Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

M306V2T-RPD-E

User's Manual Emulation Pod for M306V2, M306V5 MCUs

Keep safety first in your circuit designs!

• Renesas Technology Corporation and Renesas Solutions Corporation put the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation, Renesas Solutions Corporation or a third party.
- Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information
 on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation and Renesas
 Solutions Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact
 Renesas Technology Corporation, Renesas Solutions Corporation or an authorized Renesas Technology product distributor for the latest
 product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or
 typographical errors. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage,
 liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology
 Corporation and Renesas Solutions Corporation by various means, including the Renesas home page (http://www.renesas.com).
- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage, liability or other loss resulting from the information contained herein.
- Renesas Technology semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation, Renesas Solutions Corporation or an authorized Renesas Technology product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Renesas Technology Corporation and Renesas Solutions Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the
 Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to
 the export control laws and regulations of Japan and/or the country of destination is prohibited.
- Please contact Renesas Technology Corporation or Renesas Solutions Corporation for further details on these materials or the products contained therein.

Precautions to be taken when using this product

- This product is a development supporting unit for use in your program development and evaluation stages. In mass-producing your program you have finished developing, be sure to make a judgment on your own risk that it can be put to practical use by performing integration test, evaluation, or some experiment else.
- In no event shall Renesas Solutions Corporation be liable for any consequence arising from the use of this product.
- Renesas Solutions Corporation strives to renovate or provide a workaround for product malfunction at some charge or without charge. However, this does not necessarily mean that Renesas Solutions Corporation guarantees the renovation or the provision under any circumstances.
- This product has been developed by assuming its use for program development and evaluation in laboratories. Therefore, it does not fall under the application of Electrical Appliance and Material Safety Law and protection against electromagnetic interference when used in Japan.
- Do not attempt to modify this equipment. If modified, your authority to operate this equipment might be voided by FCC.

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Warning: This is a Class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

For inquiries about the contents of this document or product, fill in the text file the installer of the emulator debugger generates in the following directory and email to your local distributor.

\SUPPORT\Product-name\SUPPORT.TXT

Renesas Tools Homepage http://www.renesas.com/en/tools

Preface

The M306V2T-RPD-E is an emulation pod for the M306V2 and M306V5 of 16-bit microcomputers. It's used with a PC4701 emulator.

This user's manual mainly describes specifications of the M306V2T-RPD-E emulation pod and how to setup it. For details on the following products, which are used with M306V2T-RPD-E, refer to each product's user's manual.

- Emulator: PC4701M/PC4701HS/PC4701L User's Manual
- Emulator debugger: M3T-PD30 User's Manual

All the components of this product are shown in "2.2 Package Components" (page 19) of this user's manual. If there is any question or doubt about this product, contact your local distributor.

To use the product properly

Precautions for Safety

- In both this User's Manual and on the product itself, several icons are used to insure proper handling of this product and also to prevent injuries to you or other persons, or damage to your properties.
- The icons' graphic images and meanings are given in "Chapter 1. Precautions for Safety". Be sure to read this chapter before using the product.

When using outside Japan

• When using in Europe, the United States, or Canada, be sure to use both the emulator and the emulation pod which meet overseas standards. EMI standards are not met when the M306V2T-RPD-E is used with the PC4700H or PC4700L emulator.

Contents

Chapter 1. Precautions for Safety	7
1.1 Safety Symbols and Meanings	8
Chapter 2. Preparation	17
2.1 Terminology	
2.2 Package Components	19
2.3 Other Tool Products Required for Development	19
2.4 Name of Each Part	20
(1) System Configuration	20
(2) Inside of Emulation Pod	21
2.5 When Using the Emulator for the First Time	22
Chapter 3. Setting Up	23
3.1 Removing the Upper Cover	24
3.2 Switch Settings	25
3.3 Selecting Clock Supply	29
(1) Using the Oscillator Circuit on the Target System	
(2) Changing the Internal Oscillator Circuit of Emulation Po	od31
(3) Replacing the Oscillator Circuit Boards	
3.4 Circuits of Data Slicer I/O Signal and OSD Clock I/O Signal	
3.5 A-D Conversion Bypass Capacitor	
3.6 Connecting the PC4701 and Emulation Pod	
(1) Connecting the Cable to the PC4701	
(2) Connecting the Cable to the Emulation Pod	
3.7 Connecting the Target System	
Chapter 4. Usage	
4.1 Turning On the Power	40
(1) Checking the Connection of Emulator System	40
(2) Turning On the Power	40
(3) LED Display When PC4701 Starts Up Normally	41
4.2 Downloading Firmware	
(1) When It is Necessary to Download Firmware	
(2) Downloading Firmware in Maintenance Mode	
4.3 Self-checks	43
(1) Self-check Procedure	43
(2) If an Error is Detected in Self-checks	

Chapter 5. Specifications	45
5.1 Specifications	46
5.2 Operation Timing in Memory Expansion and Microprocessor Modes (5V)	47
(1) Separate Bus, No-Wait	47
(2) Separate Bus, With Wait, Accessing External Memory Area	49
(3) Multiplex Bus, With Wait, Accessing External Memory Area	51
(4) Timing Requirements	53
5.3 Electrical Characteristics	55
5.4 Connection Diagram	56
5.5 External Dimensions	58
(1) External Dimensions of Emulation Pod	58
(2) External Dimensions of Pitch Converter Board (FLX-100LCC)	59
Chapter 6. Troubleshooting	61
6.1 Flowchart to Remedy the Troubles	62
6.2 When the Emulator Debugger Does Not Start Up Properly	63
(1) When the LED Display of PC4701 is Abnormal	63
(2) Errors Occur When the Emulator Debugger Starts Up (When the target system is connected)	64
(3) Errors Occur When the Emulator Debugger Starts Up (When the target system is not connected)	65
6.3 Operation Differs from That of Actual MCUs	65
(1) A-D Conversion Values are Different from Expected Values	65
Chapter 7. Maintenance and Guarantee	67
7.1 Maintenance	68
7.2 Guarantee	68
7.3 Repair Provisions	68
7.4 How to Request for Repair	69

MEMO

Chapter 1. Precautions for Safety

This chapter describes precautions for using this product safely and properly. For precautions for the emulator main unit and the emulator debugger, refer to each user's manual included with your product.

1.1 Safety S	Symbols and Meanings	
WARNING	Warning for Installation	9
	Warnings for Use Environment	9
CAUTION	Caution to Be Taken for Modifying This Product	9
	Cautions to Be Taken for This Product	9
IMPORTANT	Note on Malfunctions in the PC4701 System	9
	Notes on Downloading Firmware	
	Notes on Target System	
	Note on Reset Input	
	Notes on Watchdog Function	
	Note on When the Emulator Debugger Ends	
	Note on DMA Transfer	11
	Note on Setting the Work Area	11
	Notes on Stack Area	11
	Note on Address 0 Access	11
	Note on Stop and Wait Modes	11
	Notes on MAP References and Settings	
	Notes on S/W Breaks and H/W Breaks	
	Note on BRK Instruction	
	Note on NMI* Input	
	Notes on HOLD* Input	
	Notes on Address Match Interrupt	
	Note on Software Reset	
	Note on Protect Resister (PRC2)	
	Note on Setting BCLK Output Disable Bit (PM07)	
	Note on Differences between Actual MCU and Emulator	

Chapter 1. Precautions for Safety

In both the user's manual and on the product itself, several icons are used to insure proper handling of this product and also to prevent injuries to you or other persons, or damage to your properties.

This chapter describes the precautions which should be taken in order to use this product safely and properly. Be sure to read this chapter before using this product.

1.1 Safety Symbols and Meanings

The following pages describe the symbols "WARNING", "CAUTION", and "IMPORTANT".

Warning for Installation:

• Do not set this product in water or areas of high humidity. Spilling water or some other liquid into the main unit can cause an unrepairable damage.

Warnings for Use Environment:

- The emulation pod is air-cooled with the ventilation slot. Therefore, do not block the ventilation slot. When heated to high temperatures, the emulation pod may not work properly.
- This equipment is to be used in an environment with a maximum ambient temperature of 35°C. Care should be taken that this temperature is not exceeded.

Caution to Be Taken for Modifying This Product:

• Do not disassemble or modify this product. Disassembling or modifying this product can cause damage. Disassembling and modifying the product will void your warranty.

Cautions to Be Taken for This Product:

- Use caution when handling the main unit. Be careful not to apply a mechanical shock.
- Do not touch the connector pins of the emulator main unit and the target MCU connector pins . Static electricity may damage the internal circuits.
- Do not pull the emulation pod main unit by the flexible cable (FLX120-RPD) for connecting to the emulator main unit or the flexible cable (FLX64, FLX100 or FLX160) for connecting the target system. The cable may cause a break.
- The flexible cable (FLX120-RPD) for connecting to the emulator main unit and the flexible cable (FLX64, FLX100 or FLX160) for connecting the target system are different from earlier models. The slits make them more flexible. However, excessive flexing or force may break conductors.
- Do not use inch-size screws for this equipment. The screws used in this equipment are all ISO (meter-size) type screws. When replacing screws, use same type screws as equipped before.

IMPORTANT

Note on Malfunctions in the PC4701 System

- If the emulator malfunctions because of interference like external noise, do the following to remedy the trouble.
 - (1) Press the RESET switch on the emulator front panel.
 - (2) If normal operation is not restored after step (1), shut OFF power to the emulator once and then reactivate it.

Notes on Downloading Firmware:

- Before using this product for the first time, it is necessary to download the dedicated firmware (control software for the emulation pod built into the PC4701). Please note that, to do this, it is necessary to start up the PC4701 in the maintenance mode. For firmware download procedures, see "4.2 Downloading Firmware" (page 42). Once the firmware has been downloaded, the product can be used by simply turning on the power.
- Do not shut off the power while downloading the firmware. If this happens, the product will not start up properly. If power is shut off unexpectedly, redownload the firmware.
- Except when a target status error occurs, if self-checks are not completed successfully, there may be trouble with the product. In such case, contact your sales representative. However, perform self-checks in the below setup.
 - (1) Target system: Not connected(2) Emulation pod internal switches: At their factory settings

Notes on Target System:

- The Vcc pin of emulator is connected to the target system to observe the voltage of the target system. For this reason, it is impossible to supply the power from the emulator to the target system. Therefore design your system so that the target system is powered separately.
- The voltage of the target system should be within the range of the MCU specification.
- Do not change the voltage of the target system after turning on the power.
- Before powering on your emulator system, check that the host machine, the emulator main unit, the converter board and target system are all connected correctly. Next, turn on the power to each equipment following the procedure below.
 - (1) Turn ON/OFF the target system and the PC4701 emulator as simultaneously as possible.
 - (2) When the PC4701 and emulator debugger start up, check the target status LEDs on the emulator main unit's front panel to see if this product is ready to operate.
 - Is the power supplied? Check that target status LED (POWER) is ON. For details, refer to "Chapter 4. Usage" (page 39).

Note on Reset Input:

• The reset input from the target system is accepted only while a user program is being executed (only while the RUN status LED on the PC4701's front panel is lit).

Notes on Watchdog Function:

- The MCU's watchdog timer can be used only while programs are being executed. To use it otherwise, disable the timer.
- If the reset circuit of the target system has a watchdog timer, disable it when using the emulator.

Note on When the Emulator Debugger Ends:

• To restart the emulator debugger after it ends, always shut power to the emulator module off once and then on again.

Note on DMA Transfer:

• With this product, the program is stopped with a loop program to a specific address. Therefore, if a DMA request is generated by a timer or other source while the program is stopped, DMA transfer is executed. However, make note of the fact that DMA transfer while the program is stopped may not be performed correctly. Also note that the below registers have been changed to generate DMA transfer as explained here even when the program is stopped.

DMA0 transfer counter register TCR0

DMA1 transfer counter register TCR1

Note on Setting the Work Area:

• To use this product, it is necessary to set the work area in the internal reserved area of the MCU. However, do not set it in the last 10 bytes of the internal reserved area. And be sure to set the internal reserved area to INTERNAL. (Set the work area by the INIT dialog of emulator debugger M3T-PD30.)

Example: When debugging the program of the MCU whose internal reserved area is 01800₁₆ to 02BFF₁₆, set the work area within the range of 01800₁₆ to 02BF6₁₆.

For instance, when setting the work area at 01800_{16} , the emulator uses 10 bytes area of 01800_{16} to 01809_{16} .

Notes on Stack Area:

- With this product, a maximum 8 bytes of the user stack is consumed.
- If the user stack does not have enough area, do not use areas which cannot be used as stack (SFR area, RAM area which stores data, or ROM area) as work area. Using areas like this is a cause of user program crashes and destabilized emulator control. Therefore, ensure the +8 bytes maximum capacity used by the user program as the user stack area.

Note on Address 0 Access:

• With the M306V2 and M306V5 MCUs, when a maskable interrupt is generated, the interrupt data (interrupt No. and interrupt request level) stored in address 0 is read out. Also, the interrupt request bit is cleared when address 0 is read out. Consequently, when the address 0 readout instruction is executed or when address 0 is read out in the cause of a program runaway, a malfunction occurs in that the interrupt is not executed despite the interrupt request, because the request bit of the highest priority interrupt factor enabled is cleared.

For this malfunction, when the reading out to the 0 address is generated excluding the interrupt, the yellow LED lights up to alarm. When this LED lights, there is a possibility of wrong access, therefore check the program. This LED is turned off by the RESET switch of the emulator main unit.

Note on Stop and Wait Modes:

• Do not perform step execution at addresses in the stop or wait mode. It may cause communication errors.

IMPORTANT
Notes on MAP References and Settings:
 For details on referencing and setting MAP information, see User's Manual of emulator debugger M3T-PD30.
• Be sure to set the SFR area to EXTERNAL.
• When setting 0FFFC16 to 0FFFF16 to EXTERNAL:
This product uses the 4 byte area 0FFFC ₁₆ to 0FFFF ₁₆ as the stack area when the RESET command of emulator debugger M3T-PD30 is executed. If this 4 byte memory cannot be read or written to, reset cannot be properly effected. As a result, you need to alter the map settings if the condition given below is met.
(1) With the system which shifts from the single-chip mode to the memory expansion (or microprocessor) mode, using the 4-byte area of 0FFFC ₁₆ to 0FFFF ₁₆ set to EXTERNAL.
(2) With the system which starts up in microprocessor mode, using the 4-byte area of 0FFFC ₁₆ to 0FFFF ₁₆ set to EXTERNAL and there is not enough memory to read or write.
The procedures to alter the MAP settings when the conditions (1) or (2) above are met.
(1) Set the 4-byte area of 0FFFC ₁₆ to 0FFFF ₁₆ to INTERNAL.
(2) Execute the RESET command by use of emulator debugger M3T-PD30.
(3) Set the stack pointer.
(Example)
RESET:
FCLR I LDC #4000H, SP < Set the stack pointer
(4) Set the 4-byte area 0FFFC16 through 0FFFF16 to EXTERNAL.
Notes on S/W Breaks and H/W Breaks:

- S/W breaks generate BRK interrupts by substituting the proper instruction to the BRK instruction. Therefore, when referencing the result of a trace in bus mode, "00₁₆" is displayed for the instruction fetch address where a software break is set, and when referencing in reverse assemble mode, "BRK" instruction is displayed.
- It is not possible to use a S/W break and a H/W break at the same time. If doing so, it may not operate normally.
- In the area where the MAP setting is EXTERNAL, S/W breaks cannot be used.

