RAM attribute is referred to as RAM type

hereafter.

3. All sections that have the identical section name must have the same physical attribute.

3.3 Basic Functions of Sections

1. Sections having the identical section name are placed in contiguous locations by linkage

editing. Sections with different section names are never placed between sections with identi-

cal section name.

2. Within a group of sections with the identical section name, sections are placed in the order in

which relocatable files are specified in the linkage command.

3.2 Attributes of Sections

3 - 8

CHAPTER 4

Operation

4.1 Starting LlNK77

To execute LlNK77, the following information (input parameters) must be input:

1. Relocatable filenames (required)

2. Library filenames

3. Section control information

4. Command parameters

Input parameters for LlNK77 execution can be input in any of the following three modes depending

on the operating environment:

1. Prompt mode

2. Command line input mode

3. Command file input mode

Same input parameters are used for the three input modes available. Also, same commands can

be executed regardless of the input mode being used. The input parameters are explained in

Section 4.2, and each input mode is explained in detail by referring to examples in Section 4.3.

4.2 Input Parameters

4.2.1 Relocatable Filename

1. Relocatable filenames must always be input.

2. LlNK77 processes only the relocatable files with the extension, .R77. The filename extension

can be omitted during command input.

3. Filename may be specified with a directory path. If only filename is specified, LlNK77 pro-

cesses a file in the current drive’s current directory.

CHAPTER 4. OPERATION

3 - 9

4. Name of the first relocatable file specified is used as the filename of the output file. If the “-F”

parameter is used to specify the filename, that filename becomes the output file.

5. Output file is output to the directory in which the first relocatable file specified resides. If the

output file is specified by the command parameter “-O”, the command parameter specifica-

tion is used.

4.2.2 Library Filename

1. Specification of library filenames may be omitted.

2. LINK77 processes only library files with the extension, .LlB. The filename extension can be

omitted during command input.

3. Library filename may be specified with a path name. If only the filename is specified, LlNK77

processes a file in the current directory.

4. Library files are referenced during linkage editing only if there are global labels or symbols

that cannot be resolved in the relocatable files.

4.2.3 Section Control

1. Specification of section control information may be omitted. If section control information

specification is omitted, sections are placed in the linked file in the order in which they were

found in the relocatable files.

2. Section control information should be specified only for relocatable section. Absolute sec-

tions are placed at fixed address specified with the pseudo instruction .ORG regardless of

the section specification.

3. Section placement sequence, if specified, must be specified starting from the lower-order

address, using a space as the delimiter between section names.

4. Starting address for each section, if specified, must be specified in the “section name=address”

format. Address must be specified in hexadecimal (beginning ‘0’ and ending ‘H’ need not be

specified).

5. If the start address of a relocatable section is omitted, it is placed starting from address 0.

6. If section control information is not specified, each relocatable section is placed immediately

after its preceding section. If, however, word alignment is specified with the command param-

eter “-W”, relocatable section is placed at word boundary.

7. LINK77 recognizes uppercase and lowercase characters in section name as different charac-

ters.

4.2 Input Parameters

3 - 10

8. Overlapping of section addresses causes an error.

However, if the command parameter “-A” is specified, absolute addresses may be over-

lapped. This allows more than one program file to be loaded with the .INCLUDE pseudo

instruction without specifying external reference for absolute address label in SFR area.

4.2.4 Command Parameters

Command parameters are used to control linkage output file, version check, word alignment, etc.

Table 4.1 lists the command parameters available with LlNK77.

Table 4.1 List of Command Parameters

Command parameter Description

-A Allows absolute sections with same name to overlap. This can be used to combine

shared global memory areas.

-C Issues a warning when a certain branch instruction1 is on bank boundary. A warn-

ing is also issued when there is a data that has the same value as the machine

word of the instruction.

-BRAL LINK77 outputs warning when processing with this option if the code data which

the jump address of BRAL is xxFFFFH is found.

-F Specifies the output file name. The format is as follows:

-FTEST

Output files are output with the file names TEST.HEX, TEST.MAP, and

TEST.SYM.

-M Outputs a MAP file. (Section information only)

-MS Outputs a MAP file including global labels and symbols listings.

-N Ignores the .R77 and .LIB file reference information specified with the pseudo

instructions .OBJ and .LIB in the source file.

-O Specifies the directory for the output file. The format is as follows:

-OC:\USR\WORK

Specifies to output the output file to the \USR\WORK directory on drive C.

-S Outputs a SYM file.

-V Checks for version consistency between relocatable files. To use this function,

version declaration must be made in the assembly language source files using the

pseudo instruction .VER.

-W Aligns section on word boundary.

CHAPTER 4. OPERATION

3 - 11

Notes

1. The Series 7700 Family has a restriction which causes a branch to be made to the address

within the next bank rather than to the address specified in the program when certain branch

instructions are allocated at the highest address of each bank or spans across banks. Table

4.2 lists the instructions for which this restriction applies.

Table 4.2 Restricted Branch Instructions

Instruction Addressing Mode Bytes Machine Code

RTS Implied 1 6016

JMP Absolute 3 4C16

Absolute indirect 3 6C16

Absolute indexed X indirect 3 7C16

Absolute indirect long 3 DC16

JSR Absolute 3 2016

Absolute indexed X indirect 3 FC16

2. Word alignment

Word alignment is the alignment of section starting addresses on word boundary. Word

alignment increases the memory size, but it can speed up execution because section starting

instructions are always read as words. (Not effective when bus width is 1 byte.)

If word alignment causes a 1 byte space between sections and the section at the higher-

order address is ROM type, a NOP instruction (0EAH) is written at the beginning of the ROM

area.

4.3 Input Modes

4.3.1 Prompt Mode

The prompt mode has the following features:

1. This input mode allows interactive input of relocatable filenames, library filenames, section

control commands and command parameters, in this order.

2. This input mode is convenient when there are only few relocatable files and sections to be

linkage edited. It is also convenient for setting address by trial and error.

4.3 Input Modes

3 - 12

3. LlNK77 automatically switches to the prompt mode when the necessary commands are

missing in the input command line or command file.

The prompt mode is started by entering LlNK77 <RET> from the MS-DOS prompt. LlNK77 outputs

the following messages to the screen when the prompt mode is started:

A>LINK77 <RET>
7700 Family LINKER V.2.02.10
Copyright 1998, MITSUBISHI ELECTRIC CORPORATION
AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION
All Rights Reserved.

Relocatable files (.R77) >>

Figure 4.1 LlNK77Starting Screen

The last line in Figure 4.1 shows that LlNK77 is waiting for input of relocatable filenames. Names of

the relocatable files to be linked must be entered to the right of ». LlNK77 then waits for entry of

library filenames, followed by section control information and command parameters, in this order.

Entries should be made as illustrated in Figure 4.2.

A>LINK77 <RET>
7700 Family LINKER V.2.02.10
Copyright 1998, MITSUBISHI ELECTRIC CORPORATION
AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION
All Rights Reserved.

Relocatable files (.R77) >> MAIN SUB<RET>
Libraries (.LIB) >> UTIL1 UTIL2<RET>
Section information >> WORKRAM=100 PROM=C000 DROM<RET>
Command parameter >> -O\WORK -M -S<RET>

Figure 4.2 Screen for Prompt Mode Input

CHAPTER 4. OPERATION

3 - 13

4.3.2 Command Line Input Mode

The command line input mode has the following features:

1. This input mode allows input of all linkage editing commands for the MS-DOS command

prompt.

2. Because MS-DOS limits command length to no more than 127 characters, this input mode

should be used when there are only few relocatable files and sections to be link edited.

3. This input mode can be also used when specifying execution commands in a batch file or a

make file.

4. The four types of input parameter information must be entered using comma (,) as delimiter.

Figure 4.3 shows command line mode input of the same commands as shown in Figure 4.2.

5. Comma must be entered even when there are library filename and subsequent parameters. If

no library files are required, the example in Figure 4.3 would change to that shown in Figure

4.4.

6. In a special case where command parameters are omitted, two commas must be entered to

clearly specify that there are no command parameters. If command parameters are omitted

in the example in Figure 4.4, it would change to that shown in Figure 4.5.

7. If required input parameters are missing, LlNK77 switches automatically to the prompt mode.

A>LINK77 MAIN SUB, UTIL1 UTIL2, WORKRAM=100 PROM=C000 DROM, -O\WORK -M -S<RET>

Figure 4.3 Example of Command Line Input - 1

A>LINK77 MAIN SUB,, WORKRAM=100 PROM=C000 DROM, -O\WORK -M -S<RET>

Figure 4.4 Example of Command Line Input - 2 (Parameters Omitted)

A>LINK77 MAIN SUB,, WORKRAM=100 PROM=C000 DROM,,<RET>

Figure 4.5 Example of Command Line Input - 3 (Command Parameters Omitted)

4.3 Input Modes

3 - 14

4.3.3 Command File Input Mode

The command file input mode has the following features:

1. In this input mode, linkage commands are created in advance in a command file using an

editor, and the name of this command file is specified when starting LlNK77.

2. The command file input mode is convenient when the command line input mode cannot be

used because there are too many characters in the commands to be input.

3. The command file input mode can also be used when specifying execution commands in a

batch file or a make file.

4. Command filename is entered using @ as prefix when starting LlNK77 as shown in Figure

4.6. In the example shown in Figure 4.6, the contents of the file, CMD.DAT are executed as

commands.

5. Commands can be specified in a command file in the same manner as when using the

command line input mode (except that “LlNK77” need not be specified to start LlNK77). Line

feed code is ignored so that a long command can be specified on multiple lines. The com-

mands in the example shown in Figure 4.5 can be created in a command file illustrated in

Figure 4.7.

6. When a required command parameter is missing, LlNK77 automatically switches to the

prompt mode. For example, if the second comma in the last line of the example in Figure 4.7

is missing, LlNK77 switches to the prompt mode screen and prompts for command param-

eter input.

A>LINK77 @CMD.DAT<RET>

Figure 4.6 Specifying a Command File

MAIN SUB
,
,WORKRAM=100 PROM=C000 DROM
,,

Figure 4.7 Example of Command File Specification

CHAPTER 4. OPERATION

3 - 15

4.4 Errors

4.4 Errors

4.4.1 Error Types

The following types of errors may occur during execution of LINK77:

1. OS errors

Errors related to the environment in which LlNK77 is executed. These errors include disk and

memory shortages. When such an error occurs, the error message list in Appendix A should

be checked and the appropriate OS command should be entered.

2. LlNK77 command line input errors

These are the errors in the LlNK77 startup command line. The input command should be

checked against the descriptions in this chapter, and a correct command line must be re-

entered.

3. Errors in relocatable files to be linked

These are errors in the contents of the relocatable files being linked such as duplicate global

label definitions and referencing of undefined symbols. The source files must be checked and

re-assembled if necessary.

4. LlNK77 function errors

These are the errors caused by use of different versions of the LINK77, RASM77 and LlB77

programs, for example. If the cause of error cannot be determined, contact Mitsubishi Elec-

tric Semiconductor Software Corporation.

When LlNK77 detects an error, it outputs error information in the format shown in Figure 4.8. The

information should be checked against the error message list (in error number order) in Appendix

A, and appropriate action must be taken.

A>LINK77 MAIN SUB,,WORKRAM=100 PROM=C000 DROM,,
7700 Family LINKER V.2.02.10
Copyright 1998, MITSUBISHI ELECTRIC CORPORATION
AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION
All Rights Reserved.

now processing pass 1
processing "MAIN.R77"
ERROR NO.2: Out of heap space

A>

Figure 4.8 Example of Error Display

3 - 16

4.4.2 Return Values to OS

When using an OS batch execution file, there are times when it is desirable to modify processing

according to the results of execution. LlNK77 returns one of five error levels to OS depending on

the result of execution as summarized in Table 4.3. For explanation of how to utilize these error

levels, refer to an OS reference guide .

Table 4.3 List of Error Levels

Error level Execution result

0 Normal termination

1 Error in contents of relocatable files to be linked

2 LlNK77 command input error

3 MS-DOS error

4 LlNK77 function error

4.5 Environment Variables

The environment variable “LIB77” can be used when LINK77 searches library files. When the

directory of the library file is specified with the environment variable “LIB77”, no directory needs to

be specified when starting LINK77. The following example specifies the directory USR on drive A

as the library reference directory.

Example: A>SET LILB77=A:\USER<RET>

CHAPTER 4. OPERATION

3 - 17

APPENDIX A

Error Messages

A.1 List of Link Errors

A.1 List of Link Errors

3 - 18

Table A.1 List of Link Error Messages

Error No. Error message Meaning and actions

0 xxx file not found Input file cannot be found. (Includes a file specified by the

pseudo instruction .OBJ or .LIB.)

⇒ Reenter the filename correctly.

1 Invalid command input Five or more parameters are specified in input com-

mand, or 2048 or more characters are specified in input

command.

⇒ Reenter the input command with no more than four

parameters and 2048 characters.

2 Out of heap space Memory space is insufficient to execute the linker.

⇒ Reduce the number of public symbols.

3 Invalid section information Section information specification is invalid.

⇒ Reenter in the “Section-name=address” format.

4 Invalid parameter input “xxx” Command parameter specification is invalid.

⇒ Reenter the command parameter correctly.

5 Non relocatable file name No relocatable filenames are input. Input relocatable

filenames.

6 Internal error Internal LlNK77 error has occurred.

⇒ Contact the dealer where you purchased LlNK77.

APPENDIX A. ERROR MESSAGES

3 - 19

Error No. Error message Meaning and actions

7 xxx relocatable format is mismatch Relocatable format version of .R77 is different.

⇒ This error occurs when the version of the assembler or

librarian differs from the linker’s version. The .R77 and

.LlB files to be linked must be created using the RASM77

and LlB77 programs of the same version as LlNK77.

8 Program version is different A different program version is declared by the pseudo

instruction .VER.

⇒ Correct the version declaration by .VER so that the

relocatable files to be linked are the same version; or,

cancel version check with the “-V” parameter.

9 Unresolved label “xxx” in xxx The indicated label or symbol is declared for external

referencing but not defined in the indicated section.

⇒ Link the program in which the label or symbol is

declared as a public label or symbol.

10 “xxx” is multiple defined in xxx. The indicated label or symbol is defined more than once.

others in xxx ⇒ Change the label or symbol name.

11 Location overlap. Address space for the indicated section is overlapped.

SECTION=xxx ADDRESS=xxx in ⇒ Check the address assignments for the section,

xxx eliminate address overlapping. (If the section is an

absolute type, the pseudo instruction .ORG in the source

file must be modified.)

12 SECTION xxx is an absolute Beginning address is specified for an absolute attribute

section with a section control command.

⇒ Delete address specification from command input, or

change the attribute of the section to relocatable.

