

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas

Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog

and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)

Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand

names are mentioned in the document, these names have in fact all been changed to Renesas

Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and

corporate statement, no changes whatsoever have been made to the contents of the document, and

these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.

Customer Support Dept.

April 1, 2003

To all our customers

Cautions

Keep safety first in your circuit designs!

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better
and more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corporation
or an authorized Renesas Technology Corporation product distributor for the latest product information
before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data, diagrams,
charts, programs, and algorithms, please be sure to evaluate all information as a total system before
making a final decision on the applicability of the information and products. Renesas Technology
Corporation assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device
or system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor
when considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other
than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the products
contained therein.

HI2000/3 Renesas Industrial
Realtime Operating System for
H8S Series
User’s Manual

U
ser’s M

anual

Rev.2.0 2001.03

Renesas Microcomputer
Development Environment
System

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s
patent, copyright, trademark, or other intellectual property rights for information contained in
this document. Hitachi bears no responsibility for problems that may arise with third party’s
rights, including intellectual property rights, in connection with use of the information
contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that you
have received the latest product standards or specifications before final design, purchase or
use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability.
However, contact Hitachi’s sales office before using the product in an application that
demands especially high quality and reliability or where its failure or malfunction may directly
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear
power, combustion control, transportation, traffic, safety equipment or medical equipment for
life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitachi
particularly for maximum rating, operating supply voltage range, heat radiation
characteristics, installation conditions and other characteristics. Hitachi bears no
responsibility for failure or damage when used beyond the guaranteed ranges. Even within
the guaranteed ranges, consider normally foreseeable failure rates or failure modes in
semiconductor devices and employ systemic measures such as fail-safes, so that the
equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.

5 This product is not designed to be radiation resistant.

6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document
without written approval from Hitachi.

7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi
semiconductor products.

1. µITRON is an acronym of the “Micro Industrial TRON” and TRON is an acronym of “The
Realtime Operating system Nucleus”.

2. Microsoft® Windows® 95, Microsoft® Windows® 98, and Microsoft® Windows NT®
operating systems are registered trademarks of Microsoft Corporation in the United States
and/or other countries.

3. All other product names are trademarks or registered trademarks of the respective holders.

4. This manual assumes the operating environment to be the English version of Microsoft®
Windows® 95, Windows®98, and WindowsNT® operating system.

Rev. 2.0, 03/01, page i of xv

Preface

This manual describes how to configure systems using the Hitachi Industrial Realtime Operating
System, a machine-installed realtime multitasking operating system based on µITRON3.0
specifications.

Please read this manual and the related manuals listed below before using the HI2000/3 to fully
understand the operating system.

This user’s manual contains the following eight sections and appendixes:

Section 1 Introduction to HI2000/3: general description of HI2000/3 systems
Section 2 Kernel: overview of HI2000/3 kernel functions. Refer to this section when creating

the functions of the user system.
Section 3 System calls: overview of HI2000/3 kernel system calls. Refer to this section when

creating the details of the user program and at coding.
Section 4 Functions and operations of the HI2000/3 debugging extension (DX)
Section 5 Handlers and routines: creating and defining handlers and routines necessary for

HI2000/3 system configuration
Section 6 Setup table: creating the setup table required for HI2000/3 system configuration
Section 7 Interrupt vector table: creating the interrupt vector table required for HI2000/3

system configuration
Section 8 Load module: creating a load module
Appendixes User and kernel work area calculation, description on compiler and assembler

options, example of timer driver, a list of error codes, and a list of system call
function codes.

The following shows the related manuals:

• HI2000/3 Release Notes

• H8S, H8/300 Series C/C++ Compiler User's Manual

• H8S, H8/300 Series Cross Assembler User's Manual

• H Series Linkage Editor, Librarian, and Object Converter User's Manual

• Hitachi Debugging Interface User's Manual

• Hitachi Integration Manager User's Manual

• The hardware manual and programming manual of the H8S microcomputer used

Rev. 2.0, 03/01, page ii of xv

Symbols used in this manual have the following meanings:

[]: Parameters enclosed by [] can be omitted
(||): One of parameters enclosed by () must be chosen

(RET): Pressing the RETURN key
Underlining (___): Indicates user’s key input

< >: Contents shown in < > are to be specified
...: The entry specified just before this symbol can be repeated
H': For hexadecimal integers, prefix H' is attached. Default is D' (decimal).

nnnn: Bold-faced-italic nnnn is the device name.
Example: When the H8S/2655 is used, nnnn = 2655.

z: Bold-faced-italic z indicates the endian.
a is advanced mode.
n is normal mode.

Rev. 2.0, 03/01, page iii of xv

It is recommended that the user refers to the following chart to understand the manual before
reading.

Section 1
Introduction to HI2000/3

Detailed information on
user program creation

Yes

No

YesYes

Yes

No

No

No

System environment setting

Interrupt process

System configuration

Compiler and assembler
options

System memory

No

No

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Appendix D
Error Codes

Section 2
Kernel

Section 3
System Calls

Section 4
Debugging Extension

Section 5
Creating Application Programs

Section 6
Creating the Setup Table

Section 7
Creating the Interrupt Vector Table

Appendix C
Device Driver

Appendix B
Compiler and Assembler Options

Appendix A
Memory Size

Section 8
Load Module Creation

Operation and function of
the debugging extension

Yes

No

Appendix E
System Call Function Codes

HI2000/3 system overview

Details on HI2000/3 kernel

System calls Error codes of system
calls

Function codes of
system calls

Timer handling method

Start

End

Rev. 2.0, 03/01, page v of xv

Contents

Section 1 Introduction to HI2000/3 .. 1
1.1 Overview...1
1.2 Features ...1

Section 2 Kernel.. 3
2.1 Overview...3
2.2 Functions...3
2.3 System State..4
2.4 Tasks ...6

2.4.1 Overview..6
2.4.2 Task State and Transition...7
2.4.3 Task Initiation ..8
2.4.4 Task Scheduling...9
2.4.5 Task Waiting/Suspension and Release...9
2.4.6 Task Termination...11
2.4.7 Shared Stack Function ...11

2.5 Synchronization and Communication ...13
2.5.1 Event Flag ..14
2.5.2 Semaphore ...16
2.5.3 Mailbox..17

2.6 Interrupt...18
2.6.1 Overview..18
2.6.2 Interrupt Handler..18
2.6.3 Undefined Interrupt..18
2.6.4 Monopolizing the CPU ..19

2.7 Memory Pool ..19
2.7.1 Fixed-Size Memory Pool ...20
2.7.2 Variable-Size Memory Pool...20

2.8 Time Management ..22
2.8.1 Overview..22
2.8.2 Hardware Timer and System Clock ...22
2.8.3 Setting and Referring to System Clock..22
2.8.4 Cyclic Handler ...23

2.9 System Management ...24
2.10 System-Call Trace...24
2.11 Trace Buffer Structure ..25
2.12 Trace Acquisition Data Analysis Example ...30
2.13 Trace-Function Definition...34
2.14 Notes on Trace Function ...34

Rev. 2.0, 03/01, page vi of xv

Section 3 System Calls ..35
3.1 Overview...35
3.2 System Call Interface..36

3.2.1 C-Language Interface ..36
3.2.2 Assembler Interface ...39
3.2.3 Error Codes..40

3.3 System Calls..41
3.4 Task Management...42

3.4.1 Start Task (sta_tsk) [T/D/L] Start Task (ista_tsk) [D/I]44
3.4.2 Exit Task (ext_tsk) [T/D/L] ...46
3.4.3 Terminate Task (ter_tsk) [T/D/L] ..48
3.4.4 Change Task Priority (chg_pri) [T/D/L] ..50
3.4.5 Rotate Ready Queue (rot_rdq) [T/D/L] Rotate Ready Queue (irot_rdq) [D/I]52
3.4.6 Release Wait (rel_wai) [T/D/L] ...54
3.4.7 Get Task Identifier (get_tid) [T/D/L]...56
3.4.8 Refer Task State (ref_tsk) [T/D/L/I] ..58
3.4.9 Disable Dispatch (dis_dsp) [T/D] ..62
3.4.10 Enable Dispatch (ena_dsp) [T/D] ..64

3.5 Task Synchronization..65
3.5.1 Suspend Task (sus_tsk) [T/D/L] ..67
3.5.2 Resume Task (rsm_tsk) [T/D/L] ..69
3.5.3 Sleep Task (slp_tsk) [T] Sleep Task with Timeout (tslp_tsk) [T].......................71
3.5.4 Wakeup Task (wup_tsk) [T/D/L] Wakeup Task (iwup_tsk) [D/I].......................73
3.5.5 Cancel Wakeup Task (can_wup) [T/D/L]..75

3.6 Synchronization and Communication (Event Flag) ..77
3.6.1 Set Event Flag (set_flg) [T/D/L] Set Event Flag (iset_flg) [D/I]79
3.6.2 Clear Event Flag (clr_flg) [T/D/L/I] ..81
3.6.3 Wait for Eventflag (wai_flg) [T] Wait for Eventflag (Polling) (pol_fig) [T/D/L/I]

Wait for Eventflag with Timeout (twai_fig) [T] ..83
3.6.4 Refer Event Flag State (ref_flg) [T/D/L/I]...87

3.7 Synchronization and Communication (Semaphore) ...89
3.7.1 Returns Semaphore Resource (sig_sem) [T/D/L] Returns Semaphore Resource

(isig_sem) [D/I]..91
3.7.2 Wait on Semaphore (wai_sem) [T] Poll and Request Semaphore (preq_sem)

[T/D/L/I] Wait on Semaphore with Timeout (twai_sem) [T]93
3.7.3 Refer Semaphore State (ref_sem) [T/D/L/I] ..96

3.8 Synchronization and Communication (Mailbox)..98
3.8.1 Send Message to Mailbox (snd_msg) [T/D/L] Send Message to Mailbox

(isnd_msg) [D/I] ..100
3.8.2 Receive Message from Mailbox (rcv_msg) [T] Poll and Receive Message from

Mailbox (prcv_msg) [T/D/L/I] Receive Message from Mailbox with Timeout
(trcv_msg) [T]..103

3.8.3 Refer Mailbox Status (ref_mbx) [T/D/L/I] ..106

Rev. 2.0, 03/01, page vii of xv

3.9 Interrupt Management...108
3.9.1 Return from Interrupt Handler (ret_int) [I] ..111
3.9.2 Change Interrupt Mask Level (chg_ims) [T/I] ...112
3.9.3 Refer Interrupt Mask Level State (ref_ims) [T/D/L/I] ...114
3.9.4 Lock CPU (loc_cpu) [T/D/L]...116
3.9.5 Unlock CPU (unl_cpu) [T/D/L] ...119

3.10 Memory Pool Management (Fixed-Size Memory Pool) ...121
3.10.1 Get Fixed-Size Memory Block (get_blf) [T] Poll and Get Fixed-Size Memory

Block (pget_blf) [T/D/L/I] Get Fixed-Size Memory Block with Timeout (tget_blf)
[T] ..123

3.10.2 Release Fixed-Size Memory Block (rel_blf) [T/D/L]..126
3.10.3 Refer Fixed-Size Memory Pool Status (ref_mpf) [T/D/L/I]128

3.11 Memory Pool Management (Variable-Size Memory Pool) ..131
3.11.1 Get Variable-Size Memory Block (get_blk) [T] Poll and Get Variable-Size

Memory Block (pget_blk) [T/D/L/I] Get Variable-Size Memory Block with
Timeout (tget_blk) [T] ...133

3.11.2 Release Variable-Size Memory Block (rel_blk) [T/D/L].....................................137
3.11.3 Refer Variable-Size Memory Pool Status (ref_mpl) [T/D/L/I]139

3.12 Time Management ..142
3.12.1 Set System Clock (set_tim) [T/D/L/I]..144
3.12.2 Get System Clock (get_tim) [T/D/L/I]...146
3.12.3 Activate Cyclic Handler (act_cyc) [T/D/L/I] ...148
3.12.4 Refer Cyclic Handler State (ref_cyc) [T/D/L/I] ...150

3.13 System Management ...153
3.13.1 get_ver (Get Version Information) [T/D/L/I]...153

Section 4 Debugging Extension.. 157
4.1 Overview...157

4.1.1 Displaying and Manipulating Objects..157
4.1.2 Results of Object Manipulation ...159
4.1.3 Displaying the Register Values..160
4.1.4 Displaying the HI2000/3 DX System Call Trace Information.............................161
4.1.5 Online Help..161

4.2 List of Functions ...162
4.2.1 HI2000/3 DX Menus..162
4.2.2 Windows and Dialog Boxes...163

4.3 Notes ...164
4.3.1 Setting up the E6000 Emulator ..164
4.3.2 Displaying the HI2000/3 DX Window ..164
4.3.3 Realtime Operation of the User System...164
4.3.4 Displaying Correct Data...164
4.3.5 Trace ..165
4.3.6 User System Memory ..165

Rev. 2.0, 03/01, page viii of xv

4.3.7 Correspondence to the HDI Session ..165
4.3.8 Loading Load Modules..165

4.4 Debug Daemon ...166
4.5 Tutorial..167

4.5.1 Executing a Sample Program...168
4.5.2 Starting a Task ...171
4.5.3 Mailboxes and Messages ...173
4.5.4 Examples during System Operation...175

Section 5 Creating Application Programs ...179
5.1 Creating a User Program...179
5.2 Tasks ...180

5.2.1 Creating Tasks ...180
5.2.2 Defining Tasks...183

5.3 Interrupt Handlers ...183
5.3.1 Interrupt Handler Description ..183
5.3.2 Defining Interrupt Handlers...188

5.4 Undefined Interrupt Handlers ...188
5.4.1 Creating Undefined Interrupt Handlers..188
5.4.2 Defining Undefined Interrupt Handlers ...188

5.5 Cyclic Handlers...189
5.5.1 Creating Cyclic Handlers...189
5.5.2 Defining Cyclic Handlers ..192

5.6 CPU Initialization Routine..192
5.6.1 Creating CPU Initialization Routines...192
5.6.2 Defining CPU Initialization Routines ..194

5.7 Timer Initialization Routine..195
5.8 System Initialization Handlers ..195

5.8.1 Creating System Initialization Handlers ..195
5.8.2 Defining the System Initialization Handler..197

5.9 System Termination Routines...198
5.9.1 Creating System Termination Routines ...198
5.9.2 Defining the System Termination Routine ..202

5.10 System Idling Routine...202
5.10.1 Creating System Idling Routines ...202
5.10.2 Defining a System Idling Routine..203

Section 6 Creating the Setup Table ...205
6.1 Overview...205
6.2 User Definition Field ..205

6.2.1 Defining the Constant Definition Field..206
6.2.2 Defining Task ..210
6.2.3 Defining Fixed-Size Memory Pools ..213

Rev. 2.0, 03/01, page ix of xv

6.2.4 Defining Variable-Size Memory Pools..216
6.2.5 Defining Cyclic Handlers...218
6.2.6 Defining Trace Functions...221
6.2.7 Defining Extended Information ...223

6.3 System Definition Field ..229

Section 7 Creating the Interrupt Vector Table.. 231
7.1 Overview...231
7.2 Defining Interrupt Handler..231

Section 8 Load Module Creation .. 237
8.1 Overview...237
8.2 Workspace and Project Files...238
8.3 Load Module Creation ..240

8.3.1 Adding Files to a Project..240
8.3.2 Compiler and Assembler Options ..242
8.3.3 Inter-Module Optimizer Setting...249
8.3.4 Build Execution ...255

8.4 C-Language Interface Library Projects ...256

Appendix A Memory Size .. 257
A.1 Memory Size...257

A.1.1 OS Work Area Size Calculation ..257
A.1.2 OS Stack Area Size Calculation...259
A.1.3 Timer Interrupt Stack Area Size Calculation ...260
A.1.4 Task Stack Area Size Calculation ..261
A.1.5 Interrupt Handler Stack Area Size Calculation ..262
A.1.6 Fixed-Size Memory Pool Area Size Calculation ...263
A.1.7 Variable-Size Memory Pool Area Size Calculation...263
A.1.8 Trace Function Stack Area Size Calculation..264
A.1.9 Trace Buffer Area Size Calculation ...264
A.1.10 HI2000/3 Work Area Size Calculation ..265

Appendix B Compiler and Assembler Options .. 267
B.1 Compiler Options..267
B.2 Assembler Options..267

Appendix C Device Driver ... 269
C.1 Timer Driver ...269

C.1.1 Timer Initialization Routine...270
C.1.2 Timer Interrupt Handler ...270
C.1.3 Timer Driver Definition Information ...273

Rev. 2.0, 03/01, page x of xv

Appendix D Error Codes ...277
D.1 System Call Error Codes...277
D.2 Debugging Extension Errors...278

Appendix E System Call Function Codes ...281
E.1 System Call Function Codes ...281

Rev. 2.0, 03/01, page xi of xv

Figures Contents

Figure 2.1 System States..4
Figure 2.2 Task State Transition Diagram...8
Figure 2.3 Task State Transition when Using the Shared Stack Function.................................12
Figure 2.4 Example of Using an Event Flag..14
Figure 2.5 Exclusive Control of Resources by Semaphore ...16
Figure 2.6 Mailbox Process ...17
Figure 2.7 Fixed-Size Memory Pool Operation...20
Figure 2.8 Variable-Size Memory Pool Operation ..21
Figure 2.9 Overview of Cyclic Handler Processing ..23
Figure 2.10 Trace Buffer Structure..25
Figure 2.11 Trace Buffer Management Table Structure..25
Figure 2.12 Trace Buffer Management Process ..26
Figure 2.13 Trace Entry Structure ...27
Figure 2.14 Example of Trace Analysis Results..33
Figure 3.1 System Call Description Form ...41
Figure 3.2 Message Form ..102
Figure 4.1 Example of the Display of an Object (List-Type Window)158
Figure 4.2 Example of the Display of an Object (Hierarchical-Type Window)158
Figure 4.3 Example of Requesting Object Manipulation ..159
Figure 4.4 [Task Context Registers] Window ...160
Figure 4.5 [System Trace] Window...161
Figure 4.6 Sample Program Processing...167
Figure 4.7 HDI Initial Display...168
Figure 4.8 [Open] Dialog Box ...169
Figure 4.9 [Tasks] Window ...170
Figure 4.10 Source Code Display..171
Figure 4.11 Invoking Task...172
Figure 4.12 [System Trace] Window...172
Figure 4.13 [Mailboxes] Window..173
Figure 4.14 Step-Over Execution of Program ...173
Figure 4.15 [Mailboxes] Window (Confirmation of Result) ...174
Figure 4.16 [Mailboxes] Window (Expanded Display)...174
Figure 4.17 [System Trace] Window...174
Figure 4.18 [Tasks] Window after the [Update] Option is Selected..175
Figure 4.19 [Mailboxes] Window after the [Update] Option is Selected175
Figure 4.20 [System Trace] Window...176
Figure 4.21 [Modify Task Status] Dialog Box ..176
Figure 4.22 [Tasks] Window after the [Update] Option is Selected..177
Figure 4.23 [System Trace] Window...177
Figure 5.1 Kernel Initial Processing ..179

Rev. 2.0, 03/01, page xii of xv

Figures 5.2 Task Example in C Language ..180
Figure 5.3 Interrupt Handler Example in C Language ..184
Figure 5.4 Relationship between the Vector Table and the Interrupt Handler188
Figure 5.5 Cyclic Handler Example for C Language ..190
Figure 5.6 CPU Initialization Routine Example..193
Figure 5.7 System Initialization Handler Written in C Language ...196
Figure 5.8 Stack State of the System Termination Routine...198
Figure 6.1 OS Stack Area Calculation...207
Figure 6.2 Constant Definition Field ...208
Figure 6.3 Task Definition Field ...210
Figure 6.4 Fixed-Size Memory Pool Definition Field ...214
Figure 6.5 Variable-size Memory Pool Definition Field ...217
Figure 6.6 Definition Example of Cyclic Handler Definition Field ..220
Figure 6.7 Trace Function Definition Field ...222
Figure 6.8 Extended Information Definition Field ..224
Figure 6.9 System Definition Field ...230
Figure 7.1 Coding Example from the Interrupt Vector Table 2655avec.src............................232
Figure 8.1 Creating a Load Module...237
Figure 8.2 Selecting a Project..239
Figure 8.3 Adding Files to the Project...241
Figure 8.4 CPU Tab Window in the H8S, H8/300 Assembler Options...................................244
Figure 8.5 Object Tab Window in the H8S, H8/300 Assembler Options................................245
Figure 8.6 List Tab Window in the H8S, H8/300 Assembler Options246
Figure 8.7 Source Tab Window in the H8S, H8/300 Assembler Options

(Include file directories) ...247
Figure 8.8 Source Tab Window in the H8S, H8/300 Assembler Options (Defines)248
Figure 8.9 Object Tab Window in the H8S, H8/300 C Compiler Options249
Figure 8.10 Inter-Module Optimizer Options Input Tab ...250
Figure 8.11 Inter-Module Optimizer Options Output Tab...252
Figure 8.12 Inter-Module Optimizer Options Section Tab..253
Figure 8.13 Executing the Build..255
Figure C.1 Timer Driver Processing ..269
Figure C.2 Stack State at Timer Interrupt Reset Processing Termination................................272

Rev. 2.0, 03/01, page xiii of xv

Tables Contents

Table 2.1 Task-Management System Calls ..6
Table 2.2 Task Synchronization System Calls ...6
Table 2.3 Task Waiting/Suspension and Release...10
Table 2.4 System Calls for Task Event Flag Control ...13
Table 2.5 System Calls for Semaphore Control ...13
Table 2.6 System Calls for Mailbox Control..14
Table 2.7 System Calls for Interrupt Control ...18
Table 2.8 System Calls for Fixed-Size Memory Pool Control ...19
Table 2.9 System Calls for Variable-Size Memory Pool Control ..19
Table 2.10 System Calls for System Clock ..22
Table 2.11 System Calls for Cyclic Handler Control ...23
Table 2.12 System Call for Kernel Version Acquisition..24
Table 2.13 Trace Entry Data Meanings..29
Table 2.14 Trace Acquisition Data Example ...30
Table 3.1 System Call Classification..35
Table 3.2 Parameter Prefixes and Suffixes...37
Table 3.3 System Calls for Task Management...42
Table 3.4 Task-Management Specifications ..42
Table 3.5 Causes of Task-Execution Waiting/Suspension and Release43
Table 3.6 Task Synchronization System Calls ...65
Table 3.7 Task Synchronization Specifications ...65
Table 3.8 Causes of Task-Execution Waiting/Suspension and Release66
Table 3.9 System Calls for Event Flag Control..77
Table 3.10 Event Flag Specifications...77
Table 3.11 Causes of Task-Execution Waiting and Release ..78
Table 3.12 Wait Modes (wfmode) ...85
Table 3.13 System Calls for Semaphore Control ...89
Table 3.14 Semaphore Specifications ..89
Table 3.15 Causes of Task-Execution Waiting and Release ..90
Table 3.16 System Calls for Mailbox Control..98
Table 3.17 Mailbox Specifications...98
Table 3.18 Causes of Task-Execution Waiting and Release ..99
Table 3.19 System Calls for Interrupt Management...108
Table 3.20 Interrupt Mask Level in Interrupt Control Mode 0...108
Table 3.21 Interrupt Mask Level in Interrupt Control Mode 1...108
Table 3.22 Interrupt Mask Level in Interrupt Control Mode 2...109
Table 3.23 Interrupt Mask Level in Interrupt Control Mode 3...110
Table 3.24 State Transition by Issuing dis_dsp, ena_dsp, loc_cpu, and unl_cpu.....................118
Table 3.25 System Calls for Fixed-Size Memory Pool Control ...121
Table 3.26 Fixed-Size Memory Pool Specifications ..121

Rev. 2.0, 03/01, page xiv of xv

Table 3.27 Causes of Task-Execution Waiting and Release...122
Table 3.28 System Calls for Variable-Size Memory Pool Control...131
Table 3.29 Variable-Size Memory Pool Specifications ..131
Table 3.30 Causes of Task-Execution Waiting and Release...132
Table 3.31 System Calls Related to the System Clock Control ..142
Table 3.32 System Calls for Cyclic Handler Control ...142
Table 3.33 System Clock Specifications...142
Table 3.34 Cyclic Handler Specifications...142
Table 3.35 Handler Activation State (cycact) ...149
Table 4.1 Menu Items Added to the HDI [View] Menu ..157
Table 4.2 HI2000/3 DX Menus..162
Table 4.3 HI2000/3 DX Windows and Dialog Boxes..163
Table 4.4 Memory Size Used by the User System...165
Table 4.5 Description of Trace Contents..172
Table 5.1 Resources Initialized at Task Initiation ..181
Table 5.2 Resources and System Calls...181
Table 5.3 Conditions for Interrupt Handler Processing..185
Table 5.4 Conditions for Cyclic Handler Processing ...191
Table 5.5 Conditions for CPU Initialization Routine Processing...194
Table 5.6 Conditions for System Initialization Handler Processing.......................................197
Table 5.7 System Termination Causes ...199
Table 5.8 Invalid Setup Information ..200
Table 6.1 Information Defined in Constant Definition Field ...206
Table 6.2 Contents of Task Definition ...210
Table 6.3 Contents of Fixed-Size Memory Pool Definitions ...213
Table 6.4 Contents of Variable-Size Memory Pool Definitions...216
Table 6.5 Contents of Cyclic Handler Definitions ...219
Table 7.1 Defined Interrupt Handlers...231
Table 8.1 Sample Projects..238
Table 8.2 Files Required for Project ..240
Table 8.3 Compiler and Assembler Options ..243
Table 8.4 Supplied Library File List ..251
Table 8.5 List of Sections Included in the Provided Project Files..254
Table 8.6 C-Language Interface Projects ...256
Table A.1 OS Work Area Size Calculation ...257
Table A.2 OS Stack Area Size Calculation..259
Table A.3 Timer Interrupt Stack Area Size Calculation ..260
Table A.4 Task Stack Area Size Calculation...261
Table A.5 Interrupt Handler Stack Area Size Calculation...262
Table A.6 Fixed-Size Memory Pool Area Size Calculation ..263
Table A.7 Variable-Size Memory Pool Area Size Calculation..263
Table A.8 Trace Function Stack Area Size Calculation ..264
Table A.9 Trace Buffer Area Size Calculation ...264

Rev. 2.0, 03/01, page xv of xv

Table A.10 HI2000/3 Work Area Size Calculation...265
Table C.1 Conditions for Timer Initialization Routine Processing...270
Table C.2 Conditions for Timer Interrupt Reset Processing ...271
Table C.3 Definition of Assign Directive for Timer Driver..274
Table D.1 System Call Error Codes ..277
Table D.2 Debugging Extension Error Messages ...278
Table E.1 System Calls and Function Codes ..281

Rev. 2.0, 03/01, page 1 of 282

Section 1 Introduction to HI2000/3

1.1 Overview

The importance and complexity of developing operating systems (OSs) have grown along with the
ever increasing use of microcomputer systems in a wide variety of fields. In particular, realtime
OSs have gained wide acceptance in industrial measurement and control systems. The HI2000/3 is
a realtime multitasking OS used in the assembly of industrial equipment. It operates with the H8S
series CPU. The HI2000/3 is based on µITRON specifications (ver. 3.0).

The HI2000/3 has a debugging extension (DX), which is a software debugging tool for the
application programs.

The HI2000/3 debugging extension (DX) can be used by installing it in the Hitachi Debugging
Interface (HDI) and in the HI2000/3 system.

1.2 Features

The HI2000/3 has the following features.

• High-speed operating kernel

Optimized to enable high-speed processing by using the high-speed H8S series CPU
instruction sets.

This kernel supports all four interrupt control modes provided by the H8S series CPU.

Two kernels for normal mode and for advanced mode are available depending on the H8S
series CPU operating mode. The normal mode kernel runs in a maximum address space of 64
kbytes. The advanced mode kernel runs in a maximum address space of 16 Mbytes (total data
space of 4 Gbytes including the address space dedicated to data).

Realtime speed has been improved, for example, by not checking parameters within the kernel.

• A compact kernel whose functions can be selected optionally

The kernel program size and kernel work area size are reduced to minimize the ROM and
RAM size on the user system. When the kernel functional module used with the user program
is specified in the setup table, the kernel is easily configured with a minimal module size.

• High level language

By using Hitachi's compiler, tasks and interrupt handlers can be written in C language.

Rev. 2.0, 03/01, page 2 of 282

• Debugging extension

The debugging extension displays the history of the HI2000/3 system calls issued, refers and
modifies the states of objects such as tasks through windows and dialog boxes, and debugs
multitasking applications through an HDI. The debugging extension also provides a Windows

context help system.

• Sample programs

The following sample source programs are provided. By modifying the programs as required,
the user system can be created easily.

 System configuration files (such as the kernel-build file and the setup table)

 Handlers and routines

 Timer driver for H8S series on-chip Timer Pulse Unit (TPU) and Free Running Timer
(FRT)

 Task examples: Tutorial for HI2000/3 debugging extension (DX)

Rev. 2.0, 03/01, page 3 of 282

Section 2 Kernel

2.1 Overview

The kernel, which is the nucleus of the operating system HI2000/3, performs realtime multitasking
processing. It has three major roles as follows:

• Response to events

Recognizes events generated asynchronously, and immediately executes a task to process the
event.

• Task scheduling

Schedules task execution on a priority basis.

• System call execution

Accepts various processing requests (system calls) from tasks and performs the appropriate
processing.

2.2 Functions

Almost all kernel functions can be used by issuing system calls from an application program.

Task Management: When a task is executed, CPU is allocated to the task. The kernel controls the
order of CPU allocation and starting and terminating tasks. Multiple tasks can share a stack by
using the shared-stack function.

Task Synchronization Management: Performs basic synchronous processing for tasks, such as
task execution suspension and release from other tasks, and performs synchronous processing
between tasks.

Synchronization and Communication Management: Performs inter-task synchronization and
communication by using event flags, semaphores, and mailboxes.

Interrupt Management: Initiates interrupt handlers in response to external interrupts. The
interrupt handler performs appropriate interrupt processing, and notifies tasks of interrupt
occurrences.

Memory Pool Management: Manages unused memory within the user system as a memory pool.
A task acquires or returns memory blocks from the memory pool dynamically. Memory pools are
either fixed-size memory pool or variable-size memory pool.

Time Management: Manages time-related information for the system and monitors task
execution time for control purposes.

Rev. 2.0, 03/01, page 4 of 282

System Management: Reads the kernel version number.

System-Call Trace: Stores system call issuance history for system calls that are being executed.

2.3 System State

System states can be classified as shown in figure 2.1. When configuring a user system, the system
state must be considered.

System state

Task portion execution state

Non-task portion execution
state

Task execution state

Dispatch-disabled state

CPU-locked state

Transient state (kernel is executing)

Task-independent portion execution
state (interrupt handler, timer handler,
system initialization handler)

Figure 2.1 System States

The descriptions for the system states are given as follows.

Task Portion Execution State: A task is executing. The following are the three possible sub-
states:

• Task-execution state

The task portion is executing and allows task switching and interrupts. Tasks execute in this
state.

Tasks are not dispatched (scheduled) in any state other than this state. If the system is in a state
other than this state, task scheduling is delayed until the system returns to this state.

System calls that can be issued in the task-execution state can be used.

Rev. 2.0, 03/01, page 5 of 282

• Dispatch-disabled state

The task portion is executing but does not allow task dispatch (scheduling).

Issuing the dis_dsp system call while tasks are being executed disables task dispatch. Issuing
the ena_dsp system call enables task dispatch again.

In this state, system calls that shift a task to WAIT state cannot be used; only system calls that
can be used while task dispatch is disabled can be used.

• CPU-locked state

The task portion is executing but does not allow dispatches or interrupts.

Issuing the loc_cpu system call while tasks are being executed locks the CPU. Issuing the
unl_cpu unlocks the CPU.

In this state, system calls that shift a task to a WAIT state cannot be used; only system calls
that can be issued in the CPU-locked state can be used.

Non-Task Portion Execution State: Functions other than a task portion are executing. The
following are the two possible sub-states.

• Transient state (while the kernel is under execution)

The kernel is executing, that is, processing a system call.

• Task-independent portion execution state

A feature of task-independent portions is that they do not recognize themselves as currently
running processes because task-independent portions are completely independent of tasks.
Therefore, in this portion, such a system call that specifies itself cannot be issued, e.g., a
system call to put itself into the WAIT state. Tasks are not switched either; task switching is
delayed until the system returns to the task-execution state.

Possible task-independent portions are interrupt handlers, timer interrupt handlers, and system
initialization handlers.

System calls for the task-independent portion can be used in this state.

Note that masking interrupts (changing the mask value from zero to another value) by issuing
the chg_ims system call during task portion execution immediately moves the system from a
task portion to a task-independent portion. Returning the interrupt mask value to zero returns
the system to task portion execution.

Rev. 2.0, 03/01, page 6 of 282

2.4 Tasks

2.4.1 Overview

In a realtime multitasking system, the user prepares the application program in task units that can
be processed independently and in parallel.

A task communicates with other tasks using system calls provided by the kernel. The kernel can
process events that are asynchronously generated by external devices or the MCU through such
system calls.

Tables 2.1 and 2.2 list the system calls that operate the tasks.

Table 2.1 Task-Management System Calls

System Call Description

sta_tsk Starts task

ista_tsk

ext_tsk Terminates current task

ter_tsk Forcibly terminates a task

chg_pri Changes task priority

rot_rdq Rotates task ready queue

irot_rdq

rel_wai Releases the task WAIT state

get_tid Refers current task ID

ref_tsk Refers task state

dis_dsp Disables dispatch

ena_dsp Enables dispatch

Table 2.2 Task Synchronization System Calls

System Call Description

sus_tsk Shifts task to SUSPEND state

rsm_tsk Resumes the execution of a task in SUSPEND state

slp_tsk Shifts current task to WAIT state

tslp_tsk Shifts current task to WAIT state (with timeout function)

wup_tsk Wakes up task

iwup_tsk

can_wup Cancels wake-up task

Rev. 2.0, 03/01, page 7 of 282

2.4.2 Task State and Transition

A task enters one of following six states in the user system.

DORMANT State: A task has been registered in the kernel but has not yet been initiated, or has
already been terminated.

READY (executable) State: An executable task is queuing to wait for CPU allocation because
another task with a higher priority is currently running.

RUN State: The task is currently running.

WAIT State: A task is waiting for an event to occur. A task is placed in the WAIT state when, in
the RUN state, it issues a system call to makes itself enter the WAIT state because its execution
conditions are not satisfied. The task is placed in the READY state when it is released from the
WAIT state.

SUSPEND State: A task has been suspended by another task.

WAIT-SUSPEND State: This state is a combination of both the WAIT state and the SUSPEND
state.

Rev. 2.0, 03/01, page 8 of 282

Figure 2.2 shows the task state transition diagram.

 DORMANT
(inactive state)

SUSPEND
(forcible-wait state)

WAIT-SUSPEND
(wait and suspend
state)

WAIT
(wait state)

RUN
(execution state)

READY
(executable state)

Wait release

Suspension
 (sus_tsk)

Suspension
 (sus_tsk)

Resumption
(rsm_tsk)

Initiation
(sta_tsk)

Forcible termination
(ter_tsk)

Exit (ext_tsk)

CPU allocation

Waiting for CPU allocation

Resumption
(rsm_tsk)

Forcible
termination
(ter_tsk)

Wait
condition

Wait
release Forcible

termination
(ter_tsk)

Forcible
termination
(ter_tsk)

Figure 2.2 Task State Transition Diagram

2.4.3 Task Initiation

Task initiation means that a task in the DORMANT state makes a transition to the READY state.
A task can be initiated by either of the following methods:

• Issuing the sta_tsk or ista_tsk system call to the target task

• Defining initial task initiation in the setup table

Rev. 2.0, 03/01, page 9 of 282

2.4.4 Task Scheduling

Task scheduling means that the kernel determines the order of execution for executable tasks, that
is, the order of allocating the CPU to a task in the READY state. The kernel selects one task in the
READY state and shifts it to the RUN state. If there are no tasks in the READY state, the kernel
enters the idle state and waits for a task to be waken up via an interrupt. When there is more than
one task in the READY state, the execution order is determined by using the CPU allocation wait
queue, which is called the ready queue. There is a ready queue for each level of the maximum
number of task priority, each queue operating on a first-come, first-served (FCFS) basis. The
lower the number, the higher the priority is.

The kernel also supports round-robin scheduling, where the CPU allocates the same amount of
time for each task with the same priority by rotating the ready queue at specific intervals. There
are two types of scheduling: standard scheduling and round-robin scheduling. The round-robin
scheduling manipulates the ready queues through the rot_rdq and irot_rdq system calls. Round-
robin scheduling can be achieved by rotating the ready queue by issuing irot_rdq system call from
the timer interrupt handler which is initiated at specific intervals.

2.4.5 Task Waiting/Suspension and Release

An executing task shifts to the WAIT or SUSPEND state when an interrupt occurs or a resource
becomes unavailable; a task returns to the previous state when the cause of shifting a task to the
WAIT state or SUSPEND state is cancelled. Note, however, a task does not always resume
execution immediately after the cause of shifting a task to the WAIT or SUSPEND state is
cancelled; actual execution timing is determined according to the event-driven scheduling. Table
2.3 lists the cause of shifting an executing task to the WAIT or SUSPEND state.

Rev. 2.0, 03/01, page 10 of 282

Table 2.3 Task Waiting/Suspension and Release

Cause of Waiting/Suspension Time of Release

When the current task
enters the WAIT state

slp_tsk or tslp_tsk
system call

(1) When system call wup_tsk is issued

(2) When the specified timeout period (tmout)
has passed (tslp_tsk)

(3) When system call rel_wai is issued

wai_flg or twai_flg
system call

(1) When the event-flag wait condition is
satisfied

(2) When the specified timeout period (tmout)
has passed (twai_flg)

(3) When system call rel_wai is issued

wai_sem or
twai_sem system
call

(1) When the resource managed by semaphore
is acquired

(2) When the specified timeout period (tmout)
has passed (twai_sem)

(3) When system call rel_wai is issued

rcv_msg or
trcv_msg system
call

(1) When a message is sent to the mailbox

(2) When the specified timeout period (tmout)
has passed (trcv_msg)

(3) When system call rel_wai is issued

get_blf to tget_blf
system call

(1) When a memory block is acquired

(2) When the specified timeout period (tmout)
has passed (tget_blf)

(3) When system call rel_wai is issued

get_blk to tget_blk
system call

(1) When a memory block is acquired

(2) When the specified timeout period (tmout)
has passed (tget_blk)

(3) When system call rel_wai is issued

When forcibly suspended
by another task

sus_tsk system call When system call rsm_tsk is issued

When an interrupt is generated When an interrupt handler completes execution

When a shared stack is
being occupied

sta_tsk system call When the shared stack is released

Rev. 2.0, 03/01, page 11 of 282

2.4.6 Task Termination

Task termination means that a task completes execution and enters the DORMANT state by one of
the following methods:

• An ext_tsk system call is issued for the current task

• A ter_tsk system call is issued for the target task

Resources acquired with system calls must be returned before a task is terminated. Once a task is
terminated, it is executed again from the initial state when initiated.

2.4.7 Shared Stack Function

More than one task can share one static stack area. This reduces the total stack area. A shared
stack is defined in the setup table. However, only one task at a time can be executed in a task
group that shares a stack.

A shared stack is released when the task using the shared stack enters the DORMANT state. If
there is a task waiting for a shared stack, the task at the head of the shared-stack waiting queue
uses the shared stack and enters the READY state.

The shared-stack wait queue is managed on a first-in first-out (FIFO) basis. The tasks are
connected to the shared-stack wait queue in the order of the initiation request.

When tasks compete to use the same stack, the task that is initiated first uses the stack, and the
other tasks wait for the shared stack.

Rev. 2.0, 03/01, page 12 of 282

Figure 2.3 shows the task state transition when using the shared stack function.

READY
(executable state)

RUN
(execution state)

WAIT
(wait state)

WAIT-SUSPEND
(wait and

suspend state)

SUSPEND
 (forcible-wait state)

WAIT-SUSPEND
 (shared-stack

 wait and
suspend state)

DORMANT
(inactive state)

Forcible
termination
(ter_tsk)

Shared stack is released
or unused (sta_tsk, ista_tsk)

Resumption
(rsm_tsk)

Suspension
(sus_tsk)

Shared stack
allocation

Shared stack
allocation

When the shared
stack is monopolized
(sta_tsk)

Forcible
termination
(ter_tsk)

WAIT
(shared-stack wait state)

Figure 2.3 Task State Transition when Using the Shared Stack Function

Rev. 2.0, 03/01, page 13 of 282

2.5 Synchronization and Communication

For synchronization and communication purposes, the kernel has the following objects which are
independent of tasks.

• Event flags

Waits for several events and synchronizes task operations.

• Semaphores

Exclusively controls resources.

• Mailboxes

Transfers data (passes pointer to data).

The task event flags are controlled by the system calls listed in table 2.4.

Table 2.4 System Calls for Task Event Flag Control

System Call Description

set_flg Sets event flag

iset_flg

clr_flg Clears the event flag

wai_flg Waits for event flag

pol_flg Polls and gets event flag

twai_flg Waits for event flag with timeout

ref_flg Refers to the event flag state

Table 2.5 System Calls for Semaphore Control

System Call Description

sig_sem Returns semaphore resource

isig_sem

wai_sem Gets semaphore resource

preq_sem Polls and gets semaphore resource

twai_sem Gets semaphore resource with timeout

ref_sem Refers to the semaphore state

Rev. 2.0, 03/01, page 14 of 282

Table 2.6 System Calls for Mailbox Control

System Call Description

snd_msg Sends message to mailbox

isnd_msg

rcv_msg Receives message from mailbox

prcv_msg Polls and receives message from mailbox

trcv_msg Receives message from mailbox with timeout

ref_mbx Refers to the mailbox state

2.5.1 Event Flag

Event flags are used to enable quick inter-task synchronization by combining various events. An
event flag is a bit-group corresponding to events. The value one represents event occurrence and
zero represents no event occurrence. More than one task can wait for a specified bit to be set in an
event flag, that is, tasks can wait until the specified event occurs.

Figure 2.4 shows an example of using event flags.

Task A

Wait for event
 (OR wait) (wai_flg)

WAIT state

Task B

Signal event
occurrence

(set_flg)

Event flag

Kernel

000000...00
15 0

Initialize
(clr_flg)

000000...01

000000...01

000000...01Wait state release

Compare (2)

(1)

(3)

(4)

OR

Compare

Figure 2.4 Example of Using an Event Flag

Rev. 2.0, 03/01, page 15 of 282

Description:

(1) Task A clears an event flag with the initial value specified.

(2) As the specified event has not occurred yet, task A waits for a specified event occurrence in the
OR wait mode. (OR wait: to wait for at least one specified event to occur)

(3) Task B signals event occurrence; the bits of the event flag are then set.

(4) Task A is released from the WAIT state because the wait release condition is satisfied.

Rev. 2.0, 03/01, page 16 of 282

2.5.2 Semaphore

Elements such as I/O and shared memory required for task execution are called resources. Most
resources are exclusively controlled by semaphores. Semaphores have non-negative counters that
indicate the number of resources available. A task acquires semaphore counter values and can use
resources corresponding to the counter values acquired. That is, the acquisition of semaphore
counter values is the same as the acquisition of resources. Figure 2.5 shows an example of
exclusive control of resources by the semaphore.

Request resource
(wai_sem)

Return resource
(sig_sem)

Kernel

Semaphore

Request resource
(wai_sem)

WAIT state

WAIT state release

Task BTask A

Request resource
(wai_sem)

(1)

(2)

(3)

(4) Wait for
resource

(5)

Figure 2.5 Exclusive Control of Resources by Semaphore

Description:

(1) First, two resources are set (semaphore counter = 2).

(2) Task A requests and gets a resource (semaphore counter = 1).

Rev. 2.0, 03/01, page 17 of 282

(3) Task A requests and gets another resource (semaphore counter = 0).

(4) Task B requests a resource, but has to enter the WAIT state because there is no resource.

(5) Task A returns a resource. The released resource is allocated to task B and task B is released
from the WAIT state.

2.5.3 Mailbox

Mailboxes are used to when message data is sent and received between tasks. A message is sent
to a mailbox from a task, and is later sent on to another task from the mailbox. The mailbox sends
the start address of a message. Since the communication using a mailbox sends and receives the
message start address, it is fast regardless of the message size.

Figure 2.6 shows the mailbox process.

(1)

(2)

(3)

(4)

Task A

Message

Message

Message

Waiting for
message

Task B
Mailbox

Kernel

Message

WAIT state release

WAIT state

Send
(snd_msg)

Send
(snd_msg)

Receive
(rcv_msg)

Receive
(rcv_msg)

Figure 2.6 Mailbox Process

Rev. 2.0, 03/01, page 18 of 282

Description:

(1) Task A sends a message to the mailbox, storing one message in the mailbox.

(2) Task B issues a message receive request and the message is transferred to task B.

(3) Task B again issues a message receive request, but it is placed in the WAIT state since no
message is in the mailbox.

(4) Task A sends a message, and task B is released from the WAIT state to receive the message.

2.6 Interrupt

2.6.1 Overview

When an interrupt occurs from an external hardware or a peripheral module, the interrupt handler
is initiated without kernel intervention.

The interrupts are controlled by the system calls listed in table 2.7.

Table 2.7 System Calls for Interrupt Control

System Call Name Function

ret_int Returns from the interrupt handler

chg_ims Changes the interrupt mask level

ref_ims Refers to the interrupt mask level

loc_cpu Disables interrupts and dispatches

unl_cpu Enables interrupts and dispatches

2.6.2 Interrupt Handler

When an interrupt occurs, the currently running task is suspended until the interrupt handler
completes execution.

Tasks are scheduled after the interrupt handler has completed execution; tasks are not scheduled
even when a task with high priority is in the READY state due to the system call issued while the
interrupt handler was being executed.

When interrupts are nested, the tasks are scheduled when all the interrupt handlers have completed
execution.

2.6.3 Undefined Interrupt

If an undefined interrupt occurs, the system fails, passing the undefined interrupt or exception
information as parameters to the system termination routine.

Rev. 2.0, 03/01, page 19 of 282

2.6.4 Monopolizing the CPU

A task can monopolize the CPU in two ways: One is to issue system call cpu_loc to lock the CPU.
To unlock the CPU, system call unl_cpu must be issued. The other is to issue system call chg_ims
to mask interrupts. If system call chg_ims is issued, the system makes a transition from the task
portion execution to task-independent portion execution. During task-independent portion
execution, only limited number of system calls can be issued and scheduling will be delayed as
well as in the CPU-locked state.

2.7 Memory Pool

The memory pools allow memory space to be used efficiently. The HI2000/3 provides fixed-size
memory pools and variable-size memory pools.

The fixed-size memory pools are controlled by the system calls listed in table 2.8.

Table 2.8 System Calls for Fixed-Size Memory Pool Control

System Call Name Function

get_blf Gets a fixed-size memory block

pget_blf Polls and gets a fixed-size memory block

tget_blf Gets a fixed-size memory block with timeout

rel_blf Returns a fixed-size memory block

ref_mpf Reads the fixed-size memory pool status

The variable-size memory pools are controlled by the system calls listed in table 2.9.

Table 2.9 System Calls for Variable-Size Memory Pool Control

System Call Name Function

get_blk Gets a variable-size memory block

pget_blk Polls and gets a variable-size memory block

tget_blk Gets a variable-size memory block with timeout

rel_blk Returns a variable-size memory block

ref_mpl Refers to the variable-size memory pool status

Rev. 2.0, 03/01, page 20 of 282

2.7.1 Fixed-Size Memory Pool

A fixed-size memory pool consists of fixed-size memory areas called memory blocks. A task can
get a fixed-size memory block from the memory pool.

Figure 2.7 shows how the fixed-size memory pool works.

Task B

Return memory
(rel_blf)

Get memory
(get_blf)

Task A

Get memory
(get_blf)

Get memory
(get_blf)

WAIT state

WAIT state release

Memory pool

Kernel

(1)

(3)

(2)

(4)

Wait for memory

Figure 2.7 Fixed-Size Memory Pool Operation

Description:

(1) Task A gets a memory block, leaving one memory block in the memory pool.

(2) Task B also gets a memory block, leaving no memory block in the memory pool.

(3) Task A tries to get another memory block. However, there are no available memory blocks
and task A enters the WAIT state.

(4) Task B releases the memory block, which is allocated to task A; task A is released from the
WAIT state.

2.7.2 Variable-Size Memory Pool

A task can get a variable-size memory block in a byte unit from the variable-size memory pool.

Rev. 2.0, 03/01, page 21 of 282

Figure 2.8 shows how the memory pool works.

Kernel Task B

Return memory
(rel_blk)

Get memory
(get_blk)

Memory pool

Task A

Get memory
(get_blk)

Get memory
(get_blk)

WAIT state
Wait for memory

(1)

(3)

(4)

300

100

(2)

100

160

 WAIT state release

300

100

Figure 2.8 Variable-Size Memory Pool Operation

Description:

(1) Task A obtains 300 bytes of memory area, with additional 16 bytes for OS management
purposes, thus leaving 184 (= 500 – 300 – 16) bytes of available memory area.

(2) Task B also obtains 100 bytes of memory area, with additional 16 bytes for OS management
purposes, thus leaving 68 bytes of available memory area.

(3) Task A tries to obtain 160 bytes of memory area. However, there are only 68 (= 184 – 100 –
16) bytes of available memory area and thus task A enters the WAIT state.

(4) Task B releases 100 bytes, with 16 bytes for OS management purposes, making 184 bytes
available. Accordingly, 160 bytes of the memory area are allocated to task A, and task A is
released form the WAIT state. Here, 8 (= 68 + 100 + 16 – 160 – 16) bytes of the memory area
are left.

Rev. 2.0, 03/01, page 22 of 282

2.8 Time Management

2.8.1 Overview

The kernel manages time using a clock of a given frequency generated using a hardware timer.
This provides the following functions:

Reference to and Setting of Time: Manages time by counting the pulses of the hardware clock at
a certain point specified by the system.

Timer Handler Execution Control: Monitors the cyclic elapsed time of the cyclic handler, and
controls execution.

Task Execution Control: Controls execution of tasks using time.

To use the above functions, a timer handler must be created by the user. For details on the timer
handler creation, refer to appendix C, Device Driver.

System clock is operated by the system calls listed in table 2.10.

Table 2.10 System Calls for System Clock

System Call Name Function

set_tim Sets system clock

get_tim Refers to system clock

2.8.2 Hardware Timer and System Clock

The time management requires a hardware timer to generate interrupts with a certain cycle time.
The kernel counts the interrupts using the hardware timer and manages their timing. The unit of
time used in the operating system (system clock value) is cycle time of the hardware timer (tc).
The relationship between time in the operating system (OS) and actual time is:

<actual time> = <time in OS (system clock value)> x <cycle time of hardware timer (tc)>

When the hardware timer cycle is 1 ms, a value of 100 in <time in OS> indicates 100 ms (<actual
time>).

2.8.3 Setting and Referring to System Clock

A 48-bit signed system clock counter is incremented by one each time the hardware timer interrupt
is generated. This enables the time to be calculated up to about 1.4 × 1014 (about 4,000 years when
the cycle time of the hardware timer (tc) is 1 ms).

Rev. 2.0, 03/01, page 23 of 282

2.8.4 Cyclic Handler

Cycle processing can be performed by using the cyclic handler. The cyclic handler can be initiated
when the system is in the task-independent portion; it is initiated at a specific cyclic time interval.

Cyclic handlers are controlled by the system calls listed in table 2.11.

Table 2.11 System Calls for Cyclic Handler Control

System Call Name Function

act_cyc Controls the activation of the cyclic handler

ref_cyc Refers the cyclic handler status

Figure 2.9 shows an overview of cyclic handler processing.

Time (T)

Not initiated

T0

T0+T

T0+2T

Cyclic handler

(2)

(3)

(4)

(1)

(5)

T0+4T

T0+3T

Cyclic handler definition
of the setup table

Handler activation
control

(act_cyc)

Handler activation
control

(act_cyc)

Initiated

Initiated

Initiated

Task

Activation status: ON
Cycle time: T

Activation status: OFF

Activation status: ON

Figure 2.9 Overview of Cyclic Handler Processing

Rev. 2.0, 03/01, page 24 of 282

Description:

(1) The cyclic handler activation status is turned on and a cyclic handler with cycle time T is
defined in the setup table.

(2) The cyclic handler is initiated after cycle time T has passed.

(3) The cyclic handler is initiated after cycle time T has passed and when time becomes T0 + 2T.

(4) If the activation status is turned off by issuing the act_cyc system call, the cyclic handler will
not be initiated even after cycle time T has passed (time is T0 + 3T).

(5) If the activation status is turned on by issuing the act_cyc system call, the cyclic handler will
be initiated again when cycle time T has passed (time is T0 + 4T).

2.9 System Management

The kernel version can be acquired by using the system call listed in table 2.12 to manage the
system.

Table 2.12 System Call for Kernel Version Acquisition

System Call Name Function

get_ver Refers to the version

2.10 System-Call Trace

The system-call trace function stores a history of the system calls issued during program execution
in the trace buffer. Basically, information on task issue and task return can be acquired by issuing
a system call. The information is called an event.

To use the trace function, the trace function and the trace buffer area must be defined in the setup
table at system configuration. When the trace function is selected, all events following the
execution of the system initialization handler will be acquired. The trace buffer has a ring-buffer
structure and writes new information over old information.

Rev. 2.0, 03/01, page 25 of 282

2.11 Trace Buffer Structure

Figure 2.10 shows the trace buffer structure.

Trace buffer management table
(T_TRCCB)

Trace entry
(T_TRCENT[0])

Trace entry
(T_TRCENT[1])

Trace entry
(T_TRCENT[N-1])

.

.

.

Trace buffer
size defined by

the setup file
(N is the number of

trace entries)

Figure 2.10 Trace Buffer Structure

The trace entry area stores acquired information and has a ring buffer structure. One trace entry
area is used for each event.

Trace Buffer Management Table (T_TRCCB): Controls the trace buffer. The kernel uses this
area at trace acquisition. Figure 2.11 shows the structure of the trace buffer management table.

0
(a) Start address of trace entry area

(b) End address of trace entry area + 1

(c) Next-inserted entry address

(d) Trace buffer status

+H'4

+H'8

+H'C

+H'10

 VW tr_trbtop; /* Start address of trace entry area */

 VW tr_trbbtm; /* End address of trace entry area + 1 */

 VW tr_trbins; /* Next-inserted entry address */

 UW tr_trbsts; /* Trace buffer status */

typedef struct t_trccb {

} T_TRCCB;

Figure 2.11 Trace Buffer Management Table Structure

Areas (a) and (b) store the trace information location. These areas are initialized according to the
setup table at system initiation.

Area (c) stores the address where the next-event information is to be stored.

Area (d) contains two valid status bits; the other bits are invalid.

Bit 0: Ring buffer flag
0: A complete round of writing to the trace buffer has not yet been made
1: At least one complete round of writing to the trace buffer has been made

Rev. 2.0, 03/01, page 26 of 282

Bit 1: Trace acquisition flag
Set to 1 while the kernel is storing trace information in the next-inserted entry address, which
means that the information in area (c) is undefined.

Figure 2.12 shows the trace buffer management process.

(a) Start address of trace entry area

T_TRCENT[0]

T_TRCENT[m-1]

T_TRCENT[m]

T_TRCENT[N-1]

Oldest trace
entry information

Latest trace entry
information

Note: When bit 1 of the trace buffer status area is 1, the entry is invalid.

Trace buffer
management table (b) End address of trace entry area +1

(c) Next-inserted entry address

(d) Trace buffer status

*

•
•
•

•
•
•

Figure 2.12 Trace Buffer Management Process

Rev. 2.0, 03/01, page 27 of 282

Trace Entry (T_TRCENT): One trace entry stores trace information for one event. Figure 2.13
shows the trace entry structure.

(a) Event attribute

(d) Event information

(g) Third parameter

(b) Task ID

(h) Fourth parameter

(i) EXR

(j) CCR, PC

(k) PC

(c) System clock
 (lower 4 bytes)

(f) Second parameter

 UH te_attr; /* Event attribute */

 UW te_ltime; /* System clock value (lower) */

 ID te_tskid; /* Task ID */

 H te_event; /* Event information (R0) */

 VH te_rl; /* First parameter (R1) */

 VW te_er2; /* Second parameter (ER2) */

 VH te_r3; /* Third parameter (R3) */

 VW te_er4; /* Fourth parameter (ER4) */

 VH te_exr; /* EXR (upper one byte) */

 UH te_ccr_pc; /* CCR, PC (upper one byte of PC)*/

 UH te_pc; /* PC */

typedef struct t_trcent {

} T_TRCENT;

0

+H'2

+H'4

+H'8

+H'A

+H'C

+H'10

+H'12

+H'16

+H'18

+H'1A

(e) First parameter

+H'1C

Figure 2.13 Trace Entry Structure

The event attribute indicates the type of trace entry. An event can have one of the following four
attributes:

• SVC attribute (TATR_SVC: H'0001)

• RTN attribute (TATR_RTN: H'0002)

• CONT attribute (TATR_CONT: H'0003)

• IDLE attribute (TATR_IDLE: H'0004)

The SVC attribute indicates that the event is the issuing of a system call, so the trace entry stores
the information at the time the system call is issued.

The RTN attribute indicates that the event is a return from the kernel to the application, so the
trace entry stores the information at a system call return or at a task or handler initiation.

The CONT attribute event is acquired when task execution restarts from the interrupted point
according to case 3 below, one of three possible ways to restart execution.

1. When returning to the task that was running before the interrupt as a result of the interrupt
handler executing the RTE instruction.

Rev. 2.0, 03/01, page 28 of 282

2. When the interrupt handler issues the ret_int system call without issuing a system call
(including interrupts from the system timer) that requires task switching, and thus execution
returns to the task that was executing before the interrupt.

3. When the system call ret_int is issued after a system call that requires task switching is issued
(including interrupts from the system timer), execution returns to a task other than the task
that was running before the interrupt, and afterwards returning control to the task that was
running before the interrupt.

The CONT-attribute event is acquired when 3 is satisfied. In cases 1 or 2, it will not be acquired.

The IDLE attribute event is acquired when the system enters the idle state.

The meaning of the other trace entry data depends on the event attribute. Table 2.13 shows the
possible meanings.

Rev. 2.0, 03/01, page 29 of 282

Table 2.13 Trace Entry Data Meanings

Event Attribute (te_atr)

te_atr
TATR_SVC
(H'0001)

TATR_RTN
(H'0002)

TATR_CONT
(H'0003)

TATR_IDLE
(H'0004)

te_tskid ID of task issuing
system call.

0 when issued from
task-independent
portion.

ID of task to which
execution returns
from the kernel.

0 when returning to
task-independent
portion.

ID of task to restart
from an interrupt
point.

Never the task-
independent portion
(0).

Undefined.

te_ltime Lower four bytes of the system clock count at event acquisition.

te_event Function code
of the issued system
call.*

(the function code of
the ret_int system call
will not be acquired)

Error code of the
system call.

However, H'8000 will
mean task initiation
(R0).

Undefined. Undefined.

te_r1,
te_er2,
te_r3,
te_er4

System-call
parameters
(R1, ER2, R3, and
ER4 at system-call
issue).

System-call return
parameters.

Data is not defined at
task initiation (R1,
ER2, R3, ER4 at
system-call return)

Undefined. Undefined.

te_exr EXR at system-call
issue

EXR at application
return

Undefined. Undefined.

te_ccr_pc CCR at system-call
issue

CCR at application
return

Undefined. Undefined.

te_pc System-call issue
address

Application return
address.

When a task is
initiated, the task start
address will be
returned. In other
cases, the issue
address of the
previously issued
system call will be
returned.

Undefined. Undefined.

Note: For details on the system-call function code, refer to appendix E, System-Call Function
Codes.

Rev. 2.0, 03/01, page 30 of 282

2.12 Trace Acquisition Data Analysis Example

An example of acquired trace data is shown in table 2.14.

Table 2.14 Trace Acquisition Data Example

No. te_attr te _tskid te _ltime te _event te _r1 te_pc te_ccr te _exr

–12 Old
 ↑

H'0001
SVC

H'0005
tskid = 5

H'00001234 H'ffe9
sta_tsk

H'0003
Starts
ID = 3

H'003018 H'00 H'00

–11 H'0002
RTN

H'0003
tskid = 3

H'00001234 H'8000
Task
initiation

 H'xxxx H'003800 H'00 H'00

–10 H'0001
SVC

H'0003
tskid = 3

H'00001234 H'ffda
slp_tsk

H'xxxx H'003810 H'00 H'00

–9 H'0002
RTN

H'0005
tskid = 5

H'00001234 H'0000
E_OK

H'0003 H'003018 H'00 H'00

–8 H'0001
SVC

H'0000
Non-task

H'00001234 H'ff87
iwup_tsk

H'0003
Wakes up
ID = 3

H'007340 H'00
Control
level = 0

H'05
Interrupt
level = 5

–7 H'0002
RTN

H'0000
Non-task

H'00001234 H'0000
E_OK

H'0003 H'007340 H'00
Control
level = 0

H'05
Interrupt
level = 5

–6 H'0002
RTN

H'0003
tskid = 3

H'00001234 H'0000
E_OK

H'xxxx H'003810 H'00 H'00

–5 H'0001
SVC

H'0003
tskid = 3

H'00001234 H'ffe1
rel_wai

H'0005
Releases
ID = 5
from wait
state

H'003840 H'00 H'00

–4 H'0002
RTN

H'0003
tskid = 3

H'00001234 H'ffc1
E_OBJ

H'0005 H'003840 H'00 H'00

–3 H'0001
SVC

H'0003
tskid = 3

H'00001234 H'ffeb
ext_tsk

Undefined
data

Undefined
data

–2 H'0003
CONT

H'0005
tskid = 5

H'00001234 Undefined
data

Undefined
data

Undefined
data

–1
 ↓

H'0001
SVC

H'0005
tskid = 5

H'00001234 H'ffeb
ext_tsk

Undefined
data

Undefined
data

0 New H'0004
IDLE

Undefined H'00001234 Undefined
data

Undefined
data

Undefined
data

Notes: 1. te_er2, te_r3, and te_er4 are omitted to simplify description.
2. In each event row, the upper line shows the traced data, and the lower line briefly

describes the data.

3. Numbers are only for description. They are not acquired as trace data.

Rev. 2.0, 03/01, page 31 of 282

1. Event No. –12

This is the SVC attribute because te_attr is H'0001. te_tskid = 5 indicates that task 5 has issued
a system call. The system call is sta_tsk because te_event, which shows the system call
function code, is H'FFE9. System call sta_tsk has initiated task 3 because te_par1, which is
system call parameter tskid, is te_r1=H'0003. The address of the instruction issuing the sta_tsk
system call is H'3016 (= 3018 – 2) because te_pc is H'003018.

2. Event No. –11

te_attr = H'0002 (RTN attribute) and te_tskid = 3 indicate that control has moved to task 3.
te_event = H'8000 indicates that task 3 started at this time. The task start address is
te_pc = H'003800.

Due to its relation with event –12, task 5 issued a sta_tsk system call to switch control from
task 5 to task 3.

3. Event No. –10

te_attr = H'0001 (SVC attribute), te_tskid = 3, and te_event = H'FFDA indicate that task 3 has
issued slp_tsk.

4. Event No. –9

te_attr = H'0002 (RTN attribute) and te_tskid = 5 indicate that control has moved to task 5.
Due to its relation with event –10, system call slp_tsk issued by task 3 has switched control
from task 3 to task 5 here. Task 5 has not been executed (no events have been acquired) since
the sta_tsk system call was issued at event –12; therefore, te_event is the error code for the
event –12 sta_tsk system call.

5. Event No. –8

te_attr = H'0001 (SVC attribute), te_tskid = 0, te_event H'FF87, and te_r1 = 3 indicate that
iwup_tsk (tskid = 3) has been issued from a task-independent portion. A task-independent
portion may be an interrupt handler, extended SVC handler, or system initialization handler. In
this case, te_ccr = H'00 and te_exr = H'05 indicates that the task-independent portion is the
interrupt handler having interrupt level 5 with a priority level of 0. In this case, an interrupt
occurred between events –9 and –8.

6. Event No. –7

te_attr = H'0002 (RTN attribute) and te_tskid = 0 indicate that the information is on a return
from the system call issued from a task-independent portion. iwup_tsk in event –8 is the
previous system call issued by a task-independent portion; therefore te_event is the error code
for this iwup_tsk system call.

Rev. 2.0, 03/01, page 32 of 282

7. Event No. –6

te_attr = H'0002 (RTN attribute) and te_tskid = 3 indicate that control has moved to task 3.
The previous event, –7, is for a task-independent portion; therefore, the ret_int system call
must have been issued from an interrupt handler between events –7 and –6. As a result, task 3
was given control and this event was acquired. Task 3, therefore, has a higher priority than task
5. Task 3 has not been executed since the event –10 slp_tsk system call was issued; therefore,
te_event is the error code for this slp_tsk system call.

8. Event No –5

te_attr = H'0001 (SVC attribute), te_tskid = 3, te_event = H'FFE1, and te_r1 = H'5 indicate that
task 3 has issued rel_wai (tskid = 5).

9. Event No. –4

te_attr = H'0002 (RTN attribute), te_tskid = 3, and te_event = H'FFC1 indicate that the system
call rel_wai (event –5) issued by task 3 has resulted in an error (error code: E_OBJ).

10. Event No. –3

te_attr = H'0001 (SVC attribute), te_tskid = 3, and te_event = H'FFEB indicate that task 3 has
issued the ext_tsk system call.

11. Event No. –2

te_attr = H'0003 (CONT attribute) and te_tskid = 5 indicate that task 5 restarted from the
interrupt point. Because task 3, which was being executed, has issued the ext_tsk system call
(event –3), task 5 was given a control. Checking previous trace data shows that data on task 5
is not found from event –9 until this event. Therefore, an interrupt has occurred between events
–9 and –8, and this interrupt suspended task 5 execution.

12. Event No. –1

te_attr = H'0001 (SVC attribute), te_tskid = 5, and te_event = H'FFEB indicate that task 5 has
issued the system call ext_sk.

13. Event No. 0

te_attr = H'0004 (IDLE attribute) indicates that the system has entered idling state.

Rev. 2.0, 03/01, page 33 of 282

The program flow for the trace data in table 2.14 is shown in figure 2.14.

Task 3 Task 5 Interrupt handler

(ret_int system call)

[No. 0]
(System idling)

Kernel
<DORMANT state>

<DORMANT state>

<DORMANT state>

Priority : High Priority : Low

 [No. -12]
sta_tsk (tskid = 3) [No. -11]

(Task initiation)

[No. -10]
 slp_tsk [No. -9]

ercd = E_OK
 <WAIT state>

<READY state>

Interrupt
<READY state>

 [No. -6]
ercd = E_OK

[No. -3]
 ext_tsk

[No. -1]
ext_tsk

 [No. -8]
iwup_tsk (tskid = 3)
 [No. -7]
 ercd = E_OK

Time
 flow

 [No. -5]
rel_wai (tskid = 5)
 [No. -4]
 ercd = E_OBJ

[No. -2]
(Start execution from the
place where an interrupt
occurred.

Figure 2.14 Example of Trace Analysis Results

Rev. 2.0, 03/01, page 34 of 282

2.13 Trace-Function Definition

For details on the trace-function definition, refer to section 6.2.6, Defining Trace Functions.

2.14 Notes on Trace Function

1. Kernel performance degradation

When the trace function is used, trace acquisition processing increases the system-call
processing time because the trace acquisition process is added to system-call processing. It also
increases the interrupt-inhibited time for the kernel. In some systems, these increases may
cause timing problems.

These problems also depend on the memory size (location) that trace the buffer area is
allocated to.

2. Writing to the trace buffer

The trace buffer must not be written to. In particular, if the data in the trace buffer management
table is changed, correct system operation is not guaranteed.

3. Trace information concerning the RTN attribute

The E2 register value is not defined in the trace information in the normal mode for the RTN
attribute.

4. Interrupt control mode

The EXR register value is not defined in the trace information when interrupt control mode 0
or 1 is selected.

The CCR register value is not defined in the trace information when interrupt control mode 2
is selected.

Rev. 2.0, 03/01, page 35 of 282

Section 3 System Calls

3.1 Overview

System calls are classified as shown in table 3.1.

Table 3.1 System Call Classification

Classification Description

Task management function Initiates and terminates tasks

Task synchronization function Suspends and resumes task execution and task event flag

Synchronization and
communication function

Manages event flags, semaphores, and mailboxes

Interrupt management function Returns from the interrupt handler, and changes and
references the interrupt mask

Memory pool management function Allocates memory dynamically

Time management function Sets and references the system clock, and defines the timer
handler

System management function Refers to kernel version identifiers

Some system calls dedicated to task-independent portion have "i's" added at the beginning of the
system call name, while others do not. This means that some system call names change when
issued from a task portion and a task-independent portion.

• System calls names that change: sta_tsk and ista_tsk, rot_rdq and irot_rdq, wup-tsk and
iwup_tsk, and others

• System calls names that do not change: get_tid, ref_tsk, can_wup, and others

Rev. 2.0, 03/01, page 36 of 282

3.2 System Call Interface

System calls can be issued from programs written in C or assembly language. This section
describes how to issue system calls. For details, see the section 3.3.

3.2.1 C-Language Interface

The kernel provides a C-language interface library so that system calls can be issued from tasks
and handlers written in C language.
The C-language interface library consists of library files and C language header files. Library files
are provided for the 2600CPU normal mode and advanced mode and for the 2000CPU normal
mode and advanced mode.

To issue a system call from a program written in C language, include a C language header file in
the source program and link the C-language interface library to the compiled source program
(object file) during system configuration. Library files are provided for the 2600 CPU normal
mode and advanced mode, and the 2000 CPU normal mode and advanced mode. When issuing a
system call from a program written in C language, include C-language header files in the source
programs, and link C-language interface libraries at system configuration.

System Call Issue Format: The kernel has the following basic format for system calls written in
C language.

ercd = <name> ([[<return parameter address>...],<parameter>...]);
ercd = <name> (void);
void <name> (void);

ercd: Error code (signed 16-bit integer) acquired as return value of a
system call

<name>: System call name
<return parameter address>: Address for return parameters (pointer)

<parameter>: Parameters
void: Function which cannot receive a return value or function

without a parameter

Rev. 2.0, 03/01, page 37 of 282

Parameter Name Abbreviation: The following prefixes or suffixes are used for parameters.

Table 3.2 Parameter Prefixes and Suffixes

Prefix and Suffix Parameter

t_~ Structure

E_~ Error code

p_~ Pointer

pk_~ Parameter packet address

ppk_~ Parameter packet address pointer

~id ID

~cd Code

i~ Initial value

~sz Size

~cnt Count

Rev. 2.0, 03/01, page 38 of 282

Type and Size of Parameter Data: The following list shows the type and size of parameter data
used in the kernel. These are defined in the kernel C language standard header file.

typedef char B; /* signed 8-bit integer */

typedef short H; /* signed 16-bit integer */

typedef long W; /* signed 32-bit integer */

typedef unsigned char UB; /* unsigned 8-bit integer */

typedef unsigned short UH; /* unsigned 16-bit integer */

typedef unsigned long UW; /* unsigned 32-bit integer */

typedef char VB; /* variable data type (8 bits) */

typedef short VH; /* variable data type (16 bits) */

typedef long VW; /* variable data type (32 bits) */

typedef void *VP; /* pointer to variable data type */

typedef void (*FP)(); /* program start address (general) */

typedef H INT; /* signed 16-bit integer */

typedef UH UINT; /* unsigned 16-bit integer */

typedef INT BOOL; /* Boolean value FALSE(0) or */

 /* TRUE(1) */

typedef int FN; /* function code */

typedef UH ID; /* object ID number (???id) */

typedef ID BOOL_ID; /* Boolean value or ID number */

typedef H HNO; /* handler number */

typedef H ER; /* error code */

typedef H PRI; /* task priority */

typedef W TMO; /* timeout */

typedef TMO CYCTIME; /* cyclic time initiation interval */

Rev. 2.0, 03/01, page 39 of 282

C-Language Interface Description Example: The following shows a C-language interface
parameter description, using a sta_tsk system call as an example.

#include "hi2000.h"

void task(INT stacd)

{

ER ercd;

ID tskid;

INT stacd;

 /* ... */

 ercd = sta_tsk(tskid,stacd);

 /* ... */

}

3.2.2 Assembler Interface

System Call Issue Format: The kernel has the following basic format for system calls in the
assembly language program. After parameters have been set in each register, a JSR instruction is
executed. An example of system call sta_tsk is shown below.

MOV.W #TSKID,R1 (a)
MOV.W #STACD,R2 (b)
JSR @sta_tsk (c)

(a) System call parameter (task ID) is set in the registers defined by each system call.

(b) System call parameter (initiation code) is set in the registers defined by each system call.

(c) The JSR instruction is executed in the format defined for each system call. Some system calls
use the JMP instruction.

At system call termination, an error code is returned to register R0. Registers other than R0 and
parameter registers maintain the value before the system call was issued.

Constants Used in Parameters: The kernel provides an assembly language header file. Various
constants are defined in the assembly language header file.

Rev. 2.0, 03/01, page 40 of 282

3.2.3 Error Codes

Except for a few system calls, error codes are returned as system call execution results. Error
codes are set in register R0 as an ER type (signed 16-bit integer). The results of system call
execution are not reflected in each flag of the CCR register.

For the system calls described in this section, error codes that may be generated are described.

The kernel provides two types of library kernels: one has a parameter check function and the other
does not. If the latter type is used, the kernel omits the static error detection for the system call
parameter, reducing the system call processing time; therefore, when there is an error in the
system call parameter, correct system operation cannot be guaranteed.

Usually, a kernel library with a parameter check function is used for debugging. Then, after
debugging has ended, the kernel library without a parameter check function is used.

Rev. 2.0, 03/01, page 41 of 282

3.3 System Calls

In this section, system calls are described in details as shown below.

Section Brief function description
(System call name)

[System status enabling
 system call issuing]

C Language Interface:

Assembler Interface:

Parameters:

Return Parameters:

Packet Structure:

Error code:

Description:

System call issuing format

System call issuing format

Type

Parameter
name

Register Meaning of
parameter

Type

Parameter
name

Register Meaning of
parameter

Mnemonic

Error code
value

[Type] Meaning of
error code

• System status enabling system call issuing:
 The following mnemonics show the
 system status in which a system call
 can be issued.
 T: Task-execution state
 D: Dispatch-disabled state
 L: CPU-locked state
 I: Task-independent portion

• Register (parameter/return parameter):
 ERx/Rx: The register size differs between
 the advanced and normal modes
 Rx: The register size is the same in the
 advanced and normal modes

• System call name:
 If (System call) is written in the parameter,
 return parameter, or error code, it denotes
 the target system call.

• Packet Structure
Packets are described as below when used by a system call.

 typedef struct t_rsem{
 VP exinf; 0/0 4/2 Extended information
 BOOL_ID wtsk; +4/+2 2/2 Wait task ID
 UINT semcnt; +6/+4 2/2 Current semaphore count
 }T_RSEM;

Description of the structure in
C language

Description of member

Member
size

Offset from the
beginning of
a packet

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

Offset from the beginning of a packet and member size
 x/xx: The offset from the beginning of a packet and the member size differs between
 advanced mode or normal mode.
 x: The offset from the beginning of a packet and the member size is the same in
 advanced mode or normal mode.
• Error Code Type
 [k] indicates an error that is detected regardless of the parameter check function.
 [p] indicates an error that is detected only when the parameter check function is incorporated.

Figure 3.1 System Call Description Form

Rev. 2.0, 03/01, page 42 of 282

3.4 Task Management

Task-Management System Calls: Tasks are managed by the system calls listed in table 3.3.

Table 3.3 System Calls for Task Management

System State

System Call Description T/D/L/I

sta_tsk Starts task T/D/L

ista_tsk Starts task (task-independent potion) D/I

ext_tsk Terminates current task T/D/L

ter_tsk Forcibly terminates a task T/D/L

chg_pri Changes task priority T/D/L

rot_rdq Rotates task ready queue T/D/L

irot_rdq Rotates task ready queue (task-independent portion) D/I

rel_wai Releases the task WAIT state T/D/L

get_tid Refers current task ID T/D/L

ref_tsk Refers task state T/D/L/I

dis_dsp Disables dispatch T/D

ena_dsp Enables dispatch T/D

Task Management Specifications: Task-management specifications are listed in table 3.4.

Table 3.4 Task-Management Specifications

Item Description

Maximum number of tasks that can be defined 225

Task ID 1 to 255 (including undefined tasks)

Task priority 1 to 31

Task stack Includes shared-stack function

Ready queue First-come first-service (FCFS)

Shared stack queue (when the shared-stack
function is used)

First-in first-out (FIFO)

Rev. 2.0, 03/01, page 43 of 282

Task-Execution Waiting/Suspension and Release: Table 3.5 lists the causes of task-execution
waiting/suspension and release.

Table 3.5 Causes of Task-Execution Waiting/Suspension and Release

Cause of Waiting/Suspension Time of Release

When an interrupt is generated When an interrupt handler completes execution

When a shared stack is
being occupied

sta_tsk or ista_tsk
system call

When the shared stack is released

Rev. 2.0, 03/01, page 44 of 282

3.4.1 Start Task (sta_tsk) [T/D/L]

Start Task (ista_tsk) [D/I]

C-Language Interface:

ER ercd = sta_tsk (ID tskid, INT stacd);
ER ercd = ista_tsk (ID tskid, INT stacd);

Assembler Interface:

JSR
JSR

@sta_tsk
@ista_tsk

Parameters:

ID tskid R1 Task ID

INT stacd R2 Task initiation code

Return Parameter:

ER ercd R0 Error code

Error Codes:

E_OK H'0000 [k] Normal termination

E_ID H'ffdd (–H'23) [p] Invalid ID number
(tskid ≤ 0, tskid > Number of tasks defined)

E_NOEXS H'ffcc (–H'34) [p] Undefined
(Task indicated by tskid does not exist)

E_OBJ H'ffc1 (–H'3f) [k] Object state is invalid
(Task indicated by tskid is not in
DORMANT state)

E_CTX H'ffbb (–H'45) [p] Context error (A task portion issued system
call ista_tsk while tasks were being
executed or a task-independent portion
issued system call sta_tsk)

[k] (System call ista_tsk was issued from a task
portion while the CPU was being locked)

Rev. 2.0, 03/01, page 45 of 282

Description:

These system calls initiate the task indicated by the parameter tskid. The initiated task makes a
transition from the DORMANT state to the READY state. The task initiation code indicated by
the parameter stacd will be passed to the initiated task. Parameter stacd must be passed to the R0
register when the task is written in assembly language, and must be passed to the first argument
when written in C language. Initiation requests are not queued. Parameter tskid specifies the ID of
the task to be initiated. The current task cannot be specified by the parameter tskid.

If the shared stack is not used by another task, the task to be initiated uses the shared stack and
shifts to the READY state. If the shared stack is already used by another task, the task indicated by
tskid shifts to the WAIT state and is placed in the shared-stack-wait queue since the stack area
cannot be used. If this system call is issued to a task in the shared-stack-wait state, error code
E_OBJ is returned.

Rev. 2.0, 03/01, page 46 of 282

3.4.2 Exit Task (ext_tsk) [T/D/L]

C-Language Interface:

void ext_tsk (void);

Assembler Interface:

JMP @ext_tsk

Parameters:

None

Return Parameter:

None

Error Codes:

Normal termination: [k] Does not return to the task that issued this system call.

Abnormal termination: [p] If a task-independent portion has issued this system call,
control is passed to the system termination routine.

Rev. 2.0, 03/01, page 47 of 282

Description:

The system call ext_tsk terminates the current task.

After the execution of this system call, the current task makes a transition from the RUN state to
the DORMANT state. The system call ext_tsk cannot automatically release the resources acquired
by the semaphore or the memory blocks acquired before the task is terminated. Therefore, the user
must issue system calls to release resources and memory blocks before issuing the system call
ext_tsk.

Therefore, if the current task shares the stack with other tasks, the task at the head of the stack wait
queue is removed and is placed in the READY state.

A task portion can issue the system call ext_tsk while task dispatch is being disabled or while the
CPU is being locked. If issued, the kernel enables the execution of other tasks.

Rev. 2.0, 03/01, page 48 of 282

3.4.3 Terminate Task (ter_tsk) [T/D/L]

C-Language Interface:

ER ercd = ter_tsk (ID tskid);

Assembler Interface:

JSR @ter_tsk

Parameters:

ID tskid R1 Task ID

Return Parameter:

ER ercd R0 Error code

Error Codes:

E_OK H'0000 [k] Normal termination

E_ID H'ffdd (–H'23) [p] Invalid ID number
(tskid < 0, tskid > Number of tasks defined)

E_NOEXS H'ffcc (–H'34) [p] Undefined
(Task indicated by tskid does not exist)

E_OBJ H'ffc1 (–H'3f) [p]
[k]

Object state is invalid
(Task is in DORMANT state)
(Current task is specified)

E_CTX H'ffbb (–H'45) [p] Context error
(A task-independent portion issued system
call ter_tsk)

Rev. 2.0, 03/01, page 49 of 282

Description:

The system call ter_tsk forces a task specified by tskid to terminate. The terminated task enters
DORMANT state.

The parameter tskid specifies the ID of the task to be terminated.

The system call ter_tsk cannot release resources acquired by the semaphore or memory blocks
acquired. Therefore, the user must issue system calls to release resources and memory blocks
before issuing the system call ter_tsk.

If the current task shares the stack with other tasks, the task at the head of the stack wait queue is
removed and placed in the READY state.

Rev. 2.0, 03/01, page 50 of 282

3.4.4 Change Task Priority (chg_pri) [T/D/L]

C-Language Interface:

ER ercd = chg_pri (ID tskid, PRI tskpri);

Assembler Interface:

JSR @chg_pri

Parameters:

ID tskid R1 Task ID

PRI tskpri R2 Task priority (0 to maximum task priority)

Return Parameter:

ER ercd R0 Error code

Error Codes:

E_OK H'0000 [k] Normal termination

E_PAR H'ffdf (–H'21) [p] Parameter error
(tskpri < 0, tskpri > Maximum task priority)

E_ID H'ffdd (–H'23) [p] Invalid ID number
(tskid < 0, tskid > Number of tasks defined)

E_NOEXS H'ffcc (–H'34) [p] Undefined
(Task specified by tskid is undefined)

E_OBJ H'ffc1 (–H'3f) [k] Object status is incorrect (Task is in
DORMANT state)

E_CTX H'ffbb (–H'45) [p] Context error (A task-independent portion
issued system call chg_pri)

Rev. 2.0, 03/01, page 51 of 282

Description:

The system call chg_pri changes the priority of the task specified by the parameter tskid to the
value specified by the parameter tskpri. The current task can also be specified by specifying tskid
= TSK_SELF (0).

The parameter tskpri specifies the task priority ranging from 0 to the Maximum task priority. The
task with the smallest value has the highest priority.

Specifying tskpri = TPRI_INI (0) returns the task priority to the initial priority that was specified
at task definition.

A priority changed by this system call is valid until the task is terminated or until this system call
is issued again. If a task enters the DORMANT state, its previous task priority before termination
becomes invalid and it returns to the initial task priority specified at task definition.

Rev. 2.0, 03/01, page 52 of 282

3.4.5 Rotate Ready Queue (rot_rdq) [T/D/L]

Rotate Ready Queue (irot_rdq) [D/I]

C-Language Interface:

ER ercd = rot_rdq (PRI tskpri);

ER ercd = irot_rdq (PRI tskpri);

Assembler Interface:

JSR @rot_rdq

JSR @irot_rdq

Parameters:

PRI tskpri R2 Task priority

Return Parameter:

ER ercd R0 Error code

Error Codes:

E_OK H'0000 [k] Normal termination

E_PAR H'ffdf (–H'21) [p] Parameter error
(tskpri < 0, tskpri > Maximum task priority)

E_CTX H'ffbb (–H'45) [p] Context error (A task portion issued system
call irot_rdq while tasks were being
executed or a task-independent portion
issued system call rot_rdq)

[k] (A task portion issued system call irot_rdq
while the CPU was being locked)

Rev. 2.0, 03/01, page 53 of 282

Description:

These system calls rotate the ready queue of the task priority indicated by the parameter tskpri. In
other words, the task at the head of the task priority ready queue is sent to the end, enabling the
second task in the ready queue to be executed.

The parameter tskpri specifies the task priority ranging from 0 to the Maximum task priority.

Specifying tskpri = TPRI_RUN (0) rotates the ready queue (the ready queue with the highest
priority) including the task being executed. However, while task dispatch is disabled, the task in
the execution (RUN) state may not have the highest priority.

If tskpri = TPRI_RUN (0) or the priority of the current task is specified, the current task is sent to
the end of the ready queue and it releases control.

If the specified ready queue is empty or if there are no tasks in the RUN state, these system calls
have no effect; and the task terminates normally.

Rev. 2.0, 03/01, page 54 of 282

3.4.6 Release Wait (rel_wai) [T/D/L]

C-Language Interface:

ER ercd = rel_wai (ID tskid);

Assembler Interface:

JSR @rel_wai

Parameters:

ID tskid R1 Task ID

Return Parameter:

ER ercd R0 Error code

Error Codes:

E_OK H'0000 [k] Normal termination

E_ID H'ffdd (–H'23) [p] Invalid ID number
(tskid ≤ 0, tskid > Number of tasks defined)

E_NOEXS H'ffcc (–H'34) [p] Undefined
(Task indicated by tskid does not exist)

E_OBJ H'ffc1 (–H'3f) [k] An object status is invalid
(Task indicated by tskid is the current task
or is a task not in WAIT state)

E_CTX H'ffbb (–H'45) [p] (A task-independent portion issued system
call rel_wai)

Rev. 2.0, 03/01, page 55 of 282

Description:

If the task specified by tskid is in the WAIT state, the system call rel_wai releases the task from
the WAIT state. Note that the SUSPEND or shared-stack WAIT state is not considered as a WAIT
state here. The parameter tskid specifies the task ID to release from the WAIT state. To the task
specified by tskid, that is, the task that has been released from the WAIT state by the system call
rel_wai, error code E_RLWAI is returned.

Note that the system call rel_wai cannot release a task from the SUSPEND state. To release the
task from the SUSPEND state, rsm_tsk must be issued. If this system call is issued to a task in the
WAIT-SUSPEND state, the task enters the SUSPEND state, which can then be released by the
system call rsm_tsk. In this case, error code E_RLWAI is returned.

Note that the system call rel_wai cannot release a task from the shared-stack WAIT state.

Rev. 2.0, 03/01, page 56 of 282

3.4.7 Get Task Identifier (get_tid) [T/D/L]

C-Language Interface:

ER ercd = get_tid (ID *p_tskid);

Assembler Interface:

JSR @get_tid

Parameters:

ID *p_tskid --- Start address of the area where the task ID
is to be returned (C-language interface)

Return Parameters:

ID *p_tskid --- Start address of the area where the task ID
was stored (C-language interface)

--- tskid R1 Task ID (Assembler interface)

ER ercd R0 Error code

Error Codes:

E_OK H'0000 [k] Normal termination

E_CTX H'ffbb (–H'45) [p] Context error (A task-independent portion
issued system call get_tid)

Rev. 2.0, 03/01, page 57 of 282

Description:

The system call get_tid gets the current task ID.

Rev. 2.0, 03/01, page 58 of 282

3.4.8 Refer Task State (ref_tsk) [T/D/L/I]

C-Language Interface:

ER ercd = ref_tsk (T_RTSK *pk_rtsk, ID tskid);

Assembler Interface:

JSR @ref_tsk

Parameters:

ID tskid R1 Task ID

T_RTSK *pk_rtsk ER2/R2 Start address of the packet where the
task state is to be returned

Return Parameters:

T_RTSK *pk_rtsk ER2/R2 Start address of the packet where the
task state is stored

ER ercd R0 Error code

Rev. 2.0, 03/01, page 59 of 282

Packet Structure:

typedef struct t_rtsk {

VP exinf; 0/0 4/2 Extended information

PRI tskpri; +4/+2 2/2 Current priority of the task

UINT tskstat; +6/+4 2/2 Task state

UINT tskwait; +8/+6 2/2 Wait cause

ID wid; +10/+8 2/2 Wait object ID

H wupcnt; +12/+10 2/2 Wakeup request count

FP task; +14/+12 4/2 Task start address

PRI itskpri; +18/+14 2/2 Priority at task initiation

}T_RTSK;

Error Codes:

E_OK H'0000 [k] Normal termination

E_PAR H'ffdf (–H'21) [p] Invalid address
(pk_rtsk is 0 or an odd address)

E_ID H'ffdd (–H'23) [p] Invalid ID number
(tskid< 0, tskid > Number of tasks
defined)
(Zero can be specified for parameter
tskid only in the task-independent
portion)

E_NOEXS H'ffcc (–H'34) [p] Undefined
(Task indicated by tskid does not exist)

Rev. 2.0, 03/01, page 60 of 282

Description:

The system call ref_tsk reads the state of the task indicated by the parameter tskid and returns it to
the area specified by the parameter pk_rtsk. Note that a 20-byte (advanced mode) or 16-byte
(normal mode) RAM area must be defined for the area specified by pk_rtsk.

The following information is returned to the area specified by pk_rtsk:

Note that data with an asterisk * is invalid when the task in the DORMANT state.

exinf Indicates the extended information specified at task definition.

tskpri Indicates the current priority of the task.

tskstat Indicates the current task state. The following values are returned.

tskstat Code Description

TTS_RUN H'0001 RUN state

TTS_RDY H'0002 READY state

TTS_WAI H'0004 WAIT state

TTS_SUS H'0008 SUSPEND state

TTS_WAS H'000c WAIT-SUSPEND state

TTS_DMT H'0010 DORMANT state

TTS_STK H'4000 Shared stack WAIT state

TTS_STS H'4008 Shared stack WAIT-SUSPEND state

tskwait* Indicates the causes for shifting the task to WAIT state.

Valid when TTS_WAI or TTS_WAS is returned to tskstat and the following values are
returned.

tskwait Code Description

TTW_SLP H'0001 Shifted to WAIT state by slp_tsk or tslp_tsk

TTW_FLG H'0010 Shifted to WAIT state by wai_flg or twai_flg

TTW_SEM H'0020 Shifted to WAIT state by wai_sem or twai_sem

TTW_MBX H'0040 Shifted to WAIT state by rcv_msg or trcv_msg

TTW_MPL H'1000 Shifted to WAIT state by get_blk or tget_blk

TTW_MPF H'2000 Shifted to WAIT state by get_blf or tget_blf

Rev. 2.0, 03/01, page 61 of 282

wid* Valid when TTS_WAI or TTS_WAS is returned to tskstat and the waiting
target object ID is returned

wupcnt* The current wakeup request count is returned
task The task start address is returned.
itskpri The priority at task initiation (initial priority) is returned.

If tskid = TSK_SELF (0) is indicated, the current task will be specified; however, the system call
ref_tsk cannot return the current task ID. To acquire the current task ID, issue system call get_tid.

Rev. 2.0, 03/01, page 62 of 282

3.4.9 Disable Dispatch (dis_dsp) [T/D]

C-Language Interface:

ER ercd = dis_dsp (void);

Assembler Interface:

JSR @dis_dsp

Parameters:

None

Return Parameter:

ER ercd R0 Error code

Error Codes:

E_OK H'0000 [k] Normal termination

E_CTX H'ffbb (–H'45) [p] Context error
(A task-independent portion issued system
call dis_dsp)

[k] (A task portion issued system call dis_dsp
while the CPU was being locked)

Rev. 2.0, 03/01, page 63 of 282

Description:

The system call dis_dsp disables task dispatch during task portion execution. In other words, the
state of task portion execution changes from task execution to a state where task dispatch becomes
disabled. To return to the task execution, system call ena_dsp must be issued.

The following describes the features when task dispatch is disabled.

1. Task dispatch (scheduling) is delayed until the system returns to the task-execution state.
Therefore, no task other than the current task can enter the RUN state.

2. Interrupts can be accepted.

3. System calls to shift a task to the WAIT state cannot be issued. If such system call is issued, an
error code is returned.

If the task is terminated by system call ext_tsk when task dispatch is disabled during task portion
execution, tasks will be dispatched again enabling the execution of other tasks.

The issue of system call unl_cpu while task dispatch is being disabled also enables task dispatch
and enables the execution of other tasks.

The task terminates normally when the system call dis_dsp is issued while the task dispatch is
disabled; however, this system call will not be queued.

Rev. 2.0, 03/01, page 64 of 282

3.4.10 Enable Dispatch (ena_dsp) [T/D]

C-Language Interface:

ER ercd = ena_dsp (void);

Assembler Interface:

JSR @ena_dsp

Parameters:

None

Return Parameter:

ER ercd R0 Error code

Error Codes:

E_OK H'0000 [k] Normal termination

E_CTX H'ffbb (–H'45) [p] Context error
(A task-independent portion issued system
call ena_dsp)

[k] (A task portion issued system call ena_dsp
while the CPU was being locked)

Description:

The system call ena_dsp enables task dispatch. Issuing this system call while task dispatch is
disabled will enable task dispatch and tasks will be executed. Task dispatch (scheduling) is then
performed.

The task terminates normally when the system call ena_dsp is issued while tasks are being
executed; however, this system call will not be queued.

Rev. 2.0, 03/01, page 65 of 282

3.5 Task Synchronization

Task Synchronization System Calls: The system calls for task synchronization are listed in table
3.6.

Table 3.6 Task Synchronization System Calls

System State

System Call Description T/D/L/I

sus_tsk Shifts task to SUSPEND state T/D/L

rsm_tsk Resumes the execution of a task in SUSPEND state T/D/L

slp_tsk Shifts current task to WAIT state T

tslp_tsk Shifts current task to WAIT state (with timeout function) T

wup_tsk Wakes up task T/D/L

iwup_tsk Wakes up task (dedicated to task-independent portion) D/I

can_wup Cancels wake-up task T/D/L

Task Synchronization Specifications: The task synchronization specifications are listed in table
3.7.

Table 3.7 Task Synchronization Specifications

Item Description

Maximum number of task wake-up request
count

255

Task suspend request No queuing

Rev. 2.0, 03/01, page 66 of 282

Task Waiting/Suspension and Release: Table 3.8 lists the causes of task-execution
waiting/suspension and release.

Table 3.8 Causes of Task-Execution Waiting/Suspension and Release

Cause of Waiting/Suspension Time of Release

When the current task
enters the WAIT state

slp_tsk or tslp_tsk
system call

(1) When system call wup_tsk is issued

(2) When the specified timeout period (tmout)
has passed (tslp_tsk)

(3) When system call rel_wai is issued

When forcibly
suspended by another
task

sus_tsk
system call

When system call rsm_tsk is issued

Rev. 2.0, 03/01, page 67 of 282

3.5.1 Suspend Task (sus_tsk) [T/D/L]

C-Language Interface:

ER ercd = sus_tsk (ID tskid);

Assembler Interface:

JSR @sus_tsk

Parameters:

ID tskid R1 Task ID

Return Parameter:

ER ercd R0 Error code

Error Codes:

E_OK H'0000 [k] Normal termination

E_ID H'ffdd (–H'23) [p] Invalid ID number
(tskid ≤ 0, tskid > Number of tasks defined)

E_NOEXS H'ffcc (–H'34) [p] Undefined
(Task indicated by tskid does not exist)

E_OBJ H'ffc1 (–H'3f) [p] Object status is incorrect
(The current task is specified)

[k] (Task is in DORMANT state)

E_CTX H'ffbb (–H'45) [p] Context error (A task-independent portion
issued system call sus_tsk)

E_QOVR H'ffb7 (–H'49) [k] Queuing overflow
(The task is already in the SUSPEND state)

Rev. 2.0, 03/01, page 68 of 282

Description:

The system call sus_tsk suspends execution of the task specified by tskid and shifts the task to the
SUSPEND state. The SUSPEND state is released by issuing system call rsm_tsk. If the task
specified by parameter tskid is already in the WAIT state, it enters the WAIT-SUSPEND state.

A task enters the SUSPEND state when system call sus_tsk is issued from another task. A task
cannot suspend itself. Suspend requests cannot be nested.

Rev. 2.0, 03/01, page 69 of 282

3.5.2 Resume Task (rsm_tsk) [T/D/L]

C-Language Interface:

ER ercd = rsm_tsk (ID tskid);

Assembler Interface:

JSR @rsm_tsk

Parameters:

ID tskid R1 Task ID

Return Parameter:

ER ercd R0 Error code

Error Codes:

E_OK H'0000 [k] Normal termination

E_ID H'ffdd (–H'23) [p] Invalid ID number
(tskid ≤ 0, tskid > Number of tasks defined)

E_NOEXS H'ffcc (-H'34) [p] Undefined
(Task indicated by tskid does not exist)

E_OBJ H'ffc1 (–H'3f) [k] Object status is incorrect
(Task indicated by tskid is not in SUSPEND
state)

E_CTX H'ffbb (–H'45) [p] Context error (A task-independent portion
issued system call rsm_tsk)

Rev. 2.0, 03/01, page 70 of 282

Description:

If the task specified by parameter tskid is in the SUSPEND state, the task that has been shifted to
the SUSPEND state by system call sus_tsk is released from the SUSPEND state, and enters the
READY state. In addition, a task in the WAIT-SUSPEND state is shifted to the WAIT state.

The suspend requests cannot be nested, so the task in the SUSPEND state is always released from
the SUSPEND state by this system call.

A current task cannot cancel a suspend request for itself.

Rev. 2.0, 03/01, page 71 of 282

3.5.3 Sleep Task (slp_tsk) [T]

Sleep Task with Timeout (tslp_tsk) [T]

C-Language Interface:

ER ercd = slp_tsk (void);

ER ercd = tslp_tsk (TMO tmout);

Assembler Interface:

JSR @slp_tsk

JSR @tslp_tsk

Parameters:

TMO tmout ER2 Timeout specification <tslp_tsk>

Return Parameter:

ER ercd R0 Error code

Error Codes:

E_OK H'0000 [k] Normal termination

E_RSFN H'ffec (–H'14) [p] Unsupported function (Timer driver cannot
be used) (tslp_tsk)

E_PAR H'ffdf (–H'21) [p] Invalid time specification
(tmout ≤ –2) (tslp_tsk)

E_CTX H'ffbb (–H'45) [p] Context error (A task-independent portion
issued system call slp_tsk)

[k] (A task portion issued system call slp_tsk or
tslp_tsk while task dispatch was being
disabled or while the CPU was being
locked, or, in system call tslp_tsk, a type
other than TMO_POL (0) was specified for
parameter tmout.)

E_TMOUT H'ffab (–H'55) [k] Timeout (tslp_tsk)

Rev. 2.0, 03/01, page 72 of 282

E_RLWAI H'ffaa (–H'56) [k] WAIT state was forcibly cancelled
(rel_wai system call was issued in WAIT
state)

Description:

These system calls shift the current task from the RUN state to the WAIT state. A task can be
released from the WAIT state by issuing system call wup_tsk and will terminate normally.

However, if system call wup_tsk, a wake-up request, has already been issued to the current task,
the current task will not enter the WAIT state and will continue execution after decrementing the
wake-up request count (wupcnt) by one.

Install the timer driver in the system to use the tslp_tsk system call. For details on how to install
the timer driver, refer to section 6.2.1, Defining the Constant Definition Field.

The parameter tmout specified by system call tslp_tsk specifies the timeout period. If a positive
number is specified for parameter tmout, error code E_TMOUT is returned when tmout period has
passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the task continues execution by decrementing the wake-up
count by one if wupcnt has a positive number. If wake-up count is 0, error code E_TMOUT is
returned.

If tmout = TMO_FEVR (–1) is specified, the same operation as for system call slp_tsk will be
performed. In other words, timeout will not be monitored.

If system call sus_tsk is issued after a task has entered the WAIT state as a result of system call
tslp_tsk, the task stays in the SUSPEND state even though the WAIT state has been released by
system call wup_tsk, and the task will not resume execution until system call rsm_tsk is issued.

Rev. 2.0, 03/01, page 73 of 282

3.5.4 Wakeup Task (wup_tsk) [T/D/L]

Wakeup Task (iwup_tsk) [D/I]

C-Language Interface:

ER ercd = wup_tsk (ID tskid);

ER ercd = iwup_tsk (ID tskid);

Assembler Interface:

JSR @wup_tsk

JSR @iwup_tsk

Parameters:

ID tskid R1 Task ID

Return Parameter:

ER ercd R0 Error code

Error Codes:

E_OK H'0000 [k] Normal termination

E_ID H'ffdd (–H'23) [p] Invalid ID number
(tskid ≤ 0, tskid > Number of tasks defined)

E_NOEXS H'ffcc (–H'34) [p] Undefined
(Task indicated by tskid does not exist)

E_OBJ H'ffc1 (–H'3f) [p] Object status is incorrect (Current task is specified)

[k] (Task is in DORMANT state)

E_CTX H'ffbb (–H'45) [p] Context error (A task portion issued system call
iwup_tsk while tasks were being executed or a task-
independent portion issued system call wup_tsk)

[k] (A task portion issued system call iwup_tsk while
the CPU was being locked)

E_QOVR H'ffb7 (–H'49) [k] Queue overflowed
(wupcnt > H'ff)

Rev. 2.0, 03/01, page 74 of 282

Description:

These system calls release tasks from the WAIT state after the tasks were assigned to the WAIT
state by system call slp_tsk or tslp_tsk. A task cannot wake up itself. If the task to be released
from the WAIT state is not in the WAIT state (another task has not issued system call slp_tsk or
tslp_tsk for that task), this wake-up request is queued and becomes valid the next time system call
slp_tsk or tslp_tsk is issued for the specified task. Up to 255 (H'ff) wake-up requests (wupcnt) can
be queued.

Rev. 2.0, 03/01, page 75 of 282

3.5.5 Cancel Wakeup Task (can_wup) [T/D/L]

C-Language Interface:

ER ercd = can_wup (INT *p_wupcnt, ID tskid);

Assembler Interface:

JSR @can_wup

Parameters:

ID tskid R1 Task ID

INT *p_wupcnt --- Start address of the area where the number
of queued wake-up requests are to be
returned (C-language interface)

Return Parameters:

INT *p_wupcnt --- Start address of the area where the number
of queued wake-up requests was stored (C-
language interface)

--- wupcnt R2 The number of queued task wake-up
requests (Assembler interface)

ER ercd R0 Error code

Error Codes:

E_OK H'0000 [k] Normal termination

E_ID H'ffdd (–H'23) [p] Invalid ID number
(tskid < 0, tskid > Number of tasks defined)

E_NOEXS H'ffcc (–H'34) [p] Undefined
(Task indicated by tskid is not created)

E_OBJ H'ffc1 (–H'3f) [k] Task is in DORMANT state

E_CTX H'ffbb (–H'45) [p] Context error (A task-independent portion
issued system call can_wup)

Rev. 2.0, 03/01, page 76 of 282

Description:

The system call can_wup releases all the queued task wake-up requests for the task specified by
tskid, and returns the wake-up request count as the return parameter. If the queued task wake-up
request is 0, 0 is returned.

A task that issued the system call can_wup can also be specified by setting tskid = TSK_SELF (0).

System call can_wup can be used to check if a task operation has been completed within the
specified time or if the next task wake-up is being requested before system call slp_tsk for the
previous task wake-up request has been issued. If the wake-up count request is not 0, the task has
not been completed within the specified time. In that case, the user should take appropriate action
to process the task.

Rev. 2.0, 03/01, page 77 of 282

3.6 Synchronization and Communication (Event Flag)

Event Flag System Calls: Event flags are controlled by the system calls listed in table 3.9.

Table 3.9 System Calls for Event Flag Control

System State

System Call Description T/D/L/I

set_flg Sets event flag T/D/L

iset_flg Sets event flag (dedicated to task-independent portion) D/I

clr_flg Clears event flag T/D/L/I

wai_flg Waits for event flag setting T

pol_flg Polls and waits for event flag T/D/L/I

twai_flg Waits for event flag (with timeout function) T

ref_flg Refers event flag state T/D/L/I

Event Flag Specifications: The event flag specifications are listed in table 3.10.

Table 3.10 Event Flag Specifications

Item Description

Event flag pattern size 16-bit size

Maximum number of event flags that can be
defined

255

Event flag ID 1 to 255

Event flag initial value 0 (fixed value)

Event flag wait queue The queue is managed on a first-in first-out
(FIFO) basis and multiple tasks can wait for an
event flag

Rev. 2.0, 03/01, page 78 of 282

Task-Execution Waiting and Release: Table 3.11 lists the causes of task-execution waiting and
release.

Table 3.11 Causes of Task-Execution Waiting and Release

Cause of Waiting Time of Release

When the current task
enters the WAIT state

wai_flg or twai_flg
system call

(1) When the event-flag wait condition is
satisfied

(2) When the specified timeout period (tmout)
has passed (twai_flg)

(3) When system call rel_wai is issued

Rev. 2.0, 03/01, page 79 of 282

3.6.1 Set Event Flag (set_flg) [T/D/L]

Set Event Flag (iset_flg) [D/I]

C-Language Interface:

ER ercd = set_flg (ID flgid, UINT setptn);

ER ercd = iset_flg (ID flgid, UINT setptn);

Assembler Interface:

JSR @set_flg

JSR @iset_flg

Parameters:

ID flgid R1 Event flag ID

UINT setptn R2 Bit pattern to set

Return Parameter:

ER ercd R0 Error code

Error Codes:

E_OK H'0000 [k] Normal termination

E_ID H'ffdd (–H'23) [p] Invalid ID number
(flgid ≤ 0, flgid > Number of event flags
defined)

E_CTX H'ffbb (–H'45) [p] Context error (A task portion issued system
call iset_flg while tasks were being
executed or a task-independent portion
issued system call set_flg)

[k] (A task portion issued system call iset_flg
while the CPU was being locked)

Rev. 2.0, 03/01, page 80 of 282

Description:

These system calls perform a logical OR between the event-flag bits specified by flgid and the bit
pattern specified by setptn, and set the result in the event-flag bits.

In these system calls, when a result of updating the event flag value satisfies the task wait
cancellation conditions of the event flags, all tasks that satisfy the wait conditions are released
from the wait state.

However, if a task is released from the WAIT state and TWF_CLR (clear) is specified for the task,
the event flag bit pattern will be cleared, so later tasks will not be released from the WAIT state.

If all bits of setptn are zero, no operation is done to the event flag specified by flgid and the task
terminates normally.

Rev. 2.0, 03/01, page 81 of 282

3.6.2 Clear Event Flag (clr_flg) [T/D/L/I]

C-Language Interface:

ER ercd = clr_flg (ID flgid, UINT setptn);

Assembler Interface:

JSR @clr_flg

Parameters:

ID flgid R1 Event flag ID

UINT clrptn R2 Bit pattern to clear

Return Parameter:

ER ercd R0 Error code

Error Codes:

E_OK H'0000 [k] Normal termination

E_ID H'ffdd (–H'23) [p] Invalid ID number
(flgid ≤ 0, flgid > Number of event flags
defined)

Rev. 2.0, 03/01, page 82 of 282

Description:

The system call clr_flg performs a logical AND between the event-flag bits specified by flgid (16
bits) and the bit pattern specified by clrptn and clears the event-flag bits whose corresponding bits
specified by clrptn are zero.

Even if the event flag value has been changed in this system call, it does not release the tasks
waiting for the event flag.

Rev. 2.0, 03/01, page 83 of 282

3.6.3 Wait for Eventflag (wai_flg) [T]

Wait for Eventflag (Polling) (pol_fig) [T/D/L/I]

Wait for Eventflag with Timeout(twai_fig) [T]

C-Language Interface:

ER ercd = wai_flg (UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode);

ER ercd = pol_flg (UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode);

ER ercd = twai_flg (UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode, TMO tmout);

Assembler Interface:

JSR @wai_flg

JSR @pol_flg

JSR @twai_flg

Parameters:

UINT *p_flgptn --- Start address of the area where the bit
pattern at wait release is to be returned (C-
language interface)

ID flgid R1 Event flag ID

UINT waiptn R2 Wait bit pattern

UINT wfmode R3 Wait mode

TMO tmout ER4 Timeout specification <twai_flg>

Return Parameters:

UINT *p_flgptn --- Start address of the area where the bit
pattern at wait release was stored (C-
language interface)

--- flgptn R2 Bit pattern at wait release (Assembler
interface)

ER ercd R0 Error code

Rev. 2.0, 03/01, page 84 of 282

Error Codes:

E_OK H'0000 [k] Normal termination

E_RSFN H'ffec (–H'14) [p] Unsupported function (Timer driver and
timeout function cannot be used) (twai_flg)

E_PAR H'ffdf (–H'21) [p] Parameter error
(waiptn = 0, wfmode is illegal)

[p] Invalid time specification (tmout ≤ –2)
(twai_flg)

E_ID H'ffdd (–H'23) [p] Invalid ID number
(flgid ≤ 0, flgid > Number of event flags
defined)

E_CTX H'ffbb (–H'45) [p] Context error (A task-independent portion
issued system call wai_flg or twai_flg)

[k] (A task portion issued system call wai_flg
or twai_flg while task dispatch was being
disabled or while the CPU was being
locked, or, in system call twai_flg, a type
other than TMO_POL (0) was specified for
parameter tmout.)

E_RLWAI H’ffaa (–H'56) [k] WAIT state was forcibly cancelled
(rel_wai system call was issued in WAIT
state)

E_TMOUT H’ffab (–H'55) [k] Polling failed (pol_flg)
Timeout (twai_flg)

Rev. 2.0, 03/01, page 85 of 282

Description:

A task that has issued one of these system calls waits until the event flags specified by the
parameter flgid have been set according to the waiting conditions indicated by the parameters
waiptn and wfmode.

The parameter wfmode can specify wait modes (table 3.12) in the following form.

wfmode:= (TWF_ANDW || TWF_ORW) [| TWF_CLR]

Table 3.12 Wait Modes (wfmode)

wfmode Code Description

TWF_ANDW H'0000 AND wait

TWF_ORW H'0002 OR wait

TWF_CLR H'0001 Clear specification

If TWF_ANDW is specified as wfmode, the task waits until all the bits specified by waiptn have
been set in the event flag specified by flgid. If TWF_ORW is specified as wfmode, the task waits
until any one of the bits specified by waitpn has been set in the specified event flag. If TWF_CLR
is specified, the event flag values (all bits) are cleared to 0 when the condition is satisfied and the
task is released from the WAIT state. If the system call returns an error code, the value of the
event flag will not be cleared. On the other hand, if TWF_CLR is not specified, the event flag
value will not be cleared even if the condition is satisfied.

If the above conditions are satisfied before a task issues system call wai_flg or twai_flg, the task
will terminate normally. If they are not satisfied, the task will be sent to the wait queue. Multiple
tasks can wait for an event in the event flag queue.

The task issuing the system call pol_flg terminates normally if the event flag specified by flgid is
set. If the event flag specified by flgid is not set, error code E_TMOUT will be returned.

System call twai_flg returns the value of the event flag to p_flgptn when the wait condition is
satisfied. If TWF_CLR is specified, the value before the flag was cleared is returned.

The parameter tmout specified by system call twai_flg specifies the timeout period. If a positive
number is specified for the parameter tmout, error code E_TMOUT is returned when the timeout
period has passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the task will not enter the WAIT state and will terminate
normally if the event flag specified by flgid is set, or will return error code E_TMOUT if the event
flag specified by flgid is not set. In other words, an operation the same as for the system call
pol_flg will be performed.

Rev. 2.0, 03/01, page 86 of 282

If tmout = TMO_FEVR (–1) is specified, timeout watch is not performed. This means the same
operation as for system call wai_flg will be performed.

If system call twai_flg is used, the timer driver must be installed in the system and (USE) must be
specified for the timeout function in the setup table. For details on installing the timer driver and
specifying the timeout function in the setup table, refer to section 6.2.1, Defining the Constant
Definition Field.

Rev. 2.0, 03/01, page 87 of 282

3.6.4 Refer Event Flag State (ref_flg) [T/D/L/I]

C-Language Interface:

ER ercd = ref_flg (T_RFLG *pk_rflg, ID flgid);

Assembler Interface:

JSR @ref_flg

Parameters:

ID flgid R1 Event flag ID

T_RFLG *pk_rflg ER2/R2 Start address of the packet where the event
flag state is to be returned

Return Parameters:

T_RFLG *pk_rflg ER2/R2 Start address of the packet where event
flag state is stored

ER ercd R0 Error code

Packet Structure:

typedef struct t_rflg{

VP exinf; 0/0 4/2 Extended information

BOOL_ID wtsk; +4/+2 2/2 Wait task ID

UINT flgptn; +6/+4 2/2 Event flag bit pattern

}T_RFLG;

Rev. 2.0, 03/01, page 88 of 282

Error Codes:

E_OK H'0000 [k] Normal termination

E_PAR H'ffdf (–H'21) [p] Invalid address
(pk_rflg is 0 or an odd address)

E_ID H'ffdd (–H'23) [p] Invalid ID number
(flgid ≤ 0, flgid > Number of event flags
defined)

Description:

The system call ref_flg refers to the state of the event flag (16 bits) indicated by the parameter
flgid, and stores and returns extended information (exinf), a wait task ID (wtsk), and a current
event-flag bit pattern (flgptn) to the area specified by pk_rflg. Note that an 8-byte (advanced
mode) or 6-byte (normal mode) RAM area must be defined for the area specified by pk_rflg.

If there is no task waiting for the specified event flag, FALSE (0) is returned as a wait task ID.

If multiple tasks are waiting for the target event flag, the task ID at the head of the queue is
returned as the wait task ID.

Rev. 2.0, 03/01, page 89 of 282

3.7 Synchronization and Communication (Semaphore)

Semaphore System Calls: Semaphores are controlled by the system calls listed in table 3.13.

Table 3.13 System Calls for Semaphore Control

System State

System Call Description T/D/L/I

sig_sem Returns semaphore resource T/D/L

isig_sem Returns semaphore resource (dedicated to task-
independent portion)

D/I

wai_sem Waits on semaphore T

preq_sem Polls and requests semaphore resource T/D/L/I

twai_sem Waits on semaphore with timeout T

ref_sem Refers semaphore state T/D/L/I

Semaphore Specifications: The semaphore specifications are listed in table 3.14.

Table 3.14 Semaphore Specifications

Item Description

Maximum semaphore count 65535

Maximum number of semaphores that can be
defined

255

Semaphore ID 1 to 255

Semaphore counter initial value 1 (fixed value)

Semaphore wait task queue The queue is managed on a first-in first-out
(FIFO) basis and multiple tasks can wait for a
semaphore

Rev. 2.0, 03/01, page 90 of 282

Task-Execution Waiting and Release: Table 3.15 lists the causes of task-execution waiting and
release.

Table 3.15 Causes of Task-Execution Waiting and Release

Cause of Waiting Time of Release

When the current task
enter the WAIT state

wai_sem or
twai_sem
system call

(1) When the resource managed by semaphore
is acquired

(2) When the specified timeout period (tmout)
has passed (twai_sem)

(3) When system call rel_wai is issued

Rev. 2.0, 03/01, page 91 of 282

3.7.1 Returns Semaphore Resource (sig_sem) [T/D/L]

Returns Semaphore Resource (isig_sem) [D/I]

C-Language Interface:

ER ercd = sig_sem (ID semid);

ER ercd = isig_sem (ID semid);

Assembler Interface:

JSR @sig_sem

JSR @isig_sem

Parameters:

ID semid R1 Semaphore ID

Return Parameter:

ER ercd R0 Error code

Error Codes:

E_OK H'0000 [k] Normal termination

E_ID H'ffdd (–H'23) [p] Invalid ID number
(semid ≤ 0, semid > Number of semaphores
defined)

E_CTX H'ffbb (–H'45) [p] Context error (A task portion issued system
call isig_sem while tasks were being
executed or a task-independent portion
issued system call sig_sem)

[k] (A task portion issued system call isig_sem
while the CPU was being locked)

E_QOVR H'ffb7 (–H'49) [k] Queuing overflow
(semcnt > H'ffff)

Rev. 2.0, 03/01, page 92 of 282

Description:

These system calls release the task at the head of a task wait queue from the WAIT state if there is
a task waiting for the semaphore indicated by semid. If there are no tasks in a queue, the
semaphore count (semcnt) is incremented by one.

Rev. 2.0, 03/01, page 93 of 282

3.7.2 Wait on Semaphore (wai_sem) [T]

Poll and Request Semaphore (preq_sem) [T/D/L/I]

Wait on Semaphore with Timeout (twai_sem) [T]

C-Language Interface:

ER ercd = wai_sem (ID semid);

ER ercd = preq_sem (ID semid);

ER ercd = twai_sem (ID semid, TMO tmout);

Assembler Interface:

JSR @wai_sem

JSR @preq_sem

JSR @twai_sem

Parameters:

ID semid R1 Semaphore ID

TMO tmout ER4 Timeout specification <twai_sem>

Return Parameter:

ER ercd R0 Error code

Rev. 2.0, 03/01, page 94 of 282

Error Codes:

E_OK H'0000 [k] Normal termination

E_RSFN H'ffec (–H'14) [p] Unsupported function (Timer driver and
timeout function cannot be used)
(twai_sem)

E_PAR H'ffdf (–H'21) [p] Invalid time specification
(tmout ≤ –2) (twai_sem)

E_ID H'ffdd (–H'23) [p] Invalid ID number
(semid ≤ 0, semid > Number of semaphores
defined)

E_CTX H'ffbb (–H'45) [p] Context error (A task portion issued system
call wai_sem or twai_sem)

[k] (A task portion issued system call wai_sem
or twai_sem while task dispatch was being
disabled or while the CPU was being
locked, or, in system call twai_sem, a type
other than TMO_POL (0) was specified for
parameter tmout.)

E_RLWAI H'ffaa (–H'56) [k] WAIT state was forcibly cancelled
(rel_wai system call was issued in WAIT
state)

E_TMOUT H'ffab (–H'55) [k]
[k]

Polling failed (preq_sem)
Timeout (twai_sem)

Rev. 2.0, 03/01, page 95 of 282

Description:

These system calls decrement the count by one if the semaphore count specified by the parameter
semid is equal to or greater than 1, and the task issuing the system calls continues execution.

If the semaphore count specified by semid is 1 or more for system call wai_sem or twai_sem, the
count value is decremented by 1 and the task issuing the system call wai_sem or twai_sem
terminates normally. If the semaphore count is 0 for system call wai_sem or twai_sem, the count
value is not modified and the task issuing the system call wai_sem or twai_sem shifts to the WAIT
state.

If the semaphore count specified by semid is 1 or more for system call preq_sem, the semaphore
count value is decremented by 1 and the task issuing the system call preq_sem terminates
normally. If the semaphore count is 0 for system call preq_sem, the semaphore count value is not
modified and an error code is returned.

The parameter tmout specified by system call twai_sem specifies the timeout period. If a positive
number is specified for the parameter tmout, error code E_TMOUT is returned when tmout period
has passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the task will not enter WAIT state and if the semaphore
count specified by semid is 1 or more, the count value is decremented by 1 and the task terminates
normally. If the semaphore count is 0, the count value is not modified and error code E_TMOUT
is returned. In other words, the same operation as for the system call preq_sem will be performed.

If tmout = TMO_FEVR (–1) is specified, timeout watch is not performed. In other words, the
same operation as for the system call wai_sem will be performed.

If system call twai_sem is used, the timer driver must be installed in the system and (USE) must
be specified for the timeout function in the setup table. For details on installing the timer driver
and specifying the timeout function in the setup table, refer to section 6.2.1, Defining the Constant
Definition Field.

Rev. 2.0, 03/01, page 96 of 282

3.7.3 Refer Semaphore State (ref_sem) [T/D/L/I]

C-Language Interface:

ER ercd = ref_sem (T_RSEM *pk_rsem, ID semid);

Assembler Interface:

JSR @ref_sem

Parameters:

ID semid R1 Semaphore ID

T_RSEM *pk_rsem ER2/R2 Start address of the packet where the
semaphore state is to be returned

Return Parameters:

T_RSEM *pk_rsem ER2/R2 Start address of the packet where the
semaphore state is stored

ER ercd R0 Error code

Packet Structure:

typedef struct t_rsem{

VP exinf; 0/0 4/2 Extended information

BOOL_ID wtsk; +4/+2 2/2 If there is a task waiting (wait task ID)

UINT semcnt; +6/+4 2/2 Current semaphore count value

}T_RSEM;

Rev. 2.0, 03/01, page 97 of 282

Error Codes:

E_OK H'0000 [k] Normal termination

E_PAR H'ffdf (–H'21) [p] Invalid address
(pk_rsem is 0 or an odd address)

E_ID H'ffdd (–H'23) [p] Invalid ID number
(semid ≤ 0, semid > Number of semaphores
defined)

Description:

The ref_sem system call refers to the state of the semaphore indicated by the parameter semid and
stores and returns extended information (exinf), wait task ID (wtsk), and current semaphore count
(semcnt) to the area specified by pk_rsem. Note that an 8-byte (advanced mode) or a 6-byte
(normal mode) RAM area must be defined for the area specified by pk_rsem.

If there is no task waiting for the specified semaphore, FALSE (0) is returned as a wait task ID. If
multiple tasks are waiting for the target semaphore, the task ID at the head of the queue is returned
as the wait task ID.

Rev. 2.0, 03/01, page 98 of 282

3.8 Synchronization and Communication (Mailbox)

Mailbox System Calls: Mailboxes are controlled by the system calls listed in table 3.16.

Table 3.16 System Calls for Mailbox Control

System State

System Call Description T/D/L/I

snd_msg Sends message T/D/L

isnd_msg Sends message (dedicated to task-independent portion) D/I

rcv_msg Receives message from mailbox T

prcv_msg Polls and receives message T/D/L/I

trcv_msg Receives message from mailbox with timeout T

ref_mbx Refers mailbox state T/D/L/I

Mailbox Specifications: The mailbox specifications are listed in table 3.17.

Table 3.17 Mailbox Specifications

Item Description

Maximum number of mailboxes that can be
defined

255

Mailbox ID 1 to 255

Message queue The queue is managed on a first-in first-out
basis (FIFO) and multiple tasks can wait for a
message

Message The first four bytes of a message are used by
the kernel
Before a message is sent, this area must be
cleared to zero
A message must be created in the RAM area

Rev. 2.0, 03/01, page 99 of 282

Task-Execution Waiting and Release: Table 3.18 lists the causes of task-execution waiting and
release.

Table 3.18 Causes of Task-Execution Waiting and Release

Cause of Waiting Time of Release

When the current task
enters the WAIT state

rcv_msg or
trcv_msg
system call

(1) When a message is sent to the mailbox

(2) When the specified timeout period (tmout)
has passed (trcv_msg)

(3) When system call rel_wai is issued

Rev. 2.0, 03/01, page 100 of 282

3.8.1 Send Message to Mailbox (snd_msg) [T/D/L]

Send Message to Mailbox (isnd_msg) [D/I]

C-Language Interface:

ER ercd = snd_msg (ID mbxid, T_MSG *pk_msg);

ER ercd = isnd_msg (ID mbxid, T_MSG *pk_msg);

Assembler Interface:

JSR @snd_msg

JSR @isnd_msg

Parameters:

ID mbxid R1 Mailbox ID

T_MSG *pk_msg ER2/R2 Start address of the message to send

Return Parameter:

ER ercd R0 Error code

Packet Structure:

Note: Since the T_MSG structure depends on the user, packets are not defined in the
sample header file. Therefore, define them when necessary.

Error Codes:

E_OK H'0000 [k] Normal termination

E_PAR H'ffdf (–H'21) [p] Invalid address
(The message start address is 0 or an odd
address)

[k] Invalid message form
(The first four bytes of the message are not
0s)

E_ID H'ffdd (–H'23) [p] Invalid ID number
(mbxid ≤ 0, mbxid > Number of mailboxes
defined)

Rev. 2.0, 03/01, page 101 of 282

E_CTX H'ffbb (–H'45) [p] Context error (A task portion issued system
call isnd_msg while tasks were being
executed or a task-independent portion
issued system call snd_msg)

[k] (A task portion issued system call isnd_msg
while the CPU was being locked)

Rev. 2.0, 03/01, page 102 of 282

Description:

These system calls send a message specified by pk_msg to the mailbox specified by mbxid. The
contents of the message are not copied to the mailbox; only the start address of the message (the
value of pk_msg) is passed at message reception. Note, therefore, that if a message is modified
after it has been sent by this system call, a task will not receive the correct message with the
system call rcv_msg, prcv_msg, or trcv_msg.

If there is a task waiting to receive a message in the mailbox, the task at the head of the wait queue
receives the message and is released from the WAIT state. On the other hand, if there are no tasks
waiting to receive message, the message is placed in the mailbox and sent to the message queue.

The message area must be defined in a RAM area. Note that the user must control the message
size because the kernel does not control it. The user can use only the area following the first four-
byte area managed by the kernel. Since the kernel uses the first four bytes of the message, this
four-byte area must initially be set to 0 and must not be changed even after the message transfer.

Kernel management area

Area that can be used for
message by the user

Initial value 0

pk_msg 0

+4

Figure 3.2 Message Form

Rev. 2.0, 03/01, page 103 of 282

3.8.2 Receive Message from Mailbox (rcv_msg) [T]

Poll and Receive Message from Mailbox (prcv_msg) [T/D/L/I]

Receive Message from Mailbox with Timeout (trcv_msg) [T]

C-Language Interface:

ER ercd = rcv_msg (T_MSG **ppk_msg, ID mbxid);

ER ercd = prcv_msg (T_MSG **ppk_msg, ID mbxid);

ER ercd = trcv_msg (T_MSG **ppk_msg, ID mbxid, TMO tmout);

Assembler Interface:

JSR @rcv_msg

JSR @prcv_msg

JSR @trcv_msg

Parameters:

T_MSG **ppk_msg --- Start address of the area where the start
address of the received message is to be
returned (C-language interface)

ID mbxid R1 Mailbox ID

TMO tmout ER4 Timeout specification <trcv_msg>

Return Parameters:

T_MSG **ppk_msg --- Start address of the area where the received
message was stored (C-language interface)

--- *pk_msg ER2/R2 Start address of the received message
(Assembler interface)

ER ercd R0 Error code

Packet Structure:

Note: Since the T_MSG structure depends on the user, packets are not defined in the
sample header file. Therefore, define them when necessary.

Rev. 2.0, 03/01, page 104 of 282

Error Codes:

E_OK H'0000 [k] Normal termination

E_RSFN H'ffec (–H'14) [p] Unsupported function (Timer driver and
timeout function cannot be used) (trcv_msg)

E_PAR H'ffdf (–H'21) [p] Invalid time specification
(tmout ≤ –2) (trcv_msg)

E_ID H'ffdd (–H'23) [p] Invalid ID number
(mbxid ≤ 0,
mbxid > Number of mailboxes defined)

E_CTX H'ffbb (–H'45) [p] Context error (A task-independent portion
issued system call rcv_msg or trcv_msg)

[k] (A task portion issued system call rcv_msg
or trcv_msg while task dispatch was being
disabled or while the CPU was being
locked, or, in system call trcv_msg, a type
other than TMO_POL (0) was specified for
parameter tmout.)

E_RLWAI H'ffaa (–H'56) [k] WAIT state was forcibly cancelled
(rel_wai system call was issued in WAIT
state)

E_TMOUT H'ffab (–H'55) [k] Polling failed (prcv_msg)
Timeout (trcv_msg)

Rev. 2.0, 03/01, page 105 of 282

Description:

These system calls receive a message from the mailbox specified by the parameter mbxid. After
the start address of the received message is stored in the area specified by the parameter ppk_msg,
task execution continues.

With system calls rcv_msg and trcv_msg, if a message exists in the mailbox specified by mbxid,
the start address of the message is stored in the area specified by ppk_msg and the task terminates
normally. If there are no messages in the mailbox, the task that issued the system call rcv_msg or
trcv_msg is placed in the task wait queue to receive a message. The task wait queue is managed on
a first-in first-out (FIFO) basis.

With system call prcv_msg, if a message exists in the mailbox specified by mbxid, the start
address of the message is stored in the area specified by ppk_msg and the task terminates
normally. If there are no messages in the mailbox, error code E_TMOUT is returned.

The parameter tmout specified by system call trcv_msg specifies the timeout period. If a positive
number is specified for the parameter tmout, error code E_TMOUT is returned when the timeout
period has passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the task will not enter the WAIT state, and if a message
exists in the mailbox specified by mbxid, the start address of the message is stored in the area
specified by ppk_msg and the task terminates normally. If there are no messages in the mailbox,
error code E_TMOUT is returned. In other words, the same operation as for the system call
prcv_msg will be performed.

If tmout = TMO_FEVR (–1) is specified, timeout watch is not performed. In other words, the
same operation as for system call rcv_msg will be performed.

Note that a 4-byte RAM area is required for the area specified by ppk_msg.

Note: The user can use only the area following the first four-byte area managed by the kernel.
Since the kernel uses the first four bytes of the message, this four-byte area must not be
changed even after message transfer. If this area is rewritten before message is received
after message has been sent, the system will not operate correctly.

If system call trcv_msg is used, the timer driver must be installed in the system and (USE) must be
specified for the timeout function in the setup table. For details on installing the timer driver and
specifying the timeout function in the setup table, refer to section 6.2.1, Defining the Constant
Definition Field.

Rev. 2.0, 03/01, page 106 of 282

3.8.3 Refer Mailbox Status (ref_mbx) [T/D/L/I]

C-Language Interface:

ER ercd = ref_mbx (T_RMBX *pk_rmbx, ID mbxid);

Assembler Interface:

JSR @ref_mbx

Parameters:

ID mbxid R1 Mailbox ID

T_RMBX *pk_rmbx ER2/R2 Start address of the packet where the
mailbox status is to be returned

Return Parameters:

T_RMBX *pk_rmbx ER2/R2 Start address of the packet where the
mailbox status is stored

ER ercd R0 Error code

Packet Structure:

typedef struct t_rmbx{

VP exinf; 0/0 4/2 Extended information

BOOL_ID wtsk; +4/+2 2/2 Wait task ID

T_MSG *pk_msg; +6/+4 4/2 Start address of the message to receive
next

}T_RMBX;

Note: Since the T_MSG structure depends on the user, it is not defined in the sample
header file. Therefore, define them when necessary.

Rev. 2.0, 03/01, page 107 of 282

Error Codes:

E_OK H'0000 [k] Normal termination

E_PAR H'ffdf (–H'21) [p] Invalid address
(pk_rmbx is 0 or an odd address)

E_ID H'ffdd (–H'23) [p] Invalid ID number
(mbxid ≤ 0, mbxid > Number of mailboxes
defined)

Description:

The ref_mbx system call refers to the status of the mailbox indicated by the parameter mbxid and
stores and returns extended information (exinf), wait task ID (wtsk), and the start address of the
message to be received next (pk_msg). A 10-byte (advanced mode) or a 6-byte (normal mode)
RAM area is required for the area specified by pk_rmbx. If there are no tasks waiting to receive a
message in the mailbox, FALSE (0) is returned as a wait task ID.

If multiple tasks are waiting for the target mailbox, the task ID at the head of the queue is returned
as the wait task ID.

If there are no messages to receive next, NADR (–1) is returned as a message start address.

Rev. 2.0, 03/01, page 108 of 282

3.9 Interrupt Management

Interrupt Management System Calls: Interrupts are controlled by the system calls listed in table
3.19.

Table 3.19 System Calls for Interrupt Management

System State

System Call Description T/D/L/I

ret_int Returns from interrupt handler I

chg_ims Changes interrupt mask level T/I

ref_ims Refers interrupt mask level state T/D/L/I

loc_cpu Disables interrupt and dispatch T/D/L

unl_cpu Enables interrupt and dispatch T/D/L

Interrupt Control Mode and Interrupt Mask Level: The kernel can be used in four interrupt
control modes of the H8S series microcomputers.
The interrupt mask level of each interrupt control mode is shown in tables 3.20 to 3.23. For details
on the interrupt control mode, CCR value, EXR value, or the interrupts that can be accepted, refer
to the hardware manual of the CPU.

Table 3.20 Interrupt Mask Level in Interrupt Control Mode 0

Interrupt Mask CCR EXR

Level (imask) I UI I2 I1 I0 Acceptable Interrupts

1 1 — — — — NMI

0 0 — — — — All interrupts

Note: — indicates 0 or 1.

Table 3.21 Interrupt Mask Level in Interrupt Control Mode 1

Interrupt Mask CCR EXR

Level (imask) I UI I2 I1 I0 Acceptable Interrupts

3 1 1 — — — NMI

2 1 0 — — — Interrupts with control level 1

1 0 1 — — — All interrupts

0 0 0 — — — All interrupts

Note: — indicates 0 or 1.

Rev. 2.0, 03/01, page 109 of 282

Table 3.22 Interrupt Mask Level in Interrupt Control Mode 2

Interrupt Mask CCR EXR

Level (imask) I UI I2 I1 I0 Acceptable Interrupts

7 — — 1 1 1 NMI

6 — — 1 1 0 Interrupts with priority level 7

5 — — 1 0 1 Interrupts with priority level 6
and 7

4 — — 1 0 0 Interrupts with priority level 5 to
7

3 — — 0 1 1 Interrupts with priority level 4 to
7

2 — — 0 1 0 Interrupts with priority level 3 to
7

1 — — 0 0 1 Interrupts with priority level 2 to
7

0 — — 0 0 0 All interrupts

Note: — indicates 0 or 1.

Rev. 2.0, 03/01, page 110 of 282

Table 3.23 Interrupt Mask Level in Interrupt Control Mode 3

Interrupt Mask CCR EXR

Level (imask) I UI I2 I1 I0 Acceptable Interrupts

8 1 1 1 1 1 NMI

7 1 0 — — — Interrupts with control level 1

6 0 0 1 1 0 Interrupts with priority level 7
and control level 0 or 1

5 0 0 1 0 1 Interrupts with priority level 6
and 7 and control level 0 or 1

4 0 0 1 0 0 Interrupts with priority level 5 to
7 and control level 0 or 1

3 0 0 0 1 1 Interrupts with priority level 4 to
7 and control level 0 or 1

2 0 0 0 1 0 Interrupts with priority level 3 to
7 and control level 0 or 1

1 0 0 0 0 1 Interrupts with priority level 2 to
7 and control level 0 or 1

0 0 0 0 0 0 All interrupts

Note: — indicates 0 or 1.

Note: In interrupt control mode 3 with the kernel interrupt mask level set to 7, the kernel
interrupt with control level 1 cannot issue a system call because such an interrupt is
considered to have an kernel interrupt mask level higher than 7; that is, it is masked.

Rev. 2.0, 03/01, page 111 of 282

3.9.1 Return from Interrupt Handler (ret_int) [I]

C-Language Interface:

None (ret_int can be issued by using the extended function #pragma interrupt of C compiler)

Assembler Interface:

JMP @ret_int

Parameters:

None

Return Parameter:

None

Error Codes:

At normal termination: [k] Does not return to the task that issued this system call.

At abnormal termination: [p] If a task portion issues this system call while tasks are
being executed, control is passed to the system termination
routine.

[k] If a task portion issues this system call while the CPU is
being locked, control is passed to the system termination
routine.

Description:

The system call ret_int is used to return control from an interrupt handler. Even when a system
call is issued for an interrupt handler, dispatch does not occur. Task dispatch is delayed until the
system call ret_int has been issued to return control to the task from the interrupt handler.

Note: When issuing this system call, the contents of the stack pointer and registers must be the
same as when the interrupt handler was initiated. Registers to be used by interrupt handler
must be stored and restored by the user.

Rev. 2.0, 03/01, page 112 of 282

3.9.2 Change Interrupt Mask Level (chg_ims) [T/I]

C-Language Interface:

ER ercd = chg_ims (UINT imask);

Assembler Interface:

JSR @chg_ims

Parameter:

UINT imask R1 Interrupt mask value
Interrupt control mode 0: CR_IMS0 to CR_IMS1 (H'0 to H'1)
Interrupt control mode 1: CR_IMS0 to CR_IMS3 (H'0 to H'3)
Interrupt control mode 2: CR_IMS0 to CR_IMS7 (H'0 to H'7)
Interrupt control mode 3: CR_IMS0 to CR_IMS8 (H'0 to H'8)

Return Parameter:

ER ercd R0 Error code

Error Codes:

E_OK H'0000 [k] Normal termination

E_PAR H'ffdf (–H'21) [p] Parameter error
(imask outside the range)

E_CTX H'ffbb (–H'45) [k] Context error (A task portion issued system
call chg_ims while task dispatch was being
disabled or while the CPU was being
locked)

Rev. 2.0, 03/01, page 113 of 282

Description:

The system call chg_ims changes the current interrupt mask to the level specified by imask.
Specify CR_IMSn (n: 0 to 8) for imask according to the interrupt control mode.

For an interrupt mask, interrupts can be inhibited or enabled by directly setting values CCR and
EXR.

For details on interrupt mask value (imask) and the value of CCR or EXR, refer to tables 3.20,
3.21, 3.22, and 3.23.

If an interrupt is masked by this system call, the system makes a transition from the task portion
execution to task-independent portion execution. Therefore, a system call that moves the task to
the WAIT state or system calls dedicated to task portion cannot be issued.

To return execution from the task-independent portion to the task portion, the interrupt mask
specified by this system call must also be cancelled by this system call. If a task switch is
requested during the task-independent portion execution, task switch request is suspended until the
interrupt mask of the task is changed to CR_IMS0(H'0) by this system call (execution returns to
task portion to execute tasks).

Note: If the interrupt mask level is changed to the level exceeding the kernel interrupt mask level
defined in the setup table, do not issue system calls other than the chg_ims system call
which lowers the interrupt mask level equal to or less than the kernel interrupt mask level.
If such system calls are issued, the system may not operate correctly.

Rev. 2.0, 03/01, page 114 of 282

3.9.3 Refer Interrupt Mask Level State (ref_ims) [T/D/L/I]

C-Language Interface:

ER ercd = ref_ims (UINT *p_imask);

Assembler Interface:

JSR @ref_ims

Parameters:

UINT *p_imask --- Start address of the area where the interrupt
mask level is to be returned (C-language
interface)

Return Parameters:

UINT *p_imask --- Start address of the area where the interrupt
mask level was stored (C-language
interface)

--- imask R1 Interrupt mask level (Assembler interface)

ER ercd R0 Error code

Error Code:

E_OK H'0000 [k] Normal termination

Rev. 2.0, 03/01, page 115 of 282

Description:

The system call ref_ims returns the current interrupt mask level.
The value range and contents that can be used as the interrupt mask level depend on the interrupt
control modes.

Rev. 2.0, 03/01, page 116 of 282

3.9.4 Lock CPU (loc_cpu) [T/D/L]

C-Language Interface:

ER ercd = loc_cpu (void);

Assembler Interface:

JSR @loc_cpu

Parameters:

None

Return Parameter:

ER ercd R0 Error code

Error Codes:

E_OK H'0000 [k] Normal termination

E_CTX H'ffbb (–H'45) [p] Context error
(A task-independent portion issued system
call loc_cpu)

Rev. 2.0, 03/01, page 117 of 282

Description:

The system call loc_cpu locks the CPU and inhibits interrupts and task dispatches. To unlock the
CPU and to execute other tasks, the system call unl_cpu must be issued.

The following indicates the characteristics of the while the CPU is being locked.

1. Since tasks cannot be scheduled while the CPU is being locked, tasks other than the current
task cannot enter the RUN state. Tasks are scheduled again after the CPU has been unlocked.

2. While the CPU is being locked, interrupts, having a level equal to or below the kernel interrupt
mask level defined in the setup table, are masked. Interrupts with levels equal to or lower than
this level cannot be accepted.

3. System calls that shifts a task to WAIT state cannot be issued.

Issuing the system call dis_dsp disables task dispatch, and issuing system call loc_cpu while task
dispatch is disabled locks the CPU. The system can make a transition from the dispatch-disabled
state to the CPU-locked state. However, system cannot make a transition from the CPU-locked
state to the dispatch-disabled state. If system call ena_dsp is issued to enable task dispatch while
the CPU is being locked, error code E_CTX is returned. If the system call ext_tsk is issued to
terminate the task that has been monopolizing the CPU, other tasks will be executed again.

If the system call loc_cpu is issued while the CPU is being locked, an error will not occur. In this
case, queuing will not be performed.

Table 3.24 shows system transition. In this table, the numbers in each system call column show
the state number to shift to. For example, if the system call dis_dsp is issued at state number 1
(task-execution state), the task enters state number 2. E_CTX is an error code, which is returned
as a result of issuing the corresponding system call.

Rev. 2.0, 03/01, page 118 of 282

Table 3.24 State Transition by Issuing dis_dsp, ena_dsp, loc_cpu, and unl_cpu

State Current State System Call to Issue

Number System State Interrupt Dispatch dis_dsp ena_dsp loc_cpu unl_cpu

1 Task-execution
state
(TSS_TSK)

Enabled Enabled Shifts to 2 Shifts to 1 Shifts to 3 Shifts to 1

2 Dispatch-
disabled state
(TSS_DDSP)

Enabled Disabled Shifts to 2 Shifts to 1 Shifts to 3 Shifts to 1

3 CPU locked-
state
(TSS_LOC)

Disabled Disabled If issued,
E_CTX is
returned

If issued,
E_CTX is
returned

Shifts to 3 Shifts to 1

Notes: 1. The interrupt mask level used while the CPU is being locked is the kernel interrupt
mask level defined in the setup table. Therefore, interrupts with a level higher than the
kernel interrupt mask level can be accepted while the CPU is being locked.

2. When task dispatch is disabled or the CPU is locked, do not change the interrupt mask
level by directly changing the register value; otherwise normal system operation cannot
be guaranteed.

Rev. 2.0, 03/01, page 119 of 282

3.9.5 Unlock CPU (unl_cpu) [T/D/L]

C-Language Interface:

ER ercd = unl_cpu (void);

Assembler Interface:

JSR @unl_cpu

Parameters:

None

Return Parameter:

ER ercd R0 Error code

Error Codes:

E_OK H'0000 [k] Normal termination

E_CTX H'ffbb (–H'45) [p] Context error
(A task-independent portion issued system
call unl_cpu)

Rev. 2.0, 03/01, page 120 of 282

Description:

The system call unl_cpu permits interrupts and task dispatches; it unlocks the CPU, which was
locked by system call loc_cpu, to execute other tasks. Then task dispatch (scheduling) is
performed.

The system call unl_cpu is usually used to unlock the CPU to execute other tasks; however, the
same process can be performed by issuing the system call while task dispatch is being disabled.

If the system call unl_cpu is issued while tasks are being executed, an error will not occur. In that
case, queuing will not be performed.

Rev. 2.0, 03/01, page 121 of 282

3.10 Memory Pool Management (Fixed-Size Memory Pool)

Fixed-Size Memory Pool System Calls: Fixed-size memory pools are controlled by the system
calls listed in table 3.25.

Table 3.25 System Calls for Fixed-Size Memory Pool Control

System State

System Call Description T/D/L/I

get_blf Gets fixed-size memory block T

pget_blf Polls and gets fixed-size memory block T/D/L/I

tget_blf Gets fixed-size memory block with timeout function T

rel_blf Releases fixed-size memory block T/D/L

ref_mpf Refers fixed-size memory pool state T/D/L/I

Fixed-Size Memory Pool Specifications: The fixed-size memory pool specifications are listed in
table 3.26.

Table 3.26 Fixed-Size Memory Pool Specifications

Item Description

Maximum number of fixed-size memory pools
that can be defined

255

Fixed-size memory pool ID 1 to 255 (including undefined memory pools)

Number of memory blocks 65535

Memory block size 2 to 65530

Memory block wait queue The queue is managed on a first-in first-out
(FIFO) basis and multiple tasks can wait for a
fixed-size memory block

Rev. 2.0, 03/01, page 122 of 282

Task-Execution Waiting and Release: Table 3.27 lists the causes of task-execution waiting and
release.

Table 3.27 Causes of Task-Execution Waiting and Release

Cause of Waiting Time of Release

When the current task
enters the WAIT state

get_blf or tget_blf
system call

(1) When a memory block is acquired

(2) When the specified timeout period (tmout)
has passed (tget_blf)

(3) When system call rel_wai is issued

Rev. 2.0, 03/01, page 123 of 282

3.10.1 Get Fixed-Size Memory Block (get_blf) [T]

Poll and Get Fixed-Size Memory Block (pget_blf) [T/D/L/I]

Get Fixed-Size Memory Block with Timeout (tget_blf) [T]

C-Language Interface:

ER ercd = get_blf (VP *p_blf, ID mpfid);

ER ercd = pget_blf (VP *p_blf, ID mpfid);

ER ercd = tget_blf (VP *p_blf, ID mpfid, TMO tmout);

Assembler Interface:

JSR @get_blf

JSR @pget_blf

JSR @tget_blf

Parameters:

VP *p_blf --- Start address of the area where the start
address of the memory block is to be
returned (C-language interface)

ID mpfid R1 Fixed-size memory pool ID

TMO tmout ER4 Timeout specification <tget_blf>

Return Parameters:

VP *p_blf --- Start address of the area where the start
address of the memory block was stored (C-
language interface)

--- blf ER2/R2 Memory block start address (Assembler
interface)

ER ercd R0 Error code

Rev. 2.0, 03/01, page 124 of 282

Error Codes:

E_OK H'0000 [k] Normal termination

E_RSFN H'ffec (–H'14) [p] Unsupported function (Timer driver and
timeout function cannot be used) (tget_blf)

E_PAR H'ffdf (–H'21) [p] Parameter error
(tmout ≤ –2) (tget_blf)

E_ID H'ffdd (–H'23) [p] Invalid ID number
(mpfid ≤ 0, mpfid > Number of memory
pools defined)

E_NOEXS H'ffcc (–H'34) [p] Undefined
(Fixed-size memory pool indicated by
mpfid does not exist)

E_CTX H'ffbb (–H'45) [p]

[k]

Context error (A task-independent portion
issued system call get_blf or tget_blf)
(A task portion issued system call get_blf or
tget_blf while task dispatch was being
disabled or while the CPU was being
locked, or, in system call tget_blf, a type
other than TMO_POL (0) was specified for
parameter tmout.)

E_RLWAI H'ffaa (–H'56) [k] WAIT state was forcibly cancelled
(rel_wai system call was issued in WAIT
state)

E_TMOUT H'ffab (–H'55) [k] Polling failed (pget_blf)
Timeout (tget_blf)

Rev. 2.0, 03/01, page 125 of 282

Description:

These system calls get one fixed-size memory block from the fixed-size memory pool indicated by
mpfid. After the start address of the acquired memory block is stored in the area specified by
p_blf, task execution continues.

With system call get_blf or tget_blf, if a memory block is available in the fixed-size memory pool
specified by mpfid, the start address of a memory block is stored in the area specified by p_blf and
the task terminates normally. If there is a task already waiting for a memory block, or if no task is
waiting but there is no memory block available in the fixed-size memory pool, the task having
issued the system call get_blf or tget_blf is placed in the task wait queue until a memory block can
be acquired. The queue is managed on a first-in first-out (FIFO) basis.

With system call pget_blf, if a memory block is available in the memory pool specified by mpfid,
the start address of a memory block is stored in the area specified by p_blf and the task terminates
normally. If a task is already waiting to get a memory block, or if no task is waiting but there is no
memory block available in the fixed-size memory pool, error code E_TMOUT is returned.

The parameter tmout of system call tget_blf specifies the timeout period. If a positive number is
specified for the parameter tmout, the error code E_TMOUT is returned when the timeout period
has passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the task will not enter the WAIT state, and if a memory
block is available in the fixed-size memory pool specified by mpfid, the start address of the
memory block is stored in the area specified by p_blf and the task terminates normally. If a task is
already waiting to get a memory block, or if no task is waiting but there is no memory block
available in the fixed-size memory pool, error code E_TMOUT is returned. In other words, the
same operation as for the system call pget_blf will be performed.

If tmout = TMO_FEVR (–1) is specified, timeout watch is not performed. In other words, the
same operation as for the system call get_blf will be performed.

After the memory block has been acquired, the size of the fixed-size memory pool free space will
decrease by the size calculated in the following expression:

Decrease in size = Block size specified at memory pool creation + 4 bytes

If system call tget_blf is used, the timer driver must be installed in the system and (USE) must be
specified for the timeout function in the setup table. For details on installing the timer driver and
specifying the timeout function in the setup table, refer to section 6.2.1, Defining the Constant
Definition Field.

Rev. 2.0, 03/01, page 126 of 282

3.10.2 Release Fixed-Size Memory Block (rel_blf) [T/D/L]

C-Language Interface:

ER ercd = rel_blf (ID mpfid, VP blf);

Assembler Interface:

JSR @rel_blf

Parameters:

ID mpfid R1 Fixed-size memory pool ID

VP blf ER2/R2 Start address of memory block

Return Parameter:

ER ercd R0 Error code

Error Codes:

E_OK H'0000 [k] Normal termination

E_PAR H'ffdf (–H'21) [p] Invalid address
(blf is 0 or an odd address)

E_ID H'ffdd (–H'23) [p] Invalid ID number
(mpfid ≤ 0, mpfid > Number of memory
pools defined)

E_NOEXS H'ffcc (–H'34) [p] Undefined
(Fixed-size memory pool indicated by
mpfid does not exist)

E_CTX H'ffbb (–H'45) [p] Context error (A task-independent portion
issued system call rel_blf)

EV_ILBLK H'ffle (–H'e2) [k] Invalid memory block
(blf is other than the memory pool area or
blf has already been returned)

Rev. 2.0, 03/01, page 127 of 282

Description:

The system call rel_blf returns the memory block start address indicated by blf to the fixed-size
memory pool indicated by mpfid.

The start address of the memory block acquired by the system call get_blf, pget_blf, or tget_blf is
specified by parameter blf.

If there is a task waiting to get a memory block, the return address is passed to the task at the head
of the task wait queue, releasing it from WAIT state.

Rev. 2.0, 03/01, page 128 of 282

3.10.3 Refer Fixed-Size Memory Pool Status (ref_mpf) [T/D/L/I]

C-Language Interface:

ER ercd = ref_mpf (T_RMPF *pk_rmpf, ID mpfid);

Assembler Interface:

JSR @ref_mpf

Parameters:

ID mpfid R1 Fixed-size memory pool ID

T_RMPF *pk_rmpf ER2/R2 Start address of the packet where the
fixed-size memory pool status is to be
returned

Return Parameters:

T_RMPF *pk_rmpf ER2/R2 Start address of the packet where the
fixed-size memory pool status is stored

ER ercd R0 Error code

Rev. 2.0, 03/01, page 129 of 282

Packet Structure:

typedef struct t_rmpf{

VP exinf; 0/0 4/2 Extended information

BOOL_ID wtsk; +4/+2 2/2 Wait task ID

INT frbcnt; +6/+4 2/2 Number of blocks of memory space
available

INT mpfcnt; +8/+6 2/2 Number of blocks of the memory pool

INT blfsz; +10/+8 2/2 Fixed-size memory block size (Number
of bytes)

}T_RMPF;

Error Codes:

E_OK H'0000 [k] Normal termination

E_PAR H'ffdf (–H'21) [p] Invalid address
(pk_rmpf is 0 or an odd address)

E_ID H'ffdd (–H'23) [p] Invalid ID number
(mpfid ≤ 0, mpfid > Number of memory
pools defined)

E_NOEXS H'ffcc (–H'34) [p] Undefined
(Fixed-size memory pool indicated by
mpfid does not exist)

Rev. 2.0, 03/01, page 130 of 282

Description:

The system call ref_mpf refers to the status of the fixed-size memory pool indicated by mpfid and
stores and returns extended information (exinf), wait task ID (wtsk), number of blocks of memory
space available (frbcnt), number of blocks of memory pool (mpfcnt), and fixed-size memory block
size (blfsz) to the area specified by pk_rmpf. A 12-byte (advanced mode) or 10-byte (normal
mode) RAM area is required for the area specified by pk_rmpf. If there is no task waiting for the
specified memory pool cannot provide the memory pool immediately, FALSE (0) is returned as a
wait task ID.

If multiple tasks are waiting for the target memory pool, the task ID of the task at the head of the
wait queue is returned as the wait task ID.

Rev. 2.0, 03/01, page 131 of 282

3.11 Memory Pool Management (Variable-Size Memory Pool)

Variable-Size Memory Pool System Calls: Variable-size memory pools are controlled by the
system calls listed in table 3.28.

Table 3.28 System Calls for Variable-Size Memory Pool Control

System State

System Call Description T/D/L/I

get_blk Gets variable-size memory block T

pget_blk Polls and gets variable-size memory block T/D/L/I

tget_blk Gets variable-size memory block with timeout T

rel_blk Returns variable-size memory block T/D/L

ref_mpl Refers variable-size memory pool status T/D/L/I

Variable-size Pool Specifications: The variable-size memory pool specifications are listed in
table 3.29.

Table 3.29 Variable-Size Memory Pool Specifications

Item Description

Maximum number of variable-size memory
pools that can be defined

255

Variable-size memory pool ID 1 to 255

Memory block wait queue The queue is managed on a first-in first-out
(FIFO) basis and multiple tasks can wait for
variable-size memory blocks

Rev. 2.0, 03/01, page 132 of 282

Task-Execution Waiting and Release: Table 3.30 lists the causes of task-execution waiting and
release.

Table 3.30 Causes of Task-Execution Waiting and Release

Cause of Waiting Time of Release

When the current task
enters the WAIT state

get_blk or tget_blk
system call

(1) When a memory block is acquired

(2) When the specified timeout period (tmout)
has passed (tget_blk)

(3) When system call rel_wai is issued

Fragmentation of Variable-Size Memory Pool: Repeated acquisition and return of memory
blocks from the variable-size memory pool causes fragmentation of the available memory area in
the memory pool, thus resulting in a smaller maximum available contiguous memory area. When
there is a memory block that is not to be returned, the size of the maximum available contiguous
memory area will never be larger than a certain size because such a block behaves as a barrier.
However, the kernel cannot de-fragment memory area. To avoid this problem, get a memory block
that is not to be returned right after a memory pool is created, that is, before any memory block to
be returned is acquired.

Rev. 2.0, 03/01, page 133 of 282

3.11.1 Get Variable-Size Memory Block (get_blk) [T]

Poll and Get Variable-Size Memory Block (pget_blk) [T/D/L/I]

Get Variable-Size Memory Block with Timeout (tget_blk) [T]

C-Language Interface:

ER ercd = get_blk (VP *p_blk, ID mplid, UW blksz);

ER ercd = pget_blk (VP *p_blk, ID mplid, UW blksz);

ER ercd = tget_blk (VP *p_blk, ID mplid, UW blksz, TMO tmout);

Assembler Interface:

JSR @get_blk

JSR @pget_blk

JSR @tget_blk

Parameters:

VP *p_blk --- Start address of the area where the start
address of the memory block is to be
returned (C-language interface)

ID mplid R1 Variable-size memory pool ID

UW blksz ER2 Memory block size (Number of bytes)

TMO tmout ER4 Timeout specification <tget_blk>

Return Parameters:

VP *p_blk --- Start address of the area where the start
address of the memory block was stored (C-
language interface)

--- blk ER2/R2 Memory block start address (Assembler
interface)

ER ercd R0 Error code

Rev. 2.0, 03/01, page 134 of 282

Error Codes:

E_OK H'0000 [k] Normal termination

E_RSFN H'ffec (–H'14) [p] Unsupported function (Timer driver and
timeout function cannot be used) (tget_blk)

E_PAR H'ffdf (–H'21) [p] Parameter error
(blksz is 0 or and odd address,
mplsz < blksz)
(tmout ≤ –2) (tget_blk)

E_ID H'ffdd (–H'23) [p] Invalid ID number
(mplid ≤ 0,
mplid > Number of memory pools defined)

E_NOEXS H'ffcc (–H'34) [p] Undefined
(Variable-size memory pool indicated by
mplid does not exist)

E_CTX H'ffbb (–H'45) [p] Context error (A task-independent portion
issued system call get_blk or tget_blk)

[k] (A task portion issued system call get_blk
or tget_blk while task dispatch was being
disabled or while the CPU was being
locked, or, in system call tget_blk , a type
other than TMO_POL (0) was specified for
parameter tmout.)

E_RLWAI H'ffaa (–H'56) [k] WAIT state was forcibly cancelled
(rel_wai system call was issued in WAIT
state)

E_TMOUT H'ffab (–H'55) [k] Polling failed (pget_blk)
Timeout (tget_blk)

Rev. 2.0, 03/01, page 135 of 282

Description:

These system calls get memory blocks if the variable-size memory pool specified by mplid has the
memory size specified by blksz. After the start address of the acquired memory block is stored in
the area specified by p_blk, task execution continues. Note that the size of the variable-size
memory pool specified by mplid must be equal to or more than (blksz + 16) bytes for the task to
get the memory block because additional 16 bytes are required for OS management purposes.

With system calls get_blk and tget_blk, if the variable-size memory pool specified by mplid has
the memory size specified by blksz, the start address of the memory block is stored in the area
specified by p_blk and the task terminates normally. Note that the size of the variable-size
memory pool specified by mplid must be equal to or more than (blksz + 16) bytes for the task to
get the memory block because additional 16 bytes are required for OS management purposes. If
there is a task already waiting for a memory block, or if no task is waiting but the available
memory size is less than the size specified by blksz (which means that the available memory size
is less than (blksz + 16) bytes), the task having issued the system call get_blk or tget_blk is placed
into the task queue until memory can be acquired. The queue is managed on a first-in first-out
(FIFO) basis.

With system call pget_blk, if the variable-size memory pool specified by mplid has the memory
size specified by blksz, the start address of the memory block is stored in the area specified by
p_blk and the task terminates normally. Note that the size of the variable-size memory pool
specified by mplid must be equal to or more than (blksz + 16) bytes for the task to get the memory
block because additional 16 bytes are required for OS management purposes. If there is a task
already waiting for a memory block, or if no task is waiting but the available memory size is less
than the size specified by blksz (which means that the available memory size is less than (blksz +
16) bytes), error code E_TMOUT is returned.

The parameter tmout specified by system call tget_blk specifies this wait period. If a positive
number is specified for parameter tmout, error code E_TMOUT is returned when the timeout
period has passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the task will not enter the WAIT state, and if the variable-
size memory pool specified by mplid has the memory size specified by blksz, the start address of
the memory block is stored in the area specified by p_blk and the task terminates normally. Note
that the size of the variable-size memory pool specified by mplid must be equal to or more than
(blksz + 16) bytes for the task to get the memory block because additional 16 bytes are required
for OS management purposes. If there is a task already waiting for a memory block, or if no task is
waiting but the available memory size is less than the size specified by blksz (which means that
the available memory size is less than (blksz + 16) bytes), error code E_TMOUT is returned. In
other words, the same operation as for the system call pget_blk will be performed.

If tmout = TMO_FEVR (–1) is specified, timeout watch is not performed. In other words, the
same operation as for the system call get_blk will be performed.

Rev. 2.0, 03/01, page 136 of 282

After the memory block has been acquired, the size of the variable-size memory pool free space
will decrease by the size calculated in the following expression:

Decrease in size = blksz + 16 bytes

If system call tget_blk is used, the timer driver must be installed in the system and (USE) must be
specified for the timeout function in the setup table. For details on installing the timer driver and
specifying the timeout function in the setup table, refer to section 6.2.1, Defining the Constant
Definition Field.

Rev. 2.0, 03/01, page 137 of 282

3.11.2 Release Variable-Size Memory Block (rel_blk) [T/D/L]

C-Language Interface:

ER ercd = rel_blk (ID mplid, VP blk);

Assembler Interface:

JSR @rel_blk

Parameters:

ID mplid R1 Variable-size memory pool ID

VP blk ER2/R2 Start address of memory block

Return Parameter:

ER ercd R0 Error code

Error Codes:

E_OK H'0000 [k] Normal termination

E_PAR H'ffdf (–H'21) [p] Invalid address
(blk is 0 or odd address)

E_ID H'ffdd (–H'23) [p] Invalid ID number
(mplid ≤ 0, mplid > Number of memory
pools defined)

E_NOEXS H'ffcc (–H'34) [p] Undefined
(Variable-size memory pool indicated by
mplid does not exist)

E_CTX H'ffbb (–H'45) [p] Context error (A task-independent portion
issued system call rel_blk)

EV_ILBLK H'ffle (–H'e2) [k] Invalid memory block
(blk is other than the memory pool area or
blk has already been returned)

Rev. 2.0, 03/01, page 138 of 282

Description:

The system call rel_blk returns the memory block start address specified by blk to the variable-
size memory pool specified by mplid.

If there is a task waiting to get a memory block from the variable-size memory pool indicated by
mplid, and if the task at the head of the queue can get a memory block due to a memory block
being returned to the memory pool, then that memory block start address is assigned to the task,
releasing the task from the WAIT state.

If multiple tasks are waiting to get a memory block from the variable-size memory pool indicated
by mplid, and if multiple tasks of the queue can get a memory block due to a memory block being
returned to the memory pool, then block start addresses are assigned to tasks in the queue starting
from the task at the head of the queue, releasing them from the WAIT state until the requested
memory size can no longer be acquired.

The parameter blk specifies the start address of the memory block acquired by the system call
get_blk, pget_blk, or tget_blk.

If blk is not the start address, or is the start address of the memory block that has already been
returned, EV_ILBLK is returned as an error code.

Rev. 2.0, 03/01, page 139 of 282

3.11.3 Refer Variable-Size Memory Pool Status (ref_mpl) [T/D/L/I]

C-Language Interface:

ER ercd = ref_mpl (T_RMPL *pk_rmpl, ID mplid);

Assembler Interface:

JSR @ref_mpl

Parameters:

ID mplid R1 Variable-size memory pool ID

T_RMPL *pk_rmpl ER2/R2 Start address of the packet where the
variable-size memory pool status is to be
returned

Return Parameters:

T_RMPL *pk_rmpl ER2/R2 Start address of the packet where the
variable-size memory pool status is stored

ER ercd R0 Error code

Rev. 2.0, 03/01, page 140 of 282

Packet Structure:

typedef struct t_rmpl{

VP exinf; 0/0 4/2 Extended information

BOOL_ID wtsk; +4/+2 2/2 Wait task ID

UW frsz; +6/+4 4/4 Total size of available memory area

UW maxsz; +10/+8 4/4 Maximum memory area available

UW mplsz; +14/+12 4/4 Memory pool size

}T_RMPL;

Error Codes:

E_OK H'0000 [k] Normal termination

E_PAR H'ffdf (–H'21) [p] Invalid address
(pk_rmpl is 0 or on odd address)

E_ID H'ffdd (–H'23) [p] Invalid ID number
(mplid ≤ 0, mplid > Number of memory
pools defined)

E_NOEXS H'ffcc (–H'34) [p] Undefined
(Variable-size memory pool indicated by
mplid does not exist)

Rev. 2.0, 03/01, page 141 of 282

Description:

The system call ref_mpl refers to the status of the memory pool indicated by mplid and stores and
returns extended information (exinf), wait task ID (wtsk), current free memory area total size
(frsz), maximum free memory space size (maxsz), and memory pool size (mplsz) to the area
specified by pk_rmpl.

An 18-byte (advanced mode) or 16-byte (normal mode) RAM area is required for the area
specified by pk_rmpl.

The current total size of memory means the total size of free memory areas scattered in the
memory pool (fragmented). The maximum free memory space means the maximum size of
consecutive free memory areas scattered in the memory pool (fragmented).

Note that the maximum free memory space contains kernel management area (16 bytes), which is
required each time a system call get_blk, pget_blk, or tget_blk is issued. In other words, it means
the largest blksz that can be acquired immediately by issuing system call get_blk, pget_blk, or
tget_blk.

If there is no task waiting to get a memory block, FALSE (0) is returned as a wait task ID.

If multiple tasks are waiting to get a memory block-size from the variable-size memory pool, the
task ID of the task at the head of the queue is returned as the wait task ID.

If the specified memory pool cannot provide the memory block immediately, FALSE (0) is
returned as a maximum memory space.

Rev. 2.0, 03/01, page 142 of 282

3.12 Time Management

Time Management System Calls: The time management function controls the system clock and
cyclic handlers. Time is managed by the system calls listed in table 3.31 and cyclic handlers are
controlled by the system calls listed in table 3.32.

Table 3.31 System Calls Related to the System Clock Control

System State

System Call Description T/D/L/I

set_tim Sets system clock T/D/L/I

get_tim Gets system clock T/D/L/I

Table 3.32 System Calls for Cyclic Handler Control

System State

System Call Description T/D/L/I

act_cyc Controls cyclic handler activity T/D/L/I

ref_cyc Refers cyclic handler state T/D/L/I

Time Management Specifications: The system clock specifications is listed in table 3.33 and the
cyclic handler specifications are listed in table 3.34.

Table 3.33 System Clock Specifications

Item Description

Clock value Signed 48 bits

Clock initial value (the value at initialization) H'000000000000

Table 3.34 Cyclic Handler Specifications

Item Description

Maximum number of cyclic handlers that can be
defined

255

Cyclic handler specification number 1 to 255

Cyclic handler initial activation state TCY_ON (1) or TCY_OFF (0) (whichever
specified in the setup table)

Cyclic time interval H'1 to H'7FFFFFFF

Rev. 2.0, 03/01, page 143 of 282

Operating the Time Management: When using the time management function, the timer driver
must be created and installed into the system every time a hardware timer interrupt occurs.

The following are performed in the kernel timer interrupt processing.

1. System clock is modified (+1).

2. All cyclic handlers that reached the cycle time are initiated and executed.

3. Timeout processing is performed by issuing system calls with timeout function.

These processes from 1 to 3 are performed with the timer interrupt level masked. Among these
processes, 2 and 3 may overlap for multiple tasks and handlers. In that case, the processing time
becomes very long and results in the following defects.

• Delay of the response to interrupts

• Delay of system clocks

To avoid these problems, the following steps must be taken:

• Do not shorten the timer interrupt cycle excessively.

• The timer handler processing time must be as short as possible.

• The timer handler cycle and the timeout value specified by the timeout system call must be set
to a value as large as possible. For example, when the cycle time of a cyclic handler is 1 and
the handler’s processing time takes more time than the timer cycle time, that cyclic handler
will be repeated infinitely, and the system will be hung.

Time Watch Method: The kernel manages the time watch for timeout system calls, cyclic
handlers, and time management by the system clock using the relative time from the time of
request. Therefore, the previous time watch request is not affected even if the system clock has
been modified by the system call set_tim.

Rev. 2.0, 03/01, page 144 of 282

3.12.1 Set System Clock (set_tim) [T/D/L/I]

C-Language Interface:

ER ercd = set_tim (SYSTIME *pk_tim);

Assembler Interface:

JSR @set_tim

Parameters:

SYSTIME *pk_tim ER2/R2 Start address of the packet where the current
time data is indicated

Return Parameter:

ER ercd R0 Error code

Packet Structure:

typedef struct systime {

H utime; 0 2 Current time data (upper)

UH mtime; +2 2 Current time data (middle)

UH ltime; +4 2 Current time data (lower)

}SYSTIME;

Error Codes:

E_OK H'0000 [k] Normal termination

E_RSFN H'ffec (–H'14) [p] Unsupported function (Timer function cannot
be used)

E_PAR H'ffdf (–H'21) [p] Invalid address
(pk_tim is 0 or an odd address)

Invalid time specification
(Value specified by pk_tim is negative)

Rev. 2.0, 03/01, page 145 of 282

Description:

The system call set_tim changes the current system clock retained in the system to a value
specified by pk_tim. The number of bits allocated to the system clock is 48 (i.e., 16-bit utime, 16-
bit mtime, and 16-bit ltime).

Note that the timeout period of a task and a timer handler (cyclic handler) that is being monitored
cannot be modified with this system call. Therefore, a timeout error cannot occur until a certain
amount of time has passed since the system call set_tim was issued.

Rev. 2.0, 03/01, page 146 of 282

3.12.2 Get System Clock (get_tim) [T/D/L/I]

C-Language Interface:

ER ercd = get_tim (SYSTIME *pk_tim);

Assembler Interface:

JSR @get_tim

Parameters:

SYSTIME *pk_tim ER2/R2 Start address of the packet where the current
time data is to be returned

Return Parameters:

SYSTIME *pk_tim ER2/R2 Start address of the packet where the current
time data is stored

ER ercd R0 Error code

Packet Structure:

typedef struct systime {

H utime; 0 2 Current time data (upper)

UH mtime; +2 2 Current time data (middle)

UH ltime; +4 2 Current time data (lower)

}SYSTIME;

Error Codes:

E_OK H'0000 [k] Normal termination

E_RSFN H'ffec (–H'14) [p] Unsupported function (Timer function cannot
be used)

E_PAR H'ffdf (–H'21) [p] Invalid address
(pk_tim is 0 or an odd address)

Rev. 2.0, 03/01, page 147 of 282

Description:

The system call get_tim reads the current system clock and returns it to the 6-byte RAM area
indicated by pk_tim. The number of bits allocated to the system clock is 48 (i.e., 16-bit utime, 16-
bit mtime, and 16-bit ltime).

Rev. 2.0, 03/01, page 148 of 282

3.12.3 Activate Cyclic Handler (act_cyc) [T/D/L/I]

C-Language Interface:

ER ercd = act_cyc (HNO cycno, UINT cycact);

Parameters:

HNO cycno R1 Cyclic handler number

UINT cycact R2 Activation state of the cyclic handler

Return Parameter:

ER ercd R0 Error code

Error Codes:

E_OK H'0000 [k] Normal termination

E_RSFN H'ffec (-H'14) [p] Unsupported function (Timer function
cannot be used)

E_PAR H'ffdf (-H'21) [p] Parameter error (cycact is illegal)
cycno out of range:
cycno ≤ 0, cycno > Number of cyclic
handlers defined

E_NOEXS H'ffcc (–H'34) [p] Undefined
(Cyclic handler specified by cycno is
undefined)

Rev. 2.0, 03/01, page 149 of 282

Description:

The system call act_cyc changes the activation state of the cyclic handler indicated by the
parameter cycno to the state indicated by the parameter cycact. The parameter cycact specifies the
handler activation state (table 3.35) in the following format.

cycact:= (TCY_OFF || TCY_ON) [| TCY_INI]

Table 3.35 Handler Activation State (cycact)

cycact Code Description

TCY_OFF H'0000 The cyclic handler is not initiated

TCY_ON H'0001 The cyclic handler is initiated

TCY_INI H'0002 The cyclic handler count is initialized (reset)

If TCY_OFF is specified for cycact, the cyclic handler activation state is turned off. Therefore, the
cyclic handler will not be initiated even after a specified (cycle) time has passed. However, even
when the activation state is off, a cycle time count is performed.

If TCY_ON is specified for cycact, the cyclic handler activation state is turned on. Since a cycle
time count is performed even when the activation state is off, caution is needed because the length
of time after the activation state has been turned on until the cyclic handler is initiated is
undefined. However, when cycact = (TCY_ON | TCY_INI) is specified, the cyclic handler is
initiated after the specified time has passed.

Rev. 2.0, 03/01, page 150 of 282

3.12.4 Refer Cyclic Handler State (ref_cyc) [T/D/L/I]

C-Language Interface:

ER ercd = ref_cyc (T_RCYC *pk_rcyc, HNO cycno);

Assembler Interface:

JSR @ref_cyc

Parameters:

HNO cycno R1 Cyclic handler specification number

T_RCYC *pk_rcyc ER2/R2 Start address of the packet where the
cyclic handler state is to be returned

Return Parameters:

T_RCYC *pk_rcyc ER2/R2 Start address of the packet where the
cyclic handler state is stored

ER ercd R0 Error code

Packet Structure:

typedef struct t_rcyc{

VP exinf; 0/0 4/2 Extended information

CYCTIME lfttim; +4/+2 4/4 Remaining time until the cyclic
handler is initiated

UINT cycact; +8/+6 2/2 Cyclic handler activation state

FP cychdr; +10/+8 4/2 Cyclic handler address

CYCTIME cyctim; +14/+10 4/4 Cyclic timer interval

}T_RCYC;

Rev. 2.0, 03/01, page 151 of 282

Error Codes:

E_OK H'0000 [k] Normal termination

E_RSFN H'ffec(-H'14) [p] Unsupported function (Timer driver
cannot be used)

E_PAR H'ffdf (-H'21) [p] Invalid address
(pk_rcyc is 0 or an odd address)

Parameter error
(cycno ≤ 0, cycno > Number of cyclic
handlers defined)

E_NOEXS H'ffcc (–H'34) [p] Undefined
(Cyclic handler specified by cycno is
undefined)

Rev. 2.0, 03/01, page 152 of 282

Description:

The system call ref_cyc reads the cyclic handler state indicated by cycno and returns the extended
information (exinf), remaining time until the cyclic handler is initiated (lfttim), cyclic handler
activation state (cycact), cyclic handler address (cychdr), and cyclic timer interval (cyctim) in the
area specified by the parameter pk_rcyc.

Note that an 18-byte (advanced mode) or a 14-byte (normal mode) RAM area must be defined for
the area specified by the parameter pk_rcyc.

For the cyclic handler activation state (specified by cycact), only the information TCY_ON
(H'0001) and TCY_OFF (H'0000) is returned; the information of TCY_INI (H'0002) is not
returned.

Rev. 2.0, 03/01, page 153 of 282

3.13 System Management

3.13.1 get_ver (Get Version Information) [T/D/L/I]

C-Language Interface:

ER ercd = get_ver (T_VER *pk_ver);

Assembler Interface:

JSR @get_ver

Parameters:

T_VER *pk_ver ER2/R2 Start address of the packet where version
information is to be returned

Return Parameters:

T_VER *pk_ver ER2/R2 Start address of the packet where version
information is stored

ER ercd R0 Error code

Packet Structure:

typedef struct t_ver {

UH maker; 0 2 Manufacturer

UH id; +2 2 Identification number

UH spver; +4 2 Specification version

UH prver; +6 2 Product version

UH prno [4]; +8 8 Product management information

UH cpu; +16 2 CPU information

UH var; +18 2 Variation descriptor

} T_VER;

Rev. 2.0, 03/01, page 154 of 282

Error Codes:

E_OK H'0000 [k] Normal termination

E_PAR H'ffdf (–H'21) [p] Invalid address
(pk_ver is 0 or an odd address)

Description:

The system call get_ver reads information on the version of the kernel currently in use and returns
it to the 20-byte RAM area indicated by pk_ver.

The following information is returned to the packet indicated by pk_ver.

(maker)

maker: Manufacturer of this product

The HI2000/3 maker value is H'000a.

(id)

id: Number to identify the OS or VLSI type

The HI2000/3 id value is H'0005.

(spver)

Number to identify the TRON specification series

µITRON specifications: H'5

Version number of the TRON specifications which the product is based

Ver 3.02: H'302

The HI2000/3 spver value is H'5302.

(prver)

This indicates the version number.

Ver 1.0: H'0100

The HI2000/3 prver value is H'0100.

Rev. 2.0, 03/01, page 155 of 282

(prno)

This indicates product management information and the product number.

The HI2000/3 prno values are all H'0000.

(cpu)

Same value as that indicated by (maker)

Hitachi, Ltd.: H'0a

The processor executing the OS based on the µITRON specifications

H8S/2600: H'26

H8S/2000: H'20

The HI2000/3 cpu value is H'0a26 or H'0a20.

Rev. 2.0, 03/01, page 156 of 282

(var)

Variation descriptor var shows the following:

Kernel specification levels

µITRON level R specifications: B'0100

Reserved. Always read as B'0.

Single processor: B'0

Virtual memory support

Not supported: B'0

MMU support

Supported: B'0

Reserved. Always read as B'0.

File specification level

Not supported: B'000

Reserved. Always read as B'0000.

The HI2000/3 var value is H'4000.

Rev. 2.0, 03/01, page 157 of 282

Section 4 Debugging Extension

4.1 Overview

The HI2000/3 Debugging Extension (DX) (hereinafter referred to as HI2000/3 DX) is used by
installing it in the Hitachi Debugging Interface (HDI) and the HI2000/3 system.

4.1.1 Displaying and Manipulating Objects

Select a window from the HDI [View] menu to display and manipulate the HI2000/3 DX objects.
Table 4.1 lists the menu items added to the HDI [View] menu by the HI2000/3 DX.

Table 4.1 Menu Items Added to the HDI [View] Menu

View Menu Status Bar

Task List Open Task List

Trace System Open System Trace

Event Flags Open Event Flag

Variable Memory Pool Open Variable Memory

Fixed Memory Pool Open Fixed Memory

Semaphores Open Semaphore

Mailboxes Open Mailbox

Cyclic Handler Open Cyclic Handler

Rev. 2.0, 03/01, page 158 of 282

Selecting a window in the HDI [View] menu displays the object state.

There are two types of windows: List-type windows, which are generally used, and hierarchical-
type windows. An example of a list-type window is shown in figure 4.1, and an example of a
hierarchical-type window is shown in figure 4.2.

Figure 4.1 Example of the Display of an Object (List-Type Window)

Figure 4.1 shows the Tasks window which displays the Task ID, Task Name, Priority (current task
priority), and Status (current task state).

Figure 4.2 Example of the Display of an Object (Hierarchical-Type Window)

Figure 4.2 shows the Mailboxes window which displays all states of the mailbox (task ID at the
head of the wait queue or the number of messages). This window can also display the message
queue state hierarchically or the message addresses.

A request to manipulate an object can be made from an object window through a dialog box, as
shown in figure 4.3. To open a dialog box, first open the pop-up menu by clicking the right button
of the mouse in a window and select the menu to open a dialog box. The HI2000/3 DX can only
make requests to the kernel through the debug daemon; only the kernel can manipulate objects.

Rev. 2.0, 03/01, page 159 of 282

Figure 4.3 shows an example of object manipulation display.

Figure 4.3 Example of Requesting Object Manipulation

Figure 4.3 is called the Modify Task Status dialog box and can modify the task state. The Task ID
or status can be modified by the drop down list of the Task ID and Status combo box.

4.1.2 Results of Object Manipulation

The results of object manipulation are shown as the object state in each window.

Each window is updated in the following cases:

• When [Update] is selected from the pop-up menu by clicking the right button of the mouse in
each window.

• When the user system stops (at a breakpoint or due to other causes).

Rev. 2.0, 03/01, page 160 of 282

4.1.3 Displaying the Register Values

Register values of a task can be displayed by selecting the [View Context] option in the task list
pop-up menu. Figure 4.4 shows an example of the register value display.

Figure 4.4 [Task Context Registers] Window

Figure 4.4 shows the Task Context Registers window which can be used to edit the task register
values while the program is stopped.

Rev. 2.0, 03/01, page 161 of 282

4.1.4 Displaying the HI2000/3 DX System Call Trace Information

All trace information concerning the executed system calls can be displayed by acquiring the
information from the kernel trace buffer (figure 4.5). The latest information is displayed in the line
cycle: −0.

Figure 4.5 [System Trace] Window

Figure 4.5 shows the System Trace window which can display the system calls issued from tasks
and the return values as trace information.

4.1.5 Online Help

Context-sensitive help system is available for the standard Microsoft Windows operating
system. Refer to the online help for details on the HI2000/3 DX operation, windows, and dialog
boxes. To open the online help, either press the [F1] key when the HI2000/3 DX window is active,
or click the [Help] button in a dialog box.

Rev. 2.0, 03/01, page 162 of 282

4.2 List of Functions

4.2.1 HI2000/3 DX Menus

Table 4.2 shows the HI2000/3 DX menus.

Table 4.2 HI2000/3 DX Menus

Menu Bar Pull-down Menu Function

View Task List Opens [Tasks] window

Trace System Opens [System Trace] window

Event Flags Opens [Event Flags] window

Variable Memory Pool Opens [Variable Length Memory Pool] window

Fixed Memory Pool Opens [Fixed Length Memory Pool] window

Semaphores Opens [Semaphore] window

Mailboxes Opens [Mailboxes] window

Cyclic Handler Opens [Cyclic Handler] window

Rev. 2.0, 03/01, page 163 of 282

4.2.2 Windows and Dialog Boxes

Table 4.3 shows the list of windows and dialog boxes. Refer to the online help for details. To open
the online help, press the [F1] key when the HI2000/3 DX window is active or click the [Help]
button in the dialog box.

Table 4.3 HI2000/3 DX Windows and Dialog Boxes

Classification Window and Dialog Box Function

Task [Tasks] window Displays the state of all tasks

[Task Modification] dialog box Modifies task state

Event flag [Event Flag] window Displays the state of all event flags

[Event Flag Modification] dialog box Modifies event flag state

Semaphore [Semaphore] window Displays or modifies the state of all
semaphores

Mailbox [Mailboxes] window Displays the state of all mailboxes

[Mailbox Post message] dialog box Sends messages to mailboxes

Fixed-length
memory pool

[Fixed Length Memory Pool] window Displays the state of all fixed-length
memory pools

Variable-length
memory pool

[Variable Length Memory Pool] window Displays the state of all variable-length
memory pools

Timer [Timer] window Displays the system clock value

[Time Modification] dialog box Modifies the system clock value

Trace [System Trace] window Displays trace information

Task context [Task Context Local Variables] window Displays the task-context local variables

[Task Context Registers] window Displays the task-context register values

[Edit Value] dialog box Modifies the task-context local variables

[Registers] dialog box Modifies the task-context register values

Cyclic handler [Cyclic Handler] window Displays the state of the cyclic handler

[Activate Cyclic] dialog box Modifies the state of the cyclic handler
(active or non-active)

Rev. 2.0, 03/01, page 164 of 282

4.3 Notes

4.3.1 Setting up the E6000 Emulator

To update a window during program execution, set up the E6000 as follows:

1. Display the configuration dialog box by selecting [Configure Platform...] from the [Setup]
menu.

2. Select the [Enable read and write on the fly] check box in the configuration dialog box so that
memory can be accessed during program execution.

4.3.2 Displaying the HI2000/3 DX Window

When displaying the HI2000/3 DX window for the first time after HDI initiation, it may take
about one minute since information required to display the HI2000/3 DX window must be
acquired from the user system.

4.3.3 Realtime Operation of the User System

The HI2000/3 DX operates by referring to or updating the memory of the user system. If the
following functions are performed during the user system operation, the memory will be accessed,
and as a result, the user system will not operate in realtime.

• When the HI2000/3 DX window has been opened or updated

• When the [OK] button has been clicked in the dialog box

Since the debug daemon operates cyclically in the user system, the throughput of the user system
decreases slightly (less than when performing the above items) even when the HI2000/3 DX
functions are not used.

4.3.4 Displaying Correct Data

The HI2000/3 DX directly reads the memory contents of the user system when referring to the
object status. Therefore, correct information may not be displayed in the following cases:

• Display during program execution

When the memory is read while the kernel (program) is being executed

• Display before HI2000/3 initiation

When the HI2000/3 initiation is not completed before system initialization handler is initiated

Rev. 2.0, 03/01, page 165 of 282

4.3.5 Trace

A trace function to trace HI2000/3 system calls must be defined to display the HI2000/3 DX
[System Trace] window. For details on defining a trace function, refer to section 6.2.6, Defining
Trace Functions.

4.3.6 User System Memory

The memory size used at HI2000/3 DX shipment is shown in table 4.4. The kernel memory size
(ROM area) may increase at a maximum of 2.9 bytes by the system calls linked by the debug
daemon.

Table 4.4 Memory Size Used by the User System

Memory Type Used Memory Size

ROM area (only the debug daemon) Maximum of 500 bytes

RAM area Maximum of 200 bytes

4.3.7 Correspondence to the HDI Session

The HI2000/3 DX does not correspond to the HDI session. The HI2000/3 DX setting is not stored
even when the session is stored.

4.3.8 Loading Load Modules

Keep the HI2000/3 DX windows open when loading load modules after using the HI2000/3 DX.

Rev. 2.0, 03/01, page 166 of 282

4.4 Debug Daemon

Installing the Debug Daemon:

The debug daemon must be installed in the system to use the HI2000/3 DX. The debug daemon
operates as a cyclic handler.

To install the debug daemon, specify -define=DX="Action" as an assembly option when
assembling the CPU initialization routine (nnnnzcpu.src) or the setup table (nnnnzsup.src).

1. Modifying the Setup table

The cyclic time interval of the debug daemon can be obtained by the following formula. The
cyclic time interval must be changed according to the user system.

Debug daemon cycle = cyclic time interval x hardware timer cycle

The cyclic time interval of the debug daemon must be approximately 50 ms. For the provided
timer driver, the hardware timer cycle is 10 ms, and the cyclic time interval of the debug
daemon is set as 5 ms in the setup table.

For details on modifying the setup table, refer to section 6.2.5, Defining Cyclic Handlers.

2. Modifying the CPU Initialization Routine

If the user has created a new CPU initialization routine and is not using the provided one, the
debug daemon initial processing must be added to the new one. The following shows how to
modify the new CPU initialization routine.

 Import _HI_DEAMON_IHI

 Add subroutine call instruction (jsr @_HI_DEAMON_INI) to the CPU initialization
routine before jumping to the kernel initial processing (jmp @_H_2S_INIT)

The sample setup table (nnnnzsup.src) and the sample CPU initialization routine (nnnnzcpu.src)
have already been modified.

Rev. 2.0, 03/01, page 167 of 282

4.5 Tutorial

This section explains the operation of the HI2000/3 DX using the sample program.

Before starting the tutorial program, a load module must be created. The provided sample files
have already been modified as shown in Installing the Debug Daemon in section 4.4. Therefore, a
load module shown in the sample program can be created by configuring a system by adding
DX=Action to the define option of the HEW workspace project. Refer to section 8, Load Module
Creation and create a load module.

The sample program assumes the use of the H8S/2655 advanced mode. Use the debugging
extension by replacing the H8S/2655 mode with one suitable for the user environment.

In the sample program, there are two tasks: TASKA and TASKB. TASKA sends a message to
mailbox 4 (issues system call snd_msg), receives a message from mailbox 3 (issues system call
rcv_msg), and enters sleep state. TASKB receives a message from mailbox 4 (issues system call
rcv_msg), sends a message to mailbox 3 (issues system call snd_msg), and enters sleep state.

Figure 4.6 shows the sample processing flow.

TASKA

Issues system call
snd_msg

TASKB

Mailbox 4

Mailbox 3

ReceiveSend

SendReceive
Issues system call
rcv_msg

Issues system call
slp_tsk

Issues system call
rcv_msg

Issues system call
snd_msg

Issues system call
slp_tsk

Figure 4.6 Sample Program Processing

This example uses the HDI. For details on the HDI operation, refer to the Hitachi Debugging
Interface User's Manual or the E6000 Emulator User's Manual of the H8S series microcomputer
used.

Rev. 2.0, 03/01, page 168 of 282

4.5.1 Executing a Sample Program

1. Invoke the HDI by selecting the [HDI for E6000 H8S] icon. The HDI initial display as shown
in figure 4.7 appears.

Figure 4.7 HDI Initial Display

Rev. 2.0, 03/01, page 169 of 282

2. Select [Load Program…] from the [File] menu and open the [Open] dialog box. Then load
application load module hi26a.abs under directory hi26a to the emulator read/write area.
Here, the program does not operate since the kernel is not initiated.

Figure 4.8 [Open] Dialog Box

Rev. 2.0, 03/01, page 170 of 282

3. Execute the program by selecting [Go Reset] from the [Run] menu. Pressing the STOP button
after a few seconds initializes the system and opens the HDI source window.

4. Open the [Tasks] window by selecting [Task List] from the [View] menu to check the task
state. The task is executed according to the task definition table in the 2655asup.src . The
first two tasks are in the DORMANT state and the next three tasks are in the NON-EXISTENT
state.

Figure 4.9 [Tasks] Window

Rev. 2.0, 03/01, page 171 of 282

4.5.2 Starting a Task

1. Set a breakpoint before executing the program. Open the [Open] dialog box by selecting
[Source...] from the [View] menu and open file task.c . The source code window of the two
DORMANT tasks, TASKA and TASKB, appears. Set a breakpoint at the snd_msg line of
TASKA.

Figure 4.10 Source Code Display

Rev. 2.0, 03/01, page 172 of 282

2. Initiate TASKA (task ID1) by opening the [Modify Task Status] dialog box (figure 4.11). The
display does not change until the program is executed. Execute the program by selecting [Go]
from the [Run] menu. The program stops when it reaches a breakpoint.

Figure 4.11 Invoking Task

3. Check the operation of step 2. Open the [System Trace] window by selecting [Trace System]
window (figure 4.12) from the [View] menu. The system trace information of up to four
entries before termination is displayed, where cycle: −0 is the latest trace information. Table
4.5 describes the trace contents.

Figure 4.12 [System Trace] Window

Table 4.5 Description of Trace Contents

Cycle Description

−3 System is in the idle state before TASKA (task ID1) starts.

−2 ista_tsk is called from the task-independent portion.

−1 The error code of the system call ista_tsk.

−0 Shows the return attribute for TASKA (task ID1), indicating that the task has started.

Rev. 2.0, 03/01, page 173 of 282

4.5.3 Mailboxes and Messages

1. Check mailbox state by selecting [Mailboxes] from the [View] menu and opening the
[Mailboxes] window (figure 4.13).

Figure 4.13 [Mailboxes] Window

2. Send a message to mailbox 4. Open the [Open] dialog box by selecting [Source...] from the
[View] menu and open file task.c . The source code window for the two DORMANT tasks,
TASKA and TASKB, is displayed. Step over the ercd=snd_msg(4,(T_MSG*)&pk_msg) line
of TASKA by selecting [Step Over] from the [Run] menu (figure 4.14).

Figure 4.14 Step-Over Execution of Program

Rev. 2.0, 03/01, page 174 of 282

3. As a result, one entry appears in mailbox 4.

Figure 4.15 [Mailboxes] Window (Confirmation of Result)

Click + with the right button of the mouse to expand this mailbox. The start address
H’00FFFB52 of a message is displayed.

Figure 4.16 [Mailboxes] Window (Expanded Display)

4. To check program operation, open [System Trace] window by selecting [Trace System] from
the [View] menu (figure 4.17). In the window, trace information is displayed, indicating that a
message is sent (system call snd_msg is issued) at cycle –1, and a system call response (return
value) is received at cycle –0.

Figure 4.17 [System Trace] Window

Rev. 2.0, 03/01, page 175 of 282

4.5.4 Examples during System Operation

Sections 4.2.1 to 4.2.3 shows examples when the system was not operating. This section describes
examples during system operation.

1. To display [Tasks] and [Mailboxes] windows, open the [Tasks] window by selecting [Task
List] from the [View] menu. Similarly, open the [Mailboxes] window by selecting [Mailboxes]
from the [View] menu.

2. To execute the program, select [Go] from the [Run] menu.

3. To check task state, select the [Update] option from the [Task List] window pop-up menu.
TASKA (task ID1) is in the WAIT state waiting for a message from mailbox 3 (figure 4.18).

Figure 4.18 [Tasks] Window after the [Update] Option is Selected

4. To check the mailbox state, select the [Update] option from the [Mailboxes] window pop-up
menu. TASKA (task ID1) is the wait task for mailbox 3.

Figure 4.19 [Mailboxes] Window after the [Update] Option is Selected

Rev. 2.0, 03/01, page 176 of 282

5. To check system trace results, select [Trace System] from the [View] menu and open the
[System Trace] window. The display shows that TASKA (task ID1) called rcv_msg and the
system entered the idle state.

Figure 4.20 [System Trace] Window

6. Invoke TASKB (task ID2) and send a message to mailbox 3. Select TASKB (task ID2) in the
[Task List] window, and select [Edit Properties] from the pop-up menu. The [Modify Task
Status] dialog box appears (figure 4.21). Select [Start] from the [Status] box, and invoke the
task. TASKB (task ID2) will send a message to mailbox 3.

In the sample program, when TASKB (task ID2) sends a message to mailbox 3, TASKA (task
ID1) receives it, and both tasks enters sleep state.

Figure 4.21 [Modify Task Status] Dialog Box

Rev. 2.0, 03/01, page 177 of 282

7. To check the results, select the [Update] option from the [Task List] window pop-up menu,
and update the window contents. The display shows that sending and receiving the message is
completed and that TASKA (task ID1) and TASKB (task ID2) entered sleep state
(figure 4.22).

Figure 4.22 [Tasks] Window after the [Update] Option is Selected

In the [System Trace] window, system call slp_tsk issued to TASKA and TASKB and the
system entering the idling state is displayed (figure 4.23).

Figure 4.23 [System Trace] Window

Rev. 2.0, 03/01, page 178 of 282

Rev. 2.0, 03/01, page 179 of 282

Section 5 Creating Application Programs

5.1 Creating a User Program

User programs can be written in C language or an assembly language.

The following show the programs created.

• Tasks: programs divided into units that run independently and in parallel

• Handlers and Routines: programs that are invoked when interrupts occur (CPU initialization
routine, system termination routine, timer initialization routine, system initialization handler,
system idling routine)

Programs must be created according to the user system. Figure 5.1 shows an outline of kernel
initial processing.

CPU initialization routine

Setup information is incorrect
(when the parameter check function
is installed, the setup information
is checked)

System idling routine Task

System initialization handler

Timer initialization routine

System termination routine

Interrupt
- Interrupt handler
- Undefined interupt handler
- Timer interrupt handler
 (when timer function is used)
- Cyclic handler
 (when timer function is used)

Kernel initial processing

Executed
in a
kernel
interrupt
mask
level

Yes

Yes

Yes

Yes

Timer initialization routine
is defined

Start task is defined

System initialization handler
is defined

No

No

No

No

Figure 5.1 Kernel Initial Processing

Rev. 2.0, 03/01, page 180 of 282

5.2 Tasks

5.2.1 Creating Tasks

Figure 5.2 shows an example of a task. A task must be terminated by issuing system call ext_tsk
at the end of the task. If the operation returns from the task start function to the caller, normal
system operation cannot be guaranteed.

Programs written in C language can be used in normal mode or advanced mode according to the
CPU option or environment variable specification .

#include “hi2000.h”

void task(INT stacd)

INT stacd;

{

ID tskid; /* task ID */

ER ercd; /* error code */

 ercd = wup_tsk(tskid); /* system calls that can be */

 /* issued from the task portion */

 ext_tsk(); /* system calls that can be */

 /* issued from the task portion */

}

Figures 5.2 Task Example in C Language

When a task execution request (event) is issued, the kernel will control the execution of tasks
based on their state in the system and on the priority assigned to them and performs task
processing. A priority with a smaller value indicates a higher priority.

Rev. 2.0, 03/01, page 181 of 282

1. Resources Initialized at Task Initiation

When a task is initiated, resources related to the task are initialized, as shown in table 5.1.
System call sta_tsk or ista_tsk is used for task initiation.

Table 5.1 Resources Initialized at Task Initiation

Item Initialization Specification

Program counter (PC) The task start address specified at the task definition

Condition code register (CCR) Interrupt mask cancellation (0)

Extend register (EXR) Interrupt mask cancellation (0)

Stack pointer (ER7) Task stack pointer specified at the task definition

R0 (written in assembly language)/
first parameter (written in C
language)

A random task initiation code (stacd) specified by the sta_tsk
system call

General register (E0, ER1 to ER6)
and multiply and accumulate
register (MACH and MACL)

Undefined (the multiply and accumulate registers (MACH and
MACL) are for the 2600 CPU)

Task priority The initial task priority specified at the task definition

Task wakeup request (wupcnt) 0

Task suspend request Cannot be nested

2. Pre-Termination Processing

Resources acquired with the system calls must be returned before a task enters the
DORMANT state. Resources and related system calls are listed in table 5.2. System call
ext_tsk or ter_tsk is used to place a task in the DORMANT state.

Table 5.2 Resources and System Calls

Resource Specification
System Calls to
Acquire Resource

System Calls to
Return Resource

Semaphore count Number of resources acquired
by P instruction

wai_sem, preq_sem,
or twai_sem

sig_sem

Memory block Acquired from the fixed-size
memory pool

get_blf, pget_blf, or
tget_blf

rel_blf

Acquired from the variable-
size memory pool

get_blk, pget_blk, or
tget_blk

rel_blk

Rev. 2.0, 03/01, page 182 of 282

3. Monopolizing the CPU and Masking Interrupts during Task Execution

a. Monopolizing the CPU by issuing the loc_cpu system call

To monopolize the CPU during task execution, lock the CPU by using the loc_cpu system
call. Unlock the CPU by issuing the unl_cpu system call to execute tasks again. The CPU-
locked state is different from the task-execution state in the following respects.

• System calls dedicated to task portion

System calls that shift a task into the WAIT state cannot be issued.

• System calls dedicated to the task-independent portion

System calls dedicated to the task-independent portion cannot be issued.

• Task switch delay

Even if task switching becomes necessary while the CPU is being locked, it will be
delayed until the CPU is unlocked by issuing a unl_cpu system call.

• Interrupt masking

Interrupts having an interrupt level equal to or lower than the kernel interrupt mask
level, which is defined in the setup table, are masked.

b. Monopolizing the CPU by issuing the chg_ims system call

Masking interrupts during task execution shifts the execution from task portion to the task-
independent portion. Use system call chg_ims to change the interrupt mask level. If
interrupts are masked during task execution, task dispatch will not occur while interrupts
are masked and the task can monopolize the CPU. Since the system is placed in the task-
independent portion while interrupts are being masked during task execution, it is different
from the task-execution state in the following respects.

• System calls dedicated to the task portion

System calls dedicated to the task portion cannot be issued. If the kernel library has a
parameter check function, error code E_CTX is returned. If the kernel library does not
have a parameter check function, normal system operation cannot be guaranteed.

• System calls dedicated to the task-independent portion

If system calls dedicated to the task-independent portion are issued, normal system
operation cannot be guaranteed.

• Task switch delay

Even if task switching becomes necessary while interrupts are being masked, it will be
delayed until the interrupt mask level is changed to 0 by issuing the chg_ims system
call.

• Interrupt masking

Do not issue a system call other than chg_ims when interrupts are masked at a level
higher than the kernel interrupt mask level defined in the setup table.

Rev. 2.0, 03/01, page 183 of 282

5.2.2 Defining Tasks

Define the task start address, initial priority, task stack size, task initial state, and extended
information at task definition. For details on task definition, refer to section 6.2.2, Defining Task.

For details on defining tasks, refer to section 6.2.2, Defining Task.

5.3 Interrupt Handlers

5.3.1 Interrupt Handler Description

When an interrupt occurs, control is passed to the interrupt handler without kernel intervention.
Therefore, the interrupt handler must store the register contents when an interrupt occurs, and
restore them when it has finished. The interrupt handler operates as follows.

1. The contents of the registers to be used by the interrupt handler are stored

a. The stack pointer value is saved

b. The stack pointer is moved to the interrupt-handler stack area (not necessary if the interrupt
handler does not use the stack)

c. The register contents are pushed onto the stack

2. The interrupt is processed

3. The contents of the registers used by the interrupt handler are restored

a. The register contents are restored from the stack

b. The stack pointer is restored (not necessary when the interrupt handler does not use the
stack)

4. A ret_int system call is issued (when the interrupt mask level of the interrupt handler is equal
to or lower than that of the kernel) or the RTE instruction is executed (when the interrupt mask
level of the interrupt handler is higher than that of the kernel)

An interrupt function can be written in C language by using interrupt function (#pragma interrupt)
of the H8S, H8/300 series C compiler.

The #pragma interrupt directive declares the function to be used as an interrupt handler. In this
example, the inthdrxx function is declared as an interrupt handler. The stack switching and
interrupt function termination are specified.

The stack switching specifies the stack area to be used for interrupt handler processing. The
initialization stack pointer is specified by sp = <address>. In this case, a stack area dedicated to
each interrupt level must be specified.

The interrupt function termination specification specifies how to return from the interrupt handler.
In the interrupt function termination specification system call ret_int or instruction RTE must be
executed at the end of the handler. If the interrupt handler has a level equal to or lower than the
kernel interrupt mask level, write sy = $ret_int to execute the jmp @ret_int instruction at the end

Rev. 2.0, 03/01, page 184 of 282

of the handler, which will call the ret_int system call. If the interrupt handler has a level higher
than the kernel interrupt mask level, nothing needs to be written.

For details, refer to the H8S, H8/300 Series C/C++ Compiler User's Manual. Programs written in
C language can be used in normal mode or advanced mode according to the CPU option or
environment variable specification.

Figure 5.3 shows an example of an interrupt handler.

#include "hi2000.h"

extern VH hi_intstkxx[];
static const VP P_intstkxx = (VP)&hi_intstkxx[60];

#pragma interrupt (inthdrxx(sp=P_intstkxx, sy=$ret_int))
void inthdrxx(void) /* The data type of the interrupt handler*/
 /* function is void */
{
ID tskid; /* Task ID */
ER ercd; /* Error code */
UINT imask;
 :
 :
 ercd = chg_ims(imask); /* System calls dedicated to task- */
 /* independent portion */
 :
 :
 ercd = iwup_tsk(tskid); /* System calls dedicated to task- */
 /* independent portion */
 :
 :
}

Figure 5.3 Interrupt Handler Example in C Language

Rev. 2.0, 03/01, page 185 of 282

Table 5.3 lists the conditions for interrupt handler processing.

Table 5.3 Conditions for Interrupt Handler Processing

Item Description

Interrupt
mask

The interrupt handler is initiated when interrupts are masked at the specified
interrupt mask level.

Usable
registers

ER0 to ER6, MACH, and MACL (MACH and MACL are for the 2600 CPU only)
can be used.
Must be saved in stacks at the interrupt handler initiation and later restored at
handler termination.

Stack pointer Set to the same value as that at initiation when control is returned to the point
where the interrupt handler is initiated.

Usable
system calls

System calls dedicated to task-independent portion.
No system call can be issued from the NMI interrupt handler or an interrupt
handler whose interrupt mask level is higher than that of the kernel.

Usable stack
area

When using the stack, reserve a stack area for the interrupt handler at system
configuration and switch the stack at interrupt handler initiation.
Interrupt handlers having the same interrupt level can share a stack area.

Termination Execution is terminated by the ret_int system call. Restore the stack value at
termination. Use the RTE instruction to terminate an NMI interrupt handler or an
interrupt handler whose interrupt mask level is higher than that of the kernel.

When creating interrupt handlers, keep in mind the following precautions.

1. Guarantee of interrupt mask levels

The kernel supports all four interrupt control modes.

The interrupt control bits of the CCR register and EXR register determine the interrupt mask
level.

In interrupt handlers, the processing for an interrupt mask level differs depending on the
interrupt control mode.

a. Interrupt control mode 0

In this mode, the kernel controls the interrupt mask level using only the I bit of the CCR
register. When the interrupt handler is initiated, the I bit of the CCR register is set to 1.
Do not clear the I bit in the interrupt handler; otherwise, the kernel system operation cannot
be guaranteed.

Rev. 2.0, 03/01, page 186 of 282

b. Interrupt control mode 1

In this mode, the kernel controls the interrupt mask level using the I and UI bits of the CCR
register. When the interrupt handler is initiated, the I and UI bits of the CCR register are
set to 1.

For the interrupt handler with control level 0, clear the UI bit and change the interrupt
mask level so that interrupts with control level 1 can be accepted. Do not clear the I bit of
the CCR register for the interrupt handler with control level 1; otherwise, the kernel system
operation cannot be guaranteed. The interrupt mask levels cannot be changed in the
interrupt handler which has a control level of 1.

c. Interrupt control mode 2

In this mode, the kernel controls the interrupt mask level using the I0 to I2 bits of the EXR
register, where the I and UI bits of the CCR register are ignored. When the interrupt
handler is initiated, the I0 to I2 bits of the EXR register are set to the mask level value of
the corresponding interrupt.

d. Interrupt control mode 3

In this mode, the kernel controls the interrupt mask level using the I and UI bits of the CCR
register and the I0 to I2 bits of the EXR register. When the interrupt handler is initiated,
the I and UI bits of the CCR register and I0 to I2 bits of the EXR register are set to 1. For
the interrupt handler with control level 0, clear the I and UI bits of the CCR register and
change the interrupt mask level so that interrupts with a higher priority can be accepted.
Do not change the EXR register in the interrupt handler; otherwise, the kernel system
operation cannot be guaranteed.

2. Kernel Interrupt Mask Level

The kernel includes a critical section, where it executes while masking interrupts to prevent
generating contradictory internal information. Any interrupt generated during the critical
section execution is not accepted until the kernel leaves the critical section. However, only
interrupts having an interrupt level higher than the kernel interrupt mask level are immediately
accepted even during the critical section execution.

Notes: 1. Interrupt handlers having an interrupt level higher than the kernel interrupt mask level
are not allowed to issue a system call. If any system call is issued, normal system
operation cannot be guaranteed. Execute the RTE instruction to return from an
interrupt handler having an interrupt level higher than the kernel interrupt mask level.

2. If the interrupt control mode is 3 and the kernel interrupt mask level is 7, system calls
cannot be issued from an interrupt handler whose control level is 1.

Rev. 2.0, 03/01, page 187 of 282

3. Notes on Interrupts

a. The user can create interrupt handlers with few restrictions, but if their execution time is
too long, system throughput may drop and system response time may be degraded.

b. The kernel interrupt mask level can be determined by defining it in the setup table. If the
interrupt handler has an interrupt level higher than the kernel interrupt mask level, or if it is
the case of an NMI handler, a system call must not be issued. Do not issue a system call
from the interrupt handler having an interrupt level higher than the kernel interrupt mask
level; otherwise, normal system operation cannot be guaranteed.

c. Use the ret_int system call to return from an interrupt handler having an interrupt level
equal to or lower than the kernel interrupt mask level. Do not use a system call other than
the ret_int system call; otherwise, normal system operation cannot be guaranteed.

Rev. 2.0, 03/01, page 188 of 282

5.3.2 Defining Interrupt Handlers

To define interrupt handlers, set the start address of an interrupt handler in the appropriate
interrupt vector table. Control can be passed to the interrupt handler without kernel intervention.
For details on the cause of interrupts, refer to the refer to the target MCU hardware manual.

Figure 5.4 shows the relationship between the vector table and the interrupt handler.

Vector number
Interrupt handler start address
Interrupt handler start address

Interrupt handler start address

Vector table

n

ret_int or rte instruction

Interrupt
processing

Interrupt handler for
vector number n

Figure 5.4 Relationship between the Vector Table and the Interrupt Handler

For details on interrupt handler definition, refer to section 7, Creating the Interrupt Vector Table.

5.4 Undefined Interrupt Handlers

5.4.1 Creating Undefined Interrupt Handlers

An undefined interrupt handler is a program that is executed when an unexpected interrupt occurs
in the system. The provided undefined interrupt handler program will call the kernel undefined
interrupt processing (jsr∆@_H_ilint) as a subroutine and terminate the system. For details on
undefined interrupt handlers at system termination, refer to section 5.9, System Termination
Routine, and the CPU Hardware Manual.

An undefined interrupt handler can be created in the same way as an interrupt handler.

5.4.2 Defining Undefined Interrupt Handlers

For details on defining undefined interrupt handlers, refer to section 7, Creating the Interrupt
Vector Table.

The sample undefined interrupt handler is sample\nnnnzsmp\nnnnzili.src.

Rev. 2.0, 03/01, page 189 of 282

5.5 Cyclic Handlers

5.5.1 Creating Cyclic Handlers

A cyclic handler is a task-independent portion and initiated at a specific cycle time.

After a specified cycle time has passed, a cyclic handler is initiated by the timer interrupt handler.

A cyclic handler must store the register contents when it is initiated, and restore them when it has
finished. The cyclic handler operates as follows.

1. The contents of the registers to be used by the cyclic handler are stored

a. The register contents are pushed onto the stack (Use the timer interrupt handler stack)

2. The cyclic handler is processed

3. The contents of the registers used by the cyclic handler are restored

a. The register contents are restored from the stack

4. The RTS instruction is executed

A cyclic handler can be written in C language by using the extended function (#pragma asm) of
the H8S, H8/300 series C compiler. Programs written in C language can be used in normal mode
or advanced mode according to the CPU option or environment variable specification.

Specify the output of the assembly program using option code=asemode at compilation. To output
an assembly program, it is recommended that the user create a cyclic handler C source program in
a different file from the other C source program files.

Rev. 2.0, 03/01, page 190 of 282

Figure 5.5 shows an example of an cyclic handler.

#include “hi2000.h”

void cyc_hdr (void)

#pragma asm

 stm.l (er0-er1),@-sp ;: Saves er0 and er1 in stack

 bsr cychdr_main:8 ;: Calls function

;

 ldm.l @sp+,(er0-er1) ;: Restores er0 and er1

 rts ;: Executes the rts instruction

cychdr_main;

#pragma endasm

{

 /* Cyclic handler processing */

}

Figure 5.5 Cyclic Handler Example for C Language

Rev. 2.0, 03/01, page 191 of 282

Table 5.4 lists the conditions for cyclic handler processing.

Table 5.4 Conditions for Cyclic Handler Processing

Item Description

Interrupt mask Cyclic handlers are initiated when interrupts are masked
at the level of the timer interrupt mask level.

Usable registers ER0 to ER6, MACH, and MACL (MACH and MACL are
for the 2600 CPU only) can be used.
Must be saved in stacks at the cyclic handler initiation
and later restored at the handler termination.
Save and restore ER0 and ER1 when writing the cyclic
handler in C language as shown in figure 5.5.

Stack pointer Uses the timer interrupt handler stack.
Must be restored at the handler termination.

Usable system calls System calls dedicated to task-independent portion.

Usable stack area Add the stack size used by the cyclic handler to the
timer interrupt handler stack size during system
configuration.

Returning method Processing must be terminated by the RTS instruction.
Restore the stack value at termination.

Rev. 2.0, 03/01, page 192 of 282

Cyclic handlers are executed while interrupts are being masked at the timer interrupt mask level.
If a specified cycle time has passed for multiple cyclic handlers, they will be executed while
interrupts are masked at the timer interrupt mask level. Therefore, the following may occur.

• Delay in the system clock

• The system response may be degraded for interrupts with a level equal to or lower than the
timer interrupt mask level

To avoid this,

• Do not specify an extremely short timer interrupt cycle

• Keep the processing of the cyclic handler as short as possible

• Keep the cycle of the cyclic handler as large as possible

If the cycle time of a cyclic handler is 1, and the handler processing time takes more time than the
timer cycle time, the cyclic handler will be repeated infinitely, and the system will be hung.

5.5.2 Defining Cyclic Handlers

The kernel controls the cycle time count and the execution of cyclic handlers according to the
information specified in the setup table. Cyclic handlers can be defined by defining them in the
setup table. To define a cyclic handler, use the example of the cyclic handler definition field of
the setup table.

For details on cyclic handler definition, refer to section 6.2.5, Defining Cyclic Handlers.

5.6 CPU Initialization Routine

5.6.1 Creating CPU Initialization Routines

The CPU initialization routine is a program to initialize the CPU before the kernel is initiated.
The CPU initialization routine operates as follows.

1. The stack pointer is specified

2. The CPU is initialized

3. The call of debug daemon initial processing (when the debugging extension (DX) is used)

4. Control jumps (jmp @_H_2S_INIT) to the kernel initial processing (_H_2S_INIT)

The sample CPU initialization routine is written in assembly language.

Rev. 2.0, 03/01, page 193 of 282

A CPU initialization routine can be written in C language by using the sample programs (include
files directory name: 2600) of the H8S, H8/300 series C compiler. Programs written in C
language can be used in normal mode or advanced mode according to the CPU
option/environment variable specification.

Figure 5.6 shows an example of a CPU initialization routine.

#include "2655s.h" /* Specifies H8S/2655 include file */

void H_2S_INIT(void); /* Declares kernel initialization
processing */

#ifdef DX

 void HI_DEAMON_INI(void); /* Declares daemon initialization
processing */

#endif

#pragma stacksize 0x012 /* Declares stack session */

#pragma entry H_2S_CPUINI /* Declares entry function */

void H_2S_CPUINI(void)

{

SYSCR.BIT.INTM = 3; /* Sets interrupt control mode */

MSTPCR.BIT.B13 = 1; /* Clears module stop bit */

 #ifdef DX

 HI_DEAMON_INI(); /* Calls daemon initialization processing
*/

 #endif

H_2S_INIT(); /* Jumps to kernel initialization
processing */

}

Figure 5.6 CPU Initialization Routine Example

Rev. 2.0, 03/01, page 194 of 282

Table 5.5 lists the conditions for CPU initialization routine processing.

Table 5.5 Conditions for CPU Initialization Routine Processing

Item Description

Interrupt mask After the CPU has been reset, all interrupts including the
NMI are masked.

Usable registers All.

Stack pointer The stack pointer must be specified at the start
instruction of this processing.
Example: > mov.l #xx : 32,sp
If an NMI interrupt is generated before the stack pointer
has been initialized, normal operation cannot be
guaranteed.

Usable system calls Since the kernel is not yet initiated, no system calls can
be used.

Usable stack area Reserve the stack area if necessary at system
configuration and specify the stack at system initiation.

Returning method Processing must be terminated by jumping to the kernel
initiation processing.
jmp @_H_2S_INIT

5.6.2 Defining CPU Initialization Routines

To define a CPU initialization routine, specify the label H_2S_CPUINI as the start address of the
CPU initialization routine. The label must be declared with the export directive.

The CPU initialization routines are defined in the reset vector (vector numbers 0 and 1).

• Vector number 0: Power-on reset

• Vector number 1: Manual reset

Note: Some H8S series microcomputers may not have a manual reset function. In such a case,
simply define a power-on reset. For details, refer to the target MCU hardware manual of
the H8S series microcomputer used.

For details on CPU initialization routine definition, refer to section 7, Creating the Interrupt
Vector Table.

The sample CPU initialization routine is sample\nnnnzsmp\nnnnzcpu.src.

Rev. 2.0, 03/01, page 195 of 282

5.7 Timer Initialization Routine

The timer initialization routine is necessary together with the timer interrupt handler when using
the time-management function. The timer driver consists of two modules: a timer initialization
routine and a timer interrupt handler. For details, refer to appendix C, Device Driver.

5.8 System Initialization Handlers

5.8.1 Creating System Initialization Handlers

The system initialization handler is a program called from the kernel initialization process.

The system initialization handler can initialize resources and hardware before starting the start
task.

The system initialization handler operates as follows.

1. The contents of the registers to be used by the system initialization handler is stored

a. The register contents are pushed onto the stack (Guarantee the register contents according
to the rules on guaranteeing register contents in C language programs (functions).)

b. The OS stack is used to store the register contents.

2. The system initialization handler is processed

a. The number of resources managed by the semaphore is initialized

3. The contents of the registers used by the system initialization handler is restored

a. The register contents are restored from the stack

4. RTS instruction is executed

Rev. 2.0, 03/01, page 196 of 282

A system initialization handler can be written in C language by using the C compiler extended
function (#pragma asm) of the H8S, H8/300 series C compiler.

Programs written in C language can be used in normal mode or advanced mode according to the
CPU option/environment variable specification.

Specify the output of the assembly program using option code=asemode at compilation. To output
an assembly program, it is recommended that the user creates a system initialization handler C
source program in a different file from the other C source program files.

Figure 5.7 shows an example of a system initialization handler.

#include “hi2000.h”

void HIPRG_SYSINI(void) ;: Label name HIPRG_SYSINI

{

 /* System initialization handler processing*/

}

Figure 5.7 System Initialization Handler Written in C Language

Rev. 2.0, 03/01, page 197 of 282

Table 5.6 lists the conditions for system initialization handler processing.

Table 5.6 Conditions for System Initialization Handler Processing

Item Description

Interrupt mask Initiated in interrupt mask state (kernel interrupt mask
level)
Do not change the interrupt mask during system
initialization handler execution.

Usable registers The registers guaranteed in the C language programs
(functions) can be used.

Stack pointer Must be restored when control is returned to the kernel.

Usable system calls Except for ret_int, system calls that can be issued from
the task-independent portion can be used.

Usable stack area OS stack area is used. Add the stack size to be used by
the system initialization handler to the OS stack area.
The system initialization stack size must be calculated
by using the table to calculate the interrupt handler stack
area.

Returning method Processing must be terminated by the RTS instruction.
Restores the stack value at termination.

5.8.2 Defining the System Initialization Handler

The kernel executes the system initialization handler by using the value specified in label
_HIPRG_SYSINI as the start address of the system initialization handler.

To define the system initialization handler, specify label _HIPRG_SYSINI as the start address of
the system initialization routine. The label must be declared with the export directive.

To cancel the definition of a system initialization routine, label _HIPRG_SYSINI must be defined
as 0 by an equate directive and must be declared with the export directive.

The provided system initialization handlers are not defined; label _HIPRG_SYSINI is defined as 0
by an equate directive and is declared with the export directive.

The sample system initialization handler is sample\nnnnzsmp\nnnnzuse.src.

Rev. 2.0, 03/01, page 198 of 282

5.9 System Termination Routines

5.9.1 Creating System Termination Routines

The system termination routine is a program that is initiated when a fatal (or critical) error is
generated during system execution. The provided system termination routines enter an infinite
loop while interrupts are masked at the kernel interrupt mask level.

When the system termination routine is initiated, error information is pushed onto the stack. Refer
to the error information in the stack to create a program for each error. There are two stack states
for the system termination routine.

Figure 5.8 shows the error information that is pushed onto the stack at an system termination.

Stack state A Stack state B
(Interrupt control
modes 0 and 1)

Stack state B
(Interrupt control
modes 2 and 3)

SP

*2

ercd

tskid

vecno
+0

+1

+2

+4

*2

vecno

tskid

CCR

PC *1

+0

+1

+2

+3

+6

*2

vecno

tskid

EXR

(Reserved)

CCR

PC *1

+0

+1

+2

+3

+4

+5

+8

Notes: 1. The lower 16 bits are valid in normal mode.
 2. When the stack is an odd address, the least significant bit is
 ignored and information is pushed onto the stack.

Figure 5.8 Stack State of the System Termination Routine

Rev. 2.0, 03/01, page 199 of 282

Table 5.7 shows the causes of system termination and the error information that is pushed onto the
stack.

Table 5.7 System Termination Causes

Cause of Termination vecno tskid ercd/Control Register

Setup information error H'00 H'00 H'0000 to H'0FFF

Timer function not supported H'00 H'00 H'F9ED

ext_tsk system call issued from
task-independent portion

H'00 H'00 H'FFEB

ret_int system call issued while
tasks were being executed or
while the CPU was being locked

H'00 tskid
(H’00 to
H’FF)

H'FFBB

Undefined interrupt occurrence Interrupt vector
number

tskid *1 CCR, EXR *2, and PC at
error occurrence

Notes: 1. If an error occurs in a task, a task ID is specified in tskid; if an error occurs in a task-
independent portion, 0 is specified in tskid.

2. The EXR register is not stored in the stack in interrupt control mode 0 or 1.

Rev. 2.0, 03/01, page 200 of 282

Table 5.8 lists invalid setup information and the corresponding error codes (ercd).

Table 5.8 Invalid Setup Information

Error Type Description ercd

Invalid address
(0 or an odd
address)

Kernel stack pointer (_HI_OS_SP) is 0 or an odd address

Timer interrupt stack pointer (_HI_TIM_SP) is 0 or an odd address

Start address of kernel work area (section name: hi8_2s_ram) is 0 or
an odd address

TIMCB area (_HI_TIMCB) is 0 or an odd address

TIMCB2 area (_HI_TIMCB2) is 0 or an odd address

TCB area (_HI_TCB) is 0 or an odd address

TCB2 area (_HI_TCB2) is 0 or an odd address

FLGCB area (_HI_FLGCB) is 0 or an odd address

SEMCB area (_HI_SEMCB) is 0 or an odd address

MBXCB area (_HI_MBXCB) is 0 or an odd address

MPFCB area (_HI_MPFCB) is 0 or an odd address

MPLCB area (_HI_MPLCB) is 0 or an odd address

Trace stack pointer (_HI_TRC_SP) is 0 or an odd address

Start address of trace management area (TBACB) is 0 or an odd
address

Start address of TIMCB3 area (_HI_TIMCB3) is 0 or an odd address

CYHCB area (_HI_CYHCB) is 0 or an odd address

H'0101

H'0102

H'0103

H'0104

H'0105

H'0106

H'0107

H'0108

H'0109

H'010A

H'010B

H'010C

H'010D

H'010E

H'010F

H'0110

Invalid routine
address

Start address of system initialization handler (_HIPRG_SYSINI) is odd
address

Start address of timer initialization routine (_HIPRG_TIMINI) is odd
address

H'0201

H'0202

Invalid data
setting
(out of range)

CPU interrupt control mode (CPUINTM) is 4 or greater

Kernel interrupt mask level (IMASK) is 8 or higher

Maximum priority (MAXPRI) is 32 or higher

Number of defined tasks (TSKCNT) is 256 or more

Number of defined event flags (FLGCNT) is 256 or more

Number of defined semaphores (SEMCNT) is 256 or more

Number of defined mailboxes (MBXCNT) is 256 or more

Number of defined fixed-size memory pools (MPFCNT) is 256 or more

Number of defined variable-size memory pools (MPLCNT) is 256 or
more

Number of defined cyclic handlers (CYHCNT) is 256 or more

H'0301

H'0302

H'0303

H'0304

H'0305

H'0306

H'0307

H'0308

H'0309

H'030A

Rev. 2.0, 03/01, page 201 of 282

Table 5.8 Invalid Setup Information (cont)

Error Type Description ercd

Invalid setup
table address
(0 or an odd
address)

Task definition table (_HI_TDT) is 0 or an odd address

Start address of fixed-size memory pool definition table (_HI_MPFDT)
is 0 or an odd address

Start address of variable-size memory pool definition table
(_HI_MPLDT) is 0 or an odd address

Start address of undefined interrupt handler (_HI_ILT) is 0 or an odd
address

Start address of trace buffer information table (INITRC) is 0 or an odd
address

Start address of cyclic handler definition table (_HI_CYCDT) is 0 or an
odd address

H'0401

H'0402

H'0403

H'0404

H'0405

H'0406

Invalid setup
table contents

Initial task priority (ITSKPRI) is 0 or exceeds maximum priority

Task start address (TSKADR) is 0 or an odd address

Task stack pointer (ITSKSP) is 0 or an odd address

Memory block size (BLKLEN) is 0, odd address, or H'FFFA (D'65530)
bytes or more

Fixed-size memory pool address (MPF?_TOP) is 0 or an odd address

Variable-size memory pool size is 0, an odd address, or 16 bytes or
less

Variable-size memory pool address (MPL?_TOP) is 0 or an odd
address

Trace buffer address (TRACE BUFFER ADDRESS) is 0 or an odd
address

Start address of cyclic handler is 0 or an odd address

Cyclic timer interval of cyclic handler is 0, or H'80000000 or more

Active information of cyclic handler is illegal (other than 0 or 1)

H'0501

H'0502

H'0503

H'0504

H'0505

H'0506

H'0507

H'0508

H'0509

H'050A

H'050B

Rev. 2.0, 03/01, page 202 of 282

Table 5.8 Invalid Setup Information (cont)

Error Type Description ercd

Invalid setup
table contents
(Extended
information)

The number of tasks defined (TSKCNT) and the number of task
extended information defined (TSKECNT) do not match

The number of event flags defined (FLGCNT) and the number of event
flag extended information defined (FLGECNT) do not match

The number of semaphores defined (SEMCNT) and the number of
semaphore extended information defined (SEMECNT) do not match

The number of mailboxes defined (MBXCNT) and the number of
mailbox extended information defined (MBXECNT) do not match

The number of fixed-size memory pools defined (MPFCNT) and the
number of fixed-size memory pool extended information defined
(MPFECNT) do not match

The number of variable-size memory pools defined (MPLCNT) and the
number of variable-size memory pool extended information defined
(MPLECNT) do not match

The number of cyclic handlers defined (CYHCNT) and the number of
cyclic handler extended information defined (CYHECNT) do not match

H'0601

H'0602

H'0603

H'0604

H'0605

H'0606

H'0607

A system termination routine can be written in C language. The processing depends on the user
system. When creating a program to restore stack pointers and registers, refer to the descriptions
of other handlers.

5.9.2 Defining the System Termination Routine

The system termination routine must always be defined. To define this routine, specify the label
_HIPRG_ABNOML as the start address. The label must be declared with the export directive.
System termination routine must always be defined.

Note: If label name _HIPRG_ABNOML is specified as 0 or an odd address by an equate
directive, normal system operation cannot not be guaranteed.

The sample system termination routine is sample\nnnnzsmp\nnnnzuse.src.

5.10 System Idling Routine

5.10.1 Creating System Idling Routines

When no task is in the READY state, the system makes a transition to the idling state and remains
there until a task is activated up by an interrupt.

Rev. 2.0, 03/01, page 203 of 282

In the system idling state, the interrupt mask level is specified as open (0). The user can select
either a BRA or SLEEP instruction appropriate for the user system to achieve a system idling
routine. If the user wishes to use the CPU low-power consumption mode in the system idling
state, the SLEEP instruction should be selected.

5.10.2 Defining a System Idling Routine

To define a system idling routine, add label _H_SYSTEM_IDLE at the head of the system idling
routine. The label must be declared with the export directive.

A system idling routine must always be defined. If no system idling routine is defined, normal
system operation cannot be guaranteed.

The sample system idling routine is sample\nnnnzsmp\nnnnzuse.src.

Rev. 2.0, 03/01, page 204 of 282

Rev. 2.0, 03/01, page 205 of 282

Section 6 Creating the Setup Table

6.1 Overview

A setup table is created to define the information necessary for system configuration.

The setup table consists of a user definition field and a kernel system definition field. The user
definition field is a table that sets the number of defined tasks and the user environment according
to the user system to be configured. Modify the user definition field according to the user system
environment. The kernel system definition field defines the externally defined symbols and work
area used by the kernel.

The system definition field is automatically updated (set) by the user definition field. Therefore,
do not modify the system definition field. Otherwise normal system operation is not guaranteed.

The sample setup table file is sample\nnnnzsmp\nnnnzsup.src.

6.2 User Definition Field

The fields to be defined in the user definition field are described below using the H8S/2655
advanced mode as an example.

Constant Definition Field: The constant definition field defines information required for
synchronization and communication and for time management.

Task Definition Field: The task definition field defines information required for task execution.

Fixed-Size Memory Pool Definition Field: The fixed-size memory pool definition field defines
information required for fixed-size memory pools.

Variable-Size Memory Pool Definition Field: The variable-size memory pool definition field
defines information required for variable-size memory pools.

Cyclic Handler Definition Field: The cyclic handler definition field defines information required
for cyclic handlers.

System Call Trace Function Definition Field: The system call trace function definition field
defines information required for system call trace functions.

Extended Information Definition Field: The extended information definition field defines
information required for extended information for tasks, event flags, semaphores, mailboxes,
fixed-size and variable-size memory pools, and cyclic handlers.

Rev. 2.0, 03/01, page 206 of 282

Note: The above items must be set regardless of each field definition. If not, an undefined
error will occur in the linking stage.

6.2.1 Defining the Constant Definition Field

This field defines information required for the kernel functions (such as synchronization-and-
communication and time-management functions). The following items are defined in the
definition field in the sample setup table.

Table 6.1 summarizes the information to be defined in the constant definition field.

Table 6.1 Information Defined in Constant Definition Field

Information
Label
Name

Definition
Information Notes

Interrupt control mode CPUINTM* Mode = 3

Kernel interrupt mask
level

IMASK* Level = 6

Maximum task priority MAXPRI* Lowest priority = 31

Number of event flags
defined

FLGCNT* Maximum event flag
ID = 4

Number of semaphores
defined

SEMCNT* Maximum
semaphore ID = 4

Number of mailboxes
defined

MBXCNT* Maximum mailbox
ID = 4

OS stack size OSSTKSIZ* OS stack size = 52 18 + 20 + 6 + 8

Timer stack size TIMSTKSIZ* Timer driver stack
size = 64

40 + 10 + 6 + 8

Trace stack size TRCSTKSIZ* Trace function stack
size = 40

26 + 6 + 8

Timeout function defined TTMOUT* USE

Note: These label names must not be modified because the kernel refers to them. If they are
modified, normal system operation cannot be guaranteed.

Figure 6.1 shows the calculation of stack size. For details, refer to appendix A, Memory Size.
The timer stack and trace stack size can be calculated in the same way.

Rev. 2.0, 03/01, page 207 of 282

Figure 6.1 OS Stack Area Calculation

Figure 6.2 shows the constant definition field. Only modify the bold-italic face. Otherwise
normal system operation cannot be guaranteed.

Rev. 2.0, 03/01, page 208 of 282

;%%%

;%%% VALUE define section %%%

;%%%

;------ Usage --

;LABEL VALUE ;:[RANGE] ;: COMMENT

;---

CPUINTM: .assign 3 (1)

IMASK: .assign 6 (2)

MAXPRI: .assign 31 (3)

FLGCNT: .assign 4 (4)

SEMCNT: .assign 4 (5)

MBXCNT: .assign 4 (6)

OSSTKSIZ: .equ 18+(10*2)+(6*1)+8 (7)

TIMSTKSIZ: .equ 40+(10*1)+(6*1)+8 (8)

TRCSTKSIZ: .equ 26+(6*1)+8 (9)

;

TTMOUT: .assign USE (10)

;

Figure 6.2 Constant Definition Field

Rev. 2.0, 03/01, page 209 of 282

Notes

(1) Defines CPU interrupt control modes 0 to 3. For details on the interrupt control mode, refer to
the target MCU hardware manual

(2) Defines the kernel interrupt mask level. Defined values differ from those in the CPU interrupt
control mode (CPUINTM).

CPUINTM IMASK Value

0 0 or 1

1 0 to 3

2 0 to 7

3 0 to 8

An interrupt whose level is higher than the kernel interrupt mask level is always accepted
without delay.

(3) Defines the lowest task priority of the system to be created. MAXPRI ranges from 1 to 31,
with a higher value indicating lower priority.

(4) Defines the maximum event flag ID. FLGCNT ranges from 0 to 255. If FLGCNT is 0, no
event flags will be defined.

(5) Defines the maximum semaphore ID. SEMCNT ranges from 0 to 255. If SEMCNT is 0, no
semaphores will be defined.

(6) Defines the maximum mailbox ID. MBXCNT ranges from 0 to 255. If MBXCNT is 0, no
mailboxes will be defined.

(7) Defines the OS stack area size. For details, refer to appendix A, Memory Size.

(8) Defines the timer driver stack area size. For details, refer to appendix A, Memory Size. If the
timer driver is not used, the timer stack size must be set to 0.

(9) Defines the trace function stack area size. For details, refer to appendix A, Memory Size. If
the trace function is not used, the timer stack size must be set to 0.

(10) Defines whether the timeout function is used.
USE: Used
NOTUSE: Not used
If TIMSTKSIZ is 0, the timeout function becomes invalid.

Rev. 2.0, 03/01, page 210 of 282

6.2.2 Defining Task

This field defines information to register tasks. The sample setup table registers:

• Five tasks (IDs 1 to 5)

Tasks 1 and 2 are tutorial tasks for the debugging extension (DX) and are defined. Tasks 3 to
5 are not defined.

• Task stack

Minimum stack size: 86

Tasks 4 and 5 use the same stack as a shared stack.

Table 6.2 shows the contents of the task definitions.

Table 6.2 Contents of Task Definition

Task
ID

Start
Address

Initial
State

Initial
Priority

Stack
Pointer

Stack Size Used by
Task

1 TASKA DORMANT 1 TSK1_SP 36 bytes

2 TASKB DORMANT 2 TSK2_SP 36 bytes

3 None (0) NON-
EXISTENT

3 TSK3_SP 32 bytes

4 None (0) NON-
EXISTENT

4 TSK4_SP (Shared) 32 bytes

5 None (0) NON-
EXISTENT

5 TSK4_SP (Shared) 32 bytes

Figure 6.3 shows task definition field. Only modify the bold-italic face. Otherwise normal
system operation cannot be guaranteed.

;%%%

;%%% TASK define section %%%

;%%%

;------ Usage --

; TASK_TOP_LABEL ;: COMMENT

;---

 .import _TASKA (1)
 .import _TASKB

;

;------ Usage --

; .res.b SIZE +TSKSTKSIZ

;TSK?_SP_LABEL: .equ $

;---

TSKSTKSIZ: .equ 50+(10*2)+(6*1)+6+8 (2)

Figure 6.3 Task Definition Field

Rev. 2.0, 03/01, page 211 of 282

 .section h2sstack,stack,align=2

 .res.b (36) +TSKSTKSIZ (3)
TSK1_SP: .equ $

 .res.b 8

 .res.b (36) +TSKSTKSIZ

TSK2_SP: .equ $

 .res.b 8

 .res.b (32) +TSKSTKSIZ

TSK3_SP: .equ $

 .res.b 8

 .res.b (32) +TSKSTKSIZ

TSK4_SP: .equ $

 .res.b 8

;

 .section h2ssetup,code,align=2

_HI_H8S: .res.b 10 ;: System Area

;------ Usage --

;LABEL .data.b IMOD, ITSKPRI ;: COMMENT

; .data.l ITSKADR, ITSKSP ;: COMMENT

;---

NOEXS: .assign 0

RDY: .assign 1

DMT: .assign (-1)

TDTLEN: .assign 10;<- Not Change !

 .section h2ssetup,code,align=2

_HI_TDT: .equ $-TDTLEN

TDT_TOP: .equ $

tdt_id1: .data.b DMT, 1 (4)
 .data.l _TASKA, TSK1_SP

tdt_id2: .data.b DMT, 2

 .data.l _TASKB, TSK2_SP

tdt_id3: .data.b NOEXS, 3

 .data.l 0, TSK3_SP

tdt_id4: .data.b NOEXS, 4

 .data.l 0, TSK4_SP

tdt_id5: .data.b NOEXS, 5

 .data.l 0, TSK4_SP

TDT_BTM:

TSKCNT: .equ (TDT_BTM-TDT_TOP)/TDTLEN

Figure 6.3 Task Definition Field (cont)

Rev. 2.0, 03/01, page 212 of 282

Notes

(1) Declares the start address of the task to be used as an external reference symbol.

(2) Defines the minimum stack size used by a stack. The minimum stack size does not include the
stack size used by each task. For details, refer to appendix A, Memory Size.

(3) [Task stack size must be defined for each stack pointer]

Defines the task stack size.

Line 1: Defines the stack size used

Stack size = Stack size used by each task + minimum stack size

Line 2: Defines the label

(Task stack bottom)

Line 3: Defines the shared-stack-management area

When using the shared-stack function, define 8 bytes for use by the management area in the
direction of ascending addresses. If the shared stack function is not used, this area need not be
defined.

(4) [Task information must be defined for each task]

Defines task information.

[Format]

LABEL .data.b IMOD, ITSKPRI

 .data.l ITSKADR, ITSKSP

 LABEL: Can be freely defined (Can be omitted)

 IMOD (Definition/initiation requests)

Specifies each task's initial state at task definition and system initiation as follows:

• NOEXS (=0): Undefined

• RDY (=1): READY state

• DMT (other than 0 or 1): DORMANT state

 ITSKPRI (Initial priority)

Defines each task's initial priority. ITSKPRI ranges from 1 to MAXPRI (priority number
definition).

 ITSKADR (Task start address)

Defines the start address of a task.

 ITSKSP (Task stack pointer)

Defines the end address of a stack area used by the task.

Rev. 2.0, 03/01, page 213 of 282

6.2.3 Defining Fixed-Size Memory Pools

This field defines information to register fixed-size memory pools. The sample setup table
registers:

• Four fixed-size memory pools (IDs 1 to 4)

Table 6.3 shows the contents of fixed-size memory pool definitions.

Table 6.3 Contents of Fixed-Size Memory Pool Definitions

Memory Pool ID
Number of
Memory Blocks

Memory Block
Size

Label
Name

1 14 12 bytes MPF1_TOP

2 14 12 bytes MPF2_TOP

3 14 12 bytes MPF3_TOP

4 14 12 bytes MPF4_TOP

Figure 6.4 shows a fixed-size memory pool definition field. Only modify the bold-italic font.
Otherwise normal system operation cannot be guaranteed.

Rev. 2.0, 03/01, page 214 of 282

;%%%

;%%% FIXED-SIZE MEMORYPOOL define section %%%

;%%%

;------ Usage --

;MB?_CNT_LABEL: .assign VALUE ;:[RANGE] ;: COMMENT

;MB?_LEN_LABEL: .assign VALUE ;:[RANGE] ;: COMMENT

;---

MB1_CNT: .assign 14 (1)
MB1_LEN: .assign 12

;

MB2_CNT: .assign 14

MB2_LEN: .assign 12

;

MB3_CNT: .assign 14

MB3_LEN: .assign 12

;

MB4_CNT: .assign 14

MB4_LEN: .assign 12

;

;------ Usage --

;MPF?_TOP_LABEL:.res.b MEMORYPOOL_SIZE ;: COMMENT

;---

 .section h2smpf,data,align=2

MPF1_TOP: .res.b MB1_CNT * (MB1_LEN + 4) (2)

MPF2_TOP: .res.b MB2_CNT * (MB2_LEN + 4)

MPF3_TOP: .res.b MB3_CNT * (MB3_LEN + 4)

MPF4_TOP: .res.b MB4_CNT * (MB4_LEN + 4)

;

Figure 6.4 Fixed-Size Memory Pool Definition Field

Rev. 2.0, 03/01, page 215 of 282

;------ Usage --

;LABEL .data.w BLFCNT, BLFLEN ;: COMMENT

; .data.l MPF_TOP_ADDRESS ;: COMMENT

;---

MPFDTLEN: .assign 8;<- Not Change ! ;: MPFDT Length

 .section h2ssetup,code,align=2

_HI_MPFDT: .equ $-MPFDTLEN ;: Fixed-size MemoryPool define

table

MPFDT_TOP: .equ $

mpfdt_id1: .data.w MB1_CNT, MB1_LEN (3)
 .data.l MPF1_TOP

mpfdt_id2: .data.w MB2_CNT, MB2_LEN

 .data.l MPF2_TOP

mpfdt_id3: .data.w MB3_CNT, MB3_LEN

 .data.l MPF3_TOP

mpfdt_id4: .data.w MB4_CNT, MB4_LEN

 .data.l MPF4_TOP

MPFDT_BTM:

MPFCNT: .equ (MPFDT_BTM-MPFDT_TOP)/MPFDTLEN

Figure 6.4 Fixed-Size Memory Pool Definition Field (cont)

Notes

(1) [The number of memory blocks and the memory block size must be specified for each
memory block]

MB?_CNT and MB?_LEN specify the number of memory blocks and the memory block size.

Labels such as MB1_CNT and MB1_LEN are used to define the memory pool area to specify
the memory pool definition table.

(2) [A memory pool area must be defined for each memory pool]

Defines the fixed-size memory pool area. A label must be specified as the start address for
each memory pool area. The label name is MPF?_TOP in the sample setup table.

In the example, each memory pool size can be defined using the following expression.

Fixed-size memory pool size = MB?_CNT x (MB?_LEN + 4)

If fixed-size memory pool is unnecessary, delete all the lines shown in a bold-italic font in (2)
in this figure.

(3) [Memory pool information must be defined for each memory pool]

Defines fixed-size memory pool information.

[Format]

LABEL .data.w BLFCNT, BLFLEN

 .data.l MPF_TOP_ADDRESS

Rev. 2.0, 03/01, page 216 of 282

 LABEL: Can be freely defined. (Can be omitted.)

 BLFCNT: Number of memory blocks

 BLFLEN: Fixed-size memory block size

 MPF_TOP_ADDRESS: Start address of the fixed-size memory pool

Specify 0 for BLFCNT when not using the fixed-size memory information.

If fixed-size memory pool is unnecessary, delete all the lines shown in a bold-italic font in (3)
in this figure.

6.2.4 Defining Variable-Size Memory Pools

This field defines information to register variable-size memory pools. The sample setup table
defines the following variable-size memory pools:

• Four variable-size memory pools (IDs 1 to 4)

Table 6.4 shows the contents of variable-size memory pool definition.

Table 6.4 Contents of Variable-Size Memory Pool Definitions

Task ID
Memory Block
Size Label Name

1 380 bytes MPL1_TOP

2 380 bytes MPL2_TOP

3 380 bytes MPL3_TOP

4 380 bytes MPL4_TOP

Figure 6.5 shows a variable-size memory pool definition field. Only modify the bold-italic face.
Otherwise normal system operation cannot be guaranteed.

Rev. 2.0, 03/01, page 217 of 282

;%%%

;%%% VARIABLE-SIZE MEMORYPOOL define section %%%

;%%%

;------ Usage --

;MPL?_SIZ_LABEL:.assign VALUE ;:[RANGE] ;: COMMENT

;---

MPL1_SIZ: .assign 380 (1)

MPL2_SIZ: .assign 380

MPL3_SIZ: .assign 380

MPL4_SIZ: .assign 380

;

;------ Usage --

;MPL?_TOP_LABEL:.res.b VARIABLE_MEMORYPOOL_SIZE ;: COMMENT

;---

 .section h2smpl,data,align=2

MPL1_TOP: .res.b MPL1_SIZ (2)

MPL2_TOP: .res.b MPL2_SIZ

MPL3_TOP: .res.b MPL3_SIZ

MPL4_TOP: .res.b MPL4_SIZ

;

;------ Usage --

;LABEL .data.l BLKSIZ ;: COMMENT

; .data.l VARIABLE_MEMORYPOOL_TOP ;: COMMENT

;---

MPLDTLEN: .assign 8;<- Not Change ! ;: MPLDT Length

 .section h2ssetup,code,align=2

_HI_MPLDT: .equ $-MPLDTLEN

MPLDT_TOP: .equ $

mpldt_id1: .data.l MPL1_SIZ (3)
 .data.l MPL1_TOP

mpldt_id2: .data.l MPL2_SIZ

 .data.l MPL2_TOP

mpldt_id3: .data.l MPL3_SIZ

 .data.l MPL3_TOP

mpldt_id4: .data.l MPL4_SIZ

 .data.l MPL4_TOP

MPLDT_BTM:

MPLCNT: .equ (MPLDT_BTM-MPLDT_TOP)/MPLDTLEN

Figure 6.5 Variable-size Memory Pool Definition Field

Rev. 2.0, 03/01, page 218 of 282

Notes

(1) [The memory block size must be defined for each memory block]

Defines the variable-size memory block size. The label is used to define the memory pool
area to specify the memory pool definition table.

When specifying the variable-size memory pool, specify a size including the 16-byte kernel
management area. Specification size = Memory pool size to be used + (16 x maximum
number of blocks acquired)

(2) [A memory pool area must be defined for each memory pool]

Defines the variable-size memory pool area. A label must be specified as the start address for
each memory pool area. The label name is MPL?_TOP in the sample setup table.

If variable-size memory pool is unnecessary, delete all the lines shown in a bold-italic font in
(2) in this figure.

(3) [Variable-size memory information must be defined for each memory pool]

Defines variable-size memory pool information.

[Format]

LABEL .data.l BLKSIZ

 .data.l MPL_TOP_ADDRESS

 LABEL: Can be freely defined. (Can be omitted.)

 BLKSIZ: The memory block size

 MPL_TOP_ADDRESS: Start address of the variable-size memory pool

Specify 0 for BLKSIZ and MPL_TOP_ADDRESS when not using the variable-size memory
information.

If variable-size memory pool is unnecessary, delete all the lines shown in a bold-italic font in
(3) in this figure.

6.2.5 Defining Cyclic Handlers

This field defines information to register cyclic handlers. In the sample setup table, it is assumed
no cyclic handlers are defined.

• When the debugging extension (DX) is not used (definition of the sample files)

 Number of cyclic handlers: 4 (cyclic handler specification numbers 1 to 4 are not defined)

• When the debugging extension (DX) is used (definition of the sample files)

Cyclic handler specification number 5 is defined when the debugging extension is used

 Number of cyclic handlers: 5 (cyclic handler specification numbers 1 to 4 are not defined)

The Debug Daemon will be defined as cyclic handler specification number 5

Rev. 2.0, 03/01, page 219 of 282

Table 6.5 shows the contents of cyclic handler definitions of the sample files.

Table 6.5 Contents of Cyclic Handler Definitions

Cyclic Handler
Specification
Number Activation State Invoked Interval Label Name

1 OFF 0 None (NADR)

2 OFF 0 None (NADR)

3 OFF 0 None (NADR)

4 OFF 0 None (NADR)

5 ON 5 HI_DEAMON_MAIN

• Example of cyclic handler definition (Example of cyclic handler definition in figure 6.6)

The definition contents of the sample cyclic handler as follows

 The symbol (_CYCHDR) of the cyclic handler address is declared (imported) as the
external reference symbol.

 The cyclic handler information is defined

• Cyclic handler specification number: 6

• Cyclic handler activation state: CYHON (activated)

• Cyclic handler timer interval: 10

• Cyclic handler address: _CYCHDR

If a cyclic handler is added, the extended information must be added.

Rev. 2.0, 03/01, page 220 of 282

Figure 6.6 shows an example of a definition of a cyclic handler definition field. In this figure, a
cyclic handler (cyclic handler specification number 6) has been added to the sample file. Only
modify the bold-italic face. Otherwise normal system operation cannot be guaranteed.

;%%%

;%%% cyclic handler define section %%%

;%%%

;------ Usage --

; .import CYCHDR_TOP_LABEL ;: COMMENT

;---

 . import _CYCHDR (1)

;

;------ Usage --

;LABEL: .data.w CYC_ACTIVATE ;: COMMENT

; .data.l CYC_TIME, CYCHDR_TOP ;: COMMENT

;---

CYHOFF .assign 0 ;:initial cycact data = OFF

CYHON .assign 1 ;:initial cycact data = ON

CYHDTLEN .assign 10;<-Dont't Change! ;:CYHDT length

;

_HI_CYHDT: .equ $-CYHDTLEN

CYHDT_TOP: .equ $

cyhdt_no1: .data.w CYHOFF (2)
 .data.l 0, NADR

cyhdt_no2: .data.w CYHOFF

 .data.l 0, NADR

cyhdt_no3: .data.w CYHOFF

 .data.l 0, NADR

cyhdt_no4: .data.w CYHOFF

 .data.l 0, NADR

 .aifdef DX

cyhdt_no5: .data.w CYHON

 .data.l 5, HI_DEAMON_MAIN

 .aendi

cyhdt_no6: .data.w CYHON (3)
 .data.l 10, _CYCHDR

CYHDT_BTM:

CYHCNT: .equ (CYHDT_BTM-CYHDT_TOP)/CYHDTLEN

Figure 6.6 Definition Example of Cyclic Handler Definition Field

Rev. 2.0, 03/01, page 221 of 282

Notes

(1) Declares (imports) the start address of the cyclic handler as the external reference symbol. This
is an example of cyclic handler definition.

(2) [Cyclic handler information must be defined for each cyclic handler]

Defines cyclic handler information.

[Format]

LABEL .data.w CYC_ACTIVATE

 .data.l CYC_TIME, CYCHDR_TOP

 LABEL: Can be freely defined. (Can be omitted.)

 CYC_ACTIVATE (Specifies the cyclic handler activation state.)

Defines the cyclic handler activation state at system initiation.

• CYHOFF (=0): Not initiated (not activated)

• CYHON (=1): Initiated (activated)

 CYC_TIME (Cyclic time interval)

Specifies the cycle time to initiate the cyclic handler.

 CYCHDR_TOP (Cyclic handler address)

Specifies the start address of the handler to define. If NADR(–1) is specified, the cyclic
handler ID will not be defined.

If cyclic handler is unnecessary, delete all the lines shown in a bold-italic font in (2) in this
figure.

If the debugging extension is used, the debug daemon cyclic handler will be defined.

(3) For cyclic handler specification number 6, cyclic handler activation state is specified as
activated (CYHON), cyclic time interval is specified as 10, and cyclic handler address is
specified as symbol (_CYCHDR). This is an example of cyclic handler definition.

6.2.6 Defining Trace Functions

This field defines information to register trace functions. The sample setup table registers:

• A maximum of four trace information acquisitions

Figure 6.7 shows a trace function definition field. Only modify the bold-italic face. Otherwise
normal system operation cannot be guaranteed.

Rev. 2.0, 03/01, page 222 of 282

;------ Usage --

;TRC_CNT:.assign TRACE COUNT

;TRC_BUF:.assign TRACE BUFFER ADDRESS

;---

 .section h2strc,data,align=2

TRC_CNT: .assign 4 (1)

TRC_BUF: .res.b 16+(TRC_CNT*28) (2)

;

;------ Usage --------------------------------------

;INITRC .data.l TRACE BUFFER ADDRESS

; .data.w TRACE COUNT

;---

 .section h2ssetup,code,align=2

INITRC: .equ $

 .data.l TRC_BUF (3)

 .data.w TRC_CNT

Figure 6.7 Trace Function Definition Field

Rev. 2.0, 03/01, page 223 of 282

Notes

(1) Defines the maximum amount of trace information that can be acquired by the trace function.
Specify 0 if the trace function is not used.

(2) Defines the trace buffer area. In the sample example, the trace buffer area size is calculated as
follows:

Trace buffer area size = 16 + TRC_CNT x 28

If the trace function is not used, write this line as a comment.

(3) Start address of the trace buffer area. Specify 0 if the trace function is not used.

6.2.7 Defining Extended Information

Extended information can be defined for the following objects: tasks, event flags, semaphores,
mailboxes, fixed-size memory pools, variable-size memory pools, and cyclic handlers.

The extended information can be defined freely by the user for each ID of the resource concerning
the target object.

The extended information is a packet of memory area reserved to enter information concerning
the target object. The start address of the packet is specified as the extended information.

In the sample program, H'0 is specified as the start address for the extended information. In the
start address (H'0) of the sample extended information, extended information is not specified.

Figure 5.8 shows an extended information definition field. Only modify the bold-italic font.
Otherwise normal system operation cannot be guaranteed.

Rev. 2.0, 03/01, page 224 of 282

;%%%

;%%% Task Extended Information define section %%%

;%%%

;------ Usage --

;LABEL .data.l TSK?_EXINF ;: COMMENT

;---

 .section h2ssetup,code,align=2

_HI_TSKEXINF: .equ $-EXLEN

TSKE_TOP: .equ $

tsk1_exinf: .data.l 00000000 (1)

tsk2_exinf: .data.l 00000000

tsk3_exinf: .data.l 00000000

tsk4_exinf: .data.l 00000000

tsk5_exinf: .data.l 00000000

TSKE_BTM:

TSKECNT: .equ (TSKE_BTM-TSKE_TOP)/EXLEN

 ;:[0...255] ;: tsk exinf count

;

;%%%

;%%% Event Flag Extended Information define section %%%

;%%%

;------ Usage --

;LABEL .data.l FLG?_EXINF ;: COMMENT

;---

 .section h2ssetup,code,align=2

_HI_FLGEXINF: .equ $-EXLEN

FLGE_TOP: .equ $

flg1_exinf: .data.l 00000000 (2)

flg2_exinf: .data.l 00000000

flg3_exinf: .data.l 00000000

flg4_exinf: .data.l 00000000

FLGE_BTM:

FLGECNT: .equ (FLGE_BTM-FLGE_TOP)/EXLEN

Figure 6.8 Extended Information Definition Field

Rev. 2.0, 03/01, page 225 of 282

;%%%

;%%% Semaphore Extended Information define section %%%

;%%%

;------ Usage --

;LABEL .data.l SEM?_EXINF ;: COMMENT

;---

 .section h2ssetup,code,align=2

_HI_SEMEXINF: .equ $-EXLEN

SEME_TOP: .equ $

sem1_exinf: .data.l 00000000 (3)

sem2_exinf: .data.l 00000000

sem3_exinf: .data.l 00000000

sem4_exinf: .data.l 00000000

SEME_BTM:

SEMECNT: .equ (SEME_BTM-SEME_TOP)/EXLEN

 ;:[0...255] ;: sem exinf count

;

;%%%

;%%% Mailbox Extended Information define section %%%

;%%%

;------ Usage --

;LABEL .data.l MBX?_EXINF ;: COMMENT

;---

 .section h2ssetup,code,align=2

_HI_MBXEXINF: .equ $-EXLEN

MBXE_TOP: .equ $

mbx1_exinf: .data.l 00000000 (4)

mbx2_exinf: .data.l 00000000

mbx3_exinf: .data.l 00000000

mbx4_exinf: .data.l 00000000

MBXE_BTM:

MBXECNT: .equ (MBXE_BTM-MBXE_TOP)/EXLEN

Figure 6.8 Extended Information Definition Field (cont)

Rev. 2.0, 03/01, page 226 of 282

;%%%

;%%% Fixed-size MemoryPool Extended Information define section %%%

;%%%

;------ Usage --

;LABEL .data.l MPF?_EXINF ;: COMMENT

;---

 .section h2ssetup,code,align=2

_HI_MPFEXINF: .equ $-EXLEN

MPFE_TOP: .equ $

mpf1_exinf: .data.l 00000000 (5)

mpf2_exinf: .data.l 00000000

mpf3_exinf: .data.l 00000000

mpf4_exinf: .data.l 00000000

MPFE_BTM:

MPFECNT: .equ (MPFE_BTM-MPFE_TOP)/EXLEN

 ;:[0...255] ;: mpf exinf count

;

;%%%

;%%% Variable-size MemoryPool Extended Information define section %%%

;%%%

;------ Usage --

;LABEL .data.l MPL?_EXINF ;: COMMENT

;---

 .section h2ssetup,code,align=2

_HI_MPLEXINF: .equ $-EXLEN

MPLE_TOP: .equ $

mpl1_exinf: .data.l 00000000 (6)

mpl2_exinf: .data.l 00000000

mpl3_exinf: .data.l 00000000

mpl4_exinf: .data.l 00000000

MPLE_BTM:

MPLECNT: .equ (MPLE_BTM-MPLE_TOP)/EXLEN

;

Figure 6.8 Extended Information Definition Field (cont)

Rev. 2.0, 03/01, page 227 of 282

;%%%

;%%% Cyclic Handler Extended Information define section %%%

;%%%

;------ Usage --

;LABEL .data.l CYH?_EXINF ;: COMMENT

;---

 .section h2ssetup,code,align=2

_HI_CYCEXINF: .equ $-EXLEN

CYHE_TOP: .equ $

cyh1_exinf: .data.l 00000000 (7)

cyh2_exinf: .data.l 00000000

cyh3_exinf: .data.l 00000000

cyh4_exinf: .data.l 00000000

 .aifdef DX

cyh5_exinf: .data.l 00000000

 .aendi

CYHE_BTM:

CYHECNT: .equ (CYHE_BTM-CYHE_TOP)/EXLE

Figure 6.8 Extended Information Definition Field (cont)

Notes

(1) Defines task extended information.

[Format]

LABEL .data.l TSK?_EXINF

 LABEL: Can be freely defined. (Can be omitted.)

 TSK?_EXINF: (Extended information)

An address can be defined.

Note: Task extended information must be defined for the number of tasks as defined in section
6.2.2, Defining Task.
If the number of task extended information values does not match the number of tasks
defined, the system will terminate abnormally. If extended information is unnecessary,
delete all the lines shown in a bold-italic font in (1) in this figure.

(2) Defines event flag extended information.

[Format]

LABEL .data.l FLG?_EXINF

 LABEL: Can be freely defined. (Can be omitted.)

 FLG?_EXINF: (Extended information)

An address can be defined.

Rev. 2.0, 03/01, page 228 of 282

Note: Event flag extended information must be defined for the maximum event flag definition
number (FLGCNT) as defined in section 6.2.1, Defining the Constant Definition Field.
If the number of event flag extended information values does not match the maximum
number of event flags defined, the system will terminate abnormally. If extended
information is unnecessary, delete all the lines shown in a bold-italic font in (2) in this
figure.

(3) Defines semaphore extended information.

[Format]

LABEL .data.l SEM?_EXINF

 LABEL: Can be freely defined. (Can be omitted.)

 SEM?_EXINF: (Extended information)

An address can be defined.

Note: Semaphore extended information must be defined for the maximum semaphore
definition number (SEMCNT) as defined in section 6.2.1, Defining the Constant
Definition Field.
If the number of semaphore extended information values does not match the maximum
number of semaphores defined, the system will terminate abnormally. If extended
information is unnecessary, delete all the lines shown in a bold-italic font in (3) in this
figure.

(4) Defines mailbox extended information.

[Format]

LABEL .data.l MBX?_EXINF

 LABEL: Can be freely defined. (Can be omitted.)

 MBX?_EXINF: (Extended information)

An address can be defined.

Note: Mailbox extended information must be defined for the maximum mailbox definition
number (MBXCNT) as defined in section 6.2.1, Defining the Constant Definition Field.
If the number of mailbox extended information values does not match the maximum
number of mailboxes defined, the system will terminate abnormally. If extended
information is unnecessary, delete all the lines shown in a bold-italic font in (4) in this
figure.

(5) Defines fixed-size memory pool extended information.

[Format]

LABEL .data.l MPF?_EXINF

 LABEL: Can be freely defined. (Can be omitted.)

 MPF?_EXINF: (Extended information)

An address can be defined.

Rev. 2.0, 03/01, page 229 of 282

Note: Fixed-size memory pool extended information must be defined for the fixed-size
definition number as defined in section 6.2.3, Defining Fixed-size Memory Pools.
If the number of fixed-size memory pool extended information values does not match
the number of fixed-size memory pools defined, the system will terminate abnormally.
If extended information is unnecessary, delete all the lines shown in a bold-italic font in
(5) in this figure.

(6) Defines variable-size memory pool extended information.

[Format]

LABEL .data.l MPL?_EXINF

 LABEL: Can be freely defined. (Can be omitted.)

 MPL?_EXINF: (Extended information)

An address can be defined.

Note: Variable-size memory pool extended information must be defined for the variable-size
definition number as defined in section 6.2.4, Defining Variable-size Memory Pools.
If the number of variable-size memory pool extended information values does not match
the number of variable-size memory pools defined, the system will terminate
abnormally. If extended information is unnecessary, delete all the lines shown in a
bold-italic font in (6) in this figure.

(7) Defines cyclic handler extended information.

[Format]

LABEL .data.l CYH?_EXINF

 LABEL: Can be freely defined. (Can be omitted.)

 CYH?_EXINF: (Extended information)

An address can be defined.

Note: Cyclic handler extended information must be defined for the cyclic handler definition
number as defined in section 6.2.5, Defining Cyclic Handlers.
If the number of cyclic handler extended information values does not match the number
of cyclic handlers defined, the system will terminate abnormally. If extended
information is unnecessary, delete all the lines shown in a bold-italic font in (7) in this
figure. If the debugging extension is used, the debug daemon cyclic handler will be
defined.

6.3 System Definition Field

This field defines externally defined symbols used by the kernel, constants, and the kernel system
work area.

Figure 6.9 shows the system definition field. In the system definition field, symbols can be
automatically defined from the value defined in the user definition field.

Rev. 2.0, 03/01, page 230 of 282

Do not modify the system definition field. Otherwise correct system operation cannot be
guaranteed.

 .include "setup.inc" Includes system
 definition file.

;

;***;

 .end; of 2655asUP.MAR

Figure 6.9 System Definition Field

For details on the system work area reserved by the system definition field, refer to appendix A,
Memory Size.

Rev. 2.0, 03/01, page 231 of 282

Section 7 Creating the Interrupt Vector Table

7.1 Overview

The interrupt vector table defines the start address of each interrupt handler, so that control passes
to the appropriate interrupt processing when an interrupt occurs. If no interrupt handler start
address is defined for a vector number, an undefined interrupt handler start address must be
defined for that vector number.

The sample interrupt vector table file is sample\nnnnzsmp\nnnnzili.src.

Create an interrupt vector for the user system by referring to the provided files.

7.2 Defining Interrupt Handler

An interrupt handler can be used by defining the interrupt handler start address to the
corresponding vector number in the interrupt vector table.

The following interrupt handlers are defined in the sample vector table (table 6.3).

• CPU: H8S/2655

• CPU operating mode: advanced mode

Table 7.1 lists the defined interrupt handlers.

Table 7.1 Defined Interrupt Handlers

No Interrupt Handler Label Name Vector Number Notes

1 CPU initialization routine _H_2S_CPUINI 0 Power-on reset

2 CPU initialization routine _H_2S_CPUINI 1 Manual reset

3 Timer interrupt handler _H_2S_TIM 32 TPUch0

4 Undefined interrupt
handler

_H_2SINT?? ?? ??: Vector number of
other than items 1 to
3.

For details on the causes of interrupts, refer to the refer to the target MCU hardware manual.

Figure 7.1 shows a coding example from the H8S/2655 series interrupt vector table 2655avec.src
for the advanced mode provided as a sample file.

Rev. 2.0, 03/01, page 232 of 282

;***

;*** ***

;*** HI2000/3 Version (uITRON V3.0) ***

;*** HI2000/3 vector table ***

;*** ***

;*** Copyright (c) Hitachi, Ltd. 1998. ***

;*** Licensed Material of Hitachi, Ltd. ***

;*** ***

;***

 .program _2655avec

 .heading "### 2655avec.src : for H8S/2655 ###"

 .section h2svectr,code,locate=0

;

 .import _H_2SINT00,_H_2SINT01,_H_2SINT02,_H_2SINT03,_H_2SINT04 (1)
 .import _H_2SINT05,_H_2SINT06,_H_2SINT07,_H_2SINT08,_H_2SINT09

 .import _H_2SINT10,_H_2SINT11,_H_2SINT12,_H_2SINT13,_H_2SINT14

 .import _H_2SINT15,_H_2SINT16,_H_2SINT17,_H_2SINT18,_H_2SINT19

 .import _H_2SINT20,_H_2SINT21,_H_2SINT22,_H_2SINT23,_H_2SINT24

 .import _H_2SINT25,_H_2SINT26,_H_2SINT27,_H_2SINT28,_H_2SINT29

 .import _H_2SINT30,_H_2SINT31,_H_2SINT32,_H_2SINT33,_H_2SINT34

 .import _H_2SINT35,_H_2SINT36,_H_2SINT37,_H_2SINT38,_H_2SINT39

 .import _H_2SINT40,_H_2SINT41,_H_2SINT42,_H_2SINT43,_H_2SINT44

 .import _H_2SINT45,_H_2SINT46,_H_2SINT47,_H_2SINT48,_H_2SINT49

 .import _H_2SINT50,_H_2SINT51,_H_2SINT52,_H_2SINT53,_H_2SINT54

 .import _H_2SINT55,_H_2SINT56,_H_2SINT57,_H_2SINT58,_H_2SINT59

 .import _H_2SINT60,_H_2SINT61,_H_2SINT62,_H_2SINT63,_H_2SINT64

 .import _H_2SINT65,_H_2SINT66,_H_2SINT67,_H_2SINT68,_H_2SINT69

 .import _H_2SINT70,_H_2SINT71,_H_2SINT72,_H_2SINT73,_H_2SINT74

 .import _H_2SINT75,_H_2SINT76,_H_2SINT77,_H_2SINT78,_H_2SINT79

 .import _H_2SINT80,_H_2SINT81,_H_2SINT82,_H_2SINT83,_H_2SINT84

 .import _H_2SINT85,_H_2SINT86,_H_2SINT87,_H_2SINT88,_H_2SINT89

 .import _H_2SINT90,_H_2SINT91

;

 .import _H_2S_CPUINI ;: in 'cpuini' (2)
 .import _H_2S_TIM ;: in 'h2suser'

;

Figure 7.1 Coding Example from the Interrupt Vector Table 2655avec.src

Rev. 2.0, 03/01, page 233 of 282

;***

;*specifications ; *

;*name = h2svectr : H8S/2655 vector table for HI2000/3 ; *

;*function = 1. h8 interrupt handler address define for hi8 ; *

;* = 2. h8 exception handler address define for hi8 ; *

;* = 3. hi8 system standard support module ; *

;* = (1) reset : "_H_2S_CPUINI" for power on ; *

;* = 4. hi8 system standard support module ; *

;* = (1) TPU0 tgi0a: "_H_2S_TIM" for system timer ; *

;*date = 99/02/22 ; *

;*author = Hitachi, Ltd. ; *

;*attribute = public ; *

;*class = unit ; *

;*linkage = h8 vector table top address = h'0000 for HI2000/3 ; *

;*input = none ; *

;*output = none ; *

;*parameter = er7 : stack pointer ; *

;*********** CPU interrupt mode = 3 *******************************; *

;* | | ; *

;* er7(stack pointer) --> +0 +------------+ ; *

;* | EXR | ; *

;* +1 +------------+ ; *

;* | reserved | ; *

;* +2 +------------+ ; *

;* | CCR | ; *

;* +3 +------------+ ; *

;* | | ; *

;* + + ; *

;* | PC | ; *

;* + + ; *

;* | | ; *

;* +6 +------------+ ; *

;*end of specifications ; *

;***

;

 .radix d ;:xxxxx -> d'xxxxx

;

;-------.data.l < address > ;: H8S/2655 vector no. contents

 .data.l _H_2S_CPUINI ;_H_2SINT00 ;: vector no.00 <reset> (3)
 .data.l _H_2S_CPUINI ;_H_2SINT01 ;: vector no.01 <reset>

 .data.l _H_2SINT02 ;: vector no.02 [reserve]

 .data.l _H_2SINT03 ;: vector no.03 [reserve]

 .data.l _H_2SINT04 ;: vector no.04 [reserve]

 .data.l _H_2SINT05 ;: vector no.05 [reserve]

Figure 7.1 Coding Example from the Interrupt Vector Table 2655avec.src (cont)

Rev. 2.0, 03/01, page 234 of 282

 .data.l _H_2SINT06 ;: vector no.06 [reserve]

 .data.l _H_2SINT07 ;: vector no.07 <NMI >

 .data.l _H_2SINT08 ;: vector no.08 <TRAPA #0 >

 .data.l _H_2SINT09 ;: vector no.09 <TRAPA #1 >

 .data.l _H_2SINT10 ;: vector no.10 <TRAPA #2 >

 .data.l _H_2SINT11 ;: vector no.11 <TRAPA #3 >

 .data.l _H_2SINT12 ;: vector no.12 [reserve]

 .data.l _H_2SINT13 ;: vector no.13 [reserve]

 .data.l _H_2SINT14 ;: vector no.14 [reserve]

 .data.l _H_2SINT15 ;: vector no.15 [reserve]

 .data.l _H_2SINT16 ;: vector no.16 <IRQ0 >

 .data.l _H_2SINT17 ;: vector no.17 <IRQ1 >

 .data.l _H_2SINT18 ;: vector no.18 <IRQ2 >

 .data.l _H_2SINT19 ;: vector no.19 <IRQ3 >

 .data.l _H_2SINT20 ;: vector no.20 <IRQ4 >

 .data.l _H_2SINT21 ;: vector no.21 <IRQ5 >

 .data.l _H_2SINT22 ;: vector no.22 <IRQ6 >

 .data.l _H_2SINT23 ;: vector no.23 <IRQ7 >

 .data.l _H_2SINT24 ;: vector no.24 <SWDTEND >

 .data.l _H_2SINT25 ;: vector no.25 <WOVI >

 .data.l _H_2SINT26 ;: vector no.26 <CMI >

 .data.l _H_2SINT27 ;: vector no.27 [reserve]

 .data.l _H_2SINT28 ;: vector no.28 <ADI >

 .data.l _H_2SINT29 ;: vector no.29 [reserve]

 .data.l _H_2SINT30 ;: vector no.30 [reserve]

 .data.l _H_2SINT31 ;: vector no.31 [reserve]

 .data.l _H_2S_TIM ;_H_2SINT32 ;: vector no.32 <TGI0A tpu0 > (4)
 .data.l _H_2SINT33 ;: vector no.33 <TGI0B tpu0 >

 .data.l _H_2SINT34 ;: vector no.34 <TGI0C tpu0 >

 .data.l _H_2SINT35 ;: vector no.35 <TGI0D tpu0 >

 .data.l _H_2SINT36 ;: vector no.36 <TCI0V tpu0 >

 .data.l _H_2SINT37 ;: vector no.37 [reserve]

 .data.l _H_2SINT38 ;: vector no.38 [reserve]

 .data.l _H_2SINT39 ;: vector no.39 [reserve]

 .data.l _H_2SINT40 ;: vector no.40 <TGI1A tpu1 >

 .data.l _H_2SINT41 ;: vector no.41 <TGI1B tpu1 >

 .data.l _H_2SINT42 ;: vector no.42 <TCI1V tpu1 >

 .data.l _H_2SINT43 ;: vector no.43 <TCI1U tpu1 >

 .data.l _H_2SINT44 ;: vector no.44 <TGI2A tpu2 >

 .data.l _H_2SINT45 ;: vector no.45 <TGI2B tpu2 >

 .data.l _H_2SINT46 ;: vector no.46 <TCI2V tpu2 >

 .data.l _H_2SINT47 ;: vector no.47 <TCI2U tpu2 >

 .data.l _H_2SINT48 ;: vector no.48 <TGI3A tpu3 >

 .data.l _H_2SINT49 ;: vector no.49 <TGI3B tpu3 >

 .data.l _H_2SINT50 ;: vector no.50 <TGI3C tpu3 >

 .data.l _H_2SINT51 ;: vector no.51 <TGI3D tpu3 >

 .data.l _H_2SINT52 ;: vector no.52 <TCI3V tpu3 >

Figure 7.1 Coding Example from the Interrupt Vector Table 2655avec.src (cont)

Rev. 2.0, 03/01, page 235 of 282

 .data.l _H_2SINT53 ;: vector no.53 [reserve]

 .data.l _H_2SINT54 ;: vector no.54 [reserve]

 .data.l _H_2SINT55 ;: vector no.55 [reserve]

 .data.l _H_2SINT56 ;: vector no.56 <TGI4A tpu4 >

 .data.l _H_2SINT57 ;: vector no.57 <TGI4B tpu4 >

 .data.l _H_2SINT58 ;: vector no.58 <TCI4V tpu4 >

 .data.l _H_2SINT59 ;: vector no.59 <TCI4U tpu4 >

 .data.l _H_2SINT60 ;: vector no.60 <TGI5A tpu5 >

 .data.l _H_2SINT61 ;: vector no.61 <TGI5B tpu5 >

 .data.l _H_2SINT62 ;: vector no.62 <TCI5V tpu5 >

 .data.l _H_2SINT63 ;: vector no.63 <TCI5U tpu5 >

 .data.l _H_2SINT64 ;: vector no.64 <CMIA0 >

 .data.l _H_2SINT65 ;: vector no.65 <CMIB0 >

 .data.l _H_2SINT66 ;: vector no.66 <OVI0 >

 .data.l _H_2SINT67 ;: vector no.67 [reserve]

 .data.l _H_2SINT68 ;: vector no.68 <CMIA1 >

 .data.l _H_2SINT69 ;: vector no.69 <CMIB1 >

 .data.l _H_2SINT70 ;: vector no.70 <OVI1 >

 .data.l _H_2SINT71 ;: vector no.71 [reserve]

 .data.l _H_2SINT72 ;: vector no.72 <DEND0A dmac >

 .data.l _H_2SINT73 ;: vector no.73 <DEND0B dmac >

 .data.l _H_2SINT74 ;: vector no.74 <DEND1A dmac >

 .data.l _H_2SINT75 ;: vector no.75 <DEND1B dmac >

 .data.l _H_2SINT76 ;: vector no.76 [reserve]

 .data.l _H_2SINT77 ;: vector no.77 [reserve]

 .data.l _H_2SINT78 ;: vector no.78 [reserve]

 .data.l _H_2SINT79 ;: vector no.79 [reserve]

 .data.l _H_2SINT80 ;: vector no.80 <ERI0 sci0 >

 .data.l _H_2SINT81 ;: vector no.81 <RXI0 sci0 >

 .data.l _H_2SINT82 ;: vector no.82 <TXI0 sci0 >

 .data.l _H_2SINT83 ;: vector no.83 <TEI0 sci0 >

 .data.l _H_2SINT84 ;: vector no.84 <ERI1 sci1 >

 .data.l _H_2SINT85 ;: vector no.85 <RXI1 sci1 >

 .data.l _H_2SINT86 ;: vector no.86 <TXI1 sci1 >

 .data.l _H_2SINT87 ;: vector no.87 <TEI1 sci1 >

 .data.l _H_2SINT88 ;: vector no.88 <ERI2 sci2 >

 .data.l _H_2SINT89 ;: vector no.89 <RXI2 sci2 >

 .data.l _H_2SINT90 ;: vector no.90 <TXI2 sci2 >

 .data.l _H_2SINT91 ;: vector no.91 <TEI2 sci2 >

;

;***************************************;

 .end; of 2655avec.src

Figure 7.1 Coding Example from the Interrupt Vector Table 2655avec.src (cont)

Rev. 2.0, 03/01, page 236 of 282

Notes

(1) Declares the start routine of the undefined interrupt handler as the external reference symbol
(No.4 in table 7.1).

(2) Declares the start routine of the interrupt handler to be defined as the external reference
symbol (Nos. 1 to 3 in table 7.1).

(3) Defines the CPU initialization routine. This routine must be defined (Nos. 1 and 2 in table
7.1).

(4) Defines the timer interrupt handler. This handler must be defined when system calls wai_flg,
set_tim, and get_tim, and txxx_xxx system calls (such as twai_sem) are used (No. 3 in table
7.1).

Rev. 2.0, 03/01, page 237 of 282

Section 8 Load Module Creation

8.1 Overview

The Hitachi Embedded Workshop (HEW) is used to create load modules. Refer to the HEW’s
manual or on-line help system to find out how to use the HEW.

Creating a system involves compiling and linking together the following four types of files into a
load module; the kernel library, the setup table, the interrupt vector table, and the application files.

Figure 8.1 shows the flow for creating a load module.

HEW

Interrupt vector table

Application files

Load module

Kernel library

Setup table

Note: The application files which are referred to by the setup table and the interrupt vector table
are required.

Figure 8.1 Creating a Load Module

Kernels for the H8S/2600 and H8S/2000 CPUs are available. Each kernel has two MCU operating
modes: the advanced mode and the normal mode. Select the kernel and the supplied application
files according to the environment.

Rev. 2.0, 03/01, page 238 of 282

8.2 Workspace and Project Files

Create load modules with the HEW according to the following procedure.

1. Add the files necessary to create the load module to a project.

2. Specify the options for the C compiler, the assembler, and the inter-module optimizer.

3. Run the Build command.

The HI2000/3 provides a sample workspace file “product.hws”. Double-click the “product.hws”
filename to activate the HEW with the workspace “product”.

The workspace “product” contains sample projects corresponding to a variety of devices. As
shown in table 8.1, there are four sample projects that correspond to two CPUs in two operating
modes. Select the project which matches your environment (CPU and operating mode) and refer
to the descriptions on the following pages.

Select a project in the HEW’s workspace window then select [Set as Current Project] from the
pop-up menu, as shown in figure 8.2. Projects for unused environments can be deleted.

If any CPU other than the H8S/2655 or H8S/2245 is to be used, the project must first be selected,
then the files for system construction that have been added to the project must be changed so that
they suit the CPU.

Table 8.1 Sample Projects

Project
Name Configuration * Description

hi26a hi26a Load module for the H8S/2600 CPU advanced mode
(already set for the H8S/2655)

hi26n hi26n Load module for the H8S/2600 CPU normal mode
(already set for the H8S/2655)

hi20a hi20a Load module for the H8S/2000 CPU advanced mode
(already set for the H8S/2245)

hi20n hi20n Load module for the H8S/2000 CPU normal mode
(already set for the H8S/2245)

Note: The default settings create a load module within the given configuration.

Rev. 2.0, 03/01, page 239 of 282

Figure 8.2 Selecting a Project

When the ‘Build’ command is executed on a selected sample project, the load module is created
by executing the compiler, assembler, and inter-module optimizer in sequence.

Rev. 2.0, 03/01, page 240 of 282

8.3 Load Module Creation

8.3.1 Adding Files to a Project

Table 8.2 lists the files that are required for a project. The sample project files at shipment are for
the H8S/2655 and H8S/2245.

If a CPU other than the H8S/2655 or H8S/2245 is used, add new system configuration files and
delete the old ones.

Table 8.2 Files Required for Project

File Name Description Notes

Application files Tasks and interrupt handlers

sample\nnnnz smp\nnnnz sup.src Setup table Always necessary

sample\nnnnz smp\nnnnz use.src Timer driver

System termination routine Always necessary

System idling routine Always necessary

System initialization handler

sample\nnnnz smp\nnnnz vec.src Interrupt vector table Always necessary

sample\nnnnz smp\nnnnz ili.src Undefined interrupt handler

sample\nnnnz smp\nnnnz cpu.src CPU initialization routine Always necessary

sample\task.c DX tutorial task

Note: nnnn (italic-bold face) corresponds to a device.
z (italic-bold face) shows the operating mode (a: advanced mode. n: normal mode).

Rev. 2.0, 03/01, page 241 of 282

Add files to the project by using the following procedure.

1. Start the HEW and open the sample workspace.

2. Select the project which corresponds to the environment to be used.

3. Select [Add Files] from the File menu and add the application files.

4. If a CPU other than the H8S/2655 or H8S/2245 is used, add new system configuration files to
the project.

5. Refer to the options of the system configuration files that have already been added and set the
options for the newly added files. After setting the options, delete the system configuration
files that will not be used.

Figure 8.3 Adding Files to the Project

Rev. 2.0, 03/01, page 242 of 282

8.3.2 Compiler and Assembler Options

For details on the compiler and assembler options, refer to section B, Compiler and Assembler
Options.

Refer to table 8.3 and figures 8.4 to 8.9 to set the compiler and assembler options for the system
configuration files.

Rev. 2.0, 03/01, page 243 of 282

Table 8.3 Compiler and Assembler Options

File Name * Option

Common to all system
configuration files

CPU tab

• Specify according to the CPU used

Object tabs

• Output file directory:

$(CONFIGDIR)

• Debug Information:

Specifies the output of debugging information

List tab:

• Specifies no list output

sample\nnnnz smp\nnnnz sup.src Source tab

• Include file directories:

Specify $(PROJDIR)\sample for the directory

• Defines:

DX=Action (If the Debugging Extension is installed)

sample\nnnnz smp\nnnnz use.src 

sample\nnnnz smp\nnnnz vec.src 

sample\nnnnz smp\nnnnz ili.src 

sample\nnnnz smp\nnnnz cpu.src Source tab

• Defines:

DX=Action (If the Debugging Extension is installed)

sample\task.c Source tab

• Include file directories:

Specify $(PROJDIR)\sample for the directory

Object tab

• Section:

 Specify P = Ptask or B = Btask

Note: nnnn (italic-bold face) corresponds to the device.
z (italic-bold face) shows the operating mode (a: advanced mode. n: normal mode).

Rev. 2.0, 03/01, page 244 of 282

An example of the CPU tab common to all system configuration files is shown in figure 8.4.

Figure 8.4 CPU Tab Window in the H8S, H8/300 Assembler Options

An example of the Object tab common to all system configuration files is shown in figure 8.5.

Rev. 2.0, 03/01, page 245 of 282

Figure 8.5 Object Tab Window in the H8S, H8/300 Assembler Options

Rev. 2.0, 03/01, page 246 of 282

An example of the List tab common to all system configuration files is shown in figure 8.6.

Figure 8.6 List Tab Window in the H8S, H8/300 Assembler Options

Note: “Select the ‘Source’ tab to specify include-file directories or define symbols”.

Figure 8.7 shows an example of the specification of include files on the tabbed page ‘Source’.
“Include file directories” is selected from the dropdown list labelled “Show entries for”.

Rev. 2.0, 03/01, page 247 of 282

Figure 8.7 Source Tab Window in the H8S, H8/300 Assembler Options
(Include file directories)

Figure 8.8 shows an example of the specification of the debugging extension (DX) on the tabbed
page ‘Source’. ‘Defines’ is selected from the dropdown list labelled “Show entries for”.

Rev. 2.0, 03/01, page 248 of 282

Figure 8.8 Source Tab Window in the H8S, H8/300 Assembler Options (Defines)

Figure 8.9 shows an example of the specification of sections on the tabbed page “Object”. A
section is selected from the dropdown list labelled “Section”.

Rev. 2.0, 03/01, page 249 of 282

Figure 8.9 Object Tab Window in the H8S, H8/300 C Compiler Options

8.3.3 Inter-Module Optimizer Setting

1. Inter-Module Optimizer Options Input Tab

In figure 8.10, a kernel library, which has a parameter check function and a shared-stack
function, and a C-language interface library is specified for the provided project file. Specify
library files according to the user environment (CPU and operating mode).

Rev. 2.0, 03/01, page 250 of 282

Figure 8.10 Inter-Module Optimizer Options Input Tab

Kernel libraries and C-language interface libraries can be selected from table 8.4.

If application libraries or standard libraries provided by the H8S series C compiler is used,
they must be specified through this Input tab.

Rev. 2.0, 03/01, page 251 of 282

Table 8.4 Supplied Library File List

Library Names File Name
Parameter Check
Function

Shared-Stack
Function

hilib\26aknlps.lib Yes Yes

hilib\26aknlpn.lib Yes No

hilib\26aknlns.lib No Yes

Advanced
mode

hilib\26aknlnn.lib No No

hilib\26nknlps.lib Yes Yes

hilib\26nknlpn.lib Yes No

hilib\26nknlns.lib No Yes

H8S/2600
CPU

Normal mode

hilib\26nknlnn.lib No No

hilib\20aknlps.lib Yes Yes

hilib\20aknlpn.lib Yes No

hilib\20aknlns.lib No Yes

Advanced
mode

hilib\20aknlnn.lib No No

hilib\20nknlps.lib Yes Yes

hilib\20nknlpn.lib Yes No

hilib\20nknlns.lib No Yes

Kernel
library

H8S/2000
CPU

Normal mode

hilib\20nknlnn.lib No No

Advanced
mode

hilib\26acif.lib — —H8S/2600
CPU

Normal mode hilib\26ncif.lib — —

Advanced
mode

hilib\20acif.lib — —

System-
call C-
language
interface
library H8S/2000

CPU

Normal mode hilib\20ncif.lib — —

Rev. 2.0, 03/01, page 252 of 282

2. Inter-Module Optimizer Options Output Tab

The Output tab specifies the format and type of load module, debugging information, and load
module path. The projects provided produce load modules within the configuration.

Figure 8.11 Inter-Module Optimizer Options Output Tab

Rev. 2.0, 03/01, page 253 of 282

3. Inter-Module Optimizer Options Section Tab

The Section tab allocates addresses to each section. The address allocations for the sections of
the sample projects suit the H8S/2655 or H8S/2245. If a CPU other than H8S/2655 or
H8S/2245 is used, specify the sections included in the input files and reallocate addresses to
these sections.

Figure 8.12 Inter-Module Optimizer Options Section Tab

Rev. 2.0, 03/01, page 254 of 282

The sections of the provided projects are listed in table 8.5.

Table 8.5 List of Sections Included in the Provided Project Files

Memory Type Section Description

ROM h2svectr Interrupt vector table

hi8_2s Kernel

h2ssetup Setup table

h2suser System initialization handler, timer initialization routine,
timer interrupt handler, system termination routine, CPU
initialization routine, system idling routine

h2silint Undefined interrupt handler

h2sc C-language interface library

Ptask Tutorial task for debugging extension (DX)

RAM hi8_2s_ram Kernel system work area

h2sstack Task stack area

h2smpf Fixed-size memory pool area

h2smpl Variable-size memory pool area

h2susr_ram CPU initialization routine stack area

h2strc Trace buffer area

Btask Message area of the tutorial task for debugging
extension (DX)

Be sure to specify addresses for all sections in the input files. The inter-module optimizer
automatically places all sections that don’t have overt address specifications in sequence after the
last section of the input files were specified. In such a case, the sections may not be arranged in
expected order, and the program may not work properly. Specifying [Check for Unlinked
Sections] in the tabbed page ‘Other’ will produce warning messages when there are sections that
don’t have address specifications. In such a case, linkage is halted. Specifying a section name that
does not actually appear in the input files will also produces a warning message, but in this case
the inter-module optimizer simply continues linking.

Note the following when allocating memory.

• The interrupt vector table (h2svectr) must be allocated to address H'0. When using the sample
interrupt vector table, it will be automatically allocated to address H'0; therefore, the section
tab does not have to be specified for the sample interrupt vector table.

• The kernel (hi8_2s) must be allocated from an even address. In the advanced mode, the section
must be allocated within the range from H’xx0000 to H’xxFFFF. The upper address xx must
be the same.

Rev. 2.0, 03/01, page 255 of 282

• The kernel system work area (hi8_2s_ram) must be allocated from an even address. In the
advanced mode, the section must be allocated within the range from H’xx0000 to H’xxFFFF.
The upper address xx must be the same.

• The setup table (h2ssetup) must be allocated from an even address. In the advanced mode, the
section must be allocated within the range from H’xx0000 to H’xxFFFF. The upper address xx
must be the same.

8.3.4 Build Execution

After application files have been added to the project and those files have been compiled,
assembled, and optimized, the load module is built.

To build the load module, choose [Build] or [Build All] from the Build menu of the HEW as
shown in figure 8.13.

Figure 8.13 Executing the Build

Rev. 2.0, 03/01, page 256 of 282

8.4 C-Language Interface Library Projects

To rebuild C-language interface source files as C-language interface library files, double-click the
C language interface workspace file “xxxcif.hws” that correspond to the target environment, as
indicated in table 8.6.

Table 8.6 C-Language Interface Projects

Project Name Description

26acif For H8S/2600 CPU advanced mode

26ncif For H8S/2600 CPU normal mode

20acif For H8S/2000 CPU advanced mode

20ncif For H8S/2000 CPU normal mode

Rev. 2.0, 03/01, page 257 of 282

Appendix A Memory Size

A.1 Memory Size

The memory area (RAM) size to be used by the HI2000/3 system can be calculated as follows.
When calculating the stack size of the system initialization handler and timer initialization routine,
use the calculation table for an interrupt handler with the same interrupt level as the kernel
interrupt mask level.

A.1.1 OS Work Area Size Calculation

Calculate the OS work area size using table A.1.

Table A.1 OS Work Area Size Calculation

Item Calculation Size (Bytes) Remarks

System management table
(_HI_SYSMT)

10 + (4 × maximum task
priority (MAXPRI))

Always necessary

Task management block
(_HI_TCB)

18 × (number of tasks defined
(TSKCNT))

Always necessary

Task management block 2
(_HI_TCB2)

8 × (number of tasks defined
(TSKCNT))

Necessary when
system calls with the
timeout function are
used

Event flag management
block (_HI_FLGCB)

6 × (number of event flags
defined (FLGCNT))

Necessary when the
event flag is used

Semaphore management
block (_HI_SEMCB)

6 × (number of semaphores
defined (SEMCNT))

Necessary when the
semaphore is used

Mailbox management block
(_HI_MBXCB)

8 × (number of mailboxes
defined (MBXCNT))

Necessary when the
mailbox is used

Fixed-size memory pool
management block
(_HI_MPFCB)

6 × (number of fixed-size
memory pools defined
(MPFCNT))

Necessary when the
fixed-size memory
pool is used

Variable-size memory pool
management block
(_HI_MPLCB)

20 × (number of variable-size
memory pools defined
(MPLCNT))

Necessary when the
variable-size memory
pool is used

Rev. 2.0, 03/01, page 258 of 282

Table A.1 OS Work Area Size Calculation (cont)

Item Calculation
Size
(Bytes) Remarks

Cyclic handler management
block (_HI_CYHCB)

20 x (number of cyclic
handlers defined (CYHCNT))

Necessary when the
cyclic handler is used

Timer management blocks
(_HI_TIMCB, _HI_TIMCB2,
and _HI_TIMCB3)

10*1 + 4*2 + 14*3

Trace buffer management
block (TBACB)

8 Necessary when the
trace function is used

Total

Notes: 1. Necessary when the timer driver is used.

2. Necessary when system calls with the timeout function are used.

3. Necessary when the cyclic handler is used.

Note: If NOTUSE is selected for the timeout function definition in the setup table (label name
TTMOUT), the TCB2 and TIMCB2 areas used by the timeout function are not defined.
If 0 is specified for the timer stack size in the setup table (label name TIMSTKSIZ), the
timer management blocks (TIMCB, TIMCB2, and TIMCB3 areas) and timer
management-related blocks (TCB2 and CYHCB) are not defined.
If 0 is specified for the trace stack size in the setup table (label name TRCSTKSIZ), the
trace buffer management block is not defined.

Rev. 2.0, 03/01, page 259 of 282

A.1.2 OS Stack Area Size Calculation

Calculate the OS stack area size (OSSTKSIZ) using table A.2. Define the OS stack area size in the
setup table.

Table A.2 OS Stack Area Size Calculation

Item Calculation
Size
(Bytes) Remarks

Stack area used by OS 18 (advanced mode) or
14 (normal mode)

18 or 14 Always necessary

10 × LOWINTNST*1

+ 6 × UPPINTNST*2
When interrupt
control mode 2 or 3
is used

Stack area for interrupts

8 × LOWINTNST*1

+ 4 × UPPINTNST*2
When interrupt
control mode 0 or 1
is used

Stack area for undefined
interrupts*3

8 When interrupt
control mode 2 or 3
is used

6 When interrupt
control mode 0 or 1
is used

Total

Notes: 1. Number of nesting interrupts of which level is equal to or lower than the kernel interrupt
mask level.

2. Number of nesting interrupts (including NMIs) of which level is higher than the kernel
interrupt mask level.

3. Necessary when undefined interrupts are generated.

Rev. 2.0, 03/01, page 260 of 282

A.1.3 Timer Interrupt Stack Area Size Calculation

Calculate the timer interrupt stack area size (TIMSTKSIZ) using table A.3.

Define the timer interrupt stack size in the setup table.

Table A.3 Timer Interrupt Stack Area Size Calculation

Item Calculation
Size
(Bytes) Remarks

Stack area used by timer
interrupt handler

40 (advanced mode) or
38 (normal mode)

40 or 38 Always necessary

10 × LOWINTNST*1

+ 6 × UPPINTNST*2
When interrupt control
mode 2 or 3 is used

Stack area for interrupts

8 × LOWINTNST*1

+ 4 × UPPINTNST*2
When interrupt control
mode 0 or 1 is used

Stack area for undefined
interrupt*3

8 When interrupt control
mode 2 or 3 is used

6 When interrupt control
mode 0 or 1 is used

Stack area used by cyclic
handler*4

User-specified size Add the size calculated by
using table A.5.

Total

Notes: 1. Number of nesting interrupts of which level is equal to or lower than the kernel interrupt
mask level and higher than timer interrupt level.

2. Number of nesting interrupts (including NMIs) of which level is higher than the kernel
interrupt mask level.

3. Necessary when undefined interrupts are generated.

4. When multiple cyclic handlers are used, calculate the stack size for each handler, then
select the maximum size to add to the total stack size.

When a cyclic handler is written in C language, calculate the stack size from the
function frame size shown in the compile listing. When issuing a system call from a
cyclic handler, calculate the stack size using table A.5, Interrupt Handler Stack Area
Size Calculation.

Rev. 2.0, 03/01, page 261 of 282

A.1.4 Task Stack Area Size Calculation

Calculate the task stack area size for each task ID using table A.4. Define the task stack area for
each task ID separately in the setup table. When a task is written in C language, calculate the stack
size from the function frame size shown in the compile listing. The overall size of the task stack is
the sum of all the task ID sizes. When using the shared stack function, specify the maximum size
used by the tasks that share the stack area.

Note: When using the shared stack function, define 8 bytes of area ranging from the end
address of each stack area in the direction of ascending addresses.

Table A.4 Task Stack Area Size Calculation

Item Calculation
Size
(Bytes) Remarks

Stack area used by task User-specified size

Stack area used by OS 50 (H8S/2600 CPU) or
42 (H8S/2000 CPU)

50 or 42 Always necessary

Stack area for interrupts 10 × LOWINTNST*1

+ 6 × UPPINTNST*2
When interrupt control
mode 2 or 3 is used

8 × LOWINTNST*1

+ 4 × UPPINTNST*2
When interrupt control
mode 0 or 1 is used

Stack area for system call
trace

6 Necessary when trace
function is used

Stack area for undefined
interrupts*3

8 When interrupt control
mode 2 or 3 is used

6 When interrupt control
mode 0 or 1 is used

Stack area for C language
interface

22 (advanced mode) or
14 (normal mode)

Necessary when the task
is written in C language

Stack area for shared stack
function

8 Necessary when the
shared stack function is
used

Total

Notes: 1. Number of nesting interrupts of which level is equal to or lower than the kernel interrupt
mask level.

2. Number of nesting interrupts (including NMIs) of which level is higher than the kernel
interrupt mask level.

3. Necessary when undefined interrupts are generated.

Rev. 2.0, 03/01, page 262 of 282

A.1.5 Interrupt Handler Stack Area Size Calculation

Calculate the stack area size for each interrupt handler using the following table A.5.

Note that the interrupt handler stack area can be shared with interrupt handlers of the same
interrupt priority level. Accordingly, the maximum interrupt handler stack area size of the same
interrupt priority level must be defined.

The handler stack area must be defined for each handler separately.

If an interrupt handler is written in C language, calculate the stack size from the function frame
size shown in the compiler listing.

Table A.5 Interrupt Handler Stack Area Size Calculation

Item Calculation
Size
(Bytes) Remarks

Stack area used by interrupt
handler

User-specified size

Stack area used by OS 42 (advanced mode) or
38 (normal mode)

42 or 38 Always necessary

Stack area for interrupts 10 × LOWINTNST*1

+ 6 × UPPINTNST*2
When interrupt control
mode 2 or 3 is used

8 × LOWINTNST*1

+ 4 × UPPINTNST*2
When interrupt control
mode 0 or 1 is used

Stack area for system call
trace

6 Necessary when trace
function is used

Stack area for undefined
interrupts*3

8 When interrupt control
mode 2 or 3 is used

6 When interrupt control
mode 0 or 1 is used

Stack area for C language
interface

22 (advanced mode) or
14 (normal mode)

Necessary when the
interrupt handler is
written in C language

Total

Notes: 1. Number of nesting interrupts of which level is equal to or lower than the kernel interrupt
mask level and higher than the current interrupt level.

2. Number of nesting interrupts (including NMIs) of which level is higher than the kernel
interrupt mask level.

3. Necessary when undefined interrupts are generated.

Rev. 2.0, 03/01, page 263 of 282

A.1.6 Fixed-Size Memory Pool Area Size Calculation

Calculate the fixed-size memory pool area size for each memory pool ID using table A.6.

The overall size of the fixed-size memory pool areas is the sum of all the memory pool ID sizes.

Define the number of the fixed-size memory blocks (MB?_CNT) and the size of the fixed-size
memory block (MB?_LEN) for each memory pool ID in the setup table to reserve the memory
pool area.

Table A.6 Fixed-Size Memory Pool Area Size Calculation

Item Calculation
Size
(Bytes) Remarks

Fixed-size memory pool
area

Number of fixed-size
memory blocks*1 × (Memory
block size*2 + 4)

Management area (4
bytes) is needed for
each memory block

Total

Notes: 1. The label of the number of fixed-size memory blocks is MB?_CNT.

2. The label of the fixed-size memory block size is MB?_LEN.

A.1.7 Variable-Size Memory Pool Area Size Calculation

Calculate the variable-size memory pool area size (MPL?_SIZ) for each ID using table A.7.

The overall variable-size memory pool areas is the sum of all the memory pool ID sizes.

Define the size of the variable-size memory pool area (MPL?_SIZ) for each memory pool ID in
the setup table to allocate the memory pool area.

Table A.7 Variable-Size Memory Pool Area Size Calculation

Item Calculation
Size
(Bytes) Remarks

Variable-size memory pool
area (MPL?_SIZ)

Variable-size memory
pool size
+ (16 × n*)

Management area (16
bytes) is needed for
each memory block

Total

Note: Maximum number of variable-size memory blocks acquired.

Rev. 2.0, 03/01, page 264 of 282

A.1.8 Trace Function Stack Area Size Calculation

Calculate the trace function stack area size (TRCSTKSIZ) using table A.8. This stack area is
needed only when using the trace function.

Define the trace function stack area size in the setup table.

Table A.8 Trace Function Stack Area Size Calculation

Item Calculation
Size
(Bytes) Remarks

Stack area used by OS 26 26 Always necessary

Stack area for interrupts 6 × UPPINTNST*1 When interrupt control
mode 2 or 3 is used

4 × UPPINTNST*1 When interrupt control
mode 0 or 1 is used

Stack area for undefined
interrupts*2

8 When interrupt control
mode 2 or 3 is used

6 When interrupt control
mode 0 or 1 is used

Total

Notes: 1. Number of nesting interrupts (including NMIs) of which level is higher than the kernel
interrupt mask level.

2. Necessary when undefined interrupts are generated.

A.1.9 Trace Buffer Area Size Calculation

Calculate the trace buffer area (TRC_BUF) size using table A.9. This area is needed only when
using the trace function. This calculation table can be used in both normal mode and advanced
mode.

Define the trace buffer area size in the setup table to reserve the trace buffer area.

Table A.9 Trace Buffer Area Size Calculation

Item Calculation
Size
(Bytes) Remarks

Trace buffer management area 16 16

Trace entry information area 28 × number of trace
information items acquired
(TRCCNT)

Total

Rev. 2.0, 03/01, page 265 of 282

A.1.10 HI2000/3 Work Area Size Calculation

Calculate the HI2000/3 work area (RAM) size using table A.10.

Table A.10 HI2000/3 Work Area Size Calculation

Item Calculation
Size
(Bytes) Remarks

OS work area size — See table A.1

OS stack area size — See table A.2

Timer interrupt stack area size — See table A.3

Task stack area size (total)*1 — See table A.4

Interrupt handler stack area size*2 — See table A.5

Fixed-size memory pool area size (total) — See table A.6

Variable-size memory pool area size (total) — See table A.7

Trace function stack area size — See table A.8

Trace buffer area size — See table A.9

NMI interrupt handler stack area size

System initialization handler stack area size —

CPU initialization routine stack area size*3 —

Timer initialization routine stack area size —

Other
()

—

Other
()

—

Other
()

—

Other
()

—

Total

Notes: 1. When the shared stack function is used, every task stack area must have an area for
the shared stack management.

2. Interrupts with the same interrupt level can share the interrupt handler stack area.

Accordingly, define the maximum interrupt handler stack area size that will be used by
the interrupt handlers with the same level.

3. The CPU initialization routine is executed before the kernel is initiated. Accordingly, the
stack area for the CPU initialization routine can be used as stack areas (RAM) other
than the NMI interrupt handler stack area.

Rev. 2.0, 03/01, page 266 of 282

Rev. 2.0, 03/01, page 267 of 282

Appendix B Compiler and Assembler Options

B.1 Compiler Options

This section covers the important C compiler options used to create this system. For details on
compiler options, refer to the H8S, H8/300 Series C/C++ Compiler User's Manual.

1. cpu command option

Specifies the CPU type. Specify the appropriate value for the CPU used.

If a program is compiled with an incorrect CPU type specified and then executed, or compiled
by specifying two or more different CPU types and then executed, normal system operation
cannot be guaranteed.

2. include command option

Specifies include files.

The kernel provides standard header file hi2000.h. The hi2000.h file is under the sample
directory; include this header when required.

3. debug command option

Specifies the addition of debugging information to the object. Specify it when using Hitachi’s
debugging environment.

4. list command option

Specifies the creation of a compile list file. Important information such as stack frame size and
section size is output to the list file. The list will be useful for calculating stack sizes and
linking files.

5. objectfile command option

Specifies which object module to output.

B.2 Assembler Options

This section covers the important assembler options used to create this system. For details on
assembler options, refer to the H8S, H8/300 Series Cross Assembler User's Manual.

1. cpu command option

Specifies the CPU type. Specify the appropriate value for the CPU used.

If a program is compiled with an incorrect CPU type specified and then executed, or compiled
by specifying two or more different CPU types and then executed, normal system operation
cannot be guaranteed.

2. include command option

Specifies include files.

The kernel provides standard header file hi2000.inc. The hi2000.inc file is under the sample
directory; include this header when required.

Rev. 2.0, 03/01, page 268 of 282

3. debug command option

Specifies the addition of debugging information to the object. Specify it when using Hitachi’s
debugging environment.

4. list command option

Specifies the creation of an assembly list file. Important information such as section sizes is
output to the list file. The list will be useful for linking files.

5. objectfile command option

Specifies which object module to output.

Rev. 2.0, 03/01, page 269 of 282

Appendix C Device Driver

C.1 Timer Driver

The kernel provides a sample timer driver using the timer pulse unit (TPU) and the free running
timer (FRT) incorporated in the H8S series MCU. This section describes the sample timer driver.
When using another hardware timer, refer to the appropriate timer hardware specifications.

A timer driver must be created and incorporated into the system when using the kernel time
management function. The timer driver consists of a timer initialization routine and a timer
interrupt handler.

Figure C.1 shows the timer driver processing.

RTS

Kernel

Task

Timer initialization
 routine

Timer driver

Timer device initialization

Timer interrupt
 handler

Timer interrupt
occurrence

Timer interrupt clear

Timer interrupt
processing by kernel

Time management

Time update

Timer handler execution
control by time

Task execution
control by time

Kernel initialization processing

Timer initialization
routine calling

Task switching process

Task scheduling

Figure C.1 Timer Driver Processing

Rev. 2.0, 03/01, page 270 of 282

C.1.1 Timer Initialization Routine

The timer initialization routine initializes the hardware timer to be used. Table C.1 lists the
conditions for the timer initialization routine processing.

Table C.1 Conditions for Timer Initialization Routine Processing

Item Description

Interrupt mask Initiated in interrupt mask state.

Usable registers The registers guaranteed in the C language programs (functions) can be used.

Stack pointer Set the same value as that at initiation when control is returned to the kernel.

Usable system
calls

No system call can be issued.

Usable stack
area

When using the stack, reserve the stack area for the timer initialization routine
during system configuration, and switch the stack when the timer initialization
routine is initiated.

Termination Execution is terminated by the RTS instruction. At termination, set the task
state as that at initiation.

C.1.2 Timer Interrupt Handler

The timer interrupt handler is initiated by the occurrence of an interrupt from the hardware timer.

When a hardware timer interrupt occurs, the timer interrupt handler performs the timer interrupt
reset processing, which clears the hardware timer interrupt, and then jumps to the kernel timer
interrupt processing routine, which requests time management processing to the kernel.

The timer interrupt handler can also control task execution by issuing system calls for task-
independent portion from the timer interrupt reset processing.

Rev. 2.0, 03/01, page 271 of 282

Table C.2 lists the conditions for the timer interrupt reset processing.

Table C.2 Conditions for Timer Interrupt Reset Processing

Item Description

Interrupt mask Initiated in interrupt mask state.

Usable registers ER0 to ER6.

Stack pointer When time management processing is not requested:
When returning control to the interrupt source, set the value to that at initiation.

When time management processing is requested:
Set the stack pointer to the value to that when switched to timer interrupt
handler. Refer to the stack state at timer interrupt reset processing termination
shown in figure C.2.

Usable system
calls

System calls that can be issued from task-independent portion.

Usable stack
area

Reserve the stack area at system configuration and switch the stack at
initiation.

Termination Terminates processing by jumping to the kernel timer interrupt processing.

jmp @_H_timsys

_H_timsys is the head symbol of kernel timer interrupt processing. At
termination, set the stack as that at initiation.

When the timer interrupt reset processing is terminated, set the stack pointer to the address of the
timer interrupt handler stack area used when the timer interrupt is initiated, and jump to the kernel
timer interrupt processing routine.

Figure C.2 shows the stack state at timer interrupt reset processing termination.

Rev. 2.0, 03/01, page 272 of 282

Stack area for timer interrupt handlerStack area at timer interrupt

Stack size for
timer interrupt
handler
*2

SP *1

Stack pointer
at timer interrupt

Stack area
used by timer
interrupt handler

PC at timer
interrupt*3

CCR at interrupt
 0

+ 4

1. Stack pointer value when execution jumps to the timer interrupt
 processing of the kernel.
2. For the timer interrupt stack size, refer to appendix A, Memory Size.
3. The low-order 16 bits are valid in normal mode.

Notes:

(1) Interrupt Control Mode 0 or 1

 0

+ 6

EXR at interrupt *4

Reserved
+ 2

+ 1

PC at timer
interrupt *3

CCR at interrupt

SP *1

Stack size for
timer interrupt
handler
*2Stack pointer

at timer interrupt

Stack area
used by timer
interrupt handler

Stack area for timer interrupt handlerStack area at timer interrupt

1. Stack pointer value when execution jumps to the timer interrupt
 processing of the kernel.
2. For the timer interrupt stack size, refer to appendix A, Memory Size.
3. The low-order 16 bits are valid in normal mode.
4. The EXR register contents are not saved in the stack in control
 mode 0 or 1.

Notes:

(2) Interrupt Control Mode 2 or 3

Figure C.2 Stack State at Timer Interrupt Reset Processing Termination

Rev. 2.0, 03/01, page 273 of 282

C.1.3 Timer Driver Definition Information

A timer driver is required to use the time management function. The kernel uses the interrupts at
certain intervals input from the hardware for time management. The 16-bit timer in the H8S series
MCU is used as the hardware timer for time management. The timer driver consists of a timer
initialization routine and a timer interrupt handler. The kernel provides an H8S series sample
timer driver file sample\nnnnzsmp\nnnnzuse.src.

Timer Initialization Routine (Label Name: _HIPRG_TIMINI): Initializes the hardware timer
used as a system clock. Note that the timer interrupt level must not be higher than the kernel
interrupt mask level specified in the setup table.

Timer Interrupt Handler (Label Name: _H_2S_TIM): Clears the timer interrupt after a
hardware timer interrupt occurs (timer interrupt reset procedure) and causes a jump to the kernel
timer interrupt processing. This handler must be created if the hardware timer specifications
require interrupts to be cleared.

For details on the hardware timer specifications, refer to the target MCU hardware manual.

Rev. 2.0, 03/01, page 274 of 282

Timer Cycle Modification: The TPU in the H8S/2655 is described as an example. The sample
timer driver specifies the hardware timer cycle as 10 ms by using the TPU general register 0A
(TGR0A) as an output compare register. Table C.3 shows the definition of assign directives to
simplify the timer cycle modification.

Table C.3 Definition of Assign Directive for Timer Driver

Label Name Contents Set Value
TGRA_DATA Data to be set in the timer general register 0A (TGR0A)

Timer prescaler
Selects the timer counter clock from among the following:
φ
φ/4
φ/16
φ/64

The timer cycle is determined by the data specified in TGR0A and
the timer prescaler using the following formula.
Timer cycle = x (s)
Timer prescaler = n
TGR0A data = x × n – 1

Example: Sample driver value
CPU clock (φ) = 20 MHz
Timer prescaler = φ/16
Timer cycle = 10 ms
TGR0A = 0.01 (20,000,000/16) – 1
= 12,500 – 1
= H'30d3

The relationship between the timer prescaler and timer cycle range
is shown below when the CPU clock φ is assumed to be 20 MHz.
Timer prescaler = φ: Timer cycle range: 50.0 µs to 3.27 ms
Timer prescaler = φ/4: Timer cycle range: 200.0 µs to 13.1 ms
Timer prescaler = φ/16: Timer cycle range: 800.0 µs to 52.4 ms
Timer prescaler = φ/64: Timer cycle range: 3200.0 µs to 209.7 ms

H’30D3

TCR_DATA Data to be set in the timer control register 0 (TCR0)

Counter clear
Compares the timer counter (TCNT0) with the TGR0A, and if they
match, clears the TCNT0.

Timer prescaler
Selects the internal clock of φ/16 as the timer counter clock.

H’22

IPRF_TPU0 The interrupt level of the TPU channel 0 interrupt handler H’05

Rev. 2.0, 03/01, page 275 of 282

Timer Driver Definition and Deletion: To define the timer driver, the timer initialization
routine and the timer interrupt handler must be defined. When the timer driver is not used, the
timer driver information must be deleted from the interrupt vector table and the setup table, and
the supplied timer driver must be deleted.

• Defining the timer initialization routine

To define the timer initialization routine, add the label name _HIPRG_TIMINI to the head of
the timer initialization routine program, and declare it with the export directive.
To not define the timer initialization routine, set the label name _HIPRG_TIMINI to 0 by the
equate directive.

• Defining the timer interrupt handler

Define the start address of the timer interrupt handler in the interrupt vector table.

• Deleting the timer driver

When the timer driver is not used, delete it as follows:

 Interrupt vector table

For the H8S/2655, delete the external reference declaration (import) from the start address
of the timer interrupt handler (label name _H_2S_TIM), and define the undefined interrupt
handler (label name _H_2SINT32) in vector number 32.

 Setup table

Modify the timer stack size (label name TIMSTKSIZ) to 0.

 Timer driver (timer initialization routine and timer interrupt handler)

Remove the timer initialization routine program (label name _HIPRG_TIMINI), and set
the label name _HIPRG_TIMINI to 0 by the equate directive. Remove the timer interrupt
handler program (label name _H_2S_TIM). Remove the external reference symbol
declaration (import) from the OS timer interrupt processing (label name _H_timsys).

Precautions on Using a Timer other than those of the H8S Series MCU: When a timer other
than the H8S series MCU’s TPU and FRT is used, a new timer driver must be created.

Rev. 2.0, 03/01, page 276 of 282

Rev. 2.0, 03/01, page 277 of 282

Appendix D Error Codes

D.1 System Call Error Codes

Table D.1 System Call Error Codes

Error Code
(Mnemonic)

Error Code
(ercd)

Error
Check Type Error Contents

1 E_OK H'0000 (H'0) [k] Normal termination

2 E_RSFN H'ffec (–H'14) [p] Reserved function code number
(Undefined function code
specified)

3 E_PAR H'ffdf (–H'21) [p]/[k] Parameter error

4 E_ID H'ffdd (–H'23) [p] Invalid ID number

5 E_NOEXS H'ffcc (–H'34) [p] Object does not exist
Object is undefined

6 E_OBJ H'ffc1 (–H'3f) [k] Object state is illegal

7 E_CTX H'ffbb (–H'45) [p]/[k] Context error

8 E_QOVR H'ffb7 (–H'49) [k] Overflow of queuing or nesting

9 E_TMOUT H'ffab (–H'55) [k] Polling failure or timeout

10 E_RLWAI H'ffaa (–H'56) [k] Wait state has been released
forcibly

11 EV_ILBLK H'ff1e (–H'e2) [k] Returns illegal memory block

Error check type: [p] is an error that is checked when the parameter checking function is
incorporated.

[k] is an error that is checked even when the parameter checking function is not
incorporated.

Rev. 2.0, 03/01, page 278 of 282

D.2 Debugging Extension Errors

Table D.2 Debugging Extension Error Messages

Error Message Meaning and Actions to Take

Cannot open HIOS window - no HIOS program
loaded.

The load module is not loaded.
Load the load module.

Cannot open memory display window @ H’xxxxxx
Operation not implemented on this version of HDI.

The Memory window cannot be displayed.
This window is not supported by this version
of HDI.

Cannot open program code window @ H’xxxxxx
Operation not implemented on this version of HDI.

The Program window cannot be displayed.
This window is not supported by this version
of HDI.

ERROR : Command Already On Stack. The specified command request has
already requested.

ERROR : Demon Code Not Present. Command
Cancelled.

The debug daemon is not installed.
Install the debug daemon referring to
Installing the Debug Daemon in section 4.4.

ERROR : Demon Code Not Running. Command
Cancelled.

The debug daemon is not initialized.
Execute Go Reset for the kernel and
initialize the debug daemon.

Error : Number Out of Range The data has exceeded the specifiable
range.
Check the specified data.

Error: Invalid input expression The specified data is invalid.
Check the specified data.

HIOS Error H'xxxx : <Error Message> An error has occurred for the debug
daemon system call.
Check the state of the specified ID.

Invalid Expression Not a specifiable flag value.
Check the value of the specified flag.

Invalid Format in Message Address The format of the message address is
invalid.
Check the message address.

Invalid Format in Message String! The specified message string format is
invalid.
Check the specified message.

Timer Value invalid or wrong format! The timer value or the format is invalid.
Check the specified timer value.

Unable to remove message from selected Mailbox. Cannot delete the message in the selected
mailbox.
Check the selected mailbox.

Rev. 2.0, 03/01, page 279 of 282

Table D.2 Debugging Extension Error Messages (cont)

Error Message Meaning and Actions to Take

Unable to set breakpoint on HDI! Breakpoints cannot be specified since the
task is in the ROM area.
Check the specified area.

Value Too Large The flag value has exceeded the specifiable
range.
Check the specified flag value.

Rev. 2.0, 03/01, page 280 of 282

Rev. 2.0, 03/01, page 281 of 282

Appendix E System Call Function Codes

E.1 System Call Function Codes

The following table lists the system calls and their function codes for the system call trace
function.

Table E.1 System Calls and Function Codes

No. System Call Function Code No System Call Function Code

1 ista_tsk H'ff09 (-H'f7) 21 ref_cyc H'ffa4 (-H'5c)

2 trcv_msg H'ff54 (-H'ac) 22 get_tim H'ffac (-H'54)

3 twai_sem H'ff55 (-H'ab) 23 set_tim H'ffad (-H'53)

4 twai_flg H'ff56 (-H'aa) 24 rel_blf H'ffb1 (-H'4f)

5 tget_blk H'ff58 (-H'a8) 25 get_blf H'ffb3 (-H'4d)

6 tget_blf H'ff59 (-H'a7) 26 ref_mpf H'ffb4 (-H'4c)

7 rel_blk H'ff71 (-H'8f) 27 ret_int H'ffbb (-H'45)

8 get_blk H'ff73 (-H'8d) 28 ref_ims H'ffbc (-H'44)

9 ref_mpl H'ff74 (-H'8c) 29 chg_ims H'ffbd (-H'43)

10 isnd_msg H'ff84 (-H'7c) 30 snd_msg H'ffc1 (-H'3f)

11 isig_sem H'ff85 (-H'7b) 31 rcv_msg H'ffc3 (-H'3d)

12 iset_flg H'ff86 (-H'7a) 32 ref_mbx H'ffc4 (-H'3c)

13 iwup_tsk H'ff87 (-H'79) 33 sig_sem H'ffc9 (-H'37)

14 irot_rdq H'ff8a (-H'76) 34 wai_sem H'ffcb (-H'35)

15 prcv_msg H'ff94 (-H'6c) 35 ref_sem H'ffcc (-H'34)

16 preq_sem H'ff95 (-H'6b) 36 set_flg H'ffd0 (-H'30)

17 pol_flg H'ff96 (-H'6a) 37 clr_flg H'ffd1 (-H'2f)

18 pget_blk H'ff98 (-H'68) 38 wai_flg H'ffd2 (-H'2e)

19 pget_blf H'ff99 (-H'67) 39 ref_flg H'ffd4 (-H'2c)

20 act_cyc H'ffa2 (-H'5e) 40 can_wup H'ffd8 (-H'28)

Rev. 2.0, 03/01, page 282 of 282

Table E.1 System Calls and Function Codes (cont)

No. System Call Function Code No System Call Function Code

41 wup_tsk H'ffd9 (-H'27) 50 chg_pri H'ffe5 (-H'1b)

42 slp_tsk H'ffda (-H'26) 51 ter_tsk H'ffe7 (-H'19)

43 tslp_tsk H'ffdb (-H'25) 52 get_tid H'ffe8 (-H'18)

44 rsm_tsk H'ffdd (-H'23) 53 sta_tsk H'ffe9 (-H'17)

45 sus_tsk H'ffdf (-H'21) 54 ext_tsk H'ffeb (-H'15)

46 rel_wai H'ffe1 (-H'1f) 55 ref_tsk H'ffec (-H'14)

47 dis_dsp H'ffe2 (-H'1e) 56 get_ver H'fff0 (-H'10)

48 ena_dsp H'ffe3 (-H'1d) 57 loc_cpu H'fff8 (-H'8)

49 rot_rdq H'ffe4 (-H'1c) 58 unl_cpu H'fff9 (-H'7)

	Cover
	Preface
	Contents
	Figures Contents
	Tables Contents
	Section 1 Introduction to HI2000/3
	1.1 Overview
	1.2 Features

	Section 2 Kernel
	2.1 Overview
	2.2 Functions
	2.3 System State
	2.4 Tasks
	2.4.1 Overview
	2.4.2 Task State and Transition
	2.4.3 Task Initiation
	2.4.4 Task Scheduling
	2.4.5 Task Waiting/Suspension and Release
	2.4.6 Task Termination
	2.4.7 Shared Stack Function

	2.5 Synchronization and Communication
	2.5.1 Event Flag
	2.5.2 Semaphore
	2.5.3 Mailbox

	2.6 Interrupt
	2.6.1 Overview
	2.6.2 Interrupt Handler
	2.6.3 Undefined Interrupt
	2.6.4 Monopolizing the CPU

	2.7 Memory Pool
	2.7.1 Fixed-Size Memory Pool
	2.7.2 Variable-Size Memory Pool

	2.8 Time Management
	2.8.1 Overview
	2.8.2 Hardware Timer and System Clock
	2.8.3 Setting and Referring to System Clock
	2.8.4 Cyclic Handler

	2.9 System Management
	2.10 System-Call Trace
	2.11 Trace Buffer Structure
	2.12 Trace Acquisition Data Analysis Example
	2.13 Trace-Function Definition
	2.14 Notes on Trace Function

	Section 3 System Calls
	3.1 Overview
	3.2 System Call Interface
	3.2.1 C-Language Interface
	3.2.2 Assembler Interface
	3.2.3 Error Codes

	3.3 System Calls
	3.4 Task Management
	3.4.1 Start Task (sta_tsk) [T/D/L]
	3.4.2 Exit Task (ext_tsk) [T/D/L]
	3.4.3 Terminate Task (ter_tsk) [T/D/L]
	3.4.4 Change Task Priority (chg_pri) [T/D/L]
	3.4.5 Rotate Ready Queue (rot_rdq) [T/D/L]
	3.4.6 Release Wait (rel_wai) [T/D/L]
	3.4.7 Get Task Identifier (get_tid) [T/D/L]
	3.4.8 Refer Task State (ref_tsk) [T/D/L/I]
	3.4.9 Disable Dispatch (dis_dsp) [T/D]
	3.4.10 Enable Dispatch (ena_dsp) [T/D]

	3.5 Task Synchronization
	3.5.1 Suspend Task (sus_tsk) [T/D/L]
	3.5.2 Resume Task (rsm_tsk) [T/D/L]
	3.5.3 Sleep Task (slp_tsk) [T]
	3.5.4 Wakeup Task (wup_tsk) [T/D/L]
	3.5.5 Cancel Wakeup Task (can_wup) [T/D/L]

	3.6 Synchronization and Communication (Event Flag)
	3.6.1 Set Event Flag (set_flg) [T/D/L]
	3.6.2 Clear Event Flag (clr_flg) [T/D/L/I]
	3.6.3 Wait for Eventflag (wai_flg) [T]
	3.6.4 Refer Event Flag State (ref_flg) [T/D/L/I]

	3.7 Synchronization and Communication (Semaphore)
	3.7.1 Returns Semaphore Resource (sig_sem) [T/D/L]
	3.7.2 Wait on Semaphore (wai_sem) [T]
	3.7.3 Refer Semaphore State (ref_sem) [T/D/L/I]

	3.8 Synchronization and Communication (Mailbox)
	3.8.1 Send Message to Mailbox (snd_msg) [T/D/L]
	3.8.2 Receive Message from Mailbox (rcv_msg) [T]
	3.8.3 Refer Mailbox Status (ref_mbx) [T/D/L/I]

	3.9 Interrupt Management
	3.9.1 Return from Interrupt Handler (ret_int) [I]
	3.9.2 Change Interrupt Mask Level (chg_ims) [T/I]
	3.9.3 Refer Interrupt Mask Level State (ref_ims) [T/D/L/I]
	3.9.4 Lock CPU (loc_cpu) [T/D/L]
	3.9.5 Unlock CPU (unl_cpu) [T/D/L]

	3.10 Memory Pool Management (Fixed-Size Memory Pool)
	3.10.1 Get Fixed-Size Memory Block (get_blf) [T]
	3.10.2 Release Fixed-Size Memory Block (rel_blf) [T/D/L]
	3.10.3 Refer Fixed-Size Memory Pool Status (ref_mpf) [T/D/L/I]

	3.11 Memory Pool Management (Variable-Size Memory Pool)
	3.11.1 Get Variable-Size Memory Block (get_blk) [T]
	3.11.2 Release Variable-Size Memory Block (rel_blk) [T/D/L]
	3.11.3 Refer Variable-Size Memory Pool Status (ref_mpl) [T/D/L/I]

	3.12 Time Management
	3.12.1 Set System Clock (set_tim) [T/D/L/I]
	3.12.2 Get System Clock (get_tim) [T/D/L/I]
	3.12.3 Activate Cyclic Handler (act_cyc) [T/D/L/I]
	3.12.4 Refer Cyclic Handler State (ref_cyc) [T/D/L/I]

	3.13 System Management
	3.13.1 get_ver (Get Version Information) [T/D/L/I]

	Section 4 Debugging Extension
	4.1 Overview
	4.1.1 Displaying and Manipulating Objects
	4.1.2 Results of Object Manipulation
	4.1.3 Displaying the Register Values
	4.1.4 Displaying the HI2000/3 DX System Call Trace Information
	4.1.5 Online Help

	4.2 List of Functions
	4.2.1 HI2000/3 DX Menus
	4.2.2 Windows and Dialog Boxes

	4.3 Notes
	4.3.1 Setting up the E6000 Emulator
	4.3.2 Displaying the HI2000/3 DX Window
	4.3.3 Realtime Operation of the User System
	4.3.4 Displaying Correct Data
	4.3.5 Trace
	4.3.6 User System Memory
	4.3.7 Correspondence to the HDI Session
	4.3.8 Loading Load Modules

	4.4 Debug Daemon
	4.5 Tutorial
	4.5.1 Executing a Sample Program
	4.5.2 Starting a Task
	4.5.3 Mailboxes and Messages
	4.5.4 Examples during System Operation

	Section 5 Creating Application Programs
	5.1 Creating a User Program
	5.2 Tasks
	5.2.1 Creating Tasks
	5.2.2 Defining Tasks

	5.3 Interrupt Handlers
	5.3.1 Interrupt Handler Description
	5.3.2 Defining Interrupt Handlers

	5.4 Undefined Interrupt Handlers
	5.4.1 Creating Undefined Interrupt Handlers
	5.4.2 Defining Undefined Interrupt Handlers

	5.5 Cyclic Handlers
	5.5.1 Creating Cyclic Handlers
	5.5.2 Defining Cyclic Handlers

	5.6 CPU Initialization Routine
	5.6.1 Creating CPU Initialization Routines
	5.6.2 Defining CPU Initialization Routines

	5.7 Timer Initialization Routine
	5.8 System Initialization Handlers
	5.8.1 Creating System Initialization Handlers
	5.8.2 Defining the System Initialization Handler

	5.9 System Termination Routines
	5.9.1 Creating System Termination Routines
	5.9.2 Defining the System Termination Routine

	5.10 System Idling Routine
	5.10.1 Creating System Idling Routines
	5.10.2 Defining a System Idling Routine

	Section 6 Creating the Setup Table
	6.1 Overview
	6.2 User Definition Field
	6.2.1 Defining the Constant Definition Field
	6.2.2 Defining Task
	6.2.3 Defining Fixed-Size Memory Pools
	6.2.4 Defining Variable-Size Memory Pools
	6.2.5 Defining Cyclic Handlers
	6.2.6 Defining Trace Functions
	6.2.7 Defining Extended Information

	6.3 System Definition Field

	Section 7 Creating the Interrupt Vector Table
	7.1 Overview
	7.2 Defining Interrupt Handler

	Section 8 Load Module Creation
	8.1 Overview
	8.2 Workspace and Project Files
	8.3 Load Module Creation
	8.3.1 Adding Files to a Project
	8.3.2 Compiler and Assembler Options
	8.3.3 Inter-Module Optimizer Setting
	8.3.4 Build Execution

	8.4 C-Language Interface Library Projects

	Appendix A Memory Size
	A.1 Memory Size
	A.1.1 OS Work Area Size Calculation
	A.1.2 OS Stack Area Size Calculation
	A.1.3 Timer Interrupt Stack Area Size Calculation
	A.1.4 Task Stack Area Size Calculation
	A.1.5 Interrupt Handler Stack Area Size Calculation
	A.1.6 Fixed-Size Memory Pool Area Size Calculation
	A.1.7 Variable-Size Memory Pool Area Size Calculation
	A.1.8 Trace Function Stack Area Size Calculation
	A.1.9 Trace Buffer Area Size Calculation
	A.1.10 HI2000/3 Work Area Size Calculation

	Appendix B Compiler and Assembler Options
	B.1 Compiler Options
	B.2 Assembler Options

	Appendix C Device Driver
	C.1 Timer Driver
	C.1.1 Timer Initialization Routine
	C.1.2 Timer Interrupt Handler
	C.1.3 Timer Driver Definition Information

	Appendix D Error Codes
	D.1 System Call Error Codes
	D.2 Debugging Extension Errors

	Appendix E System Call Function Codes
	E.1 System Call Function Codes

	renesas:

