The ISL73007SEHDEMO3Z demonstration board (shown in Figure 3) features the ISL73007SEH buck regulator. This IC is a small footprint radiation hardened POL designed for critical low power applications.

The ISL73007SEH is operational over 3V to 18V integrating both high-side and low-side power FETs and switches at a default 500kHz frequency. The switching frequency can also be programmed from 300kHz up to 1MHz using an external resistor. The ISL73007SEH uses constant frequency peak current mode control architecture for fast loop transient response. The ISL73007SEH can use either its internal compensation at the 500kHz default switching frequency or an external Type II compensation at other frequencies to stabilize the loop as determined by specific design and performance requirements. Integrating both P-channel and N-channel power devices and with the option of internal compensation, a minimum of external components are required, thereby reducing BOM count and complexity of design.

The ISL73007SEHDEMO3Z demonstration board and this accompanying manual provide a quick and easy method to evaluate the ISL73007SEH part, see the ISL73007SEH datasheet for information about the operation, function, and performance of the device.

Features
- Easy to use
- Optimized for 12V to 3.3V conversion, externally set 500kHz switching frequency, external slope and compensation configuration
- 3A Output current

Specifications
The ISL73007SEHDEMO3Z demonstration board is by default externally configured for immediate evaluation with minimum components and connections, which allows for other conditions to be evaluated with user modification of components and connections.

The electrical ratings of the ISL73007SEHDEMO3Z demonstration board are shown in Table 1.

![Figure 1. Block Diagram](image-url)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVIN Supply Voltage</td>
<td>10.8V - 18V</td>
</tr>
<tr>
<td>DC Output Voltage</td>
<td>3.3V</td>
</tr>
<tr>
<td>Operating Frequency</td>
<td>500kHz</td>
</tr>
<tr>
<td>Output Current</td>
<td>3A</td>
</tr>
<tr>
<td>Temperature</td>
<td>-55°C to +125°C</td>
</tr>
</tbody>
</table>
Contents

1. Functional Description ... 3
 1.1 Operational Characteristics ... 3
 1.2 Setup and Configuration .. 3

2. Board Design .. 4
 2.1 Basic Layout ... 5
 2.2 Layout Guidelines ... 5
 2.3 Schematic Diagrams .. 5
 2.4 Bill of Materials ... 6
 2.5 Board Layout ... 7

3. Typical Performance Graphs ... 8

4. Ordering Information ... 9

5. Revision History ... 9
1. Functional Description

The ISL73007SEHDEMO3Z demonstration board is default configured for 12V to 3.3V conversion with a 3A maximum output current and contains the ISL73007SEH voltage regulator IC in the external configuration for the switching frequency, and for control loop and slope compensations. Figure 1 shows the ISL73007SEHDEMO3Z demonstration board block diagram. Photographs of the ISL73007SEHDEMO3Z are shown in Figure 3 and Figure 4.

The ISL73007SEHDEMO3Z demonstration board provides access to the pins of the IC device and convenient pads for connecting test equipment. For more information, see the schematic (Figure 5), PCB layers (Figure 6 through Figure 11), and Bill of Materials. Performance data taken using the ISL73007SEHDEMO3Z and basic lab equipment is shown in Figure 12 through Figure 19.

1.1 Operational Characteristics

The ISL73007SEHDEMO3Z only requires a single voltage supply >10.8V connected to the PVIN pad to operate, outputting 3.3V on the VOUT pad with a 3A output current capability. Configured for a nominal PVIN voltage of 12V, the input operating voltage at which the IC turns on is set by the resistor divider (R1 and R2) on the ENABLE pin. **Note:** Do not exceed 5V on the ENABLE pin.

1.2 Setup and Configuration

The following equipment is recommended for testing the board.

- 12V power supply
- 100MHz oscilloscope

Complete the following steps to configure and use the board.

1. Configure the board as shown in Figure 2.
2. Connect and turn on a 12V power supply to the PVIN pad.
3. Using the oscilloscope to look at VIN and VOUT waveforms also observe the behavior of the LX phase node located on pins 13 and 14 of the IC package. Proper probe grounding must be practiced to observe clean waveforms.
4. Output current loading can be externally added at the VOUT and GND pads for loaded output evaluations. A DVM(s) can be employed to monitor input and output voltages and currents.

![Figure 2. ISL73007SEH Basic Evaluation Test Setup Block Diagram](image-url)
2. Board Design

Figure 3. ISL73007SEHDEMO3Z Evaluation Board (Top)

Figure 4. ISL73007SEHDEMO3Z Evaluation Board (Bottom)
2.1 Basic Layout
The ISL73007SEH is located in the center of the board and is labeled U1. Input power is to be connected across the yellow Tantalum capacitor, the bulk input capacitance (C₁) at the PVIN and GND pads. The output voltage then appears across the V_OUT and GND pads near the output inductor (L₁) and the output capacitance (C₈), respectively. Additional Cᵢᵣ is provided by C₂ (flip side) and C₃. The other passive components near the PVIN pad are for setting the EN POR, slope compensation, and VCC decoupling. The passive components between the GND and V_OUT pads on the edge of the PCB are for switching frequency and output voltage setting, compensating the external loop error amplifier and PGOOD pull-up. Consult the schematic in (Figure 5) for details.

2.2 Layout Guidelines
PCB design is critical to reduce parasitic inductances with critical components being closely placed to the IC. The critical components in order would be the loop compensation RC, the slope resistor, and the low ESR ceramic input capacitors. Avoid placing any traces or components under the LX shapes to avoid noise coupling from the switching node.

2.3 Schematic Diagrams

![Figure 5. Schematic](image-url)
2.4 Bill of Materials

<table>
<thead>
<tr>
<th>Qty</th>
<th>Reference Designator</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Manufacturer Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PWB-PCB, ISL73007SEHDEMO3Z, REVA, ROHS</td>
<td></td>
<td>Imagineering Inc</td>
<td>ISL73007SEHDEMO3ZREVAPCB</td>
</tr>
<tr>
<td>2</td>
<td>C2, C3</td>
<td>CAPACITOR, SMD, 2220, 22µF, 25V, 20%, X7R, ROHS</td>
<td>TDK</td>
<td>C5750X7R1E226M</td>
</tr>
<tr>
<td>2</td>
<td>C4, C7</td>
<td>CAP-AEC-Q200, SMD, 0603, 1µF, 25V, 10%, X7R, ROHS</td>
<td>Murata</td>
<td>GCM188R71E105KA64D</td>
</tr>
<tr>
<td>1</td>
<td>C5</td>
<td>CAP, SMD, 2200pF, 50V, 1%, C0G/NP0, ROHS</td>
<td>Murata</td>
<td>GRM1885C1H222FA01D</td>
</tr>
<tr>
<td>1</td>
<td>C6</td>
<td>CAP, SMD, 0.1µF, 25V, 10%, X7R, ROHS</td>
<td>Yageo</td>
<td>CC0603KRX7R8BB104</td>
</tr>
<tr>
<td>1</td>
<td>C8</td>
<td>CAP-TANT, SMD, 7.3x4.3mm, 100µF, 25V, 20%, 30mΩ at 100MHz, ROHS</td>
<td>Kemet</td>
<td>T521X107M025ATE030</td>
</tr>
<tr>
<td>1</td>
<td>C1</td>
<td>CAP-TANT, SMD, 7.3x4.3x4.0, 100µF, 20V, 20%, POLYMER</td>
<td>Kemet</td>
<td>T541X107M020AH6510</td>
</tr>
<tr>
<td>1</td>
<td>L1</td>
<td>COIL-PWR INDUCT, SMD, 5.4x5.2mm, 4.7µH, 20%, 19.6mohm, ROHS</td>
<td>Coilcraft</td>
<td>XEL5050-472MEC</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>IC-RAD LIGHT 3A POL REGULATOR, 14P, CFP, ROHS</td>
<td>Renesas Electronics</td>
<td>ISL73007SEHF/PROTO</td>
</tr>
<tr>
<td>1</td>
<td>R3</td>
<td>RES, SMD, 0603, 43k, 1/10W, 0.1%, TF, ROHS</td>
<td>Panasonic</td>
<td>ERA-3AEB433V</td>
</tr>
<tr>
<td>3</td>
<td>R2, R6, R7</td>
<td>RES, SMD, 0603, 10k, 1/10W, 1%, TF, ROHS</td>
<td>Venkel</td>
<td>CR0603-10W-1002FT</td>
</tr>
<tr>
<td>1</td>
<td>R4</td>
<td>RES, SMD, 0603, 100k, 1/10W, 1%, TF, ROHS</td>
<td>Venkel</td>
<td>CR0603-10W-1003FT</td>
</tr>
<tr>
<td>1</td>
<td>R5</td>
<td>RES, SMD, 0603, 14.7k, 1/10W, 1%, TF, ROHS</td>
<td>Venkel</td>
<td>CR0603-10W-1472FT</td>
</tr>
<tr>
<td>1</td>
<td>R8</td>
<td>RES, SMD, 0603, 2.21k, 1/10W, 1%, TF, ROHS</td>
<td>Yageo</td>
<td>RC0603FR-072K21L</td>
</tr>
<tr>
<td>1</td>
<td>R1</td>
<td>RES, SMD, 0603, 75k, 1/10W, 1%, TF, ROHS</td>
<td>Venkel</td>
<td>CR0603-10W-7502FT</td>
</tr>
<tr>
<td>0</td>
<td>P1, P2, P3, P4</td>
<td>DO NOT POPULATE OR PURCHASE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.5 Board Layout

Figure 6. Top Layer

Figure 7. Layer 2

Figure 8. Layer 3

Figure 9. Bottom Layer

Figure 10. Top Silk Layer

Figure 11. Bottom Silk Layer
3. **Typical Performance Graphs**

Unless otherwise noted, PVIN = 12V; \(V_{OUT} = 3.3V \), \(f_{SW} = 500kHz \), \(T_A = \) Room Ambient

![Figure 12. Efficiency](image1)

![Figure 13. Load Regulation](image2)

![Figure 14. Turn-on /off, 1Ω load](image3)

![Figure 15. Shorted Output into Restart through Hiccup](image4)

![Figure 16. +2.8A Output Current Transient](image5)

![Figure 17. -2.8A Output Current Transient](image6)
Unless otherwise noted, PVIN = 12V; VOUT = 3.3V, fSW = 500kHz, TA = Room Ambient (Cont.)

4. Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISL73007SEHDEMO3Z</td>
<td>Radiation Hardened ISL73007SEH buck regulator demonstration board</td>
</tr>
</tbody>
</table>

5. Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.01</td>
<td>May 19, 2023</td>
<td>Updated Figure 3.</td>
</tr>
<tr>
<td>1.00</td>
<td>Mar 16, 2022</td>
<td>Initial release</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas’ products are provided only subject to Renesas’ Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.