Note on BRK Instruction:

• BRK instruction cannot be used.

Note on NMI* Input:

• NMI* input from the target system is accepted only while a user program is being executed (only while the RUN status LED on the PC4701's front panel is lit).

Notes on HOLD* Input:

- Be sure to input "Low" to the HOLD* pin of the target system during the user program executing (while the RUN status LED on the PC4701's front panel is lit). Inputting "Low" to the HOLD* pin when stopping the user program or when run-time debugging may cause a malfunction of the emulator.
- When inputting "Low" to the HOLD* pin to run into the HOLD state, P0₀ to P5₂ will be in the HOLD state delaying by 2.5 cycles than the actual MCU (see Table 5.5, Figure 5.5).

Notes on Address Match Interrupt:

- Do not set software breaks at the same addresses as address-match interrupts as the program may run out of control.
- Do not set a hardware break within 4 instructions before an address at which an address-match interrupt occurs. If you do set a hardware break in this range, the program will run out of control.
- When an address at which an address-match interrupt occurs is executed in one-step mode, the program stops after executing the first instruction after returning from the address-match interrupt processing.

Note on Software Reset:

• Do not use a software reset.

Note on Protect Resister (PRC2):

- Make note of the fact that the protect is not canceled when the protect register (PRC2), which enables writing in the port P9 direction register, is changed with the below procedure.
 - (1) Step execution of the "instruction for setting ("1") PRC2".
 - (2) Setting the break point from the "instruction for setting ("1") PRC2" to the "setting the register for the protect".
 - (3) "Setting ("1") PRC2" from the dump window, script window or others.

Note on Setting BCLK Output Disable Bit (PM07):

• Do not set the 7th bit (PM07: BCLK output disable bit) of the processor mode register 0 (address 0004₁₆) to "1". Otherwise, this emulation pod does not work properly.

Note on Differences between Actual MCU and Emulator:

- Operations of the emulator differs from those of actual MCUs as listed below.
 - (1) Reset condition

Set the time for starting up (0.2Vcc to 0.8Vcc) 1µs or less.

- (2) Data values of ROM area at power-on
- (3) Internal memories (RAM and ROM) capacities etc.
- (4) Characteristics of Port PO₀ to P57
 - Ports $P0_0$ to $P5_7$ are connected via port emulation circuits. The device used for the port emulation circuit is:

Device: M60074-0111FP

(5) A-D input

As a flexible cable, a pitch converter board and other devices are used between the evaluation MCU and the target system, some characteristics are slightly different from those of the actual MCU. Therefore, be sure to evaluate your system with an evaluation MCU. Before starting mask production, evaluate your system and make final confirmation with an ES (Engineering Sample) version MCU.

(6) Pull-up control

Port P0-P5 pullup control in this product is different between modes as shown in Table 1.1. There is not difference for ports P6 to P10.

Table	1.1	P0-P5	Pullup	control
-------	-----	-------	--------	---------

	Single-chip mode	Memory expansion/microprocessor mode
Actual MCU	 Enabled for only input ports Can be set bitwise 	Disabled (Enabled if P44 (CS0) to P47 (CS3) are used as input ports, however.)
This emulation pod	 (1) Always enabled irrespective of operation mode (Also enabled when used as address/data bus or output ports) (2) Cannot be set bitwise Can only be set in units of 4 bits (P00-P03, P04-P07, P50-P53 P54-P57). If any bit in the 4-bit unit is enabled for pullup, all of the fou bits are enabled for pullup. 	

(7) Write to pullup control registers 0, 1 (addresses 03FC₁₆, 03FD₁₆) When you write to pullup control registers 0, 1 (addresses 03FC₁₆, 03FD₁₆), <u>always be sure</u> to write in units of words beginning with address 03FC₁₆.
This personal constitution on M20CV2T PDD F.

This paragraph constitutes a limitation on M306V2T-RPD-E.

(8) Ports P50-P53

When you enable the pullup resistors of these ports in single-chip mode by setting pullup control register 1 bit 2 (PUR12) to "1", always be sure to set processor mode register 0 bit 2 (PM02) and bit 7 (PM07) both to "0".

This paragraph constitutes a limitation on M306V2T-RPD-E.

(9) Outputs of the actual MCU and this product

Table 1.2 Differences of outputs between actual MCU and this product (when executing program)

Access area	Signal	Actual MCU	This product	* for difference
	Address BHE*	Outputs	Outputs	
	Data	Outputs (floating during read operating)	Floating	ate
SFR area (MAP=EXT)	RD* WR*	Outputs (WR*=Low at write cycle, RD*=Low at read cycle)	Does not output	*
	CS*	Does not output (fixed to High output)	Does not output (fixed to High output)	
	ALE	Does not output (fixed to Low output)	Outputs	*
	Address BHE*	Retains previous status	Outputs	*
	Data	Floating	Floating	
Internal RAM	RD* WR*	Does not output (fixed to High output)	Does not output (fixed to High output)	
Internal ROM	CS*	Does not output (fixed to High output)	Does not output (fixed to High output)	
	ALE	Does not output (fixed to Low output)	Outputs	*
	Address BHE*	Outputs	Outputs	
External area	Data	Outputs (inputs external data at read cycle)	Outputs (inputs external data at read cycle)	
	RD* WR*	Outputs (WR*=Low at write cycle, RD*=Low at read cycle)	Outputs (WR*=Low at write cycle, RD*=Low at read cycle)	
	CS*	Outputs	Outputs	
	ALE	Outputs	Outputs	

Table 1.3 Differences of outputs between actual MCU and this product (when stopping program)

Access area	Signal	Actual MCU	This product	* for difference
	Address BHE*		Outputs	
	Data		Floating	
	RD* WR*		Outputs RD* only (WR* is fixed to High output)	
	CS*		Outputs	
	ALE		Outputs	

Access area	Signal	Actual MCU	This product	* for difference
	Address BHE*	Retains previous status	Retains previous status	
	Data	Retains previous status	Floating	*
	RD* WR*	Does not output (fixed to High output)	Does not output (fixed to High output)	
	CS*	Retains previous status	Retains previous status	
	ALE	Does not output (fixed to High output)	Does not output (fixed to High output)	

Table 1.5 Differences of outputs between actual MCU and this product (in wait mode)

Access area	Signal	Actual MCU	This product	* for difference
	Address BHE*	Retains previous status	Retains previous status	
	Data	Retains previous status	Floating	*
	RD* WR*	Does not output (fixed to High output)	Does not output (fixed to High output)	
	CS*	Retains previous status	Retains previous status	
	ALE	Does not output (fixed to High output)	Does not output (fixed to High output)	

Chapter 2. Preparation

This chapter describes the package components, the system configuration and the preparation for using this product for the first time.

2.1	Terminology	18
2.2	Package Components	19
2.3	Other Tool Products Required for Development	19
2.4	Name of Each Part	20
	(1) System Configuration	20
	(2) Inside of Emulation Pod	21
2.5	When Using the Emulator for the First Time	22

Chapter 2. Preparation

2.1 Terminology

Some specific words used in this user's manual are defined as follows:

Emulator system

This means an emulator system built around the PC4701 emulator. The PC4701 emulator system is configured with an emulator main unit, emulation pod, host machine and emulator debugger.

Emulator main unit (Hereafter PC4701)

This means a generic name for emulators for 8 and 16-bit MCUs. For details on specific models of PC4701, visit the Renesas Tools Homepage.

http://www.renesas.com/en/tools

Emulation pod

This means M306V2T-RPD-E (this product). This emulation pod is for M306V2 and M306V5 MCUs.

Host machine

This means a personal computer used to control the emulator and emulation pod.

Emulator debugger

This means a software tool M3T-PD30 to control the emulator from the host machine through an interface.

