To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS



10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.




LENESAS

-
»
)
ﬁ\
»
<
)
>
-
o

M3T-MR100/4 V.1.01

User’s Manual
Real-time OS for R32C/100 Series

Renesas Electronics
WWW.renesas .com ReV. 1.00 2009.04



® Active X, Microsoft, MS-DOS, Visual Basic, Visual C++, Windows and Windows NT are either registered trademarks or trademarks of
Microsoft Corporation in the United States and other countries.

® IBM and AT are registered trademarks of International Business Machines Corporation.

® Intel and Pentium are registered trademarks of Intel Corporation.

® Adobe, Acrobat, and Acrobat Reader are trademarks of Adobe Systems Incorporated.

® TRON is an abbreviation of "The Real-time Operating system Nucleus."

® ITRON is an abbreviation of "Industrial TRON."

® LITRON is an abbreviation of "Micro Industrial TRON."

® TRON, ITRON, and uITRON do not refer to any specific product or products.

® All other brand and product names are trademarks, registered trademarks or service marks of their respective holders.

Keep safety first in your circuit designs!
® Renesas Technology Corporation and Renesas Solutions Corporation put the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to
personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appro-
priate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any
malfunction or mishap.

Notes regarding these materials

® These materials are intended as a reference to assist our customers in the selection of the Renesas Technology product best suited
to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to
Renesas Technology Corporation, Renesas Solutions Corporation or a third party.

® Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage, or infringement of
any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application exam-
ples contained in these materials.

® All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information
on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation and Rene-
sas Solutions Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers
contact Renesas Technology Corporation, Renesas Solutions Corporation or an authorized Renesas Technology product distributor
for the latest product information before purchasing a product listed herein. The information described here may contain technical in-
accuracies or typographical errors. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility
for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by
Renesas Technology Corporation and Renesas Solutions Corporation by various means, including the Renesas home page
(http://www.renesas.com).

® When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algo-
rithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the informa-
tion and products. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage,
liability or other loss resulting from the information contained herein.

® Renesas Technology semiconductors are not designed or manufactured for use in a device or system that is used under circum-
stances in which human life is potentially at stake. Please contact Renesas Technology Corporation, Renesas Solutions Corporation
or an authorized Renesas Technology product distributor when considering the use of a product contained herein for any specific pur-
poses, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

® The prior written approval of Renesas Technology Corporation and Renesas Solutions Corporation is necessary to reprint or repro-
duce in whole or in part these materials.

® |f these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from
the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport con-
trary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

® Please contact Renesas Technology Corporation or Renesas Solutions Corporation for further details on these materials or the prod-
ucts contained therein.

For inquiries about the contents of this document or product, fill in the text file the installer generates in the following
directory and email to your local distributor.
\SUPPORT\Product-name\SUPPORT.TXT

Renesas Tools Homepage http://www.renesas.com/en/tools



Preface
The M3T-MR100/4(abbreviated as MR100) is a real-time operating system* for the R32C/100 series microcomputers. The
MR100 conforms to the uITRON Specification.?

This manual describes the procedures and precautions to observe when you use the MR100 for programming purposes. For
the detailed information on individual service call procedures, refer to the MR100 Reference Manual.

Requirements for MR100 Use
When creating programs based on the MR100, it is necessary to purchase the following product of Renesas.

® C-compiler package for R32C/100 series microcomputers (abbreviated as NC100)

Document List
The following sets of documents are supplied with the MR100.

® Release Note
Presents a software overview and describes the corrections to the Users Manual and Reference Manual.

® Users Manual (PDF file)
Describes the procedures and precautions to observe when using the MR100 for programming purposes.

Right of Software Use

The right of software use conforms to the software license agreement. You can use the MR100 for your product develop-
ment purposes only, and are not allowed to use it for the other purposes. You should also note that this manual does not
guarantee or permit the exercise of the right of software use.

! Hereinafter abbreviated "real-time OS"

2 LITRON4.0 Specification is the open real-time kernel specification upon which the TRON association decided
The specification document of uITRON4.0 specification can come to hand from a TRON association homepage
(http://www.assoc.tron.org/).

The copyright of pITRON4.0 specification belongs to the TRON association.







Contents

Requirements for MR I00 USE .....uuiiiiiiiiiiiriiiee e eeeciieeee e ettt eeee et eeeeeeettaeeeeeeeeseettaaeeeeeeeeareseeeeeeeenarereeeeeeennnees i

B D 1oTe1 b h i TcY o Al 3 T AU UP U PPPPPPPRON i

RIGIE Of SOEWATE USE...uvviiiiiiiiiiiiiiii ettt e e e e et e e e e e e ettt e e e e e e e e e s atrbaaeaeeeesasstsaeeeeaasssssaseeaeeaasssssaneeeesassnnenes i
COMEENES. vvieerrerrrererernriserterssereesrnesssereressrisseesssstessnnesssseesssssssssnesssesessssesosneesssnesssnnessreesssnesssnsessnessranersrsnsssnnessnness il
LISE Of FLGUTES .eevveeiireerrieeteeeeeireeerrneteeeeesreesssssetesseeesiesssssntesseesssessssssssssseessessssssssssesssessssntsssesssessssssnsassesssesssnnnns ix
T A o =Y ) =Y SRR xi
1. User’s Manual OrganiZation...........ccccceeeeeerreverreeeeeeieirrsrereeeeeesensssrsesseesesssesssssssssseesssesssssssssesssrsssssnsssess -1-
2. General INFOrMATION .....ccccccvveeeeeiieeecetteeeeeciteeeeesteeeeeceteeeeeeereeeeesesseeeessssaeeesassasessassaseesassssesssssenansssssesennnns -3-
2.1  Objective of MR100 DevelOpmIEnt......c.uvvveiiiiiiiiiiiieieeee et eeeeae e eeeeeeeetareeeeeeeeeeearrrreeeeeas -3-
2.2  Relationship between TRON Specification and MRI10O0...........ccc.cooovviiiiiiiiieeeeiiiicieeeee e -5-
2.8 MRI00 FEALUTES ....uuvviiiiiiiiieiiiiiiiieeee e e eeeiiit et e e e e e ettt eeeeeeeessaabtreaeeeeesssssessaaaeaesssssssssssasaesansssssseneaeenns -6 -
3. INtroduction t0 KEINEL ...ttt e ee e eeccesiere e e e e e see e e ssasaaaeesseeessssseaaasessasesssasaesssassnnssnnes -7-
3.1  Concept of Real-time OS ........oooiiiiiiiiieieiee ettt e e e e e e re e e e e e e e e e ataeaeeeeeseeensaareeeeeeeennes -7 -
3.1.1  Why Real-time OS 18 NECESSATY ...ccoeeoureeieeeeeeeeeeieeeeee e e e eeeeeaeeeeeeeeeeeeeaareeeeeeeseeesissreeeeeeeeeeeannes -7-
3.1.2 Operating Principles of Kernel.........ccccooiiiiiiiiiiiiiicccie et et -10 -

B3 1oy a4 (o1 O | USSR SRR -14 -
3.2.1 Service Call PrOCESSING ...ccciiiiiiiiiiiiie e ettt e e e ee ettt e e e e e e e eeitbaeeeeeeeesssttaseaeeaseessssssssseesesranes -15-
3.2.2  Processing Procedures for Service Calls from Handlers...........cccceeeveiiiiienciiiieenciiieee e -16 -
Service Calls from a Handler That Caused an Interrupt during Task Execution..........cccooeeiiiiiiiiiiiiiieeiinninnnns -17 -
Service Calls from a Handler That Caused an Interrupt during Service Call Processing...........cccocvvveeeeennnns -18-
Service Calls from a Handler That Caused an Interrupt during Handler Execution..........ccccceeevvviiecverennnennn. -19-

B B O ] o) =Y c1 USSR -20 -
3.3.1  The specification method of the object in a service call .............cooovviivviiiiiiiiiiiiiieieee e, -20-

Bud  TASK cettiieiciiie ettt e et e e ettt e e e et e e e e et aeeeaattaaee e taaeeaatbaee e tbaaeeataaaeeataeeaantaeeeeantaeaeanns -21-
34,1 TASK SEATUS couviii ittt ettt e e ettt e e e et e e e e eaba e e e e etae e e e abaeeeeebbeeeeatbaeeearraeeeannnes -21-
3.4.2 Task Priority and Ready QUEUE ............oeeiiiiiiiiiiieieiice e eee e e e e -25-
3.4.3 Task Priority and Waiting QUEUE............c.ooeieeirreeeeeeeeeeeeeeeeeeeee e e e eeeeeeeeeeeeeeeeeeeaaarereeeeeeeennanes - 26 -
3.4.4  Task Control BIOCK(TCB) .......couoiiiiiiieiieieeeeeeeeeeeeeeee ettt ettt ettt eas et eae e neneens -27 -

B T )21 1= 0o B 17 1< TSSO UUU U -28 -
3.5.1 Task Context and Non-task ConteXt......ccccciuiiiiiiiiiiiiiiiecciiiieeee e e e e eetirrre e e e e e e e eaeens -28 -
3.5.2  Dispatch Enabled/Disabled States ........cccceeiiiiiiiiiiiiiiiieecciieeee et -30-
3.5.3 CPU Locked/UnlocKed States ......cueiiiiieiiiiiiiiiie ettt eeeecite e e e e e eeivaeeee e e e e e eeeaaaraaeaaa e s -30-
3.5.4  Dispatch Disabled and CPU Locked States........cccceeeeiiieiiiiiiieeiiiieee et eeieeeeeveee e svvee e -30-

3.6 Regarding INterTUpPtS.....couiiiiiiiiiiiiiiiiiiiiiieieteee ettt e eeeeeereaeraaeaarerare—tae—————————————————.—araararannnnsnsnnssssrsrnsnres -31-
3.6.1  Types of Interrupt HAnAIErs ........ccooiviiiieieiieeecieeeeee et e eeeeraee e e e e e -31-
3.6.2  The Use of Non-maskable INtErTUPt ........ccooviiiriieiieiieeeiieeeee e e -31-
3.6.3 COoNtrOIIING INEEITUPES . ..coiii it e et e e e e e e e e e e e e e e e aaraeeeeeeeeeeeassrneeeeseennes -32-

BT SBACKS ciiitiiee ettt e e e e e e e tae e e e e taeeeeaattaeeeaataaeeaataaeeeatbaeeeataaeeeaateeeaantaeeeeantaeeeans -34-
3.7.1 System Stack and USer SEACK...........coiiiiiiiieiiiei e e e e re e e e e e -34-

. KEIMIEL...oiiiirereririereeiscereeesaeneeesesneeesessneeessssnnesssssnneessessneessessnnessessnnassessnnaesessnnnesessnnnesssseresssssenessssnanessss -35-
4.1 MOAUIE SEIUCEUT@....uvviiiii i ettt e e ettt e e e e e erett e e e e e e e eeaetbbareeaeeeessserssaaaseaeeeasssrsssasseesessssssrseeeeeens -35-
4.2 IMOAUIE OVEIVIEW ...uvvviiiiiieeiiiiiiiiieeeeeeeccittteeeeeeeeerttbraeeeeaeeeesatttaaaseaeeessasesssasaaaasessssssrassseeeessssssrseaaaeens - 36 -
4.3 Kernel fUNCEIONS. .. .uuviiiiiii et e e e e e ettt e e e e e e eeeetttbaeeaeeeeeeetsbesseeseanansrsaeaaaeens -37-
4.3.1 Task Management FUNCEION ........cooooiiiiiiiiiiiiiiccieeee et e e e e eeaare e e e e e e e e eeaeanes -37-
4.3.2 Synchronization functions attached to task .........cccovviviiiiiiiiiiiiii e -39 -
4.3.3  Synchronization and Communication Function (Semaphore)...........c.ccocveevevveveeveeeeeeeeeennns - 43 -
4.3.4  Synchronization and Communication Function (Eventflag) ..........c..ccoccovvevviiivieeiiiieeeennn, - 45 -




4.3.5  Synchronization and Communication Function (Data QUeue) ............c.ccoeeveveeeeeeeeeeenennn. - 47 -

4.3.6  Synchronization and Communication Function (Mailbox) ............cccecvevvevveiiieeeeeeieeeeneennns - 48 -
4.3.7  Extended Synchronization and Communication Function (Mutex)...........cccevvevveeireeeennnne - 50 -
Base Priority and CUrrent PriOTity ........cccciiiiiiiiiiiiee et eecete e e e ettt e e e e e e stbrr e e e e e e s sntbreeeeesssnsnraaaeaaeeans -50 -
4.3.8  Extended Synchronization and Communication Function (Message Buffer) ....................... -52-
4.3.9  Memory pool Management Function(Fixed-size Memory pool) .........c..cccceveveeeeeereveereenennn. -55-
4.3.10 Variable-size Memory Pool Management Function ...........ccccceeeeiiiiiniiiiieeciiies e - 56 -
4.3.11 Time Management FUNCEION...........coociiiiiiiiiiiiiiiiie et e e et e e e e e e e eeaaaaes -59 -
4.3.12 Cyclic HAandler FUNCEION ........veiiiiiiiiiiieeiee et e et e e e e e eerareeeeeeeeenannees -61-
4.3.13  Alarm Handler FUNCEION.........cooiiiiiii ettt ettt e e et e e ave e e e e taee e e sebaeeeenes - 62 -
4.3.14 System Status Management FUNCEION..........ccooiivviiiiiiiiiiiiieeee e e e eeeanns - 63 -
4.3.15 Interrupt Management FUNCEION ............uviiiiiiiiiiiiiiiiiiiiiiiieiiieerreeerererereeeaereaerraeaeaeeranaaaananne, - 64 -
4.3.16 System Configuration Management FUnCEiON ..........coooeviuiviiiiiiiiieieeeee e - 65 -
4.3.17 Extended Function (Short Data QUEUE) ..........c.ccueieieuieueieieeeeeeeeeteeteeeeeeeeeeeee e ene e ereenens -65-
4.3.18 Extended Function (Reset FUNCLION) ......cooviiviiiiiiiiiiiiieeceeeeeeee ettt enea - 66 -
Service call refference ... - 67
5.1 Task Management FUNCEION ........coooiiiiiiiiiiiiiicieee et e e e e st v r e e e e e e e e eatraaaaee e s -67 -
ACE_BSK A CTIVALE LS ettt et e et e e e ——— e et e et aaaa——————a_ - 69 -
iact_tsk  Activate task (handler ONLY) .......ccocooiiiiiiiiiee ettt ettt - 69 -
can_act  Cancel task activation FEQUEST........cccoiiiiii ittt et e e e e e e eearrareeaeeeeen -71-
ican_act Cancel task activation request (handler Only) .......occoociooveeioiieieieeeeee et -71 -
sta_tsk  Activate task with a Start COAe .......cciviiiiiiiiiiiiiiie e -73-
ista_tsk Activate task with a start code (handler OnLy)..........ccooveoveeeeeeeeieeeeeeeeeeeeeeeeeeeee e -73 -
ext_tsk  Terminate INVOKING tASK ..cccoeeeiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e -75 -
ter_tsk T ININIATE BASK cevneiiiieie ettt et e et e ettt e e e et e e e eaaeeeeeaeeeeaansesaanneerannneeesnnanees - 77 -
chg pri Change tasK PrIOTIEY .....ccoooivvriiieeeeeeeeiieeeeeeeeeeeeeee e e e e e eeeeetareeeeeeeeesearaneeeeeeeeeensrrnreeeeeeeennnes =79 -
ichg_ pri  Change task priority(handler only) ..........cccccoceoieieieriireieeeceeeee et -79 -
get_pri Reference task PrioTity ...t e et e e e e e ettrre e e e e e e e eaerbaraaeeeeeeeaanens -81-
iget_pri  Reference task priority(handler 0nly) ............ccccoeveiieiiieieieeeieieeeeeeeee e -81-
ref tsk RETEIENICE TASK STATUS «neeiineeeeeee ettt e e et e e e et e e e e e e e e e eaaeeeeanaeeeenaaaanes - 83 -
iref_tsk  Reference task status (handler only) ..........ccoccoevieiieiiieieieeee et - 83 -
ref tst Reference task status (SIMplified VEISION) .........ceovievioeeieieeeieeeeee ettt - 86 -
iref tst  Reference task status (simplified version, handler only) ........cccccooveviiieeeiiieeeeeeeeeenn, - 86 -
5.2  Task Dependent Synchronization FUNCION..........c...coooviiiiiiiiiiiiiieiiieeeee e - 88 -
SIP_tSK  PUb tASK £0 SLEOP..eeeiiiiiiieiieeeee et e et e e e e e earees -89 -
tslp_tsk  Put task to sleep (With tImEOUL).........ccoeieriiiereieiereeeeceeeeee ettt eaeenas -89 -
WUP_ESK  WaKEUP BASK ittt e e e e e e e e e e e e e e e e e e e e e e enenans -92 -
iwup_tsk  Wakeup task (handler OnLy).........c.ococieiiieiiieeieeeeeeeeeeeeeeeee et ee e eaeeneas -92 -
can_wup Cancel WAKEUD TEOUES ........uviiviiiiiiiiiiieiereeertrereiererarerararararara—.——————————————————————————————————————————. -94 -
ican_wup  Cancel wakeup request (handler only) .........c.ccoeieviviiieoieieiieeeee e -94 -
rel_wai  Release task from WaltIng.......cccccciiiiiiiiiiiiii ettt e e e e e e e ettt arareeeaeeas - 96 -
irel_wai Release task from waiting (handler only) ...........ccccoooieiiiioiiiieiieieeeeeeeeeeeee e -96 -
SUS_ESK  SUSPEINA LASK c.uuviiiiiiiiiieiiciieeeee e e e et e e e e et a e e e e e e e abrbrraaaeeeaararees - 98 -
isus_tsk  Suspend task (handler Only) .........ccccociiiiiiioierieieeeeeeeeee ettt -98-
rsm_tsk Resume suspended taSK ......c.....eiiiiiiiiiiiiiiie e - 100 -
irsm_tsk  Resume suspended task(handler only) .........ccoooveeiiieeeiieeeeeeeeee et -100 -
frsm_tsk Forcibly resume suspended taSK ...........coooiiiiiiriieieeeeeeeciieeeee e - 100 -
ifrsm_tsk  Forcibly resume suspended task(handler only) ...........cccocceieieeeeereveeeeieeeeeeeeeeeens -100 -
Lo L ) G D LY B o 1 - U UUU - 102 -
5.3  Synchronization & Communication Function (Semaphore) ...........cccoevveeeeeeeeeeeeeeeeeeeeeeeeeeeeenns -104 -
sig_sem Release SeMaphoOre TESOUTCE .......ccuuviiiiiiiiiiiciiiieeee e e ecerrt e e e e esettrrreeeeeeessnetabreaeeaeeesssesenns - 105 -
1sig_sem Release semaphore resource (handler 0nly) ...........ccccocveveiieieveiieiereiieieeeieeeeseennas - 105 -
wail_sem Acquire SemMaphore TESOUICE. ............cooeiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et - 107 -
pol_sem Acquire semaphore resource (POIING) .......ccceuiuiriririiirieieiiieeieie e - 107 -
ipol_sem Acquire semaphore resource (polling, handler only) ........cccccvvviviiiiiiiiieeceeeee e - 107 -
twai_sem  Acquire semaphore resource(with timeout)............ccoceevevveveviereveerieeeeeeeeeee e - 107 -
ref_sem Reference semaphore SEAtUS .........oooviiiviiiiii i - 110 -
iref sem Reference semaphore status (handler OnlLy).........cccocooieeieeiieeeeieieee et - 110 -
5.4  Synchronization & Communication Function (Eventflag)..........cccovivveviiieeeiieeeeeeeeeeeeeeeenn -112 -

iv



set_flg N TS A A L) oY i - TR -113 -

iset_flg  Set eventflag (handler ONLY) .........ccocveviieieieeeeeeeeeeetee ettt eee e -113 -
Clr_flg  Clear @VENIIAZ. ... .uiiiieii e e e e e e e e e e et a e e e e e e e e eabraraeeeeananes - 115 -
iclr_flg  Clear eventflag (handler 0nly) ...........c.cooeveioierieiiieeeeceeeeeteee ettt -115 -
wai_flg = Wait for @Ventflag.......ccco i et a e e e e eaens - 117 -
pol_flg  Wait for eventflag(DOIIING) ........c.ceveririreeeeeieeeeeeteeeeeeee ettt et se e enns -117 -
ipol_flg ~ Wait for eventflag(polling, handler only)..........cccccocevieieiiierieieereeeeeeeeeeeeeeeeeee e - 117 -
twai_flg  Wait for eventflag(with timeoUL)...........ceeviiiiiiieiiieiee ettt -117 -
ref flg Reference eventflag SEATUS .........oooiiiiiiieiiee e - 120 -
iref fls  Reference eventflag status (handler only)........ccoocveoiiieeeeeeeeee et -120 -
5.5  Synchronization & Communication Function (Data QUeUE) ..........ccoeeveeveeeeeeieeeeeeeeeee e -122 -
snd_dtq  Send to data QUEUE ......cceevveeiiii et e e e e e e araaeeeeaanns -123 -
psnd_dtq  Send to data queue (POLLNEG) ........c.coveieeieeiieeireeeeceeeteeeee ettt ene e -123 -
ipsnd_dtq Send to data queue (polling, handler ONLY) .........ooveeieeeeeeeeeeeee e -123 -
tsnd_dtq Send to data queue (With tiMEOU) .........cc.ooviiiiiieeieieecee e -123 -
fsnd_dtq Forced send to data UEUE ............ooevviiiiiiiiiiiiiiiiiiieeeeeeeea b aananannan -123 -
ifsnd_dtq  Forced send to data queue (handler only) .........ccccooveeiiieieieiieeeceeeeeeeeee e -123 -
rev_dtq  Receive from data qUEUE .........oeiiiiiiiiiiiiiiiie e e -126 -
prev_dtq Receive from data queue (DOIING) .........cccveviiriiuieiieieeieeeeeeeeee ettt enea - 126 -
iprev_dtq  Receive from data queue (polling, handler only)............ccccoevioieieeiiiiieieieeeeeeeeeie i - 126 -
trecv_dtq Receive from data queue (With tIMEOUL) ..c.oooviieeieeiiieieieeeeeee et - 126 -
ref_dtq Reference data qUEUE SEATUS .........cooiiiviiiiiii e -129 -
iref dtq Reference data queue status (handler OnLY) .......cccoocivvveeiirieeeeieeeeee et -129 -
5.6  Synchronization & Communication Function (Mailbox)........c.coveeeeveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeens -131-
snd_mbx SENA 10 INATIDOX «eeeeeeee e et et e e e e e e e e e e e e e e e e e e e e e e e eas -132 -
isnd_mbx  Send to mailbox (MANAIET ONILY) ..c..veveerieeeeee ettt e e enes -132 -
rCV_IMDX  ReCeIVE TTOIM MIATIDOR cc.u it e et e e e ete e e et e e e e eaeeeeeaeeeeeenaeeenanas -134 -
prcv_mbx  Receive from mailbox (POLIIINE) ......cveviiuiiviieiieieeeceieeeeeee ettt -134 -
iprcv_mbx Receive from mailbox (polling, handler only) ..........ccocoevveieeeiieeecieeeeeeeeee e -134 -
trcv_mbx Receive from mailbox (With tIEOUE) . ....eeeeeeeeeeeeeeee et eeeee et ee e e eeee e e eeeeeeeseeeeeaeans -134 -
ref mbx  Reference MailboxX SEATUS covuueieiee et e e e e et e e e et e e eeaaeeeraaeeaeannns -137 -
iref mbx Reference mailbox status (handler only) ......cccocooiiiiiiiiiiiiceiciecee e - 137 -
5.7 Extended Synchronization & Communication Function (Message Buffer) ..........ccccevevveeuennne. - 139 -
snd_mbf Send to MesSage DUITET ............oooiiiiiiiiii e - 140 -
psnd_mbf  Send to message buffer (POIIIIIE) . ..cveoviiueieeieeeeeee ettt et - 140 -
ipsnd_mbf Send to message buffer (polling, handler only) ........cccooveeeeeeeeeee oo - 140 -
tsnd_mbf  Send to message buffer (With tIMeOU) ......c.ooveeeeeeeeeeeeee et - 140 -
rev_mbf Receive from message DULTET........coooviveiiiiiii e - 143 -
prev_mbf  Receive from message buffer (POIIiNg) ..........c.ccoeveiiueiiiieeeiieeiieeeceeeeeeeeee e - 143 -
trcv_mbf Receive from message buffer (With timeout) ...........cceeveieiiiieieeeieeceeieeeeee e - 143 -
ref_mbf Reference message buffer status ......ccccveviiiiiiiiiiiiiiii e - 146 -
iref_ mbf Reference message buffer status(handler only)..........cccccoeeeveiieiiieeeieieeeeeeeeeeeeeeeee, - 146 -
5.8  Extended Synchronization & Communication Function (MUEX) .........cceoveveieieeieeeeereeeenenens - 148 -
JOC INEX  LLOCKS ITIULEX .ottt e et e e e et e e e e e e e e et e e e e eaaeeeeaaeeeeaaeeeeeaanans - 149 -
ploc_mtx  Locks mutex (POILNE) .......coeviiiieieeeeieeieeeeeeeee ettt ettt ettt eneeneeaeene e - 149 -
tloc_mtx  Locks mutex (With timMEOUL) .........c.coveieiiiieeereeeeeteeteeeeeeee ettt ene e - 149 -
UNL_MtX  UNIOCKS MUBEX 1.ouiiiiiiiiiiieicciiie ettt ettt e et e e s ita e e e ettaeeessitaeeeesatbaeeesnssseeesnssseeesnnseens - 151 -
ref MtX  Reference MULEX STATUS . oeiiiieiieeeee e e e e e e e e e e e e e aeeeeeeeeanans - 153 -
5.9 Memory Pool Management Function (Fixed-size Memory Pool) .......ccccoveveeeieoeeeeeeeeeeeeeeeeeeenn. - 155 -
get_mpf Aquire fixed-size Memory DIOCK ..........ooiiiiiiiiiiieeiiie e e e - 156 -
pget_mpf  Aquire fixed-size memory block (POILING)........c.ccvivviieieiieieeee ettt - 156 -
ipget_mpf Aquire fixed-size memory block (polling, handler only) ...........cccccoevevveieverereeeererennen. - 156 -
tget_mpf  Aquire fixed-size memory block (With timeout) ...........cccoeveveeveieieeiieeeeeceeeeee e - 156 -
rel_mpf Release fixed-size memory DIOCK............cooiiiiiiiiiiiiiiiiiiiiiceee e - 159 -
irel_mpf Release fixed-size memory block (handler only) .............cccooeeeuiirieeeriieeieieeeeeeeeeeee e - 159 -
ref_mpf Reference fixed-size memory pool StAtUS .......ccccvviiiiiiiiiiiiiiiiiiee e - 161 -
iref mpf Reference fixed-size memory pool status (handler only)........cccooeeeeiiveeiieeeeieeeeeeeeenne. - 161 -
5.10 Memory Pool Management Function (Variable-size Memory Pool) .............c.cccceeveeereerecrennnnn. -163 -
pget_mpl  Aquire variable-size memory block (POIIINE) ......cveoviiuieeeeeeieeeeee et - 164 -
rel_mpl Release variable-size memory DIOCK ...........uuuuuuuuiiiiiiiiicccceceeeeceee e e - 166 -




ref_mpl Reference variable-size memory POOl SEATUS .......eveiiiiiiieiiiiieeeeeeeeeeeeeeee e e - 168 -

iref mpl Reference variable-size memory pool status (handler only) ........cccoovveveeoveeeeveeeeeeeeennn. - 168 -
5.11 Time Management FUNCEION .........ccoiciiiiiiiii e e e e e e e e eattbre e e e e e e e e eaabaaraeeaeas -170 -
SEt_tim St SYSLEIM LIMIE...uiiiiiiii ittt e e e e e ettt e e e e e e e e e e ratabbaaeeeeeeeeeaetraaaeeaaeaens -171 -
iset_tim  Set system time (handler ONLY) ..........cccoocieieiiuieiiieeeceeeeeeeeteee e -171 -
get_tim  Reference System tIme........co.uviiiiiiiiiiiiiiiee e e e e et raaaeeeas -173 -
iget_tim Reference system time (handler 0nly) ...........cccocourueueieiereueueieiieee e -173 -
1S1g_tim  SUPPLY @ tIME TICK c.euviiiiiiiii e e e e e e e e etaraaaae s -175 -
5.12 Time Management Function (Cyclic HANAIEr).........ccooouiiieveiiiieeieeeeeee et - 176 -
sta_cyc  Start cyclic handler OPeration ........cccceeeiiiieiiiiiiieeiee et eeeeeree e e e eeeecre e e eeeeeeeeanns - 177 -
ista_cyc Start cyclic handler operation (handler Only) ........cccoocoeoveeieieeeiieeeee e - 177 -
stp_cyc  Stops cyclic handler OPEration .............ociiiieeeiueeeeiee e e eeeeree e e e e eeeare e e eeeeeeeeanes - 179 -
istp_cyc  Stops cyclic handler operation (handler only)........cccooioeeoeoeeeeeee e -179 -
ref cyc  Reference cyclic handler SEAtUS.......cccvveeiiiiiiieeieeeee e e e - 180 -
iref cyc  Reference cyclic handler status (handler only) ..........c.cccccoeeeveeeieeeeeeeceeeccee e - 180 -
5.13 Time Management Function (Alarm Handler) ...........c.ocooeeeueiiiiieeeeieeeeeeeeeeeeeee e -182 -
sta_alm  Start alarm handler OPeration .........cccicvveveiiieiiiiiiiiii e nnnnnnnnes - 183 -
ista_alm Start alarm handler operation (handler only).............cccoceevereeveieeieeeeeeeeeeereeeeeeenas -183 -
stp_alm  Stop alarm handler Operation ...........cccccoieiiiiiiiiii e e e e e - 185 -
istp_alm Stop alarm handler operation (handler only)............cccccevvevveieieieieeceeeeceeee e, -185 -
ref_alm  Reference alarm handler StAtUS.........ccceeiiiiiiiiiiiiiiiccee e e - 186 -
iref alm Reference alarm handler status (handler only) ......ccoocoeoveeiieeeiiieeeeeeeeeee et - 186 -
5.14 System Status Management FUnCtion ...........ccoovvviiiiiiiiiiiiiiiiii e - 188 -
rot_rdq  Rotate task PreCeAEIICE . ... ..o e e - 189 -
irot_rdg Rotate task precedence (Mandler ONLY) ........cccooveoeeeeeeeeeeeeeeee e e -189 -
get_tid Reference task ID in the RUNNING SEALE.c.uumueeeeeeeeieeee e eas -191 -
iget_tid  Reference task ID in the RUNNING state (handler only) ..........cccccveeeveieverrereesererennen. -191 -
| T Tl e) 016 N 7o Te) o Y= 1 = U U U UUR R -192 -
iloc_cpu  Lock the CPU (handler 0nly)........c.cocuiiviiiieiiieeeeeeee et ene e -192 -
Unl_cpu  UnNIOCK the CPU ..ottt e e e e et a e e e e e e eeeabraaeeaaeeeenns -194 -
iunl_cpu Unlock the CPU (handler 0nlY) .......c.ccocvoieverieieuiereeeeeeeeeteeeteseeeeeeeeseeseseeseeeesensesenseseneas -194 -
dis_dsp  Disable diSpatChing .......ccccuviiiiiiiiiiiieee e e e et aa e e e e e e e -195 -
ena_dsp Enables dispatChing.........ccoovviiiiiiiiiiiiiiieeie e a e -197 -
SNS_CtX  RefErENCE COMEEXE ...ciiiiiiiiiiiiii ittt ettt eette e e e et e e e e e tteeeeetbaeeeeeraeeesssaeeesenssaeanes -198 -
SNS_loc  Reference CPU SEAtE......cccciiiiiiiiiie ettt ettt e et e e e tae e e eetae e e eetaeeeesnabaeeessraeeeas -199 -
sns_dsp Reference dispatChing SEALE ......ccccuvvvviiiiiiiieieeeee e e e e e e e e eenanns - 200 -
sns_dpn Reference dispatching pending State.........cccvvvveiiiiiiiiiiiiiieee e eeeeree e e eeaans - 201 -
ALK A8 S 451 Y s s Je Lo 'a s BRSO - 202 -
ivsys_dwn  System down (handler 0NLY) ...........ccceceeuiieriierieeeeceieeeeeee ettt -202 -
5.15 Interrupt Management FUNCEION............ciiiiiiiiiiiiiiiie et e e e e e e eaaarareeeea s -204 -
ret_int Returns from an interrupt handler (when written in assembly language).................. - 205 -
5.16 System Configuration Management FUNCEION..........coocviiiiiiiiiiiiiiiic e - 206 -
ref ver Reference version INTOrTAtION .. .coue . et e et e e et e e e e eeeeeeeaaeeeeaaaees - 207 -
iref ver Reference version information (handler only) ..........cccccooviviviiiiieeeeceeeeceeeeeeeeeeee e - 207 -
5.17 Extended Function (Short Data QUEUE)............cceeuieveieeeeeeeeeeeeereeeeete et eteete et eeee e eeere e eaeeneas -209 -
vend_dtq  Send to Short data QUEUE ............oooeiiiiiieieie e e e e eeeraree s - 210 -
vpsnd_dtq Send to Short data queue (POLLNE).........ooievieeeeeieeeeeeeeee ettt - 210 -
vipsnd_dtq Send to Short data queue (polling, handler only) ........cccoeoveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeene -210 -
vtsnd_dtq Send to Short data queue (With tIMEOUL) ....cc.evvveeeeieeeeeee et -210 -
visnd_dtq Forced send to Short data qUEUE...........eeeeiiiiiiiiiiieieee e - 210 -
vifsnd_dtq Forced send to Short data queue (handler only) ...........ccccoevevviieeeeeieeeeeeeeeeeeeeeeees - 210 -
vrev_dtq Receive from Short data qUEUE ...........eevvvvieiiiiiiiiiiiiiiiiiieieiiaaanennes -213 -
vprev_dtq  Receive from Short data queue (POIING)........cccoevivviieiiieeieeeeeieeee et -213 -
viprev_dtq Receive from Short data queue (polling,handler only) ..........c.cccoevevveeeeieieieieieeerennn, -213 -
vtrev_dtq  Receive from Short data queue (with timeout) ...........cccoeieviiiiiiiiiieieeeeeeeeeeee i, -213 -
vref_dtq Reference Short data quUEUE StAtUS......ccuvviiiiiiiiiiiiiiieee e - 216 -
viref dtq  Reference Short data queue status (handler only)........cccooceeieveeiieeeeeeeeeee e -216 -
5.18 Extended Function (Reset FUNCLION) ..........c.ccooiouiiuiorioeiceieeeteeeeeeeee ettt ea e ene e eaeenea -218 -
vrst_dtq Clear data QUEUE QXA .........cocovveiiiiiiiieiciiieeeee et eeeeere e e e e e e e erae e e e e e e e eeearrareeeas -219 -
vrst_vdtq  Clear Short data UEUE ATa ..........ccoovuvveeeieeieeiieieeee et e e e e e e e e aarareeeas -221 -




vrst_mbx CLear MIAIIDOX GO «.uneeee et e e et e e e e e e e e e e e e e e e e e e e eeaeeeeeeeennnns - 223 -

vrst_mpf  Clear fixed-size MemOrY POOL ATCA ......uuvveiieeiieiiiiiieeeieeeeeeeeeeeeee e eeeeeeeree e e e e eaarareeeas - 225 -
vrst_mpl Clear variable-size Memory POOL AT€a.......ccccuvviieieeeeiiiiiiiiieeeeeeeeciiireeeeeeeeessirrreeeeeeeesennes - 226 -
vrst_mbf Clear message DUffer area ..........ooccvviiiiiiiiiiiciieec et e e - 227 -
Applications Development Procedure OVErVIEW .........cccoceveimiririiinirnineiiinieninnineneeseessesnessnennes - 229 -
B.1 O VOIVIEW ..uutiiiiiieeeeeeeiiiiieeeeeeeeeeetereeeeeeeeeeettraeeeaeeeeeaeataaseaaaeeeeeaasaasasaaaeeeaasstssasaeeeeeaaassteseaeeeaansrsseees - 229 -
6.2  Development Procedure EXample........ccovvviiiiiiiiiiiiiiiiiic ettt e e e aanes -231 -
6.2.1  Applications Program CoOdINg.......cccceeeiiieeiiiiieeeiiiieeeriieeeesireeeesreeeeseaaeeeesssseesssssseeessssseeesas -231 -
6.2.2 Configuration File Preparation ..........cccocviveiiiiiiiiiiiiiiieee et eeeaneeea e e -232 -
6.2.3 Configurator EXECULION . .......ccooiiiiieiie et eeeee e e e e e e e e e e e eeeaaaaeaee s - 233 -
6.2.4  SYSLEIM GEINETATION ....eeeiiiieeeiitiieeeeeeeeeeeiiitreeeeeeeeeeeiiaaeeeeeeeeeeeeeaareeeeeeeeeesetassrseeeeeeeeeeersrnseeeeeenians -234 -
6.2.5  WIItINE ROM ... ..ot e et e e e e e e e e e e e e e e e aaseeeeeeeeeeeessraneeeesannnes -234 -
Detailed APPICATIONS ....civiiiriiiiiiiiiiniiriiiiitittr sttt et e saesas et e satesaeesassasssbtsesbaonbens - 235 -
7.1  Program Coding Procedure in C LanguUage..........ccccccooiiieireeeiee e eeeeeeee e -235 -
7.1.1 Task Description ProCEAUTE...........uuuuviiiieiiiiiiiiiiiiiiiiiiitririe e nnnnnnnnnnnnnns - 235 -
7.1.2  Writing a Kernel (OS Dependent) Interrupt Handler ............ccoocoveeivvevieeeeeieeeeeeeeeeee -237 -
7.1.3  Writing Non-kernel Interrupt Handler.............ccooeiiiiiiiiiiiiii e -237 -
7.1.4  Writing Cyclic Handler/Alarm Handler..........cccueiiiiiiiiiniiiiicciiiec et - 238 -
7.2  Program Coding Procedure in Assembly Language ........cccceevvieeeiiiieeiiiiiieeeiieeeeeieeeeeieee e - 239 -
822 T T 1 s Vo =Y - USRS - 239 -
7.2.2  Writing Kernel Interrupt Handler ............ooooviiiiiiiiiiiiii e - 240 -
7.2.3  Writing Non-kernel Interrupt Handler..........cccooooeiiiiiiiiiiiiiiiceeeieeee e - 240 -
7.2.4  Writing Cyclic Handler/Alarm Handler..........c...oooeiiiiiiiiiiiiiii e - 241 -

O T 2= =500 W (o) 4 N0 a0 10 L s L R - 242 -
7.3.1 SUIMUITIATY ...t e e et e e e e e e et eeeeeeeeeeeaeareeeeeeeeeeaassseeeeeeeeeeansssneeeeeeeeenarnneeeeeeas - 242 -
7.3.2 (70T T o V=S - 242 -
7.4  Modifying MR100 Startup Programi........ccccceceeiiiiiiiiiieiciieieee ettt e e e e e eeeaaevrrae s - 244 -
7.4.1  C Language Startup Program (crtOmr.a80)..........cccvevveierierieieriirieieeeeeieeeeeee e - 245 -
7.5 MemOTY AlLOCATION ...eiiiiiiiiiiiiiiiie e ettt e e e et e e e e e e settbreeeeeeessaattbraasaaeeessasrsssaasessessssssssseaaeans - 250 -
7.5.1 Section used by the MRI0O0..........oooiiiiiiiiiiiiiiee e e ettt e e e e e e ettareeeeeeeen - 251 -
USING CONTIZUTATOT ....eeeeurrieeeeiiieeeeeitreieeeitreeeeetreeeeearaeeessseeeasseseeasssssessssssssessssssssesssssesassssessssssesesnnssenes 253
8.1  Configuration File Creation ProCedure ........ccccciiciiiiieiiiie ettt e e e evre e s e aae e e e 253
8.1.1 Configuration File Data Entry FOrmat............coooviiiiiiiiiiiiiiiiieieee e 253
OPEIALOT «..vviieivieeeeiiieeeetteeesttee e ettt esseaaeeesstseeeasssseeesssaaesssseaeasssseeeasssaeessssaeeasssseesasssaeeassesansssseessssaaeanssseeanssseeesssseaeans 254
Direction Of COMPUEATION ....iiviiieeiiie ettt e et ieeesit e eete e e ebteeesteeeesebeeeetseeeesssseeeassaeeesssseeaassessasssseesssssesasssseeesnssees 254
8.1.2 Configuration File Definition TEeIMS . ..cccuuveiiii it eere e e e e e e e eaaes 255

[( System Definition ProCedUIe )] ........cocivviiiiiiieiiiiieeieteee ettt ettt ettt ettt et as et et eteeve et ebe s essevessessesesseseereas 256

[( System Clock Definition Procedure ).........c.ocvievieriieiieieieeeeeeeeeee ettt ettt eneeeae e eseseenee s e eseeneeneeneennens 257

[( Definition respective maximum NUMbETrs 0f TEEIIS ) ....ooviiviiiiiiiiiice et 258
[(TASK defINTtION ). .o.viviei ettt ettt ettt ettt et et e e e ee e et e eneesseas et e et e eaeereetesseeteeseensensensensesaseneeneensaneans 260
[(Eventflag definition )] .......cciiiiiiiiiece ettt ettt ettt ettt et e et e et e eaeereereeseeseeaeeneensensensesaeeeeeneeneannens 262

[( Semaphore definition )] ........ccvciiieieei ittt ettt ettt ettt et ettt et e et eae et e et eaeete et eaeete et eae et easete et essete et enseresteneereas 264
[(Data quete defiNItion )] ........ccooiiiiei ettt ettt ettt et et ettt e et et et e et e et eneete et eneete et eneereetenneneas 265

[( Short data queue defiNItion ) ........cooiiiiiii ettt ettt ettt aeeaeeteeae e et easent et eeessesaeseeeneeneennens 266
[(Mailbox defINItion )] ...o.iovieeiieieeieeeeeeee ettt ettt ettt e e e et e et e e e et e et e seeeeeeaeeaeeteensentensesenaesasseseneensennens 267

[( Fixed-size memory Pool definition )..........ccocviieriiiiieeiireeeeeeteeeee ettt ettt ettt ettt ete et eseeseneere s enseneesenseneas 268

[( Variable-size memory POOl defiIItION )] .......eoveuiiueeeeeeeeee e oottt e et e et e e e e eaeeeeeeeeeseenenens 269
[(Message buffer definition)] ..........eeiueuriiieiricieiecieiseie ettt 271
[(AMIULEX defINItION) ... .oviviieieeieeiete ettt ettt ettt ettt et ee et e et e eaeetseneenseaees e et e eseersereeseeseeseensensenseisesssereeneensannens 272

[( Cyclic handler definition )] ......c.cceevieiirieiie ettt ettt eteeaeere et et e ereereeteereereensensensenseesesneereeneensaneens 273
[(Alarm handler definition )] ........cccooieiiioiii ettt ettt ettt e e et e et e teeaeeraeseeneensenseesesasereeneeneannens 275

[( Interrupt vector defINItion ) ........ccociiieieeiereeeeeteeteeteeee et eeees e et e et eteene et eeaeeseereeseersereesseseseeneensenseesesssereeneansannens 276

[( Fixed interrupt vector definition )] .........ocociiviiiiiieeeetcee ettt ettt ettt ettt ettt ete ettt e et ete et eteere et eeseresaesnereas 277
8.1.3 Configuration File EXamPle........cccooiiiiiiiiiiiiiic ettt e e et e e e e e s eebraraeeeeeeeeannns 280
8.2  Configurator EXecution ProCeduUIes .........ccociiiiiiiiiiiiiiiiiiiieee ettt eeevt e e e e e e e eeeaavrraeeeeeeeenennns 284
8.2.1 CONTIGUIALOT OVEIVIEW ....uviiiiiiiieeieiiieeeeiteeeeeeieeeeesitteeeesebteeeessbteeeessteeeeesssseeeeassseesssnssseesssssseensssees 284
Executing the configurator requires the following Input flles:..........ccooeiiiiiiiiiiiiiiiiiiiee e 284
When the configurator is executed, the files listed below are output. ........cccevviiiiiiiiiiiiiiiice e 284
8.2.2 Setting Configurator ENVIFONIMENTt .......cccuvviiiiiiiiieiiiieee et eeeecrrre e e e e e eenaans 285




8.2.3 Configurator StArt PrOCEAUIE ............ooiiiiiieiie et e e e e et e e e e e eeennes 286

8.2.4  Precautions on Executing ConfigUrator..........ccccuvviiiiiiiieiiiiiieeee et eeee e e e e e 286
8.2.5 Configurator Error Indications and Remedies..........cccccceoeiiiiiiiiiiiiiiiiciieee e, 287
LD o 1§ Lo ToTCT: P Y- R PP URRUUPPUUPURRURRRRPRE 287
WATTIING MESSAZES ..occvvviiieiieeeiiiiiiieeeeeeeeitttreeeeeeeeetatreeeeeeeaaatasaaaeeesaasaasraseeaeesasssrassaaseeesastaseeesassssssareeeeseessssrenneeeens 289

9.  Sample Program DesCription......ccccevvvvreeeeeiieeririeereeeeereerrsrerreeeeessessssssssssseessessssssssssessssesssssssssssssssssssanes 290
9.1  Overview of SAmMPle Program .......cooooiiiiiiiiiiiiiiciiieee et e e e e e et e e e e e e e e e tarreaeeeeeaas 290
9.2 Program SOUICE LISTINE......ccccuviiiiiiiiieiiiiiiiie ettt e e e ee ettt e e e e e e eeeeataaaeeeeeeeeeetbtsaesaaeseeeasareeaaaeeeans 291
9.3 Configuration FIle..........cociiiiiiiiiii ettt e e ettt e e e e ete e e e s ttaee e ssabaeeeesasseeesesaeeesnnsaaeennns 292
10.  Stack Size Calculation Method ...........cccuniiiiiiiiiiiieieee e recrrere e e e e s e e aeaaeeeee e ssessnaaaaeas 293
10.1 Stack Size Calculation Method .........cccuiiiiiiiiiiiiiiiie ettt et e e e sre e e e eavreeesaaseeesraeeens 293
10.1.1 User Stack Calculation Method...........ccoociiiiiiiiiiiiciiece ettt e svae e e e srae e e 295
10.1.2 System Stack Calculation Method ........cccovvvviiiiiiiieiee e 297
10.2  NeCESSATY SEACK SIZE ..uuveiiiiiiiiiiiiieeeee et eee e e e e e e e e e e eeeeeeeeeesrtareeeeeeeeeesssaneeeeseeesnsrnneeens 301
T (o - RPN - 303 -
11.1 The Use of INT INStrUCEION ...oovieiiiiiiiieiie et - 303 -
11.2 The Use of registers 0f DANK .........coiiiiiiiiiiiiiiicc ettt e e e e e e eatbrar e e e e e e e e easareeas - 303 -
11.3 Regarding Delay DiSpatChing ...........cooiiiiiiiiiiiiiieciiiiiiieee ettt eeeetar e e e e e eeeatra e e e e e e e e eaaveeas - 304 -
11.4 Regarding Initially Activated TasK........ccooiiiiiiiiiiiiiiiiiiieee et et e e e e e - 305 -
12, ADPDEIAIX ..ueeiiiiiieeiiiecieieeeeeeeeerrrrereeeeeeseesssrsteseseessesssssssssseeessessrssssssssesssesssssssssseeessesssssssseeessesssnssnnes - 307 -
D20 R D =1 = T 14 o T TR - 307 -
12.2 Common Constants and Packet Format of Structure ..........cccccceieeiiiiiiiiiiiiiiciee e - 308 -
12.3  Assembly Language INterface...........cooviiiiriiiiiiiieecceeee et - 310 -

viii



List of Figures

Figure 3.1 Relationship between Program Size and Development Period............ccceeeeenvieiennnnen. -7 -
Figure 3.2 Microcomputer-based System Example(Audio Equipment) ........cooeceevevveeeeveeeeenenenn. -8-
Figure 3.3 Example System Configuration with Real-time OS(Audio Equipment) ...................... -9-
Figure 3.4 Time-division Task Operation ........ccccccceeiiiiiiiiiiiiee e e e e eeeeirre e e e e e e e eerrareeee e e -10 -
Figure 3.5 Task Execution Interruption and Resumption .........ccccoveviiiiiiiiiiiiiiiecce e -11-
Figure 3.6 Task SWILCHING ......ccciiiiiiiiiiiiieee e et e e e e e eeette e e e e e e e e eeetabaeaeeeens -11-
Figure 3.7 Task Re@IStOr AT@a ....ccccuviiiiiiieieeciiiiiieee ettt e e ettt e e e e e e e eettrraeeeeeeeeetaaraeeeeeens -12 -
Figure 3.8 Actual Register and Stack Area Management ...........cccccveeeiiiiiiiiiiiiiieec e, -13-
FIgUre 3.9 Service Call........ovvviiiiiiiiiiiieieeee et e e aaeeaens -14 -
Figure 3.10 Service Call Processing FIowchart..........ccccovvveiiiiiiiiiiiiiiiie e -15-

Figure 3.11 Processing Procedure for a Service Call a Handler that caused an interrupt during Task
Execution - 17 -
Figure 3.12 Processing Procedure for a Service Call from a Handler that caused an interrupt during

SErVICE Call PrOCESSING ... uuvviveeiieeeeeieiieeeee e eeeeeee et ee e e e eeeta e e e e e eeeeearaeeeeeeeeeeesanrereeeeeeeeeennaeeens -18-
Figure 3.13 Processing Procedure for a service call from a Multiplex interrupt Handler .......... -19-
Figure 3.14 Task IdentifiCation ......ccuuiiiiiiiiiiiiiiiiieie ettt e e e e estavrr e e e e e e e s etbbaaaeeeeans -20 -
FIgure 3.15 TaSK StAtUS....uuuiiiiiiiiiiiiiiieee et e et e e e e e e ettt b r e e e e e e eseatbbaaeeaeeeesssssraeeaaseanns -21-
Figure 3.16 MR100 Task Status Transitlon ..........cccccoeeieiiiiiiiiieeciiecciiiiieeee et evavee e -22-
Figure 3.17 Ready Queue (Execution QUEUE) ..............coceevieiieiieueieeieeeeeeeeeeereeee ettt -25-
Figure 3.18 Waiting queue of the TA_TPRI attribute ........cccoecviiiiriiiiiiciieeeeiee e - 26 -
Figure 3.19 Waiting queue of the TA_TFIFO attribute.......cccccceiivciiiiiiiiiieeeiee e -26 -
Figure 3.20 Task control DIOCK .........vveiiiiiiiieiiiiieiiee e e e e e e e e -27 -
Figure 3.21 Cyclic Handler/Alarm Handler Activation ...........ccccceeeeiveiieiciieieeciiee e -29-
Figure 3.22 Interrupt handler IPLS.............vuviiiiiiiiiiii e nees -31-
Figure 3.23 Interrupt control in a Service Call that can be Issued from only a Task.................. -32-
Figure 3.24 Interrupt control in a Service Call that can be Issued from a Task-independent...- 33 -
Figure 3.25 System Stack and User Stack ...........eeeiiiiiiiiiiiiiiiiie et e e e eeraveeee e -34-
Figure 4.1 MRI100 SErUCEUTE....cccceiiiiiiiiiieee ettt e ettt e e e e e e etttr e e e e e e e e ssettbraseeeeeeeanssssssaaesenans -35-
Figure 4.2 Task ReSETEING.....uuiiiiiiiiiiiiiiiice ettt e e e e ettt r e e e e e e e s e atbbaaeeeeaeeeseasabeaeaeeans -37-
Figure 4.3 Alteration of task PrIOTItY .......cccoiiiiiiiiiiiiieieiiiiiiieee e e et e e e e eeeciire e e e e e e e eeeeeaarraeeeeens -38-
Figure 4.4 Task rearrangement in 8 WaltlNg QUEUE ..........eeeeeeeeeeiiiiiiiireeeeeeeeiiiireeeeeeeeeeeennnreeeeeeeens -38-
Figure 4.5 Wakeup Request STOTAZE.......cccuviiiiiiiiiiciiie ettt ette e e sere e e e seaee e e -39 -
Figure 4.6 Wakeup Request Cancellation...............cooovriiivrieieeiieieiiiiieeeee e eeeeeccirreee e eeeeeearneeeae e -39 -
Figure 4.7 Forcible wait of a task and reSuUIme..........coooovvvviiiiiiiiiiiiieeee e -40 -
Figure 4.8 Forcible wait of a task and forcible resume............ccoevvvvviieeiiieiiiiiiieeeee e -41 -
Figure 4.9 dly_tsk ServiCe Call...........uuuiviuiiiiiiiiiiiiiiiiiiiiiiiiiiieieeieaieenenennnnnnnnnnasesesesesesesesssssnes -42 -
Figure 4.10 Exclusive Control by Semaphore ...........ccooovvuvviiiiiiiiiceeeeeee e -43 -
Figure 4.11 Semaphore COUNTET ..........ooeiiiiiiiiieeieee et eeeeeere e e e e e eeeaereeeeeeeeeenaranrreeeeeaens -43 -
Figure 4.12 Task Execution Control by Semaphore...........cccceeeeeeiiiiiiiiieee e -44 -
Figure 4.13 Task Execution Control by the Eventflag...........ccccooeiiiiiiiiiiiiiiiiiieeecveeee e, - 46 -
FIgUTe 4.14 DAta QUEUE ....uuviiiiiiiiiiiiiiiieee ettt e ettt e e e e e e e ttbbaeeeeeeeenettbraaeaeeeesanssssaeeaaeeanns -47 -
FIGUTE 4.15 MAIIDOX ..ottt e e e e e ettt e e e e e e e eeetabaaaeeaeeeeeeneraeaaaaaeaans -48 -
FIgUTe 4.16 MESSAZE (UEUE ..ooceeiieiiiiiiiieee ettt eeeet et e e e e e e eeetaaaeeeeeeeeeeetsbraeeeaeeeeeetssrraeeeeaans -49 -
Figure 4.17 Typical Operation of the MULeX ........ccccciiiiiiiiiiiiiiiiee ettt -50 -
Figure 4.18 Message BUTTer.........ooooiiiiiiiiicc et -52-
Figure 4.19 Example of Message TransmiSSION ........ccoovivuvrreeeeeeeeiiiiiireeeeeeeeeeeeeirreeeeeeeeeeeeinreneeeeeens -53-
Figure 4.20 Transmission Of IMESSAZES ......ccccuvrveieeieiieieiiieeeeeeeeeeeeeiiereeeeeeeeeeeiiarreeeeeeeeeeeerrnreeeaeeeens -53-
Figure 4.21 Reception 0f @ MESSAZE .......ccceiiiieciieeeeee et eeeeeeee e e e e e e e e e e e e e e enaraneeeeens -54 -
Figure 4.22 Memory Pool Management..............uuuuureiuiiiriiiiiiiiiiinnnennnnnnnnnnnneseseeesesesesenns - 55 -
Figure 4.23 pget_IMPl PrOCESSING.......vvvvvviiiieeeiieieeeieerttrerrrrerarararar.——————————————————————————————nnnnnnnnnnnnnnnnnns - 57 -
Figure 4.24 1re]l_mpPl PrOCESSING .....uuviiiiiiiiiiiiiiiiiieeeeeeeeecirt e e e e e e e e esttareeeeeeeeessetrsraaeeeeesssssssssraeeeeaans - 58 -
Figure 4.25 Timeout ProCeSSING ........uviiiiiiiiiiiiiiiiiie ettt e e et e e e e e e e esttarae e e e e e e eeaesbraaeeaenns -59 -
Figure 4.26 Cyclic handler operation in cases where the activation phase is saved................... -61 -
Figure 4.27 Cyclic handler operation in cases where the activation phase is not saved............. -61-

iX



Figure 4.28 Typical operation of the alarm handler ..............ccooovvvieiiiiiiiiiii e - 62 -
Figure 4.29 Ready Queue Management by rot_rdq Service Call..........cooovvvvvveeiiiiiiieiiiineeeeeeeenn. -63 -
Figure 4.30 Interrupt process flOW.... ...t e ettt re e e e e e e ebrraeeeeens 64 -
Figure 6.1 MR100 System Generation Detail Flowchart ...........ccccovveiiiiiiiiiiiiiiiiiieeeeee, - 230 -
Figure 6.2 Program EXAmPLe ........cccouviiiiiiiiiiiiee et e e ettt r e e e e e e e e eanaraaea e e e 232

Figure 6.3 Configuration File EXample .......ccccccviiiiiiiiiiiiiiiieeiiee ettt eeivee e eraee e 233 -
Figure 6.4 Configurator EXECULION ........ccccuviiiiiiiieiiiiiiee ittt e etee e svvee e sevveeesesanaeeenns 233 -
Figure 6.5 System GeNeration.......ccc.ueeiiiiiiiiiiiiiiieee ettt e e et e e e e e eeeette e e e e e e e e eeeaaareeeaeaeens 234

Figure 7.1 Example Task Described in C Language.........cc...cooevvvvvviieeeeeeeeeecieeeeeeee e - 235 -
Figure 7.2 Example Infinite Loop Task Described in C Language .........ccceeeeevieeeeiiieeeeecnieeeens - 236 -
Figure 7.3 Example of Kernel Interrupt Handler.............cccooooiiiiiiiiieiiiiiieeeeeeeeeeeeeeee - 237 -
Figure 7.4 Example of Non-kernel Interrupt Handler ...........coooovvvviiiiiiiiiiiiieeeeeieeeeee e - 237 -
Figure 7.5 Example Cyclic Handler Written in C Language .......ccccceeeeveeeeecieeeeeeeeeeeeeeeeeeeeeen - 238 -
Figure 7.6 Example Infinite Loop Task Described in Assembly Language...........cccceceeeuvvnennns - 239 -
Figure 7.7 Example Task Terminating with ext_tsk Described in Assembly Language........... - 239 -
Figure 7.8 Example of kernel(OS-depend) interrupt handler.............ccoocveieevviereveecveieieeeneeneae - 240 -
Figure 7.9 Example of Non-kernel Interrupt Handler of Specific Level .........ccccccovvnniniinnnnennn. - 240 -
Figure 7.10 Example Handler Written in Assembly Language .........ccceccvveeeeciieeeeiiieeeeciieee s - 241 -
Figure 7.11 System down routine SAmPle..........eveiiiiiiiiiiiiiiieee e 242

Figure 7.12 C Language Startup Program (crtOmr.a80) ...........cc.ecveveeereeerieeereereeeeesereeereeeneens - 248 -

Figure 8.1 The operation of the Configurator




List of Tables

Table 3.1 Task Context and Non-task CONtEXt ........cccouiiiiiiiiiiiiiiiiiiee et eveee e esevaeee e -28 -
Table 3.2 Invocable Service Calls in a CPU Locked State.........ccccoeevciiiieeiiiiiiiiiieee e, -30-
Table 3.3 CPU Locked and Dispatch Disabled State Transitions Relating to dis_dsp and loc_cpu- 30 -
Table 5.1 Specifications of the Task Management Function...........cccoovveeeiiiiiiiiiiiiieeccce e, -67 -
Table 5.2 List of Task Management Function Service Call............ccccovviviiiiiiiiiiiiiiiiieecee e, -67 -
Table 5.3 Specifications of the Task Dependent Synchronization Function ..............cccccceuuvneee... - 88 -
Table 5.4 List of Task Dependent Synchronization Service Call ..........cccccoviiiiiiiiiiiinciiieeeeciieeens - 88 -
Table 5.5 Specifications of the Semaphore Function ............cccccoooeviiiiiiiiiiiiiiiciiieee e, -104 -
Table 5.6 List of Semaphore Function Service Call.........ccccceeeviiiiiiiiiiiiiieeieeeieeecieeeeeeee e -104 -
Table 5.7 Specifications of the Eventflag Function..........ccccovveeiiiiiiiiiiiieeiec e, - 112 -
Table 5.8 List of Eventflag Function Service Call..........cccccveviiiiiiiiiiiiiiiiiicceeeecieeeeeeeeeeeeee, - 112 -
Table 5.9 Specifications of the Data Queue FUunction ...........ccccoeoeeeeiiveeeeieeieeeeieeeeee e -122 -
Table 5.10 List of Dataqueue Function Service Call.........cccoooviiiiiieiiieeeiieiiieeeieeeeee e -122 -
Table 5.11 Specifications of the Mailbox FUunction........ccooovvuveeiiiiiiiiiieeec e -131 -
Table 5.12 List of Mailbox Function Service Call ...........ccccvviiiiiiiiiiiiiiiiieie e -131 -
Table 5.13 Specifications of the Message Buffer Function..........ccccccovvvieiiiiiiiiiiiiiiieiiccece, -139 -
Table 5.14 List of Message Buffer Function Service Call...........ccocvviiiiiiiiiiiiiciiiiieeee e, -139 -
Table 5.15 Specifications of the Mutex Function ...........cccoviiiiiiiiiiiiiiiii e, - 148 -
Table 5.16 List of Mutex Function Service Call...........coooiiiiiiiiiiiiiiiiiiiieee e, - 148 -
Table 5.17 Specifications of the Fixed-size memory pool Function............cccceeeviviiieiiiiinicnnnnen... - 155 -
Table 5.18 List of Fixed-size memory pool Function Service Call .............cccoeevvvveeiiiieieeiiinnnnnn.. - 155 -
Table 5.19 Specifications of the Variable-size memory Pool Function..........cccccccveeeiivieeennnnennn. - 163 -
Table 5.20 List of Variable -size memory pool Function Service Call..........cccccovvveeeiieieeeninnnnen.. - 163 -
Table 5.21 Specifications of the Time Management Function ..........cccccccoeevveeevieeeeeeeeieeenneeenn. - 170 -
Table 5.22 List of Time Management Function Service Call .........cccccevvviiiiiiiiiiieeiieeeeieeeineeen. - 170 -
Table 5.23 Specifications of the Cyclic Handler Function..........cccccvvvveviieiiieiciieeeeeeeeeeeeeeeeee. -176 -
Table 5.24 List of Cyclic Handler Function Service Call...........cccooeevviiiiiiiiiiiiiiiiiieee e, -176 -
Table 5.25 Specifications of the Alarm Handler Function.......ccccceeeeeeieieieieeeeiieiceecececeeeeeeeeeeeeeennn - 182 -
Table 5.26 List of Alarm Handler Function Service Call...........ccccoeeviiiiiiiiiiiiiiiiiieee e, -182 -
Table 5.27 List of System Status Management Function Service Call ...........ccceeeevvivieennnnennn. - 188 -
Table 5.28 List of Interrupt Management Function Service Call.........cccccoveveeiiiiieiniiieeennnnenn. - 204 -
Table 5.29 List of System Configuration Management Function Service Call...............ccu....... - 206 -
Table 5.30 Specifications of the Short Data Queue Function..........ccccceeeeiiiieiiiiieeienecceeeineee. - 209 -
Table 5.31 List of Long Dataqueue Function Service Call...........ccocovvvveiiiiiiiiiiiiiieieeeeeeeeecineneen. - 209 -
Table 5.32 List of Reset Function Service Call...........cccceiiviiiiiiiiiiiiieiiiie e - 218 -
Table 7.1 C Language Variable Treatment.........ccceeeiiiiiiiiiiieeeeiccceeeeeeeeeee e - 236 -
Table 7.2 Parameters Passed to the System-Down Routine .........cccocvvvveeiiiiiiiiiiieeeieeeeieeeiinenen. - 243 -
Table 8.1 Numerical Value Entry EXamples ... 253
TADLE 8.2 O PEIATOYS ..vvvereeieentiieeeee e e e e e e e e e e e eaesesesesaaaseaeaasasaseessesesesssssnsssssnnsnnn 254
Table 8.3 List of vector number and vector address ......ccc.uvvvieieiieiiiiiiiiiee e 278
Table 9.1 Functions in the Sample Program ..........cccccoeieiiiiiiiiiii e evarreeee e 290
Table 10.1 Stack Sizes Used by Service Calls Issued from Tasks (in bytes) ..........ccccocvevevvrrevvennees 301
Table 10.2 Stack Sizes Used by Service Calls Issued from Handlers (in bytes) .........cccccoeveurenene. 302
Table 10.3 Stack Sizes Used by Service Calls Issued from Tasks and Handlers (in bytes) .......... 302
Table 11.1 Interrupt Number ASSIGNIMENt........c..vvveiiiiiiiiiiiiieeeee e eeee e eee e - 303 -

Xi



Xii



1.

