To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depend on the product’s quality grade, as indicated below.

 “Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

 “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

 “Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
Introducing I/O Script Sample Programs

1. Outline of I/O Script Sample Programs

Presented here are the I/O script samples that you can use to simulate the built-in devices of the 740 family (3800 group) of Mitsubishi microcomputers. Following sample programs are included:

1. INT0 sample
2. Timer 1 sample
3. Timer X pulse output mode sample
4. Timer & event counter mode sample

These sample programs are detailed in Section 3, "Details of I/O Script Sample Programs."

2. Method for Using I/O Script Sample Programs

The I/O script sample programs are made usable by installing them in Simulator Debugger following the procedure described below. Before going on, note that the I/O script sample programs are stored in the directory shown below.

¥Tools¥Renesas¥DebugComp¥Platform¥PDTarget¥PD38SIM¥Samples

2. Open the I/O Timing Setting window.
3. Choose LOAD menu from the I/O Timing Setting window. When this menu is selected, a file selection dialog box appears.
4. In this dialog box, choose the I/O script sample programs you want to be set up in Simulator Debugger.
3. Details of I/O Script Sample Programs

3.1. INT0 Interrupt (Edge Interrupt) Sample Program (int0.scr)
This sample program simulates the operation of edge interrupts.

[Operation]
1. The program monitors edges on the INT0 (P4 bit 2) pin. When a falling edge (rising edge) on this pin is detected, it generates an INT0 interrupt.

3.2. Timer 1 (Timer Mode) Sample Program (timer1.scr)
This sample program simulates the operation of timer 1.

[Timer function]
Count source: 16 cycles comprise one count.

[Operation]
1. When the program is executed, it generates a timer 1 interrupt after an elapse of the time (cycles) that have been set in Timer 1 Register and Prescaler 12 Register. At the same time, the timer 1 interrupt request bit is set.
2. When the interrupt is accepted, the timer A0 interrupt request bit is cleared.

[Differences with the actual chip]
1. The contents of Timer 1 Register and Prescaler 12 Register are not modified.
 -> The values of Timer 1 Latch Register and Prescaler 12 Latch Register are displayed. (Depending on how the I/O script is written, the contents of Timer 1 Register and Prescaler 12 Register can be simulated.)
2. Even when the timer 1 interrupt request bit is cleared to 0 in a program, the timer interrupt request cannot be canceled.
3.3. Timer X (when Pulse Output Mode Selected) Sample Program (timerXcntr0out.scr)

This sample program simulates the operation of timer X in pulse output mode.

[Timer function]
Count source: 16 cycles comprise one count.
Pulse output function: Output to CNTR0 (P5 bit 4)

[Operation]
1. When various settings are made for timer X pulse output mode and the timer X count stop bit is cleared, a timer X interrupt is generated after an elapse of the time (cycles) that have been set in Timer X Register and Prescaler X Register. Also, the output on the CNTR0 pin is inverted.

[Differences with the actual chip]
1. The contents of Timer X Register and Prescaler X Register are not modified.
 -> The values of Timer X Latch Register and Prescaler X Latch Register are displayed.
2. The interrupt request bit is either set nor cleared. (It is possible to simulate the interrupt request bit in the same way as in 3.2, "Timer 1 (Timer Mode) Sample Program (timer1.scr)."
3. When the timer is made to stop by the timer X count stop bit, it actually does not stop until after a timer underflow being measured occurs (after interrupt generation).
3.4 Timer Y (Event Counter Mode) Sample Program (timerXcntr1ev.scr)

This sample program simulates the operation of timer Y in event counter mode.

[Timer function]
Count source: Edge input to CNTR0 (P5 bit 5)

[Operation]
1. When various settings are made for timer Y event counter mode and the
 timer Y count stop bit is cleared, a timer Y interrupt is generated after
 events have been input to CNTR1 as many times set in Timer Y Register
 and Prescaler Y Register.

[Differences with the actual chip]
1. If the values of Timer Y Register and Prescaler Y Register are modified in
 a program, the modified values are used immediately for Timer Y
 Register and Prescaler Y Register.
 ->In the actual chip, the modified values are not used immediately; they
 are held in the latch registers.
2. The contents of Timer Y Register and Prescaler Y Register are not
 modified.
 ->The values of Timer Y Latch Register and Prescaler Y Latch Register
 are displayed.
3. The interrupt request bit is either set nor cleared. (It is possible to
 simulate the interrupt request bit in the same way as in 3.2, "Timer 1
 (Timer Mode) Sample Program (timer1.scr).")