Firmware

Program that analyzes contents of communication with the emulator debugger and controls the emulator hardware. This program is installed in the EEPROM. This program is downloadable from the emulator debugger to upgrade the firmware or to support other MCUs.

Evaluation MCU

This means the microcomputer mounted on the emulation pod which is operated in the specific mode for tools.

Target MCU

This means the microcomputer you are going to debug.

Target system

This means a user's application system using the microcomputer to be debugged.

*

In this user's manual, this symbol is used to show active "Low". (e.g. RESET*: Reset signal)

2.2 Package Components

The M306V2T-RPD-E package consists of the following items. When unpacking, check to see if your M306V2T-RPD-E contains all of these items.

Item	Quantity
M306V2T-RPD-E emulation pod main unit	1
FLX120-RPD flexible cable for connecting PC4701	1
FLX100 flexible cable for connecting pitch converter board (pre-installed in emulation pod)	1
FLX-100LCC pitch converter board for connecting target system	1
OSC-3 (10MHz) oscillator circuit board (pre-installed in emulation pod)	1
OSC-2 (32.768kHz) oscillator circuit board (pre-installed in emulation pod)	1
OSC-2 oscillator circuit board	1
Hardware tool user registration FAX sheet (English)	1
Hardware tool user registration FAX sheet (Japanese)	1
M306V2T-RPD-E user's manual (this manual)	1
M306V2T-RPD-E user's manual (Japanese)	1

Please keep the M306V2T-RPD-E's packing box and cushion material in your place for reuse at a later time when sending your product for repair or other purposes. Always use these packing box and cushion material when transporting this product.

If any of these items are missing or found faulty, please contact your local distributor. Also, if there is any question or doubt about the packaged product, contact your local distributor.

2.3 Other Tool Products Required for Development

To bring forward programs development on the M306V2 and M306V5 MCUs, the products listed below are necessary in addition to those contained package above. Get them separately.

Emulator main unit			PC4701	
Emulator debugger			M3T-PD30	
Pitch converter board (Required for M306V5 MCU)			M306V5T-PTC	
Programming adapter	M306V2	100D0	PCA7412L-100 (necessary for OSD ROM)	
		100P6S	PCA7412F-100 (necessary for OTP version)	
	M306V5		PCA7412L-100 (necessary for OSD ROM)	
			PCA7412E4S-64 (necessary for EPROM version or OTP version)	

To purchase these products, contact your nearest distributer.

2.4 Name of Each Part

(1) System Configuration

Figure 2.1 System configuration

- (1) to (4) in Figure 2.1 are included with this product package.
- (1) Emulation pod (M306V2T-RPD-E)

This emulation pod contains an evaluation MCU, emulation memory and circuit to feature the debugging functions.

(2) Flexible cable (FLX120-RPD)

This is a 120-pin flexible cable for connecting the PC4701 emulator and the emulation pod.

(3) Flexible cable (FLX100)

This is a 100-pin flexible cable for connecting the emulation pod and the target system.

(4) Pitch converter board

This is a pitch converter board for connecting to the target system. For details, refer to "3.7 Connecting the Target System" (page 38).

(2) Inside of Emulation Pod

Figure 2.2 Internal view of emulation pod

(1) MCU-dependent board

Board which groups parts (pins and added functions) which vary according to MCU model.

(2) Base board

Board for the M16C/60 Series MCUs which controls the interface with the PC4701 and the evaluation MCU.

(3) Memory board

Board on which is mounted the emulation memory (1MB) and the map memory (4 bits \times 1M) for the M16C/60 Series MCUs.

(4) Oscillation circuit board

Oscillator circuit board on which the 10.000MHz of oscillation module device and 32.768kHz of crystal oscillator are mounted.

2.5 When Using the Emulator for the First Time

If you have purchased this emulation pod newly, it is necessary to download the firmware. The download procedure is given in Figure 2.3.

Before attempting to download the firmware, check the emulator debugger is installed and the emulator is connected to the host machine. For more information, see each user's manual of the emulator debugger and the PC4701.

Figure 2.3 Firmware download procedure when emulator is used for the first time

To make sure the emulation pod works properly, run the self-checks. For self-check procedures, see "4.3 Self-checks" (page 43).

Chapter 3. Setting Up

This chapter describes switch settings required for using this product and how to connect this product to the PC4701 and the target system.

3.1	Removing the Upper Cover	. 24
3.2	Switch Settings	. 25
3.3	Selecting Clock Supply	. 29
	(1) Using the Oscillator Circuit on the Target System	. 30
	(2) Changing the Internal Oscillator Circuit of Emulation Pod	. 31
	(3) Replacing the Oscillator Circuit Boards	. 32
3.4	Circuits of Data Slicer I/O Signal and OSD Clock I/O Signal	. 33
3.5	A-D Conversion Bypass Capacitor	. 35
3.6	Connecting the PC4701 and Emulation Pod	. 36
	(1) Connecting the Cable to the PC4701	. 36
	(2) Connecting the Cable to the Emulation Pod	. 37
3.7	Connecting the Target System	. 38

Chapter 3. Setting Up

To use this emulation pod with your target system, it is necessary to set as follows. Set the following after removing the upper cover.

- Set the switches in the emulation pod corresponding to the condition of the target system.
- Change the oscillation frequency of the emulation pod.
- Change the input frequency of the OSD oscillation.
- Change the constant number of the data slicer I/O signal circuit.
- Install the A-D conversion bypass capacitor.

3.1 Removing the Upper Cover

The procedure of removing the upper cover is shown below.

- (1) Remove the four screws of both sides of this product and lift off the upper cover. (see Figure 3.1)
- (2) Set the switches following the descriptions below.
- (3) Replace the upper cover and secure the four screws.

Figure 3.1 Removing the upper cover

Notes on Removing the Upper Cover:

- Always shut OFF power when removing the upper cover or setting the switches.
- Do not touch the connector pins of the emulator main unit and the target MCU connector pins. Static electricity may damage the internal circuits.

3.2 Switch Settings

Figure 3.2 shows the positions of switches of the M306V2T-RPD-E. Table 3.1 lists how to set switches.

Figure 3.2 Positions of switches and their factory-settings

Table 3.1 Switch settings of M306V2T-RPD-E (part 1)

Signal	Switch	Setting	Description
P57/OSD	SW1	Port (Factory-setting)	Be sure to use this switch in the factory-setting.
		SW1 P57 OSD PORT	Can not be used.
P87/Xcin	SW2	XCIN P87 SW2 (Factory-setting)	Connects P87/XCIN pin of MCU to the target system. (Uses P87/XCIN pin as port P87.)
		XCIN P87 SW2	Uses P87/Xcin pin as Xcin.
P86/Xcout	SW3	XCOUT P86 SW3 (Factory-setting)	Connects P86/Xcout pin of MCU to the target system. (Uses P86/Xcout pin as port P86.)
		XCOUT P86 SW3	Does not connect P86/Xcout pin of MCU to the target system. (Uses P86/Xcout pin as Xcout and opens Xcout.)
		XCOUT P86 SW3	Connects P86/Xcout pin of MCU to the target system. (Uses P86/Xcout pin as Xcout and connects Xcout to the target system.)

Table 3.1 Switch settings of M306V2T-RPD-E (part 2)

	0 5	1/1	· · · · · · · · · · · · · · · · · · ·
Signal	Switch	Setting	Description
Хоит	SW4	XOUT	Does not connect Xout pin of MCU to the target system.
		XOUT OPEN SW4	Connects Xout pin of MCU to the target system.
HOLD/RDY	SW5	OPEN RDY H SW5 (Factory-setting)	Pulls up HOLD/RDY pin of MCU at $33k\Omega$.
		OPEN RDY HOLD H SW5	Opens HOLD/RDY pin of MCU.
CNVss	SW6	CNVss H L SW6 (Factory-setting)	Pulls down CNVss pin of MCU at 33kΩ.
		CNVss H L SW6	Does not pull down/up CNVss pin of MCU.
		CNVss H L SW6	Pulls up CNVss pin of MCU at $33k\Omega$.

