
 
 

User’s Manual 
 
 

IMAPCAR Series Processor 

1DC LANGUAGE SPECIFICATIONS 

Software 

 

 

Document No. U20036EE1V0UM00 

Date Published: Sept 2009 

© NEC Electronics (Europe) GmbH 



 User’s Manual 2 U20036EE1V0UM00 

Legal Notes 

The information in this document is current as of September 2009. The information is 
subject to change without notice. For actual design-in, refer to the latest publications of 
NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of 
NEC Electronics products. Not all products and/or types are available in every country. 
Please check with an NEC Electronics sales representative for availability and additional 
information. 

No part of this document may be copied or reproduced in any form or by any means without the 
prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors 
that may appear in this document. 

• NEC Electronics does not assume any liability for infringement of patents, copyrights or other 
intellectual property rights of third parties by or arising from the use of NEC Electronics 
products listed in this document or any other liability arising from the use of such products. No 
license, express, implied or otherwise, is granted under any patents, copyrights or other 
intellectual property rights of NEC Electronics or others. 

• Descriptions of circuits, software and other related information in this document are provided 
for illustrative purposes in semiconductor product operation and application examples. The 
incorporation of these circuits, software and information in the design of a customer's 
equipment shall be done under the full responsibility of the customer. NEC Electronics 
assumes no responsibility for any losses incurred by customers or third parties arising from 
the use of these circuits, software and information. 

• While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC 
Electronics products, customers agree and acknowledge that the possibility of defects thereof 
cannot be eliminated entirely. To minimize risks of damage to property or injury (including 
death) to persons arising from defects in NEC Electronics products, customers must 
incorporate sufficient safety measures in their design, such as redundancy, fire-containment 
and anti-failure features. 

• NEC Electronics products are classified into the following three quality grades: "Standard", 
"Special" and "Specific". 
The "Specific" quality grade applies only to NEC Electronics products developed based on a 
customer-designated "quality assurance program" for a specific application. The 
recommended applications of an NEC Electronics product depend on its quality grade, as 
indicated below. Customers must check the quality grade of each NEC Electronics product 
before using it in a particular application. 
"Standard": Computers, office equipment, communications equipment, test and measurement 
equipment, audio and visual equipment, home electronic appliances, machine tools, personal 
electronic equipment and industrial robots. 
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, 
anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not 
specifically designed for life support). 
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control 
systems, life support systems and medical equipment for life support, etc. 

 

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified 
in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics 
products in applications not intended by NEC Electronics, they must contact an NEC Electronics 
sales representative in advance to determine NEC Electronics' willingness to support a given 
application. 

 

(Note) 

(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also 
includes its majority-owned subsidiaries. 

(2) "NEC Electronics products" means any product developed or manufactured by or for NEC 
Electronics (as defined above). 

 



 User’s Manual 3 U20036EE1V0UM00 

Table of Contents 

1 PREFACE ........................................................................................................................................4 
1.1 SIMD Mode ................................................................................................................................4 
1.2 MP Mode....................................................................................................................................5 
1.3 Mixed mode................................................................................................................................6 
1.4 Hardware Configuration Example (for XC Core) .......................................................................6 

2 1DC SPECIFICATION EXPANSION FROM C ................................................................................7 
2.1 Additional Data Attributes ..........................................................................................................8 
2.2 Additional Operators ................................................................................................................11 
2.3 Additional Syntax .....................................................................................................................14 

3 Revision history ..............................................................................................................................15 
 

 

 

 



IMAPCAR Series Processor 

1 PREFACE 

1DC (One Dimensional C) is an expanded implementation of C designed for 
programming parallel processor systems in which many PEs (Processing 
Elements) and memory blocks are linked together one dimensionally 
(Integrated Memory Array Processor, or IMAP, systems). 

 
Example IMAP System Configuration Figure 1 

 

IMAP systems include two main operating modes: the SIMD (Single Instruction 
Multiple Data) mode, and the MP (Multi Processor) mode. A simple overview 
of how to use 1DC in each of these modes is provided below, and then the 
1DC language specifications are described. 

 

1.1 SIMD Mode 

The figure below shows a configuration in which an IMAP system is used as 
an SIMD parallel processor. Here, IMEM refers to memory blocks allocated to 
each PE 

 

IMAP System Configuration in SIMD Mode  Figure 2 

When using an IMAP system in the SIMD mode, the processing for a certain 
collection of data is normally assigned to each PE. In this mode, each PE has 
to execute the same instructions broadcast from the controller (the control 
processor, or CP), but each PE can access the memory block (local memory) 
where the data it is in charge of is stored using high speed, unique addresses, 
and data can be directly exchanged between PEs by using a network (without 
having to wait). To the user, the SIMD mode makes it seem as though there is 
a working 2D memory area that has extremely little access overhead. 

