

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

M16C R8C Compact Emulator
Debugger V.1.03
User’s Manual

U
ser’s M

anual

Rev.1.00 2007.07

Renesas Microcomputer Development
Environment System

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
 Renesas products for their use. Renesas neither makes warranties or representations with respect to the
 accuracy or completeness of the information contained in this document nor grants any license to any
 intellectual property rights or any other rights of Renesas or any third party with respect to the information in
 this document.
2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising
 out of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
 programs, algorithms, and application circuit examples.
3. You should not use the products or the technology described in this document for the purpose of military
 applications such as the development of weapons of mass destruction or for the purpose of any other military
 use. When exporting the products or technology described herein, you should follow the applicable export
 control laws and regulations, and procedures required by such laws and regulations.
4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
 application circuit examples, is current as of the date this document is issued. Such information, however, is
 subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
 document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
 and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
 through our website. (http://www.renesas.com)
5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
 assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
 included in this document.
6. When using or otherwise relying on the information in this document, you should evaluate the information in
 light of the total system before deciding about the applicability of such information to the intended application.
 Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
 particular application and specifically disclaims any liability arising out of the application and use of the
 information in this document or Renesas products.
7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas
 products are not designed, manufactured or tested for applications or otherwise in systems the failure or
 malfunction of which may cause a direct threat to human life or create a risk of human injury or which require
 especially high quality and reliability such as safety systems, or equipment or systems for transportation and
 traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication
 transmission. If you are considering the use of our products for such purposes, please contact a Renesas
 sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who
 elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
 Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
 damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect
 to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
 characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
 damages arising out of the use of Renesas products beyond such specified ranges.
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
 characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
 conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and
 injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for
 hardware and software including but not limited to redundancy, fire control and malfunction prevention,
 appropriate treatment for aging degradation or any other applicable measures. Among others, since the
 evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or
 system manufactured by you.
11. In case Renesas products listed in this document are detached from the products to which the Renesas
 products are attached or affixed, the risk of accident such as swallowing by infants and small children is very
 high. You should implement safety measures so that Renesas products may not be easily detached from your
 products. Renesas shall have no liability for damages arising out of such detachment.
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
 approval from Renesas.
13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
 document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

Overview
The High-performance Embedded Workshop is a Graphical User Interface intended to ease the

development and debugging of applications written in C/C++ programming language and assembly

language for Renesas microcomputers. Its aim is to provide a powerful yet intuitive way of accessing,

observing and modifying the debugging platform in which the application is running.

 This help explains the function as a "debugger" of High-performance Embedded Workshop.

Target System
The Debugger operates on the compact emulator system.

Supported CPU
This help explains the debugging function corresponding to the following CPUs.

•

•

M32C/80, M16C/80 Series

Note: In this help, the information which depends on this CPU is described as "for M32C".

M16C/Tiny, R8C/Tiny Series

Note: In this help, the information which depends on this CPU is described as "for M16C/R8C".

Active X, Microsoft, MS-DOS, Visual Basic, Visual C++, Windows and Windows NT are either registered trademarks or
trademarks of Microsoft Corporation in the United States and other countries.
IBM and AT are registered trademarks of International Business Machines Corporation.
Intel and Pentium are registered trademarks of Intel Corporation.
Adobe and Acrobat are registered trademarks of Adobe Systems Incorporated.
All other brand and product names are trademarks, registered trademarks or service marks of their respective holders.

For inquiries about the contents of this document or product, fill in the text file the installer generates in the following
directory and email to your local distributor.

¥SUPPORT¥Product-name¥SUPPORT.TXT

Renesas Tools Homepage http://www.renesas.com/en/tools

Setup of Debugger 1

1. Features 3
1.1 RAM Monitor Function...3

1.1.1 RAM Monitor Area ..3
1.1.2 Sampling Period ..4
1.1.3 Related Windows ...4

1.2 Break Functions..5
1.2.1 Software Breaks Function...5
1.2.2 Hardware Breaks Function...6
1.2.3 Address Interrupt Breaks Function ...6

1.3 Real-Time Trace Function ..7
1.3.1 Trace Area..7
1.3.2 Trace Condition Setting ..8
1.3.3 Trace Data Write Condition..8

1.4 Real-Time OS Debugging Function..8
1.5 GUI Input/Output Function ...8

2. About the Compact Emulator 9
2.1 Communication method..9
2.2 Function table ...9

3. Before starting the debugger 10
3.1 Communication method by emulator...10

3.1.1 USB Interface ..10
3.2 Download of Firmware..10
3.3 Setting before emulator starts..11

3.3.1 USB communication ..11

4. Preparation before Use 12
4.1 Workspaces, Projects, and Files ...12
4.2 Starting the High-performance Embedded Workshop ..13

4.2.1 Creating a New Workspace (Toolchain Used) ..14
4.2.2 Creating a New Workspace (Toolchain Not Used) ...19

4.3 Starting the Debugger ..24
4.3.1 Connecting the Emulator ..24
4.3.2 Ending the Emulator...24

5. Setup the Debugger 25
5.1 Init Dialog..25

5.1.1 MCU Tab..26
5.1.2 Debugging Information Tab ..29
5.1.3 Emulator Tab...31
5.1.4 Script Tab...32

5.2 Setting of the Communication Interface..33
5.2.1 Setting of the USB Interface...33

5.3 Setup the Debugger for M32C..34
5.3.1 Emem Dialog..34

5.4 Setup the Debugger for M16C/R8C..40
5.4.1 MCU Setting Dialog ..40

Tutorial 45

i

6. Tutorial 47
6.1 Introduction...47
6.2 Usage ...48

6.2.1 Step1 : Starting the Debugger ..48
6.2.2 Step2 : Checking the Operation of RAM...49
6.2.3 Step3 : Downloading the Tutorial Program ...50
6.2.4 Step4 : Setting a Breakpoint...52
6.2.5 Step5 : Executing the Program ...53
6.2.6 Step6 : Reviewing Breakpoints ...55
6.2.7 Step7 : Viewing Register ...56
6.2.8 Step8 : Viewing Memory ...57
6.2.9 Step9 : Watching Variables...58
6.2.10 Step10 : Stepping Through a Program ...60
6.2.11 Step11 : Forced Breaking of Program Executions..63
6.2.12 Step12 : Displaying Local Variables ...64
6.2.13 Step13 : Stack Trace Function ..65
6.2.14 What Next? ..66

Reference 67

7. Windows/Dialogs 69
7.1 RAM Monitor Window ..70

7.1.1 Extended Menus ..71
7.1.2 Setting the RAM monitor area..72

7.2 ASM Watch Window ...74
7.2.1 Extended Menus ..75

7.3 C Watch Window...76
7.3.1 Extended Menus ..78

7.4 Script Window...79
7.4.1 Extended Menus ..80

7.5 S/W Break Point Setting Window ..81
7.5.1 Command Button...82
7.5.2 Setting and Deleting a Break Points from Editor(Source) Window..............................83

7.6 H/W Break Point Setting Window..84
7.6.1 Specify the Break Event..85
7.6.2 Specify the Combinatorial Condition..88
7.6.3 Command Button...88
7.6.4 Specify the Events (Instruction Fetch) ...89
7.6.5 Specify the Events (Memory Access) ..93
7.6.6 Specify the Events (Bit Access)...112
7.6.7 Specify the Event Combination Condition ...114

7.7 Address Interrupt Break Point Setting Window ...116
7.7.1 Command Button...117

7.8 Trace Point Setting Window...119
7.8.1 Specify the Trace Event...120
7.8.2 Specify the Combinatorial Condition..122
7.8.3 Specify the Trace Range..123
7.8.4 Specify the Trace Write Condition..123
7.8.5 Command Button...124
7.8.6 Specify the Events (Instruction Fetch) ...124
7.8.7 Specify the Events (Memory Access) ..124
7.8.8 Specify the Events (Bit Access)...124
7.8.9 Specify the Event Combination Condition ...124
7.8.10 Specify the write condition..125

ii

7.9 Trace Window..128
7.9.1 Configuration of Bus Mode..128
7.9.2 Configuration of Disassemble Mode ...130
7.9.3 Configuration of Data Access Mode ..131
7.9.4 Configuration of Source Mode...132
7.9.5 Extended Menus ..133
7.9.6 Display of bus information on the M32C Debugger...134
7.9.7 Display of bus information on the M16C/R8C Debugger...136

7.10 Data Trace Window...137
7.10.1 Extended Menus ..138

7.11 GUI I/O Window..139
7.11.1 Extended Menus ..140

7.12 MR Window ...141
7.12.1 Extended Menus ..142
7.12.2 Display the Task Status ..143
7.12.3 Display the Ready Queue Status ..147
7.12.4 Display the Timeout Queue Status...148
7.12.5 Display the Event Flag Status..150
7.12.6 Display the Semaphore Status..152
7.12.7 Display the Mailbox Status...154
7.12.8 Display the Data Queue Status ..156
7.12.9 Display the Cycle Handler Status ..158
7.12.10 Display the Alarm Handler Status ...160
7.12.11 Display the Memory Pool Status ..161
7.12.12 Display the Task Context..163

8. Table of Script Commands 165
8.1 Table of Script Commands (classified by function) ...165

8.1.1 Execution Commands..165
8.1.2 File Operation Commands ..165
8.1.3 Register Operation Commands...166
8.1.4 Memory Operation Commands ...166
8.1.5 Assemble/Disassemble Commands ...166
8.1.6 Software Break Setting Commands..167
8.1.7 Address Interrupt Break Setting Commands ..167
8.1.8 Hardware Break Setting Commands..167
8.1.9 Real-time Trace Commands..167
8.1.10 Script/Log File Commands..167
8.1.11 Program Display Commands ..168
8.1.12 Map Commands ...168
8.1.13 Clock Command...168
8.1.14 C Language Debugging Commands..168
8.1.15 Real-time OS Command..168
8.1.16 Utility Commands ...168

8.2 Table of Script Commands (alphabetical order) ..169

9. Writing Script Files 171
9.1 Structural Elements of a Script File ..171

9.1.1 Script Command ..172
9.1.2 Assign Statement...172
9.1.3 Conditional Statement ..172
9.1.4 Loop Statement(while,endw) and Break Statement..172
9.1.5 Comment statements ..173

9.2 Writing Expressions..173
9.2.1 Constants ...173
9.2.2 Symbols and labels ..174
9.2.3 Macro Variables...175
9.2.4 Register variables ..176

iii

9.2.5 Memory variables ..176
9.2.6 Line Nos. ..176
9.2.7 Character constants ..177
9.2.8 Operators ...177

10. C/C++ Expressions 178
10.1 Writing C/C++ Expressions ..178

10.1.1 Immediate Values..178
10.1.2 Scope Resolution..179
10.1.3 Mathematical Operators ...179
10.1.4 Pointers ..179
10.1.5 Reference..179
10.1.6 Sign Inversion..180
10.1.7 Member Reference Using Dot Operator ...180
10.1.8 Member Reference Using Arrow...180
10.1.9 Pointers to Members..181
10.1.10 Parentheses..181
10.1.11 Arrays...181
10.1.12 Casting to Basic Types ..181
10.1.13 Casting to typedef Types ...182
10.1.14 Variable Name ...182
10.1.15 Function Name ..182
10.1.16 Character Constants..182
10.1.17 Character String Literals..182

10.2 Display Format of C/C++ Expressions ...183
10.2.1 Enumeration Types ...183
10.2.2 Basic Types ..183
10.2.3 Pointer Types ...184
10.2.4 Array Types..185
10.2.5 Function Types ..185
10.2.6 Reference Types...185
10.2.7 Bit Field Types...185
10.2.8 When No C Symbol is Found ..186
10.2.9 Syntax Errors...186
10.2.10 Structure and Union Types...186

11. Display the Cause of the Program Stoppage 187

12. Attention 188
12.1 Common Attention..188

12.1.1 File operation on Windows..188
12.1.2 Area where software breakpoint can be set ...188
12.1.3 Get or set C variables ..189
12.1.4 Function name in C++...190
12.1.5 Option settings for download modules..190
12.1.6 Debugging multi modules ...190
12.1.7 Synchronized debugging..190
12.1.8 Compact Emulator reset switch..190

12.2 Attention of the M32C Debugger ...191
12.2.1 Stack area used by the emulator ..191
12.2.2 Interrupt stack pointer when resetting the target program191
12.2.3 Option of C Compiler/Assembler/Linker ..191
12.2.4 Target MCU HOLD terminal..191
12.2.5 Hardware Event ..192
12.2.6 CPU rewrite ...192

12.3 Attention of the M16C/R8C Debugger ...193
12.3.1 Map of stack area used by the compact emulator ..193
12.3.2 Interrupt stack pointer when resetting the target program193

iv

12.3.3 Options for compiler, assembler, and linker ..193
12.3.4 TASKING C Compiler ...193
12.3.5 Target MCU HOLD terminal..193
12.3.6 Hardware break function ..193
12.3.7 Hardware Event ..194
12.3.8 Memory space expansion...194
12.3.9 CPU rewrite ...195

12.4 Options for compiler, assembler, and linker..196
12.4.1 When Using NCxx ...196
12.4.2 When Using the IAR C Compiler (EW) ..196
12.4.3 When Using the IAR EC++ Compiler (EW) ...197
12.4.4 When Using the IAR C Compiler (ICC)..198
12.4.5 When Using the TASKING C Compiler (EDE) ..199
12.4.6 When Using the TASKING C Compiler (CM)..199

v

(Blank Page)

vi

Setup of Debugger

1

(Blank Page)

2

1Features

1. Features

1.1 RAM Monitor Function
This function allows you to inspect changes of memory contents without impairing the realtime
capability of target program execution.
The compact emulator system has 1 Kbytes of RAM monitor area which can be located in any
contiguous address location or in 4 separate blocks comprised of 256 bytes each.

1.1.1 RAM Monitor Area
This debugger has 1 Kbytes of RAM monitor area which can be located in any contiguous address
location or in 4 separate blocks comprised of 256 bytes each.

3

1.1.2 Sampling Period
Sampling cycle means the display update interval.
You can specify this function in any window which supports the RAM monitor. (The interval of 100
ms is set by default.)
The actual sampling cycle may take longer time than the specified cycle depending on the operating
environment. (Sampling cycle depends on the following environments.)
• Communication interface
• Number of the RAM Monitor windows displayed
• Size of the RAM Monitor window displayed
• Number of ASM watch points within the RAM monitor area of the ASM Watch window
• Number of C watch points within the RAM monitor area of the C Watch window

1.1.3 Related Windows
The window where the function of the real time RAM monitor function can be used is shown below.
• RAM Monitor Window
• ASM Watch Window
• C Watch Window

4

1Features

5

1.2 Break Functions

1.2.1 Software Breaks Function
Software Break breaks the target program before execution of the command at the specified address.
This break point is called software breakpoint.
The software breakpoint is set/reset in the Editor (Source) window or in the S/W Breakpoint Setting
window. You can also disable/enable a software breakpoint temporarily.
You can specify up to 64 software breakpoints. When specifying two or more software breakpoints, the
breakpoint combination is based on the OR logic. (Arrival to any one of breakpoints breaks the target
program.)

1.2.1.1 Setting of software breakpoint

The software breakpoint can be set by the following windows.
• Editor (Source) Window
• S/W Break Point Setting Window

You can double-click the mouse to set/reset the software breakpoint in the Editor (Source) window.
You can also switch to temporarily disable/enable the software breakpoint in the S/W Breakpoint
Setting window.

1.2.1.2 Area where software breakpoint can be set

The area which can be set for software breakpoint varies depending on the product.
For the areas available for software breakpoint, see the following:
"12.1.2 Area where software breakpoint can be set"

1.2.2 Hardware Breaks Function
This function causes the target program to stop upon detecting a data read/write to memory,
instruction execution, or the rising/falling edge of the input signal fed from an external trace cable.
The contents of events that can be set vary with each target MCU.
The following designations are available as break events:
• Address designation

- Instruction fetch
- Memory access
- Bit access

• External trigger designation
• Interruption

The number of events that can be specified are two events of all. For the address designation method,
instruction fetch and memory access allow the range designation and logical condition designation, in
addition to the normal one-address designation. Moreover, instruction fetch allows you to specify the
function name.
Memory access allows you to specify the comparison data to read/write data related to the specified
address in the same manner as when setting the H/W breakpoint. It also allows mask designation to
the comparison data.

These break events can be combined as below:
• Trace when all of the valid events are established (AND condition)
• Trace when all of the valid events are established at the same time (simultaneous AND condition)
• Trace when one of the valid events is established (OR condition)

1.2.3 Address Interrupt Breaks Function
This function stops the target program immediately before executing an instruction at a specified
address. This function is realized by using the MCU's address match interrupt.
The address interrupt break function can only be used when the address match interrupt is not used
in the user application. The count of breakpoints depends on the connected MCU.

Note
The address interrupt break function can only be used when the Enable the Address Match Interrupt
Break Function check box on the Init dialog box MCU tab is selected. (Details).

1.2.3.1 Setting and Deleting a Break Points

The address interrupt beakpoint can be set by the following windows.
• Editor (Source) Window
• Address Interrupt Break Point Setting Window

You can double-click the mouse to set/reset the address interrupt breakpoint in the Editor (Source)
window (same as software breakpoints).
You can also switch to temporarily disable/enable the address interrupt breakpoint in the Address
Interrupt Break Point Setting Window.

6

1Features

1.3 Real-Time Trace Function
The real-time trace function records the execution history of the target program.
Up to 64K cycles of execution history can be recorded. This record allows inspecting the bus
information, executed instructions, and source program execution path for each cycle.
The execution history is referred to in the tracing window.
The execution history can be referred to in the following mode.
• BUS mode

This mode allows you to inspect cycle-by-cycle bus information. The display content depends on
the MCU and emulator system used. In addition to bus information, this mode allows
disassemble, source line or data access information to be displayed in combination.

• Disassemble mode
This mode allows you to inspect the executed instructions. In addition to disassemble information,
this mode allows source line or data access information to be displayed in combination.

• Data access mode
This mode allows you to inspect the data read/write cycles. In addition to data access information,
this mode allows source line information to be displayed in combination.

• Source mode
This mode allows you to inspect the program execution path in the source program.

1.3.1 Trace Area
The 64K cycles execution history can be referred to with this debugger.
The trace area of the following 5 mode is being supported.
• Break

64K cycles before target program stops
• Before

64K cycles before trace point
• About

32K cycles either side of trace point
• After

64K cycles after trace point
• Full

Until 64K cycles are written in the trace memory

"Break" is set by default. To refer the execution history before stopping the target program, use
"Break" (designation of trace event is not required).
To refer the execution history at any position, or to continue execution of the target program, specify
the trace event and change the trance range.

7

1.3.2 Trace Condition Setting
The following designations are available as trace events:
• Address designation

- Instruction fetch
- Memory access
- Bit access

The number of events that can be specified are two events of all. These break events can be combined
as below:
• Trace when all of the valid events are established (AND condition)
• Trace when all of the valid events are established at the same time (And(same time) condition)
• Trace when one of the valid events is established (OR condition)

1.3.3 Trace Data Write Condition
Trace data write conditions can be specified.
You can specify the following write conditions:

• Write conditions unlimited (default)
• Cycles from the start event established to the end event established
• Only cycles where the start event is established
• Cycles from the start event established to the start event unestablished
• Other than cycles from the start event established to the end event established
• Other than cycles where the start event is established
• Other than cycles from the start event established to the start event unestablished

1.4 Real-Time OS Debugging Function
This function debugs the realtime OS-dependent parts of the target program that uses the realtime
OS.
This function helps to show the status of the realtime OS.

1.5 GUI Input/Output Function
This function simulates the user target system's key input panel (buttons) and output panel on a
window.
Buttons can be used for the input panel, and labels (strings) and LEDs can be used for the output
panel.

8

2About the Compact Emulator

9

2. About the Compact Emulator

The compact emulator is a small emulator equipped with the debugging function needed for full-scale
development, such as real-time trace and a hardware break, though it is a handy price and a small
body.

2.1 Communication method
The supported communication methods are as follows.

Emulator I/F
Compact Emulator

USB Support

2.2 Function table
The supported functions are as follows.

Function Compact Emulator
SW Break 64 points
HW Break 2 points
Address Interrupt Break 4 points*
Real-Time Trace 64K Cycles
RAM Monitor 1K bytes (256bytes x 4blocks) area
Time Measurement Go to Stop

*Depends on the target MCU used.

3. Before starting the debugger

3.1 Communication method by emulator
The supported communication methods are as follows.
• USB

3.1.1 USB Interface
• Compliant with USB Standard 1.1.
• Connections via USB hub are not supported.
• By connecting the host computer and the emulator with USB cable, it is possible to install the

supported device drivers using a wizard.
• The necessary cable is included with the emulator.

3.2 Download of Firmware
It is necessary to down-load the firmware which corresponds to connected Compact Emulator when
the debugger is started to the emulator.
• You have setup the debugger for the first time.
• You have upgraded emulator debugger.
• The firmware downloaded to the emulator is unknown one.

Press the system reset switch within two seconds after powering up the Compact Emulator to
establish the maintenance mode.
This debugger searches the version of the firmware downloaded to the emulator at start. Also when
the firmware downloaded to the emulator is of old version, a mode which drives this debugger to
download firmware is set.

When this debugger gets started while the emulator is set in the mode which drives the debugger to
download firmware forcedly, the following dialog is opened at start.
Click the OK button to download the firmware.

10

3Before starting the debugger

3.3 Setting before emulator starts

3.3.1 USB communication
Connection of USB devices is detected by Windows' Plug & Play function. The device driver needed
for the connected USB device is automatically installed. For details, see "Install of USB Device
Driver".

3.3.1.1 Install of USB device driver

The USB devices connected are detected by Windows' Plug & Play function. The installation wizard
for USB device drivers starts after the device had been detected. The following shows the procedure
for installing the USB device drivers.
1. Connect the host computer and the emulator with USB cable.
2. Set the emulator's communication interface switch to the "USB" position. Then turn on the power

to the emulator.
3. The dialog box shown below appears.

Go on following the wizard, and a dialog box for specifying the setup information file (inf file) is
displayed. Specify the musbdrv.inf file stored in a location below the directory where this debugger is
installed.

ATTENTION
• Before the USB device drivers can be installed, the debugger you use must already be installed.

Install this debugger first.
• A user who install the USB device driver need administrator rights.
• During installation, a message may be output indicating that the device driver proper

musbdrv.sys cannot be found. In this case, specify the musbdrv.sys which is stored in the same
directory as is the musbdrv.inf file.

11

4. Preparation before Use

Please run the High-performance Embedded Workshop and connect the emulator .
In addition, in order to debug with this product, it is necessary to create a workspace.

4.1 Workspaces, Projects, and Files
Just as a word processor allows you to create and modify documents, this product allows you to create
and modify workspaces.
A workspace can be thought of as a container of projects and, similarly, a project can be thought of as
a container of project files. Thus, each workspace contains one or more projects and each project
contains one or more files.

Workspaces allow you to group related projects together. For example, you may have an application
that needs to be built for different processors or you may be developing an application and library at
the same time. Projects can also be linked hierarchically within a workspace, which means that when
one project is built all of its "child" projects are built first.
However, workspaces on their own are not very useful, we need to add a project to a workspace and
then add files to that project before we can actually do anything.

12

4Preparation before Use

4.2 Starting the High-performance Embedded Workshop
Activate the High-performance Embedded Workshop from [Programs] in the [Start] menu.
The [Welcome!] dialog box is displayed.

In this dialog box, A workspace is created or displayed.
• [Create a new project workspace] radio button:

Creates a new workspace.
• [Open a recent project workspace] radio button:

Uses an existing workspace and displays the history of the opened workspace.
• [Browse to another project workspace] radio button:

Uses an existing workspace;
this radio button is used when the history of the opened workspace does not remain.

In the case of Selecting an Existing Workspace, select [Open a recent project workspace] or [Browse to
another project workspace] radio button and select the workspace file (.hws).

Please refer to the following about the method to create a new workspace.
Refer to "4.2.1 Creating a New Workspace (Toolchain Used)"
Refer to "4.2.2 Creating a New Workspace (Toolchain Not Used)"
* When debugging the existing load module file with this product, a workspace is created by this
method.

