

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

HI7300/PX V.1.01
User’s Manual

U
ser’s M

anual

 Rev.2.00 2006.07

Renesas Microcomputer
Development Environment
System

R0R50730PRW01E

a5024650
テキストボックス
NOTICE:
There are corrections in the "Function" of "7.4.1 Initialize Cache (shx2_vini_cac)" on page 408 in this document.

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corp. product best suited to the customer's application; they do not convey any license
under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or
a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corp. without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or
an authorized Renesas Technology Corp. product distributor for the latest product information
before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising
from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means,
including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or
system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when
considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products
contained therein.

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and
more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

1. µITRON is an acronym of the “Micro Industrial TRON” and TRON is an acronym of “The Real Time
Operating system Nucleus”.

2. TRON, ITRON, and µITRON are the names of computer specifications and do not indicate a specific
group of the commodity or the commodity.

3. The µITRON4.0 specification and µITRON4.0 protection function extension are open realtime-kernel
specifications defined by the TRON association. The specifications of µITRON4.0 and µITRON4.0
protection function extension can be downloaded from the TRON association homepage
(http://www.assoc.tron.org).

4. The copyright of the µITRON specification belongs to the TRON association.
5. Microsoft® Windows® 98, Microsoft® Windows® Millennium Edition (Windows® Me), Microsoft®

Windows NT®, Microsoft® Windows® 2000, and Microsoft® Windows® XP operating systems are
registered trademarks of Microsoft Corporation in the United States and/or other countries.

6. SuperHTM is a trademark of Renesas Technology Corp..
7. All other product names are trademarks or registered trademarks of the respective holders.

i

Preface

This manual describes how to use the HI7300/PX. Before using the HI7300/PX, please read this
manual to fully understand the operating system.

Notes on Descriptions

HEW Abbreviation of High-Performance Embedded Workshop, which is an
integrated development tool.

H', 0x, and D' For hexadecimal integers, prefix H' or 0x is attached. For decimal
integers, prefix D' is attached. If no prefix is attached, a decimal integer is
assumed.

shnnnn Sample files are stored in the directory having the device name (e.g.,
‘sh73180’ directory for the SH73180). This directory is referred to as
shnnnn in this manual.

CFG_MAXTSKID A variable name beginning with CGF_ is specified for the configurator.
For details, refer to section 10.6, CFG Name.

samples\ ‘\’ is used to delimit directories and a character string that ends with ‘\’
indicates a directory name. Directory names are basically expressed as
relative paths from the kernel installation directory. Note, however, that
some paths written in this manual start from the sub-directories of the
kernel installation directory when the paths become too long or
redundant.

Renesas Technology Homepage

Various support information are available on the following Renesas Technology homepage:

http://www.renesas.com/en/tools/

ii

iii

Contents

Section 1 Configuration of This Manual ...1

Section 2 Overview..3
2.1 Features... 3

2.1.1 Memory Object Protection Function.. 3
2.1.2 Conformance to Industry-Standard μITRON Specifications 3
2.1.3 DSP/FPU Support .. 4
2.1.4 Configurator... 4
2.1.5 Samples.. 4
2.1.6 Debugging Extension (Optional) ... 4

2.2 Operating Environment... 5

Section 3 Introduction to Kernel..7
3.1 Principles of Kernel Operation ... 7
3.2 Service Calls ... 10
3.3 Objects .. 11
3.4 Tasks ... 12

3.4.1 Task State... 12
3.4.2 Task Scheduling (Priority and Ready Queue).. 14

Section 4 Kernel Functions..17
4.1 Applications .. 17
4.2 System State.. 18

4.2.1 Task Context and Non-Task Context... 18
4.2.2 Dispatch-Disabled State, CPU-Locked State, and Dispatch-Pended State 18

4.3 Protection Domains... 19
4.4 Task Management... 21

4.4.1 Task Creation... 21
4.4.2 Domain of a Task... 21
4.4.3 Task Initiation .. 21
4.4.4 Task Termination and Deletion.. 22
4.4.5 Priority Change .. 22
4.4.6 Task Execution Mode .. 22
4.4.7 Task State Reference.. 23

4.5 Stack Management.. 24
4.5.1 Non-Task Context Stack .. 24

iv

4.5.2 Task Stacks .. 24
4.6 Task Synchronization.. 25

4.6.1 Synchronization by Task Wakeup ... 25
4.6.2 Forcible Cancellation of WAITING State ... 25
4.6.3 SUSPENDED State ... 26
4.6.4 Task Event Flag ... 26

4.7 Task Exception Processing ... 28
4.8 Semaphore .. 30
4.9 Event Flag... 33
4.10 Data Queue ... 35
4.11 Mailbox... 37
4.12 Mutex.. 40
4.13 Message Buffer ... 43
4.14 Fixed-Size Memory Pool .. 45
4.15 Variable-Size Memory Pool ... 48

4.15.1 Fragmentation .. 51
4.16 Time Management .. 52

4.16.1 Time Precision ... 52
4.16.2 System Clock Setting and Reference... 53
4.16.3 Cyclic Handler ... 53
4.16.4 Alarm Handler ... 56
4.16.5 Overrun Handler .. 58
4.16.6 Timer Driver .. 59
4.16.7 Notes on Time Management.. 59

4.17 Optimized Timer Driver ... 60
4.17.1 Overview ... 60
4.17.2 Operation ... 61
4.17.3 Applicable Microcomputers... 62
4.17.4 Hardware Initialization .. 63

4.18 Interrupt Management... 63
4.18.1 Interrupt Handler ... 63
4.18.2 Kernel Level (CFG_KNLLVL) ... 64
4.18.3 Disabling Interrupts ... 64

4.19 CPU Exception ... 66
4.20 Extended Service Call and Trap.. 67

4.20.1 Extended Service Call.. 68
4.20.2 Trap.. 68

4.21 Memory Object Protection Function... 68
4.21.1 Overview ... 68
4.21.2 Memory Object Types ... 71

v

4.21.3 Attribute and Domain .. 71
4.21.4 Access Permission Vector.. 73
4.21.5 Page Size.. 74
4.21.6 Detection of Illegal Access .. 75
4.21.7 TLB Miss Penalty .. 76
4.21.8 Access Permission Check (prb_mem) ... 77
4.21.9 Check for Errors in Address Parameters of Service Calls.................................... 77
4.21.10 MMU Initialization .. 77

4.22 Protected Memory Pool .. 78
4.23 Protected Mailbox... 80
4.24 System Memory Management .. 83

4.24.1 System Pool ... 83
4.24.2 Resource Pool .. 84

4.25 DSP Standby Control .. 84
4.25.1 Overview.. 84
4.25.2 Applicable Microcomputers... 85
4.25.3 Module Stop State of X/Y Memory when Initiating Programs............................ 86
4.25.4 Notes .. 86

4.26 Performance Management .. 87
4.27 Service Call Trace... 88
4.28 Other Functions... 90
4.29 Kernel Idling ... 91
4.30 Resetting the CPU and Initiating the Kernel... 92
4.31 Controlling Memory Fragmentation (VTA_UNFRAGMENT Attribute)......................... 95
4.32 Debugging Extension.. 98

Section 5 Logical Address Space...99
5.1 Overview... 99
5.2 When Memory Object Protection Function Is Not Used .. 99

5.2.1 Overview.. 99
5.2.2 External Memory ... 101
5.2.3 On-Chip Memory... 102

5.3 When Memory Object Protection Function Is Used ... 103
5.3.1 Overview.. 103
5.3.2 External Memory Space... 105
5.3.3 On-Chip Memory... 106
5.3.4 Note on Use ... 107

5.4 On-Chip Resources Allocated in P4 Area... 107
5.5 On-Chip Resources whose Physical Addresses Are Allocated in Area 1 107
5.6 32-Bit Address Extended Mode.. 108

vi

Section 6 Service Calls ..109
6.1 C-Language API ... 109

6.1.1 Calling Form.. 109
6.1.2 Header File... 109
6.1.3 Header Files Output from the Configurator... 109
6.1.4 Basic Data Type... 110
6.1.5 Constants and Macros.. 111

6.2 Register Contents Guaranteed after Issuing Service Call ... 115
6.3 Return Value of Service Call and Error Code... 116

6.3.1 Overview ... 116
6.3.2 Parameter Check Function... 116
6.3.3 Access Permission Check Function for Address Parameters............................... 116
6.3.4 E_NOSPT Error... 116

6.4 System State and Service Calls... 117
6.4.1 CPU Exception Handler... 117
6.4.2 Task Context and Non-Task Context... 117
6.4.3 CPU-Locked State ... 118
6.4.4 Dispatch-Disabled State... 118
6.4.5 When SR.IMASK is Modified to a Non-Zero Value through chg_ims in Task
 Context... 118

6.5 Service Calls not in the μITRON4.0 Specification... 119
6.6 Service Call Description Form.. 120
6.7 Task Management... 122

6.7.1 Create Task (cre_tsk, icre_tsk, acre_tsk, iacre_tsk)... 124
6.7.2 Delete Task (del_tsk) ... 132
6.7.3 Initiate Task (act_tsk, iact_tsk) .. 133
6.7.4 Cancel Task Initiation Request (can_act, ican_act) ... 135
6.7.5 Initiate Task and Specify Start Code (sta_tsk, ista_tsk)....................................... 136
6.7.6 Exit Current Task (ext_tsk) and Exit and Delete Current Task (exd_tsk) 137
6.7.7 Forcibly Terminate Task (ter_tsk) ... 139
6.7.8 Change Task Priority (chg_pri, ichg_pri) .. 140
6.7.9 Refer to Task Priority (get_pri, iget_pri) ... 142
6.7.10 Refer to Task State (ref_tsk, iref_tsk).. 143
6.7.11 Refer to Task State (Simple Version) (ref_tst, iref_tst) 147
6.7.12 Change Task Execution Mode (vchg_tmd) ... 149

6.8 Task Synchronization.. 150
6.8.1 Sleep Task (slp_tsk, tslp_tsk) .. 152
6.8.2 Wake up Task (wup_tsk, iwup_tsk)... 153
6.8.3 Cancel Wakeup Request (can_wup, ican_wup)... 154
6.8.4 Cancel WAITING State Forcibly (rel_wai, irel_wai).. 155

vii

6.8.5 Suspend Task (sus_tsk, isus_tsk) ... 156
6.8.6 Resume Task (rsm_tsk, irsm_tsk) and Resume Task Forcibly
 (frsm_tsk, ifrsm_tsk).. 158
6.8.7 Delay Task (dly_tsk).. 159
6.8.8 Set Task Event Flag (vset_tfl, ivset_tfl)... 160
6.8.9 Clear Task Event Flag (vclr_tfl, ivclr_tfl).. 161
6.8.10 Wait for Task Event Flag (vwai_tfl, vpol_tfl, vtwai_tfl) 162

6.9 Task Exception Processing Functions... 164
6.9.1 Define Task Exception Processing Routine (def_tex, idef_tex) 166
6.9.2 Request Task Exception Processing (ras_tex, iras_tex)....................................... 169
6.9.3 Disable Task Exception Processing (dis_tex) .. 170
6.9.4 Enable Task Exception Processing (ena_tex) .. 171
6.9.5 Refer To Task Exception Processing Disabled State (sns_tex) 172
6.9.6 Refer to Task Exception Processing State (ref_tex, iref_tex) 173

6.10 Synchronization and Communication (Semaphore).. 175
6.10.1 Create Semaphore (cre_sem, icre_sem, acre_sem, iacre_sem)............................ 176
6.10.2 Delete Semaphore (del_sem) ... 178
6.10.3 Return Semaphore Resource (sig_sem, isig_sem) ... 179
6.10.4 Wait for Semaphore Resource (wai_sem, pol_sem, ipol_sem, twai_sem) 180
6.10.5 Refer to Semaphore State (ref_sem, iref_sem) .. 182

6.11 Synchronization and Communication (Event Flag) .. 184
6.11.1 Create Event Flag (cre_flg, icre_flg, acre_flg, iacre_flg) 186
6.11.2 Delete Event Flag (del_flg).. 188
6.11.3 Set Event Flag (set_flg, iset_flg).. 189
6.11.4 Clear Event Flag (clr_flg, iclr_flg) .. 190
6.11.5 Wait for Event Flag Setting (wai_flg, pol_flg, ipol_flg, twai_flg) 191
6.11.6 Refer to Event Flag State (ref_flg, iref_flg)... 194

6.12 Synchronization and Communication (Data Queue)... 196
6.12.1 Create Data Queue (cre_dtq, icre_dtq, acre_dtq, iacre_dtq) 198
6.12.2 Delete Data Queue (del_dtq).. 200
6.12.3 Send Data to Data Queue (snd_dtq, psnd_dtq, ipsnd_dtq, tsnd_dtq, fsnd_dtq,
 ifsnd_dtq)... 201
6.12.4 Receive Data from Data Queue (rcv_dtq, prcv_dtq, trcv_dtq) 203
6.12.5 Refer to Data Queue State (ref_dtq, iref_dtq) .. 205

6.13 Synchronization and Communication (Mailbox).. 207
6.13.1 Create Mailbox (cre_mbx, icre_mbx, acre_mbx, iacre_mbx).............................. 209
6.13.2 Delete Mailbox (del_mbx)... 211
6.13.3 Send Message to Mailbox (snd_mbx, isnd_mbx) .. 212
6.13.4 Receive Message from Mailbox (rcv_mbx, prcv_mbx, iprcv_mbx, trcv_mbx) .. 215
6.13.5 Refer to Mailbox State (ref_mbx, iref_mbx) ... 218

viii

6.14 Synchronization and Communication (Mutex)... 220
6.14.1 Create Mutex (cre_mtx, acre_mtx) .. 221
6.14.2 Delete Mutex (del_mtx)... 223
6.14.3 Lock Mutex (loc_mtx, ploc_mtx, tloc_mtx).. 224
6.14.4 Unlock Mutex (unl_mtx) ... 226
6.14.5 Refer to Mutex State (ref_mtx).. 227

6.15 Extended Synchronization and Communication (Message Buffer) 229
6.15.1 Create Message Buffer (cre_mbf, icre_mbf, acre_mbf, iacre_mbf) 231
6.15.2 Delete Message Buffer(del_mbf)... 234
6.15.3 Send Message to Message Buffer (snd_mbf, psnd_mbf, ipsnd_mbf, tsnd_mbf). 235
6.15.4 Receive Message from Message Buffer (rcv_mbf, prcv_mbf, trcv_mbf)............ 238
6.15.5 Refer to Message Buffer State (ref_mbf, iref_mbf)... 240

6.16 Memory Pool Management (Fixed-Size Memory Pool)... 242
6.16.1 Create Fixed-Size Memory Pool (cre_mpf, icre_mpf, acre_mpf, iacre_mpf) 244
6.16.2 Create Fixed-Size Memory Pool and Specify Access Permission Vectors
 (icra_mpf) .. 248
6.16.3 Delete Fixed-Size Memory Pool (del_mpf)... 250
6.16.4 Get Fixed-Size Memory Block (get_mpf, pget_mpf, ipget_mpf, tget_mpf) 251
6.16.5 Release Fixed-Size Memory Block (rel_mpf, irel_mpf)...................................... 253
6.16.6 Refer to Fixed-Size Memory Pool State (ref_mpf, iref_mpf) 254

6.17 Memory Pool Management (Variable-Size Memory Pool) .. 256
6.17.1 Create Variable-Size Memory Pool (cre_mpl, icre_mpl, acre_mpl, iacre_mpl).. 258
6.17.2 Create Variable-Size Memory Pool and Specify Access Permission Vectors
 (ivcra_mpl) .. 264
6.17.3 Delete Variable-Size Memory Pool (del_mpl) .. 266
6.17.4 Get Variable-Size Memory Block (get_mpl, pget_mpl, ipget_mpl, tget_mpl).... 267
6.17.5 Release Variable-Size Memory Block (rel_mpl, irel_mpl) 270
6.17.6 Refer to Variable-Size Memory Pool State (ref_mpl, iref_mpl).......................... 271

6.18 Time Management (System Clock) .. 273
6.18.1 Set System Clock (set_tim, iset_tim)... 274
6.18.2 Get System Clock (get_tim, iget_tim) ... 275

6.19 Time Management (Cyclic Handler) .. 276
6.19.1 Create Cyclic Handler (cre_cyc, icre_cyc, acre_cyc, iacre_cyc) 277
6.19.2 Delete Cyclic Handler (del_cyc).. 281
6.19.3 Start Cyclic Handler Operation (sta_cyc, ista_cyc) ... 282
6.19.4 Stop Cyclic Handler Operation (stp_cyc, istp_cyc)... 283
6.19.5 Refer to Cyclic Handler State (ref_cyc, iref_cyc).. 284

6.20 Time Management (Alarm Handler)... 286
6.20.1 Create Alarm Handler (cre_alm, icre_alm, acre_alm, iacre_alm) 287
6.20.2 Delete Alarm Handler (del_alm) ... 290

ix

6.20.3 Start Alarm Handler Operation (sta_alm, ista_alm)... 291
6.20.4 Stop Alarm Handler Operation (stp_alm, istp_alm) .. 292
6.20.5 Refer to Alarm Handler State (ref_alm, iref_alm) ... 293

6.21 Time Management (Overrun Handler).. 295
6.21.1 Define Overrun Handler (def_ovr) .. 296
6.21.2 Start Overrun Handler Operation (sta_ovr, ista_ovr)... 298
6.21.3 Stop Overrun Handler Operation (stp_ovr, istp_ovr)... 299
6.21.4 Refer to Overrun Handler State (ref_ovr, iref_ovr) ... 300

6.22 System State Management .. 302
6.22.1 Rotate Ready Queue (rot_rdq, irot_rdq) .. 304
6.22.2 Get Task ID in RUNNING state (get_tid, iget_tid) ... 305
6.22.3 Get Domain ID of the Task in RUNNING State (get_did, iget_did)................... 306
6.22.4 Lock CPU (loc_cpu, iloc_cpu)... 308
6.22.5 Unlock CPU (unl_cpu, iunl_cpu)... 310
6.22.6 Disable Dispatch (dis_dsp) .. 311
6.22.7 Enable Dispatch (ena_dsp) .. 312
6.22.8 Refer to Context (sns_ctx) ... 313
6.22.9 Refer to CPU-Locked State (sns_loc) .. 314
6.22.10 Refer to Dispatch-Disabled State (sns_dsp)... 315
6.22.11 Refer to Dispatch-Pended State (sns_dpn)... 316
6.22.12 Start Kernel (vsta_knl, ivsta_knl) .. 317
6.22.13 System Down (vsys_dwn, ivsys_dwn) .. 320
6.22.14 Acquire Trace Information (vget_trc, ivget_trc).. 321
6.22.15 Acquire Start of Interrupt Handler as Trace Information (ivbgn_int).................. 322
6.22.16 Acquire End of Interrupt Handler as Trace Information (ivend_int) 323
6.22.17 Change DSP (TA_COP0) Attribute (vchg_cop).. 324

6.23 Interrupt Management... 326
6.23.1 Define Interrupt Handler (def_inh, idef_inh)... 327
6.23.2 Change Interrupt Mask (chg_ims, ichg_ims)... 331
6.23.3 Refer to Interrupt Mask (get_ims, iget_ims).. 333

6.24 Extended Service Call and Trap Management.. 334
6.24.1 Define Extended Service Call (def_svc, idef_svc)... 336
6.24.2 Issue Extended Service Call (cal_svc, ical_svc) .. 339
6.24.3 Define Trap Routine (vdef_trp, ivdef_trp)... 340

6.25 System Configuration Management.. 343
6.25.1 Define CPU Exception Handler (def_exc, idef_exc) ... 344
6.25.2 Refer to Configuration Information (ref_cfg, iref_cfg).. 348
6.25.3 Refer to Version Information (ref_ver, iref_ver) ... 351

6.26 Memory Object Management Function .. 353
6.26.1 Change Access Permission Vector for Memory Object (sac_mem) 354

x

6.26.2 Check Access Permission for Memory Area (prb_mem) 356
6.26.3 Refer to the Memory Object State (ref_mem) ... 359
6.26.4 Lock TLB Entry (vloc_tlb) .. 361
6.26.5 Unlock TLB Entry (vunl_tlb) .. 363

6.27 Protected Memory Pool Management... 364
6.27.1 Create Protected Memory Pool (icre_mpp) ... 365
6.27.2 Poll and Get Protected Memory Block (pget_mpp)... 368
6.27.3 Release Protected Memory Block (rel_mpp)... 370
6.27.4 Refer to Protected Memory Pool State (ref_mpp) ... 372

6.28 Protected Mailbox Management ... 374
6.28.1 Create Protected Mailbox (cre_mbp, icre_mbp, acre_mbp, iacre_mbp).............. 376
6.28.2 Delete Protected Mailbox (del_mbp)... 378
6.28.3 Send Message to Protected Mailbox (snd_mbp).. 379
6.28.4 Receive Message from Protected Mailbox (rcv_mbp, prcv_mbp, trcv_mbp) 382
6.28.5 Refer to Protected Mailbox State (ref_mbp, iref_mbp) 385

6.29 System Memory Management .. 387
6.29.1 Refer to System Pool State (vref_syp)... 388
6.29.2 Refer to Resource Pool State (vref_rsp) .. 390

6.30 Performance Management .. 392
6.30.1 Start, Stop, or Initialize Performance Measurement (vchg_ppc, ivchg_ppc)....... 393
6.30.2 Refer to Performance Measurement Result (vref_ppc, ivref_ppc) 395

Section 7 Cache Support Functions...397
7.1 Overview... 397
7.2 Notes ... 398
7.3 Functions in cache_sh4a.h .. 398

7.3.1 Initialize Cache (sh4a_vini_cac).. 399
7.3.2 Clear Cache (sh4a_vclr_cac) ... 401
7.3.3 Flush Operand Cache (sh4a_vfls_cac)... 403
7.3.4 Invalidate Cache (sh4a_vinv_cac)).. 405

7.4 Functions in cache_shx2.h .. 407
7.4.1 Initialize Cache (shx2_vini_cac).. 407
7.4.2 Clear Cache (shx2_vclr_cac) ... 409
7.4.3 Flush Operand Cache (shx2_vfls_cac) .. 411
7.4.4 Invalidate Cache (shx2_vinv_cac)).. 413

Section 8 Application Program Creation...415
8.1 Tasks ... 415

8.1.1 Writing a Task ... 415
8.1.2 Rules on Using Registers ... 417

xi

8.2 Task Exception Processing Routines .. 419
8.2.1 Writing a Task Exception Processing Routine... 419
8.2.2 Rules on Using Registers ... 420

8.3 Extended Service Call Routines and Trap Routines ... 422
8.3.1 Writing an Extended Service Call Routine or a Trap Routine 422
8.3.2 Rules on Using Registers ... 424

8.4 Interrupt Handlers ... 427
8.4.1 Writing an Interrupt Handler.. 427
8.4.2 Rules on Using Registers ... 428
8.4.3 DSP and FPU... 429
8.4.4 Notes on NMI .. 429

8.5 Interrupt and Exception Hook Routines.. 430
8.5.1 Overview.. 430
8.5.2 Writing a Hook Routine... 431
8.5.3 Rules on Using Registers ... 431
8.5.4 Notes .. 433

8.6 Time Event Handlers .. 434
8.6.1 Writing a Time Event Handler... 434
8.6.2 Rules on Using Registers ... 435
8.6.3 DSP and FPU... 436

8.7 Initialization Routines ... 437
8.7.1 Writing an Initialization Routine ... 437
8.7.2 Rules on Using Registers ... 438
8.7.3 DSP and FPU... 439

8.8 CPU Exception Handler.. 440
8.8.1 Writing the CPU Exception Handler ... 440
8.8.2 Macros Specialized for CPU Exception Handler... 442
8.8.3 Rules on Using Registers ... 447
8.8.4 DSP and FPU... 448

8.9 Memory Access Violation Handler... 449
8.9.1 Overview.. 449
8.9.2 Writing the Memory Access Violation Handler .. 449
8.9.3 Macros Specialized for CPU Exception Handler... 450
8.9.4 Rules on Using Registers ... 451
8.9.5 DSP and FPU... 452

8.10 System Down Routine .. 453
8.10.1 Overview.. 453
8.10.2 Writing the System Down Routine .. 453
8.10.3 Rules on Using Registers ... 454

xii

Section 9 Standard Timer Driver...455
9.1 Overview... 455
9.2 Configuration of Functions ... 455

9.2.1 Timer Initialization Routine (_kernel_tmrini())... 456
9.2.2 Timer Interrupt Routine (_kernel_tmrint()) ... 458

Section 10 Configurator ..459
10.1 Overview... 459
10.2 Linkage Unit, Kernel Lock Mode, and [Kernel Side]... 460
10.3 Configuration Files Output from Configurator ... 460

10.3.1 Header Files for Application.. 461
10.3.2 System Definition Files ... 462

10.4 User Interface.. 463
10.4.1 Screen Configuration ... 463
10.4.2 Title Bar ... 463
10.4.3 Menu Bar:[File] Menu ... 464
10.4.4 Menu Bar:[View] Menu... 465
10.4.5 Menu Bar:[Generate] Menu... 466
10.4.6 Menu Bar:[Options] Menu... 466
10.4.7 Menu Bar:[Help] Menu ... 467
10.4.8 Toolbar... 467
10.4.9 Status Bar... 467
10.4.10 [Navigation] Window .. 468
10.4.11 [Information Input] Window.. 469

10.5 Page Configuration ... 470
10.6 CFG Name .. 472
10.7 Specifications for Pages and Dialog Boxes .. 472

10.7.1 [Kernel] Page ... 472
10.7.2 [CPU] Page .. 476
10.7.3 [Definition of On-chip Memory] Dialog Box and [Modification of Information
 for On-chip Memory Definition] Dialog Box.. 480
10.7.4 [Time Management Function] Page... 481
10.7.5 [Debugging Function] Page ... 484
10.7.6 [User Domain] Page... 486
10.7.7 [Setting of User Domain ID] Dialog Box .. 487
10.7.8 [Performance] Page.. 487
10.7.9 [Service Call Selection] Page... 489
10.7.10 [Interrupt/CPU Exception Handler] Page .. 493
10.7.11 [Modification of Interrupt/CPU Exception Information] Dialog Box 495
10.7.12 [Definition of Interrupt/CPU Exception Handler] Dialog Box............................ 496

xiii

10.7.13 [Static Memory Object] Page... 497
10.7.14 [Registration of Static Memory Object] Dialog Box and [Modification of
 Information for Static Memory Object Registration] Dialog Box 500
10.7.15 [Initialization Routine] Page .. 505
10.7.16 [Registration of Initialization Routine] Dialog Box and [Modification of
 Information for Initialization Routine Registration] Dialog Box......................... 507
10.7.17 [Task] Page .. 508
10.7.18 [Modification of Task Information] Dialog Box.. 511
10.7.19 [Creation of Task] Dialog Box and [Modification of Information for Task
 Creation] Dialog Box... 513
10.7.20 [Definition of Task Exception Processing Routine] Dialog Box 516
10.7.21 [Semaphore] Page .. 517
10.7.22 [Modification of Semaphore Information] Dialog Box 519
10.7.23 [Creation of Semaphore] Dialog Box and [Modification of Information for
 Semaphore Creation] Dialog Box .. 520
10.7.24 [Event Flag] Page... 522
10.7.25 [Modification of Event Flag Information] Dialog Box.. 523
10.7.26 [Creation of Event Flag] Dialog Box and [Modification of Information for
 Event Flag Creation] Dialog Box... 524
10.7.27 [Data Queue] Page ... 526
10.7.28 [Modification of Data Queue Information] Dialog Box 528
10.7.29 [Creation of Data Queue] Dialog Box and [Modification of Information for
 Data Queue Creation] Dialog Box ... 529
10.7.30 [Mailbox] Page .. 530
10.7.31 [Modification of Mailbox Information] Dialog Box.. 532
10.7.32 [Creation of Mailbox] Dialog Box and [Modification of Information for
 Mailbox Creation] Dialog Box .. 533
10.7.33 [Mutex] Page.. 535
10.7.34 [Modification of Mutex Information] Dialog Box... 536
10.7.35 [Creation of Mutex] Dialog Box and [Modification of Information for Mutex
 Creation] Dialog Box... 537
10.7.36 [Message Buffer] Page... 538
10.7.37 [Modification of Message Buffer Information] Dialog Box 540
10.7.38 [Creation of Message Buffer] Dialog Box and [Modification of Information for
 Message Buffer Creation] Dialog Box... 541
10.7.39 [Estimation of Message Buffer Area Size] Dialog Box....................................... 543
10.7.40 [Fixed-size Memory Pool] Page .. 543
10.7.41 [Modification of Fixed-size Memory Pool Information] Dialog Box.................. 545
10.7.42 [Creation of Fixed-size Memory Pool] Dialog Box and [Modification of
 Information for Fixed-size Memory Pool Creation] Dialog Box......................... 547

xiv

10.7.43 [Variable-size Memory Pool] Page.. 550
10.7.44 [Modification of Variable-size Memory Pool Information] Dialog Box 552
10.7.45 [Creation of Variable-size Memory Pool] Dialog Box and [Modification of
 Information for Variable-size Memory Pool Creation] Dialog Box 553
10.7.46 [Estimation of Variable-size Memory Pool Area Size] Dialog Box 557
10.7.47 [Cyclic Handler] Page.. 557
10.7.48 [Modification of Cyclic Handler Information] Dialog Box 560
10.7.49 [Creation of Cyclic Handler] Dialog Box and [Modification of Information for
 Cyclic Handler Creation] Dialog Box.. 561
10.7.50 [Alarm Handler] Page.. 563
10.7.51 [Modification of Alarm Handler Information] Dialog Box 565
10.7.52 [Creation of Alarm Handler] Dialog Box and [Modification of Information for
 Alarm Handler Creation] Dialog Box.. 566
10.7.53 [Overrun Handler] Page... 567
10.7.54 [Protected Memory Pool] Page.. 569
10.7.55 [Modification of Protected Memory Pool Information] Dialog Box 571
10.7.56 [Creation of Protected Memory Pool] Dialog Box and [Modification of
 Information for Protected Memory Pool Creation] Dialog Box 572
10.7.57 [Estimation of Protected Memory Pool Area Size] Dialog Box 574
10.7.58 [Protected Mailbox] Page .. 575
10.7.59 [Modification of Protected Mailbox Information] Dialog Box............................ 577
10.7.60 [Creation of Protected Mailbox] Dialog Box and [Modification of Information
 for Protected Mailbox Creation] Dialog Box... 578
10.7.61 [Extended Service Call] Page .. 580
10.7.62 [Modification of Extended Service Call Information] Dialog Box...................... 582
10.7.63 [Definition of Extended Service Call Routine] Dialog Box and [Modification of
 Information for Extended Service Call Routine Definition] Dialog Box 583
10.7.64 [Trap] Page .. 584
10.7.65 [Modification of Trap Information] Dialog Box.. 586
10.7.66 [Definition of Trap Routine] Dialog Box .. 587

10.8 Edit Box Specifications... 589
10.9 Tuning... 592

10.9.1 Reduction of Used RAM Size.. 592
10.9.2 Reduction of Used ROM Size.. 594
10.9.3 Performance Improvement .. 595

Section 11 Build ..597
11.1 Load Modules ... 597
11.2 Directory Structure ... 600
11.3 Overview of Sample System... 601

xv

11.3.1 Overview.. 601
11.3.2 Lists of Kernel Objects .. 604
11.3.3 Task Exception Processing .. 607

11.4 Sample Applications ... 608
11.4.1 User domain 1 (dom1) ... 608
11.4.2 User domain 2 (dom2) ... 608
11.4.3 User domain 3 (dom3) ... 609
11.4.4 User domain 4 (dom4) ... 609
11.4.5 User domain 5 (dom5) ... 610

11.5 System Applications ... 611
11.5.1 System Down Routine (sysapp\sysdwn.c) ... 611
11.5.2 Memory Access Violation Handler (sysapp\mavhdr.c) 611
11.5.3 CPU Exception Handler (sysapp\exchdr.c).. 611
11.5.4 Interrupt and Exception Hook Routine (sysapp\inthook.src)............................... 612

11.6 CPU-Dependent Processing.. 613
11.6.1 Standard Timer Driver (tmrdrv.c).. 613
11.6.2 CPU Reset Processing.. 613

11.7 Standard Library Functions and Runtime Routines .. 614
11.7.1 Overview.. 614
11.7.2 Selecting Necessary Standard Library Functions... 614
11.7.3 stdio.h... 615
11.7.4 Kernel Objects to be Used ... 615
11.7.5 Functions Necessary to Use Standard Library Functions 616
11.7.6 Customizing Environment Settings for Standard Library Functions 617
11.7.7 Note on Standard Library Functions.. 618
11.7.8 Section Initialization Function (_INITSCT()) ... 618
11.7.9 Runtime Routines .. 618

11.8 Monitor ... 619
11.8.1 Overview.. 619
11.8.2 Monitor Operation ... 619
11.8.3 Changing Monitor Interrupt ... 620
11.8.4 Monitor Commands ... 621

11.9 HEW Workspaces and Projects .. 623
11.9.1 Overview.. 623
11.9.2 Structure of Workspace Directories... 624
11.9.3 HEW Build Configuration and Directories for Configurator Files 627
11.9.4 Moving HEW Workspaces .. 628
11.9.5 Option Settings for Build ... 628

11.10 knl_side.hwp Project in kernel.hws .. 630
11.10.1 Overview.. 630

xvi

11.10.2 Source Files to Be Registered in Project.. 631
11.10.3 Standard Library Generator Settings.. 632
11.10.4 Linkage Editor Settings ... 636
11.10.5 Build Execution ... 641

11.11 knl_side_sym.hwp Project in kernel.hws.. 642
11.12 runtime.hwp Project in kernel.hws ... 643

11.12.1 Overview ... 643
11.12.2 Standard Library Generator Settings.. 643
11.12.3 Build Execution ... 645
11.12.4 Notes on Section Initialization... 645

11.13 env_side.hwp Project in kernel.hws.. 646
11.13.1 Overview ... 646
11.13.2 Source Files to Be Registered in Project.. 647
11.13.3 Standard Library Generator Settings.. 648
11.13.4 Linkage Editor Settings ... 650
11.13.5 Build Execution ... 652

11.14 app_dom5.hwp Project in app_dom5.hws .. 653
11.14.1 Overview ... 653
11.14.2 Source Files to Be Registered in Project.. 653
11.14.3 Standard Library Generator Settings.. 654
11.14.4 Linkage Editor Settings ... 655
11.14.5 Build Execution ... 657

11.15 Memory Allocation... 658
11.15.1 Overview ... 658
11.15.2 Sections.. 658
11.15.3 Notes.. 664
11.15.4 Memory Map and Static Memory Objects... 664

11.16 Execution on Simulator... 673
11.16.1 Debugging Session .. 673
11.16.2 Execution ... 674
11.16.3 Monitor Startup.. 674
11.16.4 Detection of Illegal Access by Domain 4 .. 674
11.16.5 Execution of Domain 5 .. 675

Section 12 Calculation of Stack Size...677
12.1 Stack Types... 677
12.2 Overview of Calculation Procedure for Stack Size... 677
12.3 Stack Size Used by Each Task.. 677

12.3.1 Task Associated with User Domain... 677
12.3.2 Task Associated with Kernel Domain ... 680

xvii

12.4 Calculation of Non-Task Context Stack Size.. 680
12.4.1 Stack Size Used by Each Initialization Routine and Timer Initialization Routine
 of Standard Timer Driver... 681
12.4.2 Stack Size Used by Each Interrupt Handler, Time Event Handler, and Timer
 Interrupt Routine of Standard Timer Driver .. 682
12.4.3 Stack Size Used by NMI Interrupt Handler ... 682
12.4.4 Stack Size Used by Each CPU Exception Handler .. 682

Section 13 Estimation of Resource Pool Size..685
13.1 Overview... 685
13.2 Requested Timing and Size... 685

13.2.1 When Kernel is Started (vsta_knl) ... 685
13.2.2 When Object is Created ... 686
13.2.3 Sizes Used and Released at Other Timings.. 688

13.3 Calculation .. 690

Section 14 Estimation of System Pool Size...691
14.1 Overview... 691
14.2 Requested Timing and Size... 691

Section 15 Notes on FPU...693
15.1 Meaning of "Using FPU".. 693
15.2 FPU Usage in Each Application ... 693

15.2.1 Task, Task Exception Processing Routine, Extended Service Call Routine, or
 Trap Routine .. 693
15.2.2 Other Applications... 694

Section 16 System Down Handling ...695
16.1 Information during System Down... 695
16.2 Error at Kernel Start (vsta_knl)... 697

16.2.1 System Down Occurrence.. 697
16.2.2 When Object Specified in Configurator Cannot be Created 697

Section 17 Reference Listing ...699
17.1 Service Call Reference.. 699
17.2 Service Call Error Code List ... 710

xviii

1

Section 1 Configuration of This Manual

This manual consists of the following sections:

Section 2 ‘Introduction’: Overview of the HI7300/PX

Section 3 ‘Introduction to Kernel’: Basic concept of kernel

Section 4 ‘Kernel Functions’: All the functions of kernel

Section 5 ‘Logical Address Space’: Handling of logical addresses

Section 6 ‘Service Calls’: Specifications of service calls

Section 7 ‘Cache Support Functions’: Specifications of cache support functions

Section 8 ‘Application Program Creation’: Methods for creating a task or a handler

Section 9 ‘Standard Timer Driver’: Methods for creating a standard timer driver

Section 10 ‘Configurator’: Position, functions, and usage of the configurator

Section 11 ‘Build for Sample System’: Description of sample programs and methods to generate
a load module using these programs

Section 12 ‘Calculation of Stack Size: Methods for calculating stack size

Section 13 ‘Estimation of Resource Pool Size’: Methods for estimating the required resource
pool size

Section 14 ‘Estimation of System Pool Size’: Methods for estimating the required system pool
size

Section 15 ‘Notes on FPU’: Notes on using an FPU

Section 16 ‘System Down Handling’: Methods for handling errors such as a system failure

Section 17 ‘Reference Listing’: References for service calls or error codes

2

3

Section 2 Overview

2.1 Features

2.1.1 Memory Object Protection Function

(1) Improving Debugging Efficiency

Generally, in a system that has no memory protection function, a user first notices damage to
the memory contents (due to an illegal pointer, for example) when a problem arises. In other
words, to identify the cause of a bug, the user had to analyze it using the trace functions of an
emulator and this analysis used to take many hours. Since this HI7300/PX supports the
memory protection function in instantly detecting illegal memory access, debugging efficiency
will be dramatically improved.

(2) Realizing Highly Reliable Systems

The key sections of the system will be protected no matter what kinds of attempts to damage
them are made after the shipment of the appliance. Thus, the operation of the appliance will be
continued normally.

(3) Low Overhead

The memory object protection function is achieved by the utilization of the memory
management unit (MMU) incorporated in the microcomputer. When the MMU is used, a TLB
miss overhead is generated. This period is approximately one microsecond* in the HI7300/PX,
proving exceptionally high performance. The vloc_tlb service call is also supported to avoid
TLB misses in the specified memory area.

Note: This is the average value when the memory capacity is 64 Mbytes and a cache hit occurs

while running at 400 MHz.

2.1.2 Conformance to Industry-Standard μITRON Specifications

The HI7300/PX conforms to the industry-standard μITRON4.0 specifications and supports almost
all service calls except Rendezvous. The memory object protection function conforms to the
μITRON4.0 protection function extension. Note, however, that the HI7300/PX does not support
any protection function of kernel objects other than the memory object of the μITRON4.0
protection function extension.

4

2.1.3 DSP/FPU Support

The DSP and FPU are supported in the multitasking environment.

2.1.4 Configurator

The configurator is supported to allow easy kernel configuration on the GUI screen.

2.1.5 Samples

The following samples are provided:

• User domains as examples of service calls being used

• Simplified monitor (for exclusive use by the simulator) to view the states of the kernel objects

• System down routines

• Memory access violation handler

• CPU exception handlers

• Reset program and standard timer driver for various microcomputers

• Configurator setting file

• HEW workspaces for load module creation

2.1.6 Debugging Extension (Optional)

A debugging extension for adding multitasking debugging functions to the integrated development
environment “HEW” is available. This debugging extension supports the following functions:

• Viewing the states of objects including tasks

• Operating objects (e.g. initiating tasks or setting event flags)

• Displaying service call history

The free debugging extension can be downloaded from our website.

5

2.2 Operating Environment

Item Requirement

Target
microcomputer

Microcomputer incorporating SH4SL-DSP or SH-4A as the CPU core

Host computer Personal computer operated under Windows® 98, Windows® Millennium
Edition (Windows® Me), Windows NT®4.0, Windows® 2000, or
Windows® XP

Compiler Renesas’ C/C++ Compiler Package for SuperH™ RISC engine V.9.00
Release 03 or later

6

7

Section 3 Introduction to Kernel

3.1 Principles of Kernel Operation

The kernel is the nucleus program of a realtime operating system.

The kernel enables one microcomputer to appear as if multiple microcomputers are operating.
How does the kernel do this?

As shown in figure 3.1, the kernel operates multiple tasks in a time-division manner; the kernel
switches (schedules) running tasks at intervals to make it appear as if multiple tasks are running at
the same time.

Key input task

Remote
controller task

LED control
task

Sound
volume

control task

Motor control
task

Machine
control task

Time

Figure 3.1 Time-Division Operation of Tasks

This task scheduling is also called task dispatch.

8

The kernel schedules (dispatches) tasks in the following cases.

• When a task itself requests a dispatch

• When an event (such as an interrupt) outside the current task requests a dispatch

This means that tasks are not switched at determined intervals as in a time-sharing system. This
type of scheduling is generally called event-driven scheduling.

After tasks are scheduled, a task is resumed from the point where it is suspended (figure 3.2).

Key input task

Remote
controller task

It appears as if the
microcomputer specialized
for the key input task halts
for this period.

Program is
suspended

Program is
resumed

Figure 3.2 Suspending and Resuming a Task

In figure 3.2, while a task is running after obtaining control from the key input task, it appears to
the programmer as if the microcomputer specialized for that program has halted.

The kernel restores the register contents stored when the task is suspended, and resumes the task in
the state where it was suspended. In other words, task scheduling means saving the register
contents for the current task in a memory area prepared for that task management and restoring the
register contents of the next task to be resumed (figure 3.3).

9

Actual
registers

R0

R1

PC

Kernel

RegistersRegisters

Key input task

R0

R1

PC

Remote
controller task

R0

R1

PC

Figure 3.3 Task Scheduling

To execute tasks, stack areas are required in addition to registers. A separate stack area must be
allocated for each task.

10

3.2 Service Calls

How should the programmer use kernel functions in a program?

To use kernel functions, they must be called in a program. This call is a service call. Through
service calls, requests for various operations such as task initiation or wait for an event can be sent
to the kernel.

Key input task Realtime OS Remote
controller task

Service call Task scheduling

Figure 3.4 Service Call

In actual programs, a service call is issued as a C-language function.

act_tsk(1);

11

3.3 Objects

The targets of operation through service calls, such as tasks or semaphores, are called objects.
Objects are distinguished by their IDs.

act_tsk(1); /* Initiates the task with ID 1. */

Generally, IDs should be specified by the programmer when objects are created.

IDs can also be assigned automatically when objects are created through the configurator. In this
case, the automatically assigned IDs are defined in header files (kernel_id.h and kernel_id_sys.h)
output from the configurator as shown below.

#define ID_TASK1 1

By using this example definition, the above task initiating service call is described as follows.

act_tsk(ID_TASK1); /* Initiates the task with ID "ID_TASK1". */

Through service calls whose names start with "acre", such as acre_tsk, the kernel assigns IDs
automatically and returns the assigned IDs.

12

3.4 Tasks

The following describes how the kernel manages tasks.

3.4.1 Task State

The kernel checks the task state to control whether to start execution of a task. For example, figure
3.5 shows the state of the key input task and its execution control. When a key input is detected,
the kernel must execute the key input task; that is, the key input task enters the running state.
While waiting for a key input, the kernel does not need to execute the key input task; that is, the
key input task is in the waiting state.

Key input task

Running state Waiting state Running state

Waiting for key
input

Key is input Key is input

Figure 3.5 Task State

A task transits the seven states shown in figure 3.6.

13

NON-EXISTENT
(unregistered state)

DORMANT
(inactive state)

SUSPENDED
(forcible-wait state)r

WAITING-SUSPENDED
(double-wait state)

WAITING
(wait state)

RUNNING
(execution state)

READY
(executable state)

Wait release

Suspension
 (sus_tsk)

Suspension
 (sus_tsk)

Resumption
(rsm_tsk, frsm_tsk)

Initiation
(act_tsk, sta_tsk)

Forcible termination
(ter_tsk)

Exit and
deletion (exd_tsk)

Deletion
(del_tsk)

Exit (ext_tsk)

Creation
(cre_tsk)

CPU allocation

Waiting for CPU allocation

Resumption
(rsm_tsk,
 frsm_tsk)

Forcible
termination
(ter_tsk)

Wait condition

Wait
release

Figure 3.6 Task State Transition Diagram

14

(1) NON-EXISTENT State

The task has not been registered in the kernel. It is a virtual state.

(2) DORMANT State

The task has been registered in the kernel, but has not yet been initiated, or has already been
terminated.

(3) READY (executable) State

The task is ready for execution, but cannot be executed because another higher priority task is
currently running.

(4) RUNNING State

The task is currently running. The kernel puts the READY task with the highest priority in the
RUNNING state.

(5) WAITING State

When the task issues a service call such as tslp_tsk and the specified conditions are not satisfied,
the task enters the WAITING state. The task is released from the WAITING state when a service
call such as wup_tsk to cancel the cause of the WAITING state is issued, and it then enters the
READY state.

(6) SUSPENDED State

A task has been suspended by another task through sus_tsk.

(7) WAITING-SUSPENDED State

This state is a combination of the WAITING state and SUSPENDED state.

3.4.2 Task Scheduling (Priority and Ready Queue)

For each task, a task priority is assigned to determine the priority of processing. A smaller value
indicates a higher priority level and level 1 is the highest priority.

The kernel selects the highest-priority task from the READY tasks and puts it in the RUNNING
state.

The same priority can be assigned for multiple tasks. When there are multiple READY tasks with
the highest priority, the kernel selects the first task that became READY and puts it in the

15

RUNNING state. To implement this behavior, the kernel has ready queues, which are READY
task queues waiting for execution.

Figure 3.7 shows the ready queue configuration. A ready queue is provided for each priority level,
and the kernel selects the task at the head of the ready queue for the highest priority and puts it in
the RUNNING state.

1 Task

Priority

2

TaskTask

TaskTask

Task3

n

Figure 3.7 Ready Queues (Waiting for Execution)

16

17

Section 4 Kernel Functions

4.1 Applications

User applications can be classified into the following types.

(1) Task

A task is a unit controlled by multitasking.

(2) Task Exception Processing Routine

A task exception processing routine is executed when task exception processing is requested for a
task (through service call ras_tex or iras_tex).

(3) Interrupt Handler

An interrupt handler is executed when an interrupt occurs.

(4) CPU Exception Handler

A CPU exception handler is executed when a CPU exception occurs.

(5) Time Event Handler (Cyclic Handler, Alarm Handler, or Overrun Handler)

A time event handler is executed when a specified cycle or time has been reached.

(6) Extended Service Call Routine

Programs created by the user can be registered in the kernel as extended service call routines. A
registered extended service call routine is called through extended service call cal_svc.

(7) Trap Routine

Programs created by the user can be registered in the kernel as trap routines. A registered trap
routine is called when a TRAPA instruction is executed.

(8) Initialization Routine

An initialization routine is executed only one time when the kernel is started.

In addition, the following special applications can be used. The symbol names for these
applications are prescribed in the kernel specifications and cannot be modified.

18

(9) System Down Routine

This program is called when the system goes down.

(10) Interrupt or CPU Exception Hook Routine

When an interrupt or CPU exception occurs, the kernel generally calls an appropriate program for
the interrupt or exception (interrupt handler, CPU exception handler, trap routine, or service call
processing in the kernel). The interrupt or CPU exception hook routine is a program for debugging,
and it is hooked and executed before the usual interrupt or exception processing is called.

(11) Memory Access Violation Handler (only when memory object protection function is
selected)

This program is called when an illegal access to an MMU mapped area is attempted.

(12) Standard Timer Driver

The standard timer driver consists of a timer initialization routine and a timer interrupt routine.
When the optimized timer driver is used, this program is not necessary.

4.2 System State

4.2.1 Task Context and Non-Task Context

The system is executed in either a task context state or a non-task context state. Available service
calls depend on this context.

Tasks, task exception processing routines, and extended service call and trap routines called from
tasks or task exception processing routines are all executed in task context. The other applications
and the kernel are executed in non-task context.

The non-task context takes priority over the task context. Processing in the task context is
executed only after all processing in the non-task context is completed. For example, if an
interrupt occurs during task execution, the interrupt handler is initiated immediately, and the task
execution is temporarily suspended.

Issuing sns_ctx can check whether execution is in the task or non-task context.

4.2.2 Dispatch-Disabled State, CPU-Locked State, and Dispatch-Pended State

The system is either in the dispatch-pended state or not in that state.

19

In the dispatch-pended state, tasks are not scheduled even when a task has a higher priority than
the current task. In addition, if a service call to make a transition to the WAITING state is issued
in the task context, an E_CTX error is returned.

The kernel updates all management information about the task state or ready queues regardless of
whether the system is in the dispatch-pended state, but only stops task scheduling in the dispatch-
pended state.

Any of the following cases is in the dispatch-pended state. Issuing sns_dpn can check whether the
system is in the dispatch-pended state.

• Execution is in progress in the non-task context.

• The system is in the dispatch-disabled state.

• The system is in the CPU-locked state.

• The current task has modified the IMASK bits in SR to a non-zero value through chg_ims.

(1) Dispatch-Disabled State

Issuing dis_dsp shifts the system to the dispatch-disabled state. The dispatch-disabled state is
canceled through ena_dsp.

Issuing sns_dsp can check whether the system is in the dispatch-disabled state.

(2) CPU-Locked State

Issuing loc_cpu or iloc_cpu shifts the system to the CPU-locked state. In the CPU-locked state,
interrupts with interrupt levels equal to or lower than CFG_KNLLVL are masked. The CPU-
locked state is canceled through unl_cpu or iunl_cpu.

Available service calls are limited in the CPU-locked state.

Issuing sns_loc can check whether the system is in the CPU-locked state.

Reference: Service calls available in the CPU-locked state → Section 6.4.3, CPU-Locked State

4.3 Protection Domains

Every application is assigned to a protection domain. There are two types of protection domain:
user domain and kernel domain.

User domains are distinguished by domain IDs from 1 to 31. There is only one kernel domain in
the system, and its domain ID is TDOM_KERNEL(-1).

20

Programs in the kernel domain are executed in the privileged mode (SR.MD = 1) of the CPU.
Programs in user domains are executed in the user mode (SR.MD = 0) of the CPU.

The following restrictions are applied in the user mode.

(1) Privileged instructions of the CPU cannot be executed. If this is attempted, a CPU exception
will occur.

(2) The accessible memory regions are limited. The exact limitations depend on whether the
memory object protection function is selected.

When the memory protection function is not selected, only the classification between the kernel
domain and user domains is valid, and distinction among user domains through IDs is ignored.

Table 4.1 shows the domain of each application.

Table 4.1 Application Domains

Application Domain Specification of Domain

Task Can be assigned to any domain Specified at task creation

Task exception processing
routine

Assigned to the domain where
the target task is assigned

⎯

Interrupt handler Kernel domain ⎯

CPU exception handler Kernel domain ⎯

Time event handler Kernel domain ⎯

Extended service call routine Kernel domain ⎯

Trap routine Kernel domain ⎯

Initialization routine Kernel domain ⎯

System down routine Kernel domain ⎯

Interrupt hook routine Kernel domain ⎯

Memory access violation
handler

Kernel domain ⎯

Standard timer driver Kernel domain ⎯

21

4.4 Task Management

4.4.1 Task Creation

Tasks can be created (shifted from the NON-EXISTENT state to the DORMANT state) in the
following ways.

• Service call cre_tsk or icre_tsk

A task is created with a specified ID.

• Service call acre_tsk or iacre_tsk

A task is created with the ID automatically assigned by the kernel.

• Created by the configurator

An ID name can be specified. When [Kernel side] is not selected in the configurator, the
configurator can automatically assign an ID.

4.4.2 Domain of a Task

A task must be assigned to a domain. The domain for each task must be specified at creation.
Tasks in user domains are executed in the user mode (SR.MD = 0) of the CPU; tasks in the kernel
domain are executed in the privileged mode (SR.MD = 1) of the CPU.

4.4.3 Task Initiation

A task can be initiated (shifted from the DORMANT state to the READY state) in the following
ways.

• Service call act_tsk or iact_tsk

If the specified task has already been initiated, the initiation request is placed in a queue.

• Service call sta_tsk or ista_tsk

If the specified task has already been initiated, an error is returned. Parameters can be specified
so that they are passed to the task when it is executed.

• Specifying the TA_ACT attribute at task creation

The task becomes READY as soon as it is created.

The following service calls are also provided.

• Service calls can_act and ican_act

These service calls cancel the initiation request placed in a queue.

22

4.4.4 Task Termination and Deletion

• Service call ext_tsk

This service call terminates the current task, and the task enters the DORMANT state.

• Service call exd_tsk

This service call terminates and deletes the current task, and the task enters the NON-
EXISTENT state.

• Service call ter_tsk

This service call forcibly terminates another task that is not in the DORMANT or NON-
EXISTENT state and the task enters the DORMANT state.

• Service call del_tsk

This service call deletes another task that is in the DORMANT state, and the task enters the
NON-EXISTENT state.

4.4.5 Priority Change

The priority of a task can be changed through chg_pri or ichg_pri. When the priority is changed,
the order of the tasks in the ready queues and the queues arranged in the order of task priority
(TA_TPRI) also change.

However, it is generally recommended that these service calls not be used because changing the
priority affects the behavior of the entire system.

A task has two priority levels: base priority and current priority. In general operation, these two
priority levels are the same; they differ only while the task locks a mutex. For details, refer to the
following.

Reference: Difference between base priority and current priority → Section 4.12, Mutex

4.4.6 Task Execution Mode

The task execution mode is unique to the HI7300/PX and is not defined in the μITRON
specifications.

A task may enter the DORMANT state with an unexpected timing before releasing the acquired
resources, due to a forcible termination request (service call ter_tsk) issued from another task. In
other cases, execution of a task may be suspended with an unexpected timing due to service call
sus_tsk.

Service call vchg_tmd can mask termination or suspension requests issued by ter_tsk or sus_tsk.

23

4.4.7 Task State Reference

Service calls ref_tsk and iref_tsk are provided to refer to the state of a task. These service calls
obtain detailed information about a task, such as the task state or the cause of a WAITING state.

In addition, service calls ref_tst and iref_tst are provided as simple versions of ref_tsk and iref_tsk.

24

4.5 Stack Management

Stacks are classified into two types: a non-task context stack or a stack for each task.

Reference: Section 12, Calculation of Stack Size

4.5.1 Non-Task Context Stack

There is only one non-task context stack in the system, which is used when execution is in the
non-task context. Specify the size of the stack through CFG_NTSKSTKSZ in the configurator.

The kernel switches stacks to use the non-task context stack when execution shifts from the task
context to the non-task context.

4.5.2 Task Stacks

(1) Task in User Domain

A task in a user domain has a system stack in addition to the stack used to execute the task. The
kernel and the extended service call or trap routine called from the task uses the system stack to
store the task context. The system stack cannot be accessed in the user mode.

The addresses of both stacks can be specified at task creation, or can be specified to be
automatically assigned by the kernel. When a task is created through the configurator, stack
addresses cannot be specified.

When the kernel automatically allocates stacks, the usual stack is allocated in the system pool and
the system stack is allocated in the resource pool.

When the memory object protection function is selected, the stack allocated in the system pool by
the kernel is handled as a memory object that can be read or written to only by the associated task.

(2) Task in Kernel Domain

A task in the kernel domain has one stack, which cannot be accessed in the user mode.

The address of the stack can be specified at task creation, or can be specified to be automatically
assigned by the kernel. When a task is created through the configurator, the stack address cannot
be specified.

When the kernel automatically allocates a stack, the stack is allocated in the resource pool.

25

Reference: Section 6.7.1, Create Task (cre_tsk, icre_tsk, acre_tsk, iacre_tsk)

4.6 Task Synchronization

Synchronization between tasks is achieved by using specialized functions associated with tasks.

4.6.1 Synchronization by Task Wakeup

Issuing slp_tsk or tslp_tsk shifts a task to the WAITING state until iwup_tsk or iwup_tsk wakes it
up. In tslp_tsk, a timeout period before wakeup can also be specified.

By using these service calls, synchronization between tasks is achieved as shown in figure 4.1.
This example shows the simplest way to ensure synchronization.

Task A
(higher priority)

Task B
(lower priority)

Interrupt handler C

slp_tsk
<

W
A

IT
IN

G
>

Interrupt
occurs iwup_tsk(A)

<
R

E
A

D
Y

>

Figure 4.1 Example of Synchronization by Task Wakeup

While the task is not in the WAITING state caused by slp_tsk or tslp_tsk, the wakeup requests
issued are placed in a queue. The wakeup requests can be canceled through can_wup or ican_wup.

4.6.2 Forcible Cancellation of WAITING State

Issuing rel_wai or irel_wai forcibly cancels the WAITING state of a task. Note that these service
calls cannot cancel the SUSPENDED state.

26

4.6.3 SUSPENDED State

Issuing sus_tsk or isus_tsk forcibly suspends another task (the SUSPENDED state). The
suspension requests are nested and stored. Service calls rsm_tsk and irsm_tsk decrement the
number of nested suspension requests, and when the number reaches 0, the SUSPENDED state is
canceled. Service call frsm_tsk or ifrsm_tsk immediately releases the task from the SUSPENDED
state regardless of the number of nested requests.

If sus_tsk or isus_tsk is issued for a task that is already in the SUSPENDED state, the task enters
the WAITING-SUSPENDED state.

The SUSPENDED state is generally used for debugging; it is recommended that the
SUSPENDED state not be used in actual applications.

4.6.4 Task Event Flag

Task event flags are unique objects of the HI7300/PX and are not defined in the μITRON
specifications.

Each task has a task event flag consisting of 32 bits; each bit corresponding to an event. A task can
wait for a specified bit to be set (vwai_tfl or vtwai_tfl) or poll a bit (vpol_tfl). In vtwai_tfl, a
timeout period can also be specified.

When an event is detected through one of these service calls, the task event flag is cleared to 0 and
the value of the task event flag immediately before being cleared (the detected event) is returned
through a parameter of the service call.

To notify a task of an event, use vset_tfl or ivset_tfl. Each service call sets the specified bits in the
task event flag.

vclr_tfl and ivclr_tfl clear the specified bits in the task event flag.

Figure 4.2 shows an example of task event flag operation.

27

Time

vclr_tfl

Task A Task B

Interrupt
handler
C

Task A
event flag

vwai_tfl
<WAITING>

<READY> vset_tfl

ivset_tfl

1

2

3

4

0

0

0 7

Figure 4.2 Example of Task Event Flag Operation

Description:

1. Task A issues vclr_tfl to clear all bits in its task event flag.

2. Task A issues vwai_tfl (waiting pattern = H'ffffffff) to wait for an event.

3. Task B issues vset_tfl (set pattern = 1) to task A. Since this set pattern is included in the
waiting pattern specified in task A, the WAITING state of task A is canceled, and the task A
event flag is cleared to 0.

28

4. Interrupt handler C issues ivset_tfl (set pattern = 7) to set the event flag of task A. In this case,
however, task A does not wait for an event, therefore the task event flag is logically ORed with
a pattern specified by ivset_tfl.

4.7 Task Exception Processing

Task exception processing is performed when an exception occurs during task execution. Task
exception processing is performed asynchronously with task processing and is similar to the
function generally called "signal".

Task exceptions are handled by task exception processing routines, which can be defined in the
following ways.

• Defined through service call def_tex or idef_tex

• Defined by the configurator

Task exception processing is controlled through the following service calls.

• Service call ras_tex or iras_tex: Requests task exception processing

• Service call ena_tex: Enables task exception processing for the current task

• Service call dis_tex: Disables task exception processing for the current task

• Service call sns_tex: Checks if the current task is in task exception processing disabled state

• Service call ref_tex or iref_tex: Refers to the task exception processing state

29

Figure 4.3 shows an example of task exception processing.

Enable task A exception
(ena_tex)

An exception occurs
ras_tex (Task A, 0x00000101)

(b)

(a)

(c)

Task A

Task exception
processing routine

Clear the exception cause and
disable task exception

(d)

Figure 4.3 Example of Task Exception Processing

Description (Letters indicate the order of operation):

(a) Task A enables a task exception through service call ena_tex.

(b) An exception (exception cause = 0x00000101) is requested to task A through service call
ras_tex during task A execution.

(c) When task A is scheduled to execute, the task exception processing routine is initiated before
the task A main routine is executed. During task exception processing, the task enters the task
exception processing disabled state, and the task exception cause is cleared.

(d) After returning from the task exception processing routine, the task A main routine is resumed.

30

4.8 Semaphore

A semaphore is an object used to prevent conflicts over resources such as devices shared by
multiple tasks.

A semaphore has a semaphore counter. Acquiring or releasing each semaphore according to the
value of the semaphore counter prevents resource conflicts.

Applications must be programmed so that the number of resources is specified as the initial value
of a semaphore and each task acquires a semaphore before using a resource and releases it after
completing use of the resource.

Semaphores can be created in the following ways.

• Service call cre_sem or icre_sem

A semaphore is created with a specified ID.

• Service call acre_sem or iacre_sem

A semaphore is created with the ID automatically assigned by the kernel.

• Created by the configurator

An ID name can be specified. When [Kernel side] is not selected in the configurator, the
configurator can automatically assign an ID.

Semaphores are manipulated through the following service calls.

• Service call del_sem

Deletes the semaphore with the specified ID.

• Service call wai_sem or twai_sem

Acquires a semaphore. If no semaphore can be acquired (semaphore count = 0), the task enters
the WAITING state. In twai_sem, a timeout period can also be specified.

• Service call pol_sem or ipol_sem

Acquires a semaphore. If no semaphore can be acquired (semaphore count = 0), an error is
returned.

• Service call sig_sem or isig_sem

Releases a semaphore.

• Service call ref_sem or iref_sem

Refers to the state of a semaphore.

Figure 4.4 shows an example of semaphore usage.

31

Time

cre_sem

Task A Task B Task C
Semaphore
count

wai_sem

<WAITING>

<READY>

2

2 1

1 0

0

0 1

1

2

3

4

5

6

sig_sem

wai_sem

wai_sem

sig_sem

Figure 4.4 Example of Semaphore Usage

Description:

Dotted boxes represent the regions where tasks can exclusively access resources.

1. Task A creates a semaphore with initial counter value 2 through cre_sem.

2. Task A issues wai_sem and gets a semaphore, decrementing the semaphore count by 1. Task A
continues execution.

32

3. Task B issues wai_sem in the same way as task A.

4. Task C issues wai_sem, but cannot get a semaphore because the semaphore count is 0. Task C
enters the WAITING state.

5. Task A releases a semaphore by issuing sig_sem. The released semaphore is allocated to task
C, and task C is released from the WAITING state.

6. Task B releases a semaphore by issuing sig_sem. There is no task waiting for a semaphore, and
so the semaphore count is incremented by 1.

Priority Inversion:

When a semaphore is used, a problem called priority inversion may arise.

As shown in figure 4.5, when high-priority task A requests a semaphore, the time needed for task
A to acquire a semaphore depends on the execution time of task B, but task B is not related to task
C which has acquired the semaphore. To avoid this problem, use a mutex instead of a semaphore.

Ready

Task A (higher priority)

Task B (middle priority)

Task C (lower priority) Running Running

Waiting

: A semaphore is acquired in
this period.

Running

Ready

Running Ready Waiting

Running

wai_sem: Requests but cannot get a
semaphore and enters the WAITING state. Gets semaphore A.

Running Waiting

Waiting

wai_sem: Requests and
gets semaphore A.

sig_sem: Releases
semaphore A.

Figure 4.5 Priority Inversion Problem

High-priority task A cannot acquire a semaphore until low-priority task C releases the semaphore.
However, while middle-priority task B is being executed, low-priority task C, which has acquired
the semaphore, cannot be executed, and the timing for release of the semaphore is delayed for that
period (indicated by ⇐⇒ in the figure). As a result, high-priority task A is kept waiting by
middle-priority task B which has not requested any semaphore.

33

4.9 Event Flag

An event flag is an object consisting of 32 bits; each bit corresponding to an event.

A task can wait for a specified bit or all bits to be set. Whether more than one task is allowed to
wait for a specified bit to be set in an event flag can be specified at event flag creation.

Event flags can be created in the following ways.

• Service call cre_flg or icre_flg

An event flag is created with a specified ID.

• Service call acre_flg or iacre_flg

An event flag is created with the ID automatically assigned by the kernel.

• Created by the configurator

An ID name can be specified. When [Kernel side] is not selected in the configurator, the
configurator can automatically assign an ID.

Event flags are manipulated through the following service calls.

• Service call del_flg

Deletes the event flag with the specified ID.

• Service call wai_flg or twai_flg

Checks if the specified bit in an event flag has been set. If the bit is not set, the task enters the
WAITING state until the bit is set. In twai_flg, a timeout period can also be specified.

• Service call pol_flg or ipol_flg

Checks if the specified bit in an event flag has been set. If the bit is not set, an error is returned.

• Service call set_flg or iset_flg

Sets the specified bit in an event flag.

• Service call clr_flg or iclr_flg

Clears the specified bit in an event flag.

• Service call ref_flg or iref_flg

Refers to the state of an event flag.

Figure 4.6 shows an example of event flag usage.

34

Time

cre_flg

Task A Task B

Interrupt
handler
C

Event flag
pattern

wai_flg
<WAITING>

<READY> set_flg

iset_flg

0

0

0 1

1

2

3

4

Figure 4.6 Example of Event Flag Usage

Description:

1. Task A issues cre_flg to create an event flag. The TA_CLR attribute (clear event flag to 0
when the WAITING state is canceled) is specified and the initial pattern is specified as 0.

2. Task A issues wai_flg (waiting pattern = 3, AND wait) to wait for an event.

3. Task B issues set_flg (set pattern = 7). Since all bits that task A is waiting for have been set,
task A is released from the WAITING state. In addition, since the TA_CLR attribute has been
specified, the event flag is cleared to 0.

35

4. Interrupt handler C sets the event flag by issuing iset_flg (set pattern = 1). In this case, there is
no task waiting for an event, and so the event flag is ORed with the pattern specified by
iset_flg.

4.10 Data Queue

A data queue is an object used to pass 1-word (4-byte) data. High-speed data communication can
be achieved using data queues because communication using a data queue copies 1-word data
itself. A pointer can also be specified as data.

A data queue area is allocated in the resource pool.

Data queues can be created in the following ways.

• Service call cre_dtq, icre_dtq

A data queue is created with a specified ID.

• Service call acre_dtq, iacre_dtq

A data queue is created with the ID automatically assigned by the kernel.

• Created by the configurator

An ID name can be specified. When [Kernel side] is not selected in the configurator, the
configurator can automatically assign an ID.

Data queues are manipulated through the following service calls.

• Service call del_dtq

Deletes the data queue with the specified ID.

• Service call snd_dtq or tsnd_dtq

Sends data. When data cannot be sent (the data queue is full of data), the task enters the
WAITING state. In tsnd_dtq, a timeout period can also be specified.

• Service call psnd_dtq or ipsnd_dtq

Sends data. When data cannot be sent (the data queue is full of data), an error is returned.

• Service call fsnd_dtq or ifsnd_dtq

Sends data. When data cannot be sent (the data queue is full of data), the oldest data is deleted
and the new data is sent.

• Service call rcv_dtq or trcv_dtq

Receives data. When data cannot be received (the data queue has no data), the task enters the
WAITING state. In trcv_dtq, a timeout period can also be specified.

• Service call prcv_dtq

Receives data. When data cannot be received (the data queue has no data), an error is returned.

36

• Service call ref_dtq or iref_dtq

Refers to the state of a data queue.

Figure 4.7 shows an example of data queue usage.

Time

cre_dtq

Task A
Interrupt
handler
B

Task C

Data queue status

 snd_dtq(X)

<READY>

ipsnd_dtq(Y)

rcv_dtq
(Receive X)

1

2

3

4

5

snd_dtq(Z)
<WAITING>

E
m

pty
E

m
pty

X

E
m

pty

X

X

Y

Y

YZ

Figure 4.7 Example of Data Queue Usage

Description:

1. Task A issues cre_dtq to create a data queue with a size of two words.

2. Task A sends data X by issuing snd_dtq. Data X is copied to the data queue and task A
continues execution.

3. Interrupt handler B sends data Y by issuing ipsnd_dtq.

37

4. Task A attempts to send data Z. At this time, since there is no free space in the data queue, task
A enters the WAITING state.

5. Task C receives data from the data queue by issuing rcv_dtq. Task C gets data X, which is the
oldest data that has been sent. At this time, since one entry in the data queue is released, data Z,
which task A has attempted to send, is copied to the data queue, and task A is released from
the WAITING state.

4.11 Mailbox

A mailbox is an object used to pass messages.

High-speed data communication can be achieved regardless of the message size because
communication using a mailbox sends and receives only the start address of a message.

Mailboxes can be created in the following ways.

• Service call cre_mbx or icre_mbx

A mailbox is created with a specified ID.

• Service call acre_mbx or iacre_mbx

A mailbox is created with the ID automatically assigned by the kernel.

• Created by the configurator

An ID name can be specified. When [Kernel side] is not selected in the configurator, the
configurator can automatically assign an ID.

Mailboxes are manipulated through the following service calls.

• Service call del_mbx

Deletes the mailbox with the specified ID.

• Service call snd_mbx or isnd_mbx

Sends a message to a mailbox.

• Service call rcv_mbx or trcv_mbx

Receives a message from a mailbox. When a message cannot be received (the mailbox has no
message), the task enters the WAITING state. In trcv_mbx, a timeout period can also be
specified.

• Service call prcv_mbx or iprcv_mbx

Receives a message from a mailbox. When a message cannot be received (the mailbox has no
message), an error is returned.

• Service call ref_mbx or iref_mbx

Refers to the state of a mailbox.

38

Figure 4.8 shows an example of mailbox usage.

Time

cre_mbx

Task CTask BTask C

Mailbox
status

rcv_mbx
<WAITING>

<READY>
(Receive X)

snd_mbx(Y)

1

2

3

4

5

6 rcv_mbx
(Receive Y)

snd_mbx(X)

snd_mbx(Z)

Task queue
waiting to
receive

Send
message
queue

NoneNone

Y

Task A None

None

None

None

Y

Z

Z

Task A

Figure 4.8 Example of Mailbox Usage

39

Description:

Bold lines represent executed processing. The following describes the mailbox operation with
respect to time.

1. Task A issues cre_mbx to create a mailbox. The TA_TFIFO attribute (tasks waiting to receive
are queued in FIFO) and the TA_MFIFO attribute (sent messages are queued in FIFO) are
specified.

2. Task A attempts to receive a message by issuing rcv_mbx. Since no message is stored in the
mailbox, task A enters the WAITING state.

3. Task B sends message X to the mailbox by issuing snd_mbx. At this time, task A is released
from the WAITING state, and task A receives the address of message X.

4. Task B sends message Y to the mailbox by issuing snd_mbx. At this time, since no tasks are
waiting for a message, message Y is placed in a message queue.

5. Task C sends message Z to the mailbox by issuing snd_mbx. In this case, message Z is placed
behind message Y in the message queue because the TA_MFIFO attribute has been specified.

6. Task A issues rcv_mbx. Task A receives the address of message Y, which is at the head of the
message queue.

40

4.12 Mutex

A mutex is an object used to achieve exclusive control. It differs from a semaphore in the
following points.

• A priority ceiling protocol is provided to avoid priority inversion problems.

• A mutex can be used to exclusively control a single resource.

Applications must be programmed so that each task locks a mutex through loc_mtx, tloc_mtx, or
ploc_mtx before using a resource, and then unlocks it through unl_mtx after completing the use of
it.

When a task locks a mutex, the priority of the task is raised to the ceiling priority specified for the
mutex. When the task unlocks the mutex, the priority returns to the previous level.

Mutexes can be created in the following ways.

• Service call cre_mtx

A mutex is created with a specified ID.

• Service call acre_mtx

A mutex is created with the ID automatically assigned by the kernel.

• Created by the configurator

An ID name can be specified. When [Kernel side] is not selected in the configurator, the
configurator can automatically assign an ID.

Mutexes are manipulated through the following service calls.

• Service call del_mtx

Deletes the specified mutex.

• Service call loc_mtx or tloc_mtx

Locks a mutex. When the mutex cannot be locked (another task has already locked it), the task
enters the WAITING state. In tloc_mtx, a timeout period can also be specified.

• Service call ploc_mtx

Locks a mutex. When the mutex cannot be locked (another task has already locked it), an error
is returned.

• Service call unl_mtx

Unlocks a mutex.

• Service call ref_mtx

Refers to the state of a mutex.

41

Figure 4.9 shows an example of mutex usage.

lo
c_

m
tx

un
l_

m
tx

lo
c_

m
tx

RUNNING

RUNNING

WAITING

WAITING READY

READY

RUNNING

READY

un
l_

m
tx

RUNNING

RUNNING

RUNNING

lo
c_

m
tx

un
l_

m
tx

RUNNING

RUNNING

WAITINGTask A

Task B

Task C

Ceiling priority

Priority

Higher

Lower

Time1 2 3 4 5 6

Figure 4.9 Example of Mutex Usage

Description:

1. Task C locks a mutex by issuing loc_mtx. The priority of task C is raised to the ceiling priority
specified for the mutex.

2. Task A enters the READY state while task C is being executed at the ceiling priority.
Although the priority of task A is higher than that of task C at initial specification, task C now
locks a mutex to be executed at the ceiling priority which is higher than task A and task A
cannot enter the RUNNING state. In other words, while task C locks a mutex, task C continues
execution even if task A whose initial task priority is higher than task C becomes ready.

3. Task C unlocks the mutex by issuing unl_mtx. The priority of task C returns to the initial
priority and higher-priority task A enters the RUNNING state.

4. Task A issues loc_mtx to raise its priority to the ceiling priority.

5. Task A issues unl_mtx to return its priority to the initial level.

6. Task B issues loc_mtx to raise its priority to the ceiling priority.

7. Task B issues unl_mtx to return its priority to the initial level.

42

Base Priority and Current Priority:

A task has two priority levels: base priority and current priority. Tasks are scheduled according to
the current priority.

While a task does not lock a mutex, the current priority is always the same as the base priority.

When a task locks a mutex, only the current priority is raised to the ceiling priority specified for
the mutex.

When priority-changing service call chg_pri or ichg_pri is issued, both the base priority and
current priority are modified if the specified task has not locked any mutex. When the specified
task has locked a mutex, only the base priority is modified. When the specified task has locked a
mutex or is waiting to lock a mutex, if a priority higher than the ceiling priority of the locked or
waited-for mutex is specified, an E_ILUSE error is returned.

The current priority can be checked through service call get_pri or iget_pri.

43

4.13 Message Buffer

A message buffer is an object used to pass messages by copying them. The message area becomes
available immediately after the message has been sent regardless of whether a task has received
the message or not.

A message buffer area is allocated in the resource pool.

Message buffers can be created in the following ways.

• Service call cre_mbf or icre_mbf

A message buffer is created with a specified ID.

• Service call acre_mbf or iacre_mbf

A message buffer is created with the ID automatically assigned by the kernel.

• Created by the configurator

An ID name can be specified. When [Kernel side] is not selected in the configurator, the
configurator can automatically assign an ID.

Message buffers are manipulated through the following service calls.

• Service call del_mbf

Deletes the specified message buffer.

• Service call snd_mbf or tsnd_mbf

Sends a message to a message buffer. When the message cannot be sent (the message buffer is
full or another task is waiting to send a message to the message buffer), the task enters the
WAITING state. In tsnd_mbf, a timeout period can also be specified.

• Service call psnd_mbf or ipsnd_mbf

Sends a message to a message buffer. When the message cannot be sent (the message buffer is
full or another task is waiting to send a message to the message buffer), an error is returned.

• Service call rcv_mbf or trcv_mbf

Receives a message from a message buffer. When the message cannot be received (the
message buffer has no message), the task enters the WAITING state. In trcv_mbf, a timeout
period can also be specified.

• Service call prcv_mbf

Receives a message from a message buffer. When the message cannot be received (the
message buffer has no message), an error is returned.

• Service call ref_mbf or iref_mbf

Refers to the state of a message buffer.

44

Figure 4.10 shows an example of message buffer usage.

Time

cre_mbf (64 bytes)

Task A Task B Message
buffer
status

rcv_mbf ()
<WAITING>

<READY>
(Receive X)

snd_mbf (Y: 48 bytes)

1

2

3

4

rcv_mbf ()
(Receive Y)

5

snd_mbf (X: 16 bytes)

6

snd_mbf (Z: 32 bytes)
<WAITING>

Free space

Free space

Free

Free

Free space

Y

Y

Z
<WAITING
canceled>

Figure 4.10 Example of Message Buffer Usage

45

Description:

1. Task A issues cre_mbf to create a 64-byte message buffer, where the maximum size of a
message is 48 bytes.

2. Task A prepares a 48-byte memory area and issues rcv_mbf to receive a message. Task A is
placed in the WAITING state since there are no messages in the message buffer.

3. Task B sends 16-byte message X by issuing snd_mbf. Task A is released from the WAITING
state and message X is copied to the memory prepared by task A. Task A gets the received
message size (16) as the return parameter.

4. Task B sends 48-byte message Y by issuing snd_mbf. Since there are no tasks waiting for a
message, message Y is copied to the message buffer. Note that the kernel uses a 4-byte
message buffer area when copying the message, but this is not shown in the figure.

5. Task B attempts to send 32-byte message Z by issuing snd_mbf. Since the message buffer does
not have enough free space to store message Z, task B is placed in the WAITING state.

6. Task A prepares a 48-byte memory area and issues rcv_mbf. 48-byte message Y stored in the
message buffer is copied to the memory prepared by task A. Task A gets the received message
size (48) as the return parameter. At this time, since the message buffer has sufficient space to
store message Z, task B is released from the WAITING state and message Z is copied to the
message buffer.

4.14 Fixed-Size Memory Pool

A fixed-size memory pool is an object used to dynamically allocate a fixed-size memory area.
Since the size of the memory pool is fixed, operation is faster than with a variable-size memory
pool.

Fixed-size memory pools can be created in the following ways.

• Service call cre_mpf or icre_mpf

A fixed-size memory pool is created with a specified ID.

• Service call acre_mpf or iacre_mpf

A fixed-size memory pool is created with the ID automatically assigned by the kernel.

• Created by the configurator

An ID name can be specified. When [Kernel side] is not selected in the configurator, the
configurator can automatically assign an ID.

The address of a fixed-size memory pool area can be specified at task creation, or can be specified
to be automatically assigned by the kernel. When a fixed-size memory pool is created through the
configurator, its address cannot be specified.

46

When the kernel automatically allocates a memory pool, it is allocated in the system pool. When
the memory object protection function is selected, the memory pool is handled as a memory object.
An access permission vector can be specified for a memory pool when the memory pool is created
by the configurator. For the memory pool created through a service call, an appropriate access
permission vector is automatically assigned so that only the domain of the program that created
the memory pool can read or write to the memory pool.

Fixed-size memory pools are manipulated through the following service calls.

• Service call del_mpf

Deletes the specified fixed-size memory pool.

• Service call get_mpf or tget_mpf

Acquires a fixed-size memory block. When the memory block cannot be acquired (no memory
block is available in the memory pool), the task enters the WAITING state. In tget_mpf, a
timeout period can also be specified.

• Service call pget_mpf or ipget_mpf

Acquires a fixed-size memory block. When the memory block cannot be acquired (no memory
block is available in the memory pool), an error is returned.

• Service call rel_mpf or irel_mpf

Returns a fixed-size memory block.

• Service call ref_mpf or iref_mpf

Refers to the state of a fixed-size memory pool.

Figure 4.11 shows an example of fixed-size memory pool usage.

47

Time

cre_mpf
(16 bytes, 3 blocks)

Task A Task B Fixed-size
memory pool
status

get_mpf (Get X)

get_mpf
<WAITING>

1

2

3

4

5

6
<READY>

(Get Y)

get_mpf (Get Y)

rel_mpf(Y)

get_mpf (Get Z)

Free Free Free

Free Free

Free YX

X

ZX

ZYX

ZYX

Y

Figure 4.11 Example of Fixed-Size Memory Pool Usage

Description:

1. Task A issues cre_mpf to create a fixed-size memory pool that has three 16-byte memory
blocks.

2. Task A gets block X by issuing get_mpf.

3. Task B gets block Y by issuing get_mpf.

4. Task B gets block Z by issuing get_mpf.

48

5. Task A attempts to get a block by issuing get_mpf. At this time, no memory blocks are
available and task A enters the WAITING state.

6. Task B returns block Y by issuing rel_mpf. At this time, task A is released from the WAITING
state and the returned block Y is allocated to task A.

4.15 Variable-Size Memory Pool

A variable-size memory pool is an object used to dynamically allocate a memory area with the
size specified by the user.

Variable-size memory pools can be created in the following ways.

• Service call cre_mpl or icre_mpl

A variable-size memory pool is created with a specified ID.

• Service call acre_mpl or iacre_mpl

A variable-size memory pool is created with the ID automatically assigned by the kernel.

• Created by the configurator

An ID name can be specified. When [Kernel side] is not selected in the configurator, the
configurator can automatically assign an ID.

The address of a variable-size memory pool area can be specified at task creation, or can be
specified to be automatically assigned by the kernel. When a variable-size memory pool is created
through the configurator, its address cannot be specified.

When the kernel automatically allocates a memory pool, it is allocated in the system pool. When
the memory object protection function is selected, the memory pool is handled as a memory object.
An access permission vector can be specified for a memory pool when the memory pool is created
by the configurator. For the memory pool created through a service call, an appropriate access
permission vector is automatically assigned so that only the domain of the program that created
the memory pool can read or write to the memory pool.

Variable-size memory pools are manipulated through the following service calls.

• Service call del_mpl

Deletes the specified variable-size memory pool.

• Service call get_mpl or tget_mpl

Acquires a variable-size memory block with a specified size. When the memory block cannot
be acquired (no memory block is available in the memory pool or another task is waiting to
acquire a memory block), the task enters the WAITING state. In tget_mpl, a timeout period
can also be specified.

49

• Service call pget_mpl or ipget_mpl

Acquires a variable-size memory block. When the memory block cannot be acquired (no
memory block is available in the memory pool or another task is waiting to acquire a memory
block), an error is returned.

• Service call rel_mpl or irel_mpl

Returns a variable-size memory block.

• Service call ref_mpl or iref_mpl

Refers to the state of a variable-size memory pool.

Figure 4.12 shows an example of variable-size memory pool usage.

50

Time

cre_mpl
(400 bytes)

Task A Task B Variable-size
memory pool status

get_mpl (256 bytes)
<WAITING>

1

2

3

4

<READY>
(Get W)

5

get_mpl (192 bytes)
(Get X)

6

7

8

rel_mpl(X)

rel_mpl(Z)

rel_mpl(Y)

get_mpl (32 bytes)
(Get Y)

FreeYX

W

ZYXget_mpl (96 bytes)
(Get Z)

Free space

Free spaceX

Free

Free

ZYX

ZY
Free

FreeY

Free

Free

Free

Figure 4.12 Example of Variable-Size Memory Pool Usage

51

Description:

1. Task A creates a 400-byte variable-size memory pool by issuing cre_mpl.

2. Task B acquires 192-byte memory block X by issuing get_mpl. Note that the kernel uses 16
bytes in the memory pool to allocate a block, but this is not shown in the figure.

3. Task B also acquires 32-byte memory block Y by issuing get_mpl.

4. Task B also acquires 96-byte memory block Z by issuing get_mpl.

5. Task A attempts to acquire a 256-byte memory block by issuing get_mpl. However, the
available memory block is insufficient to assign a 256-byte memory block to task A, so task A
enters the WAITING state.

6. Task B returns 192-byte memory block X by issuing rel_mpl. Since there is not 256 bytes of
contiguous memory in the memory pool, task A remains in the WAITING state.

7. Task B returns 96-byte memory block Z by issuing rel_mpl. At this time, the total size of
available memory blocks is more than 256 bytes, however there is not 256 bytes of contiguous
memory in the memory pool, so task A remains in the WAITING state.

8. Task B returns 32-byte memory block Y by issuing rel_mpl. Since there is more than 256
bytes of contiguous memory in the memory pool, task A is released from the WAITING state
and 256-byte memory block W is assigned to task A.

4.15.1 Fragmentation

Repeated acquisition and return of memory blocks from a variable-size memory pool causes
"fragmentation" of the available memory area. When the memory area is fragmented, even if there
is enough total space to acquire a required memory block, it cannot be acquired if the area is not
contiguous.

The HI7300/PX provides a function for reducing fragmentation; the VTA_UNFRAGMENT
attribute should be specified at creation of a variable-size memory pool to reduce fragmentation.

For details, refer to the following.

Reference: Section 4.31, Controlling Memory Fragmentation

52

4.16 Time Management

The kernel provides the following functions related to time management.

• Reference to and setting of system clock

• Time event handler (cyclic handler, alarm handler, and overrun handler) execution control

• Task execution control such as timeout and dly_tsk

The unit of time used for setting time parameters is 1 ms.

The kernel uses the system clock (a 48-bit counter value) to implement the time management
functions.

4.16.1 Time Precision

The unit of time used for setting time parameters, such as a timeout period, is 1 ms, but the
precision of time is TIC_NUME/TIC_DENO [ms]. With this precision, the system clock is
updated and time management is performed.

A time event (timeout occurrence or cyclic handler initiation) is generated after the specified time
has passed.

Figure 4.13 shows examples of tslp_tsk(5) execution when the actual time is 9.2 ms.

53

9 System
clock

tslp_tsk(5)

10 11 12 13 14 15 16 17 18

9 System
clock

tslp_tsk(5)

12 15 18

9 System
clock 10 11 12 13 14 15 16 17 18

tslp_tsk(5)

5 ms or longer → 5 ms

5 ms or longer → 6 ms

5 ms or longer → 5 ms

Timeout

Timeout

Timeout

[Example 1: TIC_NUME = TIC_DENO = 1]

[Example 2: TIC_NUME = 3 and TIC_DENO = 1]

[Example 3: TIC_NUME = 1 and TIC_DENO = 2]

Figure 4.13 Time Precision

4.16.2 System Clock Setting and Reference

The current system clock can be checked through service call get_tim or iget_tim.

Through service call set_tim or iset_tim, the system clock can be modified to a specified value.
Note that even after the system clock is modified, the actual time until the occurrence of an event
(such as timeout) that has already been monitored will not change.

4.16.3 Cyclic Handler

A cyclic handler is a time event handler that is initiated at a specified interval after the specified
initiation phase has been passed.

A cyclic handler is handled as the non-task context.

A cyclic handler is assigned to the kernel domain.

Cyclic handlers can be created in the following ways.

• Service call cre_cyc or icre_cyc

A cyclic handler is created with a specified ID. The created cyclic handler can also be started
by specifying the TA_STA attribute.

54

• Service call acre_cyc or iacre_cyc

A cyclic handler is created with the ID automatically assigned by the kernel.

• Created by the configurator

An ID name can be specified. When [Kernel side] is not selected in the configurator, the
configurator can automatically assign an ID.

Cyclic handlers are manipulated through the following service calls.

• Service call del_cyc

Deletes a cyclic handler.

• Service call sta_cyc or ista_cyc

Starts operation of a cyclic handler.

• Service call stp_cyc or istp_cyc

Stops operation of a cyclic handler.

• Service call ref_cyc or iref_cyc

Refers to the state of a cyclic handler.

There are two methods to initiate execution of a cyclic handler: storing the initiation phase, and
not storing the initiation phase. When storing the initiation phase, execution of a cyclic handler is
initiated based on the timing when the cyclic handler is created. When not storing the initiation
phase, execution of a cyclic handler is initiated based on the timing when operation of the cyclic
handler is started. Whether to store the initiation phase can be specified at creation of a cyclic
handler.

Figure 4.14 shows an example of cyclic handler usage.

55

Figure 4.14 Example of Cyclic Handler Usage

Description:

(a) A cyclic handler (without TA_STA attribute specification) is created.

(b) The cyclic handler is not initiated after the initiation phase and cycle time have passed because
the cyclic handler operation has not been started.

(c) The cyclic handler operation is started by issuing the sta_cyc service call.

(d) When the initiation phase is stored as shown in (I) in the figure, the cyclic handler is initiated
based on the initiation cycle after the cyclic handler has been created. When the initiation
phase is not stored as shown in (II) in the figure, the cyclic handler is initiated based on the
initiation cycle after the sta_cyc service call has been issued.

56

(e) The cyclic handler is stopped by issuing the stp_cyc service call.

(f) The cyclic handler is not initiated after the cycle time has passed because the cyclic handler
operation has been stopped.

4.16.4 Alarm Handler

An alarm handler is a time event handler that is initiated only once when the specified time has
been reached.

An alarm handler is handled as the non-task context.

An alarm handler is assigned to the kernel domain.

Alarm handlers can be created in the following ways.

• Service call cre_alm or icre_alm

An alarm handler is created with a specified ID. The created alarm handler can also be started
by specifying the TA_STA attribute.

• Service call acre_alm or iacre_alm

An alarm handler is created with the ID automatically assigned by the kernel.

• Created by the configurator

An ID name can be specified. When [Kernel side] is not selected in the configurator, the
configurator can automatically assign an ID.

Alarm handlers are manipulated through the following service calls.

• Service call del_alm

Deletes an alarm handler.

• Service call sta_alm or ista_alm

Starts operation of an alarm handler.

• Service call stp_alm or istp_alm

Stops operation of an alarm handler.

• Service call ref_alm or iref_alm

Refers to the state of an alarm handler.

Figure 4.15 shows an example of alarm handler usage.

57

Initiation time

Alarm handler is not initiated.Alarm handler

(Initiated)

Create an alarm
handler (cre_alm)

Start an alarm
handler (sta_alm)

Stop an alarm
handler (stp_alm)

Time

(a) (b)

(c)

(d)

Start an alarm
handler (sta_alm)

Initiation time

(e)

Figure 4.15 Example of Alarm Handler Usage

Description:

(a) An alarm handler is created.

(b) The alarm handler operation is started by issuing the sta_alm service call.

(c) The alarm handler is initiated after the specified initiation time has passed.

(d) If the sta_alm service call is issued by specifying another initiation time, the alarm handler
starts operation again.

(e) Since the stp_alm service call is issued before the initiation time has passed, the alarm handler
is not initiated.

58

4.16.5 Overrun Handler

An overrun handler is a time event handler that is initiated when a task has used the processor over
the time limit specified for the task. Only one overrun handler can be defined in a single system.

An overrun handler is handled as the non-task context.

An overrun handler is assigned to the kernel domain.

Overrun handlers can be created in the following ways.

• Service call def_ovr

Defines an overrun handler.

• Defined by the configurator

Overrun handlers are manipulated through the following service calls.

• Service call sta_ovr or ista_ovr

Specifies an overrun time for a task and starts monitoring whether the task overruns.

• Service call stp_ovr or istp_ovr

Stops monitoring whether the task overruns.

• Service call ref_ovr or iref_ovr

Refers to the state of an overrun handler.

Figure 4.16 shows an example of overrun handler usage.

Upper limit
processor time

An overrun handler is not initiated.Overrun handler

(Start execution)

Define an
overrun handler
(def_ovr)

Time

(a) (b)

(c)

(d) (e)

Start an
overrun handler
(sta_ovr)

Upper limit
processor time

Start an
overrun handler
(sta_ovr)

Stop an
overrun handler
(stp_ovr)

Figure 4.16 Example of Overrun Handler Usage

59

Description:

(a) An overrun handler is defined.

(b) The upper limit processor time for the task is specified by the sta_ovr service call. The
operation of the overrun handler is started at this point.

(c) If the total processor time used by the task exceeds the upper limit processor time, the overrun
handler is initiated.

(d) If the upper limit processor time is changed by the sta_ovr service call, the operation of the
overrun handler is started again.

(e) If the stp_ovr service call is issued before the total processor time has exceeded the upper limit
processor time, the overrun handler is stopped. In this case, the overrun handler is not initiated
even if the upper limit processor time is exceeded after that.

4.16.6 Timer Driver

A timer driver is required to enable the time-management functions. Timer drivers are of two
types: a standard timer driver or an optimized timer driver. Either type should be selected through
CFG_OPTTMR in the configurator.

The standard timer driver generates timer interrupts at the intervals specified by
TIC_NUME/TIC_DENO [ms], and must be created and embedded in the kernel by the user. The
HI7300/PX provides sample drivers for the timers built into various microcomputers.

The optimized timer driver is provided in the kernel. It can reduce the frequency of timer
interrupts, but the applicable hardware is limited.

Reference: Creating standard timer driver → Section 9, Standard Timer Driver
 Optimized timer driver → Section 4.17, Optimized Timer Driver

4.16.7 Notes on Time Management

The kernel performs the following processing when a timer interrupt occurs.

(a) Updates the system clock.

(b) Initiates and executes alarm handlers.

(c) Initiates and executes cyclic handlers.

(d) Initiates and executes the overrun handler.

(e) Performs task timeout processing specified by service calls with the timeout function such as
tslp_tsk.

60

These processes are all performed with the CFG_KNLLVL or lower interrupt levels masked.
Among these processes, (b), (c), and (e) may overlap for multiple tasks and handlers. In that case,
the processing time of the kernel becomes very long and results in the following defects.

• Delay of the response to interrupts

• Delay of the system clock

To avoid these problems, the following steps must be taken.

• The time for time event handler processing must be as short as possible.

• The time event handler cycles and the timeout values specified by timeout service calls must
be set to as large values as possible. For an extreme example, if the cycle time of a cyclic
handler is 1 ms and the handler's processing takes longer than 1 ms, that cyclic handler will be
executed forever; and the system will hang.

4.17 Optimized Timer Driver

4.17.1 Overview

The standard timer driver generates timer interrupts in the same cycle as the time precision for
service calls (CFG_TICNUME/CFG_TICDENO [ms]). When the optimized timer driver is used,
the frequency of interrupts can be reduced while the time precision for service calls is maintained.

• The frequency of timer-interrupt generation during the sleep mode of the CPU is reduced; this
leads to improved power consumption.

• Reducing the frequency of timer interrupts lowers the percentage of CPU time taken up by
timer-interrupt processing and improves the throughput of the system. Alternatively, the CPU
may be placed in the power-down mode for a greater part of the time.

Unlike the standard timer driver, the optimized timer driver is developed for the TMU in specific
microcomputers and built into the kernel. The user cannot create an optimized timer driver.

61

4.17.2 Operation

Figure 4.17 shows examples of operation where the standard timer driver and optimized timer
driver are used to provide time precision of 1 ms (CFG_TICNUME/CFG_TICDENO).

tslp_tsk(9)

Timer interrupt

tslp_tsk(9)

Timeout

5 [ms] timer interrupts 1 [ms] timer interrupts

Timeout

Standard timer driver:

Optimized timer driver:

1 [ms]

Figure 4.17 Example of Operation

Two TMU timer channels, one with a 1-ms cycle and the other with a 5-ms cycle, are used for the
optimized timer driver as shown in figure 4.17; the respective timing cycles are called the high-
precision cycle and low-precision cycle. The high-precision cycle is the result, in ms, of the
division of the values specified by the configurator, i.e., CFG_TICNUME/CFG_TICDENO. The
period of the low-precision cycle is an integer multiple of the high-precision period and is
specified through CFG_LONGTICRATE in the configurator.

When the optimized timer driver is in use, the kernel investigates the following situations at the
right time.

• Waiting tasks by service calls with timeout (txxx_yyy)

• Waiting tasks by dly_tsk service call

• Cyclic handlers

• Alarm handlers

The kernel uses the investigation results to determine whether or not interrupts at high-precision
cycles are needed, and accordingly enables or disables high-precision interrupts.

Interrupts at low-precision cycles are always enabled.

62

Although not shown in figure 4.17, another TMU channel is used in monitoring for the overrun
handler. This timer interrupt is only generated when a task has reached the upper limit on the
allowed processor time.

Figure 4.18 shows two effects of using the optimized timer driver. This function reduces the
frequency of timer interrupts, leading to the following advantages over the standard timer driver.

• Quicker transitions to the sleep mode (lower amount of CPU time consumed in timer-interrupt
processing)

• Less frequent cancellation of the sleep mode for the processing of timer interrupts

Figure 4.18 Schematic Illustration of the Optimized Timer Driver's Effects

4.17.3 Applicable Microcomputers

The optimized timer driver uses the TMU built into the microcomputer. However, not all
microcomputers including TMU are applicable to the optimized timer driver. As of publication of
this manual, the optimized timer driver can only be run with the following microcomputers:

SH73180 and SH73230

Power

Time

Power

Time
: Timer interrupt processing
: Processing other than timer interrupt processing

: The CPU is in sleep mode.

Standard timer diriver is in use:

Optimized timer driver is in use:

SLEEP instruction

SLEEP instruction Any interrupt

Any interrupt

(1) Quicker transition to sleep mode

(2) Less frequent cancellation of sleep mode
 for timer interrupts

63

4.17.4 Hardware Initialization

The following processing is carried out to initialize the optimized timer driver when the kernel is
started up.

(1) Cancels the module stop state of TMU.

(2) Initializes channels 0, 1, and 2.

(3) Sets the interrupt levels of channels 0, 1, and 2 for the interrupt controller.

However, when the def_ovr service call has not been selected in the configurator, settings for
channel 2 in the above (2) and (3) are not made.

Note that the optimized timer driver does not place the TMU in the module stop state.

4.18 Interrupt Management

4.18.1 Interrupt Handler

An interrupt can be requested through an external interrupt pin or from a peripheral module. When
an interrupt occurs, the corresponding interrupt handler is executed via the kernel.

Interrupts are distinguished by the interrupt handler number. Each interrupt handler number
corresponds to the INTEVT code of the CPU.

An interrupt handler is handled as the non-task context.

An interrupt handler is assigned to the kernel domain.

Interrupt handlers can be defined in the following ways.

• Service call def_inh or idef_inh

Defines an interrupt handler for the specified interrupt handler number.

• Defined by the configurator

When an interrupt for which no interrupt handler has been defined occurs, the system goes down.

Reference: Section 8.4, Interrupt Handlers

64

4.18.2 Kernel Level (CFG_KNLLVL)

The kernel level (CFG_KNLLVL) specifies the level of interrupts to be masked during kernel
execution, and it is also used as the timer interrupt level. The kernel level can be specified by the
configurator.

The kernel executes the critical sections and timer interrupt processing by masking the interrupts
having levels equal to or lower than the CFG_KNLLVL level.

When the memory object protection function is selected, the kernel executes TLB-related
exception processing by masking all interrupts (SR.BL = 1).

Interrupts having levels higher than the kernel level are immediately accepted even during critical
section execution in the kernel. Note that the handlers for interrupts having levels higher than the
kernel level are not allowed to issue a service call.

When the IMASK bit value in SR is set higher than the kernel level (an interrupt handler having a
level higher than the kernel level always satisfies this condition), service calls must not be issued.
If a service call is issued under this condition, the interrupt mask level in the kernel will be
unexpectedly lowered.

4.18.3 Disabling Interrupts

Interrupts can be disabled in the following ways, regardless of the causes.

• Modify the IMASK bits in SR.

• Set the BL bit in SR to 1.

(1) Modifying the IMASK Bits in SR

Modifying the IMASK bits in SR can disable interrupts at the specified level or lower levels.

Note the following when modifying the IMASK bits.

• When the IMASK value in SR indicates a level higher than the kernel level (CFG_KNLLVL),
service calls must not be issued. If this is attempted, correct system operation is not guaranteed.

• In an interrupt handler, the IMASK value must not be modified to lower than the interrupt
level of that handler. During other non-task context execution, the IMASK value must not be
modified to lower than the level at initiation.

The IMASK bits in SR can be modified in the following ways.

65

(a) Service call loc_cpu or iloc_cpu

Each call shifts the system to the CPU-locked state, in which the IMASK value in SR is
modified to the kernel level (CFG_KNLLVL).

To cancel the CPU-locked state, issue unl_cpu or iunl_cpu.

Note the following when using service call loc_cpu or iloc_cpu.

⎯ When the transition to the CPU-locked state is made in the non-task context, the CPU-
locked state must be canceled within the handler.

⎯ The service calls available in the CPU-locked state are limited.

Reference: Service calls available in the CPU-locked state → Section 6.4.3, CPU-Locked State

(b) Service call chg_ims or ichg_ims

Each call modifies the IMASK bits in SR to the specified value and interrupts having a level
equal to or lower than the specified level are masked.

To cancel the mask, issue chg_ims to restore the IMASK value in SR to the value that the
IMASK bits previously held.

Note the following when using service call chg_ims or ichg_ims.

⎯ This method cannot modify the IMASK bits to a level higher than the kernel level
(CFG_KNLLVL). If an attempt is made to specify a higher level through service call
chg_ims, an E_PAR error is returned. To modify the IMASK bits to a level higher than the
kernel level, use the method described in (c) Modifying the IMASK bits in SR without a
service call.

⎯ The system is in the dispatch-disabled state while the IMASK bits are set to a non-zero
value by using this method in a task context.

⎯ If service call chg_ims or ichg_ims is issued in the CPU-locked state, an E_CTX error is
returned.

(c) Modifying the IMASK bits in SR without a service call

The IMASK bits in SR can be modified by the LDC instruction and interrupts having a level
equal to or lower than the specified level are masked. In C language, intrinsic function
set_imask() or set_cr() supported by the compiler should be used for this purpose.

To cancel the mask, restore the IMASK value in SR to the value that the IMASK bits
previously held.

Note the following when modifying the IMASK bits through this method.

⎯ In a task context, the IMASK bits are only modified to a level higher than the kernel level
(CFG_KNLLVL) or 0. If another value is specified through this method, correct operation
is not guaranteed.

66

⎯ In the CPU-locked state, the IMASK bits must not be modified to a lower value than
CFG_KNLLVL. If this is attempted, correct system operation is not guaranteed.

⎯ LDC is a privileged instruction, and so this method cannot be used in a user domain.

(2) Modifying the BL Bit in SR

All interrupts are disabled through this method.

The BL bit in SR can be set to 1 through the LDC instruction. In C language, intrinsic function
set_cr() supported by the compiler should be used for this purpose.

To cancel the mask, restore the BL value in SR to 0.

Note the following when modifying the BL bit through this method.

• If a CPU exception occurs while the BL bit is 1, the CPU is reset. To avoid this reset,
applications must be programmed so that no CPU exception occurs in this state. Note
especially that when the memory object protection function is selected, access to the MMU
mapped area may generate a TLB miss exception except when the target address is locked
through service call vloc_tlb, and so the MMU mapped area must not be accessed.

In addition, a service call must not be issued for the same reason.

• LDC is a privileged instruction, and so this method cannot be used in a user domain.

Reference: Section 8.4.4, Notes on NMI

4.19 CPU Exception

A CPU exception occurs during program execution. When a CPU exception occurs, the
corresponding CPU exception handler is executed via the kernel.

CPU exceptions are distinguished by the CPU exception handler number. Each CPU exception
handler number corresponds to the EXPEVT code of the CPU.

A CPU exception handler is handled as the non-task context.

A CPU exception handler is assigned to the kernel domain.

CPU exception handlers can be defined in the following ways.

• Service call def_exc or idef_exc

Defines a CPU exception handler for the specified CPU exception handler number.

• Defined by the configurator

67

When a CPU exception for which no CPU exception handler has been defined occurs, the system
goes down.

A packet is sent to a CPU exception handler to pass the necessary information, such as the register
values stored when the CPU exception occurred. To extract information from this packet, the
following macros are provided.

• VSNS_CTX: Returns information as to whether execution was in the non-task context when
the CPU exception occurred.

• VSNS_LOC: Returns information as to whether the system was in the CPU-locked state when
the CPU exception occurred.

• VSNS_DSP: Returns information as to whether the system was in the dispatch-disabled state
when the CPU exception occurred.

• VSNS_DPN: Returns information as to whether the system was in the dispatch-pended state
when the CPU exception occurred.

• VSNS_TEX: Returns information as to whether the task exception was enabled for the task if
execution was in a task context when the CPU exception occurred.

• VGET_TID: Returns the ID of the task that was running when the CPU exception occurred.

• VGET_DID: Returns the ID of the domain of the task that was running when the CPU
exception occurred.

The state to be restored after a return from the CPU exception processing can be changed by
modifying this packet.

Reference: Section 8.8, CPU Exception Handler

4.20 Extended Service Call and Trap

Extended service calls and traps are used to call programs (extended service call routines and trap
routines) assigned to the kernel domain.

Both can be issued after corresponding user-created programs are defined in the kernel.

Reference: Section 8.3, Extended Service Call Routines and Trap Routines

The context type of an extended service call routine or a trap routine is the same as that of the
caller of the routines.

68

Both routines are assigned to the kernel domain.

4.20.1 Extended Service Call

Extended service calls are distinguished by the function code. An extended service call routine
should be defined for each function code. When service call cal_svc or ical_svc is issued, the
extended service call routine corresponding to the function code specified in the call is executed.

Extended service calls are defined in the following ways.

• Service call def_svc or idef_svc

Defines an extended service call for the specified function.

• Defined by the configurator

4.20.2 Trap

Traps are distinguished by the trap number.

Trap numbers 0 to 15 are reserved for kernel use; trap numbers of 16 or above can be used in
applications. When a TRAPA instruction is executed, the trap routine corresponding to the
specified trap number is called.

Trap routines are defined in the following ways.

• Service call vdef_trp or ivdef_trp

Defines a trap for the specified number.

• Defined by the configurator

4.21 Memory Object Protection Function

4.21.1 Overview

The memory object protection function controls "which program can perform which type of access
to which memory". Through this control, the following functions are implemented.

• Detect unauthorized access

• Check errors in address parameters passed through kernel service calls

69

By prohibiting unauthorized memory access through these functions, debugging efficiency is
improved and the system’s memory contents are protected against unexpected illegal memory
access that might be done after shipment.

"Which program" in the above description means "which user domain ID". The programs in the
kernel domain are not controlled by the memory object protection function, and these programs
can always access any memory.

A task is assigned to a user domain or the kernel domain. A handler is assigned to the kernel
domain.

"Which type of access" means "read access (including instruction fetch)" or "write access", and
"which memory" means "which memory object". The kernel controls this information for each
memory object. This management information is called an access permission vector.

For a memory object, the following attributes can be specified.

• Read-only or readable/writable

• Cacheable or non-cacheable, and write mode (copy-back or write-through) when cacheable

The kernel uses the memory management unit (MMU) built into the processor to implement this
function.

To enable the memory object protection function, select CFG_PROTMEM.

Figure 4.19 gives an overview of the memory object protection function.

70

Task

Task

Interrupt
handler

Memory
object

Memory
object

Task

Task

Memory
object

Memory
object

Kernel domain

User domain 1

User domain 2

Task

Kernel

: Access permission vector
: Accessible regardless of the access permission vector
: Access is checked against the access permission vector.

Figure 4.19 Overview of Memory Object Protection Function

71

4.21.2 Memory Object Types

Table 4.2 lists the memory object types.

Table 4.2 Memory Object Types

Memory Object Creation

Stack for the task in a user domain,
which is allocated in the system pool by
the kernel

Created at task creation

Fixed-size memory pool area allocated in
the system pool by the kernel

Created at fixed-size
memory pool creation

Memory object
allocated in the system
pool

Variable-size memory pool area allocated
in the system pool by the kernel

Created at variable-size
memory pool creation

Protected memory block acquired from a protected memory pool

Protected memory block received from a protected mailbox

Created at protected
memory block acquisition

Static memory object defined by the configurator ⎯

4.21.3 Attribute and Domain

Each memory object has the following attributes supported by this kernel.

(1) Read-only (TA_RO) or readable/writable (TA_RW)

When a memory object has the TA_RO attribute, an exception will be detected if the memory
object is written to, regardless of the access permission vector to be described later.

(2) Cacheable (TA_CACHE) or non-cacheable (TA_UNCACHE)

(3) Cache write mode: Copy-back (TA_WBACK) or write-through (TA_WTHROUGH)

Note that the cache-related attributes are valid only while the cache is enabled. For an on-chip
memory, the cache-related attributes are ignored, and the non-cacheable attribute is always
assumed.

Reference: Section 5.3.3, On-Chip Memory

A memory object is assigned to a domain. Note the following about domains.

(1) When a task returns a protected memory block to a protected memory pool (rel_mpp), the
domain of the protected memory block must be the same as the domain of the task.

(2) When a task sends a protected memory block to a protected mailbox (snd_mbp), the domain of
the protected memory block must be the same as the domain of the task.

72

(3) The initial access permission vector for a memory object that is allocated in the system pool
depends on the assigned domain (see the next section).

Table 4.3 shows the domain of each memory object and the attributes of the domain. The
attributes of each domain cannot be dynamically modified through service calls.

Table 4.3 Domain of Each Memory Object and Domain Attributes

Memory Object Domain Attribute

Stack for the task in a user
domain, which is allocated in
the system pool by the
kernel

Domain of the task
(specified as the task
attribute)

Fixed-size memory pool area
allocated in the system pool
by the kernel

Memory object
allocated in the
system pool

Variable-size memory pool
area allocated in the system
pool by the kernel

(1) When created by the
configurator: Kernel
domain

(2) When created through a
service call: Domain of the
program that issued the
service call

The following
attributes are
always applied.

TA_RW

TA_CACHE

TA_WBACK

Protected memory block acquired from a
protected memory pool

Domain of the task that
acquired the memory block

Protected memory block received from a
protected mailbox

Domain of the task that
received the memory block

Specified by the
configurator at
protected
memory pool
creation

Static memory object defined by the
configurator

Kernel domain Specified by the
configurator at
static memory
object registration

73

4.21.4 Access Permission Vector

Each memory object has an access permission vector, which indicates which user domain can
perform which type of access for that memory object. The kernel domain can access any memory
object regardless of the access permission vector.

This kernel supports the access permission vectors shown in table 4.4.

Table 4.4 Access Permission Vectors

User Domain that can Access to Memory Object Access Permission
Vector Write Access * Read access

TACT_KERNEL None

(no user domain can access)

None

(no user domain can access)

TACT_PRW(domid) User domain with domid only User domain with domid only

TACT_PRO(domid) None

(no user domain can access)

User domain with domid only

TACT_SRW All user domains All user domains

TACT_SRO None

(no user domain can access)

All user domains

TACT_SRPW(domid) User domain with domid only All user domains

Note: A memory object with the TA_RO attribute cannot be written to regardless of the access
permission vector, even by the kernel domain.

The access permission vector can be modified through service call sac_mem.

Table 4.5 shows the initial access permission vector for each memory object.

74

Table 4.5 Access Permission Vector for Each Memory Object

Memory Object Initial Access Permission Vector

Stack for the task in a user
domain, which is allocated in the
system pool by the kernel

TACT_PRW(domid) domid indicates the
domain of the task

Fixed-size memory pool area
allocated in the system pool by
the kernel

Memory object
allocated in the
system pool

Variable-size memory pool area
allocated in the system pool by
the kernel

(1) When created by the configurator:
Value specified by the configurator

(2) When created through a service call:

An appropriate value is specified so that
only the assigned domain can read or
write to the memory object.

For the kernel domain: TACT_KERNEL

For a user domain: TACT_PRW(domid)
 domid indicates the assigned domain.

Protected memory block acquired from a protected
memory pool

TACT_PRW(domid)
 domid indicates the domain of the task
that acquired the memory block

Protected memory block received from a protected
mailbox

TACT_PRW(domid)
 domid indicates the domain of the task
that received the memory block

Static memory object defined by the configurator Value specified by the configurator

4.21.5 Page Size

The MMU manages memory in page units. The basic page size in this kernel is 4 kbytes
(CFG_PAGESZ). However, for static memory objects only, a value other than 4 kbytes can be
specified as the page size. (Note that 1 kbyte is not allowed as the page size in the kernel
specifications.)

The start address of each memory object must be aligned with a page boundary.

In static memory objects, specifying a large page size reduces the TLB entries to be used, which
will decrease the TLB miss rate. However, it may degrade the efficiency of memory use.

For example, when a 40-kbyte area is used as a static memory object, if the page size is set to 4
kbytes, ten TLB entries are required. If the page size is set to 64 kbytes, only one TLB entry is
required. In this case, when the page size is set to 64 kbytes, the TLB miss rate becomes 1/10 that
for a 4-kbyte page when simply calculated. However, for a 64-kbyte page, an area between two

75

64-kbyte boundaries must be allocated and the last 24 kbytes in that area cannot be used for other
memory objects, resulting in loss of available space.

Table 4.6 shows the difference in alignment among memory object types.

Table 4.6 Alignment of Each Memory Object

Memory Object Alignment with Page Size

Stack for the task in a user
domain, which is allocated
in the system pool by the
kernel

Fixed-size memory pool
area allocated in the
system pool by the kernel

Memory object
allocated in the
system pool

Variable-size memory pool
area allocated in the
system pool by the kernel

Automatically aligned by the kernel.

At linkage, the user must allocate the system
pool section (BSCP_hisyspl) to align with a 4-
kbyte boundary.

Protected memory block acquired from a
protected memory pool and protected memory
block received from a protected mailbox

Automatically aligned by the kernel.

At linkage, the user must allocate the protected
memory pool section to align with a 4-kbyte
boundary.

Static memory object defined by the
configurator

(1) Address specification

The address of a boundary for the page size of
the memory object must be specified. When a
symbol is specified, make appropriate settings
at linkage so that the symbol address is aligned
with a boundary for the page size of the
memory object.

(2) Section specification

The user must allocate the memory object
section to align with a boundary for the page
size of the memory object.

4.21.6 Detection of Illegal Access

Refer to the following.

Reference: Section 5.3.1 (2), Detection of Illegal Access

76

4.21.7 TLB Miss Penalty

The MMU has a cache memory called the translation lookaside buffer (TLB), which stores
protection information for each page. The kernel manages this TLB.

Note that the TLB is a cache and cannot indefinitely hold all information necessary for the system.
If no valid information is found in the TLB when an MMU mapped area is accessed, the processor
generates a TLB miss exception. In this case, the kernel appropriately updates the TLB according
to the management information stored in memory and resumes exception processing. However,
this means a large overhead for the respective section in the application because the kernel
executes additional TLB miss exception processing when memory is accessed. This overhead is
called a TLB miss penalty.

The following actions should be taken to avoid or reduce a TLB miss penalty.

(1) Allocating Target Area in MMU Non-Mapped Area

No TLB miss occurs when the target area is allocated in an MMU non-mapped area instead of a
memory object. However, there is no MMU non-mapped area that can be accessed from a user
domain. The on-chip memory is the only option that can be accessed from a user domain when
"MMU non-mapped area, accessible in the user mode" is specified for CFG_IRAMUSAGE.

(2) Locking TLB

Through service call vloc_tlb, the page including the specified address can be temporarily locked
in the TLB. Note that the number of pages locked at the same time is limited to the
CFG_MAXLOCPAGE value (32 max.).

(3) Specifying Large Page Size for Static Memory Object

Specifying a large page size reduces the number of TLB entries used, resulting in a lower TLB
miss rate.

(4) Reducing Number of Pages Used in the System at a Given Time to the Number of TLB
Pages of the Microcomputer or Less

The sum of the following values is the number of pages used in the system at a given time.

• System pool size (CFG_SYSPOOLSZ)/4096

• Each static memory object size/page size for the memory object

• Each protected memory pool size/4096

77

When this sum is equal to or less than the number of TLB pages of the microcomputer, a TLB
miss occurs only for the first access to each page, but will not occur again because that page will
not be replaced in the TLB.

To avoid a TLB miss at the first access, access all pages intentionally during initialization before
the main operation; after that, no TLB miss will occur during the main operation.

(5) Avoid Enabling MMU

When there is no possibility of memory access violation after debugging is completed, the kernel
can be initiated (service call vsta_knl) with the MMU disabled. In this case, no TLB miss will
occur. Note, however, that the exceptions described in section 4.21.6, Detection of Illegal Access,
which can be detected by the MMU, will not be detected either.

Reference: Disabling MMU → Section 4.21.10, MMU Initialization

4.21.8 Access Permission Check (prb_mem)

Service call prb_mem can be used to check whether the specified domain is allowed to perform
the specified access (read or write) to the specified address.

4.21.9 Check for Errors in Address Parameters of Service Calls

The address parameters for all service calls can be checked for errors in the same way as service
call prb_mem. To enable this check function, select CFG_MEMCHK.

After the parameter correctness has been verified, deselecting this function can improve the
performance.

4.21.10 MMU Initialization

(1) MMUCR Register

Some of the bits in MMUCR are initialized by vsta_knl (kernel initiation). The other bits must be
initialized as needed by the application before vsta_knl is issued.

MMUCR must not be modified after vsta_knl is issued.

• AT bit: Not initialized by vsta_knl. Initialize it appropriately by the application before vsta_knl.
Set 1 to enable the MMU or 0 to disable it.

• LRUI bits: Initialized to 0 by vsta_knl.

78

• URB bits: Initialized to 0 by vsta_knl.

• URC bits: Initialized to 0 by vsta_knl.

• SQMD bit (only for SH-4A): Not initialized by vsta_knl. Initialize it appropriately by the
application before vsta_knl.

• SV bit: Initialized to 1 (single virtual memory mode) by vsta_knl.

• TI bit: Initialized to 1 by vsta_knl to invalidate all TLB entries.

• ME bit (when the CPU in use is the SH4AL-DSP or SH-4A with extended functions):
Initialized to 1 by vsta_knl.

(2) TTB, PTEH, and PTEL Registers

The kernel uses these registers and they must not be modified after vsta_knl is issued (kernel
initiation).

(3) PASCR and IRMCR Registers

These registers must be appropriately initialized by the application according to the system
configuration before vsta_knl is issued. The kernel never accesses these registers.

Reference: In the sample system, these registers are initialized by
 samples\shnnnn\kernel\knl_side\init_mmu.c.

4.22 Protected Memory Pool

A protected memory pool is an object used to dynamically allocate a memory object. Protected
memory pools can be used only when the memory object protection function is selected.

A protected memory block acquired from a protected memory pool is assigned to the domain of
the program that acquired the memory block, and is handled as a memory object that can be
accessed only from that domain. Only protected memory blocks can be sent to protected
mailboxes.

Protected memory pools can be created only by the configurator.

Protected memory pools are manipulated through the following service calls.

• Service call pget_mpp

Acquires a protected memory block with a specified size. When the memory block cannot be
acquired (no memory block is available in the memory pool), an error is returned. The size of
the block to be acquired is the value obtained by rounding the specified size up to a multiple of
CFG_PAGESZ (4096).

79

• Service call rel_mpp

Returns a protected memory block. This is allowed only when the domain of the task that
returns the protected memory block matches the domain of the memory block to be returned.

• Service call ref_mpp

Refers to the state of a protected memory pool.

Note:

The free space in protected memory pools may be fragmented. Refer to the following.

Reference: Section 4.31, Controlling Memory Fragmentation

Figure 4.20 shows an example of protected memory pool usage.

Time Task A Task B Protected memory pool status

1 Free space

 ≈

2 pget_mpp (20 kbytes) X Free space

 (Get X)

3 pget_mpp (4 kbytes) X Y Free space

 (Get Y)

4 pget_mpp (8 kbytes) X Y Z Free

 (Get Z)

 ≈

5 pget_mpp (16 kbytes) X Y Z Free

 <-- E_TMOUT error

 ≈

6 rel_mpp(X) Free space Y Z Free

Figure 4.20 Example of Protected Memory Pool Usage

80

Description:

1. A 36-kbyte protected memory pool is created by the configurator.

2. Task B acquires 20-kbyte protected memory block X by issuing pget_mpp.

3. Task B acquires 4-kbyte protected memory block Y by issuing pget_mpp.

4. Task B acquires 8-kbyte protected memory block Z by issuing pget_mpp.

5. Task A attempts to acquire a 16-kbyte protected memory block by issuing pget_mpp. However,
the free space is insufficient, and an E_TMOUT error is returned.

6. Task B returns 20-kbyte block X by issuing rel_mpp.

4.23 Protected Mailbox

A protected mailbox is an object used to pass messages between domains. It can be used only
when the memory object protection function is selected.

High-speed data communication can be achieved because communication using a protected
mailbox sends and receives only the start address of a message.

Only a protected memory block acquired from a protected memory pool can be used as a message.

Protected mailboxes can be created in the following ways.

• Service call cre_mbp or icre_mbp

A protected mailbox is created with a specified ID.

• Service call acre_mbp or iacre_mbp

A protected mailbox is created with the ID automatically assigned by the kernel.

• Created by the configurator

An ID name can be specified. When [Kernel side] is not selected in the configurator, the
configurator can automatically assign an ID.

81

Protected mailboxes are manipulated through the following service calls.

• Service call del_mbp

Deletes the protected mailbox with the specified ID.

• Service call snd_mbp

Sends a protected memory block as a message to a protected mailbox. A message can be sent
only when the domain of the task sending a message is the same as the domain of the protected
memory block to be sent.

For a protected memory block sent to a protected mailbox, the access permission vector is
changed to TACT_KERNEL.

• Service call rcv_mbp or trcv_mbp

Receives a message from a protected mailbox. When data cannot be received (the protected
mailbox has no message), the task enters the WAITING state. In trcv_mbp, a timeout period
can also be specified.

For the received message (protected memory block), the domain is changed to that of the task
that received the message, and the access permission vector is changed so that only the task
that received the message can read or write to the protected memory block.

• Service call prcv_mbp

Receives a message from a protected mailbox. When data cannot be received (the protected
mailbox has no message), an error is returned.

For the received message (protected memory block), the domain is changed to that of the task
that received the message, and the access permission vector is changed so that only the task
that received the message can read or write to the protected memory block.

• Service call ref_mbp or iref_mbp

Refers to the state of a protected mailbox.

Figure 4.21 shows an example of protected mailbox usage.

82

 Protected mailbox status

Time
Task A

(domain 1)

Task B

(domain 2)
 Task queue waiting

for receiving
Sent message

queue

1 cre_mbp None None

2 rcv_mbp Task A None

 <WAITING>

 ≈

3
pget_mpp

-> Get X
 None None

4 <READY> snd_mbx(X) None None

 (Receive X)

5
pget_mpp

-> Get Y
 None None

6 snd_mbp(Y) None Y

 ≈

7 rcv_mbp None None

 (Receive Y)

Figure 4.21 Protected Mailbox Usage

Description:

Bold lines represent executed processing. The following describes the mailbox operation with
respect to time.

1. Task A issues cre_mbp to create a protected mailbox. The TA_TFIFO attribute (tasks waiting
to receive are queued in FIFO) and the TA_MFIFO attribute (sent messages are queued in
FIFO) are specified.

2. Task A attempts to receive a message by issuing rcv_mbp. Since no message is stored in the
protected mailbox, task A enters the WAITING state.

83

3. Task B gets protected memory block X by issuing pget_mpp and creates a message in this
block.

4. Task B sends protected memory block X by issuing snd_mbp. At this time, task A is released
from the WAITING state, and task A receives the address of message X.

5. Task B gets protected memory block Y by issuing pget_mpp and creates a message in this
block.

6. Task B sends protected memory block Y to the mailbox by issuing snd_mbp. At this time,
since no tasks are waiting for a message, message Y is placed in a message queue.

7. Task A issues rcv_mbp. Task A receives the address of message Y, which is at the head of the
message queue.

4.24 System Memory Management

4.24.1 System Pool

The system pool is an area where the kernel allocates the following areas.

• Stack areas for the tasks in user domains

• Fixed-size memory pool areas

• Variable-size memory pool areas

The system pool size should be specified through CFG_SYSPOOLSZ in the configurator.

If a service call requiring the system pool is issued when the system pool does not have sufficient
free space, an E_NOMEM error is returned.

When the memory object protection function is selected, an area allocated in the system pool is
handled as a memory object. The requested allocation size is rounded up to a multiple of
CFG_PAGESZ (4 kbytes). The start address of an allocated area is aligned to a CFG_PAGESZ-
size boundary.

When the memory object protection function is not selected, the requested allocation size is
rounded up to a multiple of 64. The start address of an allocated area is aligned to a 32-byte
boundary.

The current system pool status can be checked by issuing service call vref_syp.

Note that the kernel never creates management tables in the system pool.

The free space in the system pool may be fragmented. Refer to the following.

84

Reference: Section 4.31, Controlling Memory Fragmentation

For calculation of the system pool size, refer to the following.

Reference: Section 14, Estimation of System Pool Size

4.24.2 Resource Pool

The resource pool is an area where the kernel allocates management tables, which are required in a
dynamic manner in the kernel.

The resource pool size should be specified through CFG_RESPOOLSZ in the configurator.

The kernel acquires an area from the resource pool as necessary according to the service call
issued. The requested allocation size is rounded up to a multiple of 20.

If a service call requiring the resource pool is issued when the resource pool does not have
sufficient free space, an E_NOMEM error is returned.

The current resource pool status can be checked by issuing service call vref_rsp.

The free space in the resource pool may be fragmented. Refer to the following.

Reference: Section 4.31, Controlling Memory Fragmentation

For the timing for resource pool requests and calculation of the resource pool size, refer to the
following.

Reference: Section 13, Estimation of Resource Pool Size

4.25 DSP Standby Control

4.25.1 Overview

This function reduces power consumption by making the kernel automatically place the X/Y
memory in the module stop state provided in the microcomputer when programs without the
TA_COP0 attribute are running.

This function also supports the vchg_cop service call, which is used to dynamically change the
TA_COP0 attribute. Using vchg_cop makes it possible to extend the periods over which hardware
resources are placed in the module stop state.

85

Figure 4.22 gives an overview of this function.

Task A
(with TA_COP0)

Task B
(without TA_COP0)

(b
)

vc
hg

_c
op

 n

ot
 in

 u
se

Task A
(without TA_COP0)

Task B
 (without TA_COP0)

vchg_cop (DSP in use) vchg_cop (DSP not in use)

(c
)

vc
hg

_c
op

 in

 u
se

Task A
(with TA_COP0)

Task B
(without TA_COP0) (a

)
U

su
al

op

er
at

io
n

: The DSP is in the module stop state.

: The DSP is not in the module stop state.
: The DSP is not in the module stop state and the DSP operation is in
progress (the hardware module, i.e., the DSP, is actually being accessed).

Figure 4.22 Overview of DSP Standby Control

4.25.2 Applicable Microcomputers

This function is only usable with microcomputers that include a DSP and satisfy the following
condition.

• The register that specifies whether to stop the X/Y memory is 32 bits long.

86

4.25.3 Module Stop State of X/Y Memory when Initiating Programs

When processing of a program is initiated and the DSP-standby control function has been included,
the X/Y memory status becomes as shown in table 4.7.

In the programs for which 'Undefined' are indicated in table 4.7, the X/Y memory associated with
the TA_COP0 attribute must not be accessed. To use the X/Y memory, cancel the module stop
state after saving the module stop state information on the program side when initiating the
program, and return the X/Y memory to the saved state before leaving the program.

Table 4.7 Module Stop State when Initiating Programs

Program Module Stop State

Task, task exception processing routine,
extended service call routine, trap routine

With TA_COP0: Non-module stop state

Without TA_COP0: Module stop state

Interrupt handler Undefined (same state as before the interrupt)

CPU exception handler Undefined (same state as before the CPU exception)

Time event handler Undefined

Initialization routine Undefined

When the kernel is idling (i.e., there is no READY task), the X/Y memory enters the module stop
state.

4.25.4 Notes

For example, when task A with the TA_COP0 attribute specifies the X/Y memory as the source or
destination of a DMA transfer and then starts the transfer, the transfer will not proceed correctly if
execution is switched to task B that does not have the TA_COP0 attribute, since the kernel places
the X/Y memory in module stop state during the execution of task B.

If an interrupt occurs during the above-described transfer by task A and the interrupt handler
issues an extended service call that does not have the TA_COP0 attribute, the transfer will not
proceed correctly since the kernel places the X/Y memory in module stop state during the
execution of the extended service call.

This is because access to the X/Y memory by the DMA is asynchronous with the software
operation, while the module stop control of the X/Y memory is synchronized with task execution.

To avoid this, do not use the DSP standby control function or take the following measures.

87

• Not using DMA transfer with the X/Y memory.

• Keeping the CPU-locked state until the completion of the DMA transfer.

4.26 Performance Management

(1) Overview

The performance management function measures performance such as the time and count of
programs by using the program performance counters built into the microcomputer. Note that
some microcomputers do not have program performance counters.

This function uses program performance counters 0 and 1. Each counter consists of 32 bits.

To include the performance management function, select CFG_PERFORM.

The user should fully understand the operation of the program performance counters. For details,
refer to the appropriate document regarding the target microcomputer, such as SH-4A, SH4AL-
DSP Program Performance Counters Application Notes.

(2) Measurement Items (CFG_PPC0TYPE, CFG_PPC1TYPE)

The items to be measured can be specified through CFG_PPC0TYPE and CFG_PPC1TYPE in the
configurator. The former parameter specifies the measurement in counter 0, and the latter specifies
it in counter 1.

Through each parameter, specify the value to be set to the CIT9 to CIT0 bits (10 bits) in the count
condition set register (CCBR0 or CCBR1). The input value is masked with H'3ff.

For example, specifying 0 indicates the elapsed cycle count. If the measured count is H'100000
when the CPU is operating at 266 MHz, the elapsed time is H'100000/266 MHz = 3942 μs.

(3) Connecting Counters

Each counter has only 32 bits and is quickly overflown. To reduce overflows, two counters can be
connected to become a 64-bit counter. To connect the counters, select CFG_CONNECT.

Note that when the counters are connected, the kernel temporarily stops counting when reading the
counter, that is, an error in the measured value due to this stop will be accumulated.

88

(4) Measurement Targets

The kernel manages the accumulated values of the program performance counters according to the
following classifications.

• Each task (including the extended service call routines and trap routines called from each task)

• Kernel idling state

• Others (non-task context, kernel)

When the memory object protection function is selected, the measured value regarding TLB-
related exception processing by the kernel is included in the value for the context that generated
the exception.

(5) Controlling Program Performance Counters

When service call vsta_knl is issued, the kernel initializes program performance counters 0 and 1
to 0 and starts counting. After that, counting does not stop except for the temporary stop described
in (3) Connecting Counters.

(6) Service Calls

The following service calls are provided.

• vchg_ppc: Starts, stops, or initializes performance measurement

• vref_ppc: Refers to performance measurement result

(7) Using the HI7300/PX with an Emulator

While an emulator is used with the HI7300/PX, the emulator may occupy all of the program
performance counters. Before using the performance measurement function of the kernel, read the
user' s manual or help of the emulator and make a setting so that the emulator will not occupy the
counters. If you wish to use an E10A-USB emulator, for example, select [User] in the [PPC mode]
list box of the [Configuration] dialog box or enter "user" with the PPC_MODE command in the
HEW to release the counters to the user.

4.27 Service Call Trace

The service call trace function acquires the system operation history, such as the service calls
issued or interrupts generated. When the performance management function is used, the program
performance counter values are also traced. The acquired trace information can be displayed by
using the debugging extension.

89

To use the trace function, select CFG_TRACE.

For details of the trace function, refer to the help information regarding the debugging extension.

(1) Trace Timing and Information to be Acquired

The trace information is acquired with the following timing.

• A service call

• Return from a service call

• Initiation of a task or handler

• Completion of a task or handler

• Transition to the kernel idling state

The following information is acquired.

• Parameters for service calls

• Error codes for service calls

• Value of the program counter (PC)

• Values of program performance counters 0 and 1 (only when the performance management
function is used)

(2) Trace Type (CFG_TRCTYPE)

The trace information can be stored either in the buffer allocated in the RAM on the target system
or in the trace memory in the simulator or emulator, which can be selected through
CFG_TRCTYPE. The former is called a target trace and the latter is called a tool trace. For a
target trace, specify the buffer size through CFG_TRCBUFSZ.

(3) Number of Objects (CFG_TRCOBJCNT)

In the debugging extension, the state of the objects specified by the user can also be acquired with
the trace timing. The maximum number of objects that can be traced at one time is specified
through CFG_TRCOBJCNT.

(4) User Event Trace (vget_trc, ivget_trc)

Use vget_trc or ivget_trc to acquire any user-specified information with the user-specified timing.

90

4.28 Other Functions

(1) Rotating Ready Task Queue (rot_rdq, irot_rdq)

By issuing these service calls at specified intervals (for example, issuing from a cyclic handler),
the round-robin scheduling necessary for the time-sharing system can be implemented. (See figure
4.23)

Placed at the end

1 Task

Priority

2

3

n

Task

Task

Task

Task Task

Figure 4.23 Ready Queue Manipulation through Service Call rot_rdq

(2) Acquiring ID of Current Running Task (get_tid, iget_tid)

The ID of the current running task can be acquired through these service calls.

(3) Acquiring ID of Domain of Current Running Task (get_did, iget_did)

The ID of the domain where the current running task is assigned can be acquired through these
service calls.

Extended service call routines and trap routines are assigned to the kernel domain, but through
these service calls, the domain ID of the task that has called an extended service call or trap
routine can be checked.

91

(4) Referring to Configuration Information (ref_cfg, iref_cfg)

The configuration information such as the maximum ID for each object can be acquired through
these service calls.

(5) Referring to Kernel Version Information (ref_ver, iref_ver)

The version information of the kernel can be acquired through these service calls. Part of the
information obtained by ref_ver can also be checked through configuration constants.

Reference: Section 6.1.5 (1), Configuration Constants

4.29 Kernel Idling

When there is no READY task, the kernel enters an endless loop and waits for an interrupt.

To use a power-down mode of the CPU, the lowest-priority task is usually used for transition to
that mode.

92

4.30 Resetting the CPU and Initiating the Kernel

Figure 4.24 shows a general flow from a CPU reset to kernel initiation (vsta_knl). Note that no
parameters or codes will be returned from vsta_knl.

For the flow from a vsta_knl call to transition to multitasking environment, refer to the following.

Reference: Section 6.22.12, Start Kernel (vsta_knl, ivsta_knl)

[H’A0000000 = ROM]
Assembly-language routine
- Initialize the stack pointer (R15).
- Initialize the bus state controller.

C-language function (usually in ROM)
- Initialize the module stop registers.
- Initialize the MMU.
- Initialize the on-chip RAM (RAMCR).
- Initialize the cache.

Reset

Initiate the kernel (vsta_knl)

Refer to sample file
reset.src.

Refer to sample file
reset.prg.c.

Figure 4.24 Flowchart from CPU Reset to Kernel Initiation

93

(1) Initializing Bus State Controller

To execute a C-language function, the RAM area to be used for stacks or data sections must be
ready to be accessed. When a RAM, such as SDRAM, that should be initialized is used, initialize
the bus state controller before executing a C-language function.

The bus state controller must be initialized according to the specifications of the target board.

(2) Initializing Module Stop Registers

When there is no need to use some modules in the system, these modules should be stopped to
reduce power consumption. For the modules to be used in the system, the module stop state must
be canceled.

When the memory object protection function is selected, cancel the module stop state for the TLB
at this step.

(3) Initializing MMU

When the memory object protection function is not selected, initialize MMUCR to 0.

When the memory object protection function is selected, refer to the following.

Reference: Section 6.22.12, Start Kernel (vsta_knl, ivsta_knl)
 Section 4.21.10, MMU Initialization

When the 32-bit address extended mode is used, refer to the following.

Reference: Section 5.6, 32-Bit Address Extended Mode

(4) Initializing RP and RMD Bits in RAMCR

These bits are initialized in vsta_knl execution when the memory object protection function is
selected.

When the memory object protection function is not selected, the kernel does not initialize these
bits. Refer to the following.

Reference: Section 5.2.3, On-Chip Memory

94

(5) Initializing Cache and IC2W and OC2W Bits in RAMCR

These are initialized when cache support function sh4a_vini_cac() is called.

(6) Disabling Interrupts and Suppressing CPU Exceptions

The kernel becomes ready for interrupt and CPU exception handling only after the kernel is
initiated. Generally, all interrupts must be disabled and CPU exceptions must not be generated
until the kernel is initiated.

To disable all interrupts, set SR.BL = 1. Immediately after a CPU reset, this state is automatically
entered.

When the memory object protection function is selected, the MMU must be enabled on the
application side before the kernel is initiated. Even in this case, MMU mapped areas must not be
accessed to ensure that no CPU exception (TLB-related exception) occurs until the kernel is
initiated.

If a CPU exception occurs while SR.BL = 1, execution branches to the reset vector.

For initialization of sections and standard library functions, refer to the following.

Reference: Section 11.7, Standard Library Functions and Runtime Routines

95

4.31 Controlling Memory Fragmentation (VTA_UNFRAGMENT
Attribute)

The free space may be fragmented in the following areas.

• Variable-size memory pool

• Protected memory pool

• System pool

• Resource pool

Repeated acquisition and return of memory from these areas causes fragmentation of free space
and contiguous free space can become insufficient even if the total size of the free space is
sufficient; as a result, no large memory area can be acquired (figure 4.25).

Free space
Used

Free space

Used
Used

Free space

Used

Figure 4.25 Fragmentation of Free Space

This kernel supports the sector management method to reduce this fragmentation; that is, the
VTA_UNFRAGMENT attribute for variable-size memory pools and protected memory pools. The
system pool and resource pool supports a similar measure.

The sector management method reduces fragmentation when a large number of small blocks and
some large blocks are allocated in a large memory pool.

96

In this method, up to (minimum block size × 8 bytes) is handled as a "small block" size. The size
of each memory acquisition request is rounded up as shown in table 4.8.

When a "small block" is requested, the kernel creates a sector consisting of blocks whose size is a
rounded value of the requested size. The size of the sector is always (minblksz × 32). In other
words, the number of blocks in the sector depends on the requested size.

Table 4.8 Handling of “Small Blocks”

Requested Block Size* Rounded-up Block Size
Number of Blocks in the
Sector

0 < blksz ≤ minblksz minblksz 32

minblksz < blksz ≤ minblksz × 2 minblksz × 2 16

minblksz × 2 < blksz ≤ minblksz × 4 minblksz × 4 8

minblksz × 4 < blksz ≤ minblksz × 8 minblksz × 8 4

Note: blksz and minblksz mean the requested size and the minimum block size, respectively.

The kernel then assigns the memory blocks in the sector. The remaining blocks in the sector are
reserved for later requests for memory blocks with this size or a smaller size.

In this manner, small blocks are allocated contiguously so that a larger free space is left available.

Figure 4.26 shows an example of a variable-size memory pool when the minimum block size is 32.

First a 32-byte memory block is requested. Sector [A] with 32 × 32 = 1024 bytes is allocated and
32-byte area [A-1] in the sector is assigned for the requested block (figure 4.26 (1)). When a 16-
byte memory block is then requested, 32-byte area [A-2] in sector A is assigned (figure 4.26 (2)).

Next, a 36-byte memory block is requested. Since the size of each block in sector A is 32 bytes, no
block in sector A can be assigned for this request. To respond to this request, new sector [B] is
allocated for 16 blocks × 64 bytes (the requested size, 36, is rounded up to a multiple of the
minimum block size) = 1024 bytes, and 64-byte area [B-1] is assigned for the requested block
(figure 4.26 (3)).

97

[A-1] 32
[A-2] 32
[A-3] 32

[A-32] 32
...

[B-1] 64
[B-2] 64
[B-3] 64

� c

[B-16] 64

Sector [A]

Sector [B]

(1) (2)

[A-1] 32
[A-2] 32
[A-3] 32

[A-32] 32
...

[A-1] 32
[A-2] 32
[A-3] 32

[A-32] 32
...

(3)

Figure 4.26 Example of Variable-Size Memory Pool

The minimum block size and the maximum number of sectors are determined according to the
pool type as shown in table 4.9.

If the maximum number of sectors have already been used or free space is not sufficient to create a
new sector, the requested size of the memory block is allocated without creating a sector. In this
case, free space may be fragmented.

When all blocks in a sector are released, the sector itself is also released.

98

Table 4.9 Minimum Block Size and Maximum Number of Sectors for Each Pool

Pool Minimum Block Size
Maximum Number of
Sectors

Variable-size memory pool Specified at creation Specified at creation

Protected memory pool Specified at creation Specified at creation

Memory object protection
function selected

CFG_PAGESZ
(= 4 kbytes)

System pool

Memory object protection
function not selected

64

Specified by configurator
(CFG_SYSPOOLSCTNUM)

Resource pool 20 As many sectors as possible
can be created on request.

4.32 Debugging Extension

The debugging extension adds multitasking debugging functions to HEW. It can be downloaded
from our website.

The debugging extension provides the following functions. For details, refer to the manual or help
information for the debugging extension.

(1) Referring to Object States

The states of various objects such as tasks or semaphores can be displayed.

(2) Changing Object States (Issuing Service Calls)

Object states can be changed by initiating a task or setting an event flag. This function is available
only when CFG_ACTION is selected in the configurator.

(3) Displaying Trace Information

This function is available only when CFG_TRACE is selected in the configurator.

99

Section 5 Logical Address Space

5.1 Overview

This kernel always assume logical addresses = physical addresses regardless of whether the
memory object protection function is used.

In this kernel, the logical addresses for all code and data areas are determined by section allocation
at linkage in principle. Each section must be allocated to an appropriate logical address according
to the function of the section. The description in this section should be fully understood to
determine appropriate addresses.

This section gives necessary information regarding actual addresses for external memory and on-
chip memory.

5.2 When Memory Object Protection Function Is Not Used

5.2.1 Overview

When the memory object protection function is not selected, memory protection is available with
distinction between the privileged mode (kernel domain) and user mode (user domain).

For the SH4AL-DSP or SH-4A CPU, the exceptions listed in table 5.1 can be detected. The
exception conditions indicated in bold face in the table are related to memory protection. For
details, refer to the manual of the target microcomputer.

100

Table 5.1 Protection-Related Exceptions Detected by CPU

Exception Code
(EXPEVT) Exception Conditions

H'0E0 *2 (1) Instruction address error: Detected under either of the following conditions.

⎯ Instruction fetch from address H'80000000 or a higher address in
the user mode *1

⎯ Instruction fetch from an odd address

(2) Data address error (read): Detected under either of the following

conditions.

⎯ Data read from address H'80000000 or a higher address in the
user mode *1

⎯ Read access with illegal alignment

H'100 *2 Data address error (write): Detected under either of the following conditions.

• Write to address H'80000000 or a higher address in user mod *1

• Write access with illegal alignment

H'180 *2 General illegal instruction exception: Detected under any of the following
conditions.

• Decoding in the user mode of a privileged instruction not in a delay
slot

• Decoding of an undefined instruction not in a delay slot

• DSP instruction execution while SR.DSP = 0 (SH4AL-DSP only)

H'1A0 *2 Slot illegal instruction exception: Detected under any of the following
conditions.

• Decoding in the user mode of a privileged instruction in a delay slot

• Decoding of an undefined instruction in a delay slot

• Decoding of an instruction that modifies PC in a delay slot

• Decoding of a PC-relative MOV or MOVA instruction in a delay slot

H'800 General FPU disable exception (SH-4A only):

 Decoding of an FPU instruction not in a delay slot while SR.FD = 1

H'820 Slot FPU disable exception (SH-4A only):

 Decoding of an FPU instruction in a delay slot while SR.FD = 1

Notes: *1 On-chip memory can be accessed in some cases. For details, refer to section 5.2.3,
On-Chip Memory.

 *2 The sample system defines a CPU exception handler (samples\sysapp\cpuexc.c) for
these exception codes.

101

5.2.2 External Memory

The logical address space of the external memory is divided into areas as shown in table 5.2.

Table 5.2 Areas in External Memory Address Space

Operation with Cache Enabled Area
(Address Range)

Access in
User Mode Read Write Remarks

P0/U0 area
(0 to H'7fffffff)

Allowed Cacheable Cacheable *1

P1 area
(H'80000000 to
H'9fffffff)

Not allowed Cacheable Cacheable *2

P2 are
(H'a0000000 to
H'bfffffff)

Not allowed Non-cacheable Non-cacheable

P3 area
(H'c0000000 to
H'dfffffff)

Not allowed ⎯ ⎯ It is prescribed in the
kernel specifications
that the P3 area
must not be used.

P4 area
(H'e0000000 to
H'ffffffff)

Not allowed Non-cacheable Non-cacheable On-chip resources of
the microcomputer
are mapped to this
area.

Notes: *1 The cache write mode is set to the write-through mode when the WT bit in CCR is 1
(TCAC_P0_WT is specified in vini_cac); otherwise, it is the copy-back mode.

 *2 The cache write mode is set to the copy-back mode when the CB bit in CCR is 1
(TCAC_P1_CB is specified in vini_cac); otherwise, it is the write-through mode.

102

5.2.3 On-Chip Memory

(1) Logical Addresses for On-Chip Memory

The logical addresses of the on-chip memory are mapped to the P2 or P4 area, but the attributes of
these addresses are different from those of the P2 or P4 area for external memory; the attributes
are determined by the RMD bit setting in RAMCR.

Table 5.3 shows the attributes of the logical addresses for the on-chip memory. Access to the on-
chip memory is always non-cacheable. The RMD bit in RAMCR must be initialized appropriately
by the application, with reference to table 5.3.

Table 5.3 Attributes of Logical (Virtual) Addresses for On-Chip Memory

Operation with Cache Enabled

RAMCR.RMD Value Access in User Mode Read Write

0 Not allowed * Non-cacheable Non-cacheable

1 Allowed Non-cacheable Non-cacheable

Note: When SR.DSP = 1, access is allowed even in a user domain.

(2) Enabling Cacheable Access

The following describes how to enable cacheable access to the on-chip memory.

Note that for some types of on-chip memory, such as X/Y memory or L memory, cacheable access
is never allowed.

(a) On-chip memory whose physical addresses are mapped to area 1

Some microcomputer includes on-chip memory whose physical addresses are mapped to area 1.
Such memory can be accessed through area 1 (in P0/U0 area) or using its shadow addresses in P1
area. The attributes of these addresses accessed in this way are the same as those of the external
memory.

(b) Using 32-bit address extended mode

In a microcomputer supporting the 32-bit address extended mode, the physical addresses of the
on-chip memory can be mapped to the logical addresses of the P1 or P2 area by making an
appropriate setting in PMB. The cache operation can be controlled through C and WT bits in
PMB. However, note that the P1 and P2 area cannot be accessed in the user mode.

103

5.3 When Memory Object Protection Function Is Used

5.3.1 Overview

(1) MMU Mapped Area and MMU Non-Mapped Area

All addresses in the logical address space are classified into either the MMU mapped area or the
MMU non-mapped area.

(a) MMU Non-Mapped Area

An MMU non-mapped area is accessed without MMU intervention. This type of areas can be
normally accessed only in the privileged mode. However, the on-chip memory can also be
accessed in the user mode when CFG_IRAMUSAGE is appropriately set in the configurator.

(b) MMU Mapped Area

Access to an MMU mapped area is checked by the MMU. Areas to be used as memory objects,
such as static memory objects, must be allocated in MMU mapped areas.

(2) Detection of Illegal Access

When the memory object protection function is selected, two types of memory protection
functions work: one is provided by the CPU and the other by the MMU.

Protection by the CPU is exactly the same as the protection when the memory object protection
function is not used. See section 5.2.1, Overview.

The MMU detects the following illegal access to the MMU mapped area.

1. No memory object is found in the accessed address.

2. Write access to a memory object having the TA_RO attribute was attempted.

3. A memory object was accessed from a user domain that is not allowed to access by the access
permission vector for that memory object.

To implement this function, the kernel handles the following CPU exceptions. Even if a CPU
exception handler is defined for any of these exception codes, the kernel ignores it.

• EXPEVT = H'040: Instruction TLB miss exception or data TLB miss exception (read)

• EXPEVT = H'060: Data TLB miss exception (write)

• EXPEVT = H'0A0: Instruction TLB protection violation exception or data TLB protection
violation exception (read)

104

• EXPEVT = H'0C0: Data TLB protection violation exception (write)

If an illegal access is attempted, the memory access violation handler (samples\sysapp\mavhdr.c)
is initiated. A memory access violation handler must be created and installed in the system.

The MMU hardware provides the following functions, but this kernel uses the MMU only for
access protection and cache control, that is, address translation is not performed.

• Address translation

• Access protection

• Cache control

Note: Section 8.9, Memory Access Violation Handler

105

5.3.2 External Memory Space

The logical address space of the external memory is divided into areas as shown in table 5.4

Table 5.4 Areas in External Memory Address Space

Operation with Cache
Enabled Area

(Address
Range)

MMU
Mapped/
Non-Mapped
Area

Access in User
Mode

Read Write
Remarks

P0/U0 area
(0 to H'7fffffff)

MMU mapped
area

Depends on the
access
permission vector
for the target
memory object

Depends on the memory
object attribute

P1 area
(H'80000000
to H'9fffffff)

MMU non-
mapped area

Not allowed Cacheable Cacheable
*1

P2 area
(H'a0000000
to H'bfffffff)

MMU non-
mapped area

Not allowed Non-
cacheable

Non-
cacheable

P3 area
(H'c0000000
to H'dfffffff)

⎯ Not allowed ⎯ ⎯ It is prescribed
in the kernel
specifications
that the P3 area
must not be
used.

P4 area
(H'e0000000
to H'ffffffff)

MMU non-
mapped area

Not allowed Non-
cacheable

Non-
cacheable

On-chip
resources of the
microcomputer
are mapped to
this area.

Note: *1 The cache write mode is set to the copy-back mode when the CB bit in CCR is 1
(TCAC_P1_CB is specified in vini_cac); otherwise, it is the write-through mode.

106

5.3.3 On-Chip Memory

(1) Logical Addresses for On-Chip Memory

The attributes of the logical addresses for the on-chip memory are determined according to the
settings in the configurator. The kernel initializes the RP and RMD bits in RAMCR according to
the configurator settings during execution of vsta_knl.

Table 5.5 shows the attributes of the logical addresses for the on-chip memory. Access to the on-
chip memory is always non-cacheable.

Table 5.5 Attributes of Logical (Virtual) Addresses for On-Chip Memory and RAMCR
Initialization by vsta_knl

Configurator
Setting

Operation with Cache
Enabled CFG_

IRAMUSAGE

MMU
Mapped/
Non-
Mapped
Area

Access in User
Mode Read Write

RAMCR
Initialization
by vsta_knl

(1) MMU non-
mapped area,
accessible in
any mode

MMU non-
mapped
area

Allowed Non-
cacheable

Non-
cacheable

RP = 0

RMD = 1

(2) MMU non-
mapped area,
not accessible
in user (non-
DSP) mode

MMU non-
mapped
area

Not allowed *1 Non-
cacheable

Non-
cacheable

RP = 0

RMD = 0

(3) MMU
mapped area

MMU
mapped
area

Depends on the
access permission
vector for the
target memory
object

Non-
cacheable
*2

Non-
cacheable
*2

RP = 1

RMD = 1

Notes: *1 When SR.DSP = 1, access is allowed even from a user domain.
 *2 Always non-cacheable regardless of the memory object attribute.

(2) Enabling Cacheable Access

The following describes how to enable cacheable access to the on-chip memory.

Note that for some types of on-chip memory, such as X/Y memory or L memory, cacheable access
is never allowed.

107

(a) On-chip memory whose physical addresses are mapped to area 1

Some microcomputer includes on-chip memory whose physical addresses are mapped to area 1.
Such memory can be accessed through area 1 (in P0/U0 area) or using its shadow addresses in P1
area. The attributes of these addresses accessed in this way are the same as those of the external
memory.

(b) Using 32-bit address extended mod

In a microcomputer supporting the 32-bit address extended mode, the physical addresses of the
on-chip memory can be mapped to the logical addresses of the P1 or P2 area by making an
appropriate setting in PMB. The cache operation can be controlled through C and WT bits in
PMB. However, note that the P1 and P2 area cannot be accessed in the user mode.

5.3.4 Note on Use

A TLB miss exception may occur during access to an MMU mapped area. If this exception occurs
while the BL bit in SR is 1, the CPU is reset; so, do not access an MMU mapped area while BL =
1. Neither data to be accessed nor the program that accesses the data must be allocated in an MMU
mapped area.

5.4 On-Chip Resources Allocated in P4 Area

As shown in table 5.2, the P4 area cannot be accessed from a user domain.

The only way to access an on-chip resource allocated in the P4 area from a user domain is to
register the resource as a static memory object by using the memory object protection function.

5.5 On-Chip Resources whose Physical Addresses Are Allocated in
Area 1

In usual operation, the first three bits of the physical address of such a resource must be modified
to B'101 to access it as the P2 area. As shown in table 5.2, the P2 area cannot be accessed from a
user domain.

The only way to access such a resource in the user mode is to register the resource as a static
memory object by using the memory object protection function.

108

5.6 32-Bit Address Extended Mode

Some microcomputers supports the 32-bit address extended mode. To use this mode, take the
following initialization steps before initiating the kernel. Refer also to sample file
samples\sh7780\kernel\knl_side\7780\init_mmu.c.

1. Make a setting in PMB.

2. Turn on the SE bit in PASCR.

3. Enable the MMU if necessary.

When using the 32-bit address extended mode, note that the attributes of the P1 and P2 area
depend on the PMB setting.

109

Section 6 Service Calls

6.1 C-Language API

6.1.1 Calling Form

All service calls are described in the following C language function call format.

ercd = act_tsk (1);

6.1.2 Header File

(1) include\itron.h

itron.h defines necessary information such as basic data types.

(2) include\kernel.h

kernel.h defines the specifications of the kernel and includes itron.h and the files listed in table 6.1.

Table 6.1 Files Included in kernel.h

File Name Description
include\kernel_api.h Defines the kernel service calls.
include\kernel_tsz.h Defines the macros for memory size specifications.
kernel_macro.h Defines the macros for kernel specifications. The configurator creates this

header file.

6.1.3 Header Files Output from the Configurator

The configurator outputs three header files: kernel_macro.h, kernel_id.h, and kenrel_id_sys.h.

(1) kernel_macro.h

This file contains the define statements for part of the configurator settings. For the detailed
contents, refer to table 6.3.

kernel_macro.h is included in kernel.h; the application does not need to directly include
kernel_macro.h.

Note that kernel_macro.h is not output when the configurator is in kernel-locked mode.

(2) kernel_id.h and kernel_id_sys.h

These files contain the define statements for the ID names specified and output by the
configurator.

kernel_id_sys.h contains the ID names of the objects created with the [Kernel Side] checkbox
being selected through the configurator and kernel_id.h contains the ID names of the objects
created without the checkbox being selected.

110

Note that kernel_id_sys.h is not output when the configurator is in kernel-locked mode.

These files must be explicitly included in the application as necessary. Any kernel side file must
not include kernel_id.h.

6.1.4 Basic Data Type

The basic data types defined in itron.h are shown below.

typedef signed char B; /* signed 8 bit integer */
typedef signed short H; /* signed 16 bit integer */
typedef signed long W; /* signed 32 bit integer */
typedef signed long long D; /* signed 64 bit integer */

typedef unsigned char UB; /* unsigned 8 bit integer */
typedef unsigned short UH; /* unsigned 16 bit integer */
typedef unsigned long UW; /* unsigned 32 bit integer */
typedef unsigned long long UD; /* unsigned 64 bit integer */

typedef B VB; /* variable data type (8 bit) */
typedef H VH; /* variable data type (16 bit) */
typedef W VW; /* variable data type (32 bit) */
typedef D VD; /* variable data type (64 bit) */

typedef void *VP; /* pointer to variable data type */
typedef void (*FP)(void); /* program start address */

typedef int INT; /* signed integer (CPU dependent) */
typedef unsigned int UINT; /* unsigned integer (CPU dependent) */

typedef INT BOOL; /* Bool value */

typedef W FN; /* function code */
typedef W ER; /* error code */
typedef H ID; /* object ID (xxxid) */
typedef UW ATR; /* attribute */
typedef UW STAT; /* object status */
typedef UW MODE; /* action mode */
typedef H PRI; /* task priority */
typedef UW SIZE; /* memory area size */

typedef W TMO; /* time out */
typedef UW RELTIM; /* relative time */

typedef struct { /* system clock */
 UH utime; /* current date/time (upper) */
 VH _Hrsv1; /* reserved */
 UW ltime; /* current date/time (lower) */
 } SYSTIM;

typedef INT VP_INT; /* integer or pointer to var. data */

typedef ER ER_BOOL; /* error code or bool value */
typedef ER ER_ID; /* error code or object ID */
typedef ER ER_UINT; /* error code or unsigned integer */

For the structures used in service calls, refer to the description of each service call.

111

6.1.5 Constants and Macros

(1) Configuration Constants

Configuration constants specify the kernel configuration information.

Some configuration constants are predetermined as the kernel specifications, and the others should
be specified through the configurator. The former constants are defined in kernel.h, and the latter
constants are defined in kernel_macro.h output from the configurator.

Table 6.2 Configuration Constants Defined in kernel.h

No. Constant Definition Description

1 TMIN_TPRI 1 Minimum value of task priority

2 TMIN_MPRI 1 Minimum value of message priority

3 TKERNEL_MAKER H'0115 Kernel maker code

This value is same as parameter maker which
is returned by a ref_ver service call.

4 TKERNEL_PRID H'0012 Kernel ID

This value is same as parameter prid which is
returned by a ref_ver service call.

5 TKERNEL_SPVER H'5402 ITRON specification version number

This value is same as parameter spver which
is returned by a ref_ver service call.

6 TKERNEL_PRVER H'0100 Kernel version number

This value is same as parameter prver which is
returned by a ref_ver service call.

7 TKERNEL_PXVER H'0100 Version number of the μITRON4.0 protection
extension specification

This value is same as parameter pxver which
is returned by a ref_ver service call.

8 TBIT_TEXPTN 32 Number of task exception cause bits

9 TBIT_FLGPTN 32 Number of event flag bits

10 TMAX_MAXSEM 65535 Maximum number of semaphore resources

112

Table 6.3 Configuration Constants Defined in kernel_macro.h

No. Constant
Related Configurator
Setting Description

1 TIC_NUME CFG_TICNUME Numerator of time tick cycle

2 TIC_DENO CFG_TICDENO Denominator of time tick cycle

3 TMAX_TPRI CFG_MAXTSKPRI Maximum value of task priority

4 TMAX_MPRI CFG_MAXMSGPRI Maximum value of message priority

5 TMAX_ACTCNT CFG_MAXACTCNT Maximum number of task initiation
requests in a queue

6 TMAX_WUPCNT CFG_MAXWUPCNT Maximum number of task wakeup
requests in a queue

7 TMAX_SUSCNT CFG_MAXSUSCNT Maximum number of nesting levels for
task suspend requests

8 VTCFG_PROTMEM CFG_PROTMEM Memory object protection function
selection

1 when CFG_PROTMEM is selected, or
0 when CFG_PROTMEM is not
selected.

9 VTCFG_PAGESZ CFG_PAGESZ Default MMU page size

4096 when the memory object
protection function is selected, or 0
when it is not selected.

10 VTCFG_TMRCLOCK CFG_TMRCLOCK Frequency input to the timer device

11 VTCFG_TIMINTNO CFG_TIMINTNO Standard timer driver interrupt number

12 VTCFG_KNLLVL CFG_KNLLVL Kernel interrupt mask level and timer
interrupt level

(2) Error Codes

The error codes returned from service calls are defined in itron.h.

Reference: Section 17.2, Service Call Error Code List

The following macros are provided to manipulate error codes.

113

Table 6.4 Error Code Manipulating Macros (itron.h)

No. Macro Name Description

1 ER ercd = MERCD(ER ercd) Returns the main error code for ercd.

2 ER ercd = SERCD(ER ercd) Returns the suberror code for ercd. *

Note: For all errors returned from kernel service calls, the suberror code is set to -1.

(3) Macros for Size Calculation

The following macros are provided to calculate the size (bytes).

• Macros for calculating the area size to be specified on the application side (table 6.5)

• A macro for calculating the size to be used in the message buffer (table 6.6)

• Macros for calculating the size to be used in the resource pool

For the macros for resource pool size, refer to the following.

Reference: Section 13, Estimation of Resource Pool Size

Table 6.5 Macros for Calculating Area Size to be Specified on the Application Side
(kernel_tsz.h)

Macro Description

SIZE mbfsz = TSZ_MBFMB (

UINT msgcnt,

UINT msgsz)

Approximate size of the message buffer area that can hold
the msgcnt number of msgsz-byte messages. Use this
macro to estimate the approximate mbfsz value to be
specified in cre_mbf or acre_mbf.

SIZE mbfsz = TSZ_MBF (

UINT msgcnt,

UINT msgsz)

Same as TSZ_MBFMB.

SIZE mpfsz = TSZ_MPF (

UINT blkcnt,

UINT blksz)

Size of the fixed-size memory pool area that can hold the
blkcnt number of blksz-byte memory blocks. Use this
macro to calculate the size of the fixed-size memory pool
area when it should be allocated on the application side.

SIZE mplsz = TSZ_MPL (

UINT blkcnt,

UINT blksz)

Approximate size of the variable-size memory pool area
that can hold the blkcnt number of blksz-byte memory
blocks. Use this macro to estimate the approximate size of
the variable-size memory pool area when it should be
allocated on the application side.

SIZE mplsz = TSZ_MPP (

UINT blkcnt,

UINT memsz)

Approximate size of the protected memory pool area that
can hold the blkcnt number of memsz-byte protected
memory blocks.

114

Table 6.6 Macro for Calculating the Size to be Used in Message Buffer (kernel_tsz.h)

Macro Description

SIZE size = VTSZ_MBFMSGMB(

UINT msgsz)

Size of the message buffer area to be used when a
msgsz-byte message is stored in the message buffer.

(4) Alignment Check Macros

The following macros are provided to check data alignment.

Table 6.7 Alignment Check Macros (itron.h)

No. Macro Name Description

1 BOOL align =
ALIGN_VB(VP addr)

Returns TRUE (1) when data alignment at the addr address
allows VB-type data access; otherwise, returns FALSE (0).

2 BOOL align =
ALIGN_VH(VP addr)

Returns TRUE (1) when data alignment at the addr address
allows VH-type data access; otherwise, returns FALSE (0).

3 BOOL align =
ALIGN_VW(VP addr)

Returns TRUE (1) when data alignment at the addr address
allows VW-type data access; otherwise, returns FALSE (0).

4 BOOL align =
ALIGN_VD(VP addr)

Returns TRUE (1) when data alignment at the addr address
allows VD-type data access; otherwise, returns FALSE (0).

5 BOOL align =
ALIGN_VP(VP addr)

Returns TRUE (1) when data alignment at the addr address
allows VP-type data access; otherwise, returns FALSE (0).

(5) Other Constants and Macros

The other constants and macros are described in the related service call descriptions.

115

6.2 Register Contents Guaranteed after Issuing Service Call
Some registers guarantee the contents after a service call is issued but some do not. This rule
follows the Renesas C compiler. The details are shown below.

Table 6.8 Register Contents after Issuing Service Call

Register Register State after Service Call Return

SR, R8 to R15, PR,
GBR, MACH, MACL

The register contents are guaranteed. IMASK bits in SR are updated
when service call chg_ims, ichg_ims, loc_cpu, iloc_cpu, unl_cpu, or
iunl_cpu is issued.

R0 Normal termination (E_OK) or an error code is set.

R1 to R7 The register contents will not be guaranteed.

For DSP:
DSR, RS, RE, MOD,
A0, A0G, A1, A1G, M0,
M1, X0, X1, Y0, Y1

The register contents will be guaranteed in either one of the following
states.
• When a service call is issued from a program with TA_COP0 attribute
• When a service call is issued in dispatch-pended state *

For FPU:
FPR0_BANK0 to
FPR11_BANK0

(1) When FPSCR.FR = 0
The register contents will be guaranteed when a service call is issued in
dispatch-pended state. *
(2) When FPSCR.FR = 1
The register contents will be guaranteed in either one of the following
states.
• When a service call is issued from a program with
 TA_COP1|TA_COP2 attribute
• When a service call is issued in dispatch-pended state *

For FPU:
FPR12_BANK0 to
FPR15_BANK0,
FPSCR, FPUL

The register contents will be guaranteed in either one of the following
states.
• When a service call is issued from a program with TA_COP1 attribute
• When a service call is issued in dispatch-pended state *

For FPU:
FPR0_BANK1 to
FPR11_BANK1

(1) When FPSCR.FR = 0
The register contents will be guaranteed in either one of the following
states.
• When a service call is issued from a program with
 TA_COP1|TA_COP2 attribute
• When a service call is issued in dispatch-pended state *
(2) When FPSCR.FR = 1
The register contents will be guaranteed when a service call is issued in
dispatch-pended state. *

For FPU:
FPR12_BANK1 to
FPR15_BANK1

The register contents will be guaranteed in either one of the following
states.
• When a service call is issued from a program with
 TA_COP1|TA_COP2 attribute
• When a service call is issued in dispatch-pended state *

Note: These registers are not accessed during the service call processing in the kernel.

116

6.3 Return Value of Service Call and Error Code

6.3.1 Overview

For service calls that have return values, a positive value or 0 (E_OK) indicates normal
termination, and a negative value indicates an error code. However, for service calls that have a
BOOL-type return value, this is not the case. The meaning of the return value at normal
termination differs according to the service call; however, only E_OK is returned at normal
termination for many service calls.

An error code consists of a main error code (lower 8 bits) and a suberror code (the remaining
upper bits). The suberror code of this kernel is always set to –1.

The following macros are defined in standard header itron.h.

• ER mercd = MERCD(ER ercd); Extracts the main error code from the error code.

• ER sercd = SERCD(ER ercd); Extracts the suberror code from the error code.

6.3.2 Parameter Check Function

In this kernel, detection of parameter errors can be stopped. If the parameter check function is
removed after debugging is completed, the overhead or code size can be reduced.

To remove the parameter check function, deselect CFG_PARCHK through the configurator.

6.3.3 Access Permission Check Function for Address Parameters

When the memory object protection function is selected, the address parameters such as packet
addresses specified in service calls are checked whether their access permission is right. However,
this check needs the processing equivalent to the prb_mem service call and causes a large
overhead. When debugging has been properly performed and the access permission check is not
necessary, this check can be omitted.

To remove the access permission check function for address parameters, deselect
CFG_MEMCHK.

6.3.4 E_NOSPT Error

An E_NOSPT error will be returned if an unembedded service call is issued.

117

6.4 System State and Service Calls
Whether a service call can be issued depends on the system state.

6.4.1 CPU Exception Handler

The service calls that can be issued from the CPU exception handler are listed below.

• iras_tex

• vsta_knl, ivsta_knl

• vsys_dwn, ivsys_dwn

No E_CTX error will be detected when a service call other than these is called from the CPU
exception handler. In this case, correct operation cannot be guaranteed.

6.4.2 Task Context and Non-Task Context

(1) Special Service Calls

The following service calls can be issued in either a task context or a non-task context.

• vsta_knl, ivsta_knl

• vsys_dwn, ivsys_dwn

(2) Service Calls Starting with sns

The service calls whose names start with "sns" can be issued in either a task context or a non-task
context.

(3) Other Service Calls

The service calls whose names start with "i" are dedicated to non-task context, and the other
service calls are for task context.

The service calls for task context are further classified into the following two types.

(a) Service calls for which no corresponding service calls starting with "i" are provided (e.g.
del_tsk; there is no idel_tsk)

If this type of service call is issued in a non-task context, an E_CTX error will be returned.

(b) Service calls for which corresponding service calls starting with "i" are provided (e.g. act_tsk
and iact_tsk)

In the kernel, the processing for a service call with "i" is the same as that for the corresponding
service call without "i". Accordingly, when a service call starting with "i" is issued in a task
context or when a service call without "i" is issued in a non-task context, no E_CTX error will
be detected and the service call is processed correctly.

118

Note that this behavior is only for this version of kernel implementation, and it may change in
a later version of the kernel.

It is recommended that any application should observe the rule that the service calls starting
with "i" are for non-task context and the other service calls are for task context.

6.4.3 CPU-Locked State

Service calls that can be issued in the CPU-locked state are listed below. No E_CTX error is
returned when a service call other than these is called in the CPU-locked state. In this case, correct
system operation cannot be guaranteed. Note that, when a service call that shifts a task to the
WAITING state is called, an E_CTX error is returned. Refer to "Error Code" in each service call
description for this type of E_CTX error.

• ext_tsk (CPU-locked state will be canceled)

• exd_tsk (CPU-locked state will be canceled)

• sns_tex

• loc_cpu, iloc_cpu

• unl_cpu, iunl_cpu

• sns_ctx

• sns_loc

• sns_dsp

• sns_dpn

• vsta_knl, ivsta_knl

• vsys_dwn, ivsys_dwn

6.4.4 Dispatch-Disabled State

When a service call that shifts a task to the WAITING state is issued in this state, an E_CTX error
is returned. Refer to "Error Code" in each service call description for this type of E_CTX error.

6.4.5 When SR.IMASK is Modified to a Non-Zero Value through chg_ims in Task
Context

When a service call that shifts a task to the WAITING state is issued in this state, an E_CTX error
is returned. Refer to "Error Code" in each service call description for this type of E_CTX error.

119

6.5 Service Calls not in the μITRON4.0 Specification
Service calls whose name start with “v”, “iv”, or “V”, such as vset_tfl, are service calls that are not
defined in the µITRON4.0 specification or the protection function extension of the µITRON4.0
specification.

The following "ixxx_yyy"-format service calls (starting with "i'") are not defined in the
µITRON4.0 specification. They are provided to enable the "xxx_yyy"-format service calls
corresponding to the following service calls to be issued in a non-task context because the
"xxx_yyy"-format service calls are defined to be issued only in a task context in the µITRON4.0
specification or the protection function extension of µITRON4.0 specification.

icre_tsk, iacre_tsk, ican_act, ista_tsk, ichg_pri, iget_pri, iref_tsk, iref_tst, ican_wup, isus_tsk,
irsm_tsk, ifrsm_tsk, idef_tex, iref_tex, icre_sem, iacre_sem, ipol_sem, iref_sem, icre_flg,
iacre_flg, iclr_flg, ipol_flg, iref_flg, icre_dtq, iacre_dtq, iref_dtq, icre_mbx, iacre_mbx, isnd_mbx,
iprcv_mbx, iref_mbx, icre_mbf, iacre_mbf, ipsnd_mbf, iref_mbf, icre_mpf, iacre_mpf, ipget_mpf,
irel_mpf, iref_mpf, icre_mpl, iacre_mpl, ipget_mpl, irel_mpl, iref_mpl, iset_tim, iget_tim,
icre_cyc, iacre_cyc, ista_cyc, istp_cyc, iref_cyc, icre_alm, iacre_alm, ista_alm, istp_alm, iref_alm,
ista_ovr, istp_ovr, iref_ovr, iget_did, idef_inh, ichg_ims, iget_ims, idef_svc, ical_svc, idef_exc,
iref_cfg, iref_ver, icre_mbp, iacre_mbp, iref_mbp

120

6.6 Service Call Description Form
Service calls are described in details as shown below in this section.

Section Brief function description (Service call name)

C-Language API:

 Service call issuing format

Parameters:

 Type Parameter name Meaning

Return Parameters:

 Type Parameter name Meaning

Packet Structure:

 ... <-- See (1) below

Return Codes/Error Codes:

 Mnemonic [Error type] Meaning <-- See (2) below

Function:

 Describes the function of the service call.

Error Detection through CFG_MEMCHK: <-- See (2) below

 ...

Figure 6.1 Service Call Description Form

(1) Packet Structure

A packet structure is described in the following form.

typedef struct {

 ID wtskid; 0 2 Wait task ID
 UINT semcnt; +4 4 Current semaphore count
} T_RSEM;

 ↑ ↑ ↑
Offset from the beginning of the packet Member size Description of member

121

(2) Error Type

Errors are classified into the following types.

• [k]: Detected in all states.

• [p]: Detected only when CFG_PARCHK is selected through the configurator.

• [m]: Detected only when the memory object protection function (CFG_PROTMEM) and
CFG_MEMCHK are selected through the configurator. For the error conditions, refer to "Error
Detection through CFG_MEMCHK".

(3) Error Detection through CFG_MEMCHK

Describes the detailed error conditions for error type [m].

122

6.7 Task Management

Table 6.9 Service Calls for Task Management

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

cre_tsk [s] T/E/D/U

icre_tsk

Creates task

N/E/D/U

acre_tsk T/E/D/U

iacre_tsk

Creates task and assigns task ID automatically

N/E/D/U

del_tsk Deletes task T/E/D/U

act_tsk [S] T/E/D/U

iact_tsk [S]

Initiates task

N/E/D/U

can_act [S] T/E/D/U

ican_act

Cancels task initiation request

N/E/D/U

sta_tsk T/E/D/U

ista_tsk

Initiates task and specifies start code

N/E/D/U

ext_tsk [S] Exits current task T/E/D/U/L

exd_tsk [S] Exits and deletes current task T/E/D/U/L

ter_tsk [S] Forcibly terminates a task T/E/D/U

chg_pri [S] T/E/D/U

ichg_pri

Changes task priority

N/E/D/U

get_pri [S] T/E/D/U

iget_pri

Refers to task priority

N/E/D/U

ref_tsk T/E/D/U

iref_tsk

Refers to task state

N/E/D/U

ref_tst T/E/D/U

iref_tst

Refers to task state (simple version)

N/E/D/U

vchg_tmd Changes task execution mode T/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called from CPU exception handler

123

Table 6.10 Task Management Specifications

Item Description

Task ID 1 to CFG_MAXTSKID (32767 max.)

Task priority 1 to CFG_MAXTSKPRI (255 max.) *

Maximum count of task
initiation requests

CFG_MAXACTCNT (32767 max.)

Domain ID Kernel domain: TDOM_KERNEL (-1)

User domain: 1 to 31

Task attribute TA_HLNG: The task is written in a high-level language.

TA_ASM: The task is written in assembly language.

TA_ACT: The task makes a transition to the READY state
 after the task has been created.

TA_COP0: The task uses the DSP.

TA_COP1: The task uses register bank 0 in the FPU.

TA_COP2: The task uses register bank 1 in the FPU.

TA_DOM(domid): The task is assigned to the domain
 indicated by domid.

Note: This value is the same as TMAX_TPRI defined in kernel_macro.h.

124

6.7.1 Create Task (cre_tsk, icre_tsk, acre_tsk, iacre_tsk)

C-Language API:
 ER ercd = cre_tsk(ID tskid, T_CTSK *pk_ctsk);

 ER ercd = icre_tsk(ID tskid, T_CTSK *pk_ctsk);

 ER_ID tskid = acre_tsk(T_CTSK *pk_ctsk);

 ER_ID tskid = iacre_tsk(T_CTSK *pk_ctsk);

Parameters:
 T_CTSK *pk_ctsk Pointer to the packet where task creation information

is stored

 <cre_tsk, icre_tsk >

 ID tskid Task ID

Return Parameters:
 <cre_tsk, icre_tsk >

 ER ercd Normal termination (E_OK) or error code

 <acre_tsk, iacre_tsk >

 ER_ID tskid Created task ID (a positive value) or error code

Packet Structure:
 typedef struct {

 ATR tskatr; 0 4 Task attribute

 VP_INT exinf; +4 4 Extended information

 FP task; +8 4 Task start address

 PRI itskpri; +12 2 Priority at task initiation

 SIZE stksz; +16 4 Task stack size

 VP stk; +20 4 Start address of task stack area

 SIZE sstksz; +24 4 System stack size for the task

 VP sstk; +28 4 Start address of the system stack

area for the task

 UW inifpscr; +32 4 Initial FPSCR value

 }T_CTSK;

Error Codes:

125

 E_RSATR [p] Reserved attribute

(1) The bits other than TA_COP0, TA_COP1, TA_COP2, TA_ASM,

TA_ACT, and upper eight bits in tskatr are not 0.

(2) TA_COP0 is specified for tskatr while CFG_DSP is not

selected.

(3) TA_COP1 is specified for tskatr while CFG_FPU is not

selected.

(4) TA_COP2 is specified for tskatr while TA_COP1 is not

specified.

(5) Both TA_COP0 and TA_COP1 are specified for tskatr.

(6) The upper eight bits of tskatr are neither a value within

the range from 0 to 31 nor H'ff.

 E_PAR [p] Parameter error

(1) itskpri ≤ 0

(2) itskpri > CFG_MAXTSKPRI

(3) stksz = 0 or sstksz = 0 while the task is assigned to a

user domain.

(4) stksz = 0 while the task is assigned to the kernel

domain.

(5) pk_ctsk is not a 4-byte boundary address.

(6) task is an odd value.

(7) stk is neither NULL nor a 4-byte boundary address.

(8) sstk is neither NULL nor a 4-byte boundary address while

the task is assigned to a user domain.

(9) stk = NULL and stksz > CFG_SYSPOOLSZ while the task is

assigned to a user domain.

(10) sstk = NULL and sstksz > (CFG_RESPOOLSZ – VTSZ_RPLMB)

while the task is assigned to a user domain.

(11) stk = NULL and (stksz + sstksz) > (CFG_RESPOOLSZ -

VTSZ_RPLMB) while the task is assigned to a kernel

domain.

 E_ID [p] Invalid ID number

(1) tskid ≤ 0

(2) tskid > CFG_MAXTSKID

 E_NOMEM [k] Insufficient memory

(1) Insufficient space in the system pool

(2) Insufficient space in the resource pool

 E_NOID [k] No ID available (only for acre_tsk)

 E_OBJ [k] Invalid object state

(1) Task specified by tskid already exists.

126

 E_MACV [m] Memory access violation

Function:

Each service call creates a task. The created task make a transition to the DORMANT state when
the TA_ACT attribute is not specified, or to the READY state when the TA_ACT attribute is
specified.

The processing that is performed at task creation is listed in table 6.11.

Table 6.11 Processing to be Performed at Task Creation

Contents

Clears the number of task initiation requests in the queue.

Resets the task state so that the task exception routine is not defined.

Resets the task state so that the upper-limit processor time is not specified.

Assigns a stack.

Clears the data in the performance counter and newly starts accumulation.

The following describes the meaning of the parameters.

(1) tskid

In service calls cre_tsk and icre_tsk, a value within the range from 1 to CFG_MAXTSKID can be
specified for tskid. Service calls acre_tsk and iacre_tsk search for an unused task ID, create a task
for the task ID with the contents specified by pk_ctsk, and return the ID as a return parameter.

(2) tskatr

Specify the logical OR of the following values for tskatr.

(a) Language

Specify either one of the following values.

⎯ TA_HLNG (H'00000000): High-level language
⎯ TA_ASM (H'00000001): Assembly language

(b) Task initiation

Specify TA_ACT to make the target task to enter the READY state. When TA_ACT is not
specified, the task enters the DORMANT state.

⎯ TA_ACT (H'00000002): The task makes a transition to the READY state after the task has
been created.

127

(c) Using a microcomputer with an on-chip DSP (when CFG_DSP is selected)

Specify TA_COP0 to use the DSP.

⎯ TA_COP0 (H'00000100): The task uses the DSP.
(d) Using a microcomputer with an on-chip FPU (when CFG_FPU is selected)

Specify TA_COP1 to use the FPU for floating-point operations. Specify TA_COP2 in addition
to TA_COP1 when using both banks of the FPU for matrix operations.

⎯ TA_COP1 (H'00000200): The task uses FPU register bank 0 (FPR0_BANK0 to
FPR15_BANK0) and FPUL.

⎯ TA_COP2 (H'00000400): The task uses FPU register bank 1 (FPR0_BANK1 to
FPR15_BANK1).

To specify TA_COP2, be sure to specify TA_COP1 together; otherwise, an E_RSATR error is
returned.

Also refer to description (7), inifpscr.

(e) SR at initiation and assigned domain

The following attribute can be specified (OR) to assign the task to a domain.

 TA_DOM(domid)

Here, the following can be specified for domid.

(i) 1 to 31: The task is assigned to the user domain of the specified domid.

(ii) TDOM_SELF (0): The task is assigned to the domain of the caller. Note that when this
service call is issued from an extended service call or trap routine being executed in a task
context, the created task is assigned to the domain of the task that has called the extended
service call or trap routine (the same domain ID that can be checked by issuing get_did
from the extended service call or trap routine). When the service call is issued in a non-task
context, the created task is assigned to the kernel domain.

(iii) TDOM_KERNEL(-1): The task is assigned to the kernel domain.

When TA_DOM(domid) is omitted, attribute (ii) is assumed.

The task in the kernel domain is executed in privileged mode (SR.MD = 1), and the task in a
user domain is executed in user mode (SR.MD = 0).

When the memory object protection function is not selected:

Differences between user domain IDs are ignored, and operations only depend on the
classification between the kernel domain and the user domain.

To be more specific, the classification between the kernel domain and the user domain only
causes the following differences.

⎯ The MD bit in SR at initiation is 1 (privileged mode) for the task in the kernel domain or 0
(user mode) for the task in the user domain.

128

⎯ The stack to be used differs (refer to description (6), stksz, stk, sstksz, sstk).

(3) exinf

Parameter exinf can be widely used by the user, for example, to set information concerning tasks
to be created. exinf is passed to the task as a parameter when the task is initiated through act_tsk.

(4) task

Specify the task start address.

(5) itskpri

Specify 1 to CFG_MAXTSKPRI as the task priority at initiation.

(6) stksz, stk, sstksz, sstk

These parameters specify stacks.

Note that stksz and sstksz are rounded up to multiples of four. In the following description, stksz
and sstksz indicate multiples of four after being rounded up.

(a) Task in the user domain

A task in the user domain has a system stack in addition to a usual stack used for task
execution. The system stack is used by the kernel and extended service call and trap routines
called from the task to store the task context.

A stack is allocated to a stksz-byte area starting from address stk, and a system stack is
allocated to a sstksz-byte area starting from address sstk.

When the memory object protection function is not selected:

A stack must be allocated in an area that can be accessed in user mode. Even if this rule is
violated, the kernel does not check it. In this case, a CPU exception occurs when the stack is
accessed in user mode.

A system stack must be allocated in an area that cannot be accessed in user mode. Even if this
rule is violated, the kernel does not check it. In this case, the system stack can be accessed in
user mode, which increases the risk of damaging the stack.

When the memory object protection function is selected:

129

A stack must be allocated in an area that can be read or written to from the domain including
the target task. If this rule is violated, an E_MACV error will be returned.

A system stack must be allocated in an MMU non-mapped area that cannot be accessed in user
mode. No memory object can be used as a system stack. If this rule is violated, an E_MACV
error will be returned.

When NULL is specified as stk, the kernel allocates a stack in the system pool. At this time,
the kernel consumes an area in the resource pool to manage the allocated stack. For details,
refer to the following.

Reference: Resource pool consumption → Section 13.2.2 (1), Task
 System pool consumption → Section 14.2 (1), When task is created

When the memory object protection function is selected:

The stack area allocated in the system pool by the kernel is a memory object having the
following attributes.

(1) Size: stksz (stack size) is rounded up to a multiple of CFG_PAGESZ.

 Memory object

 ↑
Size obtained by rounding up
stksz to a multiple of

CFG_PAGESZ

Initial value of
the stack pointer -->

 ↑
stksz
↓

⏐
⏐
↓

(2) Page size: 4 kbytes

(3) Domain: Domain where the target task is assigned

(4) Memory attribute: TA_RW|TA_CACHE|TA_WBACK

(5) Access permission vector: TACT_PRW(domid)
(domid is the ID of the domain where the target task is assigned)

130

When NULL is specified as sstk, the kernel allocates a system stack in the resource pool. For
details, refer to the following.

Reference: Section 13.2.2 (1), Task

(b) Task in the kernel domain

Unlike a task in the user domain, a task in the kernel domain has only one stack and sstk is
ignored.

The stack is used to execute the task and to store the task context by the kernel and the
extended service call and trap routines called from the task.

A stack is allocated to a (stksz + stksz)-byte area starting from address stk.

When the memory object protection function is not selected:

A stack must be allocated in an area that cannot be accessed in user mode. Even if this rule is
violated, the kernel does not check it. In this case, the privileged stack can be accessed in user
mode, which increases the risk of damaging the stack.

When the memory object protection function is selected:

A stack must be allocated in an MMU non-mapped area that cannot be accessed in user mode.
No memory object can be used as a stack. If this rule is violated, an E_MACV error will be
returned.

When NULL is specified as stk, the kernel allocates a stack in the resource pool. For details,
refer to the following.

Reference: Section 13.2.2 (1), Task

(7) inifpscr

inifpscr is a parameter not specified in the μITRON specification.

It is valid only when CFG_FPU is selected and the TA_COP1 attribute is specified. In other cases,
it is ignored.

inifpscr specifies the FPSCR value at initiation. The kernel sets the inifpscr value in FPSCR
without checking an error in the inifpscr value.

Also refer to the following.

Reference: Section 15, Notes on FPU

131

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following cases.

(1) The domain of the caller does not have a read access permission for pk_ctsk, which means that
an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_ctsk
⎯ size = sizeof(T_CTSK)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ

(2) The domain of the target task to be created does not have a read access permission for pk_ctsk-
>task, which means that an error will be returned if prb_mem is issued with the following
parameters.

⎯ base = pk_ctsk->task
⎯ size = 1
⎯ domid = Domain where the target task is assigned
⎯ pmmode = TPM_READ

(3) When a task is to be created in a user domain, the domain of the task does not have a
read/write access permission for the stack area specified by stk, which means that an error will
be returned if prb_mem is issued with the following parameters.

⎯ base = stk
⎯ size = stksz
⎯ domid = Domain where the target task is assigned
⎯ pmmode = TPM_READ|TPM_WRITE

(4) The system stack area specified by sstk for the task to be created in a user domain or the stack
area specified by stk for the task to be created in the kernel domain is not allocated in an MMU
non-mapped area that cannot be accessed in user mode. To be more specific, the specified area
is not included in any of the following areas.

⎯ An area in the on-chip memory virtual address space specified through the configurator
when CFG_IRAM specifies an MMU non-mapped area that cannot be accessed in user
non-DSP mode

⎯ P1 or P2 area

132

6.7.2 Delete Task (del_tsk)

C-Language API:
 ER ercd = del_tsk(ID tskid);

Parameters:
 ID tskid Task ID

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) tskid ≤ 0

(2) tskid > CFG_MAXTSKID

 E_CTX [k] Context error

(1) Called in a non-task context.

 E_OBJ [k] Invalid object state

(1) Task specified by tskid is not in DORMANT state.

 E_NOEXS [k] Undefined

(1) Task specified by tskid does not exist.

Function:

Service call del_tsk deletes the task specified by parameter tskid. The deleted task makes a
transition to the NON-EXISTENT state.

The areas allocated in the system pool and resource pool when the target task was created are
released.

133

6.7.3 Initiate Task (act_tsk, iact_tsk)

C-Language API:
 ER ercd = act_tsk(ID tskid);

 ER ercd = iact_tsk(ID tskid);

Parameters:
 ID tskid Task ID

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) tskid < 0

(2) tskid > MAXTSKID

(3) tskid = TSK_SELF (0) is specified in a non-task context.

 E_NOEXS [k] Undefined

(1) Task specified by tskid does not exist.

 E_QOVR [k] Queuing overflow

(1) The number of initiation requests queued for the task has

reached CFG_MAXACTCNT.

Function:

Each service call initiates the task specified by parameter tskid. The initiated task makes a
transition from the DORMANT state to the READY state.

The processing that is performed during task initiation is listed in table 6.12.

Table 6.12 Processing to be Performed during Task Initiation

Contents

Initializes base priority and current priority of the task.

Clears the number of initiation requests in the queue.

Clears the number of suspend request nesting levels.

Clears pended exception causes.

Sets task exception processing disabled state.

Clears the flag pattern of the task event flag.

By specifying tskid = TSK_SELF (0), the current task is specified.

134

Extended information of the task specified at task creation will be passed to the task as the
parameter.

When the task is not in the DORMANT state, up to the CFG_MAXACTCNT number of task
initiation requests through these service calls can be kept waiting.

135

6.7.4 Cancel Task Initiation Request (can_act, ican_act)

C-Language API:
 ER_UINT actcnt = can_act(ID tskid);

 ER_UINT actcnt = ican_act(ID tskid);

Parameters:
 ID tskid Task ID

Return Parameters:
 ER_UINT actcnt Number of queued initiation requests

(positive value or 0), or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) tskid < 0

(2) tskid > CFG_MAXTSKID

(3) tskid = TSK_SELF (0) is specified in a non-task context.

 E_NOEXS [k] Undefined

(1) Task specified by tskid does not exist.

Function:

The number of initiation requests queued for the task specified by tskid is determined, the result is
returned as the return parameter, and at the same time the initiation requests are all cancelled.

By specifying tskid = TSK_SELF (0), the current task is specified.

A task in the DORMANT state can also be specified; in this case the return parameter is 0.

136

6.7.5 Initiate Task and Specify Start Code (sta_tsk, ista_tsk)

C-Language API:
 ER ercd = sta_tsk(ID tskid, VP_INT stacd);

 ER ercd = ista_tsk(ID tskid, VP_INT stacd);

Parameters:
 ID tskid Task ID

 VP_INT stacd Task start code

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) tskid ≤ 0

(2) tskid > CFG_MAXTSKID)

 E_OBJ [k] Invalid object state

(1) Task specified by tskid is not in the DORMANT state.

 E_NOEXS [k] Undefined

(1) Task specified by tskid does not exist.

Function:

Each service call initiates the task indicated by parameter tskid. The initiated task makes a
transition from the DORMANT state to the READY state. At this time, the processing to be
performed during task initiation (table 6.12) is performed. The task start code indicated by
parameter stacd will be passed to the initiated task as the parameter.

137

6.7.6 Exit Current Task (ext_tsk) and Exit and Delete Current Task (exd_tsk)

C-Language API:
 void ext_tsk();

 void exd_tsk();

Parameters:
 None

Return Parameters:
 Execution does not return to the caller of these tasks.

In addition, if the following error occurs, control is passed to the system

down routine.

 E_CTX [k] Context error

(1) Called in a non-task context.

Function:

Service call ext_tsk terminates the current task normally. After the execution of service call
ext_tsk, the current task makes a transition from the RUNNING state to the DORMANT state.
When an initiation request is queued, service call ext_tsk terminates the current task and then
restarts the task.

The processing that is performed at task termination is listed in table 6.13.

Table 6.13 Processing to be Performed at Task Termination

Contents

Unlocks the mutex locked by the task.

Releases upper-limit processor time.

Service call exd_tsk terminates the current task normally and deletes it. After the execution of
service call exd_tsk, the current task makes a transition from the RUNNING state to the NON-
EXISTENT state.

Service calls ext_tsk and exd_tsk do not release the resources acquired by the task (such as
semaphores and memory blocks) except for mutexes. Therefore, the user must issue service calls
to release resources before exiting the task.

In service call exd_tsk, the areas acquired from the system pool and resource pool at task creation.

Service calls ext_tsk and exd_tsk can be issued while task dispatch is disabled, the CPU is locked,
or the interrupt mask has been changed to a non-zero value through chg_ims. After either of the

138

service calls is issued in any one of these states, the dispatch-disabled state or CPU-locked state is
cancelled and the interrupt mask is restored to 0.

Note that when execution returns from the task start function, the same operation as for service
call ext_tsk will be performed.

139

6.7.7 Forcibly Terminate Task (ter_tsk)

C-Language API:
 ER ercd = ter_tsk(ID tskid);

Parameters:
 ID tskid Task ID

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) tskid ≤ 0

(2) tskid > CFG_MAXTSKID

 E_CTX [k] Context error

(1) Called in a non-task context

 E_ILUSE [k] Illegal use of service call

(1) The current task is specified as the target task.

 E_OBJ [k] Invalid object state

(1) Task specified by tskid is in the DORMANT state.

 E_NOEXS [k] Undefined

(1) Task specified by tskid does not exist.

Function:

Service call ter_tsk forces a task specified by tskid to terminate execution. The terminated task
enters the DORMANT state. At this time, the processing shown in table 6.13 is performed.

When an initiation request is queued, the processing to be performed during task initiation is
performed, and the target task enters the READY state.

A termination request through this service call is delayed in the following case:

• If the task specified by tskid masks forcible termination requests by service call vchg_tmd

Service call ter_tsk does not automatically release the resources acquired by the task (such as
semaphores and memory blocks) except for the mutexes. Therefore, the user must issue service
calls to release the resources before issuing service call ter_tsk.

140

6.7.8 Change Task Priority (chg_pri, ichg_pri)

C-Language API:
 ER ercd = chg_pri(ID tskid, PRI tskpri);

 ER ercd = ichg_pri(ID tskid, PRI tskpri);

Parameters:
 ID tskid Task ID

 PRI tskpri Base priority of task

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error

(1) tskpri < 0

(2) tskpri > CFG_MAXTSKPRI

 E_ID [p] Invalid ID number

(1) tskpri < 0

(2) tskid > CFG_MAXTSKID

(3) tskid = TSK_SELF (0) is specified in a non-task context.

 E_ILUSE [k] Illegal use of service call

(1) Ceiling priority is exceeded.

 E_OBJ [k] Invalid object state

(1) Task is in the DORMANT state.

 E_NOEXS [k] Undefined

(1) Task specified by tskid does not exist.

Function:

Each service call changes the base priority of the task specified by parameter tskid to the value
specified by parameter tskpri. By specifying tskid = TSK_SELF (0), the current task is specified.

Specifying tskpri = TPRI_INI (0) returns the task priority to the initial priority that was specified
at task creation.

When the target task locks mutexes or waits for locking mutexes, an E_ILUSE is returned if the
specified priority is higher than the ceiling priority of any one of the mutexes.

When the target task does not lock mutexes, the current priority is also changed to the tskpri value
in addition to the base priority.

The base priority changed by the service calls is valid until the task is terminated or until a priority
changing service call is issued again. When a task makes a transition to the DORMANT state, the

141

base priority before termination becomes invalid. When the task is initiated again, the base priority
returns to the initial task priority specified at task creation.

If the task specified by tskid is in a WAITING state and TA_TPRI is specified for the object
attribute, the wait queue may be changed by the service calls and as a result, the task at the head of
the wait queue may be released from the WAITING state.

142

6.7.9 Refer to Task Priority (get_pri, iget_pri)

C-Language API:
 ER ercd = get_pri(ID tskid, PRI *p_tskpri);

 ER ercd = iget_pri(ID tskid, PRI *p_tskpri);

Parameters:
 ID tskid Task ID

 PRI *p_tskpri Pointer to the area where the current priority of the

target task is to be returned

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 PRI *p_tskpri Pointer to the area where the current priority of the

target task is stored

Error Codes:
 E_PAR [p] Parameter error

(1) p_tskpri is not a 2-byte boundary address.

 E_ID [p] Invalid ID number

(1) tskid < 0

(2) tskid > CFG_MAXTSKID

(3) tskid = TSK_SELF (0) is specified in a non-task context.

 E_OBJ [k] Invalid object state

(1) Task is in the DORMANT state.

 E_NOEXS [k] Undefined

(1) Task specified by tskid does not exist.

 E_MACV [m] Memory access violation

Function:

Each service call refers to the current priority of the task specified by parameter tskid, and returns
it to the area indicated by parameter p_tskpri. By specifying tskid = TSK_SELF (0), the current
task is specified.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for p_tskpri, which
means that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = p_tskpri
⎯ size = sizeof(PRI)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

143

6.7.10 Refer to Task State (ref_tsk, iref_tsk)

C-Language API:
 ER ercd = ref_tsk(ID tskid, T_RTSK *pk_rtsk);

 ER ercd = iref_tsk(ID tskid, T_RTSK *pk_rtsk);

Parameters:
 ID tskid Task ID

 T_RTSK *pk_rtsk Pointer to the packet where the task state is to be

returned

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 T_RTSK *pk_rtsk Pointer to the packet where the task state is stored

Packet Structure:
 typedef struct {

 STAT tskstat; 0 4 Task state

 PRI tskpri; +4 2 Current priority of the task

 PRI tskbpri; +6 2 Base priority of the task

 STAT tskwait; +8 4 Wait cause

 ID wobjid; +12 2 Wait object ID

 TMO lefttmo; +16 4 Time to timeout

 UINT actcnt; +20 4 Number of queued initiation requests

 UINT wupcnt; +24 4 Number of queued wakeup requests

 UINT suscnt; +28 4 Suspend request nest count

 MODE tskmode +32 4 Task execution mode

 FLGPTN tflptn; +36 4 Current task event flag value

 ID domid; +40 2 ID of the domain where the task is

assigned

 }T_RTSK;

Error Codes:
 E_PAR [p] Parameter error

(1) pk_rtsk is not a 4-byte boundary address.

 E_ID [p] Invalid ID number

(1) tskid < 0

(2) tskid > CFG_MAXTSKID

(3) tskid = TSK_SELF (0) is specified in a non-task context.

 E_NOEXS [k] Undefined

(1) Task specified by tskid does not exist.

 E_MACV [m] Memory access violation

144

Function:

Each service call refers to the state of the task indicated by parameter tskid. By specifying tskid =
TSK_SELF (0), the current task is specified.

The following values are returned to the area indicated by pk_rtsk. Note that data with an asterisk
(*) is invalid when the task is in the DORMANT state. If referenced information is related to a
function that is not installed, the referenced information will be undefined.

• tskstat

Indicates the current task state. The following values are returned.

⎯ TTS_RUN (H'00000001): RUNNING state
⎯ TTS_RDY (H'00000002): READY state
⎯ TTS_WAI (H'00000004): WAITING state
⎯ TTS_SUS (H'00000008): SUSPENDED state
⎯ TTS_WAS (H'0000000c): WAITING-SUSPENDED state
⎯ TTS_DMT (H'00000010): DORMANT state

• tskpri

Indicates the current task priority. When the task is in the DORMANT state, the initial priority
of the task is returned.

• tskbpri

Indicates the base priority of the task. When the task is in the DORMANT state, the initial
priority of the task is returned.

• tskwait*

Valid only when TTS_WAI or TTS_WAS is returned to tskstat. The following values are
returned.

⎯ TTW_SLP (H'00000001): WAITING state caused by slp_tsk or tslp_tsk
⎯ TTW_DLY (H'00000002): WAITING state caused by dly_tsk
⎯ TTW_SEM (H'00000004): WAITING state caused by wai_sem or twai_sem
⎯ TTW_FLG (H'00000008): WAITING state caused by wai_flg or twai_flg
⎯ TTW_SDTQ (H'00000010): WAITING state caused by snd_dtq or tsnd_dtq
⎯ TTW_RDTQ (H'00000020): WAITING state caused by rcv_dtq or trcv_dtq
⎯ TTW_MBX (H'00000040): WAITING state caused by rcv_mbx or trcv_mbx
⎯ TTW_MTX (H'00000080): WAITING state caused by loc_mtx or tloc_mtx
⎯ TTW_SMBF (H'00000100): WAITING state caused by snd_mbf or tsnd_mbf
⎯ TTW_RMBF (H'00000200): WAITING state caused by rcv_mbf or trcv_mbf
⎯ TTW_MPF (H'00002000): WAITING state caused by get_mpf or tget_mpf
⎯ TTW_MPL (H'00004000): WAITING state caused by get_mpl or tget_mpl
⎯ TTW_TFL (H'00008000): WAITING state caused by vwai_tfl or vtwai_tfl
⎯ TTW_MBP (H'00020000): WAITING state caused by rcv_mbp or trcv_mbp

145

• wobjid*

Valid only when TTS_WAI or TTS_WAS is returned to tskstat and the waiting target object
ID is returned.

• lefttmo*

The time until the target task times out is returned. Note that when the target task is in the
WAITING state according to service call dly_tsk, the value is undefined.

• actcnt*

The current initiation request queue count is returned.

• wupcnt*

The current wakeup request queue count is returned.

• suscnt*

The current suspend request nesting count is returned.

• tskmode*

tskmode is a parameter not defined in the μITRON specification.

tskmode indicates the task execution mode set through service call vchg_tmd, and whether
there is a request that is delayed by service call vchg_tmd.

The following value is returned to tskmode.

⎯ ECM_SUS (H'00000001): A suspend request is masked
⎯ ECM_TER (H'00000002): A forcible termination request is masked
⎯ PND_SUS (H'00000004): A suspend request is delayed
⎯ PND_TER (H'00000008): A forcible termination request is delayed

• tflptn*

tflptn is a parameter not defined in the μITRON specification.

The current task event flag value is returned. However, if the task event flag function was not
installed at system creation, an undefined value is returned.

• domid

domid is a parameter not specified in the μITRON specification.

The ID of the domain where the target task is assigned is returned through domid.

TDOM_KERNEL (-1) is returned when the task is in the kernel domain.

146

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for pk_rtsk, which
means that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_rtsk
⎯ size = sizeof(T_RTSK)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

147

6.7.11 Refer to Task State (Simple Version) (ref_tst, iref_tst)

C-Language API:
 ER ercd = ref_tst(ID tskid, T_RTST *pk_rtst);

 ER ercd = iref_tst(ID tskid, T_RTST *pk_rtst);

Parameters:
 ID tskid Task ID

 T_RTST *pk_rtst Pointer to the packet where the task state is to be

returned

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 T_RTST *pk_rtst Pointer to the packet where the task state is stored

Packet Structure:
 typedef struct {

 STAT tskstat; 0 4 Task state

 STAT tskwait; +4 4 Wait cause

 }T_RTST;

Error Codes:
 E_PAR [p] Parameter error

(1) pk_rtst is not a 4-byte boundary address.

 E_ID [p] Invalid ID number

(1) tskid < 0

(2) tskid > CFG_MAXTSKID

(3) tskid = TSK_SELF (0) is specified in a non-task context.

 E_NOEXS [k] Undefined

(1) Task specified by tskid does not exist.

 E_MACV [m] Memory access violation

Function:

Each service call refers to the state of the task indicated by parameter tskid. By specifying tskid =
TSK_SELF (0), the current task is specified.

The obtained values are returned to the area indicated by pk_rtst. The members of pk_rtst are the
same as those with the same names in pk_rtsk, which will be returned when ref_tsk is issued. For
details, refer to the description of ref_tsk.

148

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for pk_rtsk, which
means that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_rtst
⎯ size = sizeof(T_RTST)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

149

6.7.12 Change Task Execution Mode (vchg_tmd)

C-Language API:
 ER ercd = vchg_tmd(MODE tmd);

Parameters:
 UINT tmd Task execution mode to change

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error

(1) tmd is invalid.

 E_CTX [k] Context error

(1) Called in a non-task context

Function:

System call vchg_tmd changes the execution mode of the current task. A mask for requests from
other tasks can be specified in tmd as the task execution mode.

• ECM_SUS (H'00000001): Suspend request is masked

• ECM_TER (H'00000002): Forcible termination request is masked

When the suspend request is masked, even if service call sus_tsk or isus_tsk is issued, its request
is delayed until the mask is cancelled through service call vchg_tmd.

When the forcible termination request is masked, even if service call ter_tsk is called, its request is
delayed until the mask is cancelled through service call vchg_tmd.

The task execution mode is not changed by an extended service call or a return from it, or by an
initiation of a task exception processing routine or a return from it.

Delays of suspend requests and forcible termination requests can be referenced through service
calls ref_tsk and iref_tsk.

150

6.8 Task Synchronization

Table 6.14 Service Calls for Task Synchronization

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

slp_tsk [S] Shifts current task to the WAITING state T/E/U

tslp_tsk [S] Shifts current task to the WAITING state with timeout function T/E/U

wup_tsk [S] T/E/D/U

iwup_tsk [S]

Wakes up task

N/E/D/U

can_wup [S] T/E/D/U

ican_wup

Cancels wakeup request

N/E/D/U

rel_wai [S] T/E/D/U

irel_wai [S]

Cancels the WAITING state forcibly

N/E/D/U

sus_tsk [S] T/E/D/U

isus_tsk

Shifts to the SUSPENDED state

N/E/D/U

rsm_tsk [S] T/E/D/U

irsm_tsk

Resumes the execution of a task in the SUSPENDED state

N/E/D/U

frsm_tsk [S] T/E/D/U

ifrsm_tsk

Forcibly resumes the execution of a task in the SUSPENDED
state N/E/D/U

dly_tsk [S] Delays the current task T/E/U

vset_tfl T/E/D/U

ivset_tfl

Sets the task event flag

N/E/D/U

vclr_tfl T/E/D/U

ivclr_tfl

Clears the task event flag

N/E/D/U

vwai_tfl Waits for the task event flag T/E/U

vpol_tfl Polls and waits for the task event flag T/E/D/U

vtwai_tfl Waits for the task event flag with timeout function T/E/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called from CPU exception handler

151

Table 6.15 Task Synchronization Specifications

Item Description

Maximum number of task wakeup requests CFG_MAXWUPCNT (32767 max.)

Maximum number of nesting levels for task
suspend requests

CFG_MAXSUSCNT (32767 max.)

Number of task event flag bits 32 bits (lower 16 bits are reserved for future
expansion)

Initial value of task event flag 0

Wait condition of task event flag OR wait

152

6.8.1 Sleep Task (slp_tsk, tslp_tsk)

C-Language API:
 ER ercd = slp_tsk();

 ER ercd = tslp_tsk(TMO tmout);

Parameters:
 <tslp_tsk>

 TMO tmout Timeout specification

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error

(1) tmout ≤ –2

 E_CTX [k] Context error

(1) Called in the dispatch-pended state

 E_RLWAI [k] WAITING state is forcibly cancelled

(1) rel_wai service call was issued in the WAITING state.

(2) An attempt was made to shift to the WAITING state in

WAITING-disabled state.

 E_TMOUT [k] Timeout

Function:

Each service call shifts the current task to the wakeup WAITING state. However, if wakeup
requests are queued for the current task, the wakeup request count is decremented by one and task
execution continues. The WAITING state is cancelled by service call wup_tsk or iwup_tsk.

Parameter tmout specified by service call tslp_tsk specifies the timeout period. If a positive value
is specified for parameter tmout, the WAITING state is released and error code E_TMOUT is
returned when the tmout period has passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the task continues execution by decrementing the wakeup
request count by one if the count is a positive value. If the wakeup request count is 0, error code
E_TMOUT is returned.

If tmout = TMO_FEVR (–1) is specified, the same operation as for service call slp_tsk will be
performed. In other words, timeout will not be monitored.

If a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick cycles), the
maximum value that can be specified for tmout is H'7fffffff/CFG_TICDENO. If a value larger
than this is specified, operation is not guaranteed.

153

6.8.2 Wake up Task (wup_tsk, iwup_tsk)

C-Language API:
 ER ercd = wup_tsk(ID tskid);

 ER ercd = iwup_tsk(ID tskid);

Parameters:
 ID tskid Task ID

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) tskid < 0

(2) tskid > CFG_MAXTSKID

(3) tskid = TSK_SELF (0) is specified in a non-task context.

 E_OBJ [k] Invalid object state

(1) Task specified by tskid is in the DORMANT state.

 E_NOEXS [k] Undefined

(1) Task specified by tskid does not exist.

 E_QOVR [k] Queuing overflow

(1) The number of wakeup requests queued for the task has

reached CFG_MAXWUPCNT.

Function:

Each service call releases a task from the WAITING state after the task was assigned to the
WAITING state by service call slp_tsk or tslp_tsk. If the target task did not enter the WAITING
state by service call slp_tsk or tslp_tsk, up to the CFG_MAXWUPCNT number of requests to
wake up a task can be kept being pended.

By specifying tskid = TSK_SELF (0), the current task is specified.

154

6.8.3 Cancel Wakeup Request (can_wup, ican_wup)

C-Language API:
 ER_UINT wupcnt = can_wup(ID tskid);

 ER_UINT wupcnt = ican_wup(ID tskid);

Parameters:
 ID tskid Task ID

Return Parameters:
 ER_UINT wupcnt Number of queued task wakeup requests (0 or a positive

value) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) tskid < 0

(2) tskid > CFG_MAXTSKID

(3) tskid = TSK_SELF (0) is specified in a non-task context.

 E_OBJ [k] Invalid object state

(1) Task specified by tskid is in the DORMANT state.

 E_NOEXS [k] Undefined

(1) Task specified by tskid does not exist.

Function:

Each service call obtains the number of wakeup requests queued for the task specified by tskid,
returns the result as a return parameter, and invalidates all of those requests.

By specifying tskid = TSK_SELF (0), the current task is specified.

155

6.8.4 Cancel WAITING State Forcibly (rel_wai, irel_wai)

C-Language API:
 ER ercd = rel_wai(ID tskid);

 ER ercd = irel_wai(ID tskid);

Parameters:
 ID tskid Task ID

Return Parameters:
 ER_UINT ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) tskid < 0

(2) tskid > CFG_MAXTSKID

(3) tskid = TSK_SELF (0) is specified in a non-task context.

 E_OBJ [k] Invalid object state

(1) Task specified by tskid is in the DORMANT state.

 E_NOEXS [k] Undefined

(1) Task specified by tskid does not exist.

Function:

When the task specified by tskid is in some kind of WAITING state (not including a
SUSPENDED state), it is forcibly cancelled. E_RLWAI is returned as the error code for the task
for which the WAITING state is cancelled by service call rel_wai or irel_wai.

When the target task is executing an extended service call or trap routine, the target task is shifted
to the WAITING-disabled state. The WAITING-disabled state is cancelled when all processing of
the extended service call or trap routine called from the target task is completed, that is, the target
task is in the WAITING-disabled state only during execution of the extended service call or trap
routine.

In the WAITING-disabled state, if a service call causing a transition to the WAITING state is
issued and the transition condition is satisfied, an E_RLWAI error will be generated.

By specifying tskid = TSK_SELF (0), the current task is specified.

If service call rel_wai or irel_wai is issued for a task in a WAITING-SUSPENDED state, the task
enters the SUSPENDED state. After that, if service call rsm_tsk, irsm_tsk, frsm_tsk, or ifrsm_tsk
is issued and the SUSPENDED state is cancelled, E_RLWAI is returned as the error code for the
task.

For canceling SUSPENDED state, rsm_tsk, irsm_tsk, frsm_tsk or ifrsm_tsk should be used.

156

6.8.5 Suspend Task (sus_tsk, isus_tsk)

C-Language API:
 ER ercd = sus_tsk(ID tskid);

 ER ercd = isus_tsk(ID tskid);

Parameters:
 ID tskid Task ID

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) tskid < 0

(2) tskid > CFG_MAXTSKID

(3) tskid = TSK_SELF (0) is specified in a non-task context.

 E_CTX [k] Context error

(1) A task being executed was specified in dispatch-pended

state.

 E_OBJ [k] Invalid object state

(1) Task specified by tskid is in the DORMANT state.

 E_NOEXS [k] Undefined

(1) Task specified by tskid does not exist.

 E_QOVR [k] Queuing overflow

(1) The number of suspend requests queued for the task has

reached CFG_MAXSUSCNT.

Function:

Each service call suspends execution of the task specified by tskid and shifts the task to the
SUSPENDED state. If the specified task is in the WAITING state, the task shifts to the
WAITING-SUSPENDED state.

By specifying tskid = TSK_SELF (0), the current task is specified.

The SUSPENDED state can be cancelled by service call rsm_tsk, irsm_tsk, frsm_tsk, or ifrsm_tsk.

Requests to suspend a task by service calls sus_tsk and isus_tsk are nested. Up to the
CFG_MAXSUSCNT number of requests can be kept being pended.

When the task specified by tskid masks the suspend request by service call vchg_tmd, the task
enters the SUSPENDED state immediately after the suspend request mask is cancelled by service
call vchg_tmd (by specifying tmd = 0).

157

Delayed requests to suspend a task can be cancelled by service call rsm_tsk, irsm_tsk, frsm_tsk, or
ifrsm_tsk. Therefore, tasks are suspended if there are one or more delayed suspend requests when
the delay is canceled.

158

6.8.6 Resume Task (rsm_tsk, irsm_tsk) and Resume Task Forcibly (frsm_tsk, ifrsm_tsk)

C-Language API:
 ER ercd = rsm_tsk(ID tskid);

 ER ercd = irsm_tsk(ID tskid);

 ER ercd = frsm_tsk(ID tskid);

 ER ercd = ifrsm_tsk(ID tskid);

Parameters:
 ID tskid Task ID

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) tskid ≤ 0

(2) tskid > CFG_MAXTSKID

 E_OBJ [k] Invalid object state

(1) Task specified by tskid is in the DORMANT state.

(2) Task specified by tskid is not in the SUSPENDED state.

(3) Task specified by tskid is the current task.

 E_NOEXS [k] Undefined

(1) Task specified by tskid does not exist.

Function:

Each service call releases the task specified by parameter tskid from the SUSPENDED state.
Service calls rsm_tsk and irsm_tsk decrement, by one, the number of nested requests to suspend
the task specified by tskid, and release the task from the SUSPENDED state when the number of
the nested requests becomes 0. Service calls frsm_tsk and ifrsm_tsk modify the number of nested
requests to 0, and release the task from the SUSPENDED state. When the task is in the
WAITING-SUSPENDED state, the task is shifted to the WAITING state.

159

6.8.7 Delay Task (dly_tsk)

C-Language API:
 ER ercd = dly_tsk(RELTIM dlytim);

Parameters:
 RELTIM dlytim Delayed time

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_CTX [k] Context error

(1) Called in the dispatch-delayed state

 E_RLWAI [k] WAITING state is forcibly cancelled.

(1) rel_wai service call was issued in the WAITING state.

(2) An attempt was made to shift to WAITING state in WAITING-

disabled state.

Function:

The current task is shifted from the RUNNING state to a timed WAITING state, and waits until
the time specified by dlytim has expired. When the time specified by dlytim has elapsed, the state
of the current task is shifted to the READY state. The current task is put into a WAITING state
even if dlytim = 0 is specified.

If a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick cycles), the
maximum value that can be specified for dlytim is H'ffffffff/CFG_TICDENO. If a value larger
than this is specified, operation is not guaranteed.

This service call differs from service call tslp_tsk in that it ends normally when execution is
terminated after being delayed by the amount of time specified by dlytim. In addition, even if
service call wup_tsk or iwup_tsk is executed during the delay, the WAITING state is not
cancelled. The WAITING state is cancelled before the delay time has elapsed only when service
call rel_wai, irel_wai, or ter_tsk is issued.

160

6.8.8 Set Task Event Flag (vset_tfl, ivset_tfl)

C-Language API:
 ER ercd = vset_tfl(ID tskid, FLGPTN setptn);

 ER ercd = ivset_tfl(ID tskid, FLGPTN setptn);

Parameters:
 ID tskid Task ID

 FLGPTN setptn Bit pattern to set

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) tskid < 0

(2) tskid > CFG_MAXTSKID

(3) tskid = TSK_SELF (0) is specified in a non-task context.

 E_OBJ [k] Invalid object state

(1) Task specified by tskid is in the DORMANT state.

 E_NOEXS [k] Undefined

(1) Task specified by tskid does not exist.

Function:

The task event flag of the task indicated by parameter tskid is logically ORed with the value
indicated by parameter setptn and is updated to the resultant value. Note that the lower 16 bits of
the bit pattern in parameter setptn must be set to 0 because the corresponding bits of the event flag
are reserved for future expansion.

By specifying tskid = TSK_SELF (0), the current task is specified.

In service calls vset_tfl and ivset_tfl, when the logical OR of the updated pattern of the task event
flag and the waiting pattern becomes a non-zero value, the task is released from the WAITING
state. At this time, the task event flag is cleared to 0.

161

6.8.9 Clear Task Event Flag (vclr_tfl, ivclr_tfl)

C-Language API:
 ER ercd = vclr_tfl(ID tskid, FLGPTN clrptn);

 ER ercd = ivclr_tfl(ID tskid, FLGPTN clrptn);

Parameters:
 ID tskid Task ID

 FLGPTN clrptn Bit pattern to clear

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) tskid < 0

(2) tskid > CFG_MAXTSKID

(3) tskid = TSK_SELF (0) is specified in a non-task context.

 E_OBJ [k] Invalid object state

(1) Task specified by tskid is in the DORMANT state.

 E_NOEXS [p] Undefined

(1) Task specified by tskid does not exist.

Function:

The task event flag of the task indicated by parameter tskid are logically ANDed with the value
indicated by parameter clrptn and is updated to the resultant value. Note that the lower 16 bits of
the bit pattern in parameter clrptn must be set to H'ffff because the corresponding bits of the event
flag are reserved for future expansion.

By specifying tskid = TSK_SELF (0), the current task is specified.

162

6.8.10 Wait for Task Event Flag (vwai_tfl, vpol_tfl, vtwai_tfl)

C-Language API:
 ER ercd = vwai_tfl(UINT waiptn, FLGPTN *p_tflptn);

 ER ercd = vpol_tfl(UINT waiptn, FLGPTN *p_tflptn);

 ER ercd = vtwai_tfl(UINT waiptn, FLGPTN *p_tflptn, TMO tmout);

Parameters:
 FLGPTN waiptn Bit pattern to wait

 FLGPTN *p_tflptn Pointer to the area where the bit pattern when

releasing the WAITING state is to be returned

 <vtwai_tfl>

 TMO tmout Timeout specification

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 FLGPTN *p_tflptn Pointer to the area where the bit pattern when

releasing the WAITING state is stored

Error Codes:
 E_PAR [p] Parameter error

(1) waiptn = 0

(2) tmout ≤ –2

(3) p_tflptn is not a 4-byte boundary address.

 E_CTX [k] Context error

(1) Called in a non-task context

(2) Called in the dispatch-pended state in a task context

(only for vwai_tfl and twai_tfl)

 E_RLWAI [k] WAITING state is forcibly cancelled (only for vwai_tfl and

vtwai_tfl).

(1) rel_wai service call was issued in the WAITING state.

(2) An attempt was made to shift to WAITING state in

WAITING-disabled state.

 E_TMOUT [k] Timeout

 E_MACV [m] Memory access violation

Function:

Each service call waits for any bit of the task event flag specified by parameter waiptn to be set.
When the wait release condition is satisfied, the bit pattern of the task event flag at that time is
returned to the area indicated by parameter p_tflptn. At the same time, the task event flag value is
cleared to 0.

163

Each service call immediately terminates processing if any bit specified by waiptn is already set
when a service call is issued. If no bit is set, the task that issued service call vwai_tfl or vtwai_tfl
enters the WAITING state. With service call vpol_tfl, error code E_TMOUT is immediately
returned in this case. Tasks are released from the WAITING state when any bit specified by
waiptn is set by service call vset_tfl.

The task event flag value is 0 at task initiation.

In service call vtwai_tfl, parameter tmout specifies the timeout period.

If a positive value is specified for parameter tmout, error code E_TMOUT is returned when tmout
period has passed without the wait release condition being satisfied. If tmout = TMO_POL (0) is
specified, the same operation as for service call vpol_tfl will be performed. If tmout =
TMO_FEVR (-1) is specified, the timeout monitoring is not performed. In other words, the same
operation as for service call vwai_tfl will be performed.

If a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick cycles), the
maximum value that can be specified for tmout is H'7fffffff/CFG_TICDENO. If a value larger
than this is specified, operation is not guaranteed.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for p_tflptn, which
means that an error will be returned if prb_mem is issued with the following parameters.

⎯ base= p_tflptn
⎯ size = sizeof(T_RTSK)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

164

6.9 Task Exception Processing Functions

Table 6.16 Service Calls for Task Exception Processing

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

def_tex [s] T/E/D/U

idef_tex

Defines the task exception processing routine

N/E/D/U

ras_tex [S] T/E/D/U

iras_tex [S]

Requests the task exception processing

N/E/D/U/C

dis_tex [S] Disables the task exception processing T/E/D/U

ena_tex [S] Enables the task exception processing T/E/D/U

sns_tex [S] Refers to the task exception processing disabled
state

T/N/E/D/U/L

ref_tex T/E/D/U

iref_tex

Refers to the task exception processing state

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called from CPU exception handler

Table 6.17 Task Exception Processing Specifications

Item Description

Exception cause 32 bits

Task exception processing
routine attributes

TA_HLNG: The processing is written in a high-level language.

TA_ASM: The processing is written in assembly language.

TA_COP0: The routine uses the DSP.

TA_COP1: The routine uses FPU register bank 0.

TA_COP2: The routine uses FPU register bank 1.

The task exception routine is initiated as a task context when the following conditions are
satisfied.

165

• Task exception processing enabled state

• Pended exception cause is not 0

• The CPU is unlocked

• The interrupt mask is not changed to a non-zero value by service call chg_ims

• Task is not executing an extended service call routine or a trap routine.

When execution returns from a task exception processing routine, the processing that was
performed before the task exception processing routine was initiated is continued. At this time, the
task enters the task exception enabled state. When the pended exception cause is not 0 at this time,
the task exception processing routine is initiated again.

Note that the following states do not change before and after the task exception processing routine
is initiate and terminated.

• Task or non-task context

• Dispatch-disabled or enabled state

• CPU-locked or unlocked state

• Domain type (kernel or user domain)

166

6.9.1 Define Task Exception Processing Routine (def_tex, idef_tex)

C-Language API:
 ER ercd = def_tex(ID tskid, T_DTEX *pk_dtex);

 ER ercd = idef_tex(ID tskid, T_DTEX *pk_dtex);

Parameters:
 ID tskid Task ID

 T_DTEX *pk_dtex Pointer to the packet where task exception-processing-

routine definition information is stored

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Packet Structure
 typedef struct {

 ATR texatr; 0 4 Task exception processing routine

attribute

 FP texrtn; +4 4 Task exception processing routine

initiation address

 UW inifpscr; +8 4 Initial FPSCR value

 }T_DTEX;

Error Codes:
 E_RSATR [p] Reserved attribute

(1) The bits other than TA_COP0, TA_COP1, TA_COP2, and TA_ASM

in texatr are not 0.

(2) TA_COP0 is specified for texatr while CFG_DSP is not

selected.

(3) TA_COP1 is specified for texatr while CFG_FPU is not

selected.

(4) TA_COP2 is specified for texatr while TA_COP1 is not

specified.

(5) Both TA_COP0 and TA_COP1 are specified for texatr.

 E_PAR [p] Parameter error

(1) pk_dtex is not a 4-byte boundary address.

(2) texrtn is an odd value.

 E_ID [p] Invalid ID number

(1) tskid < 0

(2) tskid > CFG_MAXTSKID

(3) tskid = TSK_SELF (0) is specified in a non-task context.

 E_NOEXS [k] Undefined

(1) Task specified by tskid does not exist.

167

 E_MACV [m] Memory access violation

Function:

The task exception processing routine is defined. The following describes each parameter
function.

(1) tskid

Parameter tskid specifies the ID of the task to be defined. By specifying tskid = TSK_SELF (0),
the current task is specified.

The task exception processing routine is assigned to the same domain as the target task.

The task exception processing routine for a task in the kernel domain is executed in privileged
mode (SR.MD = 1), and that for a task in a user domain is executed in user mode (SR.MD = 0).

(2) texatr

Specify the logical OR of the following values for texatr.

(a) Language

Specify either one of the following values.

⎯ TA_HLNG (H'00000000): High-level language
⎯ TA_ASM (H'00000001): Assembly language

(b) Using a microcomputer with an on-chip DSP (when CFG_DSP is selected)

Specify TA_COP0 to use the DSP.

⎯ TA_COP0 (H'00000100): The routine uses the DSP.

(c) Using a microcomputer with an on-chip FPU (when CFG_FPU is selected)

Specify TA_COP1 to use the FPU for floating-point operations. Specify TA_COP2 in addition
to TA_COP1 when using both banks of the FPU for matrix operations.

⎯ TA_COP1 (H'00000200): The routine uses FPU register bank 0 (FPR0_BANK0 to
FPR15_BANK0) and FPUL.

⎯ TA_COP2 (H'00000400): The routine uses FPU register bank 1 (FPR0_BANK1 to
FPR15_BANK1).

To specify TA_COP2, be sure to specify TA_COP1 together; otherwise, an E_RSATR error
will be returned.

Also refer to description (4), inifpscr.

(3) texrtn

texrtn specifies the start address of the task exception processing routine.

168

When pk_dtex=NULL (0) is specified, the definition of the task exception processing routine for
the task specified by tskid is cancelled. At this time, the pended exception cause for the task is
cleared to 0, and the task is shifted to the task exception processing disabled state.

If a task exception processing routine has already been defined, the previous definition is
cancelled and is replaced with the new definition. At this time, the pended exception cause is not
cleared and task exception processing is not disabled.

(4) inifpscr

inifpscr is a parameter not specified in the μITRON specification.

It is valid only when CFG_FPU is selected and the TA_COP1 attribute is specified. In other cases,
it is ignored.

inifpscr specifies the FPSCR value at initiation. The kernel sets the inifpscr value in FPSCR
without checking an error in the inifpscr value.

Also refer to the following.

Reference: Section 15, Notes on FPU

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following cases.

(1) When pk_dtex != NULL, the domain of the caller does not have a read access permission for
pk_dtex, which means that an error will be returned if prb_mem is issued with the following
parameters.

⎯ base = pk_dtex
⎯ size = sizeof(T_DTEX)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ

(2) When pk_dtex != NULL, the domain of the task indicated by tskid does not have a read access
permission for pk_dtex->texrtn, which means that an error will be returned if prb_mem is
issued with the following parameters.

⎯ base = pk_dtex->texrtn
⎯ size = 1
⎯ domid= Domain where the task indicated by tskid is assigned
⎯ pmmode = TPM_READ

169

6.9.2 Request Task Exception Processing (ras_tex, iras_tex)

C-Language API:
 ER ercd = ras_tex(ID tskid, TEXPTN rasptn);

 ER ercd = iras_tex(ID tskid, TEXPTN rasptn);

Parameters:
 ID tskid Task ID

 TEXPTN rasptn Task exception cause of task exception processing to be

requested

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error

(1) rasptn = 0

 E_ID [p] Invalid ID number

(1) tskid < 0

(2) tskid > CFG_MAXTSKID

(3) tskid = TSK_SELF (0) is specified in a non-task context.

 E_OBJ [k] Invalid object state

(1) Task specified by tskid is in the DORMANT state.

(2) Task exception processing routine is not defined for the

task specified by tskid.

 E_NOEXS [k] Undefined

(1) Task specified by tskid does not exist.

Function:

Each service call requests task exception processing through the task exception cause specified by
rasptn, for the task specified by tskid. That is, the pended exception cause for the task is logically
ORed with the value indicated by parameter rasptn.

By specifying tskid=TSK_SELF (0), the current task is specified.

When the conditions for starting task exception processing routine are satisfied through this
service call, the task exception processing routine is initiated.

170

6.9.3 Disable Task Exception Processing (dis_tex)

C-Language API:
 ER ercd = dis_tex();

Parameters:
 None

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:

 E_CTX [k] Context error

(1) Called in a non-task context

 E_OBJ [k] Invalid object state

(1) Task exception processing routine is not defined for the

current task.

Function:

The current task is shifted to the task exception processing disabled state.

171

6.9.4 Enable Task Exception Processing (ena_tex)

C-Language API:
 ER ercd = ena_tex();

Parameters:
 None

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:

 E_CTX [k] Context error

(1) Called in a non-task context

 E_OBJ [k] Invalid object state

(1) Task exception processing routine is not defined for the

current task.

Function:

The current task is shifted to the task exception enabled state.

When conditions for starting the task exception processing routine are satisfied through this
service call, the task exception processing routine is initiated.

172

6.9.5 Refer To Task Exception Processing Disabled State (sns_tex)

C-Language API:
 BOOL state= sns_tex();

Parameters:
 None

Return Parameters:
 BOOL state Task exception processing disabled state

Error Codes:
 None

Function:

When a task in the RUNNING state is in the task exception processing disabled state, TRUE is
returned; when in the task exception processing enabled state, FALSE is returned. A task in the
RUNNING state is the current task when this service call is issued in a task context, or when
issued in a non-task context, is the task which had run immediately prior to the transition to the
non-task context. When the service call is issued in a non-task context and no task is in the
RUNNING state, TRUE is returned.

Tasks for which no task exception processing routines are defined are held in the task exception
processing disabled state, so when no task exception processing routine has been defined for a task
in the RUNNING state, this service call returns TRUE.

This service call can also be issued in the CPU-locked state and from the CPU exception handler.

173

6.9.6 Refer to Task Exception Processing State (ref_tex, iref_tex)

C-Language API:
 ER ercd = ref_tex(ID tskid, T_RTEX *pk_rtex);

 ER ercd = iref_tex(ID tskid, T_RTEX *pk_rtex);

Parameters:
 ID tskid Task ID

 T_RTEX *pk_rtex Pointer to the packet where the task exception

processing state is to be returned

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 T_RTEX *pk_rtex Pointer to the packet where the task exception

processing state is stored

Packet Structure:
 typedef struct {

 STAT texstat; 0 4 Task exception processing state

 TEXPTN pndptn; +4 4 Pended exception cause

 }T_RTEX;

Error Codes:
 E_PAR [p] Parameter error

(1) pk_rtex is not a 4-byte boundary address.

 E_ID [p] Invalid ID number

(1) tskid < 0

(2) tskid > CFG_MAXTSKID

(3) tskid = TSK_SELF (0) is specified in a non-task context.

 E_OBJ [k] Invalid object state

(1) Task specified by tskid is in the DORMANT state.

(2) Task exception processing routine is not defined for the

task specified by tskid.

 E_NOEXS [k] Undefined

(1) Task specified by tskid does not exist.

 E_MACV [m] Memory access violation

Function:

The state of the task exception processing for the task specified by tskid is referenced. By
specifying tskid = TSK_SELF (0), the current task is specified.

The following values are returned to the area indicated by pk_rtex.

174

• texstat

One of the following values is returned for texstat, according to whether the target task is in a
task exception enabled state or a task exception processing disabled state.

⎯ TTEX_ENA (H'00000000): Task exception processing enabled state
⎯ TTEX_DIS (H'00000001): Task exception processing disabled state

• pndptn

The pended exception cause for the target task is returned as pndptn. If there are no
unprocessed exception processing requests, 0 is returned as pndptn.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for pk_rtex, which
means that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_rtex
⎯ size = sizeof(T_RTEX)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

175

6.10 Synchronization and Communication (Semaphore)

Table 6.18 Service Calls for Synchronization and Communication (Semaphore)

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

cre_sem [s] T/E/D/U

icre_sem

Creates semaphore

 N/E/D/U

acre_sem T/E/D/U

iacre_sem

Creates semaphore and assigns semaphore ID automatically

N/E/D/U

del_sem Deletes semaphore T/E/D/U

sig_sem [S] T/E/D/U

isig_sem [S]

Returns semaphore resource

N/E/D/U

wai_sem [S] Waits for semaphore resource T/E/U

pol_sem [S] T/E/D/U

ipol_sem

Polls and waits for semaphore resource

N/E/D/U

twai_sem [S] Waits for semaphore resource with timeout function T/E/U

ref_sem T/E/D/U

iref_sem

Refers to semaphore state

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called from CPU exception handler

Table 6.19 Semaphore Specifications

Item Description

Semaphore ID 1 to CFG_MAXSEMID (32767 max.)

Maximum semaphore count 65535

Semaphore attributes TA_TFIFO: Wait task queue is managed on a FIFO basis.

TA_TPRI: Wait task queue is managed on the current priority.

176

6.10.1 Create Semaphore (cre_sem, icre_sem, acre_sem, iacre_sem)

C-Language API:
 ER ercd = cre_sem(ID semid, T_CSEM *pk_csem);

 ER ercd = icre_sem(ID semid, T_CSEM *pk_csem);

 ER_ID semid = acre_sem(T_CSEM *pk_csem);

 ER_ID semid = iacre_sem(T_CSEM *pk_csem);

Parameters:
 T_CSEM *pk_csem Pointer to the packet where semaphore creation

information is stored

 <cre_sem, icre_sem>

 ID semid Semaphore ID

Return Parameters:
 <cre_sem, icre_sem>

 ER ercd Normal termination (E_OK) or error code

 <acre_sem, iacre_sem>

 ER_ID semid ID of created semaphore (a positive value) or error code

Packet Structure
 typedef struct {

 ATR sematr; 0 4 Semaphore attribute

 UINT isemcnt +4 4 Initial value of semaphore resource

count

 UINT maxsem; +8 4 Maximum number of semaphore resources

 }T_CSEM;

Error Codes:
 E_RSATR [p] Reserved attribute

(1) sematr is invalid.

 E_PAR [p] Parameter error

(1) maxsem = 0 or maxsem > H'ffff

(2) isemcnt > maxsem

(3) pk_csem is not a 4-byte boundary address.

 E_ID [p] Invalid ID number

(1) semid ≤ 0
(2) semid > CFG_MAXSEMID

 E_NOID [k] No ID available (only for acre_sem)

 E_OBJ [k] Invalid object state

(1) Semaphore specified by semid already exists.

 E_MACV [m] Memory access violation

177

Function:

Service calls cre_sem and icre_sem create a semaphore with the ID specified by semid using the
contents specified by parameter pk_csem.

Service calls acre_sem and iacre_sem search for an unused semaphore ID, create a semaphore for
that ID with the contents specified by parameter pk_csem, and return the ID as a return parameter.
The range to search for an unused semaphore ID is 1 to CFG_MAXSEMID.

Parameter sematr specifies the order of the tasks in the queue waiting for the semaphore resource.

sematr:= (TA_TFIFO || TA_TPRI)

• TA_TFIFO (H'00000000): Wait task queue is managed on a FIFO basis

• TA_TPRI (H'00000001): Wait task queue is managed on the current priority

Parameter isemcnt specifies the initial value of the semaphore to be created. It can range from 0 to
maxsem.

Parameter maxsem specifies the maximum number of resources of the semaphore to be created. It
can range from 1 to 65535.

A semaphore can also be created statically by the configurator.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read access permission for pk_csem, which means
that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_csem
⎯ size = sizeof(T_CSEM)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ

178

6.10.2 Delete Semaphore (del_sem)

C-Language API:
 ER ercd = del_sem(ID semid);

Parameters:
 ID semid Semaphore ID

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) semid ≤ 0

(2) semid > CFG_MAXSEMID

 E_CTX [k] Context error

(1) Called in a non-task context

 E_NOEXS [k] Undefined

(1) Semaphore specified by semid does not exist.

Function:

Service call del_sem deletes the semaphore indicated by parameter semid.

No error will occur even if there is a task waiting to acquire a resource with the semaphore
indicated by semid. However, in that case, the task in the WAITING state will be released and
error code E_DLT will be returned.

179

6.10.3 Return Semaphore Resource (sig_sem, isig_sem)

C-Language API:
 ER ercd = sig_sem(ID semid);

 ER ercd = isig_sem(ID semid);

Parameters:
 ID semid Semaphore ID

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) semid ≤ 0

(2) semid > CFG_MAXSEMID

 E_NOEXS [k] Undefined

(1) Semaphore specified by semid does not exist.

 E_QOVR [k] Queuing overflow

(1) The semaphore count has already reached the maximum number

of semaphore resources specified when the semaphore was

created.

Function:

Each service call returns one resource to the semaphore indicated by semid. If there is a task
waiting for the semaphore indicated by semid, the task at the head of the wait queue is released
from the WAITING state, and the resource is assigned to the task. If there are no tasks in the wait
queue, the semaphore count is incremented by one.

The maximum semaphore count is maxsem, which is specified at semaphore creation.

180

6.10.4 Wait for Semaphore Resource (wai_sem, pol_sem, ipol_sem, twai_sem)

C-Language API:
 ER ercd = wai_sem(ID semid);

 ER ercd = pol_sem(ID semid);

 ER ercd = ipol_sem(ID semid);

 ER ercd = twai_sem(ID semid, TMO tmout);

Parameters:
 ID semid Semaphore ID

 <twai_sem>

 TMO tmout Timeout specification

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error

(1) tmout ≤ –2

 E_ID [p] Invalid ID number

(1) semid ≤ 0

(2) semid > CFG_MAXSEMID

 E_CTX [k] Context error (only for wai_sem and twai_sem)

(1) Called in the dispatch-pended state

 E_NOEXS [k] Undefined

(1) Semaphore specified by semid does not exist.

 E_RLWAI [k] WAITING state is forcibly cancelled (only for wai_sem and

twai_sem).

(1) rel_wai service call was issued in the WAITING state.

(2) An attempt was made to shift to WAITING state in WAITING-

disabled state.

 E_TMOUT [k] Polling failed or timeout

 E_DLT [k] Waiting object deleted

(1) Semaphore specified by semid was deleted.

Function:

Each service call acquires one resource from the semaphore specified by semid.

Each service call decrements the number of resources of the target semaphore by one if the
number of resources of the target semaphore is equal to or greater than 1, and the task issuing the
service call continues execution. If no resources exist, the task issuing service call wai_sem or
twai_sem is placed in the wait queue for the semaphore, and with service call pol_sem or

181

ipol_sem, error code E_TMOUT is immediately returned. The wait queue is managed according to
the attribute specified at creation.

Parameter tmout specified by service call twai_sem specifies the timeout period. If a positive
value is specified for parameter tmout, error code E_TMOUT is returned when the tmout period
has passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for service call pol_sem will be
performed.

If tmout = TMO_FEVR (–1) is specified, the timeout monitoring is not performed. In this case, the
same operation as for service call wai_sem will be performed.

If a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick cycles), the
maximum value that can be specified for tmout is H'7fffffff/CFG_TICDENO. If a value larger
than this is specified, operation is not guaranteed.

182

6.10.5 Refer to Semaphore State (ref_sem, iref_sem)

C-Language API:
 ER ercd = ref_sem(ID semid, T_RSEM *pk_rsem);

 ER ercd = iref_sem(ID semid, T_RSEM *pk_rsem);

Parameters:
 ID semid Semaphore ID

 T_RSEM *pk_rsem Pointer to the packet where the semaphore state is to be

returned

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 T_RSEM *pk_rsem Pointer to the packet where the semaphore state is

stored

Packet Structure:
 typedef struct {

 ID wtskid; 0 2 Wait task ID

 UINT semcnt; +4 4 Current semaphore count

 }T_RSEM;

Error Codes:
 E_PAR [p] Parameter error

(1) pk_rsem is not a 4-byte boundary address.

 E_ID [p] Invalid ID number

(1) semid ≤ 0

(2) semid > CFG_MAXSEMID

 E_NOEXS [k] Undefined

(1) Semaphore specified by semid does not exist.

 E_MACV [m] Memory access violation

Function:

Each service call refers to the state of the semaphore indicated by parameter semid. Each service
call returns the task ID at the head of the semaphore wait queue (wtskid) and the current
semaphore count (semcnt), to the area specified by parameter pk_rsem. If there is no task waiting
for the semaphore, TSK_NONE (0) is returned as wtskid.

183

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for pk_rsem, which
means that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_rsem
⎯ size = sizeof(T_RSEM)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

184

6.11 Synchronization and Communication (Event Flag)

Table 6.20 Service Calls for Synchronization and Communication (Event Flag)

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

cre_flg [s] T/E/D/U

icre_flg

Creates event flag

 N/E/D/U

acre_flg T/E/D/U

iacre_flg

Creates event flag and assigns event flag ID automatically

N/E/D/U

del_flg Deletes event flag T/E/D/U

set_flg [S] T/E/D/U

iset_flg [S]

Sets event flag

N/E/D/U

clr_flg [S] T/E/D/U

iclr_flg

Clears event flag

N/E/D/U

wai_flg [S] Waits for event flag T/E/U

pol_flg [S] T/E/D/U

ipol_flg [S]

Polls and waits for event flag

N/E/D/U

twai_flg [S] Waits for event flag with timeout function T/E/U

ref_flg T/E/D/U

iref_flg

Refers to event flag state

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called from CPU exception handler

185

Table 6.21 Event Flag Specifications

Item Description

Event flag ID 1 to CFG_MAXFLGID (32767 max.)

Event flag size 32 bits

Event flag attributes TA_TFIFO: Wait task queue is managed on a FIFO basis.

TA_TPRI: Wait task queue is managed on the current priority.

TA_WSGL: Does not permit multiple tasks to wait for the event flag.

TA_WMUL: Permits multiple tasks to wait for the event flag.

TA_CLR: Clears event flag at the time of waiting release.

186

6.11.1 Create Event Flag (cre_flg, icre_flg, acre_flg, iacre_flg)

C-Language API:
 ER ercd = cre_flg(ID flgid, T_CFLG *pk_cflg);

 ER ercd = icre_flg(ID flgid, T_CFLG *pk_cflg);

 ER_ID flgid = acre_flg(T_CFLG *pk_cflg);

 ER_ID flgid = iacre_flg(T_CFLG *pk_cflg);

Parameters:
 T_CFLG *pk_cflg Pointer to the packet where the event flag creation

information is stored

 <cre_flg, icre_flg>

 ID flgid Event flag ID

Return Parameters:
 <cre_flg, icre_flg>

 ER ercd Normal termination (E_OK) or error code

 <acre_flg, iacre_flg>

 ER_ID flgid Created event flag ID (a positive value) or error code

Packet Structure:
 typedef struct {

 ATR flgatr; 0 4 Event flag attribute

 FLGPTN iflgptn; +4 4 Initial value of event flag

 }T_CFLG;

Error Codes:
 E_RSATR [p] Reserved attribute

(1) flgatr is invalid.

 E_PAR [p] Parameter error

(1) pk_cflg is not a 4-byte boundary address.

 E_ID [p] Invalid ID number

(1) flgid ≤ 0

(2) flgid > CFG_MAXFLGID

 E_NOID [k] No ID available (only for acre_flg)

 E_OBJ [k] Invalid object state

(1) Event flag specified by flgid already exists.

 E_MACV [m] Memory access violation

187

Function:

Service calls cre_flg and icre_flg create an event flag with the ID specified by flgid using the
contents specified by pk_cflg.

Service calls acre_flg and iacre_flg search for an unused event flag ID and create an event flag for
that ID with the contents specified by parameter pk_cflg. The created event flag ID is returned as a
return parameter. The range to search for an unused event flag ID is 1 to CFG_MAXFLGID.

Parameter flgatr specifies the order of the tasks in the queue waiting for the event flag and the
number of tasks allowed to wait for the event flag.

flgatr:= ((TA_TFIFO || TA_TPRI) | (TA_WSGL || TA_WMUL) | [TA_CLR])

• TA_TFIFO (H'00000000): Wait task queue is managed on a FIFO basis.

• TA_TPRI (H'00000001): Wait task queue is managed on the current priority.

• TA_WSGL (H'00000000): Does not permit multiple tasks to wait for the event flag.

• TA_WMUL (H'00000002): Permits multiple tasks to wait for the event flag.

• TA_CLR (H'00000004): Clears event flag at the time of waiting release.

If TA_WSGL attribute is specified for flgatr, only one task can wait for the created event flag. In
this case, the event flag performs the same operation when either attribute TA_TFIFO or
TA_TPRI is specified. On the other hand, multiple tasks can enter the WAITING state when the
TA_WMUL attribute is specified. If TA_CLR attribute is specified for flgatr, all bits of the event
flag bit pattern are cleared when the wait release condition is satisfied.

Parameter iflgptn specifies the initial value of the event flag to be created.

An event flag can also be created statically by the configurator.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read access permission for pk_cflg, which means that
an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_cflg
⎯ size = sizeof(T_CFLG)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ

188

6.11.2 Delete Event Flag (del_flg)

C-Language API:
 ER ercd = del_flg(ID flgid);

Parameters:
 ID flgid Event flag ID

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) flgid ≤ 0

(2) flgid > CFG_MAXFLGID

 E_CTX [k] Context error

(1) Called in a non-task context

 E_NOEXS [k] Undefined

(1) Event flag specified by flgid does not exist.

Function:

Service call del_flg deletes the event flag indicated by parameter flgid.

No error will occur even if there is a task waiting for the conditions to be met in the event flag
indicated by flgid. However, in that case, the task in the WAITING state will be released and error
code E_DLT will be returned.

189

6.11.3 Set Event Flag (set_flg, iset_flg)

C-Language API:
 ER ercd = set_flg(ID flgid, FLGPTN setptn);

 ER ercd = iset_flg(ID flgid, FLGPTN setptn);

Parameters:
 ID flgid Event flag ID

 FLGPTN setptn Bit pattern to set

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) flgid ≤ 0

(2) flgid > CFG_MAXFLGID

 E_NOEXS [k] Undefined

(1) Event flag specified by flgid does not exist.

Function:

The event flag specified by flgid is logically ORed with the value indicated by parameter setptn
and is updated to the resultant value.

Each service call shifts a task to the READY state after the event flag value has been changed and
when the wait release conditions of a task waiting for an event flag are satisfied. Wait release
conditions are checked in the queue order. All bits of the event flag bit pattern are cleared when
the TA_CLR attribute is set to the target event flag attribute and service call processing ends.

When the TA_WMUL attribute is set to the event flag and the TA_CLR attribute is not specified,
multiple wait tasks may satisfy the release conditions when service call set_flg is called only once.
When multiple wait tasks satisfy the release conditions, the tasks are released in the queue order of
the event flag.

190

6.11.4 Clear Event Flag (clr_flg, iclr_flg)

C-Language API:
 ER ercd = clr_flg(ID flgid, FLGPTN clrptn);

 ER ercd = iclr_flg(ID flgid, FLGPTN clrptn);

Parameters:
 ID flgid Event flag ID

 FLGPTN clrptn Bit pattern to clear

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) flgid ≤ 0

(2) flgid > CFG_MAXFLGID

 E_NOEXS [k] Undefined

(1) Event flag specified by flgid does not exist.

Function:

The event flag specified by flgid is logically ANDed with the value indicated by parameter clrptn
and is updated to the resultant value.

191

6.11.5 Wait for Event Flag Setting (wai_flg, pol_flg, ipol_flg, twai_flg)

C-Language API:
 ER ercd = wai_flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);

 ER ercd = pol_flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);

 ER ercd = ipol_flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);

 ER ercd = twai_flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn, TMO

tmout);

Parameters:
 ID flgid Event flag ID

 FLGPTN waiptn Wait bit pattern

 MODE wfmode Wait mode

 FLGPTN *p_flgptn Pointer to the area where the bit pattern at waiting

release is to be returned

 <twai_flg>

 TMO tmout Timeout value

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 FLGPTN *p_flgptn Pointer to the area where the bit pattern at waiting

release is stored

Error Codes:
 E_PAR [p] Parameter error

(1) waiptn = 0

(2) wfmode is invalid.

(3) tmout ≤ –2

(4) p_flgptn is not a 4-byte boundary address.

 E_ID [p] Invalid ID

(1) flgid ≤ 0

(2) flgid > CFG_MAXFLGID

 E_CTX [k] Context error (only for wai_flg and twai_flg)

(1) Called in the dispatch-pended state

 E_ILUSE [k] Illegal use of service call

(1) The target event flag has the TA_WSGL attribute and a task

is waiting for the event flag.

 E_NOEXS [k] Undefined

(1) Event flag specified by flgid does not exist.

192

 E_RLWAI [k] WAITING state was forcibly cancelled (only for wai_flg and

twai_flg).

(1) rel_wai service call was issued in the WAITING state.

(2) An attempt was made to shift to WAITING state in WAITING-

disabled state.

 E_TMOUT [k] Polling failed or timeout

 E_DLT [k] Waiting object deleted

(1) Event flag specified by flgid was deleted.

 E_MACV [m] Memory access violation

Function:

A task that has called one of these service calls waits until the event flag specified by parameter
flgid is set to satisfy the waiting conditions indicated by parameters waiptn and wfmode. Each
service call returns the bit pattern of the event flag to the area indicated by p_flgptn when the wait
release condition is satisfied.

If the attribute of the target event flag is TA_WSGL and another task is waiting for the event flag,
error code E_ILUSE is returned.

If the wait release conditions are met before a task issues service call wai_flg, pol_flg, ipol_flg, or
twai_flg, the service call will be completed immediately. If they are not met, the task will be sent
to the wait queue when service call wai_flg or twai_flg is called. With service call pol_flg or
ipol_flg, error code E_TMOUT is immediately returned, then the processing ends.

The parameter wfmode is specified in the following format.

wfmode:= ((TWF_ANDW || TWF_ORW))

• TWF_ANDW (H'00000000): AND wait

• TWF_ORW (H'00000001): OR wait

If TWF_ANDW is specified as wfmode, the task waits until all the bits specified by waiptn have
been set. If TWF_ORW is specified as wfmode, the task waits until any one of the bits specified
by waiptn has been set in the specified event flag.

Parameter tmout for service call twai_flg specifies the timeout period. If a positive value is
specified for parameter tmout, error code E_TMOUT is returned when the timeout period has
passed without the waiting release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for service call pol_flg will be
performed.

193

If tmout = TMO_FEVR (–1) is specified, the timeout monitoring is not performed. In this case, the
same operation as for service call wai_flg will be performed.

If a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick cycles), the
maximum value that can be specified for tmout is H'7fffffff/CFG_TICDENO. If a value larger
than this is specified, operation is not guaranteed.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for p_flgptn, which
means that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = p_flgptn
⎯ size = sizeof(FLGPTN)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

194

6.11.6 Refer to Event Flag State (ref_flg, iref_flg)

C-Language API

 ER ercd = ref_flg(ID flgid, T_RFLG *pk_rflg);

 ER ercd = iref_flg(ID flgid, T_RFLG *pk_rflg);

Parameters:
 ID flgid Event flag ID

 T_RFLG *pk_rflg Pointer to the packet where the event flag state is to

be returned

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 T_RFLG *pk_rflg Pointer to the packet where the event flag state is

stored

Packet Structure:
 typedef struct {

 ID wtskid; 0 2 Wait task ID

 FLGPTN flgptn; +4 4 Event flag bit pattern

 }T_RFLG;

Error Codes:
 E_PAR [p] Parameter error

(1) pk_rflg is not a 4-byte boundary address.

 E_ID [p] Invalid ID number

(1) flgid ≤ 0

(2) flgid > CFG_MAXFLGID

 E_NOEXS [k] Undefined

(1) Event flag specified by flgid does not exist.

 E_MACV [m] Memory access violation

Function:

Each service call refers to the state of the event flag indicated by parameter flgid.

Each service call returns the task ID at the head of the event flag wait queue (wtskid) and the
current event flag bit pattern (flgptn), to the area specified by parameter pk_rflg.

If there is no task waiting for the specified event flag, TSK_NONE (0) is returned as wtskid.

195

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for pk_rflg, which
means that an error will be returned if prb_mem is issued with the following parameters.

⎯ base= pk_rflg
⎯ size = sizeof(T_RFLG)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

196

6.12 Synchronization and Communication (Data Queue)

Table 6.22 Service Calls for Synchronization and Communication (Data Queue)

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

cre_dtq [s] T/E/D/U

icre_dtq

Creates data queue

 N/E/D/U

acre_dtq T/E/D/U

iacre_dtq

Creates data queue and assigns data queue ID automatically

N/E/D/U

del_dtq Deletes data queue T/E/D/U

snd_dtq [S] Sends data to data queue T/E/U

psnd_dtq [S] T/E/D/U

ipsnd_dtq [S]

Polls and sends data to data queue

N/E/D/U

tsnd_dtq [S] Sends data to data queue with timeout function T/E/U

fsnd_dtq [S] T/E/D/U

ifsnd_dtq [S]

Forcibly sends data to data queue

N/E/D/U

rcv_dtq [S] Receives data from data queue T/E/U

prcv_dtq [S] Polls and receives data from data queue T/E/D/U

trcv_dtq [S] Receives data from data queue with timeout function T/E/U

ref_dtq T/E/D/U

iref_dtq

Refers to data queue state

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called from CPU exception handler

197

Table 6.23 Data Queue Specifications

Item Description

Data queue ID 1 to CFG_MAXDTQID (32767 max.)

One word 32 bits

Data queue attributes TA_TFIFO: Wait task queue is managed on a FIFO basis.

TA_TPRI: Wait task queue is managed on the current priority.

198

6.12.1 Create Data Queue (cre_dtq, icre_dtq, acre_dtq, iacre_dtq)

C-Language API:
 ER ercd = cre_dtq(ID dtqid, T_CDTQ *pk_cdtq);

 ER ercd = icre_dtq (ID dtqid, T_CDTQ *pk_cdtq);

 ER_ID dtqid = acre_dtq (T_CDTQ *pk_cdtq);

 ER_ID dtqid = iacre_dtq (T_CDTQ *pk_cdtq);

Parameters:
 T_CDTQ *pk_cdtq Pointer to the packet where the data queue creation

information is stored

 <cre_dtq, icre_dtq>

 ID dtqid Data queue ID

Return Parameters:
 <cre_dtq, icre_dtq>

 ER ercd Normal termination (E_OK) or error code

 <acre_dtq, iacre_dtq>

 ER_ID dtqid Created data queue ID (a positive value) or error code

Packet Structure:
 typedef struct {

 ATR dtqatr; 0 4 Data queue attribute

 UINT dtqcnt; +4 4 Size of data queue area (the number

of data values)

 VP dtqmb; +8 4 Start address of data queue area

 }T_CDTQ;

Error Codes:
 E_RSATR [p] Reserved attribute

(1) dtqatr is invalid.

 E_PAR [p] Parameter error

(1) dtqcnt != 0 and TSZ_DTQMB(dtqcnt) > (CFG_RESPOOLSZ -

VTSZ_RPLMB)

(2) pk_cdtq is not a 4-byte boundary address.

 E_ID [p] Invalid ID number

(1) dtqid ≤ 0

(2) dtqid > CFG_MAXDTQID

 E_NOMEM [k] Insufficient memory

(1) Insufficient space in the resource pool

 E_NOID [k] No ID available (only for acre_dtq)

 E_OBJ [k] Invalid object state

(1) Data queue specified by dtqid already exists.

 E_MACV [m] Memory access violation

199

Function:

Service calls cre_dtq and icre_dtq create a data queue with the ID specified by dtqid using the
contents specified by pk_cdtq.

Service calls acre_dtq and iacre_dtq search for an unused data queue ID and create a data queue
for that ID with the contents specified by pk_cdtq, and return the ID as a return parameter. The
range to search for unused data queue IDs is from 1 to CFG_MAXDTQID.

Attribute dtqatr specifies the order of the tasks in the queue waiting for sending a message to the
data queue.

dtqatr:= (TA_TFIFO || TA_TPRI)

• TA_TFIFO (H'00000000): Wait task queue is managed on a FIFO basis.

• TA_TPRI (H'00000001): Wait task queue is managed on the current priority.

The wait queue for receiving a message from the data queue is always managed on a FIFO basis.
In addition, data to be sent to a data queue is also managed on a FIFO basis in the data queue,
without priority.

Parameter dtqcnt specifies the number of data items that can be stored in the data queue area. It is
also possible to specify a value of 0 for dtqcnt; in this case, data sending tasks and data receiving
tasks are completely synchronized.

Parameter dtqmb is ignored in this kernel. To ensure the portability of programs, specify NULL
for dtqmb.

The kernel allocates a data queue area in the resource pool. For details, refer to the following.

Reference: Section 13.2.2 (2), Data queue

Data queues can also be created statically by the configurator.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read access permission for pk_cdtq, which means that
an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_cdtq
⎯ size = sizeof(T_CDTQ)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ

200

6.12.2 Delete Data Queue (del_dtq)

C-Language API:
 ER ercd = del_dtq(ID dtqid);

Parameters:
 ID dtqid Data queue ID

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) dtqid ≤ 0

(2) dtqid > CFG_MAXDTQID

 E_CTX [k] Context error

(1) Called in a non-task context

 E_NOEXS [k] Undefined

(1) Data queue specified by dtqid does not exist.

Function:

The data queue specified by dtqid is deleted.

No error occurs even if there is a send-waiting task or receive-waiting task in the data queue
specified by dtqid. However, the WAITING state of the task is cancelled, and an error code
E_DLT is returned.

On deletion, the data queue area allocated in the resource pool is released.

201

6.12.3 Send Data to Data Queue (snd_dtq, psnd_dtq, ipsnd_dtq, tsnd_dtq, fsnd_dtq,
ifsnd_dtq)

C-Language API:
 ER ercd = snd_dtq(ID dtqid, VP_INT data);

 ER ercd = psnd_dtq(ID dtqid, VP_INT data);

 ER ercd = ipsnd_dtq(ID dtqid, VP_INT data);

 ER ercd = tsnd_dtq(ID dtqid, VP_INT data, TMO tmout);

 ER ercd = fsnd_dtq(ID dtqid, VP_INT data);

 ER ercd = ifsnd_dtq(ID dtqid, VP_INT data);

Parameters:
 ID dtqid Data Queue ID

 VP_INT data Data to be sent to data queue

 <tsnd_dtq>

 TMO tmout Timeout specification

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error

(1) tmout ≤ -2

 E_ID [p] Invalid ID number

(1) dtqid ≤ 0

(2) dtqid > CFG_MAXDTQID

 E_CTX [k] Context error (only for snd_dtq and tsnd_dtq)

(1) Called in the dispatch-pended state

 E_ILUSE [k] Illegal use of service call

(1) fsnd_dtq or ifsnd_dtq is issued for the data queue whose

dtqcnt is 0.

 E_NOEXS [k] Undefined

(1) Data queue specified by dtqid does not exist.

 E_RLWAI [k] WAITING state is forcibly cancelled (only for snd_dtq and

tsnd_dtq).

(1) rel_wai service call was issued in the WAITING state.

(2) An attempt was made to shift to WAITING state in

WAITING-disabled state.

 E_TMOUT [k] Polling failed or timeout

 E_DLT [k] Waiting object deleted

(1) Data queue specified by dtqid was deleted.

202

Function:

The 4-byte data specified by parameter data is sent to the data queue specified by dtqid.

When a task is waiting to receive data in the target data queue, the data is passed to the head task
in the receive-waiting queue and the waiting state of the task is canceled.

When a task is waiting to send data in the target data queue, service calls snd_dtq and tsnd_dtq
place the calling task in the queue for waiting a free space in the data queue (send-waiting queue),
or service calls psnd_dtq and ipsnd_dtq are immediately terminated with returning an E_TMOUT
error. The send-waiting queue is managed according to the attribute specified when the data queue
was created.

When neither a receive-waiting task nor a send-waiting task exists, the data is stored in the data
queue. The count of the data queue is incremented by one.

When the data queue count has not reached the maximum data queue count, the calling task is
connected to the send-waiting queue.

In service call tsnd_dtq, the wait time is specified for tmout.

If a positive value is specified for parameter tmout, error code E_TMOUT is returned when the
timeout period has passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for service call psnd_dtq will be
performed.

If tmout = TMO_FEVR (–1) is specified, timeout monitoring is not performed. In other words, the
same operation as for service call snd_dtq will be performed.

When a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick
cycles), the maximum value that can be specified for tmout is H'7fffffff/CFG_TICDENO. If a
value larger than this is specified, operation is not guaranteed.

In fsnd_dtq and ifsnd_dtq, when a task is waiting to send data in the target data queue or when no
free space is found in the data queue even if no task is waiting to send data in the target data
queue, the oldest data in the data queue is erased and data is sent to that area. In other cases,
service calls fsnd_dtq and ifsnd_dtq operate in the same way as snd_dtq and isnd_dtq,
respectively.

Note that neither fsnd_dtq nor ifsnd_dtq can be issued for the data queue whose data size is
specified as 0. If any one of these service calls is issued, an E_ILUSE error is returned.

203

6.12.4 Receive Data from Data Queue (rcv_dtq, prcv_dtq, trcv_dtq)

C-Language API:
 ER ercd = rcv_dtq(ID dtqid, VP_INT *p_data);

 ER ercd = prcv_dtq(ID dtqid, VP_INT *p_data);

 ER ercd = trcv_dtq(ID dtqid, VP_INT *p_data, TMO tmout);

Parameters:
 ID dtqid Data queue ID

 VP_INT *p_data Start address of the area where received data is to be

returned

 <trcv_dtq>

 TMO tmout Timeout specification

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 VP_INT *p_data Pointer to the area where received data is stored

Error Codes:
 E_PAR [p] Parameter error

(1) tmout ≤ -2

(2) p_data is not a 4-byte boundary address.

 E_ID [p] Invalid ID number

(1) dtqid ≤ 0

(2) dtqid > CFG_MAXDTQID

 E_CTX [k] Context error

(1) Called in a non-task context

(2) Called in dispatch-pended state in a task context (only

for rcv_dtq and trcv_dtq)

 E_NOEXS [k] Undefined

(1) Data queue specified by dtqid does not exist.

 E_RLWAI [k] WAITING state is forcibly cancelled (only for rcv_dtq and

trcv_dtq).

(1) rel_wai service call was issued in the WAITING state.

(2) An attempt was made to shift to WAITING state in WAITING-

disabled state.

 E_TMOUT [k] Polling failed or timeout

 E_DLT [k] Waiting object deleted

(1) Data queue specified by dtqid was deleted.

 E_MACV [m] Memory access violation

204

Function:

Data is received from the data queue specified by dtqid, and stored to the area indicated by
parameter p_data.

If there is data in the data queue, the first data (the oldest message) is received. On receiving data
from the data queue, the data queue count is decremented by 1. As a result, if data can be stored in
the data queue, data sending processing is performed for a task in the send-waiting queue in the
order of the wait queue.

If there is no data in the data queue, and there exists a send-waiting task (such a circumstance can
occur only when the data queue area capacity is 0), the data of the task at the head of data send-
waiting queue is received. As a result, the WAITING state of the data send-waiting task is
cancelled.

If there is no data in the data queue and there are no send-waiting tasks either, service call rcv_dtq
or trcv_dtq causes the calling task to be placed in the queue for waiting for message arrival
(receive-waiting queue). In service call prcv_dtq, the call returns immediately with an E_TMOUT
error. The receive-waiting queue is managed on a FIFO basis.

In service call trcv_dtq, tmout specifies the wait time.

If a positive value is specified for parameter tmout, error code E_TMOUT is returned when the
timeout period has passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for service call prcv_dtq will be
performed. If tmout = TMO_FEVR (–1) is specified, timeout monitoring is not performed. In
other words, the same operation as for service call rcv_dtq will be performed.

When a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick
cycles), the maximum value that can be specified for tmout is H'7fffffff/CFG_TICDENO. If a
value larger than this is specified, operation is not guaranteed.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for p_data, which means
that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = p_data
⎯ size = sizeof(VP_INT)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

205

6.12.5 Refer to Data Queue State (ref_dtq, iref_dtq)

C-Language API:
 ER ercd = ref_dtq(ID dtqid, T_RDTQ *pk_rdtq);

 ER ercd = ref_dtq(ID dtqid, T_RDTQ *pk_rdtq);

Parameters:
 ID dtqid Data queue ID

 T_RDTQ *pk_rdtq Pointer to the packet where data queue state is to be

returned

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 T_RDTQ *pk_rdtq Pointer to the packet where data queue state is stored

Packet Structure:
 typedef struct {

 ID stskid; 0 2 Task ID waiting for sending

 ID rtskid; +2 2 Task ID waiting for receiving

 UINT sdtqcnt; +4 4 The number of data in the data queue

 }T_RDTQ;

Error Codes:
 E_PAR [p] Parameter error

(1) pk_rdtq is not a 4-byte boundary address.

 E_ID [p] Invalid ID number

(1) dtqid ≤ 0

(2) dtqid > CFG_MAXDTQID

 E_NOEXS [k] Undefined

(1) Data queue specified by dtqid does not exist.

 E_MACV [m] Memory access violation

Function:

The state of the data queue specified by dtqid is referenced, and the send-waiting task IDs (stskid),
the receive-waiting task IDs (rtskid), and the number of data items in the data queue (sdtqcnt) are
returned to the area specified by pk_rdtq. When no task is waiting for sending in the target data
queue, TSK_NONE (0) is returned through stskid. When no task is waiting for receiving in the
target data queue, TSK_NONE (0) is returned through rtskid.

206

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for pk_rdtq, which
means that an error will be returned if prb_mem is issued with the following parameters.

⎯ base= pk_rdtq
⎯ size = sizeof(T_RDTQ)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

207

6.13 Synchronization and Communication (Mailbox)

Table 6.24 Service Calls for Synchronization and Communication (Mailbox)

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

cre_mbx [s] T/E/D/U

icre_mbx

Creates mailbox

 N/E/D/U

acre_mbx T/E/D/U

iacre_mbx

Creates mailbox and assigns mailbox ID automatically

N/E/D/U

del_mbx Deletes mailbox T/E/D/U

snd_mbx [S] T/E/D/U

isnd_mbx

Sends data to mailbox

N/E/D/U

rcv_mbx [S] Receives data from mailbox T/E/U

prcv_mbx [S] T/E/D/U

iprcv_mbx

Polls and receives data from mailbox

NE/D/U

trcv_mbx [S] Receives data from mailbox with timeout function T/E/U

ref_mbx T/E/D/U

iref_mbx

Refers to mailbox state

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called from CPU exception handler

208

Table 6.25 Mailbox Specifications

Item Description

Mailbox ID 1 to CFG_MAXMBXID (32767 max.)

Message priority 1 to CFG_MAXMSGPRI* (255 max.)

Mailbox attributes TA_TFIFO: Wait task queue is managed on a FIFO basis.

TA_TPRI: Wait task queue is managed on the current priority.

TA_MFIFO: Message queue is managed on a FIFO basis.

TA_MPRI: Message queue is managed on the current priority.

Note: This value is same as TMAX_MPRI defined in kernel_macro.h.

209

6.13.1 Create Mailbox (cre_mbx, icre_mbx, acre_mbx, iacre_mbx)

C-Language API:
 ER ercd = cre_mbx(ID mbxid, T_CMBX *pk_cmbx);

 ER ercd = icre_mbx(ID mbxid, T_CMBX *pk_cmbx);

 ER_ID mbxid = acre_mbx(T_CMBX *pk_cmbx);

 ER_ID mbxid = iacre_mbx(T_CMBX *pk_cmbx);

Parameters:
 T_CMBX *pk_cmbx Pointer to the packet where the mailbox creation

information is stored

 <cre_mbx, icre_mbx>

 ID mbxid Mailbox ID

Return Parameters:
 <cre_mbx, icre_mbx>

 ER ercd Normal termination (E_OK) or error code

 <acre_mbx, iacre_mbx>

 ER_ID mbxid Created mailbox ID (a positive value) or error code

Packet Structure:
 typedef struct {

 ATR mbxatr; 0 4 Mailbox attribute

 UINT mbxcnt; +4 4 Number of messages that can be stored

 PRI maxmpri; +8 2 Highest message priority

 VP mbxmb; +12 4 Start address of mailbox management

area

 }T_CMBX;

Error Codes:
 E_RSATR [p] Reserved attribute

(1) mbxatr is invalid.

 E_PAR [p] Parameter error

(1) maxmpri ≤ 0

(2) maxmpri > CFG_MAXMSGPRI

(3) pk_cmbx is not a 4-byte boundary address.

 E_ID [p] Invalid ID number

(1) mbxid ≤ 0

(2) mbxid > CFG_MAXMBXID

 E_NOMEM [k] Insufficient memory

(1) Insufficient space in the resource pool

 E_NOID [k] No ID available (only for acre_mbx)

 E_OBJ [k] Invalid object state

(1) Mailbox specified by mbxid already exists.

210

 E_MACV [m] Memory access violation

Function:

Service calls cre_mbx and icre_mbx create a mailbox with the ID specified by mbxid using the
contents specified by pk_cmbx.

Service calls acre_mbx and iacre_mbx search for an unused mailbox ID and create a mailbox for
that ID with the contents specified by parameter pk_cmbx. The created mailbox ID is returned as a
return parameter. The range to search for an unused mailbox ID is 1 to CFG_MAXMBXID.

Parameter mbxatr specifies the order of the receive-waiting tasks and messages in the wait queues.

mbxatr:= ((TA_TFIFO || TA_TPRI) | TA_MFIFO || TA_MPRI))

• TA_TFIFO (H'00000000): Message receive-waiting queue is managed on a FIFO basis.

• TA_TPRI (H'00000001): Message receive-waiting queue is managed on the current priority.

• TA_MFIFO (H'00000000): Message queue is managed on a FIFO basis.

• TA_MPRI (H'00000002): Message queue is managed on the current priority.

mbxcnt and mbxmb are always ignored in this kernel. To ensure the portability of programs,
specify an appropriate value for mbxcnt and NULL for mbxmb.

When the TA_MPRI attribute is specified and maxmpri > 1, the kernel uses an area in the resource
pool to manage the mailbox. For details, refer to the following.

Reference: Section 13.2.2 (3), Mailbox

A mailbox can also be created statically by the configurator.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read access permission for pk_cmbx, which means
that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_cmbx
⎯ size = sizeof(T_CMBX)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ

211

6.13.2 Delete Mailbox (del_mbx)

C-Language API:
 ER ercd = del_mbx(ID mbxid);

Parameters:
 ID mbxid Mailbox ID

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) mbxid ≤ 0

(2) mbxid > CFG_MAXMBXID

 E_CTX [k] Context error

(1) Called in a non-task context

 E_NOEXS [k] Undefined

(1) Mailbox specified by mbxid does not exist.

Function:

Service call del_mbx deletes the mailbox indicated by parameter mbxid.

After the mailbox is deleted, the management area that was allocated in the resource pool to create
the mailbox and send messages is released.

No error will occur even if there is a task waiting for a message in the mailbox indicated by
mbxid. However, in that case, the task in the WAITING state will be released and error code
E_DLT will be returned. If there is a message in the mailbox, no error will occur, but the kernel
will not perform any processing for the message area. For example, the kernel will not
automatically return the message area to the memory pool when a memory block acquired from
the memory pool is used for a message.

212

6.13.3 Send Message to Mailbox (snd_mbx, isnd_mbx)

C-Language API:
 ER ercd = snd_mbx(ID mbxid, T_MSG *pk_msg);

 ER ercd = isnd_mbx(ID mbxid, T_MSG *pk_msg);

Parameters:
 ID mbxid Mailbox ID

 T_MSG *pk_msg Start address of the message to be sent

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Packet Structure:
 <Mailbox message header>

 typedef struct {

 VP msghead; 0 4 Kernel management area

 }T_MSG;

 msghead is provided only to ensure the compatibility of the message format with

the former versions. It does not need to be cleared to zero when data is sent

to the mailbox.

 <Mailbox message header with priority>

 typedef struct {

 T_MSG msgque; 0 4 Message header

 PRI msgpri; +4 2 Message priority

 }T_MSG_PRI;

Error Codes:
 E_PAR

[p]

Parameter error

(1) pk_msg is not a 4-byte boundary address.

 [k] (2) The TA_MPRI attribute is specified for the target mailbox

and msgpri ≤ 0 or msgpri > (highest message priority

specified when the mailbox was created).

 E_ID [p] Invalid ID number

(1) mbxid ≤ 0

(2) mbxid > CFG_MAXMBXID

 E_NOMEM [k] Insufficient memory

(1) Insufficient space in the resource pool

 E_NOEXS [k] Undefined

(1) Mailbox specified by mbxid does not exist.

 E_MACV [m] Memory access violation

213

Function:

Each service call sends a message specified by pk_msg to the mailbox specified by mbxid.

If there is a task waiting to receive a message in the mailbox, the task at the head of the wait queue
receives the message and is released from the WAITING state. On the other hand, if there are no
tasks waiting to receive a message, the message specified by pk_msg is placed at the end of the
message queue. The message queue is managed according to the attribute specified at creation.
Here, the kernel uses an area in the resource pool to manage the message. For details, refer to the
following.

Reference: Resource pool consumption → Section 13.2.3 (1), Mailbox: snd_mbx, isnd_mbx

To send a message to a mailbox that has the TA_MFIFO attribute, the message must have the
T_MSG structure at the head of the message, as shown in Figure 6.2.

To send a message to a mailbox that has the TA_MPRI attribute, the message must have the
T_MSG_PRI structure at the head of the message, as shown in Figure 6.3.

Messages must be created in RAM.

typedef struct {
 T_MSG t_msg; /* T_MSG structure */
 B data[8]; /* Example of user message data structure (any structure) */
} USER_MSG;

Figure 6.2 Example of a Message Form

typedef struct {
 T_MSG_PRI t_msg; /* T_MSG_PRI structure */
 B data[8]; /* Example of user message data structure (any structure) */
} USER_MSG;

Figure 6.3 Example of a Message Form with Priority

The sent message is read by the receiving task. Accordingly, note the following when creating a
message.

(1) In principle, messages must not be created as local variables.

(2) When the memory protection function is used, a message must be created in an area for which
the receiving task has a read access permission. In general, it is recommended to use a mailbox
for communications between tasks within the same domain. To transfer messages between

214

domains, consider the use of a data queue (only one word), a message buffer, or a protected
mailbox.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read access permission for pk_msg, which means that
an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_msg
⎯ size = sizeof(T_MSG_PRI)

Note that this size should be checked even when the TA_MFIFO attribute is specified.

⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ

215

6.13.4 Receive Message from Mailbox (rcv_mbx, prcv_mbx, iprcv_mbx, trcv_mbx)

C-Language API:
 ER ercd = rcv_mbx(ID mbxid, T_MSG **ppk_msg);

 ER ercd = prcv_mbx(ID mbxid, T_MSG **ppk_msg);

 ER ercd = iprcv_mbx(ID mbxid, T_MSG **ppk_msg);

 ER ercd = trcv_mbx(ID mbxid, T_MSG **ppk_msg, TMO tmout);

Parameters:
 ID mbxid Mailbox ID

 T_MSG **ppk_msg Pointer to the area where the start address of the

received message is to be returned

 <trcv_mbx>

 TMO tmout Timeout specification

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 T_MSG **ppk_msg Pointer to the area where the start address of the

received message is stored

Packet Structure:
 <Mailbox message header>

 typedef struct {

 VP msghead; 0 4 Kernel management area

 }T_MSG;

 <Mailbox message header with priority>

 typedef struct {

 T_MSG msgque; 0 4 Message header

 PRI msgpri; +4 2 Message priority

 }T_MSG PRI;

Error Codes:
 E_PAR [p] Parameter error

(1) tmout ≤ –2

(2) ppk_msg is not a 4-byte boundary address.

 E_ID [p] Invalid ID number

(1) mbxid ≤ 0

(2) mbxid > CFG_MAXMBXID)

 E_CTX [k] Context error (only for rcv_mbx and trcv_mbx)

(1) Called in the dispatch-pended state

216

 E_RLWAI [k] WAITING state is forcibly cancelled (only for rcv_mbx and

trcv_mbx).

(1) rel_wai service call was issued in the WAITING state.

(2) An attempt was made to shift to WAITING state in WAITING-

disabled state.

 E_TMOUT [k] Polling failed or timeout

 E_DLT [k] Waiting object deleted

(1) Mailbox specified by mbxid was deleted.

 E_MACV [m] Memory access violation

Function:

Each service call receives a message from the mailbox specified by parameter mbxid. Then the
start address of the received message is returned to the area indicated by parameter ppk_msg.

After a message is received, the management area that was acquired from the resource pool by the
kernel to manage the message when the message was sent is released.

With service calls rcv_mbx and trcv_mbx, if there are no messages in the mailbox, the task that
issued the service call is placed in the wait queue to receive a message (receive-waiting queue).
With service calls prcv_mbx and iprcv_mbx, if there are no messages in the mailbox, error code
E_TMOUT is returned immediately. The wait queue is managed according to the attribute
specified at creation.

Parameter tmout specified by service call trcv_mbx specifies the timeout period.

If a positive value is specified for parameter tmout, error code E_TMOUT is returned when the
timeout period has passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for service call prcv_mbx will be
performed.

If tmout = TMO_FEVR (–1) is specified, timeout monitoring is not performed. In other words, the
same operation as for service call rcv_mbx will be performed.

If a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick cycles), the
maximum value that can be specified for tmout is H'7fffffff/CFG_TICDENO. If a value larger
than this is specified, operation is not guaranteed.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

217

(1) The domain of the caller does not have a read/write access permission for ppk_msg, which
means that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = ppk_msg
⎯ size = sizeof(T_MSG *)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

218

6.13.5 Refer to Mailbox State (ref_mbx, iref_mbx)

C-Language API:
 ER ercd = ref_mbx(ID mbxid, T_RMBX *pk_rmbx);

 ER ercd = iref_mbx(ID mbxid, T_RMBX *pk_rmbx);

Parameters:
 ID mbxid Mailbox ID

 T_RMBX *pk_rmbx Pointer to the packet where the mailbox state is to be

returned

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 T_RMBX *pk_rmbx Pointer to the packet where the mailbox state is stored

Packet Structure:
 (1) T_RMBX

 typedef struct {

 ID wtskid; 0 2 Wait task ID

 T_MSG *pk_msg; +4 4 Start address of the message to be

received next

 }T_RMBX;

 (2) T_MSG

 <Mailbox message header>

 typedef struct {

 VP msghead; 0 4 Kernel management area

 }T_MSG;

 <Mailbox message header with priority>

 typedef struct {

 T_MSG msgque; 0 4 Message header

 PRI msgpri; +4 2 Message priority

 }T_MSG_PRI;

Error Codes:
 E_PAR [p] Parameter error

(1) pk_rmbx is not a 4-byte boundary address.

 E_ID [p] Invalid ID number

(1) mbxid ≤ 0

(2) mbxid > CFG_MAXMBXID

 E_NOEXS [k] Undefined

(1) Mailbox specified by mbxid does not exist.

 E_MACV [m] Memory access violation

219

Function:

Each service call refers to the state of the mailbox specified by parameter mbxid.

Each service call returns the wait task ID (wtskid) and the start address of the message to be
received next (pk_msg) to the area indicated by pk_rmbx.

If there is no task waiting in the specified mailbox, TSK_NONE (0) is returned as wtskid.

If there is no message to be received next, NULL (0) is returned as pk_msg.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for pk_rmbx, which
means that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_rmbx
⎯ size = sizeof(T_RMBX)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

220

6.14 Synchronization and Communication (Mutex)

Table 6.26 Service Calls for Synchronization and Communication (Mutex)

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

cre_mtx Creates mutex T/E/D/U

acre_mtx Creates mutex and assigns mutex ID
automatically

T/E/D/U

del_mtx Deletes mutex T/E/D/U

loc_mtx Locks mutex T/E/U

ploc_mtx Polls and locks mutex T/E/D/U

tloc_mtx Locks mutex with timeout function T/E/U

unl_mtx Unlocks mutex T/E/D/U

ref_mtx Refers to mutex state T/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called from CPU exception handler

Table 6.27 Mutex Specifications

Item Description

Mutex ID 1 to CFG_MAXMTXID (32767 max.)

Mutex attributes TA_CEILING: Ceiling priority protocol

Note: This kernel only supports the TA_CEILING attribute (ceiling priority protocol). In this kernel,
the mutex is managed by "simplified priority control rule". Under this rule, the management
which changes the task's current priority to a higher value is always done, but the
management which changes the task's priority to a lower value is done only when the task
releases all of mutexes.

221

6.14.1 Create Mutex (cre_mtx, acre_mtx)

C-Language API:
 ER ercd = cre_mtx(ID mtxid, T_CMTX *pk_cmtx);

 ER_ID mtxid = acre_mtx(T_CMTX *pk_cmtx);

Parameters:
 T_CMTX *pk_cmtx Pointer to the packet where the mutex creation

information is stored

 <cre_mtx>

 ID mtxid Mutex ID

Return Parameters:
 <cre_mtx>

 ER ercd Normal termination (E_OK) or error code

 <acre_mtx>

 ER_ID mtxid Created mutex ID (a positive value) or error code

Packet Structure:
 typedef struct {

 ATR mtxatr; 0 4 Mutex attribute

 PRI ceilpri; +4 2 Ceiling priority of mutex

 }T_CMTX;

Error Codes:
 E_RSATR [p] Reserved attribute

(1) mtxatr is invalid.

 E_PAR [p] Parameter error

(1) ceilpri ≤ 0

(2) ceilpri > CFG_MAXTSKPRI

(3) pk_cmtx is not a 4-byte boundary address.

 E_ID [p] Invalid ID number

(1) mtxid ≤ 0

(2) mtxid > CFG_MAXMTXID

 E_NOID [k] No ID available (only for acre_mtx)

 E_OBJ [k] Invalid object state

(1) Mutex specified by mtxid already exists.

 E_MACV [m] Memory access violation

222

Function:

Service call cre_mtx creates a mutex with the ID specified by mtxid using the contents specified
by pk_cmtx.

Service call acre_mtx searches for an unused mutex ID and creates a mutex for that ID with the
contents specified by pk_cmtx, and returns the ID as a return parameter. The range to search for an
unused mutex ID is from 1 to CFG_MAXMTXID.

As the mtxatr attribute, only the ceiling priority protocol (TA_CEILING) can be specified.

mtxatr:= (TA_CEILING)

• TA_CEILING (H'00000003): Ceiling priority protocol

Wait task queue is always managed on the current priority.

Parameter ceilpri specifies the ceiling priority for the mutex to be created. The range of values
which can be specified is 1 to CFG_MAXTSKPRI.

A mutex can also be created statically by the configurator.

This service call must not be issued in a non-task context, but even if it is attempted, no E_CTX
error is detected.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read access permission for pk_cmtx, which means
that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_cmtx
⎯ size = sizeof(T_CMTX)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ

223

6.14.2 Delete Mutex (del_mtx)

C-Language API:
 ER ercd = del_mtx(ID mtxid);

Parameters:
 ID mtxid Mutex ID

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) mtxid ≤ 0

(2) mtxid > CFG_MAXMTXID

 E_CTX [k] Context error

(1) Called in a non-task context

 E_NOEXS [k] Undefined

(1) Mutex specified by mtxid does not exist.

Function:

Service call del_mtx deletes the mutex specified by parameter mtxid.

No error occurs even when there is a lock-waiting task for the mutex specified by mtxid; but the
WAITING state of the task is cancelled, and E_DLT is returned as an error code.

When the target mutex is locked, the lock for the task that locks the mutex is cancelled. As a
result, only when all mutexes locked by the task are unlocked, the task priority is returned to the
base priority.

The task locking the deleted mutex is not notified that the mutex has been deleted. If an attempt is
later made to release the mutex lock, an error is returned.

224

6.14.3 Lock Mutex (loc_mtx, ploc_mtx, tloc_mtx)

C-Language API:
 ER ercd = loc_mtx(ID mtxid);

 ER ercd = ploc_mtx(ID mtxid);

 ER ercd = tloc_mtx(ID mtxid, TMO tmout);

Parameters:
 ID mtxid Mutex ID

 <tloc_mtx>

 TMO tmout Timeout specification

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error

(1) tmout ≤ –2

 E_ID [p] Invalid ID

(1) mtxid ≤ 0

(2) mtxid > CFG_MAXMTXID

 E_CTX [k] Context error

(1) Called in a non-task context

(2) Called in the dispatch-pended state in a task context

(only for loc_mtx and tloc_mtx)

 E_ILUSE [k] Illegal use of service call

(1) The target mutex is already locked by the calling

task.

(2) Ceiling priority violation

(The base priority of the calling task is less than

the ceiling priority specified at mutex creation.)

 E_NOEXS [k] Undefined

(1) Mutex specified by mtxid does not exist.

 E_RLWAI [k] The WAITING state was forcibly cancelled (only for loc_mtx

and tloc_mtx).

(1) rel_wai service call was issued in the WAITING state.

(2) An attempt was made to shift to WAITING state in

WAITING-disabled state.

 E_TMOUT [k] Polling failed or timeout

 E_DLT [k] Waiting object deleted

(1) Mutex specified by mtxid was deleted.

225

Function:

Each service call locks the mutex specified by parameter mtxid.

When the target mutex is not locked, the current task locks the mutex, and the service call
processing is completed. At this time, the priority of the current task is raised to the ceiling priority
of the mutex.

If the target mutex is locked, the current task is placed in a wait queue, and the current task enters
the mutex lock-wait state. The wait queue is managed in priority order.

Parameter tmout specified by service call tloc_mtx specifies the timeout period.

If a positive value is specified for parameter tmout, error code E_TMOUT is returned when the
timeout period has passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for service call ploc_mtx will be
performed.

If tmout = TMO_FEVR (–1) is specified, timeout monitoring is not performed. In other words, the
same operation as for service call loc_mtx will be performed.

When a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick
cycles), the maximum value that can be specified for tmout is H'7fffffff/CFG_TICDENO. If a
value larger than this is specified, operation is not guaranteed.

226

6.14.4 Unlock Mutex (unl_mtx)

C-Language API:
 ER ercd = unl_mtx(ID mtxid);

Parameters:
 ID mtxid Mutex ID

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID

(1) mtxid ≤ 0

(2) mtxid > CFG_MAXMTXID

 E_CTX [k] Context error

(1) Called in a non-task context

 E_ILUSE [k] Illegal use of service call

(1) The calling task has not locked the target mutex.

 E_NOEXS [k] Undefined

(1) Mutex specified by mtxid does not exist.

Function:

The lock for the mutex specified by mtxid is released. If there is a task waiting for the lock for the
specified mutex, the WAITING state for the task at the head of the mutex wait queue is released,
and the task whose WAITING state has been released is put into a state which locks the mutex. At
this time, the priority of the locking task is raised to the ceiling priority of the mutex. If there are
no tasks waiting for the mutex, the mutex is put into the unlocked state.

Through this service call, only when all the mutexes that are locked by the current task are
unlocked, the current priority of the task is returned to the base priority.

227

6.14.5 Refer to Mutex State (ref_mtx)

C-Language API:
 ER ercd = ref_mtx(ID mtxid, T_RMTX *pk_rmtx);

Parameters:
 ID mtxid Mutex ID

 T_RMTX *pk_rmtx Pointer to the area where the mutex status is to be

returned

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 T_RMTX *pk_rmtx Pointer to the packet where the mutex status is stored

Packet Structure:
 typedef struct {

 ID htskid; 0 2 Task ID locking a mutex

 ID wtskid; +2 2 ID of the task at the head of mutex

waiting queue

 }T_RMTX;

Error Codes:
 E_PAR [p] Parameter error

(1) pk_rmtx is not a 4-byte boundary address.

 E_ID [p] Invalid ID number

(1) mtxid ≤ 0

(2) mtxid > CFG_MAXMTXID

 E_NOEXS [k] Undefined

(1) Mutex specified by mtxid does not exist.

 E_MACV [m] Memory access violation

Function:

Service call ref_mtx refers to the state of the mutex specified by mtxid. Service call ref_mtx
returns the task ID that locks the mutex (htskid) and the ID of the task placed at the head of the
mutex wait queue (wtskid) to the area indicated by pk_rmtx. If there is no task that locks the target
mutex, TSK_NONE (0) is returned to htskid. If there is no task waiting for the target mutex,
TSK_NONE (0) is returned to wtskid.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for pk_rmtx, which
means that an error will be returned if prb_mem is issued with the following parameters.

228

⎯ base = pk_rmtx
⎯ size = sizeof(T_RMTX)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

229

6.15 Extended Synchronization and Communication (Message Buffer)

Table 6.28 Service Calls for Extended Synchronization and Communication (Message
Buffer)

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

cre_mbf T/E/D/U

icre_mbf

Creates message buffer

N/E/D/U

acre_mbf T/E/D/U

iacre_mbf

Creates message buffer and assigns message
buffer ID automatically N/E/D/U

del_mbf Deletes message buffer T/E/D/U

snd_mbf Sends message to message buffer T/E/U

psnd_mbf T/E/D/U

ipsnd_mbf

Polls and sends message to message buffer

N/E/D/U

tsnd_mbf Sends message to message buffer with timeout
function

T/E/U

rcv_mbf Receives message from message buffer T/E/U

prcv_mbf Polls and receives message from message buffer T/E/D/U

trcv_mbf Receives message from message buffer with
timeout function

T/E/U

ref_mbf T/E/D/U

iref_mbf

Refers to message buffer state

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called from CPU exception handler

230

Table 6.29 Message Buffer Specifications

Item Description

Message buffer ID 1 to CFG_MAXMBFID (32767 max.)

Message buffer
attributes

TA_TFIFO: Task queue waiting for sending a message is managed on a
FIFO basis
TA_TPRI: Task queue waiting for sending a message is managed on the
current priority

231

6.15.1 Create Message Buffer (cre_mbf, icre_mbf, acre_mbf, iacre_mbf)

C-Language API:
 ER ercd = cre_mbf(ID mbfid, T_CMBF *pk_cmbf);

 ER ercd = icre_mbf(ID mbfid, T_CMBF *pk_cmbf);

 ER_ID mbfid = acre_mbf(T_CMBF *pk_cmbf);

 ER_ID mbfid = iacre_mbf(T_CMBF *pk_cmbf);

Parameters:
 T_CMBF *pk_cmbf Pointer to the packet where the message buffer creation

information is stored

 <cre_mbf, icre_mbf>

 ID mbfid Message buffer ID

Return Parameters:
 <cre_mbf, icre_mbf>

 ER ercd Normal termination (E_OK) or error code

 <acre_mbf, iacre_mbf>

 ER_ID mbfid Created message buffer ID (a positive value) or error

code

Packet Structure:
 typedef struct {

 ATR mbfatr; 0 4 Message buffer attribute

 UINT maxmsz; +4 4 Maximum message size (number of bytes)

 SIZE mbfsz; +8 4 Message buffer size (number of bytes)

 VP mbfmb; +12 4 Start address of message buffer

management area

 }T_CMBF;

Error Codes:
 E_RSATR [p] Reserved attribute

(1) mbfatr is invalid.

 E_PAR [p] Parameter error

(1) When mbfsz != 0, mbfsz < TSZ_MBFMB(1,maxmsz) or mbfsz >

(CFG_RESPOOLSZ - VTSZ_RPLMB)

(2) maxmsz = 0

(3) pk_cmbf is not a 4-byte boundary address.

 E_ID [p] Invalid ID number

(1) mbfid ≤ 0

(2) mbfid > CFG_MAXMBFID

 E_NOMEM [k] Insufficient memory

(1) Insufficient space in the resource pool

 E_NOID [k] No ID available (only for acre_mbf)

232

 E_OBJ [k] Invalid object state

(1) Message buffer specified by mbfid already exists.

 E_MACV [m] Memory access violation

Function:

Service calls cre_mbf and icre_mbf create a message buffer with the ID specified by mbfid using
the contents specified by pk_cmbf.

Service calls acre_mbf and iacre_mbf search for an unused message buffer ID and create a
message buffer for that ID with the contents specified by parameter pk_cmbf. The created
message buffer ID is returned as a return parameter. The range to search for an unused message
buffer ID is 1 to CFG_MAXMBFID.

Parameter mbfatr specifies the order of the tasks in the queue waiting for sending a message to the
message buffer.

mbfatr:= (TA_TFIFO || TA_TPRI)

• TA_TFIFO (H'00000000): Task queue waiting for sending a message is managed on a FIFO
basis.

• TA_TPRI (H'00000001): Task queue waiting for sending a message is managed on the current
priority.

The message queue and the task queue waiting for receiving a message are managed on a first-in
first-out (FIFO) basis regardless of the mbfatr specification.

Parameter maxmsz specifies the maximum length of a message that can be held in a message
buffer.

Parameter mbfsz specifies the size of the message buffer to be created. The mbfsz value is
rounded up to a multiple of four during processing. The following macro is provided to estimate
the approximate size to be specified for mbfsz.

 SIZE mbfsz = TSZ_MBFMB(UINT msgcnt, UINT msgsz)
Approximate size (bytes) of a message buffer area required to hold the msgcnt number of
msgsz-byte messages

The mbfsz value must be equal to or larger than TSZ_MBFSZ(1,maxmsz).

A message buffer of mbfsz = 0 can also be created. In this case, no message can be stored in the
message buffer, and the message-receiving task completely synchronizes with the message-
sending task. In other words, when a service call to send a message is issued, the task stays in the

233

WAITING state until another task issues a service call to receive a message. Similarly, when a
task issues a service call to receive a message, the task stays in the WAITING state until another
task issues a service call to send a message.

When mbfsz != 0, the kernel allocates a message buffer area in the resource pool. For details, refer
to the following.

Reference: Section 13.2.2 (4), Message buffer

Parameter mbfmb is ignored in this kernel. To ensure the portability of programs, specify NULL
for mbfmb.

A message buffer can also be created statically by the configurator.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read access permission for pk_cmbf, which means
that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_cmbf
⎯ size = sizeof(T_CMBF)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ

234

6.15.2 Delete Message Buffer(del_mbf)

C-Language API:
 ER ercd = del_mbf(ID mbfid);

Parameters:
 ID mbfid Message buffer ID

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) mbfid ≤ 0

(2) mbfid > CFG_MAXMBFID

 E_CTX [k] Context error

(1) Called in a non-task context

 E_NOEXS [k] Undefined

(1) Message buffer specified by mbfid does not exist.

Function:

Service call del_mbf deletes the message buffer specified by parameter mbfid.

No error will occur even if there is a task waiting for receiving or sending a message in the
message buffer indicated by mbfid. However, in that case, the task in the WAITING state will be
released and error code E_DLT will be returned. In addition, if there is a message in the message
buffer, no error will occur, but all stored messages will be deleted.

On deletion, the message buffer area allocated in the resource pool is released.

235

6.15.3 Send Message to Message Buffer (snd_mbf, psnd_mbf, ipsnd_mbf, tsnd_mbf)

C-Language API:
 ER ercd = snd_mbf(ID mbfid, VP msg, UINT msgsz);

 ER ercd = psnd_mbf(ID mbfid, VP msg, UINT msgsz);

 ER ercd = ipsnd_mbf(ID mbfid, VP msg, UINT msgsz);

 ER ercd = tsnd_mbf(ID mbfid, VP msg, UINT msgsz, TMO tmout);

Parameters:
 ID mbfid Message buffer ID

 VP msg Start address of the message to send

 UINT msgsz Size of the message to send (number of bytes)

 <tsnd_mbf>

 TMO tmout Timeout specification

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_PAR

[p]

Parameter error

(1) msgsz = 0

(2) tmout ≤ –2

(3) msg is not a 4-byte boundary address.

 [k] msgsz > (maximum message size specified at creation)

 E_ID [p] Invalid ID number

(1) mbfid ≤ 0

(2) mbfid > CFG_MAXMBFID

 E_CTX [k] Context error (only for snd_mbf and tsnd_mbf)

(1) Called in dispatch-pended state

 E_NOEXS [k] Undefined

(1) Message buffer specified by mbfid does not exist.

 E_RLWAI [k] WAITING state is forcibly cancelled (only for snd_mbf and

tsnd_mbf)

(1) rel_wai service call was issued in the WAITING state.

(2) An attempt was made to shift to WAITING state in

WAITING-disabled state.

 E_TMOUT [k] Polling failed or timeout

 E_DLT [k] Waiting object deleted

(1) Message buffer specified by mbfid was deleted.

 E_MACV [m] Memory access violation

236

Function:

Each service call sends a message specified by msg to the message buffer specified by mbfid. The
message size is specified by parameter msgsz.

If there is a task waiting to receive a message from the specified message buffer, the message sent
by the service call is not placed in the message buffer. Instead, the message is passed to the task at
the head of the receive-waiting queue, releasing the task from the WAITING state.

If there are already tasks waiting to send a message to the message buffer, the task that issued
service call snd_mbf or tsnd_mbf is placed in the queue to wait for free space in the message
buffer (send-waiting queue). With service calls psnd_mbf and ipsnd_mbf, error code E_TMOUT
is immediately returned. The wait queue is managed according to the attribute specified at
creation.

If there are no tasks waiting to send or receive a message, the message sent from a task is stored in
the message buffer. After that, the size of the free space in the message buffer will decrease by
VTSZ_MBFMSGMB(msgsz) bytes. If the free space in the message buffer is less than this size
(including when the buffer size is 0), the task that issued the service call is placed in the send-
waiting queue.

ipsnd_mbf can also be issued in a non-task context. Since the priority of a non-task context is
higher than that of a task when the target message buffer has TA_TPRI attribute, the specified
message is copied to the buffer when the buffer has enough free space for the required size, even if
there exists a task that has been waiting to send a message.

In service call tsnd_mbf, parameter tmout specifies the timeout period. If a positive value is
specified for parameter tmout, error code E_TMOUT is returned when the tmout period has
passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for service call psnd_mbf will be
performed. If tmout = TMO_FEVR (–1) is specified, the same operation as for service call
snd_mbf will be performed. In other words, timeout monitoring is not performed.

If a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick cycles), the
maximum value that can be specified for tmout is H'7fffffff/CFG_TICDENO. If a value larger
than this is specified, operation is not guaranteed.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read access permission for msg, which means that an
error will be returned if prb_mem is issued with the following parameters.

237

⎯ base = msg
⎯ size = msgsz
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ

238

6.15.4 Receive Message from Message Buffer (rcv_mbf, prcv_mbf, trcv_mbf)

C-Language API:
 ER_UINT msgsz = rcv_mbf(ID mbfid, VP msg);

 ER_UINT msgsz = prcv_mbf(ID mbfid, VP msg);

 ER_UINT msgsz = trcv_mbf(ID mbfid, VP msg, TMO tmout);

Parameters:
 ID mbfid Message buffer ID

 VP msg Start address of the area where the received message is

to be returned

 <trcv_mbf>

 TMO tmout Timeout specification

Return Parameters:
 ER_UINT msgsz Size of the received message (number of bytes, a

positive value) or error code

 VP msg Start address of the area where the received message is

stored

Error Codes:
 E_PAR [p] Parameter error

(1) tmout ≤ –2

(2) msg is not a 4-byte boundary address.

 E_ID [p] Invalid ID number

(1) mbfid ≤ 0

(2) mbfid > CFG_MAXMBFID

 E_CTX [k] Context error

(1) Called in dispatch-pended state

 E_NOEXS [k] Undefined

(1) Message buffer specified by mbfid does not exist.

 E_RLWAI [k] WAITING state is forcibly cancelled (only for rcv_mbf and

trcv_mbf)

(1) rel_wai service call was issued in the WAITING state.

 E_TMOUT [k] Polling failed or timeout

 E_DLT [k] Waiting object deleted

(1) Message buffer specified by mbfid was deleted.

 E_MACV [m] Memory access violation

Function:

Each service call receives a message from the message buffer specified by parameter mbfid and
stores the received message in the area specified by msg. The received message size is returned as

239

the return parameter. Through parameter msg, a free area that can hold the maximum message size
(maxmsz) specified at message buffer creation must be specified.

If there are already messages in the message buffer, the task receives the message of the head of
the queue (the oldest message). After the message has been received, the size of the free space in
the message buffer will increase by VTSZ_MBFMSGMB(msgsz) bytes.

If, as a result, the free space in the message buffer becomes larger than the size of the message to
be sent by the task at the head of the send-waiting queue, the message is stored in the message
buffer and the task is released from the WAITING state. The same process will be done for the
remaining tasks in the order of the wait queue if the remaining message buffer size still has
enough contiguous free space.

If there are no messages in the message buffer and there are tasks waiting to send a message, the
message of the task at the head of the wait queue is received. As a result, the sending task is
released from the WAITING state.

If there are no messages in the message buffer and there are no tasks in the queue to send a
message, the task that issued service call rcv_mbf or trcv_mbf is placed in the wait queue to
receive a message (receive-waiting queue). With service call prcv_mbf, error code E_TMOUT is
immediately returned. The wait queue is managed on a FIFO basis.

In service call trcv_mbf, parameter tmout specifies the timeout period. If a positive value is
specified for parameter tmout, error code E_TMOUT is returned when the tmout period has
passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for service call prcv_mbf will be
performed. If tmout = TMO_FEVR (–1) is specified, timeout monitoring is not performed. In
other words, the same operation as for service call rcv_mbf will be performed.

If a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick cycles), the
maximum value that can be specified for tmout is H'7fffffff/CFG_TICDENO. If a value larger
than this is specified, operation is not guaranteed.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for msg, which means
that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = msg
⎯ size = Maximum message size specified at creation
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

240

6.15.5 Refer to Message Buffer State (ref_mbf, iref_mbf)

C-Language API:
 ER ercd = ref_mbf(ID mbfid, T_RMBF *pk_rmbf);

 ER ercd = iref_mbf(ID mbfid, T_RMBF *pk_rmbf);

Parameters:
 ID mbfid Message buffer ID

 T_RMBF *pk_rmbf Pointer to the packet where the message buffer state is

to be returned

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 T_RMBF *pk_rmbf Pointer to the packet where the message buffer state is

stored

Packet Structure:
 typedef struct {

 ID stskid; 0 2 ID of the task at the head of the

queue waiting to send a message

 ID rtskid; +2 2 ID of the task at the head of the

queue waiting to receive a message

 UINT smsgcnt; +4 4 Number of messages in message buffer

 SIZE fmbfsz; +8 4 Size of free buffer (number of bytes)

 }T_RMBF;

Error Codes:
 E_PAR [p] Parameter error

(1) pk_rmbf is not a 4-byte boundary address.

 E_ID [p] Invalid ID number

(1) mbfid ≤ 0

(2) mbfid > CFG_MAXMBFID

 E_NOEXS [k] Undefined

(1) Message buffer specified by mbfid does not exist.

 E_MACV [m] Memory access violation

Function:

Each service call refers to the state of the message buffer specified by parameter mbfid and returns
the ID of the task waiting to send a message (stskid), task waiting to receive a message (rtskid),
the number of the messages stored in the message buffer (smsgcnt), and the available free buffer
size (fmbfsz) to the area indicated by pk_rmbf.

241

If no task is waiting to receive or send a message in the target message buffer, TSK_NONE (0) is
returned as wtskid.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for pk_rmbf, which
means that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_rmbf
⎯ size = sizeof(T_RMBF)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

242

6.16 Memory Pool Management (Fixed-Size Memory Pool)

Table 6.30 Service Calls for Memory Pool Management (Fixed-Size Memory Pool)

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

cre_mpf [s] T/E/D/U

icre_mpf

Creates fixed-size memory pool

 N/E/D/U

icra_mpf Creates fixed-size memory pool and specifies access
permission vectors

See note 3 below

acre_mpf T/E/D/U

iacre_mpf

Creates fixed-size memory pool and assigns fixed-size
memory pool ID automatically N/E/D/U

del_mpf Deletes fixed-size memory pool T/E/D/U

get_mpf [S] Acquires fixed-size memory block T/E/U

pget_mpf [S] T/E/D/U

ipget_mpf

Polls and acquires fixed-size memory block

N/E/D/U

tget_mpf [S] Acquires fixed-size memory block with timeout function T/E/U

rel_mpf [S] T/E/D/U

irel_mpf

Returns fixed-size memory block

N/E/D/U

ref_mpf T/E/D/U

iref_mpf

Refers to fixed-size memory pool state

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called from CPU exception handler

 3. icra_mpf is dedicated to use in the initial definition routines created by the configurator.
If it is used outside the initial definition routines, correct operation is not guaranteed.

243

Table 6.31 Fixed-Size Memory Pool Specifications

Item Description

Fixed-size memory pool ID 1 to CFG_MAXMPFID (32767 max.)

Fixed-size memory pool
attributes

TA_TFIFO: Wait task queue is managed on a FIFO basis
TA_TPRI: Wait task queue is managed on the current priority

244

6.16.1 Create Fixed-Size Memory Pool (cre_mpf, icre_mpf, acre_mpf, iacre_mpf)

C-Language API:
 ER ercd = cre_mpf(ID mpfid, T_CMPF *pk_cmpf);

 ER ercd = icre_mpf(ID mpfid, T_CMPF *pk_cmpf);

 ER_ID mpfid = acre_mpf(T_CMPF *pk_cmpf);

 ER_ID mpfid = iacre_mpf(T_CMPF *pk_cmpf);

Parameters:
 T_CMPF *pk_cmpf Pointer to the packet where the fixed-size memory pool

creation information is stored

 <cre_mpf, icre_mpf>

 ID mpfid Fixed-size memory pool ID

Return Parameters:
 <cre_mpf, icre_mpf>

 ER ercd Normal termination (E_OK) or error code

 <acre_mpf, iacre_mpf>

 ER_ID mpfid Created fixed-size memory pool ID (a positive value) or

error code

Packet Structure:
 typedef struct {

 ATR mpfatr; 0 4 Fixed-size memory pool attribute

 UINT blkcnt; +4 4 Number of blocks in memory pool

 UINT blksz; +8 4 Block size of fixed-size memory pool

(number of bytes)

 VP mpf; +12 4 Start address of the fixed-size

memory pool area

 VP mpfmb; +16 4 Start address of the fixed-size

memory pool management area

 }T_CMPF;

Error Codes:
 E_RSATR [p] Reserved attribute

(1) mpfatr is invalid.

 E_PAR [p] Parameter error

(1) blkcnt = 0

(2) blksz = 0

(3) mpf = NULL and TSZ_MPF(blkcnt, blksz) > CFG_SYSPOOLSZ

(4) pk_cmpf is not a 4-byte boundary address.

(5) mpf != NULL and mpf is not a 4-byte boundary address.

245

 E_ID [p] Invalid ID number

(1) mpfid ≤ 0

(2) mpfid > CFG_MAXMPFID

 E_NOMEM [k] Insufficient memory

(1) Insufficient space in the system pool

(2) Insufficient space in the resource pool

 E_NOID [k] No ID available (only for acre_mpf)

 E_OBJ [k] Invalid object state

(1) Fixed-size memory pool specified by mpfid already exists.

 E_MACV [m] Memory access violation

Function:

Service calls cre_mpf and icre_mpf create a fixed-size memory pool with the ID specified by
mpfid using the contents specified by pk_cmpf.

Service calls acre_mpf and iacre_mpf search for an unused fixed-size memory pool ID, create a
fixed-size memory pool for that ID with the contents specified by parameter pk_cmpf, and return
the ID as a return parameter. The range to search for an undefined fixed-size memory pool ID is 1
to CFG_MAXMPFID.

Parameter mpfatr specifies the order of the tasks in the queue waiting to acquire a memory block.

mpfatr:= (TA_TFIFO || TA_TPRI)

• TA_TFIFO (H'00000000): Task queue waiting to acquire a memory block is managed on a
FIFO basis

• TA_TPRI (H'00000001): Task queue waiting to acquire a memory block is managed by the
current priority

Parameter blkcnt specifies the total number of memory blocks in the memory pool to be created.

The size of the memory block is specified by blksz. blksz is rounded up to a multiple of four
during processing.

Parameter mpf specifies the start address of a free area to be used as a fixed-size memory pool.
The kernel allocates a TSZ_MPF(blkcnt, blksz)-byte area starting from address mpf as a fixed-size
memory pool. Note that the kernel does not check which domain can access the specified area. For
example, if an address in the P1 or P2 area is specified for a fixed-size memory pool area, the area
cannot be accessed from a user domain, but the kernel does not detect it.

246

When the memory object protection function is selected:

An area that can be read or written to from the kernel domain must be specified as a fixed-size
memory pool area. If this rule is violated, an E_MACV error will be returned.

When NULL is specified for mpf, the kernel allocates a TSZ_MPF(blkcnt, blksz)-byte memory
pool area in the system pool. At this time, the kernel consumes an area in the resource pool to
manage the allocated memory pool area. For details, refer to the following.

Reference: Resource pool consumption → Section 13.2.2 (5), Fixed-size memory pool
 System pool consumption → Section 14.2 (2), When fixed-size memory pool is
 created

When the memory object protection function is selected:

The memory pool area allocated in the system pool by the kernel is a memory object having the
following attributes.

(1) Size: TSZ_MPF(blkcnt, blksz) is rounded up to a multiple of CFG_PAGESZ.

However, note that only the bytes calculated by TSZ_MPF(blkcnt, blksz) can be used for a
memory pool. As shown in the following figure, since the unusable area is included in the
memory object where a fixed-size memory pool area is allocated, the unusable area has the
same access permission as the memory pool area, but the unusable area is not handled as a
memory pool.

Memory object

Fixed-size memory pool

area

↑

TSZ_MPF(blkcnt, blksz)
⏐
↓

↑

Size obtained by rounding up
TSZ_MPF(blkcnt, blksz) to a
multiple of CFG_PAGESZ

Unusable area ⏐
↓

(2) Domain: When the service call is issued in a task context, the domain of the issuing task is
assigned to the memory pool, which is the same as the domain ID that can be obtained by
calling get_did. When the service call is issued in a non-task context, the kernel domain is
assigned.

247

(3) Memory attribute: TA_RW|TA_CACHE|TA_WBACK

(4) Access permission vector: An appropriate vector is specified so that only the assigned domain
can read or write to the memory pool as follows.

For the kernel domain: TACT_KERNEL

For a user domain: TACT_PRW(domid)

(domid is the ID of the domain where the target memory pool is assigned)

Pointer mpfmb is ignored in this kernel. To ensure the portability of programs, specify NULL for
mpfmb.

Regardless of whether NULL is specified for mpf, the kernel consumes an area in the resource
pool to manage the memory blocks in the created fixed-size memory pool. For details, refer to the
following.

Reference: Resource pool consumption → Section 13.2.2 (5), Fixed-size memory pool

Fixed-size memory pools can also be created statically by the configurator.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following cases.

(1) The domain of the caller does not have a read access permission for pk_cmpf, which means
that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_cmpf
⎯ size = sizeof(T_CMPF)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ

(2) When pk_cmpf->mpf != NULL, the kernel does not have a read/write access permission for
the TSZ_MPF(blkcnt, blksz) byte area starting from address mpf, which means that an error
will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_cmpf->mpf
⎯ size = TSZ_MPF(blkcnt, blksz)
⎯ domid = Kernel domain
⎯ pmmode = TPM_READ|TPM_WRITE

248

6.16.2 Create Fixed-Size Memory Pool and Specify Access Permission Vectors (icra_mpf)

C-Language API:
 ER ercd = icra_mpf(ID mpfid, T_CMPF *pk_cmpf, ACVCT *p_acvct);

Parameters:
 ID mpfid Fixed-size memory pool ID

 T_CMPF *pk_cmpf Pointer to the packet where the fixed-size memory pool

creation information is stored

 ACVCT p_acvct Pointer to the packet where the access permission

vectors are stored

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Packet Structure:
 typedef struct {

 ATR mpfatr; 0 4 Fixed-size memory pool attribute

 UINT blkcnt; +4 4 Number of blocks in memory pool

 UINT blksz; +8 4 Block size of fixed-size memory pool

(number of bytes)

 VP mpf; +12 4 Start address of the fixed-size

memory pool area

 VP mpfmb; +16 4 Start address of the fixed-size

memory pool management area

 }T_CMPF;

 typedef struct {

 ACPTN acptn1; 0 4 Write access permission pattern

 ACPTN acptn2; +4 4 Read access permission pattern

 }ACVCT;

Error Codes:
 E_PAR [p] Parameter error

(1) TSZ_MPF(blkcnt, blksz) > CFG_SYSPOOLSZ)

 E_NOMEM [k] Insufficient memory

(1) Insufficient space in the system pool

(2) Insufficient space in the resource pool

Function:

Service call icra_mpf creates a fixed-size memory pool with the ID specified by mpfid using the
contents specified by pk_cmpf and p_acvct.

249

This service call must not be issued in any application. This service call is issued only in the initial
definition routines created by the configurator when the memory object protection function is
selected and creation of fixed-size memory pools is specified through the configurator. This
service call is implemented only for this purpose, and most error detection functions are omitted.

This service call differs from cre_mpf in the following points.

(1) Only NULL can be specified for pk_cmpf->mpf, that is, a memory pool area is always
allocated in the system pool. No specific address can be specified for a memory pool area.

(2) Through parameter p_acvct, access permission vectors can be specified for the memory pool
area created as a memory object. However, when the memory protection function is not
selected, p_acvct is ignored.

(3) The E_MACV error is never detected.

250

6.16.3 Delete Fixed-Size Memory Pool (del_mpf)

C-Language API:
 ER ercd = del_mpf(ID mpfid);

Parameters:
 ID mpfid Fixed-size memory pool ID

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) mpfid ≤ 0

(2) mpfid > CFG_MAXMPFID

 E_CTX [k] Context error

(1) Called in a non-task context.

 E_NOEXS [k] Undefined

(1) Fixed-size memory pool specified by mpfid does not exist.

Function:

Service call del_mpf deletes the fixed-size memory pool specified by mpfid.

No error will occur even if there is a task waiting to acquire a memory block in the fixed-size
memory pool area indicated by mpfid. However, in that case, the task in the WAITING state will
be released and error code E_DLT will be returned.

On deletion, the memory pool area allocated in the system pool and the management area
allocated in the resource pool are released.

The kernel will not perform any processing and delete the memory pool even when a block in the
memory pool has not been released yet.

251

6.16.4 Get Fixed-Size Memory Block (get_mpf, pget_mpf, ipget_mpf, tget_mpf)

C-Language API:
 ER ercd = get_mpf(ID mpfid, VP *p_blk);

 ER ercd = pget_mpf(ID mpfid, VP *p_blk);

 ER ercd = ipget_mpf(ID mpfid, VP *p_blk);

 ER ercd = tget_mpf(ID mpfid, VP *p_blk, TMO tmout);

Parameters:
 ID mpfid Fixed-size memory pool ID

 VP *p_blk Pointer to the area where the start address of the

memory block is to be returned

 <tget_mpf>

 TMO tmout Timeout specification

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 VP *p_blk Pointer to the area where the start address of the

memory block is stored

Error Codes:
 E_PAR [p] Parameter error

(1) tmout ≤ –2

(2) p_blk is not a 4-byte boundary address.

 E_ID [p] Invalid ID number

(1) mpfid ≤ 0

(2) mpfid > CFG_MAXMPFID

 E_CTX [k] Context error (only for get_mpf and tget_mpf)

(1) Called in dispatch-pended state

 E_NOEXS [k] Undefined

(1) Fixed-size memory pool specified by mpfid does not exist.

 E_RLWAI [k] WAITING state was forcibly cancelled (only for get_mpf and

tget_mpf).

(1) rel_wai service call was issued in the WAITING state

(2) An attempt was made to shift to WAITING state in WAITING-

disabled state.

 E_TMOUT [k] Polling failed or timeout

 E_DLT [k] Waiting object deleted

(1) Fixed-size memory pool specified by mpfid was deleted.

 E_MACV [m] Memory access violation

252

Function:

Each service call gets one memory block from the fixed-size memory pool specified by mpfid, and
returns the start address of the acquired memory block to the area specified by p_blk.

If there are tasks already waiting for a memory block or if no task is waiting but there is no
memory block available in the fixed-size memory pool, the task issued service call get_mpf or
tget_mpf is placed in the memory acquiring wait queue, and the task that issued service call
pget_mpf or ipget_mpf immediately returns error code E_TMOUT. The queue is managed
according to the attribute specified at creation.

Parameter tmout of service call tget_mpf specifies the timeout period. If a positive value is
specified for parameter tmout, error code E_TMOUT is returned when the tmout period has
passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for service call pget_mpf will be
performed. If tmout = TMO_FEVR (–1) is specified, timeout monitoring is not performed. In
other words, the same operation as for service call get_mpf will be performed.

If a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick cycles), the
maximum value that can be specified for tmout is H'7fffffff/CFG_TICDENO. If a value larger
than this is specified, operation is not guaranteed.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for p_blk, which means
that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = p_blk
⎯ size = sizeof(VP)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

253

6.16.5 Release Fixed-Size Memory Block (rel_mpf, irel_mpf)

C-Language API:
 ER ercd = rel_mpf(ID mpfid, VP blk);

 ER ercd = irel_mpf(ID mpfid, VP blk);

Parameters:
 ID mpfid Fixed-size memory pool ID

 VP blk Start address of memory block

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_PAR

[p]

Parameter error

(1) blk is not a 4-byte boundary address.

 [k] (2) A value other than the start address of a memory block or

released blk was specified.

 E_ID [p] Invalid ID number

(1) mpfid ≤ 0

(2) mpfid > CFG_MAXMPFID

 E_NOEXS [k] Undefined

(1) Fixed-size memory pool specified by mpfid does not exist.

Function:

Each service call returns the memory block specified by blk to the fixed-size memory pool
indicated by mpfid.

The start address of a memory block acquired by service call get_mpf, pget_mpf, ipget_mpf, or
tget_mpf must be specified for parameter blk.

If there are tasks waiting to get a memory block in the target fixed-size memory pool, the memory
block returned by this service call is passed to the task at the head of the wait queue, releasing it
from the WAITING state.

254

6.16.6 Refer to Fixed-Size Memory Pool State (ref_mpf, iref_mpf)

C-Language API:
 ER ercd = ref_mpf(ID mpfid, T_RMPF *pk_rmpf);

 ER ercd = iref_mpf(ID mpfid, T_RMPF *pk_rmpf);

Parameters:
 ID mpfid Fixed-size memory pool ID

 T_RMPF *pk_rmpf Pointer to the packet where the fixed-size memory pool

state is to be returned

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 T_RMPF *pk_rmpf Pointer to the packet where the fixed-size memory pool

state is stored

Packet Structure:
 typedef struct {

 ID wtskid; 0 2 Wait task ID

 UINT fblkcnt; +4 4 Number of blocks of memory space

available

 }T_RMPF;

Error Codes:
 E_PAR [p] Parameter error

(1) pk_rmpf is not a 4-byte boundary address.

 E_ID [p] Invalid ID number

(1) mpfid ≤ 0

(2) mpfid > CFG_MAXMPFID

 E_NOEXS [k] Undefined

(1) Fixed-size memory pool specified by mpfid does not

exist.

 E_MACV [m] Memory access violation

Function:

Each service call refers to the state of the fixed-size memory pool specified by mpfid.

Each service call returns the wait task ID (wtskid) and the number of blocks of memory space
available (fblkcnt) to the area indicated by pk_rmpf.

If there is no task waiting for the specified memory pool, TSK_NONE (0) is returned as wtskid.

255

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for pk_rmpf, which
means that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_rmpf
⎯ size = sizeof(T_RMPF)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

256

6.17 Memory Pool Management (Variable-Size Memory Pool)

Table 6.32 Service Calls for Memory Pool Management (Variable-Size Memory Pool)

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

cre_mpl T/E/D/U

icre_mpl

Creates variable-size memory pool

N/E/D/U

ivcra_mpl Creates variable-size memory pool and specifies
access permission vectors

See note 3 below

acre_mpl T/E/D/U

iacre_mpl

Creates variable-size memory pool and assigns
variable-size memory pool ID automatically N/E/D/U

del_mpl Deletes variable-size memory pool T/E/D/U

get_mpl Acquires variable-size memory block T/E/U

pget_mpl T/E/D/U

ipget_mpl

Polls and acquires variable-size memory block

N/E/D/U

tget_mpl Acquires variable-size memory block with timeout
function

T/E/U

rel_mpl T/E/D/U

irel_mpl

Returns variable-size memory block

N/E/D/U

ref_mpl T/E/D/U

iref_mpl

Refers to variable-size memory pool state

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called from CPU exception handler

 3. ivcra_mpl is dedicated to use in the initial definition routines created by the configurator.
If it is used outside the initial definition routines, correct operation is not guaranteed.

257

Table 6.33 Variable-Size Memory Pool Specifications

Item Description

Variable-size memory pool ID 1 to CFG_MAXMPLID (32767 max.)

Variable-size memory pool
attributes

TA_TFIFO: Wait task queue is managed on a FIFO basis

VTA_UNFRAGMENT: Sector management (reducing
fragmentation in free space)

VTA_ALIGN16: Memory block addresses are adjusted to 16-
byte boundaries.

VTA_ALIGN32: Memory block addresses are adjusted to 32-
byte boundaries.

Also refer to the following.

Reference: Section 4.31, Controlling Memory Fragmentation

258

6.17.1 Create Variable-Size Memory Pool (cre_mpl, icre_mpl, acre_mpl, iacre_mpl)

C-Language API:
 ER ercd = cre_mpl(ID mplid, T_CMPL *pk_cmpl);

 ER ercd = icre_mpl(ID mplid, T_CMPL *pk_cmpl);

 ER_ID mplid = acre_mpl(T_CMPL *pk_cmpl);

 ER_ID mplid = iacre_mpl(T_CMPL *pk_cmpl);

Parameters:
 T_CMPL *pk_cmpl Pointer to the packet where the variable-size memory

pool creation information is stored

 <cre_mpl, icre_mpl>

 ID mplid Variable-size memory pool ID

Return Parameters:
 <cre_mpl, icre_mpl>

 ER ercd Normal termination (E_OK) or error code

 <acre_mpl, iacre_mpl>

 ER_ID mplid Created variable-size memory pool ID (a positive value)

or error code

Packet Structure:
 typedef struct {

 ATR mplatr; 0 4 Variable-size memory pool attribute

 SIZE mplsz; +4 4 Size of memory pool (number of

bytes)

 VP mpl; +8 4 Start address of the variable-size

memory pool area

 VP mplmb; +12 4 Start address of management area for

variable-size memory pool

 UINT minblksz; +16 4 Minimum block size

 UINT sctnum; +20 4 Maximum number of sectors

 }T_CMPL;

Error Codes:
 E_RSATR [p] Reserved attribute

(1) mplatr is invalid.

259

 E_PAR [p] Parameter error

(1) pk_cmpl is not a 4-byte boundary address.

(2) mplsz < TSZ_MPL(1,4)

(3) mpl = NULL and mplsz > CFG_SYSPOOLSZ

(4) mpl != NULL and mpl is not a 4-byte boundary address.

(5) When attribute VTA_UNFRAGMENT is specified, minblksz is 0.

(6) When attributes VTA_UNFRAGMENT and VTA_ALIGN16 are

specified, minblksz is not a multiple of 16.

(7) When attributes VTA_UNFRAGMENT and VTA_ALIGN32 are

specified, minblksz is not a multiple of 32.

(8) When attribute VTA_UNFRAGMENT is specified and neither

attribute VTA_ALIGN16 nor VTA_ALIGN32 is specified,

minblksz is not a multiple of 4.

(9) When attribute VTA_UNFRAGMENT is specified, sctnum = 0.

(10) When attribute VTA_UNFRAGMENT is specified, mplsz <

minblksz * 32.

 E_ID [p] Invalid ID number

(1) mplid ≤ 0

(2) mplid > CFG_MAXMPFID

 E_NOMEM [k] Insufficient memory

(1) Insufficient space in the system pool

(2) Insufficient space in the resource pool

 E_NOID [k] No ID available (only for acre_mpl)

 E_OBJ [k] Invalid object state

(1) Variable-size memory pool specified by mplid already

exists.

 E_MACV [m] Memory access violation

Function:

Service calls cre_mpl and icre_mpl create a variable-size memory pool with the ID specified by
mplid using the contents specified by pk_cmpl.

Service calls acre_mpl and iacre_mpl search for an unused variable-size memory pool ID, create a
variable-size memory pool for that ID with the contents specified by parameter pk_cmpl, then
return the ID as a return parameter. The range to search for the variable-size memory pool ID is 1
to CFG_MAXMPFID.

(1) mplatr

Specify the logical OR of the following values for mplatr.

260

(a) Order of tasks in the queue for waiting for memory block acquisition

Only TA_TFIFO can be specified.

⎯ TA_TFIFO (H'00000000): Task queue waiting for memory is managed on a FIFO basis.

(b) Management method

VTA_UNFRAGMENT can be specified.

⎯ VTA_UNFRAGMENT (H'80000000): Sector management (reducing fragmentation in free
space)

The VTA_UNFRAGMENT attribute is suitable for a memory pool from which a large number
of small memory blocks are to be acquired. When this attribute is specified, small blocks are
collectively allocated in specialized contiguous areas to leave larger possible contiguous areas.

Only when attribute VTA_UNFRAGMENT is specified, minblksz and sctnum become valid.
When sctnum is set to a larger value than mplsz / (minblksz × 32), mplsz / (minblksz × 32) is
assumed.

For details, refer to the following.

Reference: Section 4.31, Controlling Memory Fragmentation

When attribute VTA_UNFRAGMENT is specified, the kernel consumes an area in the
resource pool to manage the sectors. For details, refer to the following.

Reference: Resource pool consumption → Section 13.2.2 (6), Variable-size memory pool

(c) Alignment of memory block addresses

For alignment of the addresses of memory blocks to be acquired from a memory pool, any one
of the following attributes can be specified when necessary.

⎯ VTA_ALIGN16 (H'00000010): Memory block addresses are adjusted to 16-byte
boundaries.

⎯ VTA_ALIGN32 (H'00000020): Memory block addresses are adjusted to 32-byte
boundaries.

When neither one of them is specified, memory block addresses are adjusted to 4-byte
boundaries.

(2) mplsz

Parameter mplsz specifies the size of the variable-size memory pool to be created. The following
macro is provided to estimate the approximate size to be specified for mplsz.

 SIZE mplsz = TSZ_MPL(UINT blkcnt, UINT blksz)
Approximate size (bytes) of a variable-size memory pool area required to hold the
blkcnt number of blksz-byte memory blocks

261

Note that mplsz is rounded up to a multiple of four during processing. In the following
description, mplsz indicates a multiple of four after being rounded up.

(3) mpl

Parameter mpl specifies the start address of a free area to be used as a variable-size memory pool.
The kernel allocates an mplsz-byte area starting from address mpl as a fixed-size memory pool.
When attribute VTA_ALIGN16 or VTA_ALIGN32 is specified, the actual memory pool area to
be used starts from an address obtained by adjusting address mpl to a 16-byte or 32-byte
boundary, which means that the usable memory pool size decreases for the adjusted size.

Note that the kernel does not check which domain can access the specified area. For example, if an
address in the P1 or P2 area is specified for a variable-size memory pool area, the area cannot be
accessed from a user domain, but the kernel does not detect it.

When the memory object protection function is selected:

An area that can be read or written to from the kernel domain must be specified as a variable-size
memory pool area. If this rule is violated, an E_MACV error will be returned.

When NULL is specified for mpl, the kernel allocates an mplsz-byte memory pool area in the
system pool. At this time, the kernel consumes an area in the resource pool to manage the
allocated memory pool area. For details, refer to the following.

Reference: Resource pool consumption → Section 13.2.2(6), Variable-size memory pool
System pool consumption → Section 14.2 (3), When variable-size memory pool is
created

When the memory object protection function is selected:

The memory pool area allocated in the system pool by the kernel is a memory object having the
following attributes.

(1) Size: mplsz is rounded up to a multiple of CFG_PAGESZ.

However, note that only the mplsz bytes can be used for a memory pool. As shown in the
following figure, since the unusable area is included in the memory object where a variable-
size memory pool area is allocated, the unusable area has the same access permission as the
memory pool area, but the unusable area is not handled as a memory pool.

262

Memory object

Variable-size memory

pool area

↑

mplsz
⏐
↓

↑

Size obtained by rounding up mplsz to a
multiple of CFG_PAGESZ

Unusable area ⏐
↓

(2) Domain: When the service call is issued in a task context, the domain of the issuing task is
assigned to the memory pool, which is the same as the domain ID that can be obtained by
calling get_did. When the service call is issued in a non-task context, the kernel domain is
assigned.

(3) Memory attribute: TA_RW|TA_CACHE| TA_WBACK

(4) Access permission vector: An appropriate vector is specified so that only the assigned domain
can read or write to the memory pool as follows.

For the kernel domain: TACT_KERNEL

For a user domain: TACT_PRW(domid)

(domid is the ID of the domain where the target memory pool is assigned)

(4) minblksz and sctnum

These are parameters not defined in the μITRON specification.

These parameters are valid only when attribute VTA_UNFRAGMENT is specified. For details,
refer to the above description of attribute VTA_UNFRAGMENT.

(5) mplmb

mplmb is a parameter not defined in the μITRON specification.

Parameter mplmb is ignored in this kernel. To ensure the portability of programs, specify NULL
for mplmb.

Variable-size memory pools can also be created statically by the configurator.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following cases.

(1) The domain of the caller does not have a read access permission for pk_cmpl, which means
that an error will be returned if prb_mem is issued with the following parameters.

263

⎯ base = pk_cmpl
⎯ size = sizeof(T_CMPL)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ

(2) When pk_cmpl->mpl != NULL, the kernel does not have a read/write access permission for
the mplsz-byte area starting from address mpl, which means that an error will be returned if
prb_mem is issued with the following parameters.

⎯ base = pk_cmpl->mpl
⎯ size = pk_cmpl->mplsz
⎯ domid = Kernel domain
⎯ pmmode = TPM_READ|TPM_WRITE

264

6.17.2 Create Variable-Size Memory Pool and Specify Access Permission Vectors
(ivcra_mpl)

C-Language API:
 ER ercd = ivcra_mpl (ID mplid, T_CMPL *pk_cmpl, ACVCT *p_acvct);

Parameters:
 ID mplid Variable-size memory pool ID

 T_CMPL *pk_cmpl Pointer to the packet where the variable-size memory

pool creation information is stored

 ACVCT *p_acvct Pointer to the packet where the access permission

vectors are stored

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Packet Structure:
 typedef struct {

 ATR mplatr; 0 4 Variable-size memory pool attribute

 SIZE mplsz; +4 4 Size of memory pool (number of

bytes)

 VP mpl; +8 4 Start address of the variable-size

memory pool area

 VP mplmb; +12 2 Start address of management area for

variable-size memory pool

 UINT minblksz; +16 4 Minimum block size

 UINT sctnum; +20 4 Maximum number of sectors

 }T_CMPL;

 typedef struct {

 ACPTN acptn1; 0 4 Write access permission pattern

 ACPTN acptn2; +4 4 Read access permission pattern

 }ACVCT;

Error Codes:
 E_PAR [p] Parameter error

(1) mplsz > CFG_SYSPOOLSZ

 E_NOMEM [k] Insufficient memory

(1) Insufficient space in the system pool

(2) Insufficient space in the resource pool

Function:

Service call ivcra_mpl creates a variable-size memory pool with the ID specified by mplid using
the contents specified by pk_cmpl and p_acvct.

265

This service call must not be issued in any application. This service call is issued only in the initial
definition routines created by the configurator when the memory object protection function is
selected and creation of variable-size memory pools is specified through the configurator. This
service call is implemented only for this purpose, and most error detection functions are omitted.

This service call differs from cre_mpl in the following points.

(1) Only NULL can be specified for pk_cmpl->mpl, that is, a memory pool area is always
allocated in the system pool. No specific address can be specified for a memory pool area.

(2) Through parameter p_acvct, access permission vectors can be specified for the memory pool
area created as a memory object. However, when the memory protection function is not
selected, p_acvct is ignored.

(3) The E_MACV error is never detected.

266

6.17.3 Delete Variable-Size Memory Pool (del_mpl)

C-Language API:
 ER ercd = del_mpl(ID mplid);

Parameters:
 ID mplid Variable-size memory pool ID

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) mplid ≤ 0

(2) mplid > CFG_MAXMPFID

 E_CTX [k] Context error

(1) Called in a non-task context

 E_NOEXS [k] Undefined

(1) Variable-size memory pool specified by mplid does not

exist.

Function:

Service call del_mpl deletes the variable-size memory pool specified by mplid.

No error will occur even if there is a task waiting to acquire a memory block in the variable-size
memory pool area. However, in that case, the task in the WAITING state will be released and
error code E_DLT will be returned.

On deletion, the memory pool area allocated in the system pool and the management area
allocated in the resource pool are released.

The kernel will not perform any processing and delete the memory pool even when a block in the
memory pool has not been released yet.

267

6.17.4 Get Variable-Size Memory Block (get_mpl, pget_mpl, ipget_mpl, tget_mpl)

C-Language API:
 ER ercd = get_mpl (ID mplid, UINT blksz, VP *p_blk);

 ER ercd = pget_mpl (ID mplid, UINT blksz, VP *p_blk);

 ER ercd = ipget_mpl (ID mplid, UINT blksz, VP *p_blk);

 ER ercd = tget_mpl (ID mplid, UINT blksz, VP *p_blk);

Parameters:
 ID mplid Variable-size memory pool ID

 UINT blksz Memory block size (number of bytes)

 VP *p_blk Pointer to the area where the start address of the

memory block is to be returned

 <tget_mpl>

 TMO tmout Timeout specification

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 VP *p_blk Pointer to the area where the start address of the

memory block is stored

Error Codes:
 E_PAR

[p]

Parameter error

(1) tmout ≤ –2

(2) blksz = 0

(3) p_blk is not a 4-byte boundary address.

 [k] blksz > (memory pool size specified at creation)

 E_ID [p] Invalid ID number

(1) mplid ≤ 0

(2) mplid > CFG_MAXMPFID

 E_CTX [k] Context error (only for get_mpl and tget_mpl)

(1) Called in dispatch-pended state

 E_NOMEM [k] Insufficient memory

(1) Insufficient space in the resource pool

 E_NOEXS [k] Undefined

(1) Variable-size memory pool specified by mplid does not

exist.

 E_RLWAI [k] WAITING state was forcibly cancelled (only for get_mpl and

tget_mpl)

(1) rel_wai service call was issued in the WAITING state.

(2) An attempt was made to shift to WAITING state in

WAITING-disabled state.

 E_TMOUT [k] Polling failed or timeout

268

 E_DLT [k] Waiting object deleted

(1) The memory pool specified by mplid was deleted.

 E_MACV [m] Memory access violation

Function:

Each service call acquires a memory block with the size specified by blksz (number of bytes) from
the variable-size memory pool indicated by mplid, and returns the start address of the acquired
memory block to the area indicated by p_blk.

blksz is rounded up during processing as shown in table 6.34.

Table 6.34 Rounding up blksz

VTA_ALIGN16 VTA_ALIGN32 VTA_UNFRAGMENT Rounding up blksz

Not specified Not specified Not specified Rounded up to a multiple of 4

Specified Not specified Not specified Rounded up to a multiple of 16

Not specified Specified Not specified Rounded up to a multiple of 32

Not specified Not specified Specified (1) When blksz ≤ (minblksz × 8):
Rounded up to minblksz,
minblksz × 2, minblksz × 4, or
minblksz × 8 depending on the
value of blksz

(2) When blksz > (minblksz × 8):
Rounded up to a multiple of 4

Specified Not specified Specified (1) When blksz ≤ (minblksz × 8):
Rounded up to minblksz,
minblksz × 2, minblksz × 4, or
minblksz × 8 depending on the
value of blksz

(2) When blksz > (minblksz × 8):
Rounded up to a multiple of 16

Not specified Specified Specified (1) When blksz ≤ (minblksz × 8):
Rounded up to minblksz,
minblksz × 2, minblksz × 4, or
minblksz × 8 depending on the
value of blksz

(2) When blksz > (minblksz × 8):
Rounded up to a multiple of 32

After the memory block has been acquired, the size of the free space in the variable-size memory
pool will decrease by the size of rounded blksz.

269

For a memory pool with attribute VTA_ALIGN16 or VTA_ALIGN32, the memory block address
is a 16-byte or 32-byte boundary address, respectively.

If there are tasks already waiting for the memory pool, or if no task is waiting but there is no
memory block available, the task that issued service call get_mpl or tget_mpl is placed in the
memory block wait queue, and the task that issued service call pget_mpl or ipget_mpl is
immediately returns the error code E_TMOUT. The queue is managed on a FIFO basis.

Parameter tmout of service call tget_mpl specifies the timeout period. If a positive value is
specified for parameter tmout, error code E_TMOUT is returned when the timeout period has
passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for service call pget_mpl will be
performed. If tmout = TMO_FEVR (–1) is specified, timeout watch is not performed. In other
words, the same operation as for service call get_mpl will be performed.

The kernel consumes an area in the resource pool to manage the memory blocks. If there is not
sufficient free space in the resource pool, an E_NOMEM error will be returned immediately. This
processing is always done regardless of whether a memory block can be acquired immediately or
the memory waiting state is entered.

For resource pool consumption, refer to the following.

Reference: Section 13.2.3 (2), Variable-size memory pool: get_mpl, pget_mpl, ipget_mpl,
tget_mpl

If a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick cycles), the
maximum value that can be specified for tmout is H'7fffffff/CFG_TICDENO. If a value larger
than this is specified, operation is not guaranteed.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for p_blk, which means
that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = p_blk
⎯ size = sizeof(VP)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

270

6.17.5 Release Variable-Size Memory Block (rel_mpl, irel_mpl)

C-Language API:
 ER ercd = rel_mpl(ID mplid, VP blk);

 ER ercd = irel_mpl(ID mplid, VP blk);

Parameters:
 ID mplid Variable-size memory pool ID

 VP blk Start address of memory block

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_PAR

[p]

Parameter error

(1) blk is not a 4-byte boundary address.

 [k] (2) A value other than the start address of a memory block or

released blk was specified.

 E_ID [p] Invalid ID number

(1) mplid ≤ 0

(2) mplid > CFG_MAXMPFID

 E_NOEXS [k] Undefined

(1) Variable-size memory pool specified by mplid does not

exist.

Function:

Each service call returns the memory block specified by blk to the variable-size memory pool
specified by mplid.

The start address of a memory block acquired by service call get_mpl, pget_mpl, ipget_mpl, or
tget_mpl must be specified as parameter blk.

After the memory block has been returned, if the target variable-size memory pool has a
contiguous free area of the size requested by the task at the head of the memory block acquisition
wait queue, a memory block is assigned to that task and the task is released from the WAITING
state.

The same process will be done for the remaining tasks in the order of the wait queue if the
remaining memory pool size still has enough contiguous free space.

After the memory block has been returned, the area allocated in the resource pool to manage the
memory block when the memory block was acquired is released.

271

6.17.6 Refer to Variable-Size Memory Pool State (ref_mpl, iref_mpl)

C-Language API:
 ER ercd = ref_mpl (ID mplid, T_RMPL *pk_rmpl);

 ER ercd = iref_mpl (ID mplid, T_RMPL *pk_rmpl);

Parameters:
 ID mplid Variable-size memory pool ID

 T_RMPL *pk_rmpl Pointer to the packet where the variable-size memory

pool state is to be returned

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 T_RMPL *pk_rmpl Pointer to the packet where the variable-size memory

pool state is stored

Packet Structure:
 typedef struct {

 ID wtskid; 0 2 Wait task ID

 SIZE fmplsz; +4 4 Total size of available memory area

(number of bytes)

 UINT fblksz; +8 4 Maximum memory area available

(number of bytes)

 SIZE mplsz; +12 4 Size of variable-size memory pool

 }T_RMPL;

Error Codes:
 E_PAR [p] Parameter error

(1) pk_rmpl is not a 4-byte boundary address.

 E_ID [p] Invalid ID number

(1) mplid ≤ 0

(2) mplid > CFG_MAXMPFID

 E_NOEXS [k] Undefined

(1) Variable-size memory pool specified by mplid does not

exist.

 E_MACV [m] Memory access violation

Function:

Each service call refers to the status of the variable-size memory pool specified by mplid and
returns the wait task ID (wtskid), the current free memory area total size (fmplsz), the maximum
memory block size available (fblksz), and the size of the variable-size memory pool (mplsz: a
parameter not defined in μITRON specification) to the area indicated by pk_rmpl. If there is no
task waiting to get a memory block, TSK_NONE (0) is returned as wtskid.

272

The free space is usually fragmented. The maximum contiguous free space is returned to
parameter fblksz. The block up to the size fblksz can be acquired immediately by service call
get_mpl, pget_mpl, ipget_mpl, or tget_mpl.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for pk_rmpl, which
means that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_rmpl
⎯ size = sizeof(T_RMPL)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

273

6.18 Time Management (System Clock)

Table 6.35 Service Calls for System Clock Management

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

set_tim [S] T/E/D/U

iset_tim

Sets system clock

N/E/D/U

get_tim [S] T/E/D/U

iget_tim

Gets system clock

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called from CPU exception handler

Table 6.36 System Clock Management Specifications

Item Description

System clock value Unsigned 48 bits

System clock unit 1 ms

System clock update cycle CFG_TICNUME/CFG_TICDENO [ms]*

System clock initial value (at initialization) H'000000000000

Note: The values of TIC_NUME and TIC_DENO defined in kernel_macro.h are same as the
values of CFG_TICNUME and CFG_TICDENO, respectively.

The system clock is expressed as a 48-bit unsigned integer by using a structure of data type
“SYSTIM”. The maximum value of the system clock is shown below.

When CFG_TICNUME/CFG_TICDENO ≤ 1:
 Maximum value = H'ffffffffffff/CFG_TICDENO

When CFG_TICNUME/CFG_TICDENO > 1:
 Maximum value = H'ffffffffffff

The system clock is incremented at timer interrupts. If the above maximum value is exceeded, the
system clock is initialized to 0.

274

6.18.1 Set System Clock (set_tim, iset_tim)

C-Language API:
 ER ercd = set_tim (SYSTIM *p_systim);

 ER ercd = iset_tim (SYSTIM *p_systim);

Parameters:
 SYSTIM *p_systim Pointer to the packet where the current time data is

stored

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Packet Structure:
 typedef struct {

 UH utime; 0 2 Current time data (upper)

 UW ltime; +4 4 Current time data (lower)

 }SYSTIM;

Error Codes:
 E_PAR [p] Parameter error

(1) p_systim is not a 4-byte boundary address.

 E_MACV [m] Memory access violation

Function:

Each service call changes the current system clock retained in the system to a value specified by
p_systim.

If a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick cycles), the
maximum value that can be specified is H'7fffffff/CFG_TICDENO. If a value larger than this is
specified, operation is not guaranteed.

Even after the system clock is modified, the actual time required to generate the time events
(timeout or cyclic handler initiation) that have been requested will not change.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read access permission for p_systim, which means
that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = p_systim
⎯ size = sizeof(SYSTIM)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ

275

6.18.2 Get System Clock (get_tim, iget_tim)

C-Language API:
 ER ercd = get_tim (SYSTIM *p_systim);

 ER ercd = iget_tim (SYSTIM *p_systim);

Parameters:
 SYSTIM *p_systim Start address of the packet where the current time data

is to be returned

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 SYSTIM *p_systim Start address of the packet where the current time data

is stored

Packet Structure:
 typedef struct {

 UH utime; 0 2 Current time data (upper)

 UW ltime; +4 4 Current time data (lower)

 }SYSTIM;

Error Codes:
 E_PAR [p] Parameter error

(1) p_systim is not a 4-byte boundary address.

 E_MACV [m] Memory access violation

Function:

Each service call reads the current system clock and returns it to the area indicated by p_systim.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for p_systim, which
means that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = p_systim
⎯ size = sizeof(SYSTIM)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

276

6.19 Time Management (Cyclic Handler)

Table 6.37 Service Calls for Cyclic Handler

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

cre_cyc [s] T/E/D/U

icre_cyc

Creates cyclic handler

N/E/D/U

acre_cyc T/E/D/U

iacre_cyc

Creates cyclic handler and assigns cyclic handler
ID automatically N/E/D/U

del_cyc Deletes cyclic handler T/E/D/U

sta_cyc [S] T/E/D/U

ista_cyc

Starts cyclic handler operation

N/E/D/U

stp_cyc [S] T/E/D/U

istp_cyc

Stops cyclic handler operation

N/E/D/U

ref_cyc T/E/D/U

iref_cyc

Refers to the cyclic handler state

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called from CPU exception handler

Table 6.38 Cyclic Handler Specifications

Item Description

Cyclic handler ID 1 to CFG_MAXCYCID (254 max.)

Cyclic handler
attributes

TA_HLNG: The handler is written in a high-level language.
TA_ASM: The handler is written in assembly language.
TA_STA: Starts cyclic handler operation.
TA_PHS: Reserves initiation phase.

277

6.19.1 Create Cyclic Handler (cre_cyc, icre_cyc, acre_cyc, iacre_cyc)

C-Language API:
 ER ercd = cre_cyc (ID cycid, T_CCYC *pk_ccyc);

 ER ercd = icre_cyc (ID cycid, T_CCYC *pk_ccyc);

 ER_ID cycid = acre_cyc (T_CCYC *pk_ccyc);

 ER_ID cycid = iacre_cyc (T_CCYC *pk_ccyc);

Parameters:
 T_CCYC *pk_ccyc Pointer to the packet where the cyclic handler creation

information is stored

 <cre_cyc, icre_cyc>

 ID cycid Cyclic handler ID

Return Parameters:
 <cre_cyc, icre_cyc>

 ER ercd Normal termination (E_OK) or error code

 <acre_cyc, iacre_cyc>

 ER_ID cycid Created cyclic handler ID number (a positive value) or

error code

Packet Structure:
 typedef struct {

 ATR cycatr; 0 4 Cyclic handler attribute

 VP_INT exinf; +4 4 Extended information

 FP cychdr; +8 4 Cyclic handler address

 RELTIM cyctim; +12 4 Cyclic handler initiation cycle

 RELTIM cycphs; +16 4 Cyclic handler initiation phase

 }T_CCYC;

Error Codes:
 E_RSATR [p] Reserved attribute

(1) cycatr is invalid.

 E_PAR [p] Parameter error

(1) cyctim = 0

(2) cycphs > cyctim

(3) pk_ccyc is not a 4-byte boundary address.

(4) cychdr is an odd address.

 E_ID [p] Invalid ID number

(1) cycid ≤ 0

(2) cycid > CFG_MAXCYCID

 E_NOID [k] No ID available (only for acre_cyc)

 E_OBJ [k] Invalid object state

(1) Cyclic handler specified by cycid already exists.

278

 E_MACV [m] Memory access violation

Function:

Each service call creates a cyclic handler. The cyclic handler is a time event handler for a non-task
context and is initiated at specified time intervals. The cyclic handler is assigned to the kernel
domain and is executed in privileged mode.

The following describes each parameter function.

(1) cycid

For service calls cre_cyc and icre_cyc, specify a value within the range from 1 to
CFG_MAXCYCID for parameter cycid. Service calls acre_cyc and iacre_cyc search for an
unused cyclic handler ID, define a cyclic handler for that ID with the contents specified by
parameter pk_ccyc, and return the defined cyclic handler ID as a return parameter.

(2) cycatr

Specify the logical OR of the following values for cycatr.

The cyclic handler is always assigned to the kernel domain.

In the PX specification, TA_DOM(TDOM_KERNEL) must be specified for cycatr so that the
cyclic handler is assigned to the kernel domain. To ensure the portability of programs, always
specify TA_DOM(TDOM_KERNEL). Note that TA_DOM() is ignored in this kernel, and even if
a user domain is assigned through TA_DOM(), no error will occur and the kernel domain is
always assumed.

(a) Language

Specify either one of the following values.

⎯ TA_HLNG (H'00000000): High-level language
⎯ TA_ASM (H'00000001): Assembly language

(b) Initiating the cyclic handler

Specify TA_STA to initiate the handler immediately. When TA_STA is specified, the cyclic
handler is set to the operating state after it is created. When TA_STA is not specified, the
cyclic handler does not operate until service call sta_cyc or ista_cyc is issued.

⎯ TA_STA (H'00000002): Initiates the cyclic handler operation.

(c) Keeping the initiation phase

When TA_PHS is specified, the initiation phase of the cyclic handler is kept before activating
the cyclic handler, and the next time to initiate the handler is determined.

279

When TA_PHS is not specified, once the cyclic handler is stopped by service call stp_cyc or
istp_cyc, the cyclic handler is initiated at intervals cyctim after the next sta_cyc or ista_cyc
service call, that is, the first time the cyclic handler is initiated is cyctim after a sta_cyc or
ista_cyc service call.

When TA_PHS is specified, even after the cyclic handler is stopped by service call stp_cyc or
istp_cyc, the kernel continues to manage the correct time to initiate the cyclic handler. If
service call sta_cyc or ista_cyc is issued after that, the kernel initiates the cyclic handler when
the correct time is reached.

⎯ TA_PHS (H'00000004): Retains the initiation phase.

(3) exinf

Parameter exinf can be widely used by the user, for example, to set information concerning cyclic
handlers to be defined. exinf is passed to the cyclic handler as a parameter.

(4) cychdr

Parameter cychdr specifies the start address of the cyclic handler.

(5) cyctim and cycphs

Parameter cyctim specifies the handler initiation cycle, and parameter cycphs specifies the handler
initiation phase.

cycphs is valid only when either TA_STA or TA_PHS is specified. If cycphs is valid, the first
time to initiate the cyclic handler is the time when the specified cycphs (initiation phase time) or a
longer time has passed since a cyclic handler creating service call is issued. At this time, if start of
the cyclic handler is specified through the TA_STA attribute or service call stp_cyc or istp_cyc,
the cyclic handler is actually executed.

If a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick cycles), the
maximum value that can be specified for cyctim and cycphs is H'7fffffff/CFG_TICDENO. If a
value larger than this is specified, operation is not guaranteed.

The cyclic handler can also be created statically by the configurator.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following cases.

(1) The domain of the caller does not have a read access permission for pk_ccyc, which means
that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_ccyc
⎯ size = sizeof(T_CCYC)
⎯ domid = Domain of the caller

280

⎯ pmmode = TPM_READ
(2) The kernel domain does not have a read access permission for pk_ccyc->cychdr, which means

that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_ccyc->cychdr
⎯ size = 1
⎯ domid = Kernel domain
⎯ pmmode = TPM_READ

281

6.19.2 Delete Cyclic Handler (del_cyc)

C-Language API:
 ER ercd = del_cyc (ID cycid);

Parameters:
 ID cycid Cyclic handler ID

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) cycid ≤ 0

(2) cycid > CFG_MAXCYCID

 E_CTX [k] Context error

(1) Called in a non-task context

 E_NOEXS [k] Undefined

(1) Cyclic handler specified by cycid does not exist.

Function:

Service call del_cyc deletes the cyclic handler specified by parameter cycid.

282

6.19.3 Start Cyclic Handler Operation (sta_cyc, ista_cyc)

C-Language API:
 ER ercd = sta_cyc (ID cycid);

 ER ercd = ista_cyc (ID cycid);

Parameters:
 ID cycid Cyclic handler ID

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) cycid ≤ 0

(2) cycid > CFG_MAXCYCID

 E_NOEXS [k] Undefined

(1) Cyclic handler specified by cycid does not exist.

Function:

Each service call causes the cycle handler specified by cycid to enter the operational state.

If TA_PHS is not specified as a cyclic handler attribute, the cyclic handler is started each time the
start cycle has passed, based on the timing at which service call sta_cyc or ista_cyc is issued.

If the cyclic handler specified by cycid is in the operational state and TA_PHS is not specified as
its attribute, the next timing of initiation is set after the service call is issued.

If the cyclic handler specified by cycid is in the operating state and TA_PHS is specified as its
attribute, the next timing of initiation is not set.

283

6.19.4 Stop Cyclic Handler Operation (stp_cyc, istp_cyc)

C-Language API:
 ER ercd = stp_cyc (ID cycid);

 ER ercd = istp_cyc (ID cycid);

Parameters:
 ID cycid Cyclic handler ID

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) cycid ≤ 0

(2) cycid > CFG_MAXCYCID

 E_NOEXS [k] Undefined

(1) Cyclic handler specified by cycid does not exist.

Function:

Each service call causes the cyclic handler specified by parameter cycid to enter the not-operating
state.

284

6.19.5 Refer to Cyclic Handler State (ref_cyc, iref_cyc)

C-Language API:
 ER ercd = ref_cyc (ID cycid, T_RCYC *pk_rcyc);

 ER ercd = iref_cyc (ID cycid, T_RCYC *pk_rcyc);

Parameters:
 ID cycid Cyclic handler ID

 T_RCYC *pk_rcyc Pointer to the packet where the cyclic handler state is

to be returned

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 T_RCYC *pk_rcyc Pointer to the packet where the cyclic handler state is

stored

Packet Structure:
 typedef struct {

 STAT cycstat; 0 4 Cyclic handler operating state

 RELTIM lefttim; +4 4 Remaining time until the cyclic

handler is initiated

 }T_RCYC;

Error Codes:
 E_PAR [p] Parameter error

(1) pk_rcyc is not a 4-byte boundary address.

 E_ID [p] Invalid ID number

(1) cycid ≤ 0

(2) cycid > CFG_MAXCYCID

 E_NOEXS [k] Undefined

(1) Cyclic handler specified by cycid does not exist.

 E_MACV [m] Memory access violation

Function:

Each service call reads the cyclic handler state specified by cycid and returns the cyclic handler
operating state (cycstat) and the time remaining until the cyclic handler is initiated (lefttim) to the
area indicated by parameter pk_rcyc.

The target cyclic handler operating state is returned to parameter cycstat.

• TCYC_STP (H'00000000): The cyclic handler is not in the operational state

• TCYC_STA (H'00000001): The cyclic handler is in the operational state

285

The relative time until the target cyclic handler is next initiated is returned to parameter lefttim.
When the target cyclic handler is not in the operational state, lefttim is undefined.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for pk_rcyc, which
means that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_rcyc
⎯ size = sizeof(T_RCYC)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

286

6.20 Time Management (Alarm Handler)

Table 6.39 Service Calls for Alarm Handler

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

cre_alm T/E/D/U

icre_alm

Creates alarm handler

N/E/D/U

acre_alm T/E/D/U

iacre_alm

Creates alarm handler and assigns alarm handler
ID automatically N/E/D/U

del_alm Deletes alarm handler T/E/D/U

sta_alm T/E/D/U

ista_alm

Starts alarm handler operation

N/E/D/U

stp_alm T/E/D/U

istp_alm

Stops alarm handler operation

N/E/D/U

ref_alm T/E/D/U

iref_alm

Refers to the alarm handler state

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called from CPU exception handler

Table 6.40 Alarm Handler Specifications

Item Description

Alarm handler ID 1 to CFG_MAXALMID (255 max.)

Alarm handler attributes TA_HLNG: The handler is written in a high-level language.
TA_ASM: The handler is written in assembly language.

287

6.20.1 Create Alarm Handler (cre_alm, icre_alm, acre_alm, iacre_alm)

C-Language API:
 ER ercd = cre_alm (ID almid, T_CALM *pk_calm);

 ER ercd = icre_alm (ID almid, T_CALM *pk_calm);

 ER_ID almid = acre_alm (T_CALM *pk_calm);

 ER_ID almid = iacre_alm (T_CALM *pk_calm);

Parameters:
 T_CALM *pk_calm Pointer to the packet where the alarm handler creation

information is stored

 <cre_alm, icre_alm>

 ID almid Alarm handler ID

Return Parameters:
 <cre_alm, icre_alm>

 ER ercd Normal termination (E_OK) or error code

 <acre_alm, iacre_alm>

 ER_ID almid Created alarm handler ID (a positive value) or error

code

Packet Structure:
 typedef struct {

 ATR almatr; 0 4 Alarm handler attribute

 VP_INT exinf; +4 4 Extended information

 FP almhdr; +8 4 Alarm handler address

 }T_CALM;

Error Codes:
 E_RSATR [p] Reserved attribute

(1) almatr is invalid.

 E_PAR [p] Parameter error

(1) pk_calm is not a 4-byte boundary address.

(2) almhdr is an odd value.

 E_ID [p] Invalid ID number

(1) almid ≤ 0

(2) almid > CFG_MAXALMID.

 E_NOID [k] No ID available (only for acre_alm)

 E_OBJ [k] Invalid object state

(1) Alarm handler specified by almid already exists.

 E_MACV [m] Memory access violation

288

Function:

Each service call creates an alarm handler. The alarm handler is a time event handler for a non-
task context and is initiated at the specified time only once. The alarm handler is assigned to the
kernel domain and is executed in privileged mode.

The following describes each parameter function.

(1) almid

For service calls cre_alm and icre_alm, specify a value within the range from 1 to
CFG_MAXALMID for parameter almid. Service calls acre_alm and iacre_alm search for an
unused alarm handler ID, define an alarm handler for that ID with the contents specified by
parameter pk_calm, and return the defined alarm handler ID as a return parameter.

(2) almatr

Specify either one of the following values.

• TA_HLNG (H'00000000): High-level language

• TA_ASM (H'00000001): Assembly language

The alarm handler is always assigned to the kernel domain.

In the PX specification, TA_DOM(TDOM_KERNEL) must be specified for almatr so that the
alarm handler is assigned to the kernel domain. To ensure the portability of programs, always
specify TA_DOM(TDOM_KERNEL). Note that TA_DOM() is ignored in this kernel, and even if
a user domain is assigned through TA_DOM(), no error will occur and the kernel domain is
always assumed.

(3) exinf

Parameter exinf can be widely used by the user, for example, to set information concerning alarm
handlers to be defined. exinf is passed to the alarm handler as a parameter.

The time to initiate the alarm handler is not set immediately after creating the alarm handler. The
alarm handler is in the stopped state.

The alarm handler can also be created statically by the configurator.

289

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following cases.

(1) The domain of the caller does not have a read access permission for pk_calm, which means
that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_calm
⎯ size = sizeof(T_CALM)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ

(2) The kernel domain does not have a read access permission for pk_calm->almhdr, which means
that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_calm->almhdr
⎯ size = 1
⎯ domid = Kernel domain
⎯ pmmode = TPM_READ

290

6.20.2 Delete Alarm Handler (del_alm)

C-Language API:
 ER ercd = del_alm (ID almid);

Parameters:
 ID almid Alarm handler ID

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) almid ≤ 0

(2) almid > CFG_MAXALMID

 E_CTX [k] Context error

(1) Called in a non-task context

 E_NOEXS [k] Undefined

(1) Alarm handler specified by almid does not exist.

Function:

Service call del_alm deletes the alarm handler specified by parameter almid.

291

6.20.3 Start Alarm Handler Operation (sta_alm, ista_alm)

C-Language API:
 ER ercd = sta_alm (ID almid, RELTIM almtim);

 ER ercd = ista_alm (ID almid, RELTIM almtim);

Parameters:
 ID almid Alarm handler ID

 RELTIM almtim Alarm handler initiation time

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) almid ≤ 0

(2) almid > CFG_MAXALMID

 E_NOEXS [k] Undefined

(1) Alarm handler specified by almid does not exist.

Function:

The initiation time for the alarm handler specified by almid is set to the relative time specified by
almtim after the moment at which the service call is issued, to start operation of the alarm handler.

If a time is set for an alarm handler already in operation, the previous initiation time setting is
cancelled, and the new initiation time is set.

If almtim is set to 0, the alarm handler is started at the next time tick.

When a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick
cycles), the maximum value that can be specified for almtim is H'ffffffff/CFG_TICDENO. If a
value larger than this is specified, operation is not guaranteed.

292

6.20.4 Stop Alarm Handler Operation (stp_alm, istp_alm)

C-Language API:
 ER ercd = stp_alm (ID almid);

 ER ercd = istp_alm (ID almid);

Parameters:
 ID almid Alarm handler ID

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) almid ≤ 0

(2) almid > CFG_MAXALMID

 E_NOEXS [k] Undefined

(1) Alarm handler specified by almid does not exist.

Function:

Each service call cancels the initiation time for the alarm handler specified by parameter almid,
and stops alarm handler operation.

293

6.20.5 Refer to Alarm Handler State (ref_alm, iref_alm)

C-Language API:
 ER ercd = ref_alm (ID almid, T_RALM *pk_ralm);

 ER ercd = iref_alm (ID almid, T_RALM *pk_ralm);

Parameters:
 ID almid Alarm handler ID

 T_RALM *pk_ralm Pointer to the packet where the alarm handler state is

to be returned

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 T_RALM *pk_ralm Pointer to the packet where the alarm handler state is

stored

Packet Structure:
 typedef struct {

 STAT almstat; 0 4 Alarm handler operation state

 RELTIM lefttim; +4 4 Remaining time until the alarm

handler is initiated

 }T_RALM;

Error Codes:
 E_PAR [p] Parameter error

(1) pk_ralm is not a 4-byte boundary address.

 E_ID [p] Invalid ID number

(1) almid ≤ 0

(2) almid > CFG_MAXALMID

 E_NOEXS [k] Undefined

(1) Alarm handler specified by almid does not exist.

 E_MACV [m] Memory access violation

Function:

Each service call reads the alarm handler state specified by almid and returns the alarm handler
operating state (almstat) and remaining time until the alarm handler is initiated (lefttim) to the area
indicated by parameter pk_ralm.

The target alarm handler operating state is returned to parameter almstat.

• TALM_STP (H'00000000): The alarm handler is not operating

• TALM_STA (H'00000001): The alarm handler is operating

294

The relative time until the target alarm handler is initiated next is returned to parameter lefttim.
When the target alarm handler is not operating, lefttim is undefined.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for pk_ralm, which
means that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_ralm
⎯ size = sizeof(T_RALM)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

295

6.21 Time Management (Overrun Handler)

Table 6.41 Service Calls for Overrun Handler

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

def_ovr Defines overrun handler T/E/D/U

sta_ovr T/E/D/U

ista_ovr

Starts overrun handler operation

N/E/D/U

stp_ovr T/E/D/U

istp_ovr

Stops overrun handler operation

N/E/D/U

ref_ovr T/E/D/U

iref_ovr

Refers to overrun handler state

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called from CPU exception handler

Table 6.42 Overrun Handler Specifications

Item Description

Processor time unit (OVRTIM) Same as system clock (1 [ms])

Overrun handler attributes TA_HLNG: The handler is written in a high-level language.
TA_ASM: The handler is written in assembly language.

Only one overrun handler can be defined in the system. The overrun handler is a time event
handler.

The processor time used by the task includes the execution times of a task, the service calls issued
by the task, and the interrupt handler that is initiated during execution of the task. Used processor
time is not counted while the task is not in the RUNNING state.

296

6.21.1 Define Overrun Handler (def_ovr)

C-Language API:
 ER ercd = def_ovr (T_DOVR *pk_dovr);

Parameters:
 T_DOVR *pk_dovr Pointer to the packet where the overrun handler

definition information is stored

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Packet Structure:
 typedef struct {

 ATR ovratr; 0 4 Overrun handler attribute

 FP ovrhdr; +4 4 Overrun handler address

 }T_DOVR;

Error Codes:
 E_RSATR [p] Reserved attribute

(1) The bits other than TA_ASM in ovratr are not 0.

 E_PAR [p] Parameter error

(1) pk_dovr is not a 4-byte boundary address.

(2) ovrhdr is an odd value.

 E_MACV [m] Memory access violation

Function:

Service call def_ovr defines an overrun handler.

The overrun handler is a time event handler for a non-task context which is started when the
processor is used by a task for a time exceeding a preset time. The overrun handler is assigned to
the kernel domain and is executed in privileged mode.

The following describes each parameter function.

(1) ovratr

Specify either one of the following values.

• TA_HLNG (H'00000000): High-level language

• TA_ASM (H'00000001): Assembly language

(2) ovrhdr

Parameter ovrhdr specifies the start address of the overrun handler.

297

When pk_dovr=NULL (0) is specified, the overrun handler definition is cancelled.

When an overrun handler has already been defined, if this service call is issued, the preceding
definition is cancelled and the new definition takes its place.

This service call must not be issued in a non-task context, but even if attempted, the E_CTX error
will not be detected.

An overrun handler can also be defined statically by the configurator.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following cases.

(1) The domain of the caller does not have a read access permission for pk_dovr, which means
that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_dovr
⎯ size = sizeof(T_DOVR)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ

(2) The kernel domain does not have a read access permission for pk_dovr->ovrhdr, which means
that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_dovr->ovrhdr
⎯ size = 1
⎯ domid = Kernel domain
⎯ pmmode = TPM_READ

298

6.21.2 Start Overrun Handler Operation (sta_ovr, ista_ovr)

C-Language API:
 ER ercd = sta_ovr (ID tskid, OVRTIM ovrtim);

 ER ercd = ista_ovr (ID tskid, OVRTIM ovrtim);

Parameters:
 ID tskid Task ID

 OVRTIM ovrtim Upper processor time limit

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) tskid < 0

(2) tskid > CFG_MAXTSKID

(3) tskid = TSK_SELF (0) is specified in a non-task context.

 E_OBJ [k] Invalid object state

(1) Overrun handler has not been defined.

 E_NOEXS [k] Undefined

(1) Task specified by tskid does not exist.

Function:

Overrun handler operation begins for the task specified by tskid.

By specifying tskid=TSK_SELF (0), the current task is specified.

The upper processor time limit for the task is set to the time specified by ovrtim, and the processor
time used is cleared to 0. If the specified overrun handler has already been operating, the upper
processor time limit previously specified is cancelled, and the new processor time limit is set.

When the processor time used exceeds the upper processor time limit, the overrun handler is
started.

When a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick
cycles), the maximum value that can be specified for ovrtim is H'ffffffff/CFG_TICDENO. If a
value larger than this is specified, operation is not guaranteed.

If 0 is specified for ovrtim, the overrun handler is started on the first time tick after the task begins
to use the processor.

299

6.21.3 Stop Overrun Handler Operation (stp_ovr, istp_ovr)

C-Language API:
 ER ercd = stp_ovr (ID tskid);

 ER ercd = istp_ovr (ID tskid);

Parameters:
 ID tskid Task ID

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) tskid < 0

(2) tskid > CFG_MAXTSKID

(3) tskid = TSK_SELF (0) is specified in a non-task context.

 E_OBJ [k] Invalid object state

(1) Overrun handler has not been defined.

 E_NOEXS [k] Undefined

(1) Task specified by tskid does not exist.

Function:

Each service call releases the upper processor time limit for the task specified by parameter tskid
and stops overrun handler operation.

By specifying tskid = TSK_SELF (0), the current task is specified.

300

6.21.4 Refer to Overrun Handler State (ref_ovr, iref_ovr)

C-Language API:
 ER ercd = ref_ovr (ID tskid, T_ROVR *pk_rovr);

 ER ercd = iref_ovr (ID tskid, T_ROVR *pk_rovr);

Parameters:
 ID tskid Task ID

 T_ROVR *pk_rovr Pointer to the packet where the overrun handler state

is to be returned

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 T_ROVR *pk_rovr Pointer to the packet where the overrun handler state

is stored

Packet Structure:
 typedef struct {

 STAT ovrstat; 0 4 Overrun handler operating state

 OVRTIM leftotm; +4 4 Remaining processor time

 }T_ROVR;

Error Codes:
 E_PAR [p] Parameter error

(1) pk_rovr is not a 4-byte boundary address.

 E_ID [p] Invalid ID number

(1) tskid < 0

(2) tskid > CFG_MAXTSKID

(3) tskid = TSK_SELF (0) is specified in a non-task context.

 E_OBJ [k] Invalid object state

(1) Overrun handler has not been defined.

 E_NOEXS [k] Undefined

(1) Task specified by tskid does not exist.

 E_MACV [m] Memory access violation

Function:

The state of the overrun handler for the task specified by tskid is referenced. By specifying tskid =
TSK_SELF (0), the current task is specified.

The state of operation of the overrun handler (ovrstat) and the remaining processor time (leftotm)
are returned to the area specified by pk_rovr. As the operating state of the overrun handler, the
upper processor time limit setting is returned as ovrstat.

• TOVR_STP (H'00000000): No upper processor time limit is set

301

• TOVR_STA (H'00000001): An upper processor time limit is set

The processor time remaining until the overrun handler is started due to the target task is returned
as leftotm. If no upper processor time limit is set for the task, the value of leftotm is undefined.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for pk_rovr, which
means that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_rovr
⎯ size = sizeof(T_ROVR)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

302

6.22 System State Management

Table 6.43 Service Calls for System State Management

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

rot_rdq [S] T/E/D/U

irot_rdq [S]

Rotates ready queue

N/E/D/U

get_tid [S] T/E/D/U

iget_tid [S]

Refers to task ID in RUNNING state

N/E/D/U

get_did T/E/D/U

iget_did

Refers to domain ID of the task in RUNNING state

N/E/D/U

loc_cpu [S] T/E/D/U/L

iloc_cpu [S]

Locks CPU

N/E/D/U/L

unl_cpu [S] T/E/D/U/L

iunl_cpu [S]

Unlocks CPU

N/E/D/U/L

dis_dsp [S] Disables task dispatch T/E/D/U

ena_dsp [S] Enables task dispatch T/E/D/U

sns_ctx [S] Refers to task context T/N/E/D/U/L

sns_loc [S] Refers to CPU-locked state T/N/E/D/U/L

sns_dsp [S] Refers to dispatch-disabled state T/N/E/D/U/L

sns_dpn [S] Refers to dispatch-pended state T/N/E/D/U/L

vsta_knl [s] Starts kernel T/N/E/D/U/L/C

ivsta_knl [s] T/N/E/D/U/L/C

vsys_dwn [s] Terminates the system T/N/E/D/U/L/C

ivsys_dwn [s] T/N/E/D/U/L/C

vget_trc T/E/D/U

ivget_trc

Acquires trace information

N/E/D/U

ivbgn_int Acquires start of interrupt handler to trace N/E/D/U

ivend_int Acquires end of interrupt handler to trace N/E/D/U

vchg_cop Changes DSP (TA_COP0) attribute T/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

303

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called from CPU exception handler

304

6.22.1 Rotate Ready Queue (rot_rdq, irot_rdq)

C-Language API:
 ER ercd = rot_rdq(PRI tskpri);

 ER ercd = irot_rdq(PRI tskpri);

Parameters:
 PRI tskpri Task priority

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error

(1) tskpri < 0

(2) tskpri > CFG_MAXTSKPRI

(3) tskpri = TPRI_SELF (0) is specified in a non-task context.

Function:

Each service call rotates the ready queue for the task priority specified by parameter tskpri. In
other words, the task at the head of the ready queue for the task priority is sent to the end of the
queue, enabling the second task in the ready queue to be executed.

Specifying tskpri = TPRI_SELF (0) rotates the ready queue for the base priority of the current
task. The base priority is the same as the current priority when the mutex function is not used;
however, the current priority is not the same as the base priority while the mutex is locked. Thus,
the ready queue for the priority where the current task is included, cannot be rotated even when
TPRI_SELF is specified.

305

6.22.2 Get Task ID in RUNNING state (get_tid, iget_tid)

C-Language API:
 ER ercd = get_tid(ID *p_tskid);

 ER ercd = iget_tid(ID *p_tskid);

Parameters:
 ID *p_tskid Pointer to the area where the task ID is to be returned

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 ID *p_tskid Pointer to the task ID

Error Codes:
 E_PAR [p] Parameter error

(1) p_tskid is not a 2-byte boundary address.

 E_MACV [m] Memory access violation

Function:

Each service call gets the task ID in the RUNNING state and returns it to the area specified by
p_tskid. If each service call is issued in a task context, the current task ID is returned. If each
service call is issued in a non-task context, the task ID that is being executed is returned. If there is
no task in the RUNNING state, TSK_NONE (0) is returned.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for p_tskid, which
means that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = p_tskid
⎯ size = sizeof(ID)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

306

6.22.3 Get Domain ID of the Task in RUNNING State (get_did, iget_did)

C-Language API:
 ER ercd = get_did(ID *p_domid);

 ER ercd = iget_did(ID *p_domid);

Parameters:
 ID *p_domid Pointer to the area where the domain ID is to be

returned

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 ID *p_domid Pointer to the domain ID

Error Codes:
 E_PAR [p] Parameter error

(1) p_domid is not a 2-byte boundary address.

 E_MACV [m] Memory access violation

Function:

Each service call gets the ID of the domain where the task in the RUNNING state is assigned and
returns it to the area specified by p_domid.

The actual processing depends on where the service call is issued as follows.

(1) When the service call is issued in a task or a task exception processing routine, the service call
returns the ID of the domain where the task is assigned.

(2) When the service call is issued in an extended service call or trap routine that was called from
a task or a task exception processing routine, the service call returns the ID of the domain
where the task which was in the RUNNING state before the extended service call or trap
routine was called is assigned.

(3) When the service call is issued in a non-task context, the service call returns the ID of the
domain where the task which is in RUNNING state when the service call is issued is assigned.
If there is no task in the RUNNING state, TDOM_NONE (-2) is returned.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for p_domid, which
means that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = p_domid
⎯ size = sizeof(ID)

307

⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

308

6.22.4 Lock CPU (loc_cpu, iloc_cpu)

C-Language API:
 ER ercd = loc_cpu();

 ER ercd = iloc_cpu();

Parameters:
 None

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_CTX [k] Context error

(1) Called in a task context while interrupts are masked

through chg_ims.

Function:

Each service call locks the CPU and inhibits interrupts and task dispatches.

The following describes the CPU-locked state:

♦ Tasks cannot be scheduled while the CPU is locked.

♦ Task exception processing routines cannot be initiated while the CPU is locked.

♦ Interrupts, having a level equal to or below the kernel interrupt mask level
(CFG_KNLMSKLVL) defined by the configurator, are inhibited.

♦ Only the following service calls can be issued in the CPU-locked state. The system operation
cannot be guaranteed when a service call other than the followings is issued. When a service
call that shifts a task to the WAITING state is issued or chg_ims is issued, an E_CTX error is
returned.

⎯ ext_tsk (automatically unlocks the CPU)
⎯ exd_tsk (automatically unlocks the CPU)
⎯ sns_tex
⎯ loc_cpu, iloc_cpu
⎯ unl_cpu, iunl_cpu
⎯ sns_ctx
⎯ sns_loc
⎯ sns_dsp
⎯ sns_dpn
⎯ vsta_knl, ivsta_knl
⎯ vsys_dwn, ivsys_dwn

309

When the following service calls are issued in the CPU-locked state, the system returns to the
CPU-unlocked state.

⎯ unl_cpu or iunl_cpu
⎯ ext_tsk or exd_tsk

When an interrupt handler, a time event handler, a CPU exception handler, or an initialization
routine is completed, the system returns to the state before handler initiation (CPU-locked or CPU-
unlocked state).

If service calls loc_cpu and iloc_cpu are issued while the CPU is locked, no error will occur. In
this case, queuing will not be done.

310

6.22.5 Unlock CPU (unl_cpu, iunl_cpu)

C-Language API:
 ER ercd = unl_cpu();

 ER ercd = iunl_cpu();

Parameters:
 None

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_CTX [k] Context error

(1) Called in a task context while interrupts are masked

through chg_ims.

Function:

Each service call unlocks the CPU, which was locked by service call loc_cpu or iloc_cpu. If
service call unl_cpu is issued in the dispatch-enabled state, the task scheduling is performed.

The CPU-locked state and dispatch-disabled state are managed individually. Thus, service call
unl_cpu or iunl_cpu does not enable the task dispatch which was disabled by service call dis_dsp.

If service calls unl_cpu and iunl_cpu are called in CPU-unlocked state, no error will occur, but
queuing will not be done.

311

6.22.6 Disable Dispatch (dis_dsp)

C-Language API:
 ER ercd = dis_dsp();

Parameters:
 None

Return Parameters:
 ER ercd Normal termination (E_OK)

Error Codes:
 E_CTX [k] Context error

(1) Called in a non-task context.

Function:

Service call dis_dsp disables task dispatch.

The following describes the dispatch-disabled state:

♦ Tasks cannot be scheduled.

♦ When a service call that shifts a task to the WAITING state is issued in a task context, an
E_CTX error is returned.

When the following service calls are issued while task dispatch is disabled, the system returns to
the task dispatch-enabled state.

♦ ena_dsp

♦ ext_tsk or exd_tsk

The transition between dispatch-disabled state and dispatch-enabled state occurs only when
dis_dsp, ena_dsp, ext_tsk, or exd_tsk service call is issued.

When task dispatch is disabled by this service call, the task state is undefined. Therefore, if the
current task refers to its state by service call ref_tsk, the returned state is not always the
RUNNING state.

An error will not occur when service call dis_dsp is issued while the task dispatch is disabled;
however, queuing will not be done.

312

6.22.7 Enable Dispatch (ena_dsp)

C-Language API:
 ER ercd = ena_dsp();

Parameters:
 None

Return Parameters:
 ER ercd Normal termination (E_OK)

Error Codes:
 E_CTX [k] Context error

(1) Called in a non-task context.

Function:

Service call ena_dsp enables task dispatch disabled by service call dis_dsp. Task scheduling is
then performed after the service call.

An error will not occur when service call ena_dsp is called during task dispatch-enabled state;
however, queuing will not be done.

313

6.22.8 Refer to Context (sns_ctx)

C-Language API:
 BOOL state = sns_ctx();

Parameters:
 None

Return Parameters:
 BOOL state Context

Function:

Service call sns_ctx returns TRUE when it is issued in a non-task context, or FALSE when in a
task context.

314

6.22.9 Refer to CPU-Locked State (sns_loc)

C-Language API:
 BOOL state = sns_loc();

Parameters:
 None

Return Parameters:
 BOOL state CPU-locked state

Function:

Service call sns_loc returns TRUE when the CPU is locked, or FALSE when the CPU is unlocked.

315

6.22.10 Refer to Dispatch-Disabled State (sns_dsp)

C-Language API:
 BOOL state = sns_dsp();

Parameters:
 None

Return Parameters:
 BOOL state Dispatch-disabled state

Function:

Service call sns_dsp returns TRUE when task dispatch is disabled, or FALSE when task dispatch
is enabled.

316

6.22.11 Refer to Dispatch-Pended State (sns_dpn)

C-Language API:
 BOOL state = sns_dpn();

Parameters:
 None

Return Parameters:
 BOOL state Dispatch-pended state

Function:

Service call sns_dpn returns TRUE when the task dispatch is pended. Otherwise, this service call
returns FALSE.

When the following conditions are all satisfied, FALSE is returned. Otherwise, TRUE is returned.

• Task dispatch is not disabled.

• The CPU is unlocked.

• Execution is in a task context.

• Interrupts are not masked by service call chg_ims.

317

6.22.12 Start Kernel (vsta_knl, ivsta_knl)

C-Language API:
 void vsta_knl(void);

 void ivsta_knl(void);

Parameters:
 None

Return Parameters:
 No parameters are returned to the caller.

Function:

Each service call starts the kernel.

If the kernel has already been started, the multitasking environment up to that point is all nullified.
In addition, control does not return to the caller.

These service calls must be issued while SR.MD = 1 and SR.BL = 1. An application issuing these
service calls must be linked with the kernel library.

Note that even when the memory object protection function is selected, the kernel does not enable
the MMU during initialization. The application must initialize MMUCR.AT to determine whether
to enable the MMU before starting the kernel.

After enabling the MMU, do not access the MMU mapped area before calling vsta_knl; MMU-
related interrupts, which may be generated by access to the MMU mapped area, cannot be handled
during this period because the kernel has not been started.

The following shows the detailed initialization processing performed by these service calls.

(1) Sets SR.BL = 1 (disables all interrupts)

(2) Sets the stack pointer (R15) to a non-task context stack (section BSCP_hintskstk).

(3) Initializes the VBR.

When an interrupt handler is initiated, the IMASK bits in SR are handled according to the
value of the INTMU bit in the CPUOPM set when the kernel is started. Initialize the bit as
necessary before starting the kernel.

(4) Initializes the RAMCR.

Only when the memory object protection function is selected (CFG_PROTMEM is selected)
and CFG_IRAM is selected, the RP and RMD bits in the RAMCR are initialized according to
the CFG_IRAMUSAGE setting as follows. The other bits in the register are not initialized.

318

CFG_IRAMUSAGE Setting Initial RAMCR.RP Value Initial RAMCR.RMD Value

MMU non-mapped area, accessible in
any mode

0 1

MMU non-mapped area, accessible in
user non-DSP mode only

0 0

MMU mapped area 1 1

(5) Initializes the MMUCR.

Only when the memory object protection function is selected (CFG_PROTMEM is selected),
the LRUI, URB, and URC bits in the MMUCR are initialized to 0. The other bits in the
register are not initialized.

To enable the MMU, set MMUCR.AT = 1 before starting the kernel. If the kernel is started
while MMUCR.AT = 0, the MMU remains disabled. In this state, no illegal memory access
can be detected but no TLB miss will occur.

(6) Initializes the kernel management information.

(7) Initializes the static memory objects specified through the configurator.

(8) Initializes the timers when CFG_OPTTMR is selected.

(9) Sets SR.BL = 0 and IMASK = 15.

(10) Creates and defines necessary objects.

The objects specified through the configurator are created and defined.

These objects are created and defined through appropriate service calls issued in the initial
definition routines output from the configurator.

If the settings through the configurator are incorrect, these service calls may end with an error.
In this case, the initial definition routine enters an infinite loop at the point where the service
call causing the error is issued.

There are two initial definition routines: kernel_def_inireg.h and kernel_cfg_inireg.h.
kernel_def_inireg.h creates and defines the objects for which [Kernel side] has been selected
through the configurator, and kernel_cfg_inireg.h is for the objects for which [Kernel side] has
not been selected.

kernel_def_inireg.h is called first, then kernel_cfg_inireg.h is called. In each routine, objects
are created and defined in the specified order shown below. Among the same type of objects,
tasks and cyclic handlers are created in the order of the list displayed in the configurator, but
the other objects are created in a random order.

319

Order Object

1 Interrupt and CPU exception handlers

2 Overrun handler

3 Cyclic handlers

4 Alarm handlers

5 Extended service call routines

6 Trap routines

7 Semaphores

8 Event flags

9 Data queues

10 Mailboxes

11 Mutexes

12 Message buffers

13 Fixed-size memory pools

14 Variable-size memory pools

15 Protected memory pools

16 Protected mailboxes

17 Tasks and task exception processing routines

(11) Calls the timer initialization routine (_kernekl_tmrini()) only when CFG_OPTTMR is not
selected.

(12) Calls the initialization routines.

The initial definition routines defined through the configurator are called.

First, the routines for which [Kernel side] is not selected are called in the order of the list
displayed in the configurator, and then the routines for which [Kernel side] is not selected are
called in the order of the list displayed in the configurator.

(13) Initializes the program performance counters only when CFG_PERFORM is selected.

After the above initialization, the kernel enters the multitasking environment.

ivsta_knl is an API implemented to conform to the naming convention of the μITRON 4.0
specification, but its actual code is the same as that for vsta_knl. In the header file, ivsta_knl() is
defined as vsta_knl().

320

6.22.13 System Down (vsys_dwn, ivsys_dwn)

C-Language API:
 void vsys_dwn (ER type, VW inf1, VW inf2, VW inf3);

 void ivsys_dwn (ER type, VW inf1, VW inf2, VW inf3);

Parameters:
 ER type Error type

 VW inf1 System abnormal information 1

 VW inf2 System abnormal information 2

 VW inf3 System abnormal information 3

Return Parameters:
 No parameters are returned to the caller.

Function:

Each service call passes control to the system down routine. The system down routine is assigned
to the kernel domain and is executed in privileged mode.

A value (1 to H'7fffffff) corresponding to the error type must be specified for the parameter type.
Value 0 or smaller values are reserved for system use.

The system down routine is also executed when abnormal operation is detected in the kernel.

Service calls vsys_dwn and ivsys_dwn can be issued in the CPU-locked state and from the CPU
exception handler.

ivsys_dwn is an API implemented to conform to the naming convention of the μITRON 4.0
specification, but its actual code is the same as that for vsys_dwn. In the header file, ivsys_dwn is
defined as vsys_dwn.

As these service calls use a TRAPA instruction in the same way as in the other service calls, they
must not be issued while SR.BL = 1. To pass control to the system down routine while SR.BL = 1,
call the system down routine directly.

Reference: Section 8.10, System Down Routine

321

6.22.14 Acquire Trace Information (vget_trc, ivget_trc)

C-Language API:
 ER ercd = vget_trc(VW para1, VW para2, VW para3, VW para4);

 ER ercd = ivget_trc(VW para1, VW para2, VW para3, VW para4);

Parameters:
 VW para1 Parameter 1

 VW para2 Parameter 2

 VW para3 Parameter 3

 VW para4 Parameter 4

Return Parameters:
 ER ercd Normal termination (E_OK)

Error Codes:
 None

Function:

A trace of information required by the user is obtained.

Parameters para1 to para4 can be used freely by the user to distinguish the information to be
acquired.

The acquired trace information can be displayed by using a debugging extension.

If CFG_TRACE is not selected by the configurator, this service call always ends normally and
does not perform any processing.

ivget_trc is an API implemented to conform to the naming convention of the μITRON 4.0
specification, but its actual code is the same as that for vget_trc. In the header file, ivget_trc is
defined as vget_trc.

322

6.22.15 Acquire Start of Interrupt Handler as Trace Information (ivbgn_int)

C-Language API:
 ER ercd = ivbgn_int(UINT dintno);

Parameters:
 UINT dintno Interrupt handler number

Return Parameters:
 ER ercd Normal termination (E_OK)

Error Codes:
 None

Function:

This API is implemented only in the C-language interface to ensure the compatibility with the
HI7000/4 series. In the C-language interface, this is defined as follows.

#define ivbgn_int(dintno) E_OK /* Always returns E_OK. */

This kernel always acquires trace information about the start and end of interrupt handlers when
CFG_TRACE is selected.

323

6.22.16 Acquire End of Interrupt Handler as Trace Information (ivend_int)

C-Language API:
 ER ercd = ivend_int(UINT dintno);

Parameters:
 UINT dintno Interrupt handler number

Return Parameters:
 ER ercd Normal termination (E_OK)

Error Codes:
 None

Function:

This API is implemented only in the C-language interface to ensure the compatibility with the
HI7000/4 series. In the C-language interface, this is defined as follows.

#define ivend_int(dintno) E_OK /* Always returns E_OK. */

This kernel always acquires trace information about the start and end of interrupt handlers when
CFG_TRACE is selected.

324

6.22.17 Change DSP (TA_COP0) Attribute (vchg_cop)

C-Language API:
 ER_UINT oldatr = vchg_cop(ATR newatr);

Parameters:
 ATR newatr Attribute after change

Return Parameters:
 ER_UINT oldatr Attribute before change (a positive value or 0) or error

code

Error Codes:
 E_RSATR [p] Reserved attribute

(1) The bits other than TA_COP0 in newatr are not 0.

 E_CTX [k] Context error

(1) Called in a non-task context.

 E_ILUSE [k] Illegal use of service call

(1) Called in a program with the TA_COP1 or TA_COP2 attribute

Function:

Service call vchg_cop changes the current TA_COP0 attribute of the caller to that specified by
newatr.

This service call is implemented to refine the control of DSP standby function.

This service call changes the current attribute of the caller (a task when called from the task, a task
exception processing routine when called from the routine, or an extended service call or trap
routine when called from the routine that has been called in a task context).

The change is temporary, just for this one time.

For a task, after it is completed and then initiated again, the attribute returns to the initial state
specified at task creation.

For a task exception processing routine, after it is completed and then initiated again, the attribute
returns to the initial state defined at creation of the task exception processing routine.

For an extended service call or trap routine called in a task context, the attribute change is only
valid in the context of the current task being executed. When the routine is called again from
another task after that, the attribute returns to the initial state specified at definition of the routine.

The following can be specified for newatr. FPU-related attributes (TA_COP1 and TA_COP2)
cannot be specified.

325

• TA_COP0 (H'00000100): The task or routine uses the DSP.

• TA_NULL (H'00000000): The task or routine does not use the DSP.

The attribute before change (TA_COP0 or TA_NULL) is returned through oldatr.

326

6.23 Interrupt Management

Table 6.44 Service Calls for Interrupt Management

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

def_inh T/E/D/U

idef_inh

Defines interrupt handler

N/E/D/U

chg_ims T/E/D/U

ichg_ims

Changes interrupt mask

N/E/D/U

get_ims T/E/D/U

iget_ims

Refers to interrupt mask

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called from CPU exception handler

Table 6.45 Interrupt Management Specifications

Item Description

Interrupt handler number A multiple of H'20 within the range from 0 to CFG_MAXINTNO (H'3fe0
max.)

Interrupt handler attributes TA_HLNG: The handler is written in a high-level language.
TA_ASM: The handler is written in assembly language.

327

6.23.1 Define Interrupt Handler (def_inh, idef_inh)

C-Language API:
 ER ercd = def_inh(INHNO inhno, T_DINH *pk_dinh);

 ER ercd = idef_inh(INHNO inhno, T_DINH *pk_dinh);

Parameters:
 INHNO inhno Interrupt handler number

 T_DINH *pk_dinh Pointer to the packet where the definition information

of interrupt handler is stored

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Packet Structure:
 typedef struct {

 ATR inhatr; 0 4 Handler attribute

 FP inthdr; +4 4 Handler address

 UINT inhsr; +8 4 SR at initiation

 }T_DINH;

Error Codes:
 E_RSATR [p] Reserved attribute

(1) The bits other than TA_ASM in inhatr are not 0.

 E_PAR [p] Parameter error

(1) inhno after being rounded down to a multiple of 0x20 is 0,

H'20, H'140, H'160, or a value larger than CFG_MAXINTNO.

(2) pk_dinh is not a 4-byte boundary address.

(3) inthdr is an odd value.

 E_MACV [m] Memory access violation

Function:

Each service call defines an interrupt handler. The interrupt handler is assigned to the kernel
domain and is executed in privileged mode.

The actual codes of these service calls are the same as that for def_exc, which means that these
service calls can be used to define a CPU exception handler and def_exc can be used to define an
interrupt handler.

The following describes each parameter function.

(1) inhno

Parameter inhno is an interrupt handler number. Specify an INTEVT code of the CPU for the
interrupt handler number. inhno is rounded down to a multiple of H'20 during processing.

328

Note that the interrupt code (INTEVT code) and exception code (EXPEVT code) are managed in
the same code system in the SH microcomputer. This service call does not check whether the
specified inhno value is an interrupt code or an exception code. If an exception code is specified,
the service call operates in the same way as def_exc.

For some INTEVT and EXPEV codes, no handlers can be defined, or even when handlers can be
defined, the handlers will not work. Table 6.46 shows these cases.

Table 6.46 Exceptional INTEVT and EXPEVT Codes

CPU Operation for Specified Interrupt or Exception INTEVT
or
EXPEVT
Code Cause

Handler
Definition

CFG_PROTMEM Is
Not Selected CFG_PROTMEM Is Selected

0 Power-on reset or H-UDI
reset

Not
possible

H'20 Manual reset Not
possible

Branches to the reset vector (H'A0000000).

H'40 TLB miss exception (read)

H'60 TLB miss exception
(write)

H'A0 TLB protection violation
exception (read)

H'C0 TLB protection violation
exception (write)

Possible Initiates the defined
handler. *

The kernel updates the TLB.
If the TLB cannot be updated,
the kernel initiates the
memory access violation
handler. The defined handler
is never executed; its
definition has no effect.

H'140 Instruction TLB multiple-
hit exception or data TLB
multiple-hit exception

Not
possible

Branches to the reset
vector (H'A0000000). *

Branches to the reset vector
(H'A0000000).

H'160 TRAPA instruction Not
possible

According to the trap number, a kernel service call or
user-defined trap routine is executed.

Note: This type of exception will not occur usually unless the application enables the MMU.

Do not specify the following codes.

(a) CFG_TIMINTNO

CFG_TIMINTNO is an interrupt number used in the standard timer driver when
CFG_OPTTMR is not selected. If a handler is specified for this number, the standard timer
driver will not operate correctly.

(b) H'400, H'420, and H'440

329

These are interrupt numbers used in the optimized timer driver when CFG_OPTTMR is
selected. If a handler is specified for any one of these numbers, the optimized timer driver will
not operate correctly.

When def_ovr is not installed, H'440 is not used in the optimized timer driver and an interrupt
handler can be defined for this number.

(2) inhatr

Specify either one of the following values.

• TA_HLNG (H'00000000): High-level language

• TA_ASM (H'00000001): Assembly language

(3) inhsr

inhsr is a parameter not specified in the μITRON specification.

Parameter inhsr specifies the value of the status register (SR) on startup of the interrupt handler.
inhsr is specified using the same bit position as the SR. Note that the SR value becomes as shown
below when an interrupt handler is actually initiated; only the block (BL) and interrupt mask level
(IMASK) bits take effect and the other bits are ignored. A value equal to or greater than the level
of the target interrupt should always be specified as the interrupt mask bits. If a value lower than
the interrupt level is specified, correct system operation is not guaranteed.

• Mode (MD) bit: Always 1

• Register bank (RB) bit: Always 0

• Block (BL) bit: Set to the inhsr value.

• DSP bit (SH4AL-DSP): 0

• FPU disable (FD) bit (SH-4A): 1

• Interrupt mask level (IMASK) bits: Set to the inhsr value if the INTMU bit in the CPUOPM
register is 0 when the kernel is started. If the INTMU bit is 1, the level of the generated
interrupt is set here.

• Other bits: Undefined

When pk_dinh = NULL (0) is specified, the definition of the interrupt handler is cancelled.

If this service call is issued while an interrupt handler has been defined, the previous definition is
canceled and replaced with the new definition.

An interrupt handler can be statically defined through the configurator.

If an interrupt for a number for which no handler has been defined occurs, control is passed to the
system down routine.

330

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following cases.

(1) The domain of the caller does not have a read access permission for pk_dinh, which means that
an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_dinh
⎯ size = sizeof(T_DINH)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ

(2) The kernel domain does not have a read access permission for pk_dinh->inthdr, which means
that an error will be returned if prb_mem is issued with the following parameters.

⎯ base= pk_dinh->inthdr
⎯ size = 1
⎯ domid = Kernel domain
⎯ pmmode = TPM_READ

331

6.23.2 Change Interrupt Mask (chg_ims, ichg_ims)

C-Language API:
 ER ercd = chg_ims(IMASK imask);

 ER ercd = ichg_ims(IMASK imask);

Parameters:
 IMASK imask Interrupt mask value

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error

(1) A value other than SR_IMS00 to SR_IMS15 was specified for

imask.

 E_CTX [k] Context error

(1) Called in CPU-locked state in a task context

Function:

Each service call changes the current interrupt mask to the level specified by imask.

The imask can be specified as follows:

• SR_IMSnn (H'0000000m): Changes interrupt mask level to nn.

nn: Character string indicating two-digit decimal number from 0 to 15 (00, 01, 02, ... , 15).

m: nn converted to a hexadecimal number.

Note the following precautions for the period while the interrupt mask is changed to a non-zero
value through this service call in a task context.

1. Tasks are not scheduled, that is, the system enters dispatch-disabled state. No service call
shifting a task to the WAITING state can be issued. If attempted, an E_CTX error is returned.

2. No task exception processing routine is initiated.

3. Interrupts having a level lower than the imask value are disabled.

4. Neither loc_cpu nor unl_cpu can be issued. If attempted, an E_CTX error is returned.

Use service call chg_ims or ichg_ims when changing the interrupt mask level in the following
cases. The SR can be directly changed when changing the interrupt mask level in the other cases.

1. When the interrupt mask level is changed from level 0 to a level other than 0 in a task context.

2. When the interrupt mask level is returned to 0 after the above case.

332

Otherwise, normal system operation cannot be guaranteed.

Note that service calls must not be issued while the interrupt mask level is made higher than the
kernel interrupt mask level (CFG_KNLMSKLVL) unless this service call is used to lower the
interrupt mask level to a level equal to or below the kernel interrupt mask level. Otherwise, normal
system operation cannot be guaranteed.

333

6.23.3 Refer to Interrupt Mask (get_ims, iget_ims)

C-Language API:
 ER ercd = get_ims(IMASK *p_imask);

 ER ercd = iget_ims(IMASK *p_imask);

Parameters:
 IMASK *p_imask Start address of the area where the interrupt

mask level is to be returned

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 IMASK *p_imask Start address of the area where the interrupt

mask level is stored

Error Codes:
 E_PAR [p] Parameter error

(1) p_imask is not a 4-byte boundary.

 E_MACV [m] Memory access violation

Function:

Each service call refers to the interrupt mask bits (IMASK bits) of the current CPU status register
(SR) and returns the interrupt mask level to the area indicated by p_imask.

The value to be returned to p_imask has the same format as parameter imask used by service call
chg_ims.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for p_imask, which
means that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = p_imask
⎯ size = sizeof(IMASK)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

334

6.24 Extended Service Call and Trap Management

Table 6.47 Service Calls for Service Call Management

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

def_svc T/E/D/U

idef_svc

Defines extended service call

N/E/D/U

cal_svc T/E/D/U

ical_svc

Issues extended service call

N/E/D/U

vdef_trp T/E/D/U

ivdef_trp

Defines trap

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called from CPU exception handler

335

Table 6.48 Service Call Management Specifications

Item Description

Function code of extended service call 1 to CFG_MAXSVCCD (32767 max.)

Extended service call routine attributes TA_HLNG: High-level language

TA_ASM: Assembly language

TA_COP0: The routine uses the DSP.

TA_COP1: The routine uses register bank 0 in the FPU.

TA_COP2: The routine uses register bank 1 in the FPU.

Trap number 16 to CFG_MAXTRPNO (255 max.)

Note that 0 to 15 are reserved for the kernel use and
cannot be specified.

Trap routine attributes TA_HLNG: High-level language

TA_ASM: Assembly language

TA_COP0: The routine uses the DSP.

TA_COP1: The routine uses register bank 0 in the FPU.

TA_COP2: The routine uses register bank 1 in the FPU.

The extended service call and trap have the following features.

• Both the extended service call routine and trap routine are executed in privileged mode, and
the access types that are prohibited in the user domain are allowed.

• These routines can be called without being linked to a program.

• When an extended service call or a trap is called in a task context, the task exception
processing routine is not initiated while the extended service call or trap routine is being
executed.

• When an extended service call or a trap is called in a task context, the WAITING-disabled
state is entered if a rel_wai service call is issued while the extended service call or trap routine
is being executed.

336

6.24.1 Define Extended Service Call (def_svc, idef_svc)

C-Language API:
 ER ercd = def_svc (FN fncd, T_DSVC *pk_dsvc);

 ER ercd = idef_svc (FN fncd, T_DSVC *pk_dsvc);

Parameters:
 FN fncd Function code of extended service call

 T_DSVC *pk_dsvc Start address of the extended service call routine

definition information

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Packet Structure:
 typedef struct {

 ATR svcatr; 0 4 Extended service call routine attribute

 FP svcrtn; +4 4 Extended service call routine address

 UW inifpscr; +8 4 Initial FPSCR value

 }T_DSVC;

Error Codes:
 E_RSATR [p] Reserved attribute

(1) The bits other than TA_COP0, TA_COP1, TA_COP2, and TA_ASM

in svcatr are not 0.

(2) TA_COP0 is specified for svcatr while CFG_DSP is not

selected.

(3) TA_COP1 is specified for svcatr while CFG_FPU is not

selected.

(4) TA_COP2 is specified for svcatr while TA_COP1 is not

specified.

(5) Both TA_COP0 and TA_COP1 are specified for svcatr.

 E_PAR [p] Parameter error

(1) fncd ≤ 0

(2) fncd > CFG_MAXSVCCD

(3) pk_dsvc is not a 4-byte boundary address.

(4) svcrtn is an odd value.

 E_MACV [m] Memory access violation

Function:

Service calls def_svc and idef_svc define an extended service call routine. The extended service
call routine is called through cal_svc.

337

The extended service call routine is assigned to the kernel domain and is executed in privileged
mode.

Note that the following states do not change before and after the extended service call routine is
initiated and terminated.

• Task or non-task context

• Dispatch-disabled or enabled state

• CPU-locked or unlocked state

While the extended service call routine called from a task is being executed, the task exception
processing routine for that task is not initiated. When rel_wai is issued for that task, the task enters
the WAITING-disabled state.

The following describes each parameter function.

(1) fncd

Parameter fncd specifies the function code for the extended service call routine. Specify a value
within the range from 1 to CFG_MAXSVCCD.

(2) svcatr

Specify the logical OR of the following (a) to (c) values for svcatr.

(a) Language

Specify either one of the following values.

⎯ TA_HLNG (H'00000000): High-level language
⎯ TA_ASM (H'00000001): Assembly language

(b) Using a microcomputer with an on-chip DSP (when CFG_DSP is selected))

Specify TA_COP0 to use the DSP.

⎯ TA_COP0 (H'00000100): The routine uses the DSP.

(c) Using a microcomputer with an on-chip FPU (when CFG_FPU is selected)

Specify TA_COP1 to use the FPU for floating-point operations. Specify TA_COP2 in addition
to TA_COP1 when using both banks of the FPU for matrix operations.

⎯ TA_COP1 (H'00000200): The routine uses FPU register bank 0 (FPR0_BANK0 to
FPR15_BANK0) and FPUL.

⎯ TA_COP2 (H'00000400): The routine uses FPU register bank 1 (FPR0_BANK1 to
FPR15_BANK1).
To specify TA_COP2, be sure to specify TA_COP1 together; otherwise, an E_RSATR
error will be returned.

Also refer to description (4), inifpscr.

338

(3) svcrtn

Parameter svcrtn specifies the start address of the extended service call routine.

(4) inifpscr

inifpscr is a parameter not specified in the μITRON specification.

It is valid only when CFG_FPU is selected and the TA_COP1 attribute is specified. In other cases,
it is ignored.

inifpscr specifies the FPSCR value at initiation. The kernel sets the inifpscr value in FPSCR
without checking an error in the inifpscr value.

Also refer to the following.

Reference: Section 15, Notes on FPU

An extended service call routine can also be defined statically by the configurator.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following cases.

(1) The domain of the caller does not have a read access permission for pk_dsvc, which means
that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_dsvc
⎯ size = sizeof(T_DSVC)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ

(2) The kernel domain does not have a read access permission for pk_dsvc->svcrtn, which means
that an error will be returned if prb_mem is issued with the following parameters.

⎯ base= pk_dsvc->svcrtn
⎯ size = 1
⎯ domid = Kernel domain
⎯ pmmode = TPM_READ

339

6.24.2 Issue Extended Service Call (cal_svc, ical_svc)

C-Language API:
 ER_UINT ercd = cal_svc (FN fncd, VP_INT par1, VP_INT par2, VP_INT par3, VP_INT

par4);

 ER_UINT ercd = ical_svc (FN fncd, VP_INT par1, VP_INT par2, VP_INT par3, VP_INT

par4);

Parameters:
 FN fncd Function code of extended service call

 VP_INT par1 Parameter 1

 VP_INT par2 Parameter 2

 VP_INT par3 Parameter 3

 VP_INT par4 Parameter 4

Return Parameters:
 ER_UINT ercd Return value from service call

Error Codes:
 E_RSFN [k] Reserved function code (fncd is invalid or cannot be used)

Function:

Each service call executes the extended service call routine corresponding to the function code
specified by parameter fncd.

par1 to par4 are passed to the extended service call routine as parameters.

340

6.24.3 Define Trap Routine (vdef_trp, ivdef_trp)

C-Language API:
 ER ercd = vdef_trp(UINT dtrpno, VT_DTRP *pk_dtrp);

 ER ercd = ivdef_trp(UINT dtrpno, VT_DTRP *pk_dtrp);

Parameters:
 UINT dtrpno Trap number

 VT_DTRP *pk_dtrp Pointer to the packet where the trap routine definition

information is stored

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Packet Structure:
 typedef struct {

 ATR trpatr; 0 4 Trap routine attribute

 FP trprtn; +4 4 Trap routine address

 UW inifpscr; +8 4 Initial FPSCR value

 }T_DSVC;

Error Codes:
 E_RSATR [p] Reserved attribute

(1) The bits other than TA_COP0, TA_COP1, TA_COP2, and TA_ASM

in trpatr are not 0.

(2) TA_COP0 is specified for trpatr while CFG_DSP is not

selected.

(3) TA_COP1 is specified for trpatr while CFG_FPU is not

selected.

(4) TA_COP2 is specified for trpatr while TA_COP1 is not

specified.

(5) Both TA_COP0 and TA_COP1 are specified for trpatr.

 E_PAR [p] Parameter error

(1) 0 ≤ trpno ≤ 15

(2) trpno > CFG_NAXTRPNO

(3) pk_dtrp is not a 4-byte boundary address.

(4) trprtn is an odd value.

 E_MACV [m] Memory access violation

Function:

Defines a trap routine using the contents specified by pk_dtrp. The trap routine is called through a
TRAPA instruction with the number specified by dtrpno.

341

The trap routine is assigned to the kernel domain and is executed in privileged mode.

Note that the following states do not change before and after the trap routine is initiated and
terminated.

• Task or non-task context

• Dispatch-disabled or enabled state

• CPU-locked or unlocked state

While the trap routine called from a task is being executed, the task exception processing routine
for that task is not initiated. When rel_wai is issued for that task, the task enters the WAITING-
disabled state.

The following describes each parameter function.

(1) dtrpno

Parameter dtrpno specifies the target TRAPA number. Specify a value within the range from 16 to
CFG_MAXTRPNO. 0 to 15 are reserved numbers for system use and must not be specified.

(2) trpatr

Specify the logical OR of the following values for trpatr.

(a) Language

Specify either one of the following values.

⎯ TA_HLNG (H'00000000): High-level language
⎯ TA_ASM (H'00000001): Assembly language

(b) Using a microcomputer with an on-chip DSP (when CFG_DSP is selected))

Specify TA_COP0 to use the DSP.

⎯ TA_COP0 (H'00000100): The routine uses the DSP.

(c) Using a microcomputer with an on-chip FPU (when CFG_FPU is selected)

Specify TA_COP1 to use the FPU for floating-point operations. Specify TA_COP2 in addition
to TA_COP1 when using both banks of the FPU for matrix operations.

⎯ TA_COP1 (H'00000200): The routine uses FPU register bank 0 (FPR0_BANK0 to
FPR15_BANK0) and FPUL.

⎯ TA_COP2 (H'00000400): The routine uses FPU register bank 1 (FPR0_BANK1 to
FPR15_BANK1).
To specify TA_COP2, be sure to specify TA_COP1 together; otherwise, an E_RSATR
error will be returned.

Also refer to description (4), inifpscr.

342

(3) trprtn

Parameter trprtn specifies the start address of the trap routine.

(4) inifpscr

inifpscr is a parameter not specified in the μITRON specification.

It is valid only when CFG_FPU is selected and the TA_COP1 attribute is specified. In other cases,
it is ignored.

inifpscr specifies the FPSCR value at initiation. The kernel sets the inifpscr value in FPSCR
without checking an error in the inifpscr value.

Also refer to the following.

Reference: Section 15, Notes on FPU

A trap routine can also be defined statically by the configurator.

If a TRAPA instruction for an undefined trap number is executed, E_RSFN is returned through the
R0 register.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following cases.

(1) The domain of the caller does not have a read access permission for pk_dtrp, which means that
an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_dtrp
⎯ size = sizeof(VT_DTRP)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ

(2) The kernel domain does not have a read access permission for pk_dtrp->trprtn, which means
that an error will be returned if prb_mem is issued with the following parameters.

⎯ base= pk_dtrp->trprtn
⎯ size = 1
⎯ domid = Kernel domain
⎯ pmmode = TPM_READ

343

6.25 System Configuration Management

Table 6.49 Service Calls for System Configuration Management

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

def_exc T/E/D/U

idef_exc

Defines CPU exception handler

N/E/D/U

ref_cfg T/E/D/U

iref_cfg

Refers to configuration information

N/E/D/U

ref_ver T/E/D/U

iref_ver

Refers to version information

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called from CPU exception handler

Table 6.50 System Configuration Management Specifications

Item Description

CPU exception handler number A multiple of H'20 within the range from 0 to CFG_MAXINTNO
(H'3fe0 max.)

CPU exception handler attributes TA_HLNG: The handler is written in a high-level language.
TA_ASM: The handler is written in assembly language.

344

6.25.1 Define CPU Exception Handler (def_exc, idef_exc)

C-Language API:
 ER ercd = def_exc(EXCNO excno, T_DEXC *pk_dexc);

 ER ercd = idef_exc(EXCNO excno, T_DEXC *pk_dexc);

Parameters:
 EXCNO excno CPU exception handler number

 T_DEXC *pk_dexc Start address of the definition information of CPU

exception handler

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Packet Structure:
 typedef struct {

 ATR excatr; 0 4 Handler attribute

 FP exchdr; +4 4 Handler address

 UW excsr; +8 4 SR at initiation

 }T_DEXC;

Error Codes:
 E_RSATR [p] Reserved attribute

(1) The bits other than TA_ASM in excatr are not 0.

 E_PAR [p] Parameter error

(1) excno after being rounded down to a multiple of 0x20 is 0,

H'20, H'140, H'160, or a value larger than CFG_MAXINTNO.

(2) pk_dexc is not a 4-byte boundary address.

(3) exchdr is an odd value.

 E_MACV [m] Memory access violation

Function:

Each service call defines a CPU exception handler. The CPU exception handler is assigned to the
kernel domain and is executed in privileged mode.

The actual codes of these service calls are the same as that for def_inh, which means that these
service calls can be used to define an interrupt handler and def_inh can be used to define a CPU
exception handler.

The following describes each parameter function.

(1) excno

Parameter excno specifies a CPU exception handler number. Specify an EXPEVT code of the
CPU. excno is rounded down to a multiple of H'20 during processing.

345

Note that the interrupt code (INTEVT code) and exception code (EXPEVT code) are managed in
the same code system in the SH microcomputer. This service call does not check whether the
specified excno value is an exception code or an interrupt code. If an interrupt code is specified,
the service call operates in the same way as def_inh.

For some INTEVT and EXPEV codes, no handlers can be defined, or even when handlers can be
defined, the handlers will not work. Table 6.51 shows these cases.

Table 6.51 Exceptional INTEVT and EXPEVT Codes

CPU Operation for Specified Interrupt or Exception INTEVT
or
EXPEVT
Code Cause

Handler
Definition

CFG_PROTMEM Is
Not Selected CFG_PROTMEM Is Selected

0 Power-on reset or H-UDI
reset

Not
possible

H'20 Manual reset Not
possible

Branches to the reset vector (H'A0000000).

H'40 TLB miss exception (read)

H'60 TLB miss exception
(write)

H'A0 TLB protection violation
exception (read)

H'C0 TLB protection violation
exception (write)

Possible Initiates the defined
handler. *

The kernel updates the TLB.
If the TLB cannot be updated,
the kernel initiates the
memory access violation
handler. The defined handler
is never executed; its
definition has no effect.

H'140 Instruction TLB multiple-
hit exception or data TLB
multiple-hit exception

Not
possible

Branches to the reset
vector (H'A0000000). *

Branches to the reset vector
(H'A0000000).

H'160 TRAPA instruction Not
possible

According to the trap number, a kernel service call or
user-defined trap routine is executed.

Note: This type of exception will not occur usually unless the application enables the MMU.

Do not specify the following codes.

(a) CFG_TIMINTNO

CFG_TIMINTNO is an interrupt number used in the standard timer driver when
CFG_OPTTMR is not selected. If a handler is specified for this number, the standard timer
driver will not operate correctly.

(b) H'400, H'420, and H'440

346

These are interrupt numbers used in the optimized timer driver when CFG_OPTTMR is
selected. If a handler is specified for any one of these numbers, the optimized timer driver will
not operate correctly.

When def_ovr is not installed, H'440 is not used in the optimized timer driver and an interrupt
handler can be defined for this number.

(2) excatr

Specify either one of the following values.

• TA_HLNG (H'00000000): High-level language

• TA_ASM (H'00000001): Assembly language

(3) excsr

excsr is a parameter not specified in the μITRON specification.

Parameter excsr specifies the value of the status register (SR) on startup of the interrupt handler.
excsr is specified using the same bit position as the SR. Note that the SR value becomes as shown
below when a CPU exception handler is actually initiated; only the block (BL) bit takes effect and
the other bits are ignored.

• Mode (MD) bit: Always 1

• Register bank (RB) bit: Always 0

• Block (BL) bit: Set to the excsr value.

• Other bits: Value before the CPU exception occurs

When pk_dexc = NULL (0) is specified, the definition of the CPU exception handler is cancelled.

If this service call is issued while a CPU exception handler has been defined, the previous
definition is canceled and replaced with the new definition.

A CPU exception handler can be statically defined through the configurator.

If a CPU exception for a number for which no handler has been defined occurs, control is passed
to the system down routine.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following cases.

(1) The domain of the caller does not have a read access permission for pk_dexc, which means
that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_dexc
⎯ size = sizeof(T_DEXC)

347

⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ

(2) The kernel domain does not have a read access permission for pk_dexc->exchdr, which means
that an error will be returned if prb_mem is issued with the following parameters.

⎯ base= pk_dexc->exchdr
⎯ size = 1
⎯ domid = Kernel domain
⎯ pmmode = TPM_READ

348

6.25.2 Refer to Configuration Information (ref_cfg, iref_cfg)

C-Language API:
 ER ercd = ref_cfg(T_RCFG *pk_rcfg);

ER ercd = iref_cfg(T_RCFG *pk_rcfg);

Parameters:
 T_RCFG *pk_rcfg Pointer to the packet where the configuration

information is to be returned

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 T_RCFG *pk_rcfg Pointer to the packet where the configuration

information is stored

Packet Structure:
 typedef struct {

 ID maxtskid; 0 2 Maximum task ID

 ID rsv; +2 2 (Reserved)

 ID maxsemid; +4 2 Maximum semaphore ID

 ID maxflgid; +6 2 Maximum event flag ID

 ID maxdtqid; +8 2 Maximum data queue ID

 ID maxmbxid; +10 2 Maximum mailbox ID

 ID maxmtxid; +12 2 Maximum mutex ID

 ID maxmbfid; +14 2 Maximum message buffer ID

 ID maxmplid; +16 2 Maximum variable-size memory pool ID

 ID maxmpfid; +18 2 Maximum fixed-size memory pool ID

 ID maxcycid; +20 2 Maximum cyclic handler ID

 ID maxalmid; +22 2 Maximum alarm handler ID

 ID maxs_fncd; +24 4 Maximum function code of extended

service call

 ID maxdomid; +28 2 Maximum domain ID

 ID maxmppid; +30 2 Maximum protected memory pool ID

 ID maxmbpid; +32 2 Maximum protected mailbox ID

 }T_RCFG;

Error Codes:
 E_PAR [p] Parameter error

(1) pk_rcfg is not a 4-byte boundary address.

 E_MACV [m] Memory access violation

349

Function:

Each service call returns the system configuration information to the area indicated by pk_rcfg.

The following parameters are returned to the packet specified by pk_rcfg. The name enclosed in
parentheses is the corresponding items to be set in the configurator.

• maxtskid: Returns the maximum task ID (CFG_MAXTSKID)

• maxsemid: Returns the maximum semaphore ID (CFG_MAXSEMID)

• maxflgid: Returns the maximum event flag ID (CFG_MAXFLGID)

• maxdtqid: Returns the maximum data queue ID (CFG_MAXDTQID)

• maxmbxid: Returns the maximum mailbox ID (CFG_MAXMBXID

• maxmtxid: Returns the maximum mutex ID (CFG_MAXMTXID)

• maxmbfid: Returns the maximum message buffer ID (CFG_MAXMBFID)

• maxmplid: Returns the maximum variable-size memory pool ID (CFG_MAXMPLID)

• maxmpfid: Returns the maximum fixed-size memory pool ID (CFG_MAXMPFID)

• maxcycid: Returns the maximum cyclic handler ID

CFG_MAXCYCID + 1 is returned when CFG_ACTION is selected; otherwise,
CFG_MAXCYCID is returned. In the former case, the cyclic hander with ID
CFG_MAXCYCID + 1 indicates the cyclic hander used by the debugging extension.

• maxalmid: Returns the maximum alarm handler ID (CFG_MAXALMID)

• maxs_fncd: Returns the maximum extended SVC function code (CFG_MAXSVCCD)

• maxdomid: Maximum domain ID (always 31)

• maxmppid: Maximum protected memory pool ID (CFG_MAXMPPID)

0 is returned when the memory object protection function is not selected.

• maxmbpid: Maximum protected mailbox ID (CFG_MAXMBPID)

0 is returned when the memory object protection function is not selected.

The members of the T_RCFG structure are not defined in the μITRON specification; the μITRON
specification does not define anything about the contents of the T_RCFG structure.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for pk_rcfg, which
means that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_rcfg
⎯ size = sizeof(T_RCFG)
⎯ domid = Domain of the caller

350

⎯ pmmode = TPM_READ|TPM_WRITE

351

6.25.3 Refer to Version Information (ref_ver, iref_ver)

C-Language API:
 ER ercd = ref_ver (T_RVER *pk_rver);

 ER ercd = iref_ver (T_RVER *pk_rver);

Parameters:
 T_RVER *pk_rver Pointer to the packet where version information is to be

returned

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 T_RVER *pk_rver Pointer to the packet where version information is

stored

Packet Structure:
 typedef struct {

 UH maker; 0 2 Manufacturer

 UH prid; +2 2 Identification number

 UH spver; +4 2 Specification version

 UH prver; +6 2 Product version

 UH prno [4]; +8 8 Product management information

 UH pxver; +16 2 Version number of the protection

function extension of μITRON4.0

specification

 }T_RVER;

Error Codes:
 E_PAR [p] Parameter error

(1) pk_rver is not a 2-byte boundary address.

 E_MACV [m] Memory access violation

Function:

Each service call reads information on the version of the kernel currently in use and returns it to
the area indicated by pk_rver.

The following information is returned to the packet indicated by pk_rver.

(1) maker

Parameter maker indicates the manufacturer of this kernel. The value for this kernel is H'0115,
which means Renesas.

352

(2) prid

Parameter prid indicates the number to identify the OS or VLSI type. The value for this kernel is
H'12.

(3) spver

Parameter spver indicates the specifications to which the kernel conforms to, as follows.

• Bits 15 to 12: MAGIC (Number to identify the TRON specification series)

H'5 (μITRON specifications) for this kernel

• Bits 11 to 0: SpecVer (Version number of the TRON specification on which the product is
based)

H'402 (version 4.02) for this kernel

(4) prver

Parameter prver indicates the version number of the kernel. For example, the value is H'012D
when the version of the kernel is V.1.02.13.456.

(5) prno

Parameter prno indicates the product management information and the product number.
The prno[0] to prno[3] values of this kernel are all H'0000.

(6) pxver

Parameter pxver indicates the version of the protection function extension of the μITRON 4.0
specification which the kernel conforms to. The value for this kernel is H'0100 (Ver.1.00).

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for pk_rver, which
means that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_rver
⎯ size = sizeof(T_RVER)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

353

6.26 Memory Object Management Function

Table 6.52 Service Calls for Memory Object Management

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

sac_mem Changes access permission vector for memory
object

T/E/D/U

prb_mem Checks access right for memory area

T/E/D/U

ref_mem Refers to memory object state

T/E/D/U

vloc_tlb Locks TLB entry

T/E/D/U

vunl_tlb Unlocks TLB entry T/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called from CPU exception handler

The address space is classified into MMU mapped areas and MMU non-mapped areas. All
memory objects must be allocated in MMU mapped areas. For details, refer to the following.

Reference: Section 5, Logical Address Space

Access to memory objects are controlled according to the attribute and access permission vector
assigned to each memory object. For details, refer to the following.

Reference: Section 4.21, Memory Object Protection Function

354

6.26.1 Change Access Permission Vector for Memory Object (sac_mem)

C-Language API:
 ER ercd = sac_mem(VP base, ACVCT *p_acvct);

Parameters:
 VP base Memory object address

 ACVCT *p_acvct Address of the packet where access permission vector for

the memory object is stored

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Packet Structure:
 typedef struct {

 ACPTN acptn1; 0 4 Write access permission pattern

 ACPTN acptn2; +4 4 Read access permission pattern

 }ACVCT;

Error Codes:
 E_PAR [p] Parameter error

(1) p_acvct is invalid.

(2) p_acvct is not a 4-byte boundary address.

 E_CTX [k] Context error (Called in a non-task context)

 E_ILUSE [k] Illegal use of service call

(1) The memory object including the address specified by base

is placed in the protected mailbox queue

(2) The memory object including the address specified by base

contains a TLB-locked page.

 E_NOEXS [k] Undefined

(1) The memory object including the address specified by base

does not exit.

 E_MACV [m] Memory access violation

Function:

Service call sac_mem changes the access permission vector for the memory object including the
address specified by base to a new access permission vector specified by p_acvct. If either one of
the following memory objects is specified, an E_ILUSE error is returned.

• A protected memory block placed in a protected mailbox queue

• A memory object containing a TLB-locked page

355

Table 6.53 shows the access permission vectors that can be specified for p_acvct. They cannot be
ORed when specified. If a value that is not listed in the table is specified, an E_PAR error is
returned. Note that if the specified vector does not match the access permission for the calling
domain, no error is returned. A memory object with the TA_RO attribute cannot be written to by
any program, even from the kernel domain, regardless of the specified write access permission
pattern.

Table 6.53 Specifiable Access Permission Vector

Access Permission
Vector

acptn1 (Write Access
Permission Pattern)

acptn2 (Read Access
Permission Pattern)

TACT_KERNEL TACP_KERNEL TACP_KERNEL

TACT_PRW(domid) * TACP(domid) * TACP(domid) *

TACT_PRO(domid) * TACP_KERNEL TACP(domid) *

TACT_SRW TACP_SHARED TACP_SHARED

TACT_SRO TACP_KERNEL TACP_SHARED

TACT_SRPW(domid) * TACP(domid) * TACP_SHARED

Note: For parameter domid in these macros, a value within the range from 1 to 31 can be
specified.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The calling domain does not have a read access permission for p_acvct, which means that an
error will be returned if prb_mem is issued with the following parameters.

⎯ base = p_acvct
⎯ size = sizeof(ACVCT)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ

356

6.26.2 Check Access Permission for Memory Area (prb_mem)

C-Language API:
 ER ercd = prb_mem(VP base, SIZE size, ID domid, MODE pmmode);

Parameters:
 VP base Start address of memory area

 SIZE size Size of memory area (number of bytes)

 ID domid ID of the domain accessing the memory area

 MODE pmmode Access mode

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) domid < -1

(2) domid > 31

 E_PAR [p] Parameter error

(1) pmmode is invalid.

(2) size = 0

(3) base + size exceeds 32 bits.

 E_CTX [k] Context error

(1) Called in a non-task context.

 E_OBJ [k] Invalid object

(1) The address specified by base is included in a memory

object, but the address specified by (base + size – 1) is

outside the memory object.

 E_NOEXS [k] Undefined

(1) The memory object including the address specified by base

does not exist.

 E_MACV [m] Memory access violation (For the detailed error conditions,

refer to Function below.)

Function:

Service call prb_mem checks whether the domain specified by domid has the access permission
for the memory area which starts from the address specified by base and has the size specified by
parameter size, and returns E_OK when the access is allowed.

The following values can be specified for domid.

(a) 1 to 31: User domain with the specified domid.

357

(b) TDOM_SELF(0): Calling domain. When this service call is issued by an extended service call
or trap routine being executed in a task context, the domain of the task that called the routine
(the domain ID that can be acquired through get_did issued in the extended service call or trap
routine) is specified.

(c) TDOM_KERNEL(-1): Kernel domain.

Parameter pmmode specifies the access type to be checked. Either one or both of the following
values can be specified for pmmode.

• TPM_READ (H'00000001): Checks whether read access is allowed.

• TPM_WRITE (H'00000002): Checks whether write access is allowed.

In specific, the following three modes can be specified.

(1) TPM_READ

Checks whether read access is allowed.

(2) TPM_WRITE

Checks whether write access is allowed. In this kernel, read access is always allowed when
write access is allowed, which means that this mode is actually the same as specification (3)
below.

(3) TPM_READ|TPM_WRITE

Checks whether both read access and write access are allowed.

The processing of this service call depends on whether the address specified by base is included in
a memory object, as shown below.

(1) When base specifies an address in the MMU mapped area

When there is no memory object that includes the address specified by base, an E_NOEXS error is
returned.

When a memory object includes the address specified by base but the specified area extends
beyond the memory object, an E_OBJ error is returned.

In either of the following cases, an E_MACV error is returned.

• TPM_WRITE is specified for pmmode, and the memory object has the TA_RO attribute.

• domid specifies a user domain, and the access permission vector assigned for the memory
object does not allow the domain specified by domid to access in the mode specified by
pmmode.

358

(2) When base specifies an address in the MMU non-mapped area

pmmode is ignored, and domid is only used for distinction between the kernel domain and a user
domain.

(a) When base specifies a logical address in the on-chip memory

This is the case when "MMU non-mapped area, accessible in any mode" or "MMU non-
mapped area, not accessible in user non-DSP mode" is specified for CFG_IRAMUSAGE
through the configurator and parameter base specifies an address in an on-chip memory area
specified in "On-chip memory list". Note that when "MMU mapped area" is specified,
description (1), When base specifies an address in the MMU mapped area, is applied.

When (base + size – 1) is outside the on-chip memory area, an E_OBJ error is returned.

In other cases, E_OK is returned when "MMU non-mapped area, accessible in any mode" is
specified. When "MMU non-mapped area, not accessible in user non-DSP mode" is specified,
E_MACV is returned if domid specifies a user domain. Note that this service call always
returns an error in this case while in actual operation, the on-chip memory can be accessed
even from a user domain (SR.MD = 0) while SR.DSP = 1. When domid specifies the kernel
domain, E_OK is returned.

(b) P3 or P4 area

When the area specified by base and size overlaps the P3 or P4 area, an E_MACV error is
returned.

As the P3 area must not be used in this kernel, E_MACV is always returned.

The P4 area is accessible only from the kernel domain (privileged mode). However, the P4
area is outside the scope of inspection by this service call and this service call always returns
E_MACV.

(c) Other cases (P1 or P2 area)

Any user domain must not access these areas. When domid specifies a user domain, an
E_MACV error is returned. When domid specifies the kernel domain, E_OK is returned.

359

6.26.3 Refer to the Memory Object State (ref_mem)

C-Language API:
 ER ercd = ref_mem(VP base, T_RMEM *pk_rmem);

Parameters:
 VP base Memory object address

 T_RMEM *pk_rmem Address of the packet where the memory object state is to

be returned

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 T_RMEM *pk_rmem Address of the packed where the memory object state is

stored

Packet Structure:
 typedef struct {

 ACVCT acvct; 0 8 Access permission vector for the

memory object

 }T_RMEM;

 typedef struct {

 ACPTN acptn1; 0 4 Write access permission pattern

 ACPTN acptn2; +4 4 Read, management, and reference access

permission pattern

 }ACVCT;

Error Codes:
 E_PAR [p] Parameter error

(1) pk_rmem is not a multiple of four.

 E_CTX [k] Context error

(1) Called in a non-task context.

 E_NOEXS [k] Undefined

(1) The memory object including the address specified by base

does not exist.

 E_MACV [m] Memory access violation

Function:

Service call ref_mem refers to the state of the memory object that includes the address specified
by base and returns the access permission vector (acvct) assigned for the memory object to the
area specified by pk_rsem.

360

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The calling domain does not have a read/write access permission for pk_rmem, which means
that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_rmem
⎯ size = sizeof(T_RMEM)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

361

6.26.4 Lock TLB Entry (vloc_tlb)

C-Language API:
 ER ercd = vloc_tlb(VP base);

Parameters:
 VP base Address in a page which is to be locked in TLB

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_PAR [k] Parameter error

(1) The CFG_MAXLOCPAGE number of pages have been locked.

 E_CTX [k] Context error

(1) Called in a non-task context.

 E_ILUSE [k] Illegal use of service call

(1) The memory object including the address specified by base

is placed in a protected mailbox queue.

(2) The page including the address specified by base has been

locked.

(3) The memory object including the address specified by base

is not allowed to be locked.

 E_NOEXS [k] Undefined

(1) The memory object including the address specified by base

does not exist.

Function:

Service call vloc_tlb registers in the TLB the MMU page including the memory object address
specified by base and locks the TLB entry. When a page in either one of the following memory
objects is specified, an E_ILUSE error is returned.

• A protected memory block placed in a protected mailbox queue.

• A memory object having one of the combinations of memory attribute and access permission
vector shown in table 6.54.

362

Table 6.54 Memory Objects that Cannot be Locked

Access Permission Vector Memory Attribute

TACT_PRO(domid) TA_RW

TACT_SRO TA_RW

TACT_SRPW(domid) TA_RW

When the specified page has already been registered in the TLB but has not been locked, that entry
is purged and the specified page is newly registered in another TLB entry.

When the specified page has already been locked, an E_ILUSE error is returned.

The locked page can be unlocked by a vunl_tlb service call.

After this service call is executed, the number of pages that can be locked in the system decreases
by one. The maximum pages that can be locked is defined for CFG_MAXLOCPAGE through the
configurator.

The locked TLB entry is never deleted, and no TLB miss occurs during access to the
corresponding page. However, note that when a page is locked in the TLB, the rate of TLB miss
for access to the other unlocked pages will increase.

The sac_mem and snd_mbp service calls cannot be used for the memory object including the
locked page.

Before deleting the memory object including the locked page (the operations shown in table 6.55),
be sure to unlock the page. If such an operation is attempted before the page is unlocked, the
number of pages that can be locked will become less than the CFG_MAXLOCPAGE number.

Table 6.55 Memory Object Deleting Operations

Memory Object Including the Address Specified by base
Memory Object
Deleting Operation

Stack area acquired from the system pool for the task in a user domain del_tsk, exd_tsk

Fixed-size memory pool area acquired from the system pool del_mpf

Variable-size memory pool area acquired from the system pool del_mpl

Protected memory block acquired from a protected memory pool or
protected memory block received from a protected mailbox

rel_mpp

Static memory object None

Also refer to the following.

Reference: Section 10.7.17

Table 10.14 Page Size for SH4AL-DSP or SH-4A without Extended Functions

363

6.26.5 Unlock TLB Entry (vunl_tlb)

C-Language API:
 ER ercd = vunl_tlb(VP base);

Parameters:
 VP base Address in a page which is to be unlocked in TLB

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_CTX [k] Context error

(1) Called in a non-task context.

 E_ILUSE [k] Illegal use of service call

(1) The page including the address specified by base has not

been locked.

 E_NOEXS [k] Undefined

(1) The memory object including the address specified by base

does not exist.

Function:

Service call vunl_tlb unlocks the TLB entry for the MMU page including the memory object
address specified by base.

When the page including the specified address has not been locked, an E_ILUSE error is returned.

After this service call is executed, the number of pages that can be locked in the system increases
by one.

Also refer to the following.

Reference: Section 10.7.17

Table 10.14 Page Size for SH4AL-DSP or SH-4A without Extended Functions

364

6.27 Protected Memory Pool Management

Table 6.56 Service Calls for Protected Memory Pool Management

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

icre_mpp Creates protected memory pool See note 3 below

pget_mpp Polls and gets protected memory block T/E/D/U

rel_mpp Releases protected memory block T/E/D/U

ref_mpp Refers to protected memory pool state T/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called from CPU exception handler

 3. icre_mpp is dedicated to use in the initial definition routines created by the configurator.
If it is used outside the initial definition routines, correct operation is not guaranteed.

Table 6.57 Protected Memory Pool Management Specifications

Item Description

Protected memory pool ID 1 to CFG_MAXMPPID (31 max.)

Variable-size memory pool
attribute

VTA_UNFRAGMENT: Sector management
(reducing fragmentation in free space)

Protected memory pools are statically created by the configurator; they cannot be created through
service calls.

Also refer to the following.

Reference: Section 4.31, Controlling Memory Fragmentation

365

6.27.1 Create Protected Memory Pool (icre_mpp)

C-Language API:
 ER ercd = icre_mpp(ID mppid, T_CMPP *pk_cmpp);

Parameters:
 ID mppid Protected memory pool ID

 T_CMPP *pk_cmpp Pointer to the packet where the protected memory pool

creation information is stored

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Packet Structure:
 typedef struct {

 ATR mppatr; 0 4 Protected memory pool attribute

 SIZE mppsz; +4 4 Size of protected memory pool area

(number of bytes)

 VP mpp; +8 4 Start address of protected memory

pool area

 VP mppmb; +12 4 Start address of management area for

protected memory pool

 UINT minblksz; +16 4 Minimum block size

 UINT sctnum; +20 4 Maximum number of sectors

 }T_CMPP;

Error Codes:
 E_PAR [k] Parameter error

(1) The mppsz bytes starting from the address specified by mpp

are not in the MMU mapped area.

(2) mpp is not a CFG_PAGESZ boundary address.

(3) The VTA_UNFRAGMENT attribute is specified and sctnum = 0.

Function:

Service call icre_mpp creates a protected memory pool with the ID specified by mpfid using the
contents specified by pk_cmpp.

This service call must not be issued in any application. This service call is issued only in the initial
definition routines created by the configurator when creation of protected memory pools is
specified through the configurator. This service call is implemented only for this purpose, and
most error detection functions are omitted.

The following describes each parameter function.

366

(1) mppatr

Specify the logical OR of the following values for mppatr.

(a) Order of tasks in the queue for waiting for memory block acquisition

Only TA_TFIFO can be specified.

⎯ TA_TFIFO (H'00000000): Task queue waiting for memory is managed on a FIFO basis.

(b) Read-only or readable/writable attribute specification

Either TA_RW or TA_RO can be specified.

⎯ TA_RW (H'00000000): Readable/writable memory (RAM)
⎯ TA_RO (H'00000001): Read-only memory (ROM)

(c) Cache specification

The following attributes can be specified.

TA_UNCACHE || (TA_CHCHE | [TA_WBACK || TA_WTHROUGH])

⎯ TA_CACHE (H'00000000): Cached during read/write access
⎯ TA_UNCACHE (H'00000002): Not cached during read/write access
⎯ TA_WBACK (H'00000000): Copy-back operation for write access
⎯ TA_WTHROUGH (H'00000004): Write-through operation for write access

(d) Management method

VTA_UNFRAGMENT can be specified.

⎯ VTA_UNFRAGMENT (H'80000000): Sector management (reducing fragmentation in free
space)

The VTA_UNFRAGMENT attribute is suitable for a memory pool from which a large number
of small memory blocks are to be acquired. When this attribute is specified, small blocks are
collectively allocated in specialized contiguous areas to leave larger possible contiguous areas.

Only when attribute VTA_UNFRAGMENT is specified, sctnum becomes valid. When sctnum
is set to a larger value than mppsz / (4096 × 32), mppsz / (4096 × 32) is assumed.

For details, refer to the following.

Reference: Section 4.31, Controlling Memory Fragmentation

(2) mpp and mppsz

Parameter mpp specifies the address of the protected memory pool to be created and mppsz
specifies the size of the protected memory pool.

The specified memory area must be in the MMU mapped area and aligned with a CFG_PAGESZ
boundary; otherwise, an E_PAR error is returned.

(3) minblksz and sctnum

These are parameters not defined in the μITRON specification.

367

These parameters are valid only when attribute VTA_UNFRAGMENT is specified but minblksz
is always assumed as CFG_PAGESZ (4096). For details, refer to the above description of attribute
VTA_UNFRAGMENT.

(4) mppmb

Parameter mppmb specifies the address of the kernel management area. The entity of mppmb is
generated by the configurator. The mppmb address must be in the MMU non-mapped area and in
an area that cannot be accessed in user mode.

368

6.27.2 Poll and Get Protected Memory Block (pget_mpp)

C-Language API:
 ER_UINT blksz = pget_mpp(ID mppid, UINT memsz, VP *p_blk);

Parameters:
 ID mppid Protected memory pool ID

 UINT memsz Size of memory block to be acquired

 VP *p_blk Pointer to the packet where the start address of the

memory block is to be returned

Return Parameters:
 ER_UINT blksz Size of acquired memory block (a positive value) or

error code

 VP *p_blk Pointer to the packet where the start address of the

memory block is stored

Error Codes:
 E_PAR

[p]

[k]

Parameter error

(1) p_blk is not a 4-byte boundary address.

(2) memsz > size of target protected memory pool

 E_ID [p] Invalid ID number

(1) mppid ≤ 0

(2) mppid > CFG_MAXMPPID

 E_CTX [k] Context error

(1) Called in a non-task context.

 E_NOMEM [k] Insufficient memory

(1) Insufficient space in the resource pool

 E_NOEXS [k] Undefined

(1) Protected memory pool specified by mppid does not exist.

 E_TMOUT [k] Palling failed

 E_MACV [m] Memory access violation

Function:

Service call pget_mpp gets a memory block for the size (bytes) specified by memsz which is
rounded up to a multiple of CFG_PAGESZ, from the protected memory pool specified by mppid,
returns the start address of the acquired memory block to the area indicated by p_blk, and returns
the block size through blksz.

The acquired memory block is handled as a memory object having the following attributes.

• Domain: Domain of the calling task, which is the same as the domain ID that can be obtained
by calling get_did.

369

• Memory attribute: Same attribute as the protected memory pool specified by mppid (specified
through the configurator)

• Access permission vector:

(a) For the kernel domain: TACT_KERNEL

(b) For a user domain: TACT_PRW(domid)
(domid is the ID of the domain where the target memory block is assigned)

• Start address: A 4-kbyte boundary address

Use sac_mem to change the access permission vector.

After the memory block has been acquired, the size of the free space in the protected memory pool
will decrease by blksz. If there is not sufficient contiguous free space in the protected memory
pool, an E_TMOUT error is returned.

At this time, the kernel consumes an area in the resource pool to manage the acquired memory
blocks as memory objects. For details, refer to the following.

Reference: Section 13.2.3 (3), Protected memory pool: pget_mpp

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for p_blk, which means
that an error will be returned if prb_mem is issued with the following parameters.

⎯ base= p_blk
⎯ size = sizeof(VP)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

370

6.27.3 Release Protected Memory Block (rel_mpp)

C-Language API:
 ER ercd = rel_mpp(ID mppid, VP blk);

Parameters:
 ID mppid Protected memory pool ID

 VP blk Start address of memory block

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_PAR

[p]

[k]

Parameter error

(1) blk is not a CFG_PAGESZ boundary address.

(2) blk is an address outside the target protected memory pool

area.

 E_ID [p] Invalid ID number

(1) mppid ≤ 0

(2) mppid > CFG_MAXMPPID

 E_CTX [k] Context error

(1) Called in a non-task context.

 E_ILUSE [k] Illegal use of service call

(1) blk is not the start address of a protected memory block

acquired from the target protected memory pool.

(2) The domain of the protected memory block specified by blk

differs from the domain of the task in RUNNING state.

(3) The protected memory block specified by blk is placed in a

protected mailbox queue.

 E_NOEXS [k] Undefined

(1) Protected memory pool specified by mppid does not exist.

Function:

Service call rel_mpp returns the memory block specified by blk to the protected memory pool
specified by mppid.

The start address of the memory block acquired by service call pget_mpp must be specified as
parameter blk.

The specified memory block can be released when the domain of the task in RUNNING state
(domain obtained by get_did) matches the domain of the target memory block; otherwise, an
E_ILUSE error is returned. The following shows examples.

371

(1) When the memory block is in domain A and a task in domain B issues this service call, an
E_ILUSE error is returned.

(2) When the memory block is in domain A and the extended service call routine that was called
by a task in the same domain (domain A) issues this service call, the memory block can be
released because "the domain of the task in RUNNING state" is domain A where the task is
assigned even if the extended service call routine is assigned to the kernel domain.

After the memory block has been released, the size of the free space in the protected memory pool
will increase by the size of the released block. The management area allocated in the resource pool
is also released.

372

6.27.4 Refer to Protected Memory Pool State (ref_mpp)

C-Language API:
 ER ercd = ref_mpp(ID mppid, T_RMPP *pk_rmpp);

Parameters:
 ID mppid Protected memory pool ID

 T_RMPP *pk_rmpp Pointer to the packet where protected memory pool state

is to be returned

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 T_RMPP *pk_rmpp Pointer to the packet where protected memory pool state

is stored

Packet Structure:
 typedef struct {

 ID wtskid; 0 2 Wait task ID

 SIZE fmppsz; +4 4 Total size of available memory area

(number of bytes)

 UINT fblksz; +8 4 Maximum memory area available (number

of bytes)

 SIZE mppsz; +12 4 Size of protected memory pool

 }T_RMPP;

Error Codes:
 E_PAR [p] Parameter error

(1) pk_rmpp is not a 4-byte boundary address.

 E_ID [p] Invalid ID number

(1) mppid ≤ 0

(2) mppid > CFG_MAXMPPID

 E_CTX [k] Context error

(1) Called in a non-task context.

 E_NOEXS [k] Undefined

(1) Protected memory pool specified by mppid does not exist.

 E_MACV [m] Memory access violation

Function:

Service call ref_mpp refers to the status of the protected memory pool specified by mppid and
returns the wait task ID (wtskid), the total size of current available memory area (fmppsz), the size
of the maximum memory block available (fblksz), and the size of the protected memory pool
(mppsz) to the area indicated by pk_rmpp. mppsz is a parameter not defined in the μITRON
specification.

373

The free space is usually fragmented. The maximum contiguous free space is returned to
parameter fblksz. The block up to the size indicated by fblksz can be acquired immediately by
calling pget_mpp.

wtskid is a parameter reserved for future extension, and the kernel always returns 0 through it.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for pk_rmpp, which
means that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_rmpp
⎯ size = sizeof(T_RMPP)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

374

6.28 Protected Mailbox Management

Table 6.58 Service Calls for Protected Mailbox Management

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

cre_mbp T/E/D/U

icre_mbp
Creates protected mailbox

N/E/D/U

acre_mbp T/E/D/U

iacre_mbp
Creates protected mailbox and assigns mailbox ID
automatically N/E/D/U

del_mbp Deletes protected mailbox T/E/D/U

snd_mbp Sends data to protected mailbox T/E/D/U

rcv_mbp Receives data from protected mailbox T/E/U

prcv_mbp Polls and receives data from protected mailbox T/E/D/U

trcv_mbp
 Receives data from protected mailbox with timeout

function
T/E/U

ref_mbp T/E/D/U

iref_mbp
Refers to protected mailbox state

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called from CPU exception handler

375

Table 6.59 Protected Mailbox Management Specifications

Item Description

Protected mailbox ID 1 to CFG_MAXMBPID (32767 max.)

Protected message priority 1 to CFG_MAXMSGPRI * (255 max.)

Attributes supported TA_TFIFO: Wait task queue is managed on a FIFO basis.

TA_TPRI: Wait task queue is managed on the current priority.

TA_MFIFO: Message queue is managed on a FIFO basis.

TA_MPRI: Message queue is managed on the current priority.

Note: This value is same as TMAX_MPRI defined in kernel_macro.h

376

6.28.1 Create Protected Mailbox (cre_mbp, icre_mbp, acre_mbp, iacre_mbp)

C-Language API:
 ER ercd = cre_mbp(ID mbpid, T_CMBP *pk_cmbp);

 ER ercd = icre_mbp(ID mbpid, T_CMBP *pk_cmbp);

 ER_ID mbpid = acre_mbp(T_CMBP *pk_cmbp);

 ER_ID mbpid = iacre_mbp(T_CMBP *pk_cmbp);

Parameters:
 T_CMBP *pk_cmbp Pointer to the packet where the protected mailbox

creation information is stored

 <cre_mbp, icre_mbp>

 ID mbpid Protected mailbox ID

Return Parameters:
 <cre_mbp, icre_mbp>

 ER ercd Normal termination (E_OK) or error code

 <acre_mbp, iacre_mbp>

 ER_ID mbpid Created protected mailbox ID (a positive value) or error

code

Packet Structure:
 typedef struct {

 ATR mbpatr; 0 4 Protected mailbox attribute

 UINT mbpcnt; +4 4 Number of messages that can be stored

 PRI maxmpri; +8 2 Highest message priority

 VP mbpmb; +12 4 Start address of management area for

protected mailbox

 }T_CMBP;

Error Codes:
 E_RSATR [p] Reserved attribute (mbpatr is invalid.)

 E_PAR [p] Parameter error

(1) maxmpri ≤ 0

(2) maxmpri > CFG_MAXMSGPRI

(3) pk_cmbp is not a 4-byte boundary address.

 E_ID [p] Invalid ID number

(1) mbpid ≤ 0

(2) mbpid > CFG_MAXMBPID

 E_NOMEM [k] Insufficient memory

(1) Insufficient space in the resource pool

 E_NOID [k] NO ID available (only for acre_mbp)

 E_OBJ [k] Invalid object state

(1) Protected mailbox specified by mbpid already exists.

377

 E_MACV [m] Memory access violation

Function:

Service calls cre_mbp and icre_mbp create a protected mailbox with the ID specified by mbpid
using the contents specified by pk_cmbp.

Service calls acre_mbp and iacre_mbp search for an unused protected mailbox ID and create a
protected mailbox for that ID with the contents specified by parameter pk_cmbp. The created
protected mailbox ID is returned as a return parameter. The range to search for an unused
protected mailbox ID is 1 to CFG_MAXMBPID.

Parameter mbpatr specifies the order of the receive-waiting tasks and messages in the wait queues.

mbpatr:= ((TA_TFIFO || TA_TPRI) | (TA_MFIFO || TA_MPRI))

• TA_TFIFO (H'00000000): Message receive-waiting queue is managed on a FIFO basis.

• TA_TPRI (H'00000001): Message receive-waiting queue is managed on the current priority.

• TA_MFIFO (H'00000000): Message queue is managed on a FIFO basis.

• TA_MPRI (H'00000002): Message queue is managed on the current priority.

mbpcnt and mbpmb are always ignored in this kernel. To ensure the portability of programs,
specify an appropriate value for mbpcnt and NULL for mbpmb.

When the TA_MPRI attribute is specified and maxmpri > 1, the kernel uses an area in the resource
pool to manage the mailbox. For details, refer to the following.

Reference: Section 13.2.2 (7), Protected mailbox

A protected mailbox can also be created statically by the configurator.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read access permission for pk_cmbp, which means
that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_cmbp
⎯ size = sizeof(T_CMBP)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ

378

6.28.2 Delete Protected Mailbox (del_mbp)

C-Language API:
 ER ercd = del_mbp(ID mbpid);

Parameters:
 ID mbpid Protected mailbox ID

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number

(1) mbpid ≤ 0

(2) mbpid > CFG_MAXMBPID

 E_CTX [k] Context error

(1) Called in a non-task context.

 E_OBJ [k] Invalid object state

(1) A message is placed in the queue for the target protected

mailbox.

 E_NOEXS [k] Undefined

(1) Protected mailbox specified by mbpid does not exist.

Function:

Service call del_mbp deletes the protected mailbox specified by parameter mbpid.

No error will occur even if there is a task waiting for a message in the protected mailbox indicated
by mbpid. However, in that case, the task in the WAITING state will be released and error code
E_DLT will be returned. If there is a message in the protected mailbox, an E_OBJ error will be
returned.

On deletion, the management area allocated in the resource pool is released.

379

6.28.3 Send Message to Protected Mailbox (snd_mbp)

C-Language API:
 ER ercd = snd_mbp(ID mbpid, VP blk, PRI msgpri);

Parameters:
 ID mbpid Protected mailbox ID

 VP blk Start address of the protected memory block where send

message is stored

 PRI msgpri Message priority

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

Error Codes:
 E_PAR

[p]

[k]

Parameter error

(1) blk is not a CFG_PAGESZ boundary address.

(2) The TA_MPRI attribute is specified for the target

protected mailbox and msgpri ≤ 0 or msgpri > (highest

message priority specified at creation)

 E_ID [p] Invalid ID number

(1) mbpid ≤ 0

(2) mbpid > CFG_MAXMBPID

 E_CTX [k] Context error

(1) Called in a non-task context.

 E_NOMEM [k] Insufficient memory

(1) Insufficient space in the resource pool

 E_ILUSE [k] Illegal use of service call

(1) Protected memory block starting from the address specified

by blk does not exist.

(2) The domain of the protected memory block specified by blk

does not match the domain of the task in RUNNING state.

(3) The protected memory block specified by blk is placed in

the protected mailbox queue.

(4) The memory object including the address specified by blk

contains a TLB-locked page.

 E_NOEXS [k] Undefined

(1) Protected mailbox specified by mbpid does not exist.

Function:

Service call snd_mbp sends a protected memory block starting from the address specified by blk
as a message with the priority specified by msgpri to the protected mailbox specified by mbpid.

380

When the TA_MPRI attribute is not specified for the protected mailbox specified by mbpid,
msgpri is ignored.

For parameter blk, only the start address of a protected memory block (a memory block acquired
through pget_mpp) can be specified; otherwise, an E_ILUSE error is returned.

In addition, neither protected memory block shown below can be sent to a protected mailbox. If
attempted, an E_ILUSE error is returned.

• A protected memory block placed in a protected mailbox queue

• A protected memory block including a TLB-locked page

The domain of the protected memory block specified by blk must be the same as the domain of the
task in RUNNING state (domain obtained by get_did); otherwise, an E_ILUSE error is returned.
The following shows examples.

(1) When the memory block is in domain A and a task in domain B issues this service call, an
E_ILUSE error is returned.

(2) When the memory block is in domain A and the extended service call routine that was called
by a task in the same domain (domain A) issues this service call, the memory block can be sent
to the protected mailbox because "the domain of the task in RUNNING state" is domain A
where the task is assigned even if the extended service call routine is assigned to the kernel
domain.

If there is a task waiting to receive a message in the protected mailbox, the task at the head of the
wait queue receives the message and is released from the WAITING state. At this time, the sent
protected memory block changes its attributes as follows.

• Domain: Domain of the receiving task, which is the same as the domain ID that can be
obtained by calling get_did.

• Access permission vector:

(a) For the kernel domain: TACT_KERNEL

(b) For a user domain: TACT_PRW(domid)
(domid is the ID of the domain where the target memory block is assigned)

If there are no tasks waiting to receive a message, the specified message is placed in the message-
waiting queue. At this time, the kernel consumes an area in the resource pool to manage the
messages. For details, refer to the following.

Reference: Resource pool consumption → Section 13.2.3 (4), Protected mailbox: snd_mbp

The message queue is managed according to the attribute specified at creation. At this time, the
sent protected memory block attributes are changed as follows.

381

• Domain: Kernel domain

• Access permission vector: TACT_KERNEL

382

6.28.4 Receive Message from Protected Mailbox (rcv_mbp, prcv_mbp, trcv_mbp)

C-Language API:
 ER_UINT blksz = rcv_mbp(ID mbpid, VP *p_blk);

 ER_UINT blksz = prcv_mbp(ID mbpid, VP *p_blk);

 ER_UINT blksz = trcv_mbp(ID mbpid, VP *p_blk, TMO tmout);

Parameters:
 ID mbpid Protected mailbox ID

 VP *p_blk Pointer to the area where the start address of the

protected memory block holding the received message is

to be returned

 <trcv_mbp>

 TMO tmout Timeout specification

Return Parameters:
 ER_UINT blksz Size of received protected memory block (a positive

value) or error code

 VP *p_blk Pointer to the start address of the protected memory

block holding the received message

Error Codes:
 E_PAR [p] Parameter error

(1) tmout ≤ -2

(2) p_blk is not a 4-byte boundary address.

 E_ID [p] Invalid ID number

(1) mbpid ≤ 0

(2) mbpid > CFG_MAXMBPID

 E_CTX [k] Context error

(1) Called in a non-task context.

(2) Called in dispatch-pended state in a task context (only

for rcv_mbp and trcv_mbp)

 E_NOEXS [k] Undefined

(1) Protected mailbox specified by mbpid does not exist.

 E_RLWAI [k] WAITING state is forcibly cancelled (only for rcv_mbp and

trcv_mbp)

(1) rel_wai service call was issued in the WAITING state.

(2) An attempt was made to shift to WAITING state in WAITING-

disabled state.

 E_TMOUT [k] Polling failed or timeout

 E_DLT [k] Waiting object deleted

(1) Protected mailbox specified by mbpid was deleted.

 E_MACV [m] Memory access violation

383

Function:

Each service call receives a message stored in a protected memory block in the protected mailbox
specified by parameter mbpid. Then the start address of the protected memory block is returned
through p_blk and the size through blksz.

With service calls rcv_mbp and trcv_mbp, if there are no messages in the protected mailbox, the
calling task is placed in the wait queue to receive a message (receive-waiting queue). With service
call prcv_mbp, if there are no messages in the mailbox, error code E_TMOUT is returned
immediately. The wait queue is managed according to the attribute specified at creation.

After a message is received, the management area acquired from the resource pool by the kernel to
manage the message when the message was sent is released.

The received protected memory block changes its attributes as follows.

• Domain: Domain of the caller. When this service call is issued from an extended service call or
trap routine being executed in a task context, the protected memory block is assigned to the
domain of the task that has called the extended service call or trap routine (the same domain ID
that can be checked by issuing get_did from the extended service call or trap routine).

• Access permission vector:

(a) When a task in the kernel domain issued a receiving service call (rcv_mbp, prcv_mbp, or
trcv_mbp): TACT_KERNEL

(b) When a task in a user domain issued a receiving service call (rcv_mbp, prcv_mbp, or
trcv_mbp) or an extended service call or trap routine called from a task in a user domain
issued a receiving service call (rcv_mbp or trcv_mbp): TACT_PRW(domid); domid is the
ID of the domain where the task is assigned.

Parameter tmout specified by service call trcv_mbp specifies the timeout period.

If a positive value is specified for parameter tmout, error code E_TMOUT is returned when the
timeout period has passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for service call prcv_mbp will be
performed.

If tmout = TMO_FEVR (–1) is specified, timeout monitoring is not performed. In other words, the
same operation as for service call rcv_mbp will be performed.

If a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick cycles), the
maximum value that can be specified for tmout is H'7fffffff/CFG_TICDENO. If a value larger
than this is specified, operation is not guaranteed.

384

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for p_blk, which means
that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = p_blk
⎯ size = sizeof(VP)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

385

6.28.5 Refer to Protected Mailbox State (ref_mbp, iref_mbp)

C-Language API:
 ER ercd = ref_mbp(ID mbpid, T_RMBP *pk_rmbp);

 ER ercd = iref_mbp(ID mbpid, T_RMBP *pk_rmbp);

Parameters:
 ID mbpid Protected mailbox ID

 T_RMBP *pk_rmbp Pointer to the area where the protected mailbox state

is to be returned

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 T_RMBP *pk_rmbp Pointer to the packet where the protected mailbox state

is stored

Packet Structure:
 typedef struct {

 ID wtskid; 0 2 Wait task ID

 VP blk; +4 4 Start address of the protected

memory block at the head of the

message queue

 UINT blksz; +8 4 Size of the protected memory block

at the head of the message queue

 }T_RMBP;

Error Codes:
 E_PAR [p] Parameter error

(1) pk_rmbp is not a 4-byte boundary address.

 E_ID [p] Invalid ID number

(1) mbpid ≤ 0

(2) mbpid > CFG_MAXMBPID

 E_NOEXS [k] Undefined

(1) Protected mailbox specified by mbpid does not exist.

 E_MACV [m] Memory access violation

386

Function:

Each service call refers to the state of the protected mailbox specified by parameter mbpid.

Each service call returns the wait task ID (wtskid), the start address of the protected memory block
to be received next (pk_msg), and the size of the protected memory block (blksz) to the area
specified by pk_rmbp.

If there is no task waiting in the specified protected mailbox, TSK_NONE (0) is returned as
wtskid.

If there is no message to be received next, NULL (0) is returned through blk and an undefined
value through blksz.

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for pk_rmbp, which
means that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_rmbp
⎯ size = sizeof(T_RMBP)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

387

6.29 System Memory Management

Table 6.60 Service Calls for System Memory Management

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

vref_syp Refers to system pool state T/E/D/U

vref_rsp Refers to resource pool state T/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called from CPU exception handler

For details of the system pool and resource pool, refer to the following.

Reference: Section 4.24, System Memory Management

Also refer to the following.

Reference: Section 4.31, Controlling Memory Fragmentation

388

6.29.1 Refer to System Pool State (vref_syp)

C-Language API:
 ER ercd = vref_syp(VT_RSYP *pk_rsyp);

Parameters:
 VT_RSYP *pk_rsyp Pointer to the packet where the system pool state is to

be returned

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 VT_RSYP *pk_rsyp Pointer to the packet where the system pool state is

stored

Packet Structure:
 typedef struct {

 ID wtskid; 0 2 Wait task ID

 SIZE freesz; +4 4 Total size of available memory area

(number of bytes)

 UINT fblksz; +8 4 Maximum memory area available (number

of bytes)

 SIZE sypsz; +12 4 Size of system pool

 }VT_RSYP;

Error Codes:
 E_PAR [p] Parameter error

(1) pk_rsyp is not a 4-byte boundary address.

 E_CTX [k] Context error

(1) Called in a non-task context.

 E_MACV [m] Memory access violation

Function:

Service call vref_syp refers to the status of the system pool and returns the total size of current
available memory area (freesz), the size of the maximum memory block available (fblksz), and the
size of the system pool (sypsz) to the area indicated by pk_rsyp. For wtskid, NTSK is always
returned.

The free space is usually fragmented. The maximum contiguous free space is returned to
parameter fblksz.

389

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for pk_rsyp, which
means that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_rsyp
⎯ size = sizeof(VT_RSYP)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

390

6.29.2 Refer to Resource Pool State (vref_rsp)

C-Language API:
 ER ercd = vref_rsp(VT_RRSP *pk_rrsp);

Parameters:
 VT_RRSP *pk_rrsp Pointer to the packet where the resource pool state is

to be returned

Return Parameters:
 ER ercd Normal termination (E_OK) or error code

 VT_RRSP *pk_rrsp Pointer to the packet where the resource pool state is

stored

Packet Structure:
 typedef struct {

 ID wtskid; 0 2 Wait task ID

 SIZE freesz; +4 4 Total size of available memory area

(number of bytes)

 UINT fblksz; +8 4 Maximum memory area available (number

of bytes)

 SIZE rspsz; +12 4 Size of resource pool

 }VT_RRSP;

Error Codes:
 E_PAR [p] Parameter error

(1) pk_rrsp is not a 4-byte boundary address.

 E_CTX [k] Context error

(1) Called in a non-task context.

 E_MACV [m] Memory access violation

Function:

Service call vref_rsp refers to the status of the resource pool and returns the total size of current
available memory area (freesz), the size of the maximum memory block available (fblksz), and the
size of the resource pool (rspsz) to the area indicated by pk_rrsp. For wtskid, NTSK is always
returned.

The free space is usually fragmented. The maximum contiguous free space is returned to
parameter fblksz.

391

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for pk_rrsp, which
means that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_rrsp
⎯ size = sizeof(VT_RRSP)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

392

6.30 Performance Management

Table 6.61 Service Calls for Performance Management

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

vchg_ppc T/E/D/U

ivchg_ppc
Starts, stops, or initializes performance measurement

N/E/D/U

vref_ppc T/E/D/U

ivref_ppc
Refers to performance measurement result

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called in a task context
N: Can be called in a non-task context
E: Can be called in dispatch-enabled state
D: Can be called in dispatch-disabled state
U: Can be called in CPU-unlocked state
L: Can be called in CPU-locked state
C: Can be called from CPU exception handler

The performance management function measures performance such as the task execution time by
using the program performance counters (PPC) in the microcomputer. This function can be used
only when the target microcomputer has program performance counters.

Reference: Section 4.26, Performance Management

393

6.30.1 Start, Stop, or Initialize Performance Measurement (vchg_ppc, ivchg_ppc)

C-Language API:
 ER_UINT oldmode = vchg_ppc(ID ctxid, MODE mode);

 ER_UINT oldmode = ivchg_ppc(ID ctxid, MODE mode);

Parameters:
 ID ctxid Target context

 MODE mode New accumulation mode

Return Parameters:
 ER_UINT oldmode Previous accumulation mode

Error Codes:
 E_PAR [k] Parameter error

(1) mode is invalid.

 E_ID [p] Invalid ID number

(1) ctxid < -3

(2) ctxid > CFG_MAXTSKID

(3) ctxid = TSK_SELF(0) is specified in a non-task context.

 E_NOEXS [k] Undefined

(1) Task specified by ctxid does not exist.

Function:

Each service call starts, stops, or initializes performance measurement for the context specified by
ctxid.

The following values can be specified for ctxid.

• 1 to CFG_MAXTSKID: Task with task ID ctxid

• TSK_SELF(0): Calling task. When the service call is issued in a non-task context, an E_ID
error is returned.

• -1: Kernel idling state

• -2: Non-task context + kernel

• -3: All programs

Parameter mode specifies the operation of the counters (start or stop).

mode:= (VTPPC_STA0||VTPPC_STP0) | (VTPPC_STA1||VTPPC_STP1)
[|VTPPC_INI0][|VTPPC_INI1]

• VTPPC_STA0 (H'00000001): Resumes accumulation for counter 0.

• VTPPC_STP0 (H'00000000): Stops accumulation for counter 0.

394

• VTPPC_INI0 (H'00000004): Clears the accumulated data for counter 0 to 0.

• VTPPC_STA1 (H'00000002): Resumes accumulation for counter 1.

• VTPPC_STP1 (H'00000000): Stops accumulation for counter 1.

• VTPPC_INI1 (H'00000008): Clears the accumulated data for counter 1 to 0.

When a value other than -3 is specified for ctxid, the previous accumulation mode (shown below)
is returned through oldmode.

oldmode:= (VTPPC_STA0|VTPPC_STP0) | (VTPPC_STA1|VTPPC_STP1)

• VTPPC_STA0 (H'00000001): Accumulation for counter 0 is in progress.

• VTPPC_STP0 (H'00000000): Accumulation for counter 0 stops.

• VTPPC_STA1 (H'00000002): Accumulation for counter 1 is in progress.

• VTPPC_STP1 (H'00000000): Accumulation for counter 1 stops.

When -3 is specified for ctxid, an undefined value is returned through oldmode.

When CFG_CONNECT is selected, the mode setting for counter 1 is ignored and the oldmode
information about counter 1 has no meaning.

The performance measurement for kernel idling state and non-task context + kernel is initialized
and then newly started when the kernel is started by vsta_kernel. The performance measurement
for a task, on the other hand, is initialized and then newly started when the task is created.

Note that each performance counter itself cannot be started, stopped, or initialized.

395

6.30.2 Refer to Performance Measurement Result (vref_ppc, ivref_ppc)

C-Language API:
 ER_UINT sts = vref_ppc(ID ctxid, VT_RPPC *pk_rppc);

 ER_UINT sts = ivref_ppc(ID ctxid, VT_RPPC *pk_rppc);

Parameters:
 ID ctxid Target context

 VT_RPPC *pk_rppc Pointer to the packet where the accumulated value is to

be returned

Return Parameters:
 ER_UINT sts PPC state (a positive value) or error code

 VT_RPPC *pk_rppc Pointer to the packet where the accumulated value is

stored

Packet Structure:
 typedef struct {

 UW ppc0; 0 4 PPC0 counter

 UW ppc1; +4 4 PPC1 counter

 }VT_RPPC;

Error Codes:
 E_PAR [p] Parameter error

(1) pk_rppc is not a 4-byte boundary address.

 E_ID [p] Invalid ID number

(1) ctxid < -2

(2) ctxid > CFG_MAXTSKID

(3) ctxid = TSK_SELF(0) is specified in a non-task context.

 E_NOEXS [k] Undefined

(1) Task specified by ctxid does not exist.

 E_MACV [m] Memory access violation

Function:

Each service call refers to the accumulated values of the performance counters.

The following values can be specified for ctxid.

• 1 to CFG_MAXTSKID: Task with task ID ctxid

• TSK_SELF(0): Calling task. When the service call is issued in a non-task context, an E_ID
error is returned.

• -1: Kernel idling state

396

• -2: Non-task context

The accumulated values of the performance counters for the context specified by ctxid are
returned through pk_rppc.

The following information is returned through sts. When 1 or 2 is returned, the information
returned through pk_rppc may be incorrect, but there is no means of checking whether the
information is correct.

• 0: No overflow in performance counters 0 and 1

• 1: Overflow in performance counter 0 (this value is never returned when CFG_CONNECT is
selected)

• 2: Overflow in performance counters 0 and 1

Error Detection through CFG_MEMCHK:

An E_MACV error will be returned in the following case.

(1) The domain of the caller does not have a read/write access permission for pk_rppc, which
means that an error will be returned if prb_mem is issued with the following parameters.

⎯ base = pk_rppc
⎯ size = sizeof(VT_RPPC)
⎯ domid = Domain of the caller
⎯ pmmode = TPM_READ|TPM_WRITE

397

Section 7 Cache Support Functions

7.1 Overview

The cache support functions provide cache-related operations such as writing the cache contents
back to memory or clearing the cache contents.

The header file for the cache support functions is stored in the include\ directory. To use these
functions, include the header file.

The actual code for the cache support functions is stored as a relocatable object in the lib\elf\
directory. This relocatable object should be embedded on the kernel side.

Table 7.1 shows the cache support functions provided by V.1.01 Release00 of the HI7300/PX.

Table 7.1 Cache Support Functions

Overview of Target Cache
Hardware Specifications

Target CPU
(Typical
Microcomputers
Including Cache) Header File Relocatable Objects

• Separate instruction cache
and operand cache

• Four-way set-associative

• Virtual address index/
physical address tag

• Line size: 32 bytes

SH4AL-DSP,
SH-4A (without
extended
functions),
SH73180, and
SH7780

cache_sh4a.h • cache_sh4a_big.rel

(for big endian)

• cache_sh4a_little.rel

(for little endian)

• Separate instruction cache
and operand cache

• Four-way set-associative

• Virtual address index/
physical address tag

• Line size: 32 bytes

• Way prediction in the

instruction cache

SH4AL-DSP, SH-
4A (with extended
functions),
SH7343, and
SH7785

cache_shx2.h • cache_shx2_big.rel

(for big endian)

• cache_shx2_little.rel

(for little endian)

398

7.2 Notes

(1) A cache support function can be called only in the privileged mode (from a program in the
kernel domain). If a cache support function is called in the user mode, an exception usually
occurs within the function.

(2) Note that incorrect use of a cache support function may affect system operation; for example,
coherence between the cache and memory may not be maintained. Before using cache support
functions, fully understand the specifications of the cache in the target microcomputer and the
behavior of the functions.

7.3 Functions in cache_sh4a.h

The following functions are provided by cache_sh4a.h.

• sh4a_vini_cac(): Initializes the cache.

• sh4a_vclr_cac(): Clears the cache.

• sh4a_vfls_cac(): Flushes the operand cache.

• sh4a_vinv_cac(): Invalidates the cache.

399

7.3.1 Initialize Cache (sh4a_vini_cac)

C-Language API:

 ER ercd = sh4a_vini_cac(ATR cacatr, UINT icsize, UINT ocsize);

Parameters:

 ATR cacatr Cache attribute
 UINT icsize Size of the instruction cache
 UINT ocsize Size of the operand cache

Return Parameter:

 ER ercd Normal termination (E_OK)

Error Codes:

 No error code is returned

Function:

This function initializes the cache. To be more specific, CCR and RAMCR in the processor are set
to the values determined by the specified cacatr as described later.

CCR and RAMCR are modified by instructions placed in the P2 area while the BL bit in SR is 1.

A logical OR of the following values can be specified for cacatr. The kernel does not check errors
for the value specified for cacatr.

This function writes 1 to the ICI and OCI bits in CCR regardless of the cacatr setting; that is, the
cache contents before this function call are all cleared.

• TCAC_IC_ENABLE (H'00000100)

Setting this value enables the instruction cache (CCR.ICE = 1); otherwise, the instruction
cache is disabled (CCR.ICE = 0).

• TCAC_OC_ENABLE (H'00000001)

Setting this value enables the operand cache (CCR.OCE = 1); otherwise, the operand cache is
disabled (CCR.OCE = 0).

• TCAC_IC_2WAY (H'00800000)

Setting this value specifies 2-way instruction cache (RAMCR.IC2W = 1); otherwise, 4-way
instruction cache is specified (RAMCR.IC2W = 0).

400

• TCAC_OC_2WAY (H'00400000)

Setting this value specifies 2-way operand cache (RAMCR.OC2W = 1); otherwise, 4-way
operand cache is specified (RAMCR.OC2W = 0).

• TCAC_P1_CB (H'00000004)

Setting this value selects the copy-back mode as the write mode for the P1 area (CCR.CB = 1);
otherwise, the write-through mode is selected (CCR.CB = 0).

• TCAC_P0_WT (H'00000002)

Setting this value selects the write-through mode as the write mode for the P0/U0 area
(CCR.WT = 1); otherwise, the copy-back mode is selected (CCR.WT = 0).

Specify the sizes (bytes) of the instruction cache and operand cache in the target microcomputer
through icsize and ocsize, respectively. The kernel does not check whether the specified sizes are
correct.

Be sure to call this function before using other cache support functions.

401

7.3.2 Clear Cache (sh4a_vclr_cac)

C-Language API:

 ER ercd = sh4a_vclr_cac(VP clradr1, VP clradr2, MODE mode);

Parameters:

 VP clradr1 Start address of cache clearing
 VP clradr2 End address of cache clearing
 MODE mode Target cache

Return Parameter:

 ER ercd Normal termination (E_OK) or error code

Error Codes:

 E_PAR Parameter error
 (1) clradr1 > clradr2
 (2) mode is invalid.
 E_OBJ Target cache specified by mode is disabled.

Function:

This function clears the cache. To be more specific, the cache contents are invalidated, and if the
operand cache has data that has not been written back to memory, the data is written to memory.

The target cache is specified by mode. Any one of the following values can be specified for mode.

• TC_FULL (H'00000000): Clears both the instruction cache and operand cache.

• TC_EXCLUDE_IC (H'00000001): Clears only the operand cache (excludes the instruction
cache).

• TC_EXCLUDE_OC (H'00000002): Clears only the instruction cache (excludes the operand
cache).

The address range to be cleared is specified by clradr1 and clradr2. clradr1 is rounded down to a
multiple of 32, and clradr2 is rounded up to (a multiple of 32) - 1.

(1) Clearing Specified Address Range

This function clears the entries corresponding to the logical address range from clradr1 to clradr2
in the cache specified by mode. When the operand cache is specified as a target (when TC_FULL

402

or TC_EXCLUDE_IC is specified for mode), this function copies dirty entries (entries that have
not been written to memory) back to memory before clearing the entries.

This function repeats execution of the following instructions for the range from clradr1 to clradr2.

• When mode = TC_FULL: ICBI and OCBP instructions

• When mode = TC_EXCLUDE_IC: OCBP instruction

• When mode = TC_EXCLUDE_OC: ICBI instruction

During this processing, the SR value remains the same as when this function is called. When no
interrupt should be accepted during this function processing, mask interrupts and then call this
function. Note that this function must not be called while the BL bit in SR is 1 when the MMU is
enabled and an MMU mapped area is specified; while the BL bit in SR is 1, a TLB-related
exception may occur in the above instruction execution and the CPU is reset in this case.

In this function, only the basic error check shown in the Error Codes description is performed for
clradr1 and clradr2. Accordingly, make sure that the addresses such as those listed below are not
included in the address range.

• P2, P3, and P4 areas

• An address corresponding to a physical address in the control register area

• An address corresponding to a physical address in the X/Y memory

• An address that is in the P0/U0 area and is not in a memory object

(2) Clearing All Entries

Specifying clradr1 = 0 and clradr2 = H'ffffffff clears all entries in the cache specified by mode.
This function performs the following processing.

(a) When TC_FULL or TC_EXCLUDE_OC is specified for mode, this function sets the ICI bit in
CCR to 1 to invalidate all entries in the instruction cache. CCR is modified through an
instruction placed in the P2 area while the BL bit in SR is 1.

(b) After step (a), when TC_FULL or TC_EXCLUDE_IC is specified for mode, this function
writes V = 0 and U = 0 to all entries in the memory-mapped operand cache. At the same time,
the dirty entries (U = 1) are copied back to memory. During this processing, the SR value
remains the same as when this function is called. When no interrupt should be accepted during
this function processing, mask interrupts and then call this function. This function can be
called even while the BL bit in SR is 1 when clearing all entries.

403

7.3.3 Flush Operand Cache (sh4a_vfls_cac)

C-Language API:

 ER ercd = sh4a_vfls_cac(VP flsadr1, VP flsadr2);

Parameters:

 VP flsadr1 Start address of cache flushing
 VP flsadr2 End address of cache flushing

Return Parameters:

 ER ercd Normal termination (E_OK) or error code

Error Codes:

 E_PAR Parameter error (flsadr1 > flsadr2)
 E_OBJ Operand cache is disabled.

Function:

This function flushes the operand cache. To be more specific, when the operand cache has data
that has not been written to memory, the data is copied back to memory.

The address range to be flushed is specified by flsadr1 and flsadr2. flsadr1 is rounded down to a
multiple of 32, and flsadr2 is rounded up to (a multiple of 32) - 1.

(1) Flushing Specified Address Range

This function flushes the entries corresponding to the logical address range from flsadr1 to flsadr2
in the operand cache, that is, when the specified entries have not been written to memory, the
entries are copied back to memory.

This function repeats execution of the OCBWB instruction for the range from flsadr1 to flsadr2.
During this processing, the SR value remains the same as when this function is called. When no
interrupt should be accepted during this function processing, mask interrupts and then call this
function. Note that this function must not be called while the BL bit in SR is 1 when the MMU is
enabled and an MMU mapped area is specified; while the BL bit is 1, a TLB-related exception
may occur in the above instruction execution and the CPU is reset in this case.

404

In this function, only the basic error check shown in the Error Codes description is performed for
flsadr1 and flsadr2. Accordingly, make sure that the addresses such as those listed below are not
included in the address range.

• P2, P3, and P4 areas

• An address corresponding to a physical address in the control register area

• An address corresponding to a physical address in the X/Y memory

• An address that is in the P0/U0 area and is not in a memory object

(2) Flushing All Entries

Specifying flsadr1 = 0 and flsadr2 = H'ffffffff flushes all entries in the operand cache. This
function performs the following processing.

• This function reads all entries in the memory-mapped operand cache, and writes V = 1 and U =
0 to the valid (V = 1) entries. At the same time, the dirty entries (U = 1) are copied back to
memory. This read and write processing is done by temporarily setting the BL bit in SR to 1.
When no interrupt should be accepted during this function processing, mask interrupts and
then call this function. This function can be called even while the BL bit in SR is 1 when
flushing all entries.

405

7.3.4 Invalidate Cache (sh4a_vinv_cac))

C-Language API:

 ER ercd = sh4a_vinv_cac(VP invadr1, VP invadr2, MODE mode);

Parameters:

 VP invadr1 Start address of cache invalidation
 VP invadr2 End address of cache invalidation
 MODE mode Target cache

Return Parameters:

 ER ercd Normal termination (E_OK) or error code

Error Codes:

 E_PAR Parameter error
 (1) invadr1 > invadr2
 (2) mode is invalid.
 E_OBJ Target cache is disabled.

Function:

This function invalidates the cache.

The target cache is specified by mode. Any one of the following values can be specified for mode.

• TC_FULL (H'00000000): Invalidates both the instruction cache and operand cache.

• TC_EXCLUDE_IC (H'00000001): Invalidates the operand cache only (excludes the
instruction cache).

• TC_EXCLUDE_OC (H'00000002): Invalidates the instruction cache only (excludes the
operand cache).

The address range to be invalidated is specified by invadr1 and invadr2. invadr1 is rounded down
to a multiple of 32, and invadr2 is rounded up to (a multiple of 32) - 1.

(1) Invalidating Specified Address Range

This function invalidates the entries corresponding to the logical address range from invadr1 to
invadr2 in the cache specified by mode. When the operand cache is specified as a target (when
TC_FULL or TC_EXCLUDE_IC is specified for mode), this function does not copy dirty entries

406

(the entries that have not been written to memory) back to memory, that is, the data in the entries
will be lost.

This function repeats execution of the following instructions for the range from invadr1 to
invadr2.

• When mode = TC_FULL: ICBI and OCBI instructions

• When mode = TC_EXCLUDE_IC: OCBI instruction

• When mode = TC_EXCLUDE_OC: ICBI instruction

During this processing, the SR value remains the same as when this function is called. When no
interrupt should be accepted during this function processing, mask interrupts and then call this
function. Note that this function must not be called while the BL bit in SR is 1 when the MMU is
enabled and an MMU mapped area is specified; while the BL bit is 1, a TLB-related exception
may occur in the above instruction execution and the CPU is reset in this case.

In this function, only the basic error check shown in the Error Codes description is performed for
invadr1 and invadr2. Accordingly, make sure that the addresses such as those listed below are not
included in the address range.

• P2, P3, and P4 areas

• An address corresponding to a physical address in the control register area

• An address corresponding to a physical address in the X/Y memory

• An address that is in the P0/U0 area and is not in a memory object

(2) Flushing All Entries

Specifying invadr1 = 0 and invadr2 = H'ffffffff flushes all entries in the cache specified by mode.
This function manipulates the following bits in CCR according to the specified mode. CCR is
modified through an instruction placed in the P2 area while the BL bit in SR is 1.

• When mode = TC_FULL: Sets the ICI and OCI bits in CCR to 1.

• When mode = TC_EXCLUDE_IC: Sets the OCI bit in CCR to 1.

• When mode = TC_EXCLUDE_OC: Sets the ICI bit in CCR to 1.

407

7.4 Functions in cache_shx2.h

The following functions are provided by cache_shx2.h.

• shx2_vini_cac(): Initializes the cache.

• shx2_vclr_cac(): Clears the cache.

• shx2_vfls_cac(): Flushes the operand cache.

• shx2_vinv_cac(): Invalidates the cache.

7.4.1 Initialize Cache (shx2_vini_cac)

C-Language API:

 ER ercd = shx2_vini_cac(ATR cacatr, UINT icsize, UINT ocsize);

Parameters:

 ATR cacatr Cache attribute
 UINT icsize Size of the instruction cache
 UINT ocsize Size of the operand cache

Return Parameter:

 ER ercd Normal termination (E_OK)

Error Codes:

 No error code is returned

Function:

This function initializes the cache. To be more specific, CCR and RAMCR in the processor are set
to the values determined by the specified cacatr as described later.

CCR and RAMCR are modified by instructions placed in the P2 area while the BL bit in SR is 1.

A logical OR of the following values can be specified for cacatr. The kernel does not check errors
for the value specified for cacatr.

This function writes 1 to the ICI and OCI bits in CCR regardless of the cacatr setting; that is, the
cache contents before this function call are all cleared.

408

• TCAC_IC_ENABLE (H'00000100)

Setting this value enables the instruction cache (CCR.ICE = 1); otherwise, the instruction
cache is disabled (CCR.ICE = 0).

• TCAC_OC_ENABLE (H'00000001)

Setting this value enables the operand cache (CCR.OCE = 1); otherwise, the operand cache is
disabled (CCR.OCE = 0).

• TCAC_IC_2WAY (H'00800000)

Setting this value specifies 2-way instruction cache (RAMCR.IC2W = 1); otherwise, 4-way
instruction cache is specified (RAMCR.IC2W = 0).

• TCAC_OC_2WAY (H'00400000)

Setting this value specifies 2-way operand cache (RAMCR.OC2W = 1); otherwise, 4-way
operand cache is specified (RAMCR.OC2W = 0).

• TCAC_P1_CB (H'00000004)

Setting this value selects the copy-back mode as the write mode for the P1 area (CCR.CB = 1);
otherwise, the write-through mode is selected (CCR.CB = 0).

• TCAC_P0_WT (H'00000002)

Setting this value selects the write-through mode as the write mode for the P0/U0 area
(CCR.WT = 1); otherwise, the copy-back mode is selected (CCR.WT = 0).

• TCAC_IC_WPD (H'00200000)

Setting this value enables way prediction in the instruction cache (CCR.ICWPD = 1);
otherwise, way prediction in the instruction cache is disabled (CCR.ICWPD = 0).

• TCAC_L2_ENABLE (H'00010000)

Setting this value enables the level-2 cache (RAMCR.L2E = 1); otherwise, the level-2 cache is
disabled (RAMCR.L2E = 0).

• TCAC_L2_FC (H'00020000)

Setting this value selects the level-2 cache forcible coherency mode (RAMCR.L2FC = 1);
otherwise, the level-2 cache forcible coherency mode is not selected (RAMCR.L2FC = 0).

Do not specify TCAC_L2_ENABLE or TCAC_L2_FC if the microcomputer being used does not
support the level-2 cache. Specify the sizes (bytes) of the instruction cache and operand cache in
the target microcomputer through icsize and ocsize, respectively. The kernel does not check
whether the specified sizes are correct.

Be sure to call this function before using other cache support functions.

a5024650
線

a5024650
線

a5024650
線

a5024650
線

a5024650
線

a5024650
線

a5024650
線

a5024650
線

409

7.4.2 Clear Cache (shx2_vclr_cac)

C-Language API:

 ER ercd = shx2_vclr_cac(VP clradr1, VP clradr2, MODE mode);

Parameters:

 VP clradr1 Start address of cache clearing
 VP clradr2 End address of cache clearing
 MODE mode Target cache

Return Parameter:

 ER ercd Normal termination (E_OK) or error code

Error Codes:

 E_PAR Parameter error
 (1) clradr1 > clradr2
 (2) mode is invalid.
 E_OBJ Target cache specified by mode is disabled.

Function:

This function clears the cache. To be more specific, the cache contents are invalidated, and if the
operand cache has data that has not been written back to memory, the data is written to memory.

The target cache is specified by mode. Any one of the following values can be specified for mode.

• TC_FULL (H'00000000): Clears both the instruction cache and operand cache.

• TC_EXCLUDE_IC (H'00000001): Clears only the operand cache (excludes the instruction
cache).

• TC_EXCLUDE_OC (H'00000002): Clears only the instruction cache (excludes the operand
cache).

The address range to be cleared is specified by clradr1 and clradr2. clradr1 is rounded down to a
multiple of 32, and clradr2 is rounded up to (a multiple of 32) - 1.

(1) Clearing Specified Address Range

This function clears the entries corresponding to the logical address range from clradr1 to clradr2
in the cache specified by mode. When the operand cache is specified as a target (when TC_FULL

410

or TC_EXCLUDE_IC is specified for mode), this function copies dirty entries (entries that have
not been written to memory) back to memory before clearing the entries.

This function repeats execution of the following instructions for the range from clradr1 to clradr2.

• When mode = TC_FULL: ICBI and OCBP instructions

• When mode = TC_EXCLUDE_IC: OCBP instruction

• When mode = TC_EXCLUDE_OC: ICBI instruction

During this processing, the SR value remains the same as when this function is called. When no
interrupt should be accepted during this function processing, mask interrupts and then call this
function. Note that this function must not be called while the BL bit in SR is 1 when the MMU is
enabled and an MMU mapped area is specified; while the BL bit in SR is 1, a TLB-related
exception may occur in the above instruction execution and the CPU is reset in this case.

In this function, only the basic error check shown in the Error Codes description is performed for
clradr1 and clradr2. Accordingly, make sure that the addresses such as those listed below are not
included in the address range.

• P2, P3, and P4 areas

• An address corresponding to a physical address in the control register area

• An address corresponding to a physical address in the X/Y memory

• An address that is in the P0/U0 area and is not in a memory object

(2) Clearing All Entries

Specifying clradr1 = 0 and clradr2 = H'ffffffff clears all entries in the cache specified by mode.
This function performs the following processing.

(a) When TC_FULL or TC_EXCLUDE_OC is specified for mode, this function sets the ICI bit in
CCR to 1 to invalidate all entries in the instruction cache. CCR is modified through an
instruction placed in the P2 area while the BL bit in SR is 1.

(b) After step (a), when TC_FULL or TC_EXCLUDE_IC is specified for mode, this function
executes an OCBP instruction for all entries in the memory-mapped operand cache. Thus, the
dirty entries (U = 1) are copied back to memory and invalidated (V = 0). During this
processing, the SR value remains the same as when this function is called. When no interrupt
should be accepted during this function processing, mask interrupts and then call this function.
This function can be called even while the BL bit in SR is 1 when clearing all entries.

411

7.4.3 Flush Operand Cache (shx2_vfls_cac)

C-Language API:

 ER ercd = shx2_vfls_cac(VP flsadr1, VP flsadr2);

Parameters:

 VP flsadr1 Start address of cache flushing
 VP flsadr2 End address of cache flushing

Return Parameters:

 ER ercd Normal termination (E_OK) or error code

Error Codes:

 E_PAR Parameter error (flsadr1 > flsadr2)
 E_OBJ Operand cache is disabled.

Function:

This function flushes the operand cache. To be more specific, when the operand cache has data
that has not been written to memory, the data is copied back to memory.

The address range to be flushed is specified by flsadr1 and flsadr2. flsadr1 is rounded down to a
multiple of 32, and flsadr2 is rounded up to (a multiple of 32) - 1.

(1) Flushing Specified Address Range

This function flushes the entries corresponding to the logical address range from flsadr1 to flsadr2
in the operand cache, that is, when the specified entries have not been written to memory, the
entries are copied back to memory.

This function repeats execution of the OCBWB instruction for the range from flsadr1 to flsadr2.
During this processing, the SR value remains the same as when this function is called. When no
interrupt should be accepted during this function processing, mask interrupts and then call this
function. Note that this function must not be called while the BL bit in SR is 1 when the MMU is
enabled and an MMU mapped area is specified; while the BL bit is 1, a TLB-related exception
may occur in the above instruction execution and the CPU is reset in this case.

412

In this function, only the basic error check shown in the Error Codes description is performed for
flsadr1 and flsadr2. Accordingly, make sure that the addresses such as those listed below are not
included in the address range.

• P2, P3, and P4 areas

• An address corresponding to a physical address in the control register area

• An address corresponding to a physical address in the X/Y memory

• An address that is in the P0/U0 area and is not in a memory object

(2) Flushing All Entries

Specifying flsadr1 = 0 and flsadr2 = H'ffffffff flushes all entries in the operand cache. This
function performs the following processing.

• This function reads all entries in the memory-mapped operand cache, and writes V = 1 and U =
0 to the valid (V = 1) entries. At the same time, the dirty entries (U = 1) are copied back to
memory. This read and write processing is done by temporarily setting the BL bit in SR to 1.
When no interrupt should be accepted during this function processing, mask interrupts and
then call this function. This function can be called even while the BL bit in SR is 1 when
flushing all entries.

413

7.4.4 Invalidate Cache (shx2_vinv_cac))

C-Language API:

 ER ercd = shx2_vinv_cac(VP invadr1, VP invadr2, MODE mode);

Parameters:

 VP invadr1 Start address of cache invalidation
 VP invadr2 End address of cache invalidation
 MODE mode Target cache

Return Parameters:

 ER ercd Normal termination (E_OK) or error code

Error Codes:

 E_PAR Parameter error
 (1) invadr1 > invadr2
 (2) mode is invalid.
 E_OBJ Target cache is disabled.

Function:

This function invalidates the cache.

The target cache is specified by mode. Any one of the following values can be specified for mode.

• TC_FULL (H'00000000): Invalidates both the instruction cache and operand cache.

• TC_EXCLUDE_IC (H'00000001): Invalidates the operand cache only (excludes the
instruction cache).

• TC_EXCLUDE_OC (H'00000002): Invalidates the instruction cache only (excludes the
operand cache).

The address range to be invalidated is specified by invadr1 and invadr2. invadr1 is rounded down
to a multiple of 32, and invadr2 is rounded up to (a multiple of 32) - 1.

(1) Invalidating Specified Address Range

This function invalidates the entries corresponding to the logical address range from invadr1 to
invadr2 in the cache specified by mode. When the operand cache is specified as a target (when
TC_FULL or TC_EXCLUDE_IC is specified for mode), this function does not copy dirty entries

414

(the entries that have not been written to memory) back to memory, that is, the data in the entries
will be lost.

This function repeats execution of the following instructions for the range from invadr1 to
invadr2.

• When mode = TC_FULL: ICBI and OCBP instructions

• When mode = TC_EXCLUDE_IC: OCBI instruction

• When mode = TC_EXCLUDE_OC: ICBI instruction

During this processing, the SR value remains the same as when this function is called. When no
interrupt should be accepted during this function processing, mask interrupts and then call this
function. Note that this function must not be called while the BL bit in SR is 1 when the MMU is
enabled and an MMU mapped area is specified; while the BL bit is 1, a TLB-related exception
may occur in the above instruction execution and the CPU is reset in this case.

In this function, only the basic error check shown in the Error Codes description is performed for
invadr1 and invadr2. Accordingly, make sure that the addresses such as those listed below are not
included in the address range.

• P2, P3, and P4 areas

• An address corresponding to a physical address in the control register area

• An address corresponding to a physical address in the X/Y memory

• An address that is in the P0/U0 area and is not in a memory object

(2) Flushing All Entries

Specifying invadr1 = 0 and invadr2 = H'ffffffff flushes all entries in the cache specified by mode.
This function manipulates the following bits in CCR according to the specified mode. CCR is
modified through an instruction placed in the P2 area while the BL bit in SR is 1.

• When mode = TC_FULL: Sets the ICI and OCI bits in CCR to 1.

• When mode = TC_EXCLUDE_IC: Sets the OCI bit in CCR to 1.

• When mode = TC_EXCLUDE_OC: Sets the ICI bit in CCR to 1.

415

Section 8 Application Program Creation

8.1 Tasks

8.1.1 Writing a Task

A task must be written as a C-language function as shown in figure 8.1. Use an ext_tsk or exd_tsk
service call to end a task. If execution is returned from a task without issuing ext_tsk or exd_tsk, it
is assumed that ext_tsk has been issued and the same operation as ext_tsk is performed.

#include "kernel.h"

#pragma noregsave(Task) ← (1)

void Task(VP_INT exinf) ← (2)

{

 /* Processing */
 ext_tsk();

}

Figure 8.1 Example of a Task

Description:

(1) #pragma noregsave can be specified to reduce the amount of the stack area to be used, except
when execution is returned from a task function.

(2) When a task is initiated by sta_tsk, stacd specified by sta_tsk is passed through exinf. When a
task is initiated by act_tsk or the TA_ACT attribute specified at task creation, the extended
information regarding the task is passed through exinf.

A task function can also be written as an infinite loop as shown in figure 8.2.

416

#include "kernel.h"

#pragma noregsave(Task) ← (1)

void Task(VP_INT exinf)

{

 for(;;) {

 /* Processing */
 }

}

Figure 8.2 Example of a Task Written as an Infinite Loop

Description:

(1) #pragma noregsave can be specified to reduce the amount of the stack area to be used.

417

8.1.2 Rules on Using Registers

Table 8.1 shows the rules on using the registers and their initial values in a task.

Table 8.1 Rules on Using Registers and Initial Register Values in a Task

No. Register Use *1 Initial Value

1 PC ⎯ Task address

2 SR O See table 8.2

3 R0 to R3 √ Undefined

4 R4 √ When activated by TA_ACT attribute or
act_tsk: exinf specified at task creation

When activated by sta_tsk: stacd specified
by sta_tsk

5 R5 √ Undefined

6 R6 √ Undefined

7 R7 √ Undefined

8 R8 to R14, MACH, MACL, GBR √ Undefined

9 R15 O End address of stack area for the task

10 PR O Address of task end processing in the kernel

11 [DSP] DSR √ *2 0

12 [DSP] RS, RE, MOD, A0, A0G,
A1, A1G, M0, M1, X0, X1, Y0, Y1

√ *2 Undefined

13 [FPU] FPSCR √ *3 inifpscr specified at task creation when the
TA_COP1 attribute is specified; otherwise,
undefined

14 [FPU] FPUL, FPR0_BANK0 to
FPR15_BANK0

√ *3 Undefined

15 [FPU] FPR0_BANK1 to
FPR15_BANK1

√ *4 Undefined

Notes: *1 √: The register can be used without saving or restoring the register value.
 O: The register value must be restored to its initial value held at task initiation

 when execution is returned from the task function.
 *2 The register can be used only when the TA_COP0 attribute is specified.

 *3 The register can be used only when the TA_COP1 attribute is specified.
 *4 The register can be used only when the TA_COP1|TA_COP2 attribute is specified.

418

Table 8.2 SR at Task Initiation

SR at Initiation (The values of the bits not
shown here are undefined.)

TA_COPn Attribute Assigned Domain MD RB BL DSP FD IMASK

Kernel domain 1 None

User domain 0

0

Kernel domain 1 TA_COP0

User domain 0

1

1

Kernel domain 1 TA_COP1 (|TA_COP2)

User domain 0

0 0

0 0

0

419

8.2 Task Exception Processing Routines

8.2.1 Writing a Task Exception Processing Routine

A task exception processing routine must be written as a C-language function as shown in
table 8.3.

#include "kernel.h"

void Texrtn(TEXPTN texptn,VP_INT exinf) ← (1)

{

 /* Processing */
}

Figure 8.3 Example of a Task Exception Processing Routine

Description:

(1) The task exception source pattern is passed through texptn, and the task extended information
is passed through exinf.

420

8.2.2 Rules on Using Registers

Table 8.3 shows the rules on using the registers and their initial values in a task exception
processing routine.

Table 8.3 Rules on Using Registers and Initial Register Values in a Task Exception
Processing Routine

No. Register Use *1 Initial Value

1 PC ⎯ Address of task exception processing
routine

2 SR O See table 8.4

3 R0 to R3 √ Undefined

4 R4 √ Exception source pattern

5 R5 √ Task extended information

6 R6 √ Undefined

7 R7 √ Undefined

8 R8 to R14, MACH, MACL, GBR √ Undefined

9 R15 O Stack area for the task

10 PR O Address of the end processing for the task
exception processing routine in the kernel

11 [DSP] DSR √ *2 0

12 [DSP] RS, RE, MOD, A0, A0G,
A1, A1G, M0, M1, X0, X1, Y0, Y1

√ *2 Undefined

13 [FPU] FPSCR √*3 inifpscr specified at creation of the task
exception processing routine when the
TA_COP1 attribute is specified; otherwise,
undefined

14 [FPU] FPUL, FPR0_BANK0 to
FPR15_BANK0

√*3 Undefined

15 [FPU] FPR0_BANK1 to
FPR15_BANK1

√*4 Undefined

Notes: *1 √: The register can be used without saving or restoring the register value.

 O: The register value must be restored to its initial value held at initiation
 when execution is returned from the task exception processing routine function.

 *2 The register can be used only when the TA_COP0 attribute is specified.
 *3 The register can be used only when the TA_COP1 attribute is specified.
 *4 The register can be used only when the TA_COP1|TA_COP2 attribute is specified.

421

Table 8.4 SR at Initiation of Task Exception Processing Routine

SR at Initiation (The values of the bits not
shown here are undefined.)

TA_COPn Attribute Assigned Domain MD RB BL DSP FD IMASK

Kernel domain 1 None

User domain 0

0

Kernel domain 1 TA_COP0

User domain 0

1

1

Kernel domain 1 TA_COP1 (|TA_COP2)

User domain 0

0 0

0 0

0

422

8.3 Extended Service Call Routines and Trap Routines

8.3.1 Writing an Extended Service Call Routine or a Trap Routine

(1) Extended Service Call Routines

An extended service call routine is called through a cal_svc service call.

An extended service call routine must be written as a C-language function as shown in figure 8.4.

#include "kernel.h"

ER_UINT Svcrtn(VP_INT par1, VP_INT par2, VP_INT par3, VP_INT par4) ← (1)

{

 /* Processing */
 return E_OK;

} ← (2)

Figure 8.4 Example of an Extended Service Call Routine (1)

Description:

(1) An extended service call routine receives four VP_INT-type parameters specified through
cal_svc.

(2) An ER_UINT-type value is passed as a return value from cal_svc.

When only one or two parameters are to be passed, an extended service call routine can be written
as shown in figure 8.5.

#include "kernel.h"

ER_UINT Svcrtn(VP_INT par1, VP_INT par2) ← (1)

{

 /* Processing */
 return E_OK;

}

Figure 8.5 Example of an Extended Service Call Routine (2)

Description:

(1) An extended service call routine receives only two VW-type parameters, par1 and par2,
specified through cal_svc.

423

(2) Trap Routines

A trap routine is called when a TRAPA instruction is executed.

A trap routine must be written as a C-language function as shown in figure 8.6.

#include "kernel.h"

void Trprtn(VT_TRAP *pk_trap) ← (1)

{

 /* Processing */
 return;

}

Figure 8.6 Example of a Trap Routine

Description:

(1) pk_trap indicates the address of the packet where the register information is saved when a
TRAPA instruction is executed.

Figure 8.7 shows the VT_TRAP definition.

This packet holds the value of each register when a TRAPA instruction is executed.

The kernel restores each register value to the respective value saved in this packet when the
execution of a trap routine is completed.

Note that ctxid, ssr, and r15 in this packet must not be modified. If they are modified, correct
operation is not guaranteed.

424

typedef struct {

 UW r0; /* R0_BANK0 register */

 UW r1; /* R1_BANK0 register */

 UW r2; /* R2_BANK0 register */

 UW r3; /* R3_BANK0 register */

 UW r4; /* R4_BANK0 register */

 UW r5; /* R5_BANK0 register */

 UW r6; /* R6_BANK0 register */

 UW r7; /* R7_BANK0 register */

 UW pr; /* PR register */

 UW spc; /* SPC register */

 UW ssr; /* SSR register */

 UW ctxid; /* ctxid information (kernel internal information) */

 UW r15; /* R15 register */

} VT_REG0;

typedef VT_REG0 VT_TRAP;

Figure 8.7 VT_TRAP Type

8.3.2 Rules on Using Registers

Table 8.5 shows the rules on using the registers and their initial values in an extended service call
routine or a trap routine. The return value from an extended service call routine is stored in register
R0.

425

Table 8.5 Rules on Using Registers and Initial Register Values in an Extended Service
Call Routine or a Trap Routine

No. Register Use *1 Initial Value

1 PC ⎯ Routine address

2 SR O See table 8.6

3 R0 to R3 √ Undefined

4 R4 √ Extended service call routine: par1

Trap routine: pk_trap

5 R5 √ Extended service call routine: par2

Trap routine: Undefined

6 R6 √ Extended service call routine: par3

Trap routine: Undefined

7 R7 √ Extended service call routine: par4

Trap routine: Undefined

8 R8 to R14, MACH, MACL, GBR O Undefined

9 R15 O (1) When called in a task context:
Privileged stack area for the calling task

(2) When called in a non-task context:
Stack used before the routine is called (non-
task stack)

10 PR O Address of the return processing in the
kernel

11 [DSP] DSR, RS, RE, MOD, A0,
A0G, A1, A1G, M0, M1, X0, X1,
Y0, Y1

√*2 Undefined

12 [FPU] FPSCR √*3 inifpscr specified at routine definition when
the TA_COP1 attribute is specified;
otherwise, undefined

13 [FPU] FPUL, FPR0_BANK0 to
FPR15_BANK0

√*3 Undefined

14 [FPU] FPR0_BANK1 to
FPR15_BANK1

√*4 Undefined

Notes: *1 √: The register can be used without saving or restoring the register value.
 O: The register value must be restored to its initial value held at initiation

 when execution is returned from the routine function.
 *2 The register can be used only when the TA_COP0 attribute is specified.

 *3 The register can be used only when the TA_COP1 attribute is specified.
 *4 The register can be used only when the TA_COP1|TA_COP2 attribute is specified.

426

Table 8.6 SR at Initiation of Extended Service Call Routine or Trap Routine

SR at Initiation
(The values of the bits not shown here are undefined.)

TA_COPn Attribute MD RB BL DSP FD IMASK

None 0 1

TA_COP0 1 1

TA_COP1 (|TA_COP2)

1 0 0

0 0

Same as the value
before the extended
service call or TRAPA
instruction

427

8.4 Interrupt Handlers

8.4.1 Writing an Interrupt Handler

An interrupt handler must be written as a general C-language function as shown in figure 8.8.

#include "kernel.h"

void IntHandler(void)

{

 /* Processing */
}

Figure 8.8 Example of an Interrupt Handler

428

8.4.2 Rules on Using Registers

Table 8.7 shows the rules on using the registers and their initial values in an interrupt handler.

Table 8.7 Rules on Using Registers and Initial Register Values in an Interrupt Handler

No. Register Use *1 Initial Value

1 PC ⎯ Interrupt handler address

2 SR O See the description below

3 R0 to R3 √ Undefined

4 R4 √ Undefined

5 R5 √ Undefined

6 R6 √ Undefined

7 R7 √ Undefined

8 R8 to R14, MACH, MACL, GBR O Undefined

9 R15 O Non-task stack

10 PR O Address of the return processing for an
interrupt in the kernel

11 [DSP] DSR, RS, RE, MOD, A0,
A0G, A1, A1G, M0, M1, X0, X1,
Y0, Y1

 Same as the value before the interrupt

12 [FPU] FPSCR Same as the value before the interrupt

13 [FPU] FPUL, FPR0_BANK0 to
FPR15_BANK0

 Same as the value before the interrupt

14 [FPU] FPR0_BANK1 to
FPR15_BANK1

 Same as the value before the interrupt

Notes: *1 √: The register can be used without saving or restoring the register value.

 O: The register value must be restored to its initial value held at initiation
 when execution is returned from the handler function.
The register with no indication in the Use column must not be used (accessed).

429

The bits in SR hold the following values when an interrupt handler is initiated.

• Mode (MD) bit: Always 1.

• Register bank (RB) bit: Always 0.

• Block (BL) bit: Depends on the inhsr value specified at definition of the interrupt handler.

• DSP bit (SH4AL-DSP): 0

• FPU disable (FD) bit (SH-4A): 1

• Interrupt mask level (IMASK) bits: Depend on the inhsr value if the INTMU bit in CPUOPM
register is 0 when the kernel is started, or hold the level of the generated interrupt if the
INTMU bit is 1.

• Other bits: Undefined

In an interrupt handler, the BL and IMASK bits in SR must be specified so that interrupts with the
current interrupt level are not accepted.

8.4.3 DSP and FPU

In an interrupt handler, operation using the DSP or FPU is not allowed. Note, however, that an
extended service call routine or a trap routine called in an interrupt handler can use the
coprocessor corresponding to the attribute (TA_COP0, TA_COP1, or TA_COP2) specified for the
routine.

8.4.4 Notes on NMI

(1) The BL bit in SR must be set to 1 at initiation of the NMI interrupt handler, which can be
specified when the handler is defined, and must not be cleared within the NMI interrupt
handler.

(2) Although the interrupt controller can be used to specify whether to accept an NMI while the
BL bit in SR is 1, it must be specified so that no NMI is accepted in usual operation.

If accepting an NMI is specified, the amount of the stack used by the NMI interrupt handler
increases. When the memory object protection function is used, do not access MMU mapped
areas through the NMI interrupt handler. If a TLB miss occurs during access to an MMU
mapped area, the CPU is reset.

Reference: Section 12.4.3, Stack Size Used by NMI Interrupt Handler
 Section 5, Logical Address Space
 Section 4.18.3 (2), Modifying the BL Bit in SR

430

8.5 Interrupt and Exception Hook Routines

8.5.1 Overview

When a CPU exception or an interrupt occurs, the processor passes control to the following
address.

• General exception: VBR + H'100

• TLB miss exception: VBR + H'400

• Interrupt: VBR + H'600

The kernel initializes VBR through vsta_knl so that the above addresses point to the respective
processing routines inside the kernel. Each routine analyzes the source of the exception or
interrupt and initiates the handler corresponding to the source.

However, in some cases, user-specified processing should be performed for debugging before the
handler is initiated.

Select CFG_INTHOOK in the configurator to call a hook routine when a CPU exception or
interrupt occurs.

The symbol names of hook routines are determined according to the exception or interrupt type
(shown above) as follows.

• General exception: __kernel_hook_exp (name in the assembly-language level)

• TLB miss exception: __kernel_hook_tlb (name in the assembly-language level)

• Interrupt: __kernel_hook_int (name in the assembly-language level)

Refer to the sample hook routines stored in samples\sysapp\inthook.src.

431

8.5.2 Writing a Hook Routine

A hook routine must be written in the assembly language as shown in figure 8.9.

 .section PSCP_hiknl, code, align=4 ; Any section name can be used.

 .export __kernel_hook_exp

__kernel_hook_exp: ; Symbol for the start address of the hook routine for general exceptions

 ; General exception processing (VBR + H'100) including TRAPA

 ; Write user-code here.

 rts ; The RTS instruction returns execution to the usual general exception processing in the kernel.

 nop

 .pool

 .export __kernel_hook_tlb

__kernel_hook_tlb: ; Symbol for the start address of the hook routine for TLB miss exceptions

 ; TLB miss exception processing (VBR + H'400)

 ; Write user-code here.

 rts ; The RTS instruction returns execution to the standard TLB exception processing in the
kernel.

 nop

 .pool

 .export __kernel_hook_int

__kernel_hook_int: ;Symbol for the start address of the hook routine for interrupts

 ; Interrupt processing (VBR + H'600)

 ; Write user-code here.

 rts ; The RTS instruction returns execution to the standard interrupt processing in the
kernel.

 nop

 .pool

 .end

Figure 8.9 Examples of Hook Routines

8.5.3 Rules on Using Registers

Table 8.8 shows the rules on using the registers and their initial values in a hook routine.

432

Table 8.8 Rules on Using Registers and Initial Register Values in a Hook Routine

No. Register Use *1 Initial Value

1 PC ⎯ Hook routine address

2 SR O Determined by the interrupt or exception
processing in the processor.

Note especially the following.

• MD bit: 1

• RB bit: 1

• BL bit: 1

The BL bit must not be changed to 0.

3 R0 to R2_BANK1 √ Undefined

4 R3 to R7_BANK1 O Undefined

5 R0 to R7_BANK0 O Same as the value before the interrupt or
exception

6 R8 to R14, MACH, MACL, GBR O Same as the value before the interrupt or
exception

7 R15 O Same as the value before the interrupt or
exception

8 PR O Address of the interrupt or exception
processing in the kernel

9 SPC, SSR O Value specified by the exception processing
in the processor

10 [DSP] DSR, RS, RE, MOD, A0,
A0G, A1, A1G, M0, M1, X0, X1,
Y0, Y1

 Same as the value before the interrupt or
exception

11 [FPU] FPSCR Same as the value before the interrupt or
exception

12 [FPU] FPUL, FPR0_BANK0 to
FPR15_BANK0

 Same as the value before the interrupt or
exception

13 [FPU] FPR0_BANK1 to
FPR15_BANK1

 Same as the value before the interrupt or
exception

Notes: *1 √: The register can be used without saving or restoring the register value.

 O: The register value must be restored to its initial value held at initiation
 when execution is returned from the routine function.
The register with no indication in the Use column must not be used (accessed).

433

8.5.4 Notes

(1) Only R0_BANK1 to R2_BANK1 can be used (the contents can be modified) in a hook routine.

(2) When a hook routine is initiated, both the BL and RB bits in SR are 1; the BL bit must not be
changed to 0.

(3) If a CPU exception occurs while the BL bit in SR is 1, the CPU is reset; do not generate a CPU
exception.

When the memory object protection function is selected, exceptions related to the TLB must
not be generated for the same reason; that is, a hook routine must not access any MMU
mapped area.

(4) A hook routine is executed with keeping BL = 1 in SR, and so it is not reentered.

(5) When using a stack, allocate a stack area in an MMU non-mapped area in advance and switch
to that area.

434

8.6 Time Event Handlers

8.6.1 Writing a Time Event Handler

A time event handler must be written as a C-language function. Figure 8.10 shows an example of a
cyclic or alarm handler, and figure 8.11 shows an example of an overrun handler.

#include "kernel.h"

void Handler(VP_INT exinf) ← (1)

{

 /* Processing */
}

Figure 8.10 Example of a Cyclic or Alarm Handler

Description:

(1) The handler extended information is passed through exinf.

#include "kernel.h"

void Ovrhdr(ID tskid, VP_INT exinf) ← (1)

{

 /* Processing */
}

Figure 8.11 Example of an Overrun Handler

Description:

(1) The target task ID is passed through tskid, and the extended information for that task is passed
through exinf.

435

8.6.2 Rules on Using Registers

Table 8.9 shows the rules on using the registers and their initial values in a time event handler.

Table 8.9 Rules on Using Registers and Initial Register Values in a Time Event Handler

No. Register Use *1 Initial Value

1 PC ⎯ Handler address

2 SR O See the description below

3 R0 to R3 √ Undefined

4 R4 v Cyclic handler or alarm handler: Handler
extended information

Overrun handler: Target task ID

5 R5 √ Cyclic handler or alarm handler: Undefined

Overrun handler: Extended information for
the target task

6 R6 √ Undefined

7 R7 √ Undefined

8 R8 to R14, MACH, MACL, GBR O Undefined

9 R15 O Non-task stack

10 PR O Address of the return processing in the
kernel

11 [DSP] DSR, RS, RE, MOD, A0,
A0G, A1, A1G, M0, M1, X0, X1,
Y0, Y1

 Undefined

12 [FPU] FPSCR Undefined

13 [FPU] FPUL Undefined

14 [FPU] FPR0_BANK0 to
FPR15_BANK0

 Undefined

15 [FPU] FPR0_BANK1 to
FPR15_BANK1

 Undefined

Notes: *1 √: The register can be used without saving or restoring the register value.
 O: The register value must be restored to its initial value held at routine initiation

 when execution is returned from the handler function.
The register with no indication in the Use column must not be used (accessed).

436

The bits in SR hold the following values when a time even handler is initiated.

• Mode (MD) bit: Always 1.

• Register bank (RB) bit: Always 0.

• Block (BL) bit: Always 0.

• DSP bit (SH4AL-DSP): Always 0.

• FPU disable (FD) bit (SH-4A): Always 1.

• Interrupt mask level (IMASK) bits: CFG_KNLMSKLVL

• Other bits: Undefined

In a time event handler, the BL and IMASK bits in SR must be specified so that interrupts with the
level masked at initiation of the handler are not accepted.

8.6.3 DSP and FPU

In a time event handler, operation using the DSP or FPU is not allowed. Note, however, that an
extended service call routine or a trap routine called in a time event handler can use the
coprocessor corresponding to the attribute (TA_COP0, TA_COP1, or TA_COP2) specified for the
routine.

437

8.7 Initialization Routines

8.7.1 Writing an Initialization Routine

The initialization routines defined through the [Initialization routine] page in the configurator are
executed immediately before the multi-tasking environment is entered after the kernel is started.

Reference: Section 6.22.12, Start Kernel (vsta_knl, ivsta_knl)

An initialization routine must be written as a C-language function as shown in figure 8.12.

#include "kernel.h"

void InitRoutine(VP_INT exinf) ← (1)

{

 /* Processing */
}

Figure 8.12 Example of an Initialization Routine

Description:

(1) The extended information for the initialization routine is passed through exinf.

438

8.7.2 Rules on Using Registers

Table 8.10 shows the rules on using the registers and their initial values in an initialization routine.

Table 8.10 Rules on Using Registers and Initial Register Values in an Initialization Routine

No. Register Use *1 Initial Value

1 PC ⎯ Routine address

2 SR O See the description below

3 R0 to R3 √ Undefined

4 R4 √ Initialization routine extended information

5 R5 √ Undefined

6 R6 √ Undefined

7 R7 √ Undefined

8 R8 to R14, MACH, MACL, GBR O Undefined

9 R15 O Non-task stack

10 PR O Address of the return processing in the
kernel

11 [DSP] DSR, RS, RE, MOD, A0,
A0G, A1, A1G, M0, M1, X0, X1,
Y0, Y1

 Undefined

12 [FPU] FPSCR Undefined

13 [FPU] FPUL Undefined

14 [FPU] FPR0_BANK0 to
FPR15_BANK0

 Undefined

15 [FPU] FPR0_BANK1 to
FPR15_BANK1

 Undefined

Notes: *1 √: The register can be used without saving or restoring the register value.
 O: The register value must be restored to its initial value held at routine initiation

 when execution is returned from the routine function.
The register with no indication in the Use column must not be used (accessed).

439

The bits in SR hold the following values when an initialization routine is initiated.

• Mode (MD) bit: Always 1.

• Register bank (RB) bit: Always 0.

• Block (BL) bit: Always 0.

• DSP bit (SH4AL-DSP): Always 0.

• FPU disable (FD) bit (SH-4A): Always 1.

• Interrupt mask level (IMASK) bits: 15

• Other bits: Undefined

In an initialization routine, the BL and IMASK bits in SR must be specified so that interrupts with
the level masked at initiation of the routine are not accepted.

8.7.3 DSP and FPU

In an initialization routine, operation using the DSP or FPU is not allowed. Note, however, that an
extended service call routine or a trap routine called in an initialization routine can use the
coprocessor corresponding to the attribute (TA_COP0, TA_COP1, or TA_COP2) specified for the
routine.

Before a DSP operation is performed, the DSR must be correctly initialized. For appropriate initial
values, refer to the hardware manual of the microcomputer being used.

440

8.8 CPU Exception Handler

Refer to the sample CPU exception handler stored in samples\sysapp\exchdr.c.

8.8.1 Writing the CPU Exception Handler

The CPU exception handler must be written as a C-language function as shown in figure 8.13.

#include "kernel.h"

void Exchdr(VT_EXC *pk_exc) ← (1)

{

 /* Processing */
}

Figure 8.13 Example of CPU Exception Handler

Description:

(1) pk_exc indicates the address of the packet where the register information is saved when a CPU
exception occurs.

The VT_EXC-type structure consists of VT_EXCINF-type, VT_REG0-type, and VT_REG1-type
structures as shown in figure 8.14. Figures 8.15 to 8.17 show the definition of each type.

typedef struct {

 VT_EXCINF vt_excinf;

 VT_REG1 vt_reg1;

 VT_REG0 vt_reg0;

} VT_EXC;

Figure 8.14 VT_EXC Type

441

typedef struct {

 UW syssts; /* System status (kernel internal information) before the exception occurs */

 ID tskid; /* ID of the task executed before the exception.

 TSK_NONE(0) when no task was executed */

 ID domid; /* ID of the domain where the task executed before the exception is assigned.

 TDOM_NONE(-2) when no task was executed */

 STAT texstat; /* Exception processing state of the task with tskid.

 Invalid (undefined value) when tskid = TSK_NONE(0) */

 UW expevt; /* EXPEVT register */

 UW tra; /* TRA register */

 UW tea; /* TEA register */

} VT_EXCINF;

Figure 8.15 VT_EXCINF Type

typedef struct {

 UW r0; /* R0_BANK0 register */

 UW r1; /* R1_BANK0 register */

 UW r2; /* R2_BANK0 register */

 UW r3; /* R3_BANK0 register */

 UW r4; /* R4_BANK0 register */

 UW r5; /* R5_BANK0 register */

 UW r6; /* R6_BANK0 register */

 UW r7; /* R7_BANK0 register */

 UW pr; /* PR register */

 UW spc; /* SPC register */

 UW ssr; /* SSR register */

 UW ctxid; /* ctxid information (kernel internal information) */

 UW r15; /* R15 register */

} VT_REG0;

Figure 8.16 VT_REG0 Type

442

typedef struct {

 UW r8; /* R8 register */

 UW r9; /* R9 register */

 UW mach; /* MACH register */

 UW r10; /* R10 register */

 UW macl; /* MACL register */

 UW r11; /* R11 register */

 UW gbr; /* GBR register */

 UW r12; /* R12 register */

 UW r13; /* R13 register */

 UW r14; /* R14 register */

} VT_REG1;

Figure 8.17 VT_REG1 Type

The kernel restores each register value to the respective values saved in vt_reg0 or vt_reg1 when
the execution of the CPU exception handler is completed. To modify the register contents for
exception processing, modify the packet contents. Note, however, that ssr, ctxid, and r15 in
vt_reg0 must not be modified. If they are modified, correct operation is not guaranteed.

The FPU register values and DSP register values are not saved in this packet. The kernel neither
saves these register values when initiating a handler, nor restores the registers when execution of
the handler is completed. To modify the DSP or FPU registers for exception processing, modify
the desired registers directly in the handler; note that direct modification is only allowed for a DSP
or FPU exception. If the current exception is not related to the DSP or FPU, manipulation of the
DSP or FPU registers may not be possible. The program for modifying the registers must be
written in the assembly language.

8.8.2 Macros Specialized for CPU Exception Handler

The following C-language macros specialized for the CPU exception handler are provided to refer
to various states when a CPU exception occurs. All macros specify pk_exc, which is passed to the
CPU exception handler as a parameter. The kernel does not detect errors in the parameters
specified in these macros.

443

(1) Referring to the Context at CPU Exception: VSNS_CTX Macro

C-Language API:

BOOL state = VSNS_CTX(VT_EXC *pk_exc);

Return Parameter:

BOOL state Context

Function:

The return value is determined in the same way as in the sns_ctx service call; that is, TRUE is
returned when a non-task context is executed when a CPU exception occurs, or FALSE when a
task context is executed.

(2) Referring to the ID of the Task in RUNNING State at CPU Exception:
 VGET_TID Macro

C-Language API:

ID tskid = VGET_TID(VT_EXC *pk_exc);

Return Parameter:

ID tskid Task ID

Function:

The return value is determined in the same way as in the iget_tid service call; that is, the ID of the
task in RUNNING state when a CPU exception occurs is returned. To be more specific, when a
CPU exception occurs in a task context, the ID of the task is returned. When a CPU exception
occurs in a non-task context, the ID of the task in RUNNING state before the non-task context was
entered is returned. If there is no task in RUNNING state, TSK_NONE(0) is returned.

Note that the ID of the task in RUNNING state before a non-task context was entered is returned
when a CPU exception occurs in the non-task context. Use VSNS_CTX() to check whether a CPU
exception occurred in a task context or a non-task context.

444

(3) Referring to the ID of the Domain for the Task in RUNNING State at CPU Exception:
 VGET_DID Macro

C-Language API:

ID domid = VGET_DID(VT_EXC *pk_exc);

Return Parameter:

ID domid Domain ID

Function:

The return value is determined in the same way as in the iget_did service call; that is, the ID of the
domain for the task in RUNNING state when a CPU exception occurs is returned. To be more
specific, when a CPU exception occurs in a task context, the ID of the domain for the task is
returned. When a CPU exception occurs in a non-task context, the ID of the domain for the task in
RUNNING state before the non-task context was entered is returned. If there is no task in
RUNNING state, TDOM_NONE(-2) is returned.

Note that the ID of the domain for the task in RUNNING state before a non-task context was
entered is returned when a CPU exception occurs in the non-task context. Use VSNS_CTX() to
check whether a CPU exception occurred in a task context or a non-task context.

(4) Referring to the CPU-Locked State at CPU Exception: VSNS_LOC Macro

C-Language API:

BOOL state = VSNS_LOC(VT_EXC *pk_exc);

Return Parameter:

BOOL state CPU-locked state

Function:

The return value is determined in the same way as in the sns_loc service call; that is, TRUE is
returned when a CPU exception occurs in the CPU-locked state, or FALSE in the CPU-unlocked
state.

445

(5) Referring to the Dispatch-Disabled State at CPU Exception: VSNS_DSP Macro

C-Language API:

BOOL state = VSNS_DSP(VT_EXC *pk_exc);

Return Parameter:

BOOL state Dispatch-disabled state

Function:

The return value is determined in the same way as in the sns_dsp service call; that is, TRUE is
returned when a CPU exception occurs in the dispatch-disabled state, or FALSE in the dispatch-
enabled state.

(6) Referring to the Dispatch-Pended State at CPU Exception: VSNS_DPN Macro

C-Language API:

BOOL state = VSNS_DPN(VT_EXC *pk_exc);

Return Parameter:

BOOL state Dispatch-pended state

Function:

The return value is determined in the same way as in the sns_dpn service call; that is, TRUE is
returned when a CPU exception occurs in the dispatch-pended state; otherwise, FALSE is
returned.

446

(7) Referring to the Task Exception-Disabled State for the Task in RUNNING State at CPU
 Exception: VSNS_TEX Macro

C-Language API:

BOOL state = VSNS_TEX(VT_EXC *pk_exc);

Return Parameter:

BOOL state Task exception-disabled state

Function:

The return value is determined in the same way as in the sns_ctx service call; that is, FALSE is
returned when the return value from VGET_TID is not TSK_NONE(0) and the task is in the task
exception-enabled state; otherwise, TRUE is returned.

447

8.8.3 Rules on Using Registers

Table 8.11 shows the rules on using the registers and their initial values in the CPU exception
handler.

Table 8.11 Rules on Using Registers and Initial Register Values in CPU Exception Handler

No. Register Use *1 Initial Value

1 PC ⎯ Handler address

2 SR O See the description below

3 R0 to R3 √ Undefined

4 R4 √ pk_exc

5 R5 √ Undefined

6 R6 √ Undefined

7 R7 √ Undefined

8 R8 to R14, MACH, MACL, GBR √ Undefined

9 R15 O Non-task stack

10 PR O Address of the return processing for a CPU
exception in the kernel

11 [DSP] DSR, RS, RE, MOD, A0,
A0G, A1, A1G, M0, M1, X0, X1,
Y0, Y1

O*2 Same as the value before the CPU
exception

12 [FPU] FPSCR O*2 Same as the value before the CPU
exception

13 [FPU] FPUL, FPR0_BANK0 to
FPR15_BANK0

O*2 Same as the value before the CPU
exception

15 [FPU] FPR0_BANK1 to
FPR15_BANK1

O*2 Same as the value before the CPU
exception

Notes: *1 √: The register can be used without saving or restoring the register value.

 O: The register value must be restored to its initial value held at initiation
 when execution is returned from the handler function.

 *2 Modify the required register only when the exception cause should be cleared.

448

The bits in SR hold the following values when the CPU exception handler is initiated.

• Mode (MD) bit: Always 1.

• Register bank (RB) bit: Always 0.

• Block (BL) bit: Depends on the excsr value specified at definition of the CPU exception
handler

• Other bit: Same as the value before the CPU exception

In the CPU exception handler, the BL and IMASK bits in SR must be specified so that interrupts
with the level masked at initiation of the handler are not accepted.

8.8.4 DSP and FPU

In the CPU exception handler, operation using the DSP or FPU is not allowed except when
registers are modified for exception processing.

449

8.9 Memory Access Violation Handler

8.9.1 Overview

The memory access violation handler is initiated when an illegal memory access is performed for
an MMU mapped area while the memory object protection function is used. When the memory
object protection function is used, a memory access violation handler must be created and
embedded in the kernel.

Refer to the sample memory access violation handler stored in samples\sysapp\mavhdr.c.

8.9.2 Writing the Memory Access Violation Handler

The memory access violation handler must be written as a C-language function as shown in
figure 8.18.

#include "kernel.h"

void _kernel_mavhdr (VT_MAV *pk_mav, VT_EXC *pk_exc) ← (1)

{

 /* Processing */
}

Figure 8.18 Example of Memory Access Violation Handler

Description:

(1) The name of the memory access violation handler is determined as "_kernel_mavhdr". pk_mav
indicates the type of access violation, and pk_exc indicates the address of the packet where the
register information is saved when memory access violation occurs.

For the VT_EXC type definition, see figures 8.14 to 8.17.

The kernel restores each register value to the respective values saved in vt_reg0 or vt_reg1 when
the execution of the memory access violation handler is completed. To modify the register
contents for exception processing, modify the packet contents. Note, however, that ssr, ctxid, and
r15 in vt_reg0 must not be modified. If they are modified, correct operation is not guaranteed.

The FPU register values and DSP register values are not saved in this packet. The kernel neither
saves these register values when initiating a handler, nor restores the registers when execution of
the handler is completed. To modify the DSP or FPU registers for exception processing, modify
the desired registers directly in the handler; note that direct modification is only allowed for a DSP

450

or FPU exception. If the current exception is not related to the DSP or FPU, manipulation of the
DSP or FPU registers may not be possible. The program for modifying the registers must be
written in the assembly language.

Figure 8.19 shows the definition of the VT_MAV type.

typedef struct {

 UW type; /* Error type */

 UW access; /* Read or write */

} VT_MAV;

Figure 8.19 VT_MAV Type

Either one of the following values is passed through type.

• E_NOEXS: An address that is not specified as a memory object in an MMU mapped area is
accessed or the P3 area is accessed in the privileged mode.

• E_MACV: There is no access permission when an existing memory object is accessed.

Through access, TPM_READ(0) is passed for read access, or TPM_WRITE(1) for write access.

8.9.3 Macros Specialized for CPU Exception Handler

The macros described in section 8.8.2, Macros Specialized for CPU Exception Handler, can also
be used in the memory access violation handler.

451

8.9.4 Rules on Using Registers

Table 8.12 shows the rules on using the registers and their initial values in the memory access
violation handler.

Table 8.12 Rules on Using Registers and Initial Register Values in Memory Access
Violation Handler

No. Register Use *1 Initial Value

1 PC ⎯ Handler address

2 SR O See the description below

3 R0 to R3 √ Undefined

4 R4 √ pk_mav

5 R5 √ pk_exc

6 R6 √ Undefined

7 R7 √ Undefined

8 R8 to R14, MACH, MACL, GBR √ Undefined

9 R15 O Non-task stack

10 PR O Address of the return processing for
memory access violation in the kernel

11 [DSP] DSR, RS, RE, MOD, A0,
A0G, A1, A1G, M0, M1, X0, X1,
Y0, Y1

O*2 Same as the value before the memory
access violation

12 [FPU] FPSCR O*2 Same as the value before the memory
access violation

13 [FPU] FPUL, FPR0_BANK0 to
FPR15_BANK0

O*2 Same as the value before the memory
access violation

15 [FPU] FPR0_BANK1 to
FPR15_BANK1

O*2 Same as the value before the memory
access violation

Notes: *1 √: The register can be used without saving or restoring the register value.
 O: The register value must be restored to its initial value held at initiation

 when execution is returned from the handler function.
 *2 Modify the required register only when the exception source should be clarified.

452

The bits in SR hold the following values when the memory access violation handler is initiated.
Note especially that the handler is initiated with keeping BL = 1. Any service call must not be
issued while BL = 1.

• Mode (MD) bit: Always 1.

• Register bank (RB) bit: Always 0.

• Block (BL) bit: Always 0.

• Other bits: Same as the value before the memory access violation

In the memory access violation handler, the BL and IMASK bits in SR must be specified so that
interrupts with the level masked at initiation of the handler are not accepted.

8.9.5 DSP and FPU

In the memory access violation handler, operation using the DSP or FPU is not allowed except
when registers are modified for exception processing.

453

8.10 System Down Routine

8.10.1 Overview

The system down routine is called when a vsys_dwn service call is issued or an abnormal state is
detected in the kernel. Various information regarding the cause of abnormality is passed to the
system down routine. A system down routine must always be created and embedded in the kernel.

Refer to the sample system down routine stored in samples\sysapp\sysdwn.c.

8.10.2 Writing the System Down Routine

The system down routine must be written as a C-language function as shown in figure 8.20.

#include "kernel.h"

void _kernel_sysdwn (ER type, VW inf1, VW inf2, VW inf3)

{

 /* Processing */
 while(1);

}

Figure 8.20 Example of System Down Routine

The function name of the system down routine is determined as "_kernel_sysdwn".

Execution should not return from the system down routine.

454

8.10.3 Rules on Using Registers

Since execution does not return from the system down routine, any register can be freely used in
the system down routine.

Parameters are passed through the following registers.

• R4: type

• R5: inf1

• R6: inf2

• R7: inf3

For the function of each parameter, refer to the following.

Reference: Section 16.1, Information during System Down

455

Section 9 Standard Timer Driver

9.1 Overview

If CFG_OPTTMR is not selected in the configurator, a standard timer driver must be created and
installed in the kernel.

The HI7300/PX provides a sample of the standard timer driver (samples\shnnnn\kernel\knl_side\
tmrdrv.c). Table 9.1 lists the samples of standard timer drivers.

Table 9.1 Samples of Standard Timer Drivers Provided for HI7300/PX V.1.00

shnnnn Target Microcomputer and Internal Timer Module

73180 SH73180 TMU CH0

7343 SH7343 TMU CH0

7780 SH7780 TMU CH3

7785 SH7785 TMU CH3

9.2 Configuration of Functions

The standard timer driver is composed of timer initialization and timer interrupt routines. The
timer interrupt routine is called from the timer interrupt handler _kernel_isig_tim() of the kernel,
and clears interrupt factors. In addition, the timer initialization routine is executed as an
initialization routine.

These function names are fixed as follows:

• Timer initialization routine: _kernel_tmrini()

• Timer interrupt routine: _kernel_tmrint()

456

9.2.1 Timer Initialization Routine (_kernel_tmrini())

In the timer initialization routine, the macros listed in table 9.2, which are output to
kernel_macro.h by the configurator, are used to initialize the timer.

Table 9.2 Macros Used in Timer Initialization Routine

Macro Name Item Set by the Configurator Description

TIC_NUME CFG_TICNUME in the [Time
Management Function] page

TIC_DENO CFG_TICDENO in the [Time
Management Function] page

Numerator of time tick period [msec]
= TIC_NUME/TIC_DENO

VTCFG_TIMINTNO CFG_TIMINTNO in the [Time
Management Function] page

Timer interrupt number

VTCFG_TMRCLOCK CFG_TMRCLOCK in the [Time
Management Function] page

Clock supplied to the timer [Hz]

VTCFG_KNLLVL CFG_KNLLVL in the [Kernel]
page

Kernel interrupt mask level or timer
interrupt level

The following operations are performed in the timer initialization routine:

• Definition of the timer interrupt handler

• Initialization of the timer device or interrupt controller

Figure 9.1 shows an example of the timer initialization routine.

457

extern void _kernel_isig_tim(void);

void _kernel_tmrini(void)

{

 /*** Interrupt handler definition packet ***/

 const T_DINH dinh <- (1)

 = { TA_HLNG, &_kernel_isig_tim, (MD_BIT|BL_BIT) | ((VTCFG_KNLLVL)<<4)};

 INT old_sr;

 /* Define timer interrupt handler */ <- (1)

 if((def_inh(VTCFG_TIMINTNO, &dinh)) != E_OK) {

 while(1) {

 }

 }

 /* Save current SR */

 old_sr = get_cr();

 /* Set SR.BL=1 */

 set_cr(BL_BIT | old_sr);

 /* Cancel TMU module-stop */ <- (2)

 TIMER_MSTOP_CANCEL();

 /* Initialize INTC for TMU */ <- (3)

 TIMER_INTC_SET(VTCFG_KNLLVL);

 /* Initialize TMU.CH0 */ <- (4)

 TIMER_INITIALIZE();

 /* Restore SR */

 set_cr(old_sr);

}

Figure 9.1 Example of Timer Initialization Routine

458

(1) The timer interrupt handler must be defined as follows:

• Interrupt number: VTCFG_TIMINTNO

• Attribute of the handler: TA_HLNG

• Handler address: ‘_kernel_isig_tim’ (internal kernel module)

• SR at activation: (MD_BIT | BL_BIT) | ((VTCFG_KNLLVL) <<4)

(2) The module stop of the timer device is canceled. The TIMER_MSTOP_CANCEL() has been

defined by mstop_tmu.h.

(3) The interrupt controller is set so that the timer interrupt level will be VTCFG_KNLLVL. The
TIMER_INTC_SET() is defined by intc_tmu.h.

(4) The timer device is initialized so that the condition of the input clock to the timer will be
VTCFG_TMRCLOCK[Hz] and the interrupt cycle will be TIC_NUME/TIC_DENO[msec].
The TIMER_INITIALIZE() is defined with tmu.h.

9.2.2 Timer Interrupt Routine (_kernel_tmrint())

In the timer interrupt routine, interrupt factors are cleared.

void _kernel_tmrint(void)

{

 TIMER_INTERRUPT(); <- (1)

}

Figure 9.2 Example of Timer Interrupt Routine

(1) The interrupt factor is cleared. The TIMER_INTERRUPT() is defined with tmu.h.

459

Section 10 Configurator

10.1 Overview

The configurator is a tool used for setting the operating parameters of the kernel. The configurator
creates the following files according to the settings. These files created by the configurator are
totally referred to as "configuration files".

• ID name header file

The name specified for each object by the user is defined as the ID number in the configurator.
This file is included from an application.

• System definition files

The system configuration information is output to these files. These files are included from
two files, kernel_def.c and kernel_cfg.c. These two files are contained in the system\ directory.
kernel_def.c is linked with the kernel libraries. In other words, these files are used to extract
the necessary modules from the kernel libraries.

The configurator settings can be saved in a file whose extension is hcf. This file is called the
"configurator setting file" or "HCF file".

For the role played by the configurator in system configuration, refer to the following.

Reference: Section 11.1, Load Module Types

460

10.2 Linkage Unit, Kernel Lock Mode, and [Kernel Side]

All setting items of the configurator are classified into the "kernel side" and "kernel environment
side".

The "kernel side" stands for information that will be included in a kernel load module (knl_side),
and the "kernel environment side" stands for information that will be included in a kernel
environment load module (env_side).

To prevent update of a kernel load module, set "kernel lock mode" for the configurator. In kernel
lock mode, changing information on the "kernel side" is limited and no configuration file is output
on the kernel side.

To enter kernel lock mode, select [Generate -> Kernel Lock Mode] from the menu bar.

In the case of creating objects, such as tasks, which item is on the kernel side can be set and
confirmed as shown below.

• The dialog box for creating an object has a [Kernel Side] check box. If this check box is
selected, that object is on the kernel side.

• The objects marked by a flag icon in the list box showing a list of objects are on the kernel
side.

For other setting items, refer to the subsequent sections.

In addition, refer to the following.

Reference: Section 11.1, Load Module Types

When specifying a C-language symbol or section name of an application, the symbol entity must
be included in the suitable linkage unit (load module on the kernel side or kernel environment
side).

10.3 Configuration Files Output from Configurator

Configuration files consist of header files for the application and system definition files. System
definition files are included only from the following two files which fetch the configuration result.

• kernel_def.c: Kernel side

• kernel_cfg.c: Kernel environment side

kernel_def.c and kernel_cfg.c are stored in the system\ directory.

461

Table 10.1 lists the configuration files. In kernel lock mode, files on the kernel side are not output.

Table 10.1 Configuration Files Output from Configurator

Classification File Name Linkage Unit
Included from
kernel_def.c

Included from
kernel_cfg.c

kernel_macro.h Kernel side Ο (included from kernel.h)

kernel_id_sys.h Kernel side Ο Ο

Header files for
application

kernel_id.h Kernel environment side ⎯ Ο

kernel_def_main.h Kernel side Ο Ο

kernel_def_import.h Kernel side Ο Ο

kernel_def_inireg.h Kernel side Ο ⎯

kernel_def_inirtn.h Kernel side Ο ⎯

kernel_def_attmem.h Kernel side Ο ⎯

kernel_cfg_main.h Kernel environment side ⎯ Ο

kernel_cfg_import.h Kernel environment side ⎯ Ο

kernel_cfg_inireg.h Kernel environment side ⎯ Ο

kernel_cfg_inirtn.h Kernel environment side ⎯ Ο

System definition
files

kernel_cfg_attmem.h Kernel environment side ⎯ Ο

10.3.1 Header Files for Application

(1) kernel_macro.h (kernel side)

This file is included from the header, kernel.h.

(2) kernel_id_sys.h (kernel side), kernel_id.h (kernel environment side)

Definition of the ID name specified when creating various objects in the configurator is output to
these files in the following form:

#define ID_TASK_A 1 /* ID value of ID name "ID_TASK_A" is 1 */

Including these files from an application as required allows the ID name to be used as an ID value
of an object.

If [Kernel Side] is selected at object creation, the ID name is output to kernel_id_sys.h, whereas if
not selected, it is output to kernel_id.h. Note that if [Kernel Side] is not selected, the configurator
can assign ID numbers automatically.

462

The domain name is always output to kernel_id_sys.h.

kernel_id.h is a file on the kernel environment side so it should not be included in an application
that will be linked to the kernel side.

10.3.2 System Definition Files

(1) kernel_def_main.h (kernel side)

Information, such as the result of service call selection, which is used for selecting the necessary
function modules from the kernel libraries is output.

(2) kernel_cfg_main.h (kernel environment side)

Information, such as the number of tasks and the resource pool size, which is related to the system
size is output.

(3) kernel_def_import.h (kernel side), kernel_cfg_import.h (kernel environment side)

When a C-language symbol is specified in the configurator, the external reference statement for
that symbol is output to these files. The symbols on the kernel side are output to
kernel_def_import.h, while the symbols on the kernel environment side are output to
kernel_cfg_import.h.

(4) kernel_def_inireg.h (kernel side), kernel_cfg_inireg.h (kernel environment side)

The "initial registration routine" program for creating and defining various objects set in the
configurator is output. Objects on the kernel side are created and defined in kernel_def_inireg.h,
while objects on the kernel environment side are created and defined in kernel_cfg_inireg.h.

In addition, refer to the following.

Reference: • Section 6.22.12, Start Kernel (vsta_knl, ivsta_knl)
• Section 16.2.2, When Object Specified in Configurator Cannot be Created

(5) kernel_def_inirtn.h (kernel side), kernel_cfg_inirtn.h (kernel environment side)

The initialization routine information is output. The initialization routine information on the
kernel side is output to kernel_def_inirtn.h, while the initialization routine information on the
kernel environment side is output to kernel_cfg_inirtn.h.

(6) kernel_def_attmem.h (kernel side), kernel_cfg_attmem.h (kernel environment side)

The static memory object information is output. The static memory object information on the
kernel side is output to kernel_def_attmem.h, while the static memory object information on the
kernel environment side is output to kernel_cfg_attmem.h.

463

10.4 User Interface

10.4.1 Screen Configuration

Figure 10.1 shows the screen configuration of the configurator.

Figure 10.1 Screen Configuration of Configurator

10.4.2 Title Bar

The title bar at the top of the window displays the application name or document name.

The title bar includes the following elements:

464

(1) Control menu button of the application

(2) Application name (HIOS Configurator – HI7300/PX –)

(3) HCF file name

(4) <Minimize> button

(5) <Maximize>/<Restore Down> button

(6) <Close> button

10.4.3 Menu Bar:[File] Menu

All information set by the user can be saved in the HCF files. The previously set contents can be
recovered by reading an HCF file.

The [File] menu is for creating, opening, or saving an HCF file.

The following commands are available.

• [New]

• [Open...]

• [Save]

• [Save As...]

• [Exit]

Up to four recently used HCF files can be displayed.

(1) [New] command ([File] menu)

Creates a new configurator setting file (untitled.hcf) and opens it.

Shortcut:

Tool bar:

Keyboard: CTRL + N

(2) [Open...] command ([File] menu)

Opens an existing HCF file.

Shortcut:

Tool bar:

465

Keyboard: CTRL + O

(3) [Save] command ([File] menu)

Saves the currently edited HCF file without changing the file name and storage location. The first
time a new configurator setting file (untitled.hcf) is saved, the [Save As] dialog box is displayed
so that the file can be saved with a suitable file name. To save a file with a different file name or
storage location, use the [Save As...] command.

Shortcut:

Tool bar:

Keyboard: CTRL + S

(4) [Save As...] command ([File] menu)

Saves the currently edited contents in a new HCF file.

(5) [Exit] command ([File] menu)

Terminates the configurator. If the setting contents are not yet saved, a dialog box confirming
whether the contents should be saved or not is displayed.

10.4.4 Menu Bar:[View] Menu

The [View] menu is for enabling or disabling display of the toolbar and status bar.

The following commands are available.

• [Toolbar]

• [Status Bar]

(1) [Toolbar] command ([View] menu)

Enables or disables display of the toolbar. The toolbar includes tools which have the same
functions as the most frequently used commands, such as [Open...]. When the toolbar is
displayed, a check mark is put next to this command name in the [View] menu.

(2) [Status Bar] command ([View] menu)

Enables or disables display of the status bar. The status bar displays a simple description of a
command if a menu command or toolbar button is selected, and also the ON/OFF state of the
special keys on the keyboard. When the status bar is displayed, a check mark is put next to this
command name in the [View] menu.

466

10.4.5 Menu Bar:[Generate] Menu

The [Generate] menu has the following commands.

• [Kernel Lock Mode]

• [Generate Configuration Files]

(1) [Kernel Lock Mode] command ([Generate] menu)

Sets or cancels kernel lock mode.

In kernel lock mode, "Kernel Lock" is displayed on the status bar.

Whether or not the configurator was in kernel lock mode is also saved in the HCF file.

Reference: 10.2 Linkage Unit, Kernel Lock Mode, and [Kernel Side]

(2) [Generate Configuration Files] command ([Generate] menu)

Generates the configuration files.

Selecting this command opens the [Generation of Configuration Files] dialog box in which the file
generation location is specified. After specifying the file generation location, click the [Generate]
button to generate the configuration files at the specified location.

Shortcut:

Tool bar:

Keyboard: CTRL + G

10.4.6 Menu Bar:[Options] Menu

The [Options] menu has the following command.

• [Open the file used last time]

(1) [Open the file used last time] command ([Options] menu)

The file used last time is opened automatically when this command is selected.

467

10.4.7 Menu Bar:[Help] Menu

The [Help] menu has the following commands.

• [Help Topics]

• [About HIOS Configurator...]

(1) [Help Topics] command ([Help] menu)

Opens the help files.

(2) [About HIOS Configurator...] command ([Help] menu)

Displays the version number and copyright of the configurator.

10.4.8 Toolbar

The toolbar is displayed immediately under the menu bar at the top of the application window. In
the toolbar, frequently used functions are registered as buttons.

To enable or disable display of the toolbar, select the [Toolbar] command in the [View] menu.

Each button is related with a command as shown below.

[New] command

[Open...] command

[Save] command

[Generate Configuration Files] command

Help Initiation of context help mode

10.4.9 Status Bar

The status bar is displayed at the bottom of the main window. To enable or disable display of the
status bar, select the [Status Bar] command in the [View] menu.

468

On the left side of the status bar, a brief description of a menu command is displayed when
selected. Similarly, when the cursor is placed on a toolbar button, a brief description is displayed.
To halt execution of a toolbar command after reading its description, move the mouse pointer to a
different location than that toolbar button and release the mouse button.

On the right side of the status bar, the following status is displayed.

• Kernel Lock: Kernel lock mode

• CAP: [Caps Lock] key is ON

• NUM: [Num Lock] key is ON

• SCRL: [Scroll Lock] key is ON

10.4.10 [Navigation] Window

The [Navigation] window displays the page that will be shown in the [Information Input] window.
Selecting an item in the list using the mouse or keyboard displays the page corresponding to the
selected item in the [Information Input] window.

469

Figure 10.2 Navigation Window

10.4.11 [Information Input] Window

The [Information Input] window is for entering configuration information. This window displays
the page selected in the [Navigation] window.

For details of each page, refer to the subsequent sections.

470

10.5 Page Configuration

Table 10.2 lists the pages.

471

Table 10.2 List of Pages

Page Setting Items

[Kernel] page Common items of the kernel

[CPU] page Information related to the microcomputer used

[Time Management Function] page Items related to the time management function

[Debugging Function] page Items related to the debugging function (Debugging
Extension)

[User Domain] page ID names of user domains

[Performance] page Items related to the performance management
function using the program performance counter
(PPC) in the CPU

[Service Call Selection] page Service calls to be installed

[Interrupt/CPU Exception Handler] page Items related to an interrupt or CPU exception

[Static Memory Object] page Registration of a static memory object

[Initialization Routine] page Registration of an initialization routine

[Task] page Items related to a task

[Semaphore] page Items related to a semaphore

[Event Flag] page Items related to an event flag

[Data Queue] page Items related to a data queue

[Mailbox] page Items related to a mailbox

[Mutex] page Items related to a mutex

[Message Buffer] page Items related to a message buffer

[Fixed-size Memory Pool] page Items related to a fixed-size memory pool

[Variable-size Memory Pool] page Items related to a variable-size memory pool

[Cyclic Handler] page Items related to a cyclic handler

[Alarm Handler] page Items related to an alarm handler

[Overrun Handler] page Definition of the overrun handler

[Protected Memory Pool] page Items related to a protected memory pool

[Protected Mailbox] page Items related to a protected mailbox

[Extended Service Call] page Items related to an extended service call

[Trap] page Items related to a trap

472

10.6 CFG Name

Most of the items set in the configurator affect kernel operation. Such setting items have a "CFG
name" that begins with "CFG_". This name is not only displayed on the configurator screen but is
also used in this manual. However, not all setting items are given names.

For example, CFG_SYSPOOLSZ in the [Kernel] page stands for the system pool size.

10.7 Specifications for Pages and Dialog Boxes

10.7.1 [Kernel] Page

In this page, set the common items of the kernel.

Figure 10.3 [Kernel] Page

473

Table 10.3 lists the [Kernel] page items.

Table 10.3 [Kernel] Page Items

Item CFG Name Linkage Unit

Parameter Check Function CFG_PARCHK Kernel side

Max. Message Priority CFG_MAXMSGPRI Kernel side

Kernel Interrupt Mask Level, Timer
Interrupt Level

CFG_KNLLVL Kernel side

Non-task Context Stack Size CFG_NTSKSTKSZ Kernel environment side

Resource Pool Size CFG_RESPOOLSZ Kernel environment side

System Pool Size CFG_SYSPOOLSZ Kernel environment side

Max. Sector Count in System Pool CFG_SYSPOOLSCTNUM Kernel environment side

Installs the Memory Object Protection
Function

CFG_PROTMEM Kernel side

Default MMU Page Size CFG_PAGESZ Kernel side

Checks Access Permission for Address
Parameter in Service Call

CFG_MEMCHK Kernel side

Max. Page Count for TLB Lock CFG_MAXLOCPAGE Kernel side

(1) [Parameter Check Function [CFG_PARCHK]]

If this check box is selected, the parameter errors in a service call are checked.

If this check box is not selected, the selection of CFG_MEMCHK described later is automatically
canceled.

Reference: Section 6.3.2, Parameter Check Function

(2) [Max. Message Priority [CFG_MAXMSGPRI]]

Select the maximum value of the message priority used in the mailboxes and protected mailboxes
from 1 to 255. When both mailboxes and protected mailboxes are not used, any value can be
selected because this item has no meaning.

The following statement is output to kernel_macro.h in response to this setting.

#define TMAX_MPRI 255 /* Example when 255 is selected */

(3) [Kernel Interrupt Mask Level, Timer Interrupt Level [CFG_KNLLVL]]

474

In the case of executing a critical section, the kernel sets the I bit in the SR register to
CFG_KNLLVL. An interrupt whose interrupt level is higher than this value is accepted without
delay even while the kernel is executing a critical section, but a service call cannot be issued from
that handler. A value from 1 to 15 can be selected.

In addition, CFG_KNLLVL is also the timer interrupt level.

The following statement is output to kernel_macro.h in response to this setting.

#define VTKNL_LVL 15 /* Example when 15 is selected */

When CFG_OPTTMR in the [Time Management Function] page is not selected, in other words,
when the standard timer driver is used, the timer interrupt level should be initialized to
VTKNL_LVL in the initialization routine of the standard timer driver.

When the optimized timer driver is used, the kernel initializes the timer interrupt level to
CFG_KNLLVL.

Reference: Creating standard timer driver → Section 9, Standard Timer Driver

(4) [Area Size] group

(a) [Non-task Context Stack Size [CFG_NTSKSTKSZ]]

Specify the stack size for the non-task context in bytes. An integer between 256 and 0x20000000
can be specified. The specified value is rounded up to a multiple of four.

Reference: Section 12.4, Calculation of Non-task Context Stack Size

(b) [Resource Pool Size [CFG_RESPOOLSZ]]

Specify the resource pool size in bytes. An integer between 256 and 0x20000000 can be specified.
The specified value is rounded up to a multiple of four.

[Current Required Size] shows the required size for the objects that use the resource pool and were
created in the configurator. If a value smaller than this size is specified, the following error
message is displayed.

Resource pool size must be at least [Current Required Size]

However, this message may not be displayed even when the size is insufficient because the
resource pool is consumed even during system operation. A sufficient size must be specified
taking into consideration the cases where the resource pool is consumed.

Reference: • Section 4.31, Controlling Memory Fragmentation
• Section 13, Estimation of Resource Pool Size

475

(c) [System Pool Size [CFG_SYSPOOLSZ]]

Specify the system pool size in bytes. An integer between 0 and 0x20000000 can be specified.
The specified value is rounded up to a multiple of 64 when CFG_PROTMEM is not selected and
to CFG_PAGESZ (= 4 kbytes) when CFG_PROTMEM is selected.

[Minimum Required Size] shows the minimum required size for the objects that use the system
pool and were created in the configurator. If a value smaller than this size is specified, the
following error message is displayed.

System pool size must be at least [Minimum Required Size]

The value shown in [Minimum Required Size] is the size when sector management is not
performed (CFG_SYSPOOLSCTNUM is 0) for the system pool. If a value other than 0 is set to
CFG_SYSPOOLSCTNUM, the system pool may be insufficient even though this error message is
not displayed. In such a case, the specified object cannot be created when the kernel is initiated
and system initiation fails.

Reference: Section 16.2.2, When Object Specified in Configurator Cannot be Created

When dynamically creating an object that uses the system pool in a service call, a sufficient size
must be specified taking into consideration the cases where the system pool is consumed.

Reference: • Section 4.31, Controlling Memory Fragmentation
• Section 14, Estimation of System Pool Size

 (d) [Max. Sector Count in System Pool [CFG_SYSPOOLSCTNUM]]

Specify the maximum number of sectors in the system pool. If 0 is specified, sector management
is not performed.

If a value greater than the value calculated from the relevant equation below is specified, the
actual maximum number of sectors will be corrected to the value calculated from the relevant
equation by the kernel.

• When CFG_PROTMEM is selected: CFG_SYSPOOLSZ/(4096 × 32)

• When CFG_PROTMEM is not selected: CFG_SYSPOOLSZ/(64 × 32)

(5) [Memory Object Protection Function] group

In this group, settings related to the memory object protection function are made.

Reference: Section 4.21, Memory Object Protection Function

(a) [Installs the Memory Object Protection Function [CFG_PROTMEM]]

476

Select this check box when installing the memory object protection function.

The following statement is output to kernel_macro.h in response to this setting.

#define VTCFG_PROTMEM 1 /* 1 for installation, 0 for no installation */

(b) [Default MMU Page Size [CFG_PAGESZ]]

The default page size is the MMU page size used by memory objects other than static memory
objects. The size is fixed at 4 kbytes (4096) and cannot be modified. For static memory objects, a
page size other than 4 kbytes can be selected independently.

The following statement is output to kernel_macro.h in response to this setting irrespective of
CFG_PROTMEM. However, this definition does not have any meaning unless CFG_PROTMEM
is selected.

#define VTCFG_PAGESZ 4096

(c) [Checks Access Permission for Address Parameter in Service Call [CFG_MEMCHK]]

When this check box is selected, whether access permission for the address parameter in a service
call is appropriate or not is checked. However, since this check has a large overhead, as long as
debugging has been performed sufficiently and this check will be redundant, this error check can
be skipped by canceling the selection of CFG_MEMCHK.

Note that when this check box is selected, CFG_PARCHK is also automatically selected.

Reference: Section 6.3.3, Access Permission Check Function for Address Parameters

(d) [Max. Page Count for TLB Lock [CFG_MAXLOCPAGE]]

Specify the maximum number of pages that can be TLB locked simultaneously from 0 to 32.

If a value other than 0 is selected, the vloc_tlb and vunl_tlb service calls are installed. However,
these service calls cannot be selected in the [Service Call Selection] page.

10.7.2 [CPU] Page

In this page, set information related to the microcomputer used.

477

Figure 10.4 [CPU] Page

Table 10.4 lists the [CPU] page items.

478

Table 10.4 [CPU] Page Items

Item CFG Name Linkage Unit

Uses Microcomputer with DSP CFG_DSP Kernel side

Uses Microcomputer with FPU CFG_FPU Kernel side

Uses the DSP Standby Function CFG_DSPSTBY Kernel side

Address of Corresponding Module Stop
Control Register

CFG_MSTOPADR Kernel side

Bit Location in Above Register CFG_MSTOPBIT Kernel side

Uses Microcomputer with On-chip Memory CFG_IRAM Kernel side

On-chip Memory Usage CFG_IRAMUSAGE Kernel side

List of On-chip Memories ⎯ Kernel side

(1) [Coprocessor] group

(a) [Uses Microcomputer with DSP [CFG_DSP]] or [Uses Microcomputer with FPU [CFG_FPU]]

Select CFG_DSP when a microcomputer with DSP mounted is used, and select CFG_FPU when a
microcomputer with FPU mounted is used. Note not to select CFG_DSP and CFG_FPU at the
same time.

The TA_COP0 attribute for tasks or handlers can be used only when CFG_DSP is selected.
Similarly, the TA_COP1 and TA_COP2 attributes can be used only when CFG_FPU is selected.

(b) [Uses the DSP Standby Function [CFG_DSPSTBY]]

The DSP standby function is used to reduce power consumption by halting clock supply (module
stop) to the X/Y memory when executing a task whose attribute is not TA_COP0.

Select this check box when using the DSP standby function. When selected, the vchg_cop service
call is installed. Note that the vchg_cop service call cannot be selected in the [Service Call
Selection] page.

However, this item cannot be modified and has no meaning unless CFG_DSP is selected.

Reference: DSP standby function → Section 4.25, DSP Standby Control

(c) [Address of Corresponding Module Stop Control Register [CFG_MSTOPADR]] and [Bit
Location in Above Register [CFG_MSTOPBIT]]

Specify the address and bit location of the module stop control register that is controlled by the
DSP standby function, with reference to the hardware manual of the microcomputer used.

479

The value that can be specified in [Address] ranges from 0xa0000000 to 0xbfffffff or 0xe0000000
to 0xfffffff and must also be a multiple of four.

In [Bit Location], specify a bit pattern in which the bit that corresponds to the specified module is
1. Normally, only the X/Y memory should be specified.

Note that when CFG_DSP or CFG_DSPSTBY is not selected, these items cannot be modified and
have no meaning.

(2) [Usage of On-chip Memory Logical Addresses When the Memory Object Protection Function
is Used] group

This group is valid only when the memory object protection function is used. If
CFG_PROTMEM is not selected in the [Kernel] page, the items in this group cannot be modified
and have no meaning.

Reference: Section 5.3.3, On-Chip Memory

(a) [Uses Microcomputer with On-chip Memory [CFG_IRAM]]

Select this check box when a microcomputer with on-chip memory is used.

If this check box is not selected, the subsequent items cannot be modified and have no meaning.

(b) [On-chip Memory Usage [CFG_IRAMUSAGE]]

Select from the following how the logical addresses of the on-chip memory allocated to the P2 or
P4 area are used.

(1) MMU non-mapped area, accessible in user mode

(2) MMU non-mapped area, not accessible in user (non-DSP) mode

(3) MMU mapped area

The kernel initializes the RP and RMD bits in RAMCR according to this setting when the vsta_knl
service call is issued.

However, if CFG_IRAM is not selected, the kernel does not initialize RAMCR.

(c) [List of On-chip Memories]

The logical addresses of the specified on-chip memories are handled as specified in
CFG_IRAMUSAGE.

The following items are in the pop-up menu.

480

• [Define]: Opens the [Definition of On-chip Memory] dialog box to add an on-chip
memory definition

• [Delete]: Deletes the selected on-chip memory definition

• [Modify]: Opens the [Modification of Information for On-chip Memory Definition]
dialog box to modify the selected on-chip memory definition

(d) [Note]

All setting items in this group become invalid when CFG_PROTMEM is not selected in the
[Kernel] page. In addition, all items in this group cannot be modified.

In this case, the message shown in table 10.5 is displayed in [Note].

Table 10.5 [Note] in [Usage of On-chip Memory Logical Addresses When the Memory
Object Protection Function is Used] Group

Condition Display Message

CFG_PROTMEM is not selected All setting items in this group are invalid because
CFG_PROTMEM is not selected.

10.7.3 [Definition of On-chip Memory] Dialog Box and [Modification of Information for

On-chip Memory Definition] Dialog Box

Figure 10.5 [Definition of On-chip Memory] Dialog Box

Selecting [Define] from the pop-up menu in the [CPU] page opens the [Definition of On-chip
Memory] dialog box. Selecting [Modify] from the pop-up menu in the [CPU] page opens the
[Modification of Information for On-chip Memory Definition] dialog box. These two dialog
boxes have the same configuration.

The same information as the on-chip memory mounted on the microcomputer used must be
defined here.

481

(1) [Name]

Specify the name of the on-chip memory. The only purpose of this name is for the user to
distinguish on-chip memories in the [CPU] page. The configurator will not check whether this
input is correct.

(2) [Start Address]

Specify the logical address of the on-chip memory as a numeric value. The specified address must
be in the P2 or P4 area. The specified value is rounded down at the 4-kbyte boundary.

Make sure the range from [Start Address] to [Size] does not overlap with other on-chip memory
ranges.

(3) [Size]

Specify the on-chip memory size as a numeric value. The specifiable size is from 4 kbytes to 2
Mbytes and must also be a multiple of 4 kbytes.

(4) [Define] button (only in [Definition of On-chip Memory] dialog box)

Makes the settings in this dialog box effective. Then, returns the display of this dialog box to its
initial state so that the next on-chip memory can be defined without break. This dialog box is not
closed.

(5) [OK] button (only in [Modification of Information for On-chip Memory Definition] dialog
box)

Closes this dialog box after making the settings in this dialog box effective.

(6) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

10.7.4 [Time Management Function] Page

In this page, set items related to the time management function.

482

Figure 10.6 [Time Management Function] Page

Table 10.6 lists the [Time Management Function] page items.

Table 10.6 [Time Management Function] Page Items

Item CFG Name Linkage Unit

Time Tick Cycle Numerator CFG_TICNUME Kernel side

Time Tick Cycle Denominator CFG_TICDENO Kernel side

Clock Supplied to Timer Module CFG_TMRCLOCK Kernel side

Uses the Optimized Timer Driver CFG_OPTTMR Kernel side

Timer Interrupt Number CFG_TIMINTNO Kernel side

Optimization Rate CFG_LONGTICRATE Kernel side

(1) [Time Tick]

The time tick cycle is set to CFG_TICNUME/CFG_TICDENO [ms]. An integer between 1 and
65535 can be specified for CFG_TICNUME, and an integer between 1 and 100 can be specified
for CFG_TICDENO. However, either CFG_TICNUME or CFG_TICDENO has to be 1.

483

The time tick cycle represents the time precision for task timeout or cyclic handlers. A small time
tick cycle will increase the precision of time management by the kernel. However, timer
interrupts will occur more frequently and the overhead increased.

The following statement is output to kernel_macro.h in response to this setting.

#define TIC_NUME 1 /* When 1 is set to CFG_TICNUME */

#define TIC_DENO 1 /* When 1 is set to CFG_TICDENO */

(2) [Timer Driver] group

(a) [Clock Supplied to Timer Module [CFG_TMRCLOCK]]

Specify the clock frequency supplied to the timer module used in Hz units. An integer between 1
and 0x40000000 (approximately 1 GHz) can be specified.

Normally, specify the clock frequency supplied to the on-chip TMU.

The following statement is output to kernel_macro.h in response to this setting.

#define VTCFG_TMRCLOCK 10000000 /* When 10000000 (10 MHz) is specified */

When CFG_OPTTMR is not selected, in other words, when the standard timer driver is used, the
timer interrupt cycle should be initialized to match TICNUME/TICDENO [ms] in the
initialization routine of the standard timer driver.

(b) [Uses the Optimized Timer Driver [CFG_OPTTMR]]

Select this check box when using the optimized timer driver provided by the kernel as the timer
driver. Cancel the selection when using the standard timer driver.

(c) [Timer Interrupt Number of Standard Timer Driver [CFG_TIMINTNO]]

Select the interrupt number (INTEVT code) used in the standard timer driver.

The following statement is output to kernel_macro.h in response to this setting.

#define VTCFG_TIMINTNO 0x400 /* When 0x400 is selected */

In the initialization routine of the standard timer driver, the timer interrupt handler must be defined
for this number using the idef_inh service call.

However, this item cannot be modified and has no meaning when CFG_OPTTMR is selected.

(d) [Optimization Rate [CFG_LONGTICRATE]]

Select the optimization rate of the optimized timer driver from 2 to 255.

484

However, this item cannot be modified and has no meaning unless CFG_OPTTMR is selected.

Reference: • Creating standard timer driver → Section 9, Standard Timer Driver
• Optimized timer driver → Section 4.17, Optimized Timer Driver

10.7.5 [Debugging Function] Page

In this page, set items related to the debugging function (Debugging Extension).

Figure 10.7 [Debugging Function] Page

Table 10.7 lists the [Debugging Function] page items.

485

Table 10.7 [Debugging Function] Page Items

Item CFG Name Linkage Unit

Installs the Object Manipulation Function CFG_ACTION Kernel side

Installs the Service Call Trace Function CFG_TRACE Kernel side

Type of Service Call Trace Function CFG_TRCTYPE Kernel side

Buffer Size CFG_TRCBUFSZ Kernel environment side

Number of Acquirable Objects CFG_TRCOBJCNT Kernel environment side

(1) [Object Manipulation Function] group

When CFG_ACTION is selected, functions using service calls, such as "task start" and "event flag
setting", can be used in the Debugging Extension.

(2) [Service Call Trace Function] group

In this group, settings related to the service call trace function are made. In addition, refer to the
following.

Reference: Section 4.27, Service Call Trace

(a) [Installs the Service Call Trace Function [CFG_TRACE]]

When this check box is selected, the service call trace function is installed and also the vget_trc
service call is installed. Note that the vget_trc service call cannot be selected in the [Service Call
Selection] page.

The trace result can be referenced by the Debugging Extension.

If this check box is not selected, the subsequent items cannot be modified and have no meaning.

(b) [Type of Service Call Trace Function [CFG_TRCTYPE]]

Select either "target trace" or "tool trace" as the type of the service call trace function.

For target trace, a trace buffer to store the trace information must be prepared in the target system.

(c) [Buffer Size [CFG_TRCBUFSZ]]

Specify the buffer size that will be used for target trace. The specified value is rounded up to a
multiple of four. An integer between 512 and 0x20000000 can be specified.

However, this item cannot be modified and has no meaning when "tool trace" is selected in
CFG_TRCTYPE.

(d) [Number of Acquirable Objects [CFG_TRCOBJCNT]]

486

The object state at the moment of trace acquisition can be acquired. The kind of object state to be
acquired can be set in the Debugging Extension. Here, select the number (maximum value) of
objects that can be acquired simultaneously as [No Acquisition] or from 1 to 32.

10.7.6 [User Domain] Page

In this page, set the ID names of user domains.

Figure 10.8 [User Domain] Page

According to the specifications, this kernel always has user domains with domain IDs from 1 to
31.

In this page, the ID names for these user domains are set. The ID name of a user domain is always
on the kernel side and output to kernel_id_sys.h.

The following items are in the pop-up menu.

• [Edit]: Opens the [Setting of User Domain ID] dialog box to input an ID name for the
selected domain ID

487

• [Delete]: Deletes the ID name of the selected domain ID

10.7.7 [Setting of User Domain ID] Dialog Box

Figure 10.9 [Setting of User Domain ID] Dialog Box

Selecting [Edit] from the pop-up menu in the [User Domain] page opens this dialog box.

[ID Number] displays the domain ID number selected in the [User Domain] page.

Input the ID name to be given in [ID Name].

Clicking the [OK] button closes this dialog box after making the settings in this dialog box
effective. Clicking the [Cancel] button closes this dialog box without saving the settings in this
dialog box.

10.7.8 [Performance] Page

In this page, set items related to the performance management function using the program
performance counter (PPC) in the CPU.

488

Figure 10.10 [Performance] Page

Knowledge on a program performance counter is required to use the performance management
function. Refer to the SH-4A, SH4AL-DSP Program Performance Counter Application Note.

Reference: Section 4.26, Performance Management

Table 10.8 lists the [Performance] page items.

Table 10.8 [Performance] Page Items

Item CFG Name Linkage Unit

Installs the Performance Management Function CFG_PERFORM Kernel side

Uses the Counters Connected CFG_CONNECT Kernel side

Item Measured by Counter 0 CFG_PPC0TYPE Kernel side

Item Measured by Counter 1 CFG_PPC1TYPE Kernel side

(1) [Installs the Performance Management Function [CFG_PERFORM]]

489

Select this check box when using the performance management function. When selected, the
vchg_ppc and vref_ppc service calls are installed. Note that these service calls cannot be selected
in the [Service Call Selection] page.

If the microcomputer used does not include a program performance counter, be sure to cancel the
selection.

If this check box is not selected, the subsequent items cannot be modified and have no meaning.

(2) [Uses the Counters Connected [CFG_CONNECT]]

Select this check box when the two program performance counters are used connected.

Each program performance counter is 32 bits. For example, in the case of measuring the "passed
cycle count", a 32-bit counter overflows at approximately 10 s for a CPU with an internal
operating frequency of 400 MHz. Since a correct result cannot be obtained at an overflow, use the
counters connected in such cases.

(3) [Item Measured by Counter 0 [CFG_PPC0TYPE]], [Item Measured by Counter 1
[CFG_PPC1TYPE]]

Specify the items to be measured by counters 0 and 1, respectively. The value to be specified is
the CIT bit value in CCBR0 or CCBR1 of the PPC, which is assigned from bit 0.

For example, if 0 is specified, the passed cycle count (number of CPU cycles) is measured. For
details, refer to the SH-4A, SH4AL-DSP Program Performance Counter Application Note.

10.7.9 [Service Call Selection] Page

In this page, select the service calls that will be installed.

490

Figure 10.11 [Service Call Selection] Page

In [List of Service Calls], a check box is assigned to each function group, such as "Task
management functions" and "Synchronization and communication functions (semaphore)".

After selecting a function group, double-clicking it or clicking the [Details] button opens a dialog
box to individually select the service calls belonging to that function group.

Clicking the [All] button selects all service calls.

Some service calls have two types of names; one prefixed with "i" and the other without "i" at the
beginning, though they both have the same function, i.e. set_flg and iset_flg. These service calls
are collectively selected as "set_flg" in this page.

Note that all setting items in this page are on the kernel side.

(1) Service calls that cannot be selected

491

The service calls listed in table 10.9 cannot be selected in this page. Though they cannot be
selected, whether they will be installed or not can be confirmed in this page.

Table 10.9 Unselectable Service Calls

Function Group Service Call Condition for Installation

cre_tsk Always installed Task management

ext_tsk Always installed

Fixed-size memory pool
management

icra_mpf When CFG_PROTMEM is selected in the [Kernel]
page, and at the same time cre_mpf is selected

Variable-size memory pool
management

ivcra_mpl When CFG_PROTMEM is selected in the [Kernel]
page, and at the same time cre_mpl is selected

vsta_knl Always installed

vsys_dwn Always installed

vget_trc When CFG_TRACE is selected in the [Debugging
Function] page

ivbgn_int,
ivend_int

Only the APIs of these service calls are provided for
merely the compatibility with the HI7000/4 series, and
their entities do not exist

System state management

vchg_cop When CFG_DSP and CFG_DSPSTBY are both
selected in the [CPU] page

Interrupt management def_inh Always installed

System configuration
management

def_exc Always installed

Performance management vchg_ppc,
vref_ppc

When CFG_PERFORM is selected in the
[Performance] page

Memory object
management

vloc_tlb,
vunl_tlb

When CFG_PROTMEM is selected in the [Kernel]
page, and at the same time CFG_MAXLOCPAGE is
set to a value other than 0 in the [Kernel] page

(2) Service calls required for object creation

The objects shown in table 10.10 cannot be used unless its creation or definition service call is
selected. To be specific, creation or definition of the object in each page of the configurator will
be ignored. To use these objects, be sure to select its creation or definition service call.

492

Table 10.10 Creation or Definition Service Call Required for Each Object

Object

Creation or
Definition
Service Call Object

Creation or
Definition
Service Call

Task exception processing
routine

def_tex Variable-size memory pool cre_mpl

Semaphore cre_sem Cyclic handler cre_cyc

Event flag cre_flg Alarm handler cre_alm

Data queue cre_dtq Overrun handler def_ovr

Mailbox cre_mbx Extended service call routine def_svc

Mutex cre_mtx Trap routine vdef_trp

Message buffer cre_mbf Protected memory pool icre_mpp

Fixed-size memory pool cre_mpf Protected mailbox cre_mbp

In addition, if a creation or definition service call shown in table 10.10 is not selected, all service
calls in the same function group cannot be installed regardless of the settings of this page.

When selection of a creation or definition service call shown in table 10.10 is attempted to be
canceled, the warning dialog box shown in figure 10.12 is displayed.

Figure 10.12 Warning Dialog Box in [Service Call Selection] Page

(3) Service calls related to memory object protection function

If CFG_PROTMEM is not selected in the [Kernel] page, the service calls belonging to the
function groups below cannot be installed regardless of the settings of this page.

• Memory object management functions

• Protected memory pool management functions

• Protected mailbox management functions

493

10.7.10 [Interrupt/CPU Exception Handler] Page

In this page, set items related to an interrupt or CPU exception.

Figure 10.13 [Interrupt/CPU Exception Handler] Page

Table 10.11 lists the [Interrupt/CPU Exception Handler] page items.

Table 10.11 [Interrupt/CPU Exception Handler] Page Items

Item CFG Name Linkage Unit

Max. INTEVT Code CFG_MAXINTNO Kernel environment side

Interrupt/Exception Hook CFG_INTHOOK Kernel side

Definition of Interrupt/CPU Exception Handler ⎯ Kernel side/kernel
environment side

(1) [Interrupt/CPU Exception Information] group

494

[Max. INTEVT Code] displays the maximum INTEVT code among the interrupts used in the
target system.

[Interrupt/Exception Hook] displays whether the interrupt/exception hook is used or not.

Clicking the [Modify] button opens the [Modification of Interrupt/CPU Exception Information]
dialog box in which these settings can be changed.

(2) [List of Interrupt/CPU Exception Handlers] group

The status of the definitions of the handlers corresponding to all INTEVT/EXPEVT codes from 0
to CFG_MAXINTNO is displayed here. The flag icon indicates that the handler is defined to
belong to the kernel side.

The following items are in the pop-up menu. In kernel lock mode, these pop-up menu items
cannot be selected for the handlers on the kernel side.

• [Define]: Opens the [Definition of Interrupt/CPU Exception Handler] dialog box to
define a handler for the selected INTEVT/EXPEVT code

• [Cancel]: Cancels the handler definition for the selected INTEVT/EXPEVT code

(3) Special INTEVT/EXPEVT

The INTEVT/EXPEVT codes shown in table 10.12 cannot be defined or canceled in some cases.

495

Table 10.12 INTEVT/EXPEVT for which [Define] or [Cancel] is Disabled

INTEVT/EXPEVT
Code Source Display in List

Condition Disabling [Define] or
[Cancel]

0 Power-on reset Power On Reset Always disabled

0x20 Manual reset Manual Reset Always disabled

0x140 TLB multiple hit TLB Multi-Hit Always disabled

0x160 Unconditional trap TRAPA Always disabled

Value selected in
CFG_TIMINTNO in
the [Time
Management
Function] page

⎯ Timer (Standard) When CFG_OPTTMR is not
selected in the [Time
Management Function] page

0x400 TMU channel 0 Timer CH0
(Optimized)

When CFG_OPTTMR is selected
in the [Time Management
Function] page

0x420 TMU channel 1 Timer CH1
(Optimized)

When CFG_OPTTMR is selected
in the [Time Management
Function] page

0x440 TMU channel 2 Timer CH2
(Optimized)

When CFG_OPTTMR is selected
in the [Time Management
Function] page, and at the same
time def_ovr is selected in the
[Service Call Selection] page

10.7.11 [Modification of Interrupt/CPU Exception Information] Dialog Box

Figure 10.14 [Modification of Interrupt/CPU Exception Information] Dialog Box

Clicking the [Modify] button in the [Interrupt/CPU Exception Handler] page opens this dialog
box.

496

(1) [Max. INTEVT Code [CFG_MAXINTNO]]

Select the maximum INTEVT code among the interrupts used in the target system. The selectable
code is a multiple of 0x20, and the minimum value is 0x400 and the maximum value 0x3fe0.
However, a value smaller than the following cannot be selected.

• CFG_TIMINTNO in the [Time Management Function] page (CFG_OPTTMR is not
selected)

• 0x420 (def_ovr is not selected when CFG_OPTTMR is selected)

• 0x440 (def_ovr is selected when CFG_OPTTMR is selected)

• INTEVT code of a handler already defined

(2) [Uses the Interrupt/Exception Hook [CFG_INTHOOK]]

Select this check box when using the interrupt/exception hook function.

Reference: Section 8.5, Interrupt and Exception Hook Routines

(3) [OK] button

Closes this dialog box after making the settings in this dialog box effective.

(4) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

10.7.12 [Definition of Interrupt/CPU Exception Handler] Dialog Box

Figure 10.15 [Definition of Interrupt/CPU Exception Handler] Dialog Box

497

Selecting [Define] from the pop-up menu in the [Interrupt/CPU Exception Handler] page opens
this dialog box. These handlers can also be dynamically defined using the def_inh or def_exc
service call.

(1) [INTEVT/EXPEVT Code]

Displays the INTEVT or EXPEVT code selected in the [Interrupt/CPU Exception Handler] page.

(2) [Kernel Side]

Select this check box when specifying the handler defined to belong to the kernel side.

In kernel lock mode, this check box cannot be selected at all times.

(3) [Description Language]

Select [High-Level Language (TA_HLNG)] when the handler is written in a high-level language,
and select [Assembly Language (TA_ASM)] when the handler is written in assembly language.

(4) [SR Register Value]

Enter the SR register value at handler initiation as a numeric value with reference to the following.

Reference: • SR at interrupt handler initiation → Section 8.4.2, Rules on Using Registers
• SR at CPU exception handler initiation → Section 8.8.3, Rules on Using Registers

(5) [Address]

Specify the start address of the handler as a C-language symbol or numeric value.

(6) [OK] button

Closes this dialog box after making the settings in this dialog box effective.

(7) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

10.7.13 [Static Memory Object] Page

In this page, register a static memory object.

498

Figure 10.16 [Static Memory Object] Page

(1) [List of Static Memory Objects]

The static memory objects already registered are displayed in the list. The flag icon indicates that
the static memory object is registered to belong to the kernel side.

The following items are in the pop-up menu. In kernel lock mode, [Delete] and [Modify] cannot
be selected for the static memory objects on the kernel side.

• [Register]: Opens the [Registration of Static Memory Object] dialog box to register a
static memory object

• [Delete]: Deletes the selected static memory object

• [Modify]: Opens the [Modification of Information for Static Memory Object
Registration] dialog box to modify the setting of the selected static memory object

(2) [Note]

499

All setting items in this page become invalid when CFG_PROTMEM is not selected in the
[Kernel] page. In addition, all items in this page cannot be modified.

In this case, the message shown in table 10.13 is displayed in [Note].

Table 10.13 [Note] in [Static Memory Object] Page

Condition Display Message

CFG_PROTMEM is not selected All setting items in this page are invalid because
CFG_PROTMEM is not selected.

500

10.7.14 [Registration of Static Memory Object] Dialog Box and [Modification of

Information for Static Memory Object Registration] Dialog Box

Figure 10.17 [Registration of Static Memory Object] Dialog Box

Selecting [Register] from the pop-up menu in the [Static Memory Object] page opens the
[Registration of Static Memory Object] dialog box. Selecting [Modify] from the pop-up menu in
the [Static Memory Object] page opens the [Modification of Information for Static Memory
Object Registration] dialog box. These two dialog boxes have the same configuration.

501

Static memory objects can be located only in an MMU mapped area, and its start address must be
at the [Page Size] boundary.

Reference: Section 5.3.1 (1), MMU Mapped Area and MMU Non-Mapped Area

All static memory objects are associated with the kernel domain.

(1) [Memory Object Area] group

(a) [Kernel Side]

Select this check box when specifying the static memory object registered to belong to the kernel
side.

In kernel lock mode, this check box cannot be selected at all times.

(b) [Specifies the Address] or [Specifies the Section Range]

Select either of them as the method to specify the address of the static memory object.

When [Specifies the Address] is selected, enter [Address] and [Size].

When [Specifies the Section Range] is selected, enter [Start Section Name] and [End Section
Name].

(c) [Address] and [Size]

In [Address], specify the start address of the static memory object as a numeric value or C-
language symbol. Though the range determined by [Address] and [Size] must be an MMU
mapped area, the configurator does not fully check whether the inputs are correct so the
specifications must be made carefully.

In [Size], specify the size (number of bytes) of the static memory object. An integer between 1
and 0x20000000 can be specified in [Size]. The [Size] value is rounded up to a multiple of [Page
Size].

(d) [Start Section Name] and [End Section Name]

A single memory object is located in the range from [Start Section Name] to [End Section Name].
Taking this in consideration, a specified section must be allocated at the [Page Size] boundary of
an MMU mapped area at linkage.

Example: To specify the three sections of PUCM_DOM1, CUCM_DOM1, and DUCM_DOM1
as one static memory object:
In this dialog box, specify PUCM_DOM1 in [Start Section Name] and DUCM_DOM1
in [End Section Name]. At linkage, locate PUCM_DOM1 at the [Page Size] boundary
address of an MMU mapped area.

502

Figure 10.18 [Specifies the Section Range] for Static Memory Object

Reference: Section 11.15, Memory Allocation

503

(2) [Page Size] group

Select the page size as 4 kbytes, 8 kbytes, 64 kbytes, 256 kbytes, 1 Mbyte, 4 Mbytes, or 64 Mbytes.
Note, however, that if the SH4AL-DSP or SH-4A without extended functions is used, the actual
page size applied will be as shown in table 10.14.

Table 10.14 Page Size for SH4AL-DSP or SH-4A without Extended Functions

Selected Page Size Actual Page Size Applied

4 kbytes

8 kbytes

4 kbytes

64 kbytes

256 kbytes

64 kbytes

1 Mbyte

4 Mbytes

64 Mbytes

1 Mbyte

Reference: Section 4.21.5, Page Size

(3) [Read/Write] group

Select read-only (TA_RO) or readable/writable (TA_RW) for the static memory object.

(4) [Cache Setting] group

Select how to handle the static memory object when cache is enabled from the following:

• Cacheable in write-back mode (TA_CACHE|TA_WBACK)

• Cacheable in write-through mode (TA_CACHE|TA_WTHROUGH)

• Non-cacheable (TA_UNCACHE)

(5) [Access Permission Vector] group

In [Access Permission Vector], select one from the following:

(1) TACT_KERNEL

(2) TACT_PRW (domid)

(3) TACT_PRO (domid)

(4) TACT_SRW

(5) TACT_SRO

(6) TACT_SRPW (domid)

504

Only when (2), (3), or (6) is selected, [Specified User Domain ID] becomes valid. In this case,
select the user domain IDs to be permitted in [Specified User Domain ID].

[Setting Result] shows from which user domains write or read is possible, according to the settings
of [Read/Write], [Access Permission Vector], and [Specified User Domain ID].

Table 10.15 shows the displayed contents of [Setting Result].

Table 10.15 Displayed Contents of [Setting Result]

Settings [Setting Result] Display

Read/
Write

Access Permission
Vector

Specified
User
Domain

User Domain Possible
to Write

User Domain Possible
to Read

TACT_KERNEL Invalid No user domain

TACT_PRW (domid) Valid Specified user domain
only

TACT_PRO (domid) Valid Specified user domain
only

TACT_SRW Invalid All user domains

TACT_SRO Invalid All user domains

TA_RO

TACT_SRPW (domid) Valid

No user domain (even not
the kernel domain)

All user domains

TACT_KERNEL Invalid No user domain No user domain

TACT_PRW (domid) Valid Specified user domain
only

Specified user domain
only

TACT_PRO (domid) Valid No user domain Specified user domain
only

TACT_SRW Invalid All user domains All user domains

TACT_SRO Invalid No user domain All user domains

TA_RW

TACT_SRPW (domid) Valid Specified user domain
only

All user domains

(6) [Register] button (only in [Registration of Static Memory Object] dialog box)

Makes the settings in this dialog box effective. Then, returns the display of this dialog box to its
initial state so that the next static memory object can be registered without break. This dialog box
is not closed.

(7) [OK] button (only in [Modification of Information for Static Memory Object Registration]
dialog box)

505

Closes this dialog box after making the settings in this dialog box effective.

(8) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

(9) [Notes]

⎯ A static memory object can be located only in an MMU mapped area. However, the
configurator and kernel do not fully check this. If located in an MMU non-mapped area,
when that memory object is accessed, the memory attribute and access permission vector
are ignored and it has no meaning as a memory object.

⎯ The start address of a static memory object must be located at the specified [Page Size]
boundary. However, except for when a value is specified in [Address], the configurator
does not check this. If the start address is not at the [Page Size] boundary, the system goes
down at kernel initiation.

⎯ The range of the specified static memory object must not overlap with another static
memory object or the system pool. Overlap refers to not only overlap in the logical address
space but overlap in the physical address space. However, the configurator and kernel do
not detect such kind of error. In this case, normal system operation cannot be guaranteed.

10.7.15 [Initialization Routine] Page

In this page, register an initialization routine.

506

Figure 10.19 [Initialization Routine] Page

The initialization routines already registered are displayed in the list. The flag icon indicates that
the initialization routine is registered to belong to the kernel side.

When the kernel is initiated, initialization routines on the kernel side (with the flag icon) are
executed in sequence from the top of this list, and then initialization routines on the kernel
environment side (without the flag icon) are executed in sequence from the top of this list.

The following items are in the pop-up menu.

• [Register]: Opens the [Registration of Initialization Routine] dialog box to register an
initialization routine

• [Delete]: Deletes the selected initialization routine

• [Modify]: Opens the [Modification of Information for Initialization Routine
Registration] dialog box to modify the selected initialization routine setting

• [Up]: Switches the selected initialization routine with the initialization routine
immediately above

• [Down]: Switches the selected initialization routine with the initialization routine
immediately below

507

10.7.16 [Registration of Initialization Routine] Dialog Box and [Modification of

Information for Initialization Routine Registration] Dialog Box

Figure 10.20 [Registration of Initialization Routine] Dialog Box

Selecting [Register] from the pop-up menu in the [Initialization Routine] page opens the
[Registration of Initialization Routine] dialog box. Selecting [Modify] from the pop-up menu in
the [Initialization Routine] page opens the [Modification of Information for Initialization Routine
Registration] dialog box. These two dialog boxes have the same configuration.

(1) [Address]

Specify the address of the initialization routine as a C-language symbol or numeric value.

(2) [Kernel Side]

Select this check box when specifying the initialization routine registered to belong to the kernel
side.

In kernel lock mode, this check box cannot be selected at all times.

(3) [Description Language]

Select [High-Level Language (TA_HLNG)] when the initialization routine is written in a high-
level language, and select [Assembly Language (TA_ASM)] when the initialization routine is
written in assembly language.

(4) [Extended Information]

The extended information is passed to the initialization routine as a parameter. Specify it as a C-
language symbol or numeric value.

(5) [Register] button (only in [Registration of Initialization Routine] dialog box)

508

Makes the settings in this dialog box effective. Then, returns the display of this dialog box to its
initial state so that the next initialization routine can be registered without break. This dialog box
is not closed.

(6) [OK] button (only in [Modification of Information for Initialization Routine Registration]
dialog box)

Closes this dialog box after making the settings in this dialog box effective.

(7) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

10.7.17 [Task] Page

In this page, set items related to a task.

509

Figure 10.21 [Task] Page

Table 10.16 lists the [Task] page items.

Table 10.16 [Task] Page Items

Item CFG Name Linkage Unit

Max. Task ID CFG_MAXTSKID Kernel environment side

Max. Task Priority CFG_MAXTSKPRI Kernel side

Max. Count of Queued Initiation Requests CFG_MAXACTCNT Kernel side

Max. Count of Queued Wakeup Requests CFG_MAXWUPCNT Kernel side

Max. Count of Nested Suspend Requests CFG_MAXSUSCNT Kernel side

Creation of Task, Definition of Task
Exception Processing Routine

⎯ Kernel side/kernel
environment side

510

(1) [Task Information] group

In this group, the following information is displayed. Clicking the [Modify] button opens the
[Modification of Task Information] dialog box in which the information can be changed.

(a) [Max. Task ID [CFG_MAXTSKID]]

The range of usable task IDs is between 1 and CFG_MAXTSKID.

(b) [Max. Task Priority [CFG_MAXTSKPRI]]

The priority range of usable tasks is between 1 and CFG_MAXTSKPRI.

(c) [Max. Count of Queued Initiation Requests [CFG_MAXACTCNT]]

The maximum number of queued initiation requests (act_tsk) for a task.

(d) [Max. Count of Queued Wakeup Requests [CFG_MAXWUPCNT]]

The maximum number of queued wakeup requests (wup_tsk) for a task.

(e) [Max. Count of Nested Suspend Requests [CFG_MAXSUSCNT]]

The maximum number of nested suspend requests (sus_tsk) for a task.

(2) [List of Tasks] group

In this group, the tasks already created are displayed. The flag icon indicates that the task is
created to belong to the kernel side.

When the kernel is initiated, tasks on the kernel side (with the flag icon) are created in sequence
from the top of this list, and then tasks on the kernel environment side (without the flag icon) are
created in sequence from the top of this list. Note that if [Start Task after Creation (TA_ACT)]
has been specified at task creation, the tasks enter the READY state in this sequence.

The following items are in the pop-up menu.

• [Create]: Opens the [Creation of Task] dialog box to create a task

• [Delete]: Deletes the selected task

• [Modify]: Opens the [Modification of Information for Task Creation] dialog box to
modify the selected task setting

• [Up]: Switches the selected task with the task immediately above

• [Down]: Switches the selected task with the task immediately below

(3) [Note]

511

All definitions for the task exception processing routine of this page become invalid when def_tex
is not selected in the [Service Call Selection] page. In addition, the task exception processing
routine cannot be defined.

In this case, the message shown in table 10.17 is displayed in [Note].

Table 10.17 [Note] in [Task] Page

Condition Display Message

def_tex is not selected All definitions for the task exception processing routine of this
page are invalid because the setting to install def_tex is not
made.

10.7.18 [Modification of Task Information] Dialog Box

Figure 10.22 [Modification of Task Information] Dialog Box

Clicking the [Modify] button in the [Task] page opens this dialog box.

(1) [Max. Task ID [CFG_MAXTSKID]]

A task ID between 1 and CFG_MAXTSKID can be used. An integer between 1 and 32767 can be
specified.

512

If [Automatically Sets the Max. ID of Tasks] is selected, the configurator automatically calculates
the maximum ID based on the tasks created in the [Task] page.

(2) [Max. Task Priority [CFG_MAXTSKPRI]]

A task priority between 1 and CFG_MAXTSKPRI can be used. An integer between 1 and 255
can be selected.

The following statement is output to kernel_macro.h in response to this setting.

#define TMAX_TPRI 255 /* When 255 is specified */

(3) [Max. Count of Queued Initiation Requests [CFG_MAXACTCNT]]

Specify the maximum number of queued initiation requests by the act_tsk and iact_tsk service
calls. An integer between 1 and 32767 can be specified. If the same number of initiation requests
are already queued for the specified task using the act_tsk or iact_tsk service call, the act_tsk or
iact_tsk service call results in the E_QOVR error.

The following statement is output to kernel_macro.h in response to this setting.

#define TMAX_ACTCNT 32767 /* When 32767 is specified */

(4) [Max. Count of Queued Wakeup Requests [CFG_MAXWUPCNT]]

Specify the maximum number of queued wakeup requests by the wup_tsk and iwup_tsk service
calls. An integer between 1 and 32767 can be specified. If the same number of wakeup requests
are already queued for the specified task using the wup_tsk or iwup_tsk service call, the wup_tsk
or iwup_tsk service call results in the E_QOVR error.

The following statement is output to kernel_macro.h in response to this setting.

#define TMAX_WUPCNT 32767 /* When 32767 is specified */

(5) [Max. Count of Nested Suspend Requests [CFG_MAXSUSCNT]]

Specify the maximum number of nested suspend requests by the sus_tsk and isus_tsk service calls.
An integer between 1 and 32767 can be specified. If the same number of suspend requests are
already nested for the specified task using the sus_tsk or isus_tsk service call, the sus_tsk or
isus_tsk service call results in the E_QOVR error.

The following statement is output to kernel_macro.h in response to this setting.

#define TMAX_SUSCNT 32767 /* When 32767 is specified */

(6) [OK] button

513

Closes this dialog box after making the settings in this dialog box effective.

(7) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

10.7.19 [Creation of Task] Dialog Box and [Modification of Information for Task Creation]

Dialog Box

Figure 10.23 [Creation of Task] Dialog Box

Selecting [Create] from the pop-up menu in the [Task] page opens the [Creation of Task] dialog
box. Selecting [Modify] from the pop-up menu in the [Task] page opens the [Modification of
Information for Task Creation] dialog box. These two dialog boxes have the same configuration.

514

A task can also be dynamically created using the cre_tsk or acre_tsk service call.

(1) [Task ID and Corresponding Domain] group

(a) [Automatic Assignment of ID Number]

If this check box is selected, the configurator automatically assigns an ID number. However, if
this check box is selected, [Kernel Side] cannot be selected.

(b) [ID Number]

Enter the task ID as a numeric value. A value between 1 and CFG_MAXTSKID can be specified.
However, if [Automatic Assignment of ID Number] is selected, the ID number cannot be
specified.

(c) [ID Name]

Specify the ID name.

If [Automatic Assignment of ID Number] is selected, the name must be specified. In other cases,
this edit box can be left blank.

(d) [Corresponding Domain ID]

Select the domain to be associated. TDOM_KERNEL (kernel domain) or user domains with
domain IDs from 1 to 31 can be selected.

(e) [Kernel Side]

Select this check box when specifying the task created to belong to the kernel side.

In kernel lock mode, this check box cannot be selected at all times.

(2) [Task Address] group

Specify the start address of the task as a numeric value or C-language symbol.

(3) [Task Initiation Priority] group

Select the priority at task initiation.

(4) [Coprocessor] group

(a) [Uses DSP (TA_COP0)], [Uses FPU (bank 0) (TA_COP1)], or [Uses FPU (bank 1)
(TA_COP2)]

TA_COP0 is valid only when CFG_DSP is selected in the [CPU] page. Select this check box
when performing DSP calculation.

TA_COP1 or TA_COP2 is valid only when CFG_FPU is selected in the [CPU] page. For normal
FPU calculation, select only TA_COP1. For cases using both FPU banks, i.e. matrix calculation,

515

select both TA_COP1 and TA_COP2. Selecting only TA_COP2 and not TA_COP1 is not
possible.

TA_COP0 cannot be selected together with TA_COP1 or TA_COP2.

(b) [Initial FPSCR Value]

The initial FPSCR value has a meaning only when either TA_COP1 or TA_COP2 is selected. An
integer between 0 and 0xffffffff can be specified. Specify this value with reference to the
following.

Reference: Section 15, Notes on FPU

(5) [Stack] group

Specify the stack size and system stack size (bytes) as numeric values. A positive integer equal to
or lower than 0x20000000 can be specified for each size.

The stack is allocated to the system pool or resource pool. If the system pool or resource pool
does not have enough area for the specified size, an error message is displayed to inform it.

When creating a task using a service call, a specification to use the allocated area as the stack can
be made by the application but not in the configurator.

The size specified here corresponds to stksz and sstksz specified in the cre_tsk service call. For
details, refer to the following.

Reference: Section 6.7.1, Create Task (cre_tsk, icre_tsk, acre_tsk, iacre_tsk)

(6) [Status after Creation] group

To start the task after creation, select TA_ACT.

(7) [Description Language] group

Select [High-Level Language (TA_HLNG)] when the task is written in a high-level language, and
select [Assembly Language (TA_ASM)] when the task is written in assembly language.

(8) [Extended Information] group

Specify it as a C-language symbol or numeric value.

(9) [Define Task Exception Processing Routine] button

Opens the [Definition of Task Exception Processing Routine] dialog box to define the task
exception processing routine for the task to be created in this dialog box. Also, click this button to
cancel definition of the task exception processing routine.

516

(10) [Create] button (only in [Creation of Task] dialog box)

Makes the settings in this dialog box effective. Then, returns the display of this dialog box to its
initial state so that the next task can be created without break. This dialog box is not closed.

(11) [OK] button (only in [Modification of Information for Task Creation] dialog box)

Closes this dialog box after making the settings in this dialog box effective.

(12) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

10.7.20 [Definition of Task Exception Processing Routine] Dialog Box

Figure 10.24 [Definition of Task Exception Processing Routine] Dialog Box

Clicking the [Define Task Exception Processing Routine] button in the [Creation of Task] dialog
box or [Modification of Information for Task Creation] dialog box opens the [Definition of Task
Exception Processing Routine] dialog box.

The distinction between the kernel side and kernel environment side in this dialog box is in
accordance with the state of the [Kernel Side] check box in the [Creation of Task] dialog box or
[Modification of Information for Task Creation] dialog box.

A task exception processing routine can also be dynamically defined using the def_tex service
call.

(1) [Address]

Specify the start address of the task exception processing routine as a numeric value or C-language
symbol.

517

If this edit box is left blank, definition of the task exception processing routine is canceled.

(2) [Uses DSP (TA_COP0)], [Uses FPU (bank 0) (TA_COP1)], or [Uses FPU (bank 1)
(TA_COP2)]

TA_COP0 is valid only when CFG_DSP is selected in the [CPU] page. Select this check box
when performing DSP calculation.

TA_COP1 or TA_COP2 is valid only when CFG_FPU is selected in the [CPU] page. For normal
FPU calculation, select only TA_COP1. For cases using both FPU banks, i.e. matrix calculation,
select both TA_COP1 and TA_COP2. Selecting only TA_COP2 and not TA_COP1 is not
possible.

TA_COP0 cannot be selected together with TA_COP1 or TA_COP2.

(3) [Initial FPSCR Value]

The initial FPSCR value has a meaning only when either TA_COP1 or TA_COP2 is selected. An
integer between 0 and 0xffffffff can be specified. Specify this value with reference to the
following.

Reference: Section 15, Notes on FPU

(4) [Description Language]

Select [High-Level Language (TA_HLNG)] when the task exception processing routine is written
in a high-level language, and select [Assembly Language (TA_ASM)] when the task exception
processing routine is written in assembly language.

(5) [OK] button

Closes this dialog box after making the settings in this dialog box effective, and then returns to the
former [Creation of Task] dialog box or [Modification of Information for Task Creation] dialog
box.

(6) [Cancel] button

Closes this dialog box without saving the settings in this dialog box, and then returns to the former
[Creation of Task] dialog box or [Modification of Information for Task Creation] dialog box.

10.7.21 [Semaphore] Page

In this page, set items related to a semaphore.

518

Figure 10.25 [Semaphore] Page

Table 10.18 lists the [Semaphore] page items.

Table 10.18 [Semaphore] Page Items

Item CFG Name Linkage Unit

Max. Semaphore ID CFG_MAXSEMID Kernel environment side

Creation of Semaphore ⎯ Kernel side/kernel
environment side

(1) [Semaphore Information] group

In this group, the following information is displayed. Clicking the [Modify] button opens the
[Modification of Semaphore Information] dialog box in which the information can be changed.

519

(a) [Max. Semaphore ID [CFG_MAXSEMID]]

The range of usable semaphore IDs is between 1 and CFG_MAXSEMID.

(2) [List of Semaphores] group

In this group, the semaphores already created are displayed. The flag icon indicates that the
semaphore is created to belong to the kernel side.

The following items are in the pop-up menu.

• [Create]: Opens the [Creation of Semaphore] dialog box to create a semaphore

• [Delete]: Deletes the selected semaphore

• [Modify]: Opens the [Modification of Information for Semaphore Creation] dialog box
to modify the selected semaphore setting

(3) [Note]

All setting items in this page become invalid when cre_sem is not selected in the [Service Call
Selection] page. In addition, all items in this page cannot be modified.

In this case, the message shown in table 10.19 is displayed in [Note].

Table 10.19 [Note] in [Semaphore] Page

Condition Display Message

cre_sem is not selected All setting items in this page are invalid because the setting to
install cre_sem is not made.

10.7.22 [Modification of Semaphore Information] Dialog Box

Figure 10.26 [Modification of Semaphore Information] Dialog Box

Clicking the [Modify] button in the [Semaphore] page opens this dialog box.

(1) [Max. Semaphore ID [CFG_MAXSEMID]]

520

A semaphore ID between 1 and CFG_MAXSEMID can be used. An integer between 0 and 32767
can be specified. If 0 is specified, semaphores cannot be used. However, since a variable area for
managing the semaphores does not need to be allocated, the used RAM size can be reduced.

If [Automatically Sets the Max. ID of Semaphores] is selected, the configurator automatically
calculates the maximum ID based on the semaphores created in the [Semaphore] page.

(2) [OK] button

Closes this dialog box after making the settings in this dialog box effective.

(3) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

10.7.23 [Creation of Semaphore] Dialog Box and [Modification of Information for

Semaphore Creation] Dialog Box

Figure 10.27 [Creation of Semaphore] Dialog Box

Selecting [Create] from the pop-up menu in the [Semaphore] page opens the [Creation of
Semaphore] dialog box. Selecting [Modify] from the pop-up menu in the [Semaphore] page opens
the [Modification of Information for Semaphore Creation] dialog box. These two dialog boxes
have the same configuration.

A semaphore can also be dynamically created using the cre_sem or acre_sem service call.

521

(1) [Automatic Assignment of ID Number]

If this check box is selected, the configurator automatically assigns an ID number. However, if
this check box is selected, [Kernel Side] cannot be selected.

(2) [ID Number]

Enter the semaphore ID as a numeric value. A value between 1 and CFG_MAXSEMID can be
specified. However, if [Automatic Assignment of ID Number] is selected, the ID number cannot
be specified.

(3) [ID Name]

Specify the ID name. If [Automatic Assignment of ID Number] is selected, the name must be
specified. In other cases, this edit box can be left blank.

(4) [Kernel Side]

Select this check box when specifying the semaphore created to belong to the kernel side.

In kernel lock mode, this check box cannot be selected at all times.

(5) [Max. Count] of [Semaphore Resource Count]

Specify the maximum value of the semaphore resources. An integer between 1 and 65535 can be
specified.

(6) [Initial Count] of [Semaphore Resource Count]

Specify the initial value of the semaphore resources. An integer between 0 and [Max. Count] of
[Semaphore Resource Count] can be specified.

(7) [Waiting Queue]

Select the FIFO order or priority order as the method to queue the waiting tasks.

(8) [Create] button (only in [Creation of Semaphore] dialog box)

Makes the settings in this dialog box effective. Then, returns the display of this dialog box to its
initial state so that the next semaphore can be created without break. This dialog box is not
closed.

(9) [OK] button (only in [Modification of Information for Semaphore Creation] dialog box)

Closes this dialog box after making the settings in this dialog box effective.

(10) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

522

10.7.24 [Event Flag] Page

In this page, set items related to an event flag.

Figure 10.28 [Event Flag] Page

Table 10.20 lists the [Event Flag] page items.

Table 10.20 [Event Flag] Page Items

Item CFG Name Linkage Unit

Max. Event Flag ID CFG_MAXFLGID Kernel side

Creation of Event Flag ⎯ Kernel side/kernel
environment side

523

(1) [Event Flag Information] group

In this group, the following information is displayed. Clicking the [Modify] button opens the
[Modification of Event Flag Information] dialog box in which the information can be changed.

(a) [Max. Event Flag ID [CFG_MAXFLGID]]

The range of usable event flag IDs is between 1 and CFG_MAXFLGID.

(2) [List of Event Flags] group

In this group, the event flags already created are displayed. The flag icon indicates that the event
flag is created to belong to the kernel side.

The following items are in the pop-up menu.

• [Create]: Opens the [Creation of Event Flag] dialog box to create an event flag

• [Delete]: Deletes the selected event flag

• [Modify]: Opens the [Modification of Information for Event Flag Creation] dialog box
to modify the selected event flag setting

(3) [Note]

All setting items in this page become invalid when cre_flg is not selected in the [Service Call
Selection] page. In addition, all items in this page cannot be modified.

In this case, the message shown in table 10.21 is displayed in [Note].

Table 10.21 [Note] in [Event Flag] Page

Condition Display Message

cre_flg is not selected All setting items in this page are invalid because the setting to
install cre_flg is not made.

10.7.25 [Modification of Event Flag Information] Dialog Box

Figure 10.29 [Modification of Event Flag Information] Dialog Box

524

Clicking the [Modify] button in the [Event Flag] page opens this dialog box.

(1) [Max. Event Flag ID [CFG_MAXFLGID]]

An event flag ID between 1 and CFG_MAXFLGID can be used. An integer between 0 and 32767
can be specified. If 0 is specified, event flags cannot be used. However, since a variable area for
managing the event flags does not need to be allocated, the used RAM size can be reduced.

If [Automatically Sets the Max. ID of Event Flags] is selected, the configurator automatically
calculates the maximum ID based on the event flags created in the [Event Flag] page.

(2) [OK] button

Closes this dialog box after making the settings in this dialog box effective.

(3) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

10.7.26 [Creation of Event Flag] Dialog Box and [Modification of Information for Event

Flag Creation] Dialog Box

Figure 10.30 [Creation of Event Flag] Dialog Box

Selecting [Create] from the pop-up menu in the [Event Flag] page opens the [Creation of Event
Flag] dialog box. Selecting [Modify] from the pop-up menu in the [Event Flag] page opens the
[Modification of Information for Event Flag Creation] dialog box. These two dialog boxes have
the same configuration.

525

An event flag can also be dynamically created using the cre_flg or acre_flg service call.

(1) [Automatic Assignment of ID Number]

If this check box is selected, the configurator automatically assigns an ID number. However, if
this check box is selected, [Kernel Side] cannot be selected.

(2) [ID Number]

Enter the event flag ID as a numeric value. A value between 1 and CFG_MAXFLGID can be
specified. However, if [Automatic Assignment of ID Number] is selected, the ID number cannot
be specified.

(3) [ID Name]

Specify the ID name. If [Automatic Assignment of ID Number] is selected, the name must be
specified. In other cases, this edit box can be left blank.

(4) [Kernel Side]

Select this check box when specifying the event flag created to belong to the kernel side.

In kernel lock mode, this check box cannot be selected at all times.

(5) [Enables Multiple Tasks to Wait (TA_WMUL)]

Select this check box when making more than one task to wait for the event flag.

(6) [Clears Bits when Released from Wait State (TA_CLR)]

If this check box is selected, the event flag is cleared to 0 when E_OK is returned in the wai_flg,
twai_flg, or pol_flg service call.

(7) [Waiting Queue]

Select the FIFO order or priority order as the method to queue the waiting tasks.

(8) [Initial Bit Pattern]

Specify the initial value of the event flag as an integer between 0 and 0xffffffff.

(9) [Create] button (only in [Creation of Event Flag] dialog box)

Makes the settings in this dialog box effective. Then, returns the display of this dialog box to its
initial state so that the next event flag can be created without break. This dialog box is not closed.

(10) [OK] button (only in [Modification of Information for Event Flag Creation] dialog box)

Closes this dialog box after making the settings in this dialog box effective.

(11) [Cancel] button

526

Closes this dialog box without saving the settings in this dialog box.

10.7.27 [Data Queue] Page

In this page, set items related to a data queue.

Figure 10.31 [Data Queue] Page

Table 10.22 lists the [Data Queue] page items.

527

Table 10.22 [Data Queue] Page Items

Item CFG Name Linkage Unit

Max. Data Queue ID CFG_MAXDTQID Kernel environment side

Creation of Data Queue ⎯ Kernel side/kernel
environment side

(1) [Data Queue Information] group

In this group, the following information is displayed. Clicking the [Modify] button opens the
[Modification of Data Queue Information] dialog box in which the information can be changed.

(a) [Max. Data Queue ID [CFG_MAXDTQID]]

The range of usable data queue IDs is between 1 and CFG_MAXDTQID.

(2) [List of Data Queues] group

In this group, the data queues already created are displayed. The flag icon indicates that the data
queue is created to belong to the kernel side.

The following items are in the pop-up menu.

• [Create]: Opens the [Creation of Data Queue] dialog box to create a data queue

• [Delete]: Deletes the selected data queue

• [Modify]: Opens the [Modification of Information for Data Queue Creation] dialog box
to modify the selected data queue setting

(3) [Note]

All setting items in this page become invalid when cre_dtq is not selected in the [Service Call
Selection] page. In addition, all items in this page cannot be modified.

In this case, the message shown in table 10.23 is displayed in [Note].

Table 10.23 [Note] in [Data Queue] Page

Condition Display Message

cre_dtq is not selected All setting items in this page are invalid because the setting to
install cre_dtq is not made.

528

10.7.28 [Modification of Data Queue Information] Dialog Box

Figure 10.32 [Modification of Data Queue Information] Dialog Box

Clicking the [Modify] button in the [Data Queue] page opens this dialog box.

(1) [Max. Data Queue ID [CFG_MAXDTQID]]

A data queue ID between 1 and CFG_MAXDTQID can be used. An integer between 0 and 32767
can be specified. If 0 is specified, data queues cannot be used. However, since a variable area for
managing the data queues does not need to be allocated, the used RAM size can be reduced.

If [Automatically Sets the Max. ID of Data Queues] is selected, the configurator automatically
calculates the maximum ID based on the data queues created in the [Data Queue] page.

(2) [OK] button

Closes this dialog box after making the settings in this dialog box effective.

(3) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

529

10.7.29 [Creation of Data Queue] Dialog Box and [Modification of Information for Data

Queue Creation] Dialog Box

Figure 10.33 [Creation of Data Queue] Dialog Box

Selecting [Create] from the pop-up menu in the [Data Queue] page opens the [Creation of Data
Queue] dialog box. Selecting [Modify] from the pop-up menu in the [Data Queue] page opens the
[Modification of Information for Data Queue Creation] dialog box. These two dialog boxes have
the same configuration.

A data queue can also be dynamically created using the cre_dtq or acre_dtq service call.

(1) [Automatic Assignment of ID Number]

If this check box is selected, the configurator automatically assigns an ID number. However, if
this check box is selected, [Kernel Side] cannot be selected.

(2) [ID Number]

Enter the data queue ID as a numeric value. A value between 1 and CFG_MAXDTQID can be
specified. However, if [Automatic Assignment of ID Number] is selected, the ID number cannot
be specified.

(3) [ID Name]

Specify the ID name. If [Automatic Assignment of ID Number] is selected, the name must be
specified. In other cases, this edit box can be left blank.

(4) [Kernel Side]

530

Select this check box when specifying the data queue created to belong to the kernel side.

In kernel lock mode, this check box cannot be selected at all times.

(5) [Data Count]

Specify the number of data that can be stored in the data queue. 0 can be specified.

(6) [Waiting Queue]

Select the FIFO order or priority order as the method to queue the waiting tasks.

(7) [Create] button (only in [Creation of Data Queue] dialog box)

Makes the settings in this dialog box effective. Then, returns the display of this dialog box to its
initial state so that the next data queue can be created without break. This dialog box is not closed.

(8) [OK] button (only in [Modification of Information for Data Queue Creation] dialog box)

Closes this dialog box after making the settings in this dialog box effective.

(9) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

10.7.30 [Mailbox] Page

In this page, set items related to a mailbox.

531

Figure 10.34 [Mailbox] Page

Table 10.24 lists the [Mailbox] page items.

Table 10.24 [Mailbox] Page Items

Item CFG Name Linkage Unit

Max. Mailbox ID CFG_MAXMBXID Kernel environment side

Creation of Mailbox ⎯ Kernel side/kernel
environment side

(1) [Mailbox Information] group

In this group, the following information is displayed. Clicking the [Modify] button opens the
[Modification of Mailbox Information] dialog box in which the information can be changed.

532

(a) [Max. Mailbox ID [CFG_MAXMBXID]]

The range of usable mailbox IDs is between 1 and CFG_MAXMBXID.

(2) [List of Mailboxes] group

In this group, the mailboxes already created are displayed. The flag icon indicates that the
mailbox is created to belong to the kernel side.

The following items are in the pop-up menu.

• [Create]: Opens the [Creation of Mailbox] dialog box to create a mailbox

• [Delete]: Deletes the selected mailbox

• [Modify]: Opens the [Modification of Information for Mailbox Creation] dialog box to
modify the selected mailbox setting

(3) [Note]

All setting items in this page become invalid when cre_mbx is not selected in the [Service Call
Selection] page. In addition, all items in this page cannot be modified.

In this case, the message shown in table 10.25 is displayed in [Note].

Table 10.25 [Note] in [Mailbox] Page

Condition Display Message

cre_mbx is not selected All setting items in this page are invalid because the setting to
install cre_mbx is not made.

10.7.31 [Modification of Mailbox Information] Dialog Box

Figure 10.35 [Modification of Mailbox Information] Dialog Box

Clicking the [Modify] button in the [Mailbox] page opens this dialog box.

(1) [Max. Mailbox ID [CFG_MAXMBXID]]

533

A mailbox ID between 1 and CFG_MAXMBXID can be used. An integer between 0 and 32767
can be specified. If 0 is specified, mailboxes cannot be used. However, since a variable area for
managing the mailboxes does not need to be allocated, the used RAM size can be reduced.

If [Automatically Sets the Max. ID of Mailboxes] is selected, the configurator automatically
calculates the maximum ID based on the mailboxes created in the [Mailbox] page.

(2) [OK] button

Closes this dialog box after making the settings in this dialog box effective.

(3) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

10.7.32 [Creation of Mailbox] Dialog Box and [Modification of Information for Mailbox

Creation] Dialog Box

Figure 10.36 [Creation of Mailbox] Dialog Box

Selecting [Create] from the pop-up menu in the [Mailbox] page opens the [Creation of Mailbox]
dialog box. Selecting [Modify] from the pop-up menu in the [Mailbox] page opens the
[Modification of Information for Mailbox Creation] dialog box. These two dialog boxes have the
same configuration.

A mailbox can also be dynamically created using the cre_mbx or acre_mbx service call.

534

(1) [Automatic Assignment of ID Number]

If this check box is selected, the configurator automatically assigns an ID number. However, if
this check box is selected, [Kernel Side] cannot be selected.

(2) [ID Number]

Enter the mailbox ID as a numeric value. A value between 1 and CFG_MAXMBXID can be
specified. However, if [Automatic Assignment of ID Number] is selected, the ID number cannot
be specified.

(3) [ID Name]

Specify the ID name. If [Automatic Assignment of ID Number] is selected, the name must be
specified. In other cases, this edit box can be left blank.

(4) [Kernel Side]

Select this check box when specifying the mailbox created to belong to the kernel side.

In kernel lock mode, this check box cannot be selected at all times.

(5) [Waiting Queue]

Select the FIFO order or priority order as the method to queue the waiting tasks.

(6) [Message Queue]

Select the FIFO order or priority order as the method to queue the messages.

(7) [Max. Priority]

When the priority order is selected in [Message Queue], select the maximum priority of the
message. It can be selected between 1 and CFG_MAXMSGPRI.

When the FIFO order is selected in [Message Queue], this item has no meaning.

(8) [Create] button (only in [Creation of Mailbox] dialog box)

Makes the settings in this dialog box effective. Then, returns the display of this dialog box to its
initial state so that the next mailbox can be created without break. This dialog box is not closed.

(9) [OK] button (only in [Modification of Information for Mailbox Creation] dialog box)

Closes this dialog box after making the settings in this dialog box effective.

(10) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

535

10.7.33 [Mutex] Page

In this page, set items related to a mutex.

Figure 10.37 [Mutex] Page

Table 10.26 lists the [Mutex] page items.

Table 10.26 [Mutex] Page Items

Item CFG Name Linkage Unit

Max. Mutex ID CFG_MAXMTXID Kernel environment side

Creation of Mutex ⎯ Kernel side/kernel
environment side

536

(1) [Mutex Information] group

In this group, the following information is displayed. Clicking the [Modify] button opens the
[Modification of Mutex Information] dialog box in which the information can be changed.

(a) [Max. Mutex ID [CFG_MAXMTXID]]

The range of usable mutex IDs is between 1 and CFG_MAXMTXID.

(2) [List of Mutexes] group

In this group, the mutexes already created are displayed. The flag icon indicates that the mutex is
created to belong to the kernel side.

The following items are in the pop-up menu.

• [Create]: Opens the [Creation of Mutex] dialog box to create a mutex

• [Delete]: Deletes the selected mutex

• [Modify]: Opens the [Modification of Information for Mutex Creation] dialog box to
modify the selected mutex setting

(3) [Note]

All setting items in this page become invalid when cre_mtx is not selected in the [Service Call
Selection] page. In addition, all items in this page cannot be modified.

In this case, the message shown in table 10.27 is displayed in [Note].

Table 10.27 [Note] in [Mutex] Page

Condition Display Message

cre_mtx is not selected All setting items in this page are invalid because the setting to
install cre_mtx is not made.

10.7.34 [Modification of Mutex Information] Dialog Box

Figure 10.38 [Modification of Mutex Information] Dialog Box

537

Clicking the [Modify] button in the [Mutex] page opens this dialog box.

(1) [Max. Mutex ID [CFG_MAXMTXID]]

A mutex ID between 1 and CFG_MAXMTXID can be used. An integer between 0 and 32767 can
be specified. If 0 is specified, mutexes cannot be used. However, since a variable area for
managing the mutexes does not need to be allocated, the used RAM size can be reduced.

If [Automatically Sets the Max. ID of Mutexes] is selected, the configurator automatically
calculates the maximum ID based on the mutexes created in the [Mutex] page.

(2) [OK] button

Closes this dialog box after making the settings in this dialog box effective.

(3) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

10.7.35 [Creation of Mutex] Dialog Box and [Modification of Information for Mutex

Creation] Dialog Box

Figure 10.39 [Creation of Mutex] Dialog Box

Selecting [Create] from the pop-up menu in the [Mutex] page opens the [Creation of Mutex]
dialog box. Selecting [Modify] from the pop-up menu in the [Mutex] page opens the
[Modification of Information for Mutex Creation] dialog box. These two dialog boxes have the
same configuration.

538

A mutex can also be dynamically created using the cre_mtx or acre_mtx service call.

(1) [Automatic Assignment of ID Number]

If this check box is selected, the configurator automatically assigns an ID number. However, if
this check box is selected, [Kernel Side] cannot be selected.

(2) [ID Number]

Enter the mutex ID as a numeric value. A value between 1 and CFG_MAXMTXID can be
specified. However, if [Automatic Assignment of ID Number] is selected, the ID number cannot
be specified.

(3) [ID Name]

Specify the ID name. If [Automatic Assignment of ID Number] is selected, the name must be
specified. In other cases, this edit box can be left blank.

(4) [Kernel Side]

Select this check box when specifying the mutex created to belong to the kernel side.

In kernel lock mode, this check box cannot be selected at all times.

(5) [Priority Ceiling Protocol]

Only the priority ceiling protocol can be selected as an attribute.

(6) [Ceiling Priority]

Select the ceiling priority. It can be selected between 1 and CFG_MAXTSKPRI.

(7) [Create] button (only in [Creation of Mutex] dialog box)

Makes the settings in this dialog box effective. Then, returns the display of this dialog box to its
initial state so that the next mutex can be created without break. This dialog box is not closed.

(8) [OK] button (only in [Modification of Information for Mutex Creation] dialog box)

Closes this dialog box after making the settings in this dialog box effective.

(9) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

10.7.36 [Message Buffer] Page

In this page, set items related to a message buffer.

539

Figure 10.40 [Message Buffer] Page

Table 10.28 lists the [Message Buffer] page items.

Table 10.28 [Message Buffer] Page Items

Item CFG Name Linkage Unit

Max. Message Buffer ID CFG_MAXMBFID Kernel environment side

Creation of Message Buffer ⎯ Kernel side/kernel
environment side

(1) [Message Buffer Information] group

540

In this group, the following information is displayed. Clicking the [Modify] button opens the
[Modification of Message Buffer Information] dialog box in which the information can be
changed.

(a) [Max. Message Buffer ID [CFG_MAXMBFID]]

The range of usable message buffer IDs is between 1 and CFG_MAXMBFID.

(2) [List of Message Buffers] group

In this group, the message buffers already created are displayed. The flag icon indicates that the
message buffer is created to belong to the kernel side.

The following items are in the pop-up menu.

• [Create]: Opens the [Creation of Message Buffer] dialog box to create a message buffer

• [Delete]: Deletes the selected message buffer

• [Modify]: Opens the [Modification of Information for Message Buffer Creation] dialog
box to modify the selected message buffer setting

(3) [Note]

All setting items in this page become invalid when cre_mbf is not selected in the [Service Call
Selection] page. In addition, all items in this page cannot be modified.

In this case, the message shown in table 10.29 is displayed in [Note].

Table 10.29 [Note] in [Message Buffer] Page

Condition Display Message

cre_mbf is not selected All setting items in this page are invalid because the setting to
install cre_mbf is not made.

10.7.37 [Modification of Message Buffer Information] Dialog Box

Figure 10.41 [Modification of Message Buffer Information] Dialog Box

541

Clicking the [Modify] button in the [Message Buffer] page opens this dialog box.

(1) [Max. Message Buffer ID [CFG_MAXMBFID]]

A message buffer ID between 1 and CFG_MAXMBFID can be used. An integer between 0 and
32767 can be specified. If 0 is specified, message buffers cannot be used. However, since a
variable area for managing the message buffers does not need to be allocated, the used RAM size
can be reduced.

If [Automatically Sets the Max. ID of Message Buffers] is selected, the configurator automatically
calculates the maximum ID based on the message buffers created in the [Message Buffer] page.

(2) [OK] button

Closes this dialog box after making the settings in this dialog box effective.

(3) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

10.7.38 [Creation of Message Buffer] Dialog Box and [Modification of Information for

Message Buffer Creation] Dialog Box

Figure 10.42 [Creation of Message Buffer] Dialog Box

Selecting [Create] from the pop-up menu in the [Message Buffer] page opens the [Creation of
Message Buffer] dialog box. Selecting [Modify] from the pop-up menu in the [Message Buffer]

542

page opens the [Modification of Information for Message Buffer Creation] dialog box. These two
dialog boxes have the same configuration.

A message buffer can also be dynamically created using the cre_mbf or acre_mbf service call.

(1) [Automatic Assignment of ID Number]

If this check box is selected, the configurator automatically assigns an ID number. However, if
this check box is selected, [Kernel Side] cannot be selected.

(2) [ID Number]

Enter the message buffer ID as a numeric value. A value between 1 and CFG_MAXMBFID can
be specified. However, if [Automatic Assignment of ID Number] is selected, the ID number
cannot be specified.

(3) [ID Name]

Specify the ID name. If [Automatic Assignment of ID Number] is selected, the name must be
specified. In other cases, this edit box can be left blank.

(4) [Kernel Side]

Select this check box when specifying the message buffer created to belong to the kernel side.

In kernel lock mode, this check box cannot be selected at all times.

(5) [Message Buffer Area Size]

Specify the message buffer size. A value between 0 and 0x20000000 can be specified. The
specified value is rounded up to a multiple of four.

Clicking the [Estimation] button opens the [Estimation of Message Buffer Area Size] dialog box
to calculate the estimated value of [Size].

(6) [Waiting Queue]

Select the FIFO order or priority order as the method to queue the waiting tasks.

(7) [Max. Size]

Specify the maximum size of the message to be transmitted to the message buffer. A value
between 0 and 0x20000000 can be specified. The specified value is rounded up to a multiple of
four.

(8) [Create] button (only in [Creation of Message Buffer] dialog box)

543

Makes the settings in this dialog box effective. Then, returns the display of this dialog box to its
initial state so that the next message buffer can be created without break. This dialog box is not
closed.

(9) [OK] button (only in [Modification of Information for Message Buffer Creation] dialog box)

Closes this dialog box after making the settings in this dialog box effective.

(10) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

10.7.39 [Estimation of Message Buffer Area Size] Dialog Box

Figure 10.43 [Estimation of Message Buffer Area Size] Dialog Box

Clicking the [Estimation] button in the [Creation of Message Buffer] dialog box or [Modification
of Information for Message Buffer Creation] dialog box opens this dialog box.

In this dialog box, the size of the message buffer that can store a message of the size specified in
[Message Size] for the number of messages specified in [Number of Messages] is calculated. To
be specific, the same calculation as the TSZ_MBFMB or TSZ_MBF macro is performed.

Clicking the [OK] button returns the display to the [Creation of Message Buffer] dialog box or
[Modification of Information for Message Buffer Creation] dialog box, and [Size] of the message
buffer area in either of these dialog boxes is updated to the calculation result of this dialog box.

Clicking the [Cancel] button returns the display to the [Creation of Message Buffer] dialog box or
[Modification of Information for Message Buffer Creation] dialog box, but [Size] of the message
buffer area in either of these dialog boxes is not updated.

10.7.40 [Fixed-size Memory Pool] Page

In this page, set items related to a fixed-size memory pool.

544

Figure 10.44 [Fixed-size Memory Pool] Page

Table 10.30 lists the [Fixed-size Memory Pool] page items.

Table 10.30 [Fixed-size Memory Pool] Page Items

Item CFG Name Linkage Unit

Max. Fixed-size Memory Pool ID CFG_MAXMPFID Kernel environment side

Creation of Fixed-size Memory Pool ⎯ Kernel side/kernel
environment side

(1) [Fixed-size Memory Pool Information] group

In this group, the following information is displayed. Clicking the [Modify] button opens the
[Modification of Fixed-size Memory Pool Information] dialog box in which the information can
be changed.

545

(a) [Max. Fixed-size Memory Pool ID [CFG_MAXMPFID]]

The range of usable fixed-size memory pool IDs is between 1 and CFG_MAXMPFID.

(2) [List of Fixed-size Memory Pools] group

In this group, the fixed-size memory pools already created are displayed. The flag icon indicates
that the fixed-size memory pool is created to belong to the kernel side.

The following items are in the pop-up menu.

• [Create]: Opens the [Creation of Fixed-size Memory Pool] dialog box to create a fixed-
size memory pool

• [Delete]: Deletes the selected fixed-size memory pool

• [Modify]: Opens the [Modification of Information for Fixed-size Memory Pool
Creation] dialog box to modify the selected fixed-size memory pool setting

(3) [Note]

All setting items in this page become invalid when cre_mpf is not selected in the [Service Call
Selection] page. In addition, all items in this page cannot be modified.

In this case, the message shown in table 10.31 is displayed in [Note].

Table 10.31 [Note] in [Fixed-size Memory Pool] Page

Condition Display Message

cre_mpf is not selected All setting items in this page are invalid because the setting to
install cre_mpf is not made.

10.7.41 [Modification of Fixed-size Memory Pool Information] Dialog Box

Figure 10.45 [Modification of Fixed-size Memory Pool Information] Dialog Box

Clicking the [Modify] button in the [Fixed-size Memory Pool] page opens this dialog box.

546

(1) [Max. Fixed-size Memory Pool ID [CFG_MAXMPFID]]

A fixed-size memory pool ID between 1 and CFG_MAXMPFID can be used. An integer between
0 and 32767 can be specified. If 0 is specified, fixed-size memory pools cannot be used.
However, since a variable area for managing the fixed-size memory pools does not need to be
allocated, the used RAM size can be reduced.

If [Automatically Sets the Max. ID of Memory Pools] is selected, the configurator automatically
calculates the maximum ID based on the fixed-size memory pools created in the [Fixed-size
Memory Pool] page.

(2) [OK] button

Closes this dialog box after making the settings in this dialog box effective.

(3) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

547

10.7.42 [Creation of Fixed-size Memory Pool] Dialog Box and [Modification of Information

for Fixed-size Memory Pool Creation] Dialog Box

Figure 10.46 [Creation of Fixed-size Memory Pool] Dialog Box

Selecting [Create] from the pop-up menu in the [Fixed-size Memory Pool] page opens the
[Creation of Fixed-size Memory Pool] dialog box. Selecting [Modify] from the pop-up menu in
the [Fixed-size Memory Pool] page opens the [Modification of Information for Fixed-size
Memory Pool Creation] dialog box. These two dialog boxes have the same configuration.

A fixed-size memory pool can also be dynamically created using the cre_mpf or acre_mpf service
call. When creating a fixed-size memory pool using these service calls, a specification to use the

548

allocated area as a memory pool can be made by the application. However, since this specification
cannot be made in the configurator, fixed-size memory pools are always allocated to the system
pool.

(1) [Fixed-size Memory Pool ID] group

(a) [Automatic Assignment of ID Number]

If this check box is selected, the configurator automatically assigns an ID number. However, if
this check box is selected, [Kernel Side] cannot be selected.

(b) [ID Number]

Enter the fixed-size memory pool ID as a numeric value. A value between 1 and
CFG_MAXMPFID can be specified. However, if [Automatic Assignment of ID Number] is
selected, the ID number cannot be specified.

(c) [ID Name]

Specify the ID name. If [Automatic Assignment of ID Number] is selected, the name must be
specified. In other cases, this edit box can be left blank.

(d) [Kernel Side]

Select this check box when specifying the fixed-size memory pool created to belong to the kernel
side.

In kernel lock mode, this check box cannot be selected at all times.

(2) [Memory Block] group

Create a fixed-size memory pool that can acquire a memory block of the size specified in [Block
Size] for the number of blocks specified in [Number of Blocks].

In [Number of Blocks], specify a value between 1 and 0x08000000.

In [Block Size], specify a value between 4 and 0x20000000. The specified value is rounded up to
a multiple of four.

(3) [Waiting Queue]

Select the FIFO order or priority order as the method to queue the waiting tasks.

(4) [Access Permission Vector] group

All items in this group have meaning only when CFG_PROTMEM is selected in the [Kernel]
page. In [Access Permission Vector], select one from the following:

(1) TACT_KERNEL

549

(2) TACT_PRW (domid)

(3) TACT_PRO (domid)

(4) TACT_SRW

(5) TACT_SRO

(6) TACT_SRPW (domid)

Only when (2), (3), or (6) is selected, [Specified User Domain ID] becomes valid. In this case,
select the user domain ID to be permitted in [Specified User Domain ID].

[Setting Result] shows from which user domains write or read is possible, according to the settings
of [Access Permission Vector] and [Specified User Domain ID].

Table 10.32 shows the displayed contents of [Setting Result].

The following memory attributes are always used.

• TA_RW (Readable/Writable)

• TA_CACHE (Cacheable)

• TA_WBACK (Cacheable in write-back mode)

Table 10.32 Displayed Contents of [Setting Result]

Settings [Setting Result] Display

Access Permission
Vector

Specified User
Domain

User Domain Possible to
Write

User Domain Possible
to Read

TACT_KERNEL Invalid No user domain No user domain

TACT_PRW (domid) Valid Specified user domain only Specified user domain
only

TACT_PRO (domid) Valid No user domain Specified user domain
only

TACT_SRW Invalid All user domains All user domains

TACT_SRO Invalid No user domain All user domains

TACT_SRPW (domid) Valid Specified user domain only All user domains

(5) [Create] button (only in [Creation of Fixed-size Memory Pool] dialog box)

Makes the settings in this dialog box effective. Then, returns the display of this dialog box to its
initial state so that the next fixed-size memory pool can be created without break. This dialog box
is not closed.

550

(6) [OK] button (only in [Modification of Information for Fixed-size Memory Pool Creation]
dialog box)

Closes this dialog box after making the settings in this dialog box effective.

(7) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

10.7.43 [Variable-size Memory Pool] Page

In this page, set items related to a variable-size memory pool.

Figure 10.47 [Variable-size Memory Pool] Page

Table 10.33 lists the [Variable-size Memory Pool] page items.

551

Table 10.33 [Variable-size Memory Pool] Page Items

Item CFG Name Linkage Unit

Max. Variable-size Memory Pool ID CFG_MAXMPLID Kernel environment side

Creation of Variable-size Memory Pool ⎯ Kernel side/kernel
environment side

(1) [Variable-size Memory Pool Information] group

In this group, the following information is displayed. Clicking the [Modify] button opens the
[Modification of Variable-size Memory Pool Information] dialog box in which the information
can be changed.

(a) [Max. Variable-size Memory Pool ID [CFG_MAXMPLID]]

The range of usable variable-size memory pool IDs is between 1 and CFG_MAXMPLID.

(2) [List of Variable-size Memory Pools] group

In this group, the variable-size memory pools already created are displayed. The flag icon
indicates that the variable-size memory pool is created to belong to the kernel side.

The following items are in the pop-up menu.

• [Create]: Opens the [Creation of Variable-size Memory Pool] dialog box to create a
variable-size memory pool

• [Delete]: Deletes the selected variable-size memory pool

• [Modify]: Opens the [Modification of Information for Variable-size Memory Pool
Creation] dialog box to modify the selected variable-size memory pool setting

(3) [Note]

All setting items in this page become invalid when cre_mpl is not selected in the [Service Call
Selection] page. In addition, all items in this page cannot be modified.

In this case, the message shown in table 10.34 is displayed in [Note].

Table 10.34 [Note] in [Variable-size Memory Pool] Page

Condition Display Message

cre_mpl is not selected All setting items in this page are invalid because the setting to
install cre_mpl is not made.

552

10.7.44 [Modification of Variable-size Memory Pool Information] Dialog Box

Figure 10.48 [Modification of Variable-size Memory Pool Information] Dialog Box

Clicking the [Modify] button in the [Variable-size Memory Pool] page opens this dialog box.

(1) [Max. Variable-size Memory Pool ID [CFG_MAXMPLID]]

A variable-size memory pool ID between 1 and CFG_MAXMPLID can be used. An integer
between 0 and 32767 can be specified. If 0 is specified, variable-size memory pools cannot be
used. However, since a variable area for managing the variable-size memory pools does not need
to be allocated, the used RAM size can be reduced.

If [Automatically Sets the Max. ID of Memory Pools] is selected, the configurator automatically
calculates the maximum ID based on the variable-size memory pools created in the [Variable-size
Memory Pool] page.

(2) [OK] button

Closes this dialog box after making the settings in this dialog box effective.

(3) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

553

10.7.45 [Creation of Variable-size Memory Pool] Dialog Box and [Modification of

Information for Variable-size Memory Pool Creation] Dialog Box

Figure 10.49 [Creation of Variable-size Memory Pool] Dialog Box

Selecting [Create] from the pop-up menu in the [Variable-size Memory Pool] page opens the
[Creation of Variable-size Memory Pool] dialog box. Selecting [Modify] from the pop-up menu
in the [Variable-size Memory Pool] page opens the [Modification of Information for Variable-size
Memory Pool Creation] dialog box. These two dialog boxes have the same configuration.

A variable-size memory pool can also be dynamically created using the cre_mpl or acre_mpl
service call. When creating a variable-size memory pool using these service calls, a specification
to use the allocated area as a memory pool can be made by the application. However, since this

554

specification cannot be made in the configurator, variable-size memory pools are always allocated
to the system pool.

(1) [Variable-size Memory Pool ID] group

(a) [Automatic Assignment of ID Number]

If this check box is selected, the configurator automatically assigns an ID number. However, if
this check box is selected, [Kernel Side] cannot be selected.

(b) [ID Number]

Enter the variable-size memory pool ID as a numeric value. A value between 1 and
CFG_MAXMPLID can be specified. However, if [Automatic Assignment of ID Number] is
selected, the ID number cannot be specified.

(c) [ID Name]

Specify the ID name. If [Automatic Assignment of ID Number] is selected, the name must be
specified. In other cases, this edit box can be left blank.

(d) [Kernel Side]

Select this check box when specifying the variable-size memory pool created to belong to the
kernel side.

In kernel lock mode, this check box cannot be selected at all times.

(2) [Waiting Queue] group

Only the FIFO order can be selected as the method to queue the waiting tasks.

(3) [Sector Management] group

When [Sector Management (VTA_UNFRAGMENT)] is selected, variable-size memory pools are
managed by sectors. [Min. Block Size] and [Max. Sector Count] are valid only in this case.

The sector management method is an attribute suitable for a memory pool that acquires a large
quantity of small memory blocks. By using small blocks continuously as much as possible, a
continuous free area of a large size can be maintained more easily. For details on sector
management and the meanings of [Min. Block Size] and [Max. Sector Count], refer to the
following.

Reference: Section 4.31, Controlling Memory Fragmentation

In [Min. Block Size], an integer other than 0 can be specified, and it is rounded up to a multiple of
the size selected in the [Alignment Adjustment] group.

555

In [Max. Sector Count], an integer other than 0 can be specified. If 0 is specified, it is corrected to
1.

When [Max. Sector Count] is greater than [Size]/([Min. Block Size] × 32), the actual Max. sector
count is corrected to [Size]/([Min. Block Size] × 32) by the kernel.

Note that if [Sector Management (VTA_UNFRAGMENT)] is selected, the size of the memory
block acquired from the memory pool is rounded up to a multiple of [Min. Block Size].

(4) [Alignment Adjustment] group

Make a specification related to adjusting alignment of the address of the memory block acquired
from the memory pool.

Select one from the three alignment methods below.

(a) [Aligns the memory block address to a multiple of 4]

(b) [Aligns the memory block address to a multiple of 16 (VTA_ALIGN16)]

(c) [Aligns the memory block address to a multiple of 32 (VTA_ALIGN32)]

(5) [Memory Pool Area] group

In [Size], specify the memory pool size. A value between 4 and 0x20000000 can be specified.
The specified value is rounded up to a multiple of four.

Clicking the [Estimation] button opens the [Estimation of Variable-size Memory Pool Area Size]
dialog box to calculate the estimated value of [Size].

[Access Permission Vector] has meaning only when CFG_PROTMEM is selected in the [Kernel]
page. In [Access Permission Vector], select one from the following:

(1) TACT_KERNEL

(2) TACT_PRW (domid)

(3) TACT_PRO (domid)

(4) TACT_SRW

(5) TACT_SRO

(6) TACT_SRPW (domid)

Only when (2), (3), or (6) is selected, [Specified User Domain ID] becomes valid. In this case,
select the user domain ID to be permitted in [Specified User Domain ID].

[Setting Result] shows from which user domains write or read is possible, according to the settings
of [Access Permission Vector] and [Specified User Domain ID].

556

Table 10.35 shows the displayed contents of [Setting Result].

The following memory attributes are always used.

• TA_RW (Readable/Writable)

• TA_CACHE (Cacheable)

• TA_WBACK (Cacheable in write-back mode)

Table 10.35 Displayed Contents of [Setting Result]

Settings [Setting Result] Display

Access Permission
Vector

Specified User
Domain

User Domain Possible to
Write

User Domain Possible
to Read

TACT_KERNEL Invalid No user domain No user domain

TACT_PRW (domid) Valid Specified user domain only Specified user domain
only

TACT_PRO (domid) Valid No user domain Specified user domain
only

TACT_SRW Invalid All user domains All user domains

TACT_SRO Invalid No user domain All user domains

TACT_SRPW (domid) Valid Specified user domain only All user domains

(6) [Create] button (only in [Creation of Variable-size Memory Pool] dialog box)

Makes the settings in this dialog box effective. Then, returns the display of this dialog box to its
initial state so that the next variable-size memory pool can be created without break. This dialog
box is not closed.

(7) [OK] button (only in [Modification of Information for Variable-size Memory Pool Creation]
dialog box)

Closes this dialog box after making the settings in this dialog box effective.

(8) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

557

10.7.46 [Estimation of Variable-size Memory Pool Area Size] Dialog Box

Figure 10.50 [Estimation of Variable-size Memory Pool Area Size] Dialog Box

Clicking the [Estimation] button in the [Creation of Variable-size Memory Pool] dialog box or
[Modification of Information for Variable-size Memory Pool Creation] dialog box opens this
dialog box.

In this dialog box, the size of the variable-size memory pool that can acquire a memory block of
the size specified in [Memory Block Size] for the number of blocks specified in [Number of
Blocks] is calculated. To be specific, the same calculation as the TSZ_MPL macro is performed.

Clicking the [OK] button returns the display to the [Creation of Variable-size Memory Pool]
dialog box or [Modification of Information for Variable-size Memory Pool Creation] dialog box,
and [Size] of the variable-size memory pool area in either of these dialog boxes is updated to the
calculation result of this dialog box.

Clicking the [Cancel] button returns the display to the [Creation of Variable-size Memory Pool]
dialog box or [Modification of Information for Variable-size Memory Pool Creation] dialog box,
but [Size] of the variable-size memory pool area in either of these dialog boxes is not updated.

10.7.47 [Cyclic Handler] Page

In this page, set items related to a cyclic handler.

558

Figure 10.51 [Cyclic Handler] Page

Table 10.36 lists the [Cyclic Handler] page items.

Table 10.36 [Cyclic Handler] Page Items

Item CFG Name Linkage Unit

Max. Cyclic Handler ID CFG_MAXCYCID Kernel environment side

Creation of Cyclic Handler ⎯ Kernel side/kernel
environment side

(1) [Cyclic Handler Information] group

In this group, the following information is displayed. Clicking the [Modify] button opens the
[Modification of Cyclic Handler Information] dialog box in which the information can be
changed.

559

(a) [Max. Cyclic Handler ID [CFG_MAXCYCID]]

The range of usable cyclic handler IDs is between 1 and CFG_MAXCYCID.

(2) [List of Cyclic Handlers] group

In this group, the cyclic handlers already created are displayed. The flag icon indicates that the
cyclic handler is created to belong to the kernel side.

When the kernel is initiated, cyclic handlers on the kernel side (with the flag icon) are created in
sequence from the top of this list, and then cyclic handlers on the kernel environment side (without
the flag icon) are created in sequence from the top of this list. Note that if [Start Handler after
Creation (TA_STA)] or [Save Initiation Phase (TA_PHS)] has been specified at handler creation,
the cyclic handlers are created in this sequence.

The following items are in the pop-up menu.

• [Create]: Opens the [Creation of Cyclic Handler] dialog box to create a cyclic handler

• [Delete]: Deletes the selected cyclic handler

• [Modify]: Opens the [Modification of Information for Cyclic Handler Creation] dialog
box to modify the selected cyclic handler setting

• [Up]: Switches the selected cyclic handler with the cyclic handler immediately above

• [Down]: Switches the selected cyclic handler with the cyclic handler immediately
below

(3) [Note]

All setting items in this page become invalid when cre_cyc is not selected in the [Service Call
Selection] page. In addition, all items in this page cannot be modified.

In this case, the message shown in table 10.37 is displayed in [Note].

Table 10.37 [Note] in [Cyclic Handler] Page

Condition Display Message

cre_cyc is not selected All setting items in this page are invalid because the setting to
install cre_cyc is not made.

560

10.7.48 [Modification of Cyclic Handler Information] Dialog Box

Figure 10.52 [Modification of Cyclic Handler Information] Dialog Box

Clicking the [Modify] button in the [Cyclic Handler] page opens this dialog box.

(1) [Max. Cyclic Handler ID [CFG_MAXCYCID]]

A cyclic handler ID between 1 and CFG_MAXCYCID can be used. An integer between 0 and
254 can be specified. If 0 is specified, cyclic handlers cannot be used. However, since a variable
area for managing the cyclic handlers does not need to be allocated, the used RAM size can be
reduced.

If [Automatically Sets the Max. ID of Cyclic Handlers] is selected, the configurator automatically
calculates the maximum ID based on the cyclic handlers created in the [Cyclic Handler] page.

(2) [OK] button

Closes this dialog box after making the settings in this dialog box effective.

(3) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

561

10.7.49 [Creation of Cyclic Handler] Dialog Box and [Modification of Information for

Cyclic Handler Creation] Dialog Box

Figure 10.53 [Creation of Cyclic Handler] Dialog Box

Selecting [Create] from the pop-up menu in the [Cyclic Handler] page opens the [Creation of
Cyclic Handler] dialog box. Selecting [Modify] from the pop-up menu in the [Cyclic Handler]
page opens the [Modification of Information for Cyclic Handler Creation] dialog box. These two
dialog boxes have the same configuration.

A cyclic handler can also be dynamically created using the cre_cyc or acre_cyc service call.

(1) [Automatic Assignment of ID Number]

If this check box is selected, the configurator automatically assigns an ID number. However, if
this check box is selected, [Kernel Side] cannot be selected.

(2) [ID Number]

Enter the cyclic handler ID as a numeric value. A value between 1 and CFG_MAXCYCID can be
specified. However, if [Automatic Assignment of ID Number] is selected, the ID number cannot
be specified.

562

(3) [ID Name]

Specify the ID name. If [Automatic Assignment of ID Number] is selected, the name must be
specified. In other cases, this edit box can be left blank.

(4) [Kernel Side]

Select this check box when specifying the cyclic handler created to belong to the kernel side.

In kernel lock mode, this check box cannot be selected at all times.

(5) [Address]

Specify the address of the cyclic handler as a C-language symbol or numeric value.

(6) [Extended Information]

The extended information is passed to the cyclic handler as a parameter. Specify it as a C-
language symbol or numeric value.

(7) [Start-up Cycle] and [Start-up Phase]

Specify the initiation cycle and initiation phase for the cyclic handler. A value between 1 and
0x7fffffff can be specified for each. However, initiation cycle ≥ initiation phase must be satisfied.

In the case of CFG_TICDENO > 1, these values must not exceed 0x7fffffff/CFG_TICDENO.
Since the configurator does not check this error, the specifications must be made carefully.

(8) [Start Handler after Creation (TA_STA)]

If this check box is selected, the cyclic handler enters the operating state at kernel initiation.

(9) [Save Start-up Phase (TA_PHS)]

If this check box is selected, the initiation phase is saved even when the cyclic handler is not
operating.

(10) [Description Language]

Select [High-Level Language (TA_HLNG)] when the cyclic handler is written in a high-level
language, and select [Assembly Language (TA_ASM)] when the cyclic handler is written in
assembly language.

(11) [Create] button (only in [Creation of Cyclic Handler] dialog box)

Makes the settings in this dialog box effective. Then, returns the display of this dialog box to its
initial state so that the next cyclic handler can be created without break. This dialog box is not
closed.

(12) [OK] button (only in [Modification of Information for Cyclic Handler Creation] dialog box)

563

Closes this dialog box after making the settings in this dialog box effective.

(13) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

10.7.50 [Alarm Handler] Page

In this page, set items related to an alarm handler.

Figure 10.54 [Alarm Handler] Page

Table 10.38 lists the [Alarm Handler] page items.

564

Table 10.38 [Alarm Handler] Page Items

Item CFG Name Linkage Unit

Max. Alarm Handler ID CFG_MAXALMID Kernel environment side

Creation of Alarm Handler ⎯ Kernel side/kernel
environment side

(1) [Alarm Handler Information] group

In this group, the following information is displayed. Clicking the [Modify] button opens the
[Modification of Alarm Handler Information] dialog box in which the information can be changed.

(a) [Max. Alarm Handler ID [CFG_MAXALMID]]

The range of usable alarm handler IDs is between 1 and CFG_MAXALMID.

(2) [List of Alarm Handlers] group

In this group, the alarm handlers already created are displayed. The flag icon indicates that the
alarm handler is created to belong to the kernel side.

The following items are in the pop-up menu.

• [Create]: Opens the [Creation of Alarm Handler] dialog box to create an alarm handler

• [Delete]: Deletes the selected alarm handler

• [Modify]: Opens the [Modification of Information for Alarm Handler Creation] dialog
box to modify the selected alarm handler setting

(3) [Note]

All setting items in this page become invalid when cre_alm is not selected in the [Service Call
Selection] page. In addition, all items in this page cannot be modified.

In this case, the message shown in table 10.39 is displayed in [Note].

Table 10.39 [Note] in [Alarm Handler] Page

Condition Display Message

cre_alm is not selected All setting items in this page are invalid because the setting to
install cre_alm is not made.

565

10.7.51 [Modification of Alarm Handler Information] Dialog Box

Figure 10.55 [Modification of Alarm Handler Information] Dialog Box

Clicking the [Modify] button in the [Alarm Handler] page opens this dialog box.

(1) [Max. Alarm Handler ID [CFG_MAXALMID]]

An alarm handler ID between 1 and CFG_MAXALMID can be used. An integer between 0 and
255 can be specified. If 0 is specified, alarm handlers cannot be used. However, since a variable
area for managing the alarm handlers does not need to be allocated, the used RAM size can be
reduced.

If [Automatically Sets the Max. ID of Alarm Handlers] is selected, the configurator automatically
calculates the maximum ID based on the alarm handlers created in the [Alarm Handler] page.

(2) [OK] button

Closes this dialog box after making the settings in this dialog box effective.

(3) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

566

10.7.52 [Creation of Alarm Handler] Dialog Box and [Modification of Information for

Alarm Handler Creation] Dialog Box

Figure 10.56 [Creation of Alarm Handler] Dialog Box

Selecting [Create] from the pop-up menu in the [Alarm Handler] page opens the [Creation of
Alarm Handler] dialog box. Selecting [Modify] from the pop-up menu in the [Alarm Handler]
page opens the [Modification of Information for Alarm Handler Creation] dialog box. These two
dialog boxes have the same configuration.

An alarm handler can also be dynamically created using the cre_alm or acre_alm service call.

(1) [Automatic Assignment of ID Number]

If this check box is selected, the configurator automatically assigns an ID number. However, if
this check box is selected, [Kernel Side] cannot be selected.

(2) [ID Number]

Enter the alarm handler ID as a numeric value. A value between 1 and CFG_MAXALMID can be
specified. However, if [Automatic Assignment of ID Number] is selected, the ID number cannot
be specified.

(3) [ID Name]

Specify the ID name. If [Automatic Assignment of ID Number] is selected, the name must be
specified. In other cases, this edit box can be left blank.

567

(4) [Kernel Side]

Select this check box when specifying the alarm handler created to belong to the kernel side.

In kernel lock mode, this check box cannot be selected at all times.

(5) [Address]

Specify the address of the alarm handler as a C-language symbol or numeric value.

(6) [Extended Information]

The extended information is passed to the alarm handler as a parameter. Specify it as a C-
language symbol or numeric value.

(7) [Description Language]

Select [High-Level Language (TA_HLNG)] when the alarm handler is written in a high-level
language, and select [Assembly Language (TA_ASM)] when the alarm handler is written in
assembly language.

(8) [Create] button (only in [Creation of Alarm Handler] dialog box)

Makes the settings in this dialog box effective. Then, returns the display of this dialog box to its
initial state so that the next alarm handler can be created without break. This dialog box is not
closed.

(9) [OK] button (only in [Modification of Information for Alarm Handler Creation] dialog box)

Closes this dialog box after making the settings in this dialog box effective.

(10) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

10.7.53 [Overrun Handler] Page

In this page, define the overrun handler. The overrun handler can also be dynamically defined
using the def_ovr service call.

568

Figure 10.57 [Overrun Handler] Page

(1) [Does Not Register the Overrun Handler] or [Registers the Overrun Handler]

To register the overrun handler, select [Registers the Overrun Handler]. In this case, the
subsequent items become valid.

(2) [Handler Address]

Specify the address of the overrun handler as a C-language symbol or numeric value.

(3) [Handler Description Language]

Select [High-Level Language] when the overrun handler is written in a high-level language, and
select [Assembly Language] when the overrun handler is written in assembly language.

(4) [Kernel Side]

Select this check box when specifying the overrun handler created to belong to the kernel side.

In kernel lock mode, this check box cannot be selected at all times.

(5) [Note]

All setting items in this page become invalid when def_ovr is not selected in the [Service Call
Selection] page. In addition, all items in this page cannot be modified.

In this case, the message shown in table 10.40 is displayed in [Note].

569

Table 10.40 [Note] in [Overrun Handler] Page

Condition Display Message

def_ovr is not selected All setting items in this page are invalid because the setting to
install def_ovr is not made.

10.7.54 [Protected Memory Pool] Page

In this page, set items related to a protected memory pool.

Figure 10.58 [Protected Memory Pool] Page

Table 10.41 lists the [Protected Memory Pool] page items.

570

Table 10.41 [Protected Memory Pool] Page Items

Item CFG Name Linkage Unit

Max. Protected Memory Pool ID CFG_MAXMPPID Kernel environment side

Creation of Protected Memory Pool ⎯ Kernel side/kernel
environment side

(1) [Protected Memory Pool Information] group

In this group, the following information is displayed. Clicking the [Modify] button opens the
[Modification of Protected Memory Pool Information] dialog box in which the information can be
changed.

(a) [Max. Protected Memory Pool ID [CFG_MAXMPPID]]

The range of usable protected memory pool IDs is between 1 and CFG_MAXMPPID.

(2) [List of Protected Memory Pools] group

In this group, the protected memory pools already created are displayed. The flag icon indicates
that the protected memory pool is created to belong to the kernel side.

The following items are in the pop-up menu.

• [Create]: Opens the [Creation of Protected Memory Pool] dialog box to create a
protected memory pool

• [Delete]: Deletes the selected protected memory pool

• [Modify]: Opens the [Modification of Information for Protected Memory Pool
Creation] dialog box to modify the selected protected memory pool setting

(3) [Note]

All setting items in this page become invalid when CFG_PROTMEM is not selected in the
[Kernel] page or icre_mpp is not selected in the [Service Call Selection] page. In addition, all
items in this page cannot be modified.

In this case, the message shown in table 10.42 is displayed in [Note].

Table 10.42 [Note] in [Protected Memory Pool] Page

Condition Display Message

CFG_PROTMEM is not selected or
icre_mpp is not selected

All setting items in this page are invalid because
CFG_PROTMEM is not selected or the setting to install
icre_mpp is not made.

571

10.7.55 [Modification of Protected Memory Pool Information] Dialog Box

Figure 10.59 [Modification of Protected Memory Pool Information] Dialog Box

Clicking the [Modify] button in the [Protected Memory Pool] page opens this dialog box.

(1) [Max. Protected Memory Pool ID [CFG_MAXMPPID]]

A protected memory pool ID between 1 and CFG_MAXMPPID can be used. An integer between
0 and 31 can be specified. If 0 is specified, protected memory pools cannot be used. However,
since a variable area for managing the protected memory pools does not need to be allocated, the
used RAM size can be reduced.

If [Automatically Sets the Max. ID of Protected Memory Pools] is selected, the configurator
automatically calculates the maximum ID based on the protected memory pools created in the
[Protected Memory Pool] page.

(2) [OK] button

Closes this dialog box after making the settings in this dialog box effective.

(3) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

572

10.7.56 [Creation of Protected Memory Pool] Dialog Box and [Modification of Information

for Protected Memory Pool Creation] Dialog Box

Figure 10.60 [Creation of Protected Memory Pool] Dialog Box

Selecting [Create] from the pop-up menu in the [Protected Memory Pool] page opens the
[Creation of Protected Memory Pool] dialog box. Selecting [Modify] from the pop-up menu in
the [Protected Memory Pool] page opens the [Modification of Information for Protected Memory
Pool Creation] dialog box. These two dialog boxes have the same configuration.

(1) [Protected Memory Pool ID] group

(a) [Automatic Assignment of ID Number]

If this check box is selected, the configurator automatically assigns an ID number. However, if
this check box is selected, [Kernel Side] cannot be selected.

(b) [ID Number]

573

Enter the protected memory pool ID as a numeric value. A value between 1 and
CFG_MAXMPPID can be specified. However, if [Automatic Assignment of ID Number] is
selected, the ID number cannot be specified.

(c) [ID Name]

Specify the ID name. If [Automatic Assignment of ID Number] is selected, the name must be
specified. In other cases, this edit box can be left blank.

(d) [Kernel Side]

Select this check box when specifying the protected memory pool created to belong to the kernel
side.

In kernel lock mode, this check box cannot be selected at all times.

(2) [Sector Management] group

When [Sector Management (VTA_UNFRAGMENT)] is selected, protected memory pools are
managed by sectors. [Max. Sector Count] is valid only in this case.

The sector management method is an attribute suitable for a memory pool that acquires a large
quantity of small memory blocks. By using small blocks continuously as much as possible, a
continuous free area of a large size can be maintained more easily. For details on sector
management and the meaning of [Max. Sector Count], refer to the following.

Reference: Section 4.31, Controlling Memory Fragmentation

In [Max. Sector Count], an integer other than 0 can be specified. If 0 is specified, it is corrected to
1.

When [Max. Sector Count] is greater than [Size]/(4096 × 32), the actual Max. sector count is
corrected to [Size]/(4096 × 32) by the kernel.

(3) [Memory Pool Area] group

In [Size], specify the memory pool size. A value between 1 and 0x20000000 can be specified.
The specified value is rounded up to a multiple of CFG_PAGESZ (4096).

The protected memory pool area is created with the following section name.

BUCM_himpp_<ID>

<ID> shows the ID name when an ID name is specified, otherwise it shows the decimal notation
of the ID number. At linkage, this section must be allocated to an MMU mapped area and at the
boundary address of CFG_PAGESZ (4096).

574

Clicking the [Estimation] button opens the [Estimation of Protected Memory Pool Area Size]
dialog box to calculate the estimated value of [Size].

(4) [Read/Write] group

Select read-only or readable/writable for the protected memory pool.

(5) [Cache Setting] group

Select how the protected memory pool is handled when cache is enabled from the following:

• Cacheable in write-back mode (TA_CACHE|TA_WBACK)

• Cacheable in write-through mode (TA_CACHE|TA_WTHROUGH)

• Non-cacheable (TA_UNCACHE)

(6) [Create] button (only in [Creation of Protected Memory Pool] dialog box)

Makes the settings in this dialog box effective. Then, returns the display of this dialog box to its
initial state so that the next protected memory pool can be created without break. This dialog box
is not closed.

(7) [OK] button (only in [Modification of Information for Protected Memory Pool Creation]
dialog box)

Closes this dialog box after making the settings in this dialog box effective.

(8) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

10.7.57 [Estimation of Protected Memory Pool Area Size] Dialog Box

Figure 10.61 [Estimation of Protected Memory Pool Area Size] Dialog Box

Clicking the [Estimation] button in the [Creation of Protected Memory Pool] dialog box or
[Modification of Information for Protected Memory Pool Creation] dialog box opens this dialog
box.

575

In this dialog box, the size of the protected memory pool that can acquire a memory block of the
size specified in [Memory Block Size] for the number of blocks specified in [Number of Blocks]
is calculated. To be specific, the same calculation as the TSZ_MPP macro is performed.

Clicking the [OK] button returns the display to the [Creation of Protected Memory Pool] dialog
box or [Modification of Information for Protected Memory Pool Creation] dialog box, and [Size]
of the protected memory pool area in either of these dialog boxes is updated to the calculation
result of this dialog box.

Clicking the [Cancel] button returns the display to the [Creation of Protected Memory Pool] dialog
box or [Modification of Information for Protected Memory Pool Creation] dialog box, but [Size]
of the protected memory pool area in either of these dialog boxes is not updated.

10.7.58 [Protected Mailbox] Page

In this page, set items related to a protected mailbox.

576

Figure 10.62 [Protected Mailbox] Page

Table 10.43 lists the [Protected Mailbox] page items.

Table 10.43 [Protected Mailbox] Page Items

Item CFG Name Linkage Unit

Max. Protected Mailbox ID CFG_MAXMBPID Kernel environment side

Creation of Protected Mailbox ⎯ Kernel side/kernel
environment side

(1) [Protected Mailbox Information] group

In this group, the following information is displayed. Clicking the [Modify] button opens the
[Modification of Protected Mailbox Information] dialog box in which the information can be
changed.

577

(a) [Max. Protected Mailbox ID [CFG_MAXMBPID]]

The range of usable protected mailbox IDs is between 1 and CFG_MAXMBPID.

(2) [List of Protected Mailboxes] group

In this group, the protected mailboxes already created are displayed. The flag icon indicates that
the protected mailbox is created to belong to the kernel side.

The following items are in the pop-up menu.

• [Create]: Opens the [Creation of Protected Mailbox] dialog box to create a protected
mailbox

• [Delete]: Deletes the selected protected mailbox

• [Modify]: Opens the [Modification of Information for Protected Mailbox Creation]
dialog box to modify the selected protected mailbox setting

(3) [Note]

All setting items in this page become invalid when CFG_PROTMEM is not selected in the
[Kernel] page or cre_mbp is not selected in the [Service Call Selection] page. In addition, all
items in this page cannot be modified.

In this case, the message shown in table 10.44 is displayed in [Note].

Table 10.44 [Note] in [Protected Mailbox] Page

Condition Display Message

CFG_PROTMEM is not selected or
cre_mbp is not selected

All setting items in this page are invalid because
CFG_PROTMEM is not selected or the setting to install
cre_mbp is not made.

10.7.59 [Modification of Protected Mailbox Information] Dialog Box

Figure 10.63 [Modification of Protected Mailbox Information] Dialog Box

578

Clicking the [Modify] button in the [Protected Mailbox] page opens this dialog box.

(1) [Max. Protected Mailbox ID [CFG_MAXMBPID]]

A protected mailbox ID between 1 and CFG_MAXMBPID can be used. An integer between 0
and 32767 can be specified. If 0 is specified, protected mailboxes cannot be used. However, since
a variable area for managing the protected mailboxes does not need to be allocated, the used RAM
size can be reduced.

If [Automatically Sets the Max. ID of Protected Mailboxes] is selected, the configurator
automatically calculates the maximum ID based on the protected mailboxes created in the
[Protected Mailbox] page.

(2) [OK] button

Closes this dialog box after making the settings in this dialog box effective.

(3) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

10.7.60 [Creation of Protected Mailbox] Dialog Box and [Modification of Information for

Protected Mailbox Creation] Dialog Box

Figure 10.64 [Creation of Protected Mailbox] Dialog Box

Selecting [Create] from the pop-up menu in the [Protected Mailbox] page opens the [Creation of
Protected Mailbox] dialog box. Selecting [Modify] from the pop-up menu in the [Protected

579

Mailbox] page opens the [Modification of Information for Protected Mailbox Creation] dialog
box. These two dialog boxes have the same configuration.

A protected mailbox can also be dynamically created using the cre_mbp or acre_mbp service call.

(1) [Automatic Assignment of ID Number]

If this check box is selected, the configurator automatically assigns an ID number. However, if
this check box is selected, [Kernel Side] cannot be selected.

(2) [ID Number]

Enter the protected mailbox ID as a numeric value. A value between 1 and CFG_MAXMBPID
can be specified. However, if [Automatic Assignment of ID Number] is selected, the ID number
cannot be specified.

(3) [ID Name]

Specify the ID name. If [Automatic Assignment of ID Number] is selected, the name must be
specified. In other cases, this edit box can be left blank.

(4) [Kernel Side]

Select this check box when specifying the protected mailbox created to belong to the kernel side.

In kernel lock mode, this check box cannot be selected at all times.

(5) [Waiting Queue]

Select the FIFO order or priority order as the method to queue the waiting tasks.

(6) [Message Queue]

Select the FIFO order or priority order as the method to queue the messages.

(7) [Max. Priority]

When the priority order is selected in [Message Queue], select the maximum priority of the
message. It can be selected between 1 and CFG_MAXMSGPRI.

When the FIFO order is selected in [Message Queue], this item has no meaning.

(8) [Create] button (only in [Creation of Protected Mailbox] dialog box)

Makes the settings in this dialog box effective. Then, returns the display of this dialog box to its
initial state so that the next protected mailbox can be created without break. This dialog box is not
closed.

(9) [OK] button (only in [Modification of Information for Protected Mailbox Creation] dialog box)

580

Closes this dialog box after making the settings in this dialog box effective.

(10) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

10.7.61 [Extended Service Call] Page

In this page, set items related to an extended service call.

Figure 10.65 [Extended Service Call] Page

Table 10.45 lists the [Extended Service Call] page items.

581

Table 10.45 [Extended Service Call] Page Items

Item CFG Name Linkage Unit

Max. Function Code CFG_MAXSVCCD Kernel environment side

Definition of Extended Service Call Routine ⎯ Kernel side/kernel
environment side

(1) [Extended Service Call Information] group

In this group, the following information is displayed. Clicking the [Modify] button opens the
[Modification of Extended Service Call Information] dialog box in which the information can be
changed.

(a) [Max. Function Code [CFG_MAXSVCCD]]

The range of usable function codes is between 1 and CFG_MAXSVCCD.

(2) [List of Extended Service Call Routines] group

In this group, the extended service call routines already defined are displayed. The flag icon
indicates that the routine is defined to belong to the kernel side.

The following items are in the pop-up menu. In kernel lock mode, these pop-up menu items
cannot be selected for the routines on the kernel side.

• [Define]: Opens the [Definition of Extended Service Call Routine] dialog box to define
an extended service call routine

• [Delete]: Cancels definition of the selected extended service call routine

• [Modify]: Opens the [Modification of Information for Extended Service Call Routine
Definition] dialog box to modify the selected extended service call routine setting

(3) [Note]

All setting items in this page become invalid when def_svc is not selected in the [Service Call
Selection] page. In addition, all items in this page cannot be modified.

In this case, the message shown in table 10.46 is displayed in [Note].

Table 10.46 [Note] in [Extended Service Call] Page

Condition Display Message

def_svc is not selected All setting items in this page are invalid because the setting to
install def_svc is not made.

582

10.7.62 [Modification of Extended Service Call Information] Dialog Box

Figure 10.66 [Modification of Extended Service Call Information] Dialog Box

Clicking the [Modify] button in the [Extended Service Call] page opens this dialog box.

(1) [Max. Function Code [CFG_MAXSVCCD]]

Function codes between 1 and CFG_MAXSVCCD can be used. An integer between 0 and 32767
can be specified. If 0 is specified, extended service calls cannot be used. However, since a
variable area for managing the extended service calls does not need to be allocated, the used RAM
size can be reduced.

(2) [OK] button

Closes this dialog box after making the settings in this dialog box effective.

(3) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

583

10.7.63 [Definition of Extended Service Call Routine] Dialog Box and [Modification of

Information for Extended Service Call Routine Definition] Dialog Box

Figure 10.67 [Definition of Extended Service Call Routine] Dialog Box

Selecting [Define] from the pop-up menu in the [Extended Service Call] page opens the
[Definition of Extended Service Call Routine] dialog box. Selecting [Modify] from the pop-up
menu in the [Extended Service Call] page opens the [Modification of Information for Extended
Service Call Routine Definition] dialog box. These two dialog boxes have the same configuration.

An extended service call can also be dynamically defined using the def_svc service call.

(1) [Function Code]

Enter the function code as a numeric value. A value between 1 and CFG_MAXSVCCD can be
specified.

(2) [Kernel Side]

Select this check box when specifying the extended service call routine defined to belong to the
kernel side.

In kernel lock mode, this check box cannot be selected at all times.

(3) [Extended Service Call Routine Address]

Specify the address of the extended service call routine as a C-language symbol or numeric value.

584

(4) [Uses DSP (TA_COP0)], [Uses FPU (bank 0) (TA_COP1)], or [Uses FPU (bank 1)
(TA_COP2)]

TA_COP0 is valid only when CFG_DSP is selected in the [CPU] page. Select this check box
when performing DSP calculation.

TA_COP1 or TA_COP2 is valid only when CFG_FPU is selected in the [CPU] page. For normal
FPU calculation, select only TA_COP1. For cases using both FPU banks, i.e. matrix calculation,
select both TA_COP1 and TA_COP2. Selecting only TA_COP2 and not TA_COP1 is not
possible.

TA_COP0 cannot be selected together with TA_COP1 or TA_COP2.

(5) [Initial FPSCR Value]

The initial FPSCR value has a meaning only when either TA_COP1 or TA_COP2 is selected. An
integer between 0 and 0xffffffff can be specified. Specify this value with reference to the
following.

Reference: Section 15, Notes on FPU

(6) [Description Language]

Select [High-Level Language (TA_HLNG)] when the extended service call routine is written in a
high-level language, and select [Assembly Language (TA_ASM)] when the extended service call
routine is written in assembly language.

(7) [Define] button (only in [Definition of Extended Service Call Routine] dialog box)

Makes the settings in this dialog box effective. Then, returns the display of this dialog box to its
initial state so that the next extended service call routine can be defined without break. This dialog
box is not closed.

(8) [OK] button (only in [Modification of Information for Extended Service Call Routine
Definition] dialog box)

Closes this dialog box after making the settings in this dialog box effective.

(9) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

10.7.64 [Trap] Page

In this page, set items related to a trap.

585

Figure 10.68 [Trap] Page

Table 10.47 lists the [Trap] page items.

Table 10.47 [Trap] Page Items

Item CFG Name Linkage Unit

Max. Trap Number CFG_MAXTRPNO Kernel environment side

Definition of Trap Routine ⎯ Kernel side/kernel
environment side

(1) [Trap Information] group

In this group, the following information is displayed. Clicking the [Modify] button opens the
[Modification of Trap Information] dialog box in which the information can be changed.

(a) [Max. Trap Number [CFG_MAXTRPNO]]

586

The range of usable trap numbers is between 16 and CFG_MAXTRPNO.

(2) [List of Trap Routines] group

In this group, the trap routines already defined are displayed. The flag icon indicates that the
routine is defined to belong to the kernel side.

The following items are in the pop-up menu. In kernel lock mode, these pop-up menu items
cannot be selected for the routines on the kernel side.

• [Define]: Opens the [Definition of Trap Routine] dialog box to define a trap routine

• [Cancel]: Cancels definition of the selected trap routine

(3) [Note]

All setting items in this page become invalid when vdef_trp is not selected in the [Service Call
Selection] page. In addition, all items in this page cannot be modified.

In this case, the message shown in table 10.48 is displayed in [Note].

Table 10.48 [Note] in [Trap] Page

Condition Display Message

vdef_trp is not selected All setting items in this page are invalid because the setting to
install vdef_trp is not made.

10.7.65 [Modification of Trap Information] Dialog Box

Figure 10.69 [Modification of Trap Information] Dialog Box

Clicking the [Modify] button in the [Trap] page opens this dialog box.

(1) [Max. Trap Number [CFG_MAXTRPNO]]

A trap number between 16 and CFG_MAXTRPNO can be used. An integer between 16 and 255
can be specified.

587

(2) [OK] button

Closes this dialog box after making the settings in this dialog box effective.

(3) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

10.7.66 [Definition of Trap Routine] Dialog Box

Figure 10.70 [Definition of Trap Routine] Dialog Box

Selecting [Define] from the pop-up menu in the [Trap] page opens the [Definition of Trap
Routine] dialog box.

A trap can also be dynamically defined using the vdef_trp service call.

(1) [Trap Number]

The trap number selected in the [Trap] page is displayed.

(2) [Kernel Side]

Select this check box when specifying the trap routine defined to belong to the kernel side.

In kernel lock mode, this check box cannot be selected at all times.

(3) [Trap Routine Address]

Specify the address of the trap routine as a C-language symbol or numeric value.

588

(4) [Uses DSP (TA_COP0)], [Uses FPU (bank 0) (TA_COP1)], or [Uses FPU (bank 1)
(TA_COP2)]

TA_COP0 is valid only when CFG_DSP is selected in the [CPU] page. Select this check box
when performing DSP calculation.

TA_COP1 or TA_COP2 is valid only when CFG_FPU is selected in the [CPU] page. For normal
FPU calculation, select only TA_COP1. For cases using both FPU banks, i.e. matrix calculation,
select both TA_COP1 and TA_COP2. Selecting only TA_COP2 and not TA_COP1 is not
possible.

TA_COP0 cannot be selected together with TA_COP1 or TA_COP2.

(5) [Initial FPSCR Value]

The initial FPSCR value has a meaning only when either TA_COP1 or TA_COP2 is selected. An
integer between 0 and 0xffffffff can be specified. Specify this value with reference to the
following.

Reference: Section 15, Notes on FPU

(6) [Description Language]

Select [High-Level Language (TA_HLNG)] when the trap routine is written in a high-level
language, and select [Assembly Language (TA_ASM)] when the trap routine is written in
assembly language.

(7) [OK] button

Closes this dialog box after making the settings in this dialog box effective.

(8) [Cancel] button

Closes this dialog box without saving the settings in this dialog box.

589

10.8 Edit Box Specifications

Number of Characters that Can be Input: The number of characters that can be entered in an
edit box is up to 255 bytes. An input exceeding this limit is not accepted.

Characters that Can be Input:

(1) Identification of numeric values and character strings

Only the ASCII code should be input to an edit box. Do not input any other character code.

The following cases of input are handled as numeric values, and other cases are handled as
character strings.

(1) Character string consisting of only 0 to 9: Handled as a decimal number

(2) Character string starting with "0x" or "0X", and the subsequent one to eight characters
consist of only 0 to 9, a to f, and A to F: Handled as a hexadecimal number

For an input handled as a numeric value, which cannot be represented with 32 bits, the
following error message is displayed.

 Numeric value exceeding 0xffffffff cannot be input

In the above case (2), if there are nine or more characters following "0x" or "0X", the above
error message is also displayed.

Examples are shown below.

⎯ 123: Handled as a decimal number of 123

⎯ 0x1000: Handled as a hexadecimal number of 0x1000 (4096)

⎯ 0x012345678: Error message “Numeric value exceeding 0xffffffff cannot be input” is
displayed

⎯ 0x0123Z: Handled as a character string

(2) Character string

In the configurator, only the following have meaning as a character string.

⎯ ID name (C-language macro name)

⎯ C-language symbol

⎯ Section name

Whether the C-language grammar in these inputs is correct or not is not tested. If not correct, a
grammar error is detected at compilation.

590

Blank: If there is no input in the edit boxes shown in table 10.49, the default setting is used.

If other edit boxes are left blank, one of the following error messages will be displayed.

Input a value

Input a character string

Input a value or character string

Table 10.49 Edit Boxes Allowed to be Blank

Page/Dialog Box Edit Box
Condition for
Allowing Blank Default Setting

[Creation of Task] and [Modification of
Information for Task Creation] dialog boxes

[Registration of Initialization Routine] and
[Modification of Information for Initialization
Routine Registration] dialog boxes

[Creation of Cyclic Handler] and [Modification
of Information for Cyclic Handler Creation]
dialog boxes

[Creation of Alarm Handler] and [Modification
of Information for Alarm Handler Creation]
dialog boxes

Extended
information

Always Handled as 0

[Definition of Task Exception Processing
Routine] dialog box

Address Always Definition is
canceled

[Creation] and [Modification of Information for
Creation] dialog boxes for objects

ID name [Automatic
Assignment of ID
Number] is not
selected

Handled as an
object with no
name

591

Duplication of ID Name, C-Language Symbol, or Section Name: The following error message
is displayed in the cases below.

Specified symbol (name) already used. Specify another symbol (name).

• Input of ID name: The specified ID name is the same as an ID name, C-language symbol, or

section name, which is already registered.

• Input of C-language symbol: The specified C-language symbol is the same as an ID name or
section name, which is already registered.

• Input of section name: The specified section name is the same as an ID name, C-language
symbol, or section name, which is already registered.

592

10.9 Tuning

10.9.1 Reduction of Used RAM Size

Table 10.50 lists the configurator setting items which are related to the used RAM size.

Table 10.50 Reduction of Used RAM Size

Page Item
Relevant Section
Name

Method to
Reduce Size

CFG_NTSKSTKSZ BSCP_hintskstk Make it small

CFG_RESPOOLSZ BSCP_hirespl Make it small

CFG_SYSPOOLSZ BSCP_hisyspl Make it small

[Kernel] page

CFG_PROTMEM BSCP_hidef,
BSCP_hicfg,
BSCP_hiwrk

Do not select

CFG_ACTION BSCP_hiwrk Do not select

CFG_TRACE BSCP_hiwrk Do not select

CFG_TRCOBJCNT BSCP_hiwrk Make it small

[Debugging
Function] page

CFG_TRCBUFSZ BSCP_hitrcbuf Make it small

[Time Management
Function] page

CFG_OPTTMR BSCP_hiwrk Do not select

[Performance] page CFG_PERFORM BSCP_hiwrk Do not select

vset_tfl, vclr_tfl, vwai_tfl, vtwai_tfl,
vpwai_tfl

BSCP_hiwrk Do not select any

def_tex BSCP_hiwrk Do not select

cre_sem BSCP_hiwrk Do not select

cre_flg BSCP_hiwrk Do not select

cre_dtq BSCP_hiwrk Do not select

cre_mbx BSCP_hiwrk Do not select

cre_mtx BSCP_hiwrk Do not select

cre_mbf BSCP_hiwrk Do not select

cre_mpf BSCP_hiwrk Do not select

cre_mpl BSCP_hiwrk Do not select

[Service Call
Selection] page

cre_cyc BSCP_hiwrk Do not select

593

Table 10.50 Reduction of Used RAM Size (cont)

Page Item
Relevant Section
Name

Method to
Reduce Size

cre_alm BSCP_hiwrk Do not select

def_ovr BSCP_hiwrk Do not select

icre_mpp BSCP_hiwrk Do not select

cre_mbp BSCP_hiwrk Do not select

def_svc BSCP_hiwrk Do not select

[Service Call Selection] page
(cont)

vdef_trp BSCP_hiwrk Do not select

[Interrupt/CPU Exception Handler]
page

CFG_MAXINTNO BSCP_hiwrk Make it small

CFG_MAXTSKID BSCP_hiwrk Make it small [Task] page

CFG_MAXTSKPRI BSCP_hiwrk Make it small

[Semaphore] page CFG_MAXSEMID BSCP_hiwrk Make it small

[Event Flag] page CFG_MAXFLGID BSCP_hiwrk Make it small

[Data Queue] page CFG_MAXDTQID BSCP_hiwrk Make it small

[Mailbox] page CFG_MAXMBXID BSCP_hiwrk Make it small

[Mutex] page CFG_MAXMTXID BSCP_hiwrk Make it small

[Message Buffer] page CFG_MAXMBFID BSCP_hiwrk Make it small

[Fixed-size Memory Pool] page CFG_MAXMPFID BSCP_hiwrk Make it small

[Variable-size Memory Pool] page CFG_MAXMPLID BSCP_hiwrk Make it small

[Cyclic Handler] page CFG_MAXCYCID BSCP_hiwrk Make it small

[Alarm Handler] page CFG_MAXALMID BSCP_hiwrk Make it small

[Protected Memory Pool] page CFG_MAXMPPID BSCP_hiwrk Make it small

[Protected Mailbox] page CFG_MAXMBPID BSCP_hiwrk Make it small

[Extended Service Call] page CFG_MAXSVCCD BSCP_hiwrk Make it small

[Trap] page CFG_MAXTRPNO BSCP_hiwrk Make it small

594

10.9.2 Reduction of Used ROM Size

The most effective way to reduce the used ROM size is to decrease the number of service calls
selected in the [Service Call Selection] page. In particular, not selecting the def_??? or cre_???
service calls has a large effect since their function modules will not be installed.

Table 10.51 lists the configurator setting items which are related to the used ROM size.

Table 10.51 Reduction of Used ROM Size

Page Item Relevant Section Name
Method to
Reduce Size

CFG_PARCHK PSCP_hiknl Do not select

CFG_PROTMEM PSCP_hiknl, CSCP_hidef,
CSCP_hicfg

Do not select

CFG_MEMCHK PSCP_hiknl Do not select

[Kernel] page

CFG_MAXLOCPAGE PSCP_hiknl Set it to 0

[CPU] page CFG_DSPSTBY PSCP_hiknl, PSCP_hidef Do not select

[Time Management
Function] page

CFG_OPTTMR PSCP_hiknl Do not select

CFG_ACTION PSCP_hiknl Do not select [Debugging Function]
page CFG_TRACE PSCP_hiknl Do not select

[Performance] page CFG_PERFORM PSCP_hiknl Do not select

All pages Initial registration of
objects

PSCP_hidef, CSCP_hidef,
PSCP_hicfg, CSCP_hicfg

Make it small

595

10.9.3 Performance Improvement

Table 10.52 lists the configurator setting items that affect the performance.

Table 10.52 Performance Improvement

Page Item Description

CFG_PARCHK If not selected, the processing time of the service
call becomes shorter.

CFG_KNLLVL A small size allows more interrupt levels to be
accepted even while the kernel is executing a
critical section.

CFG_PROTMEM If not selected, TLB-miss overhead will not occur.

[Kernel] page

CFG_MEMCHK If not selected, the processing time of the service
call with an address parameter becomes shorter.

CFG_TICNUME,
CFG_TICDENO

A large time tick reduces the load caused by a
timer interrupt, but precision of time management
by the kernel will be degraded.

[Time Management
Function] page

CFG_OPTTMR If selected, the processing time of the service call
requesting time management processing has the
possibility of becoming longer. However,
occurrence of timer interrupts will become less
frequent.

CFG_ACTION If selected, a cyclic handler with a 100-ms cycle
is executed, thus increasing the load.

CFG_TRACE If selected, the entire performance is degraded.

[Debugging Function]
page

CFG_TRCOBJCNT A large number degrades the entire performance.

[Performance] page CFG_PERFORM If selected, the entire performance is degraded.

[Service Call Selection]
page

def_tex If selected, the task switching time gets longer.

596

597

Section 11 Build

This section describes how to create load modules in the absolute address format, which are to be
installed in the target system, with referring to the provided sample.

11.1 Load Modules

(1) Load Module Types

The system using the HI7300/PX should consist of the following three types of load modules.

(a) Kernel load module (knl_side)

The kernel load module includes the following.

⎯ Code of the kernel

⎯ Cache support functions

⎯ Statically allocated variable area for the kernel

⎯ Code and data of the applications (when necessary)

(b) Kernel environment load module (env_side)

The kernel environment load module includes the following.

⎯ Statically allocated variable area for the kernel

⎯ System pool

⎯ Resource pool

⎯ Stack area for non-task context

⎯ Code and data of the applications (when necessary)

(c) Application load modules

An application load module consists of applications only. More than one application load
module can be created. Alternatively, if all applications are included in the kernel load module
or kernel environment load module, there is no need to create any application load module.

Both knl_side and env_side are necessary for kernel operation.

598

These load modules have the following dependencies.

 Kernel load module
 --> Kernel environment load module
 --> Application load modules

As shown, when the kernel load module is updated, the kernel environment load module and
application load modules must be updated. In the same way, when the kernel environment load
module is updated, the application load modules must be updated.

This dependency structure has the following advantages.

• After only the kernel load module is stored in ROM, the kernel environment load module and
application load modules can be modified.

• By including the target of debugging in the kernel environment load module or an application
load module, the build and download time can be reduced in debugging process.

(2) [Kernel Side] Checkbox in the Configurator

When the [Kernel side] checkbox is selected to specify C-language symbols and section names
during creation or definition of task addresses or static memory objects through the configurator,
the addresses for these symbols and sections must be determined at linkage of the kernel load
module. In the same way, when the [Kernel side] checkbox is not selected, the addresses for these
symbols and section names must be determined at linkage of the kernel environment load module.

However, to be more exact, the entities of C-language symbols do not always need to be linked if
the symbols can be determined at linkage through forced definition of symbol values or symbol
file input.

(3) Note on ID Name Header File

To avoid dependency of the kernel load module upon other load modules, the applications
included in the kernel load module must not include kernel_id.h, which is on the kernel
environment side.

(4) Summary

Figure 11.1 gives the summary of load module creation described above.

599

 Configurator information file (hcf file)

 Configurator

System
definition file

Kernel-side ID
name header file
(kernel_id_sys.h)

System
definition file

Kernel
environment-side
ID name header
file (kernel_id.h)

Kernel library

kernel_def.c

Application
source

kernel_cfg.c
Application

source

Application
source

 Toolchain * Toolchain * Toolchain *

Kernel load module Kernel environment load module

Application
load module

 : File input or output

 : File include

 (yellow-shaded box): File provided by the HI7300/PX (including sample files)

 *: Tools such as the compiler, assembler, and optimizing linkage editor

Figure 11.1 Load Module Creation

600

11.2 Directory Structure

Figure 11.2 shows the structure of the directories where the kernel is installed.

Figure 11.2 Directory Structure

(1) include\

Contains header files such as itron.h.

This directory must be specified as an include path when any application is compiled or
assembled.

The files in this directory must not be modified.

(2) knl\

Contains the source code of the kernel, which is only provided under the source code license.

(3) lib\

The elf\ directory under this directory contains the relocatable object files of the kernel library
and cache support functions.

(4) system\

Contains the system definition files, which are used to compile the files output by the
configurator.

The files in this directory must not be modified.

601

(5) samples\

The directories under this directory contain the sample files (such as sample programs and
HEW workspace).

11.3 Overview of Sample System

11.3.1 Overview

The sample system stored in the directories under samples\ includes the following applications.
Each application displays messages in the simulated I/O window through standard library
functions when it is executed in the simulator.

• User domain 1 (dom1)

A sample with domain ID = 1.

This sample application performs data communications within a domain by using a fixed-size
memory pool and a mailbox.

• User domain 2 (dom2) and user domain 3 (dom3)

Samples with domain ID = 2 and domain ID = 3.

These sample applications perform data communications between domains. When the memory
object protection function is selected, a protected memory pool and a protected mailbox are
used. When the memory object protection function is not selected, a variable-size memory
pool and a mailbox are used.

Domain 2 is the receiver and domain 3 is the sender.

• User domain 4 (dom4)

A sample with domain ID = 4.

This sample application intentionally performs an illegal access.

• User domain 5 (dom5)

A sample with domain ID = 5.

This sample application uses various service calls of the kernel. A task is shifted to the
WAITING state and another task cancels the WAITING state.

• Idling task (idle)

The lowest-priority task in the system. This sample application simply performs an infinite
loop.

The idling task is assigned to the kernel domain.

602

The following application is specialized for simulator use.

• Monitor (monitor)

This application displays the response to the input by the user in the simulated I/O window of
the simulator. Various monitoring operations such as status reference to kernel objects are
available through commands.

The monitor task is assigned to the kernel domain.

The following programs are provided as system applications.

• Memory access violation handler

• System down routine

• CPU exception handler

• Interrupt and exception hook routine

In this sample system, the standard library functions are included.

Figure 11.3 shows the directory structure under samples\.

603

Figure 11.3 Directory Structure under samples\

(1) dom1\

Contains the sample source code for domain 1.

(2) dom2\

Contains the sample source code for domain 2.

(3) dom3\

Contains the sample source code for domain 3.

(4) dom4\

Contains the sample source code for domain 4.

(5) dom5\

Contains the sample source code for domain 5.

(6) idle\

Contains the idling task.

(7) include\

Contains the common header files used in the sample system.

(8) stdlib\

Contains the source code necessary to include the standard library.

(9) sysapp\

Contains the system application files.

(10) shnnnn\

Contains the sample source code, configurator files, and HEW workspaces and projects
specialized for the SHnnnn microcomputer.

604

11.3.2 Lists of Kernel Objects

The following shows lists of the kernel objects used in this sample system.

Table 11.1 Tasks

Classifi-
cation ID Function Name

Creation and
Initiation Priority Remarks

ID_DOM1_MAIN *2 DOM1_Main() Created and initiated
by configurator

5

Assigned dynamically *1 DOM1_Input() Created and initiated
by DOM1_Main

6

dom1

Assigned dynamically *1 DOM1_Output() Created and initiated
by DOM1_Main

7

dom2 ID_DOM2_MAIN *2 DOM2_Main() Created and initiated
by configurator

10

dom3 ID_DOM3_Main *2 DOM3_Main() Created and initiated
by configurator

8

dom4 ID_DOM4_Main *2 DOM4_Main() Created and initiated
by configurator

15

ID_DOM5_Main *2 DOM5_Main() Created by
configurator *3

9 dom5

Assigned dynamically *1 DOM1_Sub() Created and initiated
by DOM5_Main

10

Idling task ID_IDLETASK(20) IdleTask() Created and initiated
by configurator

20

Monitor ID_MONITOR(19) MonitorTask() Created and initiated
by configurator

1 Only when
simulator is used

Notes: *1 Automatically assigned through the acre_tsk service call.

 *2 Automatically assigned by the configurator.
 *3 It is only created but is not initiated with the settings at shipment.

Table 11.2 Semaphore

Classification ID Creation

dom5 Assigned dynamically * Created by DOM5_Main

Note: * Automatically assigned through the acre_sem service call.

605

Table 11.3 Data Queue

Classification ID Creation

dom5 Assigned dynamically * Created by DOM5_Main

Note: * Automatically assigned through the acre_dtq service call.

Table 11.4 Mailboxes

Classification ID Creation Remarks

dom1 Assigned dynamically *1 Created by DOM1_Main

dom2 ID_DOM2_MBX *2 Created by configurator Only when the memory object
protection function is not selected

Notes: *1 Automatically assigned through the acre_mbx service call.

 *2 Automatically assigned by the configurator.

Table 11.5 Mutexes

Classification ID Creation Remarks

stdlib ID_MTX_MALLOC(1) Created by configurator

stdlib ID_MTX_STRTOK(2) Created by configurator

stdlib ID_MTX_FILETBL(3) Created by configurator Only when the simulator is used

stdlib ID_MTX_STDIO(4) Created by configurator Only when the simulator is used

Table 11.6 Fixed-Size Memory Pool

Classification ID Creation

dom1 Assigned dynamically * Created by DOM1_Main

Note: * Automatically assigned through the acre_mpf service call.

Table 11.7 Variable-Size Memory Pool

Classification ID Creation Remarks

dom1 ID_DOM2_MPL * Created by configurator Only when the memory object
protection function is not selected

Note: * Automatically assigned by the configurator.

606

Table 11.8 Protected Memory Pool

Classification ID Creation Remarks

dom2 ID_DOM2_MPP * Created by configurator Only when the memory object
protection function is selected

Note: * Automatically assigned by the configurator.

Table 11.9 Protected Mailbox

Classification ID Creation Remarks

dom2 ID_DOM2_MBP * Created by configurator Only when the memory object
protection function is selected

Note: * Automatically assigned by the configurator.

Table 11.10 Interrupt and CPU Exception Handlers

Interrupt or
Exception Code Function Name Definition Remarks

H'0E0 Defined by
configurator

Instruction address error

Data address error (read)

H'100 Defined by
configurator

Data address error (write)

H'180 Defined by
configurator

General illegal instruction
exception

H'1A0

exception_handler() in
samples\sysapp\exchdr.c

Defined by
configurator

Slot illegal instruction
exception

H'E00 MonitorWakeup() in
samples\monitor\monitor.c

Created by
MonitorTask

Interrupt for initiating the
monitor (specialized for
simulator use)

CFG_TIMINTNO _kernel_tmrint() in
samples\shnnnn\kernel\knl_side\tmrdrv.c

Defined by
configurator

Standard timer driver

For static memory objects, refer to the following.

Reference: Section 11.15.4, Memory Map and Static Memory Objects

607

11.3.3 Task Exception Processing

This sample system uses the task exception processing function of the kernel.

A task exception processing routine is defined for each task, and when a CPU exception such as
access violation occurs, a task exception processing is requested to the task. The address accessed
illegally (TEA register value) is used for the task exception request pattern. Note that address 0 is
handled as task exception request pattern H'ffffffff because 0 is not allowed for a pattern.

The task exception processing routine for each task suspends the processing that generated the
CPU exception.

A task exception is requested in the following handlers.

• Memory access violation handler (only when the memory object protection function is used)
(sysapp\mavhdr.c)

• CPU exception handler (sysapp\exchdr.c)

Only domain 4 generates an access violation exception in the sample system.

For details, refer to the related source codes.

608

11.4 Sample Applications

Each sample application displays messages in the simulated I/O window by using printf() when it
is executed in the simulator. Other functions in the standard library are not used in the sample
applications.

11.4.1 User domain 1 (dom1)

The sample application with domain ID = 1, which performs data communications within a
domain by using a fixed-size memory pool and a mailbox.

The main task creates an input task and an output task.

The input task acquires a memory block from a fixed-size memory pool, creates a message in the
memory block, and sends it to a mailbox.

The output task receives data from the mailbox and returns the message area to the fixed-size
memory pool.

The sample application uses the following kernel objects.

• Main task (DOM1_Main() in dom1_main.c)

The first task to be executed in domain 1. It is created and initiated by the configurator.

• Input task (DOM1_Input() in dom1_input.c)

It is created and initiated by the main task.

• Output task (DOM1_Output() in dom1_output.c)

It is created and initiated by the main task.

• Fixed-size memory pool and mailbox

They are created by the main task.

11.4.2 User domain 2 (dom2)

The sample application with domain ID = 2, which performs data communications between
domains.

When the memory object protection function is selected, this sample application uses a protected
memory pool and a protected mailbox. When the memory object protection function is not
selected, it uses a variable-size memory pool and a mailbox.

609

The main task receives a message from a protected mailbox or the mailbox and returns the
message area to a protected memory pool or a variable-size memory pool.

The sample application uses the following kernel objects.

• Main task (DOM2_Main() in dom2.c)

It is created and initiated by the configurator.

• Protected memory pool and protected mailbox (when the memory object protection function is
used)

They are created by the configurator.

• Variable-size memory pool and mailbox (when the memory object protection function is not
used)

They are created by the configurator.

11.4.3 User domain 3 (dom3)

The sample application with domain ID = 3, which sends data to user domain 2.

When the memory object protection function is selected, this sample application acquires a
memory block from the protected memory pool in domain 2, creates a message in the memory
block, and sends it to the protected mailbox in domain 2.

When the memory object protection function is not selected, the sample application acquires a
memory block from the variable-size memory pool in domain 2, creates a message in the memory
block, and sends it to the mailbox in domain 2.

The sample application uses the following kernel object.

• Main task (DOM3_Main() in dom3.c)

It is created and initiated by the configurator.

11.4.4 User domain 4 (dom4)

The sample application with domain ID = 4, which intentionally accesses an illegal address.

When the memory object protection function is selected, this illegal access is detected and the
memory access violation handler requests a task exception. After that, a task exception processing
routine is initiated and the instruction that caused the access violation will not be executed again.

The task exception processing routine restarts the current task so that an access violation exception
is generated again.

610

The sample application uses the following kernel object.

• Main task (DOM4_Main() in dom4.c)

It is created and initiated by the configurator.

11.4.5 User domain 5 (dom5)

The sample application with domain ID = 5, which generates the WAITING state and cancels it by
using various kernel functions.

The main task creates a sub-task, and then issues the following service calls to shift the main task
to the WAITING state.

• slp_tsk

• wai_sem

• wai_flg

• rcv_dtq

The sub-task issues the following service calls to cancel the WAITING state of the main task.

• wup_tsk

• sig_sem

• set_flg

• psnd_dtq

The sample application uses the following kernel objects.

• Main task (DOM5_Main() in dom5.c)

It is created by the configurator but cannot be initiated with the settings at shipment. To initiate
it, enter the ACT or STA command through the monitor or make appropriate settings in the
application or configurator.

• Sub-task (DOM5_Sub() in dom5.c)

It is created and initiated by DOM5_Main.

• Semaphore, event flag, and data queue

They are created by DOM5_Main.

611

11.5 System Applications

11.5.1 System Down Routine (sysapp\sysdwn.c)

A system down routine (_kernel_sysdwn()) must always be included in the kernel.

The sample system down routine simply performs an infinite loop.

Reference: Creating system down routine -> Section 8.10, System Down Routine

11.5.2 Memory Access Violation Handler (sysapp\mavhdr.c)

To use the memory object protection function, a memory access violation handler
(_kernel_mavhdr()) must be included in the kernel.

When access violation is generated in a task context, the sample memory access violation handler
requests a task exception to that task (through service call iras_tex). When access violation is
generated in a non-task context, the handler makes the system go down.

When the memory object protection function is not used, an empty object code is created for this
handler through conditional compile.

Reference: Creating memory access violation handler -> Section 8.9, Memory Access Violation
Handler

11.5.3 CPU Exception Handler (sysapp\exchdr.c)

The sample system defines exception_handler() in exchdr.c as the CPU exception handler for the
following exception codes.

• Exception code H'0E0: Instruction address error or data address error (read)

• Exception code H'100: Data address error (write)

• Exception code H'180: General illegal instruction exception

• Exception code H'1A0: Slot illegal instruction exception

When an exception is generated in a task context, exception_handler() requests a task exception to
that task (through service call iras_tex). When an exception is generated in a non-task context, the
handler makes the system go down.

Reference: Creating CPU exception handler -> Section 8.8, CPU Exception Handler

612

11.5.4 Interrupt and Exception Hook Routine (sysapp\inthook.src)

Whether to use an interrupt and exception hook routine is specified through CFG_INTHOOK in
the configurator. This sample system specifies that the hook routine is used.

However, this sample hook routine does not perform any processing and simply returns control.

Reference: Creating interrupt and exception hook routine -> Section 8.5, Interrupt and Exception
Hook Routine

613

11.6 CPU-Dependent Processing

The source codes for the CPU-dependent processing shown below are stored in
samples\shnnnn\kernel\knl_side\.

11.6.1 Standard Timer Driver (tmrdrv.c)

A sample code of the standard timer driver for the timer module (generally, the TMU) in the target
microcomputer is provided.

Reference: Creating standard timer driver -> Section 9, Standard Timer Driver

11.6.2 CPU Reset Processing

The following files are provided for the CPU reset processing.

• reset.src

• resetprg.c

• init_mmu.c

reset.src is the first program to be executed immediately after a CPU reset, which is written in the
assembly language. It initializes the stack pointer and bus state controller, then calls
PowerON_Reset_PC() in resetprg.c.

PowerON_Reset_PC() initializes the MMU (InitializeMMU() in init_mmu.c) and cache, then start
the kernel through the vsta_knl service call. After the vsta_knl call, execution does not return to
the reset processing.

In general systems, these files should be modified according to the target environment.

614

11.7 Standard Library Functions and Runtime Routines

11.7.1 Overview

The standard library functions and runtime routines are output to a single library file created by the
standard library generator. In other words, in general systems, the library file must be linked and
initialized in every linkage unit.

However, in this kernel, the standard library created by the standard library generator is only
linked to the kernel load module (knl_side) and it does not need to be linked to the other linkage
units so that the system can be built with multiple linkage units. To be more specific, the library
functions necessary for the target system should be selected in advance, and only those library
functions should be embedded in the kernel load module (knl_side). In the other linkage units, the
addresses of the referenced library functions are determined according to the symbol file that is
output at kernel load module creation.

For runtime routines, this method cannot be applied because necessary runtime routines are
determined when programs are compiled. A library specialized for runtime routines should be
created (runtime.lib) and linked to each linkage unit.

11.7.2 Selecting Necessary Standard Library Functions

stdlib\select.c selects the necessary library functions to be included in the system.

Only the selected functions are extracted from the library created by the standard library generator
and embedded in the kernel load module.

615

// (UW)&fscanf,
 (UW)&printf,

Library created by standard library generator (stdlib.lib)

select.c (selects necessary functions)

printf()

select

Compiler and linkage editor

Kernel load module

...
 Standard library functions

Runtime routines

printf()

...

fscanf()

...

...

...

...

...

Figure 11.4 Embedding Standard Library Functions

11.7.3 stdio.h

This sample only supports "stdin", "stdio", and "stderr" when the simulator is used. They are used
for input/output interface with the simulated I/O window in the simulator.

Input from "stdin" is polled within low-level interface routine charget() (samples\stdlib\lowsrc.c),
and therefore, execution of every program stops until an input is detected.

When the simulator is not used, the sample does not support stdio.h.

11.7.4 Kernel Objects to be Used

The mutexes with the following ID numbers, which are created by the configurator, are used in the
sample.

616

(1) ID_MTX_MALLOC(1)

This mutex is necessary when the standard library functions are generated as a reentrant library.

It is used for exclusive control for the malloc-type functions.

This ID number is determined according to the specifications of the standard library generator.

(2) ID_MTX_STRTOK(2)

This mutex is necessary when the standard library functions are generated as a reentrant library.

It is used for exclusive control for the strtok() function.

This ID number is determined according to the specifications of the standard library generator.

(3) ID_MTX_FILETBL(3)

This mutex is necessary when the standard library functions are generated as a reentrant library.

It is used for exclusive control for the __iob file table.

This ID number is determined according to the specifications of the standard library generator.

When the simulator is not used, the sample does not support stdio.h and so does not use this
mutex.

(4) ID_MTX_STDIO(4)

In the sample system, this mutex is locked and unlocked on a line-by-line basis so that the
input/output through the simulated I/O window does not become disordered.

When the simulator is not used, the sample does not support stdio.h and so does not use this
mutex.

11.7.5 Functions Necessary to Use Standard Library Functions

The following functions must be implemented to use the standard library functions.

• Function for initializing library functions

• Low-level interface routines

These functions are implemented in stdlib\lowsrc.c.

617

_INITLIB() is the initialization function.

_INITLIB() is defined as an initialization routine by the configurator.

11.7.6 Customizing Environment Settings for Standard Library Functions

The following section in samples\include\lowsrc.h should be modified as required.

/**

 * User setting

 **/

#ifdef SIM

#define SIM_IO 4 /* Simulated I/O system call address */ <-(1)

#endif

#define IOSTREAM 3UL /* Number of I/O Stream*/

#define HEAPSIZE 8192UL /* for malloc() */ <-(2)

#define HEAPSIZE__X 1024UL /* for mallox__X() */ <-(3)

#define HEAPSIZE__Y 1024UL /* for mallox__Y() */ <-(4)

#ifdef _REENTRANT

#define MAXTSKID 20 /* Define maximum task ID which uses standard library */ <-(5)

#define TMOUT 300000L /* Timeout when cannot lock mutex. */ <-(6)

#endif

(1) The address of the system call to the simulator, which is used for I/O simulation.

(2) The heap size used by malloc().

(3) The heap size used by malloc__X(). Note that malloc__X() is not supported with the initial
settings at shipment.

(4) The heap size used by malloc__Y(). Note that malloc__Y() is not supported with the initial
settings at shipment.

(5) When the standard library is generated as a reentrant library, specify here the value of
CFG_MAXTSKID that is set in the configurator.

(6) Specify this value when the standard library is generated as a reentrant library. This value is
the timeout period for locking a mutex by low-level interface routine wait_sem(). When

618

TMO_FEVR(-1) is set, waiting state lasts forever. When TMO_POL(0) is set, polling is
specified.

11.7.7 Note on Standard Library Functions

When using a reentrant library, do not call library functions that use low-level routine wait_sem(),
such as printf() or malloc(), in a non-task context. If this is attempted, an error is returned from the
library function.

11.7.8 Section Initialization Function (_INITSCT())

A section initialization function should be prepared although it is not a standard library function.
The section initialization function clears the B sections to 0 and copies the data in the section that
is specified by the ROM support function of the linkage editor from ROM (D section) to RAM (R
section).

The standard library generator creates standard section initialization function _INITSCT() in the
library file. However, this _INITSCT() acquires information regarding the addresses and sizes of
B, D, and R sections from the tables created with the fixed section names (C$BSEC section and
C$DSEC section). Accordingly, when there are multiple sections to be initialized and they have
different access permissions, _INITSCT() can be executed only in the kernel domain.

To avoid this restriction, this sample system provides an original _INITSCT() function, which
acquires the section initialization information as parameters.

_INITSCT() is included in stdlib\initsct.c. For details about the interface specifications, refer to
the source code.

11.7.9 Runtime Routines

The runtime routines require section initialization as part of its initialization processing.

(1) Linkage unit other than knl_side

When runtime routines are required in a linkage unit other than knl_side, runtime.lib created by
runtime.hwp and common\init_runtime.c should be linked. init_runtime() in init_runtime.c works
as a section initialization function for runtime.lib.

init_runtime() must be executed first in the linkage unit.

In this sample system, init_runtime() is executed as follows.

619

• env_side: init_runtime() is defined as an initialization routine by the configurator.

• app_dom5: init_runtim() is called at the start of the entry function (DOM5_Main()) in domain
5.

(2) knl_side Linkage Unit

In knl_side, runtime routines are linked from stdlib.lib. Since section initialization for runtime
routines is also performed in _INITLIB(), there is no need to execute init_rintime.c.

11.8 Monitor

11.8.1 Overview

The monitor is a program that handles commands input by the user through the simulated I/O
window of the simulator. It only operates in the simulator and does not operate in the actual target
system.

The sample application uses the following kernel objects.

• Monitor task (the MonitorTask function in monitor.c)

It is created and initiated by the configurator.

• Monitor interrupt handler (the MonitorWakeup function in monitor.c)

It is defined by the monitor task.

The monitor uses standard library functions.

11.8.2 Monitor Operation

After the system is started, the monitor task is initiated and a startup message appears in the
simulated I/O window. Then, the monitor task enters the WAITING state, in which no commands
can be input.

To make the monitor ready for command input, generate an interrupt with interrupt code H'FE0. In
the HEW debugging session configured at shipment, this interrupt is assigned to a trigger button;
click this button to shift the monitor to the command input waiting state.

In command input waiting state, a prompt, "MON>", appears on the simulated I/O window.

The monitor locks mutex ID_MTX_SIMIO while waiting for command input or processing a
command; during this period, input and output to the simulated I/O window by other tasks is
inhibited.

620

Entering the Q command makes the monitor unlock ID_MTX_SIMIO and shifts the monitor back
to the interrupt waiting state.

 System startup

 Monitor Interrupt

 Interrupt waiting state Command input waiting state

 Q command

Figure 11.5 Monitor State Transition

11.8.3 Changing Monitor Interrupt

To change the interrupt number, modify the following section in monitor.h.

/**

 * User setting

 **/

/*** Please define interrupt number to wake-up monitor ***/

#define INTNO_MONITOR 0xfe0UL <- Change to a new interrupt number.

To set up a trigger button, select [Setting...] from the popup menu in the [Trigger] window to open
the [Trigger Setting] dialog box and set the following conditions in the dialog box.

• Interrupt Type: INTNO_MONITOR value shown above

• Priority: A value within the range from 1 to CFG_KNLLVL

621

Figure 11.6 Trigger Setting Dialog Box

11.8.4 Monitor Commands

Commands should be input in the following syntax.

 MON> <command>[Δ<parameter1> Δ<parameter2>...]

The detailed syntax for each command can be displayed by entering "?Δ<command>".

622

Command Function

TSK Displays the state of a task

ACT Initiates a task (through service call act_tsk)

STA Initiates a task (through service call sta_tsk)

TER Forcibly terminates a task (through service call ter_tsk)

SEM Displays the state of a semaphore

FLG Displays the state of an event flag

DTQ Displays the state of a data queue

MBX Displays the state of a mailbox

MTX Displays the state of a mutex

MBF Displays the state of a message buffer

MPF Displays the state of a fixed-size memory pool

MPL Displays the state of a variable-size memory pool

TIM Displays the current system clock time

CYC Displays the state of a cyclic handler

ALM Displays the state of an alarm handler

OVR Displays the state of an overrun handler

MPP Displays the state of a protected memory pool

MBP Displays the state of a protected mailbox

RSP Displays the state of a resource pool

SYP Displays the state of a system pool

MEM Displays the state of a memory object

PRB Checks the access permission for a memory area

? Displays the help information

Q Returns the monitor to the interrupt waiting state

Notes:

(1) For input as a parameter, a value with prefix "0x" is handled as hexadecimal, and a value
without a prefix is handled as decimal.

(2) The backspace key is ignored.

623

11.9 HEW Workspaces and Projects

11.9.1 Overview

The samples\shnnnn\ directory contains HEW workspaces and projects for creating load modules,
in addition to the SHnnnn microcomputer-dependent source codes.

This sample system uses two workspaces to generate three load modules in the absolute address
format.

One workspace is samples\shnnn\kernel\kernel.hws, which generates load modules for the kernel,
and another workspace is samples\shnnnn\app_dom5\app_dom5.hws, which generates a load
module containing domain 5 only.

Figure 11.7 shows the relationship between the workspaces and projects.

kenrel.hws contains the following projects.

• knl_side.hwp

It generates a load module on the kernel side. The items contained in this load module are
shown in figure 11.7.

• knl_side_sym.hwp

It generates an object of the symbol file for the load module on the kernel side. The symbols
on the kernel side can be referred to by inputting this object during linkage of other units.

• env_side.hwp

It generates a load module on the kernel environment side. The items contained in this load
module are shown in figure 11.7.

• runtime.hwp

It generates a library which contains runtime routines only. This library should be linked
during linkage of units other than knl_side. When using this library, link
common\init_runtime.c so that init_runtime() in init_runtime.c is executed first.

app_dom5.hwp is the only project contained in app_dom5.hws. This project generates a load
module which contains domain 5 only.

624

• Selected standard library functions
• Monitor
• Idling task
• System down routine
• Memory access violation handler
• CPU exception handler
• Interrupt and exception hook routine
• Standard timer driver
• Kernel library
• Cache support functions
• Necessary runtime routines

 knl_side_sym.obj

knl_side.abs

♦knl_side.hwp

♦knl_side_sym.hwp

knl_side.fsy

♦env_side.hwp
• dom1~dom4
• init_runtime.c

env_side.abs

♦runtime.hwp
 runtime.lib

♦env_side.hwp
 • dom5
• init_runtime.c

app_dom5.abs

• Runtime outines

kernel.hws

app_dom5.hws

Figure 11.7 Configuration of HEW Workspaces and Projects♦•▪

11.9.2 Structure of Workspace Directories

This version (V.1.01) of product provides the shnnnn directories shown in table 11.11. When the
target microcomputer is not shown in the table, select the microcomputer that is closer in function
to the target microcomputer and modify the contents of its directory as necessary.

The microcomputer-dependent source codes are stored in samples\shnnnn\kernel\knl_side\.

625

Table 11.11 shnnnn

shnnnn CPU Core Microcomputer
Version of HEW (Compiler Package)
Used for Workspace Creation

sh73180 SH4AL-DSP SH73180 4.00.02 (9.00, Release 03)

sh7343 SH4AL-DSP

(with extended
functions)

SH7343 4.00.02 (9.00, Release 03)

sh7780 SH-4A SH7780 4.00.02 (9.00, Release 03)

sh7785 SH-4A

(with extended
functions),

SH7785 4.00.02 (9.00, Release 03)

Figure 11.8 shows the directory structure under samples\shnnnn\.

626

Figure 11.8 Directory Structure under samples\shnnnn\

<- app_dom5.hws workspace directory

 <- app_dom5.hwp project directory

 <- "noprot" configuration directory

 <- "noprot_sim" configuration directory

 <- "prot" configuration directory

 <- "prot_sim" configuration directory

<- Directory for configurator output files

 <- For "noprot" configuration

 <- For "noprot_sim" configuration

 <- For "prot" configuration

 <- For "prot_sim" configuration

<- kernel.hws workspace directory

 <- env_side.hwp project directory

 <- "noprot" configuration directory

 <- "noprot_sim" configuration directory

 <- "prot" configuration directory

 <- "prot_sim" configuration directory

 <- Directory where kernel.hws outputs files to be open externally

 <- For "noprot" configuration

 <- For "noprot_sim" configuration

 <- For "prot" configuration

 <- For "prot_sim" configuration

 <- knl_side.hwp project directory, CPU-dependent source

 <- "noprot" configuration directory

 <- "noprot_sim" configuration directory

 <- "prot" configuration directory

 <- "prot_sim" configuration directory

 <- knl_side_sym.hwp project directory

 <- "noprot" configuration directory

 <- "noprot_sim" configuration directory

 <- "prot" configuration directory

 <- "prot_sim" configuration directory

 <- runtime.hwp project directory

 <- "noprot" configuration directory

 <- "noprot_sim" configuration directory

 <- "prot" configuration directory

 <- "prot_sim" configuration directory

627

kernel\knl_side\ contains the following sample source codes for the respective microcomputer.

• reset.src, resetprg.c, init_mmu.c: CPU reset processing

• tmrdrv.c: Standard timer driver

11.9.3 HEW Build Configuration and Directories for Configurator Files

For all projects, a set of HEW configurations of the same names are provided.

Since the configurator settings are related to the HEW configuration, the configurator file (with
extension hcf) and its output file for each HEW configuration are also stored in the directory with
the same name as the respective HEW configuration under shnnnn\config_out\. In each project,
the configurator output directory for each configuration is specified by using HEW placeholder
"$(CONFIGNAME)" (configuration name).

Table 11.12 shows the differences between configurations.

Table 11.12 HEW Configurations

Configuration
Memory Object
Protection

Simulated I/O
Window and Monitor Memory Map *1

noprot Not used Not used Memory map suitable for
download to RAM on the board

noprot_sim *2 Not used Used Memory map suitable for
storing in ROM

prot Used Not used Memory map suitable for
download to RAM on the board

prot_sim *2 Used Used Memory map suitable for
storing in ROM

Notes: *1 For details, refer to section 11.15, Memory Allocation.
 *2 This configuration is not provided for sh7780 (for the SH7780 microcomputer) in V.1.00,

Release 00.

In the "prot_sim" and "noprot_sim" configurations, which are configurations for use with the
simulator, "-def = SIM" is specified as a compiler option. samples\stdlib\lowsrc.c is compiled
according to this condition as shown in table 11.13.

628

Table 11.3 Difference Due to "-def = SIM" Option

"-def = SIM" Support of stdio.h

Specified Only "stdin", "stdout", and "stder" are supported. They are used as
input/output interface with the simulated I/O window of the simulator.

Not specified Not supported.

In common header samples\include\sim_printf.h, sim_printf() used in each domain is defined as
printf() when "-def = SIM" is specified, or defined as a null statement when "-def = SIM" is not
specified.

11.9.4 Moving HEW Workspaces

HEW workspaces must be moved with keeping the directory structure under the kernel installation
directory.

In the sample workspaces, the locations of the files, such as include files or library files, and
directories are specified in relative paths (HEW placeholders) within the range under the kernel
installation directory.

11.9.5 Option Settings for Build

(1) Common Options for All Projects

Refer to the following compiler user's manual and make the same settings for necessary options
for all projects.

Section 9.4.3, Important Information on Program Development, in SuperHTM RISC engine C/C++
Compiler, Assembler, Optimizing Linkage Editor (Compiler Package V.9.00) User's Manual

(2) Include Paths

The following paths must be specified as include paths. At shipment, they are specified with the
paths relative to placeholder $(WORKSPDIR) (workspace directory).

• include\: Contains the standard headers of the kernel, such as itron.h.

• samples\include: Contains the common headers used in the sample system.

• config_out\$(CONFIGNAME): Contains the configurator output files for the respective HEW
configuration.

629

(3) Reentrant Library

When a standard library is created as a reentrant library, compiler option "-def = _REENTRANT"
must be specified for the source codes that use the library functions. In this sample system, this
option is specified for all files.

(4) Configurations for Simulator ("prot_sim" and "noprot_sim")

Compiler option "-def = _SIM" is specified for the configurations for simulator use. For details,
refer to section 11.9.3, HEW Build Configuration and Directories for Configurator Files.

(5) Endian

Big or little endian is specified at shipment. Modify it as necessary.

The file names of the kernel library and cache support objects to be specified at knl_side linkage
differ according to endian. When modifying endian, change these file names together.

(6) Other Options

For the other option settings, refer to the settings in the sample project.

630

11.10 knl_side.hwp Project in kernel.hws

11.10.1 Overview

This project generates the following files.

(1) knl_side.abs

This file is generated in kernel\knl_side\$(CONFIGNAME)\.

knl_side.abs contains the kernel library and cache support object files provided as part of the
HI7300/PX and the standard library functions.

(2) knl_side.fsy

This file is generated in kernel\knl_side\$(CONFIGNAME)\.

knl_side.fsy is an assembly-language source file, which defines the symbol addresses that are used
in knl_side.abs and open to the other linkage units. This file is assembled in the knl_side_sym.hwp
project and the resultant object file is linked to the other linkage units.

631

samples\stdlib\

Standard library
generator(lbgsh)

stdlib.lib

lowsrc.c
select.c

initsct.c

samples\monitor\

monitor.c

samples\sysapp\

mavhdr.c

exchdr.c

sysdwn.c

inthook.src

samples\shnnnn
\kernel\knl_side\

reset.src

resetprg.c

init_mmu.c

tmrdrv.c

system\

kernel_def.c

Compiler, assembler, and linkage editor

lib\elf\

Kernel library
(hiknl_???.lib)

Cache support
object

knl_side.abs knl_side.fsy

samples\idle\

idle.c

Figure 11.9 Overview of knl_side.hwp

11.10.2 Source Files to Be Registered in Project

The following source files should be registered in the project.

(1) system\kernel_def.c: Always necessary

One of the configurator output files. It contains the kernel-side information.

(2) samples\sysapp\sysdwn.c: Always necessary

A system down routine. It is always necessary.

(3) samples\sysapp\mavhdr.c

632

A memory access violation handler. It is necessary when the memory object protection
function is selected in the configurator. If this file is compiled when the memory object
protection function is not selected, an empty object file is generated.

(4) samples\sysapp\inthook.src

An interrupt and exception hook routine. It is necessary when use of an interrupt and CPU
exception hook is selected in the configurator.

(5) samples\sysapp\exchdr.c

A CPU exception handler. In this sample, this CPU exception handler is defined for exception
codes H'0E0, H'100, H'180, and H'1A0 in the configurator.

(6) samples\shnnnn\kernel\knl_side\reset.src, resetprg.c, and init_mmu.c

Sample files for CPU reset processing.

(7) samples\shnnnn\kernel\knl_side\tmrdrv.c

A sample file for the standard timer driver. It is necessary when use of the standard timer
driver is selected in the configurator. If this file is compiled when use of the optimized timer
driver is selected, an empty object file is generated.

(8) samples\stdlib\lowsrc.c, select.c, and initsct.c

These files must be registered when the standard library is used.

(9) samples\monitor\monitor.c

This file must be registered when the monitor is used in the simulator.

(10) samples\idle\idle.c

An idling task file.

In addition, the symbols and sections of the objects for which [Kernel side] is specified in the
configurator must also be linked in this project.

11.10.3 Standard Library Generator Settings

Select [Option -> SuperH RISC engine Standard Toolchain...] from the HEW menu to open the
[SuperH RISC engine Standard Toolchain] dialog box.

Select the "knl_side" project in the left pane, then select the [Standard Library] tab.

Select [Standard Library] for [Category:] and the category list shown in figure 11.10 appears.
Here, select the library functions that should be included in the library file output by the standard
library generator; that is, specify the functions selected in samples\stdlib\select.c. If all the
necessary functions are not specified here, an error is generated at linkage because the library
functions referred to in select.c cannot be found.

633

Figure 11.10 Standard Library Generator Settings ([Standard Library] Category)

Next, select [Object] for [Category:] and the object setting items shown in figure 11.11 appears. In
usual operation, select [Generate reentrant library].

634

Figure 11.11 Standard Library Generator Settings ([Object] Category)

Then, click the [Details...] button to open the dialog box shown in figure 11.12.

635

Figure 11.12 Standard Library Generator Settings ([Object details] Dialog Box)

In the [Section:] group box, specify the section names for the standard library functions as shown
below. These names are also specified by #pragma section statements in the source files in
samples\stdlib\. When changing the section names specified in this dialog box, also modify the
respective names in the source files.

• [Program section (P)]: PUCM_STDLIB

• [Constant section (C)]: CUCM_STDLIB

• [Initialized data section (D)]: DUCM_STDLIB

• [Uninitialized data section (B)]: BUCM_STDLIB

636

11.10.4 Linkage Editor Settings

(1) Specifying Kernel Library

Be sure to link either one of the following kernel library files, which are stored in lib\elf\.

• $(WORKSPDIR)\..\..\..\lib\elf\hiknl_big.lib: For big endian.

• $(WORKSPDIR)\..\..\..\lib\elf\hiknl_little.lib: For little endian.

Select [Option -> SuperH RISC engine Standard Toolchain...] from the HEW menu to open the
[SuperH RISC engine Standard Toolchain] dialog box.

Select the "knl_side" project in the left pane, then select the [Link/Library] tab.

Select [Input] for [Category:] and [Library files] for [Show entries for:], then specify the kernel
library as shown in figure 11.13.

Figure 11.13 Linkage Editor Settings (Specifying Kernel Library)

637

(2) Specifying Cache Support Object File

To embed the cache support functions in the system, a cache support object file must be input
through the linkage editor. Cache support object files are stored in lib\elf\.

• $(WORKSPDIR)\..\..\..\lib\elf\cache_sh4a_big.rel: For the SH-4A/SH4AL-DSP in big endian.

• $(WORKSPDIR)\..\..\..\lib\elf\cache_sh4a_little.rel: For the SH-4A/SH4AL-DSP in little
endian.

Select [Option -> SuperH RISC engine Standard Toolchain...] from the HEW menu to open the
[SuperH RISC engine Standard Toolchain] dialog box.

Select the "knl_side" project in the left pane, then select the [Link/Library] tab.

Select [Input] for [Category:] and [Relocatable files and object files] for [Show entries for:], and
specify the cache support object file as shown in figure 11.14.

Figure 11.14 Linkage Editor Settings (Specifying Cache Support Object File)

638

(3) Settings for Initialized Data Sections

If an object to be linked includes an initialized data section (D section), [ROM to RAM mapped
sections] (generation of R sections) must be specified in the linkage editor.

Select [Option -> SuperH RISC engine Standard Toolchain...] from the HEW menu to open the
[SuperH RISC engine Standard Toolchain] dialog box.

Select the "knl_side" project in the left pane, then select the [Link/Library] tab.

Select [Output] for [Category:] and [ROM to RAM mapped sections] for [Show entries for:].

The following initialized data sections are included in the configuration at shipment.

• DSCP_MON (monitor) (only for the "prot_sim" and "noprot_sim" configurations)

• DUCM_STDLIB (standard library)

Figure 11.15 Linkage Editor Settings (Initialized Data Sections)

639

(4) Output of Symbol Address File (knl_side.fsy)

Specify the sections that include symbols to be open to the linkage units other than knl_side; that
is, the following sections should be specified.

• PUC__hiintfc: Kernel service calls (always necessary)

• PSCP_hicac: Cache support functions

• PUCM_STDLIB: Standard library functions and section initialization function (_INITSCT())

The linkage editor generates assembly-language source file knl_side.fsy, which includes the
addresses for the externally defined symbols used in the sections specified here, and outputs it in
the directory where knl_side.abs is output ($(CONFIGDIR) in usual operation). This file is used in
knl_side_sym.hwp.

Select [Option -> SuperH RISC engine Standard Toolchain...] from the HEW menu to open the
[SuperH RISC engine Standard Toolchain] dialog box.

Select the "knl_side" project in the left pane, then select the [Link/Library] tab. Select [Section]
for [Category:] and [Symbol file] for [Show entries for:].

Figure 11.16 Linkage Editor Settings (Symbol Address File Output)

640

(5) Defining __kernel_sysmt Address

__kernel_sysmt is the kernel information table generated on the kernel environment side
(env_side), and it indicates the start address of the PSCP_hisysmt section. The address where the
PSCP_hisysmt is to be allocated must be determined in advance while the system is designed, and
the determined address must be specified here.

Reference: Section 11.15.4 (2) (a), Section Block at Logical Address H'80030000
 (CSCP_hisysmt, etc.)

Select [Option -> SuperH RISC engine Standard Toolchain...] from the HEW menu to open the
[SuperH RISC engine Standard Toolchain] dialog box.

Select the "knl_side" project in the left pane, then select the [Link/Library] tab.

Select [Input] for [Category:] and [Defines] for [Show entries for:].

Figure 11.17 Linkage Editor Settings (__kernel_sysmt Address Definition)

641

(6) Allocating Sections

For section allocation, refer to section 11.15, Memory Allocation.

11.10.5 Build Execution

When a build is executed, the knl_side.abs and knl_side.fsy files are created in
$(WORKSPDIR)\knl_side\$(CONFIGNAME)\.

642

11.11 knl_side_sym.hwp Project in kernel.hws

This project creates object file knl_side_sym.obj for the symbol file that has been generated in
knl_side.hwp and outputs it in the directory having the same name as the configuration name
under kernel_out\. This object file is used to determine the addresses of the symbol references in
knl_side when linkage units other than knl_side are linked.

This project performs the following processing.

(1) knl_side_sym.obj that was generated at step (3) in the last build is deleted by DelFile.bat in the
project directory.

(2) knl_side.fsy that has been generated in
$(WORKSPDIR)\knl_side\$(CONFIGNAME)\ through knl_side.hwp is copied to a file
(knl_side_sym.fsy) in the project directory by CopyFile.bat which is also in the project
directory.

(3) The copied knl_side_sym.fsy file is assembled and resultant object file knl_side_sym.obj is
output in $(WORKSPDIR)\kernel_out\$(CONFIGNAME)\.

643

11.12 runtime.hwp Project in kernel.hws

11.12.1 Overview

This project uses the standard library generator to generate library file runtime.lib, which contains
runtime routines only, and outputs it in the directory having the same name as the configuration
name under kernel_out. This project does not have source files.

runtime.lib is used to link runtime routines when linkage units other than knl_side are linked.

11.12.2 Standard Library Generator Settings

Select [Option -> SuperH RISC engine Standard Toolchain...] from the HEW menu to open the
[SuperH RISC engine Standard Toolchain] dialog box.

Select the "runtime" project in the left pane, then select the [Standard Library] tab. Select
[Standard Library] for [Category:], and select only the runtime routines as shown in figure 11.18.

Figure 11.18 Standard Library Generator Settings ([Standard Library] Category)

644

Next, select [Object] for [Category:] and click the [Details...] button to open the dialog box shown
in figure 11.19.

Figure 11.19 Standard Library Generator Settings ([Object details] Dialog Box)

In the [Section:] group box, specify the section names for the runtime routines as shown below.

• [Program section (P)]: PUCM_RUNTIME

• [Constant section (C)]: CUCM_RUNTIME

• [Initialized data section (D)]: DUCM_RUNTIME

• [Uninitialized data section (B)]: BUCM_RUNTIME

Then, select [Object] for [Category:], click the [Modify...] button, and specify the output file path
as shown in figure 11.20 so that the runtime.lib file is output in
$(WORKSPDIR)\kernel_out\$(CONFIGNAME)\.

645

Figure 11.20 Standard Library Generator Settings ([Output file path] Dialog Box)

11.12.3 Build Execution

When a build is executed, $(WORKSPDIR)\kernel_out\$(CONFIGNAME)\runtime.lib is created.

11.12.4 Notes on Section Initialization

Refer to section 11.7.9, Runtime Routines.

646

11.13 env_side.hwp Project in kernel.hws

11.13.1 Overview

This project generates env_side.abs in kernel\env_side\$(CONFIGNAME)\.

env_side.abs contains domains 1 to 4. In addition, knl_side_sym.obj to determine symbol
references in knl_side, runtime.lib to link runtime routines, and init_runtime.c to initialize runtime
routines are linked through this project.

647

samples\dom1\
dom1_main.c
dom1_input.c
dom1_output.c

samples\dom2\
dom2.c

samples\common\
init_runtime.c

system\
kernel_cfg.c

Compiler, assembler, and linkage editor

kernel_out\$(CONFIGNAME)
knl_side_sym.obj runtime.lib

env_side.abs

samples\dom3\
dom3.c

samples\dom4\
dom4.c

Figure 11.21 Build Phases for env_side.hwp

11.13.2 Source Files to Be Registered in Project

The following source files should be registered in the project.

(1) system\kernel_cfg.c: Always necessary

One of the configurator output files. It contains the kernel environment-side information.

(2) samples\common\init_runtime.c

A function for initializing runtime routines (runtime.lib).

648

(3) samples\dom1\dom1_main.c, dom1_input.c, and dom1_output.c

Sample files for domain 1.

(4) samples\dom2\dom2.c

A sample file for domain 2.

(5) samples\dom3\dom3.c

A sample file for domain 3.

(6) samples\dom4\dom4.c

A sample file for domain 4.

In addition, the symbols and sections of the objects for which [Kernel side] is not specified in the
configurator must also be linked in this project.

11.13.3 Standard Library Generator Settings

runtime.lib generated through runtime.hwp in kernel.hws must be specified here.

Select [Option -> SuperH RISC engine Standard Toolchain...] from the HEW menu to open the
[SuperH RISC engine Standard Toolchain] dialog box.

Select the "env_side" project in the left pane, then select the [Standard Library] tab.

Select [Mode] for [Category:], and specify kenrel_out\$(CONFIGNAME)\runtime.lib as shown in
figure 11.22.

649

Figure 11.22 Standard Library Generator Settings (Specifying runtime.lib)

650

11.13.4 Linkage Editor Settings

(1) Specifying knl_side.sym.obj

Select [Option -> SuperH RISC engine Standard Toolchain...] from the HEW menu to open the
[SuperH RISC engine Standard Toolchain] dialog box.

Select the "env_side" project in the left pane, then select the [Link/Library] tab .

Select [Input] for [Category:] and [Relocatable files and object files] for [Show entries for:], then
specify $(WORKSPDIR)\kernel_out\$(CONFIGNAME)\knl_side_sym.obj as shown in figure
11.23.

Figure 11.23 Linkage Editor Settings (Specifying knl_side_sym.obj)

651

(2) Settings for Initialized Data Sections

If an object to be linked includes an initialized data section (D section), [ROM to RAM mapped
sections] (generation of R sections) must be specified in the linkage editor.

Select [Option -> SuperH RISC engine Standard Toolchain...] from the HEW menu to open the
[SuperH RISC engine Standard Toolchain] dialog box.

Select the "env_side" project in the left pane, then select the [Link/Library] tab.

Select [Output] for [Category:] and [ROM to RAM mapped sections] for [Show entries for:].

The following initialized data sections are included in the configuration at shipment.

• DUCM_DOM1 (domain 1)

• DUCM_DOM2 (domain 2)

• DUCM_DOM3 (domain 3)

• DUCM_DOM4 (domain 4)

• DUCM_RUNTIME (runtime.lib)

Figure 11.24 Linkage Editor Settings (Initialized Data Sections)

652

(3) Allocating Sections

For section allocation, refer to section 11.15, Memory Allocation.

11.13.5 Build Execution

When a build is executed, $(WORKSPDIR)\env_side\$(CONFIGNAME)\env_side.abs is created.

653

11.14 app_dom5.hwp Project in app_dom5.hws

11.14.1 Overview

This workspace shows an example of creation of a load module consisting of applications only.

This project generates app_dom5.abs.

app_dom5.abs contains domain 5. In addition, knl_side_sym.obj to determine symbol references
in knl_side, runtime.lib to link runtime routines, and init_runtime.c to initialize runtime routines
are linked through this project.

11.14.2 Source Files to Be Registered in Project

The following source files should be registered in the project.

(1) samples\common\init_runtime.c

A function for initializing runtime routines (runtime.lib).

(2) samples\dom5\dom5.c

A sample file for domain 5.

654

11.14.3 Standard Library Generator Settings

runtime.lib generated through runtime.hwp in kernel.hws must be specified here.

Select [Option -> SuperH RISC engine Standard Toolchain...] from the HEW menu to open the
[SuperH RISC engine Standard Toolchain] dialog box.

Select the "app_dom5" project in the left pane, then select the [Standard Library] tab.

Select [Mode] for [Category:], and specify
$(WORKSPDIR)\..\kernel\kenrel_out\$(CONFIGNAME)\runtime.lib as shown in figure 11.25.

Figure 11.25 Standard Library Generator Settings (Specifying runtime.lib)

655

11.14.4 Linkage Editor Settings

(1) Specifying knl_side.sym.obj

Specify symbol file knl_side_sym.obj generated in knl_side_sym.

Select [Option -> SuperH RISC engine Standard Toolchain...] from the HEW menu to open the
[SuperH RISC engine Standard Toolchain] dialog box.

Select the "app_dom5" project in the left pane, then select the [Link/Library] tab.

Select [Input] for [Category:] and [Relocatable files and object files] for [Show entries for:], then
specify $(WORKSPDIR)\..\kernel\kenrel_out\$(CONFIGNAME)\knl_side_sym.obj as shown in
figure 11.26.

Figure 11.26 Linkage Editor Settings (Specifying knl_side_sym.obj)

656

(2) Settings for Initialized Data Sections

If an object to be linked includes an initialized data section (D section), [ROM to RAM mapped
sections] (generation of R sections) must be specified in the linkage editor.

Select [Option -> SuperH RISC engine Standard Toolchain...] from the HEW menu to open the
[SuperH RISC engine Standard Toolchain] dialog box.

Select the [Link/Library] tab.

Select [Output] for [Category:] and [ROM to RAM mapped sections] for [Show entries for:].

The following initialized data sections are included in the configuration at shipment.

• DUCM_DOM5 (domain 5)

• DUCM_RUNTIME (runtime.lib)

Figure 11.27 Linkage Editor Settings (Initialized Data Sections)

657

(3) Allocating Sections

For section allocation, refer to section 11.15, Memory Allocation.

11.14.5 Build Execution

When a build is executed, $(WORKSPDIR)\app_dom5$(CONFIGNAME)\app_dom5.abs is
created.

658

11.15 Memory Allocation

11.15.1 Overview

This sample system consists of multiple load modules. The user must consider appropriate address
allocation to every section in each load module, and the determined addresses must be specified
through the linkage editor.

Through preliminary linkage without specifying section addresses, the size of each section can be
obtained from the linkage map.

Although logical addresses must be used to specify the sections through the linkage editor, the
physical memory areas to be allocated must also be considered. Generally, the area allocated to the
P, C, D sections must be separated from the area for the B and R sections. The P, C, and D
sections can be stored in ROM.

Reference: Section 5, Logical Address Space

11.15.2 Sections

Sections are named according to the following rules.

 PSCP_hiknl

(1) First character

P: Program section

C: Constant section

B: Uninitialized data section

D: Initialized data section (ROM section)

R: Initialized data section (RAM section, which is generated with [ROM to RAM mapped
sections] specified in the linkage editor)

(2) Second character

S: Never accessed in the user mode

U: Can be accessed in the user mode

(3) Third character

C: Cacheable access enabled

D: Cacheable access disabled

659

(4) Fourth character (valid only when the memory object protection function is selected)

(a) When the memory object protection function is used

P: Must be allocated to an MMU non-mapped area that cannot be accessed in the user
mode.

M: Must be allocated to an MMU mapped area.

_: Must be allocated to an area that can be accessed in the user mode, in either an MMU
mapped area or an MMU non-mapped area.

(b) When the memory object protection function is unused

P: Must be allocated to an area that cannot be accessed in the user mode.

M: Must be allocated to an appropriate area (accessible or inaccessible in the user mode)
according to the program that accesses the section.

_: Must be allocated to an area that can be accessed in the user mode.

(1) Kernel Library (knl_sde.hwp)

Table 11.14 Sections for hiknl_big.lib and hiknl_little.lib

Section Name Description

PSCP_hireset vsta_knl

PSDP_hiknl Program for manipulating registers such as MMUCR

PSCP_hiexp Program generally executed when an interrupt or a TLB miss occurs

PSCP_hicom Program executed for service calls in common

PUC__hiintfc Entry function for service calls.

This section must be readable from all user domains.

PSCP_hiknl Others

(2) Cache Support Object (knl_sde.hwp)

Table 11.15 Sections for cache_sh4a_big.rel and cache_sh4a_little.rel

Section Name Description

PSDP_hicac Program for manipulating elements such as the CCR register.

PSCP_hicac Other programs

BSCP_hicac Management table

(3) system\kernel_def.c (knl_sde.hwp)

660

Table 11.16 Sections for kernel_def.c

Section Name Description

PSCP_hidef Functions such as those process initial object definitions

CSCP_hidef -

BSCP_hidef -

BSCP_himpp_<ID> Protected memory pools (for which [Kernel side] is selected)

<ID> indicates the ID name when available, or the ID number in decimal
when the ID name is not available

(4) system\kernel_cfg.c (env_side.hwp)

Table 11.17 Sections for kernel_cfg.c

Section Name Description

PSCP_hicfg Functions such as those process initial object definitions

CSCP_hidef -

CSCP_hisysmt Configuration information table on the kernel environment side

BSCP_hintskstk Stack area for the non-task context

BUCM_hisyspl System pool

BSCP_hirespl Resource pool

BSCP_hiwrk Kernel work area

BSCP_hitrcbuf Buffer for target trace

BSCP_hitooltrc Area for tool trace

BSCP_hictxid Always four bytes are allocated

BSCP_hicfg -

BUCM_himpp_<ID> Protected memory pools (for which [Kernel side] is not selected)

<ID> indicates the ID name when available, or the ID number in decimal
when the ID name is not available

661

(5) Sample Programs

Table 11.18 Sections for System Application

Linkage Unit Section Name File

PSCP_hiknl samples\sysapp\mavhdr.c

samples\sysapp\sysdwn.c

samples\sysapp\exchdr.c

samples\sysapp\inthook.src

knl_side

BSCP_hiknl samples\sysapp\sysdwn.c

Table 11.19 Sections for Target-Dependent Part

Linkage Unit Section Name File

PSDP_RESET * samples\shnnnn\kernel\knl_side\reset.src

PSDP_RESET2 samples\shnnnn\kernel\knl_side\resetprg.c

samples\shnnnn\kernel\knl_side\init_mmu.c

PSCP_hiknl samples\shnnnn\kernel\knl_side\tmrdrv.c

knl_side

CSCP_hiknl samples\shnnnn\kernel\knl_side\tmrdrv.c

Note: * When it is stored in ROM, this section must be allocated at H'A0000000, which is the
CPU reset address.

Table 11.20 Sections for Standard Library

Linkage Unit Section Name File

PUCM_STDLIB

CUCM_STDLIB

BUCM_STDLIB

DUCM_STDLIB

stdlib.lib (generated by standard library generator)

samples\stdlib\lowsrc.c

samples\stdlib\initsct.c

knl_side

RUCM_STDLIB samples\stdlib\lowsrc.c

662

Table 11.21 Sections for Monitor

Linkage Unit Section Name File

PSCP_MON

CSCP_MON

BSCP_MON

DSCP_MON

knl_side

RSCP_MON

samples\monitor\monitor.c

Table 11.22 Section for Idling Task

Linkage Unit Section Name File

knl_side PSCP_IDLE samples\idle\idle.c

Table 11.23 Sections for Domain 1

Linkage Unit Section Name File

PUCM_DOM1

CUCM_DOM1

BUCM_DOM1

DUCM_DOM1

env_side

RUCM_DOM1

samples\dom1\dom1_main.c

samples\dom1\dom1_input.c

samples\dom1\dom1_output.c

Table 11.24 Sections for Domain 2

Linkage Unit Section Name File

PUCM_DOM2

CUCM_DOM2

BUCM_DOM2

DUCM_DOM2

env_side

RUCM_DOM2

samples\dom2\dom2.c

663

Table 11.25 Sections for Domain 3

Linkage Unit Section Name File

PUCM_DOM3

CUCM_DOM3

BUCM_DOM3

DUCM_DOM3

env_side

RUCM_DOM3

samples\dom3\dom3.c

Table 11.26 Sections for Domain 4

Linkage Unit Section Name File

PUCM_DOM4

CUCM_DOM4

BUCM_DOM4

DUCM_DOM4

env_side

RUCM_DOM4

samples\dom4\dom4.c

Table 11.27 Sections for Domain 5

Linkage Unit Section Name File

PUCM_DOM5

CUCM_DOM5

BUCM_DOM5

DUCM_DOM5

app_dom5

RUCM_DOM5

samples\dom5\dom5.c

Table 11.28 Sections for runtime.lib

Linkage Unit Section Name File

PUCM_RUNTIIME

CUCM_RUNTIIME

BUCM_RUNTIIME

DUCM_RUNTIIME

Other than
knl_side

RUCM_RUNTIIME

runtime.lib (generated by standard library generator)

samples\common\init_runtime.c

664

Table 11.29 Section for knl_side_sym.obj

Linkage Unit
Section
Name File

Other than
knl_side

P * samples\shnnnn\kernel_out\$(CONFIGNAME)\knl_side_sym.ob
j

Note: * The size of this section is 0 byte. Since no program accesses this section, it can be
allocated to any address at linkage.

11.15.3 Notes

(1) When Memory Object Protection Function Is Used

Note the following regarding section allocation for static memory objects, system pool
(BUCM_hisyspl section), and protected memory pools.

• The start address of a section must be aligned on a boundary of the specified page size for
static memory objects, or a boundary of the default page size (4 Kbytes) for the system pool
and protected memory pools.

• No data must be stored in the area between the end address of the section and the next page
boundary.

• The sections must be allocated in MMU mapped areas.

(2) When Memory Object Protection Function Is Not Used

The system pool (BUCM_hisyspl section) must be allocated on a 32-byte boundary; otherwise,
when a variable-size memory pool is allocated in the system pool, memory blocks are not aligned
on the desired boundaries even if the VTA_ALIGN16 or VTA_ALIGN32 attribute is specified. In
addition, the system pool must be allocated to an area that can be accessed in the user mode.

11.15.4 Memory Map and Static Memory Objects

The memory map for each sample differs depending whether the configuration assumes the use of
the simulator: "prot_sim" and "noprot_sim" assume the use of the simulator, and "prot" and
"noprot" do not.

665

Table 11.30 Memory Map in Each Configuration

Physical Memory for Section Allocation *

Configuration P, C, and D Sections B and R Sections

"prot_sim", "noprot_sim" From address 0 From address H'0C000000 (an
address for allocation to an
external RAM area)

"prot", "noprot" An address for allocation to an
external RAM area

An address for allocation to an
external RAM area

Note: * For exact addresses, refer to the settings of each sample project.

In "prot_sim" and "noprot_sim", the system can be started by clicking [Reset Go] in the simulator.

In "prot" and "noprot", the memory map is determined assuming that the application is executed
after it is downloaded to the external RAM on the target board.

Note that the on-chip memory is not used in any of these configurations.

The approximate memory sizes used by the sample system are as follows.

• P, C, and D sections: About 310 Kbytes

• B and R sections: About 440 Kbytes

The following describes the memory map of "prot_sim" and "noprot_sim" for the SH73180 as an
example.

Figure 11.28 shows the P, C, and D section allocation, and figure 11.29 shows the B and D section
allocation.

666

Physical
address

Logical
address

[knl_side] [env_side] [app_dom5] User-mode
access not
allowed

Non-
cacheable

MMU
mapped
area

Static
memory
object

H'00000000 H'A0000000 PSDP_RESET
 PSDP_RESET2
 PSDP_hiknl
 PSDP_hicac

H'00001000 H'80001000 PSCP_hiexp
 PSCP_hicom
 PSCP_hiknl
 PSCP_hireset
 PSCP_hidef
 CSCP_hiknl
 CSCP_hidef
 PSCP_hicac
 PSCP_MON
 CSCP_MON
 DSCP_MON
 PSCP_IDLE

H'00020000 H'00020000 PUC__hiintfc
 PUCM_STDLIB
 CUCM_STDLIB
 DUCM_STDLIB

H'00030000 H'80030000 CSCP_hisysmt
 PSCP_hicfg
 CSCP_hicfg
 P *

H'00040000 H'00040000 PUCM_RUNTIME
 CUCM_RUNTIME
 DUCM_RUNTIME

H'00042000 H'00042000 PUCM_DOM1
 CUCM_DOM1
 DUCM_DOM1

H'00044000 H'00044000 PUCM_DOM2
 CUCM_DOM2
 DUCM_DOM2

H'00046000 H'00046000 PUCM_DOM3
 CUCM_DOM3
 DUCM_DOM3

H'00048000 H'00048000 PUCM_DOM4
 CUCM_DOM4
 DUCM_DOM4

H'0004A000 H'0004A000 PUCM_DOM5
 CUCM_DOM5
 DUCM_DOM5
 P *
 PUCM_RUNTIME
 CUCM_RUNTIME
 DUCM_RUNTIME

H'0004C000 H'0004C000

Note: Symbol file knl_side_sym.obj uses a P section with a size of 0 byte.

Figure 11.28 Allocation of P, C, and D Sections

667

Physical
address

Logical
address

[knl_side] [env_side] [app_dom5] User-mode
access not
allowed

Non-
cacheable

MMU
mapped
area

Static
memory
object

H'0C000000 H'8C000000 BSCP_hiknl

 BSCP_hidef

 BSCP_hicac

 BSCP_MON

 RSCP_MON

H'0C002000 H'0C002000 BUCM_STDLIB
 RUCM_STDLIB

H'0C008000 H'8C008000 BSCP_hictxid
 BSCP_hintskstk
 BSCP_hicfg
 BSCP_hiwrk
 BSCP_hirespl

H'0C018000 H'0C018000 BUCM_hisyspl

H'0C058000 H'0C058000 BUCM_himpp_ID_D
OM2_MPP

H'0C060000 H'0C060000 BUCM_RUNTIME
 RUCM_RUNTIME

H'0C062000 H'0C062000 BUCM_DOM1
 RUCM_DOM1

H'0C064000 H'0C064000 BUCM_DOM2
 RUCM_DOM2

H'0C066000 H'0C066000 BUCM_DOM3
 RUCM_DOM3

H'0C068000 H'0C068000 BUCM_DOM4
 RUCM_DOM4

H'0C06A000 H'0C06A000 BUCM_DOM5
 RUCM_DOM5
 BUCM_RUNTIME
 RUCM_RUNTIME

H'0C06C000 H'0C06C000

Figure 11.29 Allocation of B and R Sections

The following describes section allocation for each linkage unit in detail.

(1) knl_side

(a) Section block at logical address H'A0000000 (such as PSDP_RESET)

PSDP_RESET (reset.src) is a program section that must be executed immediately after a CPU
reset, and so it is allocated at the CPU reset address (H'A0000000). The other sections can be
allocated in any order.

(b) Section block at logical address H'80001000 (such as PSCP_hiexp)

This block contains the sections that are read only in the privileged mode. These sections can
be allocated in any order.

(c) Section block at logical address H'00020000 (such as PUC__hiintfc)

668

This block contains the sections that can be read from any user domain.

When the memory object protection function is selected, this block is registered as a static
memory object having the following attributes through the configurator. Note that the order of
the sections specified through the linkage editor should match the settings in the configurator.

⎯ Address range: Section PUC__hiintfc to section DUCM_STDLIB

⎯ Page size: 64 Kbytes

⎯ Cache attribute: Copy-back

⎯ Access permission vector: TACT_SRO (can be read from any domain)

(d) Section block at logical address H'8C000000 (such as BSCP_hiknl)

This block contains the sections that are read and written to only in the privileged mode. These
sections can be allocated in any order.

(e) Logical address H'0C002000 (such as BUCM_STDLIB)

This block contains the sections that can be read or written to from any user domain.

When the memory object protection function is selected, this block is registered as a static
memory object having the following attributes through the configurator. Note that the order of
the sections specified through the linkage editor should match the settings in the configurator.

⎯ Address range: Section BUCM_STDLIB to section RUCM_STDLIB

⎯ Page size: 4 Kbytes

⎯ Cache attribute: Copy-back

⎯ Access permission vector: TACT_SRW (can be read and written to from any domain)

(2) env_side

(a) Section block at logical address H'80030000 (such as CSCP_hisysmt)

This block contains the sections that are read only in the privileged mode.

CSCP_hisysmt is the section for the kernel environment-side information table
(__kernel_sysmt). The start address of this section must be determined during system design in
advance, and the determined address must be specified at linkage of knl_side. To ensure that
the start address remains unchanged even if the sizes of individual sections are changed during
development of the system, it is recommended that CSCP_hisysmt section be allocated at the
head of the section block.

The other sections can be allocated in any order.

(b) Section block at logical address H'00040000 (such as PUCM_RUNTIME)

This block contains the sections that can be read from any domain in env_side.

When the memory object protection function is selected, this block is registered as a static
memory object having the following attributes through the configurator. Note that the order of
the sections specified through the linkage editor should match the settings in the configurator.

669

⎯ Address range: Section PUCM_RUNTIME to section DUCM_RUNTIME

⎯ Page size: 4 Kbytes

⎯ Cache attribute: Copy-back

⎯ Access permission vector: TACT_SRO (can be read from any user domain)

(c) Section block at logical address H'00042000 (such as PUCM_DOM1)

This block contains the sections that are read only from domain 1.

When the memory object protection function is selected, this block is registered as a static
memory object having the following attributes through the configurator. Note that the order of
the sections specified through the linkage editor should match the settings in the configurator.

⎯ Address range: Section PUCM_DOM1 to section DUCM_DOM1

⎯ Page size: 4 Kbytes

⎯ Cache attribute: Copy-back

⎯ Access permission vector: TACT_PRO(ID_DOM1) (can be read only from domain 1)

(d) Section block at logical address H'00044000 (such as PUCM_DOM2)

This block contains the sections that are read only from domain 2.

When the memory object protection function is selected, this block is registered as a static
memory object having the following attributes through the configurator. Note that the order of
the sections specified through the linkage editor should match the settings in the configurator.

⎯ Address range: Section PUCM_DOM2 to section DUCM_DOM2

⎯ Page size: 4 Kbytes

⎯ Cache attribute: Copy-back

⎯ Access permission vector: TACT_PRO(ID_DOM2)) (can be read only from domain 2)

(e) Section block at logical address H'00046000 (such as PUCM_DOM3)

This block contains the sections that are read only from domain 3.

When the memory object protection function is selected, this block is registered as a static
memory object having the following attributes through the configurator. Note that the order of
the sections specified through the linkage editor should match the settings in the configurator.

⎯ Address range: Section PUCM_DOM3 to section DUCM_DOM3

⎯ Page size: 4 Kbytes

⎯ Cache attribute: Copy-back

⎯ Access permission vector: TACT_PRO(ID_DOM3)) (can be read only in domain 3)

(f) Section block at logical address H'00048000 (such as PUCM_DOM4)

This block contains the sections that are read only from domain 4.

When the memory object protection function is selected, this block is registered as a static
memory object having the following attributes through the configurator. Note that the order of
the sections specified through the linkage editor should match the settings in the configurator.

670

⎯ Address range: Section PUCM_DOM4 to section DUCM_DOM4

⎯ Page size: 4 Kbytes

⎯ Cache attribute: Copy-back

⎯ Access permission vector: TACT_PRO(ID_DOM4)) (can be read only from domain 4)

(g) Section block at logical address H'8C008000 (such as BSCP_hictxid)

This block contains the sections that are read and written to only in the privileged mode. These
sections can be allocated in any order.

(h) Section block at logical address H'0C0180000 (BUCM_hisyspl)

This block contains the system pool section.

(i) Section block at logical address H'0C0580000 (BUCM_himpp_ID_DOM2MPP)

This block contains the section for the protected memory pool registered through the
configurator.

This sample specifies H'8000 as the protected memory pool size.

The "noprot_sim" and "noprot" configurations do not have this section.

(j) Section block at logical address H'0C060000 (such as BUCM_RUNTIME)

This block contains the sections that can be read and written to from any domain in env_side.

When the memory object protection function is selected, this block is registered as a static
memory object having the following attributes through the configurator. Note that the order of
the sections specified through the linkage editor should match the settings in the configurator.

⎯ Address range: Section BUCM_RUNTIME to section RUCM_RUNTIME

⎯ Page size: 4 Kbytes

⎯ Cache attribute: Copy-back

⎯ Access permission vector: TACT_SRW (can be read and written to from any domain)

(k) Section block at logical address H'0C062000 (such as BUCM_DOM1)

This block contains the sections that are read and written to only from domain 1.

When the memory object protection function is selected, this block is registered as a static
memory object having the following attributes through the configurator. Note that the order of
the sections specified through the linkage editor should match the settings in the configurator.

⎯ Address range: Section BUCM_DOM1 to section RUCM_DOM1

⎯ Page size: 4 Kbytes

⎯ Cache attribute: Copy-back

⎯ Access permission vector: TACT_PRW(ID_DOM1) (can be read and written to only from
domain 1)

(l) Section block at logical address H'0C064000 (such as BUCM_DOM2)

This block contains the sections that are read and written to only from domain 2.

671

When the memory object protection function is selected, this block is registered as a static
memory object having the following attributes through the configurator. Note that the order of
the sections specified through the linkage editor should match the settings in the configurator.

⎯ Address range: Section BUCM_DOM2 to RUCM_DOM2

⎯ Page size: 4 Kbytes

⎯ Cache attribute: Copy-back

⎯ Access permission vector: TACT_PRW(ID_DOM2) (can be read and written to only from
domain 2)

(m) Section block at logical address H'0C066000 (such as BUCM_DOM3)

This block contains the sections that are read and written to only from domain 3.

When the memory object protection function is selected, this block is registered as a static
memory object having the following attributes through the configurator. Note that the order of
the sections specified through the linkage editor should match the settings in the configurator.

⎯ Address range: Section BUCM_DOM3 to RUCM_DOM3

⎯ Page size: 4 Kbytes

⎯ Cache attribute: Copy-back

⎯ Access permission vector: TACT_PRW(ID_DOM3) (can be read and written to only from
domain 3)

(n) Section block at logical address H'0C068000 (such as BUCM_DOM4)

This block contains the sections that are read and written to only from domain 4.

When the memory object protection function is selected, this block is registered as a static
memory object having the following attributes through the configurator. Note that the order of
the sections specified through the linkage editor should match the settings in the configurator.

⎯ Address range: Section BUCM_DOM4 to RUCM_DOM4

⎯ Page size: 4 Kbytes

⎯ Cache attribute: Copy-back

⎯ Access permission vector: TACT_PRW(ID_DOM4) (can be read and written to only from
domain 4)

(3) app_dom5

app_dom5 is a load module consisting of domain 5 only. Accordingly, all of its sections including
the runtime routines are accessed only from domain 5.

(a) Section block at logical address H'0004A000 (such as PUCM_DOM5)

This block contains the sections that are read only from domain 5.

672

When the memory object protection function is selected, this block is registered as a static
memory object having the following attributes through the configurator. Note that the section
addresses specified through the linkage editor and the resultant end address should match the
settings in the configurator.

⎯ Address range: H'2000 (8192) bytes starting from H'0004A000

⎯ Page size: 4 Kbytes

⎯ Cache attribute: Copy-back

⎯ Access permission vector: TACT_PRO(ID_DOM5) (can be read only from domain 5)

(b) Section block at logical address H'0C06A000 (such as BUCM_DOM5)

This block contains the sections that are read and written to only from domain 5.

When the memory object protection function is selected, this block is registered as a static
memory object having the following attributes through the configurator. Note that the section
addresses specified through the linkage editor and the resultant end address should match the
settings in the configurator.

⎯ Address range: H'2000 (8192) bytes starting from H'0C06A000

⎯ Page size: 4 Kbytes

⎯ Cache attribute: Copy-back

⎯ Access permission vector: TACT_PRW(ID_DOM5) (can be read and written to only from
domain 5)

673

11.16 Execution on Simulator

11.16.1 Debugging Session

Debugging sessions for execution on the simulator are provided for the following projects.

• knl_side.hwp in kernel.hws

• envl_side.hwp in kernel.hws

• app_dom5.hwp in app_dom5.hws

The debugging session name depends on the microprocessor type (shnnnn); for example,
"sim_sh4aldsp-cyc_env_side".

In the debugging sessions for knl_side.hwp and env_side.hwp, only knl_side.abs and env_side are
downloaded and domain 5 is not downloaded.

In the debugging session for app_dom5.hwp, app_dom5.abs is downloaded in addition to
knl_side.abs and env_side.abs. Therefore, the main task of domain 5 can be initiated through the
monitor in the case of app_dom5.hwp.

Note: V.1.01 Release 00 of the HI7300/PX provides only debugging sessions for sh73180
(SH73180 microcomputer).

Almost the same settings are made for these three debugging sessions. Note the following settings.

(1) Mapping has been specified

(2) I/O simulation: Enabled (I/O system call address = 4)

(3) Timer simulation: Enabled

(4) At interrupt or exception occurrence: Execution continues (if execution stop is specified,
simulation stops when a TLB miss exception occurs).

These settings are made through the HEW command file (extension "hdc") in the workspace
directory. Each session is set up so that this command file is automatically executed when the
simulator is connected and when a program is downloaded.

In addition to the above settings, this command file contains the processing for disabling the
MMU because a program cannot be downloaded if a TLB miss occurs during the downloading
process when the MMU is enabled.

674

11.16.2 Execution

To execute a program, select [Debug] -> [Download] -> [All Download Modules] in each
debugging session, reset the CPU, and then execute it.

11.16.3 Monitor Startup

In the "prot_sim" and "noprot_sim" configurations, the monitor can be used.

Click the trigger button indicated as [Monitor] to start the monitor (figure 11.30); monitor prompt
"MON>" appears in the [Simulated I/O] window.

Figure 11.30 Trigger Button for Starting the Monitor

11.16.4 Detection of Illegal Access by Domain 4

Domain 4 is a sample application for intentionally making illegal access.

When the memory object protection function is selected ("prot_sim" configuration), the MMU or
CPU detects this illegal access and the memory access violation handler (sysapp\mavhdr.c) sends
a request for task exception processing to the main task in domain 4. As a result, the program line
after the access violation is not executed and the task exception processing routine is executed
before that line. The task exception processing routine displays an access violation message in the
simulated I/O window, and restarts the task to generate access violation again.

This procedure for access violation exception can be monitored by executing domain 4 with the
"prot_sim" configuration.

675

When domain 4 is executed with the "noprot_sim" configuration, in which the memory object
protection function is not selected, domain 4 makes an illegal access in the same way as in the
"prot_sim" configuration. However, since the memory object protection function is not used, only
the access violations that can be detected by the CPU (access to addresses larger than H'80000000
in the user mode) are detected.

For details, refer to the source code of domain 4 and set breakpoints at appropriate locations to
confirm the actual behavior.

11.16.5 Execution of Domain 5

A task is created for domain 5 by the configurator, but it is not initiated.

To initiate it, enter the act command through the monitor as follows.

 MON> act 5(RET)

The task ID for domain 5 is specified for automatic assignment with an ID name
"ID_DOM5_MAIN" through the configurator. The actual ID number is output by the configurator
to kernel_id.h in samples\shnnnn\config_out\$(CONFIGNAME)\ as "ID_DOM5_MAIN". At
shipment, this task ID number is 5.

676

677

Section 12 Calculation of Stack Size

12.1 Stack Types

This kernel has the following types of stacks.

(1) Task stack

Each task has a different stack.

A task associated with a user domain has two stacks. One stack is used by the task itself and
the other stack is a system stack. The system stack is used by extended service call routines
and trap routines called by the task. It is also used by the kernel for saving task context.

A task associated with the kernel domain has only one stack. This stack is used not only by the
task itself but also by extended service call routines and trap routines called by the task. It is
also used by the kernel for saving task context.

(2) Non-task context stack

This is a stack used, as its name shows, for execution of non-task context. The kernel switches
the stack pointer to the non-task context stack when transiting from the task context state to the
non-task context state.

There is only one non-task context stack in the system.

12.2 Overview of Calculation Procedure for Stack Size

The stack size used by each task and handler is calculated by tracking back the stack size used
from the nested subroutines (functions) of the start function. This size is called the "independent
stack size".

The actual required size is the value obtained by adding the stack size used by the kernel to the
"independent stack size".

12.3 Stack Size Used by Each Task

The stack size of each task is specified at task creation. Calculate the value to be specified with
reference to the subsequent sections.

12.3.1 Task Associated with User Domain

A task associated with a user domain has a system stack in addition to a stack used by the task.

678

(1) Stack used by task
Stack size = (Independent stack size used by task)
 + (Independent stack size used by task exception processing routine)

When the task exception processing routine is nested at initiation, calculate the total size with
programming nesting added.

(2) System stack
Stack size = (Context saving stack size of task)
 + (Independent stack size used by extended service call routine or trap
 routine that is called)
 + (Context saving stack size of extended service call routine, trap routine,
 or task exception processing routine)

The context saving stack size is the size for saving the registers necessary for program execution.
The context saving stack size of a task is necessary in all cases. The context saving stack size of
an extended service call routine, trap routine, or task exception processing routine is necessary
each time it is initiated.

Table 12.1 shows the context saving stack sizes.

Table 12.1 Context Saving Stack Size

Classification Size Necessary Condition

180 Always necessary

56 For the TA_COP0 attribute

72 For the TA_COP1 attribute

Task

64 For the TA_COP2 attribute

112 Always necessary

56 For the TA_COP0 attribute

72 For the TA_COP1 attribute

Extended service call routine, trap routine, or
task exception processing routine

64 For the TA_COP2 attribute

When an extended service call routine, trap routine, or task exception processing routine is nested,
add its size considering programming nesting.

679

(3) Calculation example

An example of calculation is shown with figure 12.1 used as an example. Numeric values
enclosed in square brackets in the figure are independent stack sizes. It is assumed that the
TA_COP0, TA_COP1, and TA_COP2 attributes are not specified in this example.

 ta s k () [1 6]

Fu n c tio n ca ll

 fu n c () [2 0]

ca l_s vc (1)

 E x te n d e d s e rvice ca ll ro u tine 1 [2 4]

 E x te n d e d s e rvice ca ll ro u tine 2 [2 8]

ca l_s vc (2)

Ta s k e xce p tio n o ccu rren ce

 Ta s k e xce p tio n p ro cess in g ro u tin e [3 2]

e xt_ ts k

Figure 12.1 Calculation Example of Stack Size Used by Task

(a) Stack used by task
Stack size = (Independent stack size used by task)
 + (Independent stack size used by task exception processing routine)
 = (16 + 20) + 32
 = 68

(b) System stack

⎯ When extended service call routine 2 is nested
Stack size = (Context saving stack size of task)
 + (Independent stack size used by extended service call routine or trap
 routine that is called)
 + (Context saving stack size of extended service call routine, trap routine,
 or task exception processing routine)
 = 180
 + (24 + 28)
 + (112 + 112)
 = 456

680

⎯ When task exception processing routine is nested
Stack size = (Context saving stack size of task)
 + (Independent stack size used by extended service call routine or trap
 routine that is called)
 + (Context saving stack size of extended service call routine, trap routine,
 or task exception processing routine)
 = 180
 + 0
 + 112
 = 292

Accordingly, the stack size used by the system stack is 456.

12.3.2 Task Associated with Kernel Domain

A task associated with the kernel domain has only one stack.

The stack size used is the sum of the calculated results of "section 12.3.1 (1) Stack used by task"
and "section 12.3.1 (2) System stack".

12.4 Calculation of Non-Task Context Stack Size

There is only one non-task context stack in the system, and its size is specified by
CFG_NTSKSTKSZ.

The value set in CFG_NTSKSTKSZ must be equal to or greater than the larger size of size 1 or
size 2 shown below.

• Size 1
= 256
 + (Maximum stack size used by each initialization routine) (1)
 + (Stack size used by NMI interrupt handler) × (NMI nest count) (2)

• Size 2
= 256
 + (Maximum stack size used by CPU exception handler occurring during
 task context execution) .. (3)
 + ∑ (Maximum stack size used by interrupt handler at each interrupt level) (4)
 + (Stack size used by NMI interrupt handler) × (NMI nest count) (2)

(1) For each initialization routine, calculate the stack size used by referring to
section 12.4.1, Stack Size Used by Each Initialization Routine and Timer Initialization Routine
of Standard Timer Driver, and obtain the maximum stack size within all initialization routines.

681

(2) For calculation of the stack size used by the NMI interrupt handler, refer to section 12.4.3,
Stack Size Used by NMI Interrupt Handler. For the NMI nest count, set the NMI nest count to
a possible number if the setting to accept the NMI interrupt is made in the interrupt controller
when the BL bit in SR is 1. In other cases, set the NMI nest count to 1.

(3) For a CPU exception that may occur during execution of task context, calculate the stack size
used by referring to section 12.4.4, Stack Size Used by Each CPU Exception Handler, and
obtain the maximum stack size among all CPU exception handlers.

(4) Calculate the stack size used by individual handlers according to section 12.4.2, Stack Size
Used by Each Interrupt Handler, Time Event Handler, and Timer Interrupt Routine of Standard
Timer Driver, and obtain the maximum stack size within handlers for each interrupt level.
Then, add the stack sizes for all interrupt levels.

Reference: Section 8.4.4, Notes on NMI

12.4.1 Stack Size Used by Each Initialization Routine and Timer Initialization Routine of

Standard Timer Driver

Stack size = (Independent stack size used by initialization routine)
 + 216 (Required only when service call is issued)
 + (Independent stack size used by extended service call routine or trap
 routine that is called)
 + (Context saving stack size of extended service call routine or trap routine)
 + (Stack size used by CPU exception handler)
 + (140 whenever CPU exception occurs)

The context saving stack size is in accordance with table 12.1.

When an extended service call routine or trap routine is called, add its size considering
programming nesting.

The stack size used by a CPU exception handler is required when a CPU exception occurs during
execution of an initialization routine whose used stack size is to be calculated. For the calculation
method, refer to section 12.4.4, Stack Size Used by Each CPU Exception Handler.

Note that the initialization routine (_kernel_tmrini()) of the standard timer driver must also be
calculated by using this equation.

682

12.4.2 Stack Size Used by Each Interrupt Handler, Time Event Handler, and Timer

Interrupt Routine of Standard Timer Driver

Stack size = (Independent stack size used by interrupt handler)
 + 76
 + 216 (Required only when service call is issued)
 + (Independent stack size used by extended service call routine or trap
 routine that is called)
 + (Context saving stack size of extended service call routine or trap routine)
 + (Stack size used by CPU exception handler)
 + (140 whenever CPU exception occurs)

The context saving stack size is in accordance with table 12.1.

The stack size used by a CPU exception handler is required when a CPU exception occurs during
execution of a handler or routine whose used stack size is to be calculated. For the calculation
method, refer to section 12.4.4, Stack Size Used by Each CPU Exception Handler.

When an extended service call routine or trap routine is called, add its size considering
programming nesting.

Note that the time event handler, and timer interrupt routine (_kernel_tmrint()) of the standard
timer driver must be calculated by this equation as an interrupt handler whose interrupt level is
CFG_KNLLVL. However, 160 must be added to the calculation.

12.4.3 Stack Size Used by NMI Interrupt Handler

Stack size = (Independent stack size used by NMI interrupt handler)
 + (Stack size used by CPU exception handler)
 + (140 whenever CPU exception occurs)

The stack size used by a CPU exception handler is required when a CPU exception occurs during
execution of the NMI interrupt handler. For the calculation method, refer to section 12.4.4, Stack
Size Used by Each CPU Exception Handler. When a CPU exception handler is nested, add its size
considering programming nesting.

12.4.4 Stack Size Used by Each CPU Exception Handler

Stack size = (Independent stack size used by CPU exception handler)
 + (Stack size used by CPU exception handler)
 + 216 (Required only when service call is issued)
 + (Stack size used by additional CPU exception handler)
 + (140 whenever additional CPU exception occurs)

683

An additional CPU exception is the CPU exception that occurs during execution of a CPU
exception handler whose used stack size is to be calculated. When a CPU exception handler is
nested, add its size with regard to programming nesting.

684

685

Section 13 Estimation of Resource Pool Size

13.1 Overview

The resource pool size is specified by CFG_RESPOOLSZ.

The resource pool is mainly used to dynamically allocate the kernel internal management table.

Memory can be recycled by acquiring memory when required and releasing it when no longer
required. Compared to allocating memory statically, the amount of memory used can be reduced
with this method.

On the other hand, since the state of resource pool usage depends on the system status, it is
generally difficult to calculate the minimum required size accurately.

If the resource pool is insufficient during system operation, the system enters an erroneous state, in
which, for example, service calls (functions) result in E_NOMEM errors. Roughly estimate the
required size using the following procedure, and specify a sufficient size in CFG_RESPOOLSZ.

1. Determine the timing at which the resource pool is used and its requested size → Section 13.2,
Requested Timing and Size

2. Estimate the required size taking into consideration the algorithm described below. To be
specific, make an estimation with reference to section 13.3, Calculation.

Reference: Section 4.31, Controlling Memory Fragmentation

In this section, the following symbols are used.

ROUND_UP(a, b):a is rounded up to a multiple of b

13.2 Requested Timing and Size

13.2.1 When Kernel is Started (vsta_knl)

(1) Management of static memory objects

For all static memory objects, the total sum of the sizes calculated by VTSZ_MEMMB (page size,
static memory object size) is used. The contents of this macro are shown below.

VSTZ_MEMMB(page size, static memory object size)

 =(ROUND_UP(static memory object size, page size)÷CFG_PAGESZ(4096)×12)+4

686

This area is never released.

13.2.2 When Object is Created

The resource pool is requested when the following objects are created. The area used at this time
is released when that object is deleted.

(1) Task

(a) System stack allocated from resource pool

When the kernel is specified to allocate the system stack area at task creation, (system stack
size + 4) bytes of the resource pool are requested. If the configurator creates the task, the stack
area can only be allocated by the kernel.

(b) Management of stack area allocated from system pool

If the kernel is specified to allocate the stack area when creating a task associated with a user
domain, the stack area is allocated from the system pool. However, the resource pool is used for
the size of VTSZ_SPLALCMB at maximum for managing the stack area. If the configurator
creates the task, only the kernel can be specified to allocate the stack area.

The contents of this macro are shown below.

• When CFG_PROTMEM is selected

 VTSZ_SPLALCMB=60

• When CFG_PROTMEM is not selected

 VTSZ_SPLALCMB=36

(2) Data queue

If the data count is not 0 when creating a data queue, the resource pool is requested for the size of
TSZ_DTQMB (data count).

The contents of this macro are shown below.

TSZ_DTQMB(data count)=((data count)×4)+4

The area used is released when the data queue is deleted.

Note that the macro TSZ_DTQ (data count) has the same definition as the above macro.
TSZ_DTQMB is a macro defined by the μITRON 4.0 protection function extension, while
TSZ_DTQ is a macro defined by the original μITRON 4.0 specification.

687

(3) Mailbox

If the condition of "TA_MPRI attribute with the Max. message priority > 1" is satisfied, the
resource pool is requested for the size of TSZ_MBXMB (number of messages, Max. message
priority).

The contents of this macro are shown below.

TSZ_MBXMB(number of messages, Max. message priority)=((Max. message priority)×8)+4

The area used is released when the mailbox is deleted.

(4) Message buffer

If the buffer size is not 0 when creating a message buffer, the resource pool is requested for the
size of (buffer size + 4).

The area used is released when the message buffer is deleted.

(5) Fixed-size memory pool

(a) Management of fixed-size memory blocks

To manage the fixed-size memory blocks, the resource pool is requested for the size of
TSZ_MPFMB (number of blocks, block size). The contents of this macro are shown below.

TSZ_MPFMB(number of blocks, block size)=((number of blocks)×4)+4

(b) When allocating fixed-size memory pool from system pool

If the kernel is specified to allocate the pool area when creating a fixed-size memory pool, the pool
area is allocated from the system pool. However, the resource pool is used for the size of
VTSZ_SPLALCMB at maximum for managing the pool area. If the configurator creates the
fixed-size memory pool, only the kernel can be specified to allocate the pool area. The contents of
this macro are shown below.

• When CFG_PROTMEM is selected

 VTSZ_SPLALCMB=60

• When CFG_PROTMEM is not selected

 VTSZ_SPLALCMB=36

688

(6) Variable-size memory pool

(a) When allocating variable-size memory pool from system pool

If the kernel is specified to allocate the pool area when creating a variable-size memory pool, the
pool area is allocated from the system pool. However, the resource pool is used for the size of
VTSZ_SPLALCMB at maximum for managing the pool area. If the configurator creates the
variable-size memory pool, only the kernel can be specified to allocate the pool area. The contents
of this macro are shown below.

• When CFG_PROTMEM is selected

 VTSZ_SPLALCMB=60

• When CFG_PROTMEM is not selected

 VTSZ_SPLALCMB=36

(b) Sector management

If the VTA_UNFRAGMENT attribute is specified, the resource pool is requested for the size of
VTSZ_SCTMB (Max. sector count). The contents of this macro are shown below.

VTSZ_SCTMB(Max. sector count)=(20×(Max. sector count)+72)+4

(7) Protected mailbox

If the condition of "TA_MPRI attribute with the Max. message priority > 1" is satisfied when
creating a protected mailbox, the resource pool is requested for the size of TSZ_MBPMB (number
of messages, Max. message priority).

The contents of this macro are shown below.

TSZ_MBPMB(number of messages, Max. message priority)=((Max. message priority)×8)+4

The area used is released when the protected mailbox is deleted.

13.2.3 Sizes Used and Released at Other Timings

(1) Mailbox: snd_mbx, isnd_mbx

If a message is queued in a mailbox when there is no task waiting to receive a message, the
resource pool is requested for the size of VTSZ_MSGMB. The contents of this macro are shown
below.

VTSZ_MSGMB=20

This area is released when the message is received or the relevant mailbox is deleted.

689

(2) Variable-size memory pool: get_mpl, pget_mpl, ipget_mpl, tget_mpl

When acquiring a memory block, the resource pool is requested for the size of VTSZ_BLKMB at
maximum. The contents of this macro are shown below.

VTSZ_BLKMB=36

This area is released when the block is released or the relevant variable-size memory pool is
deleted.

(3) Protected memory pool: pget_mpp

When acquiring a protected memory block, the resource pool is requested for the size of
VTSZ_MPPBLKMB at maximum. The contents of this macro are shown below.

VTSZ_MPPBLKMB=60

This area is released when the block is released.

(4) Protected mailbox: snd_mbp

If a message is queued in a protected mailbox when there is no task waiting to receive a message,
the resource pool is used for the size of VTSZ_MSGMB. The contents of this macro are shown
below.

VTSZ_MSGMB=20

This area is released when the message is received or the relevant protected mailbox is deleted.

690

13.3 Calculation

The resource pool is managed by sectors with the "Min. block size" as 20 bytes.

(1) Request of 160 bytes or less (allocated as a sector)

The requested size is calculated by the following equation.

SZ_RESSCT = Σ ((ROUND_UP (Num[n]/Cnt[n], 1) × 696)

• n: 1, 2, 4, or 8

• Num[n]: Number of simultaneous requests for a size of (20 × n) bytes or less (see the table
below)

• Cnt[n]: Number of blocks in the sector (see the table below)

n Num[n] Cnt[n]

1 20 bytes or less 32

2 21 to 40 bytes 16

4 41 to 80 bytes 8

8 81 to 160 bytes 4

(2) Request exceeding 160 bytes

Simultaneous requests are calculated with the following equation.

SZ_RESLARGE = ∑ (Requested size + 32)

(3) Total required size

VTSZ_RPLMB bytes are used for management of the resource pool. The contents of this macro
are shown below.

VTSZ_RPLMB=32

This area is never released.

The total required size is calculated with the following equation.

Total required size = VTSZ_RPLMB + SZ_RESSCT + SZ_RESLARGE

691

Section 14 Estimation of System Pool Size

14.1 Overview

The system pool size is specified by CFG_SYSPOOLSZ.

The system pool size is estimated using the following procedure.

1. Determine the timing at which the system pool is used and its requested size → Section 14.2,
Requested Timing and Size

2. Estimate the required size taking into consideration the algorithm described below.

Reference: Section 4.31, Controlling Memory Fragmentation

14.2 Requested Timing and Size

The system pool is used in the following cases. This means that the system pool size can be set
to 0 as long as the areas below are allocated on the application side.

(1) When task is created

If the kernel is specified to allocate the stack area when creating a task associated with a user
domain, the stack area of the specified stack size is allocated from the system pool. If the
configurator creates the task, only the kernel can be specified to allocate the stack area.

This area is released when the task is deleted.

(2) When fixed-size memory pool is created

If the kernel is specified to allocate the pool area when creating a fixed-size memory pool, a fixed-
size memory pool area with the size of TSZ_MPF (number of blocks, block size) bytes is allocated
from the system pool.

This area is released when the fixed-size memory pool is deleted.

The contents of the TSZ_MPF macro are shown below.

TSZ_MPF(number of blocks, block size)=(block size) ×(number of blocks)

692

(3) When variable-size memory pool is created

If the kernel is specified to allocate the pool area when creating a variable-size memory pool, a
memory pool area with the specified memory pool size is allocated from the system pool.

This area is released when the variable-size memory pool is deleted.

693

Section 15 Notes on FPU

15.1 Meaning of "Using FPU"

From the kernel viewpoint, "using FPU" stands for accessing the FPU registers from the
application.

The FPU registers are accessed if "cpu = sh4a" is specified as a compiler option and also either of
the following is satisfied.

(1) The fpu option of the compiler is not specified. In the HEW, [Mix] is selected for [Floating-
point operation mode] in the [CPU] tab of the [SuperH RISC engine Standard Toolchain]
dialog box that is opened by selecting [Option] -> [SuperH RISC engine Standard
Toolchain...].

(2) The floating-point data type is used.

Particularly in case (1), the FPU is assumed to be used even when no floating-point data is
handled. For this reason, specifying (1) is not recommended strongly.

15.2 FPU Usage in Each Application

15.2.1 Task, Task Exception Processing Routine, Extended Service Call Routine, or Trap

Routine

(1) TA_COP1 or TA_COP2 attribute

In a task, task exception processing routine, extended service call routine, or trap routine, the FPU
can be used only when TA_COP1 or TA_COP1 and TA_COP2 are specified as the attribute.
Specify the TA_COP1 or TA_COP2 attribute as shown in table 15.1.

Table 15.1 Specification of TA_COP1 or TA_COP2 Attribute

Condition Attribute

When matrix calculation is performed (both FPU register banks are used) TA_COP1|TA_COP2

When normal floating-point operation is performed (only FPU register bank
0 is used)

TA_COP1

When no floating-point operation is performed (Not required)

694

(2) Initial FPSCR value

The initial FPSCR value is specified at creation or definition of a task, task exception processing
routine, extended service call routine, or trap routine. Make sure that this specification does not
conflict with the compiler option settings. The relationship is shown in table 15.2.

Table 15.2 Relationship between Initial FPSCR Value Specified at Creation/Definition and
Compiler Option Settings

Compiler Options

fpu denormalize round
Initial FPSCR Value (inifpscr) That Should be
Specified at Creation/Definition

zero* H'00040001 (FR = 0, PR = 0, DN = 1, RM = 1) on*

nearest H'00040000 (FR = 0, PR = 0, DN = 1, RM = 0)

zero H'00000001 (FR = 0, PR = 0, DN = 0, RM = 1)

No specification
or single*

off

nearest H'00000000 (FR = 0, PR = 0, DN = 0, RM = 0)

zero H'000C0001 (FR = 0, PR = 1, DN = 1, RM = 1) on

nearest H'000C0000 (FR = 0, PR = 1, DN = 1, RM = 0)

zero H'00080001 (FR = 0, PR = 1, DN = 0, RM = 1)

double

off

nearest H'00080000 (FR = 0, PR = 1, DN = 0, RM = 0)

Note: Default setting of the compiler

15.2.2 Other Applications

Other applications cannot use the FPU.

To use the FPU, the FPU registers must be allocated on the application side.

695

Section 16 System Down Handling

16.1 Information during System Down

The system down routine is called when the system goes down. Information listed in table 16.1 is
passed to the system down routine.

696

Table 16.1 Information Passed to System Down Routine

Parameters Passed to System Down Routine

No.
Cause of System
Down

Error Type
ER type
(R4)

Information 1
VW inf1
(R5)

Information 2
VW inf2
(R6)

Information 3
VW inf3
(R7) Countermeasure

1 vsys_dwn, ivsys_dwn 1 to H'7fffffff Parameter of vsys_dwn or ivsys_dwn

2 vsta_knl

System pool cannot
be created

1 Undefined Undefined Refer to section
16.2.

3 E_PAR Undefined

4

vsta_knl

Static memory object
cannot be created

0

2

E_NOMEM Undefined

Refer to section
16.2.

5 ext_tsk

Called by non-task
context

–1 E_CTX Address
calling
ext_tsk

Undefined

6 exd_tsk

Called by non-task
context

–2 E_CTX Address
calling
exd_tsk

Undefined

7 Undefined CPU
exception occurred

–H'10 EXPEVT
code

VT_EXC
*pk_exc

Undefined

8 Undefined interrupt
occurred

–H'11 INTEVT
code

Undefined Undefined

9 vsta_knl

Initialization related to
CFG_ACTION failed

–H'20 Undefined Undefined Undefined

10 Memory access
violation occurred*
(detected by MMU)

–H'80 VT_MAV
*pk_mav

VT_EXC
*pk_exc

Undefined Remove the
cause of memory
access violation
based on pk_mav
and pk_exc.

Note: Realized by the sample memory access violation handler (samples\sysapp\mavhdr.c).

697

16.2 Error at Kernel Start (vsta_knl)

16.2.1 System Down Occurrence

(1) System pool cannot be created

When the memory object protection function is installed, the system pool section must be located
in an MMU mapped area whose start address is at the CFG_PAGESZ (4 Kbytes) boundary.
Otherwise it must be located in an area that is accessible in the user mode, and whose start address
is a multiple of four. If this is not satisfied, the system goes down.

(2) Static memory object cannot be created

System down occurs on detection of one of the following errors regarding the static memory
object.

• Start address of the static memory object is not the boundary address of the page size of the
static memory object (No. 3 in table 16.1)

• Resource pool is insufficient (No. 4 in table 16.1)

16.2.2 When Object Specified in Configurator Cannot be Created

Objects created or defined in the configurator are actually created or defined by issuing service
calls from the "initialization routine" output by the configurator.

There are two types of initialization routines, as shown below.

(1) kernel_def_inireg.h

Object created or defined with [Kernel Side] selected

(2) kernel_cfg_inireg.h

Object created or defined without [Kernel Side] selected

In these files, the following kind of statement is used to create an object.

if(_CRE_MPL(ID_DOM2_MPL)!=E_OK)

 while(1);

_CRE_MPL() is a macro that issues a service call to create a variable-size memory pool.

Table 16.2 shows the service calls and macros used.

698

Table 16.2 Service Calls Used by Initialization Routines

Object Type Service Call Used Macro

Interrupt handler idef_inh _DEF_INH

CPU exception handler idef_inh _DEF_INH

Overrun handler def_ovr _DEF_OVR

Cyclic handler icre_cyc _CRE_CYC

Alarm handler icre_alm _CRE_ALM

Extended service call
routine

idef_svc _DEF_SVC

Trap routine ivdef_trp _DEF_TRP

Semaphore icre_sem _CRE_SEM

Event flag icre_flg _CRE_FLG

Data queue icre_dtq _CRE_DTQ

Mailbox icre_mbx _CRE_MBX

Mutex cre_mtx _CRE_MTX

Message buffer icre_mbf _CRE_MBF

Fixed-size memory pool When memory object protection function is used:
icra_mpf

When memory object protection function is not used:
icre_mpf

_CRE_MPF

Variable-size memory pool When memory object protection function is used:
ivcra_mpl

When memory object protection function is not used:
icre_mpl

_CRE_MPL

Protected memory pool icre_mpp _CRE_MPP

Protected mailbox icre_mbp _CRE_MBP

Task icre_tsk _CRE_TSK

Task exception processing
routine

idef_tex _DEF_TEX

When these service calls result in an error, an infinite loop is entered immediately after the
issuance of that service call. Determine the corresponding object created by the configurator from
the location of the infinite loop, and confirm the configurator settings for that object.

Reference: Section 6.22.12, Start Kernel (vsta_knl, ivsta_knl)

699

Section 17 Reference Listing

17.1 Service Call Reference

(1) Task Management

1 ER cre_tsk(ID, T_CTSK *); Create task

 ER icre_tsk(ID, T_CTSK *); Create task (non-task context)

2 ER_ID acre_tsk(T_CTSK *); Create task and assign task ID
automatically

 ER_ID iacre_tsk(T_CTSK *); Create task and assign task ID
automatically (non-task context)

3 ER del_tsk(ID); Delete task

4 ER act_tsk(ID); Initiate task

 ER iact_tsk(ID); Initiate task (non-task context)

5 ER_UINT can_act(ID); Cancel task initiation request

 ER_UINT ican_act(ID); Cancel task initiation request (non-task
context)

6 ER sta_tsk(ID, VP_INT); Initiate task and specify start code

 ER ista_tsk(ID, VP_INT); Initiate task and specify start code (non-
task context)

7 void ext_tsk(void); Exit current task

8 void exd_tsk(void); Exit and delete current task

9 ER ter_tsk(ID); Forcibly terminate task

10 ER chg_pri(ID, PRI); Change task priority

 ER ichg_pri(ID, PRI); Change task priority (non-task context)

11 ER get_pri(ID, PRI *); Refer to task priority

 ER iget_pri(ID, PRI *); Refer to task priority (non-task context)

12 ER ref_tsk(ID, T_RTSK *); Refer to task state

 ER iref_tsk(ID, T_RTSK *); Refer to task state (non-task context)

13 ER ref_tst(ID, T_RTST *); Refer to task state (simple version)

 ER iref_tst(ID, T_RTST *); Refer to task state (simple version, non-
task context)

14 ER vchg_tmd(MODE); Change task execution mode

(2) Task Synchronization

15 ER slp_tsk(void); Shift current task to the WAITING state

16 ER tslp_tsk(TMO); Shift current task to the WAITING state with
timeout function

700

17 ER wup_tsk(ID); Wake up task

 ER iwup_tsk(ID); Wake up task (non-task context)

18 ER_UINT can_wup(ID); Cancel wakeup request

 ER_UINT ican_wup(ID); Cancel wakeup request (non-task context)

19 ER rel_wai(ID); Cancel the WAITING state forcibly

 ER irel_wai(ID); Cancel the WAITING state forcibly (non-
task context)

20 ER sus_tsk(ID); Shift to the SUSPENDED state

 ER isus_tsk(ID); Shift to the SUSPENDED state (non-task
context)

21 ER rsm_tsk(ID); Resume the execution of a task in the
SUSPENDED state

 ER irsm_tsk(ID); Resume the execution of a task in the
SUSPENDED state (non-task context)

22 ER frsm_tsk(ID); Forcibly resume the execution of a task in
the SUSPENDED state

 ER ifrsm_tsk(ID); Forcibly resume the execution of a task in
the SUSPENDED state (non-task context)

23 ER dly_tsk(RELTIM); Delay the current task

24 ER vset_tfl(ID, FLGPTN); Set the task event flag

 ER ivset_tfl(ID, FLGPTN); Set the task event flag (non-task context)

25 ER vclr_tfl(ID, FLGPTN); Clear the task event flag

 ER ivclr_tfl(ID, FLGPTN); Clear the task event flag (non-task context)

26 ER vwai_tfl(FLGPTN, FLGPTN *); Wait for the task event flag

27 ER vpol_tfl(FLGPTN, FLGPTN *); Poll and wait for the task event flag

28 ER vtwai_tfl(FLGPTN, FLGPTN *, TMO); Wait for the task event flag with timeout
function

(3) Task Exception Processing Functions

29 ER def_tex(ID, T_DTEX *); Define the task exception processing
routine

 ER idef_tex(ID, T_DTEX *); Define the task exception processing
routine (non-task context)

30 ER ras_tex(ID, TEXPTN); Request the task exception processing

 ER iras_tex(ID, TEXPTN); Request the task exception processing
(non-task context)

31 ER dis_tex(void); Disable the task exception processing

32 ER ena_tex(void); Enable the task exception processing

33 BOOL sns_tex(void); Refer to the task exception processing
disabled state

701

34 ER ref_tex(ID, T_RTEX *); Refer to the task exception processing
state

 ER iref_tex(ID, T_RTEX *); Refer to the task exception processing
state (non-task context)

(4) Synchronization and Communication (Semaphore)

35 ER cre_sem(ID, T_CSEM *); Create semaphore

 ER icre_sem(ID, T_CSEM *); Create semaphore (non-task context)

36 ER_ID acre_sem(T_CSEM *); Create semaphore and assign semaphore
ID automatically

 ER_ID iacre_sem(T_CSEM *); Create semaphore and assign semaphore
ID automatically (non-task context)

37 ER del_sem(ID); Delete semaphore

38 ER sig_sem(ID); Return semaphore resource

 ER isig_sem(ID); Return semaphore resource (non-task
context)

39 ER wai_sem(ID); Wait for semaphore resource

40 ER pol_sem(ID); Polls and waits for semaphore resource

 ER ipol_sem(ID); Polls and waits for semaphore resource
(non-task context)

41 ER twai_sem(ID, TMO); Wait for semaphore resource with timeout
function

42 ER ref_sem(ID, T_RSEM *); Refer to semaphore state

 ER iref_sem(ID, T_RSEM *); Refer to semaphore state (non-task
context)

(5) Synchronization and Communication (Event Flag)

43 ER cre_flg(ID, T_CFLG *); Create event flag

 ER icre_flg(ID, T_CFLG *); Create event flag (non-task context)

44 ER_ID acre_flg(T_CFLG *); Create event flag and assign event flag ID
automatically

 ER_ID iacre_flg(T_CFLG *); Create event flag and assign event flag ID
automatically (non-task context)

45 ER del_flg(ID); Delete event flag

46 ER set_flg(ID, FLGPTN); Set event flag

 ER iset_flg(ID, FLGPTN); Set event flag (non-task context)

47 ER clr_flg(ID, FLGPTN); Clear event flag

 ER iclr_flg(ID, FLGPTN); Clear event flag (non-task context)

48 ER wai_flg(ID, FLGPTN, MODE, FLGPTN *); Wait for event flag

49 ER pol_flg(ID, FLGPTN, MODE, FLGPTN *); Poll and wait for event flag

702

 ER ipol_flg(ID, FLGPTN, MODE, FLGPTN *); Poll and wait for event flag (non-task
context)

50 ER twai_flg(ID, FLGPTN, MODE, FLGPTN *, TMO); Wait for event flag with timeout function

51 ER ref_flg(ID, T_RFLG *); Refer to event flag state

 ER iref_flg(ID, T_RFLG *); Refer to event flag state (non-task context)

(6) Synchronization and Communication (Data Queue)

52 ER cre_dtq(ID, T_CDTQ *); Create data queue

 ER icre_dtq(ID, T_CDTQ *); Create data queue (non-task context)

53 ER_ID acre_dtq(T_CDTQ *); Create data queue and assign data queue
ID automatically

 ER_ID iacre_dtq(T_CDTQ *); Create data queue and assign data queue
ID automatically (non-task context)

54 ER del_dtq(ID); Delete data queue

55 ER snd_dtq(ID, VP_INT); Send data to data queue

56 ER psnd_dtq(ID, VP_INT); Poll and send data to data queue

 ER ipsnd_dtq(ID, VP_INT); Poll and send data to data queue (non-task
context)

57 ER tsnd_dtq(ID, VP_INT, TMO); Send data to data queue with timeout
function

58 ER fsnd_dtq(ID, VP_INT); Forcibly send data to data queue

 ER ifsnd_dtq(ID, VP_INT); Forcibly send data to data queue (non-task
context)

59 ER rcv_dtq(ID, VP_INT *); Receive data from data queue

60 ER prcv_dtq(ID, VP_INT *); Poll and receive data from data queue

61 ER trcv_dtq(ID, VP_INT *, TMO); Receive data from data queue with timeout
function

62 ER ref_dtq(ID, T_RDTQ *); Refer to data queue state

 ER iref_dtq(ID, T_RDTQ *); Refer to data queue state (non-task
context)

(7) Synchronization and Communication (Mailbox)

63 ER cre_mbx(ID , T_CMBX *); Create mailbox

 ER icre_mbx(ID , T_CMBX *); Create mailbox (non-task context)

64 ER_ID acre_mbx(T_CMBX *); Create mailbox and assign mailbox ID
automatically

 ER_ID iacre_mbx(T_CMBX *); Create mailbox and assign mailbox ID
automatically (non-task context)

65 ER del_mbx(ID); Delete mailbox

66 ER snd_mbx(ID, T_MSG *); Send message to mailbox

703

 ER isnd_mbx(ID, T_MSG *); Send message to mailbox (non-task
context)

67 ER rcv_mbx(ID, T_MSG **); Receive message from mailbox

68 ER prcv_mbx(ID, T_MSG **); Poll and receive message from mailbox

 ER iprcv_mbx(ID, T_MSG **); Poll and receive message from mailbox
(non-task context)

69 ER trcv_mbx(ID, T_MSG **, TMO); Receive message from mailbox with
timeout function

70 ER ref_mbx(ID, T_RMBX *); Refer to mailbox state

 ER iref_mbx(ID, T_RMBX *); Refer to mailbox state (non-task context)

(8) Synchronization and Communication (Mutex)

71 ER cre_mtx(ID, T_CMTX *); Create mutex

72 ER_ID acre_mtx(T_CMTX *); Create mutex and assign mutex ID
automatically

73 ER del_mtx(ID); Delete mutex

74 ER loc_mtx(ID); Lock mutex

75 ER ploc_mtx(ID); Poll and lock mutex

76 ER tloc_mtx(ID, TMO); Lock mutex with timeout function

77 ER unl_mtx(ID); Unlock mutex

78 ER ref_mtx(ID, T_RMTX *); Refer to mutex state

(9) Extended Synchronization and Communication (Message Buffer)

79 ER cre_mbf(ID, T_CMBF *); Create message buffer

 ER icre_mbf(ID, T_CMBF *); Create message buffer (non-task context)

80 ER_ID acre_mbf(T_CMBF *); Create message buffer and assign
message buffer ID automatically

 ER_ID iacre_mbf(T_CMBF *); Create message buffer and assign
message buffer ID automatically (non-task
context)

81 ER del_mbf(ID); Delete message buffer

82 ER snd_mbf(ID, VP, UINT); Send message to message buffer

83 ER psnd_mbf(ID, VP, UINT); Poll and send message to message buffer

 ER ipsnd_mbf(ID, VP, UINT); Poll and send message to message buffer
(non-task context)

84 ER tsnd_mbf(ID, VP, UINT, TMO); Send message to message buffer with
timeout function

85 ER_UINT rcv_mbf(ID, VP); Receive message from message buffer

86 ER_UINT prcv_mbf(ID, VP); Poll and receive message from message
buffer

704

87 ER_UINT trcv_mbf(ID, VP, TMO); Receive message from message buffer
with timeout function

88 ER ref_mbf(ID, T_RMBF *); Refer to message buffer state

 ER iref_mbf(ID, T_RMBF *); Refer to message buffer state (non-task
context)

(10) Fixed-Size Memory Pool Management

89 ER cre_mpf(ID, T_CMPF *); Create fixed-size memory pool

 ER icre_mpf(ID, T_CMPF *); Create fixed-size memory pool (non-task
context)

90 ER_ID acre_mpf(T_CMPF *); Create fixed-size memory pool and assign
fixed-size memory pool ID automatically

 ER_ID iacre_mpf(T_CMPF *); Create fixed-size memory pool and assign
fixed-size memory pool ID automatically
(non-task context)

91 ER del_mpf(ID); Delete fixed-size memory pool

92 ER get_mpf(ID, VP *); Get fixed-size memory block

93 ER pget_mpf(ID, VP *); Poll and get fixed-size memory block

 ER ipget_mpf(ID, VP *); Poll and get fixed-size memory block (non-
task context)

94 ER tget_mpf(ID, VP *, TMO); Get fixed-size memory block with timeout
function

95 ER rel_mpf(ID, VP); Release fixed-size memory block

 ER irel_mpf(ID, VP); Release fixed-size memory block (non-task
context)

96 ER ref_mpf(ID, T_RMPF *); Refer to fixed-size memory pool state

 ER iref_mpf(ID, T_RMPF *); Refer to fixed-size memory pool state (non-
task context)

(11) Variable-Size Memory Pool Management

97 ER cre_mpl(ID, T_CMPL *); Create variable-size memory pool

 ER icre_mpl(ID, T_CMPL *); Create variable-size memory pool (non-task
context)

98 ER_ID acre_mpl(T_CMPL *); Create variable-size memory pool and
assign variable-size memory pool ID
automatically

 ER_ID iacre_mpl(T_CMPL *); Create variable-size memory pool and
assign variable-size memory pool ID
automatically (non-task context)

99 ER del_mpl(ID); Delete variable-size memory pool

100 ER get_mpl(ID, UINT, VP *); Get variable-size memory block

705

101 ER pget_mpl(ID, UINT, VP *); Poll and get variable-size memory block

 ER ipget_mpl(ID, UINT, VP *); Poll and get variable-size memory block
(non-task context)

102 ER tget_mpl(ID, UINT, VP *, TMO); Get variable-size memory block with
timeout function

103 ER rel_mpl(ID, VP); Release variable-size memory block

 ER irel_mpl(ID, VP); Release variable-size memory block (non-
task context)

104 ER ref_mpl(ID, T_RMPL *); Refer to variable-size memory pool state

 ER iref_mpl(ID, T_RMPL *); Refer to variable-size memory pool state
(non-task context)

(12) Time Management (System Clock)

105 ER set_tim(SYSTIM *); Set system clock

 ER iset_tim(SYSTIM *); Set system clock (non-task context)

106 ER get_tim(SYSTIM *); Get system clock

 ER iget_tim(SYSTIM *); Get system clock (non-task context)

(13) Time Management (Cyclic Handler)

107 ER cre_cyc(ID, T_CCYC *); Create cyclic handler

 ER icre_cyc(ID, T_CCYC *); Create cyclic handler (non-task context)

108 ER_ID acre_cyc(T_CCYC *); Create cyclic handler and assign cyclic
handler ID automatically

 ER_ID iacre_cyc(T_CCYC *); Create cyclic handler and assign cyclic
handler ID automatically (non-task context)

109 ER del_cyc(ID); Delete cyclic handler

110 ER sta_cyc(ID); Start cyclic handler operation

 ER ista_cyc(ID); Start cyclic handler operation (non-task
context)

111 ER stp_cyc(ID); Stop cyclic handler operation

 ER istp_cyc(ID); Stop cyclic handler operation (non-task
context)

112 ER ref_cyc(ID, T_RCYC *); Refer to the cyclic handler state

 ER iref_cyc(ID, T_RCYC *); Refer to the cyclic handler state (non-task
context)

(14) Time Management (Alarm Handler)

113 ER cre_alm(ID, T_CALM *); Create alarm handler

 ER icre_alm(ID, T_CALM *); Create alarm handler (non-task context)

114 ER_ID acre_alm(T_CALM *); Create alarm handler and assign alarm

706

handler ID automatically

 ER_ID iacre_alm(T_CALM *); Create alarm handler and assign alarm
handler ID automatically (non-task context)

115 ER del_alm(ID); Delete alarm handler

116 ER sta_alm(ID, RELTIM); Start alarm handler operation

 ER ista_alm(ID, RELTIM); Start alarm handler operation (non-task
context)

117 ER stp_alm(ID); Stop alarm handler operation

 ER istp_alm(ID); Stop alarm handler operation (non-task
context)

118 ER ref_alm(ID, T_RALM *); Refer to the alarm handler state

 ER iref_alm(ID, T_RALM *); Refer to the alarm handler state (non-task
context)

(15) Time Management (Overrun Handler)

119 ER def_ovr(T_DOVR *); Define overrun handler

120 ER sta_ovr(ID, OVRTIM); Start overrun handler operation

 ER ista_ovr(ID, OVRTIM); Start overrun handler operation (non-task
context)

121 ER stp_ovr(ID); Stop overrun handler operation

 ER istp_ovr(ID); Stop overrun handler operation (non-task
context)

122 ER ref_ovr(ID, T_ROVR *); Refer to overrun handler state

 ER iref_ovr(ID, T_ROVR *); Refer to overrun handler state (non-task
context)

(16) System State Management

123 ER rot_rdq(PRI); Rotate ready queue

 ER irot_rdq(PRI); Rotate ready queue (non-task context)

124 ER get_tid(ID *); Get task ID in RUNNING state

 ER iget_tid(ID *); Get task ID in RUNNING state (non-task
context)

125 ER get_did(ID *); Get domain ID of the task in RUNNING
state

 ER iget_did(ID *); Get domain ID of the task in RUNNING
state (non-task context)

126 ER loc_cpu(void); Lock CPU

 ER iloc_cpu(void); Lock CPU (non-task context)

127 ER unl_cpu(void); Unlock CPU

 ER iunl_cpu(void); Unlock CPU (non-task context)

707

128 ER dis_dsp(void); Disable task dispatch

129 ER ena_dsp(void); Enable task dispatch

130 BOOL sns_ctx(void); Refer to task context

131 BOOL sns_loc(void); Refer to CPU-locked state

132 BOOL sns_dsp(void); Refer to dispatch-disabled state

133 BOOL sns_dpn(void); Refer to dispatch-pended state

134 void vsta_knl(void); Start kernel

 void ivsta_knl(void); Start kernel (non-task context)

135 void vsys_dwn(ER, VW, VW, VW); Terminate the system

 void ivsys_dwn(ER, VW, VW, VW); Terminate the system (non-task context)

136 ER vget_trc(VW, VW, VW, VW); Acquire trace information

 ER ivget_trc(VW, VW, VW, VW); Acquire trace information (non-task
context)

137 ER_UINT vchg_cop(ATR); Change DSP (TA_COP0) attribute

(17) Interrupt Management

138 ER def_inh(INHNO, T_DINH *); Define interrupt handler

 ER idef_inh(INHNO, T_DINH *); Define interrupt handler (non-task context)

139 ER chg_ims(IMASK); Change interrupt mask

 ER ichg_ims(IMASK); Change interrupt mask (non-task context)

140 ER get_ims(IMASK *); Refer to interrupt mask

 ER iget_ims(IMASK *); Refer to interrupt mask (non-task context)

(18) Extended Service Call and Trap Management

141 ER def_svc(FN, T_DSVC *); Define extended service call

 ER idef_svc(FN, T_DSVC *); Define extended service call (non-task
context)

142 ER_UINT cal_svc(FN, VP_INT, VP_INT, VP_INT, VP_INT); Issue extended service call

 ER_UINT ical_svc(FN, VP_INT, VP_INT, VP_INT, VP_INT); Issue extended service call (non-task
context)

143 ER vdef_trp(UINT, VT_DTRP *); Define trap routine

 ER ivdef_trp(UINT, VT_DTRP *); Define trap routine (non-task context)

(19) System Configuration Management

144 ER def_exc(EXCNO, T_DEXC *); Define CPU exception handler

 ER idef_exc(EXCNO, T_DEXC *); Define CPU exception handler (non-task
context)

145 ER ref_cfg(T_RCFG *); Refer to configuration information

708

 ER iref_cfg(T_RCFG *); Refer to configuration information (non-task
context)

146 ER ref_ver(T_RVER *); Refer to version information

 ER iref_ver(T_RVER *); Refer to version information (non-task
context)

(20) Memory Object Management Function

147 ER sac_mem(VP, ACVCT *); Change access permission vector for
memory object

148 ER prb_mem(VP, SIZE, ID, MODE); Check access right for memory area

149 ER ref_mem(VP, T_RMEM *); Refer to memory object state

150 ER vloc_tlb(VP); Lock TLB entry

151 ER vunl_tlb(VP); Unlock TLB entry

(21) Protected Memory Pool Management

152 ER_UINT pget_mpp(ID, UINT, VP *); Poll and get protected memory block

153 ER rel_mpp(ID, VP); Release protected memory block

154 ER ref_mpp(ID, T_RMPP *); Refer to protected memory pool state

(22) Protected Mailbox Management

155 ER cre_mbp(ID, T_CMBP *); Create protected mailbox

 ER icre_mbp(ID, T_CMBP *); Create protected mailbox (non-task
context)

156 ER_ID acre_mbp(T_CMBP *); Create protected mailbox and assign
mailbox ID automatically

 ER_ID iacre_mbp(T_CMBP *); Create protected mailbox and assign
mailbox ID automatically (non-task context)

157 ER del_mbp(ID); Delete protected mailbox

158 ER snd_mbp(ID, VP, PRI); Send message to protected mailbox

159 ER_UINT rcv_mbp(ID, VP *); Receive message from protected mailbox

160 ER_UINT prcv_mbp(ID, VP *); Poll and receive message from protected
mailbox

161 ER_UINT trcv_mbp(ID, VP *, TMO); Receive message from protected mailbox
with timeout function

162 ER ref_mbp(ID, T_RMBP *); Refer to protected mailbox state

 ER iref_mbp(ID, T_RMBP *); Refer to protected mailbox state (non-task
context)

(23) System Memory Management

163 ER vref_syp(VT_RSYP *); Refer to system pool state

709

164 ER vref_rsp(VT_RRSP *); Refer to resource pool state

(24) Performance Management

165 ER_UINT vchg_ppc(ID, MODE); Start, stop, or initialize performance
measurement

 ER_UINT ivchg_ppc(ID, MODE); Start, stop, or initialize performance
measurement (non-task context)

166 ER_UINT vref_ppc(ID, VT_RPPC *); Refer to performance measurement result

 ER_UINT ivref_ppc(ID, VT_RPPC *); Refer to performance measurement result
(non-task context)

710

17.2 Service Call Error Code List

Table 17.1 List of Service Call Error Codes

Error Code
(Mnemonic) Error Code Description

E_OK H'00000000 (D'0) Normal termination

E_NOSPT H'fffffff7 (-D'9) Unsupported function

E_RSFN H'fffffff6 (-D'10) Reserved function code

E_RSATR H'fffffff5 (-D'11) Reserved attribute (invalid attribute)

E_PAR H'ffffffef (-D'17) Parameter error

E_ID H'ffffffee (-D'18) Invalid ID number

E_CTX H'ffffffe7 (-D'25) Context error

E_MACV H'ffffffe6 (-D'26) Memory access violation

E_ILUSE H'ffffffe4 (-D'28) Illegal use of service call

E_NOMEM H'ffffffdf (-D'33) Insufficient memory

E_NOID H'ffffffde (-D'34) No ID available

E_OBJ H'ffffffd7 (-D'41) Invalid object

E_NOEXS H'ffffffd6 (-D'42) Undefined object

E_QOVR H'ffffffd5 (-D'43) Queuing or nesting overflow

E_RLWAI H'ffffffcf (-D'49) WAITING state was forcibly cancelled or an attempt
was made to shift to the WAITING state in WAITING-
disabled state.

E_TMOUT H'ffffffce (-D'50) Polling failed or timeout

E_DLT H'ffffffcd (-D'51) Waiting object deleted

Renesas Microcomputer Development Environment System
User's Manual
HI7300/PX V.1.01

Publication Date: Rev.2.00, July 25, 2006
Published by: Sales Strategic Planning Div.
 Renesas Technology Corp.
Edited by: Customer Support Department
 Global Strategic Communication Div.
 Renesas Solutions Corp.

© 2006. Renesas Technology Corp., All rights reserved. Printed in Japan.

Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

http://www.renesas.com
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898
Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd.
Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145
Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: <603> 7955-9390, Fax: <603> 7955-9510

RENESAS SALES OFFICES

Colophon 6.0

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

HI7300/PX V.1.01

REJ10J1198-0200

User’s Manual

	Cover
	Keep safety first in your circuit designs!
	Notes regarding these materials
	Preface
	Contents
	Section 1 Configuration of This Manual���
	Section 2 Overview���
	2.1 Features���
	2.1.1 Memory Object Protection Function��
	2.1.2 Conformance to Industry-Standard (ITRON Specifications���
	2.1.3 DSP/FPU Support��
	2.1.4 Configurator���
	2.1.5 Samples��
	2.1.6 Debugging Extension (Optional)���

	2.2 Operating Environment��

	Section 3 Introduction to Kernel���
	3.1 Principles of Kernel Operation���
	3.2 Service Calls��
	3.3 Objects��
	3.4 Tasks��
	3.4.1 Task State���
	3.4.2 Task Scheduling (Priority and Ready Queue)���

	Section 4 Kernel Functions���
	4.1 Applications���
	4.2 System State���
	4.2.1 Task Context and Non-Task Context��
	4.2.2 Dispatch-Disabled State, CPU-Locked State, and Dispatch-Pended State���

	4.3 Protection Domains���
	4.4 Task Management��
	4.4.1 Task Creation��
	4.4.2 Domain of a Task���
	4.4.3 Task Initiation��
	4.4.4 Task Termination and Deletion��
	4.4.5 Priority Change��
	4.4.6 Task Execution Mode��
	4.4.7 Task State Reference���

	4.5 Stack Management���
	4.5.1 Non-Task Context Stack���
	4.5.2 Task Stacks��

	4.6 Task Synchronization���
	4.6.1 Synchronization by Task Wakeup���
	4.6.2 Forcible Cancellation of WAITING State���
	4.6.3 SUSPENDED State��
	4.6.4 Task Event Flag��

	4.7 Task Exception Processing��
	4.8 Semaphore��
	4.9 Event Flag���
	4.10 Data Queue��
	4.11 Mailbox���
	4.12 Mutex���
	4.13 Message Buffer��
	4.14 Fixed-Size Memory Pool��
	4.15 Variable-Size Memory Pool���
	4.15.1 Fragmentation���

	4.16 Time Management���
	4.16.1 Time Precision��
	4.16.2 System Clock Setting and Reference��
	4.16.3 Cyclic Handler��
	4.16.4 Alarm Handler���
	4.16.5 Overrun Handler���
	4.16.6 Timer Driver��
	4.16.7 Notes on Time Management��

	4.17 Optimized Timer Driver��
	4.17.1 Overview��
	4.17.2 Operation���
	4.17.3 Applicable Microcomputers���
	4.17.4 Hardware Initialization���

	4.18 Interrupt Management��
	4.18.1 Interrupt Handler���
	4.18.2 Kernel Level (CFG_KNLLVL)���
	4.18.3 Disabling Interrupts��

	4.19 CPU Exception���
	4.20 Extended Service Call and Trap��
	4.20.1 Extended Service Call���
	4.20.2 Trap��

	4.21 Memory Object Protection Function���
	4.21.1 Overview��
	4.21.2 Memory Object Types���
	4.21.3 Attribute and Domain��
	4.21.4 Access Permission Vector��
	4.21.5 Page Size���
	4.21.6 Detection of Illegal Access���
	4.21.7 TLB Miss Penalty��
	4.21.8 Access Permission Check (prb_mem)���
	4.21.9 Check for Errors in Address Parameters of Service Calls���
	4.21.10 MMU Initialization���

	4.22 Protected Memory Pool���
	4.23 Protected Mailbox���
	4.24 System Memory Management��
	4.24.1 System Pool���
	4.24.2 Resource Pool���

	4.25 DSP Standby Control���
	4.25.1 Overview��
	4.25.2 Applicable Microcomputers���
	4.25.3 Module Stop State of X/Y Memory when Initiating Programs��
	4.25.4 Notes���

	4.26 Performance Management��
	4.27 Service Call Trace��
	4.28 Other Functions���
	4.29 Kernel Idling���
	4.30 Resetting the CPU and Initiating the Kernel���
	4.31 Controlling Memory Fragmentation (VTA_UNFRAGMENT Attribute)���
	4.32 Debugging Extension���

	Section 5 Logical Address Space��
	5.1 Overview���
	5.2 When Memory Object Protection Function Is Not Used���
	5.2.1 Overview���
	5.2.2 External Memory��
	5.2.3 On-Chip Memory���

	5.3 When Memory Object Protection Function Is Used���
	5.3.1 Overview���
	5.3.2 External Memory Space��
	5.3.3 On-Chip Memory���
	5.3.4 Note on Use��

	5.4 On-Chip Resources Allocated in P4 Area���
	5.5 On-Chip Resources whose Physical Addresses Are Allocated in Area 1���
	5.6 32-Bit Address Extended Mode���

	Section 6 Service Calls��
	6.1 C-Language API���
	6.1.1 Calling Form���
	6.1.2 Header File��
	6.1.3 Header Files Output from the Configurator��
	6.1.4 Basic Data Type��
	6.1.5 Constants and Macros���

	6.2 Register Contents Guaranteed after Issuing Service Call��
	6.3 Return Value of Service Call and Error Code��
	6.3.1 Overview���
	6.3.2 Parameter Check Function���
	6.3.3 Access Permission Check Function for Address Parameters��
	6.3.4 E_NOSPT Error��

	6.4 System State and Service Calls���
	6.4.1 CPU Exception Handler��
	6.4.2 Task Context and Non-Task Context��
	6.4.3 CPU-Locked State���
	6.4.4 Dispatch-Disabled State��
	6.4.5 When SR.IMASK is Modified to a Non-Zero Value through chg_ims in Task Context��

	6.5 Service Calls not in the (ITRON4.0 Specification���
	6.6 Service Call Description Form��
	6.7 Task Management��
	6.7.1 Create Task (cre_tsk, icre_tsk, acre_tsk, iacre_tsk)���
	6.7.2 Delete Task (del_tsk)��
	6.7.3 Initiate Task (act_tsk, iact_tsk)��
	6.7.4 Cancel Task Initiation Request (can_act, ican_act)���
	6.7.5 Initiate Task and Specify Start Code (sta_tsk, ista_tsk)���
	6.7.6 Exit Current Task (ext_tsk) and Exit and Delete Current Task (exd_tsk)���
	6.7.7 Forcibly Terminate Task (ter_tsk)��
	6.7.8 Change Task Priority (chg_pri, ichg_pri)���
	6.7.9 Refer to Task Priority (get_pri, iget_pri)���
	6.7.10 Refer to Task State (ref_tsk, iref_tsk)���
	6.7.11 Refer to Task State (Simple Version) (ref_tst, iref_tst)��
	6.7.12 Change Task Execution Mode (vchg_tmd)���

	6.8 Task Synchronization���
	6.8.1 Sleep Task (slp_tsk, tslp_tsk)���
	6.8.2 Wake up Task (wup_tsk, iwup_tsk)���
	6.8.3 Cancel Wakeup Request (can_wup, ican_wup)��
	6.8.4 Cancel WAITING State Forcibly (rel_wai, irel_wai)��
	6.8.5 Suspend Task (sus_tsk, isus_tsk)���
	6.8.6 Resume Task (rsm_tsk, irsm_tsk) and Resume Task Forcibly (frsm_tsk, ifrsm_tsk)���
	6.8.7 Delay Task (dly_tsk)���
	6.8.8 Set Task Event Flag (vset_tfl, ivset_tfl)��
	6.8.9 Clear Task Event Flag (vclr_tfl, ivclr_tfl)��
	6.8.10 Wait for Task Event Flag (vwai_tfl, vpol_tfl, vtwai_tfl)��

	6.9 Task Exception Processing Functions��
	6.9.1 Define Task Exception Processing Routine (def_tex, idef_tex)���
	6.9.2 Request Task Exception Processing (ras_tex, iras_tex)��
	6.9.3 Disable Task Exception Processing (dis_tex)��
	6.9.4 Enable Task Exception Processing (ena_tex)���
	6.9.5 Refer To Task Exception Processing Disabled State (sns_tex)��
	6.9.6 Refer to Task Exception Processing State (ref_tex, iref_tex)���

	6.10 Synchronization and Communication (Semaphore)���
	6.10.1 Create Semaphore (cre_sem, icre_sem, acre_sem, iacre_sem)���
	6.10.2 Delete Semaphore (del_sem)��
	6.10.3 Return Semaphore Resource (sig_sem, isig_sem)���
	6.10.4 Wait for Semaphore Resource (wai_sem, pol_sem, ipol_sem, twai_sem)��
	6.10.5 Refer to Semaphore State (ref_sem, iref_sem)��

	6.11 Synchronization and Communication (Event Flag)��
	6.11.1 Create Event Flag (cre_flg, icre_flg, acre_flg, iacre_flg)��
	6.11.2 Delete Event Flag (del_flg)���
	6.11.3 Set Event Flag (set_flg, iset_flg)��
	6.11.4 Clear Event Flag (clr_flg, iclr_flg)��
	6.11.5 Wait for Event Flag Setting (wai_flg, pol_flg, ipol_flg, twai_flg)��
	6.11.6 Refer to Event Flag State (ref_flg, iref_flg)���

	6.12 Synchronization and Communication (Data Queue)��
	6.12.1 Create Data Queue (cre_dtq, icre_dtq, acre_dtq, iacre_dtq)��
	6.12.2 Delete Data Queue (del_dtq)���
	6.12.3 Send Data to Data Queue (snd_dtq, psnd_dtq, ipsnd_dtq, tsnd_dtq, fsnd_dtq, ifsnd_dtq)���
	6.12.4 Receive Data from Data Queue (rcv_dtq, prcv_dtq, trcv_dtq)��
	6.12.5 Refer to Data Queue State (ref_dtq, iref_dtq)���

	6.13 Synchronization and Communication (Mailbox)���
	6.13.1 Create Mailbox (cre_mbx, icre_mbx, acre_mbx, iacre_mbx)���
	6.13.2 Delete Mailbox (del_mbx)��
	6.13.3 Send Message to Mailbox (snd_mbx, isnd_mbx)���
	6.13.4 Receive Message from Mailbox (rcv_mbx, prcv_mbx, iprcv_mbx, trcv_mbx)���
	6.13.5 Refer to Mailbox State (ref_mbx, iref_mbx)��

	6.14 Synchronization and Communication (Mutex)���
	6.14.1 Create Mutex (cre_mtx, acre_mtx)��
	6.14.2 Delete Mutex (del_mtx)��
	6.14.3 Lock Mutex (loc_mtx, ploc_mtx, tloc_mtx)��
	6.14.4 Unlock Mutex (unl_mtx)��
	6.14.5 Refer to Mutex State (ref_mtx)��

	6.15 Extended Synchronization and Communication (Message Buffer)���
	6.15.1 Create Message Buffer (cre_mbf, icre_mbf, acre_mbf, iacre_mbf)��
	6.15.2 Delete Message Buffer(del_mbf)��
	6.15.3 Send Message to Message Buffer (snd_mbf, psnd_mbf, ipsnd_mbf, tsnd_mbf)���
	6.15.4 Receive Message from Message Buffer (rcv_mbf, prcv_mbf, trcv_mbf)���
	6.15.5 Refer to Message Buffer State (ref_mbf, iref_mbf)���

	6.16 Memory Pool Management (Fixed-Size Memory Pool)���
	6.16.1 Create Fixed-Size Memory Pool (cre_mpf, icre_mpf, acre_mpf, iacre_mpf)��
	6.16.2 Create Fixed-Size Memory Pool and Specify Access Permission Vectors (icra_mpf)��
	6.16.3 Delete Fixed-Size Memory Pool (del_mpf)���
	6.16.4 Get Fixed-Size Memory Block (get_mpf, pget_mpf, ipget_mpf, tget_mpf)��
	6.16.5 Release Fixed-Size Memory Block (rel_mpf, irel_mpf)���
	6.16.6 Refer to Fixed-Size Memory Pool State (ref_mpf, iref_mpf)���

	6.17 Memory Pool Management (Variable-Size Memory Pool)��
	6.17.1 Create Variable-Size Memory Pool (cre_mpl, icre_mpl, acre_mpl, iacre_mpl)���
	6.17.2 Create Variable-Size Memory Pool and Specify Access Permission Vectors (ivcra_mpl)��
	6.17.3 Delete Variable-Size Memory Pool (del_mpl)��
	6.17.4 Get Variable-Size Memory Block (get_mpl, pget_mpl, ipget_mpl, tget_mpl)���
	6.17.5 Release Variable-Size Memory Block (rel_mpl, irel_mpl)��
	6.17.6 Refer to Variable-Size Memory Pool State (ref_mpl, iref_mpl)��

	6.18 Time Management (System Clock)��
	6.18.1 Set System Clock (set_tim, iset_tim)��
	6.18.2 Get System Clock (get_tim, iget_tim)��

	6.19 Time Management (Cyclic Handler)��
	6.19.1 Create Cyclic Handler (cre_cyc, icre_cyc, acre_cyc, iacre_cyc)��
	6.19.2 Delete Cyclic Handler (del_cyc)���
	6.19.3 Start Cyclic Handler Operation (sta_cyc, ista_cyc)��
	6.19.4 Stop Cyclic Handler Operation (stp_cyc, istp_cyc)���
	6.19.5 Refer to Cyclic Handler State (ref_cyc, iref_cyc)���

	6.20 Time Management (Alarm Handler)���
	6.20.1 Create Alarm Handler (cre_alm, icre_alm, acre_alm, iacre_alm)���
	6.20.2 Delete Alarm Handler (del_alm)��
	6.20.3 Start Alarm Handler Operation (sta_alm, ista_alm)���
	6.20.4 Stop Alarm Handler Operation (stp_alm, istp_alm)��
	6.20.5 Refer to Alarm Handler State (ref_alm, iref_alm)��

	6.21 Time Management (Overrun Handler)���
	6.21.1 Define Overrun Handler (def_ovr)��
	6.21.2 Start Overrun Handler Operation (sta_ovr, ista_ovr)���
	6.21.3 Stop Overrun Handler Operation (stp_ovr, istp_ovr)��
	6.21.4 Refer to Overrun Handler State (ref_ovr, iref_ovr)��

	6.22 System State Management���
	6.22.1 Rotate Ready Queue (rot_rdq, irot_rdq)��
	6.22.2 Get Task ID in RUNNING state (get_tid, iget_tid)��
	6.22.3 Get Domain ID of the Task in RUNNING State (get_did, iget_did)��
	6.22.4 Lock CPU (loc_cpu, iloc_cpu)��
	6.22.5 Unlock CPU (unl_cpu, iunl_cpu)��
	6.22.6 Disable Dispatch (dis_dsp)��
	6.22.7 Enable Dispatch (ena_dsp)���
	6.22.8 Refer to Context (sns_ctx)��
	6.22.9 Refer to CPU-Locked State (sns_loc)���
	6.22.10 Refer to Dispatch-Disabled State (sns_dsp)���
	6.22.11 Refer to Dispatch-Pended State (sns_dpn)���
	6.22.12 Start Kernel (vsta_knl, ivsta_knl)���
	6.22.13 System Down (vsys_dwn, ivsys_dwn)��
	6.22.14 Acquire Trace Information (vget_trc, ivget_trc)��
	6.22.15 Acquire Start of Interrupt Handler as Trace Information (ivbgn_int)��
	6.22.16 Acquire End of Interrupt Handler as Trace Information (ivend_int)��
	6.22.17 Change DSP (TA_COP0) Attribute (vchg_cop)��

	6.23 Interrupt Management��
	6.23.1 Define Interrupt Handler (def_inh, idef_inh)��
	6.23.2 Change Interrupt Mask (chg_ims, ichg_ims)���
	6.23.3 Refer to Interrupt Mask (get_ims, iget_ims)���

	6.24 Extended Service Call and Trap Management���
	6.24.1 Define Extended Service Call (def_svc, idef_svc)��
	6.24.2 Issue Extended Service Call (cal_svc, ical_svc)���
	6.24.3 Define Trap Routine (vdef_trp, ivdef_trp)���

	6.25 System Configuration Management���
	6.25.1 Define CPU Exception Handler (def_exc, idef_exc)��
	6.25.2 Refer to Configuration Information (ref_cfg, iref_cfg)��
	6.25.3 Refer to Version Information (ref_ver, iref_ver)��

	6.26 Memory Object Management Function���
	6.26.1 Change Access Permission Vector for Memory Object (sac_mem)���
	6.26.2 Check Access Permission for Memory Area (prb_mem)���
	6.26.3 Refer to the Memory Object State (ref_mem)��
	6.26.4 Lock TLB Entry (vloc_tlb)���
	6.26.5 Unlock TLB Entry (vunl_tlb)���

	6.27 Protected Memory Pool Management��
	6.27.1 Create Protected Memory Pool (icre_mpp)���
	6.27.2 Poll and Get Protected Memory Block (pget_mpp)��
	6.27.3 Release Protected Memory Block (rel_mpp)��
	6.27.4 Refer to Protected Memory Pool State (ref_mpp)��

	6.28 Protected Mailbox Management��
	6.28.1 Create Protected Mailbox (cre_mbp, icre_mbp, acre_mbp, iacre_mbp)���
	6.28.2 Delete Protected Mailbox (del_mbp)��
	6.28.3 Send Message to Protected Mailbox (snd_mbp)���
	6.28.4 Receive Message from Protected Mailbox (rcv_mbp, prcv_mbp, trcv_mbp)��
	6.28.5 Refer to Protected Mailbox State (ref_mbp, iref_mbp)��

	6.29 System Memory Management��
	6.29.1 Refer to System Pool State (vref_syp)���
	6.29.2 Refer to Resource Pool State (vref_rsp)���

	6.30 Performance Management��
	6.30.1 Start, Stop, or Initialize Performance Measurement (vchg_ppc, ivchg_ppc)��
	6.30.2 Refer to Performance Measurement Result (vref_ppc, ivref_ppc)���

	Section 7 Cache Support Functions��
	7.1 Overview���
	7.2 Notes��
	7.3 Functions in cache_sh4a.h��
	7.3.1 Initialize Cache (sh4a_vini_cac)���
	7.3.2 Clear Cache (sh4a_vclr_cac)��
	7.3.3 Flush Operand Cache (sh4a_vfls_cac)��
	7.3.4 Invalidate Cache (sh4a_vinv_cac))��

	7.4 Functions in cache_shx2.h��
	7.4.1 Initialize Cache (shx2_vini_cac)���
	7.4.2 Clear Cache (shx2_vclr_cac)��
	7.4.3 Flush Operand Cache (shx2_vfls_cac)��
	7.4.4 Invalidate Cache (shx2_vinv_cac))��

	Section 8 Application Program Creation���
	8.1 Tasks��
	8.1.1 Writing a Task���
	8.1.2 Rules on Using Registers���

	8.2 Task Exception Processing Routines���
	8.2.1 Writing a Task Exception Processing Routine��
	8.2.2 Rules on Using Registers���

	8.3 Extended Service Call Routines and Trap Routines���
	8.3.1 Writing an Extended Service Call Routine or a Trap Routine���
	8.3.2 Rules on Using Registers���

	8.4 Interrupt Handlers���
	8.4.1 Writing an Interrupt Handler���
	8.4.2 Rules on Using Registers���
	8.4.3 DSP and FPU��
	8.4.4 Notes on NMI���

	8.5 Interrupt and Exception Hook Routines��
	8.5.1 Overview���
	8.5.2 Writing a Hook Routine���
	8.5.3 Rules on Using Registers���
	8.5.4 Notes��

	8.6 Time Event Handlers��
	8.6.1 Writing a Time Event Handler���
	8.6.2 Rules on Using Registers���
	8.6.3 DSP and FPU��

	8.7 Initialization Routines��
	8.7.1 Writing an Initialization Routine��
	8.7.2 Rules on Using Registers���
	8.7.3 DSP and FPU��

	8.8 CPU Exception Handler��
	8.8.1 Writing the CPU Exception Handler��
	8.8.2 Macros Specialized for CPU Exception Handler���
	8.8.3 Rules on Using Registers���
	8.8.4 DSP and FPU��

	8.9 Memory Access Violation Handler��
	8.9.1 Overview���
	8.9.2 Writing the Memory Access Violation Handler��
	8.9.3 Macros Specialized for CPU Exception Handler���
	8.9.4 Rules on Using Registers���
	8.9.5 DSP and FPU��

	8.10 System Down Routine���
	8.10.1 Overview��
	8.10.2 Writing the System Down Routine���
	8.10.3 Rules on Using Registers��

	Section 9 Standard Timer Driver��
	9.1 Overview���
	9.2 Configuration of Functions���
	9.2.1 Timer Initialization Routine (_kernel_tmrini())��
	9.2.2 Timer Interrupt Routine (_kernel_tmrint())���

	Section 10 Configurator��
	10.1 Overview��
	10.2 Linkage Unit, Kernel Lock Mode, and [Kernel Side]���
	10.3 Configuration Files Output from Configurator��
	10.3.1 Header Files for Application��
	10.3.2 System Definition Files���

	10.4 User Interface��
	10.4.1 Screen Configuration��
	10.4.2 Title Bar���
	10.4.3 Menu Bar:[File] Menu��
	10.4.4 Menu Bar:[View] Menu��
	10.4.5 Menu Bar:[Generate] Menu��
	10.4.6 Menu Bar:[Options] Menu���
	10.4.7 Menu Bar:[Help] Menu��
	10.4.8 Toolbar���
	10.4.9 Status Bar��
	10.4.10 [Navigation] Window��
	10.4.11 [Information Input] Window���

	10.5 Page Configuration��
	10.6 CFG Name��
	10.7 Specifications for Pages and Dialog Boxes���
	10.7.1 [Kernel] Page���
	10.7.2 [CPU] Page��
	10.7.3 [Definition of On-chip Memory] Dialog Box and [Modification of Information for On-chip Memory Definition] Dialog Box��
	10.7.4 [Time Management Function] Page���
	10.7.5 [Debugging Function] Page���
	10.7.6 [User Domain] Page��
	10.7.7 [Setting of User Domain ID] Dialog Box��
	10.7.8 [Performance] Page��
	10.7.9 [Service Call Selection] Page���
	10.7.10 [Interrupt/CPU Exception Handler] Page���
	10.7.11 [Modification of Interrupt/CPU Exception Information] Dialog Box���
	10.7.12 [Definition of Interrupt/CPU Exception Handler] Dialog Box���
	10.7.13 [Static Memory Object] Page��
	10.7.14 [Registration of Static Memory Object] Dialog Box and [Modification of Information for Static Memory Object Registration] Dialog Box���
	10.7.15 [Initialization Routine] Page��
	10.7.16 [Registration of Initialization Routine] Dialog Box and [Modification of Information for Initialization Routine Registration] Dialog Box���
	10.7.17 [Task] Page��
	10.7.18 [Modification of Task Information] Dialog Box��
	10.7.19 [Creation of Task] Dialog Box and [Modification of Information for Task Creation] Dialog Box���
	10.7.20 [Definition of Task Exception Processing Routine] Dialog Box���
	10.7.21 [Semaphore] Page���
	10.7.22 [Modification of Semaphore Information] Dialog Box���
	10.7.23 [Creation of Semaphore] Dialog Box and [Modification of Information for Semaphore Creation] Dialog Box���
	10.7.24 [Event Flag] Page��
	10.7.25 [Modification of Event Flag Information] Dialog Box��
	10.7.26 [Creation of Event Flag] Dialog Box and [Modification of Information for Event Flag Creation] Dialog Box���
	10.7.27 [Data Queue] Page��
	10.7.28 [Modification of Data Queue Information] Dialog Box��
	10.7.29 [Creation of Data Queue] Dialog Box and [Modification of Information for Data Queue Creation] Dialog Box���
	10.7.30 [Mailbox] Page���
	10.7.31 [Modification of Mailbox Information] Dialog Box���
	10.7.32 [Creation of Mailbox] Dialog Box and [Modification of Information for Mailbox Creation] Dialog Box���
	10.7.33 [Mutex] Page���
	10.7.34 [Modification of Mutex Information] Dialog Box���
	10.7.35 [Creation of Mutex] Dialog Box and [Modification of Information for Mutex Creation] Dialog Box���
	10.7.36 [Message Buffer] Page��
	10.7.37 [Modification of Message Buffer Information] Dialog Box��
	10.7.38 [Creation of Message Buffer] Dialog Box and [Modification of Information for Message Buffer Creation] Dialog Box���
	10.7.39 [Estimation of Message Buffer Area Size] Dialog Box��
	10.7.40 [Fixed-size Memory Pool] Page��
	10.7.41 [Modification of Fixed-size Memory Pool Information] Dialog Box��
	10.7.42 [Creation of Fixed-size Memory Pool] Dialog Box and [Modification of Information for Fixed-size Memory Pool Creation] Dialog Box���
	10.7.43 [Variable-size Memory Pool] Page���
	10.7.44 [Modification of Variable-size Memory Pool Information] Dialog Box���
	10.7.45 [Creation of Variable-size Memory Pool] Dialog Box and [Modification of Information for Variable-size Memory Pool Creation] Dialog Box���
	10.7.46 [Estimation of Variable-size Memory Pool Area Size] Dialog Box���
	10.7.47 [Cyclic Handler] Page��
	10.7.48 [Modification of Cyclic Handler Information] Dialog Box��
	10.7.49 [Creation of Cyclic Handler] Dialog Box and [Modification of Information for Cyclic Handler Creation] Dialog Box���
	10.7.50 [Alarm Handler] Page���
	10.7.51 [Modification of Alarm Handler Information] Dialog Box���
	10.7.52 [Creation of Alarm Handler] Dialog Box and [Modification of Information for Alarm Handler Creation] Dialog Box���
	10.7.53 [Overrun Handler] Page���
	10.7.54 [Protected Memory Pool] Page���
	10.7.55 [Modification of Protected Memory Pool Information] Dialog Box���
	10.7.56 [Creation of Protected Memory Pool] Dialog Box and [Modification of Information for Protected Memory Pool Creation] Dialog Box���
	10.7.57 [Estimation of Protected Memory Pool Area Size] Dialog Box���
	10.7.58 [Protected Mailbox] Page���
	10.7.59 [Modification of Protected Mailbox Information] Dialog Box���
	10.7.60 [Creation of Protected Mailbox] Dialog Box and [Modification of Information for Protected Mailbox Creation] Dialog Box���
	10.7.61 [Extended Service Call] Page���
	10.7.62 [Modification of Extended Service Call Information] Dialog Box���
	10.7.63 [Definition of Extended Service Call Routine] Dialog Box and [Modification of Information for Extended Service Call Routine Definition] Dialog Box���
	10.7.64 [Trap] Page��
	10.7.65 [Modification of Trap Information] Dialog Box��
	10.7.66 [Definition of Trap Routine] Dialog Box��

	10.8 Edit Box Specifications���
	10.9 Tuning��
	10.9.1 Reduction of Used RAM Size��
	10.9.2 Reduction of Used ROM Size��
	10.9.3 Performance Improvement���

	Section 11 Build���
	11.1 Load Modules��
	11.2 Directory Structure���
	11.3 Overview of Sample System���
	11.3.1 Overview��
	11.3.2 Lists of Kernel Objects���
	11.3.3 Task Exception Processing���

	11.4 Sample Applications���
	11.4.1 User domain 1 (dom1)��
	11.4.2 User domain 2 (dom2)��
	11.4.3 User domain 3 (dom3)��
	11.4.4 User domain 4 (dom4)��
	11.4.5 User domain 5 (dom5)��

	11.5 System Applications���
	11.5.1 System Down Routine (sysapp\sysdwn.c)���
	11.5.2 Memory Access Violation Handler (sysapp\mavhdr.c)���
	11.5.3 CPU Exception Handler (sysapp\exchdr.c)���
	11.5.4 Interrupt and Exception Hook Routine (sysapp\inthook.src)���

	11.6 CPU-Dependent Processing��
	11.6.1 Standard Timer Driver (tmrdrv.c)��
	11.6.2 CPU Reset Processing��

	11.7 Standard Library Functions and Runtime Routines���
	11.7.1 Overview��
	11.7.2 Selecting Necessary Standard Library Functions��
	11.7.3 stdio.h���
	11.7.4 Kernel Objects to be Used���
	11.7.5 Functions Necessary to Use Standard Library Functions���
	11.7.6 Customizing Environment Settings for Standard Library Functions���
	11.7.7 Note on Standard Library Functions��
	11.7.8 Section Initialization Function (_INITSCT())��
	11.7.9 Runtime Routines��

	11.8 Monitor���
	11.8.1 Overview��
	11.8.2 Monitor Operation���
	11.8.3 Changing Monitor Interrupt��
	11.8.4 Monitor Commands��

	11.9 HEW Workspaces and Projects���
	11.9.1 Overview��
	11.9.2 Structure of Workspace Directories��
	11.9.3 HEW Build Configuration and Directories for Configurator Files��
	11.9.4 Moving HEW Workspaces���
	11.9.5 Option Settings for Build���

	11.10 knl_side.hwp Project in kernel.hws���
	11.10.1 Overview���
	11.10.2 Source Files to Be Registered in Project���
	11.10.3 Standard Library Generator Settings��
	11.10.4 Linkage Editor Settings��
	11.10.5 Build Execution��

	11.11 knl_side_sym.hwp Project in kernel.hws���
	11.12 runtime.hwp Project in kernel.hws��
	11.12.1 Overview���
	11.12.2 Standard Library Generator Settings��
	11.12.3 Build Execution��
	11.12.4 Notes on Section Initialization��

	11.13 env_side.hwp Project in kernel.hws���
	11.13.1 Overview���
	11.13.2 Source Files to Be Registered in Project���
	11.13.3 Standard Library Generator Settings��
	11.13.4 Linkage Editor Settings��
	11.13.5 Build Execution��

	11.14 app_dom5.hwp Project in app_dom5.hws���
	11.14.1 Overview���
	11.14.2 Source Files to Be Registered in Project���
	11.14.3 Standard Library Generator Settings��
	11.14.4 Linkage Editor Settings��
	11.14.5 Build Execution��

	11.15 Memory Allocation��
	11.15.1 Overview���
	11.15.2 Sections���
	11.15.3 Notes��
	11.15.4 Memory Map and Static Memory Objects���

	11.16 Execution on Simulator���
	11.16.1 Debugging Session��
	11.16.2 Execution��
	11.16.3 Monitor Startup��
	11.16.4 Detection of Illegal Access by Domain 4��
	11.16.5 Execution of Domain 5��

	Section 12 Calculation of Stack Size���
	12.1 Stack Types���
	12.2 Overview of Calculation Procedure for Stack Size��
	12.3 Stack Size Used by Each Task��
	12.3.1 Task Associated with User Domain��
	12.3.2 Task Associated with Kernel Domain��

	12.4 Calculation of Non-Task Context Stack Size��
	12.4.1 Stack Size Used by Each Initialization Routine and Timer Initialization Routine of Standard Timer Driver��
	12.4.2 Stack Size Used by Each Interrupt Handler, Time Event Handler, and Timer Interrupt Routine of Standard Timer Driver���
	12.4.3 Stack Size Used by NMI Interrupt Handler��
	12.4.4 Stack Size Used by Each CPU Exception Handler���

	Section 13 Estimation of Resource Pool Size��
	13.1 Overview��
	13.2 Requested Timing and Size���
	13.2.1 When Kernel is Started (vsta_knl)���
	13.2.2 When Object is Created��
	13.2.3 Sizes Used and Released at Other Timings��

	13.3 Calculation���

	Section 14 Estimation of System Pool Size��
	14.1 Overview��
	14.2 Requested Timing and Size���

	Section 15 Notes on FPU��
	15.1 Meaning of "Using FPU"��
	15.2 FPU Usage in Each Application���
	15.2.1 Task, Task Exception Processing Routine, Extended Service Call Routine, or Trap Routine���
	15.2.2 Other Applications��

	Section 16 System Down Handling��
	16.1 Information during System Down��
	16.2 Error at Kernel Start (vsta_knl)��
	16.2.1 System Down Occurrence��
	16.2.2 When Object Specified in Configurator Cannot be Created���

	Section 17 Reference Listing���
	17.1 Service Call Reference��
	17.2 Service Call Error Code List��

	Colophon