Table 3.1 Switch settings of M306V2T-RPD-E (part 3)

Signal	Signal Switch Setting		Description	
	TE SW7	BYTE 8 16 SW7 (Factory-setting)	Pulls down BYTE pin of MCU at $33k\Omega$.	
BYTE		BYTE 8 16 SW7	Does not pull down/up BYTE pin of MCU.	
		BYTE 8 16 SW7	Pulls up BYTE pin of MCU at $33k\Omega$.	
P7₀/P71	SW8	P70/71 OPEN H SW8 (Factory-setting)	Does not pull up P7₀ and P7₁.	
		P70/71 OPEN H SW8	Pulls up P7 $_0$ and P7 $_1$ at 470 Ω .	

3.3 Selecting Clock Supply

There are two ways to supply a clock to the MCU, using the oscillator circuit of the emulation pod or using the oscillator circuit on the target system. Table 3.2 lists the factory-settings of each clock supply.

Table 3.2 C	lock supply	to the MCU
-------------	-------------	------------

Clock	Description	Display of emulator debugger	Default setting
Xin-Xout	Internal oscillator circuit of emulation pod (OSC-3: 10MHz)	Internal	0
	Target System	External	-
Xcin-Xcout	Internal oscillator circuit of emulation pod (OSC-2: 32.768kHz)	Internal	0
	Target System	External	-

IMPORTANT

Notes on Changing the Clock Supply:

- The clock supply can be set by the Init dialog when starting up the emulator debugger or inputting CLK command on the script window.
- For XCIN-XCOUT pins, it is necessary to set switches in the emulation pod. For details, refer to "3.2 Switch Settings" (page 25).

(1) Using the Oscillator Circuit on the Target System

When turning on the power, the internal clock of emulation pod is selected to supply the clock to the MCU. To use the external clock on the target system, change the clock by the Init dialog when starting up the emulator debugger or the CLK command on the script window. (For details, refer to the user's manual of the emulator debugger.)

Figure 3.3 External oscillator circuit

Figure 3.4 Circuit in which oscillation does not occur (same for XCIN-XCOUT)

IMPORTANT

Notes on Using the Oscillator Circuit on the Target System:

- To operate the emulation pod with an external clock, construct the oscillator circuit as shown in Figure 3.3 in the target system and input the oscillator output at 50% duty (within the operating range of the evaluation MCU) into the X_{IN} pin. And the X_{OUT} pin should be open.
- Make note of the fact that in the oscillator circuit shown in Figure 3.4 where a resonator is connected between the X_{IN} and X_{OUT} pins, oscillation does not occur because a flexible cable, pitch converter board and other devices are used between the evaluation MCU and the target system. It is same for sub-clock oscillator circuits (X_{CIN} and X_{COUT}).

(2) Changing the Internal Oscillator Circuit of Emulation Pod

An oscillator circuit board for 10MHz is mounted on this product. To use the emulation pod at a frequency other than 10MHz, build the desired oscillator circuit on the included OSC-2 oscillator circuit board (bare board) and replace the board installed in the emulation pod when shipped from the factory.

Figure 3.5 shows a view of the OSC-2 oscillator circuit board (bare board) and where connector pins are located. Figure 3.6 shows the circuitry of the OSC-2 oscillator circuit board (bare board). Use the number of oscillator circuits recommended by the oscillator manufacturer.

Figure 3.5 External view of oscillator board (OSC-2) and connector pin assignment

Figure 3.6 Circuit of oscillator board (OSC-2)

(3) Replacing the Oscillator Circuit Boards

Figure 3.7 shows how to replace the oscillator circuit boards. For the position of the oscillator circuit board, see Figure 2.2.

Figure 3.7 Replacing the oscillator circuit boards

3.4 Circuits of Data Slicer I/O Signal and OSD Clock I/O Signal

With this product, the parts used for the data slicer and OSD clock circuit are attached by sockets for replacement. Figure 3.8 shows the position of each part used for the data slicer and OSD clock circuits, and Figures 3.9 to 3.12 show the circuit diagram and the constants of board-mounted parts.

Figure 3.8 Position of each part

(1) Figure 3.9 shows the numbers of parts which are connected to the CVIN pin, the constants of parts and the connection circuits.

Figure 3.9 Signal circuits of CVIN pin

(2) Figure 3.10 shows the numbers of parts which are connected to HLF pin, the constants of parts and the connection circuits.

Figure 3.10 Signal circuits of HLF pin

(3) Figure 3.11 shows the number of part which is connected to VHOLD pin, the constant of part and the connection circuit.

Figure 3.11 Signal circuit of VHOLD pin

(4) Figure 3.12 shows the numbers of parts which are connected to OSC1 and OSC2 pins, the constants of parts and the connection circuits.

Figure 3.12 Signal circuits of OSC1 and OSC2 pins
3.5 A-D Conversion Bypass Capacitor

Figure 3.13 shows the foot pattern of the A-D conversion bypass capacitor. The emulation pod has foot patterns between AV_{CC} and AV_{ss} (C54) on the reverse side of the M306V0T-PRT for mounting a bypass capacitor. Mount a suitable bypass capacitor as occasion demands.

Figure 3.13 Foot patterns of A-D conversion bypass capacitor

IMPORTANT

Note on the A-D Converter:

• Because a flexible board and other devices are used between the emulator MCU and the target system, the A-D converter operates differently from the actual MCU. Make the final evaluation of the A-D converter using the actual MCU.

3.6 Connecting the PC4701 and Emulation Pod

To connect the emulation pod to the PC4701, use the FLX120-RPD 120-pin flexible cable included in this product package. Connect the PC4701 side connector of FLX120-RPD to the cable connector of the PC4701, then secure the FLX120-RPD with the screws.

(1) Connecting the Cable to the PC4701

Figure 3.14 shows how to connect the PC4701 and FLX120-RPD.

Figure 3.14 Connecting PC4701 and FLX120-RPD

(2) Connecting the Cable to the Emulation Pod

Figure 3.15 shows how to connect the FLX120-RPD and the emulation pod.

Figure 3.15 Connecting FLX120-RPD and emulation pod

Note on Connecting the Cable:

• Always shut OFF power before connecting the cable. The power ON state could destroy internal circuits.

Note on Tightening the Screws:

• After connecting the cable to the emulation pod, be sure to tighten the screws.

3.7 Connecting the Target System

There are five ways available to connect the emulation pod to target systems as shown in Figure 3.16.

Figure 3.16 Connecting emulation pod and target systems

CAUTION Notes on Connecting Target Systems: Take care not to attach the converter board in a wrong direction. It may cause a fatal damage to the emulation pod. The small connectors of FLX100 and FLX-100LCC are guaranteed for only 20 insertion/removal iterations.

Chapter 4. Usage

This chapter describes from turning on the power of this product to starting up the emulator debugger.

4.1	Turning On the Power	. 40
	(1) Checking the Connection of Emulator System	. 40
	(2) Turning On the Power	. 40
	(3) LED Display When PC4701 Starts Up Normally	.41
4.2	Downloading Firmware	. 42
	(1) When It is Necessary to Download Firmware	. 42
	(2) Downloading Firmware in Maintenance Mode	. 42
4.3	Self-checks	.43
	(1) Self-check Procedure	.43
	(2) If an Error is Detected in Self-checks	. 43

Chapter 4. Usage

4.1 Turning On the Power

(1) Checking the Connection of Emulator System

Before turning the power ON, check the connection of the PC4701, emulation pod, converter board and target system.

(2) Turning On the Power

Power ON/OFF the target system and the PC4701 as simultaneously as possible.

