

User’s Manual

IMAPCAR Series Processor

1DC GUI Debugger Console Commands

Tools

Document No. U19917EE1V0UM00

Date Published: July 2009

© NEC Electronics (Europe) GmbH

 User’s Manual 2 U19917EE1V0UM00

Legal Notes

The information in this document is current as of July 2009. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC
Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC
Electronics products. Not all products and/or types are available in every country. Please
check with an NEC Electronics sales representative for availability and additional
information.

No part of this document may be copied or reproduced in any form or by any means without the
prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors
that may appear in this document.

• NEC Electronics does not assume any liability for infringement of patents, copyrights or other
intellectual property rights of third parties by or arising from the use of NEC Electronics
products listed in this document or any other liability arising from the use of such products. No
license, express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Electronics or others.

• Descriptions of circuits, software and other related information in this document are provided
for illustrative purposes in semiconductor product operation and application examples. The
incorporation of these circuits, software and information in the design of a customer's
equipment shall be done under the full responsibility of the customer. NEC Electronics
assumes no responsibility for any losses incurred by customers or third parties arising from
the use of these circuits, software and information.

• While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC
Electronics products, customers agree and acknowledge that the possibility of defects thereof
cannot be eliminated entirely. To minimize risks of damage to property or injury (including
death) to persons arising from defects in NEC Electronics products, customers must
incorporate sufficient safety measures in their design, such as redundancy, fire-containment
and anti-failure features.

• NEC Electronics products are classified into the following three quality grades: "Standard",
"Special" and "Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a
customer-designated "quality assurance program" for a specific application. The
recommended applications of an NEC Electronics product depend on its quality grade, as
indicated below. Customers must check the quality grade of each NEC Electronics product
before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement
equipment, audio and visual equipment, home electronic appliances, machine tools, personal
electronic equipment and industrial robots.
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems,
anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not
specifically designed for life support).
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control
systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified
in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics
products in applications not intended by NEC Electronics, they must contact an NEC Electronics
sales representative in advance to determine NEC Electronics' willingness to support a given
application.

(Note)

(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also
includes its majority-owned subsidiaries.

(2) "NEC Electronics products" means any product developed or manufactured by or for NEC
Electronics (as defined above).

 User’s Manual 3 U19917EE1V0UM00

Table of Contents

1 OVERVIEW ..6
2 Tcl/Tk AND sdbimap ..7

2.1 Tcl/Tk Functions Usable from sdbimap ...7
2.2 Handling sdbimap Commands in Tcl/Tk Scripts ..7

3 MAIN WINDOWS GENERATED BY sdbimap COMMANDS...8
4 COMMANDS ..16

4.1 Command Format ..16
4.2 IMAP Executable Search Paths...16
4.3 Specifying Command Parameters ...17

4.3.1 Specifying <var-name>...17
4.3.2 Specifying <line-number-or-function-name> ..21
4.3.3 Specifying <break-line-number>...21
4.3.4 Specifying <executable-file-name> ..21
4.3.5 Specifying <foreground-color> or <background-color> ..22

4.4 Commands According to Function...24
4.5 Using sdbimap Commands from within Tcl/Tk Scripts ..25
4.6 sdbimap Commands (in alphabetical order) ..26

4.6.1 Addr ..26
4.6.2 asm ...26
4.6.3 brk ...26
4.6.4 cfunc ...27
4.6.5 change ..27
4.6.6 charwin..27
4.6.7 cont ...28
4.6.8 creg ...28
4.6.9 cpprof ..28
4.6.10 delete ..28
4.6.11 deleteall...29
4.6.12 display...29
4.6.13 fill...30
4.6.14 fstack...30
4.6.15 geo ..30
4.6.16 getv ...30
4.6.17 help ...31
4.6.18 ireg ..31
4.6.19 ix ...31
4.6.20 kill ..31
4.6.21 loadd ...32

 User’s Manual 4 U19917EE1V0UM00

4.6.22 loade ...32
4.6.23 loadi ..33
4.6.24 loadpe, loadpergb, loadpeyc...34
4.6.25 loadpi, loadpirgb, loadpiyc ..36
4.6.26 loadpeblk, loadpeblkyc, loadpeblkrbg...38
4.6.27 loadse ...39
4.6.28 loadsi...40
4.6.29 loadt ..41
4.6.30 map ...41
4.6.31 measure ..42
4.6.32 mem..42
4.6.33 mreg..42
4.6.34 next ...43
4.6.35 pmem2file ...43
4.6.36 print ...44
4.6.37 prof..44
4.6.38 refresh...45
4.6.39 reload ..45
4.6.40 ret..45
4.6.41 rscale ..45
4.6.42 rscale2d ..46
4.6.43 rsel ..46
4.6.44 run...47
4.6.45 runv ...48
4.6.46 save ..48
4.6.47 saved ..49
4.6.48 savee ..49
4.6.49 savei..50
4.6.50 savepe, savepergb, savepeyc ..51
4.6.51 savepi, savepirgb, savepiyc..53
4.6.52 savepeblk, savepeblkyc, savepeblkrbg ..55
4.6.53 savese...56
4.6.54 savesi..57
4.6.55 savet ...58
4.6.56 scale1d..59
4.6.57 scale2d..60
4.6.58 scale2dx..61
4.6.59 scalecolor..62
4.6.60 sel ...63
4.6.61 selcolor..64

 User’s Manual 5 U19917EE1V0UM00

4.6.62 setv ...64
4.6.63 sfunc ...65
4.6.64 sline...65
4.6.65 step ...66
4.6.66 stop ...66
4.6.67 symbols...66
4.6.68 thumbnail ..67
4.6.69 timerint ..67
4.6.70 tofile ..68
4.6.71 touch ...68
4.6.72 until ...68
4.6.73 view...69
4.6.74 viewer..69
4.6.75 where ..69
4.6.76 whereis..70
4.6.77 win...70
4.6.78 winop...73
4.6.79 wscale ...74
4.6.80 wscale2d...75
4.6.81 wsel...75

5 Revision history ..76

IMAPCAR Series Processor

1 OVERVIEW

This document describes the commands that can be used in the console view
of 1DC-SDB, which is a 1DC source-level debugger for IMAP series
processors that is implemented as an Eclipse plug-in.

1DC-SDB is a GUI-based tool used to debug source code line-by-line while
running one of the following in the background and communicating with it:

1. dbimap5, a terminal-version debugger that interfaces with the actual machine

2. simimap5, a simulator that simulates the operation of the actual machine

To simplify the following discussion, dbimap is used to refer to background
tasks.

1DC-SDB does not issue commands to dbimap directly. Instead, it issues
commands via sdbimap, a tool that communicates with 1DC-SDB while
running. sdbimap internally interprets commands passed by 1DC-SDB and
then issues a lower level command to dbimap, which communicates with
sdbimap while running in the background, only if necessary. Therefore, all
commands issued in the console view are passed to sdbimap once.

For example, to inform 1DC-SDB of the value of the variable X, the print X
command is first issued to sdbimap. sdbimap receives this command and then
uses the debugging information in the executable file to find the address Y of
X. Next, sdbimap issues the lower level command showd Y to dbimap. As a
result, dbimap passes the value stored at the address Y returned by sdbimap
to 1DC-SDB. Note that the debugging information for an executable file can be
embedded in that file by using the 1DC compiler cc1dc5 to compile the 1DC
source file with the –db* option specifiedNote.

Because sdbimap was developed using Tcl/Tk, not only can it execute newly
prepared commands for IMAP series processors (hereafter referred to as
sdbimap commands), but it can also execute Tcl/Tk commands and scripts.
This means that 1DC-SDB can be used for both GUI-based debugging and for
debugging that uses batch files including Tcl/Tk scripts.

 Note
When an executable file is compiled with the –db option (not –db1) specified,
most optimization is suppressed when generating the code. To get the best
performance possible out of an IMAP series processor, recompile and link
1DC source files without the –db1 or –db option specified after debugging
them.

 User’s Manual 6 U19917EE1V0UM00

IMAPCAR Series Processor

 User’s Manual 7 U19917EE1V0UM00

2 Tcl/Tk AND sdbimap

This chapter provides an overview of Tcl (the tool command language), which
is used by sdbimap.

2.1 Tcl/Tk Functions Usable from sdbimap

By using sdbimap with Tcl scripts, complicated operations can be inspected.
Because Tcl is an interpreted language, trial and error can be used during
development for complex sequence control. In addition, if a required command
is not provided as an sdbimap command, Tcl can be used to generate a user-
specified command.

sdbimap can use almost all of the Tcl/Tk functions, including the following:

1. Command history (like the C shell)

2. Complete evaluation of mathematical expressions and support for all
C operators

3. Broad range of math functions

4. Lists and arrays

5. Regular expression pattern matching

6. Procedures

7. User-defined commands

8. Command conversion

9. GUI creation (using Tk)

For details about Tcl and Tk (the Tcl tool kit), see the following online
references:

• The Tcl manual pages can be obtained from http://www.tcl.tk/man/.

• For the Japanese Tcl/Tk manual pages, visit
http://www.sra.co.jp/tb/tclman/.

2.2 Handling sdbimap Commands in Tcl/Tk Scripts

The sdbimap commands described in this document can be specified in Tcl/Tk
scripts just like Tcl/Tk commands.

When an sdbimap command is called from within a Tcl/Tk script, of the results
of executing the command, the character string returned to 1DC-SDB is added
to the Tcl variable sdb::Results (a list). This makes it possible for other
commands in a Tcl/Tk script to receive the character string in the results of
executing an sdbimap command as data.

IMAPCAR Series Processor

3 MAIN WINDOWS GENERATED BY sdbimap COMMANDS

This chapter introduces the functions and features of the main windows
generated by sdbimap commands

 ASM window
The asm window is generated using the asm command. The asm command
displays the disassembled code of the function where the current program
counter is in the asm window.

 User’s Manual 8 U19917EE1V0UM00

IMAPCAR Series Processor

Image window

The image window is generated using the win command.

The image window contains window-manipulation menu buttons at its upper
left. These buttons can be used to select the image display magnification,
resolution, whether the image is in color or monochrome, the refresh mode,
the starting address, the number of displayed lines, and the increment amount.
The image window can be used to increment the starting display address by
the specified amount, and provides a decrement button, return button, and
increment button in that order at its upper right for doing so (when the compact
display mode is canceled).

The pixel value at a specific location on an image can be displayed above the
image in the format of (0xx,0yy)=value by left-clicking that location. The
displayed value is a single value for a monochrome image or R, G, and B
values for a color image. The values to the left are the starting address and
ending address of the image displayed in the current window. If you move the
mouse while holding down the right mouse button, the values for the clicked
pixel and the other pixels in the 3x3 grid centered on that pixel are displayed in
a callout. If you press Shift at this time, the grid expands to a 5x5 grid, and, if
you press Ctrl, the grid expands to an 11x11 grid.

The File menu button at the top of the image window includes a Character
window entry. By clicking this entry, a numerical sub-window that displays the
currently displayed image as characters can be generated, which is useful
when examining the values of each pixel in an image.

 User’s Manual 9 U19917EE1V0UM00

IMAPCAR Series Processor

When a large image, such as a 640x480 image, is displayed in the image
window, the window sometimes takes up most of the screen. In this case, it
can be useful to reduce the size of the displayed image. To reduce the size,
you can either use the sub-menu for specifying enlargement or reduction
found by clicking the Configuration menu button or right double-click the
image. When double-clicked, all portions of the image window are reduced to
one-fourth the normal size, displaying the window as a thumbnail. To restore
the window to its normal size, right double-click the image again. The following
shows a window containing a full-size 640x480 image and two windows
displayed as thumbnails.

Full-size display (640 × 480)

Thumbnail display Thumbnail + numerical window display
(all areas reduced to 1/4)

 User’s Manual 10 U19917EE1V0UM00

IMAPCAR Series Processor

 Color images can also be displayed. If a Y/C image that includes starting
luminance components and the corresponding color components is stored at
sequential addresses in memory, the image can be displayed in the image
window by specifying Color (yc) instead of Grayscale in the Color sub-menu
found by clicking the Configuration menu button in the image window.

If an image that has the .ppm extension is loaded using the File menu, the
image window automatically changes to the color display mode.

Full-size display (640 × 480)

Thumbnail display
(all areas reduced to 1/4) Thumbnail + numerical window display

 User’s Manual 11 U19917EE1V0UM00

IMAPCAR Series Processor

 Memory window
Memory windows display the contents of memory as text and are generated
using the winop command. The following types of memory windows can be
generated:

1. Dmem window (displays the data memory)

2. Imem window (displays the PE array memory)

3. Emem window (displays the external image memory)

4. Pmem window (displays the program memory)

5. Creg window (displays controller registers)

6. Ireg window (displays PE array registers)

An example of the dmem window, which displays the contents of the data
memory, is shown below. The first line contains information about the starting
address of the displayed contents and the number of displayed bytes. The
data memory actually consists of data in external memory and data in the
cache, but, if addresses are cached and the contents have been overwritten,
the dmem window displays the addresses in red and the corresponding data in
the cache. In addition, non-zero data in the window is highlighted in gray for
emphasis.

 User’s Manual 12 U19917EE1V0UM00

IMAPCAR Series Processor

 PEdata window
The pedata window displays the values of (sep-type) variables assigned to PE
array memory. sep-type variables consist of a number of elements equal to
the number of PEs, and displaying their values requires a wide space.
Therefore, although the values of normal (non-sep-type) variables are
displayed in the console view when the print command is used, when the
print command is used to display the value of a sep-type variable, the
pedata window is generated and displays the value.

 Timing window
The timing window displays the results of measuring the processing time on a
line or function basis. This window is generated by executing the sline
command with a function name or line number specified. The measured
processing time for each line of code in the specified function is displayed in
the console view, and, at the same time, a timing window is generated that
displays a bar graph in which the bar for the line of code that had the longest
processing time is displayed in red and the line numbers are displayed over
the bars.

 User’s Manual 13 U19917EE1V0UM00

IMAPCAR Series Processor

 View window
The view window (editing window) displays information generated by sdbimap
commands and is a simple internal editor for editing 1DC programs. This
window is generated by executing the view command with a file name
specified, and the contents of the file are displayed in the window.

The view window is intended to be used for the following purposes:

1. Editing, compiling, and linking 1DC programs

Text displayed in the view window can be edited. After editing this text, cc1dc
(the 1DC compiler) can be directly called from the Compile menu at the top of
the window to compile, assemble, and link programs, and, if warning or error
messages are output by the compiler, entries are automatically created in the
Marks menu at the top of the window to enable movement to the locations that
caused the warnings or errors. However, executable programs generated by
using this compiler are stored in the current directory, regardless of the 1DC-
SDB settings. Therefore, we recommend normally using the project builder
provided by 1DC-SDB to compile source code.

2. Displaying profile results

A view window is generated to display the results of using the prof command
to obtain information about the processing time.

 User’s Manual 14 U19917EE1V0UM00

IMAPCAR Series Processor

Variable control windows

1D sliders, check boxes, a 2D scroll map, and a 2D pointer map can be
generated as a useful GUI for interactively adjusting global variables while
looking at the video output result of image recognition processing. These
windows are collectively referred to as variable control windows. These
windows include the scale window, sel window, scale2d window, and scale2dx
window, and are generated by executing the scale, sel, scale2d, and
scale2dx commands, respectively, with variables (or sets of variables)
specified.

By performing one of the four operations below, values (the x and y
coordinates of the cursor in the case of the 2D scroll map or 2D pointer map)
are written to the memory for their global variables (or sets of global variables
in the case of the 2D scroll map or 2D pointer map). In particular, real time
positional information for the mouse in the 2D pointer map is written to its set
of variables as required (without clicking the mouse).

1. Dragging a 1D slider

2. Selecting any of the check boxes

3. Changing the position of a mark in the 2D scroll map

4. Moving a mouse cursor that is in the 2D pointer map

1D slider Check box

 User’s Manual 15 U19917EE1V0UM00

2D scroll map 2D pointer map

IMAPCAR Series Processor

 User’s Manual 16 U19917EE1V0UM00

4 COMMANDS

4.1 Command Format

The general format of sdbimap commands is as follows:

<command name> [<parameter>...] [; <command name> [<parameter>...]]

Commands and parameters are delimited using non-newline whitespace
characters (spaces or tabs). The execution of multiple commands can be
specified on one line by inserting semicolons (;) between the commands.

In the description of how to specify commands below, portions enclosed by <
and > are individual parameters, and portions enclosed by [and] are optional
parameters. If … appears after a parameter, an optional number of parameters
can be specified after that parameter.

When numerical parameters are specified, they are normally handled as
decimal values. However, if such parameters start with 0x, they are handled as
hexadecimal values. The following shows example command formats and how
many parameters are specified for each.

Format Number of parameters
<command name> 0
<command name> <parameter> <parameter> 2
<command name> [<parameter>] 0 or 1
<command name> [<parameter> [<parameter>]] 0, 1, or 2
<command name> <parameter>... 1 or more
<command name> [<parameter>...] 0 or more

4.2 IMAP Executable Search Paths

sdbimap retains the paths to search for executable IMAP files (the search
paths). These paths are implicitly used when commands such as runv are
used to specify executable IMAP files (whose extension is IX).

The path command can be used to add, remove, or clear search paths. When
sdbimap is started, the current directory is default as a search path.

IMAPCAR Series Processor

 User’s Manual 17 U19917EE1V0UM00

4.3 Specifying Command Parameters

Among the commands described in this chapter, many have one of the
following formats:

Format: command name.... [<var-name>] [<line-number-or-function-name>]
[<other-parameters>]

Format: command name.... [<break-line-number>] ...
Format: command name.... [<executable-file-name>] ...

The following describes how to specify <var-name>,<line-number-or-function-
name>, and <break-line-number>, which are common to all commands.

4.3.1 Specifying <var-name>
Commands that have the <var-name> parameter obtain the following five
types of information based on the specified <var-name> and then reference
and modify the current <var-name> value or simply return an address:

1. The absolute address

2. The memory type

3. The number of accessed bytes

4. The data type

5. The PE position (if the memory type is IMEM or EMEM)

For example, based on the <var-name> value specified as its first parameter,
the print command displays the number of accessed bytes of data starting at
an absolute address in the specified type of memory in the command window
or pedata window, in accordance with the specified data type.

IMAPCAR Series Processor

 User’s Manual 18 U19917EE1V0UM00

Either of the formats below can be used for <var-name>, but the first is
normally used. Note that [is an explicitly specified square bracket. Also, if { }
is followed by ?, the portion enclosed by { } is repeated 0 or more times, and,
if the expression enclosed by { } is of the form A|B, either A or B is specified.

1. {*} ? <variable A>{\[<uni-type variable B>|<value B>] }? {:
\[<uni-type variable C>|<value C>:]}? }

a) Specify variables currently in the scope of execution for
variable A, variable B, and variable C. Note that variable B
and variable C must be of the uni type.

b) The address for variable A (or the result of adding an offset
obtained by multiplying any specified uni-type variable B or
value B with the number of bytes in each dimension relevant
to variable A) specifies an absolute address.

c) A * prefix means that a specification is intermediate and that
the previously mentioned absolute address specifies the
absolute address. If there are multiple *s, the above operation
is repeated that many times. The number of *s that can be
specified depends on the declared data type of variable A.

d) The memory type, number of accessed bytes, and data type
are automatically calculated based on the specification for
{*}?<variable A>{[<uni-type variable B>|<value B>]}?.

e) If the memory type is IMAP memory or external memory, uni-
type variable B or value B specifies the PE position.

f) If no PE position is specified, all PEs are assumed to be
specified.

For example, for the following 1DC code:

sep uchar a[240];

int b,c;

Specifications for <var-name> such as the following are valid:

a Address of a

a\[b] All elements of the sep data a[b]

a\[1] All elements of the sep data a[1]

a\[b]:\[c:] Element c of the sep data a[b]

a\[b]:\[3:] The third element of the sep data a[b]

IMAPCAR Series Processor

 User’s Manual 19 U19917EE1V0UM00

2. {<value A>{:<letter A>}?{:<value B>}?{:<value C>}?}

a) value A specifies an absolute address. Any one of the
following letters can be specified for letter A as the memory
type: d, which indicates the data memory, i, which indicates
the IMAP memory, e, which indicates the external memory, or
p, which indicates the program memory. If this letter is
omitted, the data memory is assumed.

b) value B is optional and specifies the number of accessed
bytes as 1, 2, 4, or 8. If this value is omitted, 1 is assumed.

c) The data type cannot be specified and is always assumed to
be unsigned.

d) If the specified memory type is IMEM (PE array memory) or
EMEM (external memory), value C is assumed to specify the
PE position, and, if this value is omitted, all PEs are assumed
to be specified.

The following are example <var-name> specifications.

<var-name> Description

2:i:2 Specifies the two lines (2 bytes per PE) starting at the IMEM address 2
and is assumed to be one item of unsigned int data.

12:e:1:3
Specifies the value of the line (one byte per PE) starting at the EMEM
address 12 of PE 3 and is assumed to be one item of unsigned char
data.

Example 1DC code and the absolute addresses, memory types, numbers of
accessed bytes, data types, and PE positions acquired for several example
<var-name> specifications are shown below. Note that the absolute memory
address Gx is assigned to the global variable x during linkage, and the local
variable y corresponds to the absolute memory address Ly obtained by
adding the offset corresponding to y to the stack pointer when execution
processing enters the scope of y. In addition, - indicates unspecified
information, ? indicates an error (due to an invalid specification), and *
addresses indicate the corresponding address.

int a[10];
static unsigned int b[3][4][5][6];
char *c;
outside sep unsigned char *d;

int func(x,y)
separate long x;
separate unsigned int y;
{

int *i();
static int (*j)();
int k;
...........

}

IMAPCAR Series Processor

 User’s Manual 20 U19917EE1V0UM00

<var-name> Address Memory type Number of
accessed bytes Data type PE Position

a Ga - - pointer -

a[2] Ga + 4 dmem 2 signed -

*a[2] ? ? ? ? -

b Gb - - - -

b[1] Gb + 240 - - pointer -

b[1][2] Gb + 420 - - pointer -

b[1][2][1] Gb + 480 - - pointer -

b[1][2][1][1] Gb + 4820 dmem 2 unsigned -

c Gc dmem 4 pointer -

*c *Gc dmem 1 signed -

**c ? ? ? ? -

d Gd dmem 4 pointer

d[1] Gd + 4 dmem 4 pointer

*d[2] * (Gd + 2) emem 1 unsigned

*d * Gd emem 1 unsigned

*d :[127 :] * Gd emem 1 unsigned 127

*d :[:c] * Gd emem 1 unsigned Gc

x Lx imem 4 signed -

x[4] Lx + 16 imem 4 signed -

y Ly imem 2 unsigned -

y:[2:] Ly imem 2 unsigned 2

y[3] :[k:] Ly + 6 imem 2 unsigned Gk

y[k] :[k:] Ly + 2*k imem 2 unsigned Gk

i Gi - - pointer -

*i ? ? ? ? -

j Gj dmem 2 pointer -

*j ? ? ? ? -

k Lk dmem 2 signed -

k:[2:] Lk + 6 dmem 2 signed -

k[3] :[k:] ? ? ? ? -

k[3] :[k:] ? ? ? ? -

IMAPCAR Series Processor

 User’s Manual 21 U19917EE1V0UM00

4.3.2 Specifying <line-number-or-function-name>
Commands that have the <line-number-or-function-name> parameter obtain
scope information based on <line-number-or-function-name>. The print
command uses this scope information, for example, to determine whether
specified variables are local or global.

When both <var-name> and <line-number-or-function-name> have to be
specified in the format for one command, the scope of <var-name> is
determined based on the following rules:

1. If <line-number-or-function-name> is omitted, <var-name> is first

searched for within the scope of the stop position and then globally.

2. If <line-number-or-function-name> is -, <var-name> is assumed to be
a global variable.

The format for <line-number-or-function-name> is as follows:

Format: {<file-name>:} ? {<function-name>:}? {<value>}

If <file-name> is omitted, the currently loaded source file is assumed to be
specified, and, if <function-name> is omitted, the function that includes line
<value> in the currently loaded source file is assumed to be specified.
Commands that include <line-number-or-function-name> among their
parameters first search for <var-name> in the specified scope. <var-name> is
assumed to be a local variable if it is found or a global variable if not.

For commands for which parameters can be specified after <line-number-or-
function-name>, specify 0 for <line-number-or-function-name> to omit it.

4.3.3 Specifying <break-line-number>
<break-line-number> is specified using one of the following formats:

<line-number>

<file-name>:<line-number>

<function-name>

If only a line number is specified, the number is assumed to refer to the source
file currently loaded in the source window. If a function name is specified, the
starting address of that function is assumed.

4.3.4 Specifying <executable-file-name>
<executable-file-name> refers to an executable IMAP file that has the .ix
extension, and, if the file is not in the current directory, the search paths are
searched for it.

IMAPCAR Series Processor

 User’s Manual 22 U19917EE1V0UM00

4.3.5 Specifying <foreground-color> or <background-color>
For commands that have the <foreground-color> or <background-color>
parameter, specify one of the following colors:

AliceBlue AntiqueWhite AntiqueWhite1 AntiqueWhite2
AntiqueWhite3 AntiqueWhite4 BlanchedAlmond BlueViolet
CadetBlue CadetBlue1 CadetBlue2 CadetBlue3
CadetBlue4 CornflowerBlue DarkBlue DarkCyan
DarkGoldenrod arkGoldenrod1 DarkGoldenrod2 DarkGoldenrod3
DarkGoldenrod4 DarkGray DarkGreen DarkGrey
DarkKhaki DarkMagenta DarkOliveGreen DarkOliveGreen1
DarkOliveGreen2 DarkOliveGreen3 DarkOliveGreen4 DarkOrange
DarkOrange1 DarkOrange2 DarkOrange3 DarkOrange4
DarkOrchid DarkOrchid1 DarkOrchid2 DarkOrchid3
DarkOrchid4 DarkRed DarkSalmon DarkSeaGreen
DarkSeaGreen1 DarkSeaGreen2 DarkSeaGreen3 DarkSeaGreen4
DarkSlateBlue DarkSlateGray DarkSlateGray1 DarkSlateGray2
DarkSlateGray3 DarkSlateGray4 DarkSlateGrey DarkTurquoise
DarkViolet DeepPink DeepPink1 DeepPink2
DeepPink3 DeepPink4 DeepSkyBlue DeepSkyBlue1
DeepSkyBlue2 DeepSkyBlue3 DeepSkyBlue4 DimGray
DimGrey DodgerBlue DodgerBlue1 DodgerBlue2
DodgerBlue3 DodgerBlue4 FloralWhite ForestGreen
GhostWhite GreenYellow HotPink HotPink1
HotPink2 HotPink3 HotPink4 IndianRed
IndianRed1 IndianRed2 IndianRed3 IndianRed4
LavenderBlush LavenderBlush1 LavenderBlush2 LavenderBlush3
LavenderBlush4 LawnGreen LemonChiffon LemonChiffon1
LemonChiffon2 LemonChiffon3 LemonChiffon4 LightBlue
LightBlue1 LightBlue2 LightBlue3 LightBlue4
LightCoral LightCyan LightCyan1 LightCyan2
LightCyan3 LightCyan4 LightGoldenrod LightGoldenrod1
LightGoldenrod2 LightGoldenrod3 LightGoldenrod4 LightGoldenrodYellow
LightGray LightGreen LightGrey LightPink
LightPink1 LightPink2 LightPink3 LightPink4
LightSalmon LightSalmon1 LightSalmon2 LightSalmon3
LightSalmon4 LightSeaGreen LightSkyBlue LightSkyBlue1
LightSkyBlue2 aquamarine aquamarine1 aquamarine2
aquamarine3 aquamarine4 azure azure1
azure2 azure3 azure4 beige
bisque bisque1 bisque2 bisque3
bisque4 black blue blue1
blue2 blue3 blue4 brown
brown1 brown2 brown3 brown4
burlywood burlywood1 burlywood2 burlywood3
burlywood4 chartreuse chartreuse1 chartreuse2
chartreuse3 chartreuse4 chocolate chocolate1
chocolate2 chocolate3 chocolate4 coral
coral1 coral2 coral3 coral4
cornsilk cornsilk1 cornsilk2 cornsilk3
cornsilk4 cyan cyan1 cyan2
cyan3 cyan4 firebrick firebrick1
firebrick2 firebrick3 firebrick4 gainsboro
gold gold1 gold2 gold3
gold4 goldenrod goldenrod1 goldenrod2
goldenrod3 goldenrod4 gray gray0-gray99
grey grey0-grey99 green green1