User’s Manual Organization

The MR100 User’s Manual consists of 11 chapters and three appendix.

2 General Information
Outlines the objective of MR100 development and the function and position of the MR100.

3 Introduction to Kernel
Explains about the ideas involved in MR100 operations and defines some relevant terms.

4 Kernel
Outlines the applications program development procedure for the MR100.

5 Service call refference
Details MR100 service call API.

6 Applications Development Procedure Overview
Details the applications program development procedure for the MR100.

7 Detailed Applications
Presents useful information and precautions concerning applications program development with MR100.

8 Using Configurator
Describes the method for writing a configuration file and the method for using the configurator in detail.

9 Sample Program Description
Describes the MR100 sample applications program which is included in the product in the form of a source file.

10 Stack Size Calculation Method
Describes the calculation method of the task stack size and the system stack size.

11 Note
Presents useful information and precautions concerning applications program development with MR100.

12 Appendix
Data type and assembly language interface.







2. General Information

2.1 Objective of MR100 Development

In line with recent rapid technological advances in microcomputers, the functions of microcomputer-based products have
become complicated. In addition, the microcomputer program size has increased. Further, as product development competi-
tion has been intensified, manufacturers are compelled to develop their microcomputer-based products within a short period
of time.

In other words, engineers engaged in microcomputer software development are now required to develop larger-size pro-
grams within a shorter period of time. To meet such stringent requirements, it is necessary to take the following considera-
tions into account.

1. To enhance software recyclability to decrease the volume of software to be developed.

One way to provide for software recyclability is to divide software into a number of functional modules wherever
possible. This may be accomplished by accumulating a number of general-purpose subroutines and other program
segments and using them for program development. In this method, however, it is difficult to reuse programs that
are dependent on time or timing. In reality, the greater part of application programs are dependent on time or tim-
ing. Therefore, the above recycling method is applicable to only a limited number of programs.

2. To promote team programming so that a number of engineers are engaged in the development
of one software package

There are various problems with team programming. One major problem is that debugging can be initiated only
when all the software program segments created individually by team members are ready for debugging. It is es-
sential that communication be properly maintained among the team members.

3. To enhance software production efficiency so as to increase the volume of possible software
development per engineer.

One way to achieve this target would be to educate engineers to raise their level of skill. Another way would be to
make use of a structured descriptive assembler, C-compiler, or the like with a view toward facilitating program-
ming. It is also possible to enhance debugging efficiency by promoting modular software development.

However, the conventional methods are not adequate for the purpose of solving the problems. Under these circumstances, it
is necessary to introduce a new system named real-time OS °

To answer the above-mentioned demand, Renesas has developed a real-time operating system, tradenamed MR100, for use
with the R32C/100 series of 32-bit microcomputers .

When the MR100 is introduced, the following advantages are offered.

4. Software recycling is facilitated.

When the real-time OS is introduced, timing signals are furnished via the real-time OS so that programs depend-
ent on timing can be reused. Further, as programs are divided into modules called tasks, structured programming
will be spontaneously provided.

That is, recyclable programs are automatically prepared.

5. Ease of team programming is provided.

When the real-time OS is put to use, programs are divided into functional modules called tasks. Therefore, engi-
neers can be allocated to individual tasks so that all steps from development to debugging can be conducted inde-
pendently for each task.

Further, the introduction of the real-time OS makes it easy to start debugging some already finished tasks even if
the entire program is not completed yet. Since engineers can be allocated to individual tasks, work assignment is
easy.

6. Software independence is enhanced to provide ease of program debugging.

As the use of the real-time OS makes it possible to divide programs into small independent modules called tasks,

® OS:Operating System




10.

the greater part of program debugging can be initiated simply by observing the small modules.
Timer control is made easier.

To perform processing at 10 ms intervals, the microcomputer timer function was formerly used to periodically in-
itiate an interrupt. However, as the number of usable microcomputer timers was limited, timer insufficiency was
compensated for by, for instance, using one timer for a number of different processing operations.

When the real-time OS is introduced, however, it is possible to create programs for performing processing at fixed
time intervals making use of the real-time OS time management function without paying special attention to the
microcomputer timer function. At the same time, programming can also be done in such a manner as to let the
programmer take that numerous timers are provided for the microcomputer.

Software maintainability is enhanced

When the real-time OS is put to use, the developed software consists of small program modules called tasks.
Therefore, increased software maintainability is provided because developed software maintenance can be carried
out simply by maintaining small tasks.

Increased software reliability is assured.

The introduction of the real-time OS makes it possible to carry out program evaluation and testing in the unit of a
small module called task. This feature facilitates evaluation and testing and increases software reliability.

The microcomputer performance can be optimized to improve the performance of microcom-
puter-based products.

With the real-time OS, it is possible to decrease the number of unnecessary microcomputer operations such as 1/0
waiting. It means that the optimum capabilities can be obtained from microcomputers, and this will lead to mi-
crocomputer-based product performance improvement.




2.2 Relationship between TRON Specification and MR100

MR100 is the real-time operating system developed for use with the R32C/100 series of 32-bit microcomputers compliant
with LITRON 4.0 Specification. WITRON 4.0 Specification stipulates standard profiles as an attempt to ensure software
portability. Of these standard profiles, MR100 has implemented in it all service calls except for static APIs and task excep-

tion APlIs.




2.3 MR100 Features
The MR100 offers the following features.

1. Real-time operating system conforming to the uITORN Specification.

The MR100 is designed in compliance with the uWITRON Specification which incorporates a minimum of the
ITRON Specification functions so that such functions can be incorporated into a one-chip microcomputer. As the
uITRON Specification is a subset of the ITRON Specification, most of the knowledge obtained from published
ITRON textbooks and ITRON seminars can be used as is.

Further, the application programs developed using the real-time operating systems conforming to the ITRON
Specification can be transferred to the MR100 with comparative ease.

2. High-speed processing is achieved.
MR100 enables high-speed processing by taking full advantage of the microcomputer architecture.

3. Only necessary modules are automatically selected to constantly build up a system of the
minimum size.

MR100 is supplied in the object library format of the R32C/100 series.

Therefore, the Linkage Editor functions are activated so that only necessary modules are automatically selected
from numerous MR100 functional modules to generate a system.

Thanks to this feature, a system of the minimum size is automatically generated at all times.

4. With the C-compiler NC100, it is possible to develop application programs in C language.

Application programs of MR100 can be developed in C language by using the C compiler NC100. Furthermore,
the interface library necessary to call the MR100 functions from C language is included with the software pack-
age.

5. An upstream process tool named "Configurator” is provided to simplify development proce-
dures

A configurator is furnished so that various items including a ROM write form file can be created by giving simple
definitions.

Therefore, there is no particular need to care what libraries must be linked.

In addition, a GUI version of the configurator is available. It helps the user to create a configuration file without
the need to learn how to write it.




3. Introduction to Kernel

3.1 Concept of Real-time OS

This section explains the basic concept of real-time OS.

3.1.1 Why Real-time OS is Necessary

In line with the recent advances in semiconductor technologies, the single-chip microcomputer ROM capacity has in-
creased. ROM capacity of 32K bytes.

As such large ROM capacity microcomputers are introduced, their program development is not easily carried out by con-
ventional methods. Figure 3.1 shows the relationship between the program size and required development time (program
development difficulty).

This figure is nothing more than a schematic diagram. However, it indicates that the development period increases expo-
nentially with an increase in program size.

For example, the development of four 8K byte programs is easier than the development of one 32K byte program.*

Development Period

[ S
©

16 32 Kbyte

Program Size

Figure 3.1 Relationship between Program Size and Development Period

Under these circumstances, it is necessary to adopt a method by which large-size programs can be developed within a short
period of time. One way to achieve this purpose is to use a large number of microcomputers having a small ROM capacity.
Figure 3.2 presents an example in which a number of microcomputers are used to build up an audio equipment system.

Z_On condition that the ROM program burning step need not be performed

-7-



Key input Remote control LED illumination

| |
| |
| |

: . . |
: microcomputer microcomputer microcomputer |
| |
| |
| |
| |
| |
| Arbiter |
: microcomputer :
| |
| |
| |
| |
| |
| Volume control Monitor Mechanical |
| microcomputer microcomputer control :
: microcomputer I
| |
| |

Figure 3.2 Microcomputer-based System Example(Audio Equipment)

Using independent microcomputers for various functions as indicated in the above example offers the following advan-
tages.

1. Individual programs are small so that program development is easy.
2. ltis very easy to use previously developed software.
3. Completely independent programs are provided for various functions so that program devel-

opment can easily be conducted by a number of engineers.

On the other hand, there are the following disadvantages.

1. The number of parts used increases, thereby raising the product cost.
2. Hardware design is complicated.

3. Product physical size is enlarged.

Therefore, if you employ the real-time OS in which a number of programs to be operated by a number of microcomputers
are placed under software control of one microcomputer, making it appear that the programs run on separate microcomput-
ers, you can obviate all the above disadvantages while retaining the above-mentioned advantages.

Figure 3.3 shows an example system that will be obtained if the real-time OS is incorporated in the system indicated in
Figure 3.2.




Key input Remote control LED illumination

| |
| |
| |
: Task Task Task :
| |
| |
| |
| |
| |
: real-time :
[ 0S [
| |
| |
| |
| |
| |
| Volume control Monitor Mechanical |
| Task Task control '
: Task :
| |
| |

Figure 3.3 Example System Configuration with Real-time OS(Audio Equipment)
In other words, the real-time OS is the software that makes a one-microcomputer system look like operating a number of
microcomputers.

In the real-time OS, the individual programs, which correspond to a number of microcomputers used in a conventional sys-
tem, are called tasks.




3.1.2 Operating Principles of Kernel

A kernel is the core program of real-time OS. The kernel is the software that makes a one-microcomputer system look like
operating a number of microcomputers. You should be wondering how the kernel makes a one-microcomputer system
function like a number of microcomputers.

As shown in Figure 3.4 the kernel runs a number of tasks according to the time-division system. That is, it changes the task
to execute at fixed time intervals so that a number of tasks appear to be executed simultaneously.

Key input
Task

Remote control
Task

LED
illumination
Task

Volume control
Task

Monitor
Task

Mechanical
control
Task

v

Time
Figure 3.4 Time-division Task Operation

As indicated above, the kernel changes the task to execute at fixed time intervals. This task switching may also be referred
to as dispatching. The factors causing task switching (dispatching) are as follows.

® Task switching occurs upon request from a task.

® Task switching occurs due to an external factor such as interrupt.

When a certain task is to be executed again upon task switching, the system resumes its execution at the point of last inter-
ruption (See Figure 3.5).

-10 -



Key input
Task

Remote control
Task

Program execution
interrupt

Program execution
resumed

During this interval, it
appears that the key input
microcomputer is haled.

Figure 3.5 Task Execution Interruption and Resumption

In the state shown in Figure 3.5, it appears to the programmer that the key input task or its microcomputer is halted while

another task assumes execution control.

Task execution restarts at the point of last interruption as the register contents prevailing at the time of the last interruption
are recovered. In other words, task switching refers to the action performed to save the currently executed task register
contents into the associated task management memory area and recover the register contents for the task to switch to.

To establish the kernel, therefore, it is only necessary to manage the register for each task and change the register contents
upon each task switching so that it looks as if a number of microcomputers exist (See Figure 3.6).

RO
R1
T Actual
: Register
PC
y
Y
Kernel

y

Key input
Task

RO

Register

Task

Remote control

RO

Register

Figure 3.6 Task Switching

The example presented in  Figure 3.7 * indicates how the individual task registers are managed. In reality, it is necessary
to provide not only a register but also a stack area for each task.

® It is figure where all the stack areas of the task were arranged in the same section.

-11 -



Remote control
Task

Key input
Task

LED illumination
Task

Real-time
oS

Memory map

Register

Stack
section

SFR

Figure 3.7 Task Register Area

-12 -



Figure 3.8 shows the register and stack area of one task in detail. In the MR100, the register of each task is stored in a stack
area as shown in Figure 3.8. This figure shows the state prevailing after register storage.

)]
2~}
Y

»

e - PC

Register not stored FLG
FB
SB
A3

Al

Key input task
A0 stack

R7R5
R6R4
R3R1
S s |

Task SP R2R0O

| |
Register stored : |

SFR

Figure 3.8 Actual Register and Stack Area Management

-13-



3.2 Service Call

How does the programmer use the kernel functions in a program?

First, it is necessary to call up kernel function from the program in some way or other. Calling a kernel function is referred
to as a service call. Task activation and other processing operations can be initiated by such a service call (See Figure 3.9).

Key input
Task

This service call is realized by a function call when the application program is written in C language, as shown below.

—

Service call

Kernel

=

Task switching

Figure 3.9 Service call

act_tsk(ID main, 3);

Furthermore, if the application program is written in assembly language, it is realized by an assembler macro call, as shown

below.

act_tsk #ID main

Remote control
task

-14 -




3.2.1

Service Call Processing

When a service call is issued, processing takes place in the following sequence.®

1.

2.

3.

4.

5.

6.

The current register contents are saved.

The stack pointer is changed from the task type to the real-time OS (system) type.
Processing is performed in compliance with the request made by the service call.
The task to be executed next is selected.

The stack pointer is changed to the task type.

The register contents are recovered to resume task execution.

The flowchart in Figure 3.10 shows the process between service call generation and task switching.

Key input Task

Register Save
I
SP<=0S8
|

Service call issuance

Processing

|
Task Selection
I
Task =>SP
| LED illumination Task

Register Restore

Figure 3.10 Service Call Processing Flowchart

° A different sequence is followed if the issued service call does not evoke task switching.

-15 -



3.2.2 Processing Procedures for Service Calls from Handlers

When a service call is issued from a handler, task switching does not occur unlike in the case of a service call from a task.
However, task switching occurs when a return from a handler ” is made.

The processing procedures for service calls from handlers are roughly classified into the following three types.
1. Aservice call from a handler that caused an interrupt during task execution
2. Aservice call from a handler that caused an interrupt during service call processing

3. A service call from a handler that caused an interrupt (multiplex interrupt) during handler exe-
cution

” The service call can't be issued from non-kernel handler. Therefore, The handler described here does not include the non-kernel interrupt
handler.

-16 -



Service Calls from a Handler That Caused an Interrupt during Task Execution
Scheduling (task switching) is initiated by the ret_int service call ¥(See Figure 3.11).

TaskA Interrupt handler
oS
Interrupt Save Registers
. Service call processing
iset_flg

Restore Registers
I

ret_int

| A

Task selection
[

SP <= User Scheduler
[

Restore Registers

TaskB

[ |

Figure 3.11 Processing Procedure for a Service Call a Handler that caused an interrupt during Task
Execution

® The ret_int service call is issued automatically when kernel interrupt handler is written in C language (when #pragma INTHANDLER speci-
fied)

-17 -



Service Calls from a Handler That Caused an Interrupt during Service Call Processing
Scheduling (task switching) is initiated after the system returns to the interrupted service call processing (See Figure 3.12).

TaskA 0S

Interrupt handler

wup_tsk | Save Registers

[
SP <= System

Save

Interrupt . .
Service call processing

iset_flg

Restore Registers

Task selection
|
SP <= User
[

Restore Registers

=

TaskB

ret_int

Figure 3.12 Processing Procedure for a Service Call from a Handler that caused an interrupt during
Service Call Processing

-18 -



Service Calls from a Handler That Caused an Interrupt during Handler Execution

Let us think of a situation in which an interrupt occurs during handler execution (this handler is hereinafter referred to as
handler A for explanation purposes). When task switching is called for as a handler (hereinafter referred to as handler B)
that caused an interrupt during handler A execution issued a service call, task switching does not take place during the exe-
cution of the service call (ret_int service call) returned from handler B, but is effected by the ret_int service call from han-
dler A (See Figure 3.13).

TaskA Interrupt handler A
Interrupt handler A
[nterrupt .
Save Registers
[
SP <= System 0S
Save Registers
Interrupt ] ]
. Service call processing
iset_flg
. Restore Register
Restore Register
ret_int I—‘
Task selection ret_int
I
SP <= User
I
Restore Registers
I
TaskB

Figure 3.13 Processing Procedure for a service call from a Multiplex interrupt Handler

-19-



3.3 Object

The object operated by the service call of a semaphore, a task, etc. is called an "object.” An object is identified by the 1D
number

3.3.1 The specification method of the object in a service call
Each task is identified by the ID number internally in MR100.
For example, the system says, "Start the task having the task ID number 1."

However, if a task number is directly written in a program, the resultant program would be very low in readability. If, for
instance, the following is entered in a program, the programmer is constantly required to know what the No.1 task is.

act_tsk(1);
Further, if this program is viewed by another person, he/she does not understand at a glance what the No. 1 task is. To avoid
such inconvenience, the MR100 provides means of specifying the task by name (function or symbol name).

The program named "configurator cfg30 ,"which is supplied with the MR100, then automatically converts the task name to
the task ID number. This task identification system is schematized in Figure 3.14.

sta_tsk(Task name) Starting the task
—I; having the designated
| _p Name —p ID number —p| ID number
Configurator
Program Real-time OS

Figure 3.14 Task Identification

act_tsk(ID task);

This example specifies that a task corresponding to "ID_task" be invoked.

It should also be noted that task hame-to-ID number conversion is effected at the time of program generation. Therefore,
the processing speed does not decrease due to this conversion feature.

-20-



3.4 Task

This section describes how tasks are managed by MR100.

34.1 Task Status
The real-time OS monitors the task status to determine whether or not to execute the tasks.

Figure 3.15 shows the relationship between key input task execution control and task status. When there is a key input, the
key input task must be executed. That is, the key input task is placed in the execution (RUNNING) state. While the system
waits for key input, task execution is not needed. In that situation, the key input task in the WAITING state.

Key input
Task Key input Waiting for Key input
processing key input processing
RUNNIG state WAITING state RUNNING state

Figure 3.15 Task Status

The MR100 controls the following six different states including the RUNNING and WAITING states.
1. RUNNING state
2. READY state
3. WAITING state
4. SUSPENDED state
5. WAITING-SUSPENDED state

6. DORMANT state
Every task is in one of the above six different states. Figure 3.16 shows task status transition.

-21 -



MPU execlusive right acquisition

READY state [ H RUNNING state

] ] ] MPU execlusive right relinquishment
Entering the
WAITING  state WAITING state
WAITING state [

SUSPENDED state clear SUSPEND request Forced
termination

request from other task from other task roquost
from other
task

WAITING-SUSPENDED
state

WAITING state

SUSPEND request clear
from other task

SUSPENDED >
SUSPENDED state state
clear request
Forced termination
request from other task DORMANT
> state

Task activation

Figure 3.16 MR100 Task Status Transition

1. RUNNING state

In this state, the task is being executed. Since only one microcomputer is used, it is natural that only one task is
being executed.
The currently executed task changes into a different state when any of the following conditions occurs.

¢
¢
.

The task has normally terminated itself by ext_tsk service call.

The task has placed itself in the WAITING. °

Since the service call was issued from the RUNNING state task, the WAITING state of another
task with a priority higher than the RUNNING state task is cleared.

Due to interruption or other event occurrence, the interrupt handler has placed a different task
having a higher priority in the READY state.

The priority assigned to the task has been changed by chg_pri or ichg_pri service call so that the
priority of another READY task is rendered higher.

When the ready queue of the issuing task priority is rotated by the rot_rdq or irot_rdq service call
and control of execution is thereby abandoned

When any of the above conditions occurs, rescheduling takes place so that the task having the highest priority
among those in the RUNNING or READY state is placed in the RUNNING state, and the execution of that task
starts.

2. READY state

The READY state refers to the situation in which the task that meets the task execution conditions is still waiting
for execution because a different task having a higher priority is currently being executed.

When any of the following conditions occurs, the READY task that can be executed second according to the
ready queue is placed in the RUNNING state.

¢

A currently executed task has normally terminated itself by ext_tsk service call.

9 By issuing dly_tsk, slp_tsk, tslp_tsk, wai_flg, twai_flg, wai_sem, twai_sem, rcv_mbx, trcv_mbx,snd_dtq,tsnd_dtq,rcv_dtq, trcv_dtq,
vtsnd dtg, vsnd dtq,vtrcv dtg,vrcv dtq, get mpf, tget mpf, snd _mbf, tsnd mbf, rcv._ mbf, trcv._mbf, loc_mtx and tloc_mtx service call.

-22 -



+ Acurrently executed task has placed itself in the WAITING state.™

+ A currently executed task has changed its own priority by chg_pri or ichg_pri service call so that
the priority of a different READY task is rendered higher.

+ Due to interruption or other event occurrence, the priority of a currently executed task has been
changed so that the priority of a different READY task is rendered higher.

+ When the ready queue of the issuing task priority is rotated by the rot_rdq or irot_rdq service call
and control of execution is thereby abandoned

3. WAITING state

When a task in the RUNNING state requests to be placed in the WAITING state, it exits the RUNNING state and
enters the WAITING state. The WAITING state is usually used as the condition in which the completion of 1/O
device 1/0 operation or the processing of some other task is awaited.
The task goes into the WAITING state in one of the following ways.

+ The task enters the WAITING state simply when the slp_tsk service call is issued. In this case, the
task does not go into the READY state until its WAITING state is cleared explicitly by some other
task.

¢ The task enters and remains in the WAITING state for a specified time period when the dly_tsk
service call is issued. In this case, the task goes into the READY state when the specified time has
elapsed or its WAITING state is cleared explicitly by some other task.

¢ The task is placed into WAITING state for a wait request by the wai_flg, wai_sem, rcv_mbx,
snd_dtq, rcv_dtq, vsnd_dtq, vrcv_dtg, or get_mpf service call. In this case, the task goes from
WAITING state to READY state when the request is met or WAITING state is explicitly canceled
by another task.

¢ The tslp_tsk, twai_flg, twai_sem, trcv_mbx, tsnd_dtqg, trcv_dtg, vtsnd_dtq, vtrcv_dtg, tget mpf,
tsnd_mbf, trcv_mbf and tloc_mtx service calls are the timeout-specified versions of the slp_tsk,
wai_flg, wai_sem, rcv_mbyx, snd_dtq, rcv_dtq, vsnd_dtq, vrcv_dtq, get_mpf, snd_mbf, rcv_mbf and
loc_mtx service calls. The task is placed into WAITING state for a wait request by one of these
service calls. In this case, the task goes from WAITING state to READY state when the request is
met or the specified time has elapsed.

¢ If the task is placed into WAITING state for a wait request by the wai_flg, wai_sem, rcv_mbx,
snd_dtq, rcv_dtq, vsnd_dtq, vrcv_dtg, get_ mpf, twai_flg, twai_sem, trcv_mbx, tsnd_dtq, trcv_dtq,
vtsnd_dtq, vtrcv_dtq, tget_mpf, snd_mbf, tsnd_mbf, rcv_mbf, trcv_mbf, loc_mtx or tloc_mtx service
call, the task is queued to one of the following waiting queues depending on the request.

Event flag waiting queue

Semaphore waiting queue

Mailbox message reception waiting queue

Data queue data transmission waiting queue

Data queue data reception waiting queue

Short data queue data transmission waiting queue
Short data queue data reception waiting queue
Fixed-size memory pool acquisition waiting queue
Message buffer message transmission waiting queue
Message buffer message reception waiting queue
Mutex acquisition waiting queue

4. SUSPENDED state

When the sus_tsk service call is issued from a task in the RUNNING state or the isus_tsk service call is issued
from a handler, the READY task designated by the service call or the currently executed task enters the SUS-
PENDED state. If a task in the WAITING state is placed in this situation, it goes into the WAIT-
ING-SUSPENDED state.

The SUSPENDED state is the condition in which a READY task or currently executed task'' is excluded from

10 Depends on the dly_tsk, slp_tsk, tslp_tsk, wai_flg, twai_flg, wai_sem, twai_sem, rcv_mbx, trcv_mbx,snd_dtq,tsnd_dtq,rcv_dtq, trcv_dtq,
vtsnd_dtq, vsnd_dtq,vtrcv_dtqg,tget_mpf, get_mpf, vrcv_dtg, snd_mbf, tsnd_mbf, rcv_mbf, trcv_mbf, loc_mtx and tloc_mtx service call.

™ |f the task under execution is placed into a forcible wait state by the isus_tsk service call from the handler, the task goes from an execut-
ing state directly to a forcible wait state. Please note that in only this case exceptionally, it is possible that a task will go from an executing
state directly to a forcible wait state.

-23-



scheduling to halt processing due to 1/O or other error occurrence. That is, when the suspend request is made to a
READY task, that task is excluded from the execution queue.

Note that no queue is formed for the suspend request. Therefore, the suspend request can only be made to the
tasks in the RUNNING, READY, or WAITING state.' If the suspend request is made to a task in the SUS-
PENDED state, an error code is returned.

5. WAITING-SUSPENDED

If a suspend request is issued to a task currently in a WAITING state, the task goes to a WAITING-SUSPENDED
state. If a suspend request is issued to a task that has been placed into a WAITING state for a wait request by the
slp_tsk, wai_flg, wai_sem, rcv_mbx, snd_dtq, rcv_dtq, vsnd_dtq, vrcv_dtq, get_mpf, tslp_tsk, twai_flg, twai_sem,
trcv_mbx, tsnd_dtq, trcv_dtq, vtsnd_dtq, vtrev_dtq, tget_mpf, snd_mbf, tsnd_mbf, rcv_mbf, trcv_mbf, loc_mtx or
tloc_mtx service call, the task goes to a WAITING-SUSPENDED state.

When the wait condition for a task in the WAITING-SUSPENDED state is cleared, that task goes into the SUS-
PENDED state. It is conceivable that the wait condition may be cleared, when any of the following conditions
occurs.

¢+ The task wakes up upon wup_tsk, or iwup_tsk service call issuance.

¢ The task placed in the WAITING state by the dly tsk or tslp_tsk service call wakes up after the
specified time elapse.

+ The request of the task placed in the WAITING state by the wai_flg , wai_sem, rcv_mbx, snd_dtq,
rcv_dtq, vsnd_dtq, vrcv_dtq, get_mpf, tslp_tsk, twai_flg, twai_sem, trcv_mbx, tsnd_dtq, trcv_dtq,
vtsnd_dtq, vtrcv_dtq, tget_mpf, snd_mbf, tsnd_mbf, rcv_mbf, trcv_mbf, loc_mtx or tloc_mtx service
call is fulfilled.

+ The WAITING state is forcibly cleared by the rel_wai or irel_wai service call

When the SUSPENDED state clear request by rsm_tsk or irsm_tsk is made to a task in the WAIT-
ING-SUSPENDED state, that task goes into the WAITING state. Since a task in the SUSPENDED state cannot
request to be placed in the WAITING state, status change from SUSPENDED to WAITING-SUSPENDED does
not possibly occur.

6. DORMANT

This state refers to the condition in which a task is registered in the MR100 system but not activated. This task
state prevails when either of the following two conditions occurs.

+ The task is waiting to be activated.
¢ The task is normally terminated by ext_tsk service call or forcibly terminated by ter_tsk service
call.

2 |f a forcible wait request is issued to a task currently in a wait state, the task goes to a WAITING-SUSPENDED state.

-24 -



3.4.2 Task Priority and Ready Queue

In the kernel, several tasks may simultaneously request to be executed. In such a case, it is necessary to determine which
task the system should execute first. To properly handle this kind of situation, the system organizes the tasks into proper
execution priority and starts execution with a task having the highest priority. To complete task execution quickly, tasks

related to processing operations that need to be performed immediately should be given higher priorities.

The MR100 permits giving the same priority to several tasks. To provide proper control over the READY task execution
order, the kernel generates a task execution queue called "ready queue." The ready queue structure is shown in Figure
3.17" The ready queue is provided and controlled for each priority level. The first task in the ready queue having the

highest priority is placed in the RUNNING state.'

Priority
1 | TCB
2
3 > TCB | TCB
n ™ TCB I TCB

Y

Figure 3.17 Ready Queue (Execution Queue)

2 The TCB(task control block is described in the next chapter.)
* The task in the RUNNING state remains in the ready queue.

TCB

-25-




3.4.3 Task Priority and Waiting Queue

In The standard profiles in WITRON 4.0 Specification support two waiting methods for each object. In one method, tasks

are placed in a waiting queue in order of priority (TA_TPRI attribute); in another, tasks are placed in a waiting queue in
order of FIFO (TA_TFIFO).

Figure 3.18 and Figure 3.19 depict the manner in which tasks are placed in a waiting queue in order of "taskD," "taskC,"
"taskA," and "taskB."

ID No.
1
2 taskA taskB taskC taskD
Priority 1 Priority 5 Priority 6 Priority 9
n
Figure 3.18 Waiting queue of the TA_TPRI attribute
ID No.
1
2 " taskD " taskC " taskA " taskB
Priority 9 Priority 6 Priority 1 Priority 5
n

Figure 3.19 Waiting queue of the TA_TFIFO attribute

-26-



3.4.4

Task Control Block(TCB)

The task control block (TCB) refers to the data block that the real-time OS uses for individual task status, priority, and oth-
er control purposes.

The MR100 manages the following task information as the task control block

Task connection pointer
Task connection pointer used for ready queue formation or other purposes.

Task status
Task priority
Task register information and other data™® storage stack area pointer(current SP register value)

Wake-up counter
Task wake-up request storage area.

Flag wait mode
This is a wait mode during eventflag wait.

Flag wait pattern

This area is used when using the timeout function.

This area stores the flag wait pattern when using the eventflag wait service call with the timeout function
(twai_flg). No flag wait pattern area is allocated when the eventflag is not used.

Startup request counter
This is the area in which task startup requests are accumulated.

The task control block is schematized in Figure 3.20.

TCB TCB TCB

Task Connection pointer > >

Status

Priority

SP

Wake-up counter

Flag wait mode

Activation counter

] A This area is allocated only when
Flag wait pattern

v the timeout function is used.

Figure 3.20 Task control block

'* Called the task context

-27 -



3.5 System States
351 Task Context and Non-task Context

The system runs in either context state, "task context" or "non-task context." The differences between the task content and
non-task context are shown in Table 3-1. Task Context and Non-task Context.

Table 3.1 Task Context and Non-task Context

Task context Non-task context

Invocable service call Those that can be invoked from Those that can be invoked from
task context non-task context

Task scheduling Occurs when the queue state has It does not occur.

changed to other than dispatch dis-
abled and CPU locked states.

Stack User stack System stack

The processes executed in non-task context include the following.

1. Interrupt Handler
A program that starts upon hardware interruption is called the interrupt handler. The MR100 is not concerned in interrupt
handler activation. Therefore, the interrupt handler entry address is to be directly written into the interrupt vector table.

There are two interrupt handlers: Non-kernel interrupts (OS independent interrupts) and kernel interrupts (OS dependent
interrupts). For details about each type of interrupt, refer to Section 3.6.

The system clock interrupt handler (isig_tim) is one of these interrupt handlers.

2. Cyclic Handler
The cyclic handler is a program that is started cyclically every preset time. The set cyclic handler may be started or stopped
by the sta_cyc(ista_cyc) or stp_cyc(istp_cyc) service call.

The cyclic handler startup time of day is unaffected by a change in the time of day by set_tim(iset_tim).

3. Alarm Handler

The alarm handler is a handler that is started after the lapse of a specified relative time of day. The alarm handler startup
time of day is determined by a time of day relative to the time of day set by sta_alm(ista_alm), and is unaffected by a
change in the time of day by set_tim(iset_tim).

The cyclic and alarm handlers are invoked by a subroutine call from the system clock interrupt (timer interrupt) handler.
Therefore, cyclic and alarm handlers operate as part of the system clock interrupt handler. Note that when the cyclic or
alarm handler is invoked, it is executed in the interrupt priority level of the system clock interrupt.

-28-



Task
System clock

interrupt handler

Cyclic handler

Alarm handler

Subroutine call

Timer interrupt

RTS

Figure 3.21 Cyclic Handler/Alarm Handler Activation

-29-



3.5.2 Dispatch Enabled/Disabled States

The system assumes either a dispatch enabled state or a dispatch disabled state. In a dispatch disabled state, no task sched-
uling is performed. Nor can service calls be invoked that may cause the service call issuing task to enter a wait state. ™

The system can be placed into a dispatch disabled state or a dispatch enabled state by the dis_dsp or ena_dsp service call,
respectively. Whether the system is in a dispatch disabled state can be known by the sns_dsp service call.

3.5.3 CPU Locked/Unlocked States

The system assumes either a CPU locked state or a CPU unlocked state. In a CPU locked state, all external interrupts are
disabled against acceptance, and task scheduling is not performed either.

The system can be placed into a CPU locked state or a CPU unlocked state by the loc_cpu(iloc_cpu) or unl_cpu(iunl_cpu)
service call, respectively. Whether the system is in a CPU locked state can be known by the sns_loc service call.

The service calls that can be issued from a CPU locked state are limited to those that are listed in Table 3-2.%

Table 3.2 Invocable Service Calls in a CPU Locked State

loc_cpu iloc_cpu unl_cpu iunl_cpu
ext_tsk exd_tsk sns_tex sns_ctx
shs_loc sns_dsp sns_dpn

3.54 Dispatch Disabled and CPU Locked States

In uITRON 4.0 Specification, the dispatch disabled and the CPU locked states are clearly discriminated. Therefore, if the
unl_cpu service call is issued in a dispatch disabled state, the dispatch disabled state remains intact and no task scheduling
is performed. State transitions are summarized in Table 3.3.

Table 3.3 CPU Locked and Dispatch Disabled State Transitions Relating to dis_dsp and loc_cpu

State Content of state dis_dsp ena_dsp | loc_cpu unl_cpu
number CPU locked Dispatch disabled executed | executed | executed | executed
state state
1 O X X X =1 =>3
2 o] ) X X =2 =>4
3 X X =>4 =3 =1 =>3
4 X O =>4 =3 =2 =>4

18 | a service call not issuable is issued when dispatch disabled, MR100 doesn't return the error and doesn't guarantee the operation.
" MR100 does not return an error even when an uninvocable service call is issued from a CPU locked state, in which case, however, its

operation cannot be guaranteed.

-30-




3.6 Regarding Interrupts

3.6.1

Types of Interrupt Handlers

MR100's interrupt handlers consist of kernel interrupt handlers and non-kernel interrupt handlers.

The following shows the definition of each type of interrupt handler.

Kernel interrupt handler

An interrupt handler whose interrupt priority level is lower than a kernel interruption mask level is called kernel
interrupt handler. That is, interruption priority level is from 0 to system_IPL.

A service call can be issued within a kernel interrupt handler. However, interrupt is delayed until it becomes re-
ceivable the kernel interrupt handler generated during service call processing.

Non-kernel interrupt handler

An interrupt handler whose interrupt priority level is higher than a kernel interrupt mask level is called non-kernel
interrupt handler. That is, interruption priority level is from system_IPL+1to 7.

A service call cannot be issued within non-kernel interrupt handler. However, the non-kernel interrupt handler is
able to be recieved during service call processing, even if it is the section where it is not able to receive a kernel
interrupt handler:

Figure 3.22 shows the relationship between the non-kernel interrupt handlers and kernel interrupt handlers where the kernel

mask level is set to 3.

3.6.2

Non-maskable interrupt ( ex. NMI interrupt ,Watchdog Timer interrupt) are treated as a non-kernel interrupt handler.

Kernel mask level

Low l High
o 1 2 3 4 5 6 7
) Kernel 1 Non-kernel ]
Interrupt handler Interrupt handler

Figure 3.22 Interrupt handler IPLs

The Use of Non-maskable Interrupt

-31-



3.6.3 Controlling Interrupts

Interrupt enable/disable control in a service call is accomplished by IPL manipulation. The IPL value in a service call is set
to the kernel mask level(OS interrupt disable level = system.IPL) in order to disable interrupts for the kernel interrupt han-
dler. In sections where all interrupts can be enabled, it is returned to the initial IPL value when the service call was invoked.

® For service calls that can be issued from only task context.

When the I flag before issuing a service call is 1.

Task Service call issued Service call processing
\ 4
T T T
| | |
Iflag 1—>:<—0—>:: 1 ::4— 1
[ - | | [
IPL 0 —>:<— system.IPL —>:<— 0 —>:<— system.IPL —>:<— 0
| |
| I ! |
When the I flag before issuing a service call is 0.
Task Service call issued Service call processing
\ 4
T T T
| | |
I flag 0 —>le— 0 —»l< 1 > 0
[ - | | |
IPL 0 —44— systemJPL —»l «——0 —>:<— system . IPL —>:<— 0
|
|

Figure 3.23 Interrupt control in a Service Call that can be Issued from only a Task

-32-



® [or service calls that can be issued from only non-task context or from both task context and non-task
context.

When the I flag before issuing a service call is 1

Task or Servi 1i d service call processin, Task or
Handler ervice call issue p g Handler
\ 4
i T T
| | |
Iflag 1—>:<—0—>:: 1 ::4— 1
| ! I I |
IPL 4 —sj<e—systemIPL —sle—— 4 — 1o systemIPL —»ja— 4
|
|

When the I flag before issuing a service call is 0

Task or Servi 11 d service call processin, Task or
Handler ervice catiissue P g Handler
\ 4
| I
[ I
Iflag 0 —»l< 0 >le— 0
| | | |
TPL 4 —sje—systemIPL —sle—— 4 — 2l systemIPL —»ja— 4
I

Figure 3.24 Interrupt control in a Service Call that can be Issued from a Task-independent

As shown in Figure 3.23 and Figure 3.24, the interrupt enable flag and IPL change in a service call. For this reason, if you
want to disable interrupts in a user application, Renesas does not recommend using the method for manipulating the inter-
rupt disable flag and IPL to disable the interrupts.

The following two methods for interrupt control are recommended:

4. Modify the interrupt control register (SFR) for the interrupt you want to be disabled.
5. Use service calls loc_cpu(iloc_cpu) and unl_cpu(iunl_cpu).

The interrupts that can be controlled by the loc_cpu service call are only the kernel interrupt. Use method 4 to control the
non-kernel interrupts.

-33-



3.7 Stacks

3.7.1 System Stack and User Stack
The MR100 provides two types of stacks: system stack and user stack.

® User Stack
One user stack is provided for each task. Therefore, when writing applications with the MR100, it is necessary to

furnish the stack area for each task.
® System Stack
This stack is used within the MR100 (during service call processing). When a service call is issued from a task,

the MR100 switches the stack from the user stack to the system stack (See Figure 3.25).
The system stack use the interrupt stack(ISP).

Task MR30 service call processing

User Stack

Y

Save Registers v
XXX_XXX() Stack switching L)

Y

Service call
processing

System Stack

Y

Task selection

Y

Stack switching v
Restore Registers

User Stack

Figure 3.25 System Stack and User Stack

Switchover from user stack to system stack occurs when an interrupt of vector numbers 0 to 127 is generated. Consequently,
all stacks used by the interrupt handler are the system stack.

-34-



4. Kernel

4.1 Module Structure

The MR100 kernel consists of the modules shown in Figure 4.1. Each of these modules is composed of functions that exer-

cise individual module features.

The MR100 kernel is supplied in the form of a library, and only necessary features are linked at the time of system genera-
tion. More specifically, only the functions used are chosen from those which comprise these modules and linked by means
of the Linkage Editor. However, the scheduler module, part of the task management module, and part of the time manage-

ment module are linked at all times because they are essential feature functions.

The applications program is a program created by the user. It consists of tasks, interrupt handler, alarm handler, and cyclic

handler.®

Application Program
Task . Time
Management Mailbox Semaphore Management
Task-dependent Memorypool System stae
synchronization Eventﬂag Management Management
System configuration short Message
Management Data queue Data queue buffer
Mutex Alarm/Cyclic Scheduler Interrupt
handler Management

R32C Microcomputer

Figure 4.1 MR100 Structure

'® For details, See 4.3.11

User Module

MR100 kernel

Hardware

-35-



4.2 Module Overview

The MR100 kernel modules are outlined below.

Scheduler
Forms a task processing queue based on task priority and controls operation so that the high-priority task at the

beginning in that queue (task with small priority value) is executed.

Task Management Module
Exercises the management of various task states such as the RUNNING, READY, WAIT, and SUSPENDED state.

Task Synchronization Module
Accomplishes inter-task synchronization by changing the task status from a different task.

Interrupt Management Module
Makes a return from the interrupt handler.

Time Management Module
Sets up the system timer used by the MR100 kernel and starts the user-created alarm handler" and cyclic han-

dler.?,

System Status Management Module
Gets the system status of MR100.

System Configuration Management Module
Reports the MR100 kernel version number or other information.

Synchronization and Communication Module
This is the function for synchronization and communication among the tasks. The following four functional mod-
ules are offered.

¢+ Eventflag
Checks whether the flag controlled within the MR100 is set up and then determines whether or not to initi-
ate task execution. This results in accomplishing synchronization between tasks.

¢ Semaphore
Reads the semaphore counter value controlled within the MR100 and then determines whether or not to ini-
tiate task execution. This also results in accomplishing synchronization between tasks.

¢ Mailbox
Provides inter-task data communication by delivering the first data address.

¢ Data queue
Performs 32-bit data communication between tasks.

Extended Synchronization and Communication Module
This is the function for synchronization and communication among the tasks. The following two functional mod-

ules are offered.

+ Message buffer
Provides inter-task data communication by variable size meassage.

¢ Mutex
This function used for exclusive control..

Memory pool Management Module
Provides dynamic allocation or release of a memory area used by a task or a handler.

Extended Function Module
Outside the scope of WITRON 4.0 Specification , this function performs reset processing on objects and short data

gueue function.

% This handler actuates once only at preselected times.
% This handler periodically actuates.

-36 -



4.3 Kernel functions

43.1

Task Management Function

The task management function is used to perform task operations such as task start/stop and task priority updating. The
MR100 kernel offers the following task management function service calls.

Activate Task (act_tsk, iact_tsk)
Activates the task, changing its status from DORMANT to either READY or RUNNING. In this service call, un-
like in sta_tsk(ista_tsk), startup requests are accumulated, but startup code cannot be specified.

Activate Task (sta_tsk, ista_tsk)
Activates the task, changing its status from DORMANT to either READY or RUNNING. In this service call, un-
like in act_tsk(iact_tsk), startup requests are not accumulated, but startup code can be specified.

Terminate Invoking Task (ext_tsk)
When the issuing task is terminated, its state changes to DORMANT state. The task is therefore not executed until
it is restarted. If startup requests are accumulated, task startup processing is performed again. In that case, the is-
suing task behaves as if it were reset.
If written in C language, this service call is automatically invoked at return from the task regardless of whether it
is explicitly written when terminated.

Terminate Task (ter_tsk)

Other tasks in other than DORMANT state are forcibly terminated and placed into DORMANT state. If startup
requests are accumulated, task startup processing is performed again. In that case, the task behaves as if it was re-
set. (See Figure 4.2).

Startup request count > 0

TaskB

Terminated

Task B reset

Figure 4.2 Task Resetting

Change Task Priority (chg_pri, ichg_pri)

If the priority of a task is changed while the task is in READY or RUNNING state, the ready queue also is up-
dated. (See Figure 4.3).

Furthermore, if the target task is placed in a waiting queue of objects with TA_TPRI attribute, the waiting queue
also is updated. (See Figure 4.4).

-37-



Priority

A4

Task A Task B

[y
\4

-
Task C ——™1 Task B l—’ Task D

w0
v

Task E > Task F

=1
v

When the priority of task B has been changed from 3 to 1

Figure 4.3 Alteration of task priority

ID Number
1
2
. v
3 taskA _": taskB _i_’ taskC taskB
Priority 1 Priority 2 Priority 3 Priority 4
n

When the priority of Task B is changed into 4

Figure 4.4 Task rearrangement in a waiting queue
Reference task priority (get_pri, iget_pri)
Gets the priority of a task.

Reference task status (simple version) (ref_tst, iref_tst)
Refers to the state of the target task.

Reference task status (ref_tsk, iref_tsk)
Refers to the state of the target task and its priority, etc.

-38 -



4.3.2 Synchronization functions attached to task

The task-dependent synchronization functions attached to task is used to accomplish synchronization between tasks by
placing a task in the WAIT, SUSPENDED, or WAIT-SUSPENDED state or waking up a WAIT state task.

The MR100 offers the following task incorporated synchronization service calls.

® Put Task to sleep (slp_tsk,tslp_tsk)

® \Wakeup task (wup_tsk, iwup_tsk)
Wakeups a task that has been placed in a WAIT state by the slp_tsk or tslp_tsk service call.
No task can be waked up unless they have been placed in a WAIT state by.*!
If a wakeup request is issued to a task that has been kept waiting for conditions other than the slp_tsk or tslp_tsk
service call or a task in other than DORMANT state by the wup_tsk or iwup_tsk service call, that wakeup re-
quest only will be accumulated.
Therefore, if a wakeup request is issued to a task RUNNING state, for example, this wakeup request is temporar-
ily stored in memory. Then, when the task in RUNNING state is going to be placed into WAIT state by the slp_tsk
or tslp_tsk service call, the accumulated wakeup request becomes effective, so that the task continues executing

again without going to WAIT state.  (See Figure 4.5).

® Cancel Task Wakeup Requests (can_wup)
Clears the stored wakeup request.(See Figure 4.6).

wup_tsk wup_tsk wup_tsk

Task slp_tsi ] | | slpjtsk
Wakeup request count 0 0 1 2 1
Figure 4.5 Wakeup Request Storage
wup_tsk wup_tsk can_wup
Task dotsk | | i
Wakeup request count 0 0 1 0 0

Figure 4.6 Wakeup Request Cancellation

2 Note that tasks in WAIT state, but kept waiting for the following conditions are not awaken.
Eventflag wait state, semaphore wait state, data transmission wait state, data reception wait state, timeout wait state, fixed length
memory pool acquisition wait, short data transmission wait, or short data reception wait

-39 -



Suspend task (sus_tsk, isus_tsk)

Resume suspended task (rsm_tsk, irsm_tsk)

These service calls forcibly keep a task suspended for execution or resume execution of a task. If a suspend re-
quest is issued to a task in READY state, the task is placed into SUSPENDED state; if issued to a task in WAIT
state, the task is placed into WAIT-SUSPENDED state. Since MR100 allows only one forcible wait request to be
nested, if sus_tsk is issued to a task in a forcible wait state, the error E_QOVR is returned. (See Figure 4.7).

E_QOVR
sus_tsk sus_tsk rsm_tsk
Task - Oy __ 3

RUNNING —»<—SUSPENDED——><+— READY state

state state
WAITING-
WAITING state |+ SUSPENDED ™" WAITING state
state
Number of
suspension 0 1 1 0

request

Figure 4.7 Forcible wait of a task and resume

-40 -



Forcibly resume suspended task (frsm_tsk, ifrsm_tsk)

Clears the number of suspension requests nested to 0 and forcibly resumes execution of a task. Since MR100 al-
lows only one suspension request to be nested, this service call behaves the same way as rsm_tsk and
irsm_tsk..(See Figure 4.8).

sus_tsk frsm_tsk

Task - 0y ___

READY state —»+——SUSPENDED—<— READYstate
state

WAITING — WAITING
WAITING state ~— |+ _SUSPENDED |+

state state
Number of
suspension 0 1 0
requests

Figure 4.8 Forcible wait of a task and forcible resume

Release task from waiting (rel_wai, irel_wai)
Forcibly frees a task from WAITING state. A task is freed from WAITING state by this service call when it is in
one of the following wait states.

Timeout wait state

Wait state entered by slp_tsk service call (+ timeout included)
Event flag (+ timeout included) wait state

Semaphore (+ timeout included) wait state

Message (+ timeout included) wait state

Data transmission (+ timeout included) wait state

Data reception (+ timeout included) wait state

Fixed—size memory block (+ timeout included) acquisition wait state
Short data transmission (+ timeout included) wait state

Short data reception (+ timeout included) wait state

Mutex (+ timeout included) wait state

Message buffer message transmission (+ timeout included) wait state
Message buffer message reception (+ timeout included) wait state

L IR R JNR ZER R 2R 2R 2R 2R JBE R R 4

-41 -



Delay task (dly_tsk)

Keeps a task waiting for a finite length of time. Figure 4.9 shows an example in which execution of a task is kept
waiting for 10 ms by the dly_tsk service call. The timeout value should be specified in ms units, and not in time
tick units.

dly_tsk(10)

Figure 4.9 dly_tsk service call

-42 -



4.3.3 Synchronization and Communication Function (Semaphore)

The semaphore is a function executed to coordinate the use of devices and other resources to be shared by several tasks in
cases where the tasks simultaneously require the use of them. When, for instance, four tasks simultaneously try to acquire a
total of only three communication lines as shown in Figure 4.10, communication line-to-task connections can be made

without incurring contention.

S Task
ommunication
Line
Communication | | Task
Line
Communication
Line Task
Semaphore
>< - Task

Figure 4.10 Exclusive Control by Semaphore

The semaphore has an internal semaphore counter. In accordance with this counter, the semaphore is acquired or released to
prevent competition for use of the same resource.(See Figure 4.11).

Acquired
! ' ™ Task

Returned after use

Figure 4.11 Semaphore Counter

The MR100 kernel offers the following semaphore synchronization service calls.

® Release Semaphore Resource(sig_sem, isig_sem)
Releases one resource to the semaphore. This service call wakes up a task that is waiting for the semaphores ser-

vice, or increments the semaphore counter by 1 if no task is waiting for the semaphores service.

® Acquire Semaphore Resource(wai_sem, twai_sem)
Waits for the semaphores service. If the semaphore counter value is 0 (zero), the semaphore cannot be acquired.

Therefore, the WAITING state prevails.

® Acquire Semaphore Resource(pol_sem, ipol_sem)
Acquires the semaphore resource. If there is no semaphore resource to acquire, an error code is returned and the

WAITING state does not prevail.

-43-



® Reference Semaphore Status (ref_sem, iref_sem)
Refers the status of the target semaphore. Checks the count value and existence of the wait task for the target se-
maphore.
Figure 4.12 shows example task execution control provided by the wai_sem and sig_sem service calls.

Task wai_sem sig_sem
| wai_sem I
Task ! * !
| |
|
: : wai_sem :
TaSk | | |
! | M . :
| : | wail_sem |
| | |
Task | ' L e
| ' i . ¢
: : I : WAIT state :
H | | H
Semaphore 3 9 1 0 X 0
Counter

Figure 4.12 Task Execution Control by Semaphore

-44 -



4.3.4

Synchronization and Communication Function (Eventflag)

The eventflag is an internal facility of MR100 that is used to synchronize the execution of multiple tasks. The eventflag
uses a flag wait pattern and a 32-bit pattern to control task execution. A task is kept waiting until the flag wait conditions
set are met.

It is possible to determine whether multiple waiting tasks can be enqueued in one eventflag waiting queue by specifying the
eventflag attribute TA_WSGL or TA_WMUL.

Furthermore, it is possible to clear the eventflag bit pattern to 0 when the eventflag meets wait conditions by specifying
TA_CLR for the eventflag attribute.

There are following eventflag service calls that are provided by the MR100 kernel.

Set Eventflag (set_flg, iset_flg)
Sets the eventflag so that a task waiting the eventflag is released from the WAITING state.

Clear Eventflag (clr_flg, iclr_flg)
Clears the Eventflag.

Wait for Eventflag (wai_flg, twai_flg)
Waits until the eventflag is set to a certain pattern. There are two modes as listed below in which the eventflag is
waited for.

¢ AND wait
Waits until all specified bits are set.

¢ OR wait
Waits until any one of the specified bits is set

Wait for Eventflag (polling)(pol_flg, ipol_flg)
Examines whether the eventflag is in a certain pattern. In this service call, tasks are not placed in WAITING state.

Reference Eventflag Status (ref_flg, iref_flg)
Checks the existence of the bit pattern and wait task for the target eventflag.

=45 -



Figure 4.13 shows an example of task execution control by the eventflag using the wai_flg and set_flg service calls.
The eventflag has a feature that it can wake up multiple tasks collectively at a time.

In Figure 4.13, there are six tasks linked one to another, task A to task F. When the flag pattern is set to OxF by the set_flg
service call, the tasks that meet the wait conditions are removed sequentially from the top of the queue. In this diagram, the
tasks that meet the wait conditions are task A, task C, and task E. Out of these tasks, task A, task C, and task E are removed
from the queue.

If this event flag has a TA_CLR attribute, when the waiting of Task A is canceled, the bit pattern of the event flag will be
set to 0, and Task C and Task E will not be removed from queue.

Flag queue TaskA TaskB TaskC TaskD TaskE TaskF
e = [ I =
Flag pattern
0
Wait pattern 0xOF OxFF 0xOF 0xFF OxFF 0x10
Wait mode OR AND AND AND OR OR
set_flg
TaskB TaskD TaskF
[ ] — T T
| ! | I I I
| I | I I I
Flag pattern | | | | | |
0x0F ! : ! : ! :

Figure 4.13 Task Execution Control by the Eventflag

-46 -



4.3.5

Synchronization and Communication Function (Data Queue)

The data queue is a mechanism to perform data communication between tasks. In Figure 4.14, for example, task A can
transmit data to the data queue and task B can receive the transmitted data from the data queue.

|l |l |

=4 =4 =4

& o o
Data Data
Task A Task B

Figure 4.14 Data queue

Data in width of 16 bits can be transmitted to this data queue.

The data queue has the function to accumulate data. The accumulated data is retrieved in order of FIFO%. However, the
number of data that can be accumulated in the data queue is limited. If data is transmitted to the data queue that is full of
data, the service call issuing task goes to a data transmission wait state.

There are following data queue service calls that are provided by the MR100 kernel.

Send to Data Queue(snd_dtq, tsnd_dtq)
The data is transmitted to the data queue. If the data queue is full of data, the task goes to a data transmission wait
state.

Send to Data Queue (psnd_dtq, ipsnd_dtq)
The data is transmitted to the data queue. If the data queue is full of data, the task returns error code without going
to a data transmission wait state.

Forced Send to Data Queue (fsnd_dtq, ifsnd_dtq)
The data is transmitted to the data queue. If the data queue is full of data, the data at the top of the data queue or
the oldest data is removed, and the transmitted data is stored at the tail of the data queue.

Receive from Data Queue (rcv_dtq, trcv_dtq)
The data is retrieved from the data queue. If the data queue has no data in it, the task is kept waiting until data is
transmitted to the data queue.

Receive from Data Queue (prcv_dtq,iprcv_dtq)
The data is received from the data queue. If the data queue has no data in it, the task returns error code without
going to a data reception wait state.

Reference Data Queue Status (ref_dtq,iref_dtq)
Checks to see if there are any tasks waiting for data to be entered in the target data queue and refers to the number
of the data in the data queue.

2 FEirst In First Out

=47 -



4.3.6 Synchronization and Communication Function (Mailbox)

The mailbox is a mechanism to perform data communication between tasks. In Figure 4.15, for example, task A can drop a
message into the mailbox and task B can retrieve the message from the mailbox. Since mailbox-based communication is
achieved by transferring the start address of a message from a task to another, this mode of communication is performed at
high speed independently of the message size.

The kernel manages the message queue by means of a link list. The application should prepare a header area that is to be
used for a link list. This is called the message header. The message header and the area actually used by the application to
store a message are called the message packet. The kernel rewrites the content of the message header as it manages the
message queue. The message header cannot be rewritten from the application. The structure of the message queue is shown
in Figure 4.16. The message header has its data types defined as shown below.

T_MSG: Mailbox message header
T_MSG_PRI: Mailbox message header with priority included

Messages in any size can be enqueued in the message queue because the header area is reserved on the application side. In
no event will tasks be kept waiting for transmission.

Messages can be assigned priority, so that messages will be received in order of priority beginning with the highest. In this
case, TA_MPRI should be added to the mailbox attribute. If messages need to be received in order of FIFO, add
TA_MFIFO to the mailbox attribute.?® Furthermore, if tasks in a message wait state are to receive a message, the tasks can
be prioritized in which order they can receive a message, beginning with one that has the highest priority. In this case, add
TA_TPRI to the mailbox attribute. If tasks are to receive a message in order of FIFO, add TA_TFIFO to the mailbox attrib-
ute.*

/F

Message Message

TaskA TaskB

Figure 4.15 Mailbox

% |t is in the mailbox definition "message_queue"” of the configuration file that the TA_MPRI or TA_MFIFO attribute should be added.
* |t is in the mailbox definition "wait queue” of the configuration file that the TA TPRI or TA_ TFIFO attribute should be added.

-48 -




Message |t i iise b Thisa T | [Thse

queue i header i i header i | header i
1 1 1 1 | 1
Message A Message B Message C

Figure 4.16 Message queue

There are following data queue service calls that are provided by the MR100 kernel.

Send to Mailbox (snd_mbyx, isnd_mbx)
Transmits a message. Namely, a message is dropped into the mailbox.

Receive from Mailbox (rcv_mbyx, trcv_mbx)
Receives a message. Namely, a message is retrieved from the mailbox. At this time, if the mailbox has no mes-
sages in it, the task is kept waiting until a message is sent to the mailbox.

Receive from Mailbox (polling) (prcv_mbx, iprcv_mbx)
Receives a message. The difference from the rcv_mbx service call is that if the mailbox has no messages in it, the
task returns error code without going to a wait state.

Reference Mailbox Status (ref_mbx, iref_mbx)
Checks to see if there are any tasks waiting for a message to be put into the target mailbox and refers to the mes-
sage present at the top of the mailbox.

=49 -



4.3.7

The mutex is an object to perform exclusive control. Its primary differences with the semaphore are summarized below.

Extended Synchronization and Communication Function (Mutex)

1. Since a priority ceiling protocol to avoid priority inversions is supported, no "priority inversions" occur.
2. The mutex can be used only for exclusive control of a single resource.

The mutex in the MR100/4 supports only a priority ceiling protocol as the method of priority control. This protocol works
in such a way that when a task gains (or 'locks’) the mutex, the priority of the task is automatically raised to the ceiling pri-
ority that was specified when the mutex was generated. Note also that the priority ceiling protocol supported by the
MR100/4 is a "simplified priority ceiling protocol.” More specifically, this means that when a task relinquishes (or
‘unlocks’) the mutex, the kernel restores the priority of the task to its previous priority only when the task has no other mu-
tex locked.

Base Priority and Current Priority

There are two task priorities: base priority and current priority. Task scheduling is performed according to the current prior-
ity. Unless a task has the mutex locked, its base and current priorities are always the same.

When a task locks the mutex, only the current priority of it is raised to the ceiling priority of the mutex.

In chg_pri and ichg_pri, task priorities are changed in such a way that if a task does not have the mutex locked, its base
priority and current priority both are changed; if a task has the mutex locked, only the base priority of it is changed. Fur-
thermore, while there is a task that has the mutex locked or a task that is waiting to have the mutex locked, if a priority
higher than the ceiling priority of either mutex is specified, an E_ILUSE error is assumed.

Note that use of get_pri or iget_pri enables the current priority of a task to be referenced.

Figure 4.17 shows an example of how the mutex will work.

bl f] Fad
Highem{eilingpriority/v RUNNING |5 (' RUNNING |5 — ~[ e [E
= = _,:’ =
= E .
Task A MNG READY /AﬁNMNG E, Al RUNNING WAITING
8
Priority N
5
Task B TING READY RUNNING |, RUNNING
(=]
4
E
Lower  TaskC | RUNNING q READY
| | | | | | L
[ [ ] | [ ] Ll
1 2 3 4 5 6  Time

Figure 4.17 Typical Operation of the Mutex

[[Explanatlon of the Diagraml]]
When task C locks the mutex with loc_mtx, its priority is raised to the ceiling priority of the mutex.

2. Task A became a READY state while task C is running with the ceiling priority. Although task A has intrinsically
higher priority than that of task C, since task C is running with the ceiling priority higher than that of task A, task A

does not go to a RUNNING state. In other word, as long as task C has the mutex locked, it can continue its proc-
essing without being interfered by task A even when task A with intrinsically higher priority becomes ready to run.

w

A with higher priority goes to a RUNNING state.

No ok

The service calls used to manipulate the mutex include the following:

When task A issues loc_mtx, the priority of task A is raised to the ceiling priority.
When task A issues unl_mtx, the priority of task A returns to its previous priority.
When task B issues loc_mtx, the priority of task B is raised to the ceiling priority.
When task B issues unl_mtx, the priority of task B returns to its previous priority.

When task C unlocks the mutex with unl_mtx, the priority of task C returns to its previous priority. As a result, task

-B50 -



Locking the mutex (loc_mitx, tloc_mtx)
Locks the mutex, with task priority raised to the ceiling priority. If any other task has the mutex locked, this ser-
vice call places the calling task into a wait state and keeps it waiting until the mutex is unlocked.

Locking the mutex (ploc_mtx)

Locks the mutex, with task priority raised to the ceiling priority. The difference with loc_mtx and tloc_mtx is that
if any other task has the mutex locked, this service call immediately returns to the program for error without going
to a wait state.

Unlocking the mutex (unl_mtx)
Unlocks the mutex. If there is any task that is waiting to have the mutex locked, this service call releases the task

from a wait state.

Referring to the mutex status (ref_mtx)
Refers to the task ID that has the mutex locked or the task ID that is waiting to have the mutex locked.

-51-



4.3.8 Extended Synchronization and Communication Function (Message Buffer)

The message buffer is the function to perform synchronization and communication at the same time by passing a message
in the same way as with the mailbox function. The difference with the mailbox function is that a copy of the message con-
tent itself is sent to a task of the other party of communication.

Message

i Message |

R Copy
Co

by Message Buffer
Message prmmmmomeeees 1
' Message :

Task A Task B

Figure 4.18 Message Buffer

The message buffer, as shown in Figure 4.18, stores messages in it the same way as with the mailbox. The stored messages
are retrieved in FIFO order.

If the message buffer does not have a free space available to store a transmitted message, the transmitting task goes to a
wait state. In this case, the task is queued in FIFO order.® Furthermore, if a message is received while there are no mes-
sages in the message buffer, the task goes to a wait state. In this case, too, the task is queued in FIFO order.

To send a message by using the message buffer, the MR100/4 first writes 4-byte message size information to the buffer
before writing out the message. Note, however, that the received messages do not contain any message size information.

% The MR100/4 supports only the TA TFIFO attribute, and does not support the TA_ TPRI attribute.

-52-



Example:

If message B, 12 bytes in size, is transmitted after transmitting message A, size information is written in the next 4 bytes
before message B is written into the buffer.

Size information +

message

(16 bytes used)

—

Message A

Size information
(4 bytes)

Message B (12 bytes)

Beginning of buffer

Figure 4.19 Example of Message Transmission

The message buffer service calls provided by the MR100/4 kernel include the following:

® Transmitting a message (snd_mbf, tsnd_mbf)
Transmits a message to the message buffer. More specifically, this service call copies a message to the message

buffer.

End of buffer

If the message buffer does not have a free space available to store a message, the task that attempted to send goes
to a transmit wait state (see Figure 4.20). Furthermore, if any other task waiting for message transmission already

exists, said task goes to a transmit wait state even when the message buffer has a free space.

Task A

Task B

Message
| i A
1 1
1 1
1 1
1 1
Message —) |1 Message |
1 1
Can be g i
1 1
P ] 1

— Free space
Message Cannot be copied
Message
Buffer

Move to a transmit wait state

Figure 4.20 Transmission of Messages

-B3 -



Transmitting a message (psnd_mbf)
Transmits a message to the message buffer. If the message buffer has a free but insufficient space, this service call
returns error code E_ TMOUT without going to a transmit wait state.

Receiving a message (rcv_mbf, trcv_mbf)

Receives a message. The message is retrieved from the message buffer. If no messages exist in the message buffer,
this service call goes to a receive wait state.

When the task receives a message from the message buffer, free space in the message buffer increases. If there is
another task waiting for message transmission and the free space is larger than the size of a message to be trans-
mitted by the waiting task, the task sends a message to the message buffer and goes from a transmit wait state to
an execution (RUNNING) or an executable (READY) state.

Task A
1
Message Recieve |i Message !
2
Message
Task B
Free space
Transmit
Message
Message
Buffer

WAITING state =iy READY state

Figure 4.21 Reception of a Message

The task state in Figure 4.21 is such that task A is in an execution (RUNNING) state and task B is in a transmit
wait state, wherein.

1. Task A receives a message from the message buffer.
With a message received by the task, the free space in the message buffer increases.

2. Task B sends a message to the message buffer.
Task B, which has been kept waiting for message transmission because the free space in the message buf-
fer is insufficient, now sends a message to the message buffer pursuant to message reception by task A.
Task B goes from a transmit wait state to an executable state.

Receiving a message (prcv_mbf)
Receives a message. If no messages exist in the message buffer, this service call returns error code E_TMOUT
without going to a receive wait state.

Referring to the message buffer status (ref_mbf, iref_mbf)
Checks to see if there is any task waiting for message transmission or reception to and from the message buffer
and the size of the next message to be received.

-54-



4.3.9 Memory pool Management Function(Fixed-size Memory pool)

A fixed-size memory pool is the memory of a certain decided size. The memory block size is specified at the time of a con-
figuration. Figure 4.22 is a figure about the example of a fixed-size memory pool of operation.

® Acquire Fixed-size Memory Block (get_mpf, tget_mpf)
Acquires a memory block from the fixed-size memory pool that has the specified ID. If there are no blank mem-
ory blocks in the specified fixed-size memory pool, the task that issued this service call goes to WAITING state

and is enqueued in a waiting queue.

® Acquire Fixed-size Memory Block (polling) (pget_mpf, ipget._mpf)
Acquires a memory block from the fixed-size memory pool that has the specified ID. The difference from the
get_mpf and tget_mpf service calls is that if there are no blank memory blocks in the memory pool, the task re-
turns error code without going to WAITING state.

M Block 1: d by TaskA
emory Bloc Used by Tas Memory block acquisition

Memory Block 2. | Used by TaskB request
- TaskC
Memory Block 3: - -
Memory block acquisition
Memory block acquisition
request
- TaskD
No blank memory
blocks available *
Fixed Length Memorypool Goes to a
wait state

Figure 4.22 Memory Pool Management

® Release Fixed-size Memory Block (rel_mpf, irel_mpf)
Frees the acquired memory block. If there are any tasks in a wait state for the specified fixed-size memory pool,
the task enqueued at the top of the waiting queue is assigned the freed memory block. In this case, the task
changes its state from WAITING state to READY state. If there are no tasks in a wait state, the memory block is
returned to the memory pool.

® Reference Fixed-size Memory Pool Status (ref_mpf, iref_mpf)
Checks the number and the size of blank blocks available in the target memory pool.

-B5 -



4.3.10 Variable-size Memory Pool Management Function

A variable-size memory pool refers to the one in which a memory block of any desired size can be acquired from the mem-
ory pool. The MR100 permits one of the following two memory pool management methods to be selected before the mem-
ory pool is used.

1. Normal block method
2. Small block method

Each of these methods are explained below.

[[Normal Block Method]]

The technique that allows you to arbitrary define the size of memory block acquirable from the memory pool is termed Va-
riable-size scheme. The MR100 manages memory in terms of four fixed-size memory block sizes.

The MR100 calculates the size of individual blocks based on the maximum memaory block size to be acquired. You specify

the maximum memory block size using the configuration file.

® FEquation for calculating four kinds of block sizes

(((max_memsize+(X-1))/ X x 8)+1) x 8
ax 2
—ax4
= ax$8

o 0 T
1l

max_memsize: the value specified in the configuration file
X: data size for block control (8 byte)

® Example of a configuration file

variable memorypool []{
max_memsize = 400; <---- Maximum size

heap_size = 5000;

If a variable-size memory pool is defined as shown above, the four kinds of fixed length block sizes are obtained from the
define value of max_memsize as 56, 112, 224 and 448, respectively. Furthermore, the MR100 calculates the memory re-
quested by the user based on a specified size to select the appropriate size from the four kinds of fixed length block sizes as
it allocates the requested memory. In no event will a memory block other than these four kinds of size be allocated.

[[Small block method]]

Unlike the normal block method where memory is managed in four kinds of fixed length block sizes, the small block me-
thod manages memory in 12 kinds of fixed length block sizes. Since the block sizes in this method are prefixed as shown
below, there is no need to specify a maximum size during configuration as in the normal block method.

The block sizes managed by the small block method are the following 12, beginning with the smallest:

32 bytes, 64 bytes, 128 bytes, 256 bytes, 512 bytes, 1,024 bytes, 2,048 bytes, 4,096 bytes, 8,192 byte, 16,384 bytes, 32,768
bytes and 65,536 bytes.

-56 -



[[Comparison of Two Management Methods]]

Processing speed
Generally speaking, the normal block method is faster in memory allocation/deallocation processing than the

small block method.

Memory usage efficiency
If the difference between the maximum and minimum sizes of memory to be acquired is 8 times or more, the
small block method is higher in memory usage efficiency than the other method.

Ease of configuration
For the normal block method, it is necessary that the maximum memory size to be acquired be known to the

MR100. However, this is unnecessary for the small block method..

The variable-length memory pool management service calls provided by the MR100 include the following.

Get a memory block (pget_mpl)

The block size specified by the user is acquired by first rounding it to the optimum block size among the four
kinds of block sizes and then acquiring a memory block of the rounded size from the memory pool

For example, if the user requests 200 bytes of memory, the requested size is rounded to 224 bytes, so that 224
bytes of memory is acquired. If a requested block of memory is successfully acquired, the start address of the ac-
quired memory block and error code E_OK are returned. If memory acquisition fails, error code E_TMOUT is
returned.

A
200 bytes
\J
TaskA
l Rounding Memorypool
A A pget_mp]
9224 bytes — 200 bytes
\ \

Figure 4.23 pget_mpl processing

Release Acquire Variable-size Memory Block (rel_mpl)
Releases a acquired memory block by pget_mpl service call.

-57-



TaskA
Memorypool Memorypool

) rel_mpl
— top of — —
L ] address

Figure 4.24 rel_mpl processing

® Reference Acquire Variable-size Memory Pool Status (ref_mpl, iref_mpl)

Checks the total free area of the memory pool, and the size of the maximum free area that can immediately be
acquired.

-B8 -



4.3.11 Time Management Function

The time management function provides system time management, time reading®, time setup?’, and the functions of the
alarm handler, which actuates at preselected times, and the cyclic handler, which actuates at preselected time intervals.

The MR100 kernel requires one timer for use as the system clock. There are following time management service calls that
are provided by the MR100 kernel. Note, however, that the system clock is not an essential function of MR100. Therefore,
if the service calls described below and the time management function of the MR100 are unused, a timer does not need to

be occupied for use by MR100.

® Place atask in a finite time wait state by specifying a timeout value
A timeout can be specified in a service call that places the issuing task into WAITING state.?® This service call
includes tslp_tsk, twai_flg, twai_sem, tsnd_dtq, trcv_dtq, trcv_mbx, tget mpf, vtsnd_dtq, tloc_mtx, tsnd_mbf,
trev_mbf and vtrcv_dtg. If the wait cancel condition is not met before the specified timeout time elapses, the error
code E_TMOUT is returned, and the task is freed from the wait state. If the wait cancel condition is met, the error
code E_OK is returned.
The timeout time should be specified in ms units.

tslp_tsk(50)

E_TMOUT
READY state ) [
| |
| |
WAITING state L |
50
Timeout value
tslp_tsk(50) E_OK
RUN state —— i
| |
| |
WAITING state 7 - -

iwup_tsk

Figure 4.25 Timeout Processing

MR100 guarantees that as stipulated in uITRON specification, timeout processing is not performed until a time
equal to or greater than the specified timeout value elapses. More specifically, timeout processing is performed
with the following timing.

1. If the timeout value is O (for only dly_tsk)?
The task times out at the first time tick after the service call is issued.*

2. If the timeout value is a multiple of time tick interval
The timer times out at the (timeout value / time tick interval) + first time tick. For example, if the time
tick interval is 10 ms and the specified timeout value is 40 ms, then the timer times out at the fifth oc-
currence of the time tick. Similarly, if the time tick interval is 5 ms and the specified timeout value is 15

26

get_tim service call
27

set_tim service call

% SUSPENDED state is not included.

% strictly, in a dly_tsk service call, the "timeout value" is not correct. "delay time" is correct.

Strictly, in a dly_tsk service call, a timeout is not carried out, but the waiting for delay is canceled and the service call carries out the nor-
mal end.

[
oS

-59 -



ms, then the timer times out at the fourth occurrence of the time tick.

3. If the timeout value is not a multiple of time tick interval
The timer times out at the (timeout value / time tick interval) + second time tick. For example, if the time
tick interval is 10 ms and the specified timeout value is 35 ms, then the timer times out at the fifth oc-

currence of the time tick.

Set System Time (set_tim)

Reference System Time (get_tim)
The system time indicates an elapsed time from when the system was reset by using 48-bit data. The time is ex-

pressed in ms units.

-60 -



4.3.12 Cyclic Handler Function
The cyclic handler is a time event handler that is started every startup cycle after a specified startup phase has elapsed.

The cyclic handler may be started with or without saving the startup phase. In the former case, the cyclic handler is started
relative to the point in time at which it was generated. In the latter case, the cyclic handler is started relative to the point in
time at which it started operating. Figure 4.26 and Figure 4.27 show typical operations of the cyclic handler.

If the startup cycle is shorter than the time tick interval, the cyclic handler is started only once every time tick supplied
(processing equivalent to isig_tim). For example, if the time tick interval is 10 ms and the startup cycle is 3 ms and the cy-
clic handler has started operating when a time tick is supplied, then the cyclic handler is started every time tick.

Start operating Stop operating
Cyeclic handler
created

A 4 A 4 o
v Ll »

[} [} [}

. .| . . } . . . . . . }

Activationy  Activation |  Activation Activation Activation

phase : cycle : cycle cycle cycle :

v v v
Handler does Handler does Handler starts Handler starts Handler does
not start not start not start

Figure 4.26 Cyclic handler operation in cases where the activation phase is saved

Start operating Stop operating
Cyeclic handler
created

\ 4 A 4 o
Ll L) »

[} [} 1

Activation: Activation : Activation Activation Activation :

phase : cycle : cycle cycle cycle :

v v v

Handler does Handler does Handler starts Handler starts Handler does
not start not start not start

Figure 4.27 Cyclic handler operation in cases where the activation phase is not saved

® Start Cyclic Handler Operation (sta_cyc, ista_cyc)
Causes the cyclic handler with the specified ID to operational state.

® Stop Cyclic Handler Operation (stp_cyc, istp_cyc)
Causes the cyclic handler with the specified ID to non-operational state.

® Reference Cyclic Handler Status (ref_cyc, iref_cyc)
Refers to the status of the cyclic handler. The operating status of the target cyclic handler and the remaining time
before it starts next time are inspected.

-61-



4.3.13

Alarm Handler Function

The alarm handler is a time event handler that is started only once at a specified time.

Use of the alarm handler makes it possible to perform time-dependent processing. The time of day is specified by a relative
time. Figure 4.28 shows a typical operation of the alarm handler.

Alarm handler Star.t Star.t Stop.
operating operating operating
created

A 4 A 4 ) g
l >

Activation Activation :

time time :

v

Handler starts Handler does
not start

Figure 4.28 Typical operation of the alarm handler

Start Alarm Handler Operation (sta_alm, ista_alm)
Causes the alarm handler with the specified ID to operational state.

Stop alarm Handler Operation (stp_alm, istp_alm)
Causes the alarm handler with the specified ID to non-operational state.

Reference Alarm Handler Status (ref_alm, iref_alm)
Refers to the status of the alarm handler. The operating status of the target alarm handler and the remaining time

before it starts are inspected.

-62-



4.3.14  System Status Management Function

® Rotate Task Precedence (rot_rdq, irot_rdq)
This service call establishes the TSS (time-sharing system). That is, if the ready queue is rotated at regular inter-
vals, round robin scheduling required for the TSS is accomplished (See Figure 4.29)

Priority
1 ™ taskA
2
3 taskB taskC

Y

5
L
-
&
n
2,
S

| taskE taskF [~

—————— e —_—_—————— e e _I
Move the end of the queue

Figure 4.29 Ready Queue Management by rot_rdq Service Call

Reference task ID in the RUNNING state(get_tid, iget_tid)
References the ID number of the task in the RUNNING state. If issued from the handler, TSK_NONE(=0) is ob-
tained instead of the ID number.

® | ockthe CPU (loc_cpu, iloc_cpu)
Places the system into a CPU locked state.

® Unlock the CPU (unl_cpu, iunl_cpu)
Frees the system from a CPU locked state.
® Disable dispatching (dis_dsp)
Places the system into a dispatching disabled state.

® Enable dispatching (ena_dsp)
Frees the system from a dispatching disabled state.

® Reference context (sns_ctx)
Gets the context status of the system.

® Reference CPU state (sns_loc)
Gets the CPU lock status of the system.

® Reference dispatching state (sns_dsp)
Gets the dispatching disable status of the system.

® Reference dispatching pending state (sns_dpn)
Gets the dispatching pending status of the system.

® Moved to the system down state (vsys_dwn, ivsys_dwn)
Moved to the system down state.*

1 These service calls are extended functions for micro ITRON 4.0 specification.

-63-



4.3.15 Interrupt Management Function
The interrupt management function provides a function to process requested external interrupts in real time.

The interrupt management service calls provided by the MR100 kernel include the following:

® Returns from interrupt handler (ret_int)
The ret_int service call activates the scheduler to switch over tasks as necessary when returning from the interrupt

handler.
When using the C language,®, this function is automatically called at completion of the handler function. In this

case, therefore, there is no need to invoke this service call.

Figure 4.30 shows an interrupt processing flow. Processing a series of operations from task selection to register restoration
is called a "scheduler.".

TaskA
Interrupt
Save Registers
Handler Processing L >
#pragma INTHANDLER Declare
(C language)
iwup_tsk
ret_int
I
Task Selection
TaskB
Restore Registers

Figure 4.30 Interrupt process flow

%2 |n the case that the interruput handler is specified by "#pragma INTHANDLER".

-64 -



4.3.16

System Configuration Management Function

This function inspects the version information of MR100.

4.3.17

References Version Information(ref_ver, iref_ver)
The ref_ver service call permits the user to get the version information of MR100. This version information can
be obtained in the standardized format of uITRON specification.

Extended Function (Short Data Queue)

The short data queue is a function outside the scope of uITRON 4.0 Specification. The data queue function handles data as
consisting of 32 bits, whereas the short data queue handles data as consisting of 16 bits. Both behave the same way except
only that the data sizes they handle are different.

Send to Short Data Queue (vsnd_dtq, vtsnd_dtq)
The data is transmitted to the short data queue. If the short data queue is full of data, the task goes to a data trans-
mission wait state.

Send to Short Data Queue (vpsnd_dtq, vipsnd_dtq)
The data is transmitted to the short data queue. If the short data queue is full of data, the task returns error code
without going to a data transmission wait state.

Forced Send to Short Data Queue (vfsnd_dtq, vifsnd_dtq)
The data is transmitted to the short data queue. If the short data queue is full of data, the data at the top of the
short data queue or the oldest data is removed, and the transmitted data is stored at the tail of the short data queue.

Receive from Short Data Queue(vrcv_dtq, vtrcv_dtq)
The data is retrieved from the short data queue. If the short data queue has no data in it, the task is kept waiting
until data is transmitted to the short data queue.

Receive from Short Data Queue (vprcv_dtq, viprcv_dtq)
The data is received from the short data queue. If the short data queue has no data in it, the task returns error code
without going to a data reception wait state.

Reference Short Data Queue Status (vref_dtq, viref_dtq)
Checks to see if there are any tasks waiting for data to be entered in the target short data queue and refers to the
number of the data in the short data queue.

-65 -



4.3.18

Extended Function (Reset Function)

The reset function is a function outside the scope of LFITRON 4.0 Specification. It initializes the mailbox, data queue, and
memory pool, etc.

Clear Data Queue Area (vrst_dtq)
Initializes the data queue. If there are any tasks waiting for transmission, they are freed from WAITING state and
the error code EV_RST is returned.

Clear Mailbox Area (vrst_mbx)
Initializes the mailbox.

Clear Message Buffer Area (vrst_mbf)
Initializes the message buffer. If there are any tasks waiting for transmission, they are freed from WAITING state
and the error code EV_RST is returned.

Clear Fixed-size Memory Pool Area (vrst_mpf)
Initializes the fixed-size memory pool. If there are any tasks in WAITING state, they are freed from the WAIT-
ING state and the error code EV_RST is returned.

Clear Variable-size Memory Pool Area (vrst_mpl)
Initializes the variable length memory pool.

Clear Short Data Queue Area (vrst_vdtq)
Initializes the short data queue. If there are any tasks waiting for transmission, they are freed from WAITING
state and the error code EV_RST is returned.

Clear Message Buffer Area (vrst_mbf)
Initializes the message buffer. If there are any tasks waiting for transmission, they are freed from WAITING state
and the error code EV_RST is returned.

- 66 -



5. Service call refference

5.1 Task Management Function

Specifications of the task management function of MR100 are listed in Table 5.1 below. The task description languages in
item No. 4 are those specified in the GUI configurator. They are not output to a configuration file, nor are the MR100 ker-
nel concerned with them.

The task stack permits a section hame to be specified for each task individually.

Table 5.1 Specifications of the Task Management Function

No. Item Content
1 Task ID 1-255
Task priority 1-255
3 Maximum number of activation request count | 255
TA_HLNG : Tasks written in high-level language

4 Task attribute TA_ASM :  Tasks written in assem-bly language
TA_ACT: Startup attribute
5 Task stack Section specifiable

Table 5.2 List of Task Management Function Service Call

No. Service Call Function System State
T N E D U L
1 act_tsk [S] Activates task 0 0 0 0
2 iact_tsk [S] O] O] 0 )
3 can_act [S] Cancels task activation request 0 ) @) @)
4 ican_act ) @) 0 0
5 sta_tsk [B] Starts task and specifies start code ) ) O O
6 ista_tsk ) @) 0 0
7 ext_tsk [S][B] Exits current task 0 0 0 0 )
8 ter_tsk [S][B] Forcibly terminates a task 0 ) ) )
9 chg_pri [S][B] Changes task priority 0 ) 0 0
10 ichg_pri 0 0 0 O
11 get_pri [S] Refers to task priority ) @] @) @)
12 iget_pri O] O] 0 0
13 ref tsk Refers to task state 0 0 O O
14 iref_tsk O] O] 0 0
15 ref tst Refers to task state (simple version) 0 0 0 0
16 iref_tst O] O ) )

-67-



Notes:

® [S]: Standard profile service calls
[B]: Basic profile service calls

® Each sign within " System State " is a following meaning.

* & & O o o

T: Can be called from task context

N: Can be called from non-task context

E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

- 68 -



act_tsk Activate task
lact_tsk Activate task (handler only)

[[ C Language API ]]
ER ercd = act_tsk( ID tskid );
ER ercd = iact_tsk( ID tskid );
@ Parameters

ID tskid ID number of the task to be started
@ Return parameters
ER ercd Terminated normally (E_OK) or error code
[[ Assembly language API 1]

.include mrl100.inc
act_tsk TSKID
iact_tsk TSKID

® Parameters

TSKID ID number of the task to be started
@ Register contents after service call is issued

Register name Content after service call is issued

RO Error code

R2 Task ID

[[ Error Code 1]
E QOVR Queuing overflow
(actcnt>255)

E CTX Context error ( Called from the system status not permitted.)
E ID Invalid ID number

(taskid<0, maximum task number < tskid,
tskid=TSK_SELF(=0) when called from non-task context )

- 69 -



[[ Functional description ]]
This service call starts the task indicated by tskid. The started task goes from DORMANT state to READY state or RUN-
NING state.

The following lists the processing performed on startup.
1. Initializes the current priority of the task.

2. Clears the number of queued wakeup requests.

3. Clears the number of suspension requests.

Specifying tskid=TSK_SELF(0) specifies the issuing task itself. The task has passed to it as parameter the extended infor-
mation of it that was specified when the task was created. If TSK_SELF is specified for tskid in non-task context, service
call returns E_ID.

If the target task is not in DORMANT state, a task activation request by this service call is enqueued. In other words, the
activation request count is incremented by 1. The maximum value of the task activation request is 255. If this limit is ex-
ceeded, the error code E_QOVR is returned.

If TSK_SELF is specified for tskid, the issuing task itself is made the target task.
If this service call is to be issued from task context, use act_tsk; if issued from non-task context, use iact_tsk.

When a service call is called from the system state which is not permitted, it becomes an error, and E_CTX is returned.

[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>

#include <kernel.h>

#include “kernel id.h”

void taskl( VP_INT stacd )

ER ercd;

ercd = act_tsk( ID task2 );
void task2( VP_INT stacd )

ext_tsk() ;

}

<<Example statement in assembly language>>
. INCLUDE mr100.inc

.GLB task
task:
PUSH.W R2

act_tsk #ID TASK3

-70 -



can_act Cancel task activation request
ican_act Cancel task activation request (handler only)

[[ C Language API ]]
ER_UINT actcnt
ER_UINT actcnt
® Parameters

ID tskid ID number of the task to cancel

can_act( ID tskid );
ican_act( ID tskid );

® Return Parameters

ER_UINT actent>0 Canceled activation request count
actent< 0 Error code
[[ Assembly language API 1]

-.include mrl100.inc
can_act TSKID
ican_act TSKID

® Parameters
TSKID ID number of the task to cancel

@ Register contents after service call is issued
Register name Content after service call is issued

RO Canceled startup request count or error code

[[ Error code ]
E CTX Context error ( Called from CPU locked state or non-kernel interrupt.)
E ID Invalid ID number

(taskid<0, maximum task number < tskid,
tskid=TSK_SELF(=0) when called from non-task context )

[[ Functional description ]]
This service call finds the number of task activation requests enqueued for the task indicated by tskid, returns the result as a
return parameter, and at the same time invalidates all of the task’s activation requests.

Specifying tskid=TSK_SELF(0) specifies the issuing task itself. If TSK_SELF is specified for tskid in non-task context,
operation of this service call cannot be guaranteed.

This service call can be invoked for a task in DORMANT state as the target task. In that case, the return parameter is 0.
If this service call is to be issued from task context, use can_act; if issued from non-task context, use ican_act.

When a service call is called from CPU locked state or non-kernel interrupt, it becomes an error, and E_CTX is returned.

-71 -



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void taskl ()

ER _UINT actcnt;

actcnt = can act( ID task2 );
void task2 ()

ext;tsk();

<<Example statement in assembly language>>
. INCLUDE mr100.inc
.GLB task

task:

can_act #ID_ TASK2

-72 -



sta_tsk Activate task with a start code

ista_tsk Activate task with a start code (handler only)

[[ C Language API ]l
ER ercd = sta_tsk( ID tskid,VP_INT stacd );
ER ercd = ista_tsk ( ID tskid,VP_INT stacd );
® Parameters

ID tskid ID number of the target task
VP_INT stacd Task start code
® Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[ Assembly language API ]]

.include mrl100.inc
sta_tsk TSKID,STACD
ista tsk TSKID,STACD

@ Parameters
TSKID ID number of the target task

STATCD Task start code

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code
R3R1 Task start code
R2 ID number of the target task
[[ Error code 1]
E OBJ Obiject status invalid (task indicated by tskid is not DOMANT state)
E CTX Context error ( Called from the system status not permitted.)
E ID Invalid ID number

(taskid<0, maximum task number < tskid)

-73-



[[ Functional description ]]

This service call starts the task indicated by tskid. In other words, it places the specified task from DORMANT state into
READY state or RUNNING state. This service call does not enqueue task activation requests. Therefore, if a task activa-
tion request is issued while the target task is not DORMANT state, the error code E_OBJ is returned to the service call is-
suing task. This service call is effective only when the specified task is in DORMANT state. The task start code stacd is 32
bits long. This task start code is passed as parameter to the activated task.

If a task is restarted that was once terminated by ter_tsk or ext_tsk, the task performs the following as it starts up.
1. Initializes the current priority of the task.

2. Clears the number of queued wakeup requests.

3. Clears the number of nested forcible wait requests.

If this service call is to be issued from task context, use sta_tsk; if issued from non-task context, use ista_tsk.

When a service call is called from the system state which is not permitted, it becomes an error, and E_CTX is returned.

[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

ER ercd;

VP_INT stacd = 0;

ercd = sta tsk( ID task2, stacd );
void task2 (VP_INT msg)

if (msg == 0)

<<Example statement in assembly language>>
. INCLUDE mr100.inc

.GLB task
task:

PUSHM R3R1

PUSH.W R2

sta_tsk #ID TASK4,#100

-74 -



ext_tsk Terminate invoking task

[[ C Language API ]]
ER ercd = ext_tsk();

® Parameters
None

® Return Parameters
Not return from this service call

[[ Assembly language API ]]
-include mrl100.1inc
ext_tsk

® Parameters
None

@ Register contents after service call is issued
Not return from this service call

[[ Error code ]I
This service call doesn’t return a return value.
However, when the following errors are detected, system down routine is called.
E CTX ( Called from the system status not permitted.)

[[ Functional description 1]

This service call terminates the invoking task. In other words, it places the issuing task from RUNNING state into DOR-
MANT state. However, if the activation request count for the issuing task is 1 or more, the activation request count is
decremented by 1, and processing similar to that of act_tsk or iact_tsk is performed. In this case, the task is placed from
DORMANT state into READY state. The task has its extended information passed to it as parameter when the task starts
up.

This service call is designed to be issued automatically at return from a task.

In the invocation of this service call, the resources the issuing task had acquired previously (e.g., semaphore) are not re-
leased. As an exception, the mutex if any locked by the task is freed. Even when the issuing task’s startup request count is
equal to or greater than 1, the mutex is freed, and the task performs the similar processing as act_tsk or iact_task again.

This service call can only be used in task context. This service call can be used even in a CPU locked state, but cannot be
used in non-task context.

When a service call is called from CPU locked state or non-kernel interrupt, it becomes a fatal error and calls system down
routine. In this case, it passes E_CTX as an error code and “-2” as kind of error.

-75-



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task (void)

ext tsk();

<<Example statement in assembly language>>
. INCLUDE mrl00.inc
.GLB task

task:

ext tsk

-76 -



ter_tsk Terminate task

[[ C Language API ]]
ER ercd = ter_tsk( ID tskid );

® Parameters

ID tskid ID number of the forcibly terminated task
® Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[ Assembly language API 1]

-.include mr100.inc
ter_tsk TSKID

® Parameters
TSKID ID number of the forcibly terminated task

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO Error code
R2 ID number of the target task
[[ Error code ]
E_OBJ Obiject status invalid(task indicated by tskid is an inactive state)
E_ILUSE Service call improperly used task indicated by tskid is the issuing task itself)
E _CTX Context error ( Called from the system status not permitted.)
E_ID Invalid ID number

(taskid<0, maximum task number < tskid)

[[ Functional description ]]

This service call terminates the task indicated by tskid. If the activation request count of the target task is equal to or greater
than 1, the activation request count is decremented by 1, and processing similar to that of act_tsk or iact_tsk is performed.
In that case, the task is placed from DORMANT state into READY state. The task has its extended information passed to it
as parameter when the task starts up.

If a task specifies its own task ID or TSK_SELF, an E_ILUSE error is returned.

If the specified task was placed into WAITING state and has been enqueued in some waiting queue, the task is dequeued
from it by execution of this service call. However, the semaphore and other resources the specified task had acquired pre-
viously are not released. As an exception, the mutex if any locked by the task is freed. Even when the object task's startup
request count is equal to or greater than 1, the mutex is freed, and the task performs the similar processing as act_tsk or
iact_task again.

If the task indicated by tskid is in DORMANT state, it returns the error code E_OBJ as a return value for the service call.
This service call can only be used in task context, and cannot be used in non-task context.

When a service call is called from non-task context or CPU locked state, it becomes an error, and E_CTX is returned.

-77 -



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

ter tsk( ID main );

}

<<Example statement in assembly language>>
. INCLUDE mr100.inc

.GLB task
task:
PUSH.W R2

ter tsk #ID TASK3

-78-



chg_pri Change task priority
ichg_pri Change task priority(handler only)

[[ C Language API ]]
ER ercd = chg_pri( ID tskid, PRI tskpri );
ER ercd = ichg _pri( ID tskid, PRI tskpri );

® Parameters

ID tskid ID number of the target task
PRI tskpri Priority of the target task
@ Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[ Assembly language API 1]

-.include mrl100.inc
chg_pri TSKID,TSKPRI
ichg_pri TSKID,TSKPRI

® Parameters

TSKID ID number of the target task
TSKPRI Priority of the target task
® Register contents after service call is issued
Register name Content after service call is issued
RO Error code
R3 Priority of the target task
R2 ID number of the target task
[[ Error code ]I
E_OBJ Object status invalid(task indicated by tskid is an inactive state)
E ILUSE lllegal use (higher priority than the ceiling priority is specified)
E ID Invalid ID number

(taskid<0, maximum task number < tskid,
tskid=TSK_SELF(=0) when called from non-task context )
E CTX Context error ( Called from the system status not permitted.)
E_PAR Parameter error
(tskpri < 0, the maximum priority < tskpri)

-79-



[[ Functional description ]]

The priority (base priority) of the task specified by tskid is changed to the value indicated by tskpri, and tasks are resched-
uled based on the result of change. If the task has a mutex locked, its current priority remains unchanged, only the base
priority changed, and the ready queue does not change state. If the task has no mutexes locked, its current priority is
changed at the same time its base priority is changed, and the ready queue changes state.

If this service call is executed on a task queued in a ready queue (including a task under execution) or a task in a wait queue
in which tasks are queued in order of priority, the object task is moved to the tail end of the tasks of relevant priority in the
queue. When the same priority as before is specified, the object task is moved to the tail end of that queue also.

The smaller the number, the higher the task priority, with numeral 1 assigned the highest priority. The minimum numeric
value specifiable as priority is 1. Furthermore, the maximum value of priority is the one specified in a configuration file,
and the specifiable range of priority is 1 to 255. For example, if the following statement is written in a configuration file,

system{
0x100;
13;

stack_size
priority

};

then the specifiable range of priority is 1 to 13. When the priority besides this range, it becomes an error, and E_PAR is
returned.

If TSK_SELF is specified, the priority (base priority) of the issuing task is changed. If TSK_SELF is specified for tskid in a
non-task context, the program operation cannot be guaranteed. If TPRI_INI is specified, the priority of a task is changed to
its startup priority specified when it is generated. The changed task priority (base priority) remains effective until the task
terminates or this service call is reexecuted.

If the task indicated by tskid is in an inactive (DORMANT) state, error code E_OBJ is returned as the service call's return
value.

If the object task has a mutex locked or waiting to have a mutex locked and the priority (base priority) specified for tskpri is
higher than the ceiling priority of either mutex, error code E_ILUSE is returned.

To use these service calls from task contexts, be sure to use chg_pri; to use them from non-task contexts, be sure to use
ichg_pri.

When a service call is called from the system state which is not permitted, it becomes an error, and E_CTX is returned.

[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.hs>
#include <kernel.h>
#include “kernel_id.h”
void task()

chg_ﬁri( ID task2, 2 );

<<Example statement in assembly language>>
. INCLUDE mrl00.inc

.GLB task
task:

PUSH.W R2

PUSH.W R3

chg pri #ID TASK3, #1

-80-



get_pri Reference task priority
iget_pri Reference task priority(handler only)

[[ C Language API ]]
ER ercd = get_pri( ID tskid, PRI *p_tskpri );
ER ercd = iget pri( ID tskid, PRI *p_tskpri );

® Parameters

ID tskid ID number of the target task
PRI *p_tskpri Pointer to the area to which task priority is returned
@ Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[ Assembly language API 1]

-.include mrl100.inc
get pri TSKID
iget_pri TSKID
® Parameters
TSKID ID number of the target task

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code
R2 Acquired task priority
[[ Error code ]I
E OBJ Obiject status invalid(task indicated by tskid is an inactive state)
E CTX Context error ( Called from CPU locked state or non-kernel interrupt.)
E ID Invalid ID number

(taskid<0, maximum task number < tskid,
tskid=TSK_SELF(=0) when called from non-task context )

[[ Functional description 1]
This service call returns the priority of the task indicated by tskid to the area indicated by p_tskpri. If TSK_SELF is speci-
fied, the priority of the issuing task itself is acquired. If TSK_SELF is specified for tskid in non-task context, it becomes an

error, and E_ID is returned.
If the task indicated by tskid is in DORMANT state, it returns the error code E_OBJ as a return value for the service call.
If this service call is to be issued from task context, use get_pri; if issued from non-task context, use iget_pri.

When a service call is called from CPU locked state or non-kernel interrupt, it becomes an error, and E_CTX is returned.

-81-



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void task()

PRI p tskpri;
ER ercd;

ercd = get_pri( ID_task2, &p_ tskpri );
<<Example statement in assembly language>>
. INCLUDE mrl00.inc
.GLB task
task:

get_pri #ID_TASK2

-82-



ref tsk Reference task status
iref_tsk Reference task status (handler only)

[[ C Language API ]]
ER ercd = ref_tsk( ID tskid, T_RTSK *pk_rtsk );
ER ercd = iref_tsk( ID tskid, T_RTSK *pk rtsk );

@ Parameters
ID tskid ID number of the target task

T_RTSK *pk_rtsk Pointer to the packet to which task status is returned

@ Return Parameters
ER ercd Terminated normally (E_OK)

Contents of pk_rtsk
typedef struct t_rtsk{

STAT tskstat +0 2 Task status
PRI tskpri +2 2 Current priority of task
PRI tskbpri +4 2 Base priority of task
STAT  tskwait +6 2 Cause of wait
ID wobjid +8 2 Waiting object ID
TMO lefttmo +10 4 Left time before timeout
UINT actent +14 4 Number of queued activation request counts
UINT wupcnt +18 4 Number of queued wakeup request counts
UINT suscnt +22 4 Number of nested suspension request counts

} T_RTSK;

[[ Assembly language API ]]

-include mrl100.inc

ref_tsk TSKID, PK_RTSK

iref_tsk TSKID, PK_RTSK

® Parameters

TSKID ID number of the target task

PK_RTSK Pointer to the packet to which task status is returned

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO Error code

R2 ID number of the target task

Al Pointer to the packet to which task status is returned
[[ Error code 1]

E_ID Invalid ID number

(taskid<0, maximum task number < tskid,
tskid=TSK_SELF(=0) when called from non-task context )
E CTX Context error ( Called from CPU locked state or non-kernel interrupt.)

-83-



[[ Functional description ]]

This service call inspects the status of the task indicated by tskid and returns the current information on that task to the area
pointed to by pk_rtsk as a return parameter. If TSK_SELF is specified, the status of the issuing task itself is inspected. If
TSK_SELF is specified for tskid in non-task context, it becomes an error, and E_ID is returned.

& tskstat (task status)
tskstat has one of the following values returned to it depending on the status of the specified task.
e TTS_RUN(0x0001) RUNNING state

e TTS_RDY(0x0002) READY state

e TTS_WAI(0x0004) WAITING state

e  TTS_SUS(0x0008) SUSPENDED state

e TTS_WAS(0x000C) WAITING-SUSPENDED state

e TTS_DMT(0x0010) DORMANT state

@ tskpri (current priority of task)
tskpri has the current priority of the specified task returned to it. If the task is in DOMANT state, tskpri is inde-
terminate.

@ tskbpri (base priority of task)
tskbpri has the base priority of the specified task returned to it. If the task is in DOMANT state, tskbpri is inde-
terminate.

@ tskwait (cause of wait)
If the target task is in a wait state, one of the following causes of wait is returned. The values of the respective
causes of wait are listed below. If the task status is other than a wait state (TTS_WAI or TTS_WAS), tskwait is
indeterminate.
e TTW_SLP (0x0001) Kept waiting by slp_tsk or tslp_tsk

TTW_DLY (0x0002) Kept waiting by dly_tsk

TTW_SEM (0x0004) Kept waiting by wai_sem or twai_sem

TTW_FLG (0x0008) Kept waiting by wai_flg or twai_flg

TTW_SDTQ(0x0010) Kept waiting by snd_dtq or tsnd_dtq

TTW_RDTQ(0x0020)  Kept waiting by rcv_dtq or trcv_dtq

TTW_MBX (0x0040) Kept waiting by rcv_mbx or trcv_mbx

TTW_MTX (0x0080) Kept waiting by loc_mtx or tloc_mtx

TTW_SMBF (0x0100)  Kept waiting by snd_mbf or tsnd_mbf

TTW_RMBF (0x0200)  Kept waiting by rcv_mbf or trcv_mbf

TTW_MPF (0x2000) Kept waiting by get_mpf or tget_mpf

TTW_VSDTQ (0x4000) Kept waiting by vsnd_dtq or vtsnd_dtq*
e TTW_VRDTQ(0x8000) Keptwaiting by vrcv_dtq or vtrcv_dtq

€ wobjid (waiting object ID)
If the target task is in a wait state (TTS_WAI or TTS_WAS), the ID of the waiting target object is returned. Oth-
erwise, wobjid is indeterminate.

@ lefttmo(left time before timeout)
If the target task has been placed in WAITING state (TTS_WAI or TTS_WAS) by other than dly_tsk, the left
time before it times out is returned. If the task is kept waiting perpetually, TMO_FEVR is returned. Otherwise,
lefttmo is indeterminate.

@ actcnt(task activation request)
The number of currently queued task activation request is returned.

€ wupcnt (wakeup request count)
The number of currently queued wakeup requests is returned. If the task is in DORMANT state, wupcnt is inde-
terminate.

@ suscnt (suspension request count)
The number of currently nested suspension requests is returned. If the task is in DORMANT state, suscnt is inde-
terminate.

If this service call is to be issued from task context, use ref_tsk; if issued from non-task context, use iref _tsk.
When a service call is called from CPU locked state or non-kernel interrupt, it becomes an error, and E_CTX is returned.

3 TTW VSDTQ and TTW VRDTQ are the causes of wait outside the scope of WITRON 4.0 Specification.

-84-



[[ Example program statement ]]

<<Example statement in C language>>
#include <itron.h>

#include <kernel.h>
#include “kernel_id.h”
void task()

T RTSK rtsk;
ER ercd;

ercd = ref tsk( ID main, &rtsk );

}

<<Example statement in assembly language>>
_refdata: .blkb 26

.include mrl100.inc

.GLB task
task:
PUSH.W R2
PUSH.L Al

ref tsk #TSK_SELF, # refdata

-85 -



ref tst Reference task status (simplified version)
iref_tst Reference task status (simplified version, handler

only)

[[ C Language API ]]
ER ercd = ref_tst( ID tskid, T _RTST *pk_rtst );
ER ercd = iref_tst( ID tskid, T_RTST *pk rtst );

® Parameters
ID tskid ID number of the target task

T_RTST *pk_rtst Pointer to the packet to which task status is returned

@ Return Parameters
ER ercd Terminated normally (E_OK)

Contents of pk_rtsk
typedef struct t_rtst{

STAT tskstat +0 2 Task status
STAT tskwait +2 2 Cause of wait
} T_RTST;
[[ Assembly language API 1]

-include mrl100.inc

ref_tst TSKID, PK_RTST
iref_tst TSKID, PK_RTST

® Parameters

TSKID ID number of the target task

PK_RTST Pointer to the packet to which task status is returned

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO Error code

A0 ID number of the target task

Al Pointer to the packet to which task status is returned
[[ Error code 1]

E ID Invalid ID number

(taskid<0, maximum task number < tskid,
tskid=TSK_SELF(=0) when called from non-task context )
E CTX Context error ( Called from CPU locked state or non-kernel interrupt.)

-86 -



[[ Functional description ]]
This service call inspects the status of the task indicated by tskid and returns the current information on that task to the area
pointed to by pk_rtst as a return value. If TSK_SELF is specified, the status of the issuing task itself is inspected. If
TSK_SELF is specified for tskid in non-task context, it becomes an error, and E_ID is returned.

@ tskstat (task status)
tskstat has one of the following values returned to it depending on the status of the specified task.

TTS_RUN(0x0001)
TTS_RDY(0x0002)
TTS_WAI(0x0004)
TTS_SUS(0x0008)
TTS_WAS(0X000C)
TTS_DMT(0x0010)

@ tskwait (cause of wait)
If the target task is in a wait state, one of the following causes of wait is returned. The values of the respective
causes of wait are listed below. If the task status is other than a wait state (TTS_WAI or TTS_WAS), tskwait is
indeterminate.

TTW_SLP (0x0001)
TTW_DLY (0x0002)
TTW_SEM (0x0004)
TTW_FLG (0x0008)
TTW_SDTQ(0x0010)
TTW_RDTQ(0x0020)
TTW_MBX (0x0040)
TTW_MTX (0x0080)
TTW_SMBF (0x0100)
TTW_RMBF (0x0200)
TTW_MPF (0x2000)
TTW_VSDTQ (0x4000)
TTW_VRDTQ(0x8000)

RUNNING state

READY state

WAITING state

SUSPENDED state
WAITING-SUSPENDED state
DORMANT state

Kept waiting by slp_tsk or tslp_tsk
Kept waiting by dly_tsk

Kept waiting by wai_sem or twai_sem
Kept waiting by wai_flg or twai_flg
Kept waiting by snd_dtq or tsnd_dtq
Kept waiting by rcv_dtq or trev_dtq
Kept waiting by rcv_mbx or trcv_mbx
Kept waiting by loc_mtx or tloc_mtx
Kept waiting by snd_mbf or tsnd_mbf
Kept waiting by rcv_mbf or trcv_mbf
Kept waiting by get_mpf or tget_mpf
Kept waiting by vsnd_dtq or vtsnd_dtg>*
Kept waiting by vrcv_dtq or vtrev_dtq

If this service call is to be issued from task context, use ref_tst; if issued from non-task context, use iref tst.

When a service call is called from CPU locked state or non-kernel interrupt, it becomes an error, and E_CTX is returned.

[[ Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”

void task()

T RTST rtst;
ER ercd;

ercd = ref tst( ID main, &rtst );

<<Example statement in assembly language>>

_refdata: .blkb 4
.include mrl00.inc
.GLB task
task:
PUSH.W R2
PUSH.L Al

ref_tst

#ID_TASK2,#_refdata

3 TTW VSDTQ and TTW VRDTQ are the causes of wait outside the scope of WITRON 4.0 Specification.

-87-



5.2 Task Dependent Synchronization Function

Specifications of the task-dependent synchronization function are listed in below.

Table 5.3 Specifications of the Task Dependent Synchronization Function

No. Item Content
1 Maximum value of task wakeup request count 255
2 Maximum number of nested forcible task wait requests count 1
Table 5.4 List of Task Dependent Synchronization Service Call
No. Service Call Function System State
T N E D U
1 slp_tsk [S1[B] Puts task to sleep 0 ) 0O
2 tslp_tsk [S] Puts task to sleep (with timeout) 0 ) 0
3 wup_tsk [S][B] 0 ) 0 0
4 iwup_tsk [S][B] ) ) 0 0
5 can_wup [B] O 0 ) )
6 ican_wup 0 0 0 0
7 rel_wai [SI[B] Releases task from waiting 0 ) ) )
8 irel_wai [S][B] 0 ) O] O]
9 sus_tsk [S][B] Suspends task 0 ) ) )
10 isus_tsk 0 0 ) @)
11 rsm_tsk [S][B] Wakes up task 0 ) ) )
12 irsm_tsk 0 0 ) @)
13 frsm_tsk [S] Cancels wakeup request 0 0 ) )
14 ifrsm_tsk 0 0 ) )
15 dly_tsk [S][B] Delays task ) 0 O
Notes:
® [S]: Standard profile service calls

[B]: Basic profile service calls

Each sign within " System State " is a following meaning.
T: Can be called from task context

N: Can be called from non-task context

E: Can be called from dispatch-enabled state

D: Can be called from dispatch-disabled state

U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

*

* & 6 o o

-88 -




slp_tsk Put task to sleep
tslp_tsk Put task to sleep (with timeout)

[[ C Language API ]]
ER ercd = slp_tsk(Q);
ER ercd = tslp_tsk( TMO tmout );

® Parameters

® slp tsk
None
® tslp tsk
TMO tmout Timeout value

@ Return Parameters
ER ercd Terminated normally (E_OK) or error code

[[ Assembly language API ]]
.include mri100.inc
slp_tsk
tslp_tsk TMO

® Parameters

TMO Timeout value
@ Register contents after service call is issued
tslp_tsk
Register name Content after service call is issued
RO Error code
R6R4 Timeout value
slp_tsk
Register name Content after service call is issued
RO Error code
[[ Error code ]
E TMOUT Timeout
E_RLWAI Forced release from waiting
E CTX Context error ( Called from the system status not permitted.)
E_PAR Parameter error

(tmout <= -2, OX7FFFFFFF — TIC_NUME < tmout)

-89 -



[[ Functional description ]]
This service call places the issuing task itself from RUNNING state into sleeping wait state. The task placed into WAIT-
ING state by execution of this service call is released from the wait state in the following cases:

€ When a task wakeup service call is issued from another task or an interrupt
The error code returned in this case is E_OK.

€ When aforcible awaking service call is issued from another task or an interrupt
The error code returned in this case is E_RLWAI.

€ When the first time tick occurred after tmout elapsed (for tslp_tsk)
The error code returned in this case is E_TMOUT.

If the task receives sus_tsk issued from another task while it has been placed into WAITING state by this service call, it
goes to WAITING-SUSPENDED state. In this case, even when the task is released from WAITING state by a task wakeup
service call, it still remains in SUSPENDED state, and its execution cannot be resumed until rsm_tsk is issued.

The service call tslp_tsk may be used to place the issuing task into sleeping state for a given length of time by specifying
tmout in a parameter to it. The parameter tmout is expressed in ms units. For example, if this service call is written as
tslp_tsk(10);, then the issuing task is placed from RUNNING state into WAITING state for a period of 10 ms. If specified
as tmout =TMO_FEVR(-1), the task will be kept waiting perpetually, with the service call operating the same way as
slp_tsk.

The values specified for tmout must be within (OX7FFFFFFF-time tick value). If any value exceeding this limit is specified,
it becomes an error, and E_PAR is returned.

This service call can only be issued from task context, and cannot be issued from non-task context.

When a service call is called from the system state which is not permitted, it becomes an error, and E_CTX is returned.