The method to create a new workspace depends on whether a toolchain is or is not in use. Note that
this product does not include a toolchain. Use of a toolchain is available in an environment where the
C/C++ compiler package for the CPU which you are using has been installed.
For details on this, refer to the manual attached to your C/C++ compiler package.

13

4.2.1 Creating a New Workspace (Toolchain Used)

4.2.1.1 Step1 : Creation of a new workspace

In the [Welcome!] dialog box that is displayed when the High-performance Embedded Workshop is
activated, select the [Create a new project workspace] radio button and click the [OK] button.
Creation of a new workspace is started.
The following dialog box is displayed.

1. Select the target CPU family

In the [CPU family] combo box, select the target CPU family.
2. Select the target toolchain

In the [Tool chain] combo box, select the target toolchain name when using the toolchain.
3. Select the project type

In the [Project type] list box, select the project type to be used.
In this case, select "Application" .
(Please refer to the manual attached to your C/C++ compiler package about the details of the
project type which can be chosen.)

4. Specify the workspace name and project name
- In the [Workspace Name] edit box, enter the new workspace name.
- In the [Project Name] edit box, enter the project name. When the project name is the same as

the workspace name, it needs not be entered.
- In the [Directory] edit box, enter the directory name in which the workspace will be created.

Click the [Browse...] button to select a directory.

After a setting, click the [OK] button.

14

4Preparation before Use

4.2.1.2 Step2 : Setting for the Toolchain

A wizard for the project creation starts.

Here, the following contents are set.
• toolchain
• the setting for the real-time OS (when using)
• the setting for the startup file, heap area, stack area, and so on

Please set required information and click the [Next] button.

The contents of a setting change with C/C++ compiler packages of use. Please refer to the manual
attached to your C/C++ compiler package about the details of the contents of a setting.

15

4.2.1.3 Step 3: Selecting of the Target Platform

Select the target system used for your debugging (emulator, simulator).
When the setting for the toolchain has been completed, the following dialog box is displayed.

1. Selecting of the Target type

In the [Target type] list box, select the target CPU type.
2. Selecting of the Target Platform

In the [Targets] area, the target for the session file used when this debugger is activated must be
selected here.
Check the box against the target platform. (And choose other target as required.)

And click the [Next] button.

16

4Preparation before Use

4.2.1.4 Step4 : Setting the Configuration File Name

Set the configuration file name for each of the all selected target.
The configuration file saves the state of High-performance Embedded Workshop except for the target
(emulator, simulator).

The default name is already set. If it is not necessary to change, please click the [next] button as it is.

17

4.2.1.5 Step5 : The check of a created file name

Finally, confirm the file name you create. The files which will be generated by the High-performance
Embedded Workshop are displayed If you want to change the file name, select and click it then enter
the new name.

This is the end of the emulator settings.
Exit the Project Generator following the instructions on the screen.

18

4Preparation before Use

4.2.2 Creating a New Workspace (Toolchain Not Used)
When debugging the existing load module file with this product, a workspace is created by this
method.(It can work even if the tool chain is not installed.)

4.2.2.1 Step1 : Creation of a new workspace

In the [Welcome!] dialog box that is displayed when the High-performance Embedded Workshop is
activated, select the [Create a new project workspace] radio button and click the [OK] button.
Creation of a new workspace is started. The following dialog box is displayed.

1. Select the target CPU family

In the [CPU family] combo box, select the target CPU family.
2. Select the target toolchain

In the [Tool chain] combo box, select "None". In this case, toolchain is not used.
(When the toolchain has not been installed, the fixed information is displayed in this combo box.)

3. Select the project type
(When the toolchain is not used, it is displayed on a [Project Type] list box as "Debugger only -
Target Name". Select it. (When two or more project types are displayed, please select one of
them.)

4. Specify the workspace name and project name
- In the [Workspace Name] edit box, enter the new workspace name.
- In the [Project Name] edit box, enter the project name. When the project name is the same as

the workspace name, it needs not be entered.
- In the [Directory] edit box, enter the directory name in which the workspace will be created.

Click the [Browse...] button to select a directory.

After a setting, click the [OK] button.

19

4.2.2.2 Step 2: Selecting of the Target Platform

Select the target system used for your debugging (emulator, simulator).
A wizard starts and the following dialog box is displayed.

1. Selecting of the Target type

In the [Target type] list box, select the target CPU type.
2. Selecting of the Target Platform

In the [Targets] area, the target for the session file used when this debugger is activated must be
selected here.
Check the box against the target platform. (And choose other target as required.)

And click the [Next] button.

20

4Preparation before Use

4.2.2.3 Step3 : Setting the Configuration File Name

Set the configuration file name for each of the all selected target.
The configuration file saves the state of High-performance Embedded Workshop except for the target
(emulator, simulator).

The default name is already set. If it is not necessary to change, please click the [next] button as it is.
This is the end of the emulator settings.
Exit the Project Generator following the instructions on the screen.
And the dialog for the setup of a debugger is also displayed at this time . If preparation of an emulator
is completed, set up the debugger in this dialog box and connect with an emulator.

21

4.2.2.4 Step4 : Registering the Load modules to be downloaded

Finally, register the load module file to be used.
Select [Debug Settings...] from the [Debug] menu to open the [Debug Settings] dialog box.

1. Select the product name to be connected in the [Target] drop-down list box.
2. Select the format of the load module to be downloaded in the [Default Debug Format] drop-down

list box.

Format Name Contents
IEEE695_REN S ESA IEEE-695 format file (When Using Renesas toolchain)
IEEE695_IAR IEEE-695 format file (When Using IAR toolchain)
IEEE695_TASKING IEEE-695 format file (When Using Tasking toolchain)
ELF/DWARF2 ELF/DWARF2 format file (When Using Renesas toolch in) a
ELF/DWARF2_IAR ELF/DWARF2 format file (When Using IAR toolchain)
ELF/DWARF2_TASKING ELF/DWARF2 format file (When Using Tasking toolchain)
ELF/DWARF2_KPIT ELF/DWARF2 format file (When Using KPIT toolchain)

This debugger does not support the object formats, which are not shown in the drop down list.

22

4Preparation before Use

3. Then register the corresponding download module in the [Download Modules] list box.

A download module can be specified in the dialog opened with a [Add...] button.

- Select the format of the download module in the [Format] edit box. Please refer to the upper
table about the format name of a download module.

- Enter the full path and filename of the download module in the [Filename] edit box.
- Specifies the access size for the current download module in the [Access size] list box.

After that, click the [OK] button.

ATTENTION
"Offset", "Access size" and "Perform memory verify during download" is ignored. The offset is always
set to 0, the access size is always set to 1 and the verification does not work.

23

4.3 Starting the Debugger
The debugging can be started by connecting with an emulator.

4.3.1 Connecting the Emulator
Connect the emulator by simply switching the session file to one in which the setting for the emulator
use has been registered.
The session file is created by default. The session file has information about the target selected when
a project was created.
In the circled list box in the following tool bars, select the session name including the character string
of the target to connect.

After the session name is selected, the dialog box for setting the debugger is displayed and the
emulator will be connected.
When the dialog box is not displayed, select [Connect] from the [Debug] menu.

4.3.2 Ending the Emulator
The emulator can be exited by using the following methods:

1. Selecting the �Disconnect�

Select [Disconnect] from the [Debug] menu.

2. Selecting the "DefaultSession"

Select the "DefaultSession" in the list box that was used at the time of emulator connection.

3. Exiting the High-performance Embedded Workshop

Select [Exit] from the [File] menu. High-performance Embedded Workshop will be ended.

The message box, that asks whether to save a session, will be displayed when an emulator is exited. If
necessary to save it, click the [Yes] button. If not necessary, click the [No] button.

24

5Setup the Debugger

5. Setup the Debugger

5.1 Init Dialog
The Init dialog box is provided for setting the items that need to be set when the debugger starts up.
The contents set from this dialog box are also effective the next time the debugger starts. The data set
in this dialog remains effective for the next start.

The tabs available on this dialog box vary with each product used. For details, click the desired tab
name shown in the table below.

Product Name Tab Name
The debugger for M32C The debugger for M16C/R8C

MCU exist exist
Debugging Information exist exist
Emulator exist exist
Script exist exist

You can open the Init dialog using either one of the following methods:
• After the debugger gets started, select Menu - [Setup] -> [Emulator] -> [System...].
• Start Debugger while holding down the Ctrl key.

25

5.1.1 MCU Tab
The specified content becomes effective when the next being start.

5.1.1.1 Specifying the MCU file

Click the "Refer" button.
The File Selection dialog is opened. Specify the corresponding MCU file.
• An MCU file contains the information specific to the target MCU.
• The specified MCU file is displayed in the MCU area of the MCU tab.

5.1.1.2 Setting of the Communication Interface

The displayed data varies depending on the specified communication interface.
The available communication interface varies depending on the products.
The following shows the setting for each communication interface.
Refer to "5.2.1 Setting of the USB Interface"

5.1.1.3 Executing Self-Check

Specify this option to execute self-check* on the emulator when the debugger starts up.

Be sure to select the above check box only when you want to perform self-check at startup. Specify
this option in the following cases:
• When the firmware cannot be downloaded
• When although the firmware is successfully downloaded, the debugger does not start
• When the MCU goes wild or something is wrong with the trace results and you want to check

whether the emulator is operating normally.

26

5Setup the Debugger

Select the check box to close the Init dialog box. After connecting to the emulator and confirming the
firmware, the debugger will immediately start self-check on the emulator. (Self-check takes about 30
seconds to 1 minute.)
If an error is found in this self-check, the debugger displays the content of the error and is finished.
When the self-check terminated normally, the dialog box shown below is displayed. When you click
OK, the debugger starts up directly in that state.

This specification is effective only when the debugger starts up.

* Self-check refers to the function to check the emulator's internal circuit boards for memory condition,
etc. Refer to the user's manual of your emulator for details about the self-check function.

5.1.1.4 Using/unusing the address interrupt break function

Specify whether or not to use the address interrupt break function.

• To use the address interrupt break function (default)

Select the check box shown above.
In this case, the address interrupt break function is used by the emulator, and cannot be used in
the user program.

• Not to use the address interrupt break function
Deselect the check box shown above.
In this case, the address interrupt break function can be used in the user program.

The contents set here are reflected at only startup time.

5.1.1.5 Using/unusing the watchdog timer

Specify whether or not to use the watchdog timer. (By default, the watchdog timer is unused.)
This specification exist for the M32C debugger only.

When debugging the target system that uses a watchdog timer, select the check box shown above.

27

5.1.1.6 Choosing to use or not to use CPU rewrite mode

Specify whether or not you want to use CPU rewrite mode. (By default, CPU rewrite mode is unused.)

Select the above check box when you are debugging the target system that uses CPU rewrite mode.
This specification can only be set or changed when you start the debugger.

Supplementary explanation
When debugging in CPU rewrite mode is enabled, the following limitations apply:
• Address match breakpoints cannot be set.
• No software breaks can be set in the internal ROM area.
• The command Come cannot be executed in the internal ROM area.

5.1.1.7 Choosing to use or not to use the trace point setting function

Specify whether or not you want to use the trace point setting function. (By default, the trace point
function is unused.)

Select the above check box when you use the event of Compact emulator as a trace point.

Supplementary explanation
When the trace point setting function is enabled, the following limitations apply:
• Hardware break function cannot use.

28

5Setup the Debugger

5.1.2 Debugging Information Tab
The specified content becomes effective when the next being start.

5.1.2.1 display the compiler used and its object format

Display the compiler used and its object file format.

Please specify the compiler used and its object file format in the dialog opened by menu [Debug] ->
[Debug Settings...].

5.1.2.2 Specify the Storing of Debugging Information

There are two methods for storing debugging information: on-memory and on-demand.
Select one of these two methods. (The on-memory method is selected by default.)
To select the on-demand method, click the On Demand check box.
The specified content becomes effective when the next being download.

• On-memory method

Debugging information is stored in the internal memory of your computer.
Usually, select this method.

• On-demand method
Debugging information is stored in a reusable temporary file on the hard disk of your computer.
Because the stored debugging information is reused, the next time you download the same load
module it can be downloaded faster.
This method is suitable when it takes so long time to download the debugging information,
because the PC has less memory against the load module file size.

Notes
• If the load module size is large, the on-memory method may be inefficient because it requires a

very large amount of time for downloading. In such a case, select the on-demand method.
• In the on-demand method, a folder in which to store a reusable temporary file is created in the

folder that contains the downloaded load module. This folder is named after the load module
name by the word "~INDEX_" to it. If the load module name is "sample.abs", for example, the
folder name is "~INDEX_sample". This folder is not deleted even after quitting the debugger.

29

5.1.2.3 Specify whether to display the instruction format specifier

Specify whether to display the instruction format specifier in the disassembled display.

Select the above check box when you display the instruction format specifier.
This specification can only be set or changed when you start the debugger.

5.1.2.4 To treat size of enumeration type as 1 byte

You can specify whether your debugger treat all sizes of enumeration types whose size is unknown in
the debugging information as 1 byte. For reducing memory consumption, NC30 and NC308 have an
option to treat the sizes of enumerator types as 1 byte and not as same size of 'int'. Note that NC30
and NC308 don't output the sizes of enumerator types in debugging information and debuggers
consider the size as same size of 'int'.
Therefore you may not correctly refer the values of enumeration types in the target programs which
were compiled with the above option. This function is for resolving the above issue. See the users'
manual of each compiler for details of the above option

Check the above check box if you would like to treat all sizes of enumeration types as 1 byte. It is
necessary to load the debugging information again in order to reflect this setting.

30

5Setup the Debugger

5.1.3 Emulator Tab

5.1.3.1 Specify the Target Clock

Change the setting by synchronizing with the clock used by the target microcomputer. (Internal is set
by default.)

Select Internal to set the internal clock, and External to set the external clock.
The specified content becomes effective when the next being start.

5.1.3.2 Attempt to access memory during WAIT/STOP mode

Set this check on, when the mcu needs to access memory during WAIT/STOP mode.

When this check is ON, debugger will attempt to access memory by waiting for about 5 seconds until
the mcu returns from WAIT/STOP mode. If the mcu remains WAIT/STOP mode during this period,
the operation will receive an error. When this check is OFF, debugger will receive an error without
accessing to real memory.

31

5.1.4 Script Tab
The specified content becomes effective when the next being start.

5.1.4.1 Automatically Execute the Script Commands

To automatically execute the script command at start of Debugger, click the "Refer" button to specify
the script file to be executed.

By clicking the "Refer" button, the File Selection dialog is opened.
The specified script file is displayed in the "Init File:" field.
To disable auto-execution of the script command, erase a character string displayed in the "Init File:"
field.

32

5Setup the Debugger

5.2 Setting of the Communication Interface

5.2.1 Setting of the USB Interface
USB communication uses the personal computer's USB interface. It is compliant with USB 1.1.

Before USB communication can be performed, the computer must have a dedicated device driver
installed in it. For details on how to install USB device drivers, see "3.3.1.1 Install of USB device
driver."

The currently USB-connected emulators are listed in the Serial No. area. Select the serial No. of the
emulator you want to connect.

33

5.3 Setup the Debugger for M32C

5.3.1 Emem Dialog
In the Emem dialog box, setting information on the user target. The Emem dialog box opens after
closing the Init dialog box.

The tabs available on this dialog box vary with each product used. For details, click the desired tab
name shown in the table below.

Tab Name Contents
Status Specify the processor mode.
Emulation Memory Specify the emulation memory area.
Flash Clear Specify whether or not to clear the contents of the MCU's

internal flash ROM.

To keep the Emem dialog box closed next time the debugger is started, check "Next Hide" at the
bottom of the Emem dialog box. You can open the Emem dialog using either one of the following
methods:
• After the debugger gets started, select Menu - [Setup] -> [Emulator] -> [Target...].

34

5Setup the Debugger

5.3.1.1 Status Tab

The specified content becomes effective when the next being start.

5.3.1.1.1. Select the Processor Mode
Specify the processor mode for the target system.

Either the following can be specified.
• Single-chip Mode

Single-chip Mode
• Memory Expansion 8 Bit

Memory Expansion Mode (8 bits bus width)
• Memory Expansion 16 Bit

Memory Expansion Mode (16 bits bus width)

5.3.1.1.2. Inspecting the MCU status
Clicking this tab displays the status of each MCU pin. It allows to check whether the MCU pin status
matches the processor mode to be set.

If the slider is at the middle position, it means that the value is indeterminate.

35

5.3.1.2 Emulation Memory Tab

The specified content becomes effective when the next being start.

5.3.1.2.1. Debug monitor's bank address settings
This product allocates a 64-Kbyte contiguous address area as the emulator's work area for use by the
debug monitor.
Specify any bank that the target system does not use. The debug monitor uses a 64-Kbyte area from
the start address of the specified bank.
(Example: If the specified bank is "F0," then the debug monitor uses a 64-Kbyte area beginning with
address F000000h.)

• The bank specified here cannot have its contents referenced or set.

The contents of this area when displayed in the Memory window or the Program/Source window's
disassemble display mode may not be correct.

• The following bank addresses cannot be specified:

- MCU internal resources (e.g., SFR and RAM areas)
- DRAM area and multiplexed area
- Interrupt vector area

5.3.1.2.2. Automatic emulation memory allocation for the internal ROM
When single-chip or memory extension mode is selected, emulation memory is automatically allocated
to the internal ROM area.
The automatically allocated internal ROM address range is displayed in this field.

36

5Setup the Debugger

5.3.1.2.3. Emulation memory allocation for an extended area
When memory extension or microprocessor mode is selected, emulation memory can be allocated to
the extended area to be debugged (in up to four areas).
(When the emulation memory board is not connected to the emulator, the emulation memory cannot
be allocated.)

Here, allocate memory for the debug target area and specify its mapping information.

Follow the procedure described below.

Bank
(Set bank address) Specify the bank address of the debug target area to be allocated in

hexadecimal.
 If specified as C0, C00000h is the start address of the debug target area.

Length
(Specify size of area) Specify the size of the debug target area (256 bytes or 1 Mbytes).

 If Length is specified to be "256 bytes," banks 00, 04, 08, and up to FC
(every four banks) are specified for Bank; if Length is specified to be "1
Mbytes," banks 00, 10, 20, and up to F0 (every 16 banks) are specified for
Bank.

Map
(Specify area map) Specify the mapping information ("Internal" or "External") for the

specified area.
 If no area is specified, select "No Use."
Internal The area specified to be "Internal" is mapped into the internal
area (emulation memory).
External The area specified to be "External" is mapped into the external
area (external resources in the target system).

• Areas for which "No Use" is selected for Map and those not specified here are mapped into

external areas.
If compared to the case where areas are explicitly specified to be "External," the only difference is
a download speed. (Downloading into these areas is slower than downloading into the areas
specified to be "External.")

• The internal ROM area is automatically mapped into the emulation memory. Therefore, there is
no need to set here.

• Be careful that the debug areas will not overlap.
• Make sure the total size of the specified debug target areas does not exceed the emulation

memory size of the emulation memory board used.

37

The setting of the emulation memory area varies depending on the specified processor mode.
• Single-chip Mode

You do not need to specify the area to be assigned as the emulation memory.
The internal ROM area is automatically mapped into the emulation memory. The address range
of the automatically mapped area is displayed in the Internal ROM Area: field.

• Memory Expansion Mode(8bit and 16bit)
If you have an area to be assigned as the emulation memory in addition to internal ROM area,
specify it specify it separately.
The internal ROM area is automatically mapped into the emulation memory. The address range
of the automatically mapped area is displayed in the Internal ROM Area: field.

• Microprocessor Mode(8bit and 16bit)
Specify the area to be assigned separately. (There is no area which is automatically assigned.)

ATTENTION
• The mapping setting data specified using the Map command is not reflected to the Emem dialog

box.
• et the emulation memory areas in the order of usage priority.

The emulation memory areas to be set by the Map command are numbered, ignoring the unused
(Not Use) areas.
Accordingly, the emulation memory areas set in the Emem dialog box and the emulation memory
area numbers set by the Map command will be mismatched.

38

5Setup the Debugger

5.3.1.3 Flash Clear Tab

The specified content becomes effective when the next being start.

5.3.1.3.1. Setting to clear the MCU's internal flash ROM
Specify whether or not to clear the contents of the MCU's internal flash ROM when downloading the
target program or data.
The MCU's internal flash ROM is displayed block by block in the list view.
• The blocks whose check marks are turned on do not have their flash contents cleared when

downloading. The memory contents in places not overwritten by downloading remain intact.
• The blocks whose check marks are turned off have their flash contents cleared when

downloading.
• Pressing the Select All button keeps all blocks from being cleared when downloading.
• Pressing the Clear All button clears all blocks when downloading.

39

5.4 Setup the Debugger for M16C/R8C

5.4.1 MCU Setting Dialog
In the MCU Setting dialog box, setting information on the user target. The MCU Setting dialog box
opens after closing the Init dialog box.

The tabs available on this dialog box vary with each product used. For details, click the desired tab
name shown in the table below.

Tab Name Contents
MCU Specify the MCU's processor mode, debug options, etc.
MAP Set memory areas into which emulation memory is mapped.

(*The emulation memory board is necessary to use this tab.)
Flash Clear Specify whether to clear the contents of the MCU's internal flash ROM.

To keep the MCU Setting dialog box closed next time the debugger is started, check "Next Hide" at
the bottom of the MCU Setting dialog box. You can open the MCU Setting dialog using either one of
the following methods:
• After the debugger gets started, select Menu - [Setup] -> [Emulator] -> [Target...].

40

5Setup the Debugger

5.4.1.1 MCU Tab

The specified content becomes effective when the next being start.

5.4.1.1.1. Select the Processor Mode
Specify the processor mode for the target system.

Either the following can be specified.
• Single-chip Mode

Single-chip Mode
• Memory Expansion Mode

Memory Expansion Mode
• Microprocessor Mode

Microprocessor Mode

Also, you need to specify the following information according to the processor mode you've selected.
• External Data Bus Width

If you selected memory extension or microprocessor mode, specify "16-bit" or "8-bit" for the
external bus width. Make sure the specified external bus width matches settings of the BYTE
pin.

• Memory Space Expansion
If you selected memory extension or microprocessor mode, specify whether or not to use the
memory space expansion facility. Select "4MB Mode" if you want to use the memory space
expansion facility or "Normal Mode" if you do not.

• PM13(b3 of 000005H)
Specify whether you set the bit PM13 (b3 of 000005H). When you use your target system with the
setting that PM13 is 1, check this option.

• PM10(b0 of 000005H)
Specify whether you set the bit PM10 (b0 of 000005H). When you use your target system with the
setting that PM10 is 1, check this option.

41

5.4.1.1.2. Inspecting the MCU status
Clicking this tab displays the status of each MCU pin. It allows to check whether the MCU pin status
matches the processor mode to be set.

"NC" means that the value is indeterminate.

42

5Setup the Debugger

5.4.1.2 MAP Tab

The emulation memory board is necessary to use this command.

The specified content becomes effective when the next being start.

5.4.1.2.1. Emulation memory allocation
Set the memory area in 4 KB units into which you want the emulation memory to be mapped. Four of
such memory areas can be set.
The emulation memory is mapped into the areas marked "Internal." The unselected areas and the
areas which have nothing specified are allocated to external areas.
Note that MAP settings are effective for only the areas CS3*, CS2*, CS1*, and CS0*. The SFR,
internal ROM, and internal RAM areas are automatically mapped.

43

5.4.1.3 Flash Clear Tab

The specified content becomes effective when the next being start.

5.4.1.3.1. Setting to clear the MCU's internal flash ROM
Specify whether or not to clear the contents of the MCU's internal flash ROM when downloading the
target program or data. The MCU's internal flash ROM is displayed block by block in the list view.
• The blocks whose check marks are turned on do not have their flash contents cleared when

downloading. The memory contents in places not overwritten by downloading remain intact.
• The blocks whose check marks are turned off have their flash contents cleared when

downloading.
• Pressing the Select All button keeps all blocks from being cleared when downloading.
• Pressing the Clear All button clears all blocks when downloading.

44

Tutorial

45

(Blank Page)

46

6Tutorial

6. Tutorial

6.1 Introduction
This section describes the main functions of this debugger by using a tutorial program. The tutorial
programs are installed to the directory ¥WorkSpace¥Tutorial of the drive you installed
High-performance Embedded Workshop. There are workspaces for each targets and each MCUs.
Please select the corresponding one to your system, and open the workspace file (*.hws) from the
menu [Open Workspace...].

The tutorial program is based on the C program that sorts ten random data items in ascending or
descending order.
The tutorial program performs the following actions:
• The tutorial function generates random data to be sorted.
• The sort function sorts the generated random data in ascending order.
• The change function then sorts the data in descending order.

Note
After recompilation, the addresses may differ from those given in this section.

47

6.2 Usage
Please follow these instructions:

6.2.1 Step1 : Starting the Debugger

6.2.1.1 Preparation before Use

To run the High-performance Embedded Workshop and connect the emulator, refer to
"4 Preparation before Use ".

6.2.1.2 Setup the Debugger

If it connects with an emulator, the dialog box for setting up a debugger will be displayed. Please set
up the debugger in this dialog box.
To setup the debugger in this dialog box, refer to "5 Setup the Debugger ".
After the setup of a debugger, it will function as a debugger.

48

6Tutorial

6.2.2 Step2 : Checking the Operation of RAM
Check that RAM is operating correctly. Display and edit the contents of the memory in the [Memory]
window to check that the memory is operating correctly.

Note
The memory can be installed on the board in some microcomputers. In this case, however, the above
way of checking the operation of memory may be inadequate. It is recommended that a program for
checking the memory be created.

6.2.2.1 Checking the Operation of RAM

Select [Memory] from the [CPU] submenu of the [View] menu and enter the RAM address (Here,
enter �400�) in the [Display Address] edit boxes. The [Scroll Start Address] and [Scroll End Address]
editing box is left to a default setting. (By default, the scroll range is set to 0h to the maximum
address of MCU.)

Note
The settings of the RAM area differ depending on the product. For details, refer to the hardware
manual.
Click the [OK] button. The [Memory] window is displayed and shows the specified memory area.

Placing the mouse cursor on a point in the display of data in the [Memory] window and
double-clicking allows the values at that point to be changed.

49

6.2.3 Step3 : Downloading the Tutorial Program

6.2.3.1 Downloading the Tutorial Program

Download the object program to be debugged. The download file and the address to be downloaded
will depends on the target mcu you uses. Please replace the screen image and addresses with
corresponding one to your target mcu.
• The Debugger for M16C/R8C or M32C

Select [Download module] from [Tutorial.x30] under [Download modules].

50

6Tutorial

6.2.3.2 Displaying the Source Program

This debugger allows the user to debug a user program at the source level.
Double-click [tutorial.c] under [C source file]. A [Editor(Source)] window opens and the contents of a
"Tutorial.c" file are displayed.

Select the [Format Views...] option from the [Setup] menu to set a font and size that are legible, if
necessary.
Initially the [Editor(Source)] window shows the start of the user program, but the user can use the
scroll bar to scroll through the user program and look at the other statements.

51

6.2.4 Step4 : Setting a Breakpoint
A software breakpoint is a basic debugging function.
The [Editor(Source)] window provides a very simple way of setting a software breakpoint at any point
in a program.

6.2.4.1 Setting a Software Breakpoint

For example, to set a software breakpoint at the sort function call:
Double-click the [S/W breakpoints] column on the line containing the sort function call.

The red symbol will appear on the line containing the sort function call. This shows that a
softwarebreak breakpoint has been set.

52

6Tutorial

6.2.5 Step5 : Executing the Program
Execute the program as described in the following:

6.2.5.1 Resetting of CPU

To reset the CPU, select [Reset CPU] from the [Debug] menu, or click the [Reset CPU] button
on the toolbar.

6.2.5.2 Executing the Program

To execute the program, select [Go] from the [Debug] menu, or click the [Go] button on the
toolbar.
The program will be executed up to the breakpoint that has been set, and an arrow will be displayed
in the [S/W Breakpoints] column to show the position that the program has halted.

Note
When the source file is displayed after a break, a path of the source file may be inquired. In this case,
please specify the location of a source file.

53

6.2.5.3 Reviewing Cause of the Break

The break factor is displayed in the [Output] window.

The user can also see the cause of the break that occurred last time in the [Status] window.
Select [Status] from the [CPU] submenu of the [View] menu. After the [Status] window is displayed,
open the [Platform] sheet, and check the Status of Cause of last break.

Please refer to "11 Display the Cause of the Program Stoppage " about the notation of a break factor.

54

6Tutorial

6.2.6 Step6 : Reviewing Breakpoints
The user can see all the breakpoints set in the program in the [Breakpoints] dialog box.

6.2.6.1 Reviewing Breakpoints

Push the key Ctrl+B, and the [Breakpoints] dialog box will be displayed.

This window allows the user to delete, enable, or disable breakpoints.

55

6.2.7 Step7 : Viewing Register
The user can see all registers/flags value in the [Register] window.

6.2.7.1 Viewing Register

Select [Registers] from the [CPU] submenu of the [View] menu. The [Register] window is displayed.
The figure below shows a Register window of the debugger for M16C/R8C.

6.2.7.2 Setting the Register Value

You can change a register/flag value from this window.
Double-click the register line to be changed. The dialog is opened. Enter the value to be changed.

56

6Tutorial

6.2.8 Step8 : Viewing Memory
When the label name is specified, the user can view the memory contents that the label has been
registered in the [ASM Watch] window.

6.2.8.1 Viewing Memory

For example, to view the memory contents corresponding to __msize in word size:
Select [ASM Watch] from the [Symbol] submenu of the [View] menu, open the [ASM Watch] window.
And click the [ASM Watch] window with the right-hand mouse button and select [Add...] from the
popup menu, enter __msize in the [Address] edit box, and set Word in the [Size] combo box.

Click the [OK] button. The [ASM Watch] window showing the specified area of memory is displayed.

57

6.2.9 Step9 : Watching Variables
As the user steps through a program, it is possible to watch that the values of variables used in the
user program are changed.

6.2.9.1 Watching Variables

For example, set a watch on the long-type array a declared at the beginning of the program, by using
the following procedure:
Click the left of displayed array a in the [Editor(Source)] window to position the cursor, and select
[Add C Watch...] with the right-hand mouse button. The [Watch] tab of [C watch] window in which
the variable is displayed opens.

The user can click mark '+' at the left side of array a in the [C Watch] window to watch all the
elements.

58

6Tutorial

6.2.9.2 Registering Variable

The user can also add a variable to the [C Watch] window by specifying its name.
Click the [C Watch] window with the right-hand mouse button and select [Add...] from the popup
menu.
The following dialog box will be displayed. Enter variable i.

Click the [OK] button. The [C Watch] window will now also show the int-type variable i.

59

6.2.10 Step10 : Stepping Through a Program
This debugger provides a range of step menu commands that allow efficient program debugging.
1. Step In

Executes each statement, including statements within functions(subroutines).
2. Step Out

Steps out of a function(subroutine), and stops at the statement following the statement in the
program that called the function(subroutine).

3. Step Over
Executes a function(subroutine) call in a single step.

4. Step...
Steps the specified times repeatedly at a specified rate.

6.2.10.1 Executing [Step In] Command

The [Step In] command steps into the called function(subroutine) and stops at the first statement of
the called function(subroutine).
To step through the sort function, select [Step In] from the [Debug] menu, or click the [Step In] button

 on the toolbar.
The PC cursor moves to the first statement of the sort function in the [Editor(Source)] window.

60

6Tutorial

6.2.10.2 Executing [Step Out] Command

The [Step Out] command steps out of the called function(subroutine) and stops at the next statement
of the calling statement in the main function.
To step out of the sort function, select [Step Out] from the [Debug] menu, or click the [Step Out]

button on the toolbar.
The PC cursor slips out of a sort function, and moves to the position before a change function.

Note
It takes time to execute this function. When the calling source is clarified, use [Go To Cursor].

61

6.2.10.3 Executing [Step Over] Command

The [Step Over] command executes a function(subroutine) call as a single step and stops at the next
statement of the main program.
To step through all statements in the change function at a single step, select [Step Over] from the

[Debug] menu, or click the [Step Over] button on the toolbar.
The PC cursor moves to the next position of a change function.

62

6Tutorial

6.2.11 Step11 : Forced Breaking of Program Executions
This debugger can force a break in the execution of a program.

6.2.11.1 Forced Breaking of Program Executions

Cancel all breaks.
To execute the remaining sections of the main function, select [Go] from the [Debug] menu or the [Go]

button on the toolbar.
The program goes into an endless loop. To force a break in execution, select [Halt Program] from the

[Debug] menu or the [Halt] button on the toolbar.

63

6.2.12 Step12 : Displaying Local Variables
The user can display local variables in a function using the [C Watch] window.

6.2.12.1 Displaying Local Variables

For example, we will examine the local variables in the tutorial function, which declares three local
variables: i, j, and p_sam.

Select [C Watch] from the [Symbol] submenu of the [View] menu. The [C Watch] window is displayed.
By default, [C watch] window has four tabs as following:
• [Watch] tab

Only the variable which the user registered is displayed.
• [Local] tab

All the local variables that can be referred to by the scope in which the the PC exists are
displayed. If a scope is changed by program execution, the contents of the [Local] tab will also
change.

• [File Local] tab
All the file local variables of the file scope in which the PC exists are displayed. If a file scope is
changed by program execution, the contents of the [File Local] tab will also change.

• [Global] tab
All the global variables currently used by the downloaded program are displayed.

Please choose the [Local] tab, when you display a local variable.

Double-click the mark '+' at the left side of pointer p_sam in the [Locals] window to display the
structure *(p_sam).
When the user refers to the members of the structure at the end of the Tutorial function, it is clarified
that random data is sorted in descending order.

64

6Tutorial

6.2.13 Step13 : Stack Trace Function
The debugger uses the information on the stack to display the names of functions in the sequence of
calls that led to the function to which the program counter is currently pointing.

6.2.13.1 Reference the function call status

Double-click the [S/W Breakpoints] column in the sort function and set a software breakpoint.

To executes the user program from the reset vector address, select [Reset Go] from the [Debug] menu,

or click the [Reset Go] button on the toolbar.
After the break in program execution, select [Stack Trace] from the [Code] submenu of the [View]
menu to open the [Stack Trace] window.

The upper figure shows that the position of the program counter is currently at the selected line of the
sort() function, and that the sort() function is called from the tutorial() function.

65

6.2.14 What Next?
This tutorial has described the usage of this debugger.
Sophisticated debugging can be carried out by using the emulation functions that the emulator offers.
This provides for effective investigation of hardware and software problems by accurately isolating
and identifying the conditions under which such problems arise.

66

Reference

67

(Blank Page)

68

7 Windows/Dialogs

7. Windows/Dialogs

The window of this debugger is shown below.

Window Name View Menu
RAM Monitor Window [View]->[CPU]->[RamMonitor]
ASM Watch Window [View]->[Symbol]->[ASMWatch]
C Watch Window [View]->[Symbol]->[CWatch]
Script Window [View]->[Script]
S/W Break Point Setting Window [View]->[Break]->[S/W Break Points]
H/W Break Point Setting Window [View]->[Break]->[H/W Break Points]
Address Interrupt Break Point Setting
Window

[View]->[Break]->[Address Interrupt
Break Points]

Trace Point Setting Window [View]->[Trace]->[Trace Points]
Trace Window [View]->[Trace]->[Trace]
Data Trace Window [View]->[Trace]->[Data Trace]
GUI I/O Window [View]->[Graphic]->[GUI I/O]
MR Window [View]->[RTOS]->[MR]

For the reference of the following windows, refer to the help attached to a High-performance
Embedded Workshop main part.

• Differences Window
• Map Window
• Command Line Window
• Workspace Window
• Output Window
• Disassembly Window
• Memory Window
• IO Window
• Status Window
• Register Window
• Image Window
• Waveform Window
• Stack Trace Window

69

7.1 RAM Monitor Window
The RAM monitor window is a window in which changes of memory contents are displayed while
running the target program.
The relevant memory contents are displayed in dump form in the RAM monitor area by using the
realtime RAM monitor function. The displayed contents are updated at given intervals (by default,
every 100 ms) while running the target program.

• This system has 1 Kbyte of RAM monitor area which can be located in any contiguous address

location or in 4 separate blocks comprised of 256 bytes each.
• The RAM monitor area can be changed to any desired address range.

Refer to "7.1.2 Setting the RAM monitor area" for details on how to change the RAM monitor area.
The default RAM monitor area is mapped into a 1-Kbyte area beginning with the start address of
the internal RAM.

• The display content updating interval can be set for each window individually.
The actual updating interval at which the display contents are actually updated while running
the target program is shown in the title field of the Address display area.

• The background colors of the data display and code display areas are predetermined by access
attribute, as shown below.

Access attribute Background color
Read accessed address Green
Write accessed address Red
Non-accessed address White

The background colors can be changed.

ATTENTION
• The RAM monitor window shows the data that have been accessed through the bus. Therefore,

changes are not reflected in the displayed data unless they have been accessed via the target
program as in the case where memory is rewritten directly from an external I/O.

• If the data in the RAM monitor area are displayed in lengths other than the byte, it is possible
that the data will have different memory access attributes in byte units. If bytes in one data have
a different access attribute as in this case, those data are enclosed in parentheses when displayed
in the window. In that case, the background color shows the access attribute of the first byte of
the data.

70

7 Windows/Dialogs

• The displayed access attributes are initialized by downloading the target program.
• The interval time at which intervals the display is updated may be longer than the specified

interval depending on the operating condition (shown below).
- Host machine performance/load condition
- Communication interface
- Window size (memory display range) or the number of windows displayed

7.1.1 Extended Menus
This window has the following popup menus that can be brought up by right-clicking in the window.

Menu Function
RAM Monitor Area... Set RAM monitor base address.
Sampling Period... Set RAM monitor sampling period.
Clear Clear access attribute.
Up Moves display position to the immediately preceding RAM

monitor area (smaller address)
Down Moves display position to the immediately following RAM

monitor area (larger address)
Address... Display from specified address.
Scroll Area... Specify scroll range.

1byte Display in 1Byte unit.
2bytes Display in 2Byte unit.
4bytes Display in 4Byte unit.

Data Length

8bytes Display in 8Byte unit.
Hex Display in Hexadecimal.
Dec Display in Decimal.
Single Dec Display in Signed Decimal.
Oct Display in Octdecimal.

Radix

Bin Display in Binary.
ASCII Display as ASCII character.
SJIS Display as SJIS character.
JIS Display as JIS character.
UNICODE Display as UNICODE character.
EUC Display as EUC character.
Float Display as Floating-point.

Code

Double Display as Double Floating-point.
Label Switch display or non-display of Label area.
Register Switch display or non-display of Register area.

Layout

Code Switch display or non-display of Code area.
Column... Set the number of columns displayed on one line.
Split Split window.
Toolbar display Display toolbar.
Customize toolbar... Open toolbar customize dialog box.
Allow Docking Allow window docking.
Hide Hide window.

71

7.1.2 Setting the RAM monitor area
Choose the popup menu [RAM Monitor Area...] in the RAM monitor window.

The RAM monitor area setup window shown below will appear. The currently set RAM monitor areas
are listed in this window.

Use this window to add, delete or change RAM monitor areas.

• Specify a RAM monitor area by its start address and size (the latter by a number of blocks.)
• The start address can be specified in 0x100 byte units.

If you specify a non-aligned address value, it is rounded off to the nearest address value in 0x100
byte units before being set.

• Specify the size of the RAM monitor area by a number of blocks.
For the Compact Emulator, one block is 256 bytes in size. Up to 4 blocks can be specified.

• RAM monitor areas can be added until the total number of blocks used reaches 4.
(The number of blocks (and the size) that are currently available to use are displayed below the
list.)

72

7 Windows/Dialogs

7.1.2.1 Changing the RAM Monitor Area

The start address and the size of the RAM monitor area can be changed.
• Changing from a dialog box

Select the RAM monitor area you want to change from a list of RAM monitor areas and
double-click on it.
The Set RRAM Area dialog box shown below will appear. Specify the start address and the size
(by a number of blocks) of the RAM monitor area in the Start and the Size fields of this dialog
box.

• Changing directly in the window

Select the RAM monitor area you want to change from a list of RAM monitor areas and click
again in its Start display column or Size display column.
Specify a new start address or a new size with which you want to be changed in the ensuing edit
box. Press the Enter key to confirm what you've entered, or the Esc key to cancel.

7.1.2.2 Adding RAM Monitor Areas

Click the [Add...] button.
The Set RRAM Area dialog box will appear. Specify the start address and the size (by a number of
blocks) of a new RAM monitor area in the Start and the Size fields of this dialog box.

7.1.2.3 Deleting RAM Monitor Areas

Select the RAM monitor area you want to delete from a list of RAM monitor areas and click the
[Remove] button.
To delete all RAM monitor areas, click the [Remove All] button.

73

7.2 ASM Watch Window
The ASM watch window is a window in which you can register specific addresses as watchpoints and
inspect memory contents at those addresses.
If a registered address resides within the RAM monitor area, the memory content at that address is
updated at given intervals (by default, every 100 ms) during program execution.

• The addresses to be registered are called the "watchpoints." One of the following can be

registered:
- Address (can be specified using a symbol)
- Address + Bit number
- Bit symbol

• The registered watchpoints are saved in the debugger when the ASM watch window is closed and
are automatically registered when the window is reopened.

• If symbols or bit symbols are specified for the watchpoints, the watchpoint addresses are
recalculated when downloading the target program.

• The invalid watchpoints are marked by "-<not active>-" when displayed on the screen.
• The order in which the watchpoints are listed can be changed by a drag-and-drop operation.
• The watchpoint expressions, sizes, radixes and datas can be changed by in-place editing.

ATTENTION
• The RAM monitor obtains the data accessed through the bus. Any change other than the access

from the target program will not be reflected.
• If the display data length of the RAM monitor area is not 1 byte, the data's access attribute to the

memory may varies in units of 1 byte. In such a case that the access attribute is not unified
within a set of data, the data's access attribute cannot be displayed correctly. In this case, the
background colors the access attribute color of the first byte of the data.

74

7 Windows/Dialogs

7.2.1 Extended Menus
This window has the following popup menus that can be brought up by right-clicking in the window.

Menu Function
Add... Add watchpoint.
Add Bit... Add bit-lebel watchpoint.
Remove Remove the selected watchpoint.
Remove All Remove all watchpoints.
Set... Set new data to selected watchpoint.

Bin Display in Binary.
Dec Display in Decimal.

Radix

Hex Display in Hexadecimal.
Refresh Refresh memory data.

Address Area Switch display or non-display of Address area. Layout
Size Area Switch display or non-display of Size area.
Enable RAM Monitor Switch enable or disable RAM moniter function. RAM Monitor
Sampling Period... Set RAM monitor sampling period.

Toolbar display Display toolbar.
Customize toolbar... Open toolbar customize dialog box.
Allow Docking Allow window docking.
Hide Hide window.

75

7.3 C Watch Window
The C Watch Window displays C/C++ expressions and their values (results of calculations).
The C/C++ expressions displayed in the C Watch Window are known as C watchpoints. The displays
of the results of calculating the C watchpoints are updated each time a command is executed.
When RAM monitor function is effective and the C watch points are within the RAM monitor area,
the displayed values are updated during execution of the target program.

• Variables can be inspected by scope (local, file local or global).
• The display is automatically updated at the same time the PC value changes.
• Variable values can be changed.
• The display radix can be changed for each variable individually.

- The initial display radix can be changed.
- Leading-zero suppression is selectable in hexadecimal display.

• Any variable can be registered to the Watch tab, so that it will be displayed at all times:
- The registered content is saved for each project separately.
- If two or more of the C watch window are opened at the same time, the registered.
- The reference scope of the variable is selectable from current scope, global scope and each file's

scopes.
• The C watchpoints can be registered to separate destinations by adding Watch tabs.
• Variables can be registered from another window or editor by a drag-and-drop operation.
• The C watchpoints can be sorted by name or by address.
• Values can be inspected in real time during program execution by using the RAM monitor

function.
• The RAM monitor can be allocated to the address of specified variable

76

7 Windows/Dialogs

ATTENTION
• You cannot change the values of the C watch points listed below:

- Register variables
- C watch point which does not indicate an address(invalid C watch point)

• If a C/C++ language expression cannot be calculated correctly (for example, when a C/C++ symbol
has not been defined), it is registered as invalid C watch point.
It is displayed as "--<not active>--". If that C/C++ language expression can be calculated correctly
at the second time, it becomes an effective C watch point.

• The display settings of the Local, File Local and Global tabs are not saved. The contents of the
Watch tab and those of newly added tabs are saved.

• The RAM monitor obtains the data accessed through the bus. Any change other than the access
from the target program will not be reflected.

• The variables, which are changed in real-time, are global variables and file local variables only.
• If the display data length of the RAM monitor area is not 1 byte, the data's access attribute to the

memory may varies in units of 1 byte. In such a case that the access attribute is not unified
within a set of data, the data's access attribute cannot be displayed correctly. In this case, the
background colors the access attribute color of the first byte of the data.

About more information for C variables, please refer to "12.1.3 Get or set C variables"

77

7.3.1 Extended Menus
This window has the following popup menus that can be brought up by right-clicking in the window.

Menu Function
Add... Add C watchpoint.
Remove Remove the selected C watchpoint.
Remove All Remove all C watchpoints.
Initialize Reevaluates the selected C watchpoint.
Set New Value... Set new data to selected C watchpoint.

Hex Display in Hexadecimal.
Bin Display in Binary.
Default Display in Default Radix.
Toggle(All Variables) Change radix (toggle).

Radix

Set initial... Set initial radix.
Refresh Refresh memory data.
Hide type name Hide type names from variables.
Show char* as string Selects whether to display char* type as a string.
Zero suppress in Hex display Suppress zero in Hex display.

Sort by Name Sort variables by its name. Sort
Sort by Address Sort variables by its address.
Enable RAM Monitor Switch enable or disable RAM monitor function.
Sampling Period... Set RAM monitor sampling period.
Arrange a RAM monitor
area around this variable

Arrange a RAM monitor area around this variable.

Start Recording... Start to record the updated values.

RAM Monitor

Stop Recording Stop recording the updated values.
Add New Tab... Add new tab.
Remove Tab Remove the selected tab.
Copy Copy the selected item to the clipboard.
Copy All Copy the all items in the sheet to the clipboard.
Toolbar display Display toolbar.
Customize toolbar... Open toolbar customize dialog box.
Allow Docking Allow window docking.
Hide Hide window.

78

7 Windows/Dialogs

7.4 Script Window
The Script Window displays the execution of text -format script commands and the results of that
execution.
Script commands can be executed using a script file or interactively. You can also write script
commands in the script file so that they are automatically executed. The results of script command
execution can also be stored in a previously specified log file.

• The Script Window has a view buffer that stores the results of executing the last 1000 lines. The

results of execution can therefore be stored in a file (view file) without specifying a log file.
• When a script file is opened, the command history area changes to become the script file display

area and displays the contents of the script file. When script files are nested, the contents of the
last opened script file are displayed. The script file display area shows the line currently being
executed in inverse vide.

• When a script file is open, you can invoke script commands from the command input area
provided the script file is not being executed.

• The Script Window can record the history of the executed commands to a file. This function is not
the same as the log function. This function records not the result but only the executed
commands, so the saved files can be used as the script files.

79

7.4.1 Extended Menus
This window has the following popup menus that can be brought up by right-clicking in the window.

Menu Function

Open... Open script file.
Run Run script file.
Step One step execution of script file.

Script

Close Close script file.
Save... Save view buffer to file. View
Clear Clear view buffer.
On... Open log file and start recording (start output to file). Log
Off Close log file and end recording (stop output to file).
On... Record the executed commands to a file. Record
Off Stop recording the executed commands.

Copy Copy the selection and put it on the Clipboard.
Paste Insert Clipboard contents.
Cut Cut the selection and put it on the Clipboard.
Delete Erase the selection.
Undo Undo the last action.
Toolbar display Display toolbar.
Customize toolbar... Open toolbar customize dialog box.
Allow Docking Allow window docking.
Hide Hide window.

