To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

10.

11

12.

Notice

All information included in this document is current as of the date this document isissued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful atention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any lossesincurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the devel opment of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errorsin or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’ s quality grade, as
indicated below. Y ou must check the quality grade of each Renesas Electronics product before using it in aparticular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not bein any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances, machine tools; personal electronic equipment; and industrial robots.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.
“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose adirect threat to human life.
Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physica injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as aresult of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sdes office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

To all our customers

Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMSs (flash memory, SRAMs €tc.)
Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand
names are mentioned in the document, these names have in fact all been changed to Renesas
Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and
corporate statement, no changes whatsoever have been made to the contents of the document, and
these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.
Customer Support Dept.
April 1, 2003

RENESAS

RenesasTechnology Corp.

Cautions

Keep safety first in your circuit designs!

1

Renesas Technology Corporation puts the maximum effort into making semiconductor products better
and more reliable, but there is aways the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1

These materials are intended as areference to assist our customersin the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or athird party.

Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party'srights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements or
other reasons. It istherefore recommended that customers contact Renesas Technology Corporation
or an authorized Renesas Technology Corporation product distributor for the latest product information
before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

When using any or al of theinformation contained in these materials, including product data, diagrams,
charts, programs, and algorithms, please be sure to evaluate all information as atota system before
making afinal decision on the applicability of the information and products. Renesas Technology
Corporation assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

Renesas Technology Corporation semiconductors are not designed or manufactured for usein adevice
or system that is used under circumstances in which human lifeis potentially at stake. Please contact
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor
when considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other
than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

Please contact Renesas Technology Corporation for further details on these materials or the products
contained therein.

-
»
@
ﬁ\
»
<
)
>
-
o

LENESAS

HI2000/3 Renesas Industrial
Realtime Operating System for
H8S Series

User’'s Manual

Renesas Microcomputer
Development Environment
System

Renesas Electronics Rev.2.0 2001.03

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’'s or any third party’s
patent, copyright, trademark, or other intellectual property rights for information contained in
this document. Hitachi bears no responsibility for problems that may arise with third party’s
rights, including intellectual property rights, in connection with use of the information
contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that y
have received the latest product standards or specifications before final design, purchase or
use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability.
However, contact Hitachi’'s sales office before using the product in an application that
demands especially high quality and reliability or where its failure or malfunction may directly
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear
power, combustion control, transportation, traffic, safety equipment or medical equipment for
life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitachi

particularly for maximum rating, operating supply voltage range, heat radiation
characteristics, installation conditions and other characteristics. Hitachi bears no
responsibility for failure or damage when used beyond the guaranteed ranges. Even within
the guaranteed ranges, consider normally foreseeable failure rates or failure modes in
semiconductor devices and employ systemic measures such as fail-safes, so that the
equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.

5 This product is not designed to be radiation resistant.

6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this documer
without written approval from Hitachi.

7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi
semiconductor products.

1. pITRON is an acronym of the “Micro Industrial TRON” and TRON is an acronym of “Th
Realtime Operating system Nucleus”.

2. Microsoft® Windows® 95, Microsoft® Windows® 98, and Microsoft® Windows NT®
operating systems are registered trademarks of Microsoft Corporation in the United States
and/or other countries.

3. All other product names are trademarks or registered trademarks of the respective holders.

4. This manual assumes the operating environment to be the English version of Microsoft®
Windows® 95, Windows®98, and WindowsNT® operating system.

[¢]

Preface

This manual describes how to configure systems using the Hitachi Industrial Realtime Operating
System, a machine-installed realtime multitasking operating system based on pITRON3.0
specifications.

Please read this manual and the related manuals listed below before using the HI2000/3 to fully
understand the operating system.

This user’'s manual contains the following eight sections and appendixes:

Section 1
Section 2

Section 3

Section 4
Section 5

Section 6
Section 7

Section 8

Introduction to HI2000/3: general description of HI2000/3 systems

Kernel: overview of HI2000/3 kernel functions. Refer to this section when creating
the functions of the user system.

System calls: overview of HI2000/3 kernel system calls. Refer to this section whel
creating the details of the user program and at coding.

Functions and operations of the HI2000/3 debugging extension (DX)

Handlers and routines: creating and defining handlers and routines necessary for
HI2000/3 system configuration

Setup table: creating the setup table required for HI2000/3 system configuration

Interrupt vector table: creating the interrupt vector table required for HI2000/3
system configuration

Load module: creating a load module

Appendixes User and kernel work area calculation, description on compiler and assembler

options, example of timer driver, a list of error codes, and a list of system call
function codes.

The following shows the related manuals:

< HI2000/3 Release Notes

» H8S, H8/300 Series C/C++ Compiler User's Manual

* HB8S, H8/300 Series Cross Assembler User's Manual

» H Series Linkage Editor, Librarian, and Object Converter User's Manual

« Hitachi Debugging Interface User's Manual

» Hitachi Integration Manager User's Manual

¢ The hardware manual and programming manual of the H8S microcomputer used

Rev. 2.0, 03/01, page i of xv
RENESAS

Symbols used in this manual have the following meanings:

[]: Parameters enclosed by [] can be omitted
(11): One of parameters enclosed by () must be chosen
(RET): Pressing the RETURN key
Underlining (__): Indicates user’s key input
< >: Contents shown in < > are to be specified
... The entry specified just before this symbol can be repeated
H': For hexadecimal integers, prefix H' is attached. Default is D' (decimal).
nnnn: Bold-faced-italichnnn is the device name.
Example: When the H8S/2655 is usednn = 2655.
z Bold-faced-italiczindicates the endian.
ais advanced mode.
n is normal mode.

Rev. 2.0, 03/01, page ii of xv
RENESAS

It is recommended that the user refers to the following chart to understand the manual before
reading.

Start
Yes section 1
; ection
< HI2000/3 system overV|ew>—> Introduction to HI2000/3

¥ No

Yes -
Details on HI2000/3 kernel Section 2
Kernel

¥ No

Yes Yes -
Error codes of system Appendix D
System calls >_>< calls >‘>LError Codes

No ¥ No

Yes
Function codes of - Appendix E)
system calls System Call Function Codes

¢ No
Section 3
System Calls

Y
N N Yes -

Operation and function of Section 4

the debugging extension Debugging Extension
; No

S . Yes R

Detailed information on Section 5

user program creation Creating Application Programs
¢ No

Yes
. . Section 6
System environment setting Creating the Setup Table

‘No

Yes -
Interrupt process Section 7
PP Creating the Interrupt Vector Table

¥ No

Yes
System configuration - Section 8
y ourat LLoad Module Creation
¢ No
7S [pppendix A
ppendix
System memory >_>LlMem0Ty Size
¢ No
Compiler and assembler ves Appendix B
options Compiler and Assembler Options

‘No

Yes
. . Appendix C
Timer handling method >—>LDevice Driver

No
End

TN N N N N N N N

Rev. 2.0, 03/01, page iii of xv
RENESAS

Contents

Section 1 Introduction to HI2000/3uuiiiiiiiiieeeeeeeceeeeere e 1
Li1 OVEIVIBW .ttt ettt ettt e e e e e e e e e e e e e o e e e e b aab b e bt bbbttt e et e e e e e e eaeaaaaaeas 1
N T LU | =2 USSR :
SECHON 2 KEIMEL...oei e e e aaaes K
P R O 1Y 4V T PP PR POTOPPPPPPPPP 3
Y A ¥ 0 [ox (o] o OO PPUUTPUPPPP 3
e TS Vo1 (=] 0 4 S - L= USSP PPR y
N I 1= ¢ PRPP €
A T O V=T V=PSRN 6
2.4.2 Task State and TranSitiON.........cuveeeeeeii i e e e e e e e e e e eneeene 7
2.4.3 TaASK INIIALION ...ttt e e e e e e e ee e 8
2.4.4 Task SChEAUIING........uiiiii i e e e 9
2.4.5 Task Waiting/Suspension and ReIEASE..........cceeiviieeeieiiiiieiiiiein e 9
2.4.6 Task TeIrMINALIONccoiiiiiiiiiiiiiii ittt e e e e e s e e e e e e e e aaaeeeeeeseesanannnns 1]
2.4.7 Shared Stack FUNCONiiiiiiiiiiiieiee e e e e e e e e e e nnenes 1
2.5 Synchronization and COMMUNICALIONcoiuuiiiiiiiiiiie e 1
A T R V=T o = o T 1.
2.5.2 SEMAPRNOIE ... e aaaaaraan 1
2.5.3 MAAIIDOX . ..ciiieiiiie e e s 17
P2 T 1= ¢ (U] o PP PP PP PP 18
A T O @ 1 V=TV = P ERURTRRR 1€
2.6.2 INEErrUPL HANAIEI ... et 1€
2.6.3 Undefined INterTUPL......ccoiiiieeeie e e e e e e e e e e e e eeaaranes 18
A SR S |V To g To o Yo 14T o TRt [@ = O 19
2.7 MEMOTY POOI ..o a e e e e e e e e e e 19.....
2.7.1 Fixed-Size MemOry POOIccooiiiiiiiiiiaiiiiie ettt 20
2.7.2 Variable-Size Memory POOL...........ccooiiiiiiiiiiii e 20
2.8 TIimMe MANAGEIMENT ...oeiiiiiiiiiie ettt ettt e s et e e s e bbbt e e e e et b e e e e e e annbeeeeeeeannees 2
P S B R @ V=T o= PP PRPPP 22
2.8.2 Hardware Timer and System ClOCKccccciiiiiiiiiiiiiciceeeeee e 22
2.8.3 Setting and Referring to System CIOCK.........cccuuiiiiiiiiiiiiieieeece e 22
2.8.4 CYCHC HANAIETeiiiiiiiieet et e e 23
2.9 SYSEM MaNAGEMENTttt e e et e e e e e e e e s e s s e e s z
2.10 SYStEM-CaAll TrACEc ettt e e et e e e e e e e e e e e e e e e e e anaas 24.......
2.11 Trace BUfer STIUCIUEeeiiiiiiiiieee e 25........
2.12 Trace Acquisition Data Analysis EXamPleccoooiiiiiiiiiiiiiiieee e 3(
2.13 Trace-Function DefINITION..........coiiiiiiiiii i ee e e e 3¢
2.14 NOtES ON TraCE FUNCLIONuueiiiiiiiiiei it e et e e e e e e e e e e e e e e e e e e en e e eeees 3

Rev. 2.0, 03/01, page v of xv
RENESAS

Section 3 SyStemM CallScccoe oo 3

3.1
3.2

3.3

3.4

3.5

3.6

3.7

3.8

OVBIVIBW ...ttt e e oottt ettt e e e eaaaeaaeaeeaaeaaa e nnntanbese s e e s s 35.
System Call INTEITACEcooi i 36........
3.2.1 C-Language INTErfacCecoooiuuiiiiiiiieeeee e 36
3.2.2 ASSEMDIEr INTEITACEeeeii e 39
0 B ! 1 (o] g O oo [PP PP PP PURRTRR 40
SYSIEM CallS. ...t a e e e e e e e e e e ————— 41...
TaSK MaNAGEMENT.....ciiiiii ittt e e e e bbb e e e eeeeeeeas 42..........
3.4.1 Start Task (sta_tsk) [T/D/L] Start Task (ista_tsk) [D/1].......ccoevieiiiciririiiiiiieeeeen. 44
3.4.2 EXit Task (EXt_tSK) [T/D/L] ...coeiiiiieitieeiee ettt e e 46
3.4.3 Terminate Task (ter_tsK) [T/D/L]coooouiiiiiiiiiiiee e 48
3.4.4 Change Task Priority (Chg_pri) [T/D/L]coioouuiiiieiiiiiiee et 50
3.4.5 Rotate Ready Queue (rot_rdq) [T/D/L] Rotate Ready Queue (irot_rdq) [D/1]52
3.4.6 Release Wait (rel_wai) [T/D/L] ...ccoeuiiiiiiiiii ettt 54
3.4.7 Get Task Identifier (get_tid) [T/D/L].cccccueeaaiiiiiiiiie e 56
3.4.8 Refer Task State (ref_tsk) [T/D/L/] ...coooi oot 58
3.4.9 Disable Dispatch (diS_adSP) [T/D] ...cuuueeeeeiiiiiiieieeiiiiiiee e 62
3.4.10 Enable Dispatch (ena_dsSp) [T/D] ...eueeeeeiiiiiiiiieeiiiiiiee et 64
Task SYNCArONIZALION.cccoiiiiiiiiie e 65.........
3.5.1 Suspend Task (SUS_tSK) [T/D/L] ...ccuieeiiiiiiiiiiiiititietie ettt 67
3.5.2 Resume Task (rSM_tSK) [T/D/L] ...uuuueeeeeeeiiiiiaaaaaaaie ettt 69
3.5.3 Sleep Task (slp_tsk) [T] Sleep Task with Timeout (tslp_tsk) [T].....ccccccvvvrrennenn 71
3.5.4 Wakeup Task (wup_tsk) [T/D/L] Wakeup Task (iwup_tsk) [D/1].......cccceeuuunnren. 73
3.5.5 Cancel Wakeup Task (can_wup) [T/D/L].......uueeiiiiiiiiiiieiiiiieeee e 75
Synchronization and Communication (Event FIag)ooccuveeieiiiiiiieiiiiiice e 77
3.6.1 Set Event Flag (set_flg) [T/D/L] Set Event Flag (iset_flg) [D/1]ccceeevveeeeennn. 79
3.6.2 Clear Event Flag (CIr_flg) [T/D/L/] ceeeeueeeieieie e 81
3.6.3 Wait for Eventflag (wai_flg) [T] Wait for Eventflag (Polling) (pol_fig) [T/D/L/]

Wait for Eventflag with Timeout (twai_fig) [T].....cooooivmeireiiiie e 83
3.6.4 Refer Event Flag State (ref_flg) [T/D/L/].....couueiiiimiiiiiiiiiiiee e 87
Synchronization and Communication (SEMAapPhore)ccccvviiviiieeiiiiiiiee e 89
3.7.1 Returns Semaphore Resource (sig_sem) [T/D/L] Returns Semaphore Resource

[CESTo ST 1) I 1 4 91
3.7.2 Wait on Semaphore (wai_sem) [T] Poll and Request Semaphore (preq_sem)

[T/D/L/1] Wait on Semaphore with Timeout (twai_sem) [T]........cccoveeinnninnnn 93
3.7.3 Refer Semaphore State (ref_sem) [T/D/L/]cccueveeiiiiiiiiieeiieeeeeee e 96
Synchronization and Communication (MailboX)cooeiiiiiiiiiiiiee e, 98
3.8.1 Send Message to Mailbox (snd_msg) [T/D/L] Send Message to Mailbox

(S Lo I E=Te) TN 1L 100

3.8.2 Receive Message from Mailbox (rcv_msg) [T] Poll and Receive Message from
Mailbox (prcv_msg) [T/D/L/I] Receive Message from Mailbox with Timeout
(EPCV_IMSG) [T eeeeeeeeeiiiite ettt ettt e et e e e e e e e e e e 103

3.8.3 Refer Mailbox Status (ref_mbX) [T/D/L/]cooiiiiiiiiiiiiiiiee e 106

Rev. 2.0, 03/01, page vi of xv

RENESAS

3.9

3.10

3.11

INTEITUPT MaNAGEMENT.....iiiii et e et e e et e e e aar e 08..... 1
3.9.1 Return from Interrupt Handler (ret_int) [I]ccooeiiiiiiiee e 111
3.9.2 Change Interrupt Mask Level (chg_ims) [T/1].....ccoouiiiiiiiieiiiiiiiieieeee e 112
3.9.3 Refer Interrupt Mask Level State (ref_ims) [T/D/L/]cooviiiiiiiiniiiiiiieiein, 114
3.9.4 LOCK CPU (I0C_CPU) [T/D/L].ceeeeeiuuiieiei e ettt s e e e e e e et a e e e e aaaaaens 116
3.9.5 Unlock CPU (UNL_CPU) [T/D/L] . uieii it e e e e e e e e e aeannees 119
Memory Pool Management (Fixed-Size Memory POOl)........ccccvveiiiiiiiiiiiieeeee e 12

3.10.1 Get Fixed-Size Memory Block (get_blf) [T] Poll and Get Fixed-Size Memory
Block (pget_blf) [T/D/L/1] Get Fixed-Size Memory Block with Timeout (tget_blf)

1L O P RO PPPRRR 12
3.10.2 Release Fixed-Size Memory Block (rel_bIf) [T/D/L]....uuuureeeieeiiiiieeeeiiiiiiiieiins 126
3.10.3 Refer Fixed-Size Memory Pool Status (ref_mpf) [T/D/L/] .ccccooeeeeeeeeiiiiiiiiinns 128
Memory Pool Management (Variable-Size Memory Pool)cccccciviiiviiiiieiiiiieeeeeee, 13

3.11.1 Get Variable-Size Memory Block (get_blk) [T] Poll and Get Variable-Size
Memory Block (pget_blk) [T/D/L/1] Get Variable-Size Memory Block with

Timeout (tget_BIK) [T oo e e 138
3.11.2 Release Variable-Size Memory Block (rel_bIK) [T/D/L].....cccceeeeeeiiiieiiiiicininnns 137
3.11.3 Refer Variable-Size Memory Pool Status (ref_mpl) [T/D/L/].....ccvveeeveivienennnnn. 139
R 700 7 T Lo 1Y = U = o 1= =T o RPN 142........
3.12.1 Set System Clock (set_tim) [T/D/L/]...ccooieiii e 144
3.12.2 Get System Clock (get_tim) [T/D/L/]...eeeeeeeeeiiiiiaaeae e 14¢€
3.12.3 Activate Cyclic Handler (act_cyc) [T/D/IL/]...cccoiiiiiiiiiiiiiiiieeeeeeeee e 148
3.12.4 Refer Cyclic Handler State (ref_cyc) [T/DIL/]....cccccciiimiiiiiiiiiiieieeee e 150
0 70 G TS V53 (=T 0 LY/ = g =T = 0 0= o | 53........ i
3.13.1 get_ver (Get Version Information) [T/D/L/]......ccccccciuvimiiiiiiieirieieeee e 153
Section 4 Debugging EXtENSION..........oiiiiiiiiiiiie e]
Nt N O 1= Y= PP 157
4.1.1 Displaying and Manipulating ObJECtS............cuviiiiiiiiiiie e e e 15
4.1.2 Results of Object Manipulationccooiiiiiiiiiiiiee e e e e e 15
4.1.3 Displaying the Register ValUES...........ccovvviiiiiiiiie e 1€
4.1.4 Displaying the HI2000/3 DX System Call Trace Information..............ccccccceeee 161
415 ONNNE HEID .o 1€
4.2 LISt Of FUNCHONS ... e e e e e e e e e e e e e 162..
4.2.1 HI2000/3 DX MENUS....ceeiiiiiiiieiteesiaitiiettaessiieeeeeeesssteeeeeesssnbsseeeaesasnnseeeessannseeeeas 16
4.2.2 Windows and Dialog BOXES.......cuuiiiiiiiieeeiiii it e e e e e e e e e e e 16
G T [0 S PP 164
4.3.1 Setting up the EB000 EMUIALONuvieiieeiiiiiiiiie et 1¢
4.3.2 Displaying the HI2000/3 DX WINAOWcuvviieiiiiiiiiiieee et 164
4.3.3 Realtime Operation of the USer SYSteMuuiviiiiiiiiiiieeiiiieee e 1¢
4.3.4 Displaying CorreCt Data........cccceeeiiiiiiiiiicciiiiireere e e e e e e e 1€
4.3.5 TTACE ceeeiie et 65....... 1
4.3.6 USEr SYSIEM MEMOIY ...covuiiiiieiiiie ettt e e ee e e e e et e e e eeaa e e e eees 1¢

4.3.7 Correspondence to the HDI SESSIONc.ccoviiiiiiiiiiiiiiiee e e e 16

4.3.8 Loading LoAd MOGUIESuuuiiiiiiiiiiie ettt 16E
4.4 DEBUG DAEBIMONciiiiiiiiiiiee ettt ettt e e et e e e e nnebneas 166.......
T V(] - | S 167
451 Executing a Sample Program............uuuuieiiiiiiiieeecieeeeiiis e e e e 16
4.5.2 STAIING @ TASK ...iiiieeeeieieeeie s r e e e e e e e e e et e et et e e e e e e e aeeeeeanrraaaaa 17
4.5.3 MailboXES ANU MESSAGESuuvurriiiiiiiiiiiiiiieeie e e e e e e e e e s s s e e e e e aaaaaeaaaaaaaaaas 17
4.5.4 Examples during System OpPeration...........ccoouuriieeeiiiiiiieee et e e 17
Section 5 Creating Application Programsccoeeuuiiiieiiieiiiiiee e 17
5.1 Creating @ USEI PrOgIaM. ie i i e e e e eieeeeeeiiiiiiee s e s e e e eeeeeeeeatatas s s e s e e eaaaeeeeessssnsnnaaseeaaaaaaneens iy
B2 TASKS e — 180
LT R O =T 1] o TR =] &SP 18
5.2.2 DefiNiNG TASKS ...ciiiiiiiiiiiie ettt 18¢
5.3 INErrUPt HANAIEIScoiiiiiiieiiie et e e e 183....
5.3.1 Interrupt Handler DeSCHPLIONuuviiiieiiiiieice e 183
5.3.2 Defining INterrupt HANAIErS..........uviiiiiiiiiiiicecccee e 188
5.4 Undefined Interrupt HANAIErS ... a e e e e 18
5.4.1 Creating Undefined Interrupt HandIers.........ccccuevveieieiiiieee v 18¢€
5.4.2 Defining Undefined Interrupt HaNdIErs ... 188
5.5 CYClIC HANAIBIS. ...ttt 189...
5.5.1 Creating Cyclic HANAIEISeuiiiiiiiiiet e 18¢
5.5.2 Defining Cyclic HANAIEI'Sccuiiiiiiiiiiiieieicce e a e 192
5.6 CPU INItialiZation ROULINEcoiiiiiiiiiiii ettt e e e et e e e e s snnbneeeaeen e 192
5.6.1 Creating CPU Initialization ROULINES...........ccccccuiiiiiiiiiiiiiiee e e e e e e 192
5.6.2 Defining CPU Initialization ROULINESccooiiiiiiiiiiiiieeeeee e 194
5.7 Timer INitialization ROULINEooiiiiiiiiiaiee ettt e e 195
5.8 System Initialization HANAIErScooiiiiiiiii e 19
5.8.1 Creating System Initialization HandIerscccccvveeeeeieiii e 195
5.8.2 Defining the System Initialization Handler..............ccccccviiiiiiiiiiieeee s 197
5.9 System Termination ROULINESccoiiiiiiiiiiiiiiiieier e e e e e e e e e e e e s s e s eerreeraaaaeaeeeas 19
5.9.1 Creating System Termination ROULINEScccuuiiiiiiiiiiiiiiiiieeee e 19¢
5.9.2 Defining the System Termination ROULINEcc.uuviiiiiiiiiiiiiiiaiaeee s 202
5.10 System 1dliNg ROULINE......ccoiiiiiiai et 202......
5.10.1 Creating System Idling ROULINESccociciiiiiiiiiiieeeer e 20¢
5.10.2 Defining a System 1dling ROULINE..........uuuiiiiiiiiiiieiece e 203
Section 6 Creating the Setup Table ..., 2
0 R O 1YY 4T OSSP 205
6.2 User Definition FIeldoooi i 205.....
6.2.1 Defining the Constant Definition Field.................ooviiiiiii e, 206
6.2.2 DEfiNING TASK ..evvieieiiiiii it s e e e e e e e e et e e e ae it s e e e e eaeaeaeaees 21C
6.2.3 Defining Fixed-Size Memory POOIScooviiiiiiiiiii e a e e e e 213

Rev. 2.0, 03/01, page viii of xv

RENESAS

6.2.4 Defining Variable-Size Memory POOIS............ccco v 211

6.2.5 Defining Cyclic HANIEIS..........uviiiiiiiiii e 21
6.2.6 Defining TraCe FUNCHONS.oiiuiiiiei ettt 22
6.2.7 Defining Extended INfOrmationccueieiiiiiiiiiie e 22
6.3 System Definition Fieldcooiiiiii i 29...... 2
Section 7 Creating the Interrupt Vector Table ..., 2
A% T O 1YY 4T U PPRPP PR 231
7.2 Defining INterrupt HANAIBT........ooiiiiiiiie et 2z
Section 8 Load Module Creationccoeeeeeeeiiieiieeeeiiiiicesess s e e e e e e e e eeeeeeeennes 2
8.1 OVEBIVIEW ..ottt ettt e e e e e e e e e e e e e s s e kbbb bbbttt e e et e et e e e e e e e mmnnnns 237
8.2 Workspace and ProjeCt FIlES........cccooiiiiiiiiiiiiie e a e e e 2
8.3 L0oad MOAUIE CreatiONccei ittt e e ettt r e e e e e e e e aeaaeaaeeeeas 2:
8.3.1 Adding FileS t0 @ PrOJECE.........cviiiiiiiiiiiie it 2/
8.3.2 Compiler and Assembler OPLiONSciiiiiiiiiiiiee e 2/
8.3.3 Inter-Module Optimizer SettiNg..........oouuuuiiiiieie e 24
8.3.4 BUIlId EXECULIONueviiiiiiiiiiiee ettt e et e e e e 25
8.4 C-Language Interface Library ProJECESuuuiiiiiiiiiiiiee et 2!
APPENIX A MEMOIY SIZE ..uuuiiiiiieiiie e 2!
AL MEIMOIY SIZE ...eiiiiiiiiii ettt e e e st e e e e st b e e e e e s anbeeeenees 257...
A.1.1 OS Work Area Size Calculationcoociiiiiiiiiiiieeee e 25
A.1.2 OS Stack Area Size CalCUlation...........ccuuuiiiiiiiiiiiieiieie e 2F
A.1.3 Timer Interrupt Stack Area Size Calculationcccveeieiieiiieieieeee e, 26!
A.1.4 Task Stack Area Size CalCulationeueeiiiiiiiiiiiiiieei e 2€
A.1.5 Interrupt Handler Stack Area Size Calculationccccooviiiiiiiiinniiiieee e, 26
A.1.6 Fixed-Size Memory Pool Area Size Calculationcccccceeiiiiiieeeeiiniiiieeeees 26:
A.1.7 Variable-Size Memory Pool Area Size Calculation...............ccooeeccvvvviviiiieneeeenenn. 26:
A.1.8 Trace Function Stack Area Size Calculation...........cccccoocvieiieiiiiiiienee e 2€
A.1.9 Trace Buffer Area Size CalCulationcoeieiiiiiiiiiiiiiiiiee e 26
A.1.10 HI2000/3 Work Area Size CalCulationcc..uuuiiiiiiiiiieiieiieeee e 26!
Appendix B Compiler and Assembler Optionsccccccceeiiiiviiiiiii e, 2
[0 R @] ¢] o] L= @ o) 1] 1= 261.....
= AN 1=Y =T 0] o] [T O o] 1o L PO 267......
ApPPENdiX C DEVICE DIIVEL ..uuuiiieeeeiiie e 2
O3 R 10 0= D)= PR 269.
C.1.1 Timer Initialization ROULINE........cccoiiiiiiiiieiiee e 27(
C.1.2 Timer Interrupt HanAIErouveeeiiei i e e e e e aeaens 27
C.1.3 Timer Driver Definition INfOrmationoooiiiiiiiiiiiiieee e 273

Rev. 2.0, 03/01, page ix of xv

APPENdIX D ErrOr COUBSttt 2

D.1 System Call ErrOr COUES.....coiiiiiiiiiiiiee ettt ettt e et e e e e e e aaaaeaeasaaaaaaannns 27
D.2 Debugging EXtENSION EITOIS.....ccooiiiiiiiiiiiiiiie ettt e e e e e e e e e aaaaeans 27
Appendix E System Call FUNCtion COdescccciiiiiiiiiiiiiieeeeeceeeee e 28
E.1 System Call FUNCHON COUEScuiiiiiiiieeeieei i e e e e e e e e e e e e e e e eee e 26

Rev. 2.0, 03/01, page x of xv
RENESAS

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure 2.13
Figure 2.14
Figure 3.1
Figure 3.2
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17
Figure 4.18
Figure 4.19
Figure 4.20
Figure 4.21
Figure 4.22
Figure 4.23
Figure 5.1

Figures Contents

SYSIEIM SEALES. ...ttt e e e e e e
Task State TransSition DIagram
Task State Transition when Using the Shared Stack Function..............ccccccvveeeeeen.
Example of Using an EVENt Flag...........ccooviiiiiiiiiiiicie e
Exclusive Control of Resources by Semaphoreccocceeiiiiiiiiiiiiveccceee e,
MaUIDOX PrOCESS ...ttt e e e e e e e oo 17.....
Fixed-Size Memory POOl OPeration............ccueiiiiiiieeiiiiiee e
Variable-Size Memory POOl OPErationoocuueiieeriiiiieie st
Overview of Cyclic Handler ProCeSSINGcccooiiiiiiiiiiiiiiiieee e
Trace BUFfer STrUCTUME........eeiiiiiiiiiee et 25......
Trace Buffer Management Table StruCtUre.........ccccoeviiieieeiiiiieeiiiccie e
Trace Buffer Management PrOCESSuuiiiiiiii it
Trace ENtry STIUCLUIEcoiiiiiiiie ettt 21Q.......
Example of Trace AnalysiS RESUILS..........ccooiiiiiiiiiiiiiie e
System Call DeSCIPLION FOIMMuiiiiiiiiiiiiie et
MESSAGE FOMM ...t e e et 102......
Example of the Display of an Object (List-Type WIindow)cccuveieiieiieennnnnnns 15
Example of the Display of an Object (Hierarchical-Type Window)...................... 15
Example of Requesting Object Manipulationcccoevieriiiiieieenniecee e 1
[Task Context RegiSters] WINGOWcoiiiiiiiiiiaiiiiiieeeeee e 1
[System Trace] WINAOW.coiiiiiiiiieiiiiiiie e 1
Sample Program PrOCESSINGuuuuuiirieiiieieeeeeeeieesiesssesnisnreneresrereeeesaaaaeaeesessasannnnnns
HDI INItial DISPIAY ..utvvtiiiiiiiieiiiee e r e e e e e e e e e e e e 168...

(@ oT=T o] DI F-1 o Te 1 =70) QU 169......
[TASKS] WINUOWcceeiiiiiiiiiieeiii et 170.......
SoUrce Code DiSPlaycccceiiuiiiiiieiiiiiiie et 71l.........
INVOKING TASK.....eeeeeeiiiiie e 172..
[System Trace] WINAOW.........cevviiiiieeee it e e e e e e e e e e e e e e s e e s e ennnnnanes 1
[MaiIDOXES] WINAOW......vveeiiiiiiiiieeee e r e e e e e e e e e e e e e e n s annnnnes 73...... 1
Step-Over EXecution Of Programuueeeeeiiiiiieieeee e ses s r e e e e aaaa e i
[Mailboxes] Window (Confirmation of Result) ... 17
[Mailboxes] Window (Expanded DiSplay)...........ceeeieeiiaaaaaaaiiiiiiiiiiieeieeeeeeee e 17
[System Trace] WINAOW.........cooiiiiiiiiiiaiieiie ettt a e 1
[Tasks] Window after the [Update] Option is Selected............cccccvvvvvriveiiiineeneennnn. 1
[Mailboxes] Window after the [Update] Option is Selectedccccvvvvvvveveennnn. 17
[System Trace] WINAOW.........ceuviiiiieeeieiie e e e e e e e e e e e e e e s e e s s nnnnnnnnes 1
[Modify Task Status] Dialog BOXuueeeeiiiiiiiiiiiaaaaaaaie e 17
[Tasks] Window after the [Update] Option is Selected............ccccuvviiiiiiieiiiiniinnnnnn. 1
[System Trace] WINAOW.........ccouiiiiiiiiiiieiie ettt 1
Kernel Initial ProCeSSINGccccuvueiiiiiiiiieeieeeie e e e e s e s s e e e e e e e e e 79....... 1

Rev. 2.0, 03/01, page xi of xv
RENESAS

Figures 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9
Figure 7.1
Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5
Figure 8.6
Figure 8.7

Figure 8.8
Figure 8.9
Figure 8.10
Figure 8.11
Figure 8.12
Figure 8.13
Figure C.1
Figure C.2

Task Example in C LanNQUAGJEuuuuiiieiieeeeieieieeiticeee s e e e e e e e e e eeeaeaanns e e e e e aaeaeenees 1
Interrupt Handler Example in C LanQUAQEeeeveeiiiiiiiiieieeiiiiieieee e 1€
Relationship between the Vector Table and the Interrupt Handler 1¢
Cyclic Handler Example for C LANQUAGEcoiiuriiiiieiiiiiiieee et e 19
CPU Initialization Routine EXample............uuiiiiiiiiiiiiiiieeeecieee e 19
System Initialization Handler Written in C Languagecccccevveveeeeevevevevevnnnnnnnn. 19¢
Stack State of the System Termination ROULINE................ccoeeeiiiiiiiiiiiieeeeee e 1
OS Stack Area CalCulation.............uuuuiiiiiiiiiieiii e 20
Constant DefinitionN FIeldeeeiiiiiiiii e 20
Task Definition FIeld ... 21Q0......
Fixed-Size Memory Pool Definition Fieldcccccvvveeeeee e 21¢
Variable-size Memory Pool Definition Field.........cccccoveveeeeeeeeee, 217
Definition Example of Cyclic Handler Definition Fieldccccccoeiiiiiiiiiiinns 220
Trace Function Definition Field ... 22
Extended Information Definition Fieldoeueeiiii e 22¢
System Definition Fieldooooiiiiiiii e 23
Coding Example from the Interrupt Vector Table 2655avec.srC..........cuvvvvveeeeennn... 23
Creating @ Load MOAUIE..........cccuuiiiiiiiiiiiieceee e a e e e e e e e e 2:
SeleCtiNng @ PrOJECT.......uuiiiiiiiiiiiiieie et a e e e e e 239.....
Adding Files t0 the ProjeCt.........oo e 2/
CPU Tab Window in the H8S, H8/300 Assembler Options...............uvvveeeeeeeeeeeeen. 24
Object Tab Window in the H8S, H8/300 Assembler Options..........ccccceeeeeeeeienennn. 24
List Tab Window in the H8S, H8/300 Assembler Options...........ccvvvvvvvveeeeeeeeennnen. 241
Source Tab Window in the H8S, H8/300 Assembler Options

(Include file dIrECIONIES) .uuviiiiiiiee e e e e 247
Source Tab Window in the H8S, H8/300 Assembler Options (Defines) 24
Object Tab Window in the H8S, H8/300 C Compiler Options.............ccoeeveeeieeennn. 24
Inter-Module Optimizer Options INpUt Tab ... 25(
Inter-Module Optimizer Options OUtPUL Tab.......c..uevvieiiiiiiiie e 25
Inter-Module Optimizer Options Section Tab...........ccoooiiiiiiiieiiii e 25
Executing the BUild...........ocuueiiiiiiie e 255.....
TiMEr DIIVEE PrOCESSINGvvetteeeiiiiiieiaaae e ettt et e e e e e e e e e e e e s e e s e nnbeeeeees 2¢
Stack State at Timer Interrupt Reset Processing Termination.............cccccccveeeeeeennn. 2

Rev. 2.0, 03/01, page xii of xv

RENESAS

Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 2.5
Table 2.6
Table 2.7
Table 2.8
Table 2.9
Table 2.10
Table 2.11
Table 2.12
Table 2.13
Table 2.14
Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 3.5
Table 3.6
Table 3.7
Table 3.8
Table 3.9
Table 3.10
Table 3.11
Table 3.12
Table 3.13
Table 3.14
Table 3.15
Table 3.16
Table 3.17
Table 3.18
Table 3.19
Table 3.20
Table 3.21
Table 3.22
Table 3.23
Table 3.24
Table 3.25
Table 3.26

Tables Contents

Task-Management SYStem CallSooiiiiiiiiiiiiiii e
Task Synchronization System CallScoooiiiiiiiiiiiiie e,
Task Waiting/Suspension and REIEASEciiiiiiiiiiiiiiiiiie e
System Calls for Task Event Flag Control...........cccooeeeiiiiiiiiiiiiiiiiie e,
System Calls for Semaphore Control.........cccooiiei i,
System Calls for Mailbox CONtrol............ooovviiiiiii e i
System Calls for INterrupt CONLroloouveeiiiiiiiiiie e
System Calls for Fixed-Size Memory Pool CONtrol............occuvviiieiiiiiiiiieeiniiieeeen i
System Calls for Variable-Size Memory Pool CoNntrolcccccveiiiiiieiecniiiieene. 1
System Calls for System CIOCKuiiiiiii it e e e eeaes
System Calls for Cyclic Handler Control...........cooovvveiiiiiiiii e :
System Call for Kernel Version ACQUISITIONccieiviieeiiiiiiciciis e Y
Trace Entry Data MEaANINGS.coi ittt
Trace Acquisition Data EXamPIEc..ueeiiiiiiiiiiiii et
System Call ClasSifiCation.............ooiiiiiiiiiiiii e
Parameter Prefixes and SUFfIXES...........uiiiiiiiiiiiiiiii e,
System Calls for Task Management.............uuuuuueiiiiiiie e e e e e e e
Task-Management SPeCIfiCatioNScovvvvviiiiiiiiiie e e e e,
Causes of Task-Execution Waiting/Suspension and Release...........cccccccevvvivneeen.
Task Synchronization System CallSccooiiiiiiiiiiiiii e,
Task Synchronization SPecifiCationsc..eeeiiiiiiiiiiiii e
Causes of Task-Execution Waiting/Suspension and Release..............ccccccvvvvvvvennns
System Calls for Event Flag COontrol.............ooooiiiiiiiiiiiiiiieeeer e
Event Flag SpeCifiCatiONS...........ooiiiiii i e e e e e e ee e e e,
Causes of Task-Execution Waiting and Releasecccccoviiiiiiiiiiiiiienc e,
Walit MOAES (WIMOAE) ...ttt
System Calls for Semaphore CONtrolcooocueiiiieiiiiii s
Semaphore SPECIfiCAtiONSuuuiiiiiiiiiiiii e
Causes of Task-Execution Waiting and Releaseoeceeecvvvviviiiiiieeieceeeeeenn,
System Calls for MailboX CONLIOl..........evvviiiiiieeeeii e ¢
MailbOX SPECITICALIONS......eeeeiiiiiiieie e
Causes of Task-Execution Waiting and Releaseooooiiiiiiiiiiiiiiiiieeieeeeeeeen,
System Calls for Interrupt Management............oooo it 1
Interrupt Mask Level in Interrupt Control Mode O...........eevvvveiieiiiiieeeenieccecins 10
Interrupt Mask Level in Interrupt Control Mode L..........cevvveveiiiiieeieeeeniiiieicieins 10
Interrupt Mask Level in Interrupt Control Mode 2...........eevvvieviiiieiiieeie e, 10
Interrupt Mask Level in Interrupt Control Mode 3............oeeviiiiiiiiiiiiies 11
State Transition by Issuing dis_dsp, ena_dsp, loc_cpu, and unl_cpu.....................
System Calls for Fixed-Size Memory Pool CoNntrol............ccuuuiiiiiiieiiiiiiiiianaannen, 1:
Fixed-Size Memory P00l SPeCifiCationSuuvuiiriiiiiiiiiiieieee e 1

Rev. 2.0, 03/01, page xiii of xv
RENESAS

Table 3.27
Table 3.28
Table 3.29
Table 3.30
Table 3.31
Table 3.32
Table 3.33
Table 3.34
Table 3.35
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5
Table 5.6
Table 5.7
Table 5.8
Table 6.1
Table 6.2
Table 6.3
Table 6.4
Table 6.5
Table 7.1
Table 8.1
Table 8.2
Table 8.3
Table 8.4
Table 8.5
Table 8.6
Table A.1
Table A.2
Table A.3
Table A.4
Table A.5
Table A.6
Table A.7
Table A.8
Table A.9

Causes of Task-Execution Waiting and Release............ccccccceeeeeiiieeceveveeevviiin, 1
System Calls for Variable-Size Memory Pool Control............ccccceeviiiiieiieinnenne, 13:
Variable-Size Memory Pool SpecifiCations...........cccovviiiieiiiiiiiiieeeieee e 13
Causes of Task-Execution Waiting and Release............ccccoocvviiiiiiiiiiiiiiiciiiiieen. 1
System Calls Related to the System Clock CONtrol.........cccoeeeeeeiiiiiveeiiiiiciieee e, 14
System Calls for Cyclic Handler Controlcccoeieiieiiiiiiiieecceis e 14:
System Clock SpecCifiCations...........ccoociiiiiiiiiee e 14
Cyclic Handler SpecCifiCatioNnsS...........coiiuiiiiiieiiiie e 14
Handler Activation State (CYCACE)c.uvriiieiiiiiiiie e 14
Menu Items Added to the HDI [VIeW] MENUcoiiiiiiiiiiiiiiiiiee e 157
HI2000/3 DX MEINUScciiiiiiieiiietesieee e sieee sttt e e snre e e s e e e nnne e 16
HI2000/3 DX Windows and Dialog BOXES.........ccevvveieeiieeiiiiice s 163
Memory Size Used by the USer SYStemMuuvveiiiiiiiiiieee e 16
Description Of Trace CONENTS.......uiiiiiiiiiiiiee ittt 17
Resources Initialized at Task INItiation ..., 18
Resources and System CallS...........cooiuiiiiiiiiiiiii e 1
Conditions for Interrupt Handler ProCesSing.........ccceeveeieeiiiiiccciiiiiiiineeeeeeeeeeeaeaeen 18
Conditions for Cyclic Handler ProCeSSinguuuueeerririeireeeeeeiiesiissseciiienisssneeeeens 19
Conditions for CPU Initialization Routine Processing...........ccccooeevveecvvvvnvvvnnenennnn, 19:
Conditions for System Initialization Handler Processing.............ccccccuvuiiiiieeeeeennenn. 19
System TerminNation CAUSEScccuuuiiiiiiiiiiiie et e e e e e e e ee e e e e e e aaaaaaaaaeas 1
Invalid Setup INFOrmMation ... 20
Information Defined in Constant Definition Fieldcccccooovveiiic e 206
Contents Of Task DEfiNItiONccvviiiiiiiie e 21
Contents of Fixed-Size Memory Pool Definitionscccvevveeeiiiiieeeeeee e, 21:
Contents of Variable-Size Memory Pool Definitions...............ooocciiiiiiiiiiieeeeeenenn. 21¢
Contents of Cyclic Handler DefinitioNns ... 21¢
Defined Interrupt HaNAIErS.ue it 23
SAMPIE PrOJECES ...eveiiii et e 38........ 2
Files Required fOr PrOJECEccoii i 2/
Compiler and ASSEMDIEr OPLIONSvvviiiiiiiiiiiiie e 2/
Supplied LiDrary File LiSt........cou et 25
List of Sections Included in the Provided Project Files............cooooiiiiiiiiiiiiiieeenen. 25
C-Language INterface PrOJECESuuuuiiiiiiiiiiiieieee et 2!
OS Work Area Size CalCulationccoeeeiiiiiiiiccccieeer e e 25
OS Stack Area Size CalCulation............cooouiiiiiiiiiiiieee e 2k
Timer Interrupt Stack Area Size Calculationocccvveiieiiiiiiiiee e, 26
Task Stack Area Size CalCUulationc.uvveieiiiiiiiiee e 2€
Interrupt Handler Stack Area Size Calculation ... 26
Fixed-Size Memory Pool Area Size Calculationccoeeeviiiiiviiiiiiiiiienc e, 26!
Variable-Size Memory Pool Area Size Calculation...........cocccveeieiiiiiiiiiee e, 26
Trace Function Stack Area Size Calculationcccociiieiiiiiiiiee e 26
Trace Buffer Area Size CalCulationoooiiiiiiiciiiiee e 26

Rev. 2.0, 03/01, page xiv of xv

RENESAS

Table A.10
Table C.1
Table C.2
Table C.3
Table D.1
Table D.2
Table E.1

H12000/3 Work Area Size CalCulation............ooiveeiiiieiiiceee e 2¢

Conditions for Timer Initialization Routine ProCessingooccvveveeeniiiieeeeennnnnne 27
Conditions for Timer Interrupt Reset Processingcccuvevveeiiiiieiie e 2
Definition of Assign Directive for Timer DIVEr.........ccoooiiiiieiiiiiiiiieee e 27/
System Call ErrOr COUBSvvuvuiiiiiii i e i eee ettt e e e e e e e e e e e e eeaaeennnaas z
Debugging EXtension ErrOor ME@SSAQEScevvvvvrruiuiiiiiieeeeeieeeeeieiiiiassseseeeaeseeeeannnnns z
System Calls and FUNCION COUESuuuuiiiiiiiiiiiiiee e :

Rev. 2.0, 03/01, page xv of xv
RENESAS

Section 1 Introduction to HI2000/3

1.1 Overview

The importance and complexity of developing operating systems (OSs) have grown along with t
ever increasing use of microcomputer systems in a wide variety of fields. In particular, realtime
OSs have gained wide acceptance in industrial measurement and control systems. The HI2000
a realtime multitasking OS used in the assembly of industrial equipment. It operates with the H8
series CPU. The HI2000/3 is based on pITRON specifications (ver. 3.0).

The HI2000/3 has a debugging extension (DX), which is a software debugging tool for the
application programs.

The HI2000/3 debugging extension (DX) can be used by installing it in the Hitachi Debugging
Interface (HDI) and in the HI2000/3 system.

1.2 Features
The HI2000/3 has the following features.

» High-speed operating kernel
Optimized to enable high-speed processing by using the high-speed H8S series CPU
instruction sets.
This kernel supports all four interrupt control modes provided by the H8S series CPU.

Two kernels for normal mode and for advanced mode are available depending on the H8S
series CPU operating mode. The normal mode kernel runs in a maximum address space of
kbytes. The advanced mode kernel runs in a maximum address space of 16 Mbytes (total d
space of 4 Gbytes including the address space dedicated to data).

Realtime speed has been improved, for example, by not checking parameters within the kert

« A compact kernel whose functions can be selected optionally

The kernel program size and kernel work area size are reduced to minimize the ROM and
RAM size on the user system. When the kernel functional module used with the user prograt
is specified in the setup table, the kernel is easily configured with a minimal module size.

« High level language
By using Hitachi's compiler, tasks and interrupt handlers can be written in C language.

Rev. 2.0, 03/01, page 1 of 282

RENESAS

» Debugging extension

The debugging extension displays the history of the HI2000/3 system calls issued, refers and
modifies the states of objects such as tasks through windows and dialog boxes, and debugs
multitasking applications through an HDI. The debugging extension also provides a Windows
context help system.

» Sample programs

The following sample source programs are provided. By modifying the programs as required,
the user system can be created easily.

O System configuration files (such as the kernel-build file and the setup table)
0 Handlers and routines

O Timer driver for H8S series on-chip Timer Pulse Unit (TPU) and Free Running Timer
(FRT)

O Task examples: Tutorial for HI2000/3 debugging extension (DX)

Rev. 2.0, 03/01, page 2 of 282

RENESAS

Section 2 Kernel

2.1 Overview

The kernel, which is the nucleus of the operating system HI2000/3, performs realtime multitaskil
processing. It has three major roles as follows:

« Response to events
Recognizes events generated asynchronously, and immediately executes a task to process
event.

e Task scheduling
Schedules task execution on a priority basis.

» System call execution

Accepts various processing requests (system calls) from tasks and performs the appropriate
processing.

2.2 Functions
Almost all kernel functions can be used by issuing system calls from an application program.

Task Management:When a task is executed, CPU is allocated to the task. The kernel controls tt
order of CPU allocation and starting and terminating tasks. Multiple tasks can share a stack by
using the shared-stack function.

Task Synchronization ManagementPerforms basic synchronous processing for tasks, such as
task execution suspension and release from other tasks, and performs synchronous processing
between tasks.

Synchronization and Communication ManagementPerforms inter-task synchronization and
communication by using event flags, semaphores, and mailboxes.

Interrupt Management: Initiates interrupt handlers in response to external interrupts. The
interrupt handler performs appropriate interrupt processing, and notifies tasks of interrupt
occurrences.

Memory Pool Management:Manages unused memory within the user system as a memory pool
A task acquires or returns memory blocks from the memory pool dynamically. Memory pools are
either fixed-size memory pool or variable-size memory pool.

Time Management:Manages time-related information for the system and monitors task
execution time for control purposes.

Rev. 2.0, 03/01, page 3 of 282
RENESAS

System ManagementReads the kernel version number.

System-Call Trace:Stores system call issuance history for system calls that are being executed.

2.3 System State

System states can be classified as shown in figure 2.1. When configuring a user system, the syst
state must be considered.

— Task execution state

— Task portion execution state —— Dispatch-disabled state

— CPU-locked state
System state —

— Transient state (kernel is executing)

— Non-task portion execution —
state

— Task-independent portion execution
state (interrupt handler, timer handler,
system initialization handler)

Figure 2.1 System States
The descriptions for the system states are given as follows.

Task Portion Execution State:A task is executing. The following are the three possible sub-
states:

* Task-execution state

The task portion is executing and allows task switching and interrupts. Tasks execute in this
state.

Tasks are not dispatched (scheduled) in any state other than this state. If the system is in a st
other than this state, task scheduling is delayed until the system returns to this state.

System calls that can be issued in the task-execution state can be used.

Rev. 2.0, 03/01, page 4 of 282
RENESAS

Dispatch-disabled state
The task portion is executing but does not allow task dispatch (scheduling).

Issuing the dis_dsp system call while tasks are being executed disables task dispatch. Issuir
the ena_dsp system call enables task dispatch again.

In this state, system calls that shift a task to WAIT state cannot be used; only system calls th
can be used while task dispatch is disabled can be used.

CPU-locked state
The task portion is executing but does not allow dispatches or interrupts.

Issuing the loc_cpu system call while tasks are being executed locks the CPU. Issuing the
unl_cpu unlocks the CPU.

In this state, system calls that shift a task to a WAIT state cannot be used; only system calls
that can be issued in the CPU-locked state can be used.

Non-Task Portion Execution State: Functions other than a task portion are executing. The
following are the two possible sub-states.

Transient state (while the kernel is under execution)
The kernel is executing, that is, processing a system call.

Task-independent portion execution state

A feature of task-independent portions is that they do not recognize themselves as currently
running processes because task-independent portions are completely independent of tasks.
Therefore, in this portion, such a system call that specifies itself cannot be issued, e.g., a
system call to put itself into the WAIT state. Tasks are not switched either; task switching is
delayed until the system returns to the task-execution state.

Possible task-independent portions are interrupt handlers, timer interrupt handlers, and syste
initialization handlers.

System calls for the task-independent portion can be used in this state.

Note that masking interrupts (changing the mask value from zero to another value) by issuin
the chg_ims system call during task portion execution immediately moves the system from a
task portion to a task-independent portion. Returning the interrupt mask value to zero returns
the system to task portion execution.

Rev. 2.0, 03/01, page 5 of 282
RENESAS

2.4 Tasks

2.4.1 Overview

In a realtime multitasking system, the user prepares the application program in task units that car
be processed independently and in parallel.

A task communicates with other tasks using system calls provided by the kernel. The kernel can
process events that are asynchronously generated by external devices or the MCU through such
system calls.

Tables 2.1 and 2.2 list the system calls that operate the tasks.

Table 2.1 Task-Management System Calls

System Call Description

sta_tsk Starts task

ista_tsk

ext_tsk Terminates current task
ter_tsk Forcibly terminates a task
chg_pri Changes task priority
rot_rdq Rotates task ready queue
irot_rdq

rel_wai Releases the task WAIT state
get_tid Refers current task 1D
ref_tsk Refers task state

dis_dsp Disables dispatch
ena_dsp Enables dispatch

Table 2.2 Task Synchronization System Calls

System Call Description

sus_tsk Shifts task to SUSPEND state

rsm_tsk Resumes the execution of a task in SUSPEND state
slp_tsk Shifts current task to WAIT state

tslp_tsk Shifts current task to WAIT state (with timeout function)
wup_tsk Wakes up task

iwup_tsk

can_wup Cancels wake-up task

Rev. 2.0, 03/01, page 6 of 282
RENESAS

24.2 Task State and Transition
A task enters one of following six states in the user system.

DORMANT State: A task has been registered in the kernel but has not yet been initiated, or has
already been terminated.

READY (executable) State’An executable task is queuing to wait for CPU allocation because
another task with a higher priority is currently running.

RUN State: The task is currently running.

WAIT State: A task is waiting for an event to occur. A task is placed in the WAIT state when, in
the RUN state, it issues a system call to makes itself enter the WAIT state because its executior
conditions are not satisfied. The task is placed in the READY state when it is released from the
WAIT state.

SUSPEND StateA task has been suspended by another task.

WAIT-SUSPEND State: This state is a combination of both the WAIT state and the SUSPEND
State.

Rev. 2.0, 03/01, page 7 of 282
RENESAS

Figure 2.2 shows the task state transition diagram.

CPU allocation
READY < > RUN
(executable state) Waiting for CPU allocation (execution state)
A A Wait release Wait
WAIT condition
(wait state)
Suspension Resumption
(sus_tsk) (rsm_tsk)
WAIT-SUSPEND
(wait and suspend | Forcible
state) termination
" (ter_tsk)
Wait
Suspension release Forcible
(sus_tsk) termination
—P (ter_tsk)
SUSPEND
- (forcible-wait state)l
Resumption
(rsm_tsk) Forcible
Initiation termination
(sta_tsk) (ter_tsk)
B
DORMANT
p-| (inactive state) |-
Forcible termination Exit (ext_tsk)

(ter_tsk)

Figure 2.2 Task State Transition Diagram

2.4.3 Task Initiation

Task initiation means that a task in the DORMANT state makes a transition to the READY state.
A task can be initiated by either of the following methods:

« Issuing the sta_tsk or ista_tsk system call to the target task
» Defining initial task initiation in the setup table

Rev. 2.0, 03/01, page 8 of 282
RENESAS

24.4 Task Scheduling

Task scheduling means that the kernel determines the order of execution for executable tasks, 1
is, the order of allocating the CPU to a task in the READY state. The kernel selects one task in
READY state and shifts it to the RUN state. If there are no tasks in the READY state, the kernel
enters the idle state and waits for a task to be waken up via an interrupt. When there is more th:
one task in the READY state, the execution order is determined by using the CPU allocation wa
gueue, which is called the ready queue. There is a ready queue for each level of the maximum
number of task priority, each queue operating on a first-come, first-served (FCFS) basis. The
lower the number, the higher the priority is.

The kernel also supports round-robin scheduling, where the CPU allocates the same amount of
time for each task with the same priority by rotating the ready queue at specific intervals. There
are two types of scheduling: standard scheduling and round-robin scheduling. The round-robin
scheduling manipulates the ready queues through the rot_rdqg and irot_rdq system calls. Round
robin scheduling can be achieved by rotating the ready queue by issuing irot_rdq system call frc
the timer interrupt handler which is initiated at specific intervals.

245 Task Waiting/Suspension and Release

An executing task shifts to the WAIT or SUSPEND state when an interrupt occurs or a resource
becomes unavailable; a task returns to the previous state when the cause of shifting a task to th
WAIT state or SUSPEND state is cancelled. Note, however, a task does not always resume
execution immediately after the cause of shifting a task to the WAIT or SUSPEND state is
cancelled; actual execution timing is determined according to the event-driven scheduling. Table
2.3 lists the cause of shifting an executing task to the WAIT or SUSPEND state.

Rev. 2.0, 03/01, page 9 of 282
RENESAS

Table 2.3

Cause of Waiting/Suspension

Task Waiting/Suspension and Release

Time of Release

When the current task
enters the WAIT state

slp_tsk or tslp_tsk
system call

(1) When system call wup_tsk is issued

(2) When the specified timeout period (tmout)
has passed (tslp_tsk)

(3) When system call rel_wai is issued

wai_flg or twai_flg
system call

(1) When the event-flag wait condition is
satisfied

(2) When the specified timeout period (tmout)
has passed (twai_flg)

(3) When system call rel_wai is issued

wai_sem or
twai_sem system
call

(1) When the resource managed by semaphore
is acquired

(2) When the specified timeout period (tmout)
has passed (twai_sem)

(3) When system call rel_wai is issued

rcv_msg or
trcv_msg system
call

(1) When a message is sent to the mailbox

(2) When the specified timeout period (tmout)
has passed (trcv_msg)

(3) When system call rel_wai is issued

get_blf to tget_blf
system call

(1) When a memory block is acquired

(2) When the specified timeout period (tmout)
has passed (tget_blf)
(3) When system call rel_wai is issued

get_blk to tget_blk
system call

(1) When a memory block is acquired

(2) When the specified timeout period (tmout)
has passed (tget_blk)
(3) When system call rel_wai is issued

When forcibly suspended
by another task

sus_tsk system call

When system call rsm_tsk is issued

When an interrupt is generated

When an interrupt handler completes execution

When a shared stack is
being occupied

sta_tsk system call

When the shared stack is released

Rev. 2.0, 03/01, page 10 of 282

RENESAS

2.4.6 Task Termination

Task termination means that a task completes execution and enters the DORMANT state by on
the following methods:

* An ext tsk system call is issued for the current task
« Ater_tsk system call is issued for the target task

Resources acquired with system calls must be returned before a task is terminated. Once a tasl
terminated, it is executed again from the initial state when initiated.

2.4.7 Shared Stack Function

More than one task can share one static stack area. This reduces the total stack area. A shared
stack is defined in the setup table. However, only one task at a time can be executed in a task
group that shares a stack.

A shared stack is released when the task using the shared stack enters the DORMANT state. |
there is a task waiting for a shared stack, the task at the head of the shared-stack waiting queue
uses the shared stack and enters the READY state.

The shared-stack wait queue is managed on a first-in first-out (FIFO) basis. The tasks are
connected to the shared-stack wait queue in the order of the initiation request.

When tasks compete to use the same stack, the task that is initiated first uses the stack, and the
other tasks wait for the shared stack.

Rev. 2.0, 03/01, page 11 of 282
RENESAS

Figure 2.3 shows the task state transition when using the shared stack function.

P
READY - RUN
(executable state) (execution state)

KTk -

WAIT
(wait state)

v

WAIT-SUSPEND
(wait and
suspend state)

Y

SUSPEND
p| (forcible-wait state)

Shared stack
allocation

Shared stack

allocation WAIT-SUSPEND

(shared-stack
wait and
suspend state)

Resumption ‘ 1 Suspension

(rsm_tsk) (sus_tsk)
Forcible
WAIT termination
(shared -stack wait state) (ter_tsk)

(ter_tsk) (sta_tsk)

» DORMANT | |

(inactive state) D S

Forcible When the shared
termination stack is monopolized

Shared stack is released
or unused (sta_tsk, ista_tsk)

Figure 2.3 Task State Transition when Using the Shared Stack Function

Rev. 2.0, 03/01, page 12 of 282
RENESAS

2.5 Synchronization and Communication

For synchronization and communication purposes, the kernel has the following objects which ar
independent of tasks.

» Event flags

Waits for several events and synchronizes task operations.
» Semaphores

Exclusively controls resources.
» Mailboxes

Transfers data (passes pointer to data).

The task event flags are controlled by the system calls listed in table 2.4.

Table 2.4 System Calls for Task Event Flag Control

System Call Description

set_flg Sets event flag

iset_flg

clr_flg Clears the event flag

wai_flg Waits for event flag

pol_flg Polls and gets event flag
twai_flg Waits for event flag with timeout
ref_flg Refers to the event flag state

Table 2.5 System Calls for Semaphore Control

System Call Description

sig_sem Returns semaphore resource

isig_sem

wai_sem Gets semaphore resource

preg_sem Polls and gets semaphore resource
twai_sem Gets semaphore resource with timeout
ref_sem Refers to the semaphore state

Rev. 2.0, 03/01, page 13 of 282
RENESAS

Table 2.6 System Calls for Mailbox Control

System Call Description

snd_msg Sends message to mailbox

isnd_msg

rcv_msg Receives message from mailbox

prcv_msg Polls and receives message from mailbox
trcv_msg Receives message from mailbox with timeout
ref_mbx Refers to the mailbox state

251 Event Flag

Event flags are used to enable quick inter-task synchronization by combining various events. An
event flag is a bit-group corresponding to events. The value one represents event occurrence an
zero represents no event occurrence. More than one task can wait for a specified bit to be set in
event flag, that is, tasks can wait until the specified event occurs.

Figure 2.4 shows an example of using event flags.

Kernel

Event flag
Initialize OOOOO 00 (000000...00 | (1)

(clr_flg)

.
.
.
.

;"'C':ompare)

Wait for event
(OR wait) (wai_flg)

WAIT state] <€ T
) Signal event
: . OR —[000000..01] <€ o(cu?rgpee
: 3 set_flg

Compare (4) \
| Wait state releasel(—l
I

Figure 2.4 Example of Using an Event Flag

Rev. 2.0, 03/01, page 14 of 282
RENESAS

Description:

(1) Task A clears an event flag with the initial value specified.

(2) As the specified event has not occurred yet, task A waits for a specified event occurrence in
OR wait mode. (OR wait: to wait for at least one specified event to occur)

(3) Task B signals event occurrence; the bits of the event flag are then set.
(4) Task A is released from the WAIT state because the wait release condition is satisfied.

Rev. 2.0, 03/01, page 15 of 282
RENESAS

2.5.2 Semaphore

Elements such as I/O and shared memory required for task execution are called resources. Mos
resources are exclusively controlled by semaphores. Semaphores have non-negative counters t
indicate the number of resources available. A task acquires semaphore counter values and can
resources corresponding to the counter values acquired. That is, the acquisition of semaphore
counter values is the same as the acquisition of resources. Figure 2.5 shows an example of

exclusive control of resources by the semaphore.

Kernel

Semaphore

Request resource)

q(wai_sem) <—O—m (2)
Request resource

q(wa_i_sem) <_O lJI (3)

Return resource —O—> Q
®)

(sig_sem)

Request resource
(wai_sem)

| WAIT state

O—O‘> WAIT state release
[

Figure 2.5 Exclusive Control of Resources by Semaphore

Description:

(1) First, two resources are set (semaphore counter = 2).
(2) Task A requests and gets a resource (semaphore counter = 1).

Rev. 2.0, 03/01, page 16 of 282
RENESAS

(3) Task A requests and gets another resource (semaphore counter = 0).

(4) Task B requests a resource, but has to enter the WAIT state because there is no resource.

(5) Task A returns a resource. The released resource is allocated to task B and task B is releas
from the WAIT state.

2.5.3 Mailbox

Mailboxes are used to when message data is sent and received between tasks. A message is
to a mailbox from a task, and is later sent on to another task from the mailbox. The mailbox sen
the start address of a message. Since the communication using a mailbox sends and receives t
message start address, it is fast regardless of the message size.

Figure 2.6 shows the mailbox process.

Kernel

Mailbox

Message / /

g e
(snd=msg) @ Receive
E 2 IZI (rcv_msg)
Message I
Receive
3 (rcv_msg)
I WAIT state I
Waiting for
message
Message
a msg) [T F— 1]
(snd_msg) (4)
Message

E | ~ | |WAIT state releasel

Figure 2.6 Mailbox Process

Rev. 2.0, 03/01, page 17 of 282
RENESAS

Description:

(1) Task A sends a message to the mailbox, storing one message in the mailbox.
(2) Task B issues a message receive request and the message is transferred to task B.

(3) Task B again issues a message receive request, but it is placed in the WAIT state since no
message is in the mailbox.

(4) Task A sends a message, and task B is released from the WAIT state to receive the message
2.6 Interrupt

2.6.1 Overview

When an interrupt occurs from an external hardware or a peripheral module, the interrupt handlel
is initiated without kernel intervention.

The interrupts are controlled by the system calls listed in table 2.7.

Table 2.7 System Calls for Interrupt Control

System Call Name Function

ret_int Returns from the interrupt handler
chg_ims Changes the interrupt mask level
ref_ims Refers to the interrupt mask level
loc_cpu Disables interrupts and dispatches
unl_cpu Enables interrupts and dispatches

2.6.2 Interrupt Handler

When an interrupt occurs, the currently running task is suspended until the interrupt handler
completes execution.

Tasks are scheduled after the interrupt handler has completed execution; tasks are not schedule
even when a task with high priority is in the READY state due to the system call issued while the
interrupt handler was being executed.

When interrupts are nested, the tasks are scheduled when all the interrupt handlers have comple
execution.

2.6.3 Undefined Interrupt

If an undefined interrupt occurs, the system fails, passing the undefined interrupt or exception
information as parameters to the system termination routine.

Rev. 2.0, 03/01, page 18 of 282
RENESAS

2.6.4 Monopolizing the CPU

A task can monopolize the CPU in two ways: One is to issue system call cpu_loc to lock the CP
To unlock the CPU, system call unl_cpu must be issued. The other is to issue system call chg_i
to mask interrupts. If system call chg_ims is issued, the system makes a transition from the task
portion execution to task-independent portion execution. During task-independent portion
execution, only limited number of system calls can be issued and scheduling will be delayed as
well as in the CPU-locked state.

2.7 Memory Pool

The memory pools allow memory space to be used efficiently. The HI2000/3 provides fixed-size
memory pools and variable-size memory pools.

The fixed-size memory pools are controlled by the system calls listed in table 2.8.

Table 2.8 System Calls for Fixed-Size Memory Pool Control

System Call Name Function

get_blf Gets a fixed-size memory block

pget_blf Polls and gets a fixed-size memory block
tget_blf Gets a fixed-size memory block with timeout
rel_blf Returns a fixed-size memory block

ref_mpf Reads the fixed-size memory pool status

The variable-size memory pools are controlled by the system calls listed in table 2.9.

Table 2.9 System Calls for Variable-Size Memory Pool Control

System Call Name Function

get_blk Gets a variable-size memory block

pget_blk Polls and gets a variable-size memory block
tget_blk Gets a variable-size memory block with timeout
rel_blk Returns a variable-size memory block

ref_mpl Refers to the variable-size memory pool status

Rev. 2.0, 03/01, page 19 of 282
RENESAS

2.7.1 Fixed-Size Memory Pool

A fixed-size memory pool consists of fixed-size memory areas called memory blocks. A task can
get a fixed-size memory block from the memory pool.

Figure 2.7 shows how the fixed-size memory pool works.

Kernel
(Task A) (Task B)
Memory pool

Get memory i |
et bl
(get_blf) | a—] — B [:]
: - Get memory
: TI_I—> (get_blf)
Get memory |

(getblf) | o —r-—
WAIT state Wait for memory ©)

A 4__/:__ Return memory
: —1 (rel_blf)

(4)

|[WAIT state releasel

Figure 2.7 Fixed-Size Memory Pool Operation
Description:

(1) Task A gets a memory block, leaving one memory block in the memory pool.
(2) Task B also gets a memory block, leaving no memory block in the memory pool.

(3) Task A tries to get another memory block. However, there are no available memory blocks
and task A enters the WAIT state.

(4) Task B releases the memory block, which is allocated to task A; task A is released from the
WAIT state.

2.7.2 Variable-Size Memory Pool

A task can get a variable-size memory block in a byte unit from the variable-size memory pool.

Rev. 2.0, 03/01, page 20 of 282
RENESAS

Figure 2.8 shows how the memory pool works.

‘ Task A ’ Kernel { Task B ’

Memory pool

/
300

Get memory L
(get_blk) -t
)

&

Get memory

100
160 (get=blk)
Get memory - -,
(get_blk) |t——57 [| 15] @

Wait for memory
WAIT state

: 100
: @ N\
: Return memory
: (rel_blk)

|WAIT state release]

Figure 2.8 Variable-Size Memory Pool Operation
Description:

(1) Task A obtains 300 bytes of memory area, with additional 16 bytes for OS management
purposes, thus leaving 184 (= 500 — 300 — 16) bytes of available memory area.

(2) Task B also obtains 100 bytes of memory area, with additional 16 bytes for OS management
purposes, thus leaving 68 bytes of available memory area.

(3) Task A tries to obtain 160 bytes of memory area. However, there are only 68 (= 184 — 100 -
16) bytes of available memory area and thus task A enters the WAIT state.

(4) Task B releases 100 bytes, with 16 bytes for OS management purposes, making 184 bytes
available. Accordingly, 160 bytes of the memory area are allocated to task A, and task A is
released form the WAIT state. Here, 8 (= 68 + 100 + 16 — 160 — 16) bytes of the memaory ar
are left.

Rev. 2.0, 03/01, page 21 of 282
RENESAS

2.8 Time Management

2.8.1 Overview

The kernel manages time using a clock of a given frequency generated using a hardware timer.
This provides the following functions:

Reference to and Setting of TimeManages time by counting the pulses of the hardware clock at
a certain point specified by the system.

Timer Handler Execution Control: Monitors the cyclic elapsed time of the cyclic handler, and
controls execution.

Task Execution Control: Controls execution of tasks using time.

To use the above functions, a timer handler must be created by the user. For details on the timer
handler creation, refer to appendix C, Device Driver.

System clock is operated by the system calls listed in table 2.10.

Table 2.10 System Calls for System Clock

System Call Name Function
set_tim Sets system clock
get_tim Refers to system clock

2.8.2 Hardware Timer and System Clock

The time management requires a hardware timer to generate interrupts with a certain cycle time.
The kernel counts the interrupts using the hardware timer and manages their timing. The unit of
time used in the operating system (system clock value) is cycle time of the hardware timer (tc).
The relationship between time in the operating system (OS) and actual time is:

<actual time> = <time in OS (system clock valug)=cycle time of hardware timer (tc)>
When the hardware timer cycle is 1 ms, a value of 100 in <time in OS> indicates 100 ms (<actual
time>).
2.8.3 Setting and Referring to System Clock

A 48-bit signed system clock counter is incremented by one each time the hardware timer interru
is generated. This enables the time to be calculated up to abeut 4 (about 4,000 years when
the cycle time of the hardware timer (tc) is 1 ms).

Rev. 2.0, 03/01, page 22 of 282
RENESAS

2.8.4 Cyclic Handler

Cycle processing can be performed by using the cyclic handler. The cyclic handler can be initiat
when the system is in the task-independent portion; it is initiated at a specific cyclic time interval

Cyclic handlers are controlled by the system calls listed in table 2.11.

Table 2.11 System Calls for Cyclic Handler Control

System Call Name Function
act_cyc Controls the activation of the cyclic handler
ref_cyc Refers the cyclic handler status

Figure 2.9 shows an overview of cyclic handler processing.

)
Cyclic handler definition
of the setup table
Activation status; ON —> 10 ——
Cycle time: T

Cyclic handler

(2) TO+T —f— ----------- Initiated---------- >
4) I

Handler activation (3)TO+2T —f— ------------ Initiated=---==----- > I

control
(act_cyc)
Activation status: OFF
(5) |

Handler activation

control TO+AT —f— ----mmmeene Initiated- - --=- -~ > I

—>
TO+3T —f— ------->> Not initiated
RS

(act_cyc)
Activation status: ON v

| Time (T)

Figure 2.9 Overview of Cyclic Handler Processing

Rev. 2.0, 03/01, page 23 of 282
RENESAS

Description:

(1) The cyclic handler activation status is turned on and a cyclic handler with cycle time T is
defined in the setup table.

(2) The cyclic handler is initiated after cycle time T has passed.
(3) The cyclic handler is initiated after cycle time T has passed and when time becomes TO + 2T.

(4) If the activation status is turned off by issuing the act_cyc system call, the cyclic handler will
not be initiated even after cycle time T has passed (time is TO + 3T).

(5) If the activation status is turned on by issuing the act_cyc system call, the cyclic handler will
be initiated again when cycle time T has passed (time is TO + 4T).

2.9 System Management

The kernel version can be acquired by using the system call listed in table 2.12 to manage the
system.

Table 2.12 System Call for Kernel Version Acquisition

System Call Name Function

get_ver Refers to the version

2.10 System-Call Trace

The system-call trace function stores a history of the system calls issued during program executi
in the trace buffer. Basically, information on task issue and task return can be acquired by issuing
a system call. The information is called an event.

To use the trace function, the trace function and the trace buffer area must be defined in the setu
table at system configuration. When the trace function is selected, all events following the
execution of the system initialization handler will be acquired. The trace buffer has a ring-buffer
structure and writes new information over old information.

Rev. 2.0, 03/01, page 24 of 282
RENESAS

2.11 Trace Buffer Structure

Figure 2.10 shows the trace buffer structure.

Trace buffer management table A
(T_TRCCB)
Trace entry
(T_TRCENTIO0])

Trace buffer
size defined by
the setup file
(N is the number of
trace entries)

Trace entry
(T_TRCENT[1])

Trace entry
(T_TRCENTIN-1]) Y

Figure 2.10 Trace Buffer Structure

The trace entry area stores acquired information and has a ring buffer structure. One trace entn
area is used for each event.

Trace Buffer Management Table (T_TRCCB):Controls the trace buffer. The kernel uses this
area at trace acquisition. Figure 2.11 shows the structure of the trace buffer management table.

0 typedef struct t_trcch {
+H'4 | (&) Start address of trace entry area VW tr_trbtop; /* Start address of trace entry area */
+H'8 [(b) End address of trace entry area + 1 VW tr_trbbtm; /* End address of trace entry area + 1 */
+H'C | (c) Next-inserted entry address VW tr_trbins; /* Next-inserted entry address */
+H'10 | (d) Trace buffer status UW tr_trbsts; /* Trace buffer status *
} T_TRCCB;

Figure 2.11 Trace Buffer Management Table Structure

Areas (a) and (b) store the trace information location. These areas are initialized according to th
setup table at system initiation.

Area (c) stores the address where the next-event information is to be stored.

Area (d) contains two valid status bits; the other bits are invalid.

Bit 0: Ring buffer flag

0: A complete round of writing to the trace buffer has not yet been made
1: At least one complete round of writing to the trace buffer has been made

Rev. 2.0, 03/01, page 25 of 282
RENESAS

Bit 1: Trace acquisition flag
Set to 1 while the kernel is storing trace information in the next-inserted entry address, which

means that the information in area (c) is undefined.

Figure 2.12 shows the trace buffer management process.

(a) Start address of trace entry area

Trace buffer
management table (b) End address of trace entry area +1

(c) Next-inserted entry address

(d) Trace buffer status
D

T_TRCENTI0]

Latest trace entry
T_TRCENT[M-1] " ormation

Oldest trace
T_TRCENT[m] entry information *

T_TRCENT[N-1]

Note: When bit 1 of the trace buffer status area is 1, the entry is invalid.

Figure 2.12 Trace Buffer Management Process

Rev. 2.0, 03/01, page 26 of 282
RENESAS

Trace Entry (T_TRCENT): One trace entry stores trace information for one event. Figure 2.13
shows the trace entry structure.

typedef struct t_trcent {
0 -
H2 (a) Event attribute UH te_attr; /* Event attribute */
Ha (b) Task ID ID te_tskid; /* Task ID */
(c) System clock UW te_ltime; /* System clock value (lower) */
(lower 4 bytes)
+H'8 - -
(d) Event information H te_event; /* Eventinformation (RO) */
tHA (e) First parameter .
VH te_rl; /* First parameter (R1) */
+H'C
(f) Second parameter VW te_er2; /*Second parameter (ER2) */
+H'10 -
(g) Third parameter VH te_r3; /* Third parameter (R3) */
+H'12
(h) Fourth parameter VW te_erd; [* Fourth parameter (ER4) */
+H'16
(i) EXR VH te_exr; /*EXR (upper one byte) */
+H'18 :
() CCR, PC UH te_ccr_pc; /* CCR, PC (upper one byte of PC)*/
HIA T o PC UH te_pc;, /*PC %
+H'1C
} T_TRCENT;

Figure 2.13 Trace Entry Structure

The event attribute indicates the type of trace entry. An event can have one of the following four
attributes:

* SVC attribute (TATR_SVC: H'0001)
e RTN attribute (TATR_RTN: H'0002)
» CONT attribute (TATR_CONT: H'0003)
« IDLE attribute (TATR_IDLE: H'0004)

The SVC attribute indicates that the event is the issuing of a system call, so the trace entry stor
the information at the time the system call is issued.

The RTN attribute indicates that the event is a return from the kernel to the application, so the
trace entry stores the information at a system call return or at a task or handler initiation.

The CONT attribute event is acquired when task execution restarts from the interrupted point
according to case 3 below, one of three possible ways to restart execution.

1. When returning to the task that was running before the interrupt as a result of the interrupt
handler executing the RTE instruction.

Rev. 2.0, 03/01, page 27 of 282
RENESAS

2. When the interrupt handler issues the ret_int system call without issuing a system call
(including interrupts from the system timer) that requires task switching, and thus execution
returns to the task that was executing before the interrupt.

3. When the system call ret_int is issued after a system call that requires task switching is issue
(including interrupts from the system timer), execution returns to a task other than the task
that was running before the interrupt, and afterwards returning control to the task that was
running before the interrupt.

The CONT-attribute event is acquired when 3 is satisfied. In cases 1 or 2, it will not be acquired.
The IDLE attribute event is acquired when the system enters the idle state.

The meaning of the other trace entry data depends on the event attribute. Table 2.13 shows the
possible meanings.

Rev. 2.0, 03/01, page 28 of 282
RENESAS

Table 2.13 Trace Entry Data Meanings

Event Attribute (te_atr)

TATR_SVC TATR_RTN TATR_CONT TATR_IDLE
te_atr (H'0001) (H'0002) (H'0003) (H'0004)
te_tskid ID of task issuing ID of task to which ID of task to restart Undefined.
system call. execution returns from an interrupt
0 when issued from rom the kernel. point.
task-independent 0 when returningto Never the task-
portion. task-independent independent portion
portion. (0).
te_ltime Lower four bytes of the system clock count at event acquisition.
te_event Function code Error code of the Undefined. Undefined.
of the issued system system call.
call.) However, H'8000 will
(the fun.ct|on code of mean task initiation
the ret_int system call (RO).
will not be acquired)
te_rl, System-call System-call return Undefined. Undefined.
te_er2, parameters parameters.
te_r3, (R1, ER2, R3, and Data is not defined at
te_erd _ER4 at system-call task initiation (RL,
Issue). ER2, R3, ER4 at
system-call return)
te_exr EXR at system-call EXR at application Undefined. Undefined.
issue return
te_ccr_pc CCR atsystem-call CCR at application Undefined. Undefined.
issue return
te_pc System-call issue Application return Undefined. Undefined.
address address.
When a task is
initiated, the task start
address will be
returned. In other
cases, the issue
address of the
previously issued
system call will be
returned.
Note: For details on the system-call function code, refer to appendix E, System-Call Function

Codes.

Rev. 2.0, 03/01, page 29 of 282

RENESAS

2.12

Trace Acquisition Data Analysis Example

An example of acquired trace data is shown in table 2.14.

Table 2.14 Trace Acquisition Data Example

No. te_attr te _tskid te _Itime te_event te_rl te_pc te_ccr te _exr
-12 Old H0001 H'0005 H'00001234 H'ffe9 H'0003 H'003018 H'00 H'00
1 SvC tskid =5 sta_tsk Starts
ID=3
-11 H'0002 H'0003 H'00001234 H'8000 H'Xxxx H'003800 H'00 H'00
RTN tskid = 3 Task
initiation
-10 H'0001 H'0003 H'00001234 H'ffda H'xxxx H'003810 H'00 H'00
SvC tskid = 3 slp_tsk
-9 H'0002 H'0005 H'00001234 H'0000 H'0003 H'003018 H'00 H'00
RTN tskid =5 E_OK
-8 H'0001 H'0000 H'00001234 H'ff87 H'0003 H'007340 H'00 H'05
SvC Non-task iwup_tsk Wakes up Control Interrupt
ID=3 level =0 level =5
-7 H'0002 H'0000 H'00001234 H'0000 H'0003 H'007340 H'00 H'05
RTN Non-task E_OK Control Interrupt
level =0 level =5
-6 H'0002 H'0003 H'00001234 H'0000 H'xxxx H'003810 H'00 H'00
RTN tskid = 3 E_OK
-5 H'0001 H'0003 H'00001234 H'ffel H'0005 H'003840 H'00 H'00
SvC tskid = 3 rel_wai Releases
ID=5
from wait
state
-4 H'0002 H'0003 H'00001234 H'ffcl H'0005 H'003840 H'00 H'00
RTN tskid = 3 E_OBJ
-3 H'0001 H'0003 H'00001234 H'ffeb Undefined Undefined
SvC tskid = 3 ext_tsk data data
-2 H'0003 H'0005 H'00001234 Undefined Undefined Undefined
CONT tskid =5 data data data
-1 H'0001 H'0005 H'00001234 H'ffeb Undefined Undefined
1 SvC tskid =5 ext_tsk data data
0 New H'0004 Undefined H'00001234 Undefined Undefined Undefined
IDLE data data data
Notes: 1. te_er2, te_r3, and te_er4 are omitted to simplify description.
2. In each event row, the upper line shows the traced data, and the lower line briefly
describes the data.
3. Numbers are only for description. They are not acquired as trace data.

Rev. 2.0, 03/01, page 30 of 282

RENESAS

. Event No. -12

This is the SVC attribute because te_attr is H'0001. te_tskid = 5 indicates that task 5 has iss
a system call. The system call is sta_tsk because te_event, which shows the system call
function code, is H'FFE9. System call sta_tsk has initiated task 3 because te_par1, which is
system call parameter tskid, is te_r1=H'0003. The address of the instruction issuing the sta_:
system call is H'3016 (= 3018 — 2) because te_pc is H'003018.

. Event No. -11

te_attr = H'0002 (RTN attribute) and te_tskid = 3 indicate that control has moved to task 3.
te_event = H'8000 indicates that task 3 started at this time. The task start address is

te_pc = H'003800.

Due to its relation with event —12, task 5 issued a sta_tsk system call to switch control from
task 5 to task 3.

. Event No. -10

te_attr = H'0001 (SVC attribute), te_tskid = 3, and te_event = H'FFDA indicate that task 3 ha
issued slp_tsk.

. Event No. -9

te_attr = H'0002 (RTN attribute) and te_tskid = 5 indicate that control has moved to task 5.
Due to its relation with event —10, system call slp_tsk issued by task 3 has switched control
from task 3 to task 5 here. Task 5 has not been executed (no events have been acquired) sil
the sta_tsk system call was issued at event —12; therefore, te_event is the error code for the
event —12 sta_tsk system call.

. Event No. -8

te_attr = H'0001 (SVC attribute), te_tskid = 0, te_event H'FF87, and te_r1 = 3 indicate that
iwup_tsk (tskid = 3) has been issued from a task-independent portion. A task-independent
portion may be an interrupt handler, extended SVC handler, or system initialization handler.
this case, te_ccr = H'00 and te_exr = H'05 indicates that the task-independent portion is the
interrupt handler having interrupt level 5 with a priority level of 0. In this case, an interrupt
occurred between events —9 and -8.

. Event No. -7

te_attr = H'0002 (RTN attribute) and te_tskid = 0 indicate that the information is on a return
from the system call issued from a task-independent portion. iwup_tsk in event -8 is the
previous system call issued by a task-independent portion; therefore te_event is the error co
for this iwup_tsk system call.

Rev. 2.0, 03/01, page 31 of 282
RENESAS

7. Event No. -6

te_attr = H'0002 (RTN attribute) and te_tskid = 3 indicate that control has moved to task 3.
The previous event, —7, is for a task-independent portion; therefore, the ret_int system call
must have been issued from an interrupt handler between events —7 and —6. As a result, task
was given control and this event was acquired. Task 3, therefore, has a higher priority than ta
5. Task 3 has not been executed since the event —10 slp_tsk system call was issued; therefor
te_event is the error code for this slp_tsk system call.

8. Event No -5

te_attr = H'0001 (SVC attribute), te_tskid = 3, te_event = H'FFEL, and te_r1 = H'5 indicate the
task 3 has issued rel_wai (tskid = 5).

9. Event No. 4

te_attr = H'0002 (RTN attribute), te_tskid = 3, and te_event = H'FFCL1 indicate that the systen
call rel_wai (event -5) issued by task 3 has resulted in an error (error code: E_OBJ).

10. Event No. -3

te_attr = H'0001 (SVC attribute), te_tskid = 3, and te_event = H'FFEB indicate that task 3 has
issued the ext_tsk system call.

11. Event No. -2

te_attr = H'0003 (CONT attribute) and te_tskid = 5 indicate that task 5 restarted from the
interrupt point. Because task 3, which was being executed, has issued the ext_tsk system cal
(event —3), task 5 was given a control. Checking previous trace data shows that data on task !
is not found from event —9 until this event. Therefore, an interrupt has occurred between even
-9 and -8, and this interrupt suspended task 5 execution.

12. Event No. -1

te_attr = H'0001 (SVC attribute), te_tskid = 5, and te_event = H'FFEB indicate that task 5 has
issued the system call ext_sk.

13.Event No. 0
te_attr = H'0004 (IDLE attribute) indicates that the system has entered idling state.

Rev. 2.0, 03/01, page 32 of 282
RENESAS

The program flow for the trace data in table 2.14 is shown in figure 2.14.

Priority : High Priority : Low
<DORMANT state>
[No. -11] No. -12]
sl sta_tsk (tskid = 3)
<
(Task initiation) <READY state>
[No. -10]
slp_tsk ——>» [Ng-—_?z] OK
<WAIT state> erc I‘ —
Y Interrupt ——> I
<READY state> [No. -8]
iwup_tsk (tskid = 3)
[No. -7]
ercd = E_OK
[No. -6] < ret_int system call
Time ercd=E_OK (ret_int sy)
flow |
[No. -5]
rel_wai (tskid = 5)
[No. -4]
ercd =E_OBJ
[No. -2]
[No. -3] —_ (Start execution from the
ext_tsk place where an interrupt
<DORMANT state> occurred.
Kernel
[No. -1] [No. 0]
Y ext_tsk (System idling)
<DORMANT state>

Figure 2.14 Example of Trace Analysis Results

Rev. 2.0, 03/01, page 33 of 282
RENESAS

2.13 Trace-Function Definition

For details on the trace-function definition, refer to section 6.2.6, Defining Trace Functions.

2.14 Notes on Trace Function

1. Kernel performance degradation

When the trace function is used, trace acquisition processing increases the system-call
processing time because the trace acquisition process is added to system-call processing. It
increases the interrupt-inhibited time for the kernel. In some systems, these increases may
cause timing problems.

These problems also depend on the memory size (location) that trace the buffer area is
allocated to.

2. Writing to the trace buffer

The trace buffer must not be written to. In particular, if the data in the trace buffer managemel
table is changed, correct system operation is not guaranteed.

3. Trace information concerning the RTN attribute

The E2 register value is not defined in the trace information in the normal mode for the RTN
attribute.

4. Interrupt control mode

The EXR register value is not defined in the trace information when interrupt control mode 0
or 1 is selected.

The CCR register value is not defined in the trace information when interrupt control mode 2
is selected.

Rev. 2.0, 03/01, page 34 of 282
RENESAS

Section 3 System Calls

3.1 Overview
System calls are classified as shown in table 3.1.

Table 3.1 System Call Classification

Classification Description

Task management function Initiates and terminates tasks

Task synchronization function Suspends and resumes task execution and task event flag
Synchronization and Manages event flags, semaphores, and mailboxes

communication function

Interrupt management function Returns from the interrupt handler, and changes and
references the interrupt mask

Memory pool management function Allocates memory dynamically

Time management function Sets and references the system clock, and defines the timer
handler
System management function Refers to kernel version identifiers

Some system calls dedicated to task-independent portion have "i's" added at the beginning of tt
system call name, while others do not. This means that some system call names change when
issued from a task portion and a task-independent portion.

» System calls names that change: sta_tsk and ista_tsk, rot_rdq and irot_rdqg, wup-tsk and
iwup_tsk, and others

» System calls names that do not change: get _tid, ref tsk, can_wup, and others

Rev. 2.0, 03/01, page 35 of 282
RENESAS

3.2 System Call Interface

System calls can be issued from programs written in C or assembly language. This section
describes how to issue system calls. For details, see the section 3.3.

3.2.1 C-Language Interface

The kernel provides a C-language interface library so that system calls can be issued from tasks
and handlers written in C language.

The C-language interface library consists of library files and C language header files. Library file:
are provided for the 2600CPU normal mode and advanced mode and for the 2000CPU normal
mode and advanced mode.

To issue a system call from a program written in C language, include a C language header file in
the source program and link the C-language interface library to the compiled source program
(object file) during system configuration. Library files are provided for the 2600 CPU normal
mode and advanced mode, and the 2000 CPU normal mode and advanced mode. When issuing
system call from a program written in C language, include C-language header files in the source
programs, and link C-language interface libraries at system configuration.

System Call Issue FormatThe kernel has the following basic format for system calls written in
C language.

ercd = <name> ([[<return parameter address>...],<parameter>...]);
ercd = <name> (void);
void <name> (void);

ercd: Error code (signed 16-bit integer) acquired as return value of a
system call
<name>: System call name
<return parameter address>: Address for return parameters (pointer)
<parameter>: Parameters
void: Function which cannot receive a return value or function
without a parameter

Rev. 2.0, 03/01, page 36 of 282
RENESAS

Parameter Name Abbreviation: The following prefixes or suffixes are used for parameters.

Table 3.2 Parameter Prefixes and Suffixes
Prefix and Suffix Parameter

t ~ Structure

E_~ Error code

p_~ Pointer

pk_~ Parameter packet address
ppk_~ Parameter packet address pointer
~id ID

~cd Code

i~ Initial value

~sz Size

~cnt Count

RENESAS

Rev. 2.0, 03/01, page 37 of 282

Type and Size of Parameter DataThe following list shows the type and size of parameter data
used in the kernel. These are defined in the kernel C language standard header file.

typedef char
typedef short
typedef long

typedef unsigned char UB,;
typedef unsigned short UH;
typedef unsigned long UW;

typedef char
typedef short
typedef long
typedef void
typedef void
typedef H
typedef UH
typedef INT

typedef int
typedef UH
typedef ID
typedef H
typedef H
typedef H
typedef W
typedef TMO

B; /* signed 8-bit integer */
H; /* signed 16-bit integer */
w; /* signed 32-bit integer */

[* unsigned 8-bit integer */
[* unsigned 16-bit integer */
/* unsigned 32-bit integer */
VB; [* variable data type (8 bits) */
VH; [* variable data type (16 bits) */
VW; [* variable data type (32 bits) */
VP; [pointer to variable data type */
(*FP)(); /* program start address (general) */
INT; /* signed 16-bit integer */
UINT; /* unsigned 16-bit integer */
BOOL; /* Boolean value FALSE(O) or */
/* TRUE(1) */
FN; [* function code */
ID; /* object ID number (???id) */
BOOL_ID; /*Boolean value or ID number */

HNO; /* handler number */
ER; [* error code */
PRI; /* task priority */
TMO; /* timeout */

CYCTIME; /* cyclic time initiation interval */

Rev. 2.0, 03/01, page 38 of 282

RENESAS

C-Language Interface Description ExampleThe following shows a C-language interface
parameter description, using a sta_tsk system call as an example.

#include "hi2000.h"
void task(INT stacd)

{

ER ercd;

ID tskid;

INT stacd;
... */
ercd = sta_tsk(tskid,stacd);
... */

}

3.2.2 Assembler Interface

System Call Issue FormatThe kernel has the following basic format for system calls in the
assembly language program. After parameters have been set in each register, a JSR instruction
executed. An example of system call sta_tsk is shown below.

MOV.W #TSKID,R1 (@)
MOV.W #STACD,R2 (b)
JSR @sta_tsk (c)

(a) System call parameter (task ID) is set in the registers defined by each system call.
(b) System call parameter (initiation code) is set in the registers defined by each system call.

(c) The JSR instruction is executed in the format defined for each system call. Some system cal
use the JMP instruction.

At system call termination, an error code is returned to register RO. Registers other than RO and
parameter registers maintain the value before the system call was issued.

Constants Used in ParametersThe kernel provides an assembly language header file. Various
constants are defined in the assembly language header file.

Rev. 2.0, 03/01, page 39 of 282
RENESAS

3.2.3 Error Codes

Except for a few system calls, error codes are returned as system call execution results. Error
codes are set in register RO as an ER type (signed 16-bit integer). The results of system call
execution are not reflected in each flag of the CCR register.

For the system calls described in this section, error codes that may be generated are described.

The kernel provides two types of library kernels: one has a parameter check function and the oth
does not. If the latter type is used, the kernel omits the static error detection for the system call
parameter, reducing the system call processing time; therefore, when there is an error in the
system call parameter, correct system operation cannot be guaranteed.

Usually, a kernel library with a parameter check function is used for debugging. Then, after
debugging has ended, the kernel library without a parameter check function is used.

Rev. 2.0, 03/01, page 40 of 282
RENESAS

3.3 System Calls

In this section, system calls are described in details as shown below.

Section Brief function description [System status enabling
(System call name) system call issuing] « System status enabling system call issuing:
The following mnemonics show the
C Language Interface: system status in which a system call
System call issuing format can be issued.
T: Task-execution state
Assembler Interface: D: Dispatch-disabled state
System call issuing format L: CPU-locked state
. I: Task-independent portion
Parameters:
Type Parameter Register Meaning of « Register (parameter/return parameter):
name parameter ERx/Rx: The register size differs between
. . . . the advanced and normal modes
. . . . Rx: The register size is the same in the
Return Parameters: advanced and normal modes
Type Parameter Register Meaning of « System call name:
. name . para[neter If (System call) is written in the parameter,
: : : : return parameter, or error code, it denotes
the target system call.
Packet Structure:
Error code:
Mnemonic Error code [Type] Meaning of
value error code
Description:

« Packet Structure
Packets are described as below when used by a system call.

typedef struct t_rsem{

VP exinf; 0/0 4/2 Extended information
BOOL_ID wtsk; +4/+2 2/2 Wait task ID
UINT semcnt; +6/+4 2/2 Current semaphore count
IT_RSEM;
\ /] \nd \J \ /
Description of the structure in Description of member
C language

Offset from the Member
beginning of size
a packet

Offset from the beginning of a packet and member size
x/xx: The offset from the beginning of a packet and the member size differs between
advanced mode or normal mode.
x: The offset from the beginning of a packet and the member size is the same in
advanced mode or normal mode.
« Error Code Type
[K] indicates an error that is detected regardless of the parameter check function.
[p] indicates an error that is detected only when the parameter check function is incorporated.

Figure 3.1 System Call Description Form

Rev. 2.0, 03/01, page 41 of 282
RENESAS

3.4 Task Management

Task-Management System CallsTasks are managed by the system calls listed in table 3.3.

Table 3.3 System Calls for Task Management

System State

System Call Description T/DIL/
sta_tsk Starts task T/D/L
ista_tsk Starts task (task-independent potion) DI/l
ext_tsk Terminates current task T/D/L
ter_tsk Forcibly terminates a task T/D/L
chg_pri Changes task priority T/D/L
rot_rdq Rotates task ready queue T/D/L
irot_rdq Rotates task ready queue (task-independent portion) DI/l
rel_wai Releases the task WAIT state T/DIL
get_tid Refers current task ID T/D/L
ref_tsk Refers task state T/D/LN
dis_dsp Disables dispatch T/D
ena_dsp Enables dispatch T/D

Task Management SpecificationsTask-management specifications are listed in table 3.4.

Table 3.4 Task-Management Specifications

ltem

Description

Maximum number of tasks that can be defined 225

Task ID 1 to 255 (including undefined tasks)
Task priority 1to 31
Task stack Includes shared-stack function

Ready queue

First-come first-service (FCFS)

Shared stack queue (when the shared-stack First-in first-out (FIFO)

function is used)

Rev. 2.0, 03/01, page 42 of 282

RENESAS

Task-Execution Waiting/Suspension and Releas@able 3.5 lists the causes of task-execution
waiting/suspension and release.

Table 3.5 Causes of Task-Execution Waiting/Suspension and Release

Cause of Waiting/Suspension Time of Release

When an interrupt is generated When an interrupt handler completes execution

When a shared stack is sta_tsk or ista_tsk When the shared stack is released
being occupied system call

Rev. 2.0, 03/01, page 43 of 282
RENESAS

34.1 Start Task (sta_tsk) [T/D/L]

Start Task (ista_tsk) [D/I]

C-Language Interface:

ER ercd = sta_tsk (ID tskid, INT stacd);
ER ercd =ista_tsk (ID tskid, INT stacd);

Assembler Interface:

JSR
JSR

Parameters:
ID
INT

Return Parameter:
ER

Error Codes:
E_OK

E_ID

E_NOEXS

E_OBJ

E_CTX

@sta_tsk
@ista_tsk

tskid

stacd

ercd

H'0000

H'ffdd (—H'23)

Hiffce (—H'34)

Hiffcl (—H'3f)

H'ffbb (—H'45)

Rev. 2.0, 03/01, page 44 of 282

R1

R2

RO

(k]
[p]

(]

(k]

[p]

[k]

Task ID

Task initiation code

Error code

Normal termination

Invalid ID number
(tskid< 0, tskid > Number of tasks defined)

Undefined
(Task indicated by tskid does not exist)

Obiject state is invalid
(Task indicated by tskid is not in
DORMANT state)

Context error (A task portion issued system
call ista_tsk while tasks were being
executed or a task-independent portion
issued system call sta_tsk)

(System call ista_tsk was issued from a task
portion while the CPU was being locked)

RENESAS

Description:

These system calls initiate the task indicated by the parameter tskid. The initiated task makes a
transition from the DORMANT state to the READY state. The task initiation code indicated by
the parameter stacd will be passed to the initiated task. Parameter stacd must be passed to the
register when the task is written in assembly language, and must be passed to the first argumer
when written in C language. Initiation requests are not queued. Parameter tskid specifies the ID
the task to be initiated. The current task cannot be specified by the parameter tskid.

If the shared stack is not used by another task, the task to be initiated uses the shared stack ani
shifts to the READY state. If the shared stack is already used by another task, the task indicatec
tskid shifts to the WAIT state and is placed in the shared-stack-wait queue since the stack area
cannot be used. If this system call is issued to a task in the shared-stack-wait state, error code
E_OBJ is returned.

Rev. 2.0, 03/01, page 45 of 282
RENESAS

3.4.2 Exit Task (ext_tsk) [T/D/L]
C-Language Interface:

void ext_tsk (void);
Assembler Interface:

JMP @ext_tsk
Parameters:

None
Return Parameter:

None
Error Codes:

Normal termination: [K] Does not return to the task that issued this system call.

Abnormal termination: [p] If a task-independent portion has issued this system call,
control is passed to the system termination routine.

Rev. 2.0, 03/01, page 46 of 282
RENESAS

Description:
The system call ext_tsk terminates the current task.

After the execution of this system call, the current task makes a transition from the RUN state tc
the DORMANT state. The system call ext_tsk cannot automatically release the resources acqui
by the semaphore or the memory blocks acquired before the task is terminated. Therefore, the
must issue system calls to release resources and memory blocks before issuing the system call
ext_tsk.

Therefore, if the current task shares the stack with other tasks, the task at the head of the stack
gueue is removed and is placed in the READY state.

A task portion can issue the system call ext_tsk while task dispatch is being disabled or while th
CPU is being locked. If issued, the kernel enables the execution of other tasks.

Rev. 2.0, 03/01, page 47 of 282
RENESAS

3.4.3

C-Language Interface:

Terminate Task (ter_tsk) [T/D/L]

ER ercd = ter_tsk (ID tskid);

Assembler Interface:
JSR
Parameters:
ID
Return Parameter:
ER
Error Codes:
E_OK

E_ID

E_NOEXS

E_OBJ

E_CTX

@ter_tsk
tskid R1

ercd RO
H'0000 [K]
H'ffdd (-H'23) [p]

H'ffcc (—H'34) [p]

H'ffcl (—H'3f) Ip]

[k]

H'ffob (~H'45) [p]

Rev. 2.0, 03/01, page 48 of 282

Task ID

Error code

Normal termination

Invalid ID number
(tskid < 0, tskid > Number of tasks defined)

Undefined
(Task indicated by tskid does not exist)

Object state is invalid
(Task is in DORMANT state)
(Current task is specified)

Context error
(A task-independent portion issued system
call ter_tsk)

RENESAS

Description:

The system call ter_tsk forces a task specified by tskid to terminate. The terminated task enters
DORMANT state.

The parameter tskid specifies the ID of the task to be terminated.

The system call ter_tsk cannot release resources acquired by the semaphore or memory blocks
acquired. Therefore, the user must issue system calls to release resources and memory blocks
before issuing the system call ter_tsk.

If the current task shares the stack with other tasks, the task at the head of the stack wait queue
removed and placed in the READY state.

Rev. 2.0, 03/01, page 49 of 282
RENESAS

3.4.4 Change Task Priority (chg_pri) [T/DI/L]
C-Language Interface:
ER ercd = chg_pri (ID tskid, PRI tskpri);

Assembler Interface:

JSR @chg_pri
Parameters:
ID tskid R1 Task ID
PRI tskpri R2 Task priority (0 to maximum task priority)

Return Parameter:

ER ercd RO Error code

Error Codes:

E_OK H'0000 [K] Normal termination
E_PAR H'ffdf (-H'21) [p] Parameter error
(tskpri < 0, tskpri > Maximum task priority)
E ID H'ffdd (—H'23) [p] Invalid ID number
(tskid < 0, tskid > Number of tasks defined)
E_NOEXS H'ffcc (—H'34) [p] Undefined
(Task specified by tskid is undefined)
E_OBJ H'ffcl (—H'3f) [K] Object status is incorrect (Task is in
DORMANT state)
E_CTX H'ffbb (—H'45) [p] Context error (A task-independent portion

issued system call chg_pri)

Rev. 2.0, 03/01, page 50 of 282
RENESAS

Description:

The system call chg_pri changes the priority of the task specified by the parameter tskid to the
value specified by the parameter tskpri. The current task can also be specified by specifying tsk
= TSK_SELF (0).

The parameter tskpri specifies the task priority ranging from O to the Maximum task priority. The
task with the smallest value has the highest priority.

Specifying tskpri = TPRI_INI (0) returns the task priority to the initial priority that was specified
at task definition.

A priority changed by this system call is valid until the task is terminated or until this system call
is issued again. If a task enters the DORMANT state, its previous task priority before terminatiol
becomes invalid and it returns to the initial task priority specified at task definition.

Rev. 2.0, 03/01, page 51 of 282
RENESAS

3.45 Rotate Ready Queue (rot_rdq) [T/D/L]
Rotate Ready Queue (irot_rdq) [D/1]

C-Language Interface:
ER ercd = rot_rdqg (PRI tskpri);
ER ercd =irot_rdq (PRI tskpri);

Assembler Interface:

JSR @rot_rdq
JSR @irot_rdq
Parameters:
PRI tskpri R2 Task priority

Return Parameter:
ER ercd RO Error code
Error Codes:
E_OK H'0000 [K] Normal termination

E_PAR H'ffdf (-H'21) [p] Parameter error
(tskpri < 0, tskpri > Maximum task priority)

E_CTX H'ffbb (—H'45) [p] Context error (A task portion issued system
call irot_rdq while tasks were being
executed or a task-independent portion
issued system call rot_rdq)

[K] (A task portion issued system call irot_rdq
while the CPU was being locked)

Rev. 2.0, 03/01, page 52 of 282
RENESAS

Description:

These system calls rotate the ready queue of the task priority indicated by the parameter tskpri.
other words, the task at the head of the task priority ready queue is sent to the end, enabling the
second task in the ready queue to be executed.

The parameter tskpri specifies the task priority ranging from 0 to the Maximum task priority.

Specifying tskpri = TPRI_RUN (0) rotates the ready queue (the ready queue with the highest
priority) including the task being executed. However, while task dispatch is disabled, the task in
the execution (RUN) state may not have the highest priority.

If tskpri = TPRI_RUN (0) or the priority of the current task is specified, the current task is sent to
the end of the ready queue and it releases control.

If the specified ready queue is empty or if there are no tasks in the RUN state, these system cal
have no effect; and the task terminates normally.

Rev. 2.0, 03/01, page 53 of 282
RENESAS

3.4.6 Release Wait (rel_wai) [T/D/L]
C-Language Interface:
ER ercd = rel_wai (ID tskid);

Assembler Interface:

JSR @rel_wai
Parameters:
ID tskid R1

Return Parameter:
ER ercd RO

Error Codes:

E_OK H'0000

E_ID H'ffdd (—-H'23)
E_NOEXS H'ffcc (—H'34)
E_OBJ H'ffcl (—H'3f)
E_CTX H'ffob (—H'45)

Rev. 2.0, 03/01, page 54 of 282

(k]
[p]

[p]

[k]

[p]

Task ID

Error code

Normal termination

Invalid ID number
(tskid< 0, tskid > Number of tasks defined)

Undefined
(Task indicated by tskid does not exist)

An object status is invalid
(Task indicated by tskid is the current task
or is a task not in WAIT state)

(A task-independent portion issued system
call rel_wai)

RENESAS

Description:

If the task specified by tskid is in the WAIT state, the system call rel_wai releases the task from
the WAIT state. Note that the SUSPEND or shared-stack WAIT state is not considered as a WA
state here. The parameter tskid specifies the task ID to release from the WAIT state. To the tasl
specified by tskid, that is, the task that has been released from the WAIT state by the system ca
rel_wai, error code E_RLWAI is returned.

Note that the system call rel_wai cannot release a task from the SUSPEND state. To release the
task from the SUSPEND state, rsm_tsk must be issued. If this system call is issued to a task in’
WAIT-SUSPEND state, the task enters the SUSPEND state, which can then be released by the
system call rsm_tsk. In this case, error code E_RLWAI is returned.

Note that the system call rel_wai cannot release a task from the shared-stack WAIT state.

Rev. 2.0, 03/01, page 55 of 282
RENESAS

3.4.7 Get Task Identifier (get_tid) [T/D/L]
C-Language Interface:
ER ercd = get_tid (ID *p_tskid);

Assembler Interface:

JSR @get_tid
Parameters:
ID *p_tskid Start address of the area where the task ID

is to be returned (C-language interface)

Return Parameters:

ID *p_tskid Start address of the area where the task ID
was stored (C-language interface)

tskid R1 Task ID (Assembler interface)
ER ercd RO Error code
Error Codes:
E_OK H'0000 [K] Normal termination
E_CTX H'ffbb (—H'45) [p] Context error (A task-independent portion

issued system call get_tid)

Rev. 2.0, 03/01, page 56 of 282
RENESAS

Description:

The system call get_tid gets the current task ID.

Rev. 2.0, 03/01, page 57 of 282
RENESAS

3.4.8 Refer Task State (ref_tsk) [T/D/L/I]
C-Language Interface:
ER ercd = ref_tsk (T_RTSK *pk_rtsk, ID tskid);

Assembler Interface:

JSR @ref_tsk
Parameters:
ID tskid R1 Task ID
T RTSK *pk_rtsk ER2/R2 Start address of the packet where the

task state is to be returned
Return Parameters:

T_RTSK *pk_rtsk ER2/R2 Start address of the packet where the
task state is stored

ER ercd RO Error code

Rev. 2.0, 03/01, page 58 of 282
RENESAS

Packet Structure:
typedef struct t_rtsk {
VP exinf;
PRI tskpri;
UINT tskstat;
UINT tskwait;
ID wid,;
H wupcnt;
FP task;
PRI itskpri;
}T_RTSK;
Error Codes:
E_OK H'0000

E_PAR H'ffdf (—H'21)

E_ID H'ffdd (~H'23)

E_NOEXS Hffcc (—H'34)

0/0

+4/+2

+6/+4

+8/+6

+10/+8

4/2

2/2

2/2

2/2

2/2

+12/+10 2/2

+14/+12 4/2

+18/+14 2/2

(K]
[p]

[p]

[p]

RENESAS

Extended information
Current priority of the task
Task state

Wait cause

Wait object ID

Wakeup request count
Task start address

Priority at task initiation

Normal termination

Invalid address
(pk_rtsk is O or an odd address)

Invalid ID number

(tskid< 0, tskid > Number of tasks
defined)

(Zero can be specified for parameter
tskid only in the task-independent
portion)

Undefined
(Task indicated by tskid does not exist)

Rev. 2.0, 03/01, page 59 of 282

Description:

The system call ref_tsk reads the state of the task indicated by the parameter tskid and returns it
the area specified by the parameter pk_rtsk. Note that a 20-byte (advanced mode) or 16-byte
(normal mode) RAM area must be defined for the area specified by pk_rtsk.

The following information is returned to the area specified by pk_rtsk:

Note that data with an asterisk * is invalid when the task in the DORMANT state.

exinf Indicates the extended information specified at task definition.

tskpri Indicates the current priority of the task.

tskstat Indicates the current task state. The following values are returned.

tskstat Code Description

TTS_RUN H'0001 RUN state

TTS_RDY H'0002 READY state

TTS_WAI H'0004 WAIT state

TTS_SUS H'0008 SUSPEND state

TTS_WAS H'000c WAIT-SUSPEND state

TTS_DMT H'0010 DORMANT state

TTS_STK H'4000 Shared stack WAIT state

TTS_STS H'4008 Shared stack WAIT-SUSPEND state
tskwait* Indicates the causes for shifting the task to WAIT state.

Valid when TTS_WAI or TTS_WAS is returned to tskstat and the following values are

returned.

tskwait Code Description

TTW_SLP H'0001 Shifted to WAIT state by slp_tsk or tslp_tsk
TTW_FLG H'0010 Shifted to WAIT state by wai_flg or twai_flg
TTW_SEM H'0020 Shifted to WAIT state by wai_sem or twai_sem
TTW_MBX H'0040 Shifted to WAIT state by rcv_msg or trcv_msg
TTW_MPL H'1000 Shifted to WAIT state by get_blk or tget_blk
TTW_MPF H'2000 Shifted to WAIT state by get_blf or tget_blf

Rev. 2.0, 03/01, page 60 of 282

RENESAS

wid* Valid when TTS_WAI or TTS_WAS is returned to tskstat and the waiting
target object ID is returned

The current wakeup request count is returned
The task start address is returned.

The priority at task initiation (initial priority) is returned.

wupcnt*
task
itskpri

If tskid = TSK_SELF (0) is indicated, the current task will be specified; however, the system call
ref_tsk cannot return the current task ID. To acquire the current task ID, issue system call get_ti

Rev. 2.0, 03/01, page 61 of 282
RENESAS

3.4.9 Disable Dispatch (dis_dsp) [T/D]
C-Language Interface:
ER ercd = dis_dsp (void);
Assembler Interface:
JSR @dis_dsp
Parameters:
None
Return Parameter:
ER ercd RO Error code

Error Codes:

E_OK H'0000 [K] Normal termination

E_CTX H'ffbb (—H'45) [p] Context error
(A task-independent portion issued system
call dis_dsp)

[K] (A task portion issued system call dis_dsp
while the CPU was being locked)

Rev. 2.0, 03/01, page 62 of 282
RENESAS

Description:

The system call dis_dsp disables task dispatch during task portion execution. In other words, th
state of task portion execution changes from task execution to a state where task dispatch beco
disabled. To return to the task execution, system call ena_dsp must be issued.

The following describes the features when task dispatch is disabled.

1. Task dispatch (scheduling) is delayed until the system returns to the task-execution state.
Therefore, no task other than the current task can enter the RUN state.

2. Interrupts can be accepted.

3. System calls to shift a task to the WAIT state cannot be issued. If such system call is issued,
error code is returned.

If the task is terminated by system call ext_tsk when task dispatch is disabled during task portiol
execution, tasks will be dispatched again enabling the execution of other tasks.

The issue of system call unl_cpu while task dispatch is being disabled also enables task dispatc
and enables the execution of other tasks.

The task terminates normally when the system call dis_dsp is issued while the task dispatch is
disabled; however, this system call will not be queued.

Rev. 2.0, 03/01, page 63 of 282
RENESAS

3.4.10 Enable Dispatch (ena_dsp) [T/D]
C-Language Interface:
ER ercd = ena_dsp (void);
Assembler Interface:
JSR @ena_dsp
Parameters:
None
Return Parameter:
ER ercd RO Error code
Error Codes:
E_OK H'0000 [K] Normal termination

E_CTX H'ffbb (—H'45) [p] Context error
(A task-independent portion issued system
call ena_dsp)

[K] (A task portion issued system call ena_dsp
while the CPU was being locked)

Description:

The system call ena_dsp enables task dispatch. Issuing this system call while task dispatch is
disabled will enable task dispatch and tasks will be executed. Task dispatch (scheduling) is then
performed.

The task terminates normally when the system call ena_dsp is issued while tasks are being
executed; however, this system call will not be queued.

Rev. 2.0, 03/01, page 64 of 282
RENESAS

3.5 Task Synchronization

Task Synchronization System CallsThe system calls for task synchronization are listed in table
3.6.

Table 3.6 Task Synchronization System Calls

System State

System Call Description T/DIL/
sus_tsk Shifts task to SUSPEND state T/D/L
rsm_tsk Resumes the execution of a task in SUSPEND state T/D/L
slp_tsk Shifts current task to WAIT state T
tslp_tsk Shifts current task to WAIT state (with timeout function) T
wup_tsk Wakes up task T/D/L
iwup_tsk Wakes up task (dedicated to task-independent portion) D/l
can_wup Cancels wake-up task T/D/L

Task Synchronization SpecificationsThe task synchronization specifications are listed in table
3.7.

Table 3.7 Task Synchronization Specifications

Item Description
Maximum number of task wake-up request 255

count

Task suspend request No queuing

Rev. 2.0, 03/01, page 65 of 282
RENESAS

Task Waiting/Suspension and Releas&:able 3.8 lists the causes of task-execution
waiting/suspension and release.

Table 3.8 Causes of Task-Execution Waiting/Suspension and Release

Cause of Waiting/Suspension Time of Release
When the current task slp_tsk or tslp_tsk (1) When system call wup_tsk is issued
enters the WAIT state system call

(2) When the specified timeout period (tmout)
has passed (tslp_tsk)

(3) When system call rel_wai is issued

When forcibly sus_tsk When system call rsm_tsk is issued
suspended by another system call
task

Rev. 2.0, 03/01, page 66 of 282
RENESAS

3.5.1 Suspend Task (sus_tsk) [T/D/L]

C-Language Interface:

ER ercd = sus_tsk (ID tskid);

Assembler Interface:
JSR
Parameters:
ID
Return Parameter:
ER
Error Codes:
E_OK

E_ID

E_NOEXS

E_OBJ

E_CTX

E_QOVR

@sus_tsk

tskid

ercd

H'0000

H'ffdd (~H'23)

H'ffce (—H'34)

H'ffcl (=H'3f)

H'ffbb (—H'45)

H'ffb7 (—H'49)

R1

RO

(k]
[p]

[p]

[p]

(K]
[p]

(K]

Task ID

Error code

Normal termination

Invalid ID number
(tskid< 0, tskid > Number of tasks defined)

Undefined
(Task indicated by tskid does not exist)

Obiject status is incorrect
(The current task is specified)

(Task is in DORMANT state)

Context error (A task-independent portion
issued system call sus_tsk)

Queuing overflow
(The task is already in the SUSPEND state)

Rev. 2.0, 03/01, page 67 of 282

RENESAS

Description:

The system call sus_tsk suspends execution of the task specified by tskid and shifts the task to tl
SUSPEND state. The SUSPEND state is released by issuing system call rsm_tsk. If the task
specified by parameter tskid is already in the WAIT state, it enters the WAIT-SUSPEND state.

A task enters the SUSPEND state when system call sus_tsk is issued from another task. A task
cannot suspend itself. Suspend requests cannot be nested.

Rev. 2.0, 03/01, page 68 of 282
RENESAS

3.5.2 Resume Task (rsm_tsk) [T/D/L]
C-Language Interface:
ER ercd = rsm_tsk (ID tskid);

Assembler Interface:

JSR @rsm_tsk
Parameters:
ID tskid R1

Return Parameter:
ER ercd RO

Error Codes:

E_OK H'0000

E_ID H'ffdd (—-H'23)
E_NOEXS H'ffcc (-H'34)
E_OBJ H'ffcl (—H'3f)
E_CTX H'ffbb (—H'45)

(k]
[p]

[p]

[k]

[p]

Task ID

Error code

Normal termination

Invalid ID number
(tskid< 0, tskid > Number of tasks defined)

Undefined
(Task indicated by tskid does not exist)

Obiject status is incorrect
(Task indicated by tskid is not in SUSPEND
state)

Context error (A task-independent portion
issued system call rsm_tsk)

Rev. 2.0, 03/01, page 69 of 282

RENESAS

Description:

If the task specified by parameter tskid is in the SUSPEND state, the task that has been shifted t
the SUSPEND state by system call sus_tsk is released from the SUSPEND state, and enters the
READY state. In addition, a task in the WAIT-SUSPEND state is shifted to the WAIT state.

The suspend requests cannot be nested, so the task in the SUSPEND state is always released fi
the SUSPEND state by this system call.

A current task cannot cancel a suspend request for itself.

Rev. 2.0, 03/01, page 70 of 282
RENESAS

3.5.3 Sleep Task

Sleep Task with Timeout

C-Language Interface:

ER ercd = slp_tsk (void);

ER ercd = tslp_tsk (TMO tmout);

Assembler Interface:
JSR
JSR
Parameters:
TMO
Return Parameter:
ER
Error Codes:
E_OK

E_RSFN

E_PAR

E_CTX

E_TMOUT

@slp_tsk

@tslp_tsk

tmout

ercd

H'0000

H'ffec (—H'14)

H'ffdf (~H'21)

H'ffob (~H'45)

H'ffab (—H'55)

(K]
[p]

[p]

[p]

[k]

K]

(slp_tsk) [T]
(tslp_tsk) [T]

Timeout specification <tslp_tsk>

Error code

Normal termination

Unsupported function (Timer driver cannot
be used) (tslp_tsk)

Invalid time specification
(tmout< —2) (tslp_tsk)

Context error (A task-independent portion
issued system call slp_tsk)

(A task portion issued system call slp_tsk or
tslp_tsk while task dispatch was being
disabled or while the CPU was being
locked, or, in system call tslp_tsk, a type
other than TMO_POL (0) was specified for
parameter tmout.)

Timeout (tslp_tsk)

Rev. 2.0, 03/01, page 71 of 282

RENESAS

E_RLWAI H'ffaa (—H'56) [kK] WAIT state was forcibly cancelled
(rel_wai system call was issued in WAIT
state)

Description:

These system calls shift the current task from the RUN state to the WAIT state. A task can be
released from the WAIT state by issuing system call wup_tsk and will terminate normally.

However, if system call wup_tsk, a wake-up request, has already been issued to the current task,
the current task will not enter the WAIT state and will continue execution after decrementing the
wake-up request count (wupcnt) by one.

Install the timer driver in the system to use the tslp_tsk system call. For details on how to install
the timer driver, refer to section 6.2.1, Defining the Constant Definition Field.

The parameter tmout specified by system call tslp_tsk specifies the timeout period. If a positive
number is specified for parameter tmout, error code E_TMOUT is returned when tmout period ha
passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the task continues execution by decrementing the wake-up
count by one if wupcnt has a positive number. If wake-up count is O, error code E_TMOUT is
returned.

If tmout = TMO_FEVR (-1) is specified, the same operation as for system call slp_tsk will be
performed. In other words, timeout will not be monitored.

If system call sus_tsk is issued after a task has entered the WAIT state as a result of system call
tslp_tsk, the task stays in the SUSPEND state even though the WAIT state has been released by
system call wup_tsk, and the task will not resume execution until system call rsm_tsk is issued.

Rev. 2.0, 03/01, page 72 of 282
RENESAS

3.5.4
Wakeup Task (iwup_tsk) [D/1]

C-Language Interface:
ER ercd = wup_tsk (ID tskid);
ER ercd = iwup_tsk (ID tskid);

Assembler Interface:

JSR @wup_tsk
JSR @iwup_tsk
Parameters:
ID tskid R1
Return Parameter:
ER ercd RO
Error Codes:
E_OK H'0000 K]
E_ID H'ffdd (-H'23) [p]
E_NOEXS H'ffcc (-H'34) [p]
E_OBJ H'ffcl (-H'3f) [p]
(K]
E_CTX H'ffob (-H'45) [p]
(K]
E_QOVR H'ffb7 (-H'49) [K]

Wakeup Task (wup_tsk) [T/D/L]

Task ID

Error code

Normal termination

Invalid ID number
(tskid< 0, tskid > Number of tasks defined)

Undefined
(Task indicated by tskid does not exist)

Object status is incorrect (Current task is specified)
(Task is in DORMANT state)

Context error (A task portion issued system call
iwup_tsk while tasks were being executed or a task-
independent portion issued system call wup_tsk)

(A task portion issued system call iwup_tsk while
the CPU was being locked)

Queue overflowed
(wupcnt > H'ff)

Rev. 2.0, 03/01, page 73 of 282

RENESAS

Description:

These system calls release tasks from the WAIT state after the tasks were assigned to the WAIT
state by system call slp_tsk or tslp_tsk. A task cannot wake up itself. If the task to be released
from the WAIT state is not in the WAIT state (another task has not issued system call slp_tsk or
tslp_tsk for that task), this wake-up request is queued and becomes valid the next time system c:
slp_tsk or tslp_tsk is issued for the specified task. Up to 255 (H'ff) wake-up requests (wupcnt) cal

be queued.

Rev. 2.0, 03/01, page 74 of 282
RENESAS

3.55 Cancel Wakeup Task (can_wup) [T/D/L]

C-Language Interface:

ER ercd = can_wup (INT *p_wupcnt, ID tskid);

Assembler Interface:
JSR
Parameters:
ID

INT

Return Parameters:

INT

ER
Error Codes:
E OK

E_ID

E_NOEXS

E_OBJ

E_CTX

@can_wup

tskid R1

*p_wupcnt

*p_wupcnt

wupcnt R2

ercd RO

H'0000

H'ffdd (~H'23)

H'ffce (—H'34)

H'ffcl (—H'3f)

H'ffob (~H'45)

(k]
[p]

[p]

(K]
[p]

Task ID

Start address of the area where the number
of queued wake-up requests are to be
returned (C-language interface)

Start address of the area where the number
of queued wake-up requests was stored (C-
language interface)

The number of queued task wake-up
requests (Assembler interface)

Error code

Normal termination

Invalid ID number
(tskid < 0, tskid > Number of tasks defined)

Undefined
(Task indicated by tskid is not created)

Task is in DORMANT state

Context error (A task-independent portion
issued system call can_wup)

Rev. 2.0, 03/01, page 75 of 282

RENESAS

Description:

The system call can_wup releases all the queued task wake-up requests for the task specified by
tskid, and returns the wake-up request count as the return parameter. If the queued task wake-u
request is 0, O is returned.

A task that issued the system call can_wup can also be specified by setting tskid = TSK_SELF (C

System call can_wup can be used to check if a task operation has been completed within the
specified time or if the next task wake-up is being requested before system call slp_tsk for the
previous task wake-up request has been issued. If the wake-up count request is not 0, the task h
not been completed within the specified time. In that case, the user should take appropriate actio
to process the task.

Rev. 2.0, 03/01, page 76 of 282
RENESAS

3.6 Synchronization and Communication (Event Flag)
Event Flag System CallsEvent flags are controlled by the system calls listed in table 3.9.

Table 3.9 System Calls for Event Flag Control

System State

System Call Description T/DIL/
set_flg Sets event flag T/D/L
iset_flg Sets event flag (dedicated to task-independent portion) D/l
clr_flg Clears event flag T/D/L/N
wai_flg Waits for event flag setting T
pol_flg Polls and waits for event flag T/D/L/
twai_flg Waits for event flag (with timeout function) T

ref flg Refers event flag state T/D/LN

Event Flag Specifications:The event flag specifications are listed in table 3.10.

Table 3.10 Event Flag Specifications

ltem Description

Event flag pattern size 16-hit size

Maximum number of event flags that can be 255

defined

Event flag ID 1to 255

Event flag initial value 0 (fixed value)

Event flag wait queue The queue is managed on a first-in first-out
(FIFO) basis and multiple tasks can wait for an
event flag

Rev. 2.0, 03/01, page 77 of 282
RENESAS

Task-Execution Waiting and ReleaseTable 3.11 lists the causes of task-execution waiting and
release.

Table 3.11 Causes of Task-Execution Waiting and Release

Cause of Waiting Time of Release
When the current task wai_flg or twai_flg (1) When the event-flag wait condition is
enters the WAIT state system calll satisfied

(2) When the specified timeout period (tmout)
has passed (twai_flg)

(3) When system call rel_wai is issued

Rev. 2.0, 03/01, page 78 of 282
RENESAS

3.6.1 Set Event Flag

Set Event Flag

(set_flg) [T/DIL]
(iset_flg) [D/1]

C-Language Interface:
ER ercd = set_flg (ID flgid, UINT setptn);
ER ercd = iset_flg (ID flgid, UINT setptn);

Assembler Interface:

JSR @set _flg

JSR @iset_flg
Parameters:

ID flgid R1

UINT setptn R2
Return Parameter:

ER ercd RO
Error Codes:

E_OK H'0000 (K]

E_ID H'ffdd (-H'23) (p]

E_CTX H'ffbb (—H'45) [p]

[k]

Event flag ID

Bit pattern to set

Error code

Normal termination

Invalid ID number
(flgid < 0, flgid > Number of event flags
defined)

Context error (A task portion issued system
call iset_flg while tasks were being
executed or a task-independent portion
issued system call set_flg)

(A task portion issued system call iset_flg
while the CPU was being locked)

Rev. 2.0, 03/01, page 79 of 282

RENESAS

Description:

These system calls perform a logical OR between the event-flag bits specified by flgid and the bi
pattern specified by setptn, and set the result in the event-flag bits.

In these system calls, when a result of updating the event flag value satisfies the task wait
cancellation conditions of the event flags, all tasks that satisfy the wait conditions are released
from the wait state.

However, if a task is released from the WAIT state and TWF_CLR (clear) is specified for the task
the event flag bit pattern will be cleared, so later tasks will not be released from the WAIT state.

If all bits of setptn are zero, no operation is done to the event flag specified by flgid and the task
terminates normally.

Rev. 2.0, 03/01, page 80 of 282
RENESAS

3.6.2 Clear Event Flag (clIr_flg) [T/D/L/I]
C-Language Interface:
ER ercd = clr_flg (ID flgid, UINT setptn);

Assembler Interface:

JSR @clr_flg
Parameters:
ID flgid R1 Event flag ID
UINT clrptn R2 Bit pattern to clear

Return Parameter:

ER ercd RO Error code

Error Codes:

E_OK H'0000 [K] Normal termination

E_ID H'ffdd (—H'23) [p] Invalid ID number
(flgid < 0, flgid > Number of event flags
defined)

Rev. 2.0, 03/01, page 81 of 282
RENESAS

Description:

The system call clr_flg performs a logical AND between the event-flag bits specified by flgid (16
bits) and the bit pattern specified by clrptn and clears the event-flag bits whose corresponding bit

specified by clrptn are zero.

Even if the event flag value has been changed in this system call, it does not release the tasks
waiting for the event flag.

Rev. 2.0, 03/01, page 82 of 282
RENESAS

3.6.3 Wait for Eventflag (wai_flg) [T]
Wait for Eventflag (Polling) (pol_fig) [T/D/L/]
Wait for Eventflag with Timeout(twai_fig) [T]

C-Language Interface:
ER ercd =wai_flg (UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode);
ER ercd = pol_flg (UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode);

ER ercd = twai_flg (UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode, TMO tmout);

Assembler Interface:

JSR @wai_flg

JSR @pol_flg

JSR @twai_flg

Parameters:

UINT *p_flgptn Start address of the area where the bit
pattern at wait release is to be returned (C-
language interface)

ID flgid R1 Event flag ID

UINT waiptn R2 Wait bit pattern

UINT wfmode R3 Wait mode

TMO tmout ER4 Timeout specification <twai_flg>

Return Parameters:

UINT *p_flgptn Start address of the area where the bit
pattern at wait release was stored (C-
language interface)

flgptn R2 Bit pattern at wait release (Assembler
interface)
ER ercd RO Error code

Rev. 2.0, 03/01, page 83 of 282
RENESAS

Error Codes:
E OK

E_RSFN

E_PAR

E ID

E_CTX

E_RLWAI

E_TMOUT

H'0000

H'ffec (—H'14)

H'ffdf (~H'21)

H'ffdd (~H'23)

H'ffob (~H'45)

H'ffaa (~H'56)

H'ffab (~H'55)

Rev. 2.0, 03/01, page 84 of 282

(K]
[p]

(]

(]

[p]

[p]

[k]

[k]

(K]

Normal termination

Unsupported function (Timer driver and
timeout function cannot be used) (twai_flg)

Parameter error
(waiptn = 0, wfmode is illegal)

Invalid time specification (tmout —2)
(twai_flg)

Invalid ID number
(flgid < 0, flgid > Number of event flags
defined)

Context error (A task-independent portion
issued system call wai_flg or twai_flg)

(A task portion issued system call wai_flg
or twai_flg while task dispatch was being
disabled or while the CPU was being
locked, or, in system call twai_flg, a type
other than TMO_POL (0) was specified for
parameter tmout.)

WAIT state was forcibly cancelled
(rel_wai system call was issued in WAIT
state)

Polling failed (pol_flg)
Timeout (twai_flg)

RENESAS

Description:

A task that has issued one of these system calls waits until the event flags specified by the
parameter flgid have been set according to the waiting conditions indicated by the parameters
waiptn and wfmode.

The parameter wfmode can specify wait modes (table 3.12) in the following form.
wfmode:= (TWF_ANDW || TWF_ORW) [| TWF_CLR]

Table 3.12 Wait Modes (wfmode)

wfmode Code Description
TWF_ANDW H'0000 AND wait
TWF_ORW H'0002 OR wait
TWF_CLR H'0001 Clear specification

If TWF_ANDW is specified as wfmode, the task waits until all the bits specified by waiptn have
been set in the event flag specified by flgid. If TWF_ORW is specified as wfmode, the task waits
until any one of the bits specified by waitpn has been set in the specified event flag. If TWF_CLI
is specified, the event flag values (all bits) are cleared to 0 when the condition is satisfied and th
task is released from the WAIT state. If the system call returns an error code, the value of the
event flag will not be cleared. On the other hand, if TWF_CLR is not specified, the event flag
value will not be cleared even if the condition is satisfied.

If the above conditions are satisfied before a task issues system call wai_flg or twai_flg, the task
will terminate normally. If they are not satisfied, the task will be sent to the wait queue. Multiple
tasks can wait for an event in the event flag queue.

The task issuing the system call pol_flg terminates normally if the event flag specified by flgid is
set. If the event flag specified by flgid is not set, error code E_TMOUT will be returned.

System call twai_flg returns the value of the event flag to p_flgptn when the wait condition is
satisfied. If TWF_CLR is specified, the value before the flag was cleared is returned.

The parameter tmout specified by system call twai_flg specifies the timeout period. If a positive
number is specified for the parameter tmout, error code E_TMOUT is returned when the timeou
period has passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the task will not enter the WAIT state and will terminate
normally if the event flag specified by flgid is set, or will return error code E_TMOUT if the event
flag specified by flgid is not set. In other words, an operation the same as for the system call
pol_flg will be performed.

Rev. 2.0, 03/01, page 85 of 282
RENESAS

If tmout = TMO_FEVR (-1) is specified, timeout watch is not performed. This means the same
operation as for system call wai_flg will be performed.

If system call twai_flg is used, the timer driver must be installed in the system and (USE) must be
specified for the timeout function in the setup table. For details on installing the timer driver and
specifying the timeout function in the setup table, refer to section 6.2.1, Defining the Constant
Definition Field.

Rev. 2.0, 03/01, page 86 of 282
RENESAS

3.6.4 Refer Event Flag State (ref _flg) [T/D/L/]
C-Language Interface:
ER ercd =ref_flg (T_RFLG *pk_rflg, ID flgid);

Assembler Interface:

JSR @ref_flg
Parameters:
ID flgid R1 Event flag ID
T RFLG *pk_rflg ER2/R2 Start address of the packet where the event

flag state is to be returned

Return Parameters:

T_RFLG *pk_rflg ER2/R2 Start address of the packet where event
flag state is stored

ER ercd RO Error code
Packet Structure:
typedef struct t rflg{
VP exinf; 0/0 4/2 Extended information
BOOL_ID wtsk; +4/+2 2/2 Wait task ID
UINT flgptn; +6/+4 2/2 Event flag bit pattern

IT_RFLG;

Rev. 2.0, 03/01, page 87 of 282
RENESAS

Error Codes:

E_OK H'0000 [K] Normal termination
E_PAR H'ffdf (-H'21) [p] Invalid address
(pk_rflg is 0 or an odd address)
E_ID H'ffdd (—H'23) [p] Invalid ID number
(flgid < 0, flgid > Number of event flags
defined)
Description:

The system call ref_flg refers to the state of the event flag (16 bits) indicated by the parameter
flgid, and stores and returns extended information (exinf), a wait task ID (wtsk), and a current
event-flag bit pattern (flgptn) to the area specified by pk_rflg. Note that an 8-byte (advanced
mode) or 6-byte (normal mode) RAM area must be defined for the area specified by pk_rflg.

If there is no task waiting for the specified event flag, FALSE (0) is returned as a wait task ID.

If multiple tasks are waiting for the target event flag, the task ID at the head of the queue is
returned as the wait task ID.

Rev. 2.0, 03/01, page 88 of 282
RENESAS

3.7 Synchronization and Communication (Semaphore)
Semaphore System Cadt Semaphores are controlled by the system calls listed in table 3.13.

Table 3.13 System Calls for Semaphore Control

System State

System Call Description T/DIL/
sig_sem Returns semaphore resource T/D/L
isig_sem Returns semaphore resource (dedicated to task- D/l
independent portion)
wai_sem Waits on semaphore T
preg_sem Polls and requests semaphore resource T/D/L
twai_sem Waits on semaphore with timeout T
ref_sem Refers semaphore state T/D/L/N

Semaphore SpecificationsThe semaphore specifications are listed in table 3.14.

Table 3.14 Semaphore Specifications

Item Description

Maximum semaphore count 65535

Maximum number of semaphores that can be 255

defined

Semaphore ID 1to 255

Semaphore counter initial value 1 (fixed value)

Semaphore wait task queue The queue is managed on a first-in first-out
(FIFO) basis and multiple tasks can wait for a
semaphore

Rev. 2.0, 03/01, page 89 of 282
RENESAS

Task-Execution Waiting and ReleaseTable 3.15 lists the causes of task-execution waiting and
release.

Table 3.15 Causes of Task-Execution Waiting and Release

Cause of Waiting Time of Release
When the current task wai_sem or (1) When the resource managed by semaphore
enter the WAIT state twai_sem is acquired

system call

(2) When the specified timeout period (tmout)
has passed (twai_sem)

(3) When system call rel_wai is issued

Rev. 2.0, 03/01, page 90 of 282
RENESAS

3.7.1 Returns Semaphore Resource (sig_sem) [T/DI/L]
Returns Semaphore Resource (isig_sem) [D/I]

C-Language Interface:
ER ercd = sig_sem (ID semid);
ER ercd = isig_sem (ID semid);

Assembler Interface:

JSR @sig_sem

JSR @isig_sem
Parameters:

ID semid R1

Return Parameter:

ER ercd RO

Error Codes:

E_OK H'0000 K]
E_ID H'ffdd (~H'23) o]
E_CTX H'ffbb (~H'45) o]
(K]
E_QOVR H'ffb7 (~H'49) K]

Semaphore 1D

Error code

Normal termination

Invalid ID number
(semid< 0, semid > Number of semaphores
defined)

Context error (A task portion issued system
call isig_sem while tasks were being
executed or a task-independent portion
issued system call sig_sem)

(A task portion issued system call isig_sem
while the CPU was being locked)

Queuing overflow
(semcnt > H'ffff)

Rev. 2.0, 03/01, page 91 of 282

RENESAS

Description:

These system calls release the task at the head of a task wait queue from the WAIT state if there
a task waiting for the semaphore indicated by semid. If there are no tasks in a queue, the
semaphore count (semcnt) is incremented by one.

Rev. 2.0, 03/01, page 92 of 282
RENESAS

3.7.2 Wait on Semaphore (wai_sem) [T]
Poll and Request Semaphore (preg_sem) [T/D/L/]
Wait on Semaphore with Timeout (twai_sem) [T]

C-Language Interface:
ER ercd = wai_sem (ID semid);
ER ercd = preq_sem (ID semid);
ER ercd = twai_sem (ID semid, TMO tmout);

Assembler Interface:

JSR @wai_sem
JSR @preg_sem
JSR @twai_sem
Parameters:
ID semid R1 Semaphore ID
TMO tmout ER4 Timeout specification <twai_sem>

Return Parameter:

ER ercd RO Error code

Rev. 2.0, 03/01, page 93 of 282
RENESAS

Error Codes:
E OK

E_RSFN

E_PAR

E_ID

E_CTX

E_RLWAI

E_TMOUT

H'0000

H'ffec (—H'14)

H'ffdf (~H'21)

H'ffdd (—H'23)

H'ffbb (—H'45)

H'ffaa (—H'56)

H'ffab (—H'55)

Rev. 2.0, 03/01, page 94 of 282

(K]
[p]

[p]

[p]

[p]

[k]

[k]

k]
[k]

Normal termination

Unsupported function (Timer driver and
timeout function cannot be used)
(twai_sem)

Invalid time specification
(tmout< -2) (twai_sem)

Invalid ID number
(semid< 0, semid > Number of semaphores
defined)

Context error (A task portion issued system
call wai_sem or twai_sem)

(A task portion issued system call wai_sem
or twai_sem while task dispatch was being
disabled or while the CPU was being
locked, or, in system call twai_sem, a type
other than TMO_POL (0) was specified for
parameter tmout.)

WAIT state was forcibly cancelled
(rel_wai system call was issued in WAIT
state)

Polling failed (preq_sem)
Timeout (twai_sem)

RENESAS

Description:

These system calls decrement the count by one if the semaphore count specified by the param
semid is equal to or greater than 1, and the task issuing the system calls continues execution.

If the semaphore count specified by semid is 1 or more for system call wai_sem or twai_sem, tt
count value is decremented by 1 and the task issuing the system call wai_sem or twai_sem
terminates normally. If the semaphore count is 0 for system call wai_sem or twai_sem, the cour
value is not modified and the task issuing the system call wai_sem or twai_sem shifts to the WA
state.

If the semaphore count specified by semid is 1 or more for system call preq_sem, the semaphol
count value is decremented by 1 and the task issuing the system call preq_sem terminates
normally. If the semaphore count is O for system call preqg_sem, the semaphore count value is n
modified and an error code is returned.

The parameter tmout specified by system call twai_sem specifies the timeout period. If a positiv
number is specified for the parameter tmout, error code E_TMOUT is returned when tmout peric
has passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the task will not enter WAIT state and if the semaphore

count specified by semid is 1 or more, the count value is decremented by 1 and the task terming
normally. If the semaphore count is 0, the count value is not modified and error code E_TMOUT
is returned. In other words, the same operation as for the system call preq_sem will be performe

If tmout = TMO_FEVR (-1) is specified, timeout watch is not performed. In other words, the
same operation as for the system call wai_sem will be performed.

If system call twai_sem is used, the timer driver must be installed in the system and (USE) mus!
be specified for the timeout function in the setup table. For details on installing the timer driver
and specifying the timeout function in the setup table, refer to section 6.2.1, Defining the Consta
Definition Field.

Rev. 2.0, 03/01, page 95 of 282
RENESAS

3.7.3 Refer Semaphore State (ref_sem) [T/D/L/1]

C-Language Interface:

ER ercd = ref_sem (T_RSEM *pk_rsem, ID semid);

Assembler Interface:

JSR @ref_sem
Parameters:

ID semid R1

T _RSEM *pk_rsem ER2/R2

Return Parameters:

T _RSEM *pk_rsem ER2/R2

ER ercd RO
Packet Structure:

typedef struct t _rsem{

VP exinf; 0/0

BOOL_ID wisk; +4/+2 2/2

Semaphore 1D

Start address of the packet where the
semaphore state is to be returned

Start address of the packet where the
semaphore state is stored

Error code

4/2 Extended information

If there is a task waiting (wait task ID)

UINT semcnt; +6/+4 2/2 Current semaphore count value

IT_RSEM;

Rev. 2.0, 03/01, page 96 of 282

RENESAS

Error Codes:

E_OK H'0000 [K] Normal termination
E_PAR H'ffdf (-H'21) [p] Invalid address
(pk_rsem is 0 or an odd address)
E_ID H'ffdd (—H'23) [p] Invalid ID number
(semid< 0, semid > Number of semaphores
defined)
Description:

The ref_sem system call refers to the state of the semaphore indicated by the parameter semid
stores and returns extended information (exinf), wait task ID (wtsk), and current semaphore cou
(semcnt) to the area specified by pk_rsem. Note that an 8-byte (advanced mode) or a 6-byte
(normal mode) RAM area must be defined for the area specified by pk_rsem.

If there is no task waiting for the specified semaphore, FALSE (0) is returned as a wait task ID.
multiple tasks are waiting for the target semaphore, the task ID at the head of the queue is retur
as the wait task ID.

Rev. 2.0, 03/01, page 97 of 282
RENESAS

3.8 Synchronization and Communication (Mailbox)
Mailbox System Calls:Mailboxes are controlled by the system calls listed in table 3.16.

Table 3.16 System Calls for Mailbox Control

System State

System Call Description T/DIL/
snd_msg Sends message T/D/L
isnd_msg Sends message (dedicated to task-independent portion) D/l
rcv_msg Receives message from mailbox T
prcv_msg Polls and receives message T/D/L/
trcv_msg Receives message from mailbox with timeout T
ref_mbx Refers mailbox state T/D/LN

Mailbox Specifications: The mailbox specifications are listed in table 3.17.

Table 3.17 Mailbox Specifications

Item Description

Maximum number of mailboxes that can be 255

defined

Mailbox ID 1to 255

Message queue The queue is managed on a first-in first-out
basis (FIFO) and multiple tasks can wait for a
message

Message The first four bytes of a message are used by
the kernel

Before a message is sent, this area must be
cleared to zero
A message must be created in the RAM area

Rev. 2.0, 03/01, page 98 of 282
RENESAS

Task-Execution Waiting and ReleaseTable 3.18 lists the causes of task-execution waiting and
release.

Table 3.18 Causes of Task-Execution Waiting and Release

Cause of Waiting Time of Release
When the current task rcv_msg or (1) When a message is sent to the mailbox
enters the WAIT state trcv_msg

(2) When the specified timeout period (tmout)

system call
y has passed (trcv_msg)

(3) When system call rel_wai is issued

Rev. 2.0, 03/01, page 99 of 282
RENESAS

3.8.1 Send Message to Mailbox (snd_msg) [T/D/L]
Send Message to Mailbox (isnd_msg) [D/1]

C-Language Interface:
ER ercd = snd_msg (ID mbxid, T_MSG *pk_msg);
ER ercd = isnd_msg (ID mbxid, T_MSG *pk_msg);

Assembler Interface:

JSR @snd_msg
JSR @isnd_msg
Parameters:
ID mbxid R1 Mailbox ID
T _MSG *pk_msg ER2/R2 Start address of the message to send

Return Parameter:
ER ercd RO Error code
Packet Structure:

Note: Since the T_MSG structure depends on the user, packets are not defined in the
sample header file. Therefore, define them when necessary.

Error Codes:
E_OK H'0000 [K] Normal termination

E_PAR H'ffdf (-H'21) [p] Invalid address
(The message start address is 0 or an odd
address)

[K] Invalid message form
(The first four bytes of the message are not
0s)

E_ID H'ffdd (—H'23) [p] Invalid ID number
(mbxid < 0, mbxid > Number of mailboxes
defined)

Rev. 2.0, 03/01, page 100 of 282
RENESAS

E_CTX H'ffbb (—H'45) [p] Context error (A task portion issued system
call isnd_msg while tasks were being
executed or a task-independent portion
issued system call snd_msg)

[K] (A task portion issued system call isnd_msg
while the CPU was being locked)

Rev. 2.0, 03/01, page 101 of 282
RENESAS

Description:

These system calls send a message specified by pk_msg to the mailbox specified by mbxid. The
contents of the message are not copied to the mailbox; only the start address of the message (th
value of pk_msg) is passed at message reception. Note, therefore, that if a message is modified
after it has been sent by this system call, a task will not receive the correct message with the
system call rcv_msg, prcv_msg, or trcv_msg.

If there is a task waiting to receive a message in the mailbox, the task at the head of the wait que
receives the message and is released from the WAIT state. On the other hand, if there are no tas
waiting to receive message, the message is placed in the mailbox and sent to the message queu

The message area must be defined in a RAM area. Note that the user must control the message
size because the kernel does not control it. The user can use only the area following the first four
byte area managed by the kernel. Since the kernel uses the first four bytes of the message, this

four-byte area must initially be set to 0 and must not be changed even after the message transfe

pk_msg » 0

- Initial value 0
Kernel management area

+4
Area that can be used for
message by the user

Figure 3.2 Message Form

Rev. 2.0, 03/01, page 102 of 282
RENESAS

3.8.2 Receive Message from Mailbox (rcv_msg) [T]

(prev_msgq) [T/D/L/]
(trev_msq) [T]

Poll and Receive Message from Mailbox
Receive Message from Mailbox with Timeout

C-Language Interface:
ER ercd =rcv_msg (T_MSG **ppk_msg, ID mbxid);
ER ercd = prcv_msg (T_MSG **ppk_msg, ID mbxid);

ER ercd = trcv_msg (T_MSG **ppk_msg, ID mbxid, TMO tmout);

Assembler Interface:

JSR @rcv_msg

JSR @prcv_msg

JSR @trcv_msg

Parameters:

T_MSG **ppk_msg - Start address of the area where the start
address of the received message is to be
returned (C-language interface)

ID mbxid R1 Mailbox ID

TMO tmout ER4

Timeout specification <trcv_msg>
Return Parameters:

T _MSG **ppk_msg Start address of the area where the received

message was stored (C-language interface)

*pk_msg ER2/R2 Start address of the received message

(Assembler interface)

ER ercd RO Error code

Packet Structure:

Note: Since the T_MSG structure depends on the user, packets are not defined in the

sample header file. Therefore, define them when necessary.

Rev. 2.0, 03/01, page 103 of 282
RENESAS

Error Codes:
E OK

E_RSFN

E_PAR

E_CTX

E_RLWAI

E_TMOUT

H'0000

H'ffec (—H'14)

H'ffdf (~H'21)

H'ffdd (~H'23)

H'ffbb (-H'45)

H'ffaa (—H'56)

H'ffab (—H'55)

Rev. 2.0, 03/01, page 104 of 282

(K]
[p]

[p]

[p]

[p]

[k]

(k]

k]

Normal termination

Unsupported function (Timer driver and
timeout function cannot be used) (trcv_msg)

Invalid time specification
(tmout< —2) (trcv_msg)

Invalid ID number
(mbxid< 0,
mbxid > Number of mailboxes defined)

Context error (A task-independent portion
issued system call rcv_msg or trcv_msg)

(A task portion issued system call rcv_msg
or trcv_msg while task dispatch was being
disabled or while the CPU was being
locked, or, in system call trcv_msg, a type
other than TMO_POL (0) was specified for
parameter tmout.)

WAIT state was forcibly cancelled
(rel_wai system call was issued in WAIT
state)

Polling failed (prcv_msg)
Timeout (trcv_msg)

RENESAS

Description:

These system calls receive a message from the mailbox specified by the parameter mbxid. Afte
the start address of the received message is stored in the area specified by the parameter ppk_
task execution continues.

With system calls rcv_msg and trcv_msg, if a message exists in the mailbox specified by mbxid
the start address of the message is stored in the area specified by ppk_msg and the task termir
normally. If there are no messages in the mailbox, the task that issued the system call rcv_msg
trcv_msg is placed in the task wait queue to receive a message. The task wait queue is manage
a first-in first-out (FIFO) basis.

With system call prcv_msg, if a message exists in the mailbox specified by mbxid, the start
address of the message is stored in the area specified by ppk_msg and the task terminates
normally. If there are no messages in the mailbox, error code E_TMOUT is returned.

The parameter tmout specified by system call trcv_msg specifies the timeout period. If a positive
number is specified for the parameter tmout, error code E_TMOUT is returned when the timeou
period has passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the task will not enter the WAIT state, and if a message
exists in the mailbox specified by mbxid, the start address of the message is stored in the area
specified by ppk_msg and the task terminates normally. If there are no messages in the mailbo
error code E_TMOUT is returned. In other words, the same operation as for the system call
prcv_msg will be performed.

If tmout = TMO_FEVR (-1) is specified, timeout watch is not performed. In other words, the
same operation as for system call rcv_msg will be performed.

Note that a 4-byte RAM area is required for the area specified by ppk_msg.

Note: The user can use only the area following the first four-byte area managed by the kernel.
Since the kernel uses the first four bytes of the message, this four-byte area must not be
changed even after message transfer. If this area is rewritten before message is receive
after message has been sent, the system will not operate correctly.

If system call trcv_msg is used, the timer driver must be installed in the system and (USE) must
specified for the timeout function in the setup table. For details on installing the timer driver and
specifying the timeout function in the setup table, refer to section 6.2.1, Defining the Constant
Definition Field.

Rev. 2.0, 03/01, page 105 of 282
RENESAS

3.8.3 Refer Mailbox Status (ref_mbx) [T/D/L/]
C-Language Interface:
ER ercd =ref_mbx (T_RMBX *pk_rmbx, ID mbxid);

Assembler Interface:

JSR @ref_mbx
Parameters:
ID mbxid R1 Mailbox ID
T _RMBX *pk_rmbx ER2/R2 Start address of the packet where the

mailbox status is to be returned
Return Parameters:

T_RMBX *pk_rmbx ER2/R2 Start address of the packet where the
mailbox status is stored

ER ercd RO Error code
Packet Structure:
typedef struct t_rmbx{
VP exinf; 0/0 4/2 Extended information
BOOL_ID wtsk; +4/+2 2/2 Wait task ID

T_MSG *pk_msg; +6/+4 4/2 Start address of the message to receive
next

JT_RMBX;

Note: Since the T_MSG structure depends on the user, it is not defined in the sample
header file. Therefore, define them when necessary.

Rev. 2.0, 03/01, page 106 of 282
RENESAS

Error Codes:

E_OK H'0000 [K] Normal termination
E_PAR H'ffdf (-H'21) [p] Invalid address
(pk_rmbx is O or an odd address)
E_ID H'ffdd (—H'23) [p] Invalid ID number
(mbxid < 0, mbxid > Number of mailboxes
defined)
Description:

The ref_mbx system call refers to the status of the mailbox indicated by the parameter mbxid ar
stores and returns extended information (exinf), wait task ID (wtsk), and the start address of the
message to be received next (pk_msg). A 10-byte (advanced mode) or a 6-byte (normal mode)
RAM area is required for the area specified by pk_rmbx. If there are no tasks waiting to receive
message in the mailbox, FALSE (0) is returned as a wait task ID.

If multiple tasks are waiting for the target mailbox, the task ID at the head of the queue is return
as the wait task ID.

If there are no messages to receive next, NADR (1) is returned as a message start address.

Rev. 2.0, 03/01, page 107 of 282
RENESAS

3.9 Interrupt Management

Interrupt Management System Calls:Interrupts are controlled by the system calls listed in table
3.19.

Table 3.19 System Calls for Interrupt Management

System State

System Call Description T/DIL/
ret_int Returns from interrupt handler |
chg_ims Changes interrupt mask level T/
ref_ims Refers interrupt mask level state T/D/L/
loc_cpu Disables interrupt and dispatch T/D/L
unl_cpu Enables interrupt and dispatch T/D/L

Interrupt Control Mode and Interrupt Mask Level: The kernel can be used in four interrupt
control modes of the H8S series microcomputers.

The interrupt mask level of each interrupt control mode is shown in tables 3.20 to 3.23. For detail
on the interrupt control mode, CCR value, EXR value, or the interrupts that can be accepted, refe
to the hardware manual of the CPU.

Table 3.20 Interrupt Mask Level in Interrupt Control Mode 0

Interrupt Mask CCR EXR

Level (imask) | ul 12 11 10 Acceptable Interrupts
1 1 — — — — NMI

0 0 — — — — All interrupts

Note: — indicates O or 1.

Table 3.21 Interrupt Mask Level in Interrupt Control Mode 1

Interrupt Mask CCR EXR

Level (imask) | ul 12 11 10 Acceptable Interrupts

3 1 1 — — — NMI

2 1 0 — — — Interrupts with control level 1
1 0 1 — — — All interrupts

0 0 0 — — — All interrupts

Note: — indicates O or 1.

Rev. 2.0, 03/01, page 108 of 282
RENESAS

Table 3.22

Interrupt Mask Level in Interrupt Control Mode 2

Interrupt Mask EXR

Level (imask) 11 10 Acceptable Interrupts

7 — 1 NMI

6 — Interrupts with priority level 7

5 — 0 Interrupts with priority level 6
and 7

4 — 0 Interrupts with priority level 5 to
7

3 — 1 Interrupts with priority level 4 to
7

2 — 1 Interrupts with priority level 3 to
7

1 — 0 Interrupts with priority level 2 to
7

0 — 0 All interrupts

Note: — indicates O or 1.

RENESAS

Rev. 2.0, 03/01, page 109 of 282

Table 3.23 Interrupt Mask Level in Interrupt Control Mode 3

Interrupt Mask CCR EXR

Level (imask) | ul 12 11 10 Acceptable Interrupts

8 1 1 1 1 1 NMI

7 1 0 — — — Interrupts with control level 1

6 0 0 1 1 0 Interrupts with priority level 7
and control level 0 or 1

5 0 0 1 0 1 Interrupts with priority level 6
and 7 and control level 0 or 1

4 0 0 1 0 0 Interrupts with priority level 5 to
7 and control level 0 or 1

3 0 0 0 1 1 Interrupts with priority level 4 to
7 and control level 0 or 1

2 0 0 0 1 0 Interrupts with priority level 3 to
7 and control level 0 or 1

1 0 0 0 0 1 Interrupts with priority level 2 to
7 and control level 0 or 1

0 0 0 0 0 0 All interrupts

Note: — indicates O or 1.

Note: Ininterrupt control mode 3 with the kernel interrupt mask level set to 7, the kernel
interrupt with control level 1 cannot issue a system call because such an interrupt is
considered to have an kernel interrupt mask level higher than 7; that is, it is masked.

Rev. 2.0, 03/01, page 110 of 282
RENESAS

3.9.1 Return from Interrupt Handler (ret_int) [l]
C-Language Interface:
None (ret_int can be issued by using the extended function #pragma interrupt of C compile
Assembler Interface:
JMP @ret_int
Parameters:
None
Return Parameter:
None
Error Codes:

At normal termination: [K] Does not return to the task that issued this system call.

At abnormal termination: [p] If a task portion issues this system call while tasks are
being executed, control is passed to the system terminatior
routine.

[K] If a task portion issues this system call while the CPU is
being locked, control is passed to the system termination
routine.

Description:

The system call ret_int is used to return control from an interrupt handler. Even when a system
call is issued for an interrupt handler, dispatch does not occur. Task dispatch is delayed until the
system call ret_int has been issued to return control to the task from the interrupt handler.

Note: When issuing this system call, the contents of the stack pointer and registers must be th
same as when the interrupt handler was initiated. Registers to be used by interrupt hand
must be stored and restored by the user.

Rev. 2.0, 03/01, page 111 of 282
RENESAS

3.9.2 Change Interrupt Mask Level (chg_ims) [T/1]
C-Language Interface:
ER ercd = chg_ims (UINT imask);

Assembler Interface:

JSR @chg_ims
Parameter:
UINT imask R1 Interrupt mask value

Interrupt control mode 0: CR_IMSO0 to CR_IMS1 (H'0 to H'1)
Interrupt control mode 1: CR_IMSO to CR_IMS3 (H'0 to H'3)
Interrupt control mode 2: CR_IMSO0 to CR_IMS7 (H'0 to H'7)
Interrupt control mode 3: CR_IMSO0 to CR_IMS8 (H'0 to H'8)

Return Parameter:
ER ercd RO Error code
Error Codes:
E_OK H'0000 [K] Normal termination

E_PAR H'ffdf (-H'21) [p] Parameter error
(imask outside the range)

E_CTX H'ffob (—H'45) [K] Context error (A task portion issued system
call chg_ims while task dispatch was being
disabled or while the CPU was being
locked)

Rev. 2.0, 03/01, page 112 of 282
RENESAS

Description:

The system call chg_ims changes the current interrupt mask to the level specified by imask.
Specify CR_IMSn (n: 0 to 8) for imask according to the interrupt control mode.

For an interrupt mask, interrupts can be inhibited or enabled by directly setting values CCR and
EXR.

For details on interrupt mask value (imask) and the value of CCR or EXR, refer to tables 3.20,
3.21, 3.22, and 3.23.

If an interrupt is masked by this system call, the system makes a transition from the task portion
execution to task-independent portion execution. Therefore, a system call that moves the task t
the WAIT state or system calls dedicated to task portion cannot be issued.

To return execution from the task-independent portion to the task portion, the interrupt mask
specified by this system call must also be cancelled by this system call. If a task switch is
requested during the task-independent portion execution, task switch request is suspended unti
interrupt mask of the task is changed to CR_IMSO(H'0) by this system call (execution returns to
task portion to execute tasks).

Note: If the interrupt mask level is changed to the level exceeding the kernel interrupt mask le
defined in the setup table, do not issue system calls other than the chg_ims system call
which lowers the interrupt mask level equal to or less than the kernel interrupt mask leve
If such system calls are issued, the system may not operate correctly.

Rev. 2.0, 03/01, page 113 of 282
RENESAS

3.9.3 Refer Interrupt Mask Level State (ref_ims) [T/D/L/]

C-Language Interface:
ER ercd = ref_ims (UINT *p_imask);

Assembler Interface:

JSR @ref_ims
Parameters:
UINT *p_imask

Return Parameters:

UINT *p_imask

imask R1

ER ercd RO
Error Code:

E_OK H'0000

Rev. 2.0, 03/01, page 114 of 282

K]

Start address of the area where the interrupt
mask level is to be returned (C-language
interface)

Start address of the area where the interrupt
mask level was stored (C-language
interface)

Interrupt mask level (Assembler interface)

Error code

Normal termination

RENESAS

Description:

The system call ref_ims returns the current interrupt mask level.
The value range and contents that can be used as the interrupt mask level depend on the interr

control modes.

Rev. 2.0, 03/01, page 115 of 282
RENESAS

3.94 Lock CPU (loc_cpu) [T/D/L]
C-Language Interface:

ER ercd = loc_cpu (void);
Assembler Interface:

JSR @loc_cpu
Parameters:

None
Return Parameter:

ER ercd RO
Error Codes:

E_OK H'0000

E_CTX H'ffbb (—H'45)

Rev. 2.0, 03/01, page 116 of 282

Error code

[K] Normal termination

[p] Context error
(A task-independent portion issued system
call loc_cpu)

RENESAS

Description:

The system call loc_cpu locks the CPU and inhibits interrupts and task dispatches. To unlock th
CPU and to execute other tasks, the system call unl_cpu must be issued.

The following indicates the characteristics of the while the CPU is being locked.

1. Since tasks cannot be scheduled while the CPU is being locked, tasks other than the curren
task cannot enter the RUN state. Tasks are scheduled again after the CPU has been unlock

2. While the CPU is being locked, interrupts, having a level equal to or below the kernel interru
mask level defined in the setup table, are masked. Interrupts with levels equal to or lower the
this level cannot be accepted.

3. System calls that shifts a task to WAIT state cannot be issued.

Issuing the system call dis_dsp disables task dispatch, and issuing system call loc_cpu while ta
dispatch is disabled locks the CPU. The system can make a transition from the dispatch-disable
state to the CPU-locked state. However, system cannot make a transition from the CPU-locked
state to the dispatch-disabled state. If system call ena_dsp is issued to enable task dispatch wh
the CPU is being locked, error code E_CTX is returned. If the system call ext_tsk is issued to
terminate the task that has been monopolizing the CPU, other tasks will be executed again.

If the system call loc_cpu is issued while the CPU is being locked, an error will not occur. In this
case, queuing will not be performed.

Table 3.24 shows system transition. In this table, the numbers in each system call column show
the state number to shift to. For example, if the system call dis_dsp is issued at state number 1
(task-execution state), the task enters state number 2. E_CTX is an error code, which is returne
as a result of issuing the corresponding system call.

Rev. 2.0, 03/01, page 117 of 282
RENESAS

Table 3.24 State Transition by Issuing dis_dsp, ena_dsp, loc_cpu, and unl_cpu

State

Number System State

Current State

System Call to Issue

Interrupt

Dispatch dis_dsp

ena_dsp

loc_cpu

unl_cpu

1 Task-execution Enabled Enabled Shiftsto 2 Shiftsto 1 Shiftsto 3 Shiftsto 1
state
(TSS_TSK)

2 Dispatch- Enabled Disabled Shiftsto 2 Shiftsto 1 Shiftsto 3 Shiftsto 1
disabled state
(TSS_DDSP)

3 CPU locked- Disabled Disabled Ifissued, Ifissued, Shiftsto3 Shiftsto 1
state E_CTXis E_CTXis
(TSS_LOC) returned returned

Notes: 1. The interrupt mask level used while the CPU is being locked is the kernel interrupt
mask level defined in the setup table. Therefore, interrupts with a level higher than the
kernel interrupt mask level can be accepted while the CPU is being locked.

. When task dispatch is disabled or the CPU is locked, do not change the interrupt mask

level by directly changing the register value; otherwise normal system operation canno

be guaranteed.

Rev. 2.0, 03/01, page 118 of 282

RENESAS

3.95 Unlock CPU (unl_cpu) [T/D/L]
C-Language Interface:

ER ercd = unl_cpu (void);
Assembler Interface:

JSR @unl_cpu
Parameters:

None
Return Parameter:

ER ercd RO
Error Codes:

E_OK H'0000

E_CTX H'ffbb (—H'45)

Error code

[K] Normal termination

[p] Context error
(A task-independent portion issued system
call unl_cpu)

Rev. 2.0, 03/01, page 119 of 282

RENESAS

Description:

The system call unl_cpu permits interrupts and task dispatches; it unlocks the CPU, which was
locked by system call loc_cpu, to execute other tasks. Then task dispatch (scheduling) is
performed.

The system call unl_cpu is usually used to unlock the CPU to execute other tasks; however, the
same process can be performed by issuing the system call while task dispatch is being disabled.

If the system call unl_cpu is issued while tasks are being executed, an error will not occur. In tha
case, queuing will not be performed.

Rev. 2.0, 03/01, page 120 of 282
RENESAS

3.10 Memory Pool Management (Fixed-Size Memory Pool)

Fixed-Size Memory Pool System Callgrixed-size memory pools are controlled by the system
calls listed in table 3.25.

Table 3.25 System Calls for Fixed-Size Memory Pool Control

System State

System Call Description T/DIL/
get_blf Gets fixed-size memory block T
pget_blf Polls and gets fixed-size memory block T/D/L/
tget_blf Gets fixed-size memory block with timeout function T
rel_blf Releases fixed-size memory block T/D/L
ref_mpf Refers fixed-size memory pool state T/D/LAN

Fixed-Size Memory Pool SpecificationsThe fixed-size memory pool specifications are listed in
table 3.26.

Table 3.26 Fixed-Size Memory Pool Specifications

ltem Description

Maximum number of fixed-size memory pools 255
that can be defined

Fixed-size memory pool ID 1 to 255 (including undefined memory pools)
Number of memory blocks 65535

Memory block size 2 to 65530

Memory block wait queue The queue is managed on a first-in first-out

(FIFO) basis and multiple tasks can wait for a
fixed-size memory block

Rev. 2.0, 03/01, page 121 of 282
RENESAS

Task-Execution Waiting and ReleaseTable 3.27 lists the causes of task-execution waiting and
release.

Table 3.27 Causes of Task-Execution Waiting and Release

Cause of Waiting Time of Release

When the current task get_blf or tget_blf (1) When a memory block is acquired

enters the WAIT state system call (2) When the specified timeout period (tmout)

has passed (tget_blf)
(3) When system call rel_wai is issued

Rev. 2.0, 03/01, page 122 of 282
RENESAS

3.10.1 Get Fixed-Size Memory Block (get_blf) [T]
Poll and Get Fixed-Size Memory Block (pget_blf) [T/D/LN]
Get Fixed-Size Memory Block with Timeout (tget_blIf) [T]

C-Language Interface:
ER ercd = get_blf (VP *p_blf, ID mpfid);
ER ercd = pget_blf (VP *p_blf, ID mpfid);
ER ercd = tget_blf (VP *p_blf, ID mpfid, TMO tmout);

Assembler Interface:

JSR @get_blf

JSR @pget_blf

JSR @tget_blf

Parameters:

VP *p_blf Start address of the area where the start
address of the memory block is to be
returned (C-language interface)

ID mpfid R1 Fixed-size memory pool ID

TMO tmout ER4 Timeout specification <tget_blf>

Return Parameters:

VP *p_blf Start address of the area where the start
address of the memory block was stored (C-
language interface)

blf ER2/R2 Memory block start address (Assembler
interface)
ER ercd RO Error code

Rev. 2.0, 03/01, page 123 of 282
RENESAS

Error Codes:
E OK

E_RSFN

E_PAR

E_NOEXS

E_CTX

E_RLWAI

E_TMOUT

H'0000

H'ffec (—H'14)

H'ffdf (~H'21)

H'ffdd (~H'23)

H'ffce (—H'34)

H'ffbb (—H'45)

H'ffaa (—H'56)

H'ffab (~H'55)

Rev. 2.0, 03/01, page 124 of 282

(K]
[p]

(]

[p]

[p]

(]
(k]

(K]

K]

Normal termination

Unsupported function (Timer driver and
timeout function cannot be used) (tget_blf)

Parameter error
(tmout< —2) (tget_blf)

Invalid ID number
(mpfid < 0, mpfid > Number of memory
pools defined)

Undefined
(Fixed-size memory pool indicated by
mpfid does not exist)

Context error (A task-independent portion
issued system call get_blf or tget_blf)

(A task portion issued system call get_blf or
tget_blf while task dispatch was being
disabled or while the CPU was being
locked, or, in system call tget_blf, a type
other than TMO_POL (0) was specified for
parameter tmout.)

WAIT state was forcibly cancelled
(rel_wai system call was issued in WAIT
state)

Polling failed (pget_blf)
Timeout (tget_blf)

RENESAS

Description:

These system calls get one fixed-size memory block from the fixed-size memory pool indicated
mpfid. After the start address of the acquired memory block is stored in the area specified by
p_blf, task execution continues.

With system call get_blf or tget_Dblf, if a memory block is available in the fixed-size memory pool
specified by mpfid, the start address of a memory block is stored in the area specified by p_blf
the task terminates normally. If there is a task already waiting for a memory block, or if no task i
waiting but there is no memory block available in the fixed-size memory pool, the task having
issued the system call get_blf or tget_blf is placed in the task wait queue until a memory block ¢
be acquired. The queue is managed on a first-in first-out (FIFO) basis.

With system call pget_blf, if a memory block is available in the memory pool specified by mpfid,
the start address of a memory block is stored in the area specified by p_blf and the task termina
normally. If a task is already waiting to get a memory block, or if no task is waiting but there is n
memory block available in the fixed-size memory pool, error code E_TMOUT is returned.

The parameter tmout of system call tget_blf specifies the timeout period. If a positive number is
specified for the parameter tmout, the error code E_TMOUT is returned when the timeout perioc
has passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the task will not enter the WAIT state, and if a memory
block is available in the fixed-size memory pool specified by mpfid, the start address of the
memory block is stored in the area specified by p_blf and the task terminates normally. If a task
already waiting to get a memory block, or if no task is waiting but there is no memory block
available in the fixed-size memory pool, error code E_TMOUT is returned. In other words, the
same operation as for the system call pget_blf will be performed.

If tmout = TMO_FEVR (-1) is specified, timeout watch is not performed. In other words, the
same operation as for the system call get_blf will be performed.

After the memory block has been acquired, the size of the fixed-size memory pool free space wi
decrease by the size calculated in the following expression:

Decrease in size = Block size specified at memory pool creation + 4 bytes

If system call tget_bilf is used, the timer driver must be installed in the system and (USE) must b
specified for the timeout function in the setup table. For details on installing the timer driver and
specifying the timeout function in the setup table, refer to section 6.2.1, Defining the Constant
Definition Field.

Rev. 2.0, 03/01, page 125 of 282
RENESAS

3.10.2 Release Fixed-Size Memory Block (rel_blf) [T/D/L]
C-Language Interface:
ER ercd = rel_blf (ID mpfid, VP blf);

Assembler Interface:

JSR @rel_blf
Parameters:
ID mpfid R1 Fixed-size memory pool ID
VP blf ER2/R2 Start address of memory block

Return Parameter:
ER ercd RO Error code

Error Codes:
E_OK H'0000 [K] Normal termination

E_PAR H'ffdf (-H'21) [p] Invalid address
(blf is 0 or an odd address)

E ID H'ffdd (—H'23) [p] Invalid ID number
(mpfid < 0, mpfid > Number of memory
pools defined)

E_NOEXS H'ffcc (—H'34) [p] Undefined
(Fixed-size memory pool indicated by
mpfid does not exist)

E_CTX H'ffbb (—H'45) [p] Context error (A task-independent portion
issued system call rel_blf)

EV_ILBLK H'ffle (-H'e2) [K] Invalid memory block
(blf is other than the memory pool area or
blf has already been returned)

Rev. 2.0, 03/01, page 126 of 282
RENESAS

Description:

The system call rel_blf returns the memory block start address indicated by blf to the fixed-size
memory pool indicated by mpfid.

The start address of the memory block acquired by the system call get_blf, pget_blf, or tget_blf
specified by parameter blf.

If there is a task waiting to get a memory block, the return address is passed to the task at the I
of the task wait queue, releasing it from WAIT state.

Rev. 2.0, 03/01, page 127 of 282
RENESAS

3.10.3 Refer Fixed-Size Memory Pool Status (ref_mpf) [T/D/L/1]

C-Language Interface:

ER ercd = ref_mpf (T_RMPF *pk_rmpf, ID mpfid);

Assembler Interface:

JSR @ref_mpf
Parameters:

ID mpfid R1

T_RMPF *pk_rmpf ER2/R2

Return Parameters:

T_RMPF *pk_rmpf ER2/R2

ER ercd RO

Rev. 2.0, 03/01, page 128 of 282

Fixed-size memory pool ID

Start address of the packet where the
fixed-size memory pool status is to be
returned

Start address of the packet where the
fixed-size memory pool status is stored

Error code

RENESAS

Packet Structure:
typedef struct t rmpf{
VP exinf; 0/0 4/2 Extended information

BOOL _ID wtsk; +4/+2 2/2 Waittask ID

INT frbent; +6/+4 2/2 Number of blocks of memory space
available
INT mpfent; +8/+6 2/2 Number of blocks of the memory pool
INT blfsz; +10/+8 2/2 Fixed-size memory block size (Number
of bytes)
}T_RMPF;
Error Codes:
E_OK H'0000 [K] Normal termination
E_PAR H'ffdf (-H'21) [p] Invalid address

(pk_rmpfis 0 or an odd address)

E_ID H'ffdd (-H'23) [p] Invalid ID number
(mpfid < 0, mpfid > Number of memory
pools defined)

E_NOEXS H'ffcc (—H'34) [p] Undefined
(Fixed-size memory pool indicated by
mpfid does not exist)

Rev. 2.0, 03/01, page 129 of 282
RENESAS

Description:

The system call ref_mpf refers to the status of the fixed-size memory pool indicated by mpfid and
stores and returns extended information (exinf), wait task ID (wtsk), number of blocks of memory
space available (frbcnt), number of blocks of memory pool (mpfcnt), and fixed-size memory block
size (blfsz) to the area specified by pk_rmpf. A 12-byte (advanced mode) or 10-byte (normal
mode) RAM area is required for the area specified by pk_rmpf. If there is no task waiting for the
specified memory pool cannot provide the memory pool immediately, FALSE (0) is returned as a
wait task ID.

If multiple tasks are waiting for the target memory pool, the task ID of the task at the head of the
wait queue is returned as the wait task ID.

Rev. 2.0, 03/01, page 130 of 282
RENESAS

3.11 Memory Pool Management (Variable-Size Memory Pool)

Variable-Size Memory Pool System CallsVariable-size memory pools are controlled by the
system calls listed in table 3.28.

Table 3.28 System Calls for Variable-Size Memory Pool Control

System State

System Call Description T/DIL/
get_blk Gets variable-size memory block T
pget_blk Polls and gets variable-size memory block T/D/L/
tget_blk Gets variable-size memory block with timeout T
rel_blk Returns variable-size memory block T/DIL
ref_mpl Refers variable-size memory pool status T/D/L/N

Variable-size Pool SpecificationsThe variable-size memory pool specifications are listed in
table 3.29.

Table 3.29 Variable-Size Memory Pool Specifications

ltem Description

Maximum number of variable-size memory 255

pools that can be defined

Variable-size memory pool ID 1to 255

Memory block wait queue The queue is managed on a first-in first-out

(FIFO) basis and multiple tasks can wait for
variable-size memory blocks

Rev. 2.0, 03/01, page 131 of 282
RENESAS

Task-Execution Waiting and ReleaseTable 3.30 lists the causes of task-execution waiting and
release.

Table 3.30 Causes of Task-Execution Waiting and Release

Cause of Waiting Time of Release

When the current task get_blk or tget_blk (1) When a memory block is acquired

enters the WAIT state system call (2) When the specified timeout period (tmout)

has passed (tget_blk)
(3) When system call rel_wai is issued

Fragmentation of Variable-Size Memory Pool:Repeated acquisition and return of memory

blocks from the variable-size memory pool causes fragmentation of the available memory area ir
the memory pool, thus resulting in a smaller maximum available contiguous memory area. When
there is a memory block that is not to be returned, the size of the maximum available contiguous
memory area will never be larger than a certain size because such a block behaves as a barrier.
However, the kernel cannot de-fragment memory area. To avoid this problem, get a memory bloc
that is not to be returned right after a memory pool is created, that is, before any memory block t

be returned is acquired.

Rev. 2.0, 03/01, page 132 of 282
RENESAS

3.11.1 Get Variable-Size Memory Block (get_blk) [T]
Poll and Get Variable-Size Memory Block (pget_blk) [T/D/L]
Get Variable-Size Memory Block with Timeout (tget_blk) [T]

C-Language Interface:
ER ercd = get_blk (VP *p_blk, ID mplid, UW blksz);
ER ercd = pget_blk (VP *p_blk, ID mplid, UW blksz);
ER ercd = tget_blk (VP *p_blk, ID mplid, UW blksz, TMO tmout);

Assembler Interface:

JSR @get_blk

JSR @pget_blk

JSR @tget_blk

Parameters:

VP *p_blk Start address of the area where the start
address of the memory block is to be
returned (C-language interface)

ID mplid R1 Variable-size memory pool ID

uw blksz ER2 Memory block size (Number of bytes)

TMO tmout ER4 Timeout specification <tget_blk>

Return Parameters:

VP *p_blk Start address of the area where the start
address of the memory block was stored (C-
language interface)

blk ER2/R2 Memory block start address (Assembler
interface)
ER ercd RO Error code

Rev. 2.0, 03/01, page 133 of 282
RENESAS

Error Codes:
E OK

E_RSFN

E_PAR

E_ID

E_NOEXS

E_CTX

E_RLWAI

E_TMOUT

H'0000

H'ffec (—H'14)

H'ffdf (~H'21)

H'ffdd (—H'23)

Hiffce (—H'34)

H'ffbb (—H'45)

H'ffaa (—H'56)

H'ffab (~H'55)

Rev. 2.0, 03/01, page 134 of 282

(K]
[p]

(]

[p]

(]

[p]

[k]

(K]

K]

Normal termination

Unsupported function (Timer driver and
timeout function cannot be used) (tget_blk)

Parameter error

(blksz is 0 or and odd address,
mplsz < blksz)

(tmout< -2) (tget_blk)

Invalid ID number
(mplid< 0,
mplid > Number of memory pools defined)

Undefined
(Variable-size memory pool indicated by
mplid does not exist)

Context error (A task-independent portion
issued system call get_blk or tget_blk)

(A task portion issued system call get_blk
or tget_blk while task dispatch was being
disabled or while the CPU was being
locked, or, in system call tget_blk , a type
other than TMO_POL (0) was specified for
parameter tmout.)

WAIT state was forcibly cancelled
(rel_wai system call was issued in WAIT
state)

Polling failed (pget_blk)
Timeout (tget_blk)

RENESAS

Description:

These system calls get memory blocks if the variable-size memory pool specified by mplid has t
memory size specified by blksz. After the start address of the acquired memory block is stored il
the area specified by p_blk, task execution continues. Note that the size of the variable-size
memory pool specified by mplid must be equal to or more than (blksz + 16) bytes for the task to
get the memory block because additional 16 bytes are required for OS management purposes.

With system calls get_blk and tget_blk, if the variable-size memory pool specified by mplid has
the memory size specified by blksz, the start address of the memory block is stored in the area
specified by p_blk and the task terminates normally. Note that the size of the variable-size
memory pool specified by mplid must be equal to or more than (blksz + 16) bytes for the task to
get the memory block because additional 16 bytes are required for OS management purposes.
there is a task already waiting for a memory block, or if no task is waiting but the available
memory size is less than the size specified by blksz (which means that the available memory si:
is less than (blksz + 16) bytes), the task having issued the system call get_blk or tget_blk is plac
into the task queue until memory can be acquired. The queue is managed on a first-in first-out
(FIFO) basis.

With system call pget_blk, if the variable-size memory pool specified by mplid has the memory
size specified by blksz, the start address of the memory block is stored in the area specified by
p_blk and the task terminates normally. Note that the size of the variable-size memory pool
specified by mplid must be equal to or more than (blksz + 16) bytes for the task to get the memc
block because additional 16 bytes are required for OS management purposes. If there is a task
already waiting for a memory block, or if no task is waiting but the available memory size is less
than the size specified by blksz (which means that the available memory size is less than (blksz
16) bytes), error code E_TMOUT is returned.

The parameter tmout specified by system call tget_blk specifies this wait period. If a positive
number is specified for parameter tmout, error code E_TMOUT is returned when the timeout
period has passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the task will not enter the WAIT state, and if the variable-
size memory pool specified by mplid has the memory size specified by blksz, the start address «
the memory block is stored in the area specified by p_blk and the task terminates normally. Not
that the size of the variable-size memaory pool specified by mplid must be equal to or more than
(blksz + 16) bytes for the task to get the memory block because additional 16 bytes are requirec
for OS management purposes. If there is a task already waiting for a memory block, or if no tasl
waiting but the available memory size is less than the size specified by blksz (which means that
the available memory size is less than (blksz + 16) bytes), error code E_TMOUT is returned. In
other words, the same operation as for the system call pget_blk will be performed.

If tmout = TMO_FEVR (-1) is specified, timeout watch is not performed. In other words, the
same operation as for the system call get_blk will be performed.

Rev. 2.0, 03/01, page 135 of 282
RENESAS

After the memory block has been acquired, the size of the variable-size memory pool free space
will decrease by the size calculated in the following expression:

Decrease in size = blksz + 16 bytes

If system call tget_blk is used, the timer driver must be installed in the system and (USE) must be
specified for the timeout function in the setup table. For details on installing the timer driver and
specifying the timeout function in the setup table, refer to section 6.2.1, Defining the Constant
Definition Field.

Rev. 2.0, 03/01, page 136 of 282
RENESAS

3.11.2
C-Language Interface:
ER ercd = rel_blk (ID mplid, VP blk);

Assembler Interface:

JSR @rel_blk
Parameters:
ID mplid R1
VP blk ER2/R2
Return Parameter:
ER ercd RO
Error Codes:
E_OK H'0000 [K]
E_PAR H'ffdf (-H'21) [p]
E_ID H'ffdd (—H'23) [p]
E_NOEXS H'ffcc (—H'34) [p]
E CTX H'ffbb (—H'45) [p]
EV_ILBLK H'ffle (-H'e2) [K]

Release Variable-Size Memory Block (rel_blk) [T/D/L]

Variable-size memory pool ID

Start address of memory block

Error code

Normal termination

Invalid address
(blk is O or odd address)

Invalid ID number
(mplid £ 0, mplid > Number of memory
pools defined)

Undefined
(Variable-size memory pool indicated by
mplid does not exist)

Context error (A task-independent portion
issued system call rel_blk)

Invalid memory block
(blk is other than the memory pool area or
blk has already been returned)

Rev. 2.0, 03/01, page 137 of 282

RENESAS

Description:

The system call rel_blk returns the memory block start address specified by blk to the variable-
size memory pool specified by mplid.

If there is a task waiting to get a memory block from the variable-size memory pool indicated by
mplid, and if the task at the head of the queue can get a memory block due to a memory block
being returned to the memory pool, then that memory block start address is assigned to the task,
releasing the task from the WAIT state.

If multiple tasks are waiting to get a memory block from the variable-size memory pool indicated
by mplid, and if multiple tasks of the queue can get a memory block due to a memory block being
returned to the memory pool, then block start addresses are assigned to tasks in the queue starti
from the task at the head of the queue, releasing them from the WAIT state until the requested
memory size can no longer be acquired.

The parameter blk specifies the start address of the memory block acquired by the system call
get_blk, pget_blk, or tget_blk.

If blk is not the start address, or is the start address of the memory block that has already been
returned, EV_ILBLK is returned as an error code.

Rev. 2.0, 03/01, page 138 of 282
RENESAS

3.11.3 Refer Variable-Size Memory Pool Status (ref_mpl) [T/D/L/]
C-Language Interface:
ER ercd = ref_mpl (T_RMPL *pk_rmpl, ID mplid);

Assembler Interface:

JSR @ref_mpl
Parameters:
ID mplid R1 Variable-size memory pool ID
T _RMPL *pk_rmpl ER2/R2 Start address of the packet where the
variable-size memory pool status is to be
returned
Return Parameters:
T _RMPL *pk_rmpl ER2/R2 Start address of the packet where the

variable-size memory pool status is stored

ER ercd RO Error code

Rev. 2.0, 03/01, page 139 of 282
RENESAS

Packet Structure:

typedef

Error Codes:
E _OK

E_PAR

E_ID

E_NOEXS

struct t_rmpl{

VP exinf;

0/0

BOOL_ID wtsk; +4/+2

UW frsz;
UW maxsz;
UW mplsz;

IT_RMPL;

H'0000

H'ffdf (~-H'21)

H'ffdd (—H'23)

H'ffce (—H'34)

Rev. 2.0, 03/01, page 140 of 282

+6/+4

4/2 Extended information
2/2 Wait task ID

4/4 Total size of available memory area

+10/+8 4/4 Maximum memory area available

+14/+12 4/4 Memory pool size

(k]
(]

[p]

[p]

Normal termination

Invalid address
(pk_rmpl is 0 or on odd address)

Invalid ID number
(mplid £ 0, mplid > Number of memory
pools defined)

Undefined
(Variable-size memory pool indicated by
mplid does not exist)

RENESAS

Description:

The system call ref_mpl refers to the status of the memory pool indicated by mplid and stores al
returns extended information (exinf), wait task ID (wtsk), current free memory area total size
(frsz), maximum free memory space size (maxsz), and memory pool size (mplsz) to the area
specified by pk_rmpl.

An 18-byte (advanced mode) or 16-byte (normal mode) RAM area is required for the area
specified by pk_rmpl.

The current total size of memory means the total size of free memory areas scattered in the
memory pool (fragmented). The maximum free memory space means the maximum size of
consecutive free memory areas scattered in the memory pool (fragmented).

Note that the maximum free memory space contains kernel management area (16 bytes), whict
required each time a system call get_blk, pget_blk, or tget_blk is issued. In other words, it mean
the largest blksz that can be acquired immediately by issuing system call get_blk, pget_blk, or
tget_blk.

If there is no task waiting to get a memory block, FALSE (0) is returned as a wait task ID.

If multiple tasks are waiting to get a memory block-size from the variable-size memory pool, the
task ID of the task at the head of the queue is returned as the wait task ID.

If the specified memory pool cannot provide the memory block immediately, FALSE (0) is
returned as a maximum memory space.

Rev. 2.0, 03/01, page 141 of 282
RENESAS

3.12 Time Management

Time Management System CallsThe time management function controls the system clock and
cyclic handlers. Time is managed by the system calls listed in table 3.31 and cyclic handlers are
controlled by the system calls listed in table 3.32.

Table 3.31 System Calls Related to the System Clock Control

System State

System Call Description T/D/L/
set_tim Sets system clock T/D/LN
get_tim Gets system clock T/DIL/I

Table 3.32 System Calls for Cyclic Handler Control

System State

System Call Description T/D/L/
act_cyc Controls cyclic handler activity T/D/LN
ref_cyc Refers cyclic handler state T/D/LN

Time Management SpecificationsThe system clock specifications is listed in table 3.33 and the
cyclic handler specifications are listed in table 3.34.

Table 3.33 System Clock Specifications

ltem Description

Clock value Signed 48 bits

Clock initial value (the value at initialization) H'000000000000

Table 3.34 Cyclic Handler Specifications

ltem Description

Maximum number of cyclic handlers that can be 255

defined

Cyclic handler specification number 1to 255

Cyclic handler initial activation state TCY_ON (1) or TCY_OFF (0) (whichever
specified in the setup table)

Cyclic time interval H'1 to H'7FFFFFFF

Rev. 2.0, 03/01, page 142 of 282
RENESAS

Operating the Time Management:When using the time management function, the timer driver
must be created and installed into the system every time a hardware timer interrupt occurs.

The following are performed in the kernel timer interrupt processing.

1. System clock is modified (+1).
2. All cyclic handlers that reached the cycle time are initiated and executed.
3. Timeout processing is performed by issuing system calls with timeout function.

These processes from 1 to 3 are performed with the timer interrupt level masked. Among these
processes, 2 and 3 may overlap for multiple tasks and handlers. In that case, the processing tirr
becomes very long and results in the following defects.

» Delay of the response to interrupts
» Delay of system clocks

To avoid these problems, the following steps must be taken:

» Do not shorten the timer interrupt cycle excessively.
e The timer handler processing time must be as short as possible.

» The timer handler cycle and the timeout value specified by the timeout system call must be s
to a value as large as possible. For example, when the cycle time of a cyclic handler is 1 anc
the handler’s processing time takes more time than the timer cycle time, that cyclic handler
will be repeated infinitely, and the system will be hung.

Time Watch Method: The kernel manages the time watch for timeout system calls, cyclic
handlers, and time management by the system clock using the relative time from the time of
request. Therefore, the previous time watch request is not affected even if the system clock has
been modified by the system call set_tim.

Rev. 2.0, 03/01, page 143 of 282
RENESAS

3.12.1 Set System Clock (set_tim) [T/D/L/1]

C-Language Interface:
ER ercd = set_tim (SYSTIME *pk_tim);
Assembler Interface:
JSR @set_tim
Parameters:

ER2/R2

SYSTIME *pk_tim

Return Parameter:

ER ercd RO

Packet Structure:
systime {

typedef struct

H utime; 0 2

UH mtime; +2 2
UH ltime; +4 2
}SYSTIME;
Error Codes:
E_OK H'0000 [K]
E_RSFN H'ffec (-H'14) [p]
E_PAR H'ffdf (—H'21) [p]

Rev. 2.0, 03/01, page 144 of 282

Start address of the packet where the current
time data is indicated

Error code

Current time data (upper)
Current time data (middle)

Current time data (lower)

Normal termination

Unsupported function (Timer function cannot
be used)

Invalid address
(pk_tim is 0 or an odd address)

Invalid time specification
(Value specified by pk_tim is negative)

RENESAS

Description:

The system call set_tim changes the current system clock retained in the system to a value
specified by pk_tim. The number of bits allocated to the system clock is 48 (i.e., 16-bit utime, 16
bit mtime, and 16-bit Itime).

Note that the timeout period of a task and a timer handler (cyclic handler) that is being monitore
cannot be modified with this system call. Therefore, a timeout error cannot occur until a certain
amount of time has passed since the system call set_tim was issued.

Rev. 2.0, 03/01, page 145 of 282
RENESAS

3.12.2 Get System Clock (get_tim) [T/D/L/N]
C-Language Interface:
ER ercd = get_tim (SYSTIME *pk_tim);

Assembler Interface:

JSR @get_tim
Parameters:
SYSTIME *pk_tim ER2/R2 Start address of the packet where the current

time data is to be returned
Return Parameters:

SYSTIME *pk_tim ER2/R2 Start address of the packet where the current
time data is stored

ER ercd RO Error code
Packet Structure:
typedef struct systime {
H utime; 0 2 Current time data (upper)
UH mtime; +2 2 Current time data (middle)

UH Itime; +4 2 Current time data (lower)

}ISYSTIME;
Error Codes:
E_OK H'0000 [K] Normal termination
E_RSFN H'ffec (—H'14) [p] Unsupported function (Timer function cannot
be used)
E_PAR H'ffdf (-H'21) [p] Invalid address

(pk_tim is 0 or an odd address)

Rev. 2.0, 03/01, page 146 of 282
RENESAS

Description:

The system call get_tim reads the current system clock and returns it to the 6-byte RAM area
indicated by pk_tim. The number of bits allocated to the system clock is 48 (i.e., 16-bit utime, 16
bit mtime, and 16-bit Itime).

Rev. 2.0, 03/01, page 147 of 282
RENESAS

3.12.3 Activate Cyclic Handler (act_cyc) [T/D/L/]

C-Language Interface:

ER ercd = act_cyc (HNO cycno, UINT cycact);

Parameters:
HNO
UINT

Return Parameter:
ER

Error Codes:
E_OK

E_RSFN

E_PAR

E_NOEXS

cycno

cycact

ercd

H'0000

H'ffec (-H'14)

H'ffdf (-H'21)

Hiffce (—H'34)

Rev. 2.0, 03/01, page 148 of 282

R1

R2

RO

(k]
[p]

[p]

(]

Cyclic handler number

Activation state of the cyclic handler

Error code

Normal termination

Unsupported function (Timer function
cannot be used)

Parameter error (cycact is illegal)
cycno out of range:

cycnos< 0, cycno > Number of cyclic
handlers defined

Undefined
(Cyclic handler specified by cycno is
undefined)

RENESAS

Description:

The system call act_cyc changes the activation state of the cyclic handler indicated by the
parameter cycno to the state indicated by the parameter cycact. The parameter cycact specifies
handler activation state (table 3.35) in the following format.

cycact:= (TCY_OFF || TCY_ON) [| TCY_INI]

Table 3.35 Handler Activation State (cycact)

cycact Code Description

TCY_OFF H'0000 The cyclic handler is not initiated

TCY_ON H'0001 The cyclic handler is initiated

TCY_INI H'0002 The cyclic handler count is initialized (reset)

If TCY_OFF is specified for cycact, the cyclic handler activation state is turned off. Therefore, th
cyclic handler will not be initiated even after a specified (cycle) time has passed. However, even
when the activation state is off, a cycle time count is performed.

If TCY_ON is specified for cycact, the cyclic handler activation state is turned on. Since a cycle
time count is performed even when the activation state is off, caution is needed because the len
of time after the activation state has been turned on until the cyclic handler is initiated is
undefined. However, when cycact = (TCY_ON | TCY_INI) is specified, the cyclic handler is
initiated after the specified time has passed.

Rev. 2.0, 03/01, page 149 of 282
RENESAS

3.12.4

C-Language Interface:

Refer Cyclic Handler State (ref_cyc) [T/D/L/]

ER ercd =ref_cyc (T_RCYC *pk_rcyc, HNO cycno);

Assembler Interface:

JSR @ref_cyc
Parameters:

HNO cycno R1

T_RCYC *pk_rcyc ER2/R2

Return Parameters:

T_RCYC *pk_rcyc ER2/R2

ER ercd RO
Packet Structure:
typedef struct t_rcyc{

VP exinf;

CYCTIME Ifttim;

UINT cycact;

FP cychdr;

0/0

+4/+2

+8/+6

Cyclic handler specification number

Start address of the packet where the
cyclic handler state is to be returned

Start address of the packet where the
cyclic handler state is stored

Error code

4/2 Extended information

4/4 Remaining time until the cyclic
handler is initiated

2/2 Cyclic handler activation state

+10/+8 4/2 Cyclic handler address

CYCTIME cyctim; +14/+10 4/4 Cyclic timer interval

IT_RCYC;

Rev. 2.0, 03/01, page 150 of 282

RENESAS

Error Codes:
E OK

E_RSFN

E_PAR

E_NOEXS

H'0000

H'ffec(-H'14)

H'ffdf (-H'21)

Hiffce (—H'34)

(k]
[p]

[p]

[p]

RENESAS

Normal termination

Unsupported function (Timer driver
cannot be used)

Invalid address
(pk_rcyc is 0 or an odd address)

Parameter error
(cycno< 0, cycno > Number of cyclic
handlers defined)

Undefined
(Cyclic handler specified by cycno is
undefined)

Rev. 2.0, 03/01, page 151 of 282

Description:

The system call ref_cyc reads the cyclic handler state indicated by cycno and returns the extende
information (exinf), remaining time until the cyclic handler is initiated (Ifttim), cyclic handler
activation state (cycact), cyclic handler address (cychdr), and cyclic timer interval (cyctim) in the
area specified by the parameter pk_rcyc.

Note that an 18-byte (advanced mode) or a 14-byte (normal mode) RAM area must be defined fo
the area specified by the parameter pk_rcyc.

For the cyclic handler activation state (specified by cycact), only the information TCY_ON
(H'0001) and TCY_OFF (H'0000) is returned; the information of TCY_INI (H'0002) is not
returned.

Rev. 2.0, 03/01, page 152 of 282
RENESAS

3.13 System Management

3.13.1 get_ver (Get Version Information) [T/D/L/1]
C-Language Interface:
ER ercd = get_ver (T_VER *pk_ver);

Assembler Interface:

JSR @get_ver
Parameters:
T _VER *pk_ver ER2/R2 Start address of the packet where version

information is to be returned

Return Parameters:

T VER *pk_ver ER2/R2 Start address of the packet where version
information is stored

ER ercd RO Error code
Packet Structure:
typedef struct t ver{
UH maker; O 2 Manufacturer
UH id; +2 2 Identification number
UH spver; +4 2 Specification version
UH prver; +6 2 Product version

UHprno [4]; +8 8 Product management information

UH cpu; +16 2 CPU information
UH var; +18 2 Variation descriptor
}T_VER;

Rev. 2.0, 03/01, page 153 of 282
RENESAS

Error Codes:
E_OK H'0000 [K] Normal termination
E_PAR H'ffdf (-H'21) [p] Invalid address
(pk_ver is 0 or an odd address)
Description:

The system call get_ver reads information on the version of the kernel currently in use and return
it to the 20-byte RAM area indicated by pk_ver.

The following information is returned to the packet indicated by pk_ver.
(maker)
maker:; Manufacturer of this product

The HI2000/3 maker value is H'000a.

(id)
id: Number to identify the OS or VLSI type

The HI2000/3 id value is H'0005.

(spver)
Number to identify the TRON specification series
MITRON specifications: H'5
Version number of the TRON specifications which the product is based
Ver 3.02: H'302

The HI2000/3 spver value is H'5302.

(prver)
This indicates the version number.
Ver 1.0: H'0100
The HI2000/3 prver value is H'0100.

Rev. 2.0, 03/01, page 154 of 282
RENESAS

(prno)
This indicates product management information and the product number.

The HI2000/3 prno values are all H'0000.

(cpu)
Same value as that indicated by (maker)
Hitachi, Ltd.: H'0Oa
The processor executing the OS based on the WITRON specifications
H8S/2600: H'26
H8S/2000: H'20

The HI2000/3 cpu value is H'0a26 or H'0a20.

Rev. 2.0, 03/01, page 155 of 282
RENESAS

(var)
Variation descriptor var shows the following:
Kernel specification levels
MITRON level R specifications: B'0100
Reserved. Always read as B'0.
Single processor: B'0
Virtual memory support
Not supported: B'0
MMU support
Supported: B'0
Reserved. Always read as B'0.
File specification level
Not supported: B'000
Reserved. Always read as B'0000.

The HI2000/3 var value is H'4000.

Rev. 2.0, 03/01, page 156 of 282
RENESAS

Section 4 Debugging Extension

41 Overview

The HI2000/3 Debugging Extension (DX) (hereinafter referred to as HI2000/3 DX) is used by
installing it in the Hitachi Debugging Interface (HDI) and the HI2000/3 system.

4.1.1 Displaying and Manipulating Objects

Select a window from the HDI [View] menu to display and manipulate the HI2000/3 DX objects.
Table 4.1 lists the menu items added to the HDI [View] menu by the HI2000/3 DX.

Table 4.1 Menu ltems Added to the HDI [View] Menu

View Menu Status Bar

Task List Open Task List

Trace System Open System Trace
Event Flags Open Event Flag
Variable Memory Pool Open Variable Memory
Fixed Memory Pool Open Fixed Memory
Semaphores Open Semaphore
Mailboxes Open Mailbox

Cyclic Handler Open Cyclic Handler

Rev. 2.0, 03/01, page 157 of 282
RENESAS

Selecting a window in the HDI [View] menu displays the object state.

There are two types of windows: List-type windows, which are generally used, and hierarchical-
type windows. An example of a list-type window is shown in figure 4.1, and an example of a
hierarchical-type window is shown in figure 4.2.

| Task 1D |Tack Wame |[prioricy [seatus |

1 TA A, Dormant
4 TASRE 2 Dormant
3 Z655ause CHETO 3 Non Existent
4 Z655ause_CaTO 4 Non Existent
5 Z655ause CHETO 5 Non Existent

Figure 4.1 Example of the Display of an Object (List-Type Window)

Figure 4.1 shows the Tasks window which displays the Task ID, Task Name, Priority (current tas|
priority), and Status (current task state).

Entries
Entries

-Malch\x 1: 0
-MallBDx Z: 0
-Malch\x 3: 0 Entries
1
1

- MailEox 4: Entries

@H"O00FFFESZ

Figure 4.2 Example of the Display of an Object (Hierarchical-Type Window)

Figure 4.2 shows the Mailboxes window which displays all states of the mailbox (task ID at the
head of the wait queue or the number of messages). This window can also display the message
gueue state hierarchically or the message addresses.

A request to manipulate an object can be made from an object window through a dialog box, as
shown in figure 4.3. To open a dialog box, first open the pop-up menu by clicking the right button
of the mouse in a window and select the menu to open a dialog box. The HI2000/3 DX can only
make requests to the kernel through the debug daemon; only the kernel can manipulate objects.

Rev. 2.0, 03/01, page 158 of 282
RENESAS

Figure 4.3 shows an example of object manipulation display.

Priority:
| D" OK

Cancel

Help

Figure 4.3 Example of Requesting Object Manipulation

Figure 4.3 is called the Modify Task Status dialog box and can modify the task state. The Task |
or status can be modified by the drop down list of the Task ID and Status combo box.

4.1.2 Results of Object Manipulation
The results of object manipulation are shown as the object state in each window.
Each window is updated in the following cases:

» When [Update] is selected from the pop-up menu by clicking the right button of the mouse in
each window.
* When the user system stqpsa breakpoint or due to other causes).

Rev. 2.0, 03/01, page 159 of 282
RENESAS

4.1.3 Displaying the Register Values

Register values of a task can be displayed by selecting the [View Context] option in the task list
pop-up menu. Figure 4.4 shows an example of the register value display.

—Registers —Control Registers
ER[DDE‘E‘DDDD MACH 00000000
ER1 ooo0z2c4de MACL 00000000

ERZ gooooono
ER3 gooooono
ER4 gooooono —CCR

BRe O0PPEFEA I UTH U N 2V C
ERT 0OFFEFAG B R
—ExXE
- Re-Entry
T - - - - 2 1 0
BC D0ZC4B
r - or

Figure 4.4 [Task Context Registers] Window

Figure 4.4 shows the Task Context Registers window which can be used to edit the task register
values while the program is stopped.

Rev. 2.0, 03/01, page 160 of 282
RENESAS

4.1.4 Displaying the HI2000/3 DX System Call Trace Information

All trace information concerning the executed system calls can be displayed by acquiring the
information from the kernel trace buffer (figure 4.5). The latest information is displayed in the lint
cycle:-0.

Cycle Tvpe Taszk Time Code Address EXER CCR

-3 HTOZ (RTH) u] H'OOD00E12 E OR HTOO0O0ZcA -1111101 -0------

-2 HTOZ (RTH) 1 H'00000Z12 Task Initiation HTO0ZCAE -0000000 -0------

-1 HTO1 (3ve) 1 HTO00000213 snd msg (H'0004, H'OOFFFBS5E) HTO0ZCFC -1111000 -0---Z--
H'0Z (RTH) 1 H'ODOOODZ OF HTODZCPe -1111000

Figure 4.5 [System Trace] Window

Figure 4.5 shows the System Trace window which can display the system calls issued from task
and the return values as trace information.

4.1.5 Online Help

Context-sensitive help system is available for the standard Microatifidows’ operating

system. Refer to the online help for details on the HI2000/3 DX operation, windows, and dialog
boxes. To open the online help, either press the [F1] key when the HI2000/3 DX window is activ
or click the [Help] button in a dialog box.

Rev. 2.0, 03/01, page 161 of 282
RENESAS

4.2 List of Functions

421 HI12000/3 DX Menus
Table 4.2 shows the HI2000/3 DX menus.

Table 4.2 HI2000/3 DX Menus

Menu Bar Pull-down Menu Function
View Task List Opens [Tasks] window
Trace System Opens [System Trace] window
Event Flags Opens [Event Flags] window
Variable Memory Pool Opens [Variable Length Memory Pool] window
Fixed Memory Pool Opens [Fixed Length Memory Pool] window
Semaphores Opens [Semaphore] window
Mailboxes Opens [Mailboxes] window
Cyclic Handler Opens [Cyclic Handler] window

Rev. 2.0, 03/01, page 162 of 282
RENESAS

4.2.2 Windows and Dialog Boxes

Table 4.3 shows the list of windows and dialog boxes. Refer to the online help for details. To op
the online help, press the [F1] key when the HI2000/3 DX window is active or click the [Help]
button in the dialog box.

Table 4.3 HI2000/3 DX Windows and Dialog Boxes

Classification Window and Dialog Box Function

Task [Tasks] window Displays the state of all tasks

[Task Modification] dialog box Modifies task state

Event flag [Event Flag] window Displays the state of all event flags

[Event Flag Modification] dialog box Modifies event flag state

Semaphore [Semaphore] window Displays or modifies the state of all

semaphores

Mailbox [Mailboxes] window Displays the state of all mailboxes

[Mailbox Post message] dialog box Sends messages to mailboxes
Fixed-length [Fixed Length Memory Pool] window Displays the state of all fixed-length
memory pool memory pools
Variable-length [Variable Length Memory Pool] window Displays the state of all variable-length
memory pool memory pools
Timer [Timer] window Displays the system clock value

[Time Modification] dialog box Modifies the system clock value

Trace [System Trace] window Displays trace information

Task context [Task Context Local Variables] window Displays the task-context local variables

[Task Context Registers] window Displays the task-context register values

[Edit Value] dialog box

Modifies the task-context local variables

[Registers] dialog box

Modifies the task-context register values

Cyclic handler [Cyclic Handler] window

Displays the state of the cyclic handler

[Activate Cyclic] dialog box

Modifies the state of the cyclic handler
(active or non-active)

RENESAS

Rev. 2.0, 03/01, page 163 of 282

4.3 Notes

43.1 Setting up the E6000 Emulator
To update a window during program execution, set up the E6000 as follows:

1. Display the configuration dialog box by selecting [Configure Platform...] from the [Setup]
menu.

2. Select the [Enable read and write on the fly] check box in the configuration dialog box so that
memory can be accessed during program execution.

4.3.2 Displaying the HI2000/3 DX Window

When displaying the HI2000/3 DX window for the first time after HDI initiation, it may take
about one minute since information required to display the HI2000/3 DX window must be
acquired from the user system.

4.3.3 Realtime Operation of the User System

The HI2000/3 DX operates by referring to or updating the memory of the user system. If the
following functions are performed during the user system operation, the memory will be accessec
and as a result, the user system will not operate in realtime.

e When the HI2000/3 DX window has been opened or updated
* When the [OK] button has been clicked in the dialog box

Since the debug daemon operates cyclically in the user system, the throughput of the user systel
decreases slightly (less than when performing the above items) even when the HI2000/3 DX
functions are not used.

4.3.4 Displaying Correct Data

The HI2000/3 DX directly reads the memory contents of the user system when referring to the
object status. Therefore, correct information may not be displayed in the following cases:

» Display during program execution
When the memory is read while the kernel (program) is being executed
» Display before HI2000/3 initiation
When the HI2000/3 initiation is not completed before system initialization handler is initiated

Rev. 2.0, 03/01, page 164 of 282
RENESAS

4.3.5 Trace

A trace function to trace HI2000/3 system calls must be defined to display the HI2000/3 DX
[System Trace] window. For details on defining a trace function, refer to section 6.2.6, Defining
Trace Functions.

4.3.6 User System Memory

The memory size used at HI2000/3 DX shipment is shown in table 4.4. The kernel memory size
(ROM area) may increase at a maximum of 2.9 bytes by the system calls linked by the debug
daemon.

Table 4.4 Memory Size Used by the User System

Memory Type Used Memory Size
ROM area (only the debug daemon) Maximum of 500 bytes
RAM area Maximum of 200 bytes

4.3.7 Correspondence to the HDI Session

The HI2000/3 DX does not correspond to the HDI session. The HI2000/3 DX setting is not store
even when the session is stored.

4.3.8 Loading Load Modules

Keep the HI2000/3 DX windows open when loading load modules after using the HI2000/3 DX.

Rev. 2.0, 03/01, page 165 of 282
RENESAS

4.4 Debug Daemon
Installing the Debug Daemon:

The debug daemon must be installed in the system to use the HI2000/3 DX. The debug daemon
operates as a cyclic handler.

To install the debug daemon, specify -define=DX="Action" as an assembly option when
assembling the CPU initialization routim@@nzcpu.src) or the setup tablenfinzsup.src).

1. Modifying the Setup table
The cyclic time interval of the debug daemon can be obtained by the following formula. The
cyclic time interval must be changed according to the user system.
Debug daemon cycle = cyclic time interval x hardware timer cycle
The cyclic time interval of the debug daemon must be approximately 50 ms. For the provided
timer driver, the hardware timer cycle is 10 ms, and the cyclic time interval of the debug
daemon is set as 5 ms in the setup table.
For details on modifying the setup table, refer to section 6.2.5, Defining Cyclic Handlers.

2. Modifying the CPU Initialization Routine
If the user has created a new CPU initialization routine and is not using the provided one, the
debug daemon initial processing must be added to the new one. The following shows how to
modify the new CPU initialization routine.
O Import _HI_DEAMON_IHI
0 Add subroutine call instruction (jsr @_HI_DEAMON_INI) to the CPU initialization

routine before jumping to the kernel initial processing (jmp @_H_2S_INIT)

The sample setup tablenhnzsup.src) and the sample CPU initialization routimenfizcpu.src)
have already been modified.

Rev. 2.0, 03/01, page 166 of 282
RENESAS

4.5 Tutorial
This section explains the operation of the HI2000/3 DX using the sample program.

Before starting the tutorial program, a load module must be created. The provided sample files
have already been modified as shown in Installing the Debug Daemon in section 4.4. Therefore
load module shown in the sample program can be created by configuring a system by adding
DX=Action to the define option of the HEW workspace project. Refer to section 8, Load Module
Creation and create a load module.

The sample program assumes the use of the H8S/2655 advanced mode. Use the debugging
extension by replacing the H8S/2655 mode with one suitable for the user environment.

In the sample program, there are two tasks: TASKA and TASKB. TASKA sends a message to

mailbox 4 (issues system call snd_msg), receives a message from mailbox 3 (issues system ca
rcv_msg), and enters sleep state. TASKB receives a message from mailbox 4 (issues system c:
rcv_msg), sends a message to mailbox 3 (issues system call snd_msg), and enters sleep state.

Figure 4.6 shows the sample processing flow.

TASKA TASKB
Issues system call Issues system call
Mail 4 i

snd msg e Send___p| Mailbox4 | | Recelve gl 1oy msg

Issues system call) Issues system call
rcv_msg <.......B.‘?.9.e..'.‘.’.? Mailbox 3 S - send . snd_msg

Issues system call Issues system call
slp_tsk slp_tsk

Figure 4.6 Sample Program Processing

This example uses the HDI. For details on the HDI operation, refer to the Hitachi Debugging
Interface User's Manual or the E6000 Emulator User's Manual of the H8S series microcomputel
used.

Rev. 2.0, 03/01, page 167 of 282
RENESAS

451 Executing a Sample Program

1. Invoke the HDI by selecting the [HDI for E6000 H8S] icon. The HDI initial display as shown
in figure 4.7 appears.

i BO00H Emulator

H File Edit Wiew Bun Memory Setup indow Help |
0 pmehm || ||FEREs REDE. REE [s |7

zrgrnecsl BR300 88|

B |

-

arHelp. press F1 [MUK s

Figure 4.7 HDI Initial Display

Rev. 2.0, 03/01, page 168 of 282
RENESAS

2. Select [Load Program...] from the [File] menu and open the [Open] dialog box. Then load
application load modulki26a.abs under directory hi26a to the emulator read/write area.
Here, the program does not operate since the kernel is not initiated.

Laok n: [/ hiz6a E =1
|1 chafin
] hi?hia.ahs

File name: || Dpen I
Filez af type: ISysrnf or ELF/DWwWaRF Files [7.absg) j Cancel |
o

Figure 4.8 [Open] Dialog Box

Rev. 2.0, 03/01, page 169 of 282
RENESAS

3. Execute the program by selecting [Go Reset] from the [Run] menu. Pressing the STOP buttor
after a few seconds initializes the system and opens the HDI source window.

4. Open the [Tasks] window by selecting [Task List] from the [View] menu to check the task
state. The task is executed according to the task definition tablea63Basup.src . The
first two tasks are in the DORMANT state and the next three tasks are in the NON-EXISTENT
state.

m

1 TAREA Dormant
4 TASRE 2 Dormant
3 Z655ause CHETO 3 Non Existent
4 Z655ause_CaTO 4 Non Existent
5 Z655ause CHETO 5 Non Existent

Figure 4.9 [Tasks] Window

Rev. 2.0, 03/01, page 170 of 282
RENESAS

45.2 Starting a Task

1. Set a breakpoint before executing the program. Open the [Open] dialog box by selecting
[Source...] from the [View] menu and open fitssk.c . The source code window of the two
DORMANT tasks, TASKA and TASKB, appears. Set a breakpoint at the snd_msg line of
TASKA.

Line| address BF Label |Source -
11 0no0zZcae TASKA woid TASKA()

1z {

13 ER ercd; /% Error code

14 T_MiG **ppk_msg: /* Message return address

15

la 00o00zZechs while(l)

17 {

15 0000Zcha pk_mag.maghead=0;

19 0000Z2ccd pk_mag.magdatal=(UN) 0x12345675;

20 ooo0zZed:z pk_mag.magdataz= (U) 0x&87654321;

Z1 0000Z2cend pE_wmag.nsgdatad= (W) 0xABCDEFOO ;

Z2 A% Aend Message to mailbox 4
23 0000Zcee ® Break ercd = snd mag(4, (T MSG*)epk_mag):

24 /* Receiwve from mailbox 3

Z5 oooozdon ercd = rov_magi(vold **)eppk_msg, 3): b
Z6 oooozdl4 ercd = slp_tsk{): A% G0 to zleep

z7 }

28

z9 ext_tski(): J¥ Go to dormant

30 oooozdle }

3l

32 anoozdzo TASKE woid TASKE()

33 { -
] o

Figure 4.10 Source Code Display

Rev. 2.0, 03/01, page 171 of 282
RENESAS

2. Initiate TASKA (task ID1) by opening the [Modify Task Status] dialog box (figure 4.11). The
display does not change until the program is executed. Execute the program by selecting [Go

from the [Run] menu. The program stops when it reaches a breakpoint.

1 Task 1D: Friority:

z TAZEE [- |

3 Z655a |D1 J ID1 o

4 Z655a

5 Z655a Cancel
Status: —
Ciormant j Help
Dormant —

Figure 4.11 Invoking Task

3. Check the operation of step 2. Open the [System Trace] window by selecting [Trace System]

window (figure 4.12) from the [View] menu. The system trace information of up to four
entries before termination is displayed, where cyddas the latest trace information. Table
4.5 describes the trace contents.

Cycle Type Task Time Code Address EXE CCE
-3 H'04 (IDLE) HTO0O0O000000
-2 H'01 (3vc) u] H"00000Z12 dista tsk (HT0001, HTO0000; H'O0O0O0EcCA -1111101 -0------

-1 H'0Z (RTHN) O H'00000Z12Z E OK H'000ZCA -1111101 -0------
H'0Z (RTH) 1 '

Figure 4.12 [System Trace] Window

Table 4.5 Description of Trace Contents

Cycle Description

-3 System is in the idle state before TASKA (task ID1) starts.

-2 ista_tsk is called from the task-independent portion.

-1 The error code of the system call ista_tsk.

-0 Shows the return attribute for TASKA (task ID1), indicating that the task has started.

Rev. 2.0, 03/01, page 172 of 282
RENESAS

45.3 Mailboxes and Messages

1. Check mailbox state by selecting [Mailboxes] from the [View] menu and opening the

[Mailboxes] window (figure 4.13).

-
|
R
'

- @ MailBox 4:

@ MailBox Z: O
- @W# MailBox 3: 0 Entries
0

Entries

Entries

2. Send a message to mailbox 4. Open the [Open] dialog box by selecting [Source...] from the

Figure 4.13 [Mailboxes] Window

[View] menu and open fileask.c

. The source code window for the two DORMANT tasks,
TASKA and TASKB, is displayed. Step over the ercd=snd_msg(4,(T_MSG*)&pk_msg) line

of TASKA by selecting [Step Over] from the [Run] menu (figure 4.14).

= -hizba -EBDDD HES/ZE00 Emulator
File Edit %iew |Bun Memory Setup “Window Help
0o esstlPu g BEE R RE
—l
| sk e = ~ _[O[X]
m Feset Go Shift+F5 n
fa 15 oooo; Go To Cursor
= SetPC Tao Cursar
18 oooo: . head=0;
&Il 1e oopp; Bune g.EzgdzzakmmDx12345578;
Al 2o 0000: o Fi . negdataz= (UW) 0x67654521 ; J
& 21 0000; F'- .msgdatai= () 0xAECDEFOO ;
feaes atep Cwver IJ iF
ol || e oo0oo: Step Cut = snd msg(4, (T_M3G*)spk_msd),
i 24 Fa
o 25 oooo: EtEp”' F rov_msgiivoid *¥)&ppk _msg, -
4% 23 0oo0: IR Eoo - slp tak(): AT
| KN v

Figure 4.14 Step-Over Execution of Program

RENESAS

Rev. 2.0, 03/01, page 173 of 282

3. As aresult, one entry appears in mailbox 4.

- MailEox 1:

0 Entries

- MailBox 2: 0 Entries

:“ P MailEox 3: 0 Entries
el Wi 1Box 4: 1 i

Figure 4.15 [Mailboxes] Window (Confirmation of Result)

Click + with the right button of the mouse to expand this mailbox. The start address
H’00FFFB52 of a message is displayed.

3
- MailEox 1: 0 Entries
- MailBox 2: 0 Entries
:“ P MailEox 3: 0 Entries
e - MailBox 4: 1 Entries
Message 1 @HTO0FFFESZ

Figure 4.16 [Mailboxes] Window (Expanded Display)

4. To check program operation, open [System Trace] window by selecting [Trace System] from
the [View] menu (figure 4.17). In the window, trace information is displayed, indicating that a
message is sent (system call snd_msg is issued) at cycle —1, and a system call response (retl

value) is received at cycle 0.

am Trace
Cycle Tvpe Taszk Time Code Address EXER CCR
-3 H'0Z (RTH) u] H'OOD00E12 E OR H'O0ODZcA -1111101 -0------
-Z H'0Z (RTH) 1 H'00000Z1Z Task Initiation H'OOZCAE -0000000
-1 H'O01 (3ve) 1 H DDDDDZJ_S snd msg (H'0004, H'OOFFFESZ) H'O0OZ2CFC -1111000
1 H'00000Z E OK H'O00ZCFC -1111000

Figure 4.17 [System Trace] Window

Rev. 2.0, 03/01, page 174 of 282
RENESAS

45.4 Examples during System Operation

Sections 4.2.1 to 4.2.3 shows examples when the system was not operating. This section desc
examples during system operation.

1. To display [Tasks] and [Mailboxes] windows, open the [Tasks] window by selecting [Task
List] from the [View] menu. Similarly, open the [Mailboxes] window by selecting [Mailboxes]
from the [View] menu.

2. To execute the program, select [Go] from the [Run] menu.

3. To check task state, select the [Update] option from the [Task List] window pop-up menu.
TASKA (task ID1) is in the WAIT state waiting for a message from mailbox 3 (figure 4.18).

Task ID Task Name Priority Status

1 TASEA 1 Wait : Message ID 3
z TASKE z Dormant

3 2655ause_CaT0 3 MNon Existent

4 Z655ause CSTO 4 MNon Existent

Z655ause CETO 5 Hon Existent

Figure 4.18 [Tasks] Window after the [Update] Option is Selected

4. To check the mailbox state, select the [Update] option from the [Mailboxes] window pop-up
menu. TASKA (task ID1) is the wait task for mailbox 3.

-M&llBD}C 1: 0 Entries
-MallBDL‘{ 2: 0 Entries
T WailBox 3 Entries,
-MallBDL‘{ 4: 1 Entries

v~ Message 1: @H'O0OFFFBESZ

Task 1 walting

Figure 4.19 [Mailboxes] Window after the [Update] Option is Selected

Rev. 2.0, 03/01, page 175 of 282
RENESAS

5. To check system trace results, select [Trace System] from the [View] menu and open the

[System Trace] window. The display shows that TASKA (task ID1) called rcv_msg and the
system entered the idle state.

=Sy m [race !EI m
[eveie [rwwe |7task [rime [teae Jeadress [mxe ooz |
-3 H'O0l (8ve) 1 H'00000213 ond meg (H'0004, H'OOFFFESZ) H'002CFC -1111000 -O---2--
-z H'0Z (RTN) 1 H'00000214 E OR H'002CFe -1111000 -0O---2--
-1 H'0l (ave) 1 H'00000215 rev msg(HT0003) H'002D10 -1111000 -0O---2--

Figure 4.20 [System Trace] Window

6. Invoke TASKB (task ID2) and send a message to mailbox 3. Select TASKB (task ID2) in the
[Task List] window, and select [Edit Properties] from the pop-up menu. The [Modify Task
Status] dialog box appears (figure 4.21). Select [Start] from the [Status] box, and invoke the
task. TASKB (task ID2) will send a message to mailbox 3.

In the sample program, when TASKB (task ID2) sends a message to mailbox 3, TASKA (task
ID1) receives it, and both tasks enters sleep state.

Task 1D Friority:

D2 -] | D'z OK
Cancel

Status:

Dormant j Help

Dormant =

Figure 4.21 [Modify Task Status] Dialog Box

Rev. 2.0, 03/01, page 176 of 282
RENESAS

7. To check the results, select the [Update] option from the [Task List] window pop-up menu,
and update the window contents. The display shows that sending and receiving the messag
completed and that TASKA (task ID1) and TASKB (task ID2) entered sleep state
(figure 4.22).

Task ID Task Name Priority Btatus

1 TASEA 1 Wait : S8leep
2 TASKEE z Wait : 3leep
3 Z655ause_CaTO 3 Non Existent
4 Z655ause CHETO 4 Non Existent
5 Z655ause_C8TO 5 Non Existent

Figure 4.22 [Tasks] Window after the [Update] Option is Selected

In the [System Trace] window, system call slp_tsk issued to TASKA and TASKB and the
system entering the idling state is displayed (figure 4.23).

Cyole Type Taszk Time Code Address EXE CCR

-3 H'O01 (a3ve) 1 HT00000753 slp_tsk() HT00ZD18 -1111000 -0---2--
-2 H'OZ (RTH; Z HT00O00733 E_OR HTOOZDEZ -1111000 -0---z--
-1 H'O01 (avc) 2 HT00000733 slp tski) HT00z2DB&A -1111000 -0---2--

00000753
HTOOOOD

Figure 4.23 [System Trace] Window

Rev. 2.0, 03/01, page 177 of 282
RENESAS

Rev. 2.0, 03/01, page 178 of 282
RENESAS

Section 5 Creating Application Programs

5.1 Creating a User Program
User programs can be written in C language or an assembly language.
The following show the programs created.

e Tasks: programs divided into units that run independently and in parallel

» Handlers and Routines: programs that are invoked when interrupts occur (CPU initialization
routine, system termination routine, timer initialization routine, system initialization handler,
system idling routine)

Programs must be created according to the user system. Figure 5.1 shows an outline of kernel
initial processing.

Kernel initial processing

CPU initialization routine

B Setup information is incorrect

(when the parameter check function Yes System termination routine

is installed, the setup information

is checked)

No]
Executed < Timer initialization routine >—>Yes Timer initialization routine
ina is defined
kernel
interrupt No IA
mask
level
< System initialization handler Yes System initialization handler
is defined >
NolA |
< > Yes
Start task is defined
Y Interrupt
rmmm— No - Interrupt handler
- Undefined interupt handler
\ / \ - Timer interrupt handler
o] (when timer function is used)
System idling routine Task - Cyclic handler

(when timer function is used)

Figure 5.1 Kernel Initial Processing

Rev. 2.0, 03/01, page 179 of 282
RENESAS

5.2 Tasks

5.2.1 Creating Tasks

Figure 5.2 shows an example of a task. A task must be terminated by issuing system call ext_tsl
at the end of the task. If the operation returns from the task start function to the caller, normal
system operation cannot be guaranteed.

Programs written in C language can be used in normal mode or advanced mode according to the
CPU option or environment variable specification .

#include “hi2000.h”

void task(INT stacd)

INT stacd;

{

ID tskid; /* task ID */
ER ercd; /* error code */

ercd = wup_tsk(tskid); /* system calls that can be */
/* issued from the task portion */

ext_tsk(); /* system calls that can be */
/* issued from the task portion */

Figures 5.2 Task Example in C Language

When a task execution request (event) is issued, the kernel will control the execution of tasks
based on their state in the system and on the priority assigned to them and performs task
processing. A priority with a smaller value indicates a higher priority.

Rev. 2.0, 03/01, page 180 of 282
RENESAS

1. Resources Initialized at Task Initiation

When a task is initiated, resources related to the task are initialized, as shown in table 5.1.
System call sta_tsk or ista_tsk is used for task initiation.

Table 5.1 Resources Initialized at Task Initiation

Item Initialization Specification

Program counter (PC) The task start address specified at the task definition
Condition code register (CCR) Interrupt mask cancellation (0)

Extend register (EXR) Interrupt mask cancellation (0)

Stack pointer (ER7) Task stack pointer specified at the task definition

RO (written in assembly language)/ A random task initiation code (stacd) specified by the sta_tsk
first parameter (written in C system call

language)

General register (EO, ER1 to ER6) Undefined (the multiply and accumulate registers (MACH and
and multiply and accumulate MACL) are for the 2600 CPU)

register (MACH and MACL)

Task priority The initial task priority specified at the task definition

Task wakeup request (wupcnt) 0

Task suspend request Cannot be nested

2. Pre-Termination Processing

Resources acquired with the system calls must be returned before a task enters the
DORMANT state. Resources and related system calls are listed in table 5.2. System call
ext_tsk or ter_tsk is used to place a task in the DORMANT state.

Table 5.2 Resources and System Calls

System Calls to System Calls to

Resource Specification Acquire Resource Return Resource
Semaphore count Number of resources acquired wai_sem, preq_sem, sig_sem

by P instruction or twai_sem
Memory block Acquired from the fixed-size get_blf, pget_blf, or rel_blf

memory pool tget_blf

Acquired from the variable- get_blk, pget_blk, or rel_blk

size memory pool tget_blk

Rev. 2.0, 03/01, page 181 of 282
RENESAS

3. Monopolizing the CPU and Masking Interrupts during Task Execution
a. Monopolizing the CPU by issuing the loc_cpu system call

To monopolize the CPU during task execution, lock the CPU by using the loc_cpu system
call. Unlock the CPU by issuing the unl_cpu system call to execute tasks again. The CPU-
locked state is different from the task-execution state in the following respects.

System calls dedicated to task portion

System calls that shift a task into the WAIT state cannot be issued.
System calls dedicated to the task-independent portion

System calls dedicated to the task-independent portion cannot be issued.
Task switch delay

Even if task switching becomes necessary while the CPU is being locked, it will be
delayed until the CPU is unlocked by issuing a unl_cpu system call.

Interrupt masking

Interrupts having an interrupt level equal to or lower than the kernel interrupt mask
level, which is defined in the setup table, are masked.

b. Monopolizing the CPU by issuing the chg_ims system call

Masking interrupts during task execution shifts the execution from task portion to the task-
independent portion. Use system call chg_ims to change the interrupt mask level. If
interrupts are masked during task execution, task dispatch will not occur while interrupts
are masked and the task can monopolize the CPU. Since the system is placed in the task
independent portion while interrupts are being masked during task execution, it is different
from the task-execution state in the following respects.

System calls dedicated to the task portion

System calls dedicated to the task portion cannot be issued. If the kernel library has a
parameter check function, error code E_CTX is returned. If the kernel library does not
have a parameter check function, normal system operation cannot be guaranteed.

System calls dedicated to the task-independent portion

If system calls dedicated to the task-independent portion are issued, normal system
operation cannot be guaranteed.

Task switch delay

Even if task switching becomes necessary while interrupts are being masked, it will be
delayed until the interrupt mask level is changed to O by issuing the chg_ims system
call.

Interrupt masking

Do not issue a system call other than chg_ims when interrupts are masked at a level
higher than the kernel interrupt mask level defined in the setup table.

Rev. 2.0, 03/01, page 182 of 282

RENESAS

5.2.2 Defining Tasks

Define the task start address, initial priority, task stack size, task initial state, and extended
information at task definition. For details on task definition, refer to section 6.2.2, Defining Task.

For details on defining tasks, refer to section 6.2.2, Defining Task.
5.3 Interrupt Handlers

5.3.1 Interrupt Handler Description

When an interrupt occurs, control is passed to the interrupt handler without kernel intervention.
Therefore, the interrupt handler must store the register contents when an interrupt occurs, and
restore them when it has finished. The interrupt handler operates as follows.

1. The contents of the registers to be used by the interrupt handler are stored
a. The stack pointer value is saved

b. The stack pointer is moved to the interrupt-handler stack area (not necessary if the interr
handler does not use the stack)

c. The register contents are pushed onto the stack
2. The interrupt is processed
3. The contents of the registers used by the interrupt handler are restored
a. The register contents are restored from the stack
b. The stack pointer is restored (not necessary when the interrupt handler does not use the
stack)
4. Aret_int system call is issued (when the interrupt mask level of the interrupt handler is equa

to or lower than that of the kernel) or the RTE instruction is executed (when the interrupt ma
level of the interrupt handler is higher than that of the kernel)

An interrupt function can be written in C language by using interrupt function (#pragma interrupt
of the H8S, H8/300 series C compiler.

The #pragma interrupt directive declares the function to be used as an interrupt handler. In this
example, the inthdrxx function is declared as an interrupt handler. The stack switching and
interrupt function termination are specified.

The stack switching specifies the stack area to be used for interrupt handler processing. The
initialization stack pointer is specified by sp = <address>. In this case, a stack area dedicated ft
each interrupt level must be specified.

The interrupt function termination specification specifies how to return from the interrupt handlel
In the interrupt function termination specification system call ret_int or instruction RTE must be

executed at the end of the handler. If the interrupt handler has a level equal to or lower than the
kernel interrupt mask level, write sy = $ret_int to execute the jmp @ret_int instruction at the end

Rev. 2.0, 03/01, page 183 of 282
RENESAS

of the handler, which will call the ret_int system call. If the interrupt handler has a level higher
than the kernel interrupt mask level, nothing needs to be written.

For details, refer to the H8S, H8/300 Series C/C++ Compiler User's Manual. Programs written in
C language can be used in normal mode or advanced mode according to the CPU option or
environment variable specification.

Figure 5.3 shows an example of an interrupt handler.

#include "hi2000.h"

extern VH hi_intstkxx[];
static const VP P_intstkxx = (VP)&hi_intstkxx[60];

#pragma interrupt (inthdrxx(sp=P_intstkxx, sy=$ret_int))
void inthdrxx(void) /* The data type of the interrupt handler*/

/* function is void */
{
ID tskid; /* Task ID */
ER ercd; /* Error code */

UINT imask;

ercd = chg_ims(imask); /* System calls dedicated to task- */
[* independent portion */

ercd = iwup_tsk(tskid); /* System calls dedicated to task- */
[* independent portion */

Figure 5.3 Interrupt Handler Example in C Language

Rev. 2.0, 03/01, page 184 of 282
RENESAS

Table 5.3 lists the conditions for interrupt handler processing.

Table 5.3 Conditions for Interrupt Handler Processing

Item Description

Interrupt The interrupt handler is initiated when interrupts are masked at the specified
mask interrupt mask level.

Usable ERO to ER6, MACH, and MACL (MACH and MACL are for the 2600 CPU only)
registers can be used.

Must be saved in stacks at the interrupt handler initiation and later restored at
handler termination.

Stack pointer Set to the same value as that at initiation when control is returned to the point
where the interrupt handler is initiated.

Usable System calls dedicated to task-independent portion.
system calls No system call can be issued from the NMI interrupt handler or an interrupt
handler whose interrupt mask level is higher than that of the kernel.

Usable stack When using the stack, reserve a stack area for the interrupt handler at system
area configuration and switch the stack at interrupt handler initiation.
Interrupt handlers having the same interrupt level can share a stack area.

Termination Execution is terminated by the ret_int system call. Restore the stack value at
termination. Use the RTE instruction to terminate an NMI interrupt handler or an
interrupt handler whose interrupt mask level is higher than that of the kernel.

When creating interrupt handlers, keep in mind the following precautions.
1. Guarantee of interrupt mask levels

The kernel supports all four interrupt control modes.
The interrupt control bits of the CCR register and EXR register determine the interrupt mask
level.

In interrupt handlers, the processing for an interrupt mask level differs depending on the
interrupt control mode.

a. Interrupt control mode 0

In this mode, the kernel controls the interrupt mask level using only the I bit of the CCR
register. When the interrupt handler is initiated, the | bit of the CCR register is set to 1.
Do not clear the | bit in the interrupt handler; otherwise, the kernel system operation canr
be guaranteed.

Rev. 2.0, 03/01, page 185 of 282
RENESAS

b. Interrupt control mode 1

In this mode, the kernel controls the interrupt mask level using the | and Ul bits of the CCF
register. When the interrupt handler is initiated, the 1 and Ul bits of the CCR register are
setto 1.

For the interrupt handler with control level O, clear the Ul bit and change the interrupt
mask level so that interrupts with control level 1 can be accepted. Do not clear the | bit of
the CCR register for the interrupt handler with control level 1; otherwise, the kernel system
operation cannot be guaranteed. The interrupt mask levels cannot be changed in the
interrupt handler which has a control level of 1.

c. Interrupt control mode 2

In this mode, the kernel controls the interrupt mask level using the 10 to 12 bits of the EXR
register, where the | and Ul bits of the CCR register are ignored. When the interrupt
handler is initiated, the 10 to 12 bits of the EXR register are set to the mask level value of
the corresponding interrupt.

d. Interrupt control mode 3

In this mode, the kernel controls the interrupt mask level using the | and Ul bits of the CCF
register and the 10 to 12 bits of the EXR register. When the interrupt handler is initiated,
the | and Ul bits of the CCR register and 10 to 12 bits of the EXR register are setto 1. For
the interrupt handler with control level O, clear the | and Ul bits of the CCR register and
change the interrupt mask level so that interrupts with a higher priority can be accepted.
Do not change the EXR register in the interrupt handler; otherwise, the kernel system
operation cannot be guaranteed.

2. Kernel Interrupt Mask Level

The kernel includes a critical section, where it executes while masking interrupts to prevent
generating contradictory internal information. Any interrupt generated during the critical
section execution is not accepted until the kernel leaves the critical section. However, only
interrupts having an interrupt level higher than the kernel interrupt mask level are immediately
accepted even during the critical section execution.

Notes: 1. Interrupt handlers having an interrupt level higher than the kernel interrupt mask level
are not allowed to issue a system call. If any system call is issued, normal system
operation cannot be guaranteed. Execute the RTE instruction to return from an
interrupt handler having an interrupt level higher than the kernel interrupt mask level.

2. If the interrupt control mode is 3 and the kernel interrupt mask level is 7, system calls
cannot be issued from an interrupt handler whose control level is 1.

Rev. 2.0, 03/01, page 186 of 282
RENESAS

3. Notes on Interrupts
a. The user can create interrupt handlers with few restrictions, but if their execution time is
too long, system throughput may drop and system response time may be degraded.

b. The kernel interrupt mask level can be determined by defining it in the setup table. If the
interrupt handler has an interrupt level higher than the kernel interrupt mask level, or if it |
the case of an NMI handla,system call must not be issued. Do not issue a system call
from the interrupt handler having an interrupt level higher than the kernel interrupt mask
level; otherwise, normal system operation cannot be guaranteed.

c. Use the ret_int system call to return from an interrupt handler having an interrupt level
equal to or lower than the kernel interrupt mask level. Do not use a system call other tha
the ret_int system call; otherwise, normal system operation cannot be guaranteed.

Rev. 2.0, 03/01, page 187 of 282
RENESAS

5.3.2 Defining Interrupt Handlers

To define interrupt handlers, set the start address of an interrupt handler in the appropriate
interrupt vector table. Control can be passed to the interrupt handler without kernel intervention.
For details on the cause of interrupts, refer to the refer to the target MCU hardware manual.

Figure 5.4 shows the relationship between the vector table and the interrupt handler.

Vector number Vector table

0 Interrupt handler start address Interrupt handler for

1 Interrupt handler start address vector number n
Interrupt

n Interrupt handler start address processing

[ret_int or rte instruction]

Figure 5.4 Relationship between the Vector Table and the Interrupt Handler

For details on interrupt handler definition, refer to section 7, Creating the Interrupt Vector Table.
54 Undefined Interrupt Handlers

54.1 Creating Undefined Interrupt Handlers

An undefined interrupt handler is a program that is executed when an unexpected interrupt occut
in the system. The provided undefined interrupt handler program will call the kernel undefined
interrupt processing (JA@_H_ilint) as a subroutine and terminate the system. For details on
undefined interrupt handlers at system termination, refer to section 5.9, System Termination
Routine, and the CPU Hardware Manual.

An undefined interrupt handler can be created in the same way as an interrupt handler.

5.4.2 Defining Undefined Interrupt Handlers

For details on defining undefined interrupt handlers, refer to section 7, Creating the Interrupt
Vector Table.

The sample undefined interrupt handler is samplahzsmphnnnzli.src.

Rev. 2.0, 03/01, page 188 of 282
RENESAS

5.5 Cyclic Handlers

55.1 Creating Cyclic Handlers
A cyclic handler is a task-independent portion and initiated at a specific cycle time.
After a specified cycle time has passed, a cyclic handler is initiated by the timer interrupt handle

A cyclic handler must store the register contents when it is initiated, and restore them when it h:
finished. The cyclic handler operates as follows.

1. The contents of the registers to be used by the cyclic handler are stored
a. The register contents are pushed onto the stack (Use the timer interrupt handler stack)
2. The cyclic handler is processed
3. The contents of the registers used by the cyclic handler are restored
a. The register contents are restored from the stack
4. The RTS instruction is executed

A cyclic handler can be written in C language by using the extended function (#pragma asm) of
the H8S, H8/300 series C compiler. Programs written in C language can be used in normal mo
or advanced mode according to the CPU option or environment variable specification.

Specify the output of the assembly program using option code=asemode at compilation. To out|
an assembly program, it is recommended that the user create a cyclic handler C source prograt
a different file from the other C source program files.

Rev. 2.0, 03/01, page 189 of 282
RENESAS

Figure 5.5 shows an example of an cyclic handler.

#include “hi2000.h”
void cyc_hdr (void)
#pragma asm

stm.l (er0-erl),@-sp ;: Saves erO and erl in stack

bsr cychdr_main:8 ;: Calls function

ldm.I @sp+,(er0-erl) ;: Restores er0 and erl

rts ;- Executes the rts instruction
cychdr_main;

#pragma endasm

{

/* Cyclic handler processing */

Figure 5.5 Cyclic Handler Example for C Language

Rev. 2.0, 03/01, page 190 of 282
RENESAS

Table 5.4 lists the conditions for cyclic handler processing.

Table 5.4 Conditions for Cyclic Handler Processing

ltem

Description

Interrupt mask

Cyclic handlers are initiated when interrupts are masked
at the level of the timer interrupt mask level.

Usable registers

ERO to ER6, MACH, and MACL (MACH and MACL are
for the 2600 CPU only) can be used.

Must be saved in stacks at the cyclic handler initiation
and later restored at the handler termination.

Save and restore ERO and ER1 when writing the cyclic
handler in C language as shown in figure 5.5.

Stack pointer

Uses the timer interrupt handler stack.
Must be restored at the handler termination.

Usable system calls

System calls dedicated to task-independent portion.

Usable stack area

Add the stack size used by the cyclic handler to the
timer interrupt handler stack size during system
configuration.

Returning method

Processing must be terminated by the RTS instruction.
Restore the stack value at termination.

Rev. 2.0, 03/01, page 191 of 282
RENESAS

Cyclic handlers are executed while interrupts are being masked at the timer interrupt mask level.
If a specified cycle time has passed for multiple cyclic handlers, they will be executed while
interrupts are masked at the timer interrupt mask level. Therefore, the following may occur.

« Delay in the system clock

* The system response may be degraded for interrupts with a level equal to or lower than the
timer interrupt mask level

To avoid this,

« Do not specify an extremely short timer interrupt cycle
» Keep the processing of the cyclic handler as short as possible
» Keep the cycle of the cyclic handler as large as possible

If the cycle time of a cyclic handler is 1, and the handler processing time takes more time than th
timer cycle time, the cyclic handler will be repeated infinitely, and the system will be hung.

5.5.2 Defining Cyclic Handlers

The kernel controls the cycle time count and the execution of cyclic handlers according to the
information specified in the setup table. Cyclic handlers can be defined by defining them in the
setup table. To define a cyclic handler, use the example of the cyclic handler definition field of
the setup table.

For details on cyclic handler definition, refer to section 6.2.5, Defining Cyclic Handlers.

5.6 CPU Initialization Routine

5.6.1 Creating CPU Initialization Routines

The CPU initialization routine is a program to initialize the CPU before the kernel is initiated.
The CPU initialization routine operates as follows.

1. The stack pointer is specified

2. The CPU is initialized

3. The call of debug daemon initial processing (when the debugging extension (DX) is used)
4. Control jumps (jmp @_H_2S_INIT) to the kernel initial processing (_ H_2S _INIT)

The sample CPU initialization routine is written in assembly language.

Rev. 2.0, 03/01, page 192 of 282
RENESAS

A CPU initialization routine can be written in C language by using the sample programs (include
files directory name: 2600) of the H8S, H8/300 series C compiler. Programs written in C
language can be used in normal mode or advanced mode according to the CPU
option/environment variable specification.

Figure 5.6 shows an example of a CPU initialization routine.

#include "2655s.h" [* Specifies H8S/2655 include file */
void H_2S_INIT(void); [* Declares kernel initialization
processing */

#ifdef DX

void HI_DEAMON_INI(void); /* Declares daemon initialization
processing */

#endif

#pragma stacksize 0x012 /* Declares stack session */
#pragma entry H_2S_CPUINI /* Declares entry function */
void H_2S_CPUINI(void)

{
SYSCR.BIT.INTM = 3; [* Sets interrupt control mode */
MSTPCR.BIT.B13 =1; /* Clears module stop bit */
#ifdef DX
HI_DEAMON_INI(); [* Calls daemon initialization processing
*/
#endif
H_2S_INIT(); /* Jumps to kernel initialization
processing */
}

Figure 5.6 CPU Initialization Routine Example

Rev. 2.0, 03/01, page 193 of 282
RENESAS

Table 5.5 lists the conditions for CPU initialization routine processing.

Table 5.5 Conditions for CPU Initialization Routine Processing

Item Description

Interrupt mask After the CPU has been reset, all interrupts including the
NMI are masked.

Usable registers All.

Stack pointer The stack pointer must be specified at the start

instruction of this processing.

Example: > mov.| #xx:32,sp

If an NMI interrupt is generated before the stack pointer
has been initialized, normal operation cannot be

guaranteed.

Usable system calls Since the kernel is not yet initiated, no system calls can
be used.

Usable stack area Reserve the stack area if necessary at system

configuration and specify the stack at system initiation.

Returning method Processing must be terminated by jumping to the kernel
initiation processing.
jmp @_H_2S_INIT

5.6.2 Defining CPU Initialization Routines

To define a CPU initialization routine, specify the label H_2S_CPUINI as the start address of the
CPU initialization routine. The label must be declared with the export directive.

The CPU initialization routines are defined in the reset vector (vector numbers 0 and 1).

* Vector number 0: Power-on reset
e Vector number 1: Manual reset

Note: Some H8S series microcomputers may not have a manual reset function. In such a case
simply define a power-on reset. For details, refer to the target MCU hardware manual of
the H8S series microcomputer used.

For details on CPU initialization routine definition, refer to section 7, Creating the Interrupt
Vector Table.

The sample CPU initialization routine is sampie\nzsmphnnnzcpu.src.

Rev. 2.0, 03/01, page 194 of 282
RENESAS

5.7 Timer Initialization Routine

The timer initialization routine is necessary together with the timer interrupt handler when using
the time-management function. The timer driver consists of two modules: a timer initialization
routine and a timer interrupt handler. For details, refer to appendix C, Device Driver.

5.8 System Initialization Handlers

5.8.1 Creating System Initialization Handlers
The system initialization handler is a program called from the kernel initialization process.

The system initialization handler can initialize resources and hardware before starting the start
task.

The system initialization handler operates as follows.

1. The contents of the registers to be used by the system initialization handler is stored

a. The register contents are pushed onto the stack (Guarantee the register contents accord
to the rules on guaranteeing register contents in C language programs (functions).)

b. The OS stack is used to store the register contents.

2. The system initialization handler is processed
a. The number of resources managed by the semaphore is initialized

3. The contents of the registers used by the system initialization handler is restored
a. The register contents are restored from the stack

4. RTS instruction is executed

Rev. 2.0, 03/01, page 195 of 282
RENESAS

A system initialization handler can be written in C language by using the C compiler extended
function (#pragma asm) of the H8S, H8/300 series C compiler.

Programs written in C language can be used in normal mode or advanced mode according to the
CPU option/environment variable specification.

Specify the output of the assembly program using option code=asemode at compilation. To outp
an assembly program, it is recommended that the user creates a system initialization handler C
source program in a different file from the other C source program files.

Figure 5.7 shows an example of a system initialization handler.

#include “hi2000.h”
void HIPRG_SYSINI(void) ;: Label name HIPRG_SYSINI
{

[* System initialization handler processing*/

Figure 5.7 System Initialization Handler Written in C Language

Rev. 2.0, 03/01, page 196 of 282
RENESAS

Table 5.6 lists the conditions for system initialization handler processing.

Table 5.6 Conditions for System Initialization Handler Processing

Item Description
Interrupt mask Initiated in interrupt mask state (kernel interrupt mask
level)

Do not change the interrupt mask during system
initialization handler execution.

Usable registers The registers guaranteed in the C language programs
(functions) can be used.

Stack pointer Must be restored when control is returned to the kernel.

Usable system calls Except for ret_int, system calls that can be issued from
the task-independent portion can be used.

Usable stack area OS stack area is used. Add the stack size to be used by
the system initialization handler to the OS stack area.
The system initialization stack size must be calculated
by using the table to calculate the interrupt handler stack
area.

Returning method Processing must be terminated by the RTS instruction.
Restores the stack value at termination.

5.8.2 Defining the System Initialization Handler

The kernel executes the system initialization handler by using the value specified in label
_HIPRG_SYSINI as the start address of the system initialization handler.

To define the system initialization handler, specify label _HIPRG_SYSINI as the start address o
the system initialization routine. The label must be declared with the export directive.

To cancel the definition of a system initialization routine, label _HIPRG_SYSINI must be definec
as 0 by an equate directive and must be declared with the export directive.

The provided system initialization handlers are not defined; label _HIPRG_SYSINI is defined as
by an equate directive and is declared with the export directive.

The sample system initialization handler is sammplehzsmphnnnzuse.src.

Rev. 2.0, 03/01, page 197 of 282
RENESAS

5.9 System Termination Routines

5.9.1 Creating System Termination Routines

The system termination routine is a program that is initiated when a fatal (or critical) error is
generated during system execution. The provided system termination routines enter an infinite
loop while interrupts are masked at the kernel interrupt mask level.

When the system termination routine is initiated, error information is pushed onto the stack. Reft
to the error information in the stack to create a program for each error. There are two stack state
for the system termination routine.

Figure 5.8 shows the error information that is pushed onto the stack at an system termination.

Sp—» +0 +0 +0
vechno vecno vecno
+1 +1 +1
tskid tskid tskid
+2 +2 +2
CCR EXR

- ercd - +3 +3

Reserved
*2 +4 - - +4

PC *1 CCR
*2 - +5
+6 - PC *1 4
*2
+8
Stack state A Stack state B Stack state B
(Interrupt control (Interrupt control
modes 0 and 1) modes 2 and 3)
Notes: 1. The lower 16 bits are valid in normal mode.
2. When the stack is an odd address, the least significant bit is
ignored and information is pushed onto the stack.

Figure 5.8 Stack State of the System Termination Routine

Rev. 2.0, 03/01, page 198 of 282
RENESAS

Table 5.7 shows the causes of system termination and the error information that is pushed onto
stack.

Table 5.7 System Termination Causes

Cause of Termination vecno tskid ercd/Control Register

Setup information error H'00 H'00 H'0000 to H'OFFF

Timer function not supported H'00 H'00 H'FOED

ext_tsk system call issued from H'00 H'00 H'FFEB

task-independent portion

ret_int system call issued while ~ H'00 tskid H'FFBB

tasks were being executed or (H'00 to

while the CPU was being locked H'FF)

Undefined interrupt occurrence Interrupt vector tskid *1 CCR, EXR *2, and PC at
number error occurrence

Notes: 1. If an error occurs in a task, a task ID is specified in tskid; if an error occurs in a task-
independent portion, 0 is specified in tskid.

2. The EXR register is not stored in the stack in interrupt control mode 0 or 1.

Rev. 2.0, 03/01, page 199 of 282
RENESAS

Table 5.8 lists invalid setup information and the corresponding error codes (ercd).

Table 5.8 Invalid Setup Information

Error Type Description ercd

Invalid address Kernel stack pointer (_HI_OS_SP) is 0 or an odd address H'0101

;(:jgrreir;)()dd Timer interrupt stack pointer (_HI_TIM_SP) is 0 or an odd address H'0102
Start address of kernel work area (section name: hi8_2s_ram)is0or H'0103
an odd address
TIMCB area (_HI_TIMCB) is 0 or an odd address H'0104
TIMCB2 area (_HI_TIMCB?2) is 0 or an odd address H'0105
TCB area (_HI_TCB) is 0 or an odd address H'0106
TCB2 area (_HI_TCB2) is 0 or an odd address H'0107
FLGCB area (_HI_FLGCB) is 0 or an odd address H'0108
SEMCB area (_HI_SEMCB) is 0 or an odd address H'0109
MBXCB area (_HI_MBXCB) is 0 or an odd address H'010A
MPFCB area (_HI_MPFCB) is 0 or an odd address H'010B
MPLCB area (_HI_MPLCB) is 0 or an odd address H'010C
Trace stack pointer (_HI_TRC_SP) is 0 or an odd address H'010D
Start address of trace management area (TBACB) is 0 or an odd H'010E
address
Start address of TIMCB3 area (_HI_TIMCB3) is 0 or an odd address H'010F
CYHCB area (_HI_CYHCB) is 0 or an odd address H'0110

Invalid routine Start address of system initialization handler (_ HIPRG_SYSINI) is odd H'0201

address address
Start address of timer initialization routine (_HIPRG_TIMINI) is odd H'0202
address

Invalid data CPU interrupt control mode (CPUINTM) is 4 or greater H'0301

setting Kernel interrupt mask level (IMASK) is 8 or higher H'0302

(out of range)) o] i
Maximum priority (MAXPRI) is 32 or higher H'0303
Number of defined tasks (TSKCNT) is 256 or more H'0304
Number of defined event flags (FLGCNT) is 256 or more H'0305
Number of defined semaphores (SEMCNT) is 256 or more H'0306
Number of defined mailboxes (MBXCNT) is 256 or more H'0307
Number of defined fixed-size memory pools (MPFCNT) is 256 or more H'0308
Number of defined variable-size memory pools (MPLCNT) is 256 or H'0309
more
Number of defined cyclic handlers (CYHCNT) is 256 or more H'030A

Rev. 2.0, 03/01, page 200 of 282

RENESAS

Table 5.8 Invalid Setup Information (cont)

Error Type Description ercd

Invalid setup Task definition table (_HI_TDT) is 0 or an odd address H'0401
table address Start address of fixed-size memory pool definition table (_HI_MPFDT) H'0402

(0 or an odd is 0 or an odd address
address))) o
Start address of variable-size memory pool definition table H'0403
(_HI_MPLDT) is 0 or an odd address
Start address of undefined interrupt handler (_HI_ILT) is 0 or an odd H'0404
address
Start address of trace buffer information table (INITRC) is O or an odd H'0405
address
Start address of cyclic handler definition table (_HI_CYCDT) is 0 oran H'0406
odd address
Invalid setup Initial task priority (ITSKPRI) is 0 or exceeds maximum priority H'0501
table contents Task start address (TSKADR) is 0 or an odd address H'0502

Task stack pointer (ITSKSP) is 0 or an odd address H'0503

Memory block size (BLKLEN) is 0, odd address, or H'FFFA (D'65530) H'0504
bytes or more

Fixed-size memory pool address (MPF?_TOP) is 0 or an odd address H'0505
Variable-size memory pool size is 0, an odd address, or 16 bytes or H'0506

less

Variable-size memory pool address (MPL?_TOP) is O or an odd H'0507
address

Trace buffer address (TRACE BUFFER ADDRESS) is 0 or an odd H'0508
address

Start address of cyclic handler is O or an odd address H'0509
Cyclic timer interval of cyclic handler is 0, or H'80000000 or more H'050A
Active information of cyclic handler is illegal (other than O or 1) H'050B

Rev. 2.0, 03/01, page 201 of 282
RENESAS

Table 5.8 Invalid Setup Information (cont)

Error Type Description ercd

Invalid setup The number of tasks defined (TSKCNT) and the number of task H'0601
table contents extended information defined (TSKECNT) do not match

(Extended The number of event flags defined (FLGCNT) and the number of event H'0602
information) flag extended information defined (FLGECNT) do not match
The number of semaphores defined (SEMCNT) and the number of H'0603
semaphore extended information defined (SEMECNT) do not match
The number of mailboxes defined (MBXCNT) and the number of H'0604

mailbox extended information defined (MBXECNT) do not match

The number of fixed-size memory pools defined (MPFCNT) and the H'0605
number of fixed-size memory pool extended information defined
(MPFECNT) do not match

The number of variable-size memory pools defined (MPLCNT) and the H'0606
number of variable-size memory pool extended information defined
(MPLECNT) do not match

The number of cyclic handlers defined (CYHCNT) and the number of H'0607
cyclic handler extended information defined (CYHECNT) do not match

A system termination routine can be written in C language. The processing depends on the user
system. When creating a program to restore stack pointers and registers, refer to the descriptior
of other handlers.

59.2 Defining the System Termination Routine

The system termination routine must always be defined. To define this routine, specify the label
_HIPRG_ABNOML as the start address. The label must be declared with the export directive.
System termination routine must always be defined.

Note: If label name _HIPRG_ABNOML is specified as 0 or an odd address by an equate
directive, normal system operation cannot not be guaranteed.

The sample system termination routine is samplaizsmphnnnzuse.src.
5.10 System Idling Routine

5.10.1 Creating System Idling Routines

When no task is in the READY state, the system makes a transition to the idling state and remair
there until a task is activated up by an interrupt.

Rev. 2.0, 03/01, page 202 of 282
RENESAS

In the system idling state, the interrupt mask level is specified as open (0). The user can select
either a BRA or SLEEP instruction appropriate for the user system to achieve a system idling
routine. If the user wishes to use the CPU low-power consumption mode in the system idling
state, the SLEEP instruction should be selected.

5.10.2 Defining a System ldling Routine

To define a system idling routine, add label _H_SYSTEM_IDLE at the head of the system idling
routine. The label must be declared with the export directive.

A system idling routine must always be defined. If no system idling routine is defined, normal
system operation cannot be guaranteed.

The sample system idling routine is samphenzsmphnnnzuse.src.

Rev. 2.0, 03/01, page 203 of 282
RENESAS

Rev. 2.0, 03/01, page 204 of 282
RENESAS

Section 6 Creating the Setup Table

6.1 Overview
A setup table is created to define the information necessary for system configuration.

The setup table consists of a user definition field and a kernel system definition field. The user
definition field is a table that sets the number of defined tasks and the user environment accord
to the user system to be configured. Modify the user definition field according to the user systen
environment. The kernel system definition field defines the externally defined symbols and work
area used by the kernel.

The system definition field is automatically updated (set) by the user definition field. Therefore,
do not modify the system definition field. Otherwise normal system operation is not guaranteed

The sample setup table file is samplei\nzsmphnnnzsup.src.

6.2 User Definition Field

The fields to be defined in the user definition field are described below using the H8S/2655
advanced mode as an example.

Constant Definition Field: The constant definition field defines information required for
synchronization and communication and for time management.

Task Definition Field: The task definition field defines information required for task execution.

Fixed-Size Memory Pool Definition Field:The fixed-size memory pool definition field defines
information required for fixed-size memory pools.

Variable-Size Memory Pool Definition Field: The variable-size memory pool definition field
defines information required for variable-size memory pools.

Cyclic Handler Definition Field: The cyclic handler definition field defines information required
for cyclic handlers.

System Call Trace Function Definition Field:The system call trace function definition field
defines information required for system call trace functions.

Extended Information Definition Field: The extended information definition field defines
information required for extended information for tasks, event flags, semaphores, mailboxes,
fixed-size and variable-size memory pools, and cyclic handlers.

Rev. 2.0, 03/01, page 205 of 282
RENESAS

Note: The above items must be set regardless of each field definition. If not, an undefined
error will occur in the linking stage.

6.2.1 Defining the Constant Definition Field

This field defines information required for the kernel functions (such as synchronization-and-
communication and time-management functions). The following items are defined in the
definition field in the sample setup table.

Table 6.1 summarizes the information to be defined in the constant definition field.

Table 6.1 Information Defined in Constant Definition Field

Label Definition
Information Name Information Notes
Interrupt control mode CPUINTM* Mode =3
Kernel interrupt mask IMASK* Level =6
level
Maximum task priority MAXPRI* Lowest priority = 31
Number of event flags FLGCNT* Maximum event flag
defined ID=4
Number of semaphores SEMCNT* Maximum
defined semaphore ID =4
Number of mailboxes MBXCNT* Maximum mailbox
defined ID=4
OS stack size OSSTKSIZ* OS stack size =52 18+20+6+8
Timer stack size TIMSTKSIZ* Timer driver stack 40+10+6+8
size = 64
Trace stack size TRCSTKSIZ* Trace function stack 26 +6 + 8
size =40
Timeout function defined TTMOUT* USE

Note: These label names must not be modified because the kernel refers to them. If they are
modified, normal system operation cannot be guaranteed.

Figure 6.1 shows the calculation of stack size. For details, refer to appendix A, Memory Size.
The timer stack and trace stack size can be calculated in the same way.

Rev. 2.0, 03/01, page 206 of 282
RENESAS

Table A.2 OS Stack Area Size Calculation

ltem Calculation Size (Bytes) Remarks

Stack area used by OS 18 (Advanced mode) 18 Always necessary

Stack area for interrupts 10 x LOWINTNST :1 10x2+ When interrupt control mode
+6 x UPPINTNST 2 6x1 3 is used,

Number of interrupt nests
equal to or lower than IMASK
= 2’

Number of interrupt nests
equal to or higher than IMASK
=1

Stack area for undefined 8 8 An undefined interrupt has
interrupt "3 occurred
Total 52 18+20+6+8

Notes: 1. Number of interrupt nests that are equal to or lower than the kernel interrupt mask level.
2. Number of interrupt nests that are higher than the kernel interrupt mask level (including
NMls).
3. Required when an undefined interrupt occurs.

Figure 6.1 OS Stack Area Calculation

Figure 6.2 shows the constant definition field. Only modify the bold-italic face. Otherwise
normal system operation cannot be guaranteed.

Rev. 2.0, 03/01, page 207 of 282
RENESAS

:%%% VALUE define section

j-mm==- Usage

;LABEL VALUE ;[RANGE] ;:COMMENT
CPUINTM: .assign 3

IMASK: .assign 6

MAXPRI: .assign 31

FLGCNT: .assign 4

SEMCNT: .assign 4

MBXCNT: .assign 4

OSSTKSIZ: .equ 18+(10%2)+(6*1)+8
TIMSTKSIZ: .equ 40+(10*1)+(6*1)+8
TRCSTKSIZ: .equ 26+(6*1)+8
TTMOUT: .assign USE

%%%

;9090%%%0%%% %% % %% % %% %% %% % %% % %% % %% %% %% % %% % %% % %% %% %% % %% % %% %0 %Y

;9090%%%0%%% %% % %% % %% %% %% % %% % %% % %% %% %% % %% % %% % %% %% % %% %% % %% %0 %Y

(€

@)

®)

(4)

©)

(6)

@)

®)

9)

(10)

10%%0%0°

10%%0%0°

Rev. 2.0, 03/01, page 208 of 282

Figure 6.2 Constant Definition Field

RENESAS

Notes

(1) Defines CPU interrupt control modes 0 to 3. For details on the interrupt control mode, refer
the target MCU hardware manual

(2) Defines the kernel interrupt mask level. Defined values differ from those in the CPU interrur
control mode (CPUINTM).

CPUINTM IMASK Value
0 Oorl
1 Oto3
2 Oto7
3 Oto8

An interrupt whose level is higher than the kernel interrupt mask level is always accepted
without delay.

(3) Defines the lowest task priority of the system to be created. MAXPRI ranges from 1 to 31,
with a higher value indicating lower priority.

(4) Defines the maximum event flag ID. FLGCNT ranges from 0 to 255. If FLGCNT is 0, no
event flags will be defined.

(5) Defines the maximum semaphore ID. SEMCNT ranges from 0 to 255. If SEMCNT is 0, no
semaphores will be defined.

(6) Defines the maximum mailbox ID. MBXCNT ranges from 0 to 255. If MBXCNT is 0, no
mailboxes will be defined.

(7) Defines the OS stack area size. For details, refer to appendix A, Memory Size.

(8) Defines the timer driver stack area size. For details, refer to appendix A, Memory Size. If th
timer driver is not used, the timer stack size must be set to 0.

(9) Defines the trace function stack area size. For details, refer to appendix A, Memory Size. If
the trace function is not used, the timer stack size must be set to 0.

(10) Defines whether the timeout function is used.
USE: Used
NOTUSE: Not used
If TIMSTKSIZ is 0, the timeout function becomes invalid.

Rev. 2.0, 03/01, page 209 of 282
RENESAS

6.2.2 Defining Task

This field defines information to register tasks. The sample setup table registers:

Five tasks (IDs 1 to 5)

Tasks 1 and 2 are tutorial tasks for the debugging extension (DX) and are defined. Tasks 3 t

5 are not defined.

Task stack

Minimum stack size: 86

Tasks 4 and 5 use the same stack as a shared stack.

Table 6.2 shows the contents of the task definitions.

Table 6.2 Contents of Task Definition

Task Start Initial Initial Stack Stack Size Used by

ID Address State Priority Pointer Task

1 TASKA DORMANT 1 TSK1_SP 36 bytes

2 TASKB DORMANT 2 TSK2_SP 36 bytes

3 None (0) NON- 3 TSK3_SP 32 bytes
EXISTENT

4 None (0) NON- 4 TSK4_SP (Shared) 32 bytes
EXISTENT

5 None (0) NON- 5 TSK4_SP (Shared) 32 bytes
EXISTENT

Figure 6.3 shows task definition field. Only modify the bold-italic face. Otherwise normal
system operation cannot be guaranteed.

:%0%%%%6%%% %% % %% %% %% % % %% %% %% % %% %% %% % %% %% %% % %% %% %% % % %% % %% %Y
1%%% TASK define section %%%
:%0%%%%6%%% %% % %% %% %% % % %% %% %% % %% %% %% % %% %% %% % %% %% %% % % %% %% % %0

; TASK_TOP_LABEL ;: COMMENT

.import_TASKA (1)
.import _TASKB
j-mm==- Usage
; res.b SIZE +TSKSTKSIZ
;TSK?_SP_LABEL: .equ $

TSKSTKSIZ: .equ 50+(10%2)+(6*1)+6+8)

Figure 6.3 Task Definition Field

Rev. 2.0, 03/01, page 210 of 282

RENESAS

/0%%0%0°

/0%%0%0°

.section h2sstack,stack,align=2
.res.b (36) +TSKSTKSIZ 3)
TSK1_SP: .equ $
.res.b 8

.res.b (36) +TSKSTKSIZ
TSK2_SP: .equ $
.res.b 8

.res.b (32) +TSKSTKSIZ
TSK3_SP: .equ $
.res.b 8

.res.b (32) +TSKSTKSIZ
TSK4_SP: .equ $

.res.b 8

.section h2ssetup,code,align=2
_HI_H8S: .res.b 10 ;: System Area
jmm——— Usage
;LABEL .data.b IMOD, ITSKPRI ;: COMMENT
; .data.l ITSKADR, ITSKSP ;: COMMENT
NOEXS: .assign 0
RDY: .assign 1
DMT: .assign (-1)
TDTLEN: .assign 10;<- Not Change !

.section h2ssetup,code,align=2

_HL_TDT: .equ $-TDTLEN

TDT_TOP: equ $

tdt_id1: .data.b DMT, 1 4)
.data.l_TASKA, TSK1_SP

tdt_id2: .data.b DMT, 2
.data.l _TASKB, TSK2_SP

tdt_id3: .data.b NOEXS, 3
.data.l 0, TSK3_SP

tdt_id4: .data.b NOEXS, 4
.data.l 0, TSK4_SP

tdt_id5: .data.b NOEXS, 5
.data.l 0, TSK4_SP
TDT_BTM:
TSKCNT: .equ (TDT_BTM-TDT_TOP)/TDTLEN

Figure 6.3 Task Definition Field (cont)

Rev. 2.0, 03/01, page 211 of 282
RENESAS

Notes

(1) Declares the start address of the task to be used as an external reference symbol.

(2) Defines the minimum stack size used by a stack. The minimum stack size does not include tl
stack size used by each task. For details, refer to appendix A, Memory Size.

(3) [Task stack size must be defined for each stack pointer]
Defines the task stack size.
Line 1: Defines the stack size used
Stack size = Stack size used by each task + minimum stack size
Line 2: Defines the label
(Task stack bottom)
Line 3: Defines the shared-stack-management area

When using the shared-stack function, define 8 bytes for use by the management area in the
direction of ascending addresses. If the shared stack function is not used, this area need not
defined.

(4) [Task information must be defined for each task]
Defines task information.
[Format]
LABEL .data.b IMOD, ITSKPRI
.data.l ITSKADR, ITSKSP
0 LABEL: Can be freely defined (Can be omitted)
O IMOD (Definition/initiation requests)
Specifies each task's initial state at task definition and system initiation as follows:
* NOEXS (=0): Undefined
* RDY (=1): READY state
e DMT (other than 0 or 1): DORMANT state
O ITSKPRI (Initial priority)
Defines each task's initial priority. ITSKPRI ranges from 1 to MAXPRI (priority number
definition).
O ITSKADR (Task start address)
Defines the start address of a task.
O ITSKSP (Task stack pointer)
Defines the end address of a stack area used by the task.

Rev. 2.0, 03/01, page 212 of 282
RENESAS

6.2.3 Defining Fixed-Size Memory Pools

This field defines information to register fixed-size memory pools. The sample setup table

registers:

* Four fixed-size memory pools (IDs 1 to 4)

Table 6.3 shows the contents of fixed-size memory pool definitions.

Table 6.3 Contents of Fixed-Size Memory Pool Definitions

Number of Memory Block Label
Memory Pool ID Memory Blocks Size Name
1 14 12 bytes MPF1_TOP
2 14 12 bytes MPF2_TOP
3 14 12 bytes MPF3_TOP
4 14 12 bytes MPF4_TOP

Figure 6.4 shows a fixed-size memory pool definition field. Only modify the bold-italic font.

Otherwise normal system operation cannot be guaranteed.

RENESAS

Rev. 2.0, 03/01, page 213 of 282

;%090%%%0%%% %% % %% % %% %% %% % %% % %% % %% %% %% % %% % %% % %% %% % %% %% % %% % %% %% %S

%%% FIXED-SIZE MEMORYPOOL define section %%%
;90%%%%6%%% %% % %% %% %% %% %% %% %% % %% %% %% % % %% %% %% % %% %% %% % % %% %% % %0 % %0 %!
- Usage

;MB?_CNT_LABEL: .assign VALUE ;[RANGE] ;: COMMENT
;MB?_LEN_LABEL: .assign VALUE ;i RANGE] ;: COMMENT

MB1_CNT: .assign 14)
MB1_LEN: .assign 12

MB2_CNT: .assign 14
MB2_LEN: .assign 12

MB3_CNT: .assign 14
MB3_LEN: .assign 12

MB4_CNT: .assign 14
MB4_LEN: .assign 12

- Usage
;MPF?_TOP_LABEL:.res.b MEMORYPOOL_SIZE ;: COMMENT
.section h2smpf,data,align=2
MPF1_TOP: .res.b MBI1_CNT *(MBI1_LEN +4) @)

MPF2_TOP: .res.b MB2_CNT * (MB2_LEN +4)
MPF3_TOP: .res.b MB3_CNT * (MB3_LEN +4)

MPF4_TOP: .res.b MB4_CNT * (MB4_LEN +4)

Figure 6.4 Fixed-Size Memory Pool Definition Field

Rev. 2.0, 03/01, page 214 of 282
RENESAS

:LABEL .data.w BLFCNT, BLFLEN
.data.| MPF_TOP_ADDRESS

;: COMMENT
;: COMMENT

MPFDTLEN: .assign 8;<- Not Change !
.section h2ssetup,code,align=2
_HI_MPFDT: .equ $-MPFDTLEN
table
MPFDT_TOP: .equ $
mpfdt_id1: .data.w MB1_CNT, MB1_LEN
.data.l MPF1_TOP

mpfdt_id2: .data.w MB2_CNT, MB2_LEN
.data.l MPF2_TOP

mpfdt_id3: .data.w MB3_CNT, MB3_LEN
.data.l MPF3_TOP

mpfdt_id4: .data.w MB4_CNT, MB4_LEN
.data.l MPF4_TOP

;» MPFDT Length

;: Fixed-size MemoryPool define

®

MPFDT_BTM:
MPFCNT: .equ (MPFDT_BTM-MPFDT_TOP)/MPFDTLEN
Figure 6.4 Fixed-Size Memory Pool Definition Field (cont)
Notes

(1) [The number of memory blocks and the memory block size must be specified for each

memory block]

MB?_CNT and MB?_LEN specify the number of memory blocks and the memory block size.
Labels such as MB1_CNT and MB1_LEN are used to define the memory pool area to specif

the memory pool definition table.

(2) [A memory pool area must be defined for each memory pool]

Defines the fixed-size memory pool area. A label must be specified as the start address for
each memory pool area. The label name is MPF?_TOP in the sample setup table.

In the example, each memory pool size can be defined using the following expression.
Fixed-size memory pool size = MB?_CNT x (MB?_LEN + 4)

If fixed-size memory pool is unnecessary, delete all the lines shown in a bold-italic font in (2)

in this figure.

(3) [Memory pool information must be defined for each memory pool]

Defines fixed-size memory pool information.

[Format]

LABEL .dataw BLFCNT, BLFLEN
.data.] MPF_TOP_ADDRESS

Rev. 2.0, 03/01, page 215 of 282

RENESAS

0 LABEL: Can be freely defined. (Can be omitted.)

O BLFCNT: Number of memory blocks

0 BLFLEN: Fixed-size memory block size

O MPF_TOP_ADDRESS: Start address of the fixed-size memory pool
Specify 0 for BLFCNT when not using the fixed-size memory information.

If fixed-size memory pool is unnecessary, delete all the lines shown in a bold-italic font in (3)
in this figure.

6.2.4 Defining Variable-Size Memory Pools

This field defines information to register variable-size memory pools. The sample setup table
defines the following variable-size memory pools:

» Four variable-size memory pools (IDs 1 to 4)
Table 6.4 shows the contents of variable-size memory pool definition.

Table 6.4 Contents of Variable-Size Memory Pool Definitions

Memory Block

Task ID Size Label Name
1 380 bytes MPL1_TOP
2 380 bytes MPL2_TOP
3 380 bytes MPL3_TOP
4 380 bytes MPL4_TOP

Figure 6.5 shows a variable-size memory pool definition field. Only modify the bold-italic face.
Otherwise normal system operation cannot be guaranteed.

Rev. 2.0, 03/01, page 216 of 282
RENESAS

;%090%%%0%% % %% % %% % %% % %% %% %% % %% % %% % %% %% % %% %% % %% % %% % %% %% % %% %0 % %Y

:%%% VARIABLE-SIZE MEMORYPOOL define section %%%

;%090%%%0%%% %% % %% % %% % %% %% % %% %% % %% % %% %% % %% %% % %% % %% % %% %% % %% %0 % %Y

;MPL?_SIZ_LABEL:.assign VALUE ;[RANGE] ;: COMMENT

MPL1_SIZ: .assign 380)
MPL2_SIZ: .assign 380
MPL3_SIZ: .assign 380

MPL4_SIZ: .assign 380

;MPL?_TOP_LABEL:.res.b VARIABLE_MEMORYPOOL_SIZE ;: COMMENT

.section h2smpl,data,align=2
MPL1 TOP: .res.b MPL1_SIZ 2

MPL2 TOP: .res.b MPL2_SIZ
MPL3 TOP: .res.b MPL3_SIZ

MPL4_TOP: .res.b MPL4_SIZ

JLABEL .data.| BLKSIZ ;: COMMENT
.data.| VARIABLE_MEMORYPOOL_TOP ;: COMMENT

MPLDTLEN: .assign 8;<- Not Change ! ;» MPLDT Length
.section h2ssetup,code,align=2
_HI_MPLDT: .equ $-MPLDTLEN
MPLDT_TOP: .equ $
mpldt_id1: .data.l MPL1_SIZ ?3)
.data.l MPL1_TOP

mpldt_id2: .data.l MPL2_SIZ
.data.l MPL2_TOP

mpldt_id3: .data.l MPL3_SIZ
.data.l MPL3_TOP

mpldt_id4: .data.l MPL4_SIZ
.data.l MPL4_TOP
MPLDT_BTM:
MPLCNT: .equ (MPLDT_BTM-MPLDT_TOP)/MPLDTLEN

Figure 6.5 Variable-size Memory Pool Definition Field

Rev. 2.0, 03/01, page 217 of 282
RENESAS

Notes

(1) [The memory block size must be defined for each memory block]

Defines the variable-size memory block size. The label is used to define the memory pool
area to specify the memory pool definition table.

When specifying the variable-size memory pool, specify a size including the 16-byte kernel
management area. Specification size = Memory pool size to be used + (16 x maximum
number of blocks acquired)

(2) [A memory pool area must be defined for each memory pool]

Defines the variable-size memory pool area. A label must be specified as the start address fc
each memory pool area. The label name is MPL?_TOP in the sample setup table.

If variable-size memory pool is unnecessary, delete all the lines shown in a bold-italic font in
(2) in this figure.
(3) [Variable-size memory information must be defined for each memory pool]
Defines variable-size memory pool information.
[Format]
LABEL .data.l BLKSIZ
.data.l MPL_TOP_ADDRESS
0 LABEL: Can be freely defined. (Can be omitted.)
0 BLKSIZ: The memory block size
0 MPL_TOP_ADDRESS: Start address of the variable-size memory pool

Specify 0 for BLKSIZ and MPL_TOP_ADDRESS when not using the variable-size memory
information.

If variable-size memory pool is unnecessary, delete all the lines shown in a bold-italic font in
(3) in this figure.

6.2.5 Defining Cyclic Handlers

This field defines information to register cyclic handlers. In the sample setup table, it is assumed
no cyclic handlers are defined.

* When the debugging extension (DX) is not used (definition of the sample files)
O Number of cyclic handlers: 4 (cyclic handler specification numbers 1 to 4 are not defined)
* When the debugging extension (DX) is used (definition of the sample files)
Cyclic handler specification number 5 is defined when the debugging extension is used
O Number of cyclic handlers: 5 (cyclic handler specification numbers 1 to 4 are not defined)
The Debug Daemon will be defined as cyclic handler specification number 5

Rev. 2.0, 03/01, page 218 of 282
RENESAS

Table 6.5 shows the contents of cyclic handler definitions of the sample files.

Table 6.5 Contents of Cyclic Handler Definitions

Cyclic Handler

Specification

Number Activation State Invoked Interval Label Name

1 OFF 0 None (NADR)

2 OFF 0 None (NADR)

3 OFF 0 None (NADR)

4 OFF 0 None (NADR)

5 ON 5 HI_DEAMON_MAIN

« Example of cyclic handler definition (Example of cyclic handler definition in figure 6.6)
The definition contents of the sample cyclic handler as follows

O The symbol (_CYCHDR) of the cyclic handler address is declared (imported) as the
external reference symbol.

O The cyclic handler information is defined
e Cyclic handler specification number: 6
» Cyclic handler activation state: CYHON (activated)
e Cyclic handler timer interval: 10
» Cyclic handler address: _CYCHDR
If a cyclic handler is added, the extended information must be added.

Rev. 2.0, 03/01, page 219 of 282
RENESAS

Figure 6.6 shows an example of a definition of a cyclic handler definition field. In this figure, a
cyclic handler (cyclic handler specification number 6) has been added to the sample file. Only

modify the bold-italic face. Otherwise normal system operation cannot be guaranteed.

import_CYCHDR

JLABEL: .data.w CYC_ACTIVATE ;- COMMENT
; .data.l CYC_TIME, CYCHDR_TOP ;: COMMENT

CYHOFF .assign 0 ;iinitial cycact data = OFF
CYHON .assign 1 ;iinitial cycact data = ON
CYHDTLEN .assign 10;<-Dont't Change! ;:CYHDT length
_HI_CYHDT: .equ $-CYHDTLEN
CYHDT_TOP: .equ $
cyhdt nol: .data.w CYHOFF

.data.l 0, NADR

cyhdt no2: .data.w CYHOFF
.data.l 0, NADR

cyhdt no3: .data.w CYHOFF
.data.l 0, NADR

cyhdt no4: .data.w CYHOFF
.data.l 0, NADR

.aifdef DX

cyhdt_no5: .data.w CYHON
.data.l 5, H_DEAMON_MAIN
.aendi

cyhdt no6: .data.w CYHON
.data.l 10, _CYCHDR
CYHDT_BTM:
CYHCNT: .equ (CYHDT_BTM-CYHDT_TOP)/CYHDTLEN

;%0%9%6%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% % % %% %% %% % %% %% %% Y0 % % %0

;%%% cyclic handler define section %%%

:%0%%%%%%%%% % %% %% %% % % %% %% %% % %% %% %% % % %% % %% % % %% %% %% % %% %% %% %0 % %%
- Usage

; .import CYCHDR_TOP_LABEL ;: COMMENT

()

@

(©)

Figure 6.6 Definition Example of Cyclic Handler Definition Field

Rev. 2.0, 03/01, page 220 of 282
RENESAS

Notes

(1) Declares (imports) the start address of the cyclic handler as the external reference symbol. -
is an example of cyclic handler definition.

(2) [Cyclic handler information must be defined for each cyclic handler]
Defines cyclic handler information.
[Format]
LABEL .dataw CYC_ACTIVATE
.data.l CYC_TIME, CYCHDR_TOP
O LABEL: Can be freely defined. (Can be omitted.)
0 CYC_ACTIVATE (Specifies the cyclic handler activation state.)
Defines the cyclic handler activation state at system initiation.
* CYHOFF (=0): Not initiated (not activated)
¢ CYHON (=1): Initiated (activated)
O CYC_TIME (Cyclic time interval)
Specifies the cycle time to initiate the cyclic handler.
0 CYCHDR_TOP (Cyclic handler address)

Specifies the start address of the handler to define. If NADR(-1) is specified, the cyclic
handler ID will not be defined.

If cyclic handler is unnecessary, delete all the lines shown in a bold-italic font in (2) in this
figure.
If the debugging extension is used, the debug daemon cyclic handler will be defined.

(3) For cyclic handler specification number 6, cyclic handler activation state is specified as
activated (CYHON), cyclic time interval is specified as 10, and cyclic handler address is
specified as symbol (_CYCHDR). This is an example of cyclic handler definition.

6.2.6 Defining Trace Functions
This field defines information to register trace functions. The sample setup table registers:
« A maximum of four trace information acquisitions

Figure 6.7 shows a trace function definition field. Only modify the bold-italic face. Otherwise
normal system operation cannot be guaranteed.

Rev. 2.0, 03/01, page 221 of 282
RENESAS

;TRC_CNT:.assign TRACE COUNT
;TRC_BUF:.assign TRACE BUFFER ADDRESS

.section h2strc,data,align=2
TRC_CNT: .assign 4 1)
TRC_BUF: res.b 16+(TRC_CNT*28) 2
- Usage

;/INITRC .data.l| TRACE BUFFER ADDRESS
; .data.w TRACE COUNT

.section h2ssetup,code,align=2
INITRC: equ $
.data.l TRC_BUF 3)
.data.w TRC_CNT

Figure 6.7 Trace Function Definition Field

Rev. 2.0, 03/01, page 222 of 282

RENESAS

Notes

(1) Defines the maximum amount of trace information that can be acquired by the trace function
Specify 0 if the trace function is not used.

(2) Defines the trace buffer area. In the sample example, the trace buffer area size is calculate
follows:

Trace buffer area size = 16 + TRC_CNT x 28
If the trace function is not used, write this line as a comment.
(3) Start address of the trace buffer area. Specify 0 if the trace function is not used.

6.2.7 Defining Extended Information

Extended information can be defined for the following objects: tasks, event flags, semaphores,
mailboxes, fixed-size memory pools, variable-size memory pools, and cyclic handlers.

The extended information can be defined freely by the user for each ID of the resource concern
the target object.

The extended information is a packet of memory area reserved to enter information concerning
the target object. The start address of the packet is specified as the extended information.

In the sample program, H'0 is specified as the start address for the extended information. In the
start address (H'0) of the sample extended information, extended information is not specified.

Figure 5.8 shows an extended information definition field. Only modify the bold-italic font.
Otherwise normal system operation cannot be guaranteed.

Rev. 2.0, 03/01, page 223 of 282
RENESAS

;%090%%%0%%% %% % %% % %% %% %% % %% % %% % %% %% %% % %% % %% % %% %% % %% %% % %% % %% %% %S

:%%% Task Extended Information define section %%%
;90%%%%6%%% %% % %% %% %% %% %% %% %% % %% %% %% % % %% %% %% % %% %% %% % % %% %% % %0 % %0 %!
- Usage
;LABEL .data.l TSK?_EXINF ;: COMMENT
.section h2ssetup,code,align=2

_HI_TSKEXINF: .equ $-EXLEN

TSKE_TOP: equ $

tsk1_exinf: .data.l 00000000 Q)
tsk2_exinf: .data.l 00000000

tsk3_exinf: .data.l 00000000

tsk4_exinf: .data.l 00000000

tsk5_exinf: .data.l 00000000

TSKE_BTM:

TSKECNT: .equ (TSKE_BTM-TSKE_TOP)/EXLEN

;:[0...255] ;: tsk exinf count

;%090%%%6%%% %% % %% % %% %% %% % %% % %% % %% %% %% % %% % %% %6 %% %% % %% %% % %% % %% %% %S

;%%% Event Flag Extended Information define section %%%
;%0%0%%%0%%%%6% % %% %% % %% % %% %% % %% %% % %% %% % %% % %% %% % %% % %% %% %0 %% %% %0 %% %!
- Usage
;LABEL .data.| FLG?_EXINF ;: COMMENT
.section h2ssetup,code,align=2

_HI_FLGEXINF: .equ $-EXLEN

FLGE_TOP: equ $

flgl_exinf: .data.l 00000000 2)
flg2_exinf: .data.l 00000000

flg3_exinf: .data.l 00000000

flg4_exinf: .data.l 00000000

FLGE_BTM:
FLGECNT: .equ (FLGE_BTM-FLGE_TOP)/EXLEN

Figure 6.8 Extended Information Definition Field

Rev. 2.0, 03/01, page 224 of 282
RENESAS

;%090%%%0%%% %% % %% % %% % %% %% %% % %% % %% % %% %% % %% % %% %% % %% % %% %% % %% %0 % %Y

;%%% Semaphore Extended Information define section %%%
;%0%0%%%0%%%%%% %% % %% %% %% %% %% %% % %% %% % %% % %% % %% %% % %% %% % %% % %% % %0 %0 %Y
- Usage
;LABEL .data.| SEM?_EXINF ;» COMMENT
.section h2ssetup,code,align=2

_HI_SEMEXINF: .equ $-EXLEN

SEME_TOP: equ $

seml_exinf: .data.l 00000000 3)
sem2_exinf: .data.l 00000000

sem3_exinf: .data.l 00000000

sem4_exinf: .data.l 00000000

SEME_BTM:

SEMECNT: .equ (SEME_BTM-SEME_TOP)/EXLEN

;:[0...255] ;: sem exinf count

;%090%%%0%% % %% % %% % %% % %% %% %% % %% % %% % %% %% % %% % %% %% % %% % %% %% % %% %0 % %Y

:%%% Mailbox Extended Information define section %%%
;%0%%%%6%%% %% % %% %% %% %% %6 %% %% % % %% %% %% % %% %% %% % %% %% %% % % %% %% %% %0 %0 %Y
- Usage
;LABEL .data.| MBX?_EXINF ; COMMENT
.section h2ssetup,code,align=2

_HI_MBXEXINF: .equ $-EXLEN

MBXE_TOP: equ $

mbx1_exinf: .data.l 00000000 (4)
mbx2_exinf: .data.l 00000000

mbx3_exinf: .data.l 00000000

mbx4_exinf: .data.l 00000000

MBXE_BTM:
MBXECNT: .equ (MBXE_BTM-MBXE_TOP)/EXLEN

Figure 6.8 Extended Information Definition Field (cont)

Rev. 2.0, 03/01, page 225 of 282
RENESAS

;%0%%6%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% % %% %% %% %% %% % %0 % %0 % Y0 %
;%%% Fixed-size MemoryPool Extended Information define section ~ %%%
;%0%%6%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% % %% %% %% %% %% % %0 % Y0 % %0 %

- Usage
;LABEL .data.|l MPF?_EXINF ;: COMMENT
.section h2ssetup,code,align=2

_HI_MPFEXINF: .equ $-EXLEN
MPFE_TOP: equ $
mpfl_exinf: .data.l 00000000 (5)

mpf2_exinf: .data.l 00000000

mpf3_exinf: .data.l 00000000

mpf4_exinf: .data.l 00000000

MPFE_BTM:

MPFECNT: .equ (MPFE_BTM-MPFE_TOP)/EXLEN
;:[0...255] ;: mpf exinf count

;%0%%6%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% % %% %% %% %% %% %% % %0 % Y0 %

;%%% Variable-size MemoryPool Extended Information define section %%%
;%0%%6% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% % %% %% %% %% %% %% % %0 % %0 %

- Usage
;LABEL .data.| MPL?_EXINF ;: COMMENT
.section h2ssetup,code,align=2

_HI_MPLEXINF: .equ $-EXLEN

MPLE_TOP: equ $

mpll_exinf: .data.l 00000000 (6)
mpl2_exinf: .data.l 00000000

mpl3_exinf: .data.l 00000000

mpl4_exinf: .data.l 00000000

MPLE_BTM:
MPLECNT: .equ (MPLE_BTM-MPLE_TOP)/EXLEN

Figure 6.8 Extended Information Definition Field (cont)

Rev. 2.0, 03/01, page 226 of 282
RENESAS

;9%0%%6%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %0 %% %% %% %% %% %% %% % %% %Y
;%%% Cyclic Handler Extended Information define section %%%
;9%0%%6%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %0 %% %% %% %% %% %% %% % %% %Y

- Usage
;LABEL .data.| CYH?_EXINF ;: COMMENT
.section h2ssetup,code,align=2

_HI_CYCEXINF: .equ $-EXLEN
CYHE_TOP: equ $
cyhl_exinf: .data.l 00000000 @)

cyh2_exinf: .data.l 00000000
cyh3_exinf: .data.l 00000000
cyh4_exinf: .data.l 00000000
.aifdef DX
cyh5_exinf: .data.l 00000000

.aendi
CYHE_BTM:

10%%Y

10%%Y

CYHECNT: .equ (CYHE_BTM-CYHE_TOP)/EXLE

Figure 6.8 Extended Information Definition Field (cont)
Notes

(1) Defines task extended information.
[Format]
LABEL .data.l TSK?_EXINF
0 LABEL: Can be freely defined. (Can be omitted.)
O TSK?_EXINF: (Extended information)
An address can be defined.

Note: Task extended information must be defined for the number of tasks as defined in secti

6.2.2, Defining Task.
If the number of task extended information values does not match the number of

tasks

defined, the system will terminate abnormally. If extended information is unnecessary,

delete all the lines shown in a bold-italic font in (1) in this figure.
(2) Defines event flag extended information.
[Format]
LABEL .data.l FLG?_EXINF
0 LABEL: Can be freely defined. (Can be omitted.)
0 FLG?_EXINF: (Extended information)
An address can be defined.

Rev. 2.0, 03/01, page 227 of 282
RENESAS

Note: Event flag extended information must be defined for the maximum event flag definition
number (FLGCNT) as defined in section 6.2.1, Defining the Constant Definition Field.
If the number of event flag extended information values does not match the maximum
number of event flags defined, the system will terminate abnormally. If extended
information is unnecessary, delete all the lines shown in a bold-italic font in (2) in this
figure.

(3) Defines semaphore extended information.
[Format]
LABEL .data.l SEM?_EXINF
0 LABEL: Can be freely defined. (Can be omitted.)
0 SEM?_EXINF: (Extended information)
An address can be defined.

Note: Semaphore extended information must be defined for the maximum semaphore
definition number (SEMCNT) as defined in section 6.2.1, Defining the Constant
Definition Field.

If the number of semaphore extended information values does not match the maximum
number of semaphores defined, the system will terminate abnormally. If extended
information is unnecessary, delete all the lines shown in a bold-italic font in (3) in this
figure.

(4) Defines mailbox extended information.

[Format]

LABEL .data.l MBX?_EXINF

O LABEL: Can be freely defined. (Can be omitted.)

O MBX?_EXINF: (Extended information)

An address can be defined.

Note: Mailbox extended information must be defined for the maximum mailbox definition
number (MBXCNT) as defined in section 6.2.1, Defining the Constant Definition Field.
If the number of mailbox extended information values does not match the maximum
number of mailboxes defined, the system will terminate abnormally. If extended

information is unnecessary, delete all the lines shown in a bold-italic font in (4) in this
figure.

(5) Defines fixed-size memory pool extended information.
[Format]
LABEL .data.l MPF?_EXINF
0 LABEL: Can be freely defined. (Can be omitted.)
0 MPF?_EXINF: (Extended information)
An address can be defined.

Rev. 2.0, 03/01, page 228 of 282
RENESAS

Note: Fixed-size memory pool extended information must be defined for the fixed-size
definition number as defined in section 6.2.3, Defining Fixed-size Memory Pools.
If the number of fixed-size memory pool extended information values does not match
the number of fixed-size memory pools defined, the system will terminate abnormally.
If extended information is unnecessary, delete all the lines shown in a bold-italic font ir
(5) in this figure.

(6) Defines variable-size memory pool extended information.

[Format]

LABEL .data.l MPL?_EXINF

0 LABEL: Can be freely defined. (Can be omitted.)

O MPL?_EXINF: (Extended information)

An address can be defined.

Note: Variable-size memory pool extended information must be defined for the variable-size
definition number as defined in section 6.2.4, Defining Variable-size Memory Pools.
If the number of variable-size memory pool extended information values does not matc
the number of variable-size memory pools defined, the system will terminate
abnormally. If extended information is unnecessary, delete all the lines shown in a
bold-italic font in (6) in this figure.

(7) Defines cyclic handler extended information.

[Format]

LABEL .data.l CYH?_EXINF

O LABEL: Can be freely defined. (Can be omitted.)

O CYH?_EXINF: (Extended information)

An address can be defined.

Note: Cyclic handler extended information must be defined for the cyclic handler definition
number as defined in section 6.2.5, Defining Cyclic Handlers.
If the number of cyclic handler extended information values does not match the numbe
of cyclic handlers defined, the system will terminate abnormally. If extended
information is unnecessary, delete all the lines shown in a bold-italic font in (7) in this
figure. If the debugging extension is used, the debug daemon cyclic handler will be
defined.

6.3 System Definition Field

This field defines externally defined symbols used by the kernel, constants, and the kernel syste
work area.

Figure 6.9 shows the system definition field. In the system definition field, symbols can be
automatically defined from the value defined in the user definition field.

Rev. 2.0, 03/01, page 229 of 282
RENESAS

Do not modify the system definition field. Otherwise correct system operation cannot be
guaranteed.

.include "setup.inc” Includes system
definition file.

.end; of 2655asUP.MAR

Figure 6.9 System Definition Field

For details on the system work area reserved by the system definition field, refer to appendix A,
Memory Size.

Rev. 2.0, 03/01, page 230 of 282
RENESAS

Section 7 Creating the Interrupt Vector Table

7.1 Overview

The interrupt vector table defines the start address of each interrupt handler, so that control pas
to the appropriate interrupt processing when an interrupt occurs. If no interrupt handler start
address is defined for a vector number, an undefined interrupt handler start address must be
defined for that vector number.

The sample interrupt vector table file is sammpi@nzsmphnnnzli.src.

Create an interrupt vector for the user system by referring to the provided files.

7.2 Defining Interrupt Handler

An interrupt handler can be used by defining the interrupt handler start address to the
corresponding vector number in the interrupt vector table.

The following interrupt handlers are defined in the sample vector table (table 6.3).

« CPU: H85/2655
e CPU operating mode: advanced mode

Table 7.1 lists the defined interrupt handlers.

Table 7.1 Defined Interrupt Handlers

No Interrupt Handler Label Name Vector Number Notes
1 CPU initialization routine _H_2S_CPUINI 0 Power-on reset
2 CPU initialization routine _H_2S_CPUINI 1 Manual reset
3 Timer interrupt handler _H 25 TIM 32 TPUchO
4 Undefined interrupt _H_2SINT?? ?? ??: Vector number of
handler other than items 1 to
3.

For details on the causes of interrupts, refer to the refer to the target MCU hardware manual.

Figure 7.1 shows a coding example from the H8S/2655 series interrupt vector table 2655avec.s
for the advanced mode provided as a sample file.

Rev. 2.0, 03/01, page 231 of 282
RENESAS

;¥* H|2000/3 Version (uUITRON V3.0) ok

;¥* HI2000/3 vector table ok

;¥* Copyright (c) Hitachi, Ltd. 1998. ik

;¥ Licensed Material of Hitachi, Ltd. ok
.program _2655avec
.heading "### 2655avec.src : for H8S/2655 ###"
.section h2svectr,code,locate=0
.import _H_2SINT00,_H_2SINT01,_ H_2SINT02,_H_2SINT03,_ H_2SINT04
.import _H_2SINT05, H_2SINT06,_H_2SINT07,_H_2SINT08,_ H_2SINT09
.import _H_2SINT10,_ H _2SINT11, H _2SINT12,_ H 2SINT13,_H _2SINT14
.import _H_2SINT15, H 2SINT16,_H_2SINT17,_H_2SINT18,_ H 2SINT19
.import _H_2SINT20,_H_2SINT21,_ H_2SINT22,_ H_2SINT23,_H_2SINT24
.import _H_2SINT25, H_2SINT26,_H_2SINT27,_H_2SINT28,_ H_2SINT29
.import _H_2SINT30,_H_2SINT31,_H_2SINT32,_ H_2SINT33,_H_2SINT34
.import _H_2SINT35, H_2SINT36,_H_2SINT37,_H_2SINT38,_ H_2SINT39
.import _H_2SINT40,_H_2SINT41, H_2SINT42,_ H_2SINT43,_H_2SINT44
.import _H_2SINT45, H_2SINT46,_H_2SINT47,_H_2SINT48,_ H_2SINT49
.import _H_2SINT50,_H_2SINT51,_ H_2SINT52,_ H_2SINT53,_ H_2SINT54
.import _H_2SINT55, H_2SINT56,_H_2SINT57,_H_2SINT58,_ H_2SINT59
.import _H_2SINT60,_ H_2SINT61,_ H_2SINT62,_ H_2SINT63,_ H_2SINT64
.import _H_2SINT65, H_2SINT66,_H_2SINT67,_H_2SINT68,_ H_2SINT69
.import _H_2SINT70,_H_2SINT71,_H_2SINT72,_H_2SINT73,_H_2SINT74
.import _H_2SINT75,_ H_2SINT76,_H_2SINT77,_H_2SINT78,_H_2SINT79
.import _H_2SINT80,_H_2SINT81, H_2SINT82,_ H_2SINT83,_H_2SINT84
.import _H_2SINT85, H_2SINT86,_H_2SINT87,_H_2SINT88,_ H_2SINT89
.import _H_2SINT90,_H_2SINT91
.import _H 2S5 CPUINI ;:in'cpuini'
.import _H 25 TIM ;. in 'h2suser'

@

@

Figure 7.1 Coding Example from the Interrupt Vector Table 2655avec.src

Rev. 2.0, 03/01, page 232 of 282

RENESAS

;*specifications ; *

*name = h2svectr : H8S/2655 vector table for HI2000/3

;*function = 1. h8 interrupt handler address define for hi8

-k
’
-k
)

¥ = 2. h8 exception handler address define for hi8 ;o
¥ = 3. hi8 system standard support module ;ox

¥ = (1)reset :" H_2S_CPUINI" for power on ;o

¥ = 4. hi8 system standard support module ;ox

¥ = (1) TPUO tgi0a: "_H_2S_TIM" for system timer ; *
*date =99/02/22 ;¥

;¥author = Hitachi, Ltd. .

;*attribute = public ;*

;*class = unit *

;*linkage = h8 vector table top address = h'0000 for HI2000/3 ; *

*Yinput = none ;ox

*output = none ;F

;*parameter = er7 : stack pointer ;x

jremienss. CPU interrupt mode = 3 .

> I I Pt

* er7(stack pointer) --> +0 #------r-o- + P

o | EXR | i

o +1 oo + ;o

* | reserved | Vo

o +2 Homemeeeeee- + .

> | CCR | ;o

o +3 oo + ;o

> I I Pt

o + + ;o

> | PC | Pt

o + + ;o

> I I Pt

o +6 +---omommeee- + ;o

;*end of specifications ; *
radix d JIXXXXX > d'XXXXX

— .data.l < address >

;:» H8S/2655 vector no. contents

.data.l _H_2S CPUINI ;_H_2SINTOO0 ;: vector no.00 <reset>
.data.l _H_2S CPUINI ;_H_2SINTO1 ;: vector no.01 <reset>

.data.| _H_2SINT02
.data.| _H_2SINTO03
.data.| _H_2SINT04
.data.| _H_2SINTO5

;- vector no.02 [reserve]
;- vector no.03 [reserve]
;- vector no.04 [reserve]
;- vector no.05 [reserve]

®

Figure 7.1 Coding Example from the Interrupt Vector Table 2655avec.src (cont)

Rev. 2.0, 03/01, page 233 of 282

RENESAS

.data.| _H_2SINT06
.data.| _H_2SINTO7
.data.| _H_2SINTO08
.data.| _H_2SINT09
.data.| _H_2SINT10
data.l _H_2SINT11
.data.l _H_2SINT12
.data.| _H_2SINT13
data.l _H_2SINT14
data.l _H_2SINT15
.data.| _H_2SINT16
data.l _H_2SINT17
.data.| _H_2SINT18
.data.| _H_2SINT19
.data.| _H_2SINT20
.data.| _H_2SINT21
.data.| _H_2SINT22
.data.| _H_2SINT23
.data.| _H_2SINT24
.data.| _H_2SINT25
.data.| _H_2SINT26
.data.| _H_2SINT27
.data.| _H_2SINT28
.data.| _H_2SINT29
.data.| _H_2SINT30
.data.| _H_2SINT31
.data.l _H 25 TIM
.data.| _H_2SINT33
.data.| _H_2SINT34
.data.| _H_2SINT35
.data.| _H_2SINT36
.data.| _H_2SINT37
.data.| _H_2SINT38
.data.| _H_2SINT39
.data.| _H_2SINT40
data.l _H_2SINT41
.data.| _H_2SINT42
.data.| _H_2SINT43
data.l _H_2SINT44
data.l _H_2SINT45
.data.| _H_2SINT46
data.l _H_2SINT47
.data.| _H_2SINT48
.data.| _H_2SINT49
.data.| _H_2SINT50
data.l _H_2SINT51
.data.| _H_2SINT52

: vector no.06 [reserve]

;- vector no.07 <NMl >
;: vector no.08 <TRAPA #0
;- vector no.09 <TRAPA #1
;- vector no.10 <TRAPA #2
;o vector no.11 <TRAPA #3
;- vector no.12 [reserve]
;- vector no.13 [reserve]
: vector no.14 [reserve]
;- vector no.15 [reserve]
;» vector no.16 <IRQO

;: vector no.17 <IRQ1

;» vector no.18 <IRQ2

;» vector no.19 <IRQ3

;» vector no.20 <IRQ4

;» vector no.21 <IRQ5

: vector no.22 <IRQ6

;» vector no.23 <IRQ7

;. vector no.24 <SWDTEND >
;» vector no.25 <WOVI >

V V V V

V V V V V V V V

;» vector no.26 <CMI >
;- vector no.27 [reserve]
;: vector no.28 <ADI >

;- vector no.29 [reserve]
: vector no.30 [reserve]
;- vector no.31 [reserve]

,_H_2SINT32 ;: vector no.32 <TGIOA tpuO >

;» vector no.33 <TGIOB tpu0 >
;» vector no.34 <TGIOC tpu0 >
;- vector no.35 <TGIOD tpu0 >
;- vector no.36 <TCIOV tpu0 >
;- vector no.37 [reserve]

: vector no.38 [reserve]

;- vector no.39 [reserve]

;» vector no.40 <TGI1A tpul >
;: vector no.41 <TGI1B tpul >
;» vector no.42 <TCI1V tpul >
;» vector no.43 <TCI1U tpul >
;- vector no.44 <TGI2A tpu2 >
;» vector no.45 <TGI2B tpu2 >
: vector no.46 <TCI2V tpu2 >
;: vector no.47 <TCI2U tpu2 >
;: vector no.48 <TGI3A tpu3 >
;» vector no.49 <TGI3B tpu3 >
;» vector no.50 <TGI3C tpu3 >
;: vector no.51 <TGI3D tpu3 >
;- vector no.52 <TCI3V tpu3 >

4)

Figure 7.1 Coding Example from the Interrupt Vector Table 2655avec.src (cont)

Rev. 2.0, 03/01, page 234 of 282

RENESAS

.data.| _H_2SINT53
data.l _H_2SINT54
data.l _H_2SINT55
data.l _H_2SINT56
data.l _H_2SINT57

data.l _H_2SINT58
data.l _H_2SINT59
data.l _H_2SINT60
data.l _H_2SINT61
data.l _H_2SINT62
data.l _H_2SINT63
data.l _H_2SINT64
data.l _H_2SINT65
data.l _H_2SINT66
data.l _H_2SINT67
data.l _H_2SINT68
data.l _H_2SINT69
.data.l _H_2SINT70
data.l _H_2SINT71
data.l _H_2SINT72
data.l _H_2SINT73
data.l _H_2SINT74
data.l _H_2SINT75
data.l _H_2SINT76
data.l _H_2SINT77
data.l _H_2SINT78
data.l _H_2SINT79
.data.l _H_2SINT80
data.l _H_2SINT81
data.l _H_2SINT82
data.l _H_2SINT83
data.l _H_2SINT84
data.l _H_2SINT85
data.l _H_2SINT86
data.l _H_2SINT87
data.l _H_2SINT88
data.l _H_2SINT89
.data.l _H_2SINT90
data.l _H_2SINT91

.end; of 2655avec.src

;- vector no.53 [reserve]
;: vector no.54 [reserve]
;- vector no.55 [reserve]
;- vector no.56 <TGI4A tpu4 >
;: vector no.57 <TGI4B tpu4 >

;- vector no.58 <TCI4V tpu4 >

;- vector no.59 <TCl4U tpu4 >

: vector no.60 <TGI5A tpu5 >

;. vector no.61 <TGI5B tpu5 >

;- vector no.62 <TCI5V tpu5 >

;- vector no.63 <TCI5U tpu5 >

;: vector no.64 <CMIAO >

;: vector no.65 <CMIBO >

;- vector no.66 <OVIO >

;: vector no.67 [reserve]

. vector no.68 <CMIAL >

;: vector no.69 <CMIB1 >

;. vector no.70 <OVI1 >

;: vector no.71 [reserve]

;. vector no.72 <DENDOA dmac >
;: vector no.73 <DENDOB dmac >
;. vector no.74 <DEND1A dmac >
;: vector no.75 <DEND1B dmac >
: vector no.76 [reserve]

;: vector no.77 [reserve]

;: vector no.78 [reserve]

;» vector no.79 [reserve]

;: vector no.80 <ERIO sci0 >

;: vector no.81 <RXIO sci0 >

;: vector no.82 <TXI0 sci0 >

;: vector no.83 <TEIO sci0 >

: vector no.84 <ERI1 scil >

;. vector no.85 <RXI1 scil >

;. vector no.86 <TXI1 scil >

;. vector no.87 <TEI1 scil >

;. vector no.88 <ERI2 sci2 >

;. vector no.89 <RXI2 sci2 >

;: vector no.90 <TXI2 sci2 >

;. vector no.91 <TEI2 sci2 >

Figure 7.1 Coding Example from the Interrupt Vector Table 2655avec.src (cont)

RENESAS

Rev. 2.0, 03/01, page 235 of 282

Notes

(1) Declares the start routine of the undefined interrupt handler as the external reference symbol
(No.4 in table 7.1).

(2) Declares the start routine of the interrupt handler to be defined as the external reference
symbol (Nos. 1 to 3 in table 7.1).

(3) Defines the CPU initialization routine. This routine must be defined (Nos. 1 and 2 in table
7.1).

(4) Defines the timer interrupt handler. This handler must be defined when system calls wai_flg,
set_tim, and get_tim, and txxx_xxx system calls (such as twai_sem) are used (No. 3 in table
7.1).

Rev. 2.0, 03/01, page 236 of 282
RENESAS

Section 8 Load Module Creation

8.1 Overview

The Hitachi Embedded Workshop (HEW) is used to create load modules. Refer to the HEW's

manual or on-line help system to find out how to use the HEW.

Creating a system involves compiling and linking together the following four types of files into a
load module; the kernel library, the setup table, the interrupt vector table, and the application file

Figure 8.1 shows the flow for creating a load module.

Kernel library @
\ Load module
(Setup table |

T HEW | ——> @
|-

d

Note: The application files which are referred to by the setup table and the interrupt vector table
are required.

(Interrupt vector table

(Application files n
[

Figure 8.1 Creating a Load Module

Kernels for the H8S/2600 and H8S/2000 CPUs are available. Each kernel has two MCU operati
modes: the advanced mode and the normal mode. Select the kernel and the supplied applicatio

files according to the environment.

Rev. 2.0, 03/01, page 237 of 282
RENESAS

8.2 Workspace and Project Files
Create load modules with the HEW according to the following procedure.

1. Add the files necessary to create the load module to a project.
2. Specify the options for the C compiler, the assembler, and the inter-module optimizer.
3. Run the Build command.

The HI2000/3 provides a sample workspace file “product.hws”. Double-click the “product.hws”
filename to activate the HEW with the workspace “product”.

The workspace “product” contains sample projects corresponding to a variety of devices. As
shown in table 8.1, there are four sample projects that correspond to two CPUs in two operating
modes. Select the project which matches your environment (CPU and operating mode) and refer
to the descriptions on the following pages.

Select a project in the HEW'’s workspace window then select [Set as Current Project] from the
pop-up menu, as shown in figure 8.2. Projects for unused environments can be deleted.

If any CPU other than the H8S/2655 or H8S/2245 is to be used, the project must first be selectec
then the files for system construction that have been added to the project must be changed so th
they suit the CPU.

Table 8.1 Sample Projects

Project

Name Configuration ~ Description

hi26a hi26a Load module for the H8S/2600 CPU advanced mode
(already set for the H8S/2655)

hi26n hi26n Load module for the H8S/2600 CPU normal mode
(already set for the H8S/2655)

hi20a hi20a Load module for the H8S/2000 CPU advanced mode
(already set for the H8S/2245)

hi20n hi20n Load module for the H8S/2000 CPU normal mode

(already set for the H8S/2245)
Note: The default settings create a load module within the given configuration.

Rev. 2.0, 03/01, page 238 of 282
RENESAS

E:g'i}}'liEEia - Hitachi Embedded Workzhop

File Edit Project Options Build Tools Window Help |

[0 H @ S| & B e G 07 00 || i s X

I R
= el |
=3 product o
@ hiflla EI Efuild
w0 Build Al
@ hi2tia Hpdate &l Depepdeneies
- [E hi2fin

Set az Current Project
Unload Project

Remove Project

= Hdd Eiles.., IHE

@ U Pon [o] M Eemove Eiles.,
EI . .
ol Configure Wiew..

IT Bllow Docking
Hide

L Build # Find in Properties

Activate selected project | =

Figure 8.2 Selecting a Project

When the ‘Build’ command is executed on a selected sample project, the load module is create
by executing the compiler, assembler, and inter-module optimizer in sequence.

Rev. 2.0, 03/01, page 239 of 282
RENESAS

8.3 Load Module Creation

8.3.1 Adding Files to a Project

Table 8.2 lists the files that are required for a project. The sample project files at shipment are fol
the H8S/2655 and H8S/2245.

If a CPU other than the H8S/2655 or H8S/2245 is used, add new system configuration files and
delete the old ones.

Table 8.2 Files Required for Project

File Name Description Notes
Application files Tasks and interrupt handlers
sample\nnnnz smp\nnnnz sup.src Setup table Always necessary

sample\nnnnz smp\nnnnzuse.src Timer driver

System termination routine Always necessary

System idling routine Always necessary

System initialization handler

sample\nnnnz smp\nnnnzvec.src Interrupt vector table Always necessary
sample\nnnnz smp\nnnnzili.src Undefined interrupt handler

sample\nnnnz smp\nnnnzcpu.src CPU initialization routine Always necessary
sample\task.c DX tutorial task

Note: nnnn (italic-bold face) corresponds to a device.
Z (italic-bold face) shows the operating mode (a: advanced mode. n: normal mode).

Rev. 2.0, 03/01, page 240 of 282
RENESAS

Add files to the project by using the following procedure.

1
2
3.
4. If a CPU other than the H8S/2655 or H8S/2245 is used, add new system configuration files 1

Start the HEW and open the sample workspace.
Select the project which corresponds to the environment to be used.
Select [Add Files] from the File menu and add the application files.

the project.

Refer to the options of the system configuration files that have already been added and set t
options for the newly added files. After setting the options, delete the system configuration
files that will not be used.

E:g‘i}f'lil:_"fir'l - Hitachi Embedded Workshop

[REER S Odd Files..
Remove Files..

I File Extensions.. H[ﬁ. (e | & & 2 |(

B Edit) Praject Gonfieuration.
Em et Current Project k

Inzert Project..

Dependent Projects..
E-£5 Project Files

- [E] 2655nc
2655nilis

@ PERRmE I
1] 3

N] Proje. .. lgNauiga.._ I

x|
=

[4T * T, Build £ Findin Files },_Wersion Contral §

fdd filelz) to project | |" 2

Figure 8.3 Adding Files to the Project

Rev. 2.0, 03/01, page 241 of 282
RENESAS

8.3.2 Compiler and Assembler Options

For details on the compiler and assembler options, refer to section B, Compiler and Assembler
Options.

Refer to table 8.3 and figures 8.4 to 8.9 to set the compiler and assembler options for the system
configuration files.

Rev. 2.0, 03/01, page 242 of 282
RENESAS

Table 8.3 Compiler and Assembler Options

File Name’

Option

Common to all system
configuration files

CPU tab
» Specify according to the CPU used

Object tabs
e Output file directory:
$(CONFIGDIR)
e Debug Information:
Specifies the output of debugging information

List tab:
* Specifies no list output

sample\nnnnz smp\nnnnz sup.src

Source tab
* Include file directories:
Specify $(PROJDIR)\sample for the directory
e Defines:
DX=Action (If the Debugging Extension is installed)

sample\nnnnz smp\nnnnzuse.src O
sample\nnnnz smp\nnnnz vec.src O
sample\nnnnz smp\nnnnz ili.src g
sample\nnnnz smp\nnnnzcpu.src Source tab
* Defines:
DX=Action (If the Debugging Extension is installed)
sample\task.c Source tab

¢ Include file directories:
Specify $(PROJDIR)\sample for the directory

Object tab
e Section:
Specify P = Ptask or B = Btask

Note: nnnn (italic-bold face) corresponds to the device.
Z (italic-bold face) shows the operating mode (a: advanced mode. n: normal mode).

Rev. 2.0, 03/01, page 243 of 282
RENESAS

An example of the CPU tab common to all system configuration files is shown in figure 8.4.

HE5,HE3 300 Azzembler Optionshiz0al

fzzembly input file Source | Object | List | Tuning | Other GPU
=- a fizzembly source
2] 224Basup.src
|2 224Bause.src
- 2245avecsrc
224Bailizre CRU :
-.[E] 224Bacpusrc -
______ [Default Optio Operating mode : IF'n:Ivanu:eu:I LI

- I:l Linkage symbol f Address zpace : |1I3r'-'1 byte j

<] | ©

]9 I Cancel

Figure 8.4 CPU Tab Window in the H8S, H8/300 Assembler Options

An example of the Object tab common to all system configuration files is shown in figure 8.5.

Rev. 2.0, 03/01, page 244 of 282
RENESAS

mbler Options hi20ar

RS =cembly input file
Ela fizzembly source
{ 224Bazup.src Debue information :

Source Cbject IList | Tuning | Other | CPU |

224bauze sro I'u'l.l'ith debug infarmation j
224Bavec.src
2294Railiarc [T Generate assembly source file after preprocess

224Bacpusrc -
] Default Optio I™ Optimize

-] Linkage symbal f Default of branch displacement size LI

[~ Generate file for inter-module optimization

Dutput file directory :

||::¥hi2EIEIEI_3¥pdeu::t¥hi2EIa Modify... |
]9 I Cancel |

<] | ©

Figure 8.5 Object Tab Window in the H8S, H8/300 Assembler Options

Rev. 2.0, 03/01, page 245 of 282
RENESAS

An example of the List tab common to all system configuration files is shown in figure 8.6.

HBS,HE/300 A=sembler Optionsthiz0ay

fzzembly input file

=8 a fizzembly source
-] 224Bazup.sre
-] 224Bauzs.src
----- 224Bavec.src

5 224Bailizre

: . 224Bacpu.src
------ D Default Optio
- D Linkage symbol f

| H

Source | Object List |Tun|ng | Other | i |

—Gu:untents"f

SOUFGEE EROErar ¢
panditianals:
[Metimitimne:
) | =
Expansmns
Etretired
nn[=0%

(GrEEs rETERENRE &

EEEhE

[o |

Cancel

Figure 8.6 List Tab Window in the H8S, H8/300 Assembler Options

Note: “Select the ‘Source’ tab to specify include-file directories or define symbols”.

Figure 8.7 shows an example of the specification of include files on the tabbed page ‘Source’.
“Include file directories” is selected from the dropdown list labelled “Show entries for”.

Rev. 2.0, 03/01, page 246 of 282
RENESAS

200 Azzembler Options thi20al

Ea Azzembly input file | Source |Object | List | Tunine | Other |
Ela Smbly E0LMEE Show entries for :

i A=LIp.EFC
2245u s:: IIru:qu:Ie file directories LI

2245avecsrc c¥hi2000_3¥product¥sample¥ Add..
2245aili.src

224Bacpusrc Inzert.. |
F-] Linkage symbal f ﬂl

[[=

[flasE dor |

<] | ©

]9 I Cancel

Figure 8.7 Source Tab Window in the H8S, H8/300 Assembler Options
(Include file directories)

Figure 8.8 shows an example of the specification of the debugging extension (DX) on the tabbe
page ‘Source’. ‘Defines’ is selected from the dropdown list labelled “Show entries for”.

Rev. 2.0, 03/01, page 247 of 282
RENESAS

f300 Aszembler Options hi20a)

=43 Assembly input file | Source ||:||:.je.3t | List | Tunine | Other |
Ela fizzembly source
----- E: |.E|:::I_J|:|_:£:r'|::

----- 224Bauzesrc
; 224bavec.src Symbol | String

- [B] 2245ailisre o At ok i

: 224Bacpusrs et |
.|] Default Optios

F-_7 Linkage symbal %I

[[=

[flasE dor |

Show entries for :

I Defines

<] | ©

]9 | Cancel |

Figure 8.8 Source Tab Window in the H8S, H8/300 Assembler Options (Defines)

Figure 8.9 shows an example of the specification of sections on the tabbed page “Object”. A
section is selected from the dropdown list labelled “Section”.

Rev. 2.0, 03/01, page 248 of 282
RENESAS

423 CAC+H source file Source Cbject i List i Optimize i Oither i

F'-Eﬂ G zource file Output file type -

_ - — = Subeontions
; [Default Option iMachlne code (*obj) =] | Eutrptione
F-[Z3 G+ zource file Template :
W Generate debug information i,.:.'ut,:, 1_!
-aection :
’V | Frogram section (F) =] |Ptask
Store =tring data in : iGDnst zection LI

Mul/Div operation specification
|Bazed on AMSIGuarantes 16bit 3= a result of 16bitk180it =]

Cutput directory

‘! ILI |G:¥hiEDD_3¥pruduct¥hi2I]a Modify... I
] 4 I Cancel I

Figure 8.9 Object Tab Window in the H8S, H8/300 C Compiler Options

8.3.3 Inter-Module Optimizer Setting

1. Inter-Module Optimizer Options Input Tab

In figure 8.10, a kernel library, which has a parameter check function and a shared-stack
function, and a C-language interface library is specified for the provided project file. Specify
library files according to the user environment (CPU and operating mode).

Rev. 2.0, 03/01, page 249 of 282
RENESAS

OptLinker aptions hi20a)

Ihput iOutput I Cptimize i Sectiuni et ify i Other i

Ihput files :

® [Felocatable files and object fi

=23 Library files

B PHNATHANSPROJECTEHRO00 ST T8ck Lot |
. % P¥MAIHAMY P RO JECT¥HIZ000 311 ¥cha el |
1] Binary files = &=

4 | | _}I EEemove |

[=k=3

Defines :
Define | Twpe | Yalue | &dd..
Bemave i
¥ Use entry point : Prelinker contral :
[[H25 CPUMNI Asto =]
[T Use external subcommand file K I Cancel I

Figure 8.10 Inter-Module Optimizer Options Input Tab

Kernel libraries and C-language interface libraries can be selected from table 8.4.

If application libraries or standard libraries provided by the H8S series C compiler is used,
they must be specified through this Input tab.

Rev. 2.0, 03/01, page 250 of 282
RENESAS

Table 8.4

Supplied Library File List

Parameter Check

Shared-Stack

Library Names File Name Function Function
Kernel H8S/2600 Advanced hilib\26aknlps.lib Yes Yes
library CPU mode hilib\26aknipn.lib Yes No
hilib\26aknlIns.lib No Yes
hilib\26akninn.lib No No
Normal mode hilib\26nknlps.lib Yes Yes
hilib\26nknlpn.lib Yes No
hilib\26nknlIns.lib No Yes
hilib\26nkninn.lib No No
H8S/2000 Advanced hilib\20aknlps.lib Yes Yes
cPU mode hilib\20aknlpn.lib Yes No
hilib\20aknlIns.lib No Yes
hilib\20akninn.lib No No
Normal mode hilib\20nknlps.lib Yes Yes
hilib\20nknlpn.lib Yes No
hilib\20nknIns.lib No Yes
hilib\20nkninn.lib No No
System- H8S/2600 Advanced hilib\26acif.lib — —
call C- CPU mode
:i{‘gf“;cgee Normal mode hilib\26ncif.lib — —
library H8S/2000 Advanced hilib\20acif.lib — —

CPU

mode

Normal mode hilib\20ncif.lib

RENESAS

Rev. 2.0, 03/01, page 251 of 282

2. Inter-Module Optimizer Options Output Tab

The Output tab specifies the format and type of load module, debugging information, and loac
module path. The projects provided produce load modules within the configuration.

Optlinker options thi20a) !

put Output |Optimize i Sectiuni Werify i Ciher i

Tvpe of output file : [Stype via abzolute =]
Data record header : INn:-ne _"f__l
Debue information : iIn geparate debug file #dbe) _:_!

Show entries for
ROM to RAk mapped sections ;I

Fam | Ram |

Add..

[md it I
Bemave i

Cutput file path :
iD:¥hiEDDD_3¥pdeuct¥hi2EIa¥hi2Ela.mu:|t

[T Use external subcommand file K Cancel

Figure 8.11 Inter-Module Optimizer Options Output Tab

Rev. 2.0, 03/01, page 252 of 282
RENESAS

3. Inter-Module Optimizer Options Section Tab
The Section tab allocates addresses to each section. The address allocations for the sectiol
the sample projects suit the H8S/2655 or H8S/2245. If a CPU other than H8S/2655 or
H8S/2245 is used, specify the sections included in the input files and reallocate addresses tc
these sections.

OptLinker aptions hi20a)

Input i Ctput I Optimize =ection i‘-.-rerif;-.f i Other i

Relocatable zection start address :

| Address Section | - Hidd...
HOO000200 | hid 2=

hez=etup Telad ifa. |

hZzuzer

hZzilint fewn Dverlay I
hizc
Ptazk Bemonve |

HOOFFECOD | hig_ 2= ram

hZz=tack |
hsmpf = | f}
hZ=mpl 1 =
hZzusr ram ll o L

Generate external svmbol file :

[T Use external subcommand file K I Cancel I

Figure 8.12 Inter-Module Optimizer Options Section Tab

Rev. 2.0, 03/01, page 253 of 282
RENESAS

The sections of the provided projects are listed in table 8.5.

Table 8.5 List of Sections Included in the Provided Project Files

Memory Type Section

Description

ROM h2svectr Interrupt vector table
hi8_2s Kernel
h2ssetup Setup table
h2suser System initialization handler, timer initialization routine,
timer interrupt handler, system termination routine, CPU
initialization routine, system idling routine
h2silint Undefined interrupt handler
h2sc C-language interface library
Ptask Tutorial task for debugging extension (DX)
RAM hi8_2s_ram Kernel system work area
h2sstack Task stack area
h2smpf Fixed-size memory pool area
h2smpl Variable-size memory pool area
h2susr_ram CPU initialization routine stack area
h2strc Trace buffer area
Btask Message area of the tutorial task for debugging

extension (DX)

Be sure to specify addresses for all sections in the input files. The inter-module optimizer

automatically places all sections that don’t have overt address specifications in sequence after tf
last section of the input files were specified. In such a case, the sections may not be arranged in

expected order, and the program may not work properly. Specifying [Check for Unlinked

Sections] in the tabbed page ‘Other’ will produce warning messages when there are sections tha
don’t have address specifications. In such a case, linkage is halted. Specifying a section name tt
does not actually appear in the input files will also produces a warning message, but in this case

the inter-module optimizer simply continues linking.

Note the following when allocating memory.

» The interrupt vector table (h2svectr) must be allocated to address H'0. When using the sampl
interrupt vector table, it will be automatically allocated to address H'O; therefore, the section

tab does not have to be specified for the sample interrupt vector table.

e The kernel (hi8_2s) must be allocated from an even address. In the advanced mode, the sect
must be allocated within the range from H’xx0000 to H’xxFFFF. The upper address xx must

be the same.

Rev. 2.0, 03/01, page 254 of 282

RENESAS

8.3.4

After application files have been added to the project and those files have been compiled,

The kernel system work area (hi8_2s_ram) must be allocated from an even address. In the
advanced mode, the section must be allocated within the range from H'’xx0000 to H'xXxFFFF.
The upper address xx must be the same.

The setup table (h2ssetup) must be allocated from an even address. In the advanced mode

section must be allocated within the range from H’xx0000 to H'xxFFFF. The upper address »
must be the same.

Build Execution

assembled, and optimized, the load module is built.

To build the load module, choose [Build] or [Build All] from the Build menu of the HEW as

shown in figure 8.13.

E:g‘i}f'lil:_"fir'l - Hitachi Embedded Workshop
File Edit Project Options | Build Tools Window Help
D= GG) CEIHEE Cirlery
| Build All (
E =l Ilpdate &l Dependencies B
E@ pru:u:lu_u:t = Generate Makefile
hi20a
hi20n Stop Build GitrltEreak
hiZfia

Terminate Eurrent Toel
- (5 DT L
Ela Project Fi|EE_I
2658ncp
- |E] 2658nilis

L (21 2BFFRoL

1] I B

N] Proje.... lgNauiga.._ I

x|
=

[4T * T, Build £ Findin Files },_Wersion Contral §

Build out of date active project and out of date dependant prDjEl |—- i

Figure 8.13 Executing the Build

Rev. 2.0, 03/01, page 255 of 282

RENESAS

8.4 C-Language Interface Library Projects

To rebuild C-language interface source files as C-language interface library files, double-click the
C language interface workspace fikxcif.hws” that correspond to the target environment, as
indicated in table 8.6.

Table 8.6 C-Language Interface Projects

Project Name Description

26acif For H8S/2600 CPU advanced mode
26ncif For H8S/2600 CPU normal mode
20acif For H8S/2000 CPU advanced mode
20ncif For H8S/2000 CPU normal mode

Rev. 2.0, 03/01, page 256 of 282
RENESAS

Appendix A Memory Size

A.l Memory Size

The memory area (RAM) size to be used by the HI2000/3 system can be calculated as follows.
When calculating the stack size of the system initialization handler and timer initialization routine
use the calculation table for an interrupt handler with the same interrupt level as the kernel
interrupt mask level.

Al1l OS Work Area Size Calculation
Calculate the OS work area size using table A.1.

Table A.1 OS Work Area Size Calculation

Item Calculation Size (Bytes) Remarks

System management table 10 + (4 x maximum task Always necessary

(_HI_SYSMT) priority (MAXPRI))

Task management block 18 x (number of tasks defined Always necessary
(_HI_TCB) (TSKCNT))

Task management block 2 8 x (number of tasks defined Necessary when
(_HIL_TCB2) (TSKCNT)) system calls with the

timeout function are
used

Event flag management 6 x (number of event flags
block (_HI_FLGCB) defined (FLGCNT))

Necessary when the
event flag is used

Semaphore management 6 x (number of semaphores
block (_HI_SEMCB) defined (SEMCNT))

Necessary when the
semaphore is used

Mailbox management block 8 x (number of mailboxes
(_HI_MBXCB) defined (MBXCNT))

Necessary when the
mailbox is used

Fixed-size memory pool 6 x (number of fixed-size
management block memory pools defined
(_HI_MPFCB) (MPFCNT))

Necessary when the
fixed-size memory
pool is used

Variable-size memory pool
management block
(_HI_MPLCB)

20 x (number of variable-size
memory pools defined
(MPLCNT))

Necessary when the
variable-size memory
pool is used

RENESAS

Rev. 2.0, 03/01, page 257 of 282

Table A.1 OS Work Area Size Calculation (cont)

Size
Item Calculation (Bytes) Remarks
Cyclic handler management 20 x (number of cyclic Necessary when the
block (_HI_CYHCB) handlers defined (CYHCNT)) cyclic handler is used
Timer management blocks ~ 10* + 4** + 14*°
(_HI_TIMCB, _HI_TIMCB2,
and _HI_TIMCB3)
Trace buffer management 8 Necessary when the
block (TBACB) trace function is used

Total

Notes: 1. Necessary when the timer driver is used.
2. Necessary when system calls with the timeout function are used.
3. Necessary when the cyclic handler is used.

Note: If NOTUSE is selected for the timeout function definition in the setup table (label name
TTMOUT), the TCB2 and TIMCB2 areas used by the timeout function are not defined.
If O is specified for the timer stack size in the setup table (label name TIMSTKSIZ), the
timer management blocks (TIMCB, TIMCB2, and TIMCB3 areas) and timer
management-related blocks (TCB2 and CYHCB) are not defined.
If O is specified for the trace stack size in the setup table (label name TRCSTKSIZ), the
trace buffer management block is not defined.

Rev. 2.0, 03/01, page 258 of 282
RENESAS

Al.2 OS Stack Area Size Calculation

Calculate the OS stack area size (OSSTKSIZ) using table A.2. Define the OS stack area size in

setup table.

Table A.2 OS Stack Area Size Calculation

Size
Item Calculation (Bytes) Remarks
Stack area used by OS 18 (advanced mode) or 18 or 14 Always necessary

14 (normal mode)

Stack area for interrupts 10 x LOWINTNST*
+ 6 x UPPINTNST*

When interrupt
control mode 2 or 3
is used

8 x LOWINTNST*
+4 x UPPINTNST*

When interrupt
control mode 0 or 1
is used

Stack area for undefined 8 When interrupt
interrupts*’ control mode 2 or 3
is used
6 When interrupt
control mode O or 1
is used
Total

Notes: 1. Number of nesting interrupts of which level is equal to or lower than the kernel interrupt

mask level.

2. Number of nesting interrupts (including NMIs) of which level is higher than the kernel

interrupt mask level.
3. Necessary when undefined interrupts are generated.

Rev. 2.0, 03/01, page 259 of 282

RENESAS

Al.3

Timer Interrupt Stack Area Size Calculation

Calculate the timer interrupt stack area size (TIMSTKSIZ) using table A.3.

Define the timer interrupt stack size in the setup table.

Table A.3 Timer Interrupt Stack Area Size Calculation

Size
Item Calculation (Bytes) Remarks
Stack area used by timer 40 (advanced mode) or 40 or 38 Always necessary
interrupt handler 38 (normal mode)
Stack area for interrupts 10 x LOWINTNST* When interrupt control
+6 x UPPINTNST* mode 2 or 3 is used
8 x LOWINTNST* When interrupt control
+4 x UPPINTNST* mode 0 or 1 is used
Stack area for undefined 8 When interrupt control
interrupt*® mode 2 or 3 is used
6 When interrupt control
mode 0 or 1 is used
Stack area used by cyclic User-specified size Add the size calculated by
handler*' using table A.5.
Total
Notes: 1. Number of nesting interrupts of which level is equal to or lower than the kernel interrupt
mask level and higher than timer interrupt level.
2. Number of nesting interrupts (including NMIs) of which level is higher than the kernel
interrupt mask level.
3. Necessary when undefined interrupts are generated.
4. When multiple cyclic handlers are used, calculate the stack size for each handler, then

select the maximum size to add to the total stack size.

When a cyclic handler is written in C language, calculate the stack size from the
function frame size shown in the compile listing. When issuing a system call from a
cyclic handler, calculate the stack size using table A.5, Interrupt Handler Stack Area
Size Calculation.

Rev. 2.0, 03/01, page 260 of 282

RENESAS

Al.4 Task Stack Area Size Calculation

Calculate the task stack area size for each task ID using table A.4. Define the task stack area fc
each task ID separately in the setup table. When a task is written in C language, calculate the s
size from the function frame size shown in the compile listing. The overall size of the task stack
the sum of all the task ID sizes. When using the shared stack function, specify the maximum siz
used by the tasks that share the stack area.

Note: When using the shared stack function, define 8 bytes of area ranging from the end
address of each stack area in the direction of ascending addresses.

Table A.4 Task Stack Area Size Calculation

Size

Item Calculation (Bytes) Remarks
Stack area used by task User-specified size
Stack area used by OS 50 (H8S/2600 CPU) or 50 or 42 Always necessary

42 (H8S/2000 CPU)
Stack area for interrupts 10 x LOWINTNST* When interrupt control

+6 x UPPINTNST* mode 2 or 3 is used

8 x LOWINTNST* When interrupt control

+ 4 x UPPINTNST* mode 0 or 1 is used
Stack area for system call 6 Necessary when trace
trace function is used
Stack area for undefined 8 When interrupt control
interrupts** mode 2 or 3 is used

6 When interrupt control

mode 0 or 1 is used
Stack area for C language 22 (advanced mode) or Necessary when the task
interface 14 (normal mode) is written in C language
Stack area for shared stack 8 Necessary when the
function shared stack function is
used

Total

Notes: 1. Number of nesting interrupts of which level is equal to or lower than the kernel interrupt
mask level.

2. Number of nesting interrupts (including NMIs) of which level is higher than the kernel
interrupt mask level.

3. Necessary when undefined interrupts are generated.

Rev. 2.0, 03/01, page 261 of 282
RENESAS

Al5

Interrupt Handler Stack Area Size Calculation

Calculate the stack area size for each interrupt handler using the following table A.5.

Note that the interrupt handler stack area can be shared with interrupt handlers of the same
interrupt priority level. Accordingly, the maximum interrupt handler stack area size of the same

interrupt priority level must be defined.

The handler stack area must be defined for each handler separately.

If an interrupt handler is written in C language, calculate the stack size from the function frame

size shown in the compiler listing.

Table A.5 Interrupt Handler Stack Area Size Calculation
Size
ltem Calculation (Bytes) Remarks
Stack area used by interrupt User-specified size
handler
Stack area used by OS 42 (advanced mode) or 42 or 38 Always necessary

38 (normal mode)

Stack area for interrupts

10 x LOWINTNST*
+6 x UPPINTNST*

When interrupt control
mode 2 or 3 is used

8 x LOWINTNST*
+4 x UPPINTNST*

When interrupt control
mode 0 or 1 is used

Stack area for system call 6 Necessary when trace
trace function is used
Stack area for undefined 8 When interrupt control
interrupts*’ mode 2 or 3 is used

6 When interrupt control

mode 0 or 1 is used

Stack area for C language
interface

22 (advanced mode) or
14 (normal mode)

Necessary when the
interrupt handler is
written in C language

Total

Notes: 1.

mask level and higher than the current interrupt level.

2. Number of nesting interrupts (including NMIs) of which level is higher than the kernel
interrupt mask level.

3. Necessary when undefined interrupts are generated.

Rev. 2.0, 03/01, page 262 of 282

RENESAS

Number of nesting interrupts of which level is equal to or lower than the kernel interrupt

A.1.6 Fixed-Size Memory Pool Area Size Calculation
Calculate the fixed-size memory pool area size for each memory pool ID using table A.6.
The overall size of the fixed-size memory pool areas is the sum of all the memory pool ID sizes.

Define the number of the fixed-size memory blocks (MB?_CNT) and the size of the fixed-size
memory block (MB?_LEN) for each memory pool ID in the setup table to reserve the memory
pool area.

Table A.6 Fixed-Size Memory Pool Area Size Calculation

Size
Item Calculation (Bytes) Remarks
Fixed-size memory pool Number of fixed-size Management area (4
area memory blocks** x (Memory bytes) is needed for
block size* + 4) each memory block

Total

Notes: 1. The label of the number of fixed-size memory blocks is MB?_CNT.
2. The label of the fixed-size memory block size is MB?_LEN.

A.1l.7 Variable-Size Memory Pool Area Size Calculation
Calculate the variable-size memory pool area size (MPL?_SIZ) for each ID using table A.7.
The overall variable-size memory pool areas is the sum of all the memory pool ID sizes.

Define the size of the variable-size memory pool area (MPL?_SIZ) for each memory pool ID in
the setup table to allocate the memory pool area.

Table A.7 Variable-Size Memory Pool Area Size Calculation

Size
Item Calculation (Bytes) Remarks
Variable-size memory pool Variable-size memory Management area (16
area (MPL?_SIZ) pool size bytes) is needed for
+ (16 x n¥) each memory block

Total

Note: Maximum number of variable-size memory blocks acquired.

Rev. 2.0, 03/01, page 263 of 282
RENESAS

A.1.8 Trace Function Stack Area Size Calculation

Calculate the trace function stack area size (TRCSTKSIZ) using table A.8. This stack area is
needed only when using the trace function.

Define the trace function stack area size in the setup table.

Table A.8 Trace Function Stack Area Size Calculation

Size
Item Calculation (Bytes) Remarks
Stack area used by OS 26 26 Always necessary
Stack area for interrupts 6 x UPPINTNST* When interrupt control
mode 2 or 3 is used
4 x UPPINTNST* When interrupt control
mode 0 or 1 is used
Stack area for undefined 8 When interrupt control
interrupts** mode 2 or 3 is used
6 When interrupt control

mode 0 or 1 is used

Total

Notes: 1. Number of nesting interrupts (including NMIs) of which level is higher than the kernel
interrupt mask level.

2. Necessary when undefined interrupts are generated.

A.1.9 Trace Buffer Area Size Calculation

Calculate the trace buffer area (TRC_BUF) size using table A.9. This area is needed only when
using the trace function. This calculation table can be used in both normal mode and advanced
mode.

Define the trace buffer area size in the setup table to reserve the trace buffer area.

Table A.9 Trace Buffer Area Size Calculation

Size
Item Calculation (Bytes) Remarks
Trace buffer management area 16 16

Trace entry information area 28 x number of trace
information items acquired
(TRCCNT)

Total

Rev. 2.0, 03/01, page 264 of 282
RENESAS

A.1.10 HI2000/3 Work Area Size Calculation

Calculate the HI2000/3 work area (RAM) size using table A.10.

Table A.10 HI2000/3 Work Area Size Calculation

Size

Item Calculation (Bytes) Remarks

OS work area size — See table A.1
OS stack area size — See table A.2
Timer interrupt stack area size — See table A.3
Task stack area size (total)*' — See table A4
Interrupt handler stack area size* — See table A.5
Fixed-size memory pool area size (total) — See table A.6
Variable-size memory pool area size (total) — See table A.7
Trace function stack area size — See table A.8
Trace buffer area size — See table A.9

NMI interrupt handler stack area size

System initialization handler stack area size —

CPU initialization routine stack area size** —

Timer initialization routine stack area size —

Other —

()

Other —

()

Other —

()

Other —

()

Total

Notes: 1. When the shared stack function is used, every task stack area must have an area for

the shared stack management.

. Interrupts with the same interrupt level can share the interrupt handler stack area.

Accordingly, define the maximum interrupt handler stack area size that will be used by
the interrupt handlers with the same level.

. The CPU initialization routine is executed before the kernel is initiated. Accordingly, the

stack area for the CPU initialization routine can be used as stack areas (RAM) other
than the NMI interrupt handler stack area.

Rev. 2.0, 03/01, page 265 of 282
RENESAS

Rev. 2.0, 03/01, page 266 of 282
RENESAS

Appendix B Compiler and Assembler Options

B.1 Compiler Options

This section covers the important C compiler options used to create this system. For details on
compiler options, refer to the H8S, H8/300 Series C/C++ Compiler User's Manual.

1.

cpu command option
Specifies the CPU type. Specify the appropriate value for the CPU used.

If a program is compiled with an incorrect CPU type specified and then executed, or compile
by specifying two or more different CPU types and then executed, normal system operation
cannot be guaranteed.

include command option
Specifies include files.

The kernel provides standard header file hi2000.h. The hi2000.h file is under the sample
directory; include this header when required.

debug command option

Specifies the addition of debugging information to the object. Specify it when using Hitachi's
debugging environment.

list command option

Specifies the creation of a compile list file. Important information such as stack frame size ar
section size is output to the list file. The list will be useful for calculating stack sizes and
linking files.

objectfile command option

Specifies which object module to output.

B.2 Assembler Options

This section covers the important assembler options used to create this system. For details on
assembler options, refer to the H8S, H8/300 Series Cross Assembler User's Manual.

1.

cpu command option

Specifies the CPU type. Specify the appropriate value for the CPU used.

If a program is compiled with an incorrect CPU type specified and then executed, or compile
by specifying two or more different CPU types and then executed, normal system operation

cannot be guaranteed.

include command option

Specifies include files.

The kernel provides standard header file hi2000.inc. The hi2000.inc file is under the sample
directory; include this header when required.

Rev. 2.0, 03/01, page 267 of 282
RENESAS

3. debug command option
Specifies the addition of debugging information to the object. Specify it when using Hitachi’s
debugging environment.

4. list command option
Specifies the creation of an assembly list file. Important information such as section sizes is
output to the list file. The list will be useful for linking files.

5. objectfile command option
Specifies which object module to output.

Rev. 2.0, 03/01, page 268 of 282
RENESAS

Appendix C Device Driver

C1 Timer Driver

The kernel provides a sample timer driver using the timer pulse unit (TPU) and the free running
timer (FRT) incorporated in the H8S series MCU. This section describes the sample timer drive
When using another hardware timer, refer to the appropriate timer hardware specifications.

A timer driver must be created and incorporated into the system when using the kernel time
management function. The timer driver consists of a timer initialization routine and a timer
interrupt handler.

Figure C.1 shows the timer driver processing.

Kernel Timer driver
e)
Timer initialization
Kernel initialization processing = 4 routine

Timer initialization
routine calling

|Timer device initializationl

~— RTS)
&)
4 Timer interrupt

Timer interrupt | Timer interrupt clear |
occurrence

Time management

Time update
|

Timer handler execution
control by time

Task execution
control by time

~— Timer interrupt
processing by kernel

Task switching process
I

Task scheduling

Figure C.1 Timer Driver Processing

Rev. 2.0, 03/01, page 269 of 282
RENESAS

C.l1 Timer Initialization Routine

The timer initialization routine initializes the hardware timer to be used. Table C.1 lists the
conditions for the timer initialization routine processing.

Table C.1 Conditions for Timer Initialization Routine Processing

Item Description

Interrupt mask Initiated in interrupt mask state.

Usable registers The registers guaranteed in the C language programs (functions) can be used.

Stack pointer Set the same value as that at initiation when control is returned to the kernel.

Usable system No system call can be issued.

calls

Usable stack When using the stack, reserve the stack area for the timer initialization routine

area during system configuration, and switch the stack when the timer initialization
routine is initiated.

Termination Execution is terminated by the RTS instruction. At termination, set the task

state as that at initiation.

C.1.2 Timer Interrupt Handler
The timer interrupt handler is initiated by the occurrence of an interrupt from the hardware timer.

When a hardware timer interrupt occurs, the timer interrupt handler performs the timer interrupt
reset processing, which clears the hardware timer interrupt, and then jumps to the kernel timer
interrupt processing routine, which requests time management processing to the kernel.

The timer interrupt handler can also control task execution by issuing system calls for task-
independent portion from the timer interrupt reset processing.

Rev. 2.0, 03/01, page 270 of 282
RENESAS

Table C.2 lists the conditions for the timer interrupt reset processing.

Table C.2 Conditions for Timer Interrupt Reset Processing

Item Description

Interrupt mask Initiated in interrupt mask state.

Usable registers ERO to ERG6.

Stack pointer When time management processing is not requested:

When returning control to the interrupt source, set the value to that at initiation.

When time management processing is requested:

Set the stack pointer to the value to that when switched to timer interrupt
handler. Refer to the stack state at timer interrupt reset processing termination
shown in figure C.2.

Usable system System calls that can be issued from task-independent portion.
calls

Usable stack Reserve the stack area at system configuration and switch the stack at
area initiation.
Termination Terminates processing by jumping to the kernel timer interrupt processing.

jmp @_H_timsys

_H_timsys is the head symbol of kernel timer interrupt processing. At
termination, set the stack as that at initiation.

When the timer interrupt reset processing is terminated, set the stack pointer to the address of t
timer interrupt handler stack area used when the timer interrupt is initiated, and jump to the kerr
timer interrupt processing routine.

Figure C.2 shows the stack state at timer interrupt reset processing termination.

Rev. 2.0, 03/01, page 271 of 282
RENESAS

(1) Interrupt Control Mode 0 or 1

+4

CCR at interrupt

— PC attimer —
interrupt*3

SP 1

Stack area
used by timer
interrupt handler

Stack pointer
at timer interrupt

Stack area at timer interrupt

Stack size for
timer interrupt

handler
*2

Stack area for timer interrupt handler

Notes: 1. Stack pointer value when execution jumps to the timer interrupt

processing of the kernel.
2. For the timer interrupt stack size, refer to appendix A, Memory Size.
3. The low-order 16 bits are valid in normal mode.

(2) Interrupt Control Mode 2 or 3

EXR at interrupt *4

+1
+2

Reserved

+6

CCR at interrupt

PC at timer
— interrupt*3 -

SP *1

Stack area
used by timer
interrupt handler

| Stack pointer _|
at timer interrupt

Stack area at timer interrupt

Stack size for
timer interrupt

handler
*2

Stack area for timer interrupt handler

Notes: 1. Stack pointer value when execution jumps to the timer interrupt

processing of the kernel.
2. For the timer interrupt stack size, refer to appendix A, Memory Size.
3. The low-order 16 bits are valid in normal mode.
4. The EXR register contents are not saved in the stack in control

mode O or 1.

Rev. 2.0, 03/01, page 272 of 282

Figure C.2 Stack State at Timer Interrupt Reset Processing Termination

RENESAS

C.1.3 Timer Driver Definition Information

A timer driver is required to use the time management function. The kernel uses the interrupts &
certain intervals input from the hardware for time management. The 16-bit timer in the H8S seri
MCU is used as the hardware timer for time management. The timer driver consists of a timer
initialization routine and a timer interrupt handler. The kernel provides an H8S series sample
timer driver file sampleinnnamphnnnase.src.

Timer Initialization Routine (Label Name: _HIPRG_TIMINI): Initializes the hardware timer
used as a system clock. Note that the timer interrupt level must not be higher than the kernel
interrupt mask level specified in the setup table.

Timer Interrupt Handler (Label Name: _H_2S_TIM): Clears the timer interrupt after a

hardware timer interrupt occurs (timer interrupt reset procedure) and causes a jump to the kerne
timer interrupt processing. This handler must be created if the hardware timer specifications
require interrupts to be cleared.

For details on the hardware timer specifications, refer to the target MCU hardware manual.

Rev. 2.0, 03/01, page 273 of 282
RENESAS

Timer Cycle Modification: The TPU in the H8S/2655 is described as an example. The sample
timer driver specifies the hardware timer cycle as 10 ms by using the TPU general register OA
(TGROA) as an output compare register. Table C.3 shows the definition of assign directives to
simplify the timer cycle modification.

Table C.3 Definition of Assign Directive for Timer Driver

Label Name Contents Set Value

TGRA_DATA Data to be set in the timer general register OA (TGROA) H'30D3

Timer prescaler

Selects the timer counter clock from among the following:
()

@4

@16

@64

The timer cycle is determined by the data specified in TGROA and
the timer prescaler using the following formula.

Timer cycle = x (s)

Timer prescaler = n

TGROAdata=xxn-1

Example: Sample driver value
CPU clock (g) = 20 MHz

Timer prescaler = @¢/16

Timer cycle =10 ms

TGROA =0.01 (20,000,000/16) — 1
=12,500-1

= H'30d3

The relationship between the timer prescaler and timer cycle range
is shown below when the CPU clock @is assumed to be 20 MHz.
Timer prescaler = @ Timer cycle range: 50.0 us to 3.27 ms

Timer prescaler = @4: Timer cycle range: 200.0 us to 13.1 ms
Timer prescaler = ¢/16: Timer cycle range: 800.0 ps to 52.4 ms
Timer prescaler = @64: Timer cycle range: 3200.0 ps to 209.7 ms

TCR_DATA Data to be set in the timer control register 0 (TCRO) H'22

Counter clear
Compares the timer counter (TCNTO) with the TGROA, and if they
match, clears the TCNTO.

Timer prescaler
Selects the internal clock of ¢/16 as the timer counter clock.

IPRF_TPUO The interrupt level of the TPU channel O interrupt handler H'05

Rev. 2.0, 03/01, page 274 of 282
RENESAS

Timer Driver Definition and Deletion: To define the timer driver, the timer initialization

routine and the timer interrupt handler must be defined. When the timer driver is not used, the
timer driver information must be deleted from the interrupt vector table and the setup table, and
the supplied timer driver must be deleted.

Defining the timer initialization routine

To define the timer initialization routine, add the label name _HIPRG_TIMINI to the head of
the timer initialization routine program, and declare it with the export directive.

To not define the timer initialization routine, set the label name _HIPRG_TIMINI to 0 by the
equate directive.

Defining the timer interrupt handler

Define the start address of the timer interrupt handler in the interrupt vector table.
Deleting the timer driver

When the timer driver is not used, delete it as follows:

O

Interrupt vector table

For the H8S/2655, delete the external reference declaration (import) from the start addre:
of the timer interrupt handler (label name _H_2S TIM), and define the undefined interrup
handler (label name _H_2SINT32) in vector number 32.

Setup table

Modify the timer stack size (label name TIMSTKSIZ) to 0.

Timer driver (timer initialization routine and timer interrupt handler)

Remove the timer initialization routine program (label name _HIPRG_TIMINI), and set
the label name _HIPRG_TIMINI to 0 by the equate directive. Remove the timer interrupt
handler program (label name _H_2S_TIM). Remove the external reference symbol
declaration (import) from the OS timer interrupt processing (label name _H_timsys).

Precautions on Using a Timer other than those of the H8S Series MCWhen a timer other
than the H8S series MCU’s TPU and FRT is used, a new timer driver must be created.

Rev. 2.0, 03/01, page 275 of 282
RENESAS

Rev. 2.0, 03/01, page 276 of 282
RENESAS

D.1

Appendix D Error Codes

System Call Error Codes

Table D.1 System Call Error Codes

Error Code Error Code Error
(Mnemonic) (ercd) Check Type Error Contents
1 E_OK H'0000 (H'0) [K] Normal termination
2 E_RSFN H'ffec (-H'14) [p] Reserved function code number
(Undefined function code
specified)
E_PAR H'ffdf (-=H21) [PV/IK] Parameter error
E_ID H'ffdd (-H23) [p] Invalid ID number
E_NOEXS H'ffcc (-H'34) [p] Object does not exist
Object is undefined
6 E_OBJ H'ffcl (—H'3f) [K] Object state is illegal
7 E_CTX H'ffbb (-=H'45) [PV/IK] Context error
8 E_QOVR H'ffb7 (-H'49) [K] Overflow of queuing or nesting
9 E_TMOUT H'ffab (-=H'55) [K] Polling failure or timeout
10 E_RLWAI H'ffaa (-H'56) K] Wait state has been released
forcibly
11 EV_ILBLK H'ffle (-H'e2) [K] Returns illegal memory block
Error check type: [p] is an error that is checked when the parameter checking function is

incorporated.

[k] is an error that is checked even when the parameter checking function is not

incorporated.

RENESAS

Rev. 2.0, 03/01, page 277 of 282

D.2 Debugging Extension Errors

Table D.2 Debugging Extension Error Messages

Error Message

Meaning and Actions to Take

Cannot open HIOS window - no HIOS program
loaded.

The load module is not loaded.
Load the load module.

Cannot open memory display window @ H'’XXXXXX
Operation not implemented on this version of HDI.

The Memory window cannot be displayed.
This window is not supported by this version
of HDI.

Cannot open program code window @ H’XXxxxx
Operation not implemented on this version of HDI.

The Program window cannot be displayed.
This window is not supported by this version
of HDI.

ERROR : Command Already On Stack.

The specified command request has
already requested.

ERROR : Demon Code Not Present. Command
Cancelled.

The debug daemon is not installed.
Install the debug daemon referring to
Installing the Debug Daemon in section 4.4.

ERROR : Demon Code Not Running. Command
Cancelled.

The debug daemon is not initialized.
Execute Go Reset for the kernel and
initialize the debug daemon.

Error : Number Out of Range

The data has exceeded the specifiable
range.
Check the specified data.

Error: Invalid input expression

The specified data is invalid.
Check the specified data.

HIOS Error H'xxxx : <Error Message>

An error has occurred for the debug
daemon system call.
Check the state of the specified ID.

Invalid Expression

Not a specifiable flag value.
Check the value of the specified flag.

Invalid Format in Message Address

The format of the message address is
invalid.
Check the message address.

Invalid Format in Message String!

The specified message string format is
invalid.
Check the specified message.

Timer Value invalid or wrong format!

The timer value or the format is invalid.
Check the specified timer value.

Unable to remove message from selected Mailbox.

Cannot delete the message in the selected
mailbox.
Check the selected mailbox.

Rev. 2.0, 03/01, page 278 of 282

RENESAS

Table D.2 Debugging Extension Error Messages (cont)

Error Message Meaning and Actions to Take

Unable to set breakpoint on HDI! Breakpoints cannot be specified since the
task is in the ROM area.
Check the specified area.

Value Too Large The flag value has exceeded the specifiable
range.
Check the specified flag value.

Rev. 2.0, 03/01, page 279 of 282
RENESAS

Rev. 2.0, 03/01, page 280 of 282
RENESAS

Appendix E System Call Function Codes

E.1l System Call Function Codes

The following table lists the system calls and their function codes for the system call trace
function.

Table E.1 System Calls and Function Codes

No. System Call Function Code No System Call Function Code

1 ista tsk H'ff09 (-H'f7) 21 ref_cyc H'ffa4 (-H'5c)
2 trev_msg Hff54 (-H'ac) 22 get_tim H'ffac (-H'54)
3 twai_sem H'ff55 (-H'ab) 23 set_tim H'ffad (-H'53)
4 twaifig H'ff56 (-H'aa) 24 rel_bif H'ffbL (-H'4f)
5 tget_blk H'ff58 (-H'a8) 25 get_blf H'ffb3 (-H'4d)
6 tget_blf H'ff59 (-H'a7) 26 ref_mpf H'ffb4 (-H'4c)
7 rel_blk H'ff71 (-H'8f) 27 ret_int H'ffbb (-H'45)
8 get_blk H'ff73 (-H'8d) 28 ref_ims H'ffbc (-H'44)
9 ref_mpl H'ff74 (-H'8c) 29 chg_ims H'ffbd (-H'43)
10 isnd_msg H'ff84 (-H'7c) 30 snd_msg H'ffcl (-H'3f)
11 isig_sem H'ff85 (-H'7b) 31 rcv_msg H'ffc3 (-H'3d)
12 iset_flg H'ff86 (-H'7a) 32 ref_mbx H'ffc4 (-H'3c)
13 iwup_tsk H'ff87 (-H'79) 33 sig_sem H'ffc9 (-H'37)
14 irot_rdq H'ff8a (-H'76) 34 wai_sem H'ffcb (-H'35)
15 prcv_msg H'ff94 (-H'6c) 35 ref_sem H'ffcc (-H'34)
16 preg_sem H'ffo5 (-H'6b) 36 set_flg H'ffd0 (-H'30)
17 pol_fig H'ff96 (-H'6a) 37 clr_flg Hffd1 (-H'2f)
18 pget_blk H'ff98 (-H'68) 38 wai_flg H'ffd2 (-H'2e)
19 pget_blf H'ff99 (-H'67) 39 ref_flg H'ffd4 (-H'2c)
20 act_cyc H'ffa2 (-H'5e) 40 can_wup H'ffd8 (-H'28)

Rev. 2.0, 03/01, page 281 of 282
RENESAS

Table E.1

System Calls and Function Codes (cont)

No. System Call Function Code No System Call Function Code

41 wup_tsk H'ffd9 (-H'27) 50 chg_pri H'ffe5 (-H'1b)
42 slp_tsk H'ffda (-H'26) 51 ter_tsk H'ffe7 (-H'19)
43 tslp_tsk H'ffdb (-H'25) 52 get_tid H'ffe8 (-H'18)
44 rsm_tsk H'ffdd (-H'23) 53 sta_tsk H'ffe9 (-H'17)
45 sus_tsk H'ffdf (-H'21) 54 ext_tsk H'ffeb (-H'15)
46 rel_wai H'ffel (-H'1f) 55 ref_tsk H'ffec (-H'14)
a7 dis_dsp H'ffe2 (-H'le) 56 get_ver H'fff0 (-H'10)
48 ena_dsp H'ffe3 (-H'1d) 57 loc_cpu H'fff8 (-H'8)

49 rot_rdq H'ffe4 (-H'1c) 58 unl_cpu H'fff9 (-H'7)

Rev. 2.0, 03/01, page 282 of 282

RENESAS

	Cover
	Preface
	Contents
	Figures Contents
	Tables Contents
	Section 1 Introduction to HI2000/3
	1.1 Overview
	1.2 Features

	Section 2 Kernel
	2.1 Overview
	2.2 Functions
	2.3 System State
	2.4 Tasks
	2.4.1 Overview
	2.4.2 Task State and Transition
	2.4.3 Task Initiation
	2.4.4 Task Scheduling
	2.4.5 Task Waiting/Suspension and Release
	2.4.6 Task Termination
	2.4.7 Shared Stack Function

	2.5 Synchronization and Communication
	2.5.1 Event Flag
	2.5.2 Semaphore
	2.5.3 Mailbox

	2.6 Interrupt
	2.6.1 Overview
	2.6.2 Interrupt Handler
	2.6.3 Undefined Interrupt
	2.6.4 Monopolizing the CPU

	2.7 Memory Pool
	2.7.1 Fixed-Size Memory Pool
	2.7.2 Variable-Size Memory Pool

	2.8 Time Management
	2.8.1 Overview
	2.8.2 Hardware Timer and System Clock
	2.8.3 Setting and Referring to System Clock
	2.8.4 Cyclic Handler

	2.9 System Management
	2.10 System-Call Trace
	2.11 Trace Buffer Structure
	2.12 Trace Acquisition Data Analysis Example
	2.13 Trace-Function Definition
	2.14 Notes on Trace Function

	Section 3 System Calls
	3.1 Overview
	3.2 System Call Interface
	3.2.1 C-Language Interface
	3.2.2 Assembler Interface
	3.2.3 Error Codes

	3.3 System Calls
	3.4 Task Management
	3.4.1 Start Task (sta_tsk) [T/D/L]
	3.4.2 Exit Task (ext_tsk) [T/D/L]
	3.4.3 Terminate Task (ter_tsk) [T/D/L]
	3.4.4 Change Task Priority (chg_pri) [T/D/L]
	3.4.5 Rotate Ready Queue (rot_rdq) [T/D/L]
	3.4.6 Release Wait (rel_wai) [T/D/L]
	3.4.7 Get Task Identifier (get_tid) [T/D/L]
	3.4.8 Refer Task State (ref_tsk) [T/D/L/I]
	3.4.9 Disable Dispatch (dis_dsp) [T/D]
	3.4.10 Enable Dispatch (ena_dsp) [T/D]

	3.5 Task Synchronization
	3.5.1 Suspend Task (sus_tsk) [T/D/L]
	3.5.2 Resume Task (rsm_tsk) [T/D/L]
	3.5.3 Sleep Task (slp_tsk) [T]
	3.5.4 Wakeup Task (wup_tsk) [T/D/L]
	3.5.5 Cancel Wakeup Task (can_wup) [T/D/L]

	3.6 Synchronization and Communication (Event Flag)
	3.6.1 Set Event Flag (set_flg) [T/D/L]
	3.6.2 Clear Event Flag (clr_flg) [T/D/L/I]
	3.6.3 Wait for Eventflag (wai_flg) [T]
	3.6.4 Refer Event Flag State (ref_flg) [T/D/L/I]

	3.7 Synchronization and Communication (Semaphore)
	3.7.1 Returns Semaphore Resource (sig_sem) [T/D/L]
	3.7.2 Wait on Semaphore (wai_sem) [T]
	3.7.3 Refer Semaphore State (ref_sem) [T/D/L/I]

	3.8 Synchronization and Communication (Mailbox)
	3.8.1 Send Message to Mailbox (snd_msg) [T/D/L]
	3.8.2 Receive Message from Mailbox (rcv_msg) [T]
	3.8.3 Refer Mailbox Status (ref_mbx) [T/D/L/I]

	3.9 Interrupt Management
	3.9.1 Return from Interrupt Handler (ret_int) [I]
	3.9.2 Change Interrupt Mask Level (chg_ims) [T/I]
	3.9.3 Refer Interrupt Mask Level State (ref_ims) [T/D/L/I]
	3.9.4 Lock CPU (loc_cpu) [T/D/L]
	3.9.5 Unlock CPU (unl_cpu) [T/D/L]

	3.10 Memory Pool Management (Fixed-Size Memory Pool)
	3.10.1 Get Fixed-Size Memory Block (get_blf) [T]
	3.10.2 Release Fixed-Size Memory Block (rel_blf) [T/D/L]
	3.10.3 Refer Fixed-Size Memory Pool Status (ref_mpf) [T/D/L/I]

	3.11 Memory Pool Management (Variable-Size Memory Pool)
	3.11.1 Get Variable-Size Memory Block (get_blk) [T]
	3.11.2 Release Variable-Size Memory Block (rel_blk) [T/D/L]
	3.11.3 Refer Variable-Size Memory Pool Status (ref_mpl) [T/D/L/I]

	3.12 Time Management
	3.12.1 Set System Clock (set_tim) [T/D/L/I]
	3.12.2 Get System Clock (get_tim) [T/D/L/I]
	3.12.3 Activate Cyclic Handler (act_cyc) [T/D/L/I]
	3.12.4 Refer Cyclic Handler State (ref_cyc) [T/D/L/I]

	3.13 System Management
	3.13.1 get_ver (Get Version Information) [T/D/L/I]

	Section 4 Debugging Extension
	4.1 Overview
	4.1.1 Displaying and Manipulating Objects
	4.1.2 Results of Object Manipulation
	4.1.3 Displaying the Register Values
	4.1.4 Displaying the HI2000/3 DX System Call Trace Information
	4.1.5 Online Help

	4.2 List of Functions
	4.2.1 HI2000/3 DX Menus
	4.2.2 Windows and Dialog Boxes

	4.3 Notes
	4.3.1 Setting up the E6000 Emulator
	4.3.2 Displaying the HI2000/3 DX Window
	4.3.3 Realtime Operation of the User System
	4.3.4 Displaying Correct Data
	4.3.5 Trace
	4.3.6 User System Memory
	4.3.7 Correspondence to the HDI Session
	4.3.8 Loading Load Modules

	4.4 Debug Daemon
	4.5 Tutorial
	4.5.1 Executing a Sample Program
	4.5.2 Starting a Task
	4.5.3 Mailboxes and Messages
	4.5.4 Examples during System Operation

	Section 5 Creating Application Programs
	5.1 Creating a User Program
	5.2 Tasks
	5.2.1 Creating Tasks
	5.2.2 Defining Tasks

	5.3 Interrupt Handlers
	5.3.1 Interrupt Handler Description
	5.3.2 Defining Interrupt Handlers

	5.4 Undefined Interrupt Handlers
	5.4.1 Creating Undefined Interrupt Handlers
	5.4.2 Defining Undefined Interrupt Handlers

	5.5 Cyclic Handlers
	5.5.1 Creating Cyclic Handlers
	5.5.2 Defining Cyclic Handlers

	5.6 CPU Initialization Routine
	5.6.1 Creating CPU Initialization Routines
	5.6.2 Defining CPU Initialization Routines

	5.7 Timer Initialization Routine
	5.8 System Initialization Handlers
	5.8.1 Creating System Initialization Handlers
	5.8.2 Defining the System Initialization Handler

	5.9 System Termination Routines
	5.9.1 Creating System Termination Routines
	5.9.2 Defining the System Termination Routine

	5.10 System Idling Routine
	5.10.1 Creating System Idling Routines
	5.10.2 Defining a System Idling Routine

	Section 6 Creating the Setup Table
	6.1 Overview
	6.2 User Definition Field
	6.2.1 Defining the Constant Definition Field
	6.2.2 Defining Task
	6.2.3 Defining Fixed-Size Memory Pools
	6.2.4 Defining Variable-Size Memory Pools
	6.2.5 Defining Cyclic Handlers
	6.2.6 Defining Trace Functions
	6.2.7 Defining Extended Information

	6.3 System Definition Field

	Section 7 Creating the Interrupt Vector Table
	7.1 Overview
	7.2 Defining Interrupt Handler

	Section 8 Load Module Creation
	8.1 Overview
	8.2 Workspace and Project Files
	8.3 Load Module Creation
	8.3.1 Adding Files to a Project
	8.3.2 Compiler and Assembler Options
	8.3.3 Inter-Module Optimizer Setting
	8.3.4 Build Execution

	8.4 C-Language Interface Library Projects

	Appendix A Memory Size
	A.1 Memory Size
	A.1.1 OS Work Area Size Calculation
	A.1.2 OS Stack Area Size Calculation
	A.1.3 Timer Interrupt Stack Area Size Calculation
	A.1.4 Task Stack Area Size Calculation
	A.1.5 Interrupt Handler Stack Area Size Calculation
	A.1.6 Fixed-Size Memory Pool Area Size Calculation
	A.1.7 Variable-Size Memory Pool Area Size Calculation
	A.1.8 Trace Function Stack Area Size Calculation
	A.1.9 Trace Buffer Area Size Calculation
	A.1.10 HI2000/3 Work Area Size Calculation

	Appendix B Compiler and Assembler Options
	B.1 Compiler Options
	B.2 Assembler Options

	Appendix C Device Driver
	C.1 Timer Driver
	C.1.1 Timer Initialization Routine
	C.1.2 Timer Interrupt Handler
	C.1.3 Timer Driver Definition Information

	Appendix D Error Codes
	D.1 System Call Error Codes
	D.2 Debugging Extension Errors

	Appendix E System Call Function Codes
	E.1 System Call Function Codes

	renesas:

