
 

 

  

  

   

   

Tutorial 

I2C Adapters 

For the DA1468x SoC 
 
 
 
Abstract 

This tutorial should be used as a reference guide to gain a deeper understanding of the ‘I2C Adapters’ concept. 
As such, it covers a broad range of topics including an introduction to Adapter mechanism as well as a detailed 
description of the various I2C transaction schemes. Furthermore, it covers a number of sections containing in 
depth software analysis of a complete demonstration example.’ 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

For the DA1468x SoC  

I2C Adapters  

             

 2 of 33 © 2018 Dialog Semiconductor 

Contents 

For the DA1468x SoC .......................................................................................................................... 1 

Abstract ................................................................................................................................................ 1 

Contents ............................................................................................................................................... 2 

Figures .................................................................................................................................................. 3 

Tables ................................................................................................................................................... 3 

Terms and Definitions ......................................................................................................................... 3 

References ........................................................................................................................................... 3 

1 Introduction.................................................................................................................................... 4 

1.1 Before You Start .................................................................................................................... 4 

1.2 I2C Adapters Introduction ...................................................................................................... 4 

2 I2C Adapters Concept.................................................................................................................... 5 

2.1 Header Files .......................................................................................................................... 5 

2.2 Preparing the I2C Adapter ..................................................................................................... 6 

2.3 I2C Transactions .................................................................................................................. 10 

2.3.1 Synchronous Mode .............................................................................................. 10 

2.3.2 Asynchronous Mode ............................................................................................ 11 

2.4 I2C Related Macros ............................................................................................................. 12 

3 Analyzing The Demonstration Example .................................................................................... 12 

3.1 Application Structure ........................................................................................................... 13 

4 Running The Demonstration Example ...................................................................................... 16 

4.1 Verifying with a Serial Terminal .......................................................................................... 16 

4.2 Verifying with a Logic Analyzer ........................................................................................... 20 

5 Code Overview ............................................................................................................................ 21 

5.1 Header Files ........................................................................................................................ 21 

5.2 System Init Code ................................................................................................................. 21 

5.3 Wake-Up Timer Code ......................................................................................................... 23 

5.4 Hardware Initialization ......................................................................................................... 25 

5.5 EEPROM ACK Code ........................................................................................................... 26 

5.6 Task Code for 24LC256 ...................................................................................................... 27 

5.7 Macro Definitions ................................................................................................................ 30 

Revision History ................................................................................................................................ 32 
 

 

 

 

 

 

 

 

 



 

 

For the DA1468x SoC  

I2C Adapters  

             

 3 of 33 © 2018 Dialog Semiconductor 

Figures 

Figure 1: Adapters Communication ....................................................................................................... 5 
Figure 2: The Four-Step Process for Setting an Adapter Mechanism .................................................. 5 
Figure 3: Headers for I2C Adapters. ..................................................................................................... 6 
Figure 4: First Step for Configuring the I2C Adapter Mechanism ......................................................... 7 
Figure 5: Second Step for Configuring the I2C Adapter Mechanism .................................................... 7 
Figure 6: Third Step for Configuring the I2C Adapter Mechanism ........................................................ 9 
Figure 7: Fourth Step for Configuring the I2C Adapter Mechanism ...................................................... 9 
Figure 8: EEPROM Write SW FSM – Main Execution Path ................................................................ 13 
Figure 9: EEPROM Read SW FSM – Main execution path ................................................................ 14 
Figure 10:  EEPROM Async Read SW FSM – Callback Function Execution Path ............................. 15 
Figure 11: DA1468x Pro DevKit .......................................................................................................... 16 
Figure 12: Creating a platform_devices.h Header File, Step 1 ........................................................... 17 
Figure 13: Creating a platform_devices.h Header File, Step 2 ........................................................... 17 
Figure 14: Configuring the 24LC256 EEPROM Slave Device ............................................................ 18 
Figure 15: Control Byte of 24LC256 EEPROM Chip ........................................................................... 19 
Figure 16: Debugging Messages Indicating both the Progress and Status of an I2C Transaction .... 19 
Figure 17: I2C Write Transaction Captured using a Logic Analyzer ................................................... 20 
Figure 18: Polling ACK Procedure Captured using a Logic Analyzer ................................................. 20 
Figure 19: I2C Read Transaction Captured using a Logic Analyzer ................................................... 21 

 

Tables 

Table 1: Header Files used by I2C Adapters ........................................................................................ 6 
Table 2: Description of the Macro Fields, Used for Declaring an I2C Device ....................................... 7 
Table 3: Available Arguments for Configuring I2C Asynchronous Transactions ................................ 11 
Table 4: I2C Macros ............................................................................................................................ 12 

 

Terms and Definitions 
 
DevKit                    Development Kit 

DMA                       Direct Memory Access 

FSM                       Finite-State-Machine 

GPADC                  General Purpose Analog-to-Digital Converter 

ISR                         Interrupt Service Routine 

I2C                         Inter-Integrated Circuit 

LLD Low Level Drivers 

ms                          millisecond 

OS                         Operating System 

SDK                       Software Development Kit 

SPI                         Serial Peripheral Interface  

SW                         Software 

 

 

 

References 
 
[1] UM-B-044, DA1468x Software Platform Reference, User Manual, Dialog Semiconductor. 



 

 

For the DA1468x SoC  

I2C Adapters  

             

 4 of 33 © 2018 Dialog Semiconductor 

1 Introduction 

1.1 Before You Start 

Before you start you need to: 

• Install the latest SmartSnippets Studio 

• Download the latest SDK for the DA1468x platforms 

These can be downloaded from the Dialog Semiconductor support portal. 

Additionally, for this tutorial either a Pro or Basic Development kit is required. 

The key goals of this tutorial are to: 

• Provide a basic understanding of adapters concept 

• Explain the different APIs and configurations of I2C peripheral adapters 

• Give a complete sample project demonstrating the usage of I2C peripheral adapters 

1.2 I2C Adapters Introduction 

This tutorial explains I2C adapters and how to configure the DA1468x family of devices as an I2C 

Master device. Adopting an I2C Slave role is not used for the majority of situations and so is not 

covered in this tutorial. The I2C adapter is an intermediate layer between the I2C Low Level Drivers 

(LLDs) and a user application. It allows the user to utilize the I2C interface in a simpler way than 

when using APIs from LLDs. The key features of I2C adapters are: 

• Synchronous writing/reading operations block the calling freeRTOS task while the operation is 

performed using semaphores rather than relying on a polling loop approach. This means that 

while the hardware is busy transferring data, the operating system (OS) scheduler may select 

another task for execution, utilizing processor time more efficiently. When the transfer has 

finished, the calling task is released and resumes its execution. 

• A DMA channel can be used among various peripherals (for example, I2C, UART). 

Interconnected peripherals may use the same DMA channel if necessary. The adapter takes 

care of DMA channel resource management. 

• It ensures that only one device can use the I2C bus after acquiring it. 

• Placing code between ad_i2c_bus_acquire() and ad_i2c_bus_release() ensures that only one 

task can use the I2C bus to communicate with an external connected device. During this period 

no other device or task can use the I2C interface until the ad_i2c_bus_release() function is 

called by the owning task. 

• Power Manager (PM) of the chip is aware of the I2C peripheral usage and before the system 

enters sleep, it checks whether or not there is activity on the I2C bus. 

Note: Adapters are not implemented as separate tasks and should be considered as an 

additional layer between the application and the LLDs. It is recommended to use adapters for 

accessing a hardware block. 

 

https://support.dialog-semiconductor.com/connectivity


 

 

For the DA1468x SoC  

I2C Adapters  

             

 5 of 33 © 2018 Dialog Semiconductor 

 

Figure 1: Adapters Communication 

2 I2C Adapters Concept 

This section explains the key features of I2C peripheral adapters as well as the procedure to enable 

and correctly configure the peripheral adapters for I2C functionality. The procedure is a four-step 

process which can be applied to almost every type of adapter including serial peripheral adapters 

(I2C, SPI, UART) and GPADC adapters. 

 

Figure 2: The Four-Step Process for Setting an Adapter Mechanism 

 

2.1 Header Files 

The header files related to adapter functionality can be found in /sdk/adapters/include. These files 

contain the APIs and macros for configuring the majority of the available hardware blocks. In 

particular, this tutorial focuses on the adapters that are responsible for the I2C peripheral hardware 

block. Table 1 briefly explains the header files related to I2C adapters (red indicates the path under 

which the files are stored while green indicates which ones are used for I2C operations). 



 

 

For the DA1468x SoC  

I2C Adapters  

             

 6 of 33 © 2018 Dialog Semiconductor 

 

Figure 3: Headers for I2C Adapters.  

 

Table 1: Header Files used by I2C Adapters     

Filename Description 

ad_i2c.h 
This file contains the recommended APIs and macros for performing I2C 
operations. Use these APIs when accessing the I2C peripheral bus. 

platform_devices.h 
This file contains macros for declaring virtual devices. These devices may be 
connected to the Dialog family of devices via a peripheral bus (for example, 
SPI, I2C, UART) or a peripheral hardware block (for example, GPADC). 

2.2 Preparing the I2C Adapter 

1. As illustrated in Figure 4, the first step for configuring the I2C adapter mechanism is to enable it 

by defining the following macros in /config/custom_config_qspi.h: 

 

/*  

 * Macros for enabling I2C operations using Adapters 

 */ 

#define dg_configUSE_HW_I2C                     (1) 

#define dg_configI2C_ADAPTER                    (1) 

 



 

 

For the DA1468x SoC  

I2C Adapters  

             

 7 of 33 © 2018 Dialog Semiconductor 

 

Figure 4: First Step for Configuring the I2C Adapter Mechanism 

 

From this point onwards, the overall adapter implementation with all its integrated functions is 

available. 

 

2. The second step is to declare all the devices externally connected on the I2C bus. A device can 

be considered as a set of settings describing the complete I2C interface. These settings are 

applied every time the device is selected and used. To do this, the SDK exhibits two macros, 

named I2C_SLAVE_DEVICE_DMA and I2C_SLAVE_DEVICE respectively. The first one is 

used when a DMA mechanism is used during a transaction. 

 

/*  

 * Macro for setting I2C bus parameters 

 */ 

I2C_SLAVE_DEVICE_DMA(bus, name, _address_, _addr_mode, _speed,                 

                                                                                                           

                                                      _dma_channel)      

      

 

Figure 5: Second Step for Configuring the I2C Adapter Mechanism 

 

Table 2: Description of the Macro Fields, Used for Declaring an I2C Device     

Argument Name Description 

bus 
The DA1468x family of devices features two distinct I2C hardware blocks. Valid 
values are I2C1 and I2C2. 

name 
Declare an arbitrary alias for the I2C interface (for instance, My_slave_device). 
This name should be used for opening that specific device. 

_address 
The address to which the externally connected slave device listens. The value is 
device-specific information and is usually found in the manufacturer's datasheet. 



 

 

For the DA1468x SoC  

I2C Adapters  

             

 8 of 33 © 2018 Dialog Semiconductor 

_addr_mode 
The I2C controller supports both the 7-bit and 10-bit addressing modes. Valid 
values are those from HW_I2C_ADDRESSING enum in 
/sdk/peripherals/include/hw_i2c.h. 

_speed 
The I2C controller supports two different speed modes: 100 kHz and 400 kHz 
respectively. Valid values are those from HW_I2C_SPEED enum in 
/sdk/peripherals/include/hw_i2c.h. 

_dma_channel 

The DA1468x family of devices features eight general-purpose DMA channels 
that can be used for various transactions. This field defines the DMA number for 
the RX channel. TX will have the next number and it is automatically assigned by 
the adapter mechanism. 

Note: The I2C_SLAVE_DEVICE() macro has the same syntax as I2C_SLAVE_DEVICE_DMA 

except for the last parameter, that is _dma_channel. Also, note that DMA RX/TX channels 

must be used in pairs, that is, 0/1, 2/3, 4/5, and 6/7. Thus, the RX channel must always be set 

to an even number (0, 2, 4, 6). 

 

The DA1468x family of devices features two distinct I2C blocks namely I2C1 and I2C2. Depending on 

the I2C interface used, device configurations must be placed between the correct macro indicators: 

 

/* Declare I2C bus configurations for devices connected to I2C1 hardware block */ 

I2C_BUS(I2C1) 

 

/*  

 * Use I2C_SLAVE_DEVICE() and/or I2C_SLAVE_DEVICE_DMA() for each  

 * device declaration. 

 */ 

 

I2C_BUS_END 

 

 

/* Declare I2C bus configurations for devices connected to I2C2 hardware block */ 

I2C_BUS(I2C2) 

 

/*  

 * Use I2C_SLAVE_DEVICE() and/or I2C_SLAVE_DEVICE_DMA() for each   

 * device declaration.  

 */ 

 

I2C_BUS_END 

 

 

3. As illustrated in Figure 6, the third step is the declaration of the I2C signals. The user can 

multiplex and expose I2C signals on any available pin on DA1468x SoC.  

 

static void prvSetupHardware( void ) 

{ 

 

   /* Init hardware */ 

   pm_system_init(periph_init) 

 

} 



 

 

For the DA1468x SoC  

I2C Adapters  

             

 9 of 33 © 2018 Dialog Semiconductor 

 

Figure 6: Third Step for Configuring the I2C Adapter Mechanism 

Note: When the system enters sleep it loses its pin configurations. Thus, it is essential for the 

pins to be reconfigured to their last state as soon as the system wakes up. To do this, all pin 

configurations must be declared in periph_init() which is supervised by the Power Manager of 

the system. 

 

4. Once the I2C adapter mechanism is enabled, the developer can use all the available APIs for 

performing I2C transactions. The following steps describe the required sequence of APIs in an 

application to successfully execute an I2C write/read operation. 

 

Figure 7: Fourth Step for Configuring the I2C Adapter Mechanism 

 

a. ad_i2c_init() 

  This must be called once at either platform start (for instance, in system_init()) or task 

initialization to perform all the necessary initialization routines. 

b. ad_i2c_open() 

  Before using the I2C interface, the application task must open the device that will access the 

bus. Opening a device involves enabling the I2C controller. If the device is the only connected 

device on the I2C bus, configuration of the I2C controller also takes place. This function returns 

a handler to the main flow for use in subsequent adapter functions. Subsequent calls from other 

tasks simply return the already existing handler. 

c. ad_i2c_bus_acquire() 

  This API is optional since it is automatically called upon a write/read transaction and is used for 

locking the I2C bus for the given opened device. This function should be called when the 

application task wants to communicate to the I2C bus directly using low level drivers. 

Note: The function can be called several times. However, it is essential that the number of 

calls must match the number of calls to ad_i2c_bus_release(). 

 



 

 

For the DA1468x SoC  

I2C Adapters  

             

 10 of 33 © 2018 Dialog Semiconductor 

d. Perform a write/read transaction either synchronously or asynchronously. 

  After opening a device, the application task(s) can perform any read/write I2C transaction either 

synchronously or asynchronously. Please note that all the available APIs for writing/reading 

over an I2C bus, nest the corresponding APIs for acquiring and releasing a device. 

e. ad_i2c_bus_release() 

  This function must be called for each call to ad_i2c_bus_acquire(). 

f. ad_i2c_close() 

  After all user operations are done and the device is no longer needed, it should be closed by 

the task that has currently acquired it. The application can then switch to other devices 

connected on the same I2C bus. Remember that the I2C adapter implementation follows a 

single device scheme, that is only one device can be opened at a time. 

   

2.3 I2C Transactions 

Write and read functions can be divided into two distinct categories: 

• Synchronous Mode 

• Asynchronous Mode 

2.3.1 Synchronous Mode 

In synchronous mode, the calling task is blocked for the duration of the write/read access but other 

tasks are not. Code initially waits for the I2C bus to become available and then blocks the calling task 

until a transaction is completed. Once a write/read process is finished, the I2C bus is freed and 

further write/read transactions over the I2C bus can take place.  

 

Code snippet of a typical write followed by a read synchronous I2C transaction: 

 

// Open the device that will utilize the I2C bus 

i2c_device dev = ad_i2c_open(My_Slave_Device); 

 

// Perform I2C transactions to the already opened device 

ad_i2c_transact(dev, command, sizeof(command), response, sizeof(response)); 

 

// Close the already opened device 

ad_i2c_close(dev); 

 

The above code performs a write transaction followed by a read transfer, an operation which is 

typical when reading data from I2C peripherals. In such cases, an address needs to be specified 

through a write before reading data. The function first waits for both the device and bus resources to 

become available, before proceeding with the write without waiting for the STOP condition. If no error 

occurs by the time the last byte is placed in the transmit FIFO of the DA146x SoC, the function 

continues with the read operation and waits until it is completed. 

Note: The aforementioned API can also be used for write only or read only transactions by 

providing a NULL pointer in the corresponding input parameter. For example, to perform a 

write only operation: ad_i2c_transact(dev, command, sizeof(command), NULL, 0); 



 

 

For the DA1468x SoC  

I2C Adapters  

             

 11 of 33 © 2018 Dialog Semiconductor 

2.3.2 Asynchronous Mode 

In asynchronous mode, the calling task is not blocked by the write or read operation. It can continue 

with other operations while waiting for a dedicated callback function to be called, signaling the 

completion of the read or write transaction. I2C adapters allow a developer to perform I2C 

transactions that consist of a number of reads, writes, and callback calls. This provides a time-

efficient way to manage all I2C related actions. Most of the actions are executed within ISR context. 

There are a number of arguments-actions that should be used to perform various I2C transaction 

schemes. Table 3 explains all the available arguments that can be used to configure an I2C 

transaction scheme. 

 

Table 3: Available Arguments for Configuring I2C Asynchronous Transactions     

Argument Name Description 

I2C_SND() 
Use this argument to send data over the I2C bus, without waiting for a STOP 
condition to be issued by the master device.  

I2C_SND_ST() 
Use this argument to send data over the I2C bus and wait for a STOP condition 
to be detected.  

I2C_RCV() 
Use this argument to read data over the I2C bus. A STOP condition is 
generated after receiving the last byte.  

I2C_RCV_NS() 
Use this argument to read data over the I2C bus. A STOP condition is not 
generated after receiving the last byte.  

I2C_CB() 
Declare a callback function that should be called when finishing with all defined 
I2C actions. The developer cannot pass data in the callback function. 

I2C_CB1() 
Declare a callback function that should be called when finishing with all defined 
I2C actions. The developer can pass data in the callback function. 

I2C_END 
Use this argument to mark the end of an I2C transaction scheme. This argument 
should be the last argument passed. 

 

Code Snippet of a typical write followed by a read asynchronous I2C transaction: 

 

// Open the device that will utilize the I2C bus 

i2c_device dev = ad_i2c_open(My_Slave_Device); 

 

// Perform I2C transactions to the already opened device 

ad_i2c_async_transact(dev, I2C_SND(command,  sizeof(command)) , // I2C write operation  

                           I2C_RCV(response, sizeof(response)), // I2C read  operation                               

                           I2C_CB (final_callback), // User-defined callback function                                                                                

                           I2C_END);            // Indicate the end of I2C operations               

 

// Close the already opened device 

ad_i2c_close(dev); 

 

 

 

 

 



 

 

For the DA1468x SoC  

I2C Adapters  

             

 12 of 33 © 2018 Dialog Semiconductor 

When using I2C operations in asynchronous mode, the following should be considered: 

• Callback functions are called from within Interrupt Service Routine (ISR) context. Therefore, 

callback's execution time should be as short as possible and not contain complex calculations. 

Please note that for as long as a system interrupt is serviced, the main application is halted. 

• If the callback function is the last action to be performed, then resources (I2C device and bus) 

are released before the callback is called. 

• Do not call asynchronous related APIs consecutively without guaranteeing that the previous 

asynchronous transaction is finished. 

• After the callback function is called, it is not guaranteed that the scheduler will give control to 

the freeRTOS task waiting for that transaction to complete. This is important to consider if 

several tasks are using this API. 

Note: All the write/read I2C related APIs return a code which can be used to indicate whether 

an I2C operation has been successfully executed or not. All the possible values are declared 

in HW_I2C_ABORT_SOURCE enum located in /sdk/peripherals/include/hw_i2c.h. 

 

2.4 I2C Related Macros 

I2C adapters have macros for facilitating various management schemes and can be used as required 

by the developer. The available macros can be found in /sdk/adapters/include/ad_i2c.h. It is 

recommended that any macro definition is put in the platform_devices.h header file. The most 

frequently used macros are explained in Table 4. 

 

Table 4: I2C Macros    

Macro Name Description 

CONFIG_I2C_EXCLUSIVE_OPEN 
Set this macro to '1' to prevent multiple tasks from opening 
the same device. When set to '1' ad_i2c_device_acquire() 
and ad_i2c_device_release() are no longer necessary. 

CONFIG_I2C_ONE_DEVICE_ON_BUS 
Set this macro to '1' if only one I2C device is connected on 
the bus (one on I2C1 and one on I2C2). This will reduce 
code size and improve performance. 

3 Analyzing The Demonstration Example 

This section analyzes an application example which demonstrates using the I2C adapters. The 

example is based on the freertos_retarget sample code found in the SDK. It adds an additional 

freeRTOS task which is responsible for controlling an external I2C module, connected on I2C1 bus. It 

also enables the wake-up timer for handling external events. Both synchronous and asynchronous 

I2C operations are demonstrated. 

 



 

 

For the DA1468x SoC  

I2C Adapters  

             

 13 of 33 © 2018 Dialog Semiconductor 

3.1 Application Structure 

1. The key goal of this demonstration is for the device to perform a few I2C operations following an 

event. For demonstration purposes, the K1 button on the Pro DevKit has been configured as a 

wake-up input pin. For more detailed information on how to configure and set a pin for handling 

external events, read the External Interruption tutorial. At each external event (produced at 

every K1 button press), a dedicated callback function named wkup_cb() is triggered. In this 

function, a variable named i2c_status is toggled. It can take two different values which are 

interpreted as follows: 

 

• i2c_status = 1 

– An asynchronous I2C write operation is attempted. A whole page of 64 bytes is written 

in EEPROM starting from the physical address 0x0000. Note that the page size of an 

EEPROM is device-specific and we recommend reading the manufacturer datasheet 

for more information on this. At the end of the transaction, a debugging message is 

printed on the serial console indicating whether or not the I2C operation was 

successfully executed. 

 

 

Figure 8: EEPROM Write SW FSM – Main Execution Path 

https://support.dialog-semiconductor.com/resource/external-interruption-tutorial-html
http://ww1.microchip.com/downloads/en/DeviceDoc/21203M.pdf


 

 

For the DA1468x SoC  

I2C Adapters  

             

 14 of 33 © 2018 Dialog Semiconductor 

 

• i2c_status = 0 

– Depending on the value of the I2C_ASYNC_EN macro, a synchronous or 

asynchronous I2C read operation is attempted. A whole page of 64 bytes is read from 

EEPROM starting from the physical address 0x0000. In fact, the program attempts to 

read the previously written data in EEPROM. At the end of the transaction, a debugging 

message is printed on the serial console indicating whether or not the I2C operation 

was successfully executed. In addition, a data integrity check is performed and a 

corresponding debugging message is also printed on the serial console. 

 

 

 

Figure 9: EEPROM Read SW FSM – Main execution path 

 

 

 



 

 

For the DA1468x SoC  

I2C Adapters  

             

 15 of 33 © 2018 Dialog Semiconductor 

2. The I2C_ASYNC_EN macro can be used to enable asynchronous I2C read operations. As 

described in I2C Transactions, developers must not call asynchronous related APIs without 

guaranteeing that the previous asynchronous transaction is finished. To ensure this, after 

calling the ad_i2c_async_transact() function, the code waits for the arrival of a signal, indicating 

the end of the current I2C operation. 

 

 

Figure 10:  EEPROM Async Read SW FSM – Callback Function Execution Path 

 

3. At this point, it is important to highlight one peculiarity encountered in EEPROM devices. Data 

sent from a master device to an EEPROM slave device is actually written in EEPROM cells 

after a STOP condition is issued by the master. At this point, the EEPROM starts its write cycle 

for storing the previous written data to its memory cells. This means that the code should not 

continue with the next write/read cycle without guaranteeing that the EEPROM device is ready 

to handle a new command. To ensure this, the function poll_ack() is called after a successful 

I2C write operation. For more information on how to poll the EEPROM device to check its 

readiness, read the Acknowledge Polling section in the manufacturer datasheet. 

 

Note: The 24LC256 EEPROM module has been selected for demonstration purposes only. 

Providing complete drivers for this module is out of the scope of this tutorial. 

 

 

 

 

 

 

 

i2c_adapters.html#i2c-transactions
http://ww1.microchip.com/downloads/en/DeviceDoc/21203M.pdf


 

 

For the DA1468x SoC  

I2C Adapters  

             

 16 of 33 © 2018 Dialog Semiconductor 

4 Running The Demonstration Example 

This section describes the steps required to prepare the Pro DevKit and other tools to successfully 

run the example code. A serial terminal, a 24LC256 EEPROM module, and optionally a logic 

analyzer are required for testing and verifying the code. In addition, two 2.4 kΩ resistors, a 

breadboard, and a few jumper wires are required to connect the I2C module to the Pro DevKit. For 

information on configuring a serial terminal, as well as a Pro DevKit, read the Starting a Project 

tutorial. 

There are two main methods to verify the correct behavior of the demonstrated code. The first 

method is to use a Serial Terminal and the second is to use a logic analyzer. Both cases are given 

below as a logic analyzer can be quite an expensive tool. 

4.1 Verifying with a Serial Terminal 

1. Establish a connection between the target device and your PC through the USB2(DBG) port of 

the motherboard. This port is used both for powering and communicating to the DA1468x SoC. 

For this tutorial a Pro DevKit is used. 

 

Figure 11: DA1468x Pro DevKit 

 

2. Import and then make a copy of the freertos_retarget sample code found in the SDK of the 

DA1468x family of devices. 

Note: It is essential to import the folder named scripts to perform various operations 

(including building, debugging, and downloading) 

 

3. In the newly created project, create a new platform_devices.h header file under the project's 

/config folder. To do this: 

https://support.dialog-semiconductor.com/resource/starting-project-html


 

 

For the DA1468x SoC  

I2C Adapters  

             

 17 of 33 © 2018 Dialog Semiconductor 

a. Right-click on the /sdk/adapters/include/platform_devices.h header file (1) and select 

Copy (2). 

 

Figure 12: Creating a platform_devices.h Header File, Step 1 

 

b. Right-click on the /config folder (3) and select Paste (4). 

 

Figure 13: Creating a platform_devices.h Header File, Step 2 



 

 

For the DA1468x SoC  

I2C Adapters  

             

 18 of 33 © 2018 Dialog Semiconductor 

Note: If a new platform_devices.h file is not created in /config directory, the application will 

inherit the default macro definitions from /sdk/adapters/include/platform_devices.h. 

 

4. In the target application, add/modify all the required code blocks as illustrated in the Code 

Overview section. 

 

Note: It is possible for the defined macros not to be taken into consideration instantly. Thus, 

resulting in errors during compile time. If this is the case, the easiest way to deal with the 

issue is to: right-click on the application folder, select Index > Rebuild and then Index > 

Freshen All Files. 

 

5. Build the project either in Debug_QSPI or Release_QSPI mode and burn the generated image 

to the chip. 

6. Connect the EEPROM module to the Pro DevKit. Figure 12 illustrates the pin connections 

required to configure the 24LC256 module. For more information on the EEPROM module 

used, read the manufacturer datasheet. 

 

Figure 14: Configuring the 24LC256 EEPROM Slave Device 

 

Since all the Chip Select Bits are connected to ground (that is, logic '0'), the resulting device 

address is set to 0b1010000 (0x50). Thus, the master device (DA1468x chip) should reference 

the EEPROM using this address. 

http://ww1.microchip.com/downloads/en/DeviceDoc/21203M.pdf


 

 

For the DA1468x SoC  

I2C Adapters  

             

 19 of 33 © 2018 Dialog Semiconductor 

 

Figure 15: Control Byte of 24LC256 EEPROM Chip 

Note: The Control Byte is the first byte sent by the I2C master controller (DA1468x) at each 

I2C operation. Given the current EEPROM configurations possible values are: 0b10100001  

(0xA1) when a read command is executed or 0b10100000 (0xA0) when a write command is 

executed. 

 

7. Press the K2 button on Pro DevKit to start the chip executing its firmware. 

8. Open a serial terminal (115200, 8-N-1) and press the K1 button on Pro DevKit. A debugging 

message is displayed on the console (1) indicating both the progress and status of the I2C write 

operation. 

9. Press the K1 button on Pro DevKit again. A debugging message is displayed on the console (2) 

indicating the status of the I2C read operation. A message indicating whether or not read data 

matches the previous written data is also displayed. 

 

Figure 16: Debugging Messages Indicating both the Progress and Status of an I2C 
Transaction 



 

 

For the DA1468x SoC  

I2C Adapters  

             

 20 of 33 © 2018 Dialog Semiconductor 

4.2 Verifying with a Logic Analyzer 

This step is optional and is intended for those who are interested in using an external logic analyzer 
to capture the I2C signals during a transaction. 

 

1. With the whole system up and running, open the software that controls the logic analyzer. For 

this step a logic analyzer from Saleae Incorporation and its official software was used. 

2. Connect the logic analyzer to the Pro DevKit. To do this, you should: 

a. Connect a channel from the logic analyzer to P4_6 pin of Pro DevKit. This is the Clock 

signal (SCL). 

b. Connect a channel from the logic analyzer to P4_7 pin of Pro DevKit. This is a 

bidirectional line both for sending and receiving data (SDA). 

3. Press the K2 button on Pro DevKit to reset the device. 

4. Press the K1 button on Pro DevKit and capture the I2C write transaction. Figure 15 illustrates 

only the first two of the total written bytes. 

 

Figure 17: I2C Write Transaction Captured using a Logic Analyzer  

 

5. If the I2C write operation was successfully executed, the Acknowledge Polling procedure takes 

place. 

 

Figure 18: Polling ACK Procedure Captured using a Logic Analyzer 

 



 

 

For the DA1468x SoC  

I2C Adapters  

             

 21 of 33 © 2018 Dialog Semiconductor 

6. Press the K1 button again on Pro DevKit and capture the I2C read transaction. Figure 15 

illustrates only the first two of the total read bytes. 

 

Figure 19: I2C Read Transaction Captured using a Logic Analyzer  

 

 

5 Code Overview 

This section provides the code blocks needed to successfully execute this tutorial. 

5.1 Header Files 

In main.c, add the following header files: 

#include "hw_wkup.h" 
 
#include "ad_i2c.h" 
#include <platform_devices.h> 

 

5.2 System Init Code 

In main.c, replace system_init() with the following code: 

/* 
 * Macro for enabling asynchronous I2C transactions. 
 * 
 * Valid values: 
 * 0: I2C transactions will follow a synchronous scheme 
 * 1: I2C transactions will follow an asynchronous scheme 
 * 
 */ 
#define I2C_ASYNC_EN    (0) 
 
/* OS signals used for synchronizing OS tasks*/ 
static OS_EVENT siganl_i2c_eeprom; 
static OS_EVENT signal_i2c_eeprom_async; 
 
/* 
 * Status flag used for indicating whether a read 



 

 

For the DA1468x SoC  

I2C Adapters  

             

 22 of 33 © 2018 Dialog Semiconductor 

 * or write I2C operation will be performed. 
 */ 
volatile static bool i2c_status = 0; 
 
/* I2C task priority */ 
#define mainI2C_TASK_PRIORITY             ( OS_TASK_PRIORITY_NORMAL ) 
 
/* 
 * I2C application tasks - Function prototype 
 */ 
static void prvI2CTask_EEPROM ( void *pvParameters ); 
static void poll_ack (i2c_device dev); 
 
static void system_init( void *pvParameters ) 
{ 
        OS_TASK task_h = NULL; 
        OS_TASK i2c_eeprom = NULL; 
 
#if defined CONFIG_RETARGET 
        extern void retarget_init(void); 
#endif 
 
        /* Prepare clocks. Note: cm_cpu_clk_set() and cm_sys_clk_set() can be called only 
         * from a task since they will suspend the task until the XTAL16M has settled and, 
         * maybe, the PLL is locked. 
         */ 
        cm_sys_clk_init(sysclk_XTAL16M); 
        cm_apb_set_clock_divider(apb_div1); 
        cm_ahb_set_clock_divider(ahb_div1); 
        cm_lp_clk_init(); 
 
        /* Prepare the hardware to run this demo. */ 
        prvSetupHardware(); 
 
        /* init resources */ 
        resource_init(); 
 
#if defined CONFIG_RETARGET 
        retarget_init(); 
#endif 
 
 
 
        /* Initialize the OS event signals */ 
        OS_EVENT_CREATE(siganl_i2c_eeprom); 
        OS_EVENT_CREATE(signal_i2c_eeprom_async); 
 
        /* Start main task here */ 
        OS_TASK_CREATE( "Template",     /* The text name assigned to the task, 
                                                                         for debug only; not used by the  kernel. */ 
                        prvTemplateTask,     /* The function that implements the task. */ 
                        NULL,                          /* The parameter passed to the task */ 
                        200 * OS_STACK_WORD_SIZE,    /* The number of bytes to allocate to 
                                                                                        the stack of the task. */ 
                        mainTEMPLATE_TASK_PRIORITY,  /* The priority assigned to the task */ 



 

 

For the DA1468x SoC  

I2C Adapters  

             

 23 of 33 © 2018 Dialog Semiconductor 

                        task_h );                    /* The task handle */ 
        OS_ASSERT(task_h); 
 
        /* Suspend task execution */ 
        OS_TASK_SUSPEND(task_h); 
 
 
        /* 
         * Create an I2C task responsible for controlling the 
         * externally connected 24LC256 EEPROM module. 
         */ 
        OS_TASK_CREATE("EPPROM_24LC256", 
 
                        prvI2CTask_EEPROM, 
                        NULL, 
                        200 * OS_STACK_WORD_SIZE, 
 
                        mainI2C_TASK_PRIORITY, 
                        i2c_eeprom ); 
        OS_ASSERT(i2c_eeprom); 
 
        /* The work of the SysInit task is done */ 
        OS_TASK_DELETE( xHandle ); 
 
} 

 

5.3 Wake-Up Timer Code 

In main.c, after system_init(), add the following code for handling external events via the wake-up 

controller: 

/* 
 * Callback function to be called after an external event is generated, 
 * that is, after K1 button on the Pro DevKit is pressed. 
 */ 
void wkup_cb(void) 
{ 
        /* 
         * This function must be called by any user-specified 
         * interrupt callback, to clear the interrupt flag. 
         */ 
        hw_wkup_reset_interrupt(); 
 
       /* 
        * Toggle I2C status: 
        * 
        * 1: a Write transaction will be performed 
        * 0: a Read transaction will be performed 
        */ 
        i2c_status ^= 1; 
 
        /* 



 

 

For the DA1468x SoC  

I2C Adapters  

             

 24 of 33 © 2018 Dialog Semiconductor 

         * Notify [prvI2CTask_EEPROM] that time for 
         * performing I2C operations has elapsed. 
         */ 
        OS_EVENT_SIGNAL_FROM_ISR(siganl_i2c_eeprom); 
} 
 
/* 
 * Function which makes all the necessary initializations for the 
 * wake-up controller 
 */ 
static void init_wkup(void) 
{ 
        /* 
         * This function must be called first and is responsible 
         * for the initialization of the hardware block. 
         */ 
        hw_wkup_init(NULL); 
 
        /* 
         * Configure the pin(s) that can trigger the device to wake up while 
         * in sleep mode. The last input parameter determines the triggering 
         * edge of the pulse (event) 
         */ 
        hw_wkup_configure_pin(HW_GPIO_PORT_1, HW_GPIO_PIN_6, true, 
                                                                                HW_WKUP_PIN_STATE_LOW); 
 
        /* 
         * This function defines a delay between the moment at which 
         * a trigger event is present and the moment at which the controller 
         * takes this event into consideration. Setting debounce time to [0] 
         * disables hardware debouncing mechanism. Maximum debounce time is 63 ms. 
         */ 
        hw_wkup_set_debounce_time(10); 
 
// Check if the chip is either DA14680 or 81 
#if dg_configBLACK_ORCA_IC_REV == BLACK_ORCA_IC_REV_A 
 
        /* 
         * Set threshold for event counter. Interrupt is generated after 
         * the event counter reaches the configured value. This function 
         * is only supported in DA14680/1 chips. 
         */ 
        hw_wkup_set_counter_threshold(1); 
#endif 
 
        /* Register interrupt handler */ 
        hw_wkup_register_interrupt(wkup_cb, 1); 
} 

 



 

 

For the DA1468x SoC  

I2C Adapters  

             

 25 of 33 © 2018 Dialog Semiconductor 

5.4 Hardware Initialization 

In main.c, replace both periph_init() and prvSetupHardware() with the following code to configure 

pins after a power-up/wake-up cycle. Please note that every time the system enters sleep, it loses all 

its pin configurations. 

/* I2C pin configuration */ 
static const gpio_config gpio_cfg[] = { 
 
        // The system is set to [Master], so it outputs the clock signal 
        HW_GPIO_PINCONFIG(HW_GPIO_PORT_4, HW_GPIO_PIN_6, OUTPUT, 
                                                                                                                      I2C_SCL, true), 
 
        // Bidirectional signal both for sending and receiving data 
        HW_GPIO_PINCONFIG(HW_GPIO_PORT_4, HW_GPIO_PIN_7, INPUT, 
                                                                                                                    I2C_SDA, true), 
         // This is critical for the correct termination of the structure 
        HW_GPIO_PINCONFIG_END  
 
}; 
 
/** 
 * @brief Initialize the peripherals domain after power-up. 
 * 
 */ 
static void periph_init(void) 
{ 
#       if dg_configBLACK_ORCA_MB_REV == BLACK_ORCA_MB_REV_D 
#               define UART_TX_PORT    HW_GPIO_PORT_1 
#               define UART_TX_PIN     HW_GPIO_PIN_3 
#               define UART_RX_PORT    HW_GPIO_PORT_2 
#               define UART_RX_PIN     HW_GPIO_PIN_3 
#       else 
#               error "Unknown value for dg_configBLACK_ORCA_MB_REV!" 
#       endif 
 
 
        hw_gpio_set_pin_function(UART_TX_PORT, UART_TX_PIN,   
                      HW_GPIO_MODE_OUTPUT, HW_GPIO_FUNC_UART_TX); 
                         
        hw_gpio_set_pin_function(UART_RX_PORT, UART_RX_PIN,  
                          HW_GPIO_MODE_INPUT, HW_GPIO_FUNC_UART_RX); 
 
                         
        /* LED D2 on ProDev Kit for debugging purposes */ 
        hw_gpio_set_pin_function(HW_GPIO_PORT_1, HW_GPIO_PIN_5,  
                                           HW_GPIO_MODE_OUTPUT, HW_GPIO_FUNC_GPIO); 
 
        /* This is a shortcut to configure multiple GPIOs in one call */ 
        hw_gpio_configure(gpio_cfg); 
} 
 
/** 
 * @brief Hardware Initialization 
 */ 
static void prvSetupHardware( void ) 



 

 

For the DA1468x SoC  

I2C Adapters  

             

 26 of 33 © 2018 Dialog Semiconductor 

{ 
 
        /* Init hardware */ 
        pm_system_init(periph_init); 
        init_wkup(); 
 } 

 

5.5 EEPROM ACK Code 

Code snippet of the EEPROM polling ACK routine. In main.c, add the following code (after 

system_init()): 

/* 
 * Function for polling the EEPROM status. This function should be invoked 
 * after a successful I2C write operation to check when the EEEPROM device 
 * is ready to accept the next write/read cycle. 
 */ 
static void poll_ack(i2c_device dev) 
{ 
        bool no_ack; 
 
        /* Get hardware ID */ 
        HW_I2C_ID id = ad_i2c_get_hw_i2c_id(dev); 
 
        ad_i2c_device_acquire(dev); 
        ad_i2c_bus_acquire(dev); 
 
        do { 
 
                /* 
                 * Make sure TX ABORT interrupt status flag is reset. 
                 * At the beginning, EEPROM will not ACK the address 
                 * byte (the first byte sent by the master controller). 
                 * So, a TX ABORT will be issued in I2C controller. 
                 */ 
                hw_i2c_reset_int_tx_abort(id); 
 
                /* 
                 * Clear STOP interrupt status flag that is used 
                 * for waiting ACK or NO ACK. 
                 */ 
                hw_i2c_reset_int_stop_detected(id); 
 
                /* 
                 * We only need to check if EEPROM returns ACK for address byte, however we 
                 * cannot simply send address byte since it's the controller who takes care 
                 * of this once TX FIFO is filled with data. A simple solution is to send a 
                 * dummy byte which  will be ignored by EEPROM but will make the I2C  
                 * controller to generate a START condition and send the address byte. 
                 */ 
                hw_i2c_write_byte(id, 0xAA); 
 



 

 

For the DA1468x SoC  

I2C Adapters  

             

 27 of 33 © 2018 Dialog Semiconductor 

                /* 
                 * Wait until a STOP condition is detected and 
                 * the corresponding status bit is asserted. 
                 */ 
                while ((hw_i2c_get_raw_int_state(id) & HW_I2C_INT_STOP_DETECTED) == 0); 
 
                /* 
                 * Check whether transmission was successful. If EEPROM did not 
                 * ACK the address byte, the appropriate abort source will be set. 
                 */ 
                no_ack = (hw_i2c_get_abort_source(id) &  
                                                         HW_I2C_ABORT_7B_ADDR_NO_ACK); 
 
 
        } while (no_ack); 
 
        ad_i2c_bus_release(dev); 
        ad_i2c_device_release(dev); 
} 

 

5.6 Task Code for 24LC256 

Code snippet of the prvI2CTask_EEPROM task responsible for interacting with the 24LC256 

EEPROM module, externally connected on I2C1 bus. In main.c, add the following code (after 

system_init()): 

/* 
 * Page size of the selected EEPROM module. This is device-specific information! 
 * I2C operations must be restricted within a page size. For example, 
 * 0x0000 - 0x0040, 0x0041 to 0x0080, 0x0081 to 0x00C0 etc. 
 */ 
#define PAGE_SIZE  64 
 
/* 
 * Error code returned after an I2C operation. It 
 * can be used to identify the reason of a failure. 
 */ 
HW_I2C_ABORT_SOURCE error_code; 
 
 
#if I2C_ASYNC_EN == 1 
/* 
 * Callback function for the I2C asynchronous transactions: 
 * 
 * \param [in] error   Error code returned at the end of an I2C transaction. 
 * \param [in] user_data  User data that can be passed and used within the function. 
 */ 
void i2c_eeprom_cb(void *user_data, HW_I2C_ABORT_SOURCE error) 
{ 
        /* Read the error status code */ 
        error_code = error; 
 



 

 

For the DA1468x SoC  

I2C Adapters  

             

 28 of 33 © 2018 Dialog Semiconductor 

        /* 
         * Signal the [prvI2CTask_EEPROM] task that time 
         * for resuming has elapsed. 
         */ 
        OS_EVENT_SIGNAL_FROM_ISR(signal_i2c_eeprom_async); 
} 
#endif 
 
 
/* Task responsible for controlling the 24LC256 module */ 
static void prvI2CTask_EEPROM ( void *pvParamters ) 
{ 
        i2c_device i2c_dev; 
 
        /* Starting address (2 bytes) */ 
        uint8_t starting_addr[2] = {0x00, 0x00}; // or {0x00, 0x41} or {0x00, 0x81} 
 
        /* 
         * Data to be transferred: 64 bytes raw data + 2 bytes for the starting address 
         */ 
        uint8_t eeprom_wd[PAGE_SIZE + 2]; 
 
        /* Buffer for storing the received data */ 
        uint8_t eeprom_rd[PAGE_SIZE]; 
 
       /* 
        * Half of data (32 bytes) is set to [0x55] and half to [0xAA]. 
        * Here you can declare your own preferred values. 
        */ 
        memcpy(eeprom_wd,   starting_addr, sizeof(starting_addr)); 
        memset(eeprom_wd + sizeof(starting_addr),    0x55,   (PAGE_SIZE/2)); 
        memset(eeprom_wd + sizeof(starting_addr) + (PAGE_SIZE/2), 0xAA,           
                                                                                                               (PAGE_SIZE/2)); 
 
 
        /* 
         * I2C adapter initialization should be done once at the beginning. Alternatively, 
         * this function could be called during system initialization in system_init(). 
         */ 
        ad_i2c_init(); 
 
 
        for (;;) { 
 
                /* 
                 * Suspend task execution - As soon as WKUP callback function 
                 * is triggered, the task resumes its execution. 
                 */ 
                OS_EVENT_WAIT(siganl_i2c_eeprom, OS_EVENT_FOREVER); 
 
                /* 
                 * Turn on LED D2 on ProDev Kit indicating the start of a process. 
                 */ 
                hw_gpio_set_active(HW_GPIO_PORT_1, HW_GPIO_PIN_5); 
 



 

 

For the DA1468x SoC  

I2C Adapters  

             

 29 of 33 © 2018 Dialog Semiconductor 

 
                /* 
                 * Open the device that will access the I2C bus. 
                 */ 
                i2c_dev =  ad_i2c_open(MEM_24LC256); 
 
 
                /* 
                 * Write a whole page (64 bytes) in EEPROM. 
                 */ 
                if (i2c_status == 1) { 
 
                        printf("\n\rI2C write...\n\r"); 
 
                        /* 
                         * Write some data in EEPROM, starting from physical address 0x0000 
                         */ 
                        error_code = ad_i2c_write(i2c_dev, eeprom_wd, sizeof(eeprom_wd)); 
 
 
                        /* Check the status of the I2C write operation */ 
                        if (error_code == 0) { 
                                printf("\n\rSuccessful write operation!\n\r\n\r"); 
 
                              /* 
                               * Wait until data is actually written in EEPROM cells! 
                               */ 
                                poll_ack(i2c_dev); 
                        } else { 
                                printf("\n\rError in write operation with error code: %d!\n\r\n\r", 
                                                                                                                                error_code); 
                        } 
 
                /* 
                 * Read a whole page (64 bytes) from EEPROM 
                 */ 
                } else { 
 
                        printf("\n\rI2C read...\n\r"); 
/* 
 * Perform the read operation synchronously! 
 */ 
#if I2C_ASYNC_EN == 0 
                        /* 
                         * This function performs a write followed by a read transaction. An 
                         * operation which is typical when reading data from I2C peripherals, 
                         * where an address needs to be specified through a write before 
                         * reading data. 
                         */ 
                        error_code = ad_i2c_transact(i2c_dev, starting_addr, 
                                          sizeof(starting_addr), eeprom_rd, sizeof(eeprom_rd)); 
 
/* 
 * Perform the read operation asynchronously! 
 */ 



 

 

For the DA1468x SoC  

I2C Adapters  

             

 30 of 33 © 2018 Dialog Semiconductor 

#else 
                       /* Perform an I2C read operation asynchronously */ 
                       ad_i2c_async_transact(i2c_dev, 
                                             I2C_SND(starting_addr, sizeof(starting_addr)), 
                                             I2C_RCV(eeprom_rd, sizeof(eeprom_rd)), 
                                             I2C_CB(i2c_eeprom_cb), 
                                             I2C_END 
                                           ); 
 
                       /* Wait until the current I2C operation is finished */ 
                       OS_EVENT_WAIT(signal_i2c_eeprom_async, OS_EVENT_FOREVER); 
#endif 
 
                       /* Check the status of the I2C read operation */ 
                       if (error_code == 0) { 
                               printf("\n\rSuccessful read transaction!\n\r"); 
 
                               /* 
                                * Check if read data match written data. If there is a match 
                                * [strncmp] returns [0] 
                                */ 
                               if (!strncmp(((char *)eeprom_wd + 2), (char *)eeprom_rd,  
                                                                                                                        PAGE_SIZE)) { 
                                       printf("\n\rRead data match written data!\n\r\n\r"); 
                               } else { 
                                       printf("\n\rRead data do not match written data!\n\r\n\r"); 
                               } 
 
                       } else { 
                               printf("\n\rUnsuccessful read transaction with error code:  
                                                                                              %d!\n\r\n\r",  error_code); 
                       } 
 
                } // end of else() 
 
 
                /* Close the already opened device */ 
                ad_i2c_close(i2c_dev); 
 
                /* 
                 * Turn off LED D2 on ProDev Kit indicating the end of a process. 
                 */ 
                hw_gpio_set_inactive(HW_GPIO_PORT_1, HW_GPIO_PIN_5); 
 
            } // end of for() 
} // end of task 

 

5.7 Macro Definitions 

In config/custom_config_qspi.h, add the following macro definitions: 

/* 



 

 

For the DA1468x SoC  

I2C Adapters  

             

 31 of 33 © 2018 Dialog Semiconductor 

 * Enable the preferred devices, declared in "platform_devices.h" 
 */ 
#define CONFIG_24LC256 
 
/* 
 * Macros for enabling I2C operations using Adapters 
 */ 
#define dg_configUSE_HW_I2C                     (1) 
#define dg_configI2C_ADAPTER                    (1) 

Note: By default, the SDK comes with a few predefined device settings in platform_devices.h. 

Therefore, the developer should check whether an entry matches with a device connected to 

the controller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

For the DA1468x SoC  

I2C Adapters  

             

 32 of 33 © 2018 Dialog Semiconductor 

Revision History 

 

Revision Date Description 

1.0 19-Mar-2018 First released version 

2.0 23-July-2018 More descriptive steps to follow, figures and examples. 

2.1 20-Sep-2018 Updated figures, Minor improvements in prvI2CTask_EEPROM. 



 

 

For the DA1468x SoC  

I2C Adapters  

             

 33 of 33 © 2018 Dialog Semiconductor 

Status Definitions 

Status Definition 

DRAFT 
The content of this document is under review and subject to formal approval, which may result in modifications or 

additions.  

APPROVED 

or unmarked 
The content of this document has been approved for publication.  

Disclaimer 

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or 
warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no 
responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor. 

Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the 
specification and the design of the related semiconductor products, software and applications.  

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes 
no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further 
testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog 
Semiconductor excludes all liability in this respect.  

Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software 
and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor. 

All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor’s Standard 
Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.  

Dialog and the Dialog logo are trademarks of Dialog Semiconductor plc or its subsidiaries. All other product or service names are the property of 
their respective owners.  

© 2018 Dialog Semiconductor. All rights reserved.  

 

Contacting Dialog Semiconductor 

United Kingdom (Headquarters) 

Dialog Semiconductor (UK) LTD 

Phone: +44 1793 757700 

Germany 

Dialog Semiconductor GmbH 

Phone: +49 7021 805-0 

The Netherlands 

Dialog Semiconductor B.V. 

Phone: +31 73 640 8822 

North America 

Dialog Semiconductor Inc. 

Phone: +1 408 845 8500 

Japan 

Dialog Semiconductor K. K. 

Phone:  +81 3 5769 5100 

Taiwan 

Dialog Semiconductor Taiwan 

Phone: +886 281 786 222 

Hong Kong 

Dialog Semiconductor Hong Kong 

Phone: +852 2607 4271 

Korea 

Dialog Semiconductor Korea 

Phone: +82 2 3469 8200 

 

China (Shenzhen) 

Dialog Semiconductor China 

Phone: +86 755 2981 3669 

China (Shanghai) 

Dialog Semiconductor China 

Phone: +86 21 5424 9058 

 

Email:  

enquiry@diasemi.com 

Web site:  

www.dialog-semiconductor.com 

  

http://www.dialog-semiconductor.com/standard-terms-and-conditions
http://www.dialog-semiconductor.com/standard-terms-and-conditions
http://www.dialog-semiconductor.com/