80

7 Windows/Dialogs

7.5 S/W Break Point Setting Window
The S/W Break Point Setting window allows you to set software break points.
Software breaks stop the execution of instructions immediately before the specified break point.

• If you have set multiple software breakpoints, program execution stops when any one software

break address is encountered (OR conditions).
• You can continue to set software breakpoints until you click the "Close" button to close the S/W

Break Point Setting Window.
• You can clear, enable or disable software breakpoints selected by clicking in the software

breakpoint display area. You can also enable and disable software breakpoints by double-clicking
on them.

• Click on the "Save" button to save the software break points in the file. To reload software break
point settings from the saved file, click the "Load" button. If you load software break points from
a file, they are added to any existing break points.

81

7.5.1 Command Button
The buttons on this window has the following meanings.

Button Function
Load... Load setting information from a file in which it was saved.
Save... Save the contents set in the window to a file.
Help Display the help of this window.
Add Add the break point.
Refer... Open file selection dialog box.
Close Close the window.
Delete Remove the selected break point.
Delete All Remove all break points.
Enable Enable the selected break points.
All Enable Enable all break points.
Disable Disable the selected break point.
All Disable Disable all break points.
View Shows the selected breakpoint positions in the Editor(Source) window.

82

7 Windows/Dialogs

7.5.2 Setting and Deleting a Break Points from Editor(Source) Window
The area which can be set in the software breakpoint is different according to the product. Please
refer to "12.1.2 Area where software breakpoint can be set" for details.
You can set break points in the Editor(Source) Window. To do so, double-click the break point setting
area ("S/W breakpoints" column) for the line in which you want to set the break. (A red marker is
displayed on the line to which the break point was set.)

You can delete the break point by double-clicking again in the break point setting area ("S/W
breakpoints" column).

In the Editor(Source) window, a display of "S/W breakpoints" column is set to "Enable" by default. To
erase this column, deselect the [S/W breakpoints] check box in the dialog box opened by choosing the
main menu - [Edit] -> [Define Column Format]. The "S/W breakpoints" column is erased from all
Editor (Source) windows. And select popup menu - [Columns] -> [S/W breakpoints] in the Editor
(Source) window, A column can be set up for each Editor (Source) windows.

83

7.6 H/W Break Point Setting Window
The H/W Breakpoint Setting window is used to set hardware breakpoints for the Emulators.

• The events listed below can be specified as break events. If the contents of events are altered,

they are marked by an asterisk (*) on the title bar. The asterisks (*) are not displayed after
setting up the emulator.

Fetch, Memory Access, Bit Access

• Events at up to two points can be used.

The H/W Break Point Setting window and the Trace Point Setting windows use the same
resource of the emulator. Use the MCU tab in the Init dialog box, in order to specify for which
function the resources are used. On this tab, deselect the Enable the Trace Point Function check
box.

• These events can be combined in one of the following ways:
- Break when all of the valid events are established (AND condition)
- Break when all of the valid events are established at the same time (simultaneous AND

condition)
- Break when one of the valid events is established (OR condition)

• At the time the debugger starts up, the hardware breaks have no effect.

84

7 Windows/Dialogs

7.6.1 Specify the Break Event
To set events, double-click to select the event you want to set from the event setting area of the H/W
Break Point Setting Window. This opens the dialog box shown below.

Following events can be set by specifying Event Type in this dialog box.

85

• When FETCH is selected

Breaks for the instruction fetch.

• When DATA ACCESS is selected

Breaks for the memory access.

86

7 Windows/Dialogs

• When BIT SYMBOL is selected

Breaks for the bit access.

87

7.6.2 Specify the Combinatorial Condition
To specify a combinatorial condition, specify the desired condition from the combinatorial condition
specification area.
• When AND or OR is selected

In the event specification area, the event used and a pass count for that event can be specified. To
alter the pass count, while the event to alter is being selected, click the pass count value of that
event.

• When AND (Same Time) is selected

In the event specification area, the event used can be specified. No pass counts can be specified.

7.6.3 Command Button
The buttons on this window has the following meanings.

Button Function
Reset Discards the contents being displayed in the window and loads contents from the

emulator in which they were set.
Save... Saves the contents set in the window to a file.
Load... Loads event information from a file in which it was saved.
Set Sends the contents set in the window to the emulator.
Close Closes the window.

88

7 Windows/Dialogs

7.6.4 Specify the Events (Instruction Fetch)
To specify an instruction fetch event, change the event select dialog box's Event Type to "FETCH".
The event is established when instruction is fetched from the specified address or any address in the
specified address range.

7.6.4.1 Instruction Fetch of Specified Address

Set as below.
Example) Instruction fetch at address 80000h

89

7.6.4.2 Instruction Fetch of Specified Address Area(In)

Set as below.
Example) Instruction fetch at address 80000h to 80FFFh

90

7 Windows/Dialogs

7.6.4.3 Instruction Fetch of Specified Address Area(Out)

Set as below.
Example) Instruction fetch at any address other than the range 80000h to 80FFFh

91

7.6.4.4 Entering/exiting to specified function

Set as below.
Example) Entering a break to function name "wait"

Example) Exiting from function name "wait"

92

7 Windows/Dialogs

7.6.5 Specify the Events (Memory Access)
To specify a memory access event, change the event select dialog box's Event Type to "DATA
ACCESS". The event is established when memory is accessed at the specified address or under
conditions set for the specified address range.

7.6.5.1 Memory Access(The debugger for M32C)

ATTENTION
It is not detected that data access to the odd addresses in word-size access.

93

7.6.5.1.1. Writing/Reading a Specified Address
Set as below.
Example) Writing to even address 400h

94

7 Windows/Dialogs

Example) Writing byte length data 32h to even address 400h

95

Example) Writing byte length data 32h to odd address 401h
Contents of settings vary with each product and bus width.
(8 bits bus width)

96

7 Windows/Dialogs

(16 bits bus width)

97

Example) Writing word length data 1234h to even address 400h
Contents of settings vary with each product and bus width.
(8 bits bus width)
Please specify "And" of the 1st point and the 2nd point for a combination condition.
1st point

98

7 Windows/Dialogs

2nd point

99

(16 bits bus width)

100

7 Windows/Dialogs

7.6.5.1.2. Reading/writing data to the specified address range
Set as below.
Example) Writing data to addresses ranging from 400h to 40Fh

101

7.6.5.1.3. Reading/writing data to addresses outside the specified range
Set as below.
Example) Writing data to addresses below 7FFh

102

7 Windows/Dialogs

7.6.5.2 Memory Access(The debugger for M16C/R8C)

ATTENTION
It is not detected that data access to the odd addresses in word-size access.

7.6.5.2.1. Writing/Reading a Specified Address
Set as below.
Example) Writing to even address 400h

103

Example) Writing byte length data 32h to even address 400h

104

7 Windows/Dialogs

Example) Writing byte length data 32h to odd address 401h
Contents of settings vary with each product and bus width.
(8 bits bus width)

105

(16 bits bus width)

106

7 Windows/Dialogs

Example) Writing word length data 1234h to even address 400h
Contents of settings vary with each product and bus width.
(8 bits bus width)
Please specify "And" of the 1st point and the 2nd point for a combination condition.
1st point

107

2nd point

108

7 Windows/Dialogs

(16 bits bus width)

109

7.6.5.2.2. Reading/writing data to the specified address range
Set as below.
Example) Writing data to addresses ranging from 400h to 40Fh

110

7 Windows/Dialogs

7.6.5.2.3. Reading/writing data to addresses outside the specified range
Set as below.
Example) Writing data to addresses below 7FFh

111

7.6.6 Specify the Events (Bit Access)
To specify a bit access event, change the event select dialog box's Event Type to "BIT SYMBOL". The
event is established when the specified bit at the specified address or specified bit symbol is accessed
under specified conditions.

7.6.6.1 Writing/Reading a Specified Bit

Set as below.
Example) Writing "0" to bit 2 at address 400h

112

7 Windows/Dialogs

7.6.6.2 Writing/Reading a Specified Bit Symbol

Set as below.
Example) Writing "1" to bit symbol "bitsym"

113

7.6.7 Specify the Event Combination Condition
Use the Combination group of the event setting windows to specify the combinatorial conditions of
events.
The combination of two or more events can be used.
One of the following combinatorial conditions can be selected.

AND All of the specified events are established
AND(Same Time) The specified events are established at the same time
OR One of the specified events is established

Pass counts (number of times passed) can be specified for each event (1-255). If the specified
combinatorial condition is AND (Same Time), no pass counts can be set (fixed to 1).

7.6.7.1 Select AND, OR

Change the Combination group to "AND" to specify AND for the combinatorial condition, or "OR" to
specify OR for the combinatorial condition. Next, check (turn on) an event in the event specification
area that you want to use, and specify a pass count for that event. To alter the pass count, while the
event to alter is being selected, click the pass count value of that event.

114

7 Windows/Dialogs

7.6.7.2 Select AND(Same Time)

Change the Combination group to "AND (Same Time)". Next, check (turn on) an event in the event
specification area that you want to use. No pass counts can be specified (fixed to 1).

115

7.7 Address Interrupt Break Point Setting Window
The Address Interrupt Break Point Setting window allows you to set address interrupt break points.
This function stops the target program immediately before executing an instruction at a specified
address. This function is realized by using the MCU's address match interrupt. So that the address
interrupt break function can only be used when the address match interrupt is not used in the user
application.

• This window is available only when the address interrupt break function is used.

Use the MCU tab in the Init dialog box to specify whether or not to use the address interrupt
break function. On this tab, select the Enable the Address Match Interrupt Break Function check
box.(Details).

• The number of address interrupt breakpoints that can be set varies with each product.
• Breakpoints can be specified by "Address" or "Filename + Line No.".
• If you have set multiple breakpoints, program execution stops when any one break address is

encountered (OR conditions).
• You can clear, enable or disable breakpoints selected by clicking in the breakpoint display area.

You can also enable and disable breakpoints by double-clicking on them.
• Click on the "Save" button to save the software break points in the file. To reload software break

point settings from the saved file, click the "Load" button.
• If you load breakpoints from a file, they are added to any existing break points.

116

7 Windows/Dialogs

7.7.1 Command Button
The buttons on this window has the following meanings.

Button Function
Load... Load setting information from a file in which it was saved.
Save... Save the contents set in the window to a file.
Help Display the help of this window.
Add Add the break point.
Refer... Open file selection dialog box.
Close Close the window.
Delete Remove the selected break point.
Delete All Remove all break points.
Enable Enable the selected break points.
All Enable Enable all break points.
Disable Disable the selected break point.
All Disable Disable all break points.
View Shows the selected breakpoint positions in the Editor(Source) window.

117

7.7.1.1 Setting and Deleting a Break Points from Editor(Source) Window

The address interrupt break function can only be used when the address match interrupt is not used
in the user application.
For details, refer to "1.2.3 Address Interrupt Breaks Function"

You can set break points in the Editor(Source) Window. To do so, double-click the break point setting
area ("Address Match Interrupt Break" column) for the line in which you want to set the break. (A
blue marker is displayed on the line to which the break point was set.)

You can delete the break point by double-clicking again in the break point setting area ("Address
Match Interrupt Break" column).

In the Editor(Source) window, a display of "Address Match Interrupt Break" column is set to "Enable"
by default. To erase this column, deselect the [Address Match Interrupt Break] check box in the
dialog box opened by choosing the main menu - [Edit] -> [Define Column Format]. The "Address
Match Interrupt Break" column is erased from all Editor (Source) windows. And select popup menu -
[Columns] -> [Address Match Interrupt Break] in the Editor (Source) window, A column can be set up
for each Editor (Source) windows.

118

7 Windows/Dialogs

7.8 Trace Point Setting Window
The Trace Point Setting window is used to set trace points.

• The events listed below can be specified as trace events. If the contents of events are altered, they

are marked by an asterisk (*) on the title bar. The asterisks (*) are not displayed after setting up
the emulator.

Fetch, Memory Access, Bit Access

• Events at up to two points can be used.

The H/W Break Point Setting window and the Trace Point Setting windows use the same
resource of the emulator. Use the MCU tab in the Init dialog box, in order to specify for which
function the resources are used. On this tab, select the Enable the Trace Point Function check
box.

• These events can be combined in one of the following ways:
- Trace when all of the valid events are established (AND condition)
- Trace when all of the valid events are established at the same time (simultaneous AND

condition)
- Trace when one of the valid events is established (OR condition)

119

7.8.1 Specify the Trace Event
To set events, double-click to select the event you want to set from the event setting area of the Trace
Point Setting Window. This opens the dialog box shown below.

Following events can be set by specifying Event Type in this dialog box.
• When FETCH is selected

Traces for the instruction fetch.

120

7 Windows/Dialogs

• When DATA ACCESS is selected

Traces for the memory access.

• When BIT SYMBOL is selected

Traces for the bit access.

121

7.8.2 Specify the Combinatorial Condition
To specify a combinatorial condition, specify the desired condition from the combinatorial condition
specification area.
• When AND or OR is selected

In the event specification area, the event used and a pass count for that event can be specified. To
alter the pass count, while the event to alter is being selected, click the pass count value of that
event.

• When AND (Same Time) is selected

In the event specification area, the event used can be specified. No pass counts can be specified.

122

7 Windows/Dialogs

7.8.3 Specify the Trace Range
For the compact emulator debugger, 64K cycles equivalent of data can be recorded.

Break Stores the 64K cycles (-64K to 0 cycles) to the point at which the target program stops.
Before Stores the 64K cycles (-64K to 1 cycles) to the point at which the trace point is passed.
About Stores the 64K cycles (-32K to 32K cycles) either side of the trace point.
After Stores the 64K cycles (0 to 64K cycles) of trace data after the trace point.
Full Stores the 64K cycles (-64K to 0 cycles) of trace data after the trace starts.

7.8.4 Specify the Trace Write Condition
Conditions for cycles to be written to trace memory can be specified.

Total Writes all cycles.
Pick up Writes only the cycles where specified condition holds true.
Exclude Writes only the cycles where specified condition does not hold true.

Also, following three write modes are supported.

Only cycles where specified event is established

Cycles from where specified event is established
to where specified event is not established
Cycles from where start event is established to
where end event is established

123

7.8.5 Command Button
The buttons on this window has the following meanings.

Button Function
Reset Discards the contents being displayed in the window and loads contents

from the emulator in which they were set.
Save... Saves the contents set in the window to a file.
Load... Loads event information from a file in which it was saved.
Set Sends the contents set in the window to the emulator.
Close Closes the window.

7.8.6 Specify the Events (Instruction Fetch)
How to set events for fetch is same as the way for H/W Break Point Setting Window.
For detail about the setting, refer to "7.6.4 Specify the Events (Instruction Fetch)."

7.8.7 Specify the Events (Memory Access)
How to set events for memory access is same as the way for H/W Break Point Setting Window.
For detail about the setting, refer to "7.6.5 Specify the Events (Memory Access)."

7.8.8 Specify the Events (Bit Access)
How to set events for bit access is same as the way for H/W Break Point Setting Window.
For detail about the setting, refer to "7.6.5 Specify the Events (Memory Access)."

7.8.9 Specify the Event Combination Condition
How to set combination of events is same as the way for H/W Break Point Setting Window.
For detail about the setting, refer to "7.6.7 Specify the Event Combination Condition."

124

7 Windows/Dialogs

7.8.10 Specify the write condition
Trace data write conditions can be specified.
You can specify the following write conditions:

1. Write conditions unlimited (default)
2. Cycles from the start event established to the end event established
3. Only cycles where the start event is established
4. Cycles from the start event established to the start event unestablished
5. Other than cycles from the start event established to the end event established
6. Other than cycles where the start event is established
7. Other than cycles from the start event established to the start event unestablished

To specify condition 1, choose "Total" from the list box of the window's "Write Condition" item.

To specify conditions 2 to 4, choose "Pick Up" and click the "Detail..." button to open the
"Realtime-trace Write Condition" dialog box.

• For condition 2, choose the Mode shown below and set the Start and End events.

125

• For condition 3, choose the Mode shown below and set the Start event.

• For condition 4, choose the Mode shown below and set the Start event.

Similarly, when specifying conditions 5 to 7, choose "Exclude" and click the "Detail..." button to open
the Realtime-trace Write Condition dialog box.

126

7 Windows/Dialogs

• For condition 5, choose the Mode shown below and set the Start and End events.

For condition 6, choose the Mode shown below and set the Start event.

• For condition 7, choose the Mode shown below and set the Start event.

127

7.9 Trace Window
The Trace Window is used to display the results of real-time trace measurement. The measurement
result can be displayed in the following display modes.
• Bus mode

This mode allows you to inspect cycle-by-cycle bus information. The display content depends on
the MCU and emulator system used. In addition to bus information, this mode allows
disassemble, source line or data access information to be displayed in combination.

• Disassemble mode
This mode allows you to inspect the executed instructions. In addition to disassemble information,
this mode allows source line or data access information to be displayed in combination.

• Data access mode
This mode allows you to inspect the data read/write cycles. In addition to data access information,
this mode allows source line information to be displayed in combination.

• Source mode
This mode allows you to inspect the program execution path in the source program.

The measurement result is displayed when a trace measurement has finished. When a trace
measurement restarts, the window display is cleared.

The range of a trace measurement can be altered in the Trace Point Setting Window. For details
about this window, refer to "Referencing the Trace Point Setting Window." With default settings, the
trace information immediately before the program has stopped is recorded.

7.9.1 Configuration of Bus Mode
When bus mode is selected, trace information is displayed in bus mode. Bus mode is configured as
shown below.
The display content in bus mode differs depending on the MCU or emulator system used.

128

7 Windows/Dialogs

1. Cycle display area:

Shows trace cycles. Double-click here to bring up a dialog box to change the displayed cycle.
2. Label display area:

Shows labels corresponding to address bus information. Double-click here to bring up a dialog box
to search for addresses.

3. Bus information display area:
The content displayed here differs depending on the MCU or emulator system used.

• Refer to"7.9.6 Display of bus information on the M32C Debugger"
• Refer to"7.9.7 Display of bus information on the M16C/R8C Debugger"r
4. Time information display area:

Shows time information of trace measurement result. One of the following three modes can be
selected from the menu. (The compact emulator debugger is not supported.)
- Absolute Time:Shows an elapsed time from the time the program started running up to now in

terms of absolute time (default).
- Differences:Shows a differential time from the immediately preceding cycle.
- Relative Time:Shows a relative time from the selected cycle. Note, however, that this mode

changes to the absolute time display mode when the trace measurement result is updated.
5. Acquired range of trace measurement result:

Shows the currently acquired range of trace measurement result.
6. Trace measurement range:

Shows the currently set range of trace measurement.
7. First line cycle:

Shows the cycle of the first line displayed.
8. First line address:

Shows the address of the first line displayed.
9. First line time:

First line time: Shows the time information of the first line displayed.
10. Window splitting box:

Double-clicking this box splits the window into parts.

In addition to bus information, the window can display disassemble, source line or data access
information in combination. In this case, the display will be similar to the one shown below.

129

7.9.2 Configuration of Disassemble Mode
When disassemble mode is selected while bus mode is unselected, trace information is displayed in
disassemble mode. Disassemble mode is configured as shown below.

1. Address display area:

Shows addresses corresponding to instructions. Double-click here to bring up a dialog box to
search for addresses.

2. Object code display area:
Shows the object codes of instructions.

3. Label display area:
Shows labels corresponding to instruction addresses. Double-click here to bring up a dialog box to
search for addresses.

4. Mnemonic display area:
Shows the mnemonics of instructions.

Other display areas are the same as in bus mode.

In addition to disassemble information, the window can display source line or data access information
in combination. In this case, the display will be similar to the one shown below.

130

7 Windows/Dialogs

7.9.3 Configuration of Data Access Mode
When data access mode is selected while bus mode and disassemble mode are unselected, trace
information is displayed in data access mode. Data access mode is configured as shown below.

1. Data access display area: Shows data access information. If the information displayed here is

"000400 1234 W," for example, it means that data "1234H" was written to the address 000400H
in 2-byte width.

Other display areas are the same as in bus mode.

In addition to data access information, the window can display source line information in combination.
In this case, the display will be similar to the one shown below.

131

7.9.4 Configuration of Source Mode
When only source mode is selected, trace information is displayed in source mode. Source mode is
configured as shown below.

1. Line number display area:

Shows the line number information of the displayed file. Double-click here to bring up a dialog
box to change the displayed file.

2. Address display area:
Shows addresses corresponding to source lines. Double-click here to bring up a dialog box to
search for addresses.

3. Referenced cycle display area:
Shows the currently referenced cycle that is marked by ">>." Furthermore, the addresses
corresponding to source lines, if any, are marked by "-."

4. Source display area:
Shows the content of the source file.

5. File name:
Shows the file name of the currently displayed source file.

6. Referenced cycle:
Shows the currently referenced cycle.

7. Referenced address:
Shows the address corresponding to the currently referenced cycle.

8. Referenced time:
Shows the time information corresponding to the currently referenced cycle.

Other display areas are the same as in bus mode.

132

7 Windows/Dialogs

7.9.5 Extended Menus
This window has the following popup menus that can be brought up by right-clicking in the window.

Menu Function
BUS Display the information of BUS mode.
DIS Display the information of Disassemble mode.
SRC Display the information of Source mode.
DATA Display the information of Data access mode.

Cycle... Changes the displayed position by specifying a cycle.
Address... Changes the displayed position by searching an address.

View

Source... Display a selected source file.
Absolute Time Shows elapsed time from the time the program started

running up to now in terms of absolute time.
Differences Shows a differential time from the immediately preceding

displayed cycle.

Time

Relative Time Shows a relative time from the currently selected cycle.
Forward Changes the direction of search to forward direction.
Backward Changes the direction of search to reverse direction.
Step Searches in Step mode in the specified direction of search.
Come Searches in Come mode in the specified direction of search.
Stop Stops trace measurement in the middle and displays the

measured content at the present point of time.

Trace

Restart Restarts trace measurement.
Layout... Change layout of the corrent view.
Copy Copy selected lines.
Save... Save trace data to file.
Load... Load trace data from file.
Toolbar display Display toolbar.
Customize toolbar... Open toolbar customize dialog box.
Allow Docking Allow window docking.
Hide Hide window.

133

7.9.6 Display of bus information on the M32C Debugger
From left to right, the contents are as follows:
• Address

The status of the address bus
• Data

The status of the data bus
• BUS

The width of the external data bus ("8b" for an 8-bit data bus, and "16b" for a 16-bit data bus)
• BHE

Indicates the status (0 or 1) of the BHE (Byte High Enable) signal.
If BHE = 0, it means that the CPU is accessing an odd address.

• BIU
This shows the status between the BIU (bus interface unit) and memory, and BIU and I/O.

Representation BIU status
- No access
WAIT Executing wait instruction
RBML Read access (bytes, ML on)
F Fetch access
QC Discontinuous Fetch access (queue buffer)
RWML Read access (words, ML on)
INT Interrupt acknowledge
RB Read access (bytes)
WB Write access (bytes)
DRB Read access by DMA (bytes)
DWB Write access by DMA (bytes)
RW Read access (words)
WW Write access (words)
DRW Read access by DMA (words)
DWW Write access by DMA (words)

134

7 Windows/Dialogs

• R/W

Shows the status of the data bus ("R" for r ead, "W" for wr it e, "-" for no access).
• RWT

This signal shows the effective position in the bus cycle ("0" when effective. Address, Data, and
BIU signals are valid when RWT is "0".

• CPU, OPC, OPR
This shows the signal between CPU and BIU. In the column "CPU", the data shows whether CPU
accesses BIU or not . In the Column "OPC", the data shows the byte size of read operat ion code.
In the Column "OPR", the data shows the byte size of read operand.

Representation Status
CPU OPC OPR Operation code size Operand size
- - - No accessing
CPU 0 1 0byte 1byte
CPU 0 2 0byte 2bytes
CPU 0 3 0byte 3bytes
CPU 1 0 1byte 0byte
CPU 1 1 1byte 1byte
CPU 1 2 1byte 2bytes
CPU 1 3 1byte 3bytes
CPU 2 0 2bytes 0byte
CPU 2 1 2bytes 1byte
CPU 2 2 2bytes 2bytes
CPU 3 0 3bytes 0byte
CPU 3 1 3bytes 1byte
DMA - - DMA accessing
DMAT - - DMA accessing(terminal count)

135

7.9.7 Display of bus information on the M16C/R8C Debugger
From left to right, the contents are as follows:
• Address

The status of the address bus
• Data

The status of the data bus
• BUS

The width of the external data bus ("8b" for an 8-bit data bus, and "16b" for a 16-bit data bus)
• BHE

Indicates the status (0 or 1) of the BHE (Byte High Enable) signal.
If BHE = 0, it means that the CPU is accessing an odd address.

• BIU
This shows the status between the BIU (bus interface unit) and memory, and BIU and I/O.

Representation BIU status
- No access
DMA Data access other than a CPU cause such as DMA
INT Start of INTACK sequence
IB Instruction code read due to CPU cause (bytes)
DB data access due to CPU cause (bytes)
IW Instruction code read due to CPU cause (words)
DW data access due to CPU cause (words)

• R/W

Shows the status of the data bus ("R" for r ead, "W" for wr it e, "-" for no access).
• RWT

This signal shows the effective position in the bus cycle ("0" when effective. Address, Data, and
BIU signals are valid when RWT is "0".

• CPU
This shows the signal between CPU and BIU.

Representation Status
- No accessing
CB Opecode read (bytes)
RB Operand read (bytes)
QC Instruction queue buffer clear
CW Opecode read (words)
RW Operand read (words)

136

7 Windows/Dialogs

7.10 Data Trace Window
The Data Trace Window is used to analyze the results of real-time trace measurements and
graphically show data access information.
It operates in conjunction with Trace Window.
The debugger for compact emulators don't support time information.

• In the data reference area, you can inspect memory values at the point of a cycle currently in

interest or the values of registered C variables.
• In the access history reference area, you can see the history of accesses to registered addresses in

chart form.
• In conjunction with the Trace Window, you can inspect memory values at the point of a cycle you

are watching in the Trace Window. Conversely, you can show the cycle in the Trace Window
which you are watching in the Data Trace Window.

137

7.10.1 Extended Menus
This window has the following popup menus that can be brought up by right-clicking in the window.

Menu Function
Analyze Trace Data Analyze the realtime-trace data.
Set Cycle... Specify the display cycle.
Sync with Trace Window Synchronize with Trace Window.

1byte Display in 1Byte unit.
2bytes Display in 2Byte unit.

Data Length

4bytes Display in 4Byte unit.
Hex Display in Hexadecimal. Radix
Dec Display in Decimal.

Address... Display from specified address.
Add C Watch Add C watchpoint.
Remove C Watch Remove the selected C watchpoint.
Hide Type Name Hide type names from variables.
Add... Adds new watch item into Access History Reference Area.
Remove Removes the selected watch item from Access History

Reference Area.
Zoom In Increase the display scale.
Zoom Out Decrease the display scale.

Zoom

Zoom... Specify the display scale.
Start Marker Move the start marker in the display area.
End Marker Move the end marker in the display area.
Indicator Move the indicator in the display area.

Marker

Adjust Set cycle range between markers.
Change Grid Interval... Change the grid interval.
Change Row Setting... Change setting of the selected row.
Color... Change the display color.
Toolbar display Display toolbar.
Customize toolbar... Open toolbar customize dialog box.
Allow Docking Allow window docking.
Hide Hide window.

138

7 Windows/Dialogs

7.11 GUI I/O Window
The GUI I/O window allows you for port input by creating a user target system key input panel
(button) in the window and clicking the created button. And this window also allows you to implement
the user target system output panel in the window.

• You can arrange the following parts on the window.

- Label (character string)
Displays/erases a character string specified by the user when any value is written to the
specified address (bit).

- LED
Changes the display color of any area when any value is written to the specified address (bit).
(Substitution for LED ON)

- Button
A virtual port input can be executed at the time the button is pressed.

- Text
Display the text string.

• You can also save the created panel in a file and reload it.
• You can set up to 200 address points to the created part. If different addresses are set to the

individual parts, you can arrange up to 200 parts.

139

7.11.1 Extended Menus
This window has the following popup menus that can be brought up by right-clicking in the window.

Menu Function
Select Item Select an I/O item.
Delete Delete the selected I/O item.
Copy Copy the selected I/O item.
Paste Paste the copied I/O item.
Create Button Create a new button item.
Create Label Create a new label item.
Create LED Create a new LED item.
Create Text Create a new text item.
Display grid Display the grid line.
Save... Save I/O panel file.
Load... Load I/O panel file.
Sampling Period... Set RAM monitor sampling period.
Toolbar display Display toolbar.
Customize toolbar... Open toolbar customize dialog box.
Allow Docking Allow window docking.
Hide Hide window.

140

7 Windows/Dialogs

7.12 MR Window
Use the MR Window to display the status of the realtime OS.

You can only use the MR Window when you have downloaded a program that uses the realtime OS (if
the downloaded program does not use the MR, nothing is displayed in the MR Window when it is
opened.)

• You can open the MR window as many as the number of display modes .
• By clicking the desired button, the MR window display mode changes and the display data also

changes.
• By double-clicking the desired task line, you can display the context data of the task.
• You can drag the cursor to change the width of the display area in each mode.
• If the downloaded program does not use MR, you cannot select all the menu which will select the

display mode.
• The usable display mode depends on MRxx.

ATTENTION
Please use the startup file (crt0mr.axx/start.axx) whose contents matches with the version of MRxx,
when you make downloaded program. The MR Window and MR command will not run properly if the
startup file you uses don't match with the version of MRxx.

141

7.12.1 Extended Menus
This window has the following popup menus that can be brought up by right-clicking in the window.

Menu Function

Task Displays Task status.
Ready Queue Displays Ready status.
Timeout Queue Displays Timeout status.
Event Flag Displays Event Flag status.
Semaphore Displays Semaphore status.
Mailbox Displays Mailbox status.
Data Queue Displays Data Queue status.
Cyclic Handler Displays Cyclic Handler status.
Alarm Handler Displays Alarm Handler status.
Memory Pool Displays Memory Pool status.
Message Buffer Displays Message Buffer status.
Port Displays Port status.

Mode

Mailbox(with Priority) Displays Mailbox(with Priority) status.
Context... Displays Context.
Layout Status Bar Switch display or non-display of status bar.
Refresh Refresh memory data.

Enable RAM Monitor Switch enable or disable RAM Monitor function. RAM Monitor
Sampling Period... Set RAM Monitor sampling period.

Toolbar display Display toolbar.
Customize toolbar... Open toolbar customize dialog box.
Allow Docking Allow window docking.
Hide Hide window.

142

7 Windows/Dialogs

7.12.2 Display the Task Status
In the MR window, select Popup Menu - [Mode] -> [Task].

By double-clicking any line, the information on the task context is displayed in the Context dialog.
For details on the Context dialog, see "7.12.12 Display the Task Context"
The following data is displayed in the status bar.

7.12.2.1 Display the Task Status(When the realtime OS is MRxx conformed to uITRON specifications
V.3.0.)

All the tasks defined in the configuration are listed in the order of ID number. The function of each
item is as described below. (When the realtime OS is MRxx conformed to uITRON specifications
V.3.0.)

Items Contents
ID Task ID
StaAddr Starting address of task
(name) Task name
Pri Priority
Status*1 Task status
wup_count Wake-up count
timeout Timeout value
flg_ptn Wait bit pattern of event flag
flg_mode*2 Wait cancellation condition of event flag

143

• *1Task Status

Display Status
RUN RUNNING state
RDY READY state
SUS SUSPENDED state
DMT DORMANT state
WAI(SLP) Sleeping state
WAI(SLP)-SUS Sleeping state (suspended)
WAI(SLP-TMO) Sleeping state with time-out
WAI(SLP-TMO)-SUS Sleeping state with time-out (suspended)
WAI(DLY) Delayed state due to dly_tsk
WAI(DLY)-SUS Delayed state due to dly_tsk (suspended)
WAI(FLG) Waiting state for an eventflag
WAI(FLG)-SUS Waiting state for an eventflag (suspended)
WAI(FLG-TMO) Waiting state for an eventflag with time-out
WAI(FLG-TMO)-SUS Waiting state for an eventflag with time-out (suspended)
WAI(SEM) Waiting state for a semaphore resource
WAI(SEM)-SUS Waiting state for a semaphore resource (suspended)
WAI(SEM-TMO) Waiting state for a semaphore resource with time-out
WAI(SEM-TMO)-SUS Waiting state for a semaphore resource with time-out (suspended)
WAI(MBX) Receiving waiting state for a mailbox
WAI(MBX)-SUS Receiving waiting state for a mailbox (suspended)
WAI(MBX-TMO) Receiving waiting state for a mailbox with time-out
WAI(MBX-TMO)-SUS Receiving waiting state for a mailbox with time-out (suspended)

• *2Display the Wait Cancellation Condition of Event Flag

flg_mode Status
TWF_ANDW Waits for all bits set in the wait bit pattern to be set (AND

wait)
TWF_ANDW+TWF_CLR Clears the event flag to 0 when an AND wait has occurred

and the task wait status has been cancelled
TWF_ORW Waits for any one bit set in the wait bit pattern to be set

(OR wait)
TWF_ORW+TWF_CLR Clears the event flag to 0 when an OR wait has occurred

and the task wait status has been cancelled

144

7 Windows/Dialogs

7.12.2.2 Display the Task Status(When the realtime OS is MRxx conformed to uITRON specifications
V.4.0.)

All the tasks defined in the configuration are listed in the order of ID number. The function of each
item is as described below. (When the realtime OS is MRxx conformed to uITRON specifications
V.4.0.)

Items Contents
ID Task ID
Name Task name
Pri Priority
Status*1 Task status
Wupcnt Wake-up count
Actcnt Activated count
Tmout Timeout value
Flgptn Wait bit pattern of event flag
Wfmode*2 Wait cancellation condition of event flag

145

• *1Task Status

Display Status
RUN RUNNING state
RDY READY state
SUS SUSPENDED state
DMT DORMANT state
WAI(SLP) Sleeping state
WAI(SLP)-SUS Sleeping state (suspended)
WAI(SLP-TMO) Sleeping state with time-out
WAI(SLP-TMO)-SUS Sleeping state with time-out (suspended)
WAI(DLY) Delayed state due to dly_tsk
WAI(DLY)-SUS Delayed state due to dly_tsk (suspended)
WAI(FLG) Waiting state for an eventflag
WAI(FLG)-SUS Waiting state for an eventflag (suspended)
WAI(FLG-TMO) Waiting state for an eventflag
WAI(FLG-TMO)-SUS Waiting state for an eventflag (suspended)
WAI(SEM) Waiting state for a semaphore resource
WAI(SEM)-SUS Waiting state for a semaphore resource (suspended)
WAI(SEM-TMO) Waiting state for a semaphore resource with time-out
WAI(SEM-TMO)-SUS Waiting state for a semaphore resource with time-out (suspended)
WAI(MBX) Receiving waiting state for a mailbox
WAI(MBX)-SUS Receiving waiting state for a mailbox (suspended)
WAI(MBX-TMO) Receiving waiting state for a mailbox with time-out
WAI(MBX-TMO)-SUS Receiving waiting state for a mailbox with time-out (suspended)
WAI(SDTQ) Sending waiting state for a data queue
WAI(SDTQ)-SUS Sending waiting state for a data queue (suspended)
WAI(SDTQ-TMO) Sending waiting state for a data queue with time-out
WAI(SDTQ-TMO)-SUS Sending waiting state for a data queue with time-out (suspended)
WAI(RDTQ) Receiving waiting state for a data queue
WAI(RDTQ)-SUS Receiving waiting state for a data queue (suspended)
WAI(RDTQ-TMO) Receiving waiting state for a data queue with time-out
WAI(RDTQ-TMO)-SUS Receiving waiting state for a data queue with time-out (suspended)
WAI(VSDTQ) Sending waiting state for an extended data queue
WAI(VSDTQ)-SUS Sending waiting state for an extended data queue (suspended)
WAI(VSDTQ-TMO) Sending waiting state for an extended data queue with time-out
WAI(VSDTQ-TMO)-SUS Sending waiting state for an extended data queue with time-out

 (suspended)
WAI(VRDTQ) Receiving waiting state for an extended data queue
WAI(VRDTQ)-SUS Receiving waiting state for an extended data queue (suspended)
WAI(VRDTQ-TMO) Receiving waiting state for an extended data queue with time-out
WAI(VRDTQ-TMO)-SUS Receiving waiting state for an extended data queue with time-out

 (suspended)
WAI(MPF) Waiting state for a fixed-sized memory block
WAI(MPF)-SUS Waiting state for a fixed-sized memory block (suspended)
WAI(MPF-TMO) Waiting state for a fixed-sized memory block with time-out
WAI(MPF-TMO)-SUS Waiting state for a fixed-sized memory block with time-out

 (suspended)

146

7 Windows/Dialogs

• *2Display the Wait Cancellation Condition of Event Flag

Wfmode Status
TWF_ANDW Waits for all bits set in the wait bit pattern to be set (AND wait)
TWF_ORW Waits for any one bit set in the wait bit pattern to be set (OR wait)

7.12.3 Display the Ready Queue Status
In the MR window, select Popup Menu - [Mode] -> [Ready Queue].

The following data is displayed in the status bar.

7.12.3.1 Display the Ready Queue Status(When the realtime OS is MRxx conformed to uITRON
specifications V.3.0.)

The function of each item is as described below. (When the realtime OS is MRxx conformed to
uITRON specifications V.3.0.)

Item Contents
Pri Displays priority
RdyQ Shows the ID Nos. and task names of tasks in the ready queue

• Up to 8 characters of the task name is displayed in the RdyQ field. When the task name exceeds 8

characters, the extra characters are omitted.

7.12.3.2 Display the Ready Queue Status(When the realtime OS is MRxx conformed to uITRON
specifications V.4.0.)

The function of each item is as described below. (When the realtime OS is MRxx conformed to
uITRON specifications V.4.0.)

Item Contents
Pri Displays priority
Ready Queue Shows the ID Nos. and task names of tasks in the ready queue

• Up to 8 characters of the task name is displayed in the Ready Queue field. When the task name

exceeds 8 characters, the extra characters are omitted.

147

7.12.4 Display the Timeout Queue Status
In the MR window, select Popup Menu - [Mode] -> [Timeout Queue].

7.12.4.1 Display the Timeout Queue Status(When the realtime OS is MRxx conformed to uITRON
specifications V.3.0.)

The function of each item is as described below.
Tasks waiting at present are displayed in the descending order of timeout value. (When the realtime
OS is MRxx conformed to uITRON specifications V.3.0.)

Item Contents
Value Shows the timeout value of each task
ID(name) Shows the ID No. and task name of the tasks in the timeout queue

• Following character strings are used to indicate the type of wait state.

Character string Wait state
[slp] Wait due to tslp_tsk
[dly] Wait due to dly_tsk
[flg] Wait due to twai_flg
[sem] Wait due to twai_sem
[mbx] Wait due to trcv_msg

• When a task connected to the timeout queue is in the state of forced waiting (double waiting), a

string "[s]", which indicates double waiting, is appended to a string displayed in the ID (name)
field.

Normal display 26(_task26)
Display when in WAIT-SUSPEND 26(_task26)[s]

148

7 Windows/Dialogs

7.12.4.2 Display the Timeout Queue Status(When the realtime OS is MRxx conformed to uITRON
specifications V.4.0.)

The function of each item is as described below.
Tasks waiting at present are displayed in the descending order of timeout value. (When the realtime
OS is MRxx conformed to uITRON specifications V.4.0.)

Item Contents
Tmout Shows the timeout value (ms) of each task
ID(Name) Shows the ID No. and task name of the tasks in the timeout queue

• Following character strings are used to indicate the type of wait state.

Character string Wait state
[slp] Wait due to tslp_tsk
[dly] Wait due to dly_tsk
[flg] Wait due to twai_flg
[sem] Wait due to twai_sem
[mbx] Wait due to trcv_mbx
[mpf] Wait due to tget_mpf
[sdtq] Wait due to tsnd_dtq
[rdtq] Wait due to trcv_dtq
[vsdtq] Wait due to vtsnd_dtq
[vrdtq] Wait due to vtrcv_dtq

• When a task connected to the timeout queue is in the state of forced waiting (double waiting), a

string "[s]", which indicates double waiting, is appended to a string displayed in the ID(Name)
field.

Normal display 26(_task26)
Display when in WAIT-SUSPEND 26(_task26)[s]

149

7.12.5 Display the Event Flag Status
In the MR window, select Popup Menu - [Mode] -> [Event Flag].

7.12.5.1 Display the Event Flag Status(When the realtime OS is MRxx conformed to uITRON
specifications V.3.0.)

All the event flags defined in the configuration are listed in the order of ID number. The function of
each item is listed below. (When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)

Item Contents
ID ID No. of event flag
flg_ptn Bit pattern of each event flag
flagQ Task ID Nos. and task names in the event flag queue

• When a task connected to the event flag queue is in the state of waiting with timeout enabled

(waiting in twai_flg), a string "[tmo]", which indicates a state of waiting with timeout enabled, is
appended to a string displayed in the flag Q field.
When a task connected to the event flag queue is in the state of forced waiting (double waiting), a
string "[s]", which indicates double waiting, is appended to a string displayed in the flag Q field.

Normal Display 26(_task26)
Display when in WAIT-SUSPEND 26(_task26)[s]
Display when in WAIT-SUSPEND with time out 26(_task26)[tmo][s]

• Up to 8 characters can be displayed in the task name in the flag Q field.If a task name exceeds 8

characters, the extra characters are omitted.

150

7 Windows/Dialogs

7.12.5.2 Display the Event Flag Status(When the realtime OS is MRxx conformed to uITRON
specifications V.4.0.)

All the event flags defined in the configuration are listed in the order of ID number. The function of
each item is listed below. (When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

Item Contents
ID ID No. of event flag
Flgatr Attribute of each event flag
Flgptn Bit pattern of each event flag
Flag Queue Task ID Nos. and task names in the event flag queue

• The following are displayed in the Flgatr area:

TA_TFIFO Task wait queue is in FIFO order
TA_TPRI Task wait queue is in task priority order
TA_WSGL Only one task is allowed to be in the waiting state for the eventflag
TA_WMUL Multiple tasks are allowed to be in the waiting state for the eventflag
TA_CLR Eventflag's bit pattern is cleared when a task is released from the

waiting state for that eventflag

• When a task connected to the event flag queue is in the state of waiting with timeout enabled

(waiting in twai_flg), a string "[tmo]", which indicates a state of waiting with timeout enabled, is
appended to a string displayed in the Flag Queue field.
When a task connected to the event flag queue is in the state of forced waiting (double waiting), a
string "[s]", which indicates double waiting, is appended to a string displayed in the Flag Queue
field.

Normal Display 26(_task26)
Display when in WAIT-SUSPEND 26(_task26)[s]
Display when in WAIT-SUSPEND with time out 26(_task26)[tmo][s]

• Up to 8 characters can be displayed in the task name in the Flag Queue field.If a task name

exceeds 8 characters, the extra characters are omitted.

151

7.12.6 Display the Semaphore Status
In the MR window, select Popup Menu - [Mode] -> [Semaphore].

7.12.6.1 Display the Semaphore Status(When the realtime OS is MRxx conformed to uITRON
specifications V.3.0.)

All the SEMs defined in the configuration are listed in the order of ID number. The function of each
item is listed below. (When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)

Item Contents
ID ID No. of semaphore
Def_cnt Default value of semaphore counter
Count Semaphore count
semQ Task ID Nos. and task names in the semaphore queue

• When a task connected to the SEM queue is in the state of waiting with timeout enabled (waiting

in twai_sem), a string "[tmo]", which indicates a state of waiting with timeout enabled, is
appended to a string displayed in the semQ field.
When a task connected to the SEM queue is in the state of forced waiting (double waiting), a
string "[s]", which indicates double waiting, is appended to a string displayed in the semQ field.

Normal Display 26(_task26)
Display when in WAIT-SUSPEND 26(_task26)[s]
Display when in WAIT-SUSPEND with time out 26(_task26)[tmo][s]

• Up to 8 characters can be displayed in the task name in the semQ field.If a task name exceeds 8

characters, the extra characters are omitted.

152

7 Windows/Dialogs

7.12.6.2 Display the Semaphore Status (When the realtime OS is MRxx conformed to uITRON
specifications V.4.0.)

All the SEMs defined in the configuration are listed in the order of ID number. The function of each
item is listed below. (When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

Item Contents
ID ID No. of semaphore
Sematr Attribute of each semaphore
Semcnt Semaphore count
Semaphore Queue Task ID Nos. and task names in the semaphore queue

• The following are displayed in the Sematr area:

TA_TFIFO Task wait queue is in FIFO order
TA_TPRI Task wait queue is in task priority order

• When a task connected to the SEM queue is in the state of waiting with timeout enabled (waiting

in twai_sem), a string "[tmo]", which indicates a state of waiting with timeout enabled, is
appended to a string displayed in the Semaphore Queue field.
 When a task connected to the SEM queue is in the state of forced waiting (double waiting), a
string "[s]", which indicates double waiting, is appended to a string displayed in the Semaphore
Queue field.

Normal Display 26(_task26)
Display when in WAIT-SUSPEND 26(_task26)[s]
Display when in WAIT-SUSPEND with time out 26(_task26)[tmo][s]

• Up to 8 characters can be displayed in the task name in the Semaphore Queue field.If a task

name exceeds 8 characters, the extra characters are omitted.

153

7.12.7 Display the Mailbox Status
In the MR window, select Popup Menu - [Mode] -> [Mailbox].

7.12.7.1 Display the Mailbox Status (When the realtime OS is MRxx conformed to uITRON
specifications V.3.0.)

All the mail boxes defined in the configuration are listed in the order of ID number. The function of
each item is listed below. (When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)

Item Contents
ID ID No. of mailbox
Msg_cnt Number of messages in each mailbox
MAXmsg Maximum number of messages that can be contained in each mailbox
Wait Queue(Message) The messages stored in the mailbox or ID No. and task name of tasks

waiting for messages

• The WaitQueue (Message) field shows a string "Msg" when a message is stored (when Msg_cont

as described above is non-zero), and then displays the stored message.
When no message is stored (when Msg_cont is zero), the WaitQueue field displays a string "Task"
if a task waiting for a message exists, and then displays the ID number and name of the task
waiting for a message.

• When a task connected to the mail box queue is in the state of waiting with timeout enabled
(waiting in trcv_msg), a string "[tmo]", which indicates the state of timeout enabled, is appended
to a string displayed in the WaitQueue (Message) field.
When a task connected to the mail box queue is in the state of forced waiting (Double waiting), a
string "[s]", which indicates the state of double waiting, is appended to a string displayed in the
WaitQueue (Message) field.

Normal Display 26(_task26)
Display when in WAIT-SUSPEND 26(_task26)[s]
Display when in WAIT-SUSPEND with time out 26(_task26)[tmo][s]

• Up to 8 characters can be displayed in the task name in the WaitQueue (Message) field.

If a task name exceeds 8 characters, the extra characters are omitted.

154

7 Windows/Dialogs

7.12.7.2 Display the Mailbox Status (When the realtime OS is MRxx conformed to uITRON
specifications V.4.0.)

All the mail boxes defined in the configuration are listed in the order of ID number. The function of
each item is listed below. (When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

Item Contents
ID ID No. of mailbox
Mbxatr Attribute of each mailbox
Mailbox Queue (Wait) ID No. and task name of tasks waiting for messages
Mailbox Queue (Message) The messages stored in the mailbox

• The following are displayed in the Mbxatr area:

TA_TFIFO Task wait queue is in FIFO order
TA_TPRI Task wait queue is in task priority order
TA_MFIFO Message queue is in FIFO order
TA_MPRI Message queue is in message priority order

• When a task connected to the mail box queue is in the state of waiting with timeout enabled

(waiting in trcv_mbx), a string "[tmo]", which indicates the state of timeout enabled, is appended
to a string displayed in the Mailbox Queue (Wait) field.

When a task connected to the mail box queue is in the state of forced waiting (Double waiting), a
string "[s]", which indicates the state of double waiting, is appended to a string displayed in the
Mailbox Queue (Wait) field.

Normal Display 26(_task26)
Display when in WAIT-SUSPEND 26(_task26)[s]
Display when in WAIT-SUSPEND with time out 26(_task26)[tmo][s]

• Up to 8 characters can be displayed in the task name in the Mailbox Queue (Wait) field.

If a task name exceeds 8 characters, the extra characters are omitted.

155

7.12.8 Display the Data Queue Status
In the MR window, select Popup Menu - [Mode] -> [Data Queue].

7.12.8.1 Display the Data Queue Status(When the realtime OS is MRxx conformed to uITRON
specifications V.4.0.)

All the data queues defined in the configuration are listed in the order of ID number. The function of
each item is listed below. (When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

Item Contents
ID ID No. of data queue
Dtqatr Attribute of each date queue
Dtcnt Number of messages in each data queue
Dtqsz Maximum number of messages that can be contained in each data queue
Data Queue (Wait) ID No. and task name of tasks waiting for message transmission waiting

or message reception waiting
Data Queue (Data) The messages stored in the data queue

• The display of the ID field varies depending on which one is specified, the standard data(32 bits)

or the extended data(16 bits).
MR308/4
- If the standard data(32 bits), the ID field displays a string "[32]" and data queue ID number.
- If the extended data(16 bits), the ID field displays a string "[16]" and data queue ID number.
MR30/4
- If the standard data(16 bits), the ID field displays a string "[16]" and data queue ID number.
- If the extended data(32 bits), the ID field displays a string "[32]" and data queue ID number.

156

7 Windows/Dialogs

• The following are displayed in the Dtqatr area:

TA_TFIFO Task wait queue is in FIFO order
TA_TPRI Task wait queue is in task priority order

• The Data Queue (Wait) field displays a string "Send" if a task waiting for a message sending, and

then displays the ID number and name of the task waiting for a message sending. Also, if a task
waiting for a message receiving, displays a string "Receive" and then displays the ID number and
name of the task waiting for a message receiving.

• When a task connected to the date queue is in the state of waiting with timeout enabled , a string
"[tmo]", which indicates the state of timeout enabled, is appended to a string displayed in the
Data Queue (Wait) field.
When a task connected to the data queue is in the state of forced waiting (Double waiting), a
string "[s]", which indicates the state of double waiting, is appended to a string displayed in the
Data Queue (Wait) field.

Normal Display 26(_task26)
Display when in WAIT-SUSPEND 26(_task26)[s]
Display when in WAIT-SUSPEND with time out 26(_task26)[tmo][s]
Up to 8 characters can be displayed in the task name in the Data Queue (Wait) field.
If a task name exceeds 8 characters, the extra characters are omitted.

157

7.12.9 Display the Cycle Handler Status
In the MR window, select Popup Menu - [Mode] -> [Cyclic Handler].

7.12.9.1 Display the Cycle Handler Status(When the realtime OS is MRxx conformed to uITRON
specifications V.3.0.)

All the cycle handlers defined in the configuration are listed in the order of ID number. The function
of each item is listed below. (When the realtime OS is MRxx conformed to uITRON specifications
V.3.0.)

Item Contents
ID ID No. of cycle handler
StaAddr Starting address of cycle handler
(name) Name of cycle handler
interval Interrupt interval
count Interrupt count
Status Activity status of cycle start handler

• The following are displayed in the Status area:

TCY_ON Cycle handler enabled
TCY_OFF Cycle handler disabled

158

7 Windows/Dialogs

7.12.9.2 Display the Cycle Handler Status(When the realtime OS is MRxx conformed to uITRON
specifications V.4.0.)

All the cycle handlers defined in the configuration are listed in the order of ID number. The function
of each item is listed below. (When the realtime OS is MRxx conformed to uITRON specifications
V.4.0.)

Item Contents
ID ID No. of cycle handler
Name Name of cycle handler
Cycphs The activation phase (by the millisecond)
Cyctim The activation cycle time (by the millisecond)
Tmout The amount of time by the millisecond remaining before the cyclic

handler's next activation time
Status Activity status of cycle start handler

• The following are displayed in the Status area:

TCYC_STA Cycle handler is in an operational state
TCYC_STP Cycle handler is in a non-operational state

159

7.12.10 Display the Alarm Handler Status
In the MR window, select Popup Menu - [Mode] -> [Alarm Handler].

When the realtime OS is MRxx conformed to uITRON specifications V.3.0, the following data is
displayed in the status bar.

7.12.10.1 Display the Alarm Handler Status(When the realtime OS is MRxx conformed to uITRON
specifications V.3.0.)

Of all the cycle start handlers defined in the configuration, only those which are not started yet at
present are listed in the ascending order of start time. The function of each item is listed below.
(When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)

Item Contents
ID ID No. of alarm handler
StaAddr Starting address of alarm handler
(name) Name of alarm handler
AlarmTime Starting time of alarm handler

7.12.10.2 Display the Alarm Handler Status(When the realtime OS is MRxx conformed to uITRON
specifications V.4.0.)

Of all the cycle start handlers defined in the configuration, only those which are not started yet at
present are listed in the ascending order of start time. The function of each item is listed below.
(When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

Item Contents
ID ID No. of alarm handler
Name Name of alarm handler
Almtim The amount of time by the millisecond remaining before the alarm

handler's activation time
Status Activity status of alarm handler

The following are displayed in the Status area:

TALM_STA Alarm handler is in an operational state
TALM_STP Alarm handler is in a non-operational state

160

7 Windows/Dialogs

7.12.11 Display the Memory Pool Status
In the MR window, select Popup Menu - [Mode] -> [Memory Pool].

7.12.11.1 Display the Memory Pool Status(When the realtime OS is MRxx conformed to uITRON
specifications V.3.0.)

All the memory pools defined in the configuration are listed in the order of ID number. (The fixed
length data comes first, and the optional length data comes after the fixed length data.) The function
of each item is listed below. (When the realtime OS is MRxx conformed to uITRON specifications
V.3.0.)

Item Contents
ID ID No. of memory pool
BaseAddr Base address of memory pool
Blk_Size Block size of memory pool
Total Blk_cnt Tot a l block count of memory pool
Free Blk_cnt(map) Number of unused blocks and information on unused memory blocks

(bit information)

• The display of the ID field varies depending on which one is specified, fixed length or optional

length.
- If the data is of fixed length, the ID field displays a string "[F]" and memory pool ID number.
- For an arbitrary length, the contents displayed on the first line are the character string "[V]," a

memory pool ID number, and a block ID number. Displayed on the second to fourth lines are
the memory pool ID and block ID numbers. The block ID numbers are enclosed in parentheses.

• When specifying the optional length memory pool, "--" is displayed in the Total Mlk_cut field.
No bit information is displayed in the Free Blk_cnt (map) field.

• When specifying the fixed-length memory pool, the display format of each bit in the memory block
information in Free Blk_cnt (map) is as shown below:

item Contents
'0' Memory block in use (busy)
'1' Memory block not in use (ready)
'-' No memory block

161

7.12.11.2 Display the Memory Pool Status(When the realtime OS is MRxx conformed to uITRON
specifications V.4.0.)

All the memory pools are listed in the order of ID number. The function of each item is listed below.
(When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

Item Contents
ID ID No. of memory pool
Mplatr Attribute of each memory pool
Mpladr Base address of memory pool
Mplsz Size of memory pool
Blkcnt Total block count of fixed length memory pool
Fblkcnt Number of unused blocks and information on unused memory blocks
Memory Pool Queue Displays the ID number and name of tasks waiting in the memory

pool.

• The following are displayed in the Mplatr area:

TA_TFIFO Task wait queue is in FIFO order
TA_TPRI Task wait queue is in task priority order

• The display of the ID field varies depending on which one is specified, fixed length or optional

length.
- If the data is of fixed length, the ID field displays a string "[F]" and memory pool ID number.
- For an arbitrary length, the contents displayed on the first line are the character string "[V]," a

memory pool ID number, and a block ID number. Displayed on the second to fourth lines are
the memory pool ID and block ID numbers. The block ID numbers are enclosed in parentheses.

162

7 Windows/Dialogs

7.12.12 Display the Task Context

7.12.12.1 Display the Task Context

In the MR window, select Popup Menu - [Context...].
The Context dialog box is opened. The Context dialog box is used to reference/specify the context
information of the specified task.
You can also open the Context dialog box by double-clicking the data display area in the task state
display mode .

Enter the task ID number in the Task ID field and click the View button (or press the Enter key).
The context of the specified task appears in the Context field.
• If the task entered in the Task ID field is "RUN" or "DMT" when clicking the View button, the

context is not displayed. (In the Context field, only the task ID and task state are displayed.)
• If a task ID number which does not exist is entered in the Task ID field when clicking the View

button, an error occurs.

163

7.12.12.2 Change the task context

Enter the task ID number in the Task ID field in the Context dialog and click the Set button. The Set
Context dialog is opened.
The Set Context dialog is used to set the specified context register value of the specified task.

Specify the register to be changed in the Register field list box and enter the value to be set in the
"Value:" field.
If an expression description set in the "Value:" field is wrong, or if the specified value is outside the
allowable range set for the specified register, an error occurs.

164

8 Table of Script Commands

165

8. Table of Script Commands

The following script commands are prepared.
The commands with yellow color displaying can be executed at run time.
The command to which "*" adheres behind is not supported according to the product.

8.1 Table of Script Commands (classified by function)

8.1.1 Execution Commands

Command Name Short Name Contents
Go G Program execution with breakpoints
GoFree GF Free run program execution
GoProgramBreak* GPB Run target program with software break point
GoBreakAt* GBA Run target program with software break point
Stop - Stops program execution
Status - Checks the operating status of the MCU
Step S Halts for user input until the specified time has elapsed
StepInstruction SI Step execution of instructions
OverStep O Overstep execution of source lines
OverStepInstruaction OI Overstep execution of instructions
Return RET Executes a source line return
ReturnInstruction RETI Executes an instruction return
Reset - Resets the target MCU
Time - Sets the run time display and checks the current setting

8.1.2 File Operation Commands

Command Name Short Name Contents
Load L Downloads the target program
LoadHex LH Downloads an Intel HEX-format file
LoadMot* LM Downloads a Motorola S-format file
LoadSymbol LS Loads source line/ASM symbol information
Reload - Re-downloads the target program
UploadHex UH Outputs data to an Intel HEX-format file
UploadMot* UM Outputs data to a Motorola S-format file

8.1.3 Register Operation Commands
Command Name Short Name Contents
Register R Checks and sets a register value

8.1.4 Memory Operation Commands

Command Name Short Name Contents
DumpByte DB Displays the contents of memory (in 1-byte units)
DumpWord* DW Displays the contents of memory (in 2-byte units)
DumpLword* DL Displays the contents of memory (in 4-byte units)
SetMemoryByte MB Checks and changes memory contents (in 1-byte units)
SetMemoryWord* MW Checks and changes memory contents (in 2-byte units)
SetMemoryLword* ML Checks and changes memory contents (in 4-byte units)
FillByte FB Fills a memory block with the specified data (in 1-byte

units)
FillWord* FW Fills a memory block with the specified data (in 2-byte

units)
FillLword* FL Fills a memory block with the specified data (in 4-byte

units)
Move - Moves memory blocks
MoveWord* MOVEW Moves memory blocks(in 2-byte units)

8.1.5 Assemble/Disassemble Commands

Command Name Short Name Contents
Assemble A Line-by-line assembly
DisAssemble DA Disassembles memory contents line by line
Module MOD Displays modules names
Scope - Sets and checks the effective local symbol scope
Section SEC Checks section information
Bit* - Checks and sets bit symbols
Symbol SYM Checks assembler symbols
Label - Checks assembler labels
Express EXP Displays an assembler expression

166

8 Table of Script Commands

167

8.1.6 Software Break Setting Commands

Command Name Short Name Contents
SoftwareBreak SB Sets and checks software breaks
SoftwareBreakClear SBC Clears software breaks
SoftwareBreakClearAll SBCA Clears all software breaks
SoftwareBreakDisable SBD Disables software breakpoints
SoftwareBreakDisableAll SBDA Disables all software breaks
SoftwareBreakEnable SBE Enables software breakpoints
SoftwareBreakEnableAll SBEA Enables all software breaks
BreakAt - Sets a software breakpoint by specifying a line No.
BreakIn - Sets a software breakpoint by specifying a function

8.1.7 Address Interrupt Break Setting Commands

Command Name Short Name Contents
ADdressInterruptBreak ADIB Sets and checks the address interrupt break

8.1.8 Hardware Break Setting Commands

Command Name Short Name Contents
HardwareBreak HB Sets and checks a hardware break
BreakMode BM Sets and checks hardware break mode

8.1.9 Real-time Trace Commands

Command Name Short Name Contents
TracePoint TP Sets and checks a trace points
TraceData* TD Realtime trace data display
TraceList* TL Displays disassembled realtime trace data

8.1.10 Script/Log File Commands

Command Name Short Name Contents
Script - Opens and executes a script file
Exit - Exits the script file
Wait - Waits for an event to occur before command input
Pause - Waits for user input
Sleep - Halts for user input until the specified time has elapsed
Logon - Outputs the screen display to a log file
Logoff - Stops the output of the screen display to a log file
Exec - Executes external application

8.1.11 Program Display Commands

Command Name Short Name Contents
Func - Checks function names and displays the contents of

functions
Up* - Displays the calling function
Down* - Displays a called function
Where* - Displays a function call status
Path - Sets and checks the search path
AddPath - Adds the search path
File - Checks a filename and displays the contents of that file

8.1.12 Map Commands

Command Name Short Name Contents
Map* - Checks and sets mapping data

8.1.13 Clock Command

Command Name Short Name Contents
Clock CLK Checks and changes the clock

8.1.14 C Language Debugging Commands

Command Name Short Name Contents
Print - Check value of specified C variable expression
Set - Set specified data in specified C variable expression

8.1.15 Real-time OS Command
Command Name Short Name Contents
MR* - Displays status of realtime OS (MRxx)

8.1.16 Utility Commands

Command Name Short Name Contents
Radix - Sets and checks the radix for numerical input
Alias - Specifies and checks command alias definitions
UnAlias - Cancels the alias defined for a command
UnAliasAll - Cancels all aliases defined for commands
Version VER Displays the version No.
Date - Displays the date
Echo - Displays messages
CD - Window open

168

8 Table of Script Commands

169

8.2 Table of Script Commands (alphabetical order)

Command Name Short Name Contents
AddPath - Adds the search path
ADdressInterruptBreak ADIB Sets and checks the address interrupt break
Alias - Specifies and checks command alias definitions
Assemble A Line-by-line assembly
Bit* - Checks and sets bit symbols
BreakAt - Sets a software breakpoint by specifying a line No.
BreakIn - Sets a software breakpoint by specifying a function
BreakMode BM Sets and checks hardware break mode
CD - Specifies and checks the current directory
Clock CLK Checks and changes the clock
Date - Displays the date
DisAssemble DA Disassembles memory contents line by line
Down* - Displays a called function
DumpByte DB Displays the contents of memory (in 1-byte units)
DumpLword* DL Displays the contents of memory (in 4-byte units)
DumpWord* DW Displays the contents of memory (in 2-byte units)
Echo - Displays messages
Exec - Executes external application
Exit - Exits the script file
Express EXP Displays an assembler expression
File - Checks a filename and displays the contents of that file
FillByte FB Fills a memory block with the specified data (in 1-byte

units)
FillLword* FL Fills a memory block with the specified data (in 4-byte

units)
FillWord* FW Fills a memory block with the specified data (in 2-byte

units)
Func - Checks function names and displays the contents of

functions
Go G Program execution with breakpoints
GoBreakAt* GBA Run target program with software break point
GoFree GF Free run program execution
GoProgramBreak* GPB Run target program with software break point
HardwareBreak HB Sets and checks a hardware break
Label - Checks assembler labels
Load L Downloads the target program
LoadHex LH Downloads an Intel HEX-format file
LoadMot* LM Downloads a Motorola S-format file
LoadSymbol LS Loads source line/ASM symbol information
Logoff - Stops the output of the screen display to a log file
Logon - Outputs the screen display to a log file
Map* - Checks and sets mapping data
Module MOD Displays modules names
Move - Moves memory blocks
MoveWord* MOVEW Moves memory blocks(in 2-byte units)
MR* - Displays status of realtime OS (MRxx)
OverStep O Overstep execution of source lines
OverStepInstruaction OI Overstep execution of instructions
Path - Sets and checks the search path

Pause - Waits for user input
Print - Check value of specified C variable expression.
Radix - Sets and checks the radix for numerical input
Register R Checks and sets a register value
Reload - Re-downloads the target program
Reset - Resets the target MCU
Return RET Executes a source line return
ReturnInstruction RETI Executes an instruction return
Scope - Sets and checks the effective local symbol scope
Script - Opens and executes a script file
Section SEC Checks section information
Set - Set specified data in specified C variable expression
SetMemoryByte MB Checks and changes memory contents (in 1-byte units)
SetMemoryLword* ML Checks and changes memory contents (in 4-byte units)
SetMemoryWord* MW Checks and changes memory contents (in 2-byte units)
Sleep - Halts for user input until the specified time has elapsed
SoftwareBreak SB Sets and checks software breaks
SoftwareBreakClear SBC Clears software breaks
SoftwareBreakClearAll SBCA Clears software breaks
SoftwareBreakDisable SBD Disables software breakpoints
SoftwareBreakDisableAll SBDA Disables all software breaks
SoftwareBreakEnable SBE Enables software breakpoints
SoftwareBreakEnableAll SBEA Enables all software breaks
Status - Checks the operating status of the MCU
Step S Step execution of source line
StepInstruction SI Step execution of instructions
Stop - Stops program execution
Symbol SYM Checks assembler symbols
Time - Sets the run time display and checks the current setting
TraceData * TD Realtime trace data display
TraceList* TL Displays disassembled realtime trace data
TracePoint TP Sets and checks a trace points
UnAlias - Cancels the alias defined for a command
UnAliasAll - Cancels all aliases defined for commands
Up* - Displays the calling function
UploadHex UH Outputs data to an Intel HEX-format file
UploadMot* UM Outputs data to a Motorola S-format file
Version VER Displays the version No.
Wait - Waits for an event to occur before command input
Where* - Displays a function call status

170

9Writing Script Files

171

9. Writing Script Files

This debugger allows you to run script files in a Script Window. The script file contains the controls
necessary for automatically executing the script commands.

9.1 Structural Elements of a Script File
You can include the following in script files:
• Script commands
• Assign statements
• Conditional statements (if, else, endi)

Program execution branches to the statement(s) to be executed according to the result of the
conditional expression.

• Loop statements (while, endw)
A block of one or more statements is repeatedly executed according to the expression.

• break statement
Exits from the innermost loop.

• Comment statements
You can include comments in a script file. The comment statements are ignored when the script
commands are executed.

Specify only one statement on each line of the script file. You cannot specify more than one statement
on a line, or write statements that span two or more lines.

Notes
• You cannot include comments on the same lines as script commands.
• You can nest script files up to five levels.
• You can nest if statements and while statements up to 32 levels.
• If statements must be paired with endi statements, and while statements with endw statements

in each script file.
• Expressions included in script files are evaluated as unsigned types. Therefore, operation cannot

be guaranteed if you use negative values for comparison in if or while statements.
• You can specify up to 4096 characters per line. An error occurs if a line exceeds this number of

characters.
• When a script file containing illegal commands is automatically executed (when you select

[Option] -> [Script]-> [Run] from the Script Window menu after opening a script file, or click
the button in the Script Window), execution of the script file continues even after the error is
detected, except when the script line itself cannot be read. If an error is detected and the script
file continues to be executed, operation after detection of the error cannot be guaranteed.
Reliability cannot therefore be placed on the results of execution after an error has been detected.

9.1.1 Script Command
You can use the same script commands that you enter in the Script Window. You can also call script
files from within other script files (nesting up to 10 levels).

9.1.2 Assign Statement
Assign statement s define and initialize macro variables and assign values. The following shows the
format to be used.

%macro-variable = expression

• You can use alphanumerics and the underscore (_) in macro variable names. However , you

cannot use a numeric to start a macro variable name.
• You can specify any expression of which the value is an integer between 0h and FFFFFFFFh to

be assigned in a macro variable. If you specify a negative number, it is processed as twos
complement.

• You can use macro variables within the expression.
• Always precede macro variables with the "%" sign.

9.1.3 Conditional Statement
In a conditional statement, different statements are executed according to whether the condition is
true or false. The following shows the format to be used.

if (expression)
 statement 1
 else
 statement 2
 endi

• If the expression is t rue (other than 0), statement 1 is executed. If false, (0), statement 2 is

executed.
• You can omit the else statement. If omitted and the expression is false, execution jumps to the

line after the endi statement.
• if statements can be nested (up to 32 levels).

9.1.4 Loop Statement(while,endw) and Break Statement
In loop statements, execution of a group of statements is repeated while the expression is true. The
following shows the format to be used.

while (expression)
 statement
 endw

• If the expression is t rue, the group of statements is repeated. If false, the loop is exited (and the

statement following the endw statement is executed).
• You can nest while statements up to 32 levels.
• Use the break statement to forcibly exit a while loop. If while statements are nested, break exits

from the inner most loop.

172

9Writing Script Files

173

9.1.5 Comment statements
You can include comments in a script file. Use the following format.

;character string

• Write the statement after a semicolon (;). You can include only spaces and tabs in front of the

semicolon
• Lines with comment statements are ignored when the script file is executed.

9.2 Writing Expressions
This debugger allows you to use expressions for specifying addresses, data, and number of passes, etc.
The following shows example commands using expressions.

>DumpByte TABLE1
>DumpByte TABLE1+20

You can use the following elements in expressions:

• Constants
• Symbols and labels
• Macro variables
• Register variables
• Memory variables
• Line Nos.
• Character constants
• Operators

9.2.1 Constants
You can use binary, octal, decimal, or hexadecimals. The prefix or suffix symbol attached to the
numerical value indicates which radix is used.
The debugger for M32C and M16C/R8C and 740

 Hexadecimal Decimal Octal Binary *
Prefix 0x,0X @ None %
Suffix h,H None o,O b,B
Examples 0xAB24

AB24h @1234 1234o %10010
10010b

*You can only specify % when the predetermined radix is hexadecimal.

• If you are inputting a radix that matches the predetermined radix, you can omit the symbol that

indicates the radix (excluding binary).
• Use the RADIX command to set the predetermined value of a radix. However, in the cases shown

below, the radix is fixed regardless of what you specify in a RADIX command.

Type Radix
Address Hex
Line No.
No. of executions
No. of passes

Dec

9.2.2 Symbols and labels
You can include symbols and labels defined in your target program, or symbols and labels defined
using the Assemble command.
• You can include alphanumerics, the underscore (_), period (.), and question mark (?) in symbols

and labels. However, do not start with a numeric.
• Symbols and labels can consist of up to 255 characters.
• Uppercase and lowercase letters are unique.

Product Name Notes
The debugger for M32R,
The debugger for M32C,
The debugger for M16C/R8C,

• You cannot include the assembler structured instructions,
pseudo instructions, macro instructions, operation code, or
reserved words (.SECTION, .BYTE, switch, if, etc.).

• You cannot use strings that start with two periods (..) for
symbols or labels.

9.2.2.1 Local label symbol and scope

This debugger supports both global label symbols, which can be referenced from the whole program
area, and local label symbols, which can only be referenced within the file in which they are declared.
The effective range of local label symbols is known as the scope, which is measured in units of object
files. The scope is switched in this debugger in the following circumstances:
• When a command is entered

The object file that includes the address indicated by the program counter becomes the current
scope. When the SCOPE command is used to set the scope, the specified scope is the active scope.

• During command execution
The current scope automatically switches depending on the program address being handled by
the command.