-90 -



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void task()

if( slp _tsk() != E_OK )
error (“Forced wakeup\n”) ;

if( tslp_tsk( 10 ) == E_TMOUT )
error (“time out\n”) ;

}

<<Example statement in assembly language>>
.include mr1l00.inc

.GLB task
task:

slp tsk

PUSHM R6R4

tslp_tsk #TMO_FEVR

PUSHM R6R4
tslp tsk #100




wup_tsk Wakeup task
iwup_tsk Wakeup task (handler only)

[[ C Language API ]]
ER ercd = wup_tsk( ID tskid );
ER ercd = iwup_tsk( ID tskid );

® Parameters

ID tskid ID number of the target task
@ Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[ Assembly language API 1]

-include mrl100.1inc
wup_tsk TSKID
iwup_tsk TSKID

® Parameters

TSKID ID number of the target task
@ Register contents after service call is issued
Register name Content after service call is issued
RO Error code
R2 ID number of the target task
[[ Error code 1]
E OBJ Obiject status invalid(task indicated by tskid is an inactive state)
E QOVR Queuing overflow
(wupcnt > 255)
E ID Invalid ID number

(taskid<0, maximum task number < tskid,
tskid=TSK_SELF(=0) when called from non-task context )
E CTX Context error ( Called from the system status not permitted.)

[[ Functional description 1]

If the task specified by tskid has been placed into WAITING state by slp_tsk or tslp_tsk, this service call wakes up the task
from WAITING state to place it into READY or RUNNING state. Or if the task specified by tskid is in WAIT-
ING-SUSPENDED state, this service call awakes the task from only the sleeping state so that the task goes to SUS-
PENDED state.

If a wakeup request is issued while the target task remains in DORMANT state, the error code E_OBJ is returned to the
service call issuing task. If TSK_SELF is specified for tskid, it means specifying the issuing task itself. If TSK_SELF is
specified for tskid in non-task context, it becomes an error, and E_ID is returned.

If this service call is issued to a task that has not been placed in WAITING state or in WAITING-SUSPENDED state by
execution of slp_tsk or tslp_tsk, the wakeup request is accumulated. More specifically, the wakeup request count for the
target task to be awakened is incremented by 1, in which way wakeup requests are accumulated.

The maximum value of the wakeup request count is 255. If while the wakeup request count = 255 a new wakeup request is
generated exceeding this limit, the error code E_QOVR is returned to the task that issued the service call, with the wakeup
request count left intact.

If this service call is to be issued from task context, use wup_tsk; if issued from non-task context, use iwup_tsk.

When a service call is called from the system state which is not permitted, it becomes an error, and E_CTX is returned.

-92-



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

if( wup_tsk( ID main ) != E OK )
printf (“Can’t wakeup main()\n”) ;

}

<<Example statement in assembly language>>
.include mrl100.inc

.GLB task
task:
PUSH.W R2

wup_tsk #ID_TASK1

-03 -



can_wup Cancel wakeup request
ican_wup Cancel wakeup request (handler only)

[[ C Language API ]]
ER_UINT wupcnt = can_wup( ID tskid );

ER_UINT wupcnt = ican_wup( ID tskid );

® Parameters
ID tskid ID number of the target task

® Return Parameters
ER_UINT wupcnt >0 Canceled wakeup request count
wupcnt <0 Error code

[[ Assembly language API ]]
-include mr100.1inc
can_wup TSKID
ican_wup TSKID

® Parameters

TSKID ID number of the target task
@ Register contents after service call is 1ssued
Register name Content after service call is issued
RO Error code,Canceled wakeup request count
[[ Error code ]I
E_OBJ Object status invalid(task indicated by tskid is an inactive state)
E_CTX Context error ( Called from CPU locked state or non-kernel interrupt.)
E_ID Invalid ID number

(taskid<0, maximum task number < tskid,
tskid=TSK_SELF(=0) when called from non-task context )

[[ Functional description ]]

This service call clears the wakeup request count of the target task indicated by tskid to 0. This means that because the tar-
get task was in either WAITING state nor WAITING-SUSPENDED state when an attempt was made to wake it up by
wup_tsk or iwup_tsk before this service call was issued, the attempt resulted in only accumulating wakeup requests and this
service call clears all of those accumulated wakeup requests.

Furthermore, the wakeup request count before being cleared to 0 by this service call, i.e., the number of wakeup requests
that were issued in vain (wupcnt) is returned to the issuing task. If a wakeup request is issued while the target task is in
DORMANT state, the error code E_OBJ is returned. If TSK_SELF is specified for tskid, it means specifying the issuing
task itself. If TSK_SELF is specified for tskid in non-task context, it becomes an error, and E_ID is returned.

If this service call is to be issued from task context, use can_wup; if issued from non-task context, use ican_wup.

When a service call is called from CPU locked state or non-kernel interrupt, it becomes an error, and E_CTX is returned.

-94 -



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

ER_UINT wupcnt;

wupcnt = can_wup (ID_main) ;
if( wup_cnt > 0 )
printf (“wupcnt = %$d\n”,wupcnt) ;

<<Example statement in assembly language>>
.include mr1l00.inc
.GLB task

task:

can_wup #ID_TASK3

-05 -



rel_wai Release task from waiting
irel_wai Release task from waiting (handler only)

[[ C Language API ]]
ER ercd = rel_wai( ID tskid );
ER ercd = irel_wai( ID tskid );

® Parameters

ID tskid ID number of the target task
@ Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[ Assembly language API 1]

-.include mri100.inc
rel_wai TSKID
irel_wai TSKID

® Parameters

TSKID ID number of the target task
@ Register contents after service call is issued
Register name Content after service call is issued
RO Error code
R2 ID number of the target task
[[ Error code 1]
E_OBJ Obiject status invalid(task indicated by tskid is not an wait state)
E _CTX Context error ( Called from the system status not permitted.)
E_ID Invalid ID number

(taskid<0, maximum task number < tskid)

[[ Functional description 1]

This service call forcibly release the task indicated by tskid from waiting (except SUSPENDED state) to place it into
READY or RUNNING state. The forcibly released task returns the error code E_RLWAII. If the target task has been en-
queued in some waiting queue, the task is dequeued from it by execution of this service call.

If this service call is issued to a task in WAITING-SUSPENDED state, the target task is released from WAITING state and
goes to SUSPENDED state. **

If the target task is not in WAITING state, the error code E_OBJ is returned. This service call forbids specifying the issuing
task itself for tskid.

If this service call is to be issued from task context, use rel_wai; if issued from non-task context, use irel_wai.

When a service call is called from the system state which is not permitted, it becomes an error, and E_CTX is returned.

* This means that tasks cannot be resumed from SUSPENDED state by this service call. Only the rsm_tsk, irsm_tsk, frsm_tsk, and
ifrsm_tsk service calls can release them from SUSPENDED state.

-06 -



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void task()

if( rel wai( ID main ) != E OK )
error(“*Can’t rel wai main()\n”);

}

<<Example statement in assembly language>>
.include mrl1l00.inc

.GLB task
task:
PUSH.W R2

rel wai #ID TASK2

-97-



sus_tsk Suspend task
iIsus_tsk Suspend task (handler only)

[[ C Language API ]]
ER ercd = sus_tsk( ID tskid );
ER ercd = isus_tsk( ID tskid );

® Parameters

ID tskid ID number of the target task
@ Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[ Assembly language API 1]

.include mri100.inc
sus_tsk TSKID
isus_tsk TSKID

® Parameters

TSKID ID number of the target task
@ Register contents after service call is issued
Register name Content after service call is issued
RO Error code
R2 ID number of the target task
[[ Error code 1]
E OBJ Obiject status invalid(task indicated by tskid is an inactive state)
E QOVR Queuing overflow
E CTX Context error ( Called from the system status not permitted.)
E_ID Invalid ID number

(taskid<0, maximum task number < tskid,
tskid=TSK_SELF(=0) when called from non-task context )

[[ Functional description 1]

This service call aborts execution of the task indicated by tskid and places it into SUSPENDED state. Tasks are resumed
from this SUSPENDED state by the rsm_tsk, irsm_tsk, frsm_tsk, or ifrsm_tsk service call. If the task indicated by tskid is
in DORMANT state, it returns the error code E_OBJ as a return value for the service call.

The maximum number of suspension requests by this service call that can be nested is 1. If this service call is issued to a
task which is already in SUSPENDED state, the error code E_QOVR is returned.

This service call forbids specifying the issuing task itself for tskid.
If this service call is to be issued from task context, use sus_tsk; if issued from non-task context, use isus_tsk.

When a service call is called from the system state which is not permitted, it becomes an error, and E_CTX is returned.

-08 -



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void task()

if( sus_tsk( ID main ) != E _OK )
printf (“Can’t suspend task main()\n”);

}

<<Example statement in assembly language>>
.include mr1l00.inc

.GLB task
task:
PUSH.W R2

sus_tsk #ID_TASK2

-99 -



rsm_tsk Resume suspended task

irsm_tsk Resume suspended task(handler only)
frsm_tsk Forcibly resume suspended task
ifrsm_tsk Forcibly resume suspended task(handler only)
[[ C Language API ]]
ER ercd = rsm_tsk( ID tskid );
ER ercd = irsm_tsk( ID tskid );
ER ercd = frsm_tsk( ID tskid );
ER ercd = ifrsm_tsk( ID tskid );
® Parameters
ID tskid ID number of the target task
® Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[ Assembly language API 1]

-include mrl100.inc
rsm_tsk TSKID
irsm _tsk TSKID
frsm_tsk TSKID
ifrsm _tsk TSKID

® Parameters

TSKID ID number of the target task
@ Register contents after service call is issued
Register name Content after service call is issued
RO Error code
R2 ID number of the target task
[[ Error code 1]
E_OBJ Obiject status invalid(task indicated by tskid is not a forcible wait state)
E _CTX Context error ( Called from the system status not permitted.)
E_ID Invalid ID number

(taskid<0, maximum task number < tskid)

[[ Functional description 1]

If the task indicated by tskid has been aborted by sus_tsk, this service call resumes the target task from SUSPENDED state.
In this case, the target task is linked to behind the tail of the ready queue. In the case of frsm_tsk and ifrsm_tsk, the task is
forcibly resumed from SUSPENDED state.

If a request is issued while the target task is not in SUSPENDED state (including DORMANT state), the error code E_OBJ
is returned to the service call issuing task.

The rsm_tsk, irsm_tsk, frsm_tsk, and ifrsm_tsk service calls each operate the same way, because the maximum number of
forcible wait requests that can be nested is 1.

If this service call is to be issued from task context, use rsm_tsk/frsm_tsk; if issued from non-task context, use
irsm_tsk/ifrsm_tsk.

When a service call is called from the system state which is not permitted, it becomes an error, and E_CTX is returned.

- 100 -



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void taskl ()

if( rsm _tsk( ID main ) != E OK )
printf (“Can’t resume main()\n”);

if (frsm tsk( ID task2 ) != E OK )
printf (“Can’'t forced resume task2

}

<<Example statement in assembly language>>
.include mr1l00.inc

.GLB task
task:

PUSH.W R2

rsm_tsk #ID_TASK2

PUSH.W R2

frsm tsk #ID TASK1

O\n") ;

-101 -



dly_tsk Delay task

[[ C Language API ]]
ER ercd = dly_tsk(RELTIM dlytim);

® Parameters
RELTIM dlytim Delay time

® Return Parameters
ER ercd Terminated normally (E_OK) or error code

[[ Assembly language API 1]

.include mr100.inc
dly _tsk RELTIM

® Parameters
RELTIM Delay time

@ Register contents after service call is 1ssued

Register name Content after service call is issued
RO Error code
R6R4 Delay time
[[ Error code ]
E_RLWAI Forced release from waiting
E CTX Context error ( Called from the system status not permitted.)
E_PAR Parameter error

(dlytim > OX7FFFFFFF — TIC_NUME)

[[ Functional description ]]

This service call temporarily stops execution of the issuing task itself for a duration of time specified by dlytim to place the
task from RUNNING state into WAITING state. In this case, the task is released from the WAITING state at the first time
tick after the time specified by dlytim has elapsed. Therefore, if specified dlytim = 0, the task is placed into WAITING state
briefly and then released from the WAITING state at the first time tick.

The task placed into WAITING state by invocation of this service call is released from the WAITING state in the following
cases. Note that when released from WAITING state, the task that issued the service call is removed from the timeout
waiting queue and linked to a ready queue.

@ When the first time tick occurred after dlytim elapsed
The error code returned in this case is E_OK.

€ When the rel_wai or irel_wai service call is issued before dlytim elapses
The error code returned in this case is E_RLWAL.

Note that even when the wup_tsk or iwup_tsk service call is issued during the delay time, the task is not released from
WAITING state.

The delay time dlytim is expressed in ms units. Therefore, if specified as dly_tsk(50);, the issuing task is placed from
RUNNING state into a delayed wait state for a period of 50 ms.

The values specified for dlytim must be within (0x7FFFFFFF- time tick value). If any value exceeding this limit is speci-
fied, it becomes an error, and E_PAR is returned.

This service call can be issued only from task context. It cannot be issued from non-task context.

When a service call is called from the system state which is not permitted, it becomes an error, and E_CTX is returned.

-102 -



[[ Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

if( dly tsk() != E _OK )
error (“Forced wakeup\n”) ;

}

<<Example statement in assembly language>>
.include mrl100.inc

.GLB task
task:
PUSHM R6R4

dly tsk #500

-103 -



5.3 Synchronization & Communication Function (Semaphore)
Specifications of the semaphore function of MR100 are listed in Table 5.5.

Table 5.5 Specifications of the Semaphore Function

No. Item Content
1 Semaphore ID 1-255
2 Maximum number of resources 1-65535

TA_TFIFO: Tasks enqueued in order of FIFO

3 Semaphore attribute . L
P TA_TPRI:  Tasks enqueued in order of priority

Table 5.6 List of Semaphore Function Service Call

No. Service Call Function System State

T N E D U
1 sig_sem [S][B] Releases semaphore resource ) ) 0 0
2 isig_sem | [S][B] ) ) 0 0
3 wai_sem | [S][B] Acquires semaphore resource O ) )
4 pol_sem [S]I[B] Acquires semaphore resource(polling) ) ) 0 0
5 ipol_sem ) ) 0 0
6 twai_sem | [S] Acquires semaphore resource(with timeout) 0 0 0
7 ref_sem References semaphore status ) 0 0 0
8 iref_sem ) ) 0 0

Notes:

® [S]: Standard profile service calls
[B]: Basic profile service calls

® Each sign within " System State " is a following meaning.
T. Can be called from task context

N: Can be called from non-task context

E: Can be called from dispatch-enabled state

D: Can be called from dispatch-disabled state

U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

* & & O o o

-104 -




sig_sem Release semaphore resource
iIsig_sem Release semaphore resource (handler only)

[[ C Language API ]]
ER ercd = sig_sem( ID semid );
ER ercd = isig_sem( ID semid );

® Parameters

ID semid Semaphore 1D number to which returned
@ Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[ Assembly language API 1]

-include mrl100.1inc
sig_sem SEMID
isig_sem SEMID

® Parameters

SEMID Semaphore 1D number to which returned
@ Register contents after service call is issued
Register name Content after service call is issued
RO Error code
R2 Semaphore 1D number to which returned
[[ Error code 1]
E QOVR Queuing overflow
E ID Invalid ID number
(semid<=0, the maximum number of semaphore < semid)
E CTX Context error ( Called from the system status not permitted.)

[[ Functional description 1]
This service call releases one resource to the semaphore indicated by semid.

If tasks are enqueued in a waiting queue for the target semaphore, the task at the top of the queue is placed into READY
state. Conversely, if no tasks are enqueued in that waiting queue, the semaphore resource count is incremented by 1. If an
attempt is made to return resources (sig_sem or isig_sem service call) causing the semaphore resource count value to ex-
ceed the maximum value specified in a configuration file (maxsem), the error code E_QOVR is returned to the service call
issuing task, with the semaphore count value left intact.

If this service call is to be issued from task context, use sig_sem; if issued from non-task context, use isig_sem.

When a service call is called from the system state which is not permitted, it becomes an error, and E_CTX is returned.

- 105 -



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void task()

if( sig sem( ID sem ) == E _QOVR )
error (“Overflow\n”) ;

}

<<Example statement in assembly language>>
.include mr1l00.inc

.GLB task
task:
PUSH.W R2

sig_sem #ID_SEM2

- 106 -



wai_sem Acquire semaphore resource

pol_sem Acquire semaphore resource (polling)
ipol_sem Acquire semaphore resource (polling, handler only)
twai_sem Acquire semaphore resource(with timeout)
[[ C Language API ]]
ER ercd = wai_sem( ID semid );
ER ercd = pol_sem( ID semid );
ER ercd = ipol_sem( ID semid );
ER ercd = twai_sem( ID semid, TMO tmout );
® Parameters
ID semid Semaphore 1D number to be acquired
TMO tmout Timeout value (for twai_sem)
® Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[ Assembly language API 1]

-include mrl100.inc
wail_sem SEMID
pol_sem SEMID
ipol_sem SEMID
twai_sem SEMID,TMO

® Parameters
SEMID Semaphore 1D number to be acquired

TMO Timeout value(twai_sem)

® Register contents after service call is issued
wai_sem,pol_sem, ipol_sem

Register name Content after service call is issued
RO Error code
R2 Semaphore ID number to be acquired
twail_sem
Register name Content after service call is issued
RO Error code
R2 Semaphore 1D number to be acquired
R6R4 Timeout value
[[ Error code ]
E RLWAI Forced release from waiting
E TMOUT Polling failure or timeout
E CTX Context error ( Called from the system status not permitted.)
(Called from CPU locked state or non-kernel interrupt called from pol_sem or ipol_sem)
E_PAR Parameter error
(tmout <= -2, OX7FFFFFFF — TIC_NUME < tmout)
E ID Invalid ID number

(semid<=0, the maximum number of semaphore < semid)

-107 -



[[ Functional description ]]
This service call acquires one semaphore resource from the semaphore indicated by semid.

If the semaphore resource count is equal to or greater than 1, the semaphore resource count is decremented by 1, and the
service call issuing task continues execution. On the other hand, if the semaphore count value is 0, the wai_sem or
twai_sem service call invoking task is enqueued in a waiting queue for that semaphore. If the attribute of the semaphore
semid is TA_TFIFO, the task is enqueued in order of FIFO; if TA_TPRI, the task is enqueued in order of priority. For the
pol_sem and ipol_sem service calls, the task returns immediately and responds to the call with the error code E_TMOUT.

For the twai_sem service call, specify a wait time for tmout in ms units. The values specified for tmout must be within
(OX7FFFFFFF-time tick value). If any value exceeding this limit is specified, it becomes an error, and E_PAR is returned. If
TMO_POL=0 is specified for tmout, it means specifying 0 as a timeout value, in which case the service call operates the
same way as pol_sem. Furthermore, if specified as tmout=TMO_FEVR(-1), it means specifying an infinite wait, in which
case the service call operates the same way as wai_sem.

The task placed into WAITING state by execution of the wai_sem or twai_sem service call is released from the WAITING
state in the following cases:

€ When the sig_sem or isig_sem service call is issued before the tmout time elapses, with
task-awaking conditions thereby satisfied
The error code returned in this case is E_OK.

€ When the first time tick occurred after tmout elapsed while task-awaking conditions remain un-
satisfied
The error code returned in this case is E_ TMOUT.

€ When the task is forcibly released from WAITING state by the rel_wai or irel_wai service call is-
sued from another task or a handler
The error code returned in this case is E_RLWAI.

If this service call is to be issued from task context, use wai_sem, twai_sem, or pol_sem; ; if issued from non-task context,
use ipol_sem.

When wai_sem or twai_sem service call is called from the system state which is not permitted, it becomes an error, and
E_CTX s returned.

When pol_sem or ipol_sem service call is called from CPU locked state or non-kernel interrupt, it becomes an error, and
E_CTX s returned.

-108 -



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”

void task()

if( wai_sem('ID_sem ) != E OK )
printf (“Forced wakeup\n”) ;

if( pol sem( ID sem ) != E OK )
printf (“Timeout\n”) ;

if( twai_sem( ID sem, 10 ) != E OK )
printf (*Forced wakeup or Timeout”n”) ;

}

<<Example statement in assembly language>>
.include mr1l00.inc

.GLB
task:

PUSH.W
pol sem

PUSH.W
wal sem

PUSH.W
PUSH.L
twai sem

task

R2
#TD_SEM1

R2
#ID SEM2

R2
R6R4
#ID SEM3,300

-109 -



ref_sem Reference semaphore status
iref_sem Reference semaphore status (handler only)

[[ C Language API ]]
ER ercd = ref_sem( ID semid, T_RSEM *pk_rsem );
ER ercd = iref_sem( ID semid, T_RSEM *pk rsem );
® Parameters

ID semid ID number of the target semaphore

T_RSEM *pk_rsem Pointer to the packet to which semaphore status is returned
@ Return Parameters

ER ercd Terminated normally (E_OK)

T_RSEM *pk_rsem Pointer to the packet to which semaphore status is returned

Contents of pk_rsem

typedef struct t_rsem{
ID wiskid +0 2 ID number of the task at the head of the semaphore’s wait queue
UINT semcnt +2 4 Current semaphore resource count
} T_RSEM,;
[[ Assembly language API 1]

.include mrl100.inc
ref_sem SEMID, PK_RSEM
iref_sem SEMID, PK_RSEM

® Parameters

SEMID ID number of the target semaphore
PK_RSEM Pointer to the packet to which semaphore status is returned
@ Register contents after service call is issued
Register name Content after service call is issued
RO Error code
R2 ID number of the target semaphore
Al Pointer to the packet to which semaphore status is returned
[[ Error code ]I
E_ID Invalid ID number
(semid<=0, the maximum number of semaphore < semid)
E CTX Context error ( Called from CPU locked state or non-kernel interrupt.)

[[ Functional description ]
This service call returns various statuses of the semaphore indicated by semid.

& wtskid

Returned to wtskid is the ID number of the task at the head of the semaphore’s wait queue (the next task to be
dequeued). If no tasks are kept waiting, TSK_NONE is returned.
€ semcnt

Returned to semcnt is the current semaphore resource count.

If this service call is to be issued from task context, use ref_sem; if issued from non-task context, use iref_sem.

When a service call is called from CPU locked state or non-kernel interrupt, it becomes an error, and E_CTX is returned.

- 110 -



[[ Example program statement ]]

<<Example statement in C language>>
#include <itron.hs>

#include <kernel.h>
#include “kernel id.h”
void task()

T RSEM rsem;

ER ercd;
ercd = ref sem( ID seml, &rsem );
<<Example statement in assembly language>>
_ refsem: .blkb 6
.include mrl00.inc
.GLB task
task:
PUSH.W R2
PUSH.L Al

ref_sem #ID_SEM1,#_ refsem

- 111 -



5.4 Synchronization & Communication Function (Eventflag)
Specifications of the eventflag function of MR100 are listed in Table 5.7.

Table 5.7 Specifications of the Eventflag Function

No. Item Content
1 Event flag ID 1-255
2 Number of bits comprising eventflag 32 bits
3 Eventflag attribute TA _TFIFO: Waiting tasks enqueued in order of FIFO
TA TPRI: Waiting tasks enqueued in order of priority
TA WSGL: Multiple tasks cannot be kept waiting
TA WMUL.: Multiple tasks can be kept waiting
TA CLR: Bit pattern cleared when waiting task is released
Table 5.8 List of Eventflag Function Service Call
No. Service Call Function System State
T N E D U
1 set_flg [S]I[B] Sets eventflag ) 0 0 )
2 iset_flg [S][B] ) 0 0 )
3 clr_flg [S][B] Clears eventflag ) ) 0 )
4 iclr_flg ) ) 0] )
5 wai_flg [S][B] | Whaits for eventflag ) ) )
6 pol_flg [S][B] | Waits for eventflag (polling) ) 0 0] )
7 ipol_flg [S] ) ) 0] 0
8 twai_flg [S] Waits for eventflag (with timeout) 0] ) )
9 ref_flg References eventflag status ) 0 0] O)
10 iref_flg 0 0 0 0
Notes:

® [S]: Standard profile service calls
[B]: Basic profile service calls

® FEach sign within " System State " is a following meaning.
¢ T: Can be called from task context

*

* & & o

N: Can be called from non-task context

E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

-112 -




set_flg Set eventflag
iset_flg Set eventflag (handler only)

[[ C Language API ]]
ER ercd = set_flg( ID flgid, FLGPTN setptn );
ER ercd = iset _flg( ID flgid, FLGPTN setptn );

® Parameters

ID flgid ID number of the eventflag to be set
FLGPTN setptn Bit pattern to be set
@ Return Parameters
ER ercd Terminated normally (E_OK)
[[ Assembly language API 1]

-.include mrl100.inc
set_flg FLGID,SETPTN
iset_flg FLGID,SETPTN

® Parameters
FLGID ID number of the eventflag to be set

SETPTN Bit pattern to be set

® Register contents after service call is issued

Register name Content after service call is issued
RO Error code
R2 Eventflag ID number
Al Bit pattern to be set
[[ Error code ]
E ID Invalid ID number
(flgid<=0, the maximum number of eventflag < flgid)
E CTX Context error ( Called from the system status not permitted.)

[[ Functional description 1]

Of the 32-hit eventflag indicated by flgid, this service call sets the bits indicated by setptn. In other words, the value of the
eventflag indicated by flgid is OR’d with setptn. If the alteration of the eventflag value results in task-awaking conditions
for a task that has been kept waiting for the eventflag by the wai_flg or twai_flg service call becoming satisfied, the task is
released from WAITING state and placed into READY or RUNNING state.

Task-awaking conditions are evaluated sequentially beginning with the top of the waiting queue. If TA_WMUL is specified
as an eventflag attribute, multiple tasks kept waiting for the eventflag can be released from WAITING state at the same
time by one set_flg or iset_flg service call issued. Furthermore, if TA_CLR is specified for the attribute of the target event-
flag, all bit patterns of the eventflag are cleared, with which processing of the service call is terminated. *

If all bits specified in setptn are 0, no operation will be performed for the target eventflag, in which case no errors are as-
sumed, however.

If this service call is to be issued from task context, use set_flg; if issued from non-task context, use iset_flg.

When a service call is called from the system state which is not permitted, it becomes an error, and E_CTX is returned.

% The atomicity of a service call is not guaranteed in the combination of this service call, and iclr_flg, iref_flg, iref_tsk and iref_tst service
call. That is, being processed to the state under this service call execution may occur.

-113 -



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void task (void)

set_flg( ID_flg, (FLGPTN) 0xff000000 );

}

<<Example statement in assembly language>>
.include mrl1l00.inc

.GLB task
task:

PUSH.W R2

PUSH.L Al

set_flg #ID_FLG3,#0££000000H

-114 -



clr_flg Clear eventflag
iclr_flg Clear eventflag (handler only)

[[ C Language API ]]
ER ercd = clr_flg( ID flgid, FLGPTN clrptn );
ER ercd = iclr_flg( ID Fflgid, FLGPTN clrptn );

® Parameters

ID flgid ID number of the eventflag to be cleared
FLGPTN clrptn Bit pattern to be cleared
@ Return Parameters
ER ercd Terminated normally (E_OK)
[[ Assembly language API 1]

-.include mrl100.inc
clr_flg FLGID,CLRPTN
iclr_flg FLGID,CLRPTN

® Parameters
FLGID ID number of the eventflag to be cleared

CLRPTN Bit pattern to be cleared

® Register contents after service call is issued

Register name Content after service call is issued
RO Error code
R2 ID number of the eventflag to be cleared
Al Bit pattern to be cleared
[[ Error code ]
E CTX Context error ( Called from CPU locked state or non-kernel interrupt.)
E ID Invalid ID number

(flgid<=0, the maximum number of eventflag < flgid)

[[ Functional description 1]

Of the 32-hit eventflag indicated by flgid, this service call clears the bits whose corresponding values in clrptn are 0. In
other words, the eventflag bit pattern indicated by flgid is updated by AND’ing it with clrptn. If all bits specified in clrptn
are 1, no operation will be performed for the target eventflag, in which case no errors are assumed, however.

If this service call is to be issued from task context, use clr_flg; if issued from non-task context, use iclr_flg.*’

When a service call is called from CPU locked state or non-kernel interrupt, it becomes an error, and E_CTX is returned.

¥ The atomicity of a service call is not guaranteed in the combination of this service call, and iclr_flg, iref_flg, iref_tsk and iref_tst service
call. That is, being processed to the state under this service call execution may occur.

-115-



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task (void)

clr flg( ID_flg, (FLGPTN) O0xFOFO0f0£0);

}

<<Example statement in assembly language>>
.include mrl100.inc

.GLB task
task:

PUSH.W R2

PUSH.L Al

clr_flg #ID FLG1,#0f0f0f0fO0H

- 116 -



wai_flg

Wait for eventflag

pol_flg Wait for eventflag(polling)

ipol_flg Wait for eventflag(polling, handler only)

twai_flg Wait for eventflag(with timeout)

[[ C Language API ]]
ER ercd = wai_flg( ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn );
ER ercd = pol_flg( ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn );
ER ercd = ipol _flg( ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn );
ER ercd = twai_¥flg( ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn,

TMO tmout );

@ Parameters
ID flgid ID number of the eventflag waited for

FLGPTN  waiptn Wait bit pattern
MODE wfmode Wait mode

FLGPTN  *p flgptn  Pointer to the area to which bit pattern is returned when released from wait

TMO tmout Timeout value (for twai_flg)

® Return Parameters

ER

ercd Terminated normally (E_OK) or error code

FLGPTN  *p flgptn  Pointer to the area to which bit pattern is returned when released from wait

[[ Assembly language API 1]
-.include mrl100.inc
wai_flg FLGID, WAIPTN, WFMODE
pol_flg FLGID, WAIPTN, WFMODE
ipol_flg FLGID, WAIPTN, WFMODE
twai_flg FLGID, WAIPTN, WFMODE, TMO

® Parameters

FLGID
WAIPTN
WFMODE
TMO

ID number of the eventflag waited for
Wait bit pattern
Wait mode

Timeout value (for twai_flg)

@ Register contents after service call is issued
wai_sem,pol_sem, ipol_sem

Register name
RO

R3R1

R2

Al

twai_sem
Register name

RO
R3R1
R2
R6R4
Al

Content after service call is issued

Error code

bit pattern is returned when released from wait
ID number of the eventflag waited for

Wait bit pattern

Content after service call is issued

Error code

bit pattern is returned when released from wait
ID number of the eventflag waited for
Timeout value

Wait bit pattern

-117 -



[[ Error code 1]
E RLWAI Forced release from waiting
E TMOUT  Polling failure or timeout
E ILUSE Service call improperly used (Tasks present waiting for TA_WSGL attribute eventflag)

E CTX Context error ( Called from the system status not permitted.)
(Called from CPU locked state or non-kernel interrupt called from pol_flg or ipol_flg)
E_PAR Parameter error

(waiptn = 0, wfmode is excluding TWF_ANDW and TWF_ORW)
tmout <= -2, OX7FFFFFFF — TIC_NUME < tmout)

E ID Invalid ID number
(flgid<=0, the maximum number of eventflag < flgid)

[[ Functional description ]]

This service call waits until the eventflag indicated by flgid has its bits specified by waiptn set according to task-awaking
conditions indicated by wfmode. Returned to the area pointed to by p_flgptn is the eventflag bit pattern at the time the task
is released from WAITING state.

If the target eventflag has the TA_WSGL attribute and there are already other tasks waiting for the eventflag, the error code
E_ILUSE is returned.

If task-awaking conditions have already been met when this service call is invoked, the task returns immediately and re-
sponds to the call with E_OK. If task-awaking conditions are not met and the invoked service call is wai_flg or twai_flg,
the task is enqueued in an eventflag waiting queue. In that case, if the attribute of the specified eventflag is TA_TFIFO, the
task is enqueued in order of FIFO; if TA_TPRI, the task is enqueued in order of priority. For the pol_flg and ipol_flg ser-
vice calls, the task returns immediately and responds to the call with the error code E_ TMOUT.

For the twai_flg service call, specify a wait time for tmout in ms units. The values specified for tmout must be within
(OX7FFFFFFF-time tick value). If any value exceeding this limit is specified, it becomes an error, and E_PAR is returned.
If TMO_POL=0 is specified for tmout, it means specifying 0 as a timeout value, in which case the service call operates the
same way as pol_flg. Furthermore, if specified as tmout=TMO_FEVR(-1), it means specifying an infinite wait, in which
case the service call operates the same way as wai_flg.

The task placed into a wait state by execution of the wai_flg or twai_flg service call is released from WAITING state in the
following cases:
€ When task-awaking conditions are met before the tmout time elapses
The error code returned in this case is E_OK.
€ When the first time tick occurred after tmout elapsed while task-awaking conditions remain
unsatisfied
The error code returned in this case is E_TMOUT.
€ When the task is forcibly released from WAITING state by the rel_wai or irel_wai service call
issued from another task or a handler
The error code returned in this case is E_RLWAL.

The following shows how wfmode is specified and the meaning of each mode.

wfmdoe (wait mode) | Meaning

TWF_ANDW Wait until all bits specified by waiptn are set (wait for the bits AND’ed)
TWF_ORW Wait until one of the bits specified by waiptn is set (wait for the bits OR’ed)

If this service call is to be issued from task context, use wai_flg,twai_flg,pol_flg; if issued from non-task context, use
ipol_flg.

When wai_flg or twai_flg service call is called from the system state which is not permitted, it becomes an error, and
E_CTX s returned.

When pol_flg or ipol_flg service call is called from CPU locked state or non-kernel interrupt, it becomes an error, and
E_CTX s returned.

-118 -



[[ Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

UINT flgptn;

if (wai_flg(ID_flg2, (FLGPTN)Ox00000ff0, TWF_ANDW, &flgptn)!=E_OK)
error (“Wait Released\n”) ;

if (pol flg(ID flg2, (FLGPTN)Ox00000ff0, TWF ORW, &flgptn)!=E_OK)
printf (“Not set EventFlag\n”) ;

if( twai flg(ID flg2, (FLGPTN)O0x00000ff0, TWF ANDW, &flgptn, 5) != E_OK )
error (“Wait Released\n”) ;

}

<<Example statement in assembly language>>
.include mrl00.inc

.GLB task
task:

PUSH.W R2

PUSH.L Al

wai flg #ID FLG1,#00000003H, #TWF ANDW
PUSH.W R2

PUSH.L Al

pol flg #ID FLG2,#00000008H, #TWF_ ORW
PUSH.W R2

PUSH.L Al

PUSHM R6R4

wai flg #ID FLG3,#00000003H, #TWF_ANDW, 20

-119 -



ref _flg Reference eventflag status
iref_flg Reference eventflag status (handler only)

[[ C Language API ]]
ER ercd = ref_flg( ID flgid, T_RFLG *pk_rflg );
ER ercd = iref _flg( ID flgid, T_RFLG *pk rflg );
® Parameters

ID flgid ID number of the target eventflag

T_RFLG *pk_rflg Pointer to the packet to which eventflag status is returned
@ Return Parameters

ER ercd Terminated normally (E_OK)

T _RFLG *pk_rflg Pointer to the packet to which eventflag status is returned

Contents of pk_rflg
typedef struct t rflg{

ID wiskid +0 2 Reception waiting task 1D
FLGPTN flgptn +2 4 Current eventflag bit pattern
} T_RFLG;
[[ Assembly language API ]]

.include mrl100.inc
ref flg FLGID, PK RFLG
iref_flg FLGID, PK RFLG

@ Parameters
FLGID ID number of the target eventflag

PK_RFLG Pointer to the packet to which eventflag status is returned

@ Register contents after service call is issued

Register name Content after service call is issued
RO Error code
R2 ID number of the target eventflag
Al Pointer to the packet to which eventflag status is returned
[[ Error code ]I
E ID Invalid ID number
(flgid<=0, the maximum number of eventflag < flgid)
E CTX Context error ( Called from CPU locked state or non-kernel interrupt.)

[[ Functional description 1]
This service call returns various statuses of the eventflag indicated by flgid.

@ wtskid

Returned to wtskid is the ID number of the task at the top of a waiting queue (the next task to be dequeued). If no
tasks are kept waiting, TSK_NONE is returned.
& figptn

Returned to flgptn is the current eventflag bit pattern.

If this service call is to be issued from task context, use ref_flg; if issued from non-task context, use iref_flg.

When a service call is called from CPU locked state or non-kernel interrupt, it becomes an error, and E_CTX is returned.

-120 -



[[ Example program statement ]]

<<Example statement in C language>>
#include <itron.hs>

#include <kernel.h>
#include “kernel id.h”
void task()

T RFLG rflg;
ER ercd;

ercd': ref flg( ID FLG1l, &rflg );

}
<<Example statement in assembly language>>
_ refflg: .blkb 6
.include mrl00.inc

.GLB task
task:

PUSH.W R2
PUSH.L Al

ref _flg #ID FLG1,#_refflg

-121 -



5.5 Synchronization & Communication Function (Data Queue)
Specifications of the data queue function of MR100 are listed in Table 5.9.

Table 5.9 Specifications of the Data Queue Function

No. Item Content
1 Data queue ID 1-255
2 | Capacity (data bytes) in data queue area 0-8191
3 Data size 32 bits
4 | Data queue attribute TA_TFIFO: Waiting tasks enqueued in order of FIFO
TA_TPRI: Waiting tasks enqueued in order of priority
Table 5.10 List of Dataqueue Function Service Call
No. Service Call Function System State
T N E D U
1 snd_dtq [S] Sends to data queue 0 0 O]
2 psnd_dtq [S] Sends to data queue (polling) 0 0 0 0
3 ipsnd_dtq [S] @) 0 O )
4 tsnd_dtq [S] Sends to data queue (with timeout) 0 0 0
5 fsnd_dtq [S] Forced sends to data queue ) ) 0 )
6 ifsnd_dtq [S] ) ) 0 0
7 rcv_dtqg [S] Receives from data queue 0 0 0
8 prcv_dig [S] Receives from data queue (polling) ) ) 0 )
9 iprcv_dtg ) ) 0 0
10 trev_dtq [S] Receives from data queue (with timeout) 0 0 0
11 ref dtg References data queue status ) @) 0 0
12 iref _dtq 0 0 0 0
Notes:

® [S]: Standard profile service calls
[B]: Basic profile service calls

® Each sign within " System State " is a following meaning.
T. Can be called from task context

N: Can be called from non-task context

E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

* & & O o o

-122 -




snd_dtq

Send to data queue

psnd_dtq Send to data queue (polling)
ipsnd_dtq Send to data queue (polling, handler only)
tsnd_dtq Send to data queue (with timeout)
fsnd_dtqg Forced send to data queue
ifsnd_dtq Forced send to data queue (handler only)
[[ C Language API ]l
ER ercd = snd_dtq( ID dtgid, VP_INT data );
ER ercd = psnd_dtq( ID dtqid, VP_INT data );
ER ercd = ipsnd_dtq( 1D dtgid, VP_INT data );
ER ercd = tsnd_dtq( ID dtqid, VP_INT data, TMO tmout );
ER ercd = fsnd_dtq( ID dtqid, VP_INT data );
ER ercd = ifsnd _dtq( ID dtgid, VP_INT data );
® Parameters
ID dtgid ID number of the data queue to which transmitted
TMO tmout Timeout value(tsnd_dtq)
VP_INT data Data to be transmitted
@ Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[ Assembly language API 1]

-.include mrl100.inc

snd_dtq

DTQID, DTQDATA

isnd_dtq DTQID, DTQDATA
psnd_dtq DTQID, DTQDATA

ipsnd_dtqg

DTQID, DTQDATA

tsnd_dtq DTQID, DTQDATA,TMO
fsnd_dtq DTQID, DTQDATA

ifsnd_dtqg

DTQID, DTQDATA

® Parameters

DTQID
DTQDATA
TMO

ID number of the data queue to which transmitted
Data to be transmitted

Timeout value (tsnd_dtq)

@ Register contents after service call is 1ssued
snd_dtq,psnd_dtq, ipsnd_dtg,fsnd_dtq, ifsnd_dtq

Register name Content after service call is issued

RO Error code

R3R1 Data to be transmitted

R2 ID number of the data queue to which transmitted
tsnd_dtg

Register name Content after service call is issued

RO Error code

R3R1 Data to be transmitted

R2 ID number of the data queue to which transmitted

R6R4 Timeout value

-123 -



[[ Error code ]I

E_RLWAI Forced release from waiting
E TMOUT Polling failure or timeout
E ILUSE Service call improperly used

(fsnd_dtq or ifsnd_dtq is issued for a data queue whose dtqgcnt = 0)
EV_RST Released from WAITING state by clearing of the data queue area
E CTX Context error ( Called from the system status not permitted.)
E_PAR Parameter error

(tmout <= -2, 0x7FFFFFFF — TIC_NUME < tmout)
E ID Invalid ID number

(dtgid<=0, the maximum number of dataqueue < dtqid)

[[ Functional description 1]

This service call sends the 4-byte data indicated by data to the data queue indicated by dtqid. If any task is kept waiting for
reception in the target data queue, the data is not stored in the data queue and instead sent to the task at the top of the recep-
tion waiting queue, with which the task is released from the reception wait state.

On the other hand, if snd_dtq or tsnd_dtq is issued for a data queue that is full of data, the task that issued the service call
goes from RUNNING state to a data transmission wait state, and is enqueued in transmission waiting queue, kept waiting
for the data queue to become available. In that case, if the attribute of the specified data queue is TA_TFIFO, the task is
enqueued in order of FIFO; if TA_TPRI, the task is enqueued in order of priority. For psnd_dtq and ipsnd_dtg, the task re-
turns immediately and responds to the call with the error code E_TMOUT.

For the tsnd_dtq service call, specify a wait time for tmout in ms units. The values specified for tmout must be within
(Ox7FFFFFFF-time tick value). If any value exceeding this limit is specified, it becomes an error, and E_PAR is returned.
If TMO_POL=0 is specified for tmout, it means specifying 0 as a timeout value, in which case the service call operates the
same way as psnd_dtqg. Furthermore, if specified as tmout=TMO_FEVR(-1), it means specifying an infinite wait, in which
case the service call operates the same way as snd_dtq.

If there are no tasks waiting for reception, nor is the data queue area filled, the transmitted data is stored in the data queue.

The task placed into WAITING state by execution of the snd_dtq or tsnd_dtq service call is released from WAITING state
in the following cases:

€ When the rcv_dtq, trcv_dtq, prcv_dtq, or iprcv_dtq service call is issued before the tmout time
elapses, with task-awaking conditions thereby satisfied
The error code returned in this case is E_OK.

€ When the first time tick occurred after tmout elapsed while task-awaking conditions remain un-
satisfied
The error code returned in this case is E_TMOUT.

€ When the task is forcibly released from WAITING state by the rel_wai or irel_wai service call is-
sued from another task or a handler
The error code returned in this case is E_RLWALI.

€ When the target data queue being waited for is initialized by the vrst_dtg service call issued
from another task
The error code returned in this case is EV_RST.

For fsnd_dtqg and ifsnd_dtq, the data at the top of the data queue or the oldest data is removed, and the transmitted data is
stored at the tail of the data queue. If the data queue area is not filled with data, fsnd_dtq and ifsnd_dtq operate the same
way as snd_dtq. If fsnd_dtq or ifsnd_dtq is issued for a data queue whose dtqent = 0, an error E_ILUSE is returned

If this service call is to be issued from task context, use snd_dtq,tsnd_dtq,psnd_dtq,fsnd_dtq; if issued from non-task con-
text, use ipsnd_dtq,ifsnd_dtq.

When a service call is called from the system state which is not permitted, it becomes an error, and E_CTX is returned.

-124 -



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
VP_INT datal[10];
void task (void)

if ( snd dtg( ID dtqg, datal0]) == E_RLWAI ) {
error (“Forced released\n”) ;
!
if ( psnd dtq( ID dtq, datalll])== E_TMOUT ) {
error (“Timeout\n”) ;
!
if ( tsnd_dtq( ID_dtq, datal2], 10 ) != E_ TMOUT ) {
error (“Timeout \n”);
!
if ( f£snd_dtq( ID_dtq, datal3]) != E OK ){

error (“error\n”) ;

}

<<Example statement in assembly language>>
.include mr1l00.inc

.GLB task
g dtg: .LWORD 12345678H
task:
PUSH.W R2
PUSHM R6R4,R3R1
tsnd_dtg #ID DTQ1l, g dtqg,#100
PUSH.W R2
PUSHM R3R1
psnd_dtqg #ID DTQ2, #0FFFFFFFFH
PUSH.W R2
PUSHM R3R1

fsnd_dtg  #ID DTQ3, #0ABCDH

-125 -



rcv_dtq

Receive from data queue

prcv_dtq Receive from data queue (polling)
iprcv_dtq Receive from data queue (polling, handler only)
trcv_dtqg Receive from data queue (with timeout)
[[ C Language API ]]
ER ercd = rcv_dtq( ID dtqid, VP_INT *p _data );
ER ercd = prcv_dtq( ID dtqid, VP_INT *p_data );
ER ercd = iprcv_dtq( ID dtqgid, VP_INT *p_data );
ER ercd = trcv_dtq( ID dtqid, VP_INT *p_data, TMO tmout );
® Parameters
ID dtqid ID number of the data queue from which to receive
TMO tmout Timeout value (trcv_dtq)
VP_INT *p_data Pointer to the start of the area in which received data is stored

® Return Parameters

ER ercd Terminated normally (E_OK) or error code
VP_INT *p_data Pointer to the start of the area in which received data is stored
[[ Assembly language API 1]

-.include mr100.
rcv_dtg DTQID
prcv_dtg DTQID

inc

iprcv_dtg DTQID
trcv_dtqg DTQID,TMO

® Parameters

DTQID ID number of the data queue from which to receive

TMO Time

out value (trcv_dtq)

@ Register contents after service call is 1ssued
rcv_dtq,prcv_dtq, iprcv_dtg

Register name
RO

R3R1

R2

trcv_dtg
Register name

RO
R3R1
R2
R6R4

[[ Error code ]
E_RLWAI
E_TMOUT
E_CTX
E_PAR

E_ID

Content after service call is issued
Error code
Received data

Data queue 1D number

Content after service call is issued

Error code

Received data

ID number of the data queue from which to receive

Timeout value

Forced release from waiting

Polling failure or timeout

Context error ( Called from the system status not permitted.)
Parameter error

(tmout <= -2, OX7FFFFFFF — TIC_NUME < tmout)

Invalid 1D number

(dtqid<=0, the maximum number of dataqueue < dtqid)

-126 -



[[ Functional description ]]

This service call receives data from the data queue indicated by dtgid and stores the received data in the area pointed to by
p_data. If data is present in the target data queue, the data at the top of the queue or the oldest data is received. This results
in creating a free space in the data queue area, so that a task enqueued in a transmission waiting queue is released from
WAITING state, and starts sending data to the data queue area.

If no data exist in the data queue and there is any task waiting to send data (i.e., data bytes in the data queue area = 0), data
for the task at the top of the data transmission waiting queue is received. As a result, the task kept waiting to send that data
is released from WAITING state.

On the other hand, if rcv_dtq or trcv_dtq is issued for the data queue which has no data stored in it, the task that issued the
service call goes from RUNNING state to a data reception wait state, and is enqueued in a data reception waiting queue. At
this time, the task is enqueued in order of FIFO. For the prcv_dtq and iprcv_dtq service calls, the task returns immediately
and responds to the call with the error code E_ TMOUT.

For the trcv_dtq service call, specify a wait time for tmout in ms units. The values specified for tmout must be within
(Ox7FFFFFFF-time tick value). | If any value exceeding this limit is specified, it becomes an error, and E_PAR is returned.
If TMO_POL=0 is specified for tmout, it means specifying 0 as a timeout value, in which case the service call operates the
same way as prcv_dtg. Furthermore, if specified as tmout=TMO_FEVR(-1), it means specifying an infinite wait, in which
case the service call operates the same way as rcv_dtq.

The task placed into a wait state by execution of the rcv_dtq or trcv_dtq service call is released from the wait state in the
following cases:

€ When the rcv_dtq, trcv_dtq, prcv_dtq, or iprcv_dtq service call is issued before the tmout time
elapses, with task-awaking conditions thereby satisfied
The error code returned in this case is E_OK.

€ When the first time tick occurred after tmout elapsed while task-awaking conditions remain un-
satisfied
The error code returned in this case is E_ TMOUT.

€ When the task is forcibly released from WAITING state by the rel_wai or irel_wai service call is-
sued from another task or a handler
The error code returned in this case is E_RLWAI.

If this service call is to be issued from task context, use rcv_dtq,trcv_dtg,prcv_dtg; if issued from non-task context, use
iprcev_dtg.

When a service call is called from the system state which is not permitted, it becomes an error, and E_CTX is returned.

-127 -



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

VP_INT data;

if ( rev_dtg( ID_dtqg, &data ) != E_RLWAI )
error (“forced wakeup\n”) ;

if ( prcv_dtq( ID dtg, &data ) != E_TMOUT )
error (“Timeout\n”) ;

if ( trev_dtg( ID_dtg, &data, 10 ) != E_TMOUT )
error (“Timeout \n”);

}

<<Example statement in assembly language>>
.include mrl100.inc

.GLB task
task:
PUSH.W R2
PUSHM R6R4
trcv_dtg  #ID_DTQ1,#TMO_ POL
PUSH.W R2
prcv_dtg #ID_DTQ2
PUSH.W R2

rcv_dtg #ID DTQ2

-128 -



ref _dtq

Reference data queue status
iref_dtq

Reference data queue status (handler only)

[[ C Language API ]]
ER ercd = ref _dtq( ID dtgqid, T _RDTQ *pk_rdtq );
ER ercd = iref_dtq( ID dtqid, T_RDTQ *pk _rdtq );
@ Parameters
ID dtqid

T RDTQ  *pk_rdtq
® Return Parameters

ER ercd
T RDTQ *pk_rdtq

ID number of the target data queue

Pointer to the packet to which data queue status is returned

Terminated normally (E_OK)
Pointer to the packet to which data queue status is returned

Contents of pk_rdtq
typedef struct t_rdtg{

ID stskid +0 2 Transmission waiting task 1D
ID wiskid +2 2 Reception waiting task ID
UINT sdtqent +4 4 Data bytes contained in data queue
} T_RDTQ;
[[ Assembly language API ]]

.include mrl100.inc

ref dtq DTQID, PK_RDTQ

iref _dtq DTQID, PK_RDTQ

® Parameters

DTQID ID number of the target data queue

PK_RDTQ  Pointer to the packet to which data queue status is returned

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code
R2

Al

ID number of the target data queue

Pointer to the packet to which data queue status is returned

[[ Error code 1]
E_ID Invalid ID number

(dtqid<=0, the maximum number of dataqueue < dtqid)
E CTX Context error ( Called from CPU locked state or non-kernel interrupt.)
[[ Functional description 1]
This service call returns various statuses of the data queue indicated by dtgid.
& stskid

Returned to stskid is the ID number of the task at the top of a transmission waiting queue (the next task to be de-
gueued). If no tasks are kept waiting, TSK_NONE is returned.
& wtskid

Returned to wtskid is the ID number of the task at the top of a reception waiting queue (the next task to be de-
queued). If no tasks are kept waiting, TSK_NONE is returned.
& sdtgent

Returned to sdtqcnt is the number of data bytes stored in the data queue area.

If this service call is to be issued from task context, use ref_dtq; if issued from non-task context, use iref_dtg.

When a service call is called from CPU locked state or non-kernel interrupt, it becomes an error, and E_CTX is returned.

-129 -



[[ Example program statement ]]

<<Example statement in C language>>
#include <itron.h>

#include <kernel.h>
#include “kernel_id.h”
void task()

T RDTQ rdtg;
ER ercd;

ercd.: ref dtg( ID_DTQ1l, &rdtqg );

}

<<Example statement in assembly language>>

_ refdtq: .blkb 8
.include mrl100.inc
.GLB task
task:
PUSH.W R2

PUSH.L Al
ref_dtqg #ID DTQ1,# refdtqg

-130 -



5.6 Synchronization & Communication Function (Mailbox)
Specifications of the mailbox function of MR100 are listed in Table 5.11.

Table 5.11 Specifications of the Mailbox Function

No. Item Content

1 Mailbox 1D 1-255

2 Mailbox priority 1-255
TA_TFIFO: Waiting tasks enqueued in order of FIFO
TA_TPRI: Waiting tasks enqueued in order of priorit

3 Mailbox attribute - J d . P y
TA_MFIFO: Messages enqueued in order of FIFO
TA_MPRI: Messages enqueued in order of priority

Table 5.12 List of Mailbox Function Service Call

No. Service Call Function System State
T N E D U
1 snd_mbx [S][B] Send to mailbox O ) 0 0
2 isnd_mbx 0 0 0 0
3 rcv_mbx [S][B] Receive from mailbox 0 ) 0
4 prcv_mbx [S][B] Receive from mailbox(polling) 0 0 @) 0
5 iprcv_mbx 0 0 @) )
6 trcv_mbx [S] Receive from mailbox(with timeout) ) 0 0
7 ref_mbx Reference mailbox status 0 0 0 0
8 iref_mbx ] @] @] @]
Notes:

® [S]: Standard profile service calls
[B]: Basic profile service calls

® Each sign within " System State " is a following meaning.
T: Can be called from task context

N: Can be called from non-task context

E: Can be called from dispatch-enabled state

D: Can be called from dispatch-disabled state

U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

* & 6 O 0 o

-131-



snd_mbx Send to mailbox
isnd_mbx Send to mailbox (handler only)

[[ C Language API ]]
ER ercd = snd_mbx( ID mbxid, T_MSG *pk_msg );
ER ercd = isnd_mbx( ID mbxid, T_MSG *pk _msg );
® Parameters

ID mbxid ID number of the mailbox to which transmitted
T_MSG *pk_msg Message to be transmitted
@ Return Parameters
ER ercd Terminated normally (E_OK)
[[ Assembly language API 1]

-.include mrl100.inc
snd_mbx MBXID,PK_MBX
isnd_mbx MBXID,PK MBX

® Parameters
MBXID ID number of the mailbox to which transmitted

PK_MBX Message to be transmitted (address)

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code
R2 ID number of the mailbox to which transmitted
Al Message to be transmitted (address)

[[ Structure of the message packet ]]
<<Mailbox message header>>
typedef struct t_msg{
VP msghead +0 4 Kernel managed area
} T_MSG;
<<Mailbox message header with priority included>>
typedef struct t msg{
T_MSG msgque +0 4 Message header

PRI msgpri +2 2 Message priority
} T_MSG;
[[ Error code ]
E CTX Context error ( Called from the system status not permitted.)
E_PAR Parameter error
(msgpei <= 0, msgpri < the maximum priority of message)
E ID Invalid ID number

(mbxid<=0, the maximum number of mailbox < mbxid)

-132 -



[[ Functional description 1]

This service call sends the message indicated by pk_msg to the mailbox indicated by mbxid. T_MSG* should be specified
with a 32-bit address. If there is any task waiting to receive a message in the target mailbox, the transmitted message is
passed to the task at the top of the waiting queue, and the task is released from WAITING state.

To send a message to a mailbox whose attribute is TA_MFIFO, add a T_MSG structure at the beginning of the message
when creating it, as shown in the example below.

To send a message to a mailbox whose attribute is TA_MPRI, add a T_MSG_PRI structure at the beginning of the message
when creating it, as shown in the example below.

Messages should always be created in a RAM area regardless of whether its attribute is TA_MFIFO or TA_MPRI.

The T_MSG area is used by the kernel, so that it cannot be rewritten after a message has been sent. If this area is rewritten
before the message is received after it was sent, operation of the service call cannot be guaranteed.

If this service call is to be issued from task context, use snd_mbx; if issued from non-task context, use isnd_mbx.

When a service call is called from the system state which is not permitted, it becomes an error, and E_CTX is returned.

<<kExample format of a message>>

typedef struct user_msg{

T MSG t_msg; /* T_MSG structure */
B data[16]; /* User message data */
} USER_MSG;

<<Example format of a message with priority included>>

typedef struct user_msg{

T _MSG_PRI t_msg; /* T_MSG_PRI structure */
B data[16]; /* User message data */
} USER_MSG;

[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
typedef struct pri message

T MSG PRI msgheader;
char body [12] ;
} PRI MSG;

void task (void)
PRI _MSG msg;
msg.msgpri = 5;

snd_mbx ( ID_msg, (T_MSG *)&msg) ;

<<Example statement in assembly language>>
.include mr1l00.inc

.GLB task
_g userMsg: .blkb 6 ; Header
.blkb 12 ; Body
task:
PUSH.W R2
PUSH.L Al

snd_mbx #ID_MBX1,#_g_userMsg

-133 -



rcv_mbx Receive from mailbox

prcv_mbx Receive from mailbox (polling)
iprcv_mbx Receive from mailbox (polling, handler only)
trcv_mbx Receive from mailbox (with timeout)
[[ C Language API ]]
ER ercd = rcv_mbx( ID mbxid, T_MSG **ppk_msg );
ER ercd = prcv_mbx( ID mbxid, T_MSG **ppk _msg );
ER ercd = iprcv_mbx( ID mbxid, T_MSG **ppk _msg );
ER ercd = trcv_mbx( ID mbxid, T_MSG **ppk_msg, TMO tmout );
® Parameters
ID mbxid ID number of the mailbox from which to receive
TMO tmout Timeout value (for trcv_mbx)
T_MSG **ppk_msg  Pointer to the start of the area in which received message is
stored
® Return Parameters
ER ercd Terminated normally (E_OK) or error code
T_MSG **ppk_msg  Pointer to the start of the area in which received message is
stored
[[ Assembly language API 1]
-.include mr100.inc
rcv_mbx MBXID
prcv_mbx MBXID
iprcv_mbx MBXID
trcv_mbx MBXID, TMO
® Parameters
MBXID ID number of the mailbox from which to receive
TMO Timeout value (for trcv_mbx)

@ Register contents after service call is issued
rcv_mbx, prcv_mbx, iprcv_mbx
Register name Content after service call is issued

RO Error code
R2 ID number of the mailbox from which to receive
Al Received message
trcv_mbx
Register name Content after service call is issued
RO Error code
R2 ID number of the mailbox from which to receive
R6R4 Timeout value
Al Received message
[[ Error code ]
E RLWAI Forced release from waiting
E TMOUT Polling failure or timeout
E CTX Context error ( Called from the system status not permitted.)
(Called from CPU locked state or non-kernel interrupt called from prcv_mbx or iprcv_mbx)
E_PAR Parameter error
(tmout <= -2, 0X7FFFFFFF — TIC_NUME < tmout)
E ID Invalid ID number

(mbxid<=0, the maximum number of mailbox < mbxid)

-134 -



[[ Functional description ]]

This service call receives a message from the mailbox indicated by mbxid and stores the start address of the received mes-
sage in the area pointed to by ppk_msg. T_MSG™* should be specified with a 32-bit address. If data is present in the target
mailbox, the data at the top of the mailbox is received.

On the other hand, if rcv_mbx or trcv_mbx is issued for a mailbox that has no messages in it, the task that issued the ser-
vice call goes from RUNNING state to a message reception wait state, and is enqueued in a message reception waiting
queue. In that case, if the attribute of the specified mailbox is TA_TFIFO, the task is enqueued in order of FIFO; if
TA_TPRI, the task is enqueued in order of priority. For prcv_mbx and iprcv_mbx, the task returns immediately and re-
sponds to the call with the error code E_TMOUT.

For the trcv_mbx service call, specify a wait time for tmout in ms units. The values specified for tmout must be within
(OX7FFFFFFF-time tick value). If any value exceeding this limit is specified, it becomes an error, and E_PAR is returned. If
TMO_POL=0 is specified for tmout, it means specifying 0 as a timeout value, in which case the service call operates the
same way as prcv_mbx. Furthermore, if specified as tmout=TMO_FEVR(-1), it means specifying an infinite wait, in which
case the service call operates the same way as rcv_mbx.

The task placed into WAITING state by execution of the rcv_mbx or trcv_mbx service call is released from WAITING state
in the following cases:

€ When the rcv_mbx, trcv_mbx, prcv_mbx, or iprcv_mbx service call is issued before the tmout
time elapses, with task-awaking conditions thereby satisfied
The error code returned in this case is E_OK.

€ When the first time tick occurred after tmout elapsed while task-awaking conditions remain un-
satisfied
The error code returned in this case is E_TMOUT.

€ When the task is forcibly released from WAITING state by the rel_wai or irel_wai service call is-
sued from another task or a handler
The error code returned in this case is E_RLWAI.

If this service call is to be issued from task context, use rcv_mbx,trcv_mbx,prcv_mbx; if issued from non-task context, use
iprcv_mbx.

When rcv_mbx or trcv_mbx service call is called from the system state which is not permitted, it becomes an error, and
E_CTX s returned.

When prev_mbx or iprcv_mbx service call is called from CPU locked state or non-kernel interrupt, it becomes an error, and
E_CTX is returned.

-135-



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”

typedef struct fifo message

T_MSG head;
char body [12] ;
} FIFO MSG;
void task()

FIFO_MSG *msg;

if ( rev_mbx (ID mbx, (T MSG **)&msg) == E RLWAI )
error (“forced wakeup\n”) ;

if ( prcv_mbx (ID mbx, (T_MSG **)&msg) != E _TMOUT )
error (“Timeout\n”) ;

if ( trev_mbx(ID mbx, (T _MSG **)&msg, 10) != E TMOUT )
error (“Timeout\n”) ;

}

<<Example statement in assembly language>>
.include mrl00.inc

.GLB task
task:
PUSH.W R2
PUSHM R6R4
trcv_mbx  #ID_MBX1,#100
PUSH.W R2
rcv_mbx #ID_MBX1
PUSH.W R2

prcv_mbx #ID_ MBX1

-136 -



ref_mbx Reference mailbox status
iref_mbx Reference mailbox status (handler only)

[[ C Language API ]]
ER ercd = ref_mbx( ID mbxid, T_RMBX *pk_rmbx );
ER ercd = iref_mbx( ID mbxid, T_RMBX *pk_rmbx );
® Parameters
ID Mbxid ID number of the target mailbox

T_RMBX *pk_rmbx Pointer to the packet to which mailbox status is returned

@ Return Parameters
ER ercd Terminated normally (E_OK)
T_RMBX *pk_rmbx Pointer to the packet to which mailbox status is returned

Contents of pk_rmbx

typedef struct t_rmbx{
ID wiskid +0 2 Reception waiting task ID
T_MSG  *pk_msg +4 4 Next message packet to be received
} T_RMBX;
[[ Assembly language API ]]

-include mrl100.1nc

ref_mbx MBXID, PK_RMBX
iref_mbx MBXID, PK_RMBX

@ Parameters

MBXID ID number of the target mailbox

PK_RMBX  Pointer to the packet to which mailbox status is returned

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code
R2 ID number of the target mailbox
Al Pointer to the packet to which mailbox status is returned
[[ Error code ]I
E ID Invalid ID number
(mbxid<=0, the maximum number of mailbox < mbxid)
E CTX Context error ( Called from CPU locked state or non-kernel interrupt.)

[[ Functional description 1]
This service call returns various statuses of the mailbox indicated by mbxid.

@ wtskid

Returned to wtskid is the ID number of the task at the top of a reception waiting queue (the next task to be de-
queued). If no tasks are kept waiting, TSK_NONE is returned.

@ *pk_msg
Returned to *pk_msg is the start address of the next message to be received. If there are no messages to be re-
ceived next, NULL is returned. T_MSG* should be specified with a 16-bit address.

If this service call is to be issued from task context, use ref_mbx; if issued from non-task context, use iref_mbx.

When a service call is called from CPU locked state or non-kernel interrupt, it becomes an error, and E_CTX is returned.

-137 -



[[ Example program statement ]]

<<Example statement in C language>>
#include <itron.h>

#include <kernel.h>
#include “kernel_id.h”
void task()

T RMBX rmbx;
ER ercd;

ercd = ref mbx( ID MBX1l, &rmbx );

}

<<Example statement in assembly language>>
.include mrl1l00.inc

.GLB task
_ refmbx: .blkb 6
task:
PUSH.W R2

PUSH.L Al
ref mbx #ID MBX1,# refmbx

-138 -



5.7 Extended Synchronization & Communication Function (Message Buf-
fer)

Specifications of the message buffer function of MR100 are listed in .

Table 5.13 Specifications of the Message Buffer Function

No. Item Content
1 | Message buffer ID 1-255
2 | Message buffer attribute TA_TFIFO: Waiting tasks enqueued in order of FIFO
3 | Size of message buffer area 65532
4 | Maximum message Size 65528
5 | Specification of message buffer area | Section can be specified for the acquired area

Table 5.14 List of Message Buffer Function Service Call

No. Service Call Function System State
T N E D U L
1 snd_mbf Trasmit message to message buffer ) 0 0
2 psnd_mbf Trasmit message to message buffer (polling) 0 0 ) 0
3 ipsnd_mbf 0| O ) 0
4 tsnd_mbf Trasmit message to message buffer (with timeout) 0 ) 0
5 rcv._mbf Receive message from message buffer 0 0 0
6 prcv_mbf Receive message from message buffer (polling) 0 0 0 0
7 trcv_mbf Receive message from message buffer 0] 0] O
(with timeout)

8 ref_mbf Reference message buffer status O O 0 0O
9 iref_mbf 0| O 0 0
Notes:

® [S]: Standard profile service calls
[B]: Basic profile service calls

® Each sign within " System State " is a following meaning.
T. Can be called from task context

N: Can be called from non-task context

E: Can be called from dispatch-enabled state

D: Can be called from dispatch-disabled state

U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

* & & 6 o o

-139 -



snd_mbf
psnd_mbf
ipsnd_mbf
tsnd_mbf

Send to message buffer

Send to message buffer (polling)
Send to message buffer (polling, handler only)
Send to message buffer (with timeout)

[[ C Language API]]
ER ercd
ER ercd
ER ercd
ER ercd

® Parameters

snd_|

ID mbfid Message buffer ID number to which to send
T™MO tmout Timeout value (for tsnd_mbf)

VP msg Message to be transmitted

UINT msgsz Size of transmitted message

® Return Parameters

ER ercd

[[ Assembly language API ]]
.include mri100.inc
snd_mbf MBFID,MSG,MSGSZ
psnd_mbf MBFID,MSG,MSGSZ
tget_mbf MBFID,MSG,MSGSZ,TMO
ipsnd_mbf MBFID,MSG,MSGSZ

® Parameters

MBFID Message buffer ID number to which to send
TMO Timeout value (for tsnd_mbf)

MSG Message to be transmitted

MSGSz Size of transmitted message

@ Register contents after service call is issued
snd_mb¥,psnd_mbf, ipsnd_mbf

Register name
RO

R3R1

R2

Al

tsnd_mbf
Register name

RO
R3R1
R2
R6R4
Al

Content after service call is issued

Error code

Size of transmitted message

Message buffer ID number to which to send

Start address of transmitted message

Content after service call is issued

Error code

Size of transmitted message

Message buffer ID number to which to send
Timeout value

Start address of transmitted message

- 140 -

mb¥( ID mbfid, VP msg, UINT msgsz );

psnd_mbf( 1D mbfid, VP msg, UINT msgsz );

tsnd_mb¥( ID mbfid, VP msg, UINT msgsz,TMO tmout );
ipsnd_mbf( ID mbfid, VP msg, UINT msgsz );

Terminated normally (E_OK) or error code



[[ Error code ]

E RLWAI Forced release from waiting

E TMOUT Polling failure or timeout

E CTX Context error ( Called from the system status not permitted.)
E_PAR Parameter error

(msgsz = 0, msgsz > the maximum size of message,
tmout <= -2, OX7FFFFFFF — TIC_NUME < tmout)

E ID Invalid ID number
(mbfid<=0, the maximum number of message buffer < mbfid)
EV_RST Released from WAITING state by clearing of the message buffer area

[[ Functional description 1]

Transmits the message indicated by msg to the message buffer indicated by mbfid. The size of a transmitted message is the
number of bytes indicated by msgsz. If the target message buffer has a task waiting for message reception, data is not stored
in the message buffer; instead, the message is sent to the task at the top of the message receive wait queue, and the task is
released from a message receive wait state.

If snd_mbf or tsnd_mbf is issued for a message buffer without the free space which stores the message to be transmitted,
the task that issued the service call goes from RUNNING state to a message transmit wait state, and is placed in the trans-
mit wait queue waiting for free spaces to become available in the message buffer.

Furthermore, if the target message buffer already has a task in a transmit wait state, the message is placed in a transmit wait
queue without being stored in the message buffer. At this time, tasks are queued in FIFO order. If the service call concerned
is psnd_mbf, it immediately returns from the API and returns error code E_TMOUT.

If the service call concerned is tsnd_mbf, specify a wait time in ms units for tmout. The values specifiable for tmout must
be within (Ox7FFFFFFF-time tick value). If any value exceeding this limit is specified, it becomes an error, and E_PAR is
returned. 1f TMO_POL =0 is specified for tmout, it is assumed that a timeout value of 0 is specified, in which case the
service call operates the same way as psnd_mbf. Furthermore, if tmout = TMO_FEVR (-1) is specified, it is assumed that
an infinite wait time is specified, in which case the service call operates the same way as snd_mbf.

If there are no tasks waiting for reception and the message buffer area is not full, the transmitted message is stored in the
message buffer along with its message size.

The wait state into which a task was placed in by execution of the snd_mbf or tsnd_mbf service call is exited in the follow-
ing cases:

€ When arcv_mbf, trcv_mbf or prcv_mbf service call is issued before the tmout time elapses and
the wait state exiting conditions are met
In this case, the returned error code is E_OK.

€ When the tmout time has elapsed while the wait state exiting conditions are not met and the
first tick time occurred
In this case, the returned error code is E_ TMOUT.

€ When the task is forcibly released from the wait state by a rel_wai or irel_wai service call issued
by another task or handler
In this case, the returned error code is E_RLWAI.

€ When the message buffer for which the task is kept waiting is initialized by a vrst_mbf service
call issued by another task
In this case, the returned error code is EV_RST.

If the task waiting for transmission to the message buffer is released from a wait state by rel_wai, ter_tsk or timeout, and
messages can be transmitted to the message buffer sequentially beginning with a task now at the top of the queue, then a
message transmit processing is performed.

If this service call is to be issued from task context, use snd_mbf, psnd_mbf and tsnd_mbf; if issued from non-task context,
use ipsnd_mbf.

When a service call is called from the system state which is not permitted, it becomes an error, and E_CTX is returned.

-141 -



[[ Example program statement 1]
<<Example statement in C language>>
#include <itron.hs>
#include <kernel.h>

#include “kernel id.h”
void task()

ER ercd;
char *msg="abcdef”;
ercd = snd mbf( ID mbf, (VP)msg, 6);

ercd = psna_mbf( ID mbf, (VP)msg, 6);

ercd

tsnd mbf ( ID mbf, (VP)msg, 6, 10 );

}

<<Example statement in assembly language>>
.include mr1l00.inc

.GLB task
_g userMsg: .blkb 12 ; Message
task:
PUSH.W R2
PUSHM R3R1,Al
snd_mpf #ID_MBF1,#_g_userMsg, #12
PUSHM R3R1,Al

psnd mbf #ID MBF1l,# g userMsg, #12

PUSHM R3R1,A1,R6R4
tsnd_mbf #ID MBF1,# g userMsg, #12,#200

-142 -



rcv_mbf Receive from message buffer

prcv_mbf Receive from message buffer (polling)

trcv_mbf Receive from message buffer (with timeout)
[[ C Language API ]]

ER_UINT msgsz
ER_UINT msgsz
ER_UINT msgsz

rcv_mbf( ID mbfid, VP msg );
prcv_mbf( 1D mbfid, VP msqg);
trcv_mbf( ID mbfid, VP msg, TMO tmout );

® Parameters

ID mbfid Message buffer ID number from which to receive
TMO tmout Timeout value (for tsnd_mbf)
VP msg Pointer to the area in which received message is stored
@ Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[ Assembly language API 1]

-.include mri100.inc
rcv_mb¥  MBFID
prcv_mbf MBFID
trcv_mbf MBFID,TMO

® Parameters

MBFID
TMO

Message buffer ID number from which to receive

Timeout value (for trcv_mbf)

@ Register contents after service call is issued
rcv_mb¥,prcv_mbf

Register name
RO

R3R1

R2

Al

trcv_mbf
Register name

RO
R3R1
R2
R6R4
Al

[[ Error code 1]
E_RLWAI
E_TMOUT
E_CTX
E_PAR

E_ID

Content after service call is issued

Error code

Size of received message

Message buffer ID number from which to receive

Pointer to the area in which received message is stored

Content after service call is issued

Error code

Size of received message

Message buffer ID number from which to receive
Timeout value

Pointer to the area in which received message is stored

Forced release from waiting

Polling failure or timeout

Context error ( Called from the system status not permitted.)
Parameter error

(tmout <= -2, OX7FFFFFFF — TIC_NUME < tmout)

Invalid ID number

(mbfid<=0, the maximum number of message buffer <
mbfid)

- 143 -



[[ Functional description ]]

Receives a message from the message buffer indicated by mbfid and stores it in the area specified by msg. Furthermore, the
size of a received message is returned as a return parameter. If the target message buffer has a task waiting for transmission,
the size of free space of message buffer area and the size of a transmit message for the task at the top of a transmit wait
queue are compared.

1. If the size of free space of message buffer area is larger than the size of a transmit message

The message is transmitted to the message buffer and the transmit waiting task is placed from a transmit wait state to
READY state.

2. If the size of free space of message buffer is smaller than the size of a transmit message

The message is not transmitted to the message buffer and the processing of this service call is terminated while the task
is kept waiting for transmission.

If there is still another task waiting for transmission after processing 1 is terminated, comparisons similar to the one de-
scribed above are performed.

On the other hand, if rcv_mbf or trcv_mbf is issued for a message buffer with no messages stored therein that is present in
the message buffer area, the task that issued the service call goes from an execution state to a data receive wait state and is
placed in a data receive wait queue. At this time, tasks are queued in FIFO order. If the service call concerned is prcv_mbf,
it immediately returns from the API and returns error code E_TMOUT.

If the service call concerned is trcv_mbf, specify a wait time in ms units for tmout. The values specifiable for tmout must
be within (Ox7FFFFFFF-time tick value). If any value exceeding this limit is specified, it becomes an error, and E_PAR is
returned. If TMO_POL = 0 is specified for tmout, it is assumed that a timeout value of 0 is specified, in which case the ser-
vice call operates the same way as prcv_mbf. Furthermore, if tmout = TMO_FEVR (-1) is specified, it is assumed that an
infinite wait time is specified, in which case the service call operates the same way as rcv_mbf.

The wait state into which a task was placed in by execution of the rcv_mbf or trcv_mbf service call is exited in the follow-
ing cases:

€ When a snd_mbf, tsnd_mbf or psnd_mbf service call is issued before the tmout time elapses
and the wait state exiting conditions are met
In this case, the returned error code is E_OK.

€ When the tmout time has elapsed while the wait state exiting conditions are not met and the
first tick time occurred
In this case, the returned error code is E_ TMOUT.

€ When the task is forcibly released from the wait state by a rel_wai or irel_wai service call issued
by another task or handler
In this case, the returned error code is E_RLWAI.

If this service call is to be issued from task context, use snd_mbf, psnd_mbf and tsnd_mbf.

When a service call is called from the system state which is not permitted, it becomes an error, and E_CTX is returned.

- 144 -



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

char msg[128];
if ( rcv_mbf (ID mbf , (VP)&msg ) == E_DLT )
error (“Buffer deleted”n”) ;

if( prcv_mbf(ID_mbf , (VP)&msg ) == E OK )
printf (“*get message\n”) ;

if ( trev_mbf (ID mbf , (VP)smsg, 10 ) == E_RLWAI )
error (“forced wakeup”n”) ;

}

<<Example statement in assembly language>>
.include mr1l00.inc

.GLB task
g userMsg: .blkb 12 ; Message
task:

PUSH.W R2

PUSH.L Al

rcv_mbf #ID MBF1l,# g userMsg

PUSH.W R2

PUSH.L Al

psnd mbf #ID MBF1l,# g userMsg

PUSH.W R2
PUSHM R6R4,Al
tsnd _mbf #ID MBF1l,# g userMsg, #200

- 145 -



ref_mbf Reference message buffer status
iref_mbf Reference message buffer status(handler only)

[[ C Language API ]]
ER ercd = ref_mbf( ID mbfid, T_RMBF *pk_rmbf );
ER ercd = iref_mbf( ID mbfid, T_RMBF *pk _rmbf );
® Parameters
ID mbfid Message buffer ID number to be referenced

T_RMBF *pk_rmbf Pointer to the packet in which message buffer status is returned

@ Return Parameters
ER ercd Terminated normally (E_OK)
T_RMBF *pk_rmbf Pointer to the packet in which message buffer status is returned

Contents of pk_rmbf
typedef struct t_rmbf{

ID stskid +0 2 Transmit waiting task 1D
ID rtskid +2 2 Receive waiting task ID
UINT smsgcnt +4 4 Message counts contained in message buffer
SIZE fmbfsz +8 4 Free buffer size (in bytes)

} T_RMBF;

[[ Assembly language API 1]

-.include mr100.inc

ref_mpf MBFID,PK_RMBF

iref_mpf MBFID,PK_RMBF

® Parameters

MBFID Message buffer ID number to be referenced

PK_RMBF  Pointer to the packet in which message buffer status is returned

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code
R2 Message buffer ID number to be referenced
Al Pointer to the packet in which message buffer status is returned
[[ Error code ]I
E ID Invalid ID number
(mbfid<=0, the maximum number of message buffer < mbfid)
E CTX Context error ( Called from CPU locked state or non-kernel interrupt.)

[[ Functional description 1]
Returns various statuses of the message buffer indicated by mbfid.

& stskid
Returned in stskid is the ID number of the task at the top of a transmit wait queue.
If no waiting tasks exist, TSK_NONE is returned.

@ riskid
Returned in rtskid is the ID number of the task at the top of a receive wait queue.
If no waiting tasks exist, TSK_NONE is returned.

¢ smsgcnt

Returned in smsgcnt is a count of messages contained in the message buffer.
€ fmbfsz
A free buffer size is returned.

If this service call is to be issued from task context, use ref_mbf; if issued from non-task context, use iref_mbf.

When a service call is called from CPU locked state or non-kernel interrupt, it becomes an error, and E_CTX is returned.

- 146 -



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>

#include “kernel id.h”
void task()

T_RMBF pk_ rmbf;
ref mbf (ID_mbf, &pk_rmbf,);

}

<<Example statement in assembly language>>
.include mrl00.inc

.GLB task
_ refmbf: .blkb 12
task:
PUSH.W R2
PUSH.L Al

ref _mbf #ID MBF1l, refmbf

- 147 -



5.8 Extended Synchronization & Communication Function (Mutex)
Specifications of the mutex function of MR100 are listed in Table 5.15.

Table 5.15 Specifications of the Mutex Function

No. Item Content
1 Mutex ID 1-255
Mutex attribute TA_CEILING Priority ceiling protocol

Table 5.16 List of Mutex Function Service Call

No. Service Call Function System State

T N E D U
1 loc_mtx Locks mutex 0 0 0
2 tloc_mtx Locks mutex(with timeout) 0 0 0
3 ploc_mtx Locks mutex(polling) 0 0 0 0
4 unl_mtx Unlocks mutex ) ) O 0
5 ref_mtx Reference mutex status 0 O 0] O

Notes:

® [S]: Standard profile service calls
[B]: Basic profile service calls

® Each sign within " System State " is a following meaning.
T: Can be called from task context

N: Can be called from non-task context

E: Can be called from dispatch-enabled state

D: Can be called from dispatch-disabled state

U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

* & 6 6 0o o

-148 -



loc_mtx Locks mutex

ploc_mtx Locks mutex (polling)
tloc_mtx Locks mutex (with timeout)
[[ C Language API ]]
ER ercd = loc_mtx ( ID mtxid );
ER ercd = ploc_mtx ( ID mtxid );
ER ercd = tloc_mtx ( ID mtxid, TMO tmout );
® Parameters
ID mtxid Mutex ID number to be locked
T™MO tmout Timeout value (for tloc_mtx)
® Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[ Assembly language API ]]

.include mri100.inc
loc_ mtx MTXID
ploc_mtx MTXID
tloc_mtx MTXID,TMO

® Parameters
MTXID Mutex ID number to be locked

TMO Timeout value (for tloc_mtx)

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO Error code
R2 Mutex ID number to be locked
[[ Error code ]
E RLWAI Forced release from waiting
E TMOUT Polling failure or timeout
E ILUSE Illegally used(same mutex double locked or called by task higher than ceiling priority)
E CTX Context error ( Called from the system status not permitted.)
E_PAR Parameter error
(tmout <= -2, 0X7FFFFFFF — TIC_NUME < tmout)
E ID Invalid ID number

(mtxid<=0, the maximum number of mutex < mtxid)

[[ Functional description 1]
Locks the mutex specified by mtxid.

If the target mutex is not locked, the issuing task places the mutex in a locked state and terminates the processing of the
service call. At this time, the current priority of the issuing task is raised to the ceiling priority of the mutex.

If the target mutex is locked, the issuing task is placed in a wait queue and moved to a mutex lock wait state. The wait
queue is such that if the specified attribute of the wait queue is TA_TFIFO, tasks are queued in FIFO order, and that if the
specified attribute of the wait queue is TA_TPRI, tasks are queued in order of priority.

If the service call concerned is ploc_mtx, it immediately returns from the API and returns error code E_TMOUT.

If the service call concerned is tloc_mitx, specify a wait time in ms units for tmout. The values specifiable for tmout must be
within (Ox7FFFFFFF-time tick value). If any value exceeding this limit is specified, it becomes an error, and E_PAR is re-
turned. If TMO_POL = 0 is specified for tmout, it is assumed that a timeout value of 0 is specified, in which case the ser-
vice call operates the same way as pol_sem. Furthermore, if tmout = TMO_FEVR (-1) is specified, it is assumed that an
infinite wait time is specified, in which case the service call operates the same way as loc_mtx.

The wait state into which a task was placed in by execution of the loc_mtx or tloc_mtx service call is exited in the follow-
ing cases:

- 149 -



€ When a unl_mtx service call is issued from a task that gained the mutex before the tmout time
elapses and the present task is at the top of a wait queue
The current priority of the task changes to the ceiling priority, and the returned error code in this case is E_OK.

€ When a task that gained the mutex is terminated before the tmout time elapses and the present
task and the present task is at the top of a wait queue
The current priority of the task changes to the ceiling priority, and the returned error code in this case is E_OK.

€ When tmout has elapsed while the wait state exiting conditions are not met and the first tick
time occurred
In this case, the returned error code is E_ TMOUT..

€ When the task is forcibly released from the wait state by a rel_wai or irel_wai service call issued
by another task or handler
In this case, the returned error code is E_RLWAI.

The service calls described here can only be used in task contexts, and cannot be used in non-task contexts.

When a service call is called from the system state which is not permitted, it becomes an error, and E_CTX is returned.

[[ Example program statement ]]
<<Example statement in C language>>

#include <itron.h>

#include <kernel.hs>

#include “kernel_id.h”

void task()

if( loc_mtx( ID mtx ) != E_OK )
if ( ploc_mtx( ID mtx ) != E OK )

if( tloc_mtx( ID mtx, 10 ) != E OK )

<<Example statement in assembly language>>
.include mr1l00.inc

.GLB task
task:

PUSH.W R2
loc_mtx #ID MTX1
PUSH.W R2
Ploc_mtx #ID_MTX2
PUSH.W R2

PUSHM R6R4

tloc_mtx #ID MTX3,#300

- 150 -



unl_mtx Unlocks mutex

[[ C Language API ]]
ER ercd = unl_mtx( 1D mtxid );
® Parameters
ID mtxid ID number of the mutex

® Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[ Assembly language API 1]
.include mrl100.inc
unl_mtx MTXID
trcv_mbx MBXID, TMO
® Parameters
MTXID Mutex ID number to be unlocked

® Register contents after service call is issued
Register name Content after service call is issued

RO Error code
R2 Mutex ID number to be unlocked
[[ Error code ]
E_RLWAI Forced release from waiting
E ILUSE lllegally used( not unlocked)
E CTX Context error ( Called from the system status not permitted.)
E ID Invalid ID number

(mtxid<=0, the maximum number of mutex < mtxid)

-151 -



[[ Functional description ]]

Unlocks the mutex indicate by mtxid. If there is any task waiting to have the target mutex locked, the task at the top of a
mutex wait queue is released from a wait state and the released task is placed in a mutex locked state. At this time, the cur-
rent priority of this task is raised to the ceiling priority of the mutex. If there are no tasks waiting for the mutex, the mutex
concerned is placed in an unlocked state.

The TA_CEILING attribute adopted for the MR100/4 kernel is a simplified ceiling priority protocol. More specifically, it is
only when the calling task has had all of its locked mutexes unlocked by this service call that its current priority is restored

to the base priority. If the calling task still has any other mutexes locked, its current priority does not change in this service

call.

This service call is usable in only task contexts. If used in non-task contexts, this service call will not operate normally.

When a service call is called from the system state which is not permitted, it becomes an error, and E_CTX is returned.

[[ Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

if( unl mtx( ID mtx ) != E OK )

}

<<Example statement in assembly language>>
.include mrl100.inc

.GLB task
task:
PUSH.W R2

unl mtx #ID_ mtx2

-152 -



ref_mtx Reference mutex status

[[ C Language API ]]
ER ercd = ref_mtx( ID mtxid, T_RMTX *pk_rmtx );

® Parameters

ID mbxid Target mutex ID number

T RMTX *pk_rmtx Pointer to the packet in which mutex status is returned
® Return Parameters

ER ercd Terminated normally (E_OK)

T _RMTX *pk_rmtx Pointer to the packet in which mutex status is returned

Contents of pk_rmtx
typedef struct t rmtx{

ID htskid +0 2 Task ID that has mutex locked
ID wiskid +2 2 Task 1D in mutex wait queue
} T_RMTX;
[[ Assembly language API 1]

.include mrl100.inc
ref_ mtx MTXID, PK _RMTX

® Parameters
MTXID Target mutex ID number

PK_RMTX  Pointer to the packet in which mutex status is returned

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO Error code
R2 Target mutex ID number
Al Pointer to the packet in which mutex status is returned
[[ Error code 1]
E ID Invalid ID number
(mtxid<=0, the maximum number of mutex < mtxid)
E CTX Context error ( Called from CPU locked state or non-kernel interrupt.)

[[ Functional description 1]
Returns various statuses of the mutex indicated by mtxid.

@ htskid
Returned in htskid is the ID number of the task that has gained a mutex.
If not acquired, TSK_NONE is returned..
& wtskid
Returned in wtskid is the ID number of the task at the top of a mutex wait queue.
If no waiting tasks exist, TSK_NONE is returned.

To use these service calls from task contexts, be sure to use ref_mtx.
When a service call is called from the system state which is not permitted, it becomes an error, and E_CTX is returned.

-153 -



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>

#include “kernel id.h”
void task()

T RMTX pk rmtx;
ref mtx(ID mtx, &pk rmtx);

}

<<Example statement in assembly language>>
.include mrl00.inc

.GLB task
_ refmtx: .blkb 4
task:
PUSH.W R2
PUSH.L Al

ref mtx #ID MTX1, refmtx

- 154 -



5.9 Memory Pool Management Function (Fixed-size Memory Pool)
Specifications of the fixed-size memory pool function of MR100 are listed in Table 5.17.

The memory pool area to be acquired can be specified by a section name for each memory pool during configuration.

Table 5.17 Specifications of the Fixed-size memory pool Function

No. Item Content

1 Fixed-size memory pool ID 1-255

2 Number of fixed-size memory block 1-65535

3 | Size of fixed-size memory block 4-65535

4 | Supported attributes TA_TFIFO: Waiting tasks enqueued in order of FIFO

TA_TPRI: Waiting tasks enqueued in order of priority
5 | Specification of memory pool area Avrea to be acquired specifiable by a section
Table 5.18 List of Fixed-size memory pool Function Service Call
No. Service Call Function System State
T N E D U
1 get_mpf [SI[B] | Aquires fixed-size memory block 0 0 0
2 pget mpf [SI[B] | Aquires fixed-size memory block ) 0 0 0
3 ipget_mpf (polling) (0] (0] (6] 0]
4 tget_mpf [S] Aquires fixed-size memory block @] o] 0o
(with timeout)

5 rel_mpf [SI[B] | Releases fixed-size memory block ) 0 0] )
6 irel_mpf 0 0 0 0
7 ref_mpf References fixed-size memory pool status ) 0 0 0
8 iref_mpf O O] O 0
Notes:

® [S]: Standard profile service calls
[B]: Basic profile service calls

® FEach sign within " System State " is a following meaning.

*

* & & o o

T. Can be called from task context

N: Can be called from non-task context

E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

- 155 -



get_mpf

Aquire fixed-size memory block

pget_mpf Aquire fixed-size memory block (polling)
ipget_mpf Aquire fixed-size memory block (polling, handler
only)

tget_mpf Aquire fixed-size memory block (with timeout)
[[ C Language API ]]

ER ercd = get_mpf( ID mpfid, VP *p_blk );

ER ercd = pget _mpf( ID mpfid, VP *p blk );

ER ercd = ipget mpf( ID mpfid, VP *p_blk );

ER ercd = tget_mpf( ID mpfid, VP *p_blk,TMO tmout );

® Parameters

ID mpfid ID number of the target fixed-size memory pool to be acquired
VP *p_blk Pointer to the start address of the acquired memory block
TMO tmout Timeout value(tget_mpf)

® Return Parameters

ER ercd Terminated normally (E_OK) or error code
VP *p_blk Pointer to the start address of the acquired memory block
[[ Assembly language API ]]

.include mri100.inc
get_mpf MPFID
pget_mpf MPFID
ipget_mpf MPFID
tget_mpf MPFID,TMO

® Parameters

MPFID ID number of the target fixed-size memory pool to be acquired

T™MO Timeout value(tget_mpf)

- 156 -



@ Register contents after service call is issued
get_mpfT,pget_mpf, ipget_mpf
Register name Content after service call is issued

RO Error code
R3R1 Start address of the acquired memory block
R2 ID number of the target fixed-size memory pool to be acquired
tget_mpf
Register name Content after service call is issued
RO Error code
R3R1 Start address of the acquired memory block
R2 ID number of the target fixed-size memory pool to be acquired
R6R4 Timeout value
[[ Error code ]I
E_RLWAI Forced release from waiting
E_TMOUT Polling failure or timeout
EV_RST Released from WAITING state by clearing of the memory pool area
E CTX Context error ( Called from the system status not permitted.)
(Called from CPU locked state or non-kernel interrupt called from pget_mpf or ipget_mpf)
E_PAR Parameter error
(tmout <= -2, OX7FFFFFFF — TIC_NUME < tmout)
E ID Invalid ID number

(mpfid<=0, the maximum number of fixed-size memory pool < mpfid)

[[ Functional description 1]
This service call acquires a memory block from the fixed-size memory pool indicated by mpfid and stores the start address
of the acquired memory block in the variable p_blk. The content of the acquired memory block is indeterminate.

If the fixed-size memory pool indicated by mpfid has no memory blocks in it and the used service call is tget_mpf or
get_mpf, the task that issued it goes to a memory block wait state and is enqueued in a memory block waiting queue. In that
case, if the attribute of the specified fixed-size memory pool is TA_TFIFO, the task is enqueued in order of FIFO; if
TA_TPRI, the task is enqueued in order of priority. If the issued service call was pget_mpf or ipget_mpf, the task returns
immediately and responds to the call with the error code E_TMOUT.

For the tget_mpf service call, specify a wait time for tmout in ms units. The values specified for tmout must be within
(OX7FFFFFFF — time tick value). If any value exceeding this limit is specified, it becomes an error, and E_PAR is returned.
If TMO_POL=0 is specified for tmout, it means specifying 0 as a timeout value, in which case the service call operates the
same way as pget_mpf. Furthermore, if specified as tmout=TMO_FEVR(-1), it means specifying an infinite wait, in which
case the service call operates the same way as get_mpf.

The task placed into WAITING state by execution of the get_mpf or tget_mpf service call is released from WAITING state
in the following cases:

€ When the rel_mpf or irel_mpf service call is issued before the tmout time elapses, with
task-awaking conditions thereby satisfied
The error code returned in this case is E_OK.

€ When the first time tick occurred after tmout elapsed while task-awaking conditions remain un-
satisfied
The error code returned in this case is E_ TMOUT.

€ When the task is forcibly released from WAITING state by the rel_wai or irel_wai service call is-
sued from another task or a handler
The error code returned in this case is E_RLWALI.

€ When the target memory pool being waited for is initialized by the vrst_mpf service call issued
from another task
The error code returned in this case is EV_RST.

- 157 -



The value of the memaory block acquired by this service call is indeterminate because it is not initialized.

If this service call is to be issued from task context, use get_mpf,pget_mpf,tget_mpf; if issued from non-task context, use
ipget_mpf.

When get_mpf or tget_mpf service call is called from the system state which is not permitted, it becomes an error, and
E_CTX s returned.

When pget_mpf or ipget_mpf service call is called from CPU locked state or non-kernel interrupt, it becomes an error, and
E_CTX s returned.

[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
VP p_blk;
void task()

if ( get_mpf (ID mpf ,&p blk) != E OK ) {
error (“Not enough memory\n”) ;
}

if( pget_mpkaD_mpf ,&p_blk) != E OK ) {
error (“Not enough memory\n”) ;
}

if( tget_mpkaD_mpf ,&p_blk, 10) != E OK ) {
error (“Not enough memory\n”) ;
}

}

<<Example statement in assembly language>>
.include mr1l00.inc

.GLB task
task:

PUSH.W R2
get_mpf #ID_MPF1
PUSH.W R2

pget mpf #ID MPF1
PUSH.W R2

PUSHM R6R4

tget_mpf  #ID MPF1,#200

- 158 -



rel_mpf Release fixed-size memory block
irel_mpf Release fixed-size memory block (handler only)

[[ C Language API ]]
ER ercd = rel_mpf( ID mpfid, VP blk );
ER ercd = irel_mpf( ID mpfid, VP blk);

® Parameters

ID mpfid ID number of the fixed-size memory pool to be released
VP blk Start address of the memory block to be returned
@ Return Parameters
ER ercd Terminated normally (E_OK)
[[ Assembly language API 1]

-.include mrl100.inc
rel_mpf MPFID,BLK
irel_mpf MPFID,BLK

® Parameters
MPFID ID number of the fixed-size memory pool to be released

BLK Start address of the memory block to be returned

® Register contents after service call is issued
Register name Content after service call is issued

RO Error code
R3R1 Start address of the memory block to be returned
R2 ID number of the fixed-size memory pool to be released
[[ Error code ]
E CTX Context error ( Called from the system status not permitted.)
E_PAR Parameter error
(Memory block has been returned, memory block has not been acquired)
E ID Invalid ID number

(mpfid<=0, the maximum number of fixed-size memory pool < mpfid)

[[ Functional description ]]

This service call releases a memory block whose start address is indicated by blk. The start address of the memory block to
be released that is specified here should always be that of the memory block acquired by get_mpf, tget_mpf, pget_mpf, or
ipget_mpf.

If tasks are enqueued in a waiting queue for the target memory pool, the task at the top of the waiting queue is dequeued
and linked to a ready queue, and is assigned a memory block. At this time, the task changes state from a memory block wait
state to RUNNING or READY state. When the values other than the start address of the acquired memory block and the
start address of a returned memory block are specified, it becomes an error and E_PAR is returned.

If this service call is to be issued from task context, use rel_mpf; if issued from non-task context, use irel_mpf.

When a service call is called from the system state which is not permitted, it becomes an error, and E_CTX is returned.

- 159 -



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void task()

VP p blf;
if ( get_mpf (ID mpfl,&p blf) != E OK )
error (“Not enough memory \n”) ;

rel_mpf(ID;mpfl,p_blf);

<<Example statement in assembly language>>
.include mr1l00.inc

.GLB task
_g_blk: .blkb 4
task:
PUSH.W R2
get_mpf #ID_MPF1
MOV . L R3R1, g blk
PUSH.W R2

rel mpf #ID_MPF1l,_g blk

- 160 -



ref_mpf Reference fixed-size memory pool status
iref_mpf Reference fixed-size memory pool status
(handler only)

[[ C Language API ]]
ER ercd = ref_mpf( ID mpfid, T_RMPF *pk_rmpf );
ER ercd = iref_mpf( ID mpfid, T_RMPF *pk rmpFf );
® Parameters
ID mpfid Task ID waiting for memory block to be acquired

T_RMPF  *pk_rmpf  Pointer to the packet to which fixed-size memory pool status is returned
® Return Parameters

ER ercd Terminated normally (E_OK)
T_RMPF *pk_rmpf  Pointer to the packet to which fixed-size memory pool status is returned

Contents of pk_rmpf
typedef struct t_rmpf{

ID wiskid +0 2 Task ID waiting for memory block to be acquired
UINT fblkent +2 4 Number of free memory blocks
} T_RMPF;
[[ Assembly language API 1]

.include mrl100.inc
ref_mpf MPFID,PK RMPF
iref_mpf MPFID,PK RMPF

® Parameters
MPFID Task 1D waiting for memory block to be acquired

PK_RMPF  Pointer to the packet to which fixed-size memory pool status is returned

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code
R2 Task 1D waiting for memory block to be acquired
Al Pointer to the packet to which fixed-size memory pool status is returned
[[ Error code 1]
E ID Invalid ID number
(mpfid<=0, the maximum number of fixed-size memory pool < mpfid)
E CTX Context error ( Called from CPU locked state or non-kernel interrupt.)

[[ Functional description 1]
This service call returns various statuses of the message buffer indicated by mpfid.

& wiskid
Returned to wtskid is the ID number of the task at the top of a memory block waiting queue (the first queued
task). If no tasks are kept waiting, TSK_NONE is returned.

& fblkent
The number of free memory blocks in the specified memory pool is returned.

If this service call is to be issued from task context, use ref_mpf; if issued from non-task context, use iref_mpf.

When a service call is called from CPU locked state or non-kernel interrupt, it becomes an error, and E_CTX is returned.

-161 -



[[ Example program statement ]]

<<Example statement in C language>>
#include <itron.h>

#include <kernel.h>
#include “kernel_id.h”
void task()

T RMPF rmpf;
ER ercd;

ercd = ref mpf( ID MPFl, &rmpf );

}

<<Example statement in assembly language>>
.include mrl1l00.inc

.GLB task
_ refmpf: .blkb 6
task:
PUSH.W R2

PUSH.L Al
ref mpf #ID MPF1,# refmpf

-162 -



5.10Memory Pool Management Function (Variable-size Memory Pool)
Specifications of the Variable-size Memory pool function of MR100 are listed in Table 5.19.

The memory pool area to be acquired can be specified by a section name for each memory pool during configuration.

Table 5.19 Specifications of the Variable-size memory Pool Function

No. Item Content

1 | Variable-size memory pool ID 1-255
2 Size of Variable-size Memory pool 32-67108864
3 Maximum number of memory blocks to 4-65504

be acquired
4 | Supported attributes When memory is insufficient, task-waiting APIs are not supported.
5 | Specification of memory pool area Area to be acquired specifiable by a section

Table 5.20 List of Variable -size memory pool Function Service Call
No. Service Call Function System State
T N|JE|D]|] U L

1 pget mpl Aquires variable-size memory block (polling) 0 O|0| O

2 rel_mpl Releases variable-size memory block 0 O|O0| O

3 ref_mpl References variable-size memory pool status 0 O|O0| O

4 iref_mpl O|O0O|0O0]| O

Notes:

® [S]: Standard profile service calls
[B]: Basic profile service calls

® FEach sign within " System State " is a following meaning.

* & 6 O o o

T: Can be called from task context

N: Can be called from non-task context

E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

- 163 -




pget_mpl Aquire variable-size memory block (polling)

[[ C Language API ]]
ER ercd = pget_mpl( ID mplid, UINT blksz, VP *p_blk );

® Parameters

ID mplid ID number of the target Variable-size Memory pool to be acquired
UINT blksz Memory size to be acquired (in bytes)
VP *p_blk Pointer to the start address of the acquired variable memory
® Return Parameters
ER ercd Terminated normally (E_OK) or error code
VP *p_blk Pointer to the start address of the acquired variable memory
[[ Assembly language API 1]

.include mrl100.inc
pget_mpl MPLID,BLKSZ

® Parameters
MPLID ID number of the target Variable-size Memory pool to be acquired

BLKSZ Memory size to be acquired (in bytes)

® Register contents after service call is issued
Register name Content after service call is issued

RO Error code

R3R1 Memory size to be acquired

R2 ID number of the target Variable-size Memory pool to be acquired

[[ Error code ]
E_TMOUT No memory block
E CTX Context error ( Called from the system status not permitted.)
E_PAR Parameter error
(blksz = 0,blksz > 65528)

E ID Invalid ID number

(mplid<=0, the maximum number of variable-size memory pool < mplid)

- 164 -



[[ Functional description ]]

This service call acquires a memory block from the variable-size memory pool indicated by mplid and stores the start ad-
dress of the acquired memory block in the variable p_blk. The content of the acquired memory block is indeterminate.

If the specified variable-size memory pool has no memory blocks in it, the task returns immediately and responds to the
call with the error code E_TMOUT.

The value of the memory block acquired by this service call is indeterminate because it is not initialized.

This service call can be issued only from task context. It cannot be issued from non-task context.

When a service call is called from the system state which is not permitted, it becomes an error, and E_CTX is returned.

[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
VP p_blk;
void task()

if ( pget mpl(ID mpl , 200, &p_blk) != E OK ){
error (“Not enough memory\n”) ;
}
}

<<Example statement in assembly language>>
.include mr1l00.inc
.GLB task

task:

PUSH.W R2
pget_mpl #ID MPL1,#200

- 165 -



rel_mpl Release variable-size memory block

[[ C Language API ]]
ER ercd = rel_mpl( ID mplid, VP blk );
® Parameters
ID mplid ID number of Variable-size Memory pool of the memory block to be released

VP Blk Start address of the memory block to be returned

® Return Parameters
ER ercd Terminated normally (E_OK) or error code

[[ Assembly language API ]]

-include mr100.i1nc
rel_mpl MPLID,BLK

® Parameters
MPLID ID number of Variable-size Memory pool of the memory block to be released

BLK Start address of the memory block to be returned

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code

R3R1 Start address of the memory block to be returned

R2 ID number of Variable-size Memory pool of the memory block to be released
[[ Error code 1]

E CTX Context error ( Called from the system status not permitted.)

E_PAR Parameter error

(Memory block has been returned, memory block has not been acquired)
E ID Invalid ID number

(mplid<=0, the maximum number of variable-size memory pool < mplid)

[[ Functional description 1]

This service call releases a memory block whose start address is indicated by blk. The start address of the memory block to
be released that is specified here should always be that of the memory block acquired by pget_mpl.

When the values other than the start address of the acquired memory block and the start address of a returned memory
block are specified, it becomes an error and E_PAR is returned.*®

If this service call is to be issued from task context, use rel_mpl.

When a service call is called from the system state which is not permitted, it becomes an error, and E_CTX is returned.

% |n all cases, this error cannot be detected although the kernel check the value of parameter as much as possible.

- 166 -



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

VP p blk;
if ( get mpl(ID mpll, 200, &p blk) != E OK )
error (“Not enough memory \n”) ;

rel_mpl(ID;mpl,p_blk);

<<Example statement in assembly language>>
.include mrl100.inc

.GLB task

g blk: .blkb 4

task:
PUSH.W R2
pget mpl #ID MPL1,#200
MOV.L R3R1, g blk
PUSH.W R2

rel mpl #ID MPL1, g blk

- 167 -



ref_mpl Reference variable-size memory pool status
iref_mpl Reference variable-size memory pool status
(handler only)

[[ C Language API ]]
ER ercd = ref_mpl( ID mplid, T_RMPL *pk_rmpl );
ER ercd = iref_mpl( ID mplid, T_RMPL *pk_rmpl );
® Parameters
ID mplid ID number of the target variable-size memory pool

T_RMPL  *pk_rmpl  Pointer to the packet to which variable-size memory pool status is returned

@ Return Parameters
ER ercd Terminated normally (E_OK)
T_RMPL *pk_rmpl Pointer to the packet to which variable-size memory pool status is returned

Contents of pk_rmpl
typedef struct t_rmpl{

ID wiskid +0 2 Task ID waiting for memory block to be acquired (unused)
SIZE fmplsz +4 4 Free memory size (in bytes)
UINT fblksz +8 4 Maximum size of memory that can be acquired immediately (in
bytes)
} T_RMPL;
[[ Assembly language API ]]

-include mrl100.1inc

ref_mpl MPLID,PK_RMPL

iref_mpl MPLID,PK_RMPL

® Parameters

MPLID ID number of the target variable-size memory pool

PK_RMPL  Pointer to the packet to which variable-size memory pool status is returned

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code
R2 ID number of the target variable-size memory pool
Al Pointer to the packet to which variable-size memory pool status is returned
[[ Error code ]I
E_ID Invalid 1D number
(mplid<=0, the maximum number of variable-size memory pool < mplid)
E CTX Context error ( Called from CPU locked state or non-kernel interrupt.)

[[ Functional description ]
This service call returns various statuses of the variable-size memory pool indicated by mplid.

¢ wiskid
Unused.
& fmplsz
A free memory size is returned.
@ fblksz
The maximum size of memory that can be acquired immediately is returned.

If this service call is to be issued from task context, use ref_mpl; if issued from non-task context, use iref_mpl.

When a service call is called from CPU locked state or non-kernel interrupt, it becomes an error, and E_CTX is returned.

- 168 -



[[ Example program statement ]]

<<Example statement in C language>>
#include <itron.hs>

#include <kernel.h>
#include “kernel id.h”
void task()

T RMPL rmpl;
ER ercd;

ercd': ref mpl( ID MPL1, &rmpl );

}

<<Example statement in assembly language>>
.include mrl100.inc

.GLB task

_ refmpl: .blkb 10
task:

PUSH.W R2
PUSH.L Al

ref _mpl #ID MPL1l, refmpl

- 169 -



5.11Time Management Function
Specifications of the time management function of MR100 are listed in Table 5.21.

Table 5.21 Specifications of the Time Management Function

No. Item Content
1 System time value Unsigned 48 bits
2 Unit of system time value 1[ms]
3 System time updating cycle User-specified time tick updating time [ms]
4 Initial value of system time (at initial startup) 000000000000H
Table 5.22 List of Time Management Function Service Call
No. Service Call Function System State
T N E D U
1 get_tim [S] Reference system time ) 0 0 0
2 iget_tim 0 0 @) 0
3 set_tim [S] Set system time ) ) ) )
4 iset tim 0 0 @) 0
5 isig_tim | [S] Supply a time tick 0 0 0 0
Notes:

® [S]: Standard profile service calls
[B]: Basic profile service calls

® Each sign within " System State " is a following meaning.
T: Can be called from task context

* & 6 O 0o o

N: Can be called from non-task context

E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

-170 -




set_tim Set system time
iset_tim Set system time (handler only)

[[ C Language API ]]
ER ercd = set_tim( SYSTIM *p_systim );
ER ercd = iset_tim( SYSTIM *p_systim );
® Parameters
SYSTIM *p_systim Pointer to the packet that indicates the system time to be set

Contents of p_systim
typedef struct t_systim {

UH utime 0 2 (16 high-order bits)
uw Itime +4 4 (32 low-order bits)
} SYSTIM;
® Return Parameters
ER ercd Terminated normally (E_OK)
[[ Assembly language API 1]

-include mrl100.inc
set_tim PK TIM
iset_tim PK_TIM
® Parameters
PK_TIM Pointer to the packet that indicates the system time to be set

® Register contents after service call is issued
Register name Content after service call is issued

RO Error code
Al Pointer to the packet that indicates the system time to be set
[[ Error code ]I
E_CTX Context error ( Called from CPU locked state or non-kernel interrupt.)
E_PAR System time invalid(Ox7FFF:FFFF < parameter)

[[ Functional description 1]
This service call updates the current value of the system time to the value indicated by p_systim. The time specified in
p_systim is expressed in ms units, and not by the number of time ticks.

The values specified for p_systim must be within Ox7FFF: FFFFFFFF. If any value exceeding this limit is specified, it be-
comes an error, and E_PAR is returned.

If this service call is to be issued from task context, use set_tim; if issued from non-task context, use iset_tim.

When a service call is called from CPU locked state or non-kernel interrupt, it becomes an error, and E_CTX is returned.

-171 -



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

SYSTIME time; /* Time data storing variable */
time.utime = 0; /* Sets upper time data */
time.ltime = 0; /* Sets lower time data */
set_tim( &time ); /* Sets the system time */

}

<<Example statement in assembly language>>
.include mr1l00.inc
.GLB task
_g_systim:
.WORD 1111H
.LWORD 22223333H
task:

PUSHM Al
set_tim #_g_systim

-172 -



get_tim Reference system time
iget_tim Reference system time (handler only)

[[ C Language API ]]
ER ercd = get_tim( SYSTIM *p_systim );
ER ercd = iget_tim( SYSTIM *p_systim );
® Parameters
SYSTIM *p_systim Pointer to the packet to which current system time is returned

® Return Parameters
ER ercd Terminated normally (E_OK)
SYSTIM *p_systim Pointer to the packet to which current system time is returned

Contents of p_systim
typedef struct t_systim {

UH utime 0 2 (16 high-order bits)
uw Itime +4 4 (32 low-order bits)
} SYSTIM;
[[ Assembly language API 1]

-.include mri100.inc
get _tim PK TIM
iget _tim PK_TIM
® Parameters
PK_TIM Pointer to the packet to which current system time is returned

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code
Al Pointer to the packet to which current system time is returned
[[ Error code ]I
E_CTX Context error ( Called from CPU locked state or non-kernel interrupt.)

[[ Functional description ]
This service call stores the current value of the system time in p_systim.

If this service call is to be issued from task context, use get_tim; if issued from non-task context, use iget_tim.

When a service call is called from CPU locked state or non-kernel interrupt, it becomes an error, and E_CTX is returned.

-173 -



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

SYSTIME time; /* Time data storing variable */
get_tim( &time ); /* Refers to the system time */

<<Example statement in assembly language>>
.include mr1l00.inc

.GLB task
_g_systim: .blkb 6
task:

PUS'HM Al

get_tim #_g systim

-174 -



Isig_tim Supply a time tick

[[ Functional description ]]
This service call updates the system time.

The isig_tim is automatically started every tick_time interval(ms) if the system clock is defined by the configuration file.
The application cannot call this function because it is not implementing as service call.

When a time tick is supplied, the kernel is processed as follows:

(1) Updates the system time

(2) Starts an alarm handler

(3) Starts a cyclic handler

(4) Processes the timeout processing of the task put on WAITING state by service call with timeout such

as tslp_tsk.

-175 -



5.12Time Management Function (Cyclic Handler)

Specifications of the cyclic handler function of MR100 are listed in Table 5.23. The cyclic handler description languages in
item No. 4 are those specified in the GUI configurator. They are not output to a configuration file, nor are the MR100 ker-
nel concerned with them.

Table 5.23 Specifications of the Cyclic Handler Function

No. Item Content

1 Cyclic handler ID 1-255

2 Activation cycle 1-7fffffff[ms]

3 Activation phase O-7Fffffff[ms]

4 Extended information 32 bits

5 Cyclic handler attribute TA_HLNG: Handlers written in high-level language

TA_ASM: Handlers written in assembly language
TA_STA: Starts operation of cyclic handler
TA_PHS: Saves activation phase

Table 5.24 List of Cyclic Handler Function Service Call

No. Service Call Function System State
T N E D U
1 sta_cyc [SI[B] | Starts cyclic handler operation ) ) ) 0
2 ista_cyc ) ) ) )
3 stp_cyc [SI[B] | Stops cyclic handler operation O ) ) )
4 istp_cyc ) ) ) 0
5 ref cyc Reference cyclic handler status 0 ) ) 0
6 iref cyc ) ) ) o]
Notes:
® [S]: Standard profile service calls

[B]: Basic profile service calls

Each sign within " System State " is a following meaning.
T. Can be called from task context

N: Can be called from non-task context

E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

* & 6 O o o

-176 -




sta_cyc Start cyclic handler operation
ista_cyc Start cyclic handler operation (handler only)

[[ C Language API ]]
ER ercd = sta_cyc( ID cycid );
ER ercd = ista cyc( ID cycid );

® Parameters

ID cycid ID number of the cyclic handler to be operated
@ Return Parameters
ER ercd Terminated normally (E_OK)
[[ Assembly language API 1]

-include mrl100.1inc
sta_cyc CYCNO
ista_cyc CYCNO

® Parameters
CYCNO ID number of the cyclic handler to be operated

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code
R2 ID number of the cyclic handler to be operated
[[ Error code 1]
E CTX Context error ( Called from CPU locked state or non-kernel interrupt.)
E ID Invalid ID number

(cycid<=0, the maximum number of cyclic handler < cycid)

[[ Functional description 1]

This service call places the cyclic handler indicated by cycid into an operational state. If the cyclic handler attribute of
TA_PHS is not specified, the cyclic handler is started every time the activate cycle elapses, start with the time at which this
service call was invoked.

If while TA_PHS is not specified this service call is issued to a cyclic handler already in an operational state, it sets the time
at which the cyclic handler is to start next.

If while TA_PHS is specified this service call is issued to a cyclic handler already in an operational state, it does not set the
startup time.

If this service call is to be issued from task context, use sta_cyc; if issued from non-task context, use ista_cyc.

When a service call is called from CPU locked state or non-kernel interrupt, it becomes an error, and E_CTX is returned.

-177 -



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

sta_cyc ( ID cycl );

}

<<Example statement in assembly language>>
.include mrl100.inc
.GLB task

task:

PUSH.W R2
sta_cyc #ID_CYC1

-178 -



stp_cyc Stops cyclic handler operation
iIstp_cyc Stops cyclic handler operation (handler only)

[[ C Language API ]]
ER ercd = stp_cyc( ID cycid );
ER ercd = istp_cyc( ID cycid );

® Parameters

ID cycid ID number of the cyclic handler to be stopped
@ Return Parameters
ER ercd Terminated normally (E_OK)
[[ Assembly language API 1]

-include mrl100.1inc
stp_cyc CYCNO
istp_cyc CYCNO

® Parameters
CYCNO ID number of the cyclic handler to be stopped

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code
R2 ID number of the cyclic handler to be stopped
[[ Error code 1]
E CTX Context error ( Called from CPU locked state or non-kernel interrupt.)
E ID Invalid ID number

(cycid<=0, the maximum number of cyclic handler < cycid)

[[ Functional description 1]
This service call places the cyclic handler indicated by cycid into a non-operational state.

If this service call is to be issued from task context, use stp_cyc; if issued from non-task context, use istp_cyc.

When a service call is called from CPU locked state or non-kernel interrupt, it becomes an error, and E_CTX is returned.

[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

stp cyc ( ID cycl );

}

<<Example statement in assembly language>>
.include mr1l00.inc
.GLB task

task:

PUSH.W R2
stp_cyc #ID_CYC1

-179 -



ref_cyc
iref_cyc

Reference cyclic handler status
Reference cyclic handler status (handler only)

[[ C Language API ]]

ER ercd = ref_cyc( ID cycid, T_RCYC *pk_rcyc );
ER ercd = iref_cyc( ID cycid, T_RCYC *pk_rcyc );

® Parameters

ID cycid ID number of the target cyclic handler

T_RCYC *pk_rcyc Pointer to the packet to which cyclic handler status is returned
@ Return Parameters

ER ercd Terminated normally (E_OK)

T _RCYC *pk_recyc Pointer to the packet to which cyclic handler status is returned

Contents of pk_rcyc

typedef struct t reyc{
STAT cycstat +0 2 Operating status of cyclic handler
RELTIM  lefttim +2 4 Left time before cyclic handler starts up
} T_RCYC;
[[ Assembly language API ]]

-include mrl100.inc
ref cyc |ID,PK RCYC
iref_cyc ID,PK_RCYC

® Parameters
CYCNO

PK_RCYC

ID number of the target cyclic handler

Pointer to the packet to which cyclic handler status is returned

@ Register contents after service call is issued

Register name
RO
R2
Al

[[ Error code 1]
E_CTX
E ID

Content after service call is issued
Error code
ID number of the target cyclic handler

Pointer to the packet to which cyclic handler status is returned

Context error ( Called from CPU locked state or non-kernel interrupt.)
Invalid ID number
(cycid<=0, the maximum number of cyclic handler < cycid)

[[ Functional description 1]
This service call returns various statuses of the cyclic handler indicated by cycid.

& cycstat
The status of the target cyclic handler is returned.
*TCYC_STA Cyclic handler is an operational state.
*TCYC_STP Cyclic handler is a non-operational state.
@ lefttim

The remaining time before the target cyclic handler will start next is returned. This time is expressed in ms units.
If the target cyclic handler is non-operational state, the returned value is indeterminate.

If this service call is to be issued from task context, use ref_cyc; if issued from non-task context, use iref _cyc.

When a service call is called from CPU locked state or non-kernel interrupt, it becomes an error, and E_CTX is returned.