 

 User’s Manual 4 U20036EE1V0UM00 



IMAPCAR Series Processor 

 

 

1DC is an IMAP system programming language designed to enable the design 
of parallel algorithms for operating in this memory area and to minimize the 
expansion of standard C specifications as much as possible. The following 
figure shows an operational overview of a parallel algorithm that uses the 2D 
memory area. 

 

Operational Overview of Parallel Algorithm Using 2D Memory Area Figure 3 
 

 

1.2 MP Mode 

When using an IMAP system in the MP mode, the system runs in a multi-
processor configuration in which multiple PEs are grouped into one PU 
(Processing Unit). Because each PU runs on its own program counter, waiting 
is required when exchanging data between PUs, and message communication 
and non-cached external variable access methods are used, but different 
processing can be performed for each PU in parallel. This multi-processor 
parallel processing is programmed so that it is available without using the 
portion of the 1DC specifications outside the range of standard C. 

 

 User’s Manual 5 U20036EE1V0UM00 



IMAPCAR Series Processor 

IMAP System Configuration in MP Mode (When Each PU Consists of 4 PEs) Figure 4 
1.3 Mixed mode 

An IMAP system can also be used in the MIXED mode, in which some PEs 
run in the SIMD mode, and the rest run as multiple PUs in the MP mode. 
When using the MIXED mode, tasks (functions) that run in the SIMD mode are 
programmed using the portion of 1DC that is expanded from standard C, while 
those that run in the MP mode are programmed using standard C. Data 
exchanges between PUs running in the same operating mode are performed 
through the CP or through external memory. 

 
. IMAP System Configuration in MIXED Mode (When Each PU Consists of 4 PEs) Figure 5 
 

 
1.4 Hardware Configuration Example (for XC Core) 

 

The figure below shows the configuration of an XC core, an example of an 
actual IMAP system. Each tile is made up of 8 PEs, which are grouped into a 
higher 4 PEs and a lower 4 PEs, and the user can select whether each of 
these groups runs as a PU or as 4 separate PEs. No 4-PE group runs as a PU 
in the SIMD mode, all 4-PE groups run as PUs in the MP mode, and only 
lower 4-PE groups run as PUs in the MIXED mode. 

 

Example Physical Configuration of IMAP System (for XC Core) Figure 6 
 

 

 

 User’s Manual 6 U20036EE1V0UM00 



IMAPCAR Series Processor 

 User’s Manual 7 U20036EE1V0UM00 

 

2 1DC SPECIFICATION EXPANSION FROM C 

Compared to C, the 1DC specifications have been expanded as follows. 

 
 

• Additional data attributes 

o Data allocation attributes 

o uni (default) 

o multi 

o outside qualifier 

o align qualifier 

o Data value attributes 

o common (default) 

o sep (or separate) 

o Pointers to multi sep or sep data 

 

• Additional operators 

o Operators for transferring data between PEs: :> and :< 

o Operator for selecting PEs: :[ and :] (used as a pair) 

o Logical operators for PE data: :|| and :&& 

o Operator for initializing PE data: :( and :) (used as a pair) 

o PE data assignment operator: := 

 

• Additional syntax 

o PE selecting conditional statements 1: mifa and melsea 

o PE selecting conditional statements 2: mif and melse 

o PE selecting loop statement: mwhile 

o PE selecting loop statement: mfor 

o PE selecting loop statement: mdo 

 

These expanded specifications are described in the above order below. 

 



IMAPCAR Series Processor 

 User’s Manual 8 U20036EE1V0UM00 

 
2.1 Additional Data Attributes 

 

Data allocation attributes 

uni default) 

The uni attribute is the default in 1DC for data allocation. Data that has this attribute 
actually consists of only one element. uni data is assigned to the memory for the 
controller that controls all PEs, which enables the compiler to broadcast this data to all 
PEs at compile time as necessary. Therefore, the uni data has the same value when 
viewed from each PE. To give a variable the uni attribute, either specify the uni type 
qualifier before the variable data type when declaring the variable, or declare the 
variable without the type qualifier. 
 

int  x;      // Declares the 2-byte signed integer x for the controller. 
uni int  x; // Declares the 2-byte signed integer x for the controller (as above). 
 

multi 

Data that has the multi attribute has as many elements as there are LPA PEs and is 
assigned to the local memory for the PE array of the LPA. To give a variable the multi 
attribute, specify the multi type qualifier before the variable data type when declaring 
the variable. 
 