Notes on Power Supply:

- The emulator's V_{CC} pin is connected to the target system in order to monitor target system voltage. For this reason, the emulator cannot supply power to the target system. Therefore, provide the target system with a separate power supply from that of the emulator.
- Keep target system power supply voltage within the MCU's specified range.
- Do not change target system power supply voltage after power has been activated.

(3) LED Display When PC4701 Starts Up Normally

After the emulator starts up, check the status of the LEDs on the front panel to see whether emulation pod operation is enabled or not. Figure 4.1 shows front panel LED lighting status when the emulator is turned ON.

Figure 4.1 LED display when PC4701 turned on

4.2 Downloading Firmware

(1) When It is Necessary to Download Firmware

It is necessary to download firmware when;

- (1) you use this product for the first time.
- (2) the firmware has been upgraded.
- (3) the emulator debugger has been upgraded.
- (4) you use this product with a PC4701 which was used with other emulation pod before.

(2) Downloading Firmware in Maintenance Mode

Download the firmware in the maintenance mode as explained here following. <u>The target system</u> must not be connected when downloading the firmware.

- (1) Within 2 seconds of activating power to the emulator, press the RESET switch on the emulator front panel. This will switch the emulator to the maintenance mode.
- (2) Start up the emulator debugger. When the Init dialog box setup is complete, the dialog which urges to download the firmware will appear. Download the firmware following messages. Required time for downloading the firmware depends on the connection of the interface.
 - For the serial interface approx. 7 minutes
 - For the parallel interface approx. 30 seconds

Figure 4.2 Downloading firmware in maintenance mode

Note on Downloading Firmware:

• Do not shut OFF power while the firmware is being downloaded. Doing so, the emulator will not start up properly. If power is shut OFF by mistake, redownload the firmware in the maintenance mode.

4.3 Self-checks

(1) Self-check Procedure

To run the emulator self-checks, do so as explained here below. While self-checks are in progress, LEDs will change as shown in Figure 4.4.

- (1) Set the switches in the emulation pod same as the factory setting (see Figure 4.3).
- (2) When the target system is connected, disconnect it.
- (3) Within 2 seconds of activating power to the emulator, press the RESET switch on the emulator front panel to switch the emulator to the maintenance mode.
- (4) Check the "SAFE" LED starts blinking and then press the RESET switch again.
- (5) The self-checks will start. If the normal result is displayed in about 2 minutes, self-checks terminated normally.

Figure 4.3 Switch settings when running self-checks (factory-settings)

(2) If an Error is Detected in Self-checks

If self-checks do not result normally (ERROR 1 and ERROR 2 in Figure 4.4), check the following.

- Check the connection of the emulation pod and the PC4701.
- Download the proper firmware.
- Check if the switches in this product are set same as the factory-settings (Figure 4.3).

Note on Self-checks:

• If self-checks do not result normally (excluding target system errors), the emulation pod may be damaged. Then contact your local distributor.

Figure 4.4 Self-check procedure

Chapter 5. Specifications

This chapter describes specifications of this product.

5.1 Specifications	46
5.2 Operation Timing in Memory Expansion and Microprocessor Modes (5V)	47
(1) Separate Bus, No-Wait	47
(2) Separate Bus, With Wait, Accessing External Memory Area	49
(3) Multiplex Bus, With Wait, Accessing External Memory Area	51
(4) Timing Requirements	53
5.3 Electrical Characteristics	55
5.4 Connection Diagram	56
5.5 External Dimensions	58
(1) External Dimensions of Emulation Pod	58
(2) External Dimensions of Pitch Converter Board (FLX-100LCC)	59

Chapter 5. Specifications

5.1 Specifications

Table 5.1 lists the specifications of M306V2T-RPD-E.

Table 5.1 Specifications of M306V2T-RPD-E

Emulators	PC4701			
Applicable MCUs	M306V2 and M306V5 MCUs			
Evaluation MCU	M306V2EEFP and M306V2EEFS			
Usable modes	Single-chip mode Memory expansion mode Microprocessor mode			
Emulation memory	1MB			
Maximum operating frequency	10MHz			
Clock supply	X _{IN} -X _{OUT}	Internal oscillator circuit board (OSC-3) Switchable to external oscillator input.		
	X _{CIN} -X _{COUT}	Internal oscillator circuit board (OSC-2) Switchable to external oscillator input.		
Operating voltage	4.5 to 5.5V			
Operating temperature	5 to 35°C (n	o dew)		
Storage temperature	-10 to 60°C	(no dew)		
Power supply to emulation pod	Supplied from PC4701			
Connection to target system	See "3.7 Connecting the Target System" (page 38).			
Overseas standards	• U.S. EMI s • CE markin	tandards (FCC part 15 Class A) g (EN55022, EN50082-1)		

5.2 Operation Timing in Memory Expansion and Microprocessor Modes (5V)

(1) Separate Bus, No-Wait

Table 5.2 and Figure 5.1 show the bus timing in the memory expansion mode and the microprocessor mode (separate bus, no-wait).

Symbol	Item		Actual MCU [ns]		This product [ns]	
,		Min.	Max.	Min.	Max.	
Td (BCLK-AD)	Address output delay time		25		52	
Th (BCLK-AD)	Address output hold time (BCLK standard)	4		See left		
Th (RD-AD)	Address output hold time (RD standard)	0		See left		
Th (WR-AD)	Address output hold time (WR standard)	0		See left		
Td (BCLK-CS)	Chip-select output delay time		25		34	
Th (BCLK-CS)	Chip-select output hold time (BCLK standard)			See left		
Td (BCLK-ALE)	ALE signal output delay time		25		See left	
Th (BCLK-ALE)	ALE signal output hold time	-4		See left		
Td (BCLK-RD)	RD signal output delay time		25		32	
Th (BCLK-RD)	RD signal output hold time	0		See left		
Td (BCLK-WR)	WR signal output delay time		25		32	
Th (BCLK-WR)	WR signal output hold time	0		See left		
Td (BCLK-DB)	Data output delay time (BCLK standard)		40		57	
Th (BCLK-DB)	Data output hold time (BCLK standard)	4		See left		
Td (DB-WR)	Data output delay time (WR standard)	(*1)		(*2)		
Th (WR-DB)	Data output hold time (WR standard)	0		See left		

 Table 5.2 Memory expansion mode and microprocessor mode (separate bus, no-wait)

*1 Calculated by the following formula according to the frequency of BCLK.

Td (DB-WR)=
$$\frac{10^9}{f(BCLK)x2}$$
-40 [ns]

*2 Calculated by the following formula according to the frequency of BCLK.

Figure 5.1 Memory expansion mode and microprocessor mode (no-wait)

(2) Separate Bus, With Wait, Accessing External Memory Area

Table 5.3 and Figure 5.2 show the bus timing in the memory expansion mode and the microprocessor mode (with wait, accessing external memory area).

Symbol	ltem		Actual MCU [ns]		This product [ns]	
		Min.	Max.	Min.	Max.	
Td (BCLK-AD)	Address output delay time		25		52	
Th (BCLK-AD)	Address output hold time (BCLK standard)	4		See left		
Th (RD-AD)	Address output hold time (RD standard)	0		See left		
Th (WR-AD)	Address output hold time (WR standard)	0		See left		
Td (BCLK-CS)	Chip-select output delay time		25		34	
Th (BCLK-CS)	Chip-select output hold time (BCLK standard)	4		See left		
Td (BCLK-ALE)	ALE signal output delay time		25		See left	
Th (BCLK-ALE)	ALE signal output hold time	-4		See left		
Td (BCLK-RD)	RD signal output delay time		25		32	
Th (BCLK-RD)	RD signal output hold time	0		See left		
Td (BCLK-WR)	WR signal output delay time		25		32	
Th (BCLK-WR)	WR signal output hold time	0		See left		
Td (BCLK-DB)	Data output delay time (BCLK standard)		40		57	
Th (BCLK-DB)	Data output hold time (BCLK standard)	4		See left		
Td (DB-WR)	Data output delay time (WR standard)	(*1)		(*2)		
Th (WR-DB)	Data output hold time (WR standard)	0		See left		

Table 5.3 Memory expansion mode and microprocessor mode (with wait, external memory area)

*1 Calculated by the following formula according to the frequency of BCLK.