-180 -



[[ Example program statement ]]

<<Example statement in C language>>
#include <itron.h>

#include <kernel.h>
#include “kernel id.h”
void task()

T RCYC rcyc;
ER ercd;

ercd = ref cyc( ID CYC1l, &rcyc );

}

<<Example statement in assembly language>>
.include mrl100.inc

.GLB task

_ refcyc: .blkb 6
task:

PUSH.W R2
PUSH.L Al

ref_cyc #ID_CYC1,#_ refcyc

-181 -



5.13Time Management Function (Alarm Handler)

Specifications of the alarm handler function of MR100 are listed in Table 5.25. The alarm handler description languages in
item No. 4 are those specified in the GUI configurator. They are not output to a configuration file, nor are the MR100 ker-

nel concerned with them.

Table 5.25 Specifications of the Alarm Handler Function

No. Item Content
1 Alarm handler ID 1-255
2 Activation time O-7Fffffff [ms]
3 Extended information 16 bits
4 Alarm handler attribute TA_HLNG: Handlers written in high-level language
TA_ASM: Handlers written in assembly language

Table 5.26 List of Alarm Handler Function Service Call

No. Service Call Function System State
T N E D U
1 sta_alm Starts alarm handler operation 0 0 ) 0
2 ista_alm ) ) 0 0)
3 stp_alm Stops alarm handler operation 0 0 0 0
4 istp_alm 0 O 0 0
5 ref alm References alarm handler status 0 0 ) )
6 iref_alm 0 O 0 0
Notes:
® [S]: Standard profile service calls
[B]: Basic profile service calls
® FEach sign within " System State " is a following meaning.

¢ T: Can be called from task context

¢ N: Can be called from non-task context

+ E: Can be called from dispatch-enabled state
¢ D: Can be called from dispatch-disabled state
¢ U: Can be called from CPU-unlocked state

¢ L: Can be called from CPU-locked state

-182 -




sta_alm Start alarm handler operation
ista_alm Start alarm handler operation (handler only)

[[ C Language API ]]
ER ercd = sta_alm( ID almid, RELTIM almtim );
ER ercd = ista_alm( ID almid, RELTIM almtim );

® Parameters

ID almid ID number of the alarm handler to be operated
RELTIM almtim Alarm handler startup time (relative time)
@ Return Parameters
ER ercd Terminated normally (E_OK)
[[ Assembly language API 1]

-.include mrl100.inc
sta alm ALMID,ALMTIM
ista _alm ALMID,ALMTIM
® Parameters
ALMID ID number of the alarm handler to be operated

ALMTIM Alarm handler startup time (relative time)

® Register contents after service call is issued
Register name Content after service call is issued

RO Error code
R2 ID number of the alarm handler to be operated
R6R4 Alarm handler startup time (relative time)
[[ Error code ]I
E CTX Context error ( Called from CPU locked state or non-kernel interrupt.)
E_PAR Parameter error
(OX7FFFFFFF — TIC_NUME < almtim)
E ID Invalid ID number

(almid<=0, the maximum number of alarm handler < almid)

[[ Functional description ]]
This service call sets the activation time of the alarm handler indicated by almid as a relative time of day after the lapse of
the time specified by almtim from the time at which it is invoked, and places the alarm handler into an operational state.

If an already operating alarm handler is specified, the previously set activation time is cleared and updated to a new activa-
tion time. If almtim = 0 is specified, the alarm handler starts at the next time tick. The values specified for almtim must be
within (Ox7FFFFFFF — time tick value). If any value exceeding this limit is specified, it becomes an error, and E_PAR is
returned. If 0 is specified for almtim , the alarm handler is started at the next time tick.

If this service call is to be issued from task context, use sta_alm; if issued from non-task context, use ista_alm.

When a service call is called from CPU locked state or non-kernel interrupt, it becomes an error, and E_CTX is returned.

-183 -



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void task()

sta_alm ( ID alml,100 );

}

<<Example statement in assembly language>>
.include mrl00.inc
.GLB task

task:

PUSH.W R2
PUSHM R6R4
sta_alm #ID_ALMI1,#100

-184 -



stp_alm Stop alarm handler operation
iIstp_alm Stop alarm handler operation (handler only)

[[ C Language API ]]
ER ercd = stp_alm( ID almid );
ER ercd = istp_alm( ID almid );

® Parameters

ID almid ID number of the alarm handler to be stopped
@ Return Parameters
ER ercd Terminated normally (E_OK)
[[ Assembly language API 1]

-include mrl100.1inc
stp_alm ALMID
istp_alm ALMID

® Parameters
ALMID ID number of the alarm handler to be stopped

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code
R2 ID number of the alarm handler to be stopped
[[ Error code 1]
E CTX Context error ( Called from CPU locked state or non-kernel interrupt.)
E ID Invalid ID number

(almid<=0, the maximum number of alarm handler < almid)

[[ Functional description 1]
This service call places the alarm handler indicated by almid into a non-operational state.

If this service call is to be issued from task context, use stp_alm; if issued from non-task context, use istp_alm.

When a service call is called from CPU locked state or non-kernel interrupt, it becomes an error, and E_CTX is returned.

[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

stp_élm ( ID_alml );

}

<<Example statement in assembly language>>
.include mr1l00.inc
.GLB task

task:

PUSH.W R2
stp_alm #ID ALM1

-185 -



ref _alm Reference alarm handler status
iref_alm Reference alarm handler status (handler only)

[[ C Language API ]]
ER ercd = ref_alm( ID almid, T_RALM *pk_ralm );
ER ercd = iref_alm( ID almid, T_RALM *pk_ralm );

® Parameters

ID almid ID number of the target alarm handler
T_RALM *pk_ralm Pointer to the packet to which alarm handler status is returned
@ Return Parameters
ER ercd Terminated normally (E_OK)
T _RALM *pk_ralm Pointer to the packet to which alarm handler status is returned

Contents of pk_ralm

typedef struct t ralm{
STAT almstat +0 2 Operating status of alarm handler
RELTIM lefttim +2 4 This service call returns various statuses of the alarm handler

indicat
} T_RALM;
[[ Assembly language API ]]

-.include mr100.inc

ref_alm ALMID,PK_RALM

iref_alm ALMID,PK_RALM

® Parameters

ALMID ID number of the target alarm handler

PK_RALM  Pointer to the packet to which alarm handler status is returned

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code
R2 ID number of the target alarm handler
Al Pointer to the packet to which alarm handler status is returned
[ Error code ]I
E CTX Context error ( Called from CPU locked state or non-kernel interrupt.)
E_ID Invalid 1D number

(almid<=0, the maximum number of alarm handler < almid)

[[ Functional description ]
This service call returns various statuses of the alarm handler indicated by almid.

€ almstat
The status of the target alarm handler is returned.
*TALM_STA Alarm handler is an operational state.
*TALM_STP Alarm handler is a non-operational state.
@ lefttim

The remaining time before the target alarm handler will start next is returned. This time is expressed in ms units.
If the target alarm handler is a non-operational state, the returned value is indeterminate.

If this service call is to be issued from task context, use ref_alm; if issued from non-task context, use iref_alm.

When a service call is called from CPU locked state or non-kernel interrupt, it becomes an error, and E_CTX is returned.

- 186 -



[[ Example program statement ]]

<<Example statement in C language>>
#include <itron.h>

#include <kernel.h>
#include “kernel_id.h”
void task()

T RALM ralm;
ER ercd;

ercd = ref _alm( ID ALM1l, &ralm );

<<Example statement in assembly language>>
.include mr1l00.inc

.GLB task
_ refalm: .blkb 6
task:
PUSH.W R2

PUSH.L Al
ref alm #ID ALM1,# refalm

- 187 -



5.14System Status Management Function

Table 5.27 List of System Status Management Function Service Call

No. Service Call Function System State
T N E D U L
1 rot_rdg | [S][B] Rotates task precedence 0 ) 0 0
2 irot_rdg [SI[B] 0] O] O) O]
3 get_tid [SI[B] References task 1D in the RUNNING state ) O @) )
4 iget_tid [S] 0 0 0 0
5 loc_cpu [S][B] Locks the CPU O] 0 O ) 0
6 iloc_ cpu | [S] ) ) ) ) 0
7 unl_cpu [S][B] Unlocks the CPU ) ) ) ) 0
8 iunl_cpu | [S] ) ) ) ) 0
9 dis_dsp [S][B] Disables dispatching 0 ) 0 0
10 ena_dsp [S][B] Enables dispatching ) O ) )
11 sns_ctx [S] References context 0 0] ) 0 0 O)
12 sns_loc [S] References CPU state 0 0 0 0 O 0
13 sns_dsp [S] References dispatching state ) ) 0 0 0 )
14 sns_dpn [S] References dispatching pending state 0 0 0 0 O )
15 vsys_dwn Call system downroutine ) ) 0 ) 0]
16 ivsys_dwn O] ) ) 0 0
Notes:

® [S]: Standard profile service calls
[B]: Basic profile service calls

® FEach sign within " System State " is a following meaning.
¢ T Can be called from task context

* & 6 o o

N: Can be called from non-task context

E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

-188 -




rot_rdq Rotate task precedence
irot_rdqg Rotate task precedence (handler only)

[[ C Language API ]]
ER ercd = rot_rdq( PRI tskpri );
ER ercd = irot_rdq( PRI tskpri );
® Parameters

PRI tskpri Task priority to be rotated
@ Return Parameters
ER ercd Terminated normally (E_OK)
[[ Assembly language API 1]

-.include mrl1l00.inc
rot_rdq TSKPRI
irot_rdq TSKPRI
® Parameters
TSKPRI Task priority to be rotated

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code
R3 Task priority to be rotated
[[ Error code 1]
E CTX Context error ( Called from the system status not permitted.)
E_PAR Parameter error

(‘tskpri < 0, the maximum priority of task < tskpri)

-189 -



[[ Functional description ]]

This service call rotates the ready queue whose priority is indicated by tskpri. In other words, it relocates the task enqueued
at the top of the ready queue of the specified priority by linking it to behind the tail of the ready queue, thereby switching
over the executed tasks that have the same priority. Figure 5-1 depicts the manner of how this is performed.

Proprity 1 TCB
Priority 2 TCB TCB
Priority n TCB TCB TCB -->

Moved to behind the tail of the queue

Figure 5-1. Manipulation of the ready queue by the rot_rdq service call

By issuing this service call at given intervals, it is possible to perform round robin scheduling. If tskpri=TPRI_SELF is
specified when using the rot_rdq service call, the ready queue whose priority is that of the issuing task is rotated.
TPRI_SELF cannot be specified by irot_rdq service call. However, error E_PAR is returned even if it is specified.

If the priority of the issuing task itself is specified in this service call, the issuing task is relocated to behind the tail of the
ready queue in which it is enqueued. Note that if the ready queue of the specified priority has no tasks in it, no operation is
performed.

If this service call is to be issued from task context, use rot_rdg; if issued from non-task context, use irot_rdq.

When a service call is called from the system state which is not permitted, it becomes an error, and E_CTX is returned.

[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.hs>
#include <kernel.h>
#include “kernel_id.h”
void task()

rot_qu( 2 );

}

<<Example statement in assembly language>>
.include mr1l00.inc

.GLB task
task:
PUSH.W R3

rot_rdqg #2

-190 -



get_tid Reference task ID in the RUNNING state
iget_tid Reference task ID in the RUNNING state
(handler only)

[[ C Language API ]]
ER ercd = get_tid( ID *p_tskid );
ER ercd = iget _tid( ID *p_tskid );

® Parameters

ID *p_tskid Pointer to task ID
@ Return Parameters
ER ercd Terminated normally (E_OK)
ID *p_tskid Pointer to task ID
[[ Assembly language API 1]
-.include mrl1l00.inc
get_tid
iget_tid
® Parameters
None

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code
R2 Acquired task 1D
[[ Error code 1]
E CTX Context error ( Called from CPU locked state or non-kernel interrupt.)

[[ Functional description ]]

This service call returns the task ID currently in RUNNING state to the area pointed to by p_tskid. If this service call is
issued from a task, the ID number of the issuing task is returned. If this service call is issued from non-task context, the task
ID being executed at that point in time is returned. If there are no tasks currently in an executing state, TSK_NONE is re-
turned.

If this service call is to be issued from task context, use get_tid; if issued from non-task context, use iget_tid.

When a service call is called from CPU locked state or non-kernel interrupt, it becomes an error, and E_CTX is returned.

[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.hs>
#include <kernel.h>
#include “kernel id.h”
void task()

ID tskid;
get_tid(stskid);

}
<<Example statement in assembly language>>
.include mrl00.inc
.GLB task
task:

get;tid

-191 -



loc_cpu Lock the CPU
iloc_cpu Lock the CPU (handler only)

[[ C Language API ]]
ER ercd = loc_cpu(Q);
ER ercd = iloc_cpuQ);

® Parameters

None
@ Return Parameters
ER ercd Terminated normally (E_OK)
[[ Assembly language API ]]
-.include mrl00.inc
loc_cpu
iloc_cpu
@ Parameters
None

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code
[[ Error code ]
E CTX Context error ( Called from non-kernel interrupt.)

[[ Functional description 1]
This service call places the system into a CPU locked state, thereby disabling interrupts and task dispatches. The features of
a CPU locked state are outlined below.

(1) No task scheduling is performed during a CPU locked state.
(2) No external interrupts are accepted unless their priority levels are higher than the kernel interrupt
mask level defined in the configurator.
(3) Only the following service calls can be invoked from a CPU locked state. If any other service calls
are invoked, operation of the service call cannot be guaranteed.
* ext_tsk
*loc_cpu, iloc_cpu
*unl_cpu, iunl_cpu
* sns_ctx
*sns_loc
*sns_dsp
*sns_dpn

The system is freed from a CPU locked state by one of the following operations.

(a) Invocation of the unl_cpu or iunl_cpu service call
(b) Invocation of the ext_tsk service call

Transitions between CPU locked and CPU unlocked states occur only when the loc_cpu, iloc_cpu, unl_cpu, iunl_cpu, or
ext_tsk service call is invoked. The system must always be in a CPU unlocked state when the interrupt handler or the time
event handler is terminated. If either handler terminates while the system is in a CPU locked state, handler operation cannot
be guaranteed. Note that the system is always in a CPU unlocked state when these handlers start.

Invoking this service call again while the system is already in a CPU locked state does not cause an error, in which case
task queuing is not performed, however.

If this service call is to be issued from task context, use loc_cpu; if issued from non-task context, use iloc_cpu.

When a service call is called from non-kernel interrupt, it becomes an error, and E_CTX is returned.

-192 -



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

lac_cpu();

}

<<Example statement in assembly language>>
.include mrl100.inc
.GLB task

task:

loc;cpu

-193 -



unl_cpu Unlock the CPU
iunl_cpu Unlock the CPU (handler only)

[[ C Language API ]]
ER ercd = unl_cpuQ);
ER ercd = iunl_cpuQ;

® Parameters

None
® Return Parameters
ER ercd Terminated normally (E_OK)

[[ Assembly language API ]]

.include mrl100.inc

unl_cpu

iunl_cpu

® Parameters

None

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code
[[ Error code ]
E CTX Context error ( Called from the system status not permitted.)

[[ Functional description 1]

This service call frees the system from a CPU locked state that was set by the loc_cpu or iloc_cpu service call. If the
unl_cpu service call is issued from a dispatching enabled state, task scheduling is performed. If the system was put into a
CPU locked state by invoking iloc_cpu within an interrupt handler, the system must always be placed out of a CPU locked
state by invoking iunl_cpu before it returns from the interrupt handler.

The CPU locked state and the dispatching disabled state are managed independently of each other. Therefore, the system
cannot be freed from a dispatching disabled state by the unl_cpu or iunl_cpu service call unless the ena_dsp service call is
used.

If this service call is to be issued from task context, use unl_cpu; if issued from non-task context, use iunl_cpu.

When a service call is called from the system state which is not permitted, it becomes an error, and E_CTX is returned.

[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.hs>
#include <kernel.h>
#include “kernel id.h”
void task()

uﬂl_cpu();

}

<<Example statement in assembly language>>
.include mr1l00.inc
.GLB task

task:

unl_ cpu

-194 -



dis_dsp Disable dispatching

[[ C Language API ]]
ER ercd = dis_dsp(Q);

® Parameters
None

® Return Parameters
ER ercd Terminated normally (E_OK)

[[ Assembly language API 1]
.include mr100.inc
dis_dsp
® Parameters

None

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO Error code
[[ Error code ]I
E CTX Context error ( Called from CPU locked state or non-task context.)

[[ Functional description 1]
This service call places the system into a dispatching disabled state. The features of a dispatching disabled state are outlined
below.

(1) Since task scheduling is not performed anymore, no tasks other than the issuing task itself will be
placed into RUNNING state.

(2) Interrupts are accepted.

(3) No service calls can be invoked that will place tasks into WAITING state.

If one of the following operations is performed during a dispatching disabled state, the system status returns to a task exe-
cution state.

(a) Invocation of the ena_dsp service call
(b) Invocation of the ext_tsk service call

Transitions between dispatching disabled and dispatching enabled states occur only when the dis_dsp, ena_dsp, or ext_tsk
service call is invoked.

Invoking this service call again while the system is already in a dispatching disabled state does not cause an error, in which
case task queuing is not performed, however.

This service call can be issued only from task context. It cannot be issued from non-task context.

When a service call is called from CPU locked state or non-task context, it becomes an error, and E_CTX is returned.

-195 -



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void task()

dfs_dsp();

}

<<Example statement in assembly language>>
.include mrl00.inc
.GLB task

task:

dis;dsp

-196 -



ena_dsp Enables dispatching

[[ C Language API ]]
ER ercd = ena_dsp(Q);

® Parameters
None

® Return Parameters
ER ercd Terminated normally (E_OK)

[[ Assembly language API 1]
-include mrl100.inc
ena_dsp

® Parameters
None

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO Error code
[[ Error code ]I
E CTX Context error ( Called from CPU locked state or non-task context.)

[[ Functional description 1]
This service call frees the system from a dispatching disabled state that was set by the dis_dsp service call. As a result, task
scheduling is resumed when the system has entered a task execution state.

Invoking this service call from a task execution state does not cause an error, in which case task queuing is not performed,
however.

This service call can be issued only from task context. It cannot be issued from non-task context.

When a service call is called from CPU locked state or non-task context, it becomes an error, and E_CTX is returned.

[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()

eﬂa_dsp();

}

<<Example statement in assembly language>>
.include mrl00.inc
.GLB task

task:

ena_dsp

-197 -



sns_ctx Reference context

[[ C Language API ]]
BOOL state = sns_ctx();

® Parameters
None

® Return Parameters
BOOL state TRUE: Non-task context
FALSE: Task context

[[ Assembly language API 1]
-include mrl100.inc
sns_ctx

® Parameters
None

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO TRUE:Non-Task context
FALSE: Task context

[[ Error code ]

E CTX Context error ( Called from non-kernel interrupt.)

[[ Functional description 1]
This service call returns TRUE when it is invoked from non-task context, or returns FALSE when invoked from task con-
text. This service call can also be invoked from a CPU locked state.

When a service call is called from non-kernel interrupt, it becomes an error, and E_CTX is returned.

[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.hs>
#include <kernel.h>
#include “kernel id.h”
void task()

BOOL stat;
stat = sns_ctx();

}

<<Example statement in assembly language>>
.include mrl100.inc
.GLB task

task:

sns_ctx

-198 -



sns_loc Reference CPU state

[[ C Language API ]]
BOOL state = sns_loc();

® Parameters
None

® Return Parameters
BOOL state TRUE: CPU locked state
FALSE: CPU unlocked state

[[ Assembly language API 1]
-include mrl100.inc
sns_loc

® Parameters
None

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO TRUE: CPU locked state
FALSE:CPU unlocked state

[[ Error code ]

E CTX Context error ( Called from non-kernel interrupt.)

[[ Functional description 1]

This service call returns TRUE when the system is in a CPU locked state, or returns FALSE when the system is in a CPU
unlocked state. This service call can also be invoked from a CPU locked state.

When a service call is called from non-kernel interrupt, it becomes an error, and E_CTX is returned.

[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.hs>
#include <kernel.h>
#include “kernel id.h”
void task()

BOOL stat;
stat = sns_loc();
<<Example statement in assembly language>>
.include mrl100.inc
.GLB task
task:

sns_loc

-199 -



sns_dsp Reference dispatching state

[[ C Language API ]]
BOOL state = sns_dsp(Q);

® Parameters
None

® Return Parameters
BOOL state TRUE: Dispatching disabled state
FALSE: Dispatching enabled state

[[ Assembly language API 1]
.include mr100.inc
sns_dsp
® Parameters

None

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO TRUE: Dispatching disabled state
FALSE: Dispatching enabled state

[[ Error code ]

E CTX Context error ( Called from non-kernel interrupt.)

[[ Functional description 1]
This service call returns TRUE when the system is in a dispatching disabled state, or returns FALSE when the system is in
a dispatching enabled state. This service call can also be invoked from a CPU locked state.

When a service call is called from non-kernel interrupt, it becomes an error, and E_CTX is returned.

[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.hs>
#include <kernel.h>
#include “kernel id.h”
void task()

BOOL stat;
stat = sns dsp();

}

<<Example statement in assembly language>>
.include mrl100.inc
.GLB task

task:

sns_dsp

- 200 -



sns_dpn Reference dispatching pending state

[[ C Language API ]]
BOOL state = sns_dpn();

® Parameters

None

® Return Parameters
BOOL state TRUE: Dispatching pending state
FALSE: Not dispatching pending state
[[ Assembly language API 1]

-include mrl100.inc
sns_dpn
@ Parameters

None

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO TRUE: Dispatching pending state
FALSE: Not dispatching pending state
[[ Error code ]I
E CTX Context error ( Called from non-kernel interrupt.)

[[ Functional description 1]

This service call returns TRUE when the system is in a dispatching pending state, or returns FALSE when the system is not
in a dispatching pending state. More specifically, FALSE is returned when all of the following conditions are met; other-
wise, TRUE is returned.

(1) The system is not in a dispatching pending state.
(2) The system is not in a CPU locked state.
(3) The object made pending is a task.

This service call can also be invoked from a CPU locked state. It returns TRUE when the system is in a dispatching dis-
abled state, or returns FALSE when the system is in a dispatching enabled state.

When a service call is called from non-kernel interrupt, it becomes an error, and E_CTX is returned.

[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

BOOL stat;
stat = sns_dpn() ;

}

<<Example statement in assembly language>>
.include mrl00.inc
.GLB task

task:

sns;dpn

-201 -



vsys_dwn System down
ivsys_dwn System down (handler only)

[[ C Language API ]]
void vsys _dwn(W type, ER ercd, VW infl, VW inf2);
void ivsys dwn(W type, ER ercd, VW infl, VW inf2);

® Parameters

W type Kind of error

ER ercd Error code

VW infl System error information 1
VW inf2 System error information 2

® Return Parameters
None

[[ Assembly language API ]]
-include mrl100.inc
vsys_dwn
ivsys_dwn
® Parameters
Register name The value must be set before vsys_dwn( ivsys_dwn) is called

R7 Kind of error

RO Error code

R3R1 System error information 1
R6R4 System error information 2

@ Register contents after service call is issued
Register name Content after service call is issued

R7 Kind of error

RO Error code

R3R1 System error information 1

R6R4 System error information 2
[[ Error code ]

None

[[ Functional description 1]

It jumps to the system down routine defined beforehand. Please set the value (1 to Ox7fffffff) corresponding to the error
occurred as an error classification to type. The values under 0 are reserved for systems. An argument is set as a specifica-
tion register and jumped on the label of a system down as it is. At the beginning of the system down routine, an interrupt is
prohibit and. The label of the system down routine is __sys_dwn.

This routine is defined in the start-up routine as a template. The infinite loop of the default is carried out. Also when fatal
error is detected within a kernel, a system down routine is called. This service call can be called also from a CPU locked
state and non-kernel interrupt.

-202 -



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

vsys dwn(1l, 1,1, 1);

}

<<Example statement in assembly language>>
.include mrl100.inc
.GLB task

task:

MOV.W #1,R7
MOV.W #1,RO
MOV.L #1,R3R1
MOV.L #1,R6R4
vsys_dwn

- 203 -



5.15Interrupt Management Function

Table 5.28 List of Interrupt Management Function Service Call

No. Service Call Function System State
T N E D
1 |retint | Returns from an interrupt handler 0 0 0
Notes:

® [S]: Standard profile service calls
[B]: Basic profile service calls

® FEach sign within " System State " is a following meaning.
T: Can be called from task context

N: Can be called from non-task context

E: Can be called from dispatch-enabled state

D: Can be called from dispatch-disabled state

U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

* & 6 O o o

- 204 -



ret_int Returns from an interrupt handler
(when written in assembly language)

[[ C Language API ]]

This service call cannot be written in C language.

[[ Assembly language API 1]
-include mrl100.inc
ret_int

® Parameters
None

[[ Error code 1]

Not return to the interrupt handler that issued this service call.

[[ Functional description ]]
This service call performs the processing necessary to return from an interrupt handler. Depending on return processing, it
activates the scheduler to switch tasks from one to another.

If this service call is executed in an interrupt handler, task switching does not occur, and task switching is postponed until
the interrupt handler terminates.

However, if the ret_int service call is issued from an interrupt handler that was invoked from an interrupt that occurred
within another interrupt, the scheduler is not activated. The scheduler is activated for interrupts from a task only.

When writing this service call in assembly language, be aware that the service call cannot be issued from a subroutine that
is invoked from an interrupt handler entry routine. Always make sure this service call is executed in the entry routine or
entry function of an interrupt handler. For example, a program like the one shown below may not operate normally.

.include mrl1l00.inc

/* NG */
.GLB intr
intr:
jsr.b func
func:

ret int

Therefore, write the program as shown below.
.include mrl00.inc

/* OK */

.GLB intr

intr:
jsr.b func
ret int

func:

rts

Make sure this service call is issued from only an interrupt handler. If issued from a cyclic handler, alarm handler, or a task,
this service call may not operate normally.

When a service call is called from non-kernel interrupt, it becomes a fatal error and calls system down routine. In this case,
it passes E_CTX as an error code and “-1” as kind of error.

* If the starting function of an interrupt handler is declared by #pragma INTHANDLER, the ret_int service call is automatically issued at the
exit of the function

- 205 -



5.16System Configuration Management Function

Table 5.29 List of System Configuration Management Function Service Call

No. | Service Call Function System State
TIN|JE|DJU]JL
1 | ref ver | [S] | References version information | O 0|00
2 | iref ver 0|0|0|O0O

Notes:

® [S]: Standard profile service calls
[B]: Basic profile service calls

® Each sign within " System State " is a following meaning.
T: Can be called from task context

N: Can be called from non-task context

E: Can be called from dispatch-enabled state

D: Can be called from dispatch-disabled state

U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

* & & O o o

- 206 -



ref _ver Reference version information
iref_ver Reference version information (handler only)

[[ C Language API ]]
ER ercd = ref_ver( T_RVER *pk_rver );
ER ercd = iref_ver( T_RVER *pk _rver );
® Parameters
T _RVER *pk_rver Pointer to the packet to which version information is returned

Contents of pk_rver
typedef struct t_rver {

UH maker 0 2 Kernel manufacturer code
UH prid +2 2 Kernel identification number
UH spver +4 2 ITRON specification version number
UH prver +6 2 Kernel version number
UH prno[4] +8 2 Kernel product management information
} T_RVER;
©® Return Parameters
ER ercd Terminated normally (E_OK)
[[ Assembly language API ]]
-include mr100.1inc
ref ver PK VER
iref_ver PK VER
® Parameters
PK_VER Pointer to the packet to which version information is returned

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO Error code
Al Pointer to the packet to which version information is returned
[[ Error code 1]
E CTX Context error ( Called from CPU locked state or non-kernel interrupt.)

- 207 -



[[ Functional description ]]
This service call reads out information about the version of the currently executing kernel and returns the result to the area
pointed to by pk_rver.

The following information is returned to the packet pointed to by pk_rver.

¢ maker

The code H’0115 denoting Renesas Technology Corporation is returned.
@ prid

The internal identification code IDH’0014 of the M3T-MR100 is returned.
@ spver

The code H’5403 denoting that the kernel is compliant with WITRON Specification Ver 4.03.00 is returned.
@ prver

The code H’0101 denoting the version of the M3T-MR100/4 is returned.
@ prno

e  prno[0]
Reserved for future extension.

e prno[l]
Reserved for future extension.

e prno[2]
Reserved for future extension.

e  prno[3]
Reserved for future extension.

If this service call is to be issued from task context, use ref _ver; if issued from non-task context, use iref_ver.

When a service call is called from CPU locked state or non-kernel interrupt, it becomes an error, and E_CTX is returned.

[[ Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

T RVER pk_rver;
ref ver( &pk rver );
}
<<Example statement in assembly language>>
.include mrl00.inc

.GLB task
_ refver: .blkb 16
task:
PUSHM Al

ref_ver #_refver

- 208 -



5.17Extended Function (Short Data Queue)

Specifications of the Short data queue function of MR100 are listed in Table 5.30. This function is outside the scope of

MITRON 4.0 Specification.

Table 5.30 Specifications of the Short Data Queue Function

No. Item Content

1 Data queue ID 1-255

2 Capacity (data bytes) in data queue area | 0-16383

3 Data size 16 bits

4 Data queue attribute TA_TFIFO: | Waiting tasks enqueued in order of FIFO

TA_TPRI: | Waiting tasks enqueued in order of priority
Table 5.31 List of Long Dataqueue Function Service Call
No. | Service Call Function System State
TIN|E|D|U
1 vsnd_dtg Sends to short data queue O] O 0]
2 vpsnd_dtq Sends to short data queue (polling) ) 0|0|O0
3 vipsnd_dtg 0|0|0|O
4 visnd_dtq Sends to short data queue (with timeout) 0 0 )
5 vfsnd_dtq Forced sends to short data queue ) 0|0|O0
6 vifsnd_dtq 0|0|0|O
7 vrev_dtq Receives from short data queue 0 ) 0
8 vprev_dtq Receives from short data queue (polling) 0 0O|0|O0
9 viprev_dtq 0|0|0|O0
10 | vtrev _dtq Receives from short data queue (with timeout) | O 0 )
11 | vref dtq References short data queue status 0 0O|0|O0
12 | viref dtq 0|0|0|O0
Notes:

® [S]: Standard profile service calls
[B]: Basic profile service calls

® Each sign within " System State " is a following meaning.
T: Can be called from task context

N: Can be called from non-task context

E: Can be called from dispatch-enabled state

D: Can be called from dispatch-disabled state

U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

* & 6 O 0 o

- 209 -




vsnd_dtq Send to Short data queue

vpsnd_dtq Send to Short data queue (polling)
vipsnd_dtq Send to Short data queue (polling, handler only)
visnd_dtq Send to Short data queue (with timeout)
visnd_dtq Forced send to Short data queue
vifsnd_dtq Forced send to Short data queue (handler only)
[[ C Language API ]l
ER ercd = vsnd_dtq( ID vdtqgid, W data );
ER ercd = vpsnd_dtq( ID vdtqid, W data );
ER ercd = vipsnd_dtq( ID vdtqid, W data );
ER ercd = vtsnd_dtq( 1D vdtqid, W data, TMO tmout );
ER ercd = vfsnd _dtq( 1D vdtqid, W data );
ER ercd = vifsnd_dtq( ID vdtqgid, W data );
® Parameters
ID vdtqid ID number of the Short data queue to which transmitted
T™MO tmout Timeout value(vtsnd_dtq)
w data Data to be transmitted
@ Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[ Assembly language API 1]
-.include mri100.inc
vsnd_dtq VDTQID, DTQDATA
visnd_dtq VDTQID, DTQDATA
vpsnd_dtq VDTQID, DTQDATA
vipsnd_dtq VDTQID, DTQDATA
vtsnd_dtq VDTQID, DTQDATA,TMO
vfsnd_dtq VDTQID, DTQDATA
vifsnd_dtq VDTQID, DTQDATA
® Parameters
VDTQID ID number of the Short data queue to which transmitted
DTQDATA  Data to be transmitted
TMO Timeout value(vtsnd_dtq)

@ Register contents after service call is 1ssued
vsnd_dtqg,vpsnd_dtq,vipsnd_dtq,vfsnd_dtq,vifsnd_dtq
Register name Content after service call is issued

RO Error code

R1 Data to be transmitted

R2 ID number of the Short data queue to which transmitted
vtsnd_dtq

Register name Content after service call is issued

RO Error code

R1 Data to be transmitted

R2 ID number of the Short data queue to which transmitted

R6R4 Timeout value

- 210 -



[[ Error code ]

E RLWAI Forced release from waiting

E TMOUT Polling failure or timeout

E ILUSE Service call improperly used (vfsnd_dtq or vifsnd_dtq is issued for a Short data
queue whose dtgcnt = 0)

EV_RST Released from a wait state by clearing of the Short data queue area

E CTX Context error ( Called from the system status not permitted.)

E_PAR Parameter error
(tmout <= -2, OX7FFFFFFF — TIC_NUME < tmout)

E ID Invalid ID number

(vdtgid<=0, the maximum number of short data queue < vdtqid)

[[ Functional description ]]

This service call sends the signed 2-byte data indicated by data to the Short data queue indicated by vdtqid. If any task is
kept waiting for reception in the target Short data queue, the data is not stored in the Short data queue and instead sent to
the task at the top of the reception waiting queue, with which the task is released from the reception wait state.

When data does not exist in short data queue but the waiting task for data transmission exists, namely, when the capacity of
a short data queue area is 0 ,the data which the head task of data transmitting queue is going to transmit is received. As a
result, the waiting state of that waiting task for data transmission is released.

On the other hand, if vsnd_dtq or vtsnd_dtq is issued for a Short data queue that is full of data, the task that issued the ser-
vice call goes from RUNNING state to a data transmission wait state, and is enqueued in a transmission waiting queue,
kept waiting for the Short data queue to become available. In that case, if the attribute of the specified Short data queue is
TA_TFIFO, the task is enqueued in order of FIFO; if TA_TPRI, the task is enqueued in order of priority. For vpsnd_dtq and
vipsnd_dtg, the task returns immediately and responds to the call with the error code E_TMOUT.

For the vtsnd_dtq service call, specify a wait time for tmout in ms units. The values specified for tmout must be within
(OX7FFFFFFF-time tick value). If any value exceeding this limit is specified, it becomes an error, and E_PAR is returned. If
TMO_POL=0 is specified for tmout, it means specifying O as a timeout value, in which case the service call operates the
same way as vpsnd_dtq. Furthermore, if specified as tmout=TMO_FEVR(-1), it means specifying an infinite wait, in
which case the service call operates the same way as vsnd_dtg.

If there are no tasks waiting for reception, nor is the Short data queue area filled, the transmitted data is stored in the Short
data queue.

The task placed into a wait state by execution of the vsnd_dtq or vtsnd_dtq service call is released from WAITING state in
the following cases:

€ When the vrcv_dtq, vtrcv_dtq, vprcv_dtq, or viprcv_dtqg service call is issued before the tmout
time elapses, with task-awaking conditions thereby satisfied
The error code returned in this case is E_OK.

€ When the first time tick occurred after tmout elapsed while task-awaking conditions remain un-
satisfied
The error code returned in this case is E_ TMOUT.

€ When the task is forcibly released from WAITING state by the rel_wai or irel_wai service call is-
sued from another task or a handler
The error code returned in this case is E_RLWAI.

€ When the target Short data queue being waited for is initialized by the vrst_vdtq service call is-
sued from another task
The error code returned in this case is EV_RST.

For vfsnd_dtq and vifsnd_dtq, the data at the top of the Short data queue or the oldest data is removed, and the transmitted
data is stored at the tail of the Short data queue. If the Short data queue area is not filled with data, vfsnd_dtq and
vifsnd_dtq operate the same way as vsnd_dtq.

If this service call is to be issued from task context, use vsnd_dtq,vtsnd_dtq,vpsnd_dtg,vfsnd_dtq; if issued from non-task
context, use vipsnd_dtq,vifsnd_dtq.

When a service call is called from the system state which is not permitted, it becomes an error, and E_CTX is returned.

-211 -



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
W datal[10];
void task (void)

if ( vend_dtq( ID_dtq, datal0]) == E RLWAI ) {
error (“Forced released\n”) ;

if ( vpsnd dtq( ID dtq, data[l]l)== E_TMOUT ) {
error (“Timeout\n”) ;

if ( vtsnd dtq( ID dtq, datal2], 10 ) != E_TMOUT ) {
error (“Timeout \n”);

if ( vfsnd dtg( ID dtg, data[3]) != E_OK ){
error (“error\n”) ;

}

<<Example statement in assembly language>>
.include mr1l00.inc

.GLB task
_g_dtg: .WORD  1234H
task:
PUSH.W R1
PUSH.W R2
PUSHM R6R4
vtsnd_dtqg #ID DTQ1, g _dtqg,#100
PUSH.W R1
PUSH.W R2
vpsnd_dtg #ID DTQ2, #O0FFFFFFFFH
PUSH.W R1
PUSH.W R2

visnd dtg #ID DTQ3, #0ABCDEFGHH

-212 -



vrcv_dtq

Receive from Short data queue

vprcv_dtq Receive from Short data queue (polling)
viprcv_dtq Receive from Short data queue (polling,handler only)
vircv_dtq Receive from Short data queue (with timeout)
[[ C Language API ]]

ER ercd = vrcv_dtq( ID dtqid, W *p_data );

ER ercd = vprcv_dtq( ID dtqid, W *p_data );

ER ercd = viprcv_dtq( ID dtgqid, W *p_data );

ER ercd = vtrcv_dtq( 1D dtqgid, W *p_data, TMO tmout );

® Parameters

ID vdtqid ID number of the Short data queue from which to receive
TMO tmout Timeout value(vtrcv_dtq)
W *p_data Pointer to the start of the area in which received data is stored

® Return Parameters

ER ercd Terminated normally (E_OK) or error code
W *p_data Pointer to the start of the area in which received data is stored
[[ Assembly language API 1]

.include mri100.inc

vrcv_dtq VDTQID

vprcv_dtq VDTQID

viprcv_dtq VDTQID

vtrcv_dtq VDTQID,TMO

® Parameters
VDTQID ID number of the Short data queue from which to receive
TMO Timeout value(vtrcv_dtq)

@ Register contents after service call is 1ssued
vrev_dtq,vprev_dtg,viprev_dtq

Register name
RO
R1
R2

vtrcv_dtq
Register name

RO
R1
R2
R6R4

[[ Error code 1]
E_RLWAI
E_TMOUT
E_CTX
E_PAR

E_ID

Content after service call is issued
Error code
Received data

ID number of the Short data queue from which to receive

Content after service call is issued

Error code

Received data

ID number of the Short data queue from which to receive

Timeout value

Forced release from waiting

Polling failure or timeout

Context error ( Called from the system status not permitted.)
Parameter error

(tmout <= -2, OX7FFFFFFF — TIC_NUME < tmout)

Invalid ID number

(vdtgid<=0, the maximum number of short data queue < vdtqid)

-213 -



[[ Functional description ]]

This service call receives data from the Short data queue indicated by vdtgid and stores the received data in the area pointed
to by p_data. If data is present in the target Short data queue, the data at the top of the queue or the oldest data is received.
This results in creating a free space in the Short data queue area, so that a task enqueued in a transmission waiting queue is
released from WAITING state, and starts sending data to the Short data queue area.

If no data exist in the Short data queue and there is any task waiting to send data (i.e., data bytes in the Short data queue
area = 0), data for the task at the top of the data transmission waiting queue is received. As a result, the task kept waiting to
send that data is released from WAITING state.

On the other hand, if vrcv_dtq or vtrev_dtq is issued for the Short data queue which has no data stored in it, the task that
issued the service call goes from RUNNING state to a data reception wait state, and is enqueued in a data reception waiting
queue. At this time, the task is enqueued in order of FIFO. For the vprcv_dtq and viprcv_dtq service calls, the task returns
immediately and responds to the call with the error code E_TMOUT.

For the vtrcv_dtq service call, specify a wait time for tmout in ms units. The values specified for tmout must be within
(OX7FFFFFFF-time tick value). If any value exceeding this limit is specified, it becomes an error, and E_PAR is returned. If
TMO_POL=0 is specified for tmout, it means specifying O as a timeout value, in which case the service call operates the
same way as vprcv_dtg. Furthermore, if specified as tmout=TMO_FEVR(-1), it means specifying an infinite wait, in which
case the service call operates the same way as vrcv_dtg.

The task placed into a wait state by execution of the vrcv_dtq or vtrev_dtq service call is released from the wait state in the
following cases:

€ When the vrev_dtq, vtrev_dtq, vprev_dtg, or viprcv_dtq service call is issued before the tmout
time elapses, with task-awaking conditions thereby satisfied
The error code returned in this case is E_OK.

€ When the first time tick occurred after tmout elapsed while task-awaking conditions remain un-
satisfied
The error code returned in this case is E_ TMOUT.

€ When the task is forcibly released from WAITING state by the rel_wai or irel_wai service call is-
sued from another task or a handler
The error code returned in this case is E_RLWAL.

If this service call is to be issued from task context, use vrcv_dtq,vtrev_dtg,vprev_dtg; if issued from non-task context, use
viprcv_dtg.

When a service call is called from the system state which is not permitted, it becomes an error, and E_CTX is returned.

-214 -



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

W data;

if ( vrev_dtg( ID dtqg, &data ) != E RLWAI )
error (“forced wakeup\n”) ;

if ( vprcv_atq( ID dtqg, &data ) != E TMOUT )
error (“Timeout\n”) ;

if ( vtrev_dtg( ID dtg, &data, 10 ) != E TMOUT )
error (“Timeout\n”) ;

}

<<Example statement in assembly language>>
.include mrl00.inc

.GLB task
task:

PUSH.W R2

PUSHM R6R4

vtrcv_dtq #ID DTQ1,#TMO POL

PUSH.W R2
vprcv_dtg #ID_DTQ2

PUSH.W R2
vrcv_dtqg #ID DTQ2

- 215 -



vref_dtq Reference Short data queue status
viref_dtq Reference Short data queue status (handler only)

[[ C Language API ]]
ER ercd = vref _dtq( ID vdtqid, T_RDTQ *pk _rdtq );
ER ercd = viref _dtq( ID vdtqid, T_RDTQ *pk_rdtq );
@ Parameters

ID vdtqid ID number of the target Short data queue

T_RDTQ *pk_rdtq Pointer to the packet to which Short data queue status is returned
@ Return Parameters

ER ercd Terminated normally (E_OK) or error code

T _RDTQ *pk_rdtq Pointer to the packet to which Short data queue status is returned

Contents of pk_rdtq
typedef struct t_rdtg{

ID stskid +0 2 Transmission waiting task 1D
ID wiskid +2 2 Reception waiting task ID
UINT sdtqent +4 4 Data bytes contained in Short data queue
} T_RDTQ;
[[ Assembly language API ]]

.include mrl100.inc
vref _dtq VDTQID, PK_RDTQ
viref dtqVDTQID, PK_RDTQ
® Parameters
VDTQID ID number of the target Short data queue

PK_RDTQ  Pointer to the packet to which Short data queue status is returned

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code
R2 ID number of the target Short data queue
Al Pointer to the packet to which Short data queue status is returned
[[ Error code ]I
E_ID Invalid ID number
(vdtgid<=0, the maximum number of short data queue < vdtqid)
E CTX Context error ( Called from CPU locked state or non-kernel interrupt.)

- 216 -



[[ Functional description ]]
This service call returns various statuses of the Short data queue indicated by vdtgid.

@ stskid
Returned to stskid is the ID number of the task at the top of a transmission waiting queue (the next task to be de-
queued). If no tasks are kept waiting, TSK_NONE is returned.

& wtskid
Returned to wtskid is the ID number of the task at the top of a reception waiting queue (the next task to be de-
queued). If no tasks are kept waiting, TSK_NONE is returned.

@ sdtgent
Returned to sdtqcnt is the number of data bytes stored in the Short data queue area.

If this service call is to be issued from task context, use ref_dtq; if issued from non-task context, use iref _dtq.

When a service call is called from CPU locked state or non-kernel interrupt, it becomes an error, and E_CTX is returned.

[[ Example program statement 1]
<<Example statement in C language>>
#include <itron.hs>
#include <kernel.h>
#include “kernel id.h”
void task()

T RDTQ rdtq;
ER ercd;

ercd': vref dtg( ID DTQ1l, &rdtqg );

}

<<Example statement in assembly language>>
.include mrl100.inc

_ refdtqg: .blkb 8
.GLB task
task:
PUSH.W R2
PUSH.L Al

vref dtqg #ID_DTQ1,#_refdtg

-217 -



5.18Extended Function (Reset Function)

This function initializes the content of an object. This function is outside the scope of LITRON 4.0 Specification.

Table 5.32 List of Reset Function Service Call

No. | Service Call Function System State
TIN|E|DJU]JL
1 | wvrst dtq Clear data queue area O 0/0]|O0
2 | vrst_vdtq Clear Short data queue area O 0O|0]|O
3 | vrst_mbx Clear mailbox area ) 0O|0]|O0
4 | vrst_ mpf Clear fixed-size memory pool area 0 0|0|0
5 | vrst_ mpl Clear variable-size memory pool area | O 0O|0]|O0O
6 | vrst_mbf Clear message buffer area 0 0|0]|O0O

Notes:

® [S]: Standard profile service calls
[B]: Basic profile service calls

® FEach sign within " System State " is a following meaning.
T. Can be called from task context

N: Can be called from non-task context

E: Can be called from dispatch-enabled state

D: Can be called from dispatch-disabled state

U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

* & & O o o

-218 -



vrst_dtq Clear data queue area

[[ C Language API ]]
ER ercd = vrst_dtq( ID dtqid );

® Parameters

ID dtgid Data queue ID to be cleared
® Return Parameters
ER ercd Terminated normally (E_OK)
[[ Assembly language API 1]

-.include mr100.inc
vrst_dtq DTQID

® Parameters
DTQID Data queue ID to be cleared

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO Error code
R2 Data queue ID to be cleared
[[ Error code ]
E CTX Context error ( Called from CPU locked state or non-task context.)
E ID Invalid ID number

(dtgid<=0, the maximum number of dataqueue < dtqid)

[[ Functional description 1]

This service call clears the data stored in the data queue indicated by dtqid. If the data queue area has no more areas to be
added and tasks are enqueued in a data transmission waiting queue, all of the tasks enqueued in the data transmission wait-
ing queue are released from WAITING state. Furthermore, the error code EV_RST is returned to the tasks that have been

released from WAITING state.

Even when the humber of data queues defined is 0, all of the tasks enqueued in a data transmission waiting queue are re-
leased from WAITING state.

This service call can be issued only from task context. It cannot be issued from non-task context.

When a service call is called from CPU locked state or non-task context, it becomes an error, and E_CTX is returned.

-219 -



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void taskl (void)

vrst_dtq( ID dtql ) ;

}

<<Example statement in assembly language>>
.include mrl100.inc
.GLB task

task:

PUSH.W R2
vrst_dtqg #ID_DTQ1

- 220 -



vrst_vdtq Clear Short data queue area

[[ C Language API ]]
ER ercd = vrst_vdtq( 1D vdtqid );

® Parameters

ID vdtqid Short data queue ID to be cleared
® Return Parameters
ER ercd Terminated normally (E_OK)
[[ Assembly language API 1]

-include mrl100.inc
vrst_vdtq VDTQID
® Parameters
VDTQID Short data queue ID to be cleared

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO Error code
R2 Short data queue ID to be cleared
[[ Error code ]
E CTX Context error ( Called from CPU locked state or non-task context.)
E ID Invalid ID number

(vdtgid<=0, the maximum number of short data queue < vdtqid)

[[ Functional description 1]
This service call clears the data stored in the Short data queue indicated by vdtqid. If the Short data queue area has no more

areas to be added and tasks are enqueued in a data transmission waiting queue, all of the tasks enqueued in the data trans-
mission waiting queue are released from WAITING state. Furthermore, the error code EV_RST is returned to the tasks that

have been released from WAITING state.

Even when the number of Short data queues defined is 0, all of the tasks enqueued in a data transmission waiting queue are
released from WAITING state.

This service call can be issued only from task context. It cannot be issued from non-task context.

When a service call is called from CPU locked state or non-task context, it becomes an error, and E_CTX is returned.

-221 -



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void taskl (void)

vrst_vdtq( ID vdtqgl ) ;

}

<<Example statement in assembly language>>
.include mrl100.inc
.GLB task

task:

PUSH.W R2
vrst_vdtqg #ID_VDTQ1

-222 -



vrst_mbx Clear mailbox area

[[ C Language API ]]
ER ercd = vrst_mbx( ID mbxid );

® Parameters

ID mbxid Mailbox ID to be cleared
® Return Parameters
ER ercd Terminated normally (E_OK)
[[ Assembly language API 1]

-.include mrl100.inc
vrst_mbx MBXID

® Parameters
MBXID Mailbox ID to be cleared

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO Error code
R2 Mailbox ID to be cleared
[[ Error code ]
E CTX Context error ( Called from CPU locked state or non-task context.)
E ID Invalid ID number

(mbxid<=0, the maximum number of mailbox < mbxid)

[[ Functional description ]]

This service call clears the messages stored in the mailbox indicated by mbxid.

This service call can be issued only from task context. It cannot be issued from non-task context.

When a service call is called from CPU locked state or non-task context, it becomes an error, and E_CTX is returned.

-223 -



[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void taskl (void)

vrst_mbx( ID mbxl ) ;

}

<<Example statement in assembly language>>
.include mrl100.inc
.GLB task

task:

PUSH.W R2
vrst_mbx #ID_MBX1

- 224 -



vrst_mpf Clear fixed-size memory pool area

[[ C Language API ]]
ER ercd = vrst_mpf( ID mpfid );

® Parameters

ID mpfid Fixed-size memory pool ID to be cleared
® Return Parameters
ER ercd Terminated normally (E_OK)
[[ Assembly language API 1]

-.include mr100.inc
vrst_mpf MPFID

® Parameters
MPFID Fixed-size memory pool ID to be cleared

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO Error code
R2 Fixed-size memory pool ID to be cleared
[[ Error code ]
E CTX Context error ( Called from CPU locked state or non-task context.)
E ID Invalid ID number

(mpfid<=0, the maximum number of fixed-size memory pool < mpfid)

[[ Functional description 1]

This service call initializes the fixed-size memory pool indicated by mpfid. If tasks are enqueued in a memory block wait-
ing queue, all of the tasks enqueued in the memory block waiting queue are released from WAITING state. Furthermore,
the error code EV_RST is returned to the tasks that have been released from WAITING state.

This service call can be issued only from task context. It cannot be issued from non-task context.
When a service call is called from CPU locked state or non-task context, it becomes an error, and E_CTX is returned.

[[ Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void taskl (void)

vrét_mpf( ID mpfl );

}

<<Example statement in assembly language>>
.include mrl00.inc
.GLB task

task:

PUSH.W R2
vrst_mpf #ID_MPF1

- 225 -



vrst_mpl Clear variable-size memory pool area

[[ C Language API ]]
ER ercd = vrst_mpl( ID mplid );

® Parameters

ID mplid Variable-size memory pool ID to be cleared
® Return Parameters
ER ercd Terminated normally (E_OK)
[[ Assembly language API 1]

-.include mr100.inc
vrst_mpl MPLID

® Parameters
MPLID Variable-size memory pool ID to be cleared

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO Error code
R2 Variable-size memory pool ID to be cleared
[[ Error code ]
E CTX Context error ( Called from CPU locked state or non-task context.)
E ID Invalid ID number

(mplid<=0, the maximum number of variable-size memory pool < mplid)

[[ Functional description 1]
This service call initializes the variable-size memory pool indicated by mplid.

This service call can be issued only from task context. It cannot be issued from non-task context.

When a service call is called from CPU locked state or non-task context, it becomes an error, and E_CTX is returned.

[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void taskl (void)

vrét_mpl( ID mpll );

<<Example statement in assembly language>>
.include mrl100.inc
.GLB task

task:

PUSH.W R2
vrst mpl #ID_MPL1

- 226 -



vrst_mbf Clear message buffer area

[[ C Language API ]]
ER ercd = vrst_mbf( ID mbfid );

® Parameters

ID mbfid Message buffer ID to be cleared
® Return Parameters
ER ercd Terminated normally (E_OK)
[[ Assembly language API 1]

-.include mr100.inc
vrst_mbf MBFID

® Parameters
MBFID Message buffer ID to be cleared

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO Error code
R2 Message buffer ID to be cleared
[[ Error code ]
E CTX Context error ( Called from CPU locked state or non-task context.)
E ID Invalid ID number

(mbfid<=0, the maximum number of message buffer < mbfid)

[[ Functional description 1]

This service call clears the message buffer area indicated by mbfid. If the message buffer area has no more areas to be add-
ed and tasks are enqueued in a message transmission waiting queue, all of the tasks enqueued in the message transmission
waiting queue are released from WAITING state. Furthermore, the error code EV_RST s returned to the tasks that have
been released from WAITING state.

Even when the size of message buffer defined is 0, all of the tasks enqueued in a message transmission waiting queue are
released from WAITING state.

This service call can be issued only from task context. It cannot be issued from non-task context.

When a service call is called from CPU locked state or non-task context, it becomes an error, and E_CTX is returned.

[[ Example program statement ]]
<<Example statement in C language>>
#include <itron.hs>
#include <kernel.h>
#include “kernel id.h”
void taskl (void)

vrét_mbf( ID mbfl );

<<Example statement in assembly language>>
.include mr1l00.inc
.GLB task

task:

PUSH.W R2
vrst_mbf #ID MBF1

- 227 -






6. Applications Development Procedure
Overview

6.1 Overview

Application programs for MR100 should generally be developed following the procedure described below.

6. Generating a project
When using HEW®, create a new project using MR100 on HEW.

7. Coding the application program
Write the application program in code form using C or assembly language. If necessary, correct the sample star-
tup program (crtOmr.a30) and section definition file (c_sec.inc or asm_sec.inc).

8. Creating a configuration file
Create a configuration file which has defined in it the task entry address, stack size, etc. by using an editor.

The GUI configurator available for MR100 may be used to create a configuration file.

9. Executing the configurator
From the configuration file, create system data definition files (sys_rom.inc, sys ram.inc), include files
(mr100.inc, kernel_id.h), and a system generation procedure description file (makefile).

10. System generation
Execute the make* command or execute build on HEW to generate a system.

11. Writing to ROM
Using the ROM programming format file created, write the finished program file into the ROM. Or load it into
the debugger to debug.

Figure 6.1 shows a detailed flow of system generation.

“° It is abbreviation of High-performance Embedded Workshop.
*! The make command comes the UNIX standard and UNIX compatible

- 229 -



HEW

/ Configuration file /

v

C standard MR100 include file Configurator
header file kernel.h cfglOO
Include file
kernel_id.h
Application Include file System data definition file
include file mr100.inc sys_ram.inc, sys_rom.inc
l i
vy v v

C standard
Library

Application Apphcatlon Startup program
C source Assembler source start.a30, crtOmr.a30
C compller 3 _—
amp table file
nc100 * mrtable.a30
I \ A 4
Relocatable Assembler ?
as100 Create Jamp table utility
mr100tbl
4
_ Systemcall [
file (.mrc )
Application MR100/4
object Library
Linkage Editor

1In100

Absolute
module
Load module converter

1Imc100

'

[ ROM write format ]

Figure 6.1 MR100 System Generation Detail Flowchart

- 230 -



6.2 Development Procedure Example

This chapter outlines the development procedures on the basis of a typical MR100 application example.

6.2.1 Applications Program Coding

Figure 6.2 shows a program that simulates laser beam printer operations. Let us assume that the file describing the laser
beam printer simulation program is named Ibp.c. This program consists of the following three tasks and one interrupt han-
dler.

® Main Task
® |mage expansion task
® Printer engine task

® Centronics interface interrupt handler

This program uses the following MR100 library functions.

® sta tsk()
Starts a task. Give the appropriate ID number as the argument to select the task to be activated. When the ker-
nel_id.h file, which is generated by the configurator, is included, it is possible to specify the task by name (char-
acter string).*

® wai flg()
Waits until the eventflag is set up. In the example, this function is used to wait until one page of data is entered into the
buffer via the Centronics interface.

® wup_tsk()
Wakes up a specified task from the WAITING state. This function is used to start the printer engine task.

® sip_tsk()
Causes a task in the RUNNING state to enter the WAITING state. In the example, this function is used to make
the printer engine task wait for image expansion.

® jset flg()
Sets the eventflag. In the example, this function is used to notify the image expansion task of the completion of
one-page data input.

* The configurator converts the ID number to the associated name(character string) in accordance with the information entered int the con-
figuration file.

-231-



#include <itron.h>
#include <kernel.h>
#include "kernel_ id.h"
void main() /* main task */

printf ("LBP start simulation \n") ;

sta_tsk(ID idle,1); /* activate idle task */
sta_tsk(ID image, 1) ; /* activate image expansion task */
sta_tsk(ID printer,1l); /* activate printer engine task */

}

void image () /* activate image expansion task */

while (1) {
wai flg(ID pagein,waiptn, TWF _ANDW, &flgptn);/* wait for l-page input */

printf (" bit map expansion processing \n") ;
wup_tsk (ID printer) ; /* wake up printer engine task */

}

b | .

void printer() /* printer engine task */
while (1) {

slp tsk();
printf (" printer engine operation \n") ;

}
}

void sent _in() /* Centronics interface handler */

/* Process input from Centronics interface */
if ( /* 1l-page input completed */ )
iset flg(ID pagein, setptn) ;

Figure 6.2 Program Example

6.2.2 Configuration File Preparation

Create a configuration file which has defined in it the task entry address, stack size, etc. Use of the GUI configurator avail-
able for MR100 helps to create a configuration file easily without having to learn how to write it.

Figure 6.3 Configuration File Example

shows an example configuration file for a laser beam printer simulation program (filename "lbp.cfg").

-232 -



// System Definition

system{
stack size = 1024;
priority =5;
system IPL = 4;
tick nume = 10;
//System Clock Definition
clock{
mpu_clock = 20MHz;
timer = AO;
} IPL = 4;
//Task Definition
task[1]{
name = ID main;
entry address = main() ;
stack size = 512;
priority =1;
| initial_start = ON;
task [2]{
name = ID image;
entry address = image () ;
stack size = 512;
} priority = 2;
task [3]{
name = ID printer;
entry address = printer() ;
stack size = 512;
} priority = 4;
task[4]{
name = ID idle;
entry address = idle() ;
stack size = 256;
} priority =5;
//Eventflag Definition
flagl1]{
} name = pagein;
//Interrupt Vector Definition
interrupt vector [0x23] {
os_int = YES;
entry address = sent_in();
Figure 6.3 Configuration File Example
6.2.3 Configurator Execution

When using HEW, select "Build all,” which enables the user to execute the procedures described in 6.2.3, "Executing the
Configurator," and 6.2.4, "System Generation."