However, if the value attribute of a variable is specified using the sep type qualifier 
described below, the variable is automatically given the multi attribute, so the sep type 
qualifier is normally sufficient for declaring multi-type data. 
 
 

outside qualifier 

The outside type qualifier is used to directly assign data to external memory. To give a 
variable the outside attribute, specify the outside type qualifier before the variable data 
type and other qualifiers as follows when declaring the variable: 

 
outside sep int a[20],b;  // Declares the sep array a and sep 
                                     // variable b, which have the outside attribute. 
 
outside int c;           // Declares a uni-type variable that has 
                              // the outside attribute. 
outside int d[10];     // Declares a uni-type array that has 
                               // the outside attribute. 

 
All arithmetic operations can be used for uni-type variables and arrays that have the 
outside attribute, but declaring a sep-type variable or array that has the outside 
attribute only allocates memory for the data, and the data must be explicitly transferred 
from the external memory to the PE-local memory in order to actually reference the 
data. The data can be transferred using the standard IxEmemrd and IxEmemwr 
functions as shown in the following example: 

 
outside sep int owrk[VLINES]; // sep array owrk that has the 
                                                // outside attribute 
 sep int src[VLINES];               // sep array src in the PE array memory 
int i; 
IxEmemrd(src,work*PENO,VLINES*2); // Copies the data in the 
                                                    // work array to the src array. 
for(i=0; i<VLINES; i++) 
       src[i] = ...;    // Processes the data in the src array. 
IxEmemwr(src,work*PENO,VLINES*2); // Writes the data in the 
                                                    // src array back to the work array. 

 



IMAPCAR Series Processor 

 User’s Manual 9 U20036EE1V0UM00 

 

align  
qualifier 

 
The align type qualifier is used to allocate memory for an array, starting at the 
beginning of a memory page (using a hardware dependent number of bytes) and is 
only meaningful for a global array. To give a global array the align attribute, specify the 
align type qualifier before the variable data type and other qualifiers when declaring the 
array. 
 

align sep int tbl[256];     // Declares a sep array that has 
                                      // the align attribute. 
 sep int a,idx;                // Declares a sep variable. 
 

Data value attributes 

common 
(default) 

The common attribute is the default in 1DC for data values. If data that has this 
attribute has multiple elements, the values of each of those elements are assumed to 
be the same. To give a variable the common attribute, either specify the common type 
qualifier before the variable data type when declaring the variable, or declare the 
variable without the type qualifier. 

 
int          x;         // Declares the 2-byte signed integer x for the controller. 
common int  x; // Declares the 2-byte signed integer x for the PE array. 
 

However, because IMAP Series processors can efficiently broadcast data from the PE 
array controller to all PEs, declaring a uni type common variable and assigning it to the 
controller memory, instead of declaring a multi type variable and assigning it to the PE 
array internal memory, can reduce the amount of consumed PE memory without 
reducing execution efficiency. Therefore, multi type common variables are not normally 
required. 
 

sep (separate) 

sep data (data that has the sep attribute) refers to data for which the value of each 
element might differ, assuming the data has multiple elements. To declare a sep 
variable, specify the sep or separate type qualifier before the variable data type when 
declaring the variable. sep data has the multi attribute by default, and variables to be 
processed by the PE array are normally declared simply as sep variables. 
 

int       x;           // Declares the 2-byte signed integer x (that 
                        // has the uni attribute) for the controller. 
sep char  y;     // Declares the 1-byte sep variable y. 
 



IMAPCAR Series Processor 

 User’s Manual 10 U20036EE1V0UM00 

 
Pointers to data with added attributes and structure specification method 

Pointers 

Pointers to data that has one of the added attributes described above can be used in 
1DC. The following examples show how the meaning changes depending on where 
the sep type qualifier is specified when declaring a variable: 
 

sep  char     *p;    // Declares p, a pointer to sep char data. 
char * sep     p;    // Declares p, a sep variable that stores a 
                             // pointer to char data. 
sep char * sep p;  // Declares p, a sep variable that stores 
                            // a pointer to sep char data. 
sep int      (*f)();  // Declares f, a pointer to a function that 
                           // returns a sep int value. 