A.1 List of Link Errors

3 - 20

Error No. Error message Meaning and actions

14 Can’t find SECTION xxx The indicated section cannot be found.

⇒ Correctly specify section information. (Note that

uppercase and lowercase are recognized for section)

15 Can’t create xxx The indicated file cannot be created.

⇒ Check specification of the “-O” parameter and re-input.

16 File seek error xxx Seek error has occurred on the indicated file.

⇒ This is an OS error. Usually, this error is caused by

hardware malfunction of disk drive.

17 Expression value is out of range The result of operation at the indicated location exceeds

SECTION=xxx ADDRESS=xxx the limit. (Error location is specified by section name,

OFFSET=xxx absolute address and offset from the beginning of sec-

tion.)

⇒ Correct the program so that the limit will not be ex-

ceeded. This also includes the case where the target

address cannot be accessed in the current address

range.

18 Out of disk space Disk space is insufficient for file output.

⇒ Make free space on the disk.

19 Relative jump out of range Relative jump address in the indicate location is out of

SECTION=xxx ADDRESS=xxx accessing range.

OFFSET=xxx ⇒ Correct the program so that the jump destination label

is within the accessing range. (Error location is specified

by section name, absolute address and offset from the

beginning of section.)

APPENDIX A. ERROR MESSAGES

3 - 21

Error No. Error message Meaning and actions

20 Expression is out of DP range. The result of expression processed in the direct address

SECTION=xxx ADDRESS=xxx ing mode exceeds the range of DPR value declared by

OFFSET=xxx .DP through +0FFH.

Correct the program so that the result will be in the range

indicated above. (Error location is specified by section

name, absolute address and offset from the beginning of

section.)

21 Expression is out of DT range. The result of an expression processed in the absolute

SECTION=xxx ADDRESS=xxx addressing mode exceeded the bank area of data bank

OFFSET=xxx register declared by .DT.

Correct the program so that the result will be in the data

bank register’s bank range. (Error location is specified by

section name, absolute address and offset from the

beginning of section.)

22 Out of maximum program size Program size exceeds 16M bytes (0FFFFFFFH).

Reduce the size of the program.

23 Section type mismatch in ROM and RAM types are specified in the indicated

SECTION xxx section.

Change the section to all ROM type or all RAM type.

24 Pointer length mismatch The pointer length used by C compiler is not uniform.

⇒ Unify the value set with the pseudo instruction

“.POINTER”.

A.1 List of Link Errors

3 - 22

A.2 Warning Message

A.2 List of Warning Messages

Warning No. Warning message Meaning and actions

0 XXX instruction exist at end of bank The instruction XXX (RTS, JMP, JSR) is on bank bound

 (address XXXXH) ary (address XXXXH) (This warning also appears when

there is data identical to machine code of instruction

XXX.)

1 BRAL specified address is xxFFFFh It is possible that BRAL mnemonic which jump address is

(description address xxxxh) xxFFFFh was located at xxxxh address. Confirm that the

found data is under BRAL mnenmonic, because LINK77

searches machine language file for the machine code

pattern.

APPENDIX A. ERROR MESSAGES

3 - 23

APPENDIX B

MITSUBISHI Original HEX Format

B.1 MITSUBISHI Original HEX Format

The MITSUBISHI original HEX format uses partially modified extended Intel HEX format address

records to enable expression of the entire memory space of 7700 Family. Shown below is the

address record format:

:02 0000 FF 00xx xx <RET>

 1 2 3 4 5

The fields (1,2,3,4,5) specify the following information:

1. Specifies the delimiter (:) and data count (fixed to 02).

2. Specifies the address field (fixed to 0000).

3. Specifies the record type (fixed to FF).

4. High-order byte is fixed to 00. Low-order byte specifies the contents of subsequent data

record address bits 16-23 (xx portion).

5. Specifies a 1-byte checksum.

Reference:

Shown below is the address record format of the extended Intel HEX format:

:02 0000 02 xxxx xx <RET>

 1 2 3 4 5

The fields (1,2,3,4,5) specify the following information:

1. Specifies the delimiter (:) and data count (fixed to 02).

2. Specifies the address field (fixed to 0000).

3. Specifies the record type (fixed to 02).

B.1 Original HEX Format for 7700 Family

3 - 24

4. Specifies 2-byte extended address. This address is shifted 4 bits and then added to the 2-

byte address in the data record field to generate the final 20 bit address. The extended Intel

HEX format record address output by LlNK77 uses the high-order 4 bits to specify the page

address and always leaves the low-order 12 bits 0.

5. Specifies a 1-byte checksum.

B.2 HEXTOS2

B.2.1 Overview

HEXTOS2 is a HEX file converter for the 7700 Family. It converts the Intel HEX format file created

by LINK77 and 7700 Family custom HEX format machine language file (extension .HEX) into

Motorola S format machine language file (extension .S2). The startup procedure is described

below.

B.2.2 Function

• The name of the HEX file is specified on the command line. The extension may be omitted.

However, an error will occur if there is no file with the extension .HEX or there are more than

one file with the same filename.

• The output file name is formed by appending the extension ‘.S2’ to the input file name. The

output file name cannot be specified.

• The output file consists of Motorola S format S2 data records and S9 end record.

• Following is an example of starting HEXTOS2.

A>HEXTOS2 sample.hex <RET>
MOTOROLA S2-RECORD GENERATION UTILITY V.2.00.00C
Copyright 1998, MITSUBISHI ELECTRIC CORPORATION
AND MITSUBISHI ELECTRIC SEMICONDACTOR SYSTEMS CORPORATION
All Rights Reserved

Complete!!

A>

APPENDIX B. ORIGINAL HEX FORMAT FOR 7700 Family

PART 4PART 4
LIBRARIAN FOR

7700 FAMILY

LIB77 OPERATION MANUAL

Table of Contents

Chapter 1. Organization of LIB77 Operation Manual

Chapter 2. Overview
2.1 Functions .. 2

2.2 Features .. 2

2.3 Files Created ... 3

2.4 Organization of LST File .. 4

Chapter 3. Operation
3.1 Starting LIB77 ... 8

3.2 Input Parameters .. 8
3.2.1 Library Filename ... 8

3.2.2 Relocatable Filename ... 9

3.2.3 Command Parameters ... 9

3.2.4 Detailed Explanation of Command Parameters ... 10

3.3 Input Modes ..12
3.3.1 Command Line Input Mode .. 12

3.3.2 Command File Input Mode ... 13

3.4 Errors ... 15
3.4.1 Error Types ... 15

3.4.2 Return Values to MS-DOS ... 16

3.5 Environment Variables ..16

Appendix A. Error Messages
A.1 System Error Messages ..17

A.2 Librarian Error Messages ...17

4-i

List of Figures

Figure 2.1 LST File Output Example 1 (List of Module Names) 4

Figure 2.2 LST File Output Example 2

 (List of Global Labels and Symbols) 5

Figure 2.3 LST File Output Example 3 (List of Global Labels and

Symbols by Module) ...7

Figure 3.1 Example of Command Input Line - 1 (Module Deletion) 13

Figure 3.2 Example of Command Input Line - 2

 (Relocatable File Addition) ...13

Figure 3.3 Specifying a Command File .. 14

Figure 3.4 Example of Command File Specification 14

Figure 3.5 Example of LIB77 Normal Termination Screen14

Figure 3.6 Help Screen When There is a Command Line Error 15

4-ii

List of Table

Table 3.1 List of Command Parameters ... 9

Table 3.2 List of Error Levels .. 16

Table A.1 List of System Error Messages ..18

Table A.2 Librarian Error Messages ...19

4-iii

4 - 1

CHAPTER 1

Organization of LIB77 Operation Manual

The LIB77 Operation Manual consists of the following chapters:

• Chapter 2. Overview

Describes the basic functions of the LIB77 librarian and the files created by LlB77.