174

9Writing Script Files

175

9.2.2.2 Priority levels of labels and symbols

The conversion of values to labels or symbols, and vice versa, is subject to the following levels of
priority:
• Conversion of address values
1. Local labels
2. Global labels
3. Local symbols
4. Global symbols
5. Local labels outside scope
6. Local symbols outside scope

• Conversion of data values
1. Local symbols
2. Global symbols
3. Local labels
4. Global labels
5. Local labels outside scope
6. Local symbols outside scope

• Conversion of bit values
1. Local bit symbols
2. Global bit symbols
3. Local bit symbols outside scope

9.2.3 Macro Variables
Macro variables are defined by assign statements in the script file. See Section"9.1.2Assign
Statement" in the Reference part for details. Precede variables with '%' for use as macro variables.
• You can specify alphanumerics and/or the underbar (_) in the variable name following the percent

sign (%). However , do not star t the names with a numeric.
• You cannot use the names of registers as variable names.
• Uppercase and lowercase letters are differentiated in variable names.
• You can define a maximum of 32 macro variables. Once defined, a macro variable remains valid

until you quit the debugger.

Macro variables are useful for specifying the number of iterations of the while statement.

9.2.4 Register variables
Register variables are used for using the values of registers in an expression. Precede the name of the
register with '%' to use it as a register variable. Use the following format.

Product Name Register name
The debugger for M32C PC, USP, ISP, INTB, FLB, SVF, SVP, VCT,

 DMD0,DMD1, DCT0, DCT1, DRC0, DRC1,
 DMA0,DMA1, DCA0, DCA1, DRA0, DRA1,
 0R0, 0R1, 0R2, 0R3, 0A0, 0A1, 0FB, 0SB <- Bank 0 Register
 1R0, 1R1, 1R2, 1R3, 1A0, 1A1, 1FB, 1SB <- Bank 1 Register

The debugger for M16C/R8C PC, USP, ISP, SB, INTB, FLG
0R0, 0R1, 0R2, 0R3, 0A0, 0A1, 0FB <- Bank 0 Register
1R0, 1R1, 1R2, 1R3, 1A0, 1A1, 1FB <- Bank 1 Register

Uppercase and lowercase letters are not unique in register names. You can specify either.

9.2.5 Memory variables
Use memory variables to use memory values in expressions. The format is as follows:
[Address].data-size
• You can specify expressions in addresses (you can also specify memory variables).
• The data size is specified as shown in the following table. (The debugger for 740 doesn't support

four byte length.)

data Length Debugger Specification
1 Byte All B or b

The debugger for M32R H or h 2 Bytes
Other W or w
The debugger for M32R W or w 4 bytes
The debugger for M32R, M16C/R8C L or l

Example: Referencing the contents of memory at address 8000h in 2 bytes
[0x8000].W

• The default data size is word, if not specified.

9.2.6 Line Nos.
These are source file line Nos. The format for line Nos. is as follows:

#line_no
#line_no."source file name"

• Specify line Nos. in decimal.
• You can only specify line Nos. in which software breaks can be set. You cannot specify lines in

which no assembler instructions have been generated, including comment lines and blank lines.
• If you omit the name of the source file, the line Nos. apply to the source file displayed in active

Editor(Source) Window.
• Include the file attribute in the name of the source file.
• Do not include any spaces between the line No. and name of the source file.

176

9Writing Script Files

177

9.2.7 Character constants
The specified character or character string is converted into ASCII code and processed as a constant.
• Enclose characters in single quote marks.
• Enclose character strings in double quote marks.
• The character string must consist of one or two characters (16 bits max.). If more than two

characters are specified, the last two characters of the string are processed. For example, "ABCD"
would be processed as "CD", or value 4344h.

9.2.8 Operators
The table below lists the operators that you can use in expressions.
• The priority of operators is indicated by the level, level 1 being the highest and level 8 the lowest.

If two or more operators have the same level of priority, they are evaluated in order from the left
of the expression.

Operator Function Priority level
() Brackets level 1
+, -, ~ Monadic positive, monadic

negative, monadic logical NOT
level 2

*, / Dyadic multiply, dyadic divide level 3
+, - Dyadic add, dyadic subtract level 4
>>, Right shift, left shift level 5
& Dyadic logical AND level 6
|, ^ Dyadic logical OR, dyadic

exclusive OR
level 7

<, <=, >, >=, ==, != Dyadic comparison level 8

10. C/C++ Expressions

10.1 Writing C/C++ Expressions
You can use C/C++ expressions consisting of the tokens shown below for registering C watchpoints
and for specifying the values to be assigned to C watchpoints.

Example Token
Immediate values 10, 0x0a, 012, 1.12, 1.0E+3
Scope ::name, classname::member
Mathematical operators +, -, *, /
Pointers *, **, ...
Reference &
Sign inversion -
Member reference using dot operator Object.Member
Member reference using arrow Pointer->Member, this->M mber e
Pointers to Members Ob ct.*var, Pointer->*var je
Parentheses (,)
Arrays Array[2], DArray[2] [3] , ...
Casting to basic types (int), (char*), (unsigned long *), ...
Casting to typedef types (DWORD), (ENUM), ...
Variable names and function names var, i, j, func, ...
Character constants 'A', 'b', ...
Character string literals "abcdef", "I am a boy.", ...

10.1.1 Immediate Values
You can use hexadecimals, decimals, octals as immediate values. Values starting with 0x are
processed as hexadecimals, those with 0 as octals, and those without either prefix as decimals.
Floating-point numbers can also be used to assign values to variables.

Notes
• You cannot register only immediate values as C watchpoints.
• The immediate value is effective only when it is used in C/C++ language expressions that specify

C/C++ watchpoints or when it is used to specify the value to be assigned to those expressions.
When using floating-point numbers, operation cannot be performed on an expression like 1.0+2.0.

178

10C/C++ Expressions

179

10.1.2 Scope Resolution
The scope resolution operator :: is available as following.
Global scope: ::valiable name

::x, ::val
Class scope: class name::member name, class name::class name::member name, e.g.

T::member, A::B::member

10.1.3 Mathematical Operators
You can use the addition (+), subtraction (-), multiplication (*), and division (/) mathematical
operators. The following shows the order of priority in which they are evaluated.

(*), (/), (+), (-)

Notes
• There is no support currently for mathematical operators for floating point numbers.

10.1.4 Pointers
Pointers are indicated by the asterisk (*). You can use pointer to pointers **, and pointer to pointer to
pointers ***, etc.

Examples: "*variable_name", "**variable_name", etc.

Notes
• Immediate values cannot be processed as pointers. That is, you cannot specify *0xE000, for

example.

10.1.5 Reference
References are indicated by the ampersand (&). You can only specify "&variable_name".

10.1.6 Sign Inversion
Sign inversion is indicated by the minus sign (-). You can only specify "-immediate_value" or
"-variable_name". No sign inversion is performed if you specify 2 (or any even number of) minus signs.

Notes
• There is no support currently for sign inversion of floating point numbers.

10.1.7 Member Reference Using Dot Operator
You can only use "variable_name.member_name" for checking the members of structures and unions
using the dot operator.
Example:

class T {
public:
int member1;
char member2;
};
class T t_cls;
class T *pt_cls = &t_cls;

In this case, t_cls.member1, (*pt_cls).member2 correctly checks the members.

10.1.8 Member Reference Using Arrow
You can only use "variable_name->member_name" for checking the members of structures and unions
using the arrow.
Example:

class T {
public:
int member1;
char member2;
};
class T t_cls;
class T *pt_cls = &t_cls;

In this case, (&t_cls)->member1, pt_cls->member2 correctly checks the members.

180

10C/C++ Expressions

181

10.1.9 Pointers to Members
Pointers to members using the ".*" or "->*" operator can be refered only in the forms of variable
name .* member name or variable name ->* member name.
Example:

class T {
public:
int member;
};
class T t_cls;
class T *pt_cls = &t_cls;

int T::*mp = &T::member;

In this case, t_cls.*mp and tp_cls->*mp can correctly reference the variable of pointer-to-member type.

Note
• Note that the expression *mp cannot considered as the variable of pointer-to-member type.

10.1.10 Parentheses
Use the '(' and ')' to specify priority of calculation within an expression.

10.1.11 Arrays
You can use the ' [' and '] ' to specify the elements of an array. You can code arrays as follows:
"variable_name [(element_No or variable)] ", "variable_name [(element_No or variable)]
[(element_No or variable)] ", etc.

10.1.12 Casting to Basic Types
You can cast to C basic types char, short, int, and long, and cast to the pointer types to these basic
types. When casting to a pointer type, you can also use pointers to pointers and pointers to pointers to
pointers, etc.
Note that if signed or unsigned is not specified, the default values are as follows:

Basic type Default
char unsigned
short signed
int signed
long signed

Notes
• Of the basic types of C++, casts to bool type, wchar_t type, and floating-point type (float or

double) cannot be used.
• Casts to register variables cannot be used.

10.1.13 Casting to typedef Types
You can use casting to typedef types (types other than the C basic types) and the pointer types to
them. When casting to a pointer type, you can also use pointers to pointers and pointers to pointers to
pointers, etc.

Notes
• You cannot cast to struct or union types or the pointers to those types.

10.1.14 Variable Name
Variable names that begin with English alphabets as required
under C/C++ conventions can be used.
The maximum number of characters for variable name is 255.
And 'this' pointer is available.

10.1.15 Function Name
Function names that begin with English alphabets as required
under C conventions can be used.
In the case of C++, no function names can be used.

10.1.16 Character Constants
You can use characters enclosed in single quote marks (') as character constants. For example, 'A', 'b' ,
etc. These character constants are converted to ASCII code and used as 1-byte immediate values.

Notes
• You cannot register character constants only as C watchpoints.
• Character constants are valid only when used in a C/C++ expression that specifies a C

watchpoint, and when specifying a value to be assigned (character constants are processed in the
same manner as immediate values).

10.1.17 Character String Literals
You can use character strings enclosed in double quote marks (") as character string literals.
Examples are "abcde", "I am a boy.", etc.

Notes
• Character string literals can only be placed on the right side of an assignment operator in an

expression. They can only be used when the left side of the assignment operator is a char array or
a char pointer type. In all other cases, a syntax error results.

182

10C/C++ Expressions

183

10.2 Display Format of C/C++ Expressions
C/C++ expressions in the data display areas of the C Watch Windows are displayed as their type
name, C/C++ expression (variable name), and result of calculation (value), as shown below.
The following describes the display formats of the respective types.

10.2.1 Enumeration Types
• When the result (value) of calculation has been defined, its name is displayed.

(DATE) date = Sunday(all Radices)
• If the result (value) of calculation has not been defined, it is displayed as follows:

(DATE) date = 16 (when Radix is in initial state)
(DATE) date = 0x10(when Radix is hex)
(DATE) date = 0000000000010000B(when Radix is binary)

10.2.2 Basic Types
• When the result of calculation is a basic type other than a char type or floating point type, it is

displayed as follows:
(unsigned int) i = 65280(when Radix is in initial state)
(unsigned int) i = 0xFF00(when Radix is hex)
(unsigned int) i = 1111111100000000B(when Radix is binary)

• When the result of calculation is a char type, it is displayed as follows:
(unsigned char) c = 'J'(when Radix is in initial state)
(unsigned char) c = 0x4A(when Radix is hex)
(unsigned char) c = 10100100B(when Radix is binary)

• When the result of calculation is a floating point, it is displayed as follows:
(double) d = 8.207880399131839E-304(when Radix is in initial state)
(double) d = 0x10203045060708(when Radix is hex)
(double) d = 0000000010.....1000B(when Radix is binary)
(..... indicates abbreviation)

10.2.3 Pointer Types
• When the result of calculation is a pointer type to other than a char* type, it is displayed in

hexadecimal as follows:
(unsigned int *) p = 0x1234(all Radices)

• When the result of calculation is a char* type, you can select the display format of the string or a
character in the C Watch window's menu [Display String].
- string types

(unsigned char *) str = 0x1234 "Japan"(all Radices)
- character types

(unsigned char *) str = 0x1234 (74 'J')(all Radices)
l When the result of calculation is a char* type, it is displayed as follows:

(unsigned char *) str = 0x1234 "Jap(all Radices)
If the string contains a non-printing code prior to the code to show the end of the string (0), it is
displayed up to the non-printing character and the closing quote mark is not displayed.

You can double-click on lines indicated by a '+' to see the members of that structure or union. The '+'
changes to a '-' while the members are displayed. To return to the original display, double click the
line, now indicated by the '-'.

184

10C/C++ Expressions

10.2.4 Array Types
• When the result of calculation is an array type other than a char [] type, the starting address is

displayed in hex as follows:
(signed int [10]) z = 0x1234(all Radices)

• When the result of calculation is a char [] type, it is displayed as follows:
(unsigned char [10]) str = 0x1234 "Japan"(all Radices)

If the string contains a non-printing code prior to the code to show the end of the string (0), it is
displayed up to the non-printing character and the closing quote mark is not displayed.

(unsigned char [10]) str = 0x1234 "Jap(all Radices)
Also if the string contains more than 80 characters, the closing quote mark is not displayed. When the
C/C++ expression is an array type as same as pointer type, a '+' is display to the left of the type name.
You can see the elements of the array by using this indicating. (for the details, refer to "10.2.3
Pointer Types") When the number of the array elements is more than 100, the following dialog box
open. Specify the number of the elements in the dialog box.

The elements from the index specified in "Start" to the index specified in "End" are displayed. If you
specify the value more than the max index of the array, the value is regarded as max index of the
array. When you click the "Cancel" button, the elements are not displayed.

10.2.5 Function Types
• When the result of calculation is a function type, the starting address is displayed in hex as

follows:
(void()) main = 0xF000(all Radices)

10.2.6 Reference Types
• When the result of calculation is a reference type, the reference address is displayed in hex as

follows:
(signed int &) ref = 0xD038(all Radices)

10.2.7 Bit Field Types
• When the result of calculation is a bit field type, it is displayed as follows:

(unsigned int :13) s.f = 8191(when Radix is in initial state)
(unsigned int :13) s.f = 0x1FFF(when Radix is hex)
(unsigned int :13) s.f = 1111111111111B(when Radix is binary)

185

10.2.8 When No C Symbol is Found
If the calculated expression contained a C symbol that could not be found, it is displayed as follows:

() x = <not active>(all Radices)

10.2.9 Syntax Errors
• When the calculated expression contains a syntax error, it is displayed as follows:

() str*(p = <syntax error>(all Radices)
(where str*(p is the syntax error)

10.2.10 Structure and Union Types
• When the result of calculation is a structure or union type, the address is displayed in hex as

follows:
(Data) v = 0x1234 (all Radices)

If, as in structures and unions, the C/C++ expression consists of members, a '+' is displayed to the left
of the type name (tag name).

You can double-click on lines indicated by a '+' to see the members of that structure or union. The '+'
changes to a '-' while the members are displayed. To return to the original display, double click the
line, now indicated by the '-'. This function allows you to check the members of structures and unions.

Attention
If a variable is declared with the same name as the type definition name declared by typedef, you
cannot reference that variable.
• Register Variables
When the result of calculation is a register variable, "register" is displayed to the left of the type name
as follows:

(register signed int) j = 100

186

11 Display the Cause of the Program Stoppage

187

11. Display the Cause of the Program Stoppage

If the program is stoped by the debug function, the cause of the stoppage is displayed in the Output
window or Status window ([Platform] sheet).

The contents of a display and the meaning of "the cause of the stoppage" are as follows.

Display The cause of the stoppage
Halt The stop by the [Halt Program] button/menu
S/W break Software break
Address match interrupt break Address interrupt break
H/W event, Combination Hardware break, logical combination AND or AND(same

time)condition was met
H/W event, Combination, Ax Hardware break, logical combination OR condition was

met
 (Ax: The event number of which condition was met.)

H/W event, State transition, from xx Hardware break, State Transition condition was met
 (from xx: previous state (start, state1, state2))

H/W event, State transition, Timeout Hardware break, State Transition, Time Out condition
was met

H/W event, Access protect error Protect break

Note
To be able to show the cause of break or not depends on the connected target. Some targets may
always show "Halt" or show "---".

12. Attention

12.1 Common Attention

12.1.1 File operation on Windows
The following points should be noted:
1. File Name and Directory Name

- Operation is not guaranteed if your directory names and filenames include kanji.
- Use only one period in a filename.

2. Specify the File and Directory
- You cannot use "..." to specify two levels upper directories.
- You cannot use a network pathname. You must allocate a drive.

12.1.2 Area where software breakpoint can be set
The area which can be set for software breakpoint varies depending on the type of MCU.

12.1.2.1 The debugger for M32C

The area which can be set for software breakpoint varies depending on the processor mode.

Processor Mode Can be set area
Single Chip Internal RAM, Internal ROM
Memory Extension Internal RAM, Internal ROM

Emulation memory (Only the Internal area)
Micro Processor Internal RAM

Emulation memory (Only the Internal area)

To stop the target program outside the emulation memory area, use the Come execution.

ATTENTION
• The setting for emulation memory is available when an emulation memory board is connected to

the emulator.
• Software breaks can not be set to the internal ROM, when the target program is running.

188

12Attention

12.1.2.2 The debugger for M16C/R8C

The area which can be set for software breakpoint varies depending on the processor mode.

Processor Mode Can be set area
Single Chip Internal RAM, Internal ROM
Memory Extension Internal RAM, Internal ROM

Emulation memory
Micro Processor Internal RAM

Emulation memory

ATTENTION
• The setting for emulation memory is available when an emulation memory board is connected to

the emulator.
• Software breaks can not be set to the internal ROM, when the target program is running.

12.1.3 Get or set C variables
• If a variable is declared with the same name as the type definition name declared by typedef, you

cannot reference that variable.
• Values cannot be changed for register variables.
• Values cannot be changed for 64 bit width variables (long long, double, and so on).
• Values cannot be changed for C/C++ expressions that do not indicate the memory address and

size.
• For the sake of optimization, the C compiler may place different variables at the same address. In

this case, values of the C variable may not be displayed correctly.
• Literal character strings can only be substituted for char array and char pointer type variables.
• No arithmetic operations can be performed on floating point types.
• No sign inversion can be performed on floating point types.
• Casting cannot be performed on floating point types.
• Casting cannot be performed on register variables.
• Casting cannot be performed on structure types, union types, or pointer types to structure or

union types.
• Character constants and literal character strings cannot contain escape sequences.
• The following values can be substituted for the bit-fields.

- integer constants, character constants, and enumerators
- variables of bool types, characters types, integers types, and enumeration types
- bit-field
When the substituted value is larger than the size of the bit-field, it will be truncated.

• The bit-field member allocated in the SFR area might not be transformed into a correct value.
• While the target program is running, values of local variables and bit-fields cannot be modified.

189

12.1.4 Function name in C++
• When you input the address using the function name in setting display address, setting break

points, and so on, you can not specify the member function, operator function, and overloaded
function, of a class.

• You can not use function names for C/C++ expression
• No script commands (e.g., breakin and func) can be used in which function names are specified

for arguments.
• In address value specifying columns of dialog boxes, no addresses can be specified using function

names.
• The pointers for a member function can not be referred correctly in C watch window.

12.1.5 Option settings for download modules
These options, which can be set in "Debug Settings" dialog box, are invalid for this debugger:
• Offset : specified value is regarded as �0�
• Access size : specified value is regarded as �1�
• Perform memory verify during download : Not supported.

12.1.6 Debugging multi modules
If you register two or more absolute module file in one session, you can download only one file in same
time.
If you register one absolute module file and one or more machine language file in one session, you can
download all file in same time.

12.1.7 Synchronized debugging
Synchronized debugging function is not available.

12.1.8 Compact Emulator reset switch
If system reset of the compact emulator does not function normally, terminate the debugger, turn ON
the compact emulator again, and restart the debugger.
Then re-download the program.

190

12Attention

12.2 Attention of the M32C Debugger

12.2.1 Stack area used by the emulator
The emulator uses the interrupt stack area as its work area (20 bytes).
When debugging, allocate a sufficient interrupt stack area consisting of the regularly used size plus
20 bytes.

12.2.2 Interrupt stack pointer when resetting the target program
The emulator sets the interrupt stack pointer (ISP) to 0500h when resetting the target program.
Remember that the interrupt stack pointer (ISP) is set to 0000h on a unit at the production stage.

12.2.3 Option of C Compiler/Assembler/Linker
The information may not be downloaded/debugged normally depending on the option designation of
the compiler, assembler, and linker.
Please refer to the following for the option specification.
Refer to "12.4 Options for compiler, assembler, and linker"

The compiler that can be used by M32C debugger:
• NCxx
• the IAR EC++ Compiler
• the IAR C Compiler

12.2.4 Target MCU HOLD terminal
When the target MCU HOLD terminal is set to LOW, you cannot stop execution of the target program.
Set the HOLD terminal to High and try to stop the target program again.
Even if the HOLD terminal is set to LOW for a short period of time, you may stop the target program
with the HOLD terminal set to LOW.
If this happens, try to stop the target program again.

191

12.2.5 Hardware Event
If you specify word-length (2-byte length) data from an odd address as an event in the following data
accesses, the event is not detected. Also, even when any other bit of the address that contains a
specified bit is accessed during bit access, the event may become effective.

- Hardware Break Event
- Real-time Trace Event

• Examples to specify the event for data access with its value comparison.

Address Access size 16bit data bus 8bit data bus
Even Address WORD

ex.: mov.w #1234h, 8000h
Address: 8000h
Data: 1234h
Data Mask: Don't care

<-

Even Address BYTE
ex.: mov.b #34h, 8000h

Address: 8000h
Data: 34h
Data Mask: 00FFh

<-

Odd Address WORD
ex.: mov.w #1234h, 8001h

Not supported <-

Odd Address BYTE
ex.: mov.b #34h, 8001h

Address: 8001h
Data: 3400h
Data Mask: FF00h

Address: 8001h
Data: 34h
Data Mask: 00FFh

12.2.6 CPU rewrite
• Please don't rewrite the block 0 (FFC000h - FFFFFFh). If you did, emulator gets out of control.
• When you enabled CPU rewrite mode, you can not use the debug functions below:

- Setting address match interrupt break points
- Setting software break points to the internal flash ROM
- COME execution to the internal flash ROM

• You can not use the functions below to the CPU rewrite control program (from setting CPU
rewrite mode select bit to clearing it). If you use these functions, it may be unable to shift to CPU
rewrite mode, or the contents of a flash ROM may be unable to be read to normalcy.
- Single step
- Software break points
- Hardware break points
- COME execution

To see the data which were rewritten by the program, break the program out of the CPU rewrite
control program and see by dump window, memory window, and so on.

192

12Attention

12.3 Attention of the M16C/R8C Debugger

12.3.1 Map of stack area used by the compact emulator
The compact emulator uses the interrupt stack area as its work area (20 bytes).
When debugging, allocate a sufficient interrupt stack area consisting of the regularly used size plus
20 bytes.

12.3.2 Interrupt stack pointer when resetting the target program
The emulator sets the interrupt stack pointer (ISP) to 0500h when resetting the target program.
Remember that the interrupt stack pointer (ISP) is set to 0000h on a unit at the production stage.

12.3.3 Options for compiler, assembler, and linker
The information may not be downloaded/debugged normally depending on the option designation of
the compiler, assembler, and linker.
Please refer to the following for the option specification.
Refer to "12.4 Options for compiler, assembler, and linker"

The compiler that can be used by M16C/R8C debugger:
• NCxx
• the IAR EC++ Compiler
• the IAR C Compiler
• the TASKING C Compiler

12.3.4 TASKING C Compiler
When you debug programs compiled by the TASKING C Compiler "CCM16", the type of bit field is
fixed on "unsigned short int". Because CCM16 outputs the debug information for the type of bit field
as "unsigned short int."

12.3.5 Target MCU HOLD terminal
When the target MCU HOLD terminal is set to LOW, you cannot stop execution of the target program.
Set the HOLD terminal to High and try to stop the target program again. Even if the HOLD terminal
is set to LOW for a short period of time, you may stop the target program with the HOLD terminal set
to LOW. If this happens, try to stop the target program again.