 

Structures 

Normally, the declarations for structure members and the actual data allocation 
attributes and value attributes that are used are specified separately. The data 
allocation attributes and value attributes cannot be specified when declaring the 
members. 

 
struct ab {    
  int a; 
  unsigned char b[20]; 
 }; 
sep struct ab sep_ab;         // Declares a structure for the PE array. 
struct ab     uni_ab;            // Declares a structure for the controller. 
outside struct ab ouni_ab; // Declares a uni-type structure for 
                                          // the external memory. 
outside sep struct ab osep_ab; // Declares a sep-type structure 
                                                  // for the external memory 
 
 

An added attribute can also be directly specified when declaring a structure as follows: 
sep struct ab {      // Declares a structure for the PE array. 
     int a; 
     unsigned char b[20]; 
} sa 

 
 



IMAPCAR Series Processor 

 User’s Manual 11 U20036EE1V0UM00 

 

2.2 Additional Operators 

Operators for 
transferring data 
between PEs: :> 
and :< 

In the PE array of the LPA, :> is used as a unary operator to reference the sep data in 
the adjacent PE on the left, and :< is used similarly for the adjacent PE on the right. In 
addition, :> is used as a binary operator to reference the sep data in the nth PE to the 
left of the current PE, and :< is used similarly for the nth PE to the right. This operator 
actually transfers data one adjacent PE at a time, and performs n transfers to transfer 
data a distance of n PEs. 
 

int                           n;   
sep unsigned char  x, y; 
 
  y = x :< n;         // Assigns the x value of the PE n PEs to the 
                           // right of the current PE to y of the current PE. 
  y = x :< (n+1);  // Assigns the x value of the PE n + 1 PEs 
                          // to the right of the current PE to y of the current PE. 
  x = x :> (n+1);  // Assigns the x value of the PE n + 1 PEs 
                          // to the left of the current PE to x of the current PE. 
  x = :< x;           // Assigns the x value of the adjacent PE to 
                          // the right of the current PE to x of the current PE. 
 

Operator for 
selecting PEs: :[ 
and :] 

This operator is used to select a PE in the PE array, send sep data in the PE to the 
controller, and then assign that data to a specified PE or broadcast the data to all PEs. 
 

sep int  x;            
int        n,y; 
x:[n:] = x:[2*n+1:]; // Assigns the x value of PE (2 * n + 1) to x of the nth PE.  
  y = 2 * x:[n:];     // Multiplies the x value of the nth PE 
                           // by 2 and assigns the result to y of the controller. 
  x = x:[1:]            // Assigns the x value of the first PE to 
                           // the x of all PEs (by broadcasting to all PEs). 
 



IMAPCAR Series Processor 

 User’s Manual 12 U20036EE1V0UM00 

 

Logical operators 
for PE data: :|| 
and :&& 

These operators are used to calculate the logical disjunction (:||) or the logical 
conjunction (:&&) of the sep data of unmasked (active) PEs. In general, these 
operations are efficiently implemented by LPA hardware that reads out the result of 
calculating the logical disjunction of the values of the status registers (1 bit) for each 
PE. 

sep int a,b; 
  int     c; 
  c = :||(a || b);  // Calculates the logical disjunction of 
                       // a and b for each PE, calculates the logical 
                       // disjunction of this result for all PEs, 
                       // and then assigns the final result to c of the controller.  
  c = :&&a;       // Calculates the logical conjunction of a for 
                       // all PEs, and then assigns this result to c of the controller. 
 

Operator for 
initializing PE 
data: :( and :) 

This operator is used to assign different sep data constants to PEs. This operator can 
be used to easily specify sep constants. Only constants can be specified between :( 
and :), and multiple constants must be separated with commas. If the constant c0 is 
followed by : and another constant c1, c0 is assigned to c1 PEs. If less constants are 
specified between :( and :) than the number of PEs, 0 is automatically assigned to the 
remaining PEs. However, if a comma (,) is specified after the last constant cn, cn is 
automatically assigned to the remaining PEs instead. Constant propagation is 
performed for this operator at compile time. 
For the following examples, it is assumed that there are 8 PEs and that the system sep 
constant PENUM, which stores the PE number of each PE (0 for the leftmost PE), has 
been defined: 
 

sep int  x = :( 0,1,2,3,4 :);  // The operator can also be used when initializing a  
                                         //sep variable during declaration. 
 
  x = :( 0,1,2,3,4 :);     // Equivalent to x = :( 0,1,2,3,4,0,0,0 :)  
  x = :( 0,1,2,3,4, :)     // Equivalent to x = :( 0,1,2,3,4,4,4,4 :)  
  x = :( 0:2, 1:3, 4 :);   // Equivalent to x = :( 0,0,1,1,1,4,0,0 :)  
  x = PENUM;               

 



IMAPCAR Series Processor 

 User’s Manual 13 U20036EE1V0UM00 

 

PE data 
assignment 
operator: := 

This assignment operator specifies that a value be assigned to sep data for all PEs 
regardless of the current context. This operator is used to explicitly assign sep data to 
all PEs. For details about how the context is defined, see the next section. 
 

  sep int a,b; 
  a := b;  // Assigns the b value of all PEs in the PE array 
// to the a of all PEs. 
 