Td (DB-WR)=
$$\frac{10^9}{f(BCLK)}$$
-40 [ns]

*2 Calculated by the following formula according to the frequency of BCLK.

Td (DB-WR)=
$$\frac{10^9}{f(BCLK)}$$
 -42 [ns]

Figure 5.2 Memory expansion mode and microprocessor mode (with wait)

(3) Multiplex Bus, With Wait, Accessing External Memory Area

Table 5.4 and Figure 5.3 show the bus timing in the memory expansion mode and the microprocessor mode (with wait, accessing external memory area and using multiplex bus).

Symbol	Symbol Item		Actual MCU [ns]		This product [ns]	
Cycr			Max.	Min.	Max.	
Td (BCLK-AD)	Address output delay time		25		52	
Th (BCLK-AD)	Address output hold time (BCLK standard)	4		See left		
Th (RD-AD)	Address output hold time (RD standard)	(*1)		(*2)		
Th (WR-AD)	Address output hold time (WR standard)	(*1)		(*2)		
Td (BCLK-CS)	Chip-select output delay time		25		34	
Th (BCLK-CS)	Chip-select output hold time (BCLK standard)	4		See left		
Th (RD-CS)	Chip-select output hold time (RD standard)	(*1)		See left		
Th (WR-CS)	Chip-select output hold time (WR standard)	(*1)		See left		
Td (BCLK-RD)	RD signal output delay time		25		35	
Th (BCLK-RD)	RD signal output hold time	0		See left		
Td (BCLK-WR)	WR signal output delay time		25		37	
Th (BCLK-WR)	WR signal output hold time	0		See left		
Td (BCLK-DB)	Data output delay time (BCLK standard)		40		See left	
Th (BCLK-DB)	Data output hold time (BCLK standard)	4		See left		
Td (DB-WR)	Data output delay time (WR standard)	(*1)		See left		
Th (WR-DB)	Data output hold time (WR standard)	(*1)		See left		
Td (BCLK-ALE)	ALE output delay time (BCLK standard)		25		See left	
Th (BCLK-ALE)	ALE output hold time (BCLK standard)	-4		See left		
Td (AD-ALE)	ALE output delay time (Address standard)	(*1)		See left		
Th (ALE-AD)	ALE output hold time (Address standard)	30		See left		
Td (AD-RD)	After address RD signal output delay time	0		See left		
Td (AD-WR)	After address WR signal output delay time	0		See left		
Tdz (RD-AD)	Address output floating start time		8		See left	

Table 5.4 Memory expansion mode and microprocessor mode (with wait, multiplex bus)

*1 Calculated by the following formulas accord- 2 Calculated by the following formulas according to the frequency of BCLK.

Th (RD-AD) =
$$\frac{10^9}{f(BCLK)x2}$$
 [ns]
Th (WR-AD) = $\frac{10^9}{f(BCLK)x2}$ [ns]
Th (RD-CS) = $\frac{10^9}{f(BCLK)x2}$ [ns]
Th (WR-CS) = $\frac{10^9}{f(BCLK)x2}$ [ns]
Td (DB-WR) = $\frac{10^9x3}{f(BCLK)x2}$ -40 [ns]
Th (WR-DB) = $\frac{10^9}{f(BCLK)x2}$ [ns]
Th (WR-DB) = $\frac{10^9}{f(BCLK)x2}$ [ns]
Td (AD-ALE) = $\frac{10^9}{f(BCLK)x2}$ -25 [ns]

ing to the frequency of BCLK.

Th $(RD-\Delta D)$ -	10 ⁹	-14 [ns]
	f(BCLK)x2	- 14 [13]
Th (WR-AD)=-	10 ⁹	-14 [ne]
	f(BCLK)x2	14 [115]
	10 ⁹	-12 [ne]
m (ND-00)= -	f(BCLK)x2	12 [13]
	10 ⁹	12 [ns]
m (WR 00)=	f(BCLK)x2	12 [113]

:

.

Figure 5.3 Memory expansion mode and microprocessor mode (with wait, multiplex bus)

(4) Timing Requirements

Table 5.5, Figures 5.4 and 5.5 show timing requirements in the memory expansion mode and the microprocessor mode.

Table 5.5 Timing requirements (Vcc=5V)

Symbol	Item		Actual MCU [ns]		This product [ns]	
,		Min.	Max.	Min.	Max.	
Tsu (DB-RD)	Data input setup time	40		See left		
Tsu (RDY-BCLK)	RDY* input setup time	30		50		
Tsu (HOLD-BCLK)	HOLD* input setup time	40		(*1)		
Th (RD-DB)	Data input hold time	0		See left		
Th (BCLK-RDY)	RDY* input hold time	0		See left		
Th (BCLK-HOLD)	HOLD* input hold time	0		See left		
Td (BCLK-HLDA)	HLDA* output delay time		40		See left	

*1 Minimum 13ns (The definition is different from that of the actual MCU. For details, see Figure 5.5.)

Figure 5.4 Timing requirements

Figure 5.5 Timing requirements

5.3 Electrical Characteristics

Tables 5.6 and 5.7 list IC electrical characteristics of the user interface.

Symbol	Demonster		Standard values			11
Symbol	Faranielei	Vcc	Min.	Standard	Max.	Unit
VIHC	High level control input voltage	4.5	3.15			V
VILC	Low level control input voltage	4.5			1.35	V
Ron	ON resistance	4.5		96	200	Ω
Ron	Difference of ON resistances	4.5		10		Ω

Table 5.6 Electrical characteristics of 74HC4066AFT (P100 to P107, ANO to AN7)

Table 5.7 Electrical characteristics of M60074-0111FP (P0o to P57)

Currents e l	Devenator		Standard values		ues	1.1
Symbol	Parameter	Condition	Min.	Standard	Max.	Unit
VIL		Vcc=4.5V	0		1.35	M
Vih	input voltage	Vcc=5.5V	3.85		5.5	V
Vон	Output voltage	Vcc=5.0V			0.05	V
Vol	Output voltage	lo <1μA	4.95			V
lo∟	Output ourrest	Vcc=4.5V Vol=0.4V	8			mA
Іон	Output current	Vcc=4.5V Vон=4.1V			-8	mA
lı∟		Vcc=5.5V Vi=0V	-1		+1	μΑ
Ін	Input leak current	Vcc=5.5V Vi=5.5V	-1		+1	μΑ
lozl	OFF state output leak current	Vcc=5.5V Vo=0V	-1		+1	μΑ
Іогн		Vcc=5.5V Vo=5.5V	-1		+1	μΑ
Сю	I/O pin capacity	f=1MHz Vcc=0V		7	15	pF

5.4 Connection Diagram

Figures 5.6 and 5.7 show the connection diagram of M306V2T-RPD-E. This connection diagram mainly shows the interface section, and the circuits which are not connected to the target system such as the emulator's control system are omitted.

Figure 5.6 Connection diagram 1

Figure 5.7 Connection diagram 2

5.5 External Dimensions

(1) External Dimensions of Emulation Pod

Figure 5.8 External dimensions of emulation pod

(2) External Dimensions of Pitch Converter Board (FLX-100LCC)

Figure 5.9 shows the external dimensions of the pitch converter board FLX-100LCC for 100-pin LQFP (100D0).

Figure 5.9 External dimensions of pitch converter board (FLX-100LCC)

MEMO

Chapter 6. Troubleshooting

This chapter describes how to troubleshoot when this product does not work properly.