12.3.6 Hardware break function
While running program, the following operations are not performed:
• execute BreakMode command
• open H/W break point setting window

193

12.3.7 Hardware Event
If you specify word-length (2-byte length) data from an odd address as an event in the following data
accesses, the event is not detected. Also, even when any other bit of the address that contains a
specified bit is accessed during bit access, the event may become effective.
• Hardware Break Event
• Real-time Trace Event

• Examples to specify the event for data access with its value comparison.

Address Access size 16bit data bus 8bit data bus
Even Address WORD

ex.: mov.w #1234h, 8000h
Address: 8000h
Data: 1234h
Data Mask: Don't care

<-

Even Address BYTE
ex.: mov.b #34h, 8000h

Address: 8000h
Data: 34h
Data Mask: 00FFh

<-

Odd Address WORD
ex.: mov.w #1234h, 8001h

Not supported <-

Odd Address BYTE
ex.: mov.b #34h, 8001h

Address: 8001h
Data: 3400h
Data Mask: FF00h

Address: 8001h
Data: 34h
Data Mask: 00FFh

12.3.8 Memory space expansion
• Memory mapping

If you select "4MB Mode" for Memory Space Expansion in MCU setting dialog, the memory map
depends on the other setting of mcu:

Processor mode PM13 OFS Access area

 of the MCU
Bank0
-
Bank5

Bank6 Bank7

0 40000h - 7FFFFh EXT EXT MAP 1
1 40000h - 7FFFFh EXT EXT MAP

40000h - 7FFFFh EXT EXT MAP 0
80000h - BFFFFh EXT EXT MAP
40000h - 7FFFFh EXT EXT MAP

Memory
Expansion Mode

0

1
80000h - BFFFFh EXT MAP ---
40000h - 7FFFFh EXT EXT MAP
80000h - BFFFFh EXT EXT ---

0

C0000h - FFFFFh --- --- MAP
40000h - 7FFFFh EXT EXT MAP

Microprocessor
Mode

1
80000h - BFFFFh EXT MAP ---

PM13 : bit3 of processor mode register1 (00005h)
OFS : offset bit (bit2 of data bank register (0000Bh))
EXT : memory access to the target system
MAP : memory access to the area which depends on MAP setting in MCU Settingts dialog (INT
means emulation memory in the compact emulator, EXT means target system)

194

12Attention

Memory access to the expanded area
C watch window, Memory window, and other debugging windows can not show correct values, when it
shows the expanded area of the memory space expansion fuction. Debugging windows does not
consider the bank register.
To see this area, please use script commands listed below and specify the bank, the status of offest bit
and the address for M16C:

DumpByte2, DumpWord2, or DumpLword2

You can also use the commands below:

DumpByte2, DumpWord2, DumpLword2, SetMemoryByte2, SetMemoryWord2,
SetMemoryLword2, FillByte2, FillWord2, FillLword2, Move2, MoveWord2

Caution
The function below may not work as expected when these functions access to the expanded area.
Debbugger can not distinguish the bank information from BUS information.

- RAM monitor function (RAM Monitor window, C Watch window, etc)
- Coverage measurement function (Coverage window, Coverage command, etc)
- Memory protect function (Protect window, Protect command, etc)
- Hardware event (H/W break event, Real-time trace event, Time measurement event, etc)

About hardware event, you can specify SameAND combination for the event you need and the status
of bank select register, to detect the access to collect bank.

12.3.9 CPU rewrite
• Please don't rewrite the last block. If you did, emulator gets out of control.
• When you enabled CPU rewrite mode, you can not use the debug functions below:

- Setting software break points to the internal flash ROM
- COME execution to the internal flash ROM

• You can not use the functions below to the CPU rewrite control program (from setting CPU
rewrite mode select bit to clearing it). If you use these functions, it may be unable to shift to CPU
rewrite mode, or the contents of a flash ROM may be unable to be read to normalcy.
- Single step
- Software break points
- Address match interrupt break points
- Hardware break points
- COME execution
To see the data which were rewritten by the program, break the program out of the CPU rewrite
control program and see by dump window, memory window, and so on.

195

12.4 Options for compiler, assembler, and linker
We do not evaluate other settings, so we can not recommend to append other options.

12.4.1 When Using NCxx
When -O, -OR or -OS option is specified at compilation, the source line information may not be
generated normally due to optimization, causing step execution to be operated abnormally.
To avoid this problem, specify -ONBSD (or -Ono_Break_source_debug) option together with -O, -OR or
-OS option.

12.4.2 When Using the IAR C Compiler (EW)
Please specify the project setting by following process.
1. The Setting in the IAR Embedded Workbench

When you select the menu [Project] -> [Options...], the dialog for "Options For Target " target""
will open. In this dialog, please select the "XLINK" as category, and set the project setting.
- Output Tab

In the "Format" area, check the "Other" option, and select the "ieee-695" as "Output Format".
Include Tab
In the "XCL File Name" area, specify your XCL file (ex: lnkm16c.xcl).

2. Edit the XCL file
Add the command line option "-y" to your XCL file. The designation of "-y" option varies
depending on the product.

Product Name -y Option
The debugger for M32C -ylmb
The debugger for M16C/R8C -ylmb

3. Build your program after the setting above.

In the options other than the above-mentioned, the operation check is not done. Please acknowledge
that the options other than the above-mentioned cannot be recommended.

196

12Attention

12.4.3 When Using the IAR EC++ Compiler (EW)
Please specify the project setting by following process.
1. The Setting in the IAR Embedded Workbench

When you select the menu [Project] -> [Options...], the dialog for "Options For Target " target""
will open. In this dialog, please select the "XLINK" as category, and set the project setting.
- Output Tab

In the "Format" area, check the "Other" option, and select the "elf/dwarf" as "Output Format".
- Include Tab

In the "XCL File Name" area, specify your XCL file (ex: lnkm32cf.xcl).
2. Edit the XCL file

Add the command line option "-y" to your XCL file. The designation of "-y" option varies
depending on the product.

Product Name -y Option
The debugger for M32C -yspc
The debugger for M16C/R8C -yspc

3. Build your program after the setting above.

In the options other than the above-mentioned, the operation check is not done. Please acknowledge
that the options other than the above-mentioned cannot be recommended.

197

12.4.4 When Using the IAR C Compiler (ICC)

12.4.4.1 Specify the Option

Please compile according to the following procedures and link.
• At compilation

Specify the "-r" option.
• Before linking

Open the linker's option definition file (extension .xcl) to be read when linking and add
"-FIEEE695" and "-y" options. The designation of "-y" option varies depending on the product.

Product Name -y Option
The debugger for M32C -ylmb
The debugger for M16C/R8C -ylmb

• At link

Specify the linker's option definition file name using "-f" option.

In the options other than the above-mentioned, the operation check is not done. Please acknowledge
that the options other than the above-mentioned cannot be recommended.

12.4.4.2 Command Execution Examples

The following shows examples of entering commands depending on the product
• The debugger for M32C

>ICCMC80 -r file1.c<Enter>
>ICCMC80 -r file2.c<Enter>
>XLINK -o filename.695 -f lnkm80.xcl file1 file2<Enter>

• The debugger for M16C/R8C

>ICCM16C -r file1.c<Enter>
>ICCM16C -r file2.c<Enter>
>XLINK -o filename.695 -f lnkm16c.xcl file1 file2<Enter>

The XCL file name varies depending on the product and memory model. For details, see the ICCxxxx
manual.

198

12Attention

12.4.5 When Using the TASKING C Compiler (EDE)
Please specify the project setting by following process.
1. Select menu - [EDE]->[C Compiler Option]->[Project Options...]. The "M16C C Compiler Options

[Project Name]" dialog opens.
Please set as follows by this dialog.
- Optimeze Tab

Please specify "No optimization" by Optimization level.
- Debug Tab

 Please check only ""Enable generation of any debug information(including type checkeing)""
and "Genarate symbolic debug information".

2. Select menu - [EDE]->[Linker/Locator Options...]. The "M16C Linker/Locator Options [Project

Name]" dialog opens.
Please set as follows by this dialog.
- Format Tab

Please specify "IEEE 695 for debuggers(abs)" by Output Format.
3. Build your program after the setting above.

In the options other than the above-mentioned, the operation check is not done. Please acknowledge
that the options other than the above-mentioned cannot be recommended.

12.4.6 When Using the TASKING C Compiler (CM)

12.4.6.1 Specify the Option

Please specify "-g" and "- O0" options when compiling.
In the options other than the above-mentioned, the operation check is not done. Please acknowledge
that the options other than the above-mentioned cannot be recommended.

12.4.6.2 Command Execution Examples

The following shows examples of entering commands.
>CM16 -g -O0 file1.c<Enter>

199

[MEMO]

200

M16C R8C Compact Emulator Debugger V.1.03
User's Manual

Publication Date: Jul. 01, 2007 Rev.1.00

Published by:
Sales Strategic Planning Div.
Renesas Technology Corp.

Edited by: Microcomputer Tool Development Department
Renesas Solutions Corp.

© 2007. Renesas Technology Corp. and Renesas Solutions Corp., All rights reserved. Printed in Japan.

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

M16C R8C Compact Emulator Debugger V.1.03

REJ10J1609-0100

User’s Manual

	1. Features
	1.1 RAM Monitor Function
	1.1.1 RAM Monitor Area
	1.1.2 Sampling Period
	1.1.3 Related Windows

	1.2 Break Functions
	1.2.1 Software Breaks Function
	1.2.1.1 Setting of software breakpoint
	1.2.1.2 Area where software breakpoint can be set

	1.2.2 Hardware Breaks Function
	1.2.3 Address Interrupt Breaks Function
	1.2.3.1 Setting and Deleting a Break Points

	1.3 Real-Time Trace Function
	1.3.1 Trace Area
	1.3.2 Trace Condition Setting
	1.3.3 Trace Data Write Condition

	1.4 Real-Time OS Debugging Function
	1.5 GUI Input/Output Function

	2. About the Compact Emulator
	2.1 Communication method
	2.2 Function table

	3. Before starting the debugger
	3.1 Communication method by emulator
	3.1.1 USB Interface

	3.2 Download of Firmware
	3.3 Setting before emulator starts
	3.3.1 USB communication
	3.3.1.1 Install of USB device driver

	4. Preparation before Use
	4.1 Workspaces, Projects, and Files
	4.2 Starting the High-performance Embedded Workshop
	4.2.1 Creating a New Workspace (Toolchain Used)
	4.2.1.1 Step1 : Creation of a new workspace
	4.2.1.2 Step2 : Setting for the Toolchain
	4.2.1.3 Step 3: Selecting of the Target Platform
	4.2.1.4 Step4 : Setting the Configuration File Name
	4.2.1.5 Step5 : The check of a created file name

	4.2.2 Creating a New Workspace (Toolchain Not Used)
	4.2.2.1 Step1 : Creation of a new workspace
	4.2.2.2 Step 2: Selecting of the Target Platform
	4.2.2.3 Step3 : Setting the Configuration File Name
	4.2.2.4 Step4 : Registering the Load modules to be downloaded

	4.3 Starting the Debugger
	4.3.1 Connecting the Emulator
	4.3.2 Ending the Emulator

	5. Setup the Debugger
	5.1 Init Dialog
	5.1.1 MCU Tab
	5.1.1.1 Specifying the MCU file
	5.1.1.2 Setting of the Communication Interface
	5.1.1.3 Executing Self-Check
	5.1.1.4 Using/unusing the address interrupt break function
	5.1.1.5 Using/unusing the watchdog timer
	5.1.1.6 Choosing to use or not to use CPU rewrite mode
	5.1.1.7 Choosing to use or not to use the trace point setting function

	5.1.2 Debugging Information Tab
	5.1.2.1 display the compiler used and its object format
	5.1.2.2 Specify the Storing of Debugging Information
	5.1.2.3 Specify whether to display the instruction format specifier
	5.1.2.4 To treat size of enumeration type as 1 byte

	5.1.3 Emulator Tab
	5.1.3.1 Specify the Target Clock
	5.1.3.2 Attempt to access memory during WAIT/STOP mode

	5.1.4 Script Tab
	5.1.4.1 Automatically Execute the Script Commands

	5.2 Setting of the Communication Interface
	5.2.1 Setting of the USB Interface

	5.3 Setup the Debugger for M32C
	5.3.1 Emem Dialog
	5.3.1.1 Status Tab
	5.3.1.1.1. Select the Processor Mode
	5.3.1.1.2. Inspecting the MCU status

	5.3.1.2 Emulation Memory Tab
	5.3.1.2.1. Debug monitor's bank address settings
	5.3.1.2.2. Automatic emulation memory allocation for the internal ROM
	5.3.1.2.3. Emulation memory allocation for an extended area

	5.3.1.3 Flash Clear Tab
	5.3.1.3.1. Setting to clear the MCU's internal flash ROM

	5.4 Setup the Debugger for M16C/R8C
	5.4.1 MCU Setting Dialog
	5.4.1.1 MCU Tab
	5.4.1.1.1. Select the Processor Mode
	5.4.1.1.2. Inspecting the MCU status

	5.4.1.2 MAP Tab
	5.4.1.2.1. Emulation memory allocation

	5.4.1.3 Flash Clear Tab
	5.4.1.3.1. Setting to clear the MCU's internal flash ROM

	6. Tutorial
	6.1 Introduction
	6.2 Usage
	6.2.1 Step1 : Starting the Debugger
	6.2.1.1 Preparation before Use
	6.2.1.2 Setup the Debugger

	6.2.2 Step2 : Checking the Operation of RAM
	6.2.2.1 Checking the Operation of RAM

	6.2.3 Step3 : Downloading the Tutorial Program
	6.2.3.1 Downloading the Tutorial Program
	6.2.3.2 Displaying the Source Program

	6.2.4 Step4 : Setting a Breakpoint
	6.2.4.1 Setting a Software Breakpoint

	6.2.5 Step5 : Executing the Program
	6.2.5.1 Resetting of CPU
	6.2.5.2 Executing the Program
	6.2.5.3 Reviewing Cause of the Break

	6.2.6 Step6 : Reviewing Breakpoints
	6.2.6.1 Reviewing Breakpoints

	6.2.7 Step7 : Viewing Register
	6.2.7.1 Viewing Register
	6.2.7.2 Setting the Register Value

	6.2.8 Step8 : Viewing Memory
	6.2.8.1 Viewing Memory

	6.2.9 Step9 : Watching Variables
	6.2.9.1 Watching Variables
	6.2.9.2 Registering Variable

	6.2.10 Step10 : Stepping Through a Program
	6.2.10.1 Executing [Step In] Command
	6.2.10.2 Executing [Step Out] Command
	6.2.10.3 Executing [Step Over] Command

	6.2.11 Step11 : Forced Breaking of Program Executions
	6.2.11.1 Forced Breaking of Program Executions

	6.2.12 Step12 : Displaying Local Variables
	6.2.12.1 Displaying Local Variables

	6.2.13 Step13 : Stack Trace Function
	6.2.13.1 Reference the function call status

	6.2.14 What Next?

	7. Windows/Dialogs
	7.1 RAM Monitor Window
	7.1.1 Extended Menus
	7.1.2 Setting the RAM monitor area
	7.1.2.1 Changing the RAM Monitor Area
	7.1.2.2 Adding RAM Monitor Areas
	7.1.2.3 Deleting RAM Monitor Areas

	7.2 ASM Watch Window
	7.2.1 Extended Menus

	7.3 C Watch Window
	7.3.1 Extended Menus

	7.4 Script Window
	7.4.1 Extended Menus

	7.5 S/W Break Point Setting Window
	7.5.1 Command Button
	7.5.2 Setting and Deleting a Break Points from Editor(Source) Window

	7.6 H/W Break Point Setting Window
	7.6.1 Specify the Break Event
	7.6.2 Specify the Combinatorial Condition
	7.6.3 Command Button
	7.6.4 Specify the Events (Instruction Fetch)
	7.6.4.1 Instruction Fetch of Specified Address
	7.6.4.2 Instruction Fetch of Specified Address Area(In)
	7.6.4.3 Instruction Fetch of Specified Address Area(Out)
	7.6.4.4 Entering/exiting to specified function

	7.6.5 Specify the Events (Memory Access)
	7.6.5.1 Memory Access(The debugger for M32C)
	7.6.5.1.1. Writing/Reading a Specified Address
	7.6.5.1.2. Reading/writing data to the specified address range
	7.6.5.1.3. Reading/writing data to addresses outside the specified range

	7.6.5.2 Memory Access(The debugger for M16C/R8C)
	7.6.5.2.1. Writing/Reading a Specified Address
	7.6.5.2.2. Reading/writing data to the specified address range
	7.6.5.2.3. Reading/writing data to addresses outside the specified range

	7.6.6 Specify the Events (Bit Access)
	7.6.6.1 Writing/Reading a Specified Bit
	7.6.6.2 Writing/Reading a Specified Bit Symbol

	7.6.7 Specify the Event Combination Condition
	7.6.7.1 Select AND, OR
	7.6.7.2 Select AND(Same Time)

	7.7 Address Interrupt Break Point Setting Window
	7.7.1 Command Button
	7.7.1.1 Setting and Deleting a Break Points from Editor(Source) Window

	7.8 Trace Point Setting Window
	7.8.1 Specify the Trace Event
	7.8.2 Specify the Combinatorial Condition
	7.8.3 Specify the Trace Range
	7.8.4 Specify the Trace Write Condition
	7.8.5 Command Button
	7.8.6 Specify the Events (Instruction Fetch)
	7.8.7 Specify the Events (Memory Access)
	7.8.8 Specify the Events (Bit Access)
	7.8.9 Specify the Event Combination Condition
	7.8.10 Specify the write condition

	7.9 Trace Window
	7.9.1 Configuration of Bus Mode
	7.9.2 Configuration of Disassemble Mode
	7.9.3 Configuration of Data Access Mode
	7.9.4 Configuration of Source Mode
	7.9.5 Extended Menus
	7.9.6 Display of bus information on the M32C Debugger
	7.9.7 Display of bus information on the M16C/R8C Debugger

	7.10 Data Trace Window
	7.10.1 Extended Menus

	7.11 GUI I/O Window
	7.11.1 Extended Menus

	7.12 MR Window
	7.12.1 Extended Menus
	7.12.2 Display the Task Status
	7.12.2.1 Display the Task Status(When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)
	7.12.2.2 Display the Task Status(When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	7.12.3 Display the Ready Queue Status
	7.12.3.1 Display the Ready Queue Status(When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)
	7.12.3.2 Display the Ready Queue Status(When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	7.12.4 Display the Timeout Queue Status
	7.12.4.1 Display the Timeout Queue Status(When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)
	7.12.4.2 Display the Timeout Queue Status(When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	7.12.5 Display the Event Flag Status
	7.12.5.1 Display the Event Flag Status(When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)
	7.12.5.2 Display the Event Flag Status(When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	7.12.6 Display the Semaphore Status
	7.12.6.1 Display the Semaphore Status(When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)
	7.12.6.2 Display the Semaphore Status (When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	7.12.7 Display the Mailbox Status
	7.12.7.1 Display the Mailbox Status (When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)
	7.12.7.2 Display the Mailbox Status (When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	7.12.8 Display the Data Queue Status
	7.12.8.1 Display the Data Queue Status(When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	7.12.9 Display the Cycle Handler Status
	7.12.9.1 Display the Cycle Handler Status(When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)
	7.12.9.2 Display the Cycle Handler Status(When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	7.12.10 Display the Alarm Handler Status
	7.12.10.1 Display the Alarm Handler Status(When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)
	7.12.10.2 Display the Alarm Handler Status(When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	7.12.11 Display the Memory Pool Status
	7.12.11.1 Display the Memory Pool Status(When the realtime OS is MRxx conformed to uITRON specifications V.3.0.)
	7.12.11.2 Display the Memory Pool Status(When the realtime OS is MRxx conformed to uITRON specifications V.4.0.)

	7.12.12 Display the Task Context
	7.12.12.1 Display the Task Context
	7.12.12.2 Change the task context

	8. Table of Script Commands
	8.1 Table of Script Commands (classified by function)
	8.1.1 Execution Commands
	8.1.2 File Operation Commands
	8.1.3 Register Operation Commands
	8.1.4 Memory Operation Commands
	8.1.5 Assemble/Disassemble Commands
	8.1.6 Software Break Setting Commands
	8.1.7 Address Interrupt Break Setting Commands
	8.1.8 Hardware Break Setting Commands
	8.1.9 Real-time Trace Commands
	8.1.10 Script/Log File Commands
	8.1.11 Program Display Commands
	8.1.12 Map Commands
	8.1.13 Clock Command
	8.1.14 C Language Debugging Commands
	8.1.15 Real-time OS Command
	8.1.16 Utility Commands

	8.2 Table of Script Commands (alphabetical order)

	9. Writing Script Files
	9.1 Structural Elements of a Script File
	9.1.1 Script Command
	9.1.2 Assign Statement
	9.1.3 Conditional Statement
	9.1.4 Loop Statement(while,endw) and Break Statement
	9.1.5 Comment statements

	9.2 Writing Expressions
	9.2.1 Constants
	9.2.2 Symbols and labels
	9.2.2.1 Local label symbol and scope
	9.2.2.2 Priority levels of labels and symbols

	9.2.3 Macro Variables
	9.2.4 Register variables
	9.2.5 Memory variables
	9.2.6 Line Nos.
	9.2.7 Character constants
	9.2.8 Operators

	10. C/C++ Expressions
	10.1 Writing C/C++ Expressions
	10.1.1 Immediate Values
	10.1.2 Scope Resolution
	10.1.3 Mathematical Operators
	10.1.4 Pointers
	10.1.5 Reference
	10.1.6 Sign Inversion
	10.1.7 Member Reference Using Dot Operator
	10.1.8 Member Reference Using Arrow
	10.1.9 Pointers to Members
	10.1.10 Parentheses
	10.1.11 Arrays
	10.1.12 Casting to Basic Types
	10.1.13 Casting to typedef Types
	10.1.14 Variable Name
	10.1.15 Function Name
	10.1.16 Character Constants
	10.1.17 Character String Literals

	10.2 Display Format of C/C++ Expressions
	10.2.1 Enumeration Types
	10.2.2 Basic Types
	10.2.3 Pointer Types
	10.2.4 Array Types
	10.2.5 Function Types
	10.2.6 Reference Types
	10.2.7 Bit Field Types
	10.2.8 When No C Symbol is Found
	10.2.9 Syntax Errors
	10.2.10 Structure and Union Types

	11. Display the Cause of the Program Stoppage
	12. Attention
	12.1 Common Attention
	12.1.1 File operation on Windows
	12.1.2 Area where software breakpoint can be set
	12.1.2.1 The debugger for M32C
	12.1.2.2 The debugger for M16C/R8C

	12.1.3 Get or set C variables
	12.1.4 Function name in C++
	12.1.5 Option settings for download modules
	12.1.6 Debugging multi modules
	12.1.7 Synchronized debugging
	12.1.8 Compact Emulator reset switch

	12.2 Attention of the M32C Debugger
	12.2.1 Stack area used by the emulator
	12.2.2 Interrupt stack pointer when resetting the target program
	12.2.3 Option of C Compiler/Assembler/Linker
	12.2.4 Target MCU HOLD terminal
	12.2.5 Hardware Event
	12.2.6 CPU rewrite

	12.3 Attention of the M16C/R8C Debugger
	12.3.1 Map of stack area used by the compact emulator
	12.3.2 Interrupt stack pointer when resetting the target program
	12.3.3 Options for compiler, assembler, and linker
	12.3.4 TASKING C Compiler
	12.3.5 Target MCU HOLD terminal
	12.3.6 Hardware break function
	12.3.7 Hardware Event
	12.3.8 Memory space expansion
	12.3.9 CPU rewrite

	12.4 Options for compiler, assembler, and linker
	12.4.1 When Using NCxx
	12.4.2 When Using the IAR C Compiler (EW)
	12.4.3 When Using the IAR EC++ Compiler (EW)
	12.4.4 When Using the IAR C Compiler (ICC)
	12.4.4.1 Specify the Option
	12.4.4.2 Command Execution Examples

	12.4.5 When Using the TASKING C Compiler (EDE)
	12.4.6 When Using the TASKING C Compiler (CM)
	12.4.6.1 Specify the Option
	12.4.6.2 Command Execution Examples

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