• Chapter 3. Operation

Explains how to input LlB77 commands.

• Appendix A. Error Messages

Lists the messages output by LlB77 along with explanation of the errors and the actions to be

taken.

4 - 2

CHAPTER 2

Overview

The LlB77 librarian is a software product for managing the relocatable files created by RASM77 in

the library format. By placing frequently used subroutines in a library, assembly time can be

reduced and reuse of routines can be promoted.

2.1 Functions

LlB77 can be used along with LINK771. To maximize the utility of these software products, LlB77

offers the following functions:

1. Creates and corrects library files that can be referenced by LlNK77.

2. Catalogs relocatable files in a library file.

3. Deletes unnecessary relocatable files from a library file.

4. Updates old relocatable files that are cataloged in a library file with newly created relocatable

files.

5. Restores relocatable files that have been cataloged in a library file to the precataloging

condition.

6. Displays information on relocatable files that are cataloged in a library file.

2.2 Features

1. Speed-up linkage editing

By placing relocatable files in a library file, the necessary file information can be retrieved

quickly during link, resulting in high-speed linkage processing.

2. When updating relocatable files that are cataloged in a library file, LIB77 compares the file

modification dates and updates only the most recent version of each relocatable file. (When

the command parameter “-U” is specified.)

1 .LlNK77 is the program name of 7700 Family linkage editor.

CHAPTER 2. OVERVIEW

4 - 3

2.3 Files Created

LIB77 creates four types of files:

1. Library file

• Library file created by editing relocatable files that have been created by RASM77 and

adding the label and symbol index.

• Within a library file, each relocatable file is managed as a module. (Hereafter, relocatable

files in a library file are referred to as modules.)

• Module name is the same as the relocatable filename, including the extension.

• Library files are not in list format, so that they should not be printed or displayed on

screen.

• Library files have the extension, .LlB.

2. List file (hereafter referred to as LST file)

• A LST file contains tables of the names of relocatable files, global labels and symbols,

etc. in a library file.

• A LST file is created when the command parameter “-L” is specified.

• LST file has the extension, .LST.

• Organization of LST file is described in the next section.

3. Relocatable files

• The relocatable files created by LIB77 are reproduction of the relocatable files that have

been cataloged in a library file.

• Relocatable files are created when the command parameter “-X” is specified.

• The extracted relocatable files are identical to the pre-cataloging relocatable files that

have been created by RASM77.

• Relocatable files have the extension, .R77.

4. Backup file

• When a library file is updated, LlB77 retains the pre-updating library file as a backup file.

• Backup file is always created when a library file is updated.

• Backup files have the extension, .BAK.

2.3 Files Created

4 - 4

2.4 Organization of LST File

Figures 2.1, 2.2 and 2.3 are sample LST file printouts. A LST file includes the following information:

1. Module names table (Figure 2.1)

The module names table contains the following information contained in a library file:

• Module name: Shows the module names that are cataloged in a library file. Module

names are shown in the order in which they were cataloged in the library file.

• Offset: Shows the bytes count (in hexadecimal) from the beginning of the library file to the

beginning of the module.

• Module size: Shows the memory size (in hexadecimal) of each module.

LIB77 librarian V.5.00.00 date 1990-Aug-16 14:30 page 1

Library file name: SAMPLE.LIB
Relocatable format: VER.A
Last update time: 1990-Aug-16 15:30
Number of modules: 2
Number of global symbol: 10

Module_name:
getvalue Offset: 00000000H Module size: 00000100H
gettoken Offset: 00000180H Module size: 00000400H

Figure 2.1 LST File Output Example 1 (List of Module Names)

2. Global labels and symbols tables

Two tables are created:

• PUBLIC symbol table

Symbol_name: Shows a public label or symbol. A public symbol that has been de-

clared by the pseudo instruction .EQU is followed by “e”.

Module_name: Lists the names of the modules that contain the public label or symbol.

• EXTERN symbol table

Symbol_name: Shows an external label or symbol name.

Module_name: Lists the names of the modules that externally reference the external

label or symbol.

CHAPTER 2. OVERVIEW

4 - 5

LIB77 librarian V.5.00.00 date 1990-Aug-16 14:30 page 2

PUBLIC symbol table (symbol count = 0010)

 Symbol_name Module_name Symbol_name Module_name

 _chgbin......... getvalue _chgdigit........ getvalue
 _chghex......... getvalue _chgoct.......... getvalue
 _gettoken....... gettoken _getvalue........ getvalue
 _one(e)......... getvalue _two(e).......... getvalue

LIB77 librarian V.5.00.00 date 1990-Aug-16 14:30 page 3

EXTERN symbol table (symbol count = 0010)

 Symbol_name Module_name Symbol_name Module_name

 _chgbi1......... getvalue _chgdigi1........ getvalue
 _chghe1......... getvalue _chgoc1.......... getvalue
 _gettoke1....... gettoken _getvalu1........ getvalue
 _isbi1.......... getvalue _ishe1........... getvalue

Figure 2.2 LST File Output Example 2 (List of Global Labels and Symbols)

2.4 Organization of LST File

4 - 6

3. Global labels and symbols tables by module

Two tables, PUBLIC symbol table and EXTERN symbol table, are created. In each of these

tables, a module name is followed by a list of global labels and symbols in that module.

CHAPTER 2. OVERVIEW

4 - 7

LIB77 librarian V.5.00.00 date 1990-Aug-16 14:30 page 4

 PUBLIC symbol table

 Module_name : gettoken (symbol count = 0002)

 _gettoken __gettoken

 Module_name : getvalue (symbol count = 0008)

 _chgbin _chgdigit _chghex _chgoct
 _gettoken _getvalue _one(e) _two(e)

LIB77 librarian V.5.00.00 date 1990-Aug-16 14:30 page 5

 EXTERN symbol table

 Module_name : gettoken (symbol count = 0002)

 _gettoken1 __gettoken1

 Module_name : getvalue (symbol count = 0008)

 _chgbi1 _chgdigi1 _chghe1 _chgoc1
 _getvalu1 _isbi1 _ishe1 _isoc1

Figure 2.3 LST File Output Example 3 (List of Global Labels and Symbols by Module)

2.4 Organization of LST File

4 - 8

CHAPTER 3

Operation

3.1 Starting LIB77

To execute LlB77, the following information (input parameters) must be input:

1. Library filenames

2. Relocatable file names (required)

3. Command parameters

Input parameters for LlB77 execution can be input in either of the following two modes:

1. Command line input mode

2. Command file input mode

Same input parameters are used for the two input modes available. Also, same commands can be

executed regardless of the input mode. The input parameters are explained in Section 3.2, and

each input mode is explained in detail by referring to examples in Section 3.3.

3.2 Input Parameters

3.2.1 Library Filename

1. Library filename must be specified.

2. Library filename to be edited is specified after one space following the command parameter

“-O”.

3. Library filename may be specified with a directory path name. If directory path is not speci-

fied, the environment variable “LlB77” is referenced as the directory path.

4. Library filename extension, .LlB, may be omitted.

CHAPTER 3. OPERATION

4 - 9

3.2.2 Relocatable Filename

1. More than one relocatable filename may be specified by using space as the delimiter.

2. Relocatable filenames to be processed are input after one space following the command

parameter “-F”.

3. Filename may be specified with a directory path. If only filename is specified, LlB77 pro-

cesses a file in the current drive’s current directory.

4. Relocatable filename extension, .R77, may be omitted.

3.2.3 Command Parameters

Command parameters are used to control library file manipulation, LlB77 output files, etc. Table 3.1

lists the command parameters available with LIB77.

Table 3.1 List of Command Parameters

No.1 Command parameter 2 Description

1 -O Specifies the name of library file to be edited.

2 -F Specifies the names of relocatable files to be added to or deleted

from a library file.

3 -A Adds relocatable files to a library file.

-R Updates relocatable files in a library file.

-D Deletes specified relocatable files from a library file.

-L Outputs an LST file.

-X Extracts specified relocatable files from a library file and restores

them to their pre-cataloging condition. The reproduced relocatable

files are output to the current directory.

4 -V Displays name of the file being processed on the screen.

-U Specifies to update only the most recent files when updating

relocatable files in a library file.

3.2 Input Parameters

4 - 10

Notes:

1. No. has the following meaning:

1: Required item. Name of the library file to be edited must always be specified.

2: When adding, updating, deleting or extracting relocatable files by specifying the command

parameter “-A”, “-R”, “-D” or “-X”, the names of relocatable files to be processed must be

specified.

3: One and only one of these five command parameters must be specified.

4: May be specified as needed.

2. No distinction is made between uppercase and lowercase characters in the command param-

eter. Therefore, “-A” and “-a” are both valid.

3. The relocatable files to be stored in the library should be assembled without specifying the

assembly option “-S” or “-C”. File containing local symbol information and debug information

slows library processing and significantly increases the library file size.

3.2.4 Detailed Explanation of Command Parameters

Command parameters are explained in detail below.

1. -O

• Specifies the name of the library file to be edited.

• Directory path name may be specified with library filename.

The following is an example of specifying file TEST.LIB in directory USR on drive A as the

edit library file.

Example: A>LIB77 -LO B:\USR\TEST<RET>

• If no directory path is specified, the MS-DOS environment variable “LlB77” is referenced

as the directory path. If the environment variable is set as shown below, a file in the \USR

directory of drive B is processed.

Example: A>SET LIB77=B:\USR

• If directory path is omitted and environment variable has not been set, a file in the current

drive’s current directory is processed.

• If file extension is not specified, the default extension, .LlB, is used.

• Files with extension other than .LlB can be processed by specifying full filenames.

CHAPTER 3. OPERATION

4 - 11

2. -F

• Specifies the names of relocatable files that are to be added to, updated, deleted from or

extracted from a library file.

• More than one filename may be specified by using space as the delimiter.

• Directory path name may be specified with filename.

The following is an example of specifying file SUB1.R77 in directory WORK on drive B

and file SUB2.R77 on drive C as relocatable files.

Example: A>LIBT7 -A0 TEST.LIB -F B:\WORK\SUB1C:SUB2 <RET>

• If directory path specification is omitted, file in the current drive’s current directory is

processed.

• If file extension is not specified, the default extension, .R77, is used.

• Files with extension other than . R77 can be processed by specifying full filenames.

3. -A

• Adds relocatable files to a library file.

• The relocatable files specified by “-F” are appended at the end of the library file in the

order in which they are specified.

• If there are two files with identical contents, the duplicate label/symbol definition error will

occur. If a relocatable file with the same name as that of a module already in the library

file is specified, no error will result during cataloging; however, only the initially cataloged

module will be processed when the file is specified in subsequent command specifying “-

F”.

4. -R

• Updates modules (relocatable files) in a library file.

• By using this command parameter in conjunction with “-U”, only the files with more recent

updating date than the modules in the library file can be updated.

5. -D

• Deletes specified modules from a library file.

6. -L

• Outputs a LST file.

• When filenames are specified by “-F”, information on only the specified relocatable files

are output to a LST file.

• When filenames are not specified by “-F”, information on all modules in the library file are

output to a LST file.

• LST file has the extension, .LST.

3.2 Input Parameters

4 - 12

7. -X

• Reproduces specified relocatable files by extracting them from a library file and restoring

them in the pre-cataloging condition. The modification date of the relocatable files will be

the LlB77 execution date

• The reproduced relocatable files will be identical to the original relocatable files prior to

cataloging in the library file.

• The reproduced relocatable files are output to the current directory.

• When no relocatable filename is specified by “-F”, all modules in the library file are

extracted and reproduced.

• Execution of this command parameter does not change the contents of the library file.

• Reproduced files have the extension, .R77.

8. -V

• Displays on the screen the file currently processed by LlB77.

• This command parameter must be specified along with “-A”, “-C”, “D”, “-X”, or “-L”.

9. -U

• Updates only the most recent files when updating (“-R” specified) modules in a library file.

• For each module in the library file subject to updating, LlB77 compares the updating date

of the relocatable file specified by “-F” to the updating date of the module as cataloged in

the library file, and updates only if the relocatable file specified by “-F” is more recent.

• Information in OS directory is used as the updating date of relocatable file. Thus, this

function should not be used on a computer that does not have the calendar function.

3.3 Input Modes

3.3.1 Command Line Input Mode

The command line input mode has the following features:

1. This input mode allows input of librarian commands from the OS command prompt.

2. Because OS limits command length, this input mode should be used when only few files and

command parameters are needed.

CHAPTER 3. OPERATION

4 - 13

3. This input mode can also be used when specifying execution commands in a batch file or a

make file.

4. Figure 3.1 illustrates an example of deleting a module, FlLE1.R77, from a library file, TEST.LlB.

5. Figure 3.2 illustrates an example of adding relocatable files, FlLE1.R77 and FlLE2.R77, to a

library file, TEST.LlB.

A>LIB77 -D -O TEST.LIB -F FILE1<RET>

Figure 3.1 Example of Command Input Line - 1 (Module Deletion)

A>LIB77 -AO TEST.LIB -F FILE2 FILE3<RET>

Figure 3.2 Example of Command Input Line - 2 (Relocatable File Addition)

3.3.2 Command File Input Mode

The command file input mode has the following features:

1. In this input mode, the operation to be performed by LlB77 is stored in a command file using

an editor in advance, and the name of this command file is specified when starting LlB77.

2. The command file input mode is convenient when the command line input mode cannot be

used because there are too many file names and command characters.

3. The command file input mode can also be used when specifying execution commands in a

batch file or a make file.

4. Command filename is entered using @ as prefix when starting LlB77 prompt as shown in

Figure 3.3. In the example shown in Figure 3.3, LlB77 executes the contents of the file,

CMD.DAT.

5. Specifications in a command file are same as when using the command line input mode

(except that “LlB77” need not be specified to start LlB77). Line feed code is interpreted as a

space so that a long command can be specified on multiple lines. The specifications in the

example shown in Figure 3.2 can be created in a command file as illustrated in Figure 3.4.

3.3 Input Modes

4 - 14

A>LIB77 @CMD.DAT<RET>

Figure 3.3 Specifying a Command File

-AO
TEST.LIB
-F
FILE2
FILE3

Figure 3.4 Example of Command File Specification

When commands are input correctly, LlB77 starts processing. When LlB77 completes execution of

all commands specified, it outputs a termination message on the screen and terminates. Figure 3.5

shows the screen display when LlB77 terminates normally.

A>LIB77 -AVO TEST.LIB -F SUB_1 SUB_100<RET>
7700 Family LIBRARY MANAGER V.2.00.10
Copyright 1998, MITSUBISHI ELECTRIC CORPORAION
AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION
All right reserved.
< test.lib > Create
APPEND FILE = sub_1,sub_100
MODULE COUNT 000002
GLOBAL SYMBOL COUNT 000019
A>

Figure 3.5 Example of LIB77 Normal Termination Screen

CHAPTER 3. OPERATION

4 - 15

3.4 Errors

3.4.1 Error Types

The following types of errors may occur during execution of LlB77:

1. MS-DOS errors

Errors related to the MS-DOS environment in which LlB77 is executed. These errors include

disk and memory shortages. When such an error occurs, the error message list in Appendix

A should be checked and appropriate MS-DOS command should be entered.

2. LlB77 command input errors

These are the errors in LlB77 starting command input. When error is detected in command

input, LlB77 outputs a HELP screen similar to that illustrated in Figure 3.6. Command input

should be checked against the descriptions in this chapter, and a correct command line must

be re-entered.

3. Errors in relocatable files to be processed

These are errors in the contents of the relocatable files being processed such as duplicate

public label definitions. The files must be corrected by referring to the LST file.

A>LIB77<RET>
7700 Family LIBRARY MANAGER V.2.00.10
Copyright 1998, MITSUBISHI ELECTRIC CORPORATION
AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION
All right reserved.

 Usage: A>LIB77 -[ardxluv]o <filename> [-f <filename> ...]

 -o : library file name
 -f : relocatable file names
 -a : append command
 -r : replace command
 -d : delete command
 -x : extract command
 -l : listout command
 -u : update check (option)
 -v : verbose (option)

Figure 3.6 Help Screen When There is a Command Line Error

When LlB77 detects an error, it outputs error information to the screen. The information should be

checked against the error message list in Appendix A, and appropriate action must be taken.

3.4 Errors

4 - 16

3.4.2 Return Values to OS

When using an OS batch execution file, there are times when it is desirable to modify processing

according to results of execution. LlB77 returns one of four error level return values to OS depend-

ing on the result of execution as summarized in Table3.2. For explanation of how to utilize these

error level values, refer to an OS reference guide.

Table 3.2 List of Error Levels

Error level Execution result

0 Normal termination.

1 Error in contents of library file or relocatable

files being processed

2 LIB77 Command input error

3 OS error

3.5 Environment Variables

LIB77 uses the following environment variables:

1. TMP77

This variable specifies the name of the directory in which temporary files are created when

the librarian is executed. If this environment variable is not set, the temporary files are

created in the current directory. The following is an example of how to set this environment

variable:

Example: A>SET TMP77=\USR\TMP<RET>

2. LIB77

The environment variable “LIB77” can be used to specify the name of the library file to be

edited. If the library file is not in the current directory, the directory path name can be omitted

during LIB77 startup if it is set to the environment variable “LIB77”. The following is an

example of setting the environment variable to set the directory USR on drive B as the library

file directory path.

Example: A> SET LIB77=B:\USR<RET>

CHAPTER 3. OPERATION

4 - 17

APPENDIX A

Error Messages

A.1 System Error Messages

When LlB77 detects a system error during execution, it outputs an error message on the screen

and cancels processing. Table A.1 lists the system error messages output by LlB77.

A.2 Librarian Error Messages

When LlB77 detects a processing error during execution, it outputs an error message on the screen

and cancels processing. Table A.2 lists the librarian error messages output by LlB77.

A.1 System Error Messages

4 - 18

Table A.1 List of System Error Messages

Error message Meaning and actions

Usage A>LIB77 - [adluvxz] o Command input is invalid.

<filename> [-f<filename>...] ⇒ Refer to the HELP screen, and re-input the com-

mand correctly.

Can’ t open xxx The indicated file cannot be found.

⇒ Check if the files specified with the command

parameter “-O” or “-F” are in the specified directories.

Can’ t create xxx The indicated file cannot be created.

⇒ Check specification of “-O” command parameter,

and re-input.

Out of disk space1 Disk space is insufficient to output file.

⇒ Make free space on the disk.

Input file read error xxx An error has occurred while reading an input file.

⇒ This is an OS error. Usually, this error is caused by

a hardware malfunction of disk drive.

Internal error An internal LIB77 error has occurred.

⇒ Contact the dealer where you purchased LlB77.

File seek error xxx Seek error has occurred on the indicated file.

⇒ This is an OS error. Usually, this is error is caused

by hardware malfunction of disk drive.

Note:

1. Free disk space equal to 2-3 times the library file size is necessary in order to execute LlB77

because intermediate work files are created during execution.

APPENDIX A. ERROR MESSAGES

4 - 19

Table A.2 Librarian Error Messages

Error message Meaning and action

xxx is a multiple defined in xxx. Public label or symbol is defined more than once.

others in xxx ⇒ Check the public label or symbol definition in the

LST file.

xxx module is not in the library The indicated module cannot be found in the library

file.

⇒ Check the module name in the LST file.

Invalid module or library The specified relocatable file and corresponding

module in the library file are in different formats.

⇒ The library file and relocatable file to be edited

must be created with RASM77 of the same version.

xxx command file not found The indicated command file cannot be found.

⇒ Check the command file specified.

Out of heap space Memory space is insufficient to execute the librarian

program.

⇒ Reduce the number of global labels.

Too many object modules There are too many modules in the library file.

⇒ Split the library file. One library file can contain only

up to 500 modules.

CPU number error The specified library file or relocatable file was not

created by RASM77.

⇒ Check the specified library file, or relocatable file.

A.2 Librarian Error Messages

PART 5PART 5
CROSS REFERENCER FOR

7700 FAMILY

CRF77 OPERATION MANUAL

Table of Contents

Chapter 1. Organization of CRF77 Operation Manual

Chapter 2. Overview
2.1 Functions .. 2

2.2 Files Created ... 2

2.3 Organization of CRF File ... 2

Chapter 3. Operation
3.1 Starting CRF77 ... 4

3.2 Input Parameters .. 4
3.2.1 Source Filename .. 4

3.2.2 Command Parameters ... 4

3.3 Input Mode .. 4
3.3.1 Command Line Input Mode .. 4

3.4 Errors ... 5
3.4.1 Error Types ... 5

3.4.2 Return Values to MDOS ... 5

3.5 Environment Variables .. 5

Appendix A. Error Messages
A.1 System Error Messages .. 8

A.2 Cross-reference Error Messages ... 9

5-i

List of Figures

Figure 2.1 CRF File Example ... 3

Figure 3.1 Command Input Line Example .. 6

Figure 3.2 Help Screen when a Command Line Error Occurs 6

Figure 3.3 Example of Error Display ... 7

5-ii

List of Tables

Table 3.1 List of Command Parameters ... 6

Table 3.2 List of Error Levels .. 7

Table A.1 List of System Error Messages .. 8

Table A.2 Cross-reference Error Message ... 9

5-iii

5 - 1

CHAPTER 1

Organization of CRF77 Operation Manual

The CRF77 Operation Manual consists of the following chapters:

• Chapter 2. Overview

Describes the basic functions of the CRF77 and the files created by CRF77.

• Chapter 3. Operation

Explains how to input CRF77 commands.

• Appendix A. Error Messages

Lists the messages output by CRF77 along with explanation of the errors and the actions to

be taken.

5 - 2

CHAPTER 2

Overview

CRF77 creates a cross-reference list of labels and symbols in source files. This listing makes it

easy to see the relations between various sections of a program when debugging.

2.1 Functions

CRF77 facilitates the understanding of source files with the following functions:

1. Shows the type of label referencing instruction in the reference line number column.

2. Can include files with the pseudo instruction . INCLUDE.

3. Can output a header line by the pseudo instruction . PAGE.

2.2 Files Created

CRF77 creates the following file:

1. Cross-reference file (hereafter referred to as CRF file)

• Contains a cross-reference listing of label and symbol names.

• There are 80 columns per line (fixed), and 57 lines per page (fixed).

• This file can be printed out for use in debugging and editing.

• Cross-reference file has the extension, .CRF.

2.3 Organization of CRF File

Figure 2.1 is a sample CRF file printouts. A CRF file includes the following information:

CHAPTER 2. OVERVIEW

5 - 3

1. Label and symbol names, with line numbers where they are referenced or defined.

Definition line number is suffix by a number sign (#), and subroutine referencing line is suffix

by an ampersand (&).

2. Up to 32 characters are printed for each label or symbol name. The list is formatted for the

longest name.

3. The title specified by the pseudo instruction. PAGE is printed as the list header. (Up to 30

characters)

4. CRF77 does not evaluate the values of labels and symbols in the source program. Accord-

ingly, CRF77 cannot perform conditional assembly.

7700 Family CROSS REFERENCE V.2.10.10 P. 001

A0 3926 4285 8549 9079 9100
AA 3884 5545 5668
ABEND 9396& 9465& 9587#
ABEND10 9588 9593#
ABENDRT 9590# 9605
ACCHK 1201# 1408
ACCHK5 1213 1237#
ACCHKE 1235 1239 1241 1249#
ADDING 4994 5006#
ADDING0 5013 5014 5016#
ADDING1 5015 5019#
ADDRESS 300 318 1025
ADR_CHK 9154#
ADR_OUT 8302 8336 9145#
ADR_PNT 8157#
ADR_PNT2 8149#

Figure 2.1 CRF File Example

2.3 Organization of CRF File

5 - 4

CHAPTER 3

Operation

3.1 Starting CRF77

To execute CRF77, the following information (input parameters) must be input:

1. Source filenames (required)

2. Command parameters

3.2 Input Parameters

3.2.1 Source Filename

1. Source filename must always be specified.

2. If specification of file extension (.A77) is omitted, the default extension, .A77, is used.

3. A file whose extension is not .A77 (e.g., .ASM) can be processed by specifying full filename.

4. Drive name may be specified with filename. If only the filename is specified, a file in the

current drive is processed. Directory path cannot be specified.

5. Up to 16 source filenames may be specified.

3.2.2 Command Parameters

Command parameters are used to specify whether or not to detect the pseudo instruction. IN-

CLUDE in the source files and to specify the drive name for the output file.

CHAPTER 3. OPERATION

5 - 5

Table 3.1 List of Command Parameters

Command parameter Description

-O Specifies the drive name and directory path to which the cross reference

file is output. The coding format is as follows:
Example: A> CRF77 SRCFILE -OC:\TMP<RET>

Outputs the cross reference file to directory TMP on drive C.

-I Specifies to ignore the pseudo instruction .INCLUDE.

The .INCLUDE pseudo instruction for RASM77 allows nesting up to 9

 levels, but the .INCLUDE pseudo instruction for CRF77 does not allow

nesting.

Therefore, use this command option '-I' when processing wit CRF77

source containing .INCLUDE pseudo instruction nests.

3.3 Input Mode

3.3.1 Command Line Input Mode

CRF77 is started when a command line is input from the command prompt. Figure 3.1 shows how

to start CRF77.

A>CRF77 SRCFILE1 SCRFILE2 SRCFILE3<RET>

Figure 3.1 Command Input Line Example

When CRF77 detects an error during command line input, it outputs the HELP screen and cancels

processing (see Figure 3.2).

A>CRF77<RET>
7700 Family CROSS REFERENCE V.2.10.10
Copyright 1998, MITSUBISHI ELECTRIC CORPORATION
AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION
All Rights Reserved.

Usage: crf77 <filename> [-ifilename,..] [-opath]

 -i : not include specified files (use -ifilename,....)
 -o : select drive and directory for output (use -otmp)

Figure 3.2 Help Screen when a Command Line Error Occurs

3.3 Input Mode

5 - 6

CHAPTER 3. OPERATION

3.4 Errors

3.4.1 Error Types

The following types of errors may occur during execution of CRF77:

1. OS errors

Errors related to the environment in which CRF77 is executed. These errors include disk and

memory shortages. When such an error occurs, the error message list in Appendix A should

be checked and appropriate OS command should be entered.

2. CRF77 command line input errors

These are the errors in CRF77 startup command input. Command input should be checked

against the descriptions in this chapter, and a correct command line must be re-input.

3. Source file error

This error occurs when the source file specified by the pseudo instruction . INCLUDE cannot

be found.

When CRF77 detects an error, it outputs error information to the screen in the format shown in

Figure 3.3. The information should be checked against the error message listing in Appendix A,

and appropriate action must be taken.

A>CRF77 SRCFILE1<RET>
7700 Family CROSS REFERENCE V.2.10.10
Copyright 1998, MITSUBISHI ELECTRIC CORPORATION
AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION
All Rights Reserved.

now processing pass 1
now making cross reference (SRCFILE1.A77)
----+
 Out of heap space

A>

Figure 3.3 Example of Error Display

5 - 7

3.4.2 Return Values to OS

When using an OS batch execution file, there are times when it is desirable to modify processing

according to results of execution. CRF77 returns one of four error levels to OS depending on the

result of execution as summarized in Table 3.2. For explanation of how to utilize these error levels,

refer to an OS reference guide.

Table 3.2 List of Error Levels

Error level Execution result

0 Normal termination

1 Source file specified by . INCLUDE is missing

2 CRF77 command input error

3 OS error

3.5 Environment Variables

CRF77 does not use environment variables.

3.5 Environment Variables

5 - 8

APPENDIX A

Error Messages

A.1 System Error Messages

When CRF77 detects a system error during execution, it outputs an error message on the screen

and cancels processing. Table A.1 lists the system error messages output by CRF77.

Table A.1 List of System Error Messages

Error message Meaning and actions

Usage: A>crf77 <filename> [-d] Command input is invalid.

-I[filename,..] ⇒ Refer to the HELP screen, and re-input the com-

mand correctly.

Can’t open xxx The indicated file cannot be found.

⇒ Check the source filename, re-input correctly.

Can’t create xxx The indicated file cannot be created.

⇒ Make free space on the disk.

Out of disk space Disk space is insufficient to output file.

⇒ Make free space on the disk.

Out of heap space Memory space is insufficient to execute the cross-

referencer.

⇒ Reduce the number of symbols or labels.

APPENDIX A. ERROR MESSAGES

5 - 9

A.2 Cross-reference Error Messages

When CRF77 detects an error during creation of a cross-reference listing, it outputs an error

message on the screen and continues processing. Table A.2 lists the cross-reference error mes-

sage output by CRF77.

Table A.2 Cross-reference Error Message

Error message Meaning and action

Can’t open include file xxx Source file specified by .INCLUDE cannot be found.

⇒ Check directory contents.

A.2 Cross-reference Error Messages

MEMO

RASM77 V.5.10 User’s Manual

Rev. 1.00
August 01, 2003
REJ10J0158-0100Z

COPYRIGHT ©2003 RENESAS TECHNOLOGY CORPORATION
AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

RASM77 V.5.10

REJ10J0158-0100Z

User’s Manual

	Preface
	RASM77 OPERATION MANUAL
	Table of Contents
	1 RASM77 User's Manual Organization
	2 Overview
	2.1 Functions
	2.2 Files Created by RASM77
	2.3 Structure of PRN File
	2.4 Structure of TAG File

	3 Source Program Coding Method
	3.1 Structure of Source Program
	3.2 Line Formats
	3.2.1 Instruction Line
	3.2.2 Structured Preprocessor Instruction Line
	3.2.3 Pseudo Instruction Line
	3.2.4 Macro Instruction Line
	3.2.5 Comment Line

	3.3 Field Coding Method
	3.3.1 Symbol/Label Field
	3.3.2 Op-code/Pseudo Instruction Field
	3.3.3 Operand Field
	3.3.4 Comment Field

	3.4 Operand Field Coding Method
	3.4.1 Data Format
	3.4.2 Operators

	4 Instruction Coding Method
	4.1 Addressing Mode
	4.2 Data Length Specification
	4.3 Setting Direct Page and Absolute Addressing
	4.4 Addressing Mode Selection
	4.4.1 Setting the Direct Page Register and Data Bank Register
	4.4.2 Addressing Mode During Symbol･Absolute Value Operation
	4.4.3 Addressing Mode During Label Operation
	4.4.4 Disabling Addressing Mode Selection

	5 Pseudo Instruction Coding Method
	5.1 Function of Pseudo Instructions
	5.2 Assembly Control Pseudo Instructions
	5.2.1 Data Length Declaration
	5.2.2 DPR and DT Value Declaration
	5.2.3 Conditional Assembly
	5.2.4 Include File
	5.2.5 Equation
	5.2.6 Declare End of Assembly
	5.2.7 Message Output
	5.2.8 Assembly Error Output
	5.2.9 Define String

	5.3 Address Control Pseudo Instructions
	5.3.1 Address Declaration
	5.3.2 Memory Allocation
	5.3.3 Data Definition
	5.3.4 Correct Address Alignment

	5.4 Linkage Control Pseudo Instructions
	5.4.1 Section Name Specification
	5.4.2 Global Label Name Specification
	5.4.3 Linkage Filename Specification
	5.4.4 Version Control

	5.5 Listing Control Pseudo Instructions
	5.6 Source Level Debug Support
	5.7 Reserved Pseudo Instructions

	6 Macro Instruction
	6.1 Macro Instruction Functions
	6.2 Macro Instruction Types
	6.3 Macro Operators

	7 Operation
	7.1 Starting RASM77
	7.2 Input Parameters
	7.2.1 Source Filename
	7.2.2 Command Parameters

	7.3 Input Method
	7.4 Errors
	7.4.1 Error Types
	7.4.2 Return Values to OS

	7.5 Environment Variables

	A Error Messages
	A.1 System Error Messages
	A.2 Assembly Error Messages
	A.3 Warning Messages

	B Pseudo Instructions
	B.1 Conventions
	B.2 Pseudo Instructions
	B.3 Debugging Pseudo Instructions
	B.4 Reserved Pseudo Instructions

	C Macro Instructions
	C.1 Conventions
	C.2 Macro Instructions

	D Instruction Set
	D.1 Symbols
	D.2 Instruction Set

	E Instruction by Addressing Mode
	E.1 Instruction by Addressing Mode
	E.2 Addressing Mode Relationship Table
	E.3 Selection of Addressing Mode

	PRE77 OPERATION MANUAL
	Table of Contents
	1 Organization of PRE77 Operation Manual
	2 Overview
	2.1 Function
	2.2 Files Created

	3 Source Program Coding Method
	3.1 Structure of Source Program
	3.2 Line Formats
	3.2.1 Instruction Line
	3.2.2 Structured Preprocessor Instruction Line
	3.2.3 Pseudo Instruction Line
	3.2.4 Macro Instruction Line
	3.2.5 Comment Line

	3.3 Field Coding Method
	3.3.1 Symbol/Label Field
	3.3.2 Op-code/Pseudo Instruction Field
	3.3.3 Operand Field
	3.3.4 Comment Field

	3.4 Operand Field Coding Method
	3.4.1 Data Format

	4 Structured Preprocessor Instructions
	4.1 Function of Structured Instructions
	4.2 Statement Types
	4.3 Coding Rules
	4.4 Operators in Structured Instruction
	4.5 Structured Instructions in Macros
	4.6 RASM77 Instruction Lines, Pseudo Instruction Lines

	5 Pseudo Instructions
	5.1 Function of Pseudo Instructions
	5.2 Preprocess Control

	6 Operation
	6.1 Starting PRE77
	6.2 Input Parameters
	6.2.1 Source Filename
	6.2.2 Command Parameters

	6.3 Input Method
	6.4 Errors
	6.4.1 Error Types
	6.4.2 Error Information

	6.5 Return Values to OS
	6.6 Environment Variables

	A Error Messages
	A.1 System Error Messages
	A.2 Preprocessor Error Messages
	A.3 Warning Messages

	B Structured Preprocessor Instructions
	B.1 Conventions
	B.2 Structured Preprocessor Instructions
	B.3 Structured Preprocessor Instruction Syntax Diagram

	C Pseudo Instructions
	C.1 Conventions
	C.2 Pseudo Instructions

	LINK77 OPERATION MANUAL
	Table of Contents
	1 Organization of LINK77 Operation Manual
	2 Overview
	2.1 Functions
	2.2 Files Created
	2.3 Organization of MAP File

	3 Function of Section
	3.1 Purpose of Sections
	3.2 Attributes of Sections
	3.2.1 Address Attribute
	3.2.2 Physical Attributes

	3.3 Basic Functions of Sections

	4 Operation
	4.1 Starting LlNK77
	4.2 Input Parameters
	4.2.1 Relocatable Filename
	4.2.2 Library Filename
	4.2.3 Section Control
	4.2.4 Command Parameters

	4.3 Input Modes
	4.3.1 Prompt Mode
	4.3.2 Command Line Input Mode
	4.3.3 Command File Input Mode

	4.4 Errors
	4.4.1 Error Types
	4.4.2 Return Values to OS

	4.5 Environment Variables

	A Error Messages
	A.1 List of Link Errors
	A.2 Warning Message

	B MITSUBISHI Original HEX Format
	B.1 MITSUBISHI Original HEX Format
	B.2 HEXTOS2
	B.2.1 Overview
	B.2.2 Function

	LIB77 OPERATION MANUAL
	Table of Contents
	1 Organization of LIB77 Operation Manual
	2 Overview
	2.1 Functions
	2.2 Features
	2.3 Files Created
	2.4 Organization of LST File

	3 Operation
	3.1 Starting LIB77
	3.2 Input Parameters
	3.2.1 Library Filename
	3.2.2 Relocatable Filename
	3.2.3 Command Parameters
	3.2.4 Detailed Explanation of Command Parameters

	3.3 Input Modes
	3.3.1 Command Line Input Mode
	3.3.2 Command File Input Mode

	3.4 Errors
	3.4.1 Error Types
	3.4.2 Return Values to OS

	3.5 Environment Variables

	A Error Messages
	A.1 System Error Messages
	A.2 Librarian Error Messages

	CRF77 OPERATION MANUAL
	Table of Contents
	1 Organization of CRF77 Operation Manual
	2 Overview
	2.1 Functions
	2.2 Files Created
	2.3 Organization of CRF File

	3 Operation
	3.1 Starting CRF77
	3.2 Input Parameters
	3.2.1 Source Filename
	3.2.2 Command Parameters

	3.3 Input Mode
	3.3.1 Command Line Input Mode

	3.4 Errors
	3.4.1 Error Types
	3.4.2 Return Values to OS

	3.5 Environment Variables

	A Error Messages
	A.1 System Error Messages
	A.2 Cross-reference Error Messages