The order of operations for 1DC operators is based on the order of operations for C. 
The following shows the order of operations for 1DC operators and their associativity. 
 

Operators Associativity 

Order of 
operations 

:(:)  :[:]  ()   []  ->  . 
!  ~  ++  --  -  (type)  *  &  sizeof :< :>  :|| :&& 
*     /    % 
+     - 
<<    >>   :<   :> 
<     <=    >   >= 
==    != 
& 
^ 
| 
&& 
|| 
?: 
=     +=   -=   :=   etc. 
, 

Left to right 
Right to left 
Left to right 
Left to right 
Left to right  
Left to right 
Left to right  
Left to right 
Left to right  
Left to right 
Left to right  
Left to right 
Right to left 
Right to left 
Left to right 

 



IMAPCAR Series Processor 

 User’s Manual 14 U20036EE1V0UM00 

 

2.3 Additional Syntax 

 

PE selecting 
conditional 
statements:  
mif and melse 

The syntax of mif and melse statements is the same as that of C if and else 
statements: 
        mif (expression-1) statement-block-1 
        melse  statement-block-2      
 
Remark  The melse statement is optional 
 
However, the value of expression1 must have the sep attribute, statement-block-1 is 
executed only for the group of PEs (or PE context) for which the value of expression-1 
is not zero, and statement-bloc-2 is executed only for the group of PEs (or PE context) 
for which the value of expression-1 is zero. Note that, when these statements are used 
in a function, the PE context that is used is calculated by finding the logical conjunction 
of the PE context for the caller of the function and the PE context for expression-1. 

PE selecting 
conditional 
statements: 
mifa and melsea 

The syntax of mifa and melsea statements is the same as that of the previously 
described mif and melse statements: 
        mifa (expression-1) statement-block1 
        melsea  statement-block2      
 
Remark  The melsea statement is optional 
 
However, the value of expression-1 must have the sep attribute. mifa and melsea differ 
from mif and melse in that, while mif and melse use the context calculated by finding 
the logical conjunction of the current context and the context for expression-1, mifa and 
melsea use the context for expression-1 regardless of the current context. The mifa 
statement generates code that is more efficient than that of the mif statement because 
mifa does not consider nesting. Therefore, using mifa is faster if there is no need to 
nest masking conditions 

PE selecting loop 
statement: 
mwhile 

The syntax of the mwhile statements is the same as that of C while statements: 
mwhile (expression-1)  statement-block-1 
 
However, the value of expression-1 must have the sep attribute, and statement-block-1 
is executed only for the group of PEs (or PE context) for which the value of expression-
1 is not zero. For the mwhile statement, statement-block-1 is executed in the context 
based on the (truth) value of expression-1 during the first iteration, and, during the nth 
iteration (n = 2…), all operations for statement-block-1 and expression-1 (except 
assignment operations using :=) are performed only in the context determined 
according to the value of expression-1 during the previous iteration. 

PE selecting loop 
statement: 
mfor 

The syntax of mfor statements is the same as that of C for statements: 
mfor (expression-1; expression-2; expression-3) statement-block-1 
 
This is equivalent to the following mwhile statement:  
      expression-1; 
      mwhile (expression-2) { 
          statement-block-1 
          expression-3; 
       } 

PE selecting loop 
statement: 
mdo and mwhile 

The syntax of mdo and mwhile statements is the same as that of C do and while 
statements: 
  mdo statement-block-1  mwhile (expression-1); 
 
However, the value of expression-1 must have the sep attribute, and statement-block-1 
is executed during the first iteration regardless of the context determined using 
expression-1. 



IMAPCAR Series Processor 

 User’s Manual 15 U20036EE1V0UM00 

 

3 Revision history 

Version Date Document Number Description 
1.0 Sept 2009 U20036EE1V0UM00 First version 
    

 

 

The following revision list shows all functional changes compared to the 
previous version. 

 

Chapter Page Description 
   
   

  

 

 


	1 PREFACE
	1.1 SIMD Mode
	1.2 MP Mode
	1.3 Mixed mode
	1.4 Hardware Configuration Example (for XC Core)

	2 1DC SPECIFICATION EXPANSION FROM C
	2.1 Additional Data Attributes
	2.2 Additional Operators
	2.3 Additional Syntax

	3 Revision history