IMAPCAR Series Processor

green2 green3 green4 honeydew
honeydew1 honeydew2 honeydew3 honeydew4
ivory ivory1 ivory2 ivory3
ivory4 khaki khaki1 khaki2
khaki3 khaki4 lavender linen
magenta magenta1 magenta2 magenta3
magenta4 maroon maroon1 maroon2
maroon3 maroon4 moccasin navy
orange orange1 orange2 orange3
orange4 orchid orchid1 orchid2
orchid3 orchid4 peru pink
pink1 pink2 pink3 pink4
plum plum1 plum2 plum3
plum4 purple purple1 purple2
purple3 purple4 red red1
red2 red3 red4 salmon
salmon1 salmon2 salmon3 salmon4
seashell seashell1 seashell2 seashell3
seashell4 sienna sienna1 sienna2
sienna3 sienna4 snow snow1
snow2 snow3 snow4 tan
tan1 tan2 tan3 tan4
thistle thistle1 thistle2 thistle3
thistle4 tomato tomato1 tomato2
tomato3 tomato4 turquoise turquoise1
turquoise2 turquoise3 turquoise4 violet
wheat wheat1 wheat2 wheat3
wheat4 white yellow yellow1
yellow2 yellow3 yellow4

 Remarks
1. gray0-gray99 refers to any value in the following sequence: gray0,

gray1, gray2, … gray98, gray99.

2. grey0-grey99 refers to any value in the following sequence: grey0,
grey1, grey2, … grey98, grey99.

 User’s Manual 23 U19917EE1V0UM00

IMAPCAR Series Processor

 User’s Manual 24 U19917EE1V0UM00

4.4 Commands According to Function

The following table lists the commands that can be executed from the console
view according to their function.

Function Command name

sdbimap commands
Reloading IMAP executable files (IX files) reload
Compiling 1DC programs change compilec compiled compilem compilev

fchange
General debugging brk cont delete deleteall fill fstack getv mem next

print ret run setv step symbols where stop
Debugging assembly code creg ireg map mreg whereis crun
Adjusting parameters rscale rscale2d refresh rsel scale1d scale2d

scale2dx scalecolor sel selcolor touch wscale
wscale2d wsel

Measuring processing time measure prof sfunc sline cfunc
Setting up, starting, and stopping timer
interrupts

timerint

Loading image data loadd loade loadi loadpe loadpeblk loadpeblkrgb
loadpeblkyc loadpergb loadpeyc loadpi loadpirgb
loadpiyc loadse loadsi loadt

Saving image data saved savee savei savepe savepeblk savepeblkrgb
savepeblkyc savepergb savepeyc savepi savepirgb
savepiyc savese savesi savet

Displaying the contents of images, data
arrays, or registers

charwin thumbnail win winop

Other addr alias geo help home ix kill path popd pushd
tofile unalias wait

Tcl commands (examples)
append array binary break case catch cd clock close concat continue dde encoding eof error eval
exec exit expr fblocked fconfigure fcopy file fileevent flush for foreach format gets glob global
history if incr info interp join lappend lindex linsert list llength lrange lreplace lsearch lsort
namespace open package pid pkg::create pkg::mkIndex proc puts pwd read regexp registry regsub
rename resource return scan seek set socket source split string subst switch tell time trace
unknown unset update uplevel upvar variable vwait while

Tk commands (examples)
bell bind bindtags bitmap button canvas checkbutton clipboard destroy entry event focus font frame
grab grid image label listbox lower menu menubutton message option options pack photo place
radiobutton raise scale scrollbar selection send text tk tk_bindForTraversal tk_bisque
tk_chooseColor tk_chooseDirectory tk_dialog tk_focusFollowsMouse tk_focusNext tk_focusPrev
tk_getOpenFile tk_getSaveFile tk_menuBar tk_messageBox tk_popup tk_setPalette tkerror tkvars
tkwait toplevel winfo wm

IMAPCAR Series Processor

4.5 Using sdbimap Commands from within Tcl/Tk Scripts

All sdbimap commands can be freely called from within Tcl/Tk scripts.
However, except for the getv command, most are only specified to display
their execution results in the console view, and their results cannot be directly
passed to standard Tcl/Tk commands. However, the tofile command can be
used to send the results of executing sdbimap commands to a file instead of
displaying them in the console view. For details, see the getv and tofile
commands.

 Script example

load testbin.ix ;# Load the IX file.
loadpe testimage/trui128.pgm In ;# Load the image to process.
win In ;# Try displaying the loading results.
setv 100 thres ;# Try changing the value of a global variable.
setv lines 100 ;# Try changing the value of a global variable.
display i
display thres
brk testbin.lc:27 ;# Set up a breakpoint.
set limit 0
while {[getv i]!= 20 && $limit<30} {cont; incr limit}
delete testbin.lc:27 ;# Remove the breakpoint.
setv 100 i ;# Try changing the operation by changing the value of an

automatic variable.
Save the display window contents to a file. (This uses an undocumented
command.)
sdb::Savedisplay testbin_display.txt
Execute processing to the end.
cont
win Out ;# Display the processing results.
savepe result.pgm Out ;# Save the processing results.
Display addresses, values, and other data.
puts "\n value of thres is [getv thres]"
puts "\t address of thres is [addr thres]"
puts "\n address of i In is [addr In]"
puts "\t value of i In\[0\] is [getv In\[0\]]"
Generate GUI buttons.
toplevel .mybutton
button .mybutton.runv -text "runv" -command "runv"
button .mybutton.doit -text "do it" -command "setv 1 DoIt"
pack .mybutton.runv ;# Generate a button that executes the runv command

 # when clicked.
pack .mybutton.doit ;# Generate a button that sets the 1DC variable DoIt
 # to 1 when clicked.

 User’s Manual 25 U19917EE1V0UM00

IMAPCAR Series Processor

4.6 sdbimap Commands (in alphabetical order)

4.6.1 Addr

addr <var-name> [<line-number-or-function-name>] Format

This command displays the address of the variable specified for <var-name>
in the scope specified for <line-number-or-function-name>. If the variable <var-
name> does not exist in the scope of <line-number-or-function-name>, -1 is
displayed.

> addr thres [CR] Example

1044000: d

(Displays the address of the variable thres: Here, a data memory address is
displayed.)

> addr thresA [CR]

-1

(-1 is displayed because the variable thresA does not exist in the currently
loaded executable program.)

> addr thresA test.lc: 22 [CR]

1042970: d

(The address of the local variable thres, which is in the function that includes
line 22 of test.lc, is displayed.)

4.6.2 asm
asm [<func-name>] Format

This command opens a window that displays the assembly code for the
function specified by <func-name>. If <func-name> is omitted, a window that
displays the assembly code for the function at the current position is opened.

4.6.3 brk
brk <break-line-number> Format

This command sets up a breakpoint at line <break-line-number> of a 1DC
source program. The line specified for <break-line-number> must be
specifiable as a breakpoint. This command can also be executed by left-
clicking the numbers of lines displayed in the source window that are
specifiable as breakpoints. Clicked lines are set up as break points.
Breakpoints are not set up if lines for which breakpoints are not specifiable are
clicked.

> brk 34 [CR] Examples

(A breakpoint is set up at line 34.)

> brk main.lc:34 [CR]

(A breakpoint is set up at line 34 of the main.lc source file included in the
executable file.)

 User’s Manual 26 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.4 cfunc
func <function-name> Format

This command executes the processing from the stopped position in the
source to the first completion of the function specified by <function-name> in
the run mode (in which video interrupts are prohibited). Based on the results of
executing this command, the processing time from the beginning of the
function until just before the last line is displayed in the command window.
Unlike sfunc and other commands, the processing time displayed by this
command includes the execution time for background processing and the
number of processing steps, as well as the number of processing steps due to
program cache misses and data cache misses.

4.6.5 change
change <option>* Format

This command changes the user-specified compiling options compilev,
compilem, and compiled, which are used for all files, to <option>. If <option> is
omitted, the dialog box is displayed, and entering new options is requested. If
<option> is -, the current user-specified compiling options are cleared. If
<option> is ?, the currently specified compiling options for each command
related to compiling are displayed. Note that, for a file for which the fchange
command was used to specify compiling options, the options specified using
that command are used, not those specified using the change command.

> change -v -Kdontraise [CR] Examples

[Compilec] uses "-PENO=128 -O -c"

[Compiled] uses "-PENO=128 -O -db"

[Compilem] uses "-PENO=128 -O -m"

[Compilev] uses "-PENO=128 -O"

> change [CR]

(The dialog box is displayed, and entering new options is requested.)

> change - [CR]

User Compile Option is cleared.

4.6.6 charwin
charwin <var-name> Format

This command generates the numerical window for the image window that
displays the contents of <var-name>. However, if the image window that
displays these contents does not yet exist, the following command is used to
generate the image window, and then the numerical window is generated:

charwin <var-name>

 User’s Manual 27 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.7 cont
cont Format
This command resumes execution of the interrupted program currently being
debugged, and runs the program to the next assembly breakpoint specified,
for example, using the brk command.

4.6.8 creg
creg Format

This command opens the window that displays the CP registers (the creg window).

4.6.9 cpprof
cpprof Format

This command calculates information about how many times all the functions
in the current source file have been executed on a CP (and in the PE array)
and the percentage of the total execution time used to execute these functions
and for the total number of execution steps, and then displays the results in
the view window. However, note that this command does not count the
execution time for background processing, such as the IxEmemrd and
IxEmemwr functions, or the number of processing steps due to program cache
misses and data cache misses.

This command can be used regardless of the compiling options used when the
executable file is created. For example, a profile can be obtained even of an
executable file that does not include source information.

Because, unlike the prof command, this command does not collect
information about functions executed in PUs, it can obtain a profile much faster
than prof.

4.6.10 delete
delete <break-line-number> Format

This command removes the breakpoint specified for line <break-line-number>
of a 1DC source program. The command does nothing if the specified line
does not have a breakpoint or temporary breakpoint.

> delete tst.lc: 34 [CR] Examples

(The breakpoint or temporary breakpoint specified for line 34 of tst.lc is
removed.)

 User’s Manual 28 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.11 deleteall
deleteall Format

This command removes all breakpoints and temporary breakpoints that are
currently set up.

> deleteall [CR] Examples

(All breakpoints and temporary breakpoints that are set up are removed.)

4.6.12 display
display [<var-name>] [<line-number-or-function-name>] [<from> <to>] Format

This command displays the value of the variable specified by <var-name> that
is in the scope specified by <line-number-or-function-name> in the display
window. Note that this command cannot display an indexed element of a sep-
type array.

Executing this command generates the display window if it does not exist. If
<var-name> is a local variable, its value is only displayed in the display
window when execution processing enters the scope of the variable. If <from>
and <to> are specified, a <var-name> value at an address from the offset
<from> to the offset <to> is displayed. The default values of both <from> and
<to> are 0.

If <var-name> is omitted, all variables in the current scope are displayed in the
display window.

Below, MX is a uni-type scalar variable, sptr is a pointer to sep data, and
sary is a sep-type array.

Examples

char MX;

sep int *sptr:

> display MX - [CR] (The display window is generated and the value of
MX is displayed.)

> display sptr [CR] (The value of sptr (a uni-type value) is displayed
in the display window.)

> display *sptr [CR] (The value pointed to by sptr (a sep-type value)
is displayed in the display window.)

> display sptr[2] [CR] (The value of sptr[2] (a sep-type value) is
displayed in the display window.)

> display sptr[2]:[3:] [CR] (The value of sptr[2]:[3:] (a uni-
type value) is displayed in the display window.)

> display *sptr:[3:] [CR] (The value of *sptr:[3:] (a uni-type
value) is displayed in the display window.)

 User’s Manual 29 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.13 fill
fill <value> <fill-length> <variable-name> [<line-number-or-function-name>] Format

> fill 0 240 In [CR] (This fills the 240 lines starting at the global sep-
type In with 0s.) This command fills the <fill-length> byte area starting at the
address of <variable-name> with <value>.

Examples

4.6.14 fstack
fstack Format

This command displays the contents of the current function stack. Note that
this command only works correctly if all the 1DC source code is compiled with
–db or –db3 specified.

> fstack [CR] Examples

1) called from: do_fft() in binarize.lc: 12

2) called from: fft() in fft.lc: 34

3) current: check() in main.lc: 15

4.6.15 geo
geo <window-type> <x-position> <y-position> [<x-size> <y-size>] [<image-name>] Format

This command moves the window specified by <window-type> to the
coordinates specified by <x-position> and <y-position>. If the <window-type>
window does not exist, this command does nothing. Note that, if both <x-size>
and <y-size> are specified, the window is also resized to <x-size> by <y-size>
pixels.

Any one of the following character strings can be specified for <window-type>:
display, image, scale1d (or scale), scale2d, sel, source, or view. If there is
more than one window of the <window-type> type, the windows are moved to
the specified position and tiled in order. However, if <window-type> is image
and <image-name> is specified, only the image window corresponding to
<image-name> is moved or resized. <image-name> indicates information such
as the name of the sep-type array specified when the win command is
executed.

4.6.16 getv
getv <var-name> Format

This command returns the value of the uni-type variable <var-name>.

 User’s Manual 30 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.17 help
help [<command>] Format

This command displays the format for <command>. If <command> is omitted,
all sdbimap commands and dbimap commands, which use the ix command to
run as background tasks, are displayed. To display all commands that can be
executed from the command window, including Tcl/Tk commands, use the
Tcl/Tk info command.

> help load [CR] Examples

Command format: load [<file-name>]

> info commands [CR]

(All valid commands are displayed.)

4.6.18 ireg
ireg Format

This command opens the window that displays the PE array registers (the ireg
window).

4.6.19 ix
ix <dbimap-command-call> Format

The character string starting after ix and ending at a newline character is
passed to dbimap, which handles background tasks. The dbimap execution
results are displayed in the command window.

4.6.20 kill
kill <window-type> Format

This command closes the type of window specified by <window-type>. Any of
the following can be specified for <window-type>: display, regwin,
scale1d (or scale), scale2d, scale2dx, sel, or view.

 User’s Manual 31 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.21 loadd
loadd [<file-name>] [<var-name>] [<length>] Format

This command loads the file <file-name> into the <length> line area of the data
memory starting at the address of the variable <var-name>. If a value is
specified for <var-name>, it is assumed to be an absolute address in the data
memory.

Specify the name of the binary file containing the data to be loaded for <file-
name>. If <file-name> is omitted, or if <file-name> is -, the file browser starts,
and the selection of a file is requested.

If other parameters are omitted, their default values are as follows:

<var-name> 0:d

<length> File size

> loadd ~/data/data.256 a Examples

(The ~/data/data.256 file is loaded into the data memory starting at the
address of the global variable a.)

> loadd - 10 [CR]

(The file browser starts, and the selection of a binary file is requested. The
selected file is loaded into the data memory starting at the address 10.)

> loadd [CR]

(The file browser starts, and the selection of a binary file is requested. The
selected file is loaded into the data memory starting at the address 0.)

4.6.22 loade
loade [<file-name>] [<var-name>] [<length>] [<offset>] [<width>] Format

This command is the same as the loadi command, except loade loads the
file into the external memory (EMEM).

 User’s Manual 32 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.23 loadi
loadi [<file-name>] [<var-name>] [<length>] [<offset>] [<width>] Format

This command loads the file <file-name> into the <length> line area that is
<width> bytes wide and starts at the position found by adding the offset in the
PE direction <offset> to the first line of the sep-type array <var-name>. If a
value is specified for <var-name>, it is assumed to be an absolute address in
the IMAP memory.

Specify the name of the binary file containing the data to be loaded for <file-
name>. If <file-name> is omitted, or if <file-name> is -, the file browser starts,
and the selection of a file is requested.

If other parameters are omitted, their default values are as follows:

<var-name> 0:i

<length> File size / <width>

<offset> 0

<width> Number of PEs - <offset>

> loadi ~/image/sample.raw In [CR] Examples

(The ~/image/sample.raw file is loaded into the IMAP memory starting at the
address of the sep-type array In.)

> loadi - 0x100: i [CR]

(The file browser starts, and the selection of a binary file is requested. The
selected file is loaded into the IMAP memory starting at the address 256.)

> loadi [CR]

(The file browser starts, and the selection of a binary file is requested. The
selected file is loaded into the IMAP memory starting at the address 0.)

 User’s Manual 33 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.24 loadpe, loadpergb, loadpeyc
loadpe [<file-name>] [<var-name>] [<length>] [<offset>] [<width>] Format

loadpergb [<file-name>] [<var-name>] [<length>] [<offset>] [<width>] Format

loadpeyc [<file-name>] [<var-name>] [<length>] [<offset>] [<width>] Format

The loadpergb command is the same as the loadpe command, except
loadpergb loads the RGB data in the file into the area starting at the address
of the first line of the outside sep-type array specified by <var-name> in the
order R, G, and then B, loads a ppm binary file, and actually loads either the
number of lines of data specified by <length> multiplied by 3 or the number of
lines in the <var-name> array, whichever is smaller.

The loadpeyc command is the same as the loadpe command, except
loadpeyc converts the RGB data in the file to the luminance data y and the
color data c and loads this data into the area starting at the address of the first
line of the outside sep-type array specified by <var-name> in the order y
and then c, loads a ppm binary file, and actually loads either the number of
lines of data specified by <length> multiplied by 2 or the number of lines in the
<var-name> array, whichever is smaller.

Therefore, the following describes only loadpe.

Specify the name of the pgm binary file (or the ppm file for loadpeyc or
loadpergb) containing the data to be loaded for <file-name>. If <file-name>
is omitted, or if <file-name> is -, the file browser starts, and the selection of a
file is requested.

The loadpe command loads the <width> by <length> rectangular area R
starting at the beginning of <file-name> to pixel <offset> of each line, starting
at the first line of the outside sep-type array specified by <var-name>. If the
total number of bytes in R exceeds the size of the <var-name> array, only the
portion that does not exceed this size is loaded, and then a warning message
is output. Note that, if r is specified for <width>, <file-name> is resized to a
width equal to the number of PEs, and then the <width of the number of PEs>
by <length> rectangular area R is loaded.

If a value such as 0:e is specified for <var-name>, it is assumed to be an
absolute address in EMEM (and all data in R is loaded because information
about the array size does not exist). However, if there are less lines in <file-
name> than the number of lines specified for <length>, Bad memory length
is displayed and data is not loaded. Note that, if <offset> is specified, it is
ignored. (For details, see the following figure.)

 User’s Manual 34 U19917EE1V0UM00

IMAPCAR Series Processor

If parameters are omitted, their default values are as follows:

<file-name> The file selection window is generated.

<var-name> 0:e

<length> The value specified in the file

<offset> 0

<width> The value specified in the file

 User’s Manual 35 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.25 loadpi, loadpirgb, loadpiyc
loadpi [<file-name>] [<var-name>] [<length>] [<offset>] [<width>] Format

loadpirgb [<file-name>] [<var-name>] [<length>] [<offset>] [<width>] Format

loadpiyc [<file-name>] [<var-name>] [<length>] [<offset>] [<width>] Format

The loadpirgb command is the same as the loadpi command, except
loadpirgb loads the RGB data in the file to pixel <offset> of each line,
starting at the address of the first line of the sep-type array specified by <var-
name>, in the order R, G, and then B, loads a ppm binary file, and actually
loads either the number of lines of data specified by <length> multiplied by 3 or
the number of lines in the <var-name> array, whichever is smaller.

The loadpiyc command is the same as the loadpi command, except
loadpiyc converts the RGB data in the file to the luminance data y and the
color data c and loads this data into the area starting at the address of the first
line of the sep-type array specified by <var-name> in the order y and then c,
loads a ppm binary file, and actually loads either the number of lines of data
specified by <length> multiplied by 2 or the number of lines in the <var-name>
array, whichever is smaller.

Therefore, the following describes only loadpi.

Specify the name of the pgm binary file (or the ppm file for loadpiyc or
loadpirgb) containing the data to be loaded for <file-name>. If <file-name>
is omitted, or if <file-name> is -, the file browser starts, and the selection of a
file is requested.

The loadpi command loads the <width> by <length> rectangular area R
starting at the beginning of <file-name> to pixel <offset> of each line, starting
at the first line of the sep-type array specified by <var-name>. If the total
number of bytes in R exceeds the size of the <var-name> array, only the
portion that does not exceed this size is loaded, and then a warning message
is output. Note that, if r is specified for <width>, <file-name> is resized to a
width equal to the number of PEs, and then the <width of the number of PEs>
by <length> rectangular area R is loaded.

If a value is specified for <var-name>, it is assumed to be an absolute address
in IMEM (and all data in R is loaded because information about the array size
does not exist). However, if there are less lines in <file-name> than the
number of lines specified for <length>, Bad memory length is displayed
and data is not loaded. If <offset + width> exceeds the number of PEs, four
lines of data are loaded at a time (which contain (number of PEs × 4 bytes)
each), a newline character is added to the end of the fourth line, and then
loading continues. (For details, see the following figure.)

 User’s Manual 36 U19917EE1V0UM00

IMAPCAR Series Processor

If parameters are omitted, their default values are as follows:

<file-name> The file selection window is generated.

<var-name> 0:i

<length> The value specified in the file

<offset> 0

<width> The value specified in the file

 User’s Manual 37 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.26 loadpeblk, loadpeblkyc, loadpeblkrbg
loadpeblk [<file-name>] [<var-name>] [<length>] [<offset>] [<width>] Format

loadpeblkyc [<file-name>] [<var-name>] [<length>] [<offset>] [<width>] Format

loadpeblkrbg [<file-name>] [<var-name>] [<length>] [<offset>] [<width>] Format

The loadpeblkyc command is the same as the loadpeblkrgb command,
except loadpeblkyc converts the RGB data in the file to the luminance data
y and the color data c and loads this data into the area starting at the address
of the first line of the sep-type array specified by <var-name> in the order y
and then c, loads a ppm binary file, and actually loads either the number of
lines of data specified by <length> multiplied by 2 or the number of lines in the
<var-name> array, whichever is smaller.

The loadpeblkrgb command is the same as the loadpeblk command,
except loadpeblkrgb loads the RGB data in the file to pixel <offset> of each
line, starting at the address of the first line of the sep-type array specified by
<var-name>, in the order R, G, and then B, loads a ppm binary file, and
actually loads either the number of lines of data specified by <length>
multiplied by 3 or the number of lines in the <var-name> array, whichever is
smaller.

Therefore, the following describes only loadpeblk.

Specify the name of the pgm binary file (or the ppm file for loadpeblkyc or
loadpeblkrgb) containing the data to be loaded for <file-name>. If <file-
name> is omitted, or if <file-name> is -, the file browser starts, and the
selection of a file is requested.

The loadpeblk command rotates every 4 bytes of the <width> by <length>
rectangular area R starting at the beginning of <file-name> 90 degrees
clockwise and loads the area to pixel <offset> of each line, starting at the first
line of the sep-type array specified by <var-name>. If r is specified for
<width>, <file-name> is resized to a width equal to the number of PEs, and
then the <width-of-the-number-of-PEs> by <length> rectangular area R is
loaded.

If the total number of bytes in R exceeds the size of the <var-name> array,
only the portion that does not exceed this size is loaded, and then a warning
message is output. If a value is specified for <var-name>, it is assumed to be
an absolute address in IMEM (and all data in R is loaded because information
about the array size does not exist). However, if there are less lines in <file-
name> than the number of lines specified for <length>, Bad memory length
is displayed and data is not loaded.

If <offset + width> exceeds the number of PEs, 4 bytes from each PE are
loaded at a time, a newline character is added to the end of the fourth line, and
then loading continues. (For details, see the following figure.)

 User’s Manual 38 U19917EE1V0UM00

IMAPCAR Series Processor

If parameters are omitted, their default values are as follows:

<file-name> The file selection window is generated.

<var-name> 0:e

<length> The value specified in the file

<offset> 0

<width> The value specified in the file

> loadpeblk ~/image/sample.pgm In [CR] Example

(The ~/image/sample.pgm file is loaded into the EMEM area starting at the
sep-type array In, with every 4 bytes rotated 90 degrees counter-clockwise.)

4.6.27 loadse
loadse [<file-name>] [<var-name>] [<length>] Format

This command is the same as the loadsi command, except loadse loads
the file into an outside sep-type array.

 User’s Manual 39 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.28 loadsi
loadsi [<file-name>] [<var-name>] [<length>] Format
This command loads the file <file-name> into the <length> line area that starts
at the first line of the sep-type array <var-name>. If a value is specified for
<var-name>, it is assumed to be an absolute address in the IMAP memory.
The loading address <var-name> and data length <length> can be specified
by a file header, but the parameters specified on the command line are
prioritized.

Specify the IMAP text file containing the data to be loaded for <file-name>.

If <file-name> is omitted, or if <file-name> is -, the file browser starts, and the
selection of a file is requested.

An IMAP text file has the following format:

Loading-address number-of-lines [CR]

data data [CR] •

data data [CR] ⏐ Number of lines of data

 ⏐

data data [CR] •

If other parameters are omitted, their default values are as follows:

<var-name> 0:i

<length> The value specified in the file

> loadsi ~/image/sample.256.imap In [CR] Examples

(The ~/image/sample.256 file is loaded into the IMAP memory starting at the
address of the sep-type array In.)

> loadsi . 256: i [CR]

(The file browser starts, and the selection of an IMAP text file is requested.
The selected file is loaded into the area starting at the address 256.)

> loadsi [CR]

(The file browser starts, and the selection of an IMAP text file is requested.
The selected file is loaded according to the loading address specified by the
file-internal header.)

 User’s Manual 40 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.29 loadt
loadt [<file-name>] [<function-name>] [<length>] Format

This command loads the file <file-name> into the <length> line area in the
program memory that starts at the position offset <offset> from the starting
address of the function <function-name> and is <width> words wide. If a value
is specified for <function-name>, it is assumed to be an absolute address in
the program memory.

Specify the binary file that contains the program code to be loaded for <file-
name>. If <file-name> is omitted, or if <file-name> is -, the file browser starts,
and the selection of a file is requested.

This command is used to perform lower level operations. Use the load
command to load normal IMAP executables to the program memory.

If other parameters are omitted, their default values are as follows:

<function-name> 0

<length> file-size / (<width> * 2)

<offset> 0

<width> 5 - <offset>

> loadt ~/sample/func.io main [CR] Examples

(~/sample/func.io is loaded into the area starting at the address of the main
function.)

> loadt - 0x100 [CR]

(The file browser starts, and the selection of a binary file is requested. The
selected file is loaded into the program memory starting at the address 256.)

> loadt [CR]

(The file browser starts, and the selection of a binary file is requested. The
selected file is loaded into the program memory starting at the address 0.)

4.6.30 map
map Format

This command displays information about the memory map of the currently
loaded IMAP executable file.

> cd /lpa/testprog [CR] Examples

> load testbin.ix [CR]

> map [CR]

TEXT IDATA IBSS DDATA DBSS EDATA EBSS PROGRAM

0000-0fea 0000-0000 --------- 20000-2052d 20530-2053d --------- 0800-09df * testbin.ix

 User’s Manual 41 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.31 measure
measure Format

When this command is executed, a dialog box is displayed that asks which
function in the current source file to measure the processing time for. When a
function is entered and OK is clicked, the result of measuring the processing
time of the function is displayed.

4.6.32 mem
mem [p | d | i | e | pa | pm] Format

This command displays memory usage information for the currently loaded
executable object file. The displayed information or display method differs
depending on the specified parameter as follows:

p Displays the usage status of the program memory (in order of the
function names).

pa Displays the usage status of the program memory (in order of the
function addresses).

pm Displays the usage status of the program memory (starting with
functions that are using less memory).

d Displays the usage status of the data memory (per variable).

i Displays the usage status of the IMAP memory (per variable).

e Displays the usage status of the IMAP external memory (per
variable).

Note that, when displaying how much memory is used by functions,
information about stack usage is displayed, but this is the amount of the stack
explicitly used within functions, and the actual amount of the stack being used
might also include the amount of the stack used by other functions called
within the functions for which information is displayed.

4.6.33 mreg
mreg Format

This command opens the window that displays information about all CP and
PU registers (the mreg window).

 User’s Manual 42 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.34 next
next Format

This command executes the processing from the position where processing
was stopped to the next line where a breakpoint can be set up, with video
interrupts prohibited (in the still mode). The execution of any function called
during this processing is finished.

Note that this command cannot be used if the current position is in a function
compiled using –db1 or –m.

Also note that the next line where a breakpoint can be set up used by this
command is the next such line based on the current line of code in the source
window, not the next such line reached by executing the program (such as by
stepping into functions). If the next such line cannot be reached by continuing
program execution, the program continues to the next breakpoint or to the end.

> next [CR] Examples

... Stopped at line: tst.lc:51

> next [CR]

... Stopped at line: tst.lc:52

> next [CR]

... Stopped at line: tst.lc:53

4.6.35 pmem2file
pmem2file <filename> Format

This command writes out the result of disassembling the PMEM contents of all
currently loaded executable files to the file <file-name>. This command can be
used to determine which instructions are used in executable files.

 User’s Manual 43 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.36 print
print <var-name> [<line-number-or-function-name>] [<from> <to>] [u | d | x] Format

This command displays the value of the variable specified by <var-name>,
which is in the scope specified by <line-number-or-function-name>. For a sep
variable, the values of all elements are displayed in the pedata window, and
information such as the total of the non-zero element values in each PE, the
number of the PE that has the maximum element value, and the number of the
PE that has the minimum element value is displayed in the command window.

If <from> and <to> are specified, a <var-name> value at an address from the
offset <from> to the offset <to> is displayed. The default value of both <from>
and <to> is 0.

Specifying u, d, or x for the fifth parameter changes the value to an unsigned
decimal value, a signed decimal value, or a hexadecimal value, respectively.
The default setting is to display a decimal value, and whether the value is
signed depends on the data type of <var-name>.

4.6.37 prof
prof [<function-name>] Format

This command calculates information about the specified function in the
current source file, including how many times the function is executed, the total
number of execution steps, the total execution time for the function, and the
percentage of the total processing time used for the function, and then
displays the information in the view window. However, note that this command
does not count the execution time for background processing, such as the
ememrd and ememwr functions, or the number of processing steps due to
program cache misses or data cache misses.

This command can be used regardless of the compiling options used when the
executable file is created. For example, a profile can be obtained even of an
executable file that does not include source information. Any function or
functions called by the currently loaded executable file can be specified for
<function-name>.

If <function-name> is omitted, this command displays information in the view
window about all functions in the currently loaded executable file, including
how many times the functions are executed, the total number of execution
steps, the total execution time for the functions, and the percentage of the total
processing time used for the functions.

 User’s Manual 44 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.38 refresh
refresh Format

This command executes the rscale, rsel, and rscale2d commands in a
row. This command is useful when performing a reload after revising and
recompiling a program for applying all the values in the corresponding
locations in memory to the values displayed for 1D sliders and other value
adjustment GUI tools before the reload.

If the image window, register window, memory window, or another window
exists, this command also applies the values at the corresponding locations in
memory to that window.

4.6.39 reload
reload Format

This command reloads an executable object file previously loaded using the
load command from the disk. This command is used after the source file is
recompiled.

Unlike when the load command is re-executed, when the reload command
is executed and an executable object file is reloaded, the previously specified
breakpoint information and the various windows generated for controlling
parameters remain unchanged.

4.6.40 ret
ret Format

This command finishes executing the function at the current position and then
returns to the function that called it.

4.6.41 rscale
rscale [<number>] Format

This command matches the position of the 1D slider specified by the number
<number> with the current value of the global variable assigned to that slider
in memory. If <number> is omitted, the above processing is performed for all
1D sliders.

> rscale 0 [CR] Examples

(The position of the 1D slider that has the ID number 0 is matched with the
current value of the corresponding global variable.)

> rscale [CR]

(The positions of all 1D sliders are matched with the current value of the
corresponding global variable.)

 User’s Manual 45 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.42 rscale2d
rscale2d [<number>] Format

This command matches the positions of each symbol in the 2D scroll map
specified by the number <number> with the current value of the corresponding
global variable (set). If <number> is omitted, the above processing is
performed for the symbols of all 2D scroll maps.

> rscale2d 0 [CR] Examples

(The position of each symbol in the 2D scroll map that has the ID number 0 is
matched with the current value of the corresponding global variable (set).)

> rscale2d [CR]

(The position of each symbol in all 2D scroll maps is matched with the current
value of the corresponding global variable (set).)

4.6.43 rsel
rsel [<number>] Format

This command matches the value selected using the check box specified by
the number <number> with the current value of the global variable assigned to
that button in memory. If <number> is omitted, the above processing is
performed for all check boxes.

> rsel 0 [CR] Examples

(The value selected using the check box that has the ID number 0 is matched
with the current value of the corresponding global variable.)

> rsel [CR]

(The values selected using all check boxes are matched with the current
values of the corresponding global variables.)

 User’s Manual 46 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.44 run
run [<executable-file-name>] [<var-name>=<value>] Format

If the first parameter is omitted, this command executes the currently loaded
executable object file in the still mode (in which video interrupts are
prohibited). If a breakpoint is set up, execution stops there. If there are no
breakpoints, execution stops at the end of the main function.

If an <executable-file-name> with the extension .ix is specified for the first
parameter, the corresponding executable object file is executed in the still
mode (in which video interrupts are prohibited).

For <var-name>, specify the name of a global variable in either a previously
loaded executable object file or in the executable object file specified as the
first parameter (making sure to specify a variable that has the long data type
or a larger one, that is, a variable that uses at least 4 bytes, for the second
type of file). For <value>, specify the number for that variable. The required
number of global variables and values can be sequentially specified in the
format <var-name>=<value>. This command writes the corresponding initial
value <value> to the memory for each specified global variable <var-name>
immediately before executing the executable object file.

:> brk 54 [CR] Examples

> run [CR]

... Stopped at line: tst.lc:54

> run Threshold=30[CR]

... Stopped at line: tst.lc:34

(30 is specified for the global variable Threshold, and then the already loaded
executable object file is executed.)

 User’s Manual 47 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.45 runv
runv [<executable-file-name>] [<var-name>=<value>] Format

This command executes the IMAP executable file specified by <executable-
file-name> in the video mode, using the video I/O mode value shown below. If
<executable-file-name> is not in the current directory, the search path is
searched for the file, and, if <executable-file-name> is omitted, the currently
loaded executable object file is executed.

For <var-name>, specify the name of a global variable in the specified
executable object file. For <value>, specify the number for that variable. The
required number of global variables and values can be sequentially specified
in the format <var-name>=<value>. The runv command writes the
corresponding initial value <value> to the memory for each specified global
variable <var-name> immediately before executing the executable object file.

> runv ~/sample.ix [CR] Examples

(~/sample.ix is executed in the video mode.)

> runv tst fstart=20 fno=30[CR]

(20 and 30 are specified for the global variables fstart and fno in the object file
tst.ix, respectively, and then test.ix is executed in the video mode.)

4.6.46 save
save [<file-name>] Format

This command saves the text in the source window into the file <file-name>. If
<file-name> is omitted, the file browser is displayed, and inputting <file-name>
is requested.

 User’s Manual 48 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.47 saved
saved [<file-name>] [<var-name>] [<length>] Format

This command saves the contents of the <length> line area of the data
memory starting at the address of the variable <var-name> as the binary file
<file-name>. If a value is specified for <var-name>, it is assumed to be an
absolute address in the data memory. If <file-name> is omitted, or if <file-
name> is -, the file name entry window is displayed, and the entry of a file
name is requested.

If other parameters are omitted, their default values are as follows:

<var-name> 0:d

<length> 1

> saved ~/data/data.256 a Examples

(The contents of the data memory starting at the address of the variable a are
saved to the file ~/data/data.256 in binary format.)

> saved - 10 [CR]

(The file name entry window is displayed, and the entry of a file name is
requested. The contents of the data memory starting at the address 10 are
saved to the entered file in binary format.)

> saved [CR]

(The file name entry window is displayed, and the entry of a file name is
requested. The contents of the data memory starting at the address 0 are
saved to the entered file in binary format.)

4.6.48 savee
savee [<file-name>] [<var-name>] [<length>] [<offset>] [<width>] Format

This command is the same as the savei command, except savee saves the
data in an outside sep type array.

 User’s Manual 49 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.49 savei
savei [<file-name>] [<var-name>] [<length>] [<offset>] [<width>] Format

This command saves the <length> line area that is <width> bytes wide and
starts at the position found by adding the offset in the PE direction <offset> to
the first line of the sep-type array <var-name> to the file <file-name> in binary
format. If a value is specified for <var-name>, it is assumed to be an absolute
address in the IMAP memory. Specify the name of the file to which to save the
data for <file-name>. If <file-name> is omitted, or if <file-name> is -, the file
name entry window is displayed, and the entry of a file name is requested.

If other parameters are omitted, their default values are as follows:

<var-name> 0:i

<length> VLINES

<offset> 0

<width> Number of PEs - <offset>

> savei ~/image/sample.raw In [CR] Examples

(The contents of the IMAP memory starting at the address of the sep-type
array In are saved to the file ~/image/sample.raw in binary format.)

> savei - 0x100:i [CR]

(The file name entry window is displayed, and the entry of a file name is
requested. The contents starting at the IMAP memory address 256 are saved
to the entered file in binary format.)

> savei [CR]

(The file name entry window is displayed, and the entry of a file name is
requested. The contents starting at the IMAP memory address 0 are saved to
the entered file in binary format.)

 User’s Manual 50 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.50 savepe, savepergb, savepeyc
savepe [<file-name>] [<var-name>] [<length>] [<offset>] [<width>] Format

savepergb [<file-name>] [<var-name>] [<length>] [<offset>] [<width>] [<color-offset>]

savepeyc [<file-name>] [<var-name>] [<length>] [<offset>] [<width>] [<color-offset>]

The savepergb command is the same as the savepe command, except, if
<color-offset> is not specified for savepergb, it assumes the first <length>
lines in the area starting at the first line of the outside sep-type array <var-
name> to be R data, the next <length> lines to be G data, and the <length>
lines following those to be B data, and saves data to a file in the ppm binary
format. The savepergb command is also the same as the savepe command,
except, if <color-offset> is specified, savepergb assumes the first <color-
offset> lines in the area starting at the first line of the outside sep-type array
<var-name> to be R data, the next <color-offset> lines to be G data, and the
<color-offset> lines following those to be B data, and saves data to a file in the
ppm binary format.

The savepeyc command is the same as the savepe command, except, if
<color-offset> is not specified for savepeyc, it assumes the first <length>
lines in the area starting at the first line of the sep-type array <var-name> to
be y data and the next <length> lines to be c data, and saves data to a file in
the ppm binary format. The savepeyc command is also the same as the
savepe command if <color-offset> is specified, except savepeyc assumes
the first <color-offset> lines in the area starting at the first line of the sep-type
array <var-name> to be y data and the next <color-offset> lines to be c data,
and saves data to a file in the ppm binary format. Note that, when a ppm binary
file saved using the savepeyc command is reloaded to a sep-type array
using a command such as loadpeyc, there are arithmetic errors during the
conversion of the data from YC data, to RGB data, and then back to YC data
that result in slight differences from the data originally stored in the outside
sep-type array.

The following describes only savepe.

Specify the name of the file to which to save the data for <file-name>. If <file-
name> is omitted, or if <file-name> is -, the file browser starts, and the
selection of a file is requested.

The data in the area starting at the first line of the outside sep-type array
<var-name> is saved to the <width> × <length> file <file-name> in the pgm
binary format (or the ppm binary format for savepeyc or savepergb). If a
value such as 0:e is specified for <var-name>, it is assumed to be an
absolute address in EMEM. Note that, if <offset> is specified, it is ignored. (For
details, see the following figure.)

 User’s Manual 51 U19917EE1V0UM00

IMAPCAR Series Processor

If parameters are omitted, their default values are as follows:

<file-name> The file selection window is generated.

<var-name> 0:e

<length> The number of lines in the outside sep-type array <var-name>

<offset> 0

<width> Number of PEs

<color-offset> VLINES

 User’s Manual 52 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.51 savepi, savepirgb, savepiyc
savepi [<file-name>] [<var-name>] [<length>] [<offset>] [<width>] Format

savepirgb [<file-name>] [<var-name>] [<length>] [<offset>] [<width>] [<color-offset>]

savepiyc [<file-name>] [<var-name>] [<length>] [<offset>] [<width>]

The savepirgb command is the same as the savepi command, except, if
<color-offset> is not specified for savepirgb, it assumes the pixels starting at
pixel <offset> on the first <length> lines in the area starting at the first line of
the sep-type array <var-name> to be R data, the same pixels on the next
<length> lines to be G data, and the same pixels on the <length> lines
following those to be B data, and saves data to a file in the ppm binary format.
The savepirgb command is also the same as the savepi command if
<color-offset> is specified, except savepirgb assumes the first <color-offset>
lines in the area starting at the first line of the sep-type array <var-name> to
be R data, the next <color-offset> lines to be G data, and the <color-offset>
lines following those to be B data, and saves data to a file in the ppm binary
format.

The savepiyc command is the same as the savepi command, except, if
<color-offset> is not specified for savepiyc, it assumes the pixels starting at
pixel <offset> on the first <length> lines in the area starting at the first line of
the sep-type array <var-name> to be y data and the same pixels on the next
<length> lines to be c data, and saves data to a file in the ppm binary format.
The savepiyc command is also the same as the savepi command if <color-
offset> is specified, except savepiyc assumes the pixels starting at pixel
<offset> on the first <color-offset> lines in the area starting at the first line of
the sep-type array <var-name> to be y data and the same pixels on the next
<color-offset> lines to be c data, and saves data to a file in the ppm binary
format. Note that, when a ppm binary file saved using the savepiyc
command is reloaded to a sep-type array using a command such as
loadpiyc, there are arithmetic errors during the conversion of the data from
YC data, to RGB data, and then back to YC data that result in slight
differences from the data originally stored in the sep-type array.

The following describes only savepi.

Specify the name of the file to which to save the data for <file-name>. If <file-
name> is omitted, or if <file-name> is -, the file browser starts, and the
selection of a file is requested.

The data starting at pixel <offset> on each line in the area starting at the first
line of the sep-type array <var-name> is saved to the <width> × <length> file
<file-name> in the pgm binary format (or the ppm binary format for savepiyc
or savepirgb). If a value such as 0:e is specified for <var-name>, it is
assumed to be an absolute address in IMEM. If <offset + width> exceeds the
number of PEs, four lines of data are saved at a time (which contain (number
of PEs × 4 bytes) each), a newline character is added to the end of the fourth
line, and then saving continues. (For details, see the following figure.)

 User’s Manual 53 U19917EE1V0UM00

IMAPCAR Series Processor

If parameters are omitted, their default values are as follows:

<file-name> The file selection window is generated.

<var-name> 0:i

<length> The number of lines in the sep-type array <var-name>

<offset> 0

<width> Number of PEs - <offset>

<color-offset> VLINES

> savepi ~/image/sample.pgm In [CR] Examples

(The contents of the IMEM memory starting at the address of the sep-type
array In are saved to the file ~/image/sample.pgm in the pgm binary format.)

> savepi - 0x100:i [CR]

(The file name entry window is displayed, and the entry of a file name is
requested. The contents starting at the IMEM memory address 256 are saved
to the entered file in the pgm binary format.)

> savepi [CR]

(The file name entry window is displayed, and the entry of a file name is
requested. The contents starting at the IMEM memory address 0 are saved to
the entered file in the pgm binary format.)

 User’s Manual 54 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.52 savepeblk, savepeblkyc, savepeblkrbg
savepeblk [<file-name>] [<var-name>] [<length>] [<offset>] [<width>] Format

savepeblkyc [<file-name>] [<var-name>] [<length>] [<offset>] [<width>]

savepeblkrbg [<file-name>] [<var-name>] [<length>] [<offset>] [<width>]

The savepeblkyc command is the same as the savepeblkrgb command,
except savepeblkyc converts the luminance data y and the color data c
starting at pixel <offset> on each line in the area starting at the first line of the
sep-type array specified by <var-name> to RGB data, and then saves this
data to <file-name> in the ppm binary format in the order R, G, and then B.

The savepeblkrgb command is the same as the savepeblk command,
except savepeblkrgb saves the RGB data starting at pixel <offset> on each
line in the area starting at the first line of the sep-type array specified by <var-
name> to <file-name> in the ppm binary format in the order R, G, and then B.

Therefore, the following describes only savepeblk.

Specify the name of the file to which to save the data for <file-name>. If <file-
name> is omitted, or if <file-name> is -, the file browser starts, and the
selection of a file is requested.

Every 4 bytes of the data starting at pixel <offset> on each line in the area
starting at the first line of the sep-type array <var-name> are rotated 90
degrees clockwise and then saved to the <width> × <length> file <file-name>
in the pgm binary format (or the ppm binary format for savep*blkyc or
savep*blkrgb). If a value such as 0:e is specified for <var-name>, it is
assumed to be an absolute address in EMEM. If <offset + width> exceeds the
number of PEs, four lines of data are saved at a time (which contain (number
of PEs × 4 bytes) each), a newline character is added to the end of the fourth
line, and then saving continues. (For details, see the following figure.)

 User’s Manual 55 U19917EE1V0UM00

IMAPCAR Series Processor

If parameters are omitted, their default values are as follows:

<file-name> The file selection window is generated.

<var-name> 0:e

<length> The value specified in the file

<offset> 0

<width> The value specified in the file

> savepeblk ~/image/sample.pgm In [CR] Examples

(The data in EMEM starting at the address of the sep-type array In is saved to
the ~/image/sample.pgm file, with every 4 bytes rotated 90 degrees
clockwise.)

4.6.53 savese
savese [<file-name>] [<var-name>] [<length>] [<offset>] [<width>] Format

This command is the same as the savesi command, except the data is saved
to an outside sep-type array.

 User’s Manual 56 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.54 savesi
savesi [<file-name>] [<var-name>] [<length>] [<offset>] [<width>] Format

This command saves the contents of the <length> lines starting at the first line
of the sep-type array <var-name> to the file <file-name> in the IMAP text
format. If a value such as 0:i is specified for <var-name>, it is assumed to be
an absolute address in the IMAP memory.

Specify the name of the file to which to save the data for <file-name>. If <file-
name> is omitted, or if <file-name> is -, the file name entry window is
displayed, and the entry of a file name is requested.

If other parameters are omitted, their default values are as follows:

<var-name> 0:i

<length> VLINES

<offset> 0

<width> Number of PEs - <offset>

> savesi ~/image/sample.256.imap In [CR] Examples

(The contents of the IMAP memory starting at the address of the sep-type
array In are saved to the ~/image/sample.256 file in the IMAP text file format.)

> savesi . 256:i [CR]

(The file name entry window is displayed, and the entry of a file name is
requested. The contents starting at the IMAP memory address 256 are saved
to the entered file in the IMAP text format.)

> savesi [CR]

(The file name entry window is displayed, and the entry of a file name is
requested. The contents starting at the IMAP memory address 0 are saved to
the entered file in the IMAP text format.)

 User’s Manual 57 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.55 savet
savet [<file-name>] [<function-name>] [<length>] [<offset>] [<width>] Format

This command saves the <length> line area in the program memory that starts
at the position offset <offset> from the starting address of the function
<function-name> and is <width> words wide to the file <file-name> in binary
format. If a value such as 0:p is specified for <function-name>, it is assumed
to be an absolute address in the program memory.

Specify the name of the file to which to save the data for <file-name>. If <file-
name> is omitted, or if <file-name> is -, the file name entry window is
displayed, and the entry of a file name is requested.

This command is used to perform lower level operations. It is not normally
necessary to save the contents of program memory to files for executable
object files.

If parameters are omitted, their default values are as follows:

<function-name> 0

<length> 1

<offset> 0

<width> 4

> savet ~/sample/func.io main 100 [CR] Examples

(The 100 lines (of code) starting at the address of the main function are saved
to the file ~/sample/func.io in binary format.)

> savet - 0x100 [CR]

(The file name entry window is displayed, and the entry of a file name is
requested. The contents starting at the program memory address 256 are
saved to the entered file in binary format.)

> savet [CR]

(The file name entry window is displayed, and the entry of a file name is
requested. The contents starting at the program memory address 0 are saved
to the entered file in binary format.)

 User’s Manual 58 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.56 scale1d
scale1d <number> <var-name> [<start-number>] [<end-number>] [<alias-var-
name>][<foreground-color>] [<background-color>]

Format

This command assigns the dynamically specified value of the global variable
<var-name> to the slider whose ID is <number>. If <number> is -, the correct
ID is automatically assigned in order, starting at 0. If a sep-type global variable
is specified, the elements of the corresponding variable in each PE are set to
the same value.

If <alias-var-name> is specified, it is used as the slider label. If <alias-var-
name> is not specified, <var-name> is displayed as the slider label.

<start-number> and <end-number> specify the minimum and maximum values
of the slider, respectively. The values specified for <start-number> and <end-
number> are assumed to be 32-bit signed integers. <start-number> must be
less than <end-number>, and, if omitted, the values of these parameters are 0
and 255, respectively.

<foreground-color> and <background-color> can be used to specify the
foreground and background colors of the label portion of the slider,
respectively.

The scale window is generated by the first execution of this command. If an ID
that is already assigned to a different variable is specified for <number>, the
previous assignment is discarded, a slider that has that ID is newly assigned
for use by <var-name>, and the label in the scale window is updated.

 > scale1d - s 0 4 [CR] Examples

(A slider is generated for which the value of the global variable MY is specified
(and to which an ID is automatically assigned).)

(For this slider, the only values that can be specified for s are 0, 1, 2, 3, and 4.)

> scale1d - Thres [CR]

(A slider is generated for which the value of the global variable Thres is
specified.)

 User’s Manual 59 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.57 scale2d
scale2d <number> <var-name> [<other-var-name>] [<clik-var-name>] [<alias-
name>] [<foreground-color-name>] [<background-color-name>] [<offset-
variable-name>]

Format

> scale2d - X Y [CR] Examples

(A 2D scroll map is generated for which the values of the variables X and Y
are specified.)

> scale2d 10 X Y Z [CR]

(A symbol for which the values of the variables X and Y are specified is
generated in the 2D scroll map whose ID is 10, and the symbol attributes are
specified such that 1 is written to the variable Z when the button is clicked, and
0 is written to Z when the button is released.)

> scale2d - X Y - Adjust black orange [CR]

(A symbol for which the values of the variables X and Y are specified that has
the label name Adjust is generated in the most recently created 2D scroll map.
If the scroll map does not yet exist, a scroll map that has a black foreground
and orange background is generated.)

> scale2d 0 X Y - Adjust black orange [CR]

(In addition to the above, a symbol is generated in the 2D scroll map whose ID
is 0. If a scroll map whose ID is 0 does not yet exist, a scroll map that has a
black foreground and orange background is generated.)

> scale2d - X Y - - - Z [CR]

(A symbol is generated in the 2D scroll map in order to specify values for
element Z of the arrays X and Y.)

The operation of this command differs depending on whether <other-var-
name> is specified.

1. If <other-var-name> is specified

This command assigns the values of the global variable <var-name> and the
global variable <other-var-name> to the 2D scroll map whose ID is <number>.
As a result, a symbol representing both variables is displayed on the scroll
map, and, each time the symbol is left-clicked and dragged, the x coordinate of
the symbol position is written to <var-name> and the y coordinate of the
symbol position is written to <other-var-name>. The written values are
displayed at the upper part of the symbol at the same time. Note that, if - is
specified for <number>, the symbol is generated in the most recently created
2D scroll map.

2. If <other-var-name> is omitted

This command assigns the value of the global variable <var-name> to the 2D
scroll map whose ID is <number>. <var-name> must have a data type that is 2
bytes or longer (int or long). As a result of the assignment, a symbol
representing the variable is displayed on the scroll map, and, each time the
symbol is left-clicked and dragged, a value whose higher byte is the x
coordinate of the symbol position and whose lower byte is the y coordinate of
the symbol position is written to <var-name>. The written values are also
displayed at the upper part of the symbol at the same time. Note that, if - is
specified for <number>, the symbol is generated in the most recently created
2D scroll map.

 User’s Manual 60 U19917EE1V0UM00

IMAPCAR Series Processor

The meanings of the other parameters are as follows:

1. If <alias-name> is specified, the name of the symbol displayed on the 2D
scroll map is <alias-name>. Any character string consisting of English
characters can be specified for <alias-name>.

2. If <foreground-color-name> and <background-color-name> are specified
and the 2D scroll map whose ID is <number> does not yet exist, a 2D
scroll map that has the foreground color <foreground-color-name> and the
background color <background-color-name> is generated.

3. If the global variable <clik-var-name> is specified, 1 is written to <clik-var-
name> while the left mouse button is held down over the symbol, and 0 is
written to <clik-var-name> when the left mouse button is released while
over the symbol.

4. If the global variable <offset-variable-name> is specified, <var-name> (and
<other-var-name>) are assumed to be starting addresses, the value of
<offset-variable-name> is assumed to be the offset, and the area
addressed by these values is the target for writing by the 2D scroll map.
This can be used to specify a value according to the scroll map for a
suitable element in an array by specifying the name of the array for <var-
name> (and <other-var-name>) and the name of a global variable
containing the index for <offset-variable-name>.

4.6.58 scale2dx
scale2dx <number> <var-name> [<other-var-name>] [<clik-var-name>]
[<foreground-color-name>] [<background-color-name>] [<width>] [<height>]
[<offset-variable-name>]

Format

> scale2dx - X Y [CR] Examples

(A 2D pointer map is generated for which the values of the variables X and Y
are specifed.)

The operation of this command differs depending on whether <other-var-
name> is specified.

1. If <other-var-name> is specified

This command assigns the values of the global variable <var-name> and the
global variable <other-var-name> to the 2D pointer map whose ID is
<number>. If – is specified for <number>, the ID is automatically assigned. If
the mouse is moved within the 2D pointer map, the x coordinate of the mouse
position is written to <var-name> and the y coordinate of the mouse position is
written to <other-var-name>. The written x and y values are displayed in the
center of the pointer map.

2. If <other-var-name> is omitted

This command assigns the value of the global variable <var-name> to the 2D
pointer map whose ID is <number>. If – is specified for <number>, the ID is
automatically assigned. <var-name> must have a data type that is 2 bytes or
longer (int or long). If the mouse is moved within the 2D pointer map, a 2-
byte value whose higher byte is the x coordinate of the mouse position and
whose lower byte is the y coordinate of the mouse position is written to <var-
name>. The written x and y values are displayed in the center of the pointer
map.

 User’s Manual 61 U19917EE1V0UM00

IMAPCAR Series Processor

The meanings of the other parameters are as follows:

1. If <foreground-color-name> and <background-color-name> are specified,
a 2D pointer map that has the ID <number>, the foreground color
<foreground-color-name>, and the background color <background-color-
name> is generated. If a 2D pointer map that already has the same ID
exists, that map is deleted, and then a new map is created.

2. If the global variable <clik-var-name> is specified, 1 is written to <clik-var-
name> while the left mouse button is held down within the map, and 0 is
written to <clik-var-name> when the left mouse button is released while
over the map.

3. If <width> and <height> are specified, they are assumed to be the width
and height of the map to be created.

4. If the global variable <offset-variable-name> is specified, <var-name> (and
<other-var-name>) are assumed to be starting addresses, the value of
<offset-variable-name> is assumed to be the offset, and the area
addressed by these values is the target for writing by the 2D pointer map.
In other words, a value can be specified according to the pointer map for a
suitable element in an array by specifying the name of the array for <var-
name> (and <other-var-name>) and the name of a global variable
containing the index for <offset-variable-name>.

4.6.59 scalecolor
scalecolor [<foreground-color-name>|-] [<background-color-name>] Format

After executing this command, the previously specified foreground and
background colors for the label portion of a 1D slider generated using the
scale1d command are changed to <foreground-color> and <background-
color>, respectively.

If <foreground-color> and <background-color> are omitted, the previously
specified foreground and background colors for the label portion of the 1D
slider are displayed.

> scalecolor cyan purple [CR] Examples

(After executing this command, the previously specified foreground and
background colors for the label portion of a 1D slider are assumed to be cyan
and purple, respectively.)

> scalecolor [CR]

(The previously specified foreground and background colors for the label
portion of a 1D slider are displayed.)

 User’s Manual 62 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.60 sel
sel <number> <var-name> [<candidate-number>+] [<foreground-color>]
[<background-color>]

Format

This command assigns the dynamically specified value of the global variable
<var-name> to the check box whose ID is <number>. If <number> is -, the
correct ID is automatically assigned in order, starting at 0. If a sep-type global
variable is specified, the elements of the corresponding variable in each PE
are set to the same value.

<candidate-number> is a candidate value that can be assigned to <var-
name>, and one or more such candidates can be specified. If <candidate-
number> is omitted, it is assumed that the generation of a check box has been
specified. To specify <foreground-color> and <background-color> while
omitting <candidate-number>, just omit <candidate-number>.

<foreground-color> and <background-color> can be used to specify the
foreground and background colors of the label portion of the check box,
respectively.

The sel window is generated by the first execution of this command. If an ID
that is already assigned to a different variable is specified for <number>, the
previous assignment is discarded, a check box that has that ID is newly
assigned for use by <var-name>, and the label in the sel window is updated.

> sel - s 0 1 2 14 [CR] Examples

(A check box is generated for which the value of the global variable s is
specified (and to which an ID is automatically assigned).)

(For this check box, the only values that can be specified for s are 0, 1, 2, and 14)

> sel - Thres [CR]

(A check box is generated for which only 0 or 1 can be specified for the global
variable Thres.)

 User’s Manual 63 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.61 selcolor
selcolor [<foreground-color-name>|-] [<background-color-name>] Format

After executing this command, the previously specified foreground and
background colors for the label portion of a check box generated using the
sel command are changed to <foreground-color> and <background-color>,
respectively.

If <foreground-color> and <background-color> are omitted, the previously
specified foreground and background colors for the label portion of the check
box are displayed.

> selcolor cyan purple [CR] Examples

(After executing this command, the previously specified foreground and
background colors for the label portion of a check box are assumed to be cyan
and purple, respectively.)

> selcolor [CR]

(The previously specified foreground and background colors for the label
portion of a check box are displayed.)

4.6.62 setv
setv [<value>] [<var-name>] [<line-number-or-function-name>] Format

This command writes the value <value> to the memory where the variable
<var-name> exists. For a sep-type variable, the same value <value> is
specified for the elements in all PEs.

Specify a number or character string for <value>. If a character string is
specified, each character code in the string is inserted into <var-name>, in
bytes, starting at the first address of <var-name>, regardless of the number of
bytes in each element of <var-name>, and a 0 is inserted at the end.

> setv 10 thres [CR] Examples

10 is specified for the local variable thres in the current function if such a
variable exists, or for the global variable thres otherwise.

> setv cloudy-scene 0: d [CR]

12 bytes of character codes followed by a 0 are assigned starting at the
DMEM address 0.

 User’s Manual 64 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.63 sfunc
sfunc <function-name> [<start-line-number>] [<end-line-number>] Format

First, starting at the stop position in the current source code, the program is
executed in the step mode either until the end of the first execution of the
function <function-name> or, if <end-line-number> is specified, until line <end-
line-number>. Based on the execution results, either the processing time from
line <start-line-number> of the function to the line before line <end-line-
number> if <start-line-number> and <end-line-number> are specified or the
processing time from the first line of the function to the line before the last line
of the function if <start-line-number> and <end-line-number> are not specified
is displayed in the command window when the program stops. However, note
that this command does not count the execution time or the number of
processing steps for background processing, such as the ememrd and
ememwr functions, or the number of processing steps due to program cache
misses or data cache misses.

> sfunc labeling [CR] Examples

labeling() Line 42...52: 229987steps, 5.750msec (24076-254063)

...Stopped at labeling.lc:52, [6.35(+0.00)ms] 254063(+0)steps

> load testbin [CR]

> sfunc [CR]

(The view window is opened, and the processing time for each function called
in testbin.ix is displayed.)

4.6.64 sline
sline <function-name> [<start-line-number>] [<end-line-number>] Format

First, starting at the stop position in the current source code, the program is
executed in the still mode (in which video interrupts are prohibited) either until
the end of the first execution of the function <function-name> or, if <end-line-
number> is specified, until line <end-line-number>. Based on the execution
results, either the processing time from line <start-line-number> of the function
to the line before line <end-line-number> if <start-line-number> and <end-line-
number> are specified or the processing time from the first line of the function
to the line before the last line of the function if <start-line-number> and <end-
line-number> are not specified is displayed in the command window when the
program stops, and information such as the processing time for each line and
the proportion of the time used by all such processing is displayed in the view
window. A timing window is created at the same time, which displays the
above execution results as a bar graph in which the bar for the line of code
that had the longest processing time is displayed in red. However, note that
this command does not count the execution time or the number of processing
steps for background processing, such as the ememrd and ememwr functions,
or the number of processing steps due to program cache misses or data cache
misses.

Note that, for an executable file compiled with the –m or –O option specified,
the processing time for each line displayed by the sline command might not
correctly correspond to the each line in the program because the code is
optimized.

 User’s Manual 65 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.65 step
step [<number>] Format

Starting at the current stop position, this command executes the next
<number> lines at which breakpoints can be specified in the still mode (in
which video interrupts are prohibited). If there are function calls on those lines
and source code for the functions exists, the debugger steps into those
functions. If <number> is omitted, the debugger proceeds only to the next line
at which a breakpoint can be specified is reached.

Note the following exception: if the current position is in a file compiled using
the –db3 or –db option, the debugger does not step into functions compiled
using options such as –db1 or –m. To step into such a function in this case,
execute the sstep command from the command prompt, not the step
command.

If the current position is in a function compiled using options such as –db1 or –
m, the step command cannot be used.

> step [CR] Examples

... Stopped at line: tst.lc: 51

> step 3 [CR]

... Stopped at line: tst.lc: 54

> step [CR]

... Stopped at line: tst.lc: 55

4.6.66 stop
stop Format

This command stops the video I/O and executes a command reset of the
board. This command can be used to stop programs run using runv.

4.6.67 symbols
symbols Format

This command displays the addresses of all the functions and global variables
in the currently loaded executable object file in the view window.

 User’s Manual 66 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.68 thumbnail
thumbnail <var-name> [<line-number-or-function-name>] [<number-of-lines>]
[<color>] [<offset>] [<width>] [<blk>]

Format

This command uses the win command to generate the image window used to
display the <var-name> array as a thumbnail. An image window displayed as a
thumbnail can be restored to its original size by double-clicking the displayed
image.

<blk> is valid only if the target display area is in EMEM and is used to specify
the window display mode as shown in the following table.

Specified
value of blk Displayed window width

0 Displays the image using a width equivalent to the number of PEs (default)
- Displays the image using the width specified by <width>

1 Displays the image using the width specified by <width> after rotating every
4 bytes of data in the memory 90 degrees clockwise

4.6.69 timerint
timerint [<interval_in_usec>|on|off] [<interrupt vector No.>] [<interrupt function
name>]

Format

This command sets up, starts, or stops timer interrupts.

If the first parameter is a number, it is assumed to be the interrupt interval in
μs and parameters 2 and 3 are required. For parameter 2 (<interrupt vector
No.>), specify the interrupt vector number, and, for parameter 3 (<interrupt
function name>), specify the name of the interrupt function. If the first
parameter is on or off, timer interrupts are enabled or disabled, respectively.
If a value other than on or off is specified for the first parameter, the current
timer interrupt settings are displayed.

Note that simply setting up timer interrupts does not start them. To use timer
interrupts, be sure to start them by using this command again after using this
command to set them up.

> timerint 50 15 int_func [CR] Examples

 (Timer interrupts are set up to occur every 50 μs at interrupt vector 15, and
int_func is registered as the interrupt function for that vector.)

> timerint on [CR]

 (Timer interrupts are started.)

 User’s Manual 67 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.70 tofile
tofile <command> [<file-name> <view-or-not>] Format

Normally, the results of executing sdbimap commands are output to the
standard output (stdout or the command window for commands executed at
the command window prompt), but this command can be used to specify that
the results normally output to the standard output while the sdbimap command
specified by <command> executes be written to the file specified by <file-
name> instead. (If the specified file already exists, the results are appended to
the file.) If <file-name> is omitted, the file tofile_sdbimap.txt is created in the
temporary directory, and the execution results are output to it.

The default value of <view-or-not> is 0, but, if 1 is specified for it, the contents
of the file <file-name> are displayed in the view window after <command>
executes. To omit the <file-name> specification and specify only <view-or-
not>, specify . for <file-name>.

> tofile “help” help_display.txt [CR] Examples

(The results of executing the help command are written to the file
help_display.txt.)

4.6.71 touch
touch Format

This command is executed following the wscale, wsel, and wscale2d
commands. This command is useful when performing a reload after revising
and recompiling a program for applying all the values in the corresponding
locations in memory to the values displayed for 1D sliders and other value
adjustment GUI tools before the reload.

4.6.72 until
until <var-name> <compare-symbol> <var-name or immediate> Format

This command is used to continue processing until the variable <var-name>
has the relationship with the variable or immediate value <var-name or
immediate> specified by <compare-symbol>. Note that, if a breakpoint is
reached during such processing, processing stops regardless of whether the
relationship exists. Only the symbols <=, >=, <, >, ==, and != can be specified
for <compare-symbol>.

> until i > 23 [CR] Examples

(Processing continues until the value of the variable i is greater than 23.)

> until a <= b [CR]

(Processing continues until the value of the variable a is less than or equal to b.)

 User’s Manual 68 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.73 view
view [<file-name-or-func-name>] Format

If the text file specified by <file-name-or-func-name> exists, this command
reads the file and displays it in the view window. If <file-name-or-func-name>
does not seem to exist, this command searches the current source code for
the file or function specified by <file-name-or-func-name>, and, if found,
displays the source file or the source file containing the function in the view
window. If <file-name-or-func-name> is omitted, the file browser is displayed,
and the selection of a file is requested.

> view ~/tmp/sample.lc [CR] Examples

(The view window is generated, and the contents of ~/tmp/sample.lc are
displayed.)

> view [CR]

(The file browser is displayed, and the selection of a file is displayed.)

4.6.74 viewer
viewer [<editor-or-viewer-name-and-path>] Format

This command is used to specify whether to use the sdbimap-specific viewer
or a user-specified viewer (an editor) when the view window is generated,
such as by view commands.

If – is specified for <editor-or-viewer-name-and-path>, the specification of the
sdbimap-specific view window is assumed. If <editor-or-viewer-name-and-
path> is omitted, the currently specified viewer information is displayed.

> viewer [CR] Examples

Current viewer / editor is ''the default sdbimap viewer''.

> viewer c: /windows/notepad.exe [CR]

(The use of c: /windows/notepad.exe for the view window is specified.)

> viewer - [CR]

(The use of the sdbimap-specific viewer for the view window is specified.)

4.6.75 where
where Format

This command displays information such as the current program counter value
and the name of the function in the corresponding source code.

:> where [CR] Examples

In main() after 1231 steps [0x9d6c->0x0ea5]

In the above example, the first number in the square brackets is the starting
address of the main function, and the following number is the current program
counter value.

 User’s Manual 69 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.76 whereis
whereis Format

This command displays the position of the current assembly instruction.

> whereis [CR] Examples

4.6.77 win
win [<var-name>] [<line-number-or-function-name>] [<number-of-lines>]
[<color>] [<offset>] [<width>] [<blk>]

Format

If <var-name> is a sep-type variable or array, this command generates the
image window used to display the memory for <var-name>. If <number-of-
lines> is specified, the image window is initialized so as to display <number-of-
lines> lines of the image.

If <var-name> is a uni-type variable or array, this command generates the
dmem window used to display the memory for <var-name>. In this case,
<number-of-lines> indicates the number of elements to display, and <color>
and <offset> cannot be specified.

For <color>, grey or yc can be specified, and the image described below is
displayed in each case. Note that, if yc or rgb is specified for <color>, the
value specified for <number-of-lines> cannot be greater than <offset>.
Furthermore, a specification for <offset> is only meaningful if yc is specified.

1. If grey is specified, the <number-of-lines> line 8-bit grayscale image

from <var-name> is displayed.

2. If yc is specified, the first <offset> lines from <var-name> are
assumed to be luminance information (y), the next <offset> lines are
assumed to be color information (CrCb), and a <number-of-lines> line
24-bit color image is displayed.

3. If rgb is specified, the first <offset> lines from <var-name> are
assumed to be R signal data, the next <offset> lines are assumed to
be G signal data, the following <offset> lines are assumed to be B
signal data, and a <number-of-lines> line 24-bit color image is
displayed. (However, this specification is not currently supported.)

 User’s Manual 70 U19917EE1V0UM00

IMAPCAR Series Processor

 User’s Manual 71 U19917EE1V0UM00

<width> specifies the width of the image to be displayed in pixels.

<blk> is valid only if the target display area is in EMEM and is used to specify
the window display mode as shown in the following table.

Specified value of blk Displayed window width

0 Displays the image using a width equivalent to the number of PEs
(default)

- Displays the image using the width specified by <width>

1 Displays the image using the width specified by <width> after
rotating every 4 bytes of data in the memory 90 degrees clockwise

If <number-of-lines> is omitted and <var-name> is an array, the number of
lines initially displayed in the image window is specified depending on both the
array size and the value specified for <color> as shown below. Below, N
represents the total array size.

1. If grey is specified, either N lines or <offset> × 6 lines are displayed,

whichever is less.

2. If yc is specified, either N/2 or <offset> lines are displayed, whichever
is less.

3. If rgb is specified, either N/3 or <offset> lines are displayed,
whichever is less. (However, this specification is not currently
supported.)

Menus are also displayed at the top of the generated image window that
enable you to do the following:

1. File menu

a) Save a displayed image to a file.

b) Load an image file into the displayed area.

c) Open a character window corresponding to the displayed image.

2. Mode menu

a) Specify whether to normally perform refreshes.

b) Specify the magnification for a displayed image.

c) Specify the PE multiplexing rate (multiple pixels per PE).

c) Specify the displayed colors.

e) Change the number of displayed lines.

g) Change the starting display address.

h) Change the number of lines to display.

i) Specify the display method (such as a thumbnail, normal display, or
aligning the window size with an image that has a size of 0).

There is a shortcut button for the win command (labeled win) at the top of the
source window. To call this command using the button, use the mouse to
select an array, and then click the button.

IMAPCAR Series Processor

If parameters are omitted, their default values are as follows:

<var-name> 0:e

<line-number-or-function-name> 0

<number-of-lines> Number of lines in the array

<color> grey

<offset> VLINES

<width> Number of PEs

<blk> 0

> win csum [CR] Examples

(An image window is opened that displays a grayscale image of the external or
IMAP memory indicated by the csum pointer that points to the sep-type area. If
csum is a pointer, 240 lines are initially displayed.)

> win 120: i - 100 [CR]

(An image window is opened that displays a grayscale image of the addresses
in the IMAP memory from 120 to 220.)

> win 120: e - 50 yc 100 [CR]

(An image window is opened that displays a color image of only the first 50
lines of the color image whose luminance signal y is stored at addresses 120
to 220 and whose color signal CrCb is stored at addresses 220 to 320.)

 User’s Manual 72 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.78 winop
winop <op-name (c | u | d | D | n | r | R)> [<memory-type (c | r | p | d | i | e)>]
[<start-address>] [<length>] [o <offset>] [w <width>]

Format

This command performs the <op-name> operation on the memory window of
the type specified by <memory-type> (a window that displays memory
contents as text).

As shown below, the English character c, u, d, D, a, n, r, or R can be specified
for <op-name>, and the English character c, r, p, d, i, or e can be specified
for <memory-type>. If <memory-type> is omitted, the default value is i.

<op-name>:
c | create Generates the window.
u | popup Restores the window.
d | popdown Minimizes the window.
D | destroy Closes the window.
a | auto Starts automatic updating.
n | no auto Stops automatic updating.
r | draw Displays the window.
R | refresh Refreshes the window.

<memory-type>:
c | creg RVSC register window
r | ireg IMAP register window
p | pmem Program memory window
d | dmem Data memory window
i | imem IMAP memory window
e | emem External memory window

If <op-name> is c, <start-address> and <length> can be specified. In this
case, a memory window used to display the <length> byte area starting at the
address <start-address> (whose default value is 0) is generated. If a variable
is specified for <start-address>, the default value for <length> is the number of
bytes from the address of that variable to the end of the memory for that
variable, and, if an immediate value is specified for <start-address>, the
default value is one byte (or one line for imem or emem). Note that a
specification for <start-address> or <length> is valid only if <memory-type> is
p, d, i, or e. Similarly, a specification for <offset> or <width> is valid only if
<memory-type> is i or e.

 User’s Manual 73 U19917EE1V0UM00

IMAPCAR Series Processor

: > winop c d [CR] Examples

(A memory window that displays the data memory is opened.)

> winop c d 256 1024 [CR]

(A memory window that displays the 1,024 bytes starting at the data memory
address 256 is opened.)

> winop R d [CR]

(A memory window that displays the data memory is refreshed.)

> winop u i [CR]

(All currently open memory windows that display the IMAP memory are
restored.)

> winop c i src 10

(A memory window that displays the first 10 elements of the global sep-type
array src is opened.)

> winop c i src[10] 10

(A memory window that displays the 10 elements starting at the eleventh
element of the global sep-type array src (src[10]) is opened.)

4.6.79 wscale
wscale [<number>] Format

This command writes the value equivalent to the slider position of the 1D slider
that has the number specified by <number> to the memory for the global
variable currently assigned to that slider. If <number> is omitted, the above
processing is performed for all 1D sliders that exist.

:> wscale 0 [CR] Examples

(The value equivalent to the slider position of the 1D slider that has the ID 0 is
written to the memory for the corresponding global variable.)

> wscale [CR]

(The values equivalent to the slider positions of all 1D sliders are written to the
memory for the corresponding global variables.)

 User’s Manual 74 U19917EE1V0UM00

IMAPCAR Series Processor

4.6.80 wscale2d
wscale2d [<number>] Format

This command writes the values equivalent to the positions of each symbol in
the 2D scroll map that has the number specified by <number> to the memory
for the corresponding (set of) global variables. If <number> is omitted, the
above processing is performed for the symbols in all 2D scroll maps that exist.

:> wscale2d 0 [CR] Examples

(The values equivalent to the positions of each symbol in the 2D scroll map
that has the ID 0 are written to the memory for the corresponding (set of)
global variables.)

> wscale2d [CR]

(The values equivalent to the positions of each symbol in all 2D scroll maps
are written to the memory for the corresponding (sets of) global variables.)

4.6.81 wsel
wsel [<number>] Format

This command writes the value equivalent to the value selected using the
check box that has the number specified by <number> to the memory for the
global variable currently assigned to that check box. If <number> is omitted,
the above processing is performed for all check boxes that exist.

: > wsel 0 [CR] Examples

(The value equivalent to the value selected using the check box that has the
ID 0 is written to the memory for the corresponding global variable.)

> wsel [CR]

(The values equivalent to the values selected using all check boxes are written
to the memory for the corresponding global variables.)

 User’s Manual 75 U19917EE1V0UM00

IMAPCAR Series Processor

 User’s Manual 76 U19917EE1V0UM00

5 Revision history

Version Date Document Number Description
1.0 July 2009 U19917EE1V0UM00 First version

The following revision list shows all functional changes compared to the
previous version.

Chapter Page Description

	1 OVERVIEW
	2 Tcl/Tk AND sdbimap
	2.1 Tcl/Tk Functions Usable from sdbimap
	2.2 Handling sdbimap Commands in Tcl/Tk Scripts

	3 MAIN WINDOWS GENERATED BY sdbimap COMMANDS
	4 COMMANDS
	4.1 Command Format
	4.2 IMAP Executable Search Paths
	4.3 Specifying Command Parameters
	4.3.1 Specifying <var-name>
	4.3.2 Specifying <line-number-or-function-name>
	4.3.3 Specifying <break-line-number>
	4.3.4 Specifying <executable-file-name>
	4.3.5 Specifying <foreground-color> or <background-color>

	4.4 Commands According to Function
	4.5 Using sdbimap Commands from within Tcl/Tk Scripts
	4.6 sdbimap Commands (in alphabetical order)
	4.6.1 Addr
	4.6.2 asm
	4.6.3 brk
	4.6.4 cfunc
	4.6.5 change
	4.6.6 charwin
	4.6.7 cont
	4.6.8 creg
	4.6.9 cpprof
	4.6.10 delete
	4.6.11 deleteall
	4.6.12 display
	4.6.13 fill
	4.6.14 fstack
	4.6.15 geo
	4.6.16 getv
	4.6.17 help
	4.6.18 ireg
	4.6.19 ix
	4.6.20 kill
	4.6.21 loadd
	4.6.22 loade
	4.6.23 loadi
	4.6.24 loadpe, loadpergb, loadpeyc
	4.6.25 loadpi, loadpirgb, loadpiyc
	4.6.26 loadpeblk, loadpeblkyc, loadpeblkrbg
	4.6.27 loadse
	4.6.28 loadsi
	4.6.29 loadt
	4.6.30 map
	4.6.31 measure
	4.6.32 mem
	4.6.33 mreg
	4.6.34 next
	4.6.35 pmem2file
	4.6.36 print
	4.6.37 prof
	4.6.38 refresh
	4.6.39 reload
	4.6.40 ret
	4.6.41 rscale
	4.6.42 rscale2d
	4.6.43 rsel
	4.6.44 run
	4.6.45 runv
	4.6.46 save
	4.6.47 saved
	4.6.48 savee
	4.6.49 savei
	4.6.50 savepe, savepergb, savepeyc
	4.6.51 savepi, savepirgb, savepiyc
	4.6.52 savepeblk, savepeblkyc, savepeblkrbg
	4.6.53 savese
	4.6.54 savesi
	4.6.55 savet
	4.6.56 scale1d
	4.6.57 scale2d
	4.6.58 scale2dx
	4.6.59 scalecolor
	4.6.60 sel
	4.6.61 selcolor
	4.6.62 setv
	4.6.63 sfunc
	4.6.64 sline
	4.6.65 step
	4.6.66 stop
	4.6.67 symbols
	4.6.68 thumbnail
	4.6.69 timerint
	4.6.70 tofile
	4.6.71 touch
	4.6.72 until
	4.6.73 view
	4.6.74 viewer
	4.6.75 where
	4.6.76 whereis
	4.6.77 win
	4.6.78 winop
	4.6.79 wscale
	4.6.80 wscale2d
	4.6.81 wsel

	5 Revision history