6.1	Flowchart to Remedy the Troubles	
6.2	When the Emulator Debugger Does Not Start Up Properly	
	(1) When the LED Display of PC4701 is Abnormal	
	(2) Errors Occur When the Emulator Debugger Starts Up (When the target system is connected)	64
	(3) Errors Occur When the Emulator Debugger Starts Up (When the target system is not connected)	
6.3	Operation Differs from That of Actual MCUs	
	(1) A-D Conversion Values are Different from Expected Values	

Chapter 6. Troubleshooting

6.1 Flowchart to Remedy the Troubles

Figure 6.1 shows the flowchart to remedy the troubles from when power to the emulator is activated until the emulator debugger starts up. Check this while the target system is disconnected.

Figure 6.1 Flowchart to remedy the troubles

6.2 When the Emulator Debugger Does Not Start Up Properly

(1) When the LED Display of PC4701 is Abnormal

Table 6.1 LED's abnormal display and its checkpoints

Error	Connection to the target system	Checkpoint
LEDs do not light up.	-	Recheck the power cable is connected to the PC4701. See the instruction manual of the PC4701.
All LEDs remain lit.	-	Recheck the connection between the PC4701 and this product. See "3.6 Connecting the PC4701 and Emulation Pod" (page 36).
The "POWER" LED of "STATUS OF TARGET" does not light up.	Connected	Check power is properly supplied to the target system and that the target system is properly grounded.
The "CLOCK" LED of "STATUS OF TARGET"	Disconnected	 Check both the main and sub clocks of the emulator debugger are not set to "EXT". See the CLK command of the emulator debugger. Check the oscillation circuit in the emulation pod is oscillating. See "3.3 Selecting Clock Supply" (page 29).
uoes not light up.	Connected	 Check the oscillation circuit in the target system is oscillating. Check the switches in the emulation pod are correctly set. <i>See "3.2 Switch Settings" (page 25).</i>

(2) Errors Occur When the Emulator Debugger Starts Up (When the target system is connected)

Error	Checkpoint
Communication error occurred Data was not sent to the target	Check all emulator debugger settings, interface cable connection and switches on the rear of the PC4701 match. <i>See the instruction manuals of the PC4701 and the emulator debugger.</i>
Target system cannot be properly built	 Download the proper firmware. See "4.2 Downloading Firmware" (page 42). Recheck the connection between the PC4701 and this product. See "3.6 Connecting the PC4701 and Emulation Pod" (page 36).
M3T-PD30 version is not the same version as the firmware in the target	Download the proper firmware. See "4.2 Downloading Firmware" (page 42).
Target MCU is in the reset state	Check the reset pin of the target system has changed from "Low" to "High" level.
Target MCU cannot be reset	 If the reset circuit of the target system has a watchdog timer, disable the timer. Check power is properly supplied to the target system and that the target system is properly grounded. The program may be uncontrollable in areas where memory not allocated. Recheck the map setting.
Target is in HOLD state	 The MCU is either in the stop mode or wait mode. Either reset the MCU or cancel the mode with an interrupt. See the MCU specifications. The program may be uncontrollable in areas where memory not allocated. Recheck the map setting.
Target clock is stopped	 Check the oscillation circuit of the target system is oscillating properly. Check the switches in the emulation pod are correctly set. See "3.2 Switch Settings" (page 25).
Target MCU is not receiving power	Check power is properly supplied to the target system and that the target system is properly grounded.

Table 6.2 Checkpoints of errors when starting up the emulator debugger (target is connected)

(3) Errors Occur When the Emulator Debugger Starts Up (When the target system is not connected)

Error	Checkpoint
Communication error occurred Data was not sent to the target	Check all emulator debugger settings, interface cable connection and switches on the rear of the PC4701 match. <i>See the instruction manuals of the PC4701 and the emulator debugger.</i>
Target system cannot be properly built	 Download the proper firmware. See "4.2 Downloading Firmware" (page 42). Recheck the connection between the PC4701 and this product. See "3.6 Connecting the PC4701 and Emulation Pod" (page 36).
M3T-PD30 version is not the same version as the firmware in the target	Download the proper firmware. See "4.2 Downloading Firmware" (page 42).
Target MCU cannot be reset	The program may be uncontrollable in areas where memory not allocated. Recheck the map setting.
Target is in HOLD state	 The MCU is either in the stop mode or wait mode. Either reset the MCU or cancel the mode with an interrupt. See the MCU specifications. The program may be uncontrollable in areas where memory not allocated. Recheck the map setting.
Target clock is stopped	Check the switches in the emulation pod are correctly set. <i>See "3.2 Switch Settings" (page 25).</i>

Table 6.3 Checkpoints of errors when starting up the emulator debugger (target is not connected)

6.3 Operation Differs from That of Actual MCUs

(1) A-D Conversion Values are Different from Expected Values

As a flexible cable, a pitch converter board and other devices are used between the evaluation MCU and the target system, the A-D converter operates differently from the actual MCU. Make the final evaluation of the A-D converter from the actual MCU.

MEMO

Chapter 7. Maintenance and Guarantee

This chapter describes how to maintenance, repair provisions and how to request for repair.

7.1	Maintenance	68
7.2	Guarantee	68
7.3	Repair Provisions	68
7.4	How to Request for Repair	. 69

Chapter 7. Maintenance and Guarantee

7.1 Maintenance

If dust or dirt collects on any equipment of your emulation system, wipe it off with a dry soft cloth. Do not use thinner or other solvents because these chemicals can cause the equipment's surface coating to separate.

7.2 Guarantee

If your product becomes faulty within twelve months after its purchase while being used under good conditions by observing "Precautions for Safety" described in Chapter 1 of this user's manual, we will repair or replace your faulty product free of charge. Note, however, that if your product's fault is raised by any one of the following causes, we will repair it or replace it with new one with extra-charge:

- Misuse, abuse, or use under extraordinary conditions
- Unauthorized repair, remodeling, maintenance, and so on
- Inadequate user's system or misuse of it
- · Fires, earthquakes, and other unexpected disasters

In the above cases, contact your local distributor. If your product is being leased, consult the leasing company or the owner.

7.3 Repair Provisions

(1) Repair with extra-charge

The products elapsed more than twelve months after purchase can be repaired with extra-charge.

(2) Replacement with extra-charge

If your product's fault falls in any of the following categories, the fault will be corrected by replacing the entire product instead of repair, or you will be advised to purchase new one, depending on the severity of the fault.

- · Faulty or broken mechanical portions
- Flaw, separation, or rust in coated or plated portions
- · Flaw or cracks in plastic portions
- Faults or breakage caused by improper use or unauthorized repair or modification
- Heavily damaged electric circuits due to overvoltage, overcurrent or shorting of power supply
- Cracks in the printed circuit board or burnt-down patterns
- Wide range of faults that makes replacement less expensive than repair
- Unlocatable or unidentified faults
- (3) Expiration of the repair period

When a period of twelve months elapses after the model was dropped from production, repairing products of the model may become impossible.

(4) Transportation fees at sending your product for repair

Please send your product to us for repair at your expense.

7.4 How to Request for Repair

If your product is found faulty, follow the procedure below to send your product for repair.

Note on Transporting the Product:

• When sending your product for repair, use the packing box and cushion material supplied with this product when delivered to you and specify handling caution for it to be handled as precision equipment. If packing of your product is not complete, it may be damaged during transportation. When you pack your product in a bag, make sure to use conductive polyvinyl supplied with this product (usually a blue bag). When you use other bags, they may cause a trouble on your product because of static electricity.

MEMO
M306V2T-RPD-E User's Manual

Rev.1.00 September 1, 2003 REJ10J0266-0100Z

COPYRIGHT ©2003 RENESAS TECHNOLOGY CORPORATION AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED

M306V2T-RPD-E User's Manual

Renesas Electronics Corporation 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan