

Tutorial

GPADC Adapters

For the DA1468x SoC

Abstract

This tutorial should be used as a reference guide to gain a deeper understanding of the ‘GPADC Adapters’
concept. As such, it covers a broad range of topics including an introduction to Adapter mechanism as well as a
detailed description of the various GPADC conversion schemes. Furthermore, it covers a number of sections
containing in depth software analysis of a complete demonstration example.

For the DA1468x SoC

GPADC Adapters

 2 of 35 © 2018 Dialog Semiconductor

Contents

For the DA1468x SoC .. 1

Abstract .. 1

Contents ... 2

Figures .. 2

Tables ... 3

Terms and Definitions ... 3

References ... 3

1 Introduction.. 4

1.1 Before You Start .. 4

1.2 GPADC Adapters Introduction .. 4

2 GPADC Adapters Concept ... 5

2.1 Header Files .. 5

2.2 Preparing a GPADC Operation ... 7

2.3 Battery Adapters ... 11

2.4 Handling ADC Measurements .. 11

3 Analyzing The Demonstration Example .. 13

3.1 Application Structure ... 13

4 Running The Demonstration Example .. 16

4.1 Verifying with a Serial Terminal .. 16

5 Code Overview .. 21

5.1 Header Files .. 21

5.2 System Init Code ... 22

5.3 Wake-Up Timer Code ... 24

5.4 Hardware Initialization ... 25

5.5 Raw ADC to mV Conversion Code ... 26

5.6 mV to Raw ADC Value Conversion Code ... 27

5.7 Task Code for BAT Measurements ... 28

5.8 Task Code for GPADC Measurements ... 29

5.9 Macro Definitions .. 31

5.10 GPADC HW Configuration Macros ... 32

Revision History .. 33

Figures

Figure 1: Adapters Communication ... 5
Figure 2: The Four-Step Process for Setting an Adapter Mechanism .. 5
Figure 3: Headers for GPADC Adapters. .. 6
Figure 4: First Step for Configuring the GPADC Adapter Mechanism .. 7

For the DA1468x SoC

GPADC Adapters

 3 of 35 © 2018 Dialog Semiconductor

Figure 5: Second Step for Configuring the GPADC Adapter Mechanism ... 8
Figure 6: Third Step for Configuring the GPADC Adapter Mechanism ... 9
Figure 7: Fourth Step for Configuring the GPADC Adapter Mechanism ... 10
Figure 8: Analog-to-Digital Conversion Process ... 12
Figure 9: Basic Relationship between Analog and Raw ADC Values ... 12
Figure 10: Resulting Raw ADC Value ... 12
Figure 11: Battery Measurements SW FSM – Main Execution Path .. 13
Figure 12: GPADC Conversions SW FSM – Main Execution Path ... 14
Figure 13: GPADC Async Conversions SW FSM – Callback Function Execution Path 15
Figure 14: DA1468x Pro DevKit .. 16
Figure 15: Creating platform_devices.h Header File, Step 1 .. 17
Figure 16: Creating platform_devices.h Header File, Step 2 .. 18
Figure 17: Rear View of the DA1468x Daughterboard .. 19
Figure 18: Power Supply Selection ... 19
Figure 19: Snapshot of the Potmeter Connected to Pro DevKit.. 20
Figure 20: Debugging Messages for the Various Analog-to-Digital Operations 21

Tables

Table 1: Header Files used by GPADC Adapters ... 6
Table 2: Description of the Macro Fields Used for Declaring a GPADC Instance 8

Terms and Definitions

DevKit Development Kit

FSM Finite-State-Machine

GPADC General Purpose Analog-to-Digital Converter

ISR Interrupt Service Routine

I2C Inter-Integrated Circuit

LLD Low Level Drivers

ms millisecond

OS Operating System

SDK Software Development Kit

SPI Serial Peripheral Interface

SW Software

References

[1] UM-B-044, DA1468x Software Platform Reference, User Manual, Dialog Semiconductor.

For the DA1468x SoC

GPADC Adapters

 4 of 35 © 2018 Dialog Semiconductor

1 Introduction

1.1 Before You Start

Before you start you need to:

• Install the latest SmartSnippets Studio

• Download the latest SDK for the DA1468x platforms

These can be downloaded from the Dialog Semiconductor support portal.

Additionally, for this tutorial either a Pro or Basic Development kit is required.

The key goals of this tutorial are to:

• Provide a basic understanding of adapters concept

• Explain the different APIs and configurations of GPADC adapters

• Give a complete sample project demonstrating the usage of GPADC and battery adapters

1.2 GPADC Adapters Introduction

This tutorial explains GPADC adapters and how to configure the DA1468x family of devices to perform

analog-to-digital conversions, including battery measurements. The latter can be considered as a

special use case of the GPADC interface.

The GPADC adapter is an intermediate layer between the GPADC Low Level Drivers (LLDs) and a

user application. It allows the user to utilize the GPADC interface in a simpler way than when using

pure LLDs functions. The key features of GPADC adapters are:

• Synchronous writing/reading operations block the calling freeRTOS task while the operation is

performed using semaphores rather than relying on a polling loop approach. This means that

while the hardware is busy transferring data, the operating system (OS) scheduler may select

another task for execution, utilizing processor time more efficiently. When the transfer has

finished, the calling task is released and resumes its execution.

• It ensures that only one application task can use the GPADC interface after acquiring it.

• Placing code between ad_gpadc_acquire() and ad_gpadc_release() ensures that only one task

can use the GPADC interface to perform analog-to-digital conversions. During this period no

other task can use the GPADC interface until the ad_gpadc_release() function is called by the

owning task.

• Power Manager (PM) of the chip is aware of the GPADC peripheral usage and, before the system

enters sleep, it checks whether or not there is activity on the GPADC block.

Note: Adapters are not implemented as separate tasks and should be considered as an

additional layer between the application and the LLDs. It is recommended to use adapters for

accessing a hardware block.

https://support.dialog-semiconductor.com/connectivity

For the DA1468x SoC

GPADC Adapters

 5 of 35 © 2018 Dialog Semiconductor

Figure 1: Adapters Communication

2 GPADC Adapters Concept

This section explains the key features of GPADC adapters as well as the steps to enable and correctly

configure the peripheral adapters for the analog-to-digital functionality. The procedure is a four-step

process which can be applied to almost every type of adapter including serial peripheral adapters (I2C,

SPI, UART).

Figure 2: The Four-Step Process for Setting an Adapter Mechanism

2.1 Header Files

The header files related to adapter functionality can be found in /sdk/adapters/include. These files

contain the APIs and macros for configuring the majority of the available hardware blocks. In particular,

this tutorial focuses on the adapters that are responsible for the GPADC hardware block. Table 1 briefly

explains the header files related to GPADC adapters (red indicates the path under which the files are

stored, and green indicates which ones are used for GPADC operations.).

For the DA1468x SoC

GPADC Adapters

 6 of 35 © 2018 Dialog Semiconductor

Figure 3: Headers for GPADC Adapters.

Table 1: Header Files used by GPADC Adapters

Filename Description

ad_gpadc.h
This file contains APIs and macros for performing ADC operations. Use these
APIs when accessing the GPADC interface to perform general-purpose
conversions.

ad_battery.h
This file contains APIs and macros for performing battery measurements. Use
these APIs when accessing the GPADC interface to perform battery voltage
measurements.

platform_devices.h
This file contains macros for declaring virtual devices. These devices may be
connected to the Dialog family of devices via a peripheral bus (for example,
SPI, I2C, UART) or a peripheral hardware block (for example, GPADC).

For the DA1468x SoC

GPADC Adapters

 7 of 35 © 2018 Dialog Semiconductor

2.2 Preparing a GPADC Operation

1. As illustrated in Figure 4, the first step for configuring the GPADC adapter mechanism is to enable

it by defining the following macros in /config/custom_config_qspi.h. Battery adapters are part of

the GPADC adapter implementation and should be considered as a special analog-to-digital

conversion.

/*

 * Macros for enabling GPADC + Battery measurement operations using Adapters

 */

#define dg_configUSE_HW_GPADC (1)

#define dg_configGPADC_ADAPTER (1)

#define dg_configBATTERY_ADAPTER (1)

/*

 * This macro should be already written in the file so just make sure

 * it is set to 1

 */

#define dg_configUSE_HW_TEMPSENS (1)

Figure 4: First Step for Configuring the GPADC Adapter Mechanism

From this point onwards, the overall adapter implementation with all its integrated functions is available.

2. The second step is to declare interface parameters for all the GPADC instances. As instance can

be considered a set of settings describing the complete GPADC interface. These settings are

applied every time the instance is selected and used. To do this, the SDK uses a macro, named

GPADC_SOURCE:

/*

 * Macro for creating an instance of the GPADC interface

 */

GPADC_SOURCE(name, _clock_source, _input_mode, input, sample_time,

 cancel_offset, _oversampling, _input_voltage)

For the DA1468x SoC

GPADC Adapters

 8 of 35 © 2018 Dialog Semiconductor

Figure 5: Second Step for Configuring the GPADC Adapter Mechanism

Table 2: Description of the Macro Fields Used for Declaring a GPADC Instance

Argument Name Description

name
Declare an arbitrary alias for the GPADC interface (for
instance, ADC_Channel_1). This name should be used for
opening that specific instance.

_clock_source

Clock source of the GPADC controller. This can be either the
internal high-speed or the system clock source. The first option
selects the internal 200 MHz clock source while the second
option the system clock source, that is 16 MHz or 96 MHz.
Valid values are those from HW_GPADC_CLOCK enum in
/sdk/peripherals/include/hw_gpadc.h.

_input_mode
This can be either single-ended or differential mode. Valid
values are those from HW_GPADC_INPUT_MODE enum in
/sdk/peripherals/include/hw_gpadc.h.

input

The analog pin of the DA1468x chip to use for the current
measurement. In contrast with the digital GPIOs, analog pins
are mapped on specific pins on DA1468x SoC. Valid values
are those from HW_GPADC_INPUT enum in
/sdk/peripherals/include/hw_gpadc.h.

sample_time

Sampling time. Valid values are from 0 to 15. A value of 0
corresponds to one GPADC clock cycle while the maximum
permitted value corresponds to 15*32 GPADC clock cycles.
This parameter is application-specific and depends on the
selected clock source as well as the preferred accuracy of
analog-to-digital conversions.

cancel_offset

The DA1468x SoC exhibits a feature for cancelling the offset
on the provided analog signals. This is done via a chopping
operation where two samples with opposite signal polarity are
sampled at every conversion. This feature is recommended for
DC and slowly changing signals. Valid values are TRUE or
FALSE.

For the DA1468x SoC

GPADC Adapters

 9 of 35 © 2018 Dialog Semiconductor

_oversampling

In this mode, multiple successive conversions are executed
and the results are added together to increase the effective
number of bits. By default, the GPADC controller is a 10-bit
controller and, depending on the selected oversampling, the
default 10 bits can be expanded up to 16 bits. Valid values
are those from HW_GPADC_OVERSAMPLING enum in
/sdk/adapters/include/ad_gpadc.h.

_input_voltage

The maximum permitted analog value present on an analog
pin. The GPADC controller has its own 1.2 V voltage
regulator (LDO) which represents the full scale reference
voltage. The GPADC controller features an attenuator
capable of attenuating a signal three times, thus an analog
source up to 3.6 V can also be measured. Valid values are
those from HW_GPADC_INPUT_VOLTAGE enum in
/sdk/adapters/include/ad_gpadc.h.

3. As illustrated in Figure 6, the third step is the declaration of the GPADC signals.

static void prvSetupHardware(void)

{

 /* Init hardware */

 pm_system_init(periph_init)

}

Note: When the system enters sleep it loses its pin configurations. Thus, it is essential for the

pins to be reconfigured to their last state as soon as the system wakes up. To do this, all pin

configurations must be declared in periph_init() which is supervised by the Power Manager of

the system.

Figure 6: Third Step for Configuring the GPADC Adapter Mechanism

Note: In contrast with the digital GPIOs, analog pins are mapped on specific pins on the

DA1468x SoC.

4. Having enabled the GPADC adapter mechanism, the developer is able to use all the available

APIs for performing analog-to-digital conversions. The following describes the required sequence

of APIs in an application to successfully execute GPADC operations.

For the DA1468x SoC

GPADC Adapters

 10 of 35 © 2018 Dialog Semiconductor

Figure 7: Fourth Step for Configuring the GPADC Adapter Mechanism

a. ad_gpadc_init() or GPADC_INIT()

 Must be called once at either platform start (for instance, in system_init()) or task initialization to

perform all the necessary initialization routines.

b. ad_gpadc_open()

 Before using a GPADC instance, the application task must first open it. The function returns a

handler to the main flow for use in subsequent adapter functions. Subsequent calls from other

tasks simply return the existing handler.

c. ad_gpadc_acquire()

 This API is optional since it is automatically called upon a GPADC operation and it is used for

locking the GPADC block for the given opened instance. This function should be called when the

application task wants to communicate to the GPADC block directly using low level drivers.

Note: This function can be called several times. It is essential that the number of

ad_gpadc_acquire() calls matches the number of ad_gpadc_release() calls.

d. Perform analog-to-digital operations either synchronously or asynchronously.

After opening an instance, the application task(s) can perform any analog-to-digital conversion either

synchronously or asynchronously. Please note that all the available APIs for accessing the GPADC

interface, nest the corresponding APIs for acquiring and releasing the GPADC block.

e. ad_gpadc_release()

 This function must be called for each call to ad_gpadc_acquire().

f. ad_gpadc_close()

 After all user operations are done and the interface is no longer needed, it should be closed by

the task that has currently acquired it. The application can then switch to other GPADC instances

(as needed). Remember that GPADC adapter implementation follows a single instance scheme,

that is only one instance can be opened at a time.

For the DA1468x SoC

GPADC Adapters

 11 of 35 © 2018 Dialog Semiconductor

2.3 Battery Adapters

Battery voltage measurements can be considered as a special use case of the GPADC interface. The

DA1468x chip has a dedicated analog pin internally connected to the terminals of the DA1468x

daughterboard’s battery holder. The SDK comes with additional APIs responsible for executing battery

voltage measurements and it is recommended that the user should use these APIs when accessing

the GPADC controller to perform such an operation.

a. ad_gpadc_init() or GPADC_INIT()

 Must be called once at either platform start (for instance, system_init()) or task initialization to

perform all the necessary initialization routines.

b. ad_battery_open()

 Before using the battery instance the application task must first open it. In contrast with the

ad_gpadc_open() API, this function has no input parameters since it is considered that only one

interface is defined for battery voltage measurements.

Note: The function calls the ad_gpadc_open() API using the BATTERY_LEVEL id which is the

default id for the battery interface configurations (declared in platform_devices.h).

c. Perform a battery voltage measurement either synchronously or asynchronously.

– To perform synchronous measurements, use the ad_battery_read() function. This

function waits until the GPADC controller becomes available.

– To perform asynchronous measurements, use the ad_battery_read_async() function.

When an analog-to-digital conversion is finished, a callback function is called and the

results of the conversion are available within this callback.

d. ad_battery_raw_to_mvolt()

 After performing a successful analog-to-digital conversion, the developer can use this function to

convert the raw ADC value to millivolts (mV).

e. ad_battery_close()

 After all user operations are done and the interface is no longer needed, it should be closed by

the task that has currently acquired it.

2.4 Handling ADC Measurements

This section describes the basic operation principles of the ADC controller and how to handle the

resulting data upon a successful analog-to-digital conversion.

Consider an ADC controller with a voltage reference of 5 V and a resolution of 10 bits, that is, it has

the ability to detect 1024 discrete analog levels. In this case, any analog value in between 0 V and 5 V

is converted into its equivalent ADC value as shown in Figure 8. The 0 V to 5 V range is divided into

210 = 1024 steps. Thus, a 0 V input results in an ADC output of 0, a 5 V input gives an ADC value equal

to 1023, and a 2.5 V input results in an ADC output of around 512.

For the DA1468x SoC

GPADC Adapters

 12 of 35 © 2018 Dialog Semiconductor

Figure 8: Analog-to-Digital Conversion Process

Figure 9 depicts the relationship between analog and raw ADC values.

Figure 9: Basic Relationship between Analog and Raw ADC Values

The resolution of the ADC controller is dependent on the oversampling used. GPADC adapters come

with the following API which returns the ADC resolution depending on the selected oversampling:

ad_gpadc_get_source_max(). Possible returned values are: 0x3FF (10 bits), 0x7FF (11 bits), 0xFFF

(12 bits), 0x1FFF (13 bits), 0x3FFF (14 bits) 0x7FFF (15 bits), or 0xFFFF (16 bits)

Following is an example which demonstrates the computation of the raw ADC value for an analog input

source of 3.05V. As described, the ADC voltage reference can be the default 1.2 V or 3.6 V when 3X

attenuator is selected, or 5 V in the case of the VBAT channel. Assuming the VBAT channel is selected

and the oversampling results in 12-bit resolution, the raw ADC value can be easily computed as

illustrated in Figure 10

Figure 10: Resulting Raw ADC Value

For the DA1468x SoC

GPADC Adapters

 13 of 35 © 2018 Dialog Semiconductor

3 Analyzing The Demonstration Example

This section analyzes an application example which demonstrates using both the GPADC and battery

adapters. The example is based on the freertos_retarget sample code found in the SDK. It adds two

additional freeRTOS tasks which are responsible for various GPADC operations. One task performs

analog-to-digital measurements on a dedicated pin on the Pro DevKit (P1.2), while the second task

performs analog-to-digital measurements on the internal pin which is connected to the attached battery.

The code also enables the wake-up timer for handling external events. Both synchronous and

asynchronous GPADC operations are demonstrated.

3.1 Application Structure

1. The key goal of this demonstration is for the device to perform a few GPADC operations following

an event. For demonstration purposes the K1 button on the Pro DevKit has been configured as

a wake-up pin. For more detailed information on how to configure and set a pin for handling

external events, read the External Interruption tutorial.

At each external event (produced at every K1 button press), a dedicated callback function named

wkup_cb() is triggered. In this function, the task responsible for the battery measurements is

signaled so that it can unblock. This freeRTOS task performs a synchronous battery

measurement and, upon finishing the analog-to-digital conversion, the raw ADC result is

converted into millivolt (mV) so that it is easier for the developer to interpret the results. A

debugging message with the converted data is also printed out on the serial console.

Figure 11: Battery Measurements SW FSM – Main Execution Path

https://support.dialog-semiconductor.com/resource/external-interruption-tutorial-html

For the DA1468x SoC

GPADC Adapters

 14 of 35 © 2018 Dialog Semiconductor

2. At the same time, at every 1 second time interval, the task responsible for performing GPADC

operations is executed. Depending on the value of the POT_ASYNC_EN macro, a synchronous

or an asynchronous GPADC conversion is performed. At the end of every GPADC operation, the

raw ADC value is converted into mV and a debugging message with the converted data is sent

to the serial console.

Figure 12: GPADC Conversions SW FSM – Main Execution Path

3. The POT_ASYNC_EN macro can be used to enable asynchronous GPADC operations. Please

note that for asynchronous operations, developers must not call asynchronous related APIs

without guaranteeing that the previous asynchronous operation is finished. To ensure this, after

calling the ad_gpadc_read_async() function, the code waits for the arrival of a signal, indicating

the end of the current GPADC operation.

For the DA1468x SoC

GPADC Adapters

 15 of 35 © 2018 Dialog Semiconductor

Figure 13: GPADC Async Conversions SW FSM – Callback Function Execution Path

For the DA1468x SoC

GPADC Adapters

 16 of 35 © 2018 Dialog Semiconductor

4 Running The Demonstration Example

This section describes the steps required to prepare the Pro DevKit and other tools to successfully run

the example code. A serial terminal, a breadboard, a few jumper wires, a potentiometer, and a coin

cell battery are required for testing and verifying the code. If you are not familiar with the recommended

process on how to clone a project or configure a serial terminal, read the Starting a Project tutorial.

4.1 Verifying with a Serial Terminal

1. Establish a connection between the target device and your PC through the USB2(DBG) port of

the motherboard. This port is used both for powering and communicating to the DA1468x SoC.

For this tutorial a Pro DevKit is used.

Figure 14: DA1468x Pro DevKit

2. Import and then make a copy of the freertos_retarget sample code found in the SDK of the

DA1468x family of devices.

Note: It is essential to import the folder named scripts to perform various operations

(including building, debugging, and downloading).

3. In the newly created project, create a new platform_devices.h header file under the project's

/config folder. To do this:

a. Right-click on the /sdk/adapters/include/platform_devices.h header file (1) and select

Copy (2).

https://support.dialog-semiconductor.com/resource/starting-project-html

For the DA1468x SoC

GPADC Adapters

 17 of 35 © 2018 Dialog Semiconductor

Figure 15: Creating platform_devices.h Header File, Step 1

b. Right-click on the /config folder (3) and select Paste (4).

For the DA1468x SoC

GPADC Adapters

 18 of 35 © 2018 Dialog Semiconductor

Figure 16: Creating platform_devices.h Header File, Step 2

Note: If a new platform_devices.h file is not created in the /config directory, the application

will inherit the default macro definitions from /sdk/adapters/include/platform_devices.h.

4. In the target application, add/modify all the required code blocks as illustrated in the Code

Overview section.

Note: It is possible for the defined macros not to be taken into consideration instantly. Hence,

resulting in errors during compile time. If this is the case, the easiest way to deal with the

issue is to: right-click on the application folder, select Index > Rebuild and then Index >

Freshen All Files.

5. Build the project either in Debug_QSPI or Release_QSPI mode and burn the generated image

to the chip.

6. Insert the coin cell battery (either rechargeable or non-rechargeable) in the daughterboard's

battery holder.

a. For this demonstration, a typical CR2023 non-rechargeable coin cell battery has been

selected. The battery is placed at the bottom of the daughterboard in the dedicated

battery holder as illustrated in Figure 15. The battery is inserted by first sliding it under

the metallic clip of the battery holder. Extra attention is needed when removing the coin

cell battery from its holder, if this is not done properly then the plastic battery holder can

be subject to breaking.

For the DA1468x SoC

GPADC Adapters

 19 of 35 © 2018 Dialog Semiconductor

Figure 17: Rear View of the DA1468x Daughterboard

b. Select the power supply source through switch SW2. Power supply selection is available between

the motherboard and the coin cell battery, thus allowing the daughterboard to operate as a

standalone device once programmed. For this tutorial, the position of the SW2 switch does not

matter.

Figure 18: Power Supply Selection

7. Connect the potentiometer to the Pro DevKit as illustrated in Figure 17. For this demonstration,

a simple 3-terminal potmeter has been selected. Two terminals are connected to the main power

source, that is 3.3 V and GND, and the third to the selected ADC pin on Pro DevKit, that is P1_2.

For the DA1468x SoC

GPADC Adapters

 20 of 35 © 2018 Dialog Semiconductor

Figure 19: Snapshot of the Potmeter Connected to Pro DevKit

8. Open a serial terminal (115200, 8-N-1) and press the K2 button on Pro DevKit. This step starts

the chip executing its firmware.

9. Change the input voltage level of the P1_2 pin (set as a GPADC pin) by rotating the potentiometer

position both right and left. Observe the resulting analog-to-digital measurements on the console

(1). Results should be updated every 1 second.

For the DA1468x SoC

GPADC Adapters

 21 of 35 © 2018 Dialog Semiconductor

Figure 20: Debugging Messages for the Various Analog-to-Digital Operations

10. Press the K1 button on Pro DevKit. A battery measurement is triggered and the result of the

analog-to-digital conversion is printed out on the console (2).

5 Code Overview

This section provides the code blocks needed to successfully execute this tutorial.

5.1 Header Files

In main.c, add the following header files:

#include "ad_gpadc.h"
#include "hw_wkup.h"

#include <platform_devices.h>

For the DA1468x SoC

GPADC Adapters

 22 of 35 © 2018 Dialog Semiconductor

5.2 System Init Code

In main.c, replace system_init() with the following code:

/*
 * Macro for enabling asynchronous GPADC measurements.
 *
 * Valid values:
 * 0: GPADC conversions will follow a synchronous conversion scheme
 * 1: GPADC conversions will follow an asynchronous conversion scheme
 *
 */
#define POT_ASYNC_EN (1)

/* OS signals used for synchronizing OS tasks */
OS_EVENT signal_bat;
OS_EVENT signal_pot;

/* GPADC Task priority */
#define mainGPADC_TASK_PRIORITY (OS_TASK_PRIORITY_NORMAL)

/*
 * GPADC application tasks - Function prototype
 */
static void prvGPADC_Battery_Task(void *pvParameters);
static void prvGPADC_POT_Task(void *pvParameters);

int convert_adc_to_mv(gpadc_source src, uint16_t value);
int convert_mv_to_adc(gpadc_source src, uint16_t value) __attribute__((unused));

static void system_init(void *pvParameters)
{
 OS_TASK task_h = NULL;
 OS_TASK task_bat_h = NULL;
 OS_TASK task_pot_h = NULL;

#if defined CONFIG_RETARGET
 extern void retarget_init(void);
#endif

 /* Prepare clocks. Note: cm_cpu_clk_set() and cm_sys_clk_set() can be called only
 * from a task since they will suspend the task until the XTAL16M has settled and,
 * maybe, the PLL is locked.
 */
 cm_sys_clk_init(sysclk_XTAL16M);
 cm_apb_set_clock_divider(apb_div1);
 cm_ahb_set_clock_divider(ahb_div1);
 cm_lp_clk_init();

 /* Prepare the hardware to run this demo. */
 prvSetupHardware();

For the DA1468x SoC

GPADC Adapters

 23 of 35 © 2018 Dialog Semiconductor

 /* init resources */
 resource_init();

#if defined CONFIG_RETARGET
 retarget_init();
#endif

 /* Set the desired sleep mode. */
 pm_set_sleep_mode(pm_mode_extended_sleep);

 /* Initialize the OS event signals. */
 OS_EVENT_CREATE(signal_bat);
 OS_EVENT_CREATE(signal_pot);

 /* Start main task here */
 OS_TASK_CREATE("Template", /* The text name assigned to the task,
 for debug only; not used by the kernel. */
 prvTemplateTask, /* The function that implements the task. */
 NULL, /* The parameter passed to the task. */
 200 * OS_STACK_WORD_SIZE, /* The number of bytes to allocate to
 the stack of the task. */
 mainTEMPLATE_TASK_PRIORITY, /* The priority assigned to the task. */
 task_h); /* The task handle */
 OS_ASSERT(task_h);

 /* Suspend task execution */
 OS_TASK_SUSPEND(task_h);

 /*
 * Task responsible for battery voltage measurements
 */
 OS_TASK_CREATE("GPADC_BATTERY",

 prvGPADC_Battery_Task,
 NULL,
 200 * OS_STACK_WORD_SIZE,

 mainGPADC_TASK_PRIORITY,
 task_bat_h);
 OS_ASSERT(task_bat_h);

 /*
 * Task responsible for GPADC voltage measurements
 */
 OS_TASK_CREATE("GPADC_POT",

 prvGPADC_POT_Task,
 NULL,
 200 * OS_STACK_WORD_SIZE,

For the DA1468x SoC

GPADC Adapters

 24 of 35 © 2018 Dialog Semiconductor

 mainGPADC_TASK_PRIORITY,
 task_pot_h);
 OS_ASSERT(task_pot_h);

 /* the work of the SysInit task is done */
 OS_TASK_DELETE(xHandle);

}

5.3 Wake-Up Timer Code

In main.c, after system_init(), add the following code for handling external events via the wake-up

controller:

/*
 * Callback function to be called after an external event is generated,
 * that is, after K1 button on the Pro DevKit is pressed.
 */
void wkup_cb(void)
{
 /*
 * This function must be called by any user-specified
 * interrupt callback, to clear the interrupt flag.
 */
 hw_wkup_reset_interrupt();