Execute the configurator cfg100 to generate system data definition files (sys_rom.inc, sys_ram.inc), include files
(mr100.inc, kernel_id.h), and a system generation procedure description file (makefile) from the configuration file.

A> cfgl00 -v 1lbp.cfg

MR100 system configurator vV.1.00.18

Copyright 2003,2005 RENESAS TECHNOLOGY CORPORATION
AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED.
MR100 version ==> V.1.01 Release 01

A>

Figure 6.4 Configurator Execution

-233 -



6.2.4 System generation

Execute the make command ** to generate the system.

A> make -f makefile

asl00 -F -Dtest=1 crtOmr.a30
ncl00 -c task.c

1nl100 @1lnl00.sub

A>

Figure 6.5 System Generation

6.2.5 Writing ROM

Using the Imc30 load module converter, convert the absolute module file into a ROM writable format and then write it into
ROM. Or read the file into the debugger and debug it.

** There are two types of make commands, one of which conforms to the MS-DOS standard, and the other conforms to or is compliant with
the UNIX standard. MR100 accepts only the make command that conforms to or is compliant with the UNIX standard. When using MS-DOS,
use a UNIX compatible make command (e.g., the make command included with the C compiler from Microsoft Corporation). For details

about the usefulness of UNIX compatible make commands, refer to the release notes from Renesas. The description in this chapter is made
for the case where a UNIX compatible make command is executed, as an example.

-234 -




7. Detailed Applications

7.1 Program Coding Procedure in C Language

7.1.1 Task Description Procedure

1. Describe the task as a function.
To register the task for the MR100, enter its function name in the configuration file. When, for instance, the
function name "task()" is to be registered as the task ID number 3, proceed as follows.

task [3]{
name = ID task;
entry address = task();
stack _size = 100;
priority = 3;

}i

2. At the beginning of file, be sure to include "itron.h",”kernel.h” which is in system directory as well as "ker-
nel_id.h" which is in the current directory. That is, be sure to enter the following two lines at the beginning of
file.

#include <itron.h>
#include <kernel.h>
#include "kernel_id.h"

3. No return value is provided for the task start function. Therefore, declare the task start function as a void
function.
4. Afunction that is declared to be static cannot be registered as a task.
5. Itisn't necessary to describe ext_tsk() at the exit of task start function.**If you exit the task from the subrou-
tine in task start function, please describe ext_tsk() in the subroutine.
6. Itis also possible to describe the task startup function, using the infinite loop.
#include <itron.h>
#include <kernel.h>
#include "kernel_id.h"

void task (void)

/* process */

}

Figure 7.1 Example Task Described in C Language

** The task is ended by ext_tsk() automatically if #pramga TASK is declared in the MR100. Similarly, it is ended by ext_tsk when returned
halfway of the function by return sentence

-235 -



#include <itron.h>
#include <kernel.h>
#include "kernel id.h"
void task (void)

for (; ;) {
/* process */

Figure 7.2 Example Infinite Loop Task Described in C Language

7. To specify a task, use the string written in the task definition item “name” of the configuration file.*®

wup_tsk (ID main) ;

8. To specify an event flag, semaphore, or mailbox, use the respective strings defined in the configuration file.
For example, if an event flag is defined in the configuration file as shown below,

flagl1]{
name = ID abc;
bi

To designate this eventflag, proceed as follows.

set _flg(ID abc, &setptn) ;

9. To specify a cyclic or alarm handler, use the string written in the cyclic or alarm handler definition item
“name” of the configuration file.

sta_cyc(ID_cyc) ;

10. When a task is reactivated by the sta_tsk() service call after it has been terminated by the ter_tsk() service
call, the task itself starts from its initial state.*® However, the external variable and static variable are not
automatically initialized when the task is started. The external and static variables are initialized only by the
startup program (crtOmr.a30), which actuates before MR100 startup.

11. The task executed when the MR100 system starts up is setup.

12. The variable storage classification is described below.

The MR100 treats the C language variables as indicated in Table 7.1 C Language Variable Treatment.

Table 7.1 C Language Variable Treatment

Variable storage class Treatment
Global Variable Variable shared by all tasks
Non-function static variable Variable shared by the tasks in the same file
Auto Variable
Register Variable Variable for specific task
Static variable in function

> The configurator generates the file “kernel_id.h” that is used to convert the ID number of a task into the string to be specified. This means
that the #define declaration necessary to convert the string specified in the task definition item “name” into the ID number of the task is
made in “kernel_id.h.” The same applies to the cyclic and alarm handlers.

5 The task starts from its start function with the initial priority in a wakeup counter cleared state.

- 236 -



7.1.2 Writing a Kernel (OS Dependent) Interrupt Handler

When describing the kernel interrupt handler in C language, observe the following precautions.

1.
2.
3.

Describe the kernel interrupt handler as a function *’
Be sure to use the void type to declare the interrupt handler start function return value and argument.
At the beginning of file, be sure to include "itron.h","kernel.h” which is in the system directory as well as
"kernel_id.h" which is in the current directory.
Do not use the ret_int service call in the interrupt handler.*®
The static declared functions can not be registered as an interrupt handler.
#include <itron.h>
#include <kernel.hs>
#include "kernel id.h"

void inthand (void)

{

/* process */

iwup_tsk(ID_main) ;

Figure 7.3 Example of Kernel Interrupt Handler

7.1.3 Writing Non-kernel Interrupt Handler

When describing the non-kernel interrupt handler in C language, observe the following precautions.

1.
2.

Be sure to declare the return value and argument of the interrupt handler start function as a void type.
No service call can be issued from a non-kernel interrupt handler.
NOTE: If this restriction is not observed, the software may malfunction.

A function that is declared to be static cannot be registered as an interrupt handler.
If you want multiple interrupts to be enabled in a non-kernel interrupt handler, always make sure that the
non-kernel interrupt handler is assigned a priority level higher than other kernel interrupt handlers.*

#include <itron.h>
#include <kernel.h>
#include "kernel_id.h"

void inthand (void)

/* process */

Figure 7.4 Example of Non-kernel Interrupt Handler

7" A configuration file is used to define the relationship between handlers and functions.

“8 When an kernel interrupt handler is declared with #pragma INTHANDLER ,code for the ret_int service call is automatically generated.

0 f you want the non-kernel interrupt handler to be assigned a priority level lower than kernel interrupt handlers, change the description of
the non-kernel interrupt handler to that of the kernel interrupt handler.

- 237 -



7.14 Writing Cyclic Handler/Alarm Handler

When describing the cyclic or alarm handler in C language, observe the following precautions.

1.
2.
3.

Describe the cyclic or alarm handler as a function.>

Be sure to declare the return value and argument of the interrupt handler start function as a void type.

At the beginning of file, be sure to include "itron.h","kernel.h” which is in the system directory as well as
"kernel_id.h" which is in the current directory.

The static declared functions cannot be registered as a cyclic handler or alarm handler.

The cyclic handler and alarm handler are invoked by a subroutine call from a system clock interrupt handler.

#include <itron.h>
#include <kernel.h>
#include "kernel id.h"

void cychand (void)

/*process */

Figure 7.5 Example Cyclic Handler Written in C Language

0 The handler-to-function name correlation is determined by the configuration file.

- 238 -



7.2 Program Coding Procedure in Assembly Language

This section describes how to write an application using the assembly language.

7.2.1 Writing Task
This section describes how to write an application using the assembly language.

1. Be sure to include "mr100.inc" at the beginning of file.
2. For the symbol indicating the task start address, make the external declaration.>*
3. Be sure that an infinite loop is formed for the task or the task is terminated by the ext_tsk service call.

.INCLUDE mr100.inc ----- (1)
.GLB task @ ----- (2)
task:
; process
jmp task = ----- (3)

Figure 7.6 Example Infinite Loop Task Described in Assembly Language

.INCLUDE mrl00.inc
.GLB task

task:
; process
ext_tsk

Figure 7.7 Example Task Terminating with ext_tsk Described in Assembly Language

4. The initial register values at task startup are indeterminate except the PC, SB, RO and FLG registers.
5. To specify a task, use the string written in the task definition item “name” of the configuration file.

wup_tsk #ID_task

6. To specify an event flag, semaphore, or mailbox, use the respective strings defined in the configuration file.
For example, if a semaphore is defined in the configuration file as shown below,:

semaphore [1] {
name = abc;
}i

To specify this semaphore, write your specification as follows:

sig sem #ID abc

7. To specify a cyclic or alarm handler, use the string written in the cyclic or alarm handler definition item
“name” of the configuration file
For example, if you want to specify a cyclic handler "cyc," write your specification as follows:

sta_cyc #ID_cyc

8. Set a task that is activated at MR100 system startup in the configuration file >

®1 Use the .GLB pseudo-directive
2 The relationship between task ID numbers and tasks(program) is defined in the configuration file.

- 239 -



7.2.2 Writing Kernel Interrupt Handler
When describing the kernel interrupt handler in assembly language, observe the following precautions

1. At the beginning of file, be sure to include "mr100.inc" which is in the system directory.

2. For thg:- symbol indicating the interrupt handler start address, make the external declaration(Global declara-
tion).”

3. Make sure that the registers used in a handler are saved at the entry and are restored after use.

4. Return to the task by ret_int service call.

.INCLUDE mr100.inc  ------ (1)
.GLB inth ~ ----- (2)
inth:
; Registers used are saved to a stack ------ (3)

iwup_tsk #ID taskl

process

; Registers used are restored ------ (3)

ret int ------ (4)

Figure 7.8 Example of kernel(OS-depend) interrupt handler

7.2.3 Writing Non-kernel Interrupt Handler

1. For the symbol indicating the interrupt handler start address, make the external declaration (public declara-
tion).
2. Make sure that the registers used in a handler are saved at the entry and are restored after use.
3. Be sure to end the handler by REIT instruction.
4. No service calls can be issued from a non-kernel interrupt handler.
NOTE: If this restriction is not observed, the software may malfunction.

5. If you want multiple interrupts to be enabled in a non-kernel interrupt handler, always make sure that the
non-kernel interrupt handler is assigned a priority level higher than other non-kernel interrupt handlers.>*

.GLB inthand  ----- (1)
inthand:

; Registers used are saved to a stack  ----- (2)

; interrupt process

; Registers used are restored - ----- (2)

REIT —eaa- (3)

Figure 7.9 Example of Non-kernel Interrupt Handler of Specific Level

3 Use the .GLB peudo-directive.
** If you want the non-kernel interrupt handler to be assigned a priority level lower than kernel interrupt handlers, change the description of
the non-kernel interrupt handler to that of the kernel interrupt handler.

- 240 -



7.24 Writing Cyclic Handler/Alarm Handler
When describing the cyclic or alarm handler in Assembly Language, observe the following precautions.

1. At the beginning of file, be sure to include "mr100.inc" which is in the system directory.
2. For the symbol indicating the handler start address, make the external declaration.>
3. Always use the RTS instruction (subroutine return instruction) to return from cyclic handlers and alarm han-
dlers.
For examples:

. INCLUDE mrl00.inc = ----- (1)
.GLB cychand = ----- (2)
cychand:

; handler process
rts  -==-- (3)

Figure 7.10 Example Handler Written in Assembly Language

% Use the .GLB pseudo-directive.

-241 -



7.3  System down routine

7.3.1 Summary

The system-down routine is a routine that is called when the system is down.When one of the following phenomena occurs,
a system-down results:

® vsys dwn or ivsys_dwn service call issued
® ext tsk invoked from non-task contexts
® ret intinvoked from task contexts

7.3.2 Coding

Please defend and correct the following rules based on the sample of system down routine described in the 241st line
from the 234th line of a start-up routine.

Q) The function names are predetermined to be " _sys dwn___."
2 No service calls can be invoked in the system-down routine.
3) In no case can the application return from the start function of the system-down routine.

4 Please refer to argument shown in the Table 7.2 passed to system down routine.

; System Down Loop (template)

.GLB __sys dwn__
_Sys dwn__:
;; JW.B __SYS_INITIAL ; Re start
NOP
IMP_B _sysdwn__

Figure 7.11 System down routine sample

-242 -



Table 7.2 Parameters Passed to the System-Down Routine

No. | Parameter | Register Description
Type of error
(1) Errorinret_int: -1
1 type R7 (2) Error in ext_tsk: -2
(3) Invocation of vsys dwn, ivsys dwn: Be sure to use a positive
value.
Error code
(1) Errorinret_int: E_CTX
2 ercd R2 (2) Error in ext_tsk: E_CTX
(3) Invocation of vsys_dwn, ivsys_dwn: Any user-specified value
System abnormality information 1
. (1) Error in ret_int: Indeterminate
3 infl R3R1 (2) Error in ext_tsk: Indeterminate
(3) Invocation of vsys_dwn, ivsys_dwn: Any user-specified value
System abnormality information 2
4 info R6R4 (1) Error in ret_int: Indeterminate

(2) Error in ext_tsk: Indeterminate
(3) Invocation of vsys_dwn, ivsys_dwn: Any user-specified value

- 243 -




7.4 Modifying MR100 Startup Program

MR100 comes with two types of startup programs as described below.

® start.a30
This startup program is used when you created a program using the assembly language.

® crtOmr.a30
This startup program is used when you created a program using the C language.

This program is derived from "start.a30" by adding an initialization routine in C language.

The startup programs perform the following:
® |nitialize the processor after a reset.
® |nitialize C language variables (crtOmr.a30 only).

® Set the system timer.

® |nitialize MR100's data area.

Copy these startup programs from the directory indicated by environment variable "LIB100" to the current directory.

If necessary, correct or add the sections below:

® Setting processor mode register
Set a processor mode matched to your system to the processor mode register. (57th - 59th line in crtOmr.a30)

® Adding user-required initialization program
When there is an initialization program that is required for your application, add it to the 147th line in the C lan-
guage startup program (crtOmr.a30).

® Comment out the 145th — 146th line in the C language startup program (crtOmr.a30) if no standard I/O
function is used.

- 244 -



7.4.1 C Language Startup Program (crtOmr.a30)
Figure 7.12 shows the C language startup program(crtOmr.a30).

1 ; R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEES]
2 ;
3 ; MR100/4 start up program for C language
4 ; COPYRIGHT (C) 2007,2009 RENESAS TECHNOLOGY CORPORATION
5 AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED
6 ;
7 ; R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEES]
8 ; "$Id: crtOmr.a30 1052 2009-04-02 02:00:05Z inui $"
9 ;*Al* 2005-02-28 for ES
10 ;*GO* 2006-06-15 for MR100/4
11 ;*V11l* 2007-04-25 For NewAPI mutex & message buffer
12 ;
13 .LIST OFF
14 . INCLUDE c_sec.inc
15 . INCLUDE mrl00.inc
16 . INCLUDE sys_rom. inc
17 . INCLUDE sys_ram.inc
18 .LIST ON
19
20 .GLB _ SYS_INITIAL
21 .GLB __END_INIT
22 .GLB __init_sys,__init_tsk
23
24 regoffset .EQU 0
25
P R e e al at
27 ; SBDATA area definition
A I I e e e
29 GLB __SB__
30 SB SB
31
32 ;=================================================================
33 ; Initialize Macro declaration
R e i e i R
35 BZERO macro TOP_, SECT
36 XOR.B ROL,ROL
37 mov.1l #TOP_,Al
38 mov.1l #sizeof SECT ,R7R5
39 sstr.b
40 .endm
41 BCOPY .macro FROM_,TO ,SECT_
42 mov.1l #FROM_, A0
43 mov.1l #TO_,Al
44 mov.1 #sizeof SECT ,R7R5
45 smovf.b
46 endm
47 ;============S===S===SS=S=SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS=SS===S==S
48 ; Interrupt section start
e I LT LT
50 .SECTION MR_KERNEL, CODE, ALIGN
51
52
R e e ]
54 ; after reset,this program will start
I e e ]
56 _ SYS INITIAL:
57 LDC #_ Sys_ Sp, ISP ; set initial ISP
58
59 ; MOV.B #2, 0AH
60 ; MOV.B #00, PMOD ; Set Processor Mode Register
61 ; MOV.B #0, 0AH ;
62 LDC #00000010H, FLG
63 LDC # SB_,SB
64 LDC #00000000H, FLG
65 LDC # Sys Sp,FB
66 LDC # SB ,SB
67
68 ;=================================================================
69 ; MR _RAM zero clear
I e i e
71 BZERO MR_RAM top,MR_RAM
72
73 j=================================—================================

74 ; NEAR area initialize.
75 ; FAR area initialize.




; bss zero clear

BZERO bss SB8 top, bss SB8
BZERO bss SB16 top, bss_ SB16
BZERO bss NEAR top, bss_ NEAR
BZERO bss FAR top, bss_ FAR
BZERO bss_EXT_top, bss_ EXT
BZERO bss MON1 top, bss_ MON1
BZERO bss MON2_top, bss_MON2
BZERO bss MON3 top, bss_ MON3
BZERO bss MON4_ top, bss_MON4

BCOPY data SB8_ INIT top, data_SB8_ top, data_SBS8

BCOPY data SB16 INIT top, data SB16_top, data SBl6

BCOPY data NEAR INIT top, data NEAR_top, data NEAR

BCOPY data_FAR INIT top, data FAR top, data FAR

BCOPY data EXT_INIT top, data EXT top, data_ EXT

BCOPY data MON1 INIT top, data MON1 top, data MON1

BCOPY data MON2_ INIT top, data MON2_ top, data_ MON2

BCOPY data MON3_INIT top, data MON3_ top, data MON3

BCOPY data MON4_ INIT top, data MON4_ top, data_ MON4

; Set System IPL and Set Interrupt Vector

__INI_IPL ; *GO*

LDC # INT VECTOR, INTB
_____________________________________________________ +

System timer interrupt setting

_____________________________________________________ +

’
1
’
1

IF USE_TIMER

MOV.B #stmr mod val,stmr mod reg+regoffset
MOV . W #stmr_ cnt,stmr_ ctr reg+regoffset
MOV.B  #stmr_int_ IPL,stmr_int_reg

OR.B #stmr_bit+l,stmr_start+regoffset
.ENDIF

.IF USE_MRTRACE == 0
.GLB stmr_ctrl reg, MR TIM DIV VAL
__ MR TIM DIV _VAL .equ 1
stmr_ctr_reg .equ 0400H

.ENDIF

IF USE_SYSTEM TIME

MOV.W # D Sys TIME_ L,_ Sys_time+4
MOV.W # D Sys TIME M, Sys time+2
MOV.W # D Sys TIME H,_ Sys_time
.ENDIF

MOV.L  #0, HEAP TMR

set timer mode
set interval count
set timer IPL
system timer start

_____________________________________________________ 4
User Initial Routine ( if there are )
_____________________________________________________ 4
Initialize standard I/O
.GLB __init
JSR.A __init
_____________________________________________________ +
Initalization of System Data Area
_____________________________________________________ +
.GLB __init heap
JSR.W _ init_sys
JSR.W __init_tsk
JSR.W _ init_heap
.IF __NUM_FLG
.GLB __init flg

- 246 -



157 JSR.W __ init flg

158 .ENDIF

159

160 .IF __NUM_SEM

161 .GLB __init sem

162 JSR.W _ init_sem

163 .ENDIF

164

165 .IF __NUM_DTQ

166 .GLB " init dtq

167 JSR.W __init_dtg

168 .ENDIF

169

170 IF ___NUM_VDTQ J*AL*
171 .GLB ~__init_vdtg

172 JSR.W __init vdtg

173 .ENDIF

174

175 .IF __NUM_MBX

176 .GLB " init mbx

177 JSR.W _init mbx

178 .ENDIF

179

180 IF ALARM_ HANDLER

181 .GLB __init_alh

182 JSR.W __init_alh

183 .ENDIF

184

185 . IF CYCLIC_HANDLER

186 .GLB __init_cyh

187 JSR.W _init_cyh

188 .ENDIF

189

190 IF __NUM_MPF J*AL*
191 ; Fixed Memory Pool

192 .GLB __init mpf

193 JSR.W _init_mpf

194 .ENDIF

195

196 IF __ NUM_MPL J*AL*
197 ; Variable Memory Pool

198 .GLB __init mpl

199 JSR.W __init mpl

200 .ENDIF

201

202 JIF __NUM_MBF

203 ; Message Buffer

204 .GLB __init mbf

205 JSR.W _init_mbf

206 .ENDIF

207

208 .IF __NUM_MTX

209 ; Mutex

210 .GLB __init mtx

211 JSR.W __init mtx

212 .ENDIF

213

214 ; For PD100

215 _ LAST INITIAL

216

217 __END_INIT:

218

R R e il +
220 ; | Start initial active task

P R e e +
222 __ START TASK

223

224 .GLB __rdyq search

225 JMP.W  rdyqg search

226

A I R +
228 ; | Define Dummy

P I e +
230 .GLB __SYS DMY INH

231 SYS DMY INH:

232 REIT

233

234 ;=================================================================
235 ; System Down Loop (template)

236 o mmm ettt T s oo s s oo e ————— -




237 .GLB _sys dwn___
238 _ sys_dwn__ :

239 ;;; JMP.B __SYS INITIAL ; Re start
240 NOP

241 JMP.B _sys dwn___

242

243 .IF CUSTOM_SYS END

b R e e +
245 ; | Syscall exit rouitne to customize

A I e e e +
247 .GLB __sys_end

248  sys_end:

249 ; Customize here.

250 REIT

251 .ENDIF

252

253 ; 4+---- et - +
254 ; | exit () function

255 ; 4+---- - - +
256 .GLB _exit,Sexit

257 exit:

258 Sexit:

259 JMP _exit

260

261 .IF USE_TIMER

A Y A e i R +
263 ; | System clock interrupt handler

A Y I e e e +
265 .GLB __SYS STMR_INH

266 .ALIGN

267 _ SYS STMR INH:

268 ; process issue system call

269 ; For PD100

270 __ ISSUE_SYSCALL

271

272 ; system timer interrupt trace

273 ___STMR_HDR_TRACE

274

275 ; System timer interrupt handler

276 _STMR_hdr

277

278 ret_int

279 .ENDIF

280

281 . END

282

283 ; IR RS E SRS SRS EE SRS SRS SR SRS EE SRR EE SRS R R EREEEEREEEEEEEEREEEEEEEEEEEEES
284 ; COPYRIGHT (C) 2007,2009 RENESAS TECHNOLOGY CORPORATION
285 ; AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED

khhkhkkhkhkhhkhkhhkhdhhhdhhkhkdhhhhhhhkhdhhdhhkdhhhkhhhkrdhkdrdhhdrhhrdhkrkdhrhrhkdxdhx

286

Figure 7.12 C Language Startup Program (crtOmr.a30)

The following explains the content of the C language startup program (crtOmr.a30).

Incorporate a section definition file [14 in Figure 7.12]
Incorporate an include file for MR100 [15 in Figure 7.12]
Incorporate a system ROM area definition file [16 in Figure 7.12]
Incorporate a system RAM area definition file [17 in Figure 7.12]
This is the initialization program __ SYS_INITIAL that is activated immediately after a reset. [56 - 286 in
Figure 7.12]
Setting the System Stack pointer [57 in Figure 7.12]
Setting the SB,FB register [62 - 66 in Figure 7.12]
Initial set the C language. [73 - 106 in Figure 7.12]
Setting kernel interrupt mask level [112 in Figure 7.12]
Setting the address of interrupt vector table [113 in Figure 7.12]
Set MR100's system clock interrupt [115-123 in Figure 7.12]
The dummy symbol when the system clock is set to "NOTIMER" and "OTHER" is defined.
[125-129 in Figure 7.12]
+ Initial set MR100's system timer [131-138 in Figure 7.12]
Initial set parameters inherent in the application [147 in Figure 7.12]
Initialize the RAM data used by MR100 [148 - 217 in Figure 7.12]
Activate the initial startup task. [219 - 225 in Figure 7.12]
This is a system clock interrupt handler [261 - 279 in Figure 7.12]

agrwNE

* & O O O oo

© N>

- 248 -



10. System down routine [234 - 241 in Figure 7.12]

- 249 -



7.5 Memory Allocation

This section describes how memory is allocated for the application program data.
Use the section file provided by MR100 to set memory allocation.

MR100 comes with the following two types of section files:

® asm_sec.inc
This file is used when you developed your applications with the assembly language.

® C sec.inc
This file is used when you developed your applications with the C language.

c¢_sec.inc is derived from "asm_sec.inc" by adding sections generated by C compiler NC100.

Modify the section allocation and start address settings in this file to suit your system.

The following shows how to modify the section file.

If you want to change the rom FAR section start address from FFEOO0OOOH to FFF00000H

.section rom FAR, romdata
.org OFFEOO0000H
rom FAR top:
|
.section rom_ FAR, romdata
.org OFFFO00000H

rom_ FAR top:

- 250 -



7.5.1 Section used by the MR100

The sample section file for the C language is "asm_sec.inc". The sample section file for the assembly language is
"asm_sec.inc". Edit these files if section reallocation is required.

The following explains each section that is used by the MR100.

® MR_RAM_DBG section
This section is stored MR100's debug function RAM data.

This section must be mapped in the Internal RAM area.

® MR_RAM section
This section is where the RAM data, MR100's system management data, is stored that is referenced in absolute
addressing.

® stack section
This section is provided for each task's user stack and system stack.

® MR_HEAP section
This section stores the variable-size memorypool.

® MR_KERNEL section
This section is where the MR100 kernel program is stored.

® MR_CIF section
This section stores the MR100 C language interface library.

® MR_ROM section
This section stores data such as task start addresses that area referenced by the MR100 kernel.

® program section
This section stores user programs.

This section is not used by the MR100 kernel at all. Therefore, you can use this section as desired.
® INTERRUPT_VECTOR section

® FIX_INTERRUPT_VECTOR section
This section stores interrupt vectors. The start address of this section varies with the type of microcomputer used.

- 251 -






8. Using Configurator

8.1 Configuration File Creation Procedure

When applications program coding and startup program modification are completed, it is then necessary to register the ap-
plications program in the MR100 system.

This registration is accomplished by the configuration file.

8.1.1 Configuration File Data Entry Format

This chapter describes how the definition data are entered in the configuration file.

| Comment Statement |
A statement from '//' to the end of a line is assumed to be a comment and not operated on.

| End of statement |
Statements are terminated by ';'.

| Numerical Value |
Numerical values can be entered in the following format.

® Hexadecimal Number
Add "0x" or "0X" to the beginning of a numerical value, or "h" or "H" to the end. If the value begins with an al-
phabetical letter between A and F with "h" or "H" attached to the end, be sure to add "0" to the beginning. Note
that the system does not distinguish between the upper- and lower-case alphabetical characters (A-F) used as
numerical values.*

® Decimal Number
Use an integer only as in '23'. However, it must not begin with '0".

® QOctal Numbers
Add '0" to the beginning of a numerical value of 'O’ or '0' to end.

® Binary Numbers
Add 'B' or 'b' to the end of a numerical value. It must not begin with '0".

Table 8.1 Numerical Value Entry Examples

0xf12
0xf12
Oalzh
Hexadecimal 0al2H
12h

12H
Decimal 32

017
Octal 170

170
Binary 101110b
101010B




It is also possible to enter operators in numerical values. Table 8.2 Operators lists the operators available.

Table 8.2 Operators

Operator Priority | Direction of computation
0 High From left to right
- (Unary_minus) From right to left
* [ % From left to right
+ - (Binary_minus) Low From left to right

11.
Numerical value examples are presented below.

e 123
e 123+0x23
® (23/4+3)%2

® 100B + O0aH

The symbols are indicated by a character string that consists of numerals, upper- and lower-case alphabetical let-
ters, _(underscore), and ?, and begins with a non-numeric character.

Example symbols are presented below.

e TASK1

® |[DLE3

| Function Name |
The function names are indicated by a character string that consists of numerals, upper and lower-case alpha-
betical letters,'$'(dollar) and '_'(underscore), begins with a non-numeric character, and ends with ‘().

The following shows an example of a function name written in the C language.

® main()

® func()
When written in the assembly language, the start label of a module is assumed to be a function name.

| Frequency |
The frequency is indicated by a character string that consist of numerals and . (period), and ends with MHz. The
numerical values are significant up to six decimal places. Also note that the frequency can be entered using de-
cimal numbers only.

Frequency entry examples are presented below.

® 16MHz

® 38.1234MHz
It is also well to remember that the frequency must not begin with . (period).

The time is indicated by a character string that consists of numerals and . (period), and ends with ms. The time
values are effective up to three decimal places when the character string is terminated with ms. Also note that the

254



time can be entered using decimal numbers only.

® 10ms

® 10.5ms
It is also well to remember that the time must not begin with . (period).

8.1.2 Configuration File Definition Items

7

The following definitions > are to be formulated in the configuration file

® System definition

® System clock definition

® Respective maximum number of items
® Task definition

® Eventflag definition

® Semaphore definition

® Mailbox definition

® Data queue definition

® Short data queue definition

® Message buffer definition

® Mutex definition

® Fixed-size Memory Pool definition

® Variable-size Memory Pool definition
® Cyclic handler definition

® Alarm handler definition

® Interrupt vector definition

5 All items except task definition can omitted. If omitted, definitions in the default configuration file are referenced.

255



[( System Definition Procedure )]
<< Format >>

// System Definition

system{

stack size - | System stack size | ;

priority = | Maximum value of priority | ;

system_IPL = | Kernel mask level|;

tic_deno = | Time tick denominator ;

tic_nume = | Time tick numerator] ;

message_pri = | Maximum message priority wvalue ;
}i

<< Content >>

1. System stack size

[( Definition format )] Numeric value
[( Definition range )] 6 or more
[( Default value )] 100H

Define the total stack size used in service call and interrupt processing.

2. Maximum value of priority (value of lowest priority)

[( Definition format )] Numeric value
[( Definition range )] 1to 255
[( Default value )] 32

Define the maximum value of priority used in MR100's application programs. This must be the value of the
highest priority used.

3. Kernel mask level

[( Definition format )] Numeric value
[( Definition range )] lto7
[( Default value )] 7

Set the IPL value in service calls, that is, the OS interrupt disable level.

4. Time tick denominator

[( Definition format )] Numeric value
[( Definition range )] Fixed to 1
[( Default value )] 1

Set the denominator of the time tick.

5. Time tick numerator

[( Definition format )] Numeric value
[( Definition range )] 1to 65,535
[( Default value )] 1

Set the numerator of the time tick. The system clock interrupt interval is determined by the time tick denomina-
tor and numerator that are set here. The interval is the time tick numerator divided by time tick denominator [ms].

256



That is, the time tick numerator [ms].

6. Maximum message priority value

[( Definition format )] Numeric value
[( Definition range )] 1to 255
[( Default value )] None

Define the maximum value of message priority.

[( System Clock Definition Procedure )]

<< Format >>

// System Clock Definition

clock({
timer clock = | MPU clock] ;
timer = | Timers used for system clock |;
IPL - | System clock interrupt priority level |;

Vi

<< Content >>

1. MPU clock
[( Definition format)] Frequency(in MHz)
[( Definition range )] None
[( Default value )] 24MHz

Define the MPU operating clock frequency of the microcomputer in MHz units.

2. Timers used for system clock

[( Definition format )] Symbol
[( Definition range )] A0, A1, A2, A3, A4, A5,A6,A7,B0, B1, B2, B3, B4, B5, OTHER, NOTIMER
[( Default value )] NOTIMER

Define the hardware timers used for the system clock.

If you do not use a system clock, define "NOTIMER."

3. System clock interrupt priority leve

[( Definition format )] Numeric value
[( Definition range )] 1 to Kernel mask level in system definition
[( Default value )] 3

Define the priority level of the system clock timer interrupt. The value set here must be smaller than the kernel
interrupt mask level.

Interrupts whose priority levels are below the interrupt level defined here are not accepted during system clock
interrupt handler processing.

257



[( Definition respective maximum numbers of items )]
Here, define respective maximum numbers of items to be used in two or more applications.

<< Format >>

// Max Definition
maxdefine

max_task = | the maximum number of tasks defined |;
max_flag = | the maximum number of eventflags defined |;
max_dtqg = | the maximum number of data queues defined |;
max_mbx = | the maximum number of mailboxes defined |;
max_sem = | the maximum number of semaphores defined |;
max_mpf = | the maximum number of fixed-size |

emory pools defined |;
max_mpl = | the maximum number of variable-size |

emory pools defined |;
max_cyh = | the maximum number of cyclic handlers|

defined |;
max_alh = | the maximum number of alarm handlers]

defined |;
max_vdtg = | the maximum number of short data queues defined |;
max_mbf = | the maximum number of message buffers defined |;
max_mtx = | the maximum number of mutexes defined |;

}i

<< Contents >>

1. The maximum number of tasks defined

[( Definition format )] Numeric value
[( Definition range )] 1to 255
[( Default value )] None

Define the maximum number of tasks defined.

2. The maximum number of eventflags defined

[( Definition format )] Numeric value
[( Definition range )] 1to 255
[( Default value )] None

3. The maximum number of data queues defined.

[( Definition format )] Numeric value
[( Definition range )] 1to 255
[( Default value )] None

Define the maximum number of data queues defined.

4. The maximum number of mailboxes defined

[( Definition format )] Numeric value
[( Definition range )] 1to 255
[( Default value )] None

Define the maximum number of mailboxes defined.

258



5. The maximum number of semaphores defined

[( Definition format )] Numeric value
[( Definition range )] 1to 255
[( Default value )] None

Define the maximum number of semaphores defined.

6. The maximum number of fixed-size memory pools defined

[( Definition format )] Numeric value
[( Definition range )] 1to 255
[( Default value )] None

7. The maximum number of variable length memory blocks defined.

[( Definition format )] Numeric value
[( Definition range )] 1to 255
[( Default value )] None

Define the maximum number of variable length memory blocks defined.

8. The maximum number of cyclic activation handlers defined

[( Definition format )] Numeric value
[( Definition range )] 1to 255
[( Default value )] None

The maximum number of cyclic handler defined

9. The maximum number of alarm handler defined

[( Definition format )] Numeric value
[( Definition range )] 1to 255
[( Default value )] None

Define the maximum number of alarm handlers defined.

10. The maximum number of short data queues defined.

[( Definition format )] Numeric value
[( Definition range )] 1to 255
[( Default value )] None

Define the maximum number of short data queues defined.

11. The maximum number of message buffers defined.

[( Definition format )] Numeric value
[( Definition range )] 1to 255
[( Default value )] None

Define the maximum number of message buffers defined.

259



12. The maximum number of mutexes defined.

[( Definition format )] Numeric value
[( Definition range )] 1to 255
[( Default value )] None

Define the maximum number of mutexes defined.

[( Task definition )]

<< Format >>

// Tasks Definition

task [ 14

name = | ID name |;

entry address = | Start task of address |;

stack_size = | User stack size of task |;

priority = | Initial priority of task |;

context = | Registers used |;

stack_section = | Section name in which the stack is located |;

initial start = | TA ACT attribute (initial startup state) |;
} exinf = | Extended information |;

The ID number must be in the range of 1 to 255. The ID number can be omitted.

If omitted, numbers are automatically assigned sequentially beginning with the smallest.

<< Content >>

Define the following for each task ID number.

1. Task ID name

[( Definition format )] Symbol
[( Definition range )] None
[( Default value )] None

Define the ID name of a task. Note that the function name defined here is output to the kernel_id.h file, as shown
below.

#define Task ID Name task ID

2. Start address of task

[( Definition format )] Symbol or function name
[( Definition range )] None
[( Default value )] None

Define the entry address of a task. When written in the C language, add () at the end or _at the beginning of the
function name you have defined.

The function name defined here causes the following declaration statement to be output in the kernel_id.h file:

260



#pragma TASK /V4 Function Name

3. User stack size of task

[( Definition format )] Numeric value
[( Definition range )] 6 or more
[( Default value )] 256

Define the user stack size for each task. The user stack means a stack area used by each individual task. MR100
requires that a user stack area be allocated for each task, which amount to at least 12 bytes.

4. Initial priority of task

[( Definition format )] Numeric value
[( Definition range )] 1 to (maximum value of priority in system definition)
[( Default value )] 1

Define the priority of a task at startup time.

As for MR100's priority, the lower the value, the higher the priority.

5. Regisers Used

[( Definition format )] Symbol[,Symbol,....]
[( Definition range )] Selected from R2R0,R3R1,R6R4,R7R5,A0,A1,A2,A3,SB,FB
[( Default value )] All registers

Define the registers used in a task. MR100 handles the register defined here as a context. Specify the R2R0 reg-
ister because task startup code is set in it when the task starts.

However, the registers used can only be selected when the task is written in the assembly language. Select all
registers when the task is written in the C language. When selecting a register here, be sure to select all registers
that store service call parameters used in each task.

MR100 kernel does not change the registers of bank.

If this definition is omitted, it is assumed that all registers are selected.

6. Section name in which the stack is located

[( Definition format )] Symbol
[( Definition range )] None
[( Default value )] stack

Define the section name in which the stack is located. The section defined here must always have an area allo-
cated for it in the section file (asm_sec.inc or ¢_sec.inc).

If no section names are defined, the stack is located in the stack section.

7. TA_ACT attribute (initial startup state)

[( Definition format )] Symbol
[( Definition range )] ON or OFF
[( Default value )] OFF

Define the initial startup state of a task.

261



If this attribute is specified ON, the task goes to a READY state at the initial system startup time.

The task startup code of the initial startup task is the extended information.

8. Extended information

[( Definition format )] Numeric value
[( Definition range )] 0 to OXFFFFFFFF
[( Default value )] 0

Define the extended information of a task. This information is passed to the task as argument when it is restarted
by a queued startup request, for example.

[( Eventflag definition )]
This definition is necessary to use Eventflag function.

<< Format >>

// Eventflag Definition
flagl 14

name = | Name |;

wait_ queue = | Selecting an event flag waiting queue |;
initial_pattern = | Initial value of the event flag |;

wait multi = | Multi-wait attribute |;

clear attribute = | Clear attribute |;

The ID number must be in the range of 1 to 255. The ID number can be omitted.

If omitted, numbers are automatically assigned sequentially beginning with the smallest.

<< Content >>

Define the following for each eventflag ID number.

1. ID Name
[( Definition format )] Symbol
[( Definition range )] None
[( Default value )] None

Define the name with which an eventflag is specified in a program.

2. Selecting an event flag waiting queue

[( Definition format )] Symbol
[( Definition range )] TA_TFIFO or TA_TPRI
[( Default value )] TA_TFIFO

Select a method in which tasks wait for the event flag. If TA_TFIFO is selected, tasks are enqueued in order of
FIFO. If TA_TPRI is selected, tasks are enqueued in order of priority beginning with the one that has the highest
priority.

262



3. Initial value of the event flag

[( Definition format )] Numeric value
[( Definition range )] 0 to OXFFFFFFFF
[( Default value )] 0

Specify the initial bit pattern of the event flag.

4. Multi-wait attribute

[( Definition format )] Symbol
[( Definition range )] TA_WMUL or TA_WSGL
[( Default value )] TA_WSGL

Specify whether multiple tasks can be enqueued in the eventflag waiting queue. If TA_ WMUL is selected, the
TA_WMUL attribute is added, permitting multiple tasks to be enqueued. If TA WSGL is selected, the
TA_WSGL attribute is added, prohibiting multiple tasks from being enqueued.

5. Clear attribute

[( Definition format )] Symbol
[( Definition range )] YES or NO
[( Default value )] NO

Specify whether the TA_CLR attribute should be added as an eventflag attribute. If YES is selected, the
TA_CLR attribute is added. If NO is selected, the TA_CLR attribute is not added.

263



[( Semaphore definition )]
This definition is necessary to use Semaphore function.

<< Format >>

// Semaphore Definition

semaphore [ IW‘ 11
name = | ID name |;
wait queue = | Selecting a semaphore waiting queue |;
initial count =| Initial value of semaphore counter |;
max_count = | Maximum value of the semaphore counter |;
}i

The 1D number must be in the range of 1 to 255. The ID number can be omitted.

If omitted, numbers are automatically assigned sequentially beginning with the smallest.

<< Content >>

Define the following for each semaphore ID number.

1. ID Name
[( Definition format )] Symbol
[( Definition range )] None
[( Default value )] None

Define the name with which a semaphore is specified in a program.

2. Selecting a semaphore waiting queue

[( Definition format )] Symbol
[( Definition range )] TA_TFIFO or TA_TPRI
[( Default value )] TA_TFIFO

Select a method in which tasks wait for the semaphore. If TA_TFIFO is selected, tasks are enqueued in order of
FIFO. If TA_TPRI is selected, tasks are enqueued in order of priority beginning with the one that has the highest
priority.

3. Initial value of semaphore counter

[( Definition format )] Numeric value
[( Definition range )] 0 to 65535
[( Default value )] 1

Define the initial value of the semaphore counter. This value must be less than the maximum value of the sema-
phore counter.

4. Maximum value of the semaphore counter

[( Definition format )] Numeric value
[( Definition range )] 1 to 65535
[( Default value )] 1

Define the maximum value of the semaphore counter.

264



[(Data queue definition )]
This definition must always be set when the data queue function is to be used.

<< Format >>

// Dataqueue Definition

datagueue[ | ID No. | 1{
name = | ID name |;
buffer size = | Number of data queues |;
\ wait_queue = | Select data queue waiting queue |;

The ID number must be in the range 1 to 255. The ID number can be omitted. If omitted, ID numbers are automatically
assigned in order of numbers beginning with the smallest.

<< Content >>

For each data queue ID number, define the items described below.

1. ID name
[( Definition format )] Symbol
[( Definition range )] None
[( Default value )] None

Define the name by which the data queue is specified in a program.

2. Number of data

[( Definition format )] Numeric Value

[( Definition range )] 0 to Ox1FFF

[( Default value )] 0

Sr()jecify_the number of data that can be transmitted. What should be specified here is the number of data, and not
a data size.

3. Selecting a data queue waiting queue

[( Definition format )] Symbol
[( Definition range )] TA_TFIFO or TA_TRPI
[( Default value )] TA_TFIFO

Select a method in which tasks wait for data queue transmission. If TA_TFIFO is selected, tasks are enqueued in
order of FIFO. If TA_TPRI is selected, tasks are enqueued in order of priority beginning with the one that has the
highest priority.

265



[( Short data queue definition )]
This definition must always be set when the short data queue function is to be used.

<< Format >>

// Vdataqueue Definition
vdataqueue [ | ID No. | 1{

name = | ID name |;
buffer size = | Number of data queues |;
wait_queue = | Select data queue waiting queue |;

}i

The ID number must be in the range 1 to 255. The ID number can be omitted. If omitted, ID numbers are automatically
assigned in order of numbers beginning with the smallest.

<< Content >>

For each short data queue ID number, define the items described below.

1. ID name
[( Definition format )] Symbol
[( Definition range )] None
[( Default value )] None

Define the name by which the short data queue is specified in a program.

2. Number of data

[( Definition format )] Numeric Value

[( Definition range )] 0 to Ox3FFF

[( Default value )] 0

Sr()jecify'the number of data that can be transmitted. What should be specified here is the number of data, and not
a data size.

3. Selecting a data queue waiting queue

[( Definition format )] Symbol
[( Definition range )] TA_TFIFO or TA_TRPI
[( Default value )] TA_TFIFO

Select a method in which tasks wait for short data queue transmission. If TA_TFIFO is selected, tasks are en-
queued in order of FIFO. If TA_TPRI is selected, tasks are enqueued in order of priority beginning with the one
that has the highest priority.

266



[( Mailbox definition )]
This definition must always be set when the mailbox function is to be used.

<< Format >>

// Mailbox Definition

mailbox[ | ID No. | 1{
name = | ID name |;
wait_queue = | Select mailbox waiting queue |;
message_queue = | Select message queue |;

} max_pri = | Maximum message priority |;

The ID number must be in the range 1 to 255. The ID number can be omitted. If omitted, ID numbers are automatically
assigned in order of numbers beginning with the smallest.

<< Content >>

For each mailbox ID number, define the items described below.

1.

2.

3.

4.

ID name

[( Definition format )] Symbol
[( Definition range )] None
[( Default value )] None

Define the name by which the mailbox is specified in a program.

Select mailbox waiting queue

[( Definition format )] Symbol
[( Definition range )] TA_TFIFO or TA_TPRI
[( Default value )] TA_TFIFO

Select a method in which tasks wait for the mailbox. If TA_TFIFO is selected, tasks are enqueued in order of
FIFO. If TA_TPRI is selected, tasks are enqueued in order of priority beginning with the one that has the highest

priority.

Select message queue

[( Definition format )] Symbol
[( Definition range )] TA_MFIFO or TA_MRPI
[( Default value )] TA_MFIFO

Select a method by which a message queue of the mailbox is selected. If TA_MFIFO is selected, messages are
enqueued in order of FIFO. If TA_MPRI is selected, messages are enqueued in order of priority beginning with
the one that has the highest priority.

Maximum message priority

[( Definition format )] Numeric Value

[( Definition range )] 1 to "maximum value of message priority" that was specified
in "definition of maximum number of items"

[( Default value )] 1
Specify the maximum priority of message in the mailbox.

267



[( Fixed-size memory pool definition )]
This definition must always be set when the fixed-size memory pool function is to be used.

<< Format >>

// Fixed Memor ool Definition
memorypool [ | ID No.| 1{

i

name = | ID name | ;

section = | Section Name | ;

num_block = | Number of blocks in memory pool | ;
siz block = | Block size of Memory pool | ;

wait queue = | Select memory pool waiting queue | ;

The ID number must be in the range 1 to 255. The ID number can be omitted. If omitted, ID numbers are automatically
assigned in order of numbers beginning with the smallest.

<< Content >>

For each memory pool ID number, define the items described below.

1.

ID name

[( Definition format )] Symbol
[( Definition range )] None
[( Default value )] None

Define the name by which the memory pool is specified in a program.

2. Section name

[( Definition format )] Symbol
[( Definition range )] None
[( Default value )] MR_HEAP

Define the name of the section in which the memory pool is located. The section defined here must always have
an area allocated for it in the section file (asm_sec.inc or ¢_sec.inc).

If no section names are defined, the memory pool is located in the MR_HEAP section.

3. Number of block

[( Definition format )] Numeric value
[( Definition range )] 1to 65,535
[( Default value )] 1

Define the total number of blocks that comprise the memory pool.

4. Size (in bytes)

[( Definition format )] Numeric value
[( Definition range )] 4 t0 65,535
[( Default value )] 16

Define the size of the memory pool per block. The RAM size to be used as a memory pool is determined by this

268



definition: (number of blocks) x (size) in bytes.

5. Selecting a memory pool waiting queue

[( Definition format )] Symbol
[( Definition range )] TA_TFIFO or TA_TPRI
[( Default value )] TA_TFIFO

Select a method in which tasks wait for acquisition of the fixed-size memory pool. If TA_TFIFO is selected,
tasks are enqueued in order of FIFO. If TA_TPRI is selected, tasks are enqueued in order of priority beginning
with the one that has the highest priority.

[( Variable-size memory pool definition )]
This definition is necessary to use Variable-size memory pool function.

<< Format >>

// Variable-Size Memor ool Definition
variable_memorypool[ | ID No.| ] {
name = | ID Name |;

max memsize = | The maximum memory block size to be allocated |;
mpl section = | Section name |;

heap size - | Memory pool size | ;

smallblk - | Select block usage | ;

}i

The ID number must be in the range from 1 to 255. The ID number can be omitted. If omitted, ID numbers are automati-
cally assigned in order of magnitude beginning with the smallest.

<< Content >>

1. ID name
[( Definition format )] Symbol
[( Definition range )] None
[( Default value )] None

Define the name by which the memory pool is specified in a program.

2. The maximum memory block size to be allocated

[( Definition format )] Numeric value
[( Definition range )] 1 to 65520
[( Default value )] 8

Specify, within an application program, the maximum memory block size to be allocated.

3. Section name

[( Definition format )] Symbol
[( Definition range )] None
[( Default value )] MR_HEAP

Define the name of the section in which the memory pool is located. The section defined here must always have
an area allocated for it in the section file (asm_sec.inc or ¢_sec.inc).

If no section names are defined, the memory pool is located in the MR_HEAP section.

269



4. Memory pool size

[( Definition format )] Numeric value
[( Definition range )] 16 to OXFFFFFFFC
[( Default value )] 16

Specify a memory pool size.

Round off a block size you specify to the optimal block size among the four block sizes, and acquires memory
having the rounded-off size from the memory pool.

The following equations define the block sizes:

a = (((max_memsize+(X-1))/ (X x 8))+1) x 8
b=ax?2
c=ax4
d=ax8

max_memsize: the value specified in the configuration file

X: data size for block control (8 byte per a block control)
Variable-size memory pool function needs 8 byte RAM area per a block control. Memory pool size needs a size
more than a, b, ¢ or d that can be stored max_memsize + 8.

5. Select block usage

[( Definition format )] Symbol
[( Definition range )] ON,OFF
[( Default value )] OFF

This is an option to increase memory efficiency for even small-sized memory pools by means of small blocks.
Memory is managed in 12 fixed-length memory pools ranging in size from 32 bytes to 65,535 bytes. When this
option is turned on, the value of max_memsize has no effect.

270



[(Message buffer definition)]
This definition is an item that must always be set when the message buffer function is used..

<< Format >>

// Message buffer Definition

message buffer[ | ID No.| 1{

name ID Name |;

mbf section - | Section name |;

mbf size = | Message buffer size| ;

max_msgsz = | Maximum message size| ;

wait_ queue = | Message buffer transmit wait queue selection | ;

i

The ID number must be in the range 1 to 255. The ID number can be omitted. If omitted, ID numbers are automatically
assigned in order of numbers beginning with the smallest.

<< Content >>

1. ID name
[( Definition format )] Symbol
[( Definition range )] None
[( Default value )] None

Define the name by which themessage buffer is specified in a program.

2. Section name

[( Definition format )] Symbol
[( Definition range )] None
[( Default value )] MR_HEAP

Define the name of a section in which memory pools are located. Always be sure that the section defined here is
allocated in a section file (asm_sec.inc or c_sec.inc).

If no section names are defined, memory pools are located in the MR_HEAP section.

3. Message buffer size (in bytes)

[( Definition format )] Numeric value
[( Definition range )] 0 or 8 to 65532
[( Default value )] 0

Specify the size of the message buffer. Value 0 can be specified for the buffer size. In that case, the trans-
mit/receive sides of the message buffer become to perform completely synchronized communication.

4. Maximum message size (in bytes)

[( Definition format )] Numeric value
[( Definition range )] 1 to 65528
[( Default value )] 4

Specify the maximum message size used in the message buffer. In the product described herein, the kernel and
configurator ignore this item.

271



[(Mutex definition)]
This definition must always be set when the mutex function is used.

<< Format >>

// Mutex Definition

mutex [ 1

name = | ID Name |;
ceilpri = | Ceiling priority of mutex | ;

bi

The ID number must be in the range from 1 to 255. The ID number can be omitted. If omitted, ID numbers are automati-
cally assigned in order of magnitude beginning with the smallest.

<< Content >>

1. ID name
[( Definition format )] Symbol
[( Definition range )] None
[( Default value )] None

Define the name by which a mutex is specified in the program.

2. Ceiling priority of mutex

[( Definition format )] Numeric value
[( Definition range )] 1to 255
[( Default value )] None (Must always be set)

Set the ceiling priority of the mutex..

272



[( Cyclic handler definition )]
This definition is necessary to use Cyclic handler function.

<< Format >>

// Cyclic Handlar Definition

cyclic_hand[ 1{

}i

name = | ID name | ;

interval counter = | Activation cycle | ;
start = | TA STA attribute ;
phsatr = | TA PHS attribute ;
phs_counter = | Activation phase i
entry address - | Start address |;

exitf - | Extended information |;

The ID number must be in the range of 1 to 255. The ID number can be omitted.

If omitted, numbers are automatically assigned sequentially beginning with the smallest.

<< Content >>

Define the following for each cyclic handler ID number.

1.

ID name

[( Definition format )] Symbol
[( Definition range )] None
[( Default value )] None

Define the name by which the memory pool is specified in a program.

2. Activation cycle

[( Definition format )] Numeric value
[( Definition range )] 1 to OX7FFFFFFF
[( Default value )] 1

Define the activation cycle at which time the cyclic handler is activated periodically. The activation cycle here
must be defined in the same unit of time as the system clock’s unit time that is defined in system clock definition
item. If you want the cyclic handler to be activated at 1-second intervals, for example, the activation cycle here
must be set to 1000.

3. TA_STA attribute

[( Definition format )] Symbol
[( Definition range )] ON or OFF
[( Default value )] OFF

Specify the TA_STA attribute of the cyclic handler. If ON is selected, the TA_STA attribute is added; if OFF is
selected, the TA_STA attribute is not added.

4. TA_PHS attribute

[( Definition format )] Symbol
[( Definition range )] ON or OFF
[( Default value )] OFF

Specify the TA_PHS attribute of the cyclic handler. If ON is selected, the TA_PHS attribute is added; if OFF is
selected, the TA_PHS attribute is not added.

273



5. Activation phase

[( Definition format )] Numeric value

[( Definition range )] 0 to OX7FFFFFFF

[( Default value )] 0

De_fine the activation phase of the cyclic handler. The time representing this startup phase must be defined in ms
units.

6. Start Address

[( Definition format )] Symbol or Function Name
[( Definition range )] None
[( Default value )] None

Define the start address of the cyclic handler.

Note that the function name defined here will have the declaration statement shown below output to the ker-
nel_id.h file.

#pragma CYCHANDLER /V4 function name

7. Extended information

[( Definition format )] Numeric value
[( Definition range )] 0 to OXFFFFFFFF
[( Default value )] 0

Define the extended information of the cyclic handler. This information is passed as argument to the cyclic han-
dler when it starts.

274



[( Alarm handler definition )]
This definition is necessary to use Alarm handler function.

<< Format >>

// Alarm Handlar Definition
alarm hand[ | ID No. | 1{

name = | ID name |;
entry address =| Start address |;
exitf = | Extended information |;

}i

The ID number must be in the range of 1 to 255. The ID number can be omitted.

If omitted, numbers are automatically assigned sequentially beginning with the smallest.

<< Content >>

Define the following for each alarm handler ID number.

1. ID name
[( Definition format )] Symbol
[( Definition range )] None
[( Default value )] None

Define the name by which the alarm handler is specified in a program.

2. Start address
[( Definition format )] Symbol or Function Name
[( Definition range )] None
Define the start address of the alarm handler. The function name defined here causes the following declaration
statement to be output in the kernel_id.h file.

3. Extended information

[( Definition format )] Numeric value
[( Definition range )] 0 to OXFFFFFFFF
[( Default value )] 0

Define the extended information of the alarm handler. This information is passed as argument to the alarm han-
dler when it starts.

275



[( Interrupt vector definition )
This definition is necessary to use Interrupt function.

<< Format >>

// Interrupt Vector Definition
interrupt_vector[ | Vector No. | I{

}i

os_int - | Kernel-managed (OS dependent) interrupt handler |;
entry_address = | Start address |;
pragma_switch = | Switch passed to PRAGMA extended function |;

The vector number can be written in the range of 0 to 255. However, whether or not the defined vector number is valid de-
pends on the microcomputer used

Configurator can’t create an Initialize routine (interrupt control register, interrupt causes etc.) for this defined interrupt. You
need to create that.

<< Content >>

1. Kernel (OS dependent) interrupt handler

[( Definition format )] Symbol
[( Definition range )] YES or NO

Define whether the handler is a kernel(OS dependent) interrupt handler. If it is a kernel(OS dependent) interrupt
handler, specify YES; if it is a non-kernel(OS independent) interrupt handler, specify No.

If this item is defined as YES, the declaration statement shown below is output to the kernel_id.h file.
#pragma INTHANDLER /V4 function name

If this item is defined as NO, the declaration statement shown below is output to the kernel_id.h file.
#pragma INTERRUPT /V4 function name

2. Start address

[( Definition format )] Symbol or function name
[( Definition range )] None
[( Default value )] __SYS_DMY_INH

Define the entry address of the interrupt handler. When written in the C language, add () at the end or at the be-
ginning of the function name you have defined.

3. Switch passed to PRAGMA extended function

[( Definition format )] Symbol
[( Definition range )] E,FBorR
[( Default value )] None

Specify the switch to be passed to #pragma INTHANDLER or #pragma INTERRUPT. If "E" is specified, a "/E"
switch is selected, in which case multiple interrupts are enabled. If "F" is specified, a "/F" switch is selected, in
which case a "FREIT" instruction is output at return from the interrupt handler. If "B" is specified, a "/B" switch
is selected, in which case register bank 1 is selected. If "R" is specified, a "/R" switch is selected, in which case
no codes are output that change the floating-number rounding mode of the FLG register to the "nearest value."

Multiple switches can be specified at the same time. However, if a kernel managed interrupt handler is con-
cerned, only the "E" or "R" switch can be specified. For non-kernel managed interrupt handlers, the "E", "F" and
"B" switches can be specified, providing that "E" and "B" are not specified at the same time.

276



[( Fixed interrupt vector definition )]
This definition needs to be set when interrupt handlers based on fixed vector table are used.

<< Format >>

// Fixed Interrupt Vector Definition
interrupt_ fvector[ [ Vector No. | 1{
entry address = | Start address |;
pragma_switch = | Switch passed to PRAGMA extended function |;

}i

The interrupt vector number can be set in the range from 0 to 11. The relationship between the vector numbers and the in-
terrupts and vector addresses is shown below. All these interrupts are handled as non-kernel managed interrupt handlers.

277



Table 8.3 List of vector number and vector address

Vector number Vector address Interrupt

0 FFFFFFDOH Kernel reserved area
1 FFFFFFD4H Kernel reserved area
2 FFFFFFD8H Kernel reserved area
3 FFFFFFDCH Undefined instruction
4 FFFFFFEOH Overflow

5 FFFFFFE4H BRK instruction

6 FFFFFFESH Reserved area

7 FFFFFFECH Reserved area

8 FFFFFFFOH Watchdog timer, voltage down detection, oscillation stop detection
9 FFFFFFF4H Reserved area

10 FFFFFFF8H NMI

11 FFFFFFFCH Reset

<< Content >>

1. Start address
[( Definition format )]

[( Definition range )] None

Symbol or function name

[( Default value )]

__SYS_DMY_INH

Define the entry address to the interrupt handler. When written in C language, add () at the end of the function
name or __ at the beginning of it.

2. Switch passed to PRAGMA extended function

[( Definition format )] Symbol
[( Definition range )] BorR
[( Default value )] None

Specify the switch to be passed to #pragma INTERRUPT. If "B" is specified, a "/B" switch is selected, in which
case register bank 1 is selected. If "R" is specified, a "/R" switch is selected, in which case no codes are output
that change the floating-number rounding mode of the FLG register to the "nearest value."

Both switches can be specified at the same time.

278



[Precautions]
1. Regarding the method for specifying a register bank

No kernel interrupt handlers that use the registers in register bank 1 can be written in C language. These handlers can only
be written in assembly language. When writing in assembly language, write the entry and exit to and from the interrupt
handler as shown below.

(Always be sure to clear the B flag before issuing ret_int service call.)

Example: interrupt;

fset B
fclr B
ret_int

Internally in the MR100 kernel, register banks are not switched over.

2. Regarding the method for specifying a high-speed interrupt

To ensure the effective use of a high-speed interrupt, be sure that the registers in register bank 1 are used in the high-speed
interrupt. Also be aware that the high-speed interrupts used cannot be a kernel interrupt handler..

279



8.1.3 Configuration File Example

The following is the configuration file example.

1 ;;//////////////////////////////////////////////////////////////////////////////
2

3// kernel.cfg : building file for MR100 Ver.1.00

4//

5// Generated by M3T-MR100 GUI Configurator at 2007/02/28 19:01:20

6//
7

L1117 177770 77777777 7777777777777777777777777777777777777777777777777777777777777

8

9 // system definition

10 system{

11 stack_size = 256;
12 sysTm_IPL = 4;
13 message pri = 64;
14 timeout = NO;

15 task pause = NO;
16 tick nume = 10;
17 tick deno =1;
18 };

19

20 // max definition
21 maxdefine{

22 max_task = 3;

23 max flag = 4;

24 max_ sem = 3;

25 max _dtg = 3;

26 max_mbx = 4;

27 max mpf = 3;

28 max_mpl = 3;

29 max _cyh = 4;

30 max_alh = 2;

31 };

32

33 // system clock definition

34 clock({

35 timer clock = 20.000000MHz;
36 timer = AO;

37 IPL = 3;

38 };

39

40 task[]{

41 entry address = taskl();
42 name = ID_taskl;

43 stack size = 256;

44 priority =1;

45 initial start = OFF;

46 exinf = 0x0;

47 ;;

48 task[]{

49 entry address = task2();
50 name = ID task2;

51 stack size = 256;

52 priority =5;

53 initial start = ONj;

54 exinf = OxFFFF;

55 };

56 task[3]{

57 entry address = task3();
58 name = ID task3;

59 stack size = 256;

60 priority = 7;

61 initial start = OFF;

62 exinf = 0x0;

63 };

64

65 flagl]{

66 name = ID flgl;

67 initial pattern = 0x00000000;
68 wait_ queue = TA _TFIFO;
69 clear attribute = NO;

70 wait multi = TA WSGL;
71 };

72 flag[1]{

73 name = ID flg2;

74 initial pattern = 0x00000001;

280



wait queue
clear attribute
wait multi

fiag[2]{

name = ID flg3;

initial pattern =
wait queue =
clear attribute
wait multi

Vi
flagl]{

name = ID flg4;

initial pattern =
wait queue
clear attribute
wait multi

Vi

semaphore [] {

name = ID seml;

wait queue =

initial count =

max count =
}i

semaphore [2] {

name = ID sem2;

wait queue =
initial count =
max count =

sémaphore[]{

name = ID sem3;

wait queue =
initial count =
max count =

}i

dataqueue [] {

name = ID dtqgl;

wait queue =
buffer size =

dataqueue [2] {

name = ID dtqg2;

wait queue =
buffer size =

dataqueue [3] {

name = ID dtqg3;

wait queue =
buffer size =

}i

mailbox[] {

name = ID mbx1l;

wait queue =
message_gqueue =
max_pri = 4;

méilbox[]{

name = ID mbx2;

wait queue =
message_gueue =
max_pri = 64;

méilbox[]{

name = ID mbx3;

wait queue =
message_gqueue =
max _pri = 5;

méilbox[4]{

name = ID_mbx4;

wait queue =
message_gqueue =
max _pri = 6;

}i

memorypool [] {

TA TFIFO;
NO;

= TA WMUL;

7

0x0000£££f;
TA_TPRT;
YES;

= TA WMUL;

7

0x00000008 ;
TA TPRI;
YES;

= TA WSGL;

7

TA TFIFO;
0;
10;

7

TA TFIFO;
5;
10;

7

TA_TPRT;
255;
255;

7

TA TFIFO;
10;

7

TA TPRI;
5;

7

TA TFIFO;
256 ;

7

TA TFIFO;
TA MFIFO;

7

TA TPRI;
TA_MPRT;

I

TA_TFIFO;
TA_MPRT;

I

TA_TPRI;
TA_MFIFO;

281



155 name = ID mpfl;
156 wait_queue =
157 section = MR_RAM;
158 siz_block =
159 num_block =
160 };

161 memorypool [2] {

162 name = ID mpf2;
163 wait queue =
164 section = MR_RAM;
165 siz block =
166 num_block =
167 };

168 memorypool [3]

169 name = ID mpf3;
170 wait queue =
171 section = MPF3;
172 siz_block =
173 num_block =
174 };

175

176 variable memorypool []
177 name = ID mpll;
178 max_memsize =
179 heap size =
180 };

181 variable memorypool [] {
182 name = ID mpl2;
183 max_memsize =
184 heap_size =
185 };

186 variable memorypool [3]
187 name = ID mpl3;
188 max_memsize =
189 heap size =
190 };

191

192 cyclic _hand[]{

193 entry address =
194 name = ID cyhil;
195 exinf = 0x0;

196 start = ON;

197 phsatr = OFF;

198 interval counter
199 phs_counter =
200 };

201 cyclic_hand[] {

202 entry address =
203 name = ID cyh2;
204 exinf = 0x1234;
205 start = OFF;

206 phsatr = ON;

207 interval counter
208 phs_counter =
209 };

210 cyclic_hand[]{

211 entry address =
212 name = ID cyh3;
213 exinf = OxXFFFF;
214 start = ON;

215 phsatr = OFF;

216 interval counter
217 phs_counter =
218 };

219 cyclic_hand[4] {

220 entry address =
221 name = ID cyh4;
222 exinf = 0x0;

223 start = ON;

224 phsatr = ONj;

225 interval counter
226 phs_counter =
227 };

228

229 alarm_hand[] {

230 entry address =
231 name = ID alml;
232 exinf = OxXFFFF;
233 }

234

aiarm_hand[z]{

TA TFIFO;

TA TPRI;

32;
4;

TA TFIFO;

64 ;
256;

64 ;
256 ;

{

256 ;
1024;

cyhl () ;

0x1;
0x0;

cyh2 () ;

0x20;
0x10;

cyh3;

0x20;
0x0;

cyh4 () ;

0x100;
0x80;

alml () ;

282



235
236
237
238 };
239
240
241 //

entry address = alm2;

name
exinf

ID alm2;
0x12345678;

242 // End of Configuration

243 //

283



8.2 Configurator Execution Procedures

8.2.1

Configurator Overview

The configurator is a tool that converts the contents defined in the configuration file into the assembly language include file,
etc.Figure 8.1 outlines the operation of the configurator.

When used on HEW, the configurator is automatically started, and an application program is built.

Executing the configurator requires the following input files:

Configuration file (XXXX.cfg)
This file contains description of the system's initial setup items. It is created in the current directory.

Default configuration file (default.cfg)

This file contains default values that are referenced when settings in the configuration file are omitted. This file
is placed in the directory indicated by environment variable "LIB30" or the current directory. If this file exists in
both directories, the file in the current directory is prioritized over the other.

include template file(mr100.inc, sys_ram.inc)
This file serves as the template file of include file "mr100.inc" and “sys_ram.inc”. It resides in the directory in-

dicated by environment variable "LIB100."

MR2100 version file (version)
This file contains description of MR100's version. It resides in the directory indicated by environment variable
"LIB100." The configurator reads in this file and outputs MR100's version information to the startup message.

Service call definition file(kernel_sysint.h)
This file contains description of MR100 service call definition. It resides in the directory indicated by environ-
ment variable "LIB100." The configurator reads in this file and outputs to thecurrent directory.

When the configurator is executed, the files listed below are output.

Do not define user data in the files output by the configurator. Starting up the configurator after entering data definitions
may result in the user defined data being lost.

System data definition file (sys_rom.inc, sys_ram.inc)
This file contains definition of system settings.

Include file (mr100.inc)
This is an include file for the assembly language.

Service call definition file(kernel_sysint.h)
This file contains description of MR100 service call definition

284



Configuration File

xxx.cfg \ System Data Definition File
sys_ram.inc, sys_rom.inc
Default
Configuration File . Include File
default.cfg Cfgl 00 ’ mr100.inc
Template File \ ID Number Definition File
sys_ram.inc, mr100.inc \ kernel_id.h
MR100 Version File Service call Definition File
version kernel _sysint.h

Service call Definition File

kernel_sysint.h

Figure 8.1 The operation of the Configurator

8.2.2 Setting Configurator Environment
Before executing the configurator, check to see if the environment variable "LIB100" is set correctly.

The configurator cannot be executed normally unless the following files are present in the directory indicated by the envi-
ronment variable "L1B100™:

® Default configuration file (default.cfg)
This file can be copied to the current directory for use. In this case, the file in the current directory is given priority.

® System RAM area definition database file (Sys_ram.inc)
® mrl00.inc template file (mr100.inc)

® Section definition file(c_sec.inc or asm_sec.inc)

® Startup file(crtOmr.a30 or start.a30)

® MR2100 version file(version)

® Service call definition file(kernel_sysint.h)

285



8.2.3

Configurator Start Procedure

Start the configurator as indicated below.

C:\> cfgl00 [-vV] [-Eipl] [-Wipl] Configuration file name

Normally, use the extension .cfg for the configuration file name. The file name can includes space character with “”.

| Command Options |

8.24

-v Option
Displays the command option descriptions and detailed information on the version.

-V Option
Displays the information on the files generated by the command.

-Eipl Option
Enable the check function of an IPL value. When System_IPL! = 7 in the configuration file, the error message "
system_IPL should be 7" is displayed and the execution of cfg100 is stpped.

-Wipl Option
Enable the check function of a IPL value. When System_IPL! = 7 in the configuration file, the error message "
system_IPL should be 7" is displayed..

Precautions on Executing Configurator

The following lists the precautions to be observed when executing the configurator:

Do not modify the startup program name and the section definition file name. Otherwise, an error may
be encountered when executing the configurator.

286



8.2.5 Configurator Error Indications and Remedies

If any of the following messages is displayed, the configurator is not normally functioning. Therefore, correct the configu-
ration file as appropriate and the execute the configurator again.

Error messages

cfgl00 Error : Syntax error near line xxx (xxxx.cfq)
There is an syntax error in the configuration file.

cfg100 Error : Not enough memory
Memory is insufficient.

cfgl00 Error : lllegal option --> <x>
The configurator's command option is erroneous.

cfg100 Error : lllegal argument --> <xx>
The configurator's startup format is erroneous.

cfg100 Error : Can't write open <XXXX>
The XXXX file cannot be created. Check the directory attribute and the remaining disk capacity available.

cfg100 Error : Can't open <XXXX>
The XXXX file cannot be accessed. Check the attributes of the XXXX file and whether it actually exists.

cfg100 Error : Can't open version file
The MR100 version file "version" cannot be found in the directory indicated by the environment variable
"LIB30".

cfg100 Error : Can't open default configuration file
The default configuration file cannot be accessed. "default.cfg" is needed in the current directory or directory
"LIB100" specifying.

cfg100 Error : Can't open configuration file <xxxx.cfg>
The configuration file cannot be accessed. Check that the file name has been properly designated.

cfg100 Error : illegal XXXX --> <xx> near line xxx (xxxx.cfg)
The value or ID number in definition item XXXX is incorrect. Check the valid range of definition.

cfg100 Error : Unknown XXXX --> <xx> near line xx (xxxx.cfg)
The symbol definition in definition item XXXX is incorrect. Check the valid range of definition.

cfg100 Error : XXXX's ID number is too large.--> <xxx> (xxxx.cfg)
A value is set to the ID number in XXXX definition that exceeds the total number of objects defined.The ID
number must be smaller than the total number of objects.

cfg100 Error : Task[x]'s priority is too large.--> <xxx> near line xxx (xxxx.cfg)
The initial priority in task definition of ID number x exceeds the priority in system definition.

cfg100 Error : clock.IPL is too large.--> <xxx> near line xxx (xxxx.cfg)
The system clock interrupt priority level for system clock definition item exceeds the value of IPL within service
call of system definition item.

287



cfg100 Error : System timer's vector <x>conflict near line xxx
A different vector is defined for the system clock timer interrupt vector. Confirm the vector No.x for interrupt
vector definition.

cfg100 Error : XXXX is not defined (xxxx.cfg)
"XXXX" item must be set in your configuration file.

cfg100 Error : System's default is not defined
These items must be set int the default configuration file.

cfgl00 Error : <XXXX> is already defined near line xxx (xxxx.cfg)
XXXX is already defined. Check and delete the extra definition.

cfgl00 Error : XXXX[x] is already defined near line xxx (default.cfg)
cfgl00 Error : XXXX[x] is already defined near line xxx (xxxx.cfg)
The ID number in item XXXX is already registered. Modify the ID number or delete the extra definition.

cfgl00 Error : XXXX must be defined near line xxx (xxxx.cfg)
XXXX cannot be omitted.

cfg100 Error : SYMBOL must be defined near line xxx (xxxxcfg)
This symbol cannot be omitted.

cfg100 Error : Zero divide error near line xxx (xxxx.cfg)
A zero divide operation occurred in some arithmetic expression.

cfg100 Error : task[X].stack_size must set XX or more near line xxx (xxxx.cfg)
You must set more than XX bytes.in task[x].stack_size.

cfg100 Error : "R2R0" must be contained in task[x].context near line xxxx (xxxx.cfg)
You must select R2RO0 register in task[x].context.

cfgl00 Error : Can't specify B or F switch when os_int=YES. (xxxx.cfg)
"/B" and "/F" switch cannot be specified to a kernel interrupt handler.

cfg100 Error : Can't specify B and E switch at a time when os_int=NO. (xxxx.cfg)
"/B" and "/E" switch cannot be specified to the non-kernel interrupt handler at a time.

cfg100 Error : interrupt_vector[%ld].os_int must be YES. (xxxx.cfq)
When a kernel interrupt mask level is 7, an interrupt handler must be kernel interrupt handler..

cfg100 Error : system_IPL should be 7. (xxxx.cfg)
When "-Eipl" is specified as the command option of configurator, the value of sysrem_IPL of a system definition
must be 7.

cfg100 Error : Timer counter value is overflow. (xxxx.cfg)
Overflow occurred in the operation of a timer count. A timer cannot be initialized with the time tick cycle and
peripheral clock which were specified. Please initialize the timer and sets clock.timer to “OTHER”.

288



Warning messages
The following message are a warning. A warning can be ignored providing that its content is understood.

cfg100 Warning : system is not defined (xxxx.cfg)

cfgl00 Warning : system.XXXX is not defined (xxxx.cfg)
System definition or system definition item XXXX is omitted in the configuration file.

cfg100 Warning : task[x].XXXX is not defined near line xxx (xxxx.cfg)
The task definition item XXXX in ID number is omitted.

cfgl00 Warning : Already definition XXXX near line xxx (xxxx.cfg)
XXXX has already been defined.The defined content is ignored, check to delete the extra definition.

cfgl00 Warning : interrupt_vector[x]'s default is not defined (default.cfg)
The interrupt vector definition of vector number x in the default configuration file is missing.

cfgl00 Warning : interrupt_vector[x]'s default is not defined near line xxx (xxxx.cfg)
The interrupt vector of vector number x in the configuration file is not defined in the default configuration file.

cfgl100 Warning : Initial start task is not defined
The task of task ID number 1 was defined as the initial startup task because no initial startup task is defined in
the configuration file.

cfg100 Warning : system.stack_size is an uneven number near line xxx
cfg100 Warning : task[x].stack_size is an uneven number near line xxx
Please set even size in system.stack_size or task[x].stack_size.

cfg100 Warning : system_IPL should be 7
When "-Wipl" is specified as the command option of configurator, you should make the value of sysrem_IPL of
a system definition 7.

cfgl00 Warning : Timer counter value is less than your settimg time
The error occurred in the operation of a timer count. Please check whether an error is permitted.

cfgl00 Warning : XXXX is specified as YYYY.
XXXX is specified as YYYY.

289



9. Sample Program Description

9.1 Overview of Sample Program

As an example application of MR100, the following shows a program that outputs a string to the standard output device
from one task and another alternately.

Table 9.1 Functions in the Sample Program

Function Type ID No. Priority | Description

Name

main() Task 1 1 Starts task1 and task?.
task1() Task 2 2 Outputs "task1 running."
task2() Task 3 3 Outputs "task2 running."”
cyhl() Handler 1 Wakes up task1().

The content of processing is described below.

] The main task starts taskl, task2, and cyh1, and then terminates itself.

] taskl operates in order of the following.
1. Gets a semaphore.
2.  Goes to a wakeup wait state.
3. Outputs "taskl running."
4

Frees the semaphore.

] task2 operates in order of the following.
1. Gets a semaphore.

2. Outputs "task2 running."
3. Frees the semaphore.

cyhl starts every 100 ms to wake up taskZ.

290



9.2 Program Source Listing

1 /*************************************************************************
2 * MR100 smaple program

3 *

4 * COPYRIGHT (C) 2003(2005) RENESAS TECHNOLOGY CORPORATION

5 * AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED

6 *

7 *

8 * $Id: demo.c,v 1.2 2005/06/15 05:29:02 inui Exp $

9 *************************************************************************/
10

11 #include <itron.h>
12 #include <kernel.h>
13 #include "kernel id.h"
14 #include <stdio.h>

15

16

17 void main( VP_INT stacd )

18

19 sta_tsk(ID taskl,0);

20 sta_tsk(ID task2,0);

21 sta_cyc(ID cyhl);

22 }

23 void taskl( VP_INT stacd )

24

25 while (1) {

26 wail_sem(ID_seml) ;
27 slp tsk();

28 printf ("taskl running\n") ;
29 sig sem(ID seml) ;
30 }

31 }

32

33 void task2( VP_INT stacd )

34

35 while (1) {

36 wail_sem(ID_seml) ;
37 printf ("task2 running\n") ;
38 sig sem(ID_seml) ;
39 }

40 }

41

42 void cyhl ( VP_INT exinf )

43

44 iwup_tsk (ID_taskl);

45 }

46

201



9.3 Configuration File

l //*************************************************************************
2//

3 // ~COPYRIGHT(C) 2003,2005 RENESAS TECHNOLOGY CORPORATION
4 // AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED
5//

6 // MR100 System Configuration File.
7// "$Id: smp.cfg,v 1.5 2005/06/15 05:41:54 inui Exp $"
8

9 ;5*************************************************************************
10

11 // System Definition

12 system{

13 stack _size = 1024;

14 priority = 10;

15 system_ IPL = 4;

16 tic nume =1;

17 tic_deno =1;

18 message pri = 255;

19 };

20 //System Clock Definition

21 clock({

22 mpu_clock = 20MHz;
23 timer = A0;

24 IPL = 4;

25 };

26 //Task Definition

27 //

28 task[]{

29 entry address = main() ;

30 name = ID main;

31 stack _size = 100;

32 priority =1;

33 initial_start = ON;

34 };

35 task[]{

36 entry address = taskl();

37 name = ID_taskl;

38 stack_size = 500;

39 priority = 2;
40 };
41 task[]{
42 entry address = task2();
43 name = ID_task2;
44 stack _size = 500;
45 priority = 3;
46 };
47
48 semaphore[] {
49 name = ID seml;

50 max_count =1;

51 initial_count = 1;

52 wait queue = TA TPRI;

53 };

54

55

56

57 cyclic_hand [1] {

58 name = ID cyhil;
59 interval_counter = 100;

60 start = OFF;

61 phsatr = OFF;

62 phs_ counter =0;

63 entry address = cyhl () ;
64 exinf =1;

65 };

292



10. Stack Size Calculation Method

10.1Stack Size Calculation Method

The MR100 provides two kinds of stacks: the system stack and the user stack. The stack size calculation method differ be-
tween the stacks.

® User stack

This stack is provided for each task. Therefore, writing an application by using the MR100 requires to allocate
the stack area for each stack.

® System stack
This stack is used inside the MR100 or during the execution of the handler.

When a task issues a service call, the MR100 switches the user stack to the system stack. (See Figure
10.1:System Stack and User Stack)

The system stack uses interrupt stack(ISP).

Task MR100 Service Cal | Processing Position

User Stack
Register save
Stack switching A
Service call
processing
XXX XXX O System Stack
(interruput stack)
Task Selection
Stack switching
Register return
User Stack

Figure 10.1:System Stack and User Stack

The sections of the system stack and user stack each are located in the manner shown below. However, the diagram shown
below applies to the case where the stack areas for all tasks are located in the stack section during configuration.

293



SFR

System Stack

User satck of
TaskID No. 1

User satck of
TaskID No. 2

User satck of
TaskID No.n

Stack Section

Figure 10.2: Layout of Stacks

294



10.1.1 User Stack Calculation Method

User stacks must be calculated for each task. The following shows an example for calculating user stacks in cases when an
application is written in the C language and when an application is written in the assembly language.

® \When an application is written in the C language

Using the stack size calculation utility of NC100, calculate the stack size of each task. The necessary stack size
of a tgssk is the sum of the stack size output by the stack size calculation utility plus a context storage area of 48
bytes

®\When an application is written in the assembly language

¢ Sections used in user program
The necessary stack size of a task is the sum of the stack size used by the task in subroutine call plus the size

used to save registers to a stack in that task.

¢ Sections used in MR100
The sections used in MR100 refer to a stack size that is used for the service calls issued.

MR100 requires that if you issue only the service calls that can be issued from tasks, 8bytes of area be allocated
for storing the PC and FLG registers. Also, if you issue the service calls that can be issued from both tasks and
handlers, see the stack sizes listed in Table 10.2 Stack Sizes Used by Service Calls Issued from Handlers (in
bytes) to ensure that the necessary stack area is allocated.

Furthermore, when issuing multiple service calls, include the maximum value of the stack sizes used by those
service calls as the sections used by MR100 as you calculate the necessary stack size.

Therefore,

User stack size =
Sections used in user program + registers used + Sections used in MR100

(registers used is total size of used registers.)

Figure 2.3:Example of Use Stack Size Calculation shows an example for calculating a user stack. In the example below, the
registers used by the task are R2R0, R3R1, and AO0.

%8 |f written in the C language, this size is fixed.

295



Stack growing direction

>
When use register R2R0,R3R1,A0(12by tes)
4bytes
<>
jsr subl 24 byt es(PC+FL G+size of re gisters used)
< >
sta_tsk
36bytes(P C+F LG+size of registers used
stack size used by prev_mbx)
4 ~
< >
prev_mbx
i
]
[}
’
1
]
]
’
1
]
[}
| ’
e >
| 40bytes ,
| ’

Figure 2.3:Example of Use Stack Size Calculation

296



10.1.2 System Stack Calculation Method

The system stack is most often consumed when an interrupt occurs during service call processing followed by the occur-
rence of multiple interrupts.59 The necessary size (the maximum size) of the system stack can be obtained from the fol-
lowing relation:

Necessary size of the system stack = g 2Bi( v)

The maximum system stack size among the service calls to be used.®.

When sta_tsk, ext_tsk, and dly_tsk are used for example, according to the Table 10.1 Stack Sizes Used by Ser-
vice Calls Issued from Tasks (in bytes),each of system stack size is the following.

Service Call name System Stack Size
sta_tsk 4 bytes
ext tsk 32hytes
slp_tsk 4 bytes
dly tsk 8 bytes

Therefore,the maximum system stack size among the service calls to be used is the 8 bytes of dly_tsk.

® fi
The stack size to be used by the interrupt handler.® The details will be described later.
oy

Stack size used by the system clock interrupt handler. This is detailed later.

% After switchover from user stack to system stack

€ Refer from Table 10.1 Stack Sizes Used by Service Calls Issued from Tasks (in bytes) to Table 10.3 Stack Sizes Used by Service Calls
Issued from Tasks and Handlers (in bytes) for the system stack size used for each individual service call.
1 Kernel interrupt handler (not including the system clock interrupt handler here) and non-kernel interrupt handler.

297



o:The maximum system stack size among the service calls to be used.

~ BuThe system stack size to be used by the interrupt handler.
7

N

B1
>
\/\\

Interrupt \/\ ¢ N

Interrupt

The necessary system stack

Y

v

Figure 10.4: System Stack Calculation Method

298



[( Stack size Bi used by interrupt handlers )]
The stack size used by an interrupt handler that is invoked during a service call can be calculated by the equation below.

The stack size Bi used by an interrupt handler is shown below.

C language
Using the stack size calculation utility of NC100, calculate the stack size of each interrupt handler.

Refer to the manual of for the stack size calculation utility detailed use of it.

Assembly language
The stack size to be used by kernel interrupt handler
= register to be used + user size + stack size to be used by service call

The stack size to be used by non-kernel interrupt handler
=register to be used + user size

User size is the stack size of the area written by user.

\/\ Context(4 8bytes)
. ~
N 7z

Interrupt 4bytes
| €—>
jsr func
32bytes
2 ~
< 7
iset_flg
|
|
|
|
|
|
|
|
|
|
|
j
|
ret_int !
|
‘ j
1 . N }
) 7 |
! 84bytes |

Figure 10.5: Stack size to be used by Kernel Interrupt Handler(Written in C language)

299



[( System stack size y used by system clock interrupt handler )]
When you do not use a system timer, there is no need to add a system stack used by the system clock interrupt handler.

The system stack size y used by the system clock interrupt handler is whichever larger of the two cases below:

84 + maximum size used by cyclic handler
84 + maximum size used by alarm handler

C language
Using the stack size calculation utility of NC100, calculate the stack size of each Alarm or Cyclic handler.

Refer to the manual of the stack size calculation utility for detailed use of it.

Assembly language
The stack size to be used by Alarm or Cyclic handler
= register to be used + user size + stack size to be used by service call

If neither cyclic handler nor alarm handler is used, then

vy =72 bytes

When using the interrupt handler and system clock interrupt handler in combination, add the stack sizes used by both.

300



10.2Necessary Stack Size

Table 10.1 Stack Sizes Used by Service Calls Issued from Tasks (in bytes) lists the stack sizes (system stack) used by
service calls that can be issued from tasks.

Table 10.1 Stack Sizes Used by Service Calls Issued from Tasks (in bytes)

Service call Stack size Service call Stack size
User stack System User stack System
stack stack

act_tsk 0(4) 4 rcv_mbx 4 28
can_act 8(12) 0 prcv_mbx 8(16) 0
sta_tsk 0(4) 4 trcv_mbx 4 28
ext tsk 0 32 ref_mbx 0(8) 0
ter_tsk 0(4) 44 get_mpf 4 28
chg_pri 0(4) 20 pget mpf 8(20) 0
get_pri 8(12) 0 tget_mpf 4 32
ref_tsk 0(32) 0 rel_mpf 0(4) 16
ref tst 0(12) 0 ref mpf 0(8) 0
slp_tsk 0(4) 4 pget_mpl 4 74
tslp_tsk 0(4) 8 rel_mpl 0(4) 38
wup_tsk 0(4) 16 ref_mpl 0(20) 0
can_wup 8(12) 0 set_tim 0(8) 0
rel_wai 0(4) 44 get tim 0(8) 0
sus_tsk 0(4) 4 sta_cyc 0(12) 0
rsm_tsk 0(4) 4 stp_cyc 0(8) 0
frsm_tsk 0(4) 4 ref cyc 0(16) 0
dly tsk 0(4) 8 sta_alm 0(12) 0
sig_sem 0(4) 16 stp_alm 0(8) 0
wai_sem 0(4) 28 ref alm 0(16) 0
pol_sem 0(8) 0 rot_rdq 0(4) 0
twai_sem 0(4) 28 get tid 8(8) 0
ref sem 0(8) 0 loc_cpu 0(4) 0
set flg 0(4) 16 unl_cpu 0(4) 0
clr_flg 0(8) 0 ref ver 0(12) 0
wai_flg 4 28 vsnd_dtq 0(4) 28
pol flg 0(12) 0 vpsnd_dtq 0(4) 16
twai_flg 4 28 visnd_dtq 0(4) 28
ref_flg 0(8) 0 vfsnd_dtg 0(4) 16
snd_dtq 0(4) 28 vrev_dtq 4 16
psnd_dtq 0(4) 16 vprev_dtq 4 16
tsnd_dtq 0(4) 28 vircv_dtq 4 16
fsnd_dtqg 0(4) 16 vref dtg 0(8) 0
rcv_dtq 4 16 vrst_dtg 0(4) 48
prcv_dtg 4 16 vrst_vdtq 0(4) 48
trcv_dtqg 4 16 vrst_mbx 0(8) 0
ref _dtg 0(8) 0 vrst_mpf 0(4) 48
snd_mbx 0(4) 12 vrst_mpl 0 28(40)
dis_dsp 0(4) 0 ena_dsp 0(4) 0
loc_mix 0(4) 32 ploc_mtx 0(4) 8
tloc_mtx 0(4) 32 unl_mtx 0(4) 36
ref_mtx 0(8) 0 snd_mbf 0(4) 28
tsnd_mbf 0(4) 28 psnd_mbf 0(4) 28
rcv._mbf 4 56 trcv_mbf 4 56
prcv._mbf 4 56 ref_ mbf 0(12) 0
vrst mbf 0(4) 64

(): Stack sizes used by service call in Assembly programs.

301




Table 10. 2 Stack Sizes Used by Service Calls Issued from Handlers (in bytes) lists the stack sizes (system
stack) used by service calls that can be issued from handlers.

Table 10.2 Stack Sizes Used by Service Calls Issued from Handlers (in bytes)

Service call Stack size Service call Stack size
jact tsk 12(40) iprcv_mbx 16(28)
ican_act 16(24) iref_mbx 12(20)
ista_tsk 12(40) ipget mpf 28(32)
ichg_pri 28(56) irel_mpf 32(64)
iget pri 16(24) iref mpf 12(20)
iref tsk 12(44) iset_tim 12(20)
iref_tst 12(24) iget_tim 12(20)
iwup_tsk 24(56) ista_cyc 12(24)
ican_wup 16(24) istp_cyc 12(20)
irel_wai 52(84) iref_cyc 12(28)
isus_tsk 12(32) ista_alm 12(24)
irsm_tsk 12(40) istp_alm 12(20)
ifrsm_tsk 12(40) iref_alm 12(28)
isig_sem 28(60) irot_rdq 12(24)
ipol_sem 12(20) iget_tid 16(20)
iref_sem 12(20) iloc_cpu 12
iset_flg 32(72) iunl_cpu 12(20)
iclr_flg 12(20) ret_int 16
ipol_flg 16(24) iref_ver 12(24)
iref flg 12(20) vipsnd_dtq 32(64)
ipsnd_dtq 28(60) vifsnd_dtq 32(64)
ifsnd_dtq 28(60) viprev_dtg 36(68)
iprcv_dtq 40(68) viref dtg 12(20)
iref dtq 12(20) isnd mbx 24(52)
iref_ mpl 12(32) ipsnd_mbf 40(72)
iref_ mbf 12(20)

(): Stack sizes used by service call in Assembly programs.

Table 10.3 Stack Sizes Used by Service Calls Issued from Tasks and Handlers (in bytes) lists the stack
sizes (system stack) used by service calls that can be issued from both tasks and handlers. If the service call
issued from task, system uses user stack. If the service call issued from handler, system uses system stack.

Table 10.3 Stack Sizes Used by Service Calls Issued from Tasks and Handlers (in bytes)

Service call Stack size Service call Stack size
sns_ctx 12(20) sns_loc 12(20)
sns_dsp 12(20) sns_dpn 12(20)
vsys_dwn 0(8) ivsys_dwn 8

(): Stack sizes used by service call in Assembly programs.

302




11. Note

11.1The Use of INT Instruction

MR100 has INT instruction interrupt numbers reserved for issuing service calls as listed in Table 11.1 Interrupt Number
Assignment. For this reason, when using software interrupts in a user application, do not use interrupt numbers 63 through
48 and be sure to use some other numbers.

Table 11.1 Interrupt Number Assignment

Interrupt No. Service calls Used
248 vsys_dwn service call
249 Service calls that can be issued from only task context
250 Service calls that can be issued from only non-task context.
Service calls that can be issued from both task context and non-task context.
251 ret_int service call
252 dis_dsp service call
253 loc_cpu, iloc_cpu service call
254 ext tsk service call
255 Reserved for future extension

11.2The Use of registers of bank

The registers of bank is 0, when a task starts on MR100.
MR100 does not change the registers of bank in processing kernel.

You must pay attention to the followings.

® Don't change the regisers of bank in processing a task.

® |f an interrupt handler with regisers of bank 1 have multiple interrupts of an interrupt handler with regis-
ers of bank 1, the program can not execute normally.

- 308 -



11.3Regarding Delay Dispatching

MR100 has four service calls related to delay dispatching.

® dis dsp
® ena_dsp
® |oc_cpu
® unl_cpu

The following describes task handling when dispatch is temporarily delayed by using dis_dsp service calls.

1. When the execution task in delay dispatching should be preempted
While dispatch is disabled, even under conditions where the task under execution should be preempted, no time
is dispatched to new tasks that are in an executable state. Dispatching to the tasks to be executed is delayed until
the dispatch disabled state is cleared. When dispatch is being delayed.

® Task under execution is in a RUNNING state and is linked to the ready queue

® Task to be executed after the dispatch disabled state is cleared is in a READY state and is linked to the
highest priority ready queue (among the queued tasks).
2. isus_tsk,irsm_tsk during dispatch delay
In cases when isus_tsk is issued from an interrupt handler that has been invoked in a dispatch disabled state to
the task under execution (a task to which dis_dsp was issued) to place it in a SUSPEND state. During delay dis-
patching.

® The task under execution is handled inside the OS as having had its dispatch disable state cleared. For
this reason, in isus_tsk that has been issued to the task under execution, the task is removed from the
ready queue and placed in a SUSPEND state. Error code E_OK is returned. Then, when irsm_tsk is
issued to the task under execution, the task is linked to the ready queue and error code E_OK is re-
turned. However, tasks are not switched over until dispatch disable state is cleared.

® The task to be executed after disabled dispatching is re-enabled is linked to the ready queue.
3. Precautions

® |f the service call (e.g., slp_tsk, wai_sem) can be issued that may place the own task in a wait state
while in a state where dispatch is disabled by dis_dsp or loc_cpu, an error E_CTX is returned.

® ena_dsp and dis_dsp cannot be issued while in a state where interrupts and dispatch are disabled by
loc_cpu.

® Disabled dispatch is re-enabled by issuing ena_dsp once after issuing dis_dsp several times.
The above status transition can be summarized in Table 3.3.

- 304 -



11.4Regarding Initially Activated Task

MR100 allows you to specify a task that starts from a READY state at system startup. This specification is made by setting
the configuration file.

Refer to 8.1.2 for details on how to set.

- 305 -






12. Appendix

12.1Data Type

typedef signed char
typedef signed short
typedef signed long
typedef unsigned char
typedef unsigned short
typedef unsigned long
typedef signed char
typedef signed short
typedef signed long
typedef void
typedef void
typedef w
typedef UW
typedef signed long long
typedef unsigned long long
typedef signed long long
typedef H
typedef H
typedef w
typedef H
typedef UH
typedef UH
typedef UH
typedef UW
typedef UW
typedef w
typedef struct

UH

UwW
} SYSTIM;
typedef W
typedef H

B;

H;

W;

UB;

UH;
UW;

VB

VH;

VW;
*VP;
(*FP(void));
INT
UINT;
D;

UD;

VD;

ID;

PRI;
TMO;
ER;
ATR;
STAT;
MODE;
SIZE;
RELTIM
VP_INT;

systim{
utime;
ltime;

ER_UINT;
BOOL;

/* Signed 8-bit integer */

/* Signed 16-bit integer */

/* Signed 32-bit integer */

/* Unsigned 8-bit integer */

/* Unsigned 16-bit integer */

/* Unsigned 32-bit integer */

/* 8-bit value with unknown data type */
/* 16-bit value with unknown data type */
[* 32-bit value with unknown data type */
/* Pointer to unknown data type */

/* Pointer to a function */

/* Signed 32-bit integer */

/* Unsigned 32-bit integer */

/* Signed 64-bit integer */

/* Unsigned 64-bit integer */

[* 64-bit value with unknown data type */
/* Object ID number */

/* Priority */

/* Timeout */

/* Error code(Signed integer) */

/* Object attribute(Unsigned integer) */
/* Task status */

/* Service call operation mode */

/* Memory area size */

/* Relative time */

/* Pointer to an unknown data type, or a signed

integer for the processor */

/* System time */

/* Upper16bit of the system time */
/* Lower32bit of the system time */

/* Error code or unsigned integer */
/* Bool type */

- 307 -



12.2Common Constants and Packet Format of Structure

----Common formats----

TRUE 1 /* True */
FALSE 0 [* False */
----Formats related to task management----
TSK_SELF 0 /* Specifies the issuing task itself */
TPRI_RUN 0 /* Specifies priority of task being executed then */
typedef struct t_rtsk {
STAT tskstat; /* Task status */
PRI tskpri; /* Current priority of task */
PRI tskbpri; /* Base priority of task */
STAT tskwait; /* Reason for which task is kept waiting */
1D wid; /* Object ID for which task is kept waiting */
T™MO tskatr; /* Remaining time before task times out */
UINT actent; /* Number of activation requests */
UINT wupcnt; /* Number of wakeup requests */
UINT suscnt; /* Number of suspension requests */
} T_RTSK;
typedef struct t_rtst {
STAT tskstat; /* Task status */
STAT tskwait; /* Reason for which task is kept waiting */
} T_RTST;

----Formats related to semaphore----
typedef struct t_rsem {

ID wtskid; /* ID number of task at the top of waiting queue */
INT semcnt; /* Current semaphore count value */

}T_RSEM;

----Formats related to eventflag----

wfmod:

TWF_ANDW H’0000 /* AND wait */

TWF_ORW H’0002 /* OR wait */

typedef struct t_rflg {
ID wtskid; /* ID number of task at the top of waiting queue */
UINT flgptn; /* Current bit pattern of eventflag */

}T_RFLG;

----Formats related to data queue and short data queue----
typedef struct t_rdtq {

ID stskid; /* ID number of task at the top of transmission waiting queue */
ID rtskid; /* ID number of task at the top of reception waiting queue */
UINT sdtgcnt; /* Number of data bytes contained in data queue */

}T_RDTQ;

----Formats related to mailbox----
typedef struct t msg {

VP msghead; [* Message header */
}T_MSG;
typedef struct t_msg_pri {
T_MSG msgque; [* Message header */
PRI msgpri; /* Message priority */
}T_MSG_PRI;
typedef struct t_mbx {
1D wtskid; /* ID number of task at the top of waiting queue */
T_MSG *pk_msg; /* Next message to be received */
} T_RMBX;

----Formats related to fixed-size memory pool----
typedef struct t_rmpf {

1D wtskid; /* ID number of task at the top of memory acquisition waiting queue
*/
UINT frbent; /* Number of memory blocks */

} T_RMPF;

- 308 -



----Formats related to Variable-size Memory pool----
typedef struct t_rmpl {

1D wtskid; /* ID number of task at the top of memory acquisition waiting queue
*/
SIZE fmplsz; /* Total size of free areas */
UINT fblksz; /* Maximum memory block size that can be acquired immediately */
} T_RMPL;

----Formats related to cyclic handler----
typedef struct t_rcyc {

STAT cycstat; [* Operating status of cyclic handler */
RELTIM lefttim; /* Remaining time before cyclic handler starts */
} T_RCYC;

----Formats related to alarm handler----
typedef struct t_ralm {

STAT almstat; [* Operating status of alarm handler */
RELTIM lefttim; /* Remaining time before alarm handler starts */
} T_RALM;

----Formats related to system management----
typedef struct t_rver {

UH maker; /* Maker */

UH prid; /* Type number */

UH spver; /* Specification version */

UH prver; /* Product version */

UH prnol[4]; /* Product management information */
}T_RVER;

----Formats related to message buffer ----
typedef struct t_rmbf {

ID stskid; [* Transmit waiting task 1D */
ID rtskid; /* Receive waiting task ID */
UINT smsgcnt; /* Message counts contained in message buffer */
SIZE fmbfsz; [* Free buffer size (in bytes) */
} T_RMBF;

----Formats related to mutex----
typedef struct t_rmtx {

ID htskid; [* Task ID that has mutex locked */
ID witskid; [* Task ID in mutex wait queue */
} T_RMTX;

- 309 -



12.3Assembly Language Interface
When issuing a service call in the assembly language, you need to use macros prepared for invoking service
calls.

Processing in a service call invocation macro involves setting each parameter to registers and starting ex-
ecution of a service call routine by a software interrupt. If you issue service calls directly without using a ser-
vice call invocation macro, your program may not be guaranteed of compatibility with future versions of
MR100.

The table below lists the assembly language interface parameters. The values set forth in uITRON specifica-
tions are not used for the function code.

Task Management Function

Parameter ReturnParameter
ServiceCall INTNo. ignCCOde R1 R2 R3 AL RO R2
ista_tsk 250 8 | stacd tskid | stacd | - ercd -
sta_tsk 249 6 | stacd tskid | stacd | - ercd -
act_tsk 249 0] - tskid | - - ercd -
iact_tsk 250 2 |- tskid | - - ercd -
ter_tsk 249 10 | - tskid | - - ercd -
can_act 250 4 - tskid | - - actent -
ican_act 250 4| - tskid | - - actent -
chg_pri 250 12 | - tskid | tskpri | - ercd -
ichg_pri 250 14 | - tskid | tskpri | - ercd -
rel_wai 249 32| - tskid | - - ercd -
irel_wai 250 34 |- tskid | - - ercd -
ref_tst 250 20 | - tskid | - pk_rtst | ercd -
iref_tst 250 20 | - tskid | - pk_rtst | ercd -
ref_tsk 250 18 | - tskid | - pk_rtsk | ercd -
iref_tsk 250 18 | - tskid | - pk_rtsk | ercd -
ext_tsk 137 106 | - - - - - -
get_pri 250 16 | - tskid | - - ercd tskpri
iget_pri 250 16 | - tskid | - - ercd tskpri

- 310 -



Task Dependent Synchronization Function

Parameter ReturnParameter
ServiceCall | INTNo. Funi(oj()de R2 RERA RO
slp_tsk 249 22 | - - ercd
wup_tsk 249 26 | tskid - ercd
iwup_tsk 250 28 | tskid - ercd
can_wup 250 30 | tskid - wupcnt
ican_wup 250 30 | tskid - wupcnt
tslp_tsk 249 24 | - tmout ercd
sus_tsk 249 36 | tskid - ercd
isus_tsk 250 38 | tskid - ercd
rsm_tsk 249 40 | tskid - ercd
irsm_tsk 250 42 | tskid - ercd
frsm_tsk 249 40 | tskid - ercd
ifrsm_tsk 250 42 | tskid - ercd
dly tsk 249 44 | - tmout ercd
rel_wai 249 32 | tskid - ercd
irel_wai 250 34 | tskid - ercd
Synchronization & Communication Function
Parameter ReturnParameter
ServiceGall | INTNo. RuncCode | go RSR1 |R2 | R6R4 | Al RO | R3R1
wal_sem 249 50 semid ercd
pol_sem 250 52 semid ercd
ipol_sem 250 52 semid ercd
sig_sem 249 46 semid ercd
isig_sem 250 48 semid ercd
twai_sem 249 54 semid | tmout ercd
ref sem 250 56 semid pk_rsem | ercd
iref_sem 250 56 semid pk_rsem | ercd
wai_flg 249 64 | wfmode | waiptn | flgid ercd flgptn
twai_flg 249 92 | wfmode | waiptn | flgid tmout ercd fgptn
pol_flg 250 66 | wifmode | waiptn | flgid ercd flgptn
ipol_flg 250 66 | wfmode | waiptn | flgid ercd flgptn
set_flg 249 58 setptn | flgid ercd
iset_flg 250 60 setptn | flgid ercd
ref_flg 250 70 flgid pk_rflg ercd
iref flg 250 70 flgid pk_rflg ercd
clr_flg 250 62 clrptn | flgid - ercd
iclr_flg 250 62 clrptn | flgid ercd
snd_dtq 249 72 data dtqid ercd
psnd_dtq 249 74 data dtqid ercd
ipsnd_dtq 250 76 data dtqid ercd
fsnd_dtq 249 80 data dtqid ercd
ifsnd_dtq 250 82 data dtqid ercd
tsnd_dtq 249 104 data dtqid tmout ercd

- 311 -




Synchronization & Communication Function

Parameter ReturnParameter
ServiceCall | INTN. funcCode | Rgr1 | R2 R6R4 | Al RO | R3R1 |Al
rev_dtq 249 84 dtqid ercd data
prev_dtq 249 86 dtqid ercd data
iprev_dtq 250 88 dtqid ercd data
trev_dtq 249 90 dtqid tmout ercd data
ref_dtq 250 92 dtqid pk_rdtq | ercd
iref_dtq 250 92 dtqid pk_rdtq | ercd
snd_mbx 249 94 mbxid pk_msg ercd
isnd_mbx 250 96 mbxid pk_msg ercd
rcv_mbx 249 98 mbxid ercd pk_msg
prcv_mbx 250 100 mbxid ercd pk_msg
iprcv_mbx 250 100 mbxid ercd pk_msg
trev_mbx 249 102 mbxid | tmout ercd pk_msg
ref _mbx 250 104 mbxid pk_rmbx | ercd
iref_mbx 250 104 mbxid pk_rmbx | ercd
Extended Synchronization & Communication Function
Parameter ReturnParameter
ServiceGall | INTNo. ignCCOde R3R1 |R2 | R6R4 | Al RO |RSR1 | Al
snd_mbf 249 200 | length | mbfid data ercd | — -
psnd_mbf 249 202 | length | mbfid data ercd | — -
ipsnd_mbf 250 204 | length | mbfid | tmout | data ercd | — -
tsnd_mbf 249 206 | length | mbfid data ercd | — -
rev_mbf 249 208 mbfid ercd | length | data
prev_mbf 249 210 mbfid ercd | length | data
trev__mbf 249 212 mbfid | tmout ercd | length | data
iprev_mbf 250 214 mbfid data ercd | length | —
ref mbf 250 216 mbfid pk_rmbf | ered | — -
iref_mbf 250 216 mbfid pk_rmbf | ered | — -
loc_mtx 249 220 mtxid - ercd
ploc_mtx 249 222 mtxid ercd
tloc_mtx 249 224 mtxid | tmout ercd
unl_mtx 249 226 mtxid ercd
ref mtx 250 228 mtxid pk_rmtx

-312 -




Interrupt Management Functions

Parameter | ReturnParameter
ServiceCall | INTNo.

FuncCode

A0 RO
ret_int 251 - -
System State Management Functions

Parameter ReturnParameter
ServiceCall | INTNo. | FuncCode R3 RO R2
A0

rot_rdq 249 140 | tskpri | ercd -
irot_rdq 250 142 | tskpri | ercd -
get_tid 250 144 | - ercd tskid
iget_tid 250 144 | - ercd tskid
loc_cpu 253 198 | - ercd -
iloc_cpu 253 200 | - ercd -
dis_dsp 252 206 | - ercd -
ena_dsp 249 150 | - ercd -
unl_cpu 249 146 | - ercd -
iunl_cpu 250 148 | - ercd -
sns_ctx 250 152 | - ercd -
shs_loc 250 154 | - ercd -
sns_dsp 250 156 | - ercd -
sns_dpn 250 158 | - ercd -
vsys_dwn 248 - - - -
ivsys_dwn 248 - - - -

- 313 -



Memorypool Management Functions

Parameter ReturnParam-
Service- INT- eter
Call No. | Func
Code R1 R2 R3 R6R4 Al RO R3R1
A0

get_mpf 249 108 mpfid ercd p_blk
pget_mpf 250 106 mpfid ercd p_blk
ipget_mpf 250 106 mpfid ercd p_blk
tget_mpf 249 110 mpfid tmout ercd p_blk
rel_mpf 249 112 | blk mpfid blk ercd
irel_mpf 250 114 | blk mpfid blk ercd
ref_mpf 250 116 mpfid pk_rmpf | ercd
iref_mpf 250 116 mpfid pk_rmpf | ercd
pget_mpl 249 118 mplid ercd p_blk
rel_mpl 249 120 | blk mplid blk ercd -
ref_mpl 250 122 mplid pk_rmpl | ercd
iref_mpl 250 122 mplid pk_rmpl | ercd

Time Management Functions

Parameter ReturnParameter
ServiceCall | INTNo. Funi Code R2 RERA Al RO
0

set_tim 250 124 p_systim ercd

iset_tim 250 124 p_systim ercd

get_tim 250 126 p_systim ercd

iget_tim 250 126 p_systim ercd

sta_cyc 250 128 | cycid ercd

ista_cyc 250 128 | cycid ercd

stp_cyc 250 130 | cycid ercd

istp_cyc 250 130 | cycid ercd

ref_cyc 250 132 | cycid pk_rcyc ercd

iref_cyc 250 132 | cycid pk_rcyc ercd

sta_alm 250 134 | almid almtim ercd

ista_alm 250 134 | almid almtim ercd

stp_alm 250 136 | almid ercd

istp_alm 250 136 | almid ercd

ref_alm 250 138 | almid pk_ralm ercd

iref alm 250 138 | almid pk_ralm ercd

-314 -




System Configuration Management Functions

Parameter ReturnParameter
ServiceCall | INTNo.
igncCode Al RO
ref_ver 250 160 | pk_rver ercd
iref_ver 250 160 | pk_rver ercd
Extenden Function(Reset Function)
Parameter ReturnParameter
ServiceCall | INTNo.
igncCode R2 RO
vrst_vdtq 249 192 | vdtqid ercd
vrst_dtq 249 184 | dtqid ercd
vrst_mbx 250 186 | mbxid ercd
vrst_mpf 249 188 | mpfid ercd
vrst_mpl 250 190 | mplid ercd
vrst_mbf 249 218 | mbfid ercd
Extenden Function(Short Data Queue Function)
Parameter ReturnParameter
ServiceCall | INTNo. FunXgOde R1 Ro RERA Al RO R1
vsnd_dtq 249 162 | data | vdtqid ercd
vpsnd_dtq 249 164 | data | vdtqid ercd
vipsnd_dtq 250 166 | data | vdtqid ercd
visnd_dtq 249 170 | data | vdtqid ercd
vifsnd_dtq 250 172 | data | vdtqid ercd
vtsnd_dtq 249 228 | data | vdtqid | tmout ercd
vrev_dtq 249 174 vdtqid ercd data
vprev_dtq 249 176 vdtqgid ercd data
viprev_dtq 250 178 vdtqid ercd data
vtrev_dtq 249 180 vdtqid | tmout ercd data
vref_dtq 250 182 vdtqid pk_rdtq | ercd
viref_dtq 250 182 vdtqgid pk_rdtq | ercd

- 315 -




- 316 -



Real-time OS for R32C/100 Series
M3T-MR100/4 User's Manual

Publication Date:  April. 16, 2009 Rev.1.00

. . Sales Strategic Planning Div.
Published by: Renesas Technology Corp.

. . Advanced Software Engineering Department
Edited by: Renesas Solutions Corp.

© 2007,2009. Renesas Technology Corp. and Renesas Solutions



M3T-MR100/4 V.1.01
User’'s Manual

RENESAS

Renesas Electronics Corporation
1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan REJ10J1672-0100



	Requirements for MR100 Use
	Document List
	Right of Software Use
	1. User’s Manual Organization
	2. General Information
	2.1 Objective of MR100 Development
	2.2 Relationship between TRON Specification and MR100
	2.3 MR100 Features

	3. Introduction to Kernel
	3.1 Concept of Real-time OS
	3.1.1 Why Real-time OS is Necessary
	3.1.2 Operating Principles of Kernel

	3.2 Service Call
	3.2.1 Service Call Processing
	3.2.2 Processing Procedures for Service Calls from Handlers
	Service Calls from a Handler That Caused an Interrupt during Task Execution
	Service Calls from a Handler That Caused an Interrupt during Service Call Processing
	Service Calls from a Handler That Caused an Interrupt during Handler Execution


	3.3 Object
	3.3.1 The specification method of the object in a service call

	3.4 Task
	3.4.1 Task Status
	3.4.2 Task Priority and Ready Queue
	3.4.3 Task Priority and Waiting Queue
	3.4.4 Task Control Block(TCB)

	3.5 System States
	3.5.1 Task Context and Non-task Context
	3.5.2 Dispatch Enabled/Disabled States 
	3.5.3 CPU Locked/Unlocked States
	3.5.4 Dispatch Disabled and CPU Locked States

	3.6 Regarding Interrupts
	3.6.1 Types of Interrupt Handlers
	3.6.2 The Use of Non-maskable Interrupt
	3.6.3 Controlling Interrupts

	3.7 Stacks
	3.7.1 System Stack and User Stack


	4. Kernel
	4.1 Module Structure
	4.2 Module Overview
	4.3 Kernel functions
	4.3.1 Task Management Function
	4.3.2 Synchronization functions attached to task
	4.3.3 Synchronization and Communication Function (Semaphore)
	4.3.4 Synchronization and Communication Function (Eventflag)
	4.3.5 Synchronization and Communication Function (Data Queue)
	4.3.6 Synchronization and Communication Function (Mailbox)
	4.3.7 Extended Synchronization and Communication Function (Mutex)
	Base Priority and Current Priority

	4.3.8 Extended Synchronization and Communication Function (Message Buffer)
	4.3.9 Memory pool Management Function(Fixed-size Memory pool)
	4.3.10 Variable-size Memory Pool Management Function
	4.3.11 Time Management Function
	4.3.12 Cyclic Handler Function
	4.3.13 Alarm Handler Function
	4.3.14 System Status Management Function
	4.3.15 Interrupt Management Function
	4.3.16 System Configuration Management Function
	4.3.17 Extended Function (Short Data Queue)
	4.3.18 Extended Function (Reset Function) 


	5. Service call refference
	5.1 Task Management Function
	5.2 Task Dependent Synchronization Function
	5.3 Synchronization & Communication Function (Semaphore)
	5.4 Synchronization & Communication Function (Eventflag)
	5.5 Synchronization & Communication Function (Data Queue)
	5.6 Synchronization & Communication Function (Mailbox)
	5.7 Extended Synchronization & Communication Function (Message Buffer)
	5.8 Extended Synchronization & Communication Function (Mutex)
	5.9 Memory Pool Management Function (Fixed-size Memory Pool)
	5.10 Memory Pool Management Function (Variable-size Memory Pool)
	5.11 Time Management Function
	5.12 Time Management Function (Cyclic Handler)
	5.13 Time Management Function (Alarm Handler)
	5.14 System Status Management Function
	5.15 Interrupt Management Function
	5.16 System Configuration Management Function
	5.17 Extended Function (Short Data Queue)
	5.18 Extended Function (Reset Function)

	6. Applications Development Procedure Overview
	6.1 Overview
	6.2 Development Procedure Example
	6.2.1 Applications Program Coding
	6.2.2 Configuration File Preparation
	6.2.3 Configurator Execution
	6.2.4 System generation
	6.2.5 Writing ROM


	7. Detailed Applications
	7.1 Program Coding Procedure in C Language
	7.1.1 Task Description Procedure
	7.1.2 Writing a Kernel (OS Dependent) Interrupt Handler
	7.1.3 Writing Non-kernel Interrupt Handler
	7.1.4 Writing Cyclic Handler/Alarm Handler

	7.2 Program Coding Procedure in Assembly Language
	7.2.1 Writing Task
	7.2.2 Writing Kernel Interrupt Handler
	7.2.3 Writing Non-kernel Interrupt Handler
	7.2.4 Writing Cyclic Handler/Alarm Handler

	7.3 System down routine
	7.3.1 Summary
	7.3.2 Coding

	7.4 Modifying MR100 Startup Program
	7.4.1 C Language Startup Program (crt0mr.a30)

	7.5 Memory Allocation
	7.5.1 Section used by the MR100


	8. Using Configurator
	8.1 Configuration File Creation Procedure
	8.1.1 Configuration File Data Entry Format
	Operator
	Direction of computation   

	8.1.2 Configuration File Definition Items
	[( System Definition Procedure )]
	[( System Clock Definition Procedure )]
	[( Definition respective maximum numbers of items )]
	[( Task definition )]
	[( Eventflag definition )]
	[( Semaphore definition )]
	[(Data queue definition )]
	[( Short data queue definition )]
	[( Mailbox definition )]
	[( Fixed-size memory pool definition )]
	[( Variable-size memory pool definition )]
	[(Message buffer definition)]
	[(Mutex definition)]
	[( Cyclic handler definition )]
	[( Alarm handler definition )]
	[( Interrupt vector definition )
	[( Fixed interrupt vector definition )]

	8.1.3  Configuration File Example

	8.2 Configurator Execution Procedures
	8.2.1 Configurator Overview
	Executing the configurator requires the following input files:
	When the configurator is executed, the files listed below are output.

	8.2.2 Setting Configurator Environment
	8.2.3 Configurator Start Procedure
	8.2.4 Precautions on Executing Configurator
	8.2.5 Configurator Error Indications and Remedies
	Error messages
	Warning messages



	9. Sample Program Description
	9.1 Overview of Sample Program
	9.2 Program Source Listing
	9.3 Configuration File

	10. Stack Size Calculation Method
	10.1 Stack Size Calculation Method
	10.1.1 User Stack Calculation Method
	10.1.2 System Stack Calculation Method

	10.2 Necessary Stack Size

	11. Note
	11.1 The Use of INT Instruction
	11.2 The Use of registers of bank
	11.3 Regarding Delay Dispatching
	11.4 Regarding Initially Activated Task

	12. Appendix
	12.1 Data Type
	12.2 Common Constants and Packet Format of Structure
	12.3 Assembly Language Interface