 /*
 * Notify [prvGPADC_Battery_Task] that time for
 * execution has elapsed.
 */
 OS_EVENT_SIGNAL_FROM_ISR(signal_bat);
}

/*
 * Function which makes all the necessary initializations for the
 * wake-up controller
 */
static void init_wkup(void)
{
 /*
 * This function must be called first and is responsible
 * for the initialization of the hardware block.
 */
 hw_wkup_init(NULL);

 /*
 * Configure the pin(s) that can trigger the device to wake up while
 * in sleep mode. The last input parameter determines the triggering

For the DA1468x SoC

GPADC Adapters

 25 of 35 © 2018 Dialog Semiconductor

 * edge of the pulse (event)
 */
 hw_wkup_configure_pin(HW_GPIO_PORT_1, HW_GPIO_PIN_6, true,
 HW_WKUP_PIN_STATE_LOW);

 /*
 * This function defines a delay between the moment at which
 * a trigger event is present and the moment at which the controller
 * takes this event into consideration. Setting debounce time to [0]
 * hardware debouncing mechanism is disabled. Maximum debounce
 * time is 63 ms.
 */
 hw_wkup_set_debounce_time(10);

// Check if the chip is either DA14680 or 81
#if dg_configBLACK_ORCA_IC_REV == BLACK_ORCA_IC_REV_A

 /*
 * Set threshold for event counter. Interrupt is generated after
 * the event counter reaches the configured value. This function
 * is only supported in DA14680/1 chips.
 */
 hw_wkup_set_counter_threshold(1);
#endif

 /* Register interrupt handler */
 hw_wkup_register_interrupt(wkup_cb, 1);
}

5.4 Hardware Initialization

In main.c, replace both periph_init() and prvSetupHardware() with the following code responsible

for configuring pins after a power-up/wake-up cycle. Please note that every time the system enters

sleep, it loses all its pin configurations.

/**
 * @brief Initialize the peripherals domain after power-up.
 *
 */
static void periph_init(void)
{
if dg_configBLACK_ORCA_MB_REV == BLACK_ORCA_MB_REV_D
define UART_TX_PORT HW_GPIO_PORT_1
define UART_TX_PIN HW_GPIO_PIN_3
define UART_RX_PORT HW_GPIO_PORT_2
define UART_RX_PIN HW_GPIO_PIN_3
else
error "Unknown value for dg_configBLACK_ORCA_MB_REV!"
endif

For the DA1468x SoC

GPADC Adapters

 26 of 35 © 2018 Dialog Semiconductor

 hw_gpio_set_pin_function(UART_TX_PORT, UART_TX_PIN,
 HW_GPIO_MODE_OUTPUT, HW_GPIO_FUNC_UART_TX);

 hw_gpio_set_pin_function(UART_RX_PORT, UART_RX_PIN,
 HW_GPIO_MODE_INPUT, HW_GPIO_FUNC_UART_RX);

 /* LED D2 on ProDev Kit for debugging purposes */
 hw_gpio_set_pin_function(HW_GPIO_PORT_1, HW_GPIO_PIN_5,
 HW_GPIO_MODE_OUTPUT, HW_GPIO_FUNC_GPIO);

 /* Configure P1.2 pin for ADC measurements */
 hw_gpio_set_pin_function(HW_GPIO_PORT_1, HW_GPIO_PIN_2,
 HW_GPIO_MODE_INPUT, HW_GPIO_FUNC_ADC);
}

/**
 * @brief Hardware Initialization
 */
static void prvSetupHardware(void)
{
 /* Init hardware */
 pm_system_init(periph_init);
 init_wkup();
}

5.5 Raw ADC to mV Conversion Code

In main.c, after system_init(), add the following code responsible for converting a raw ADC value to

mV:

/*
 * Function for converting a raw ADC value to mV
 *
 * \param [in] src The GPADC instance
 * \param [in] value The raw ADC value
 *
 * \return The converted raw ADC value in millivolt
 *
 */
int convert_adc_to_mv(gpadc_source src, uint16_t value)
{
 gpadc_source_config *cfg = (gpadc_source_config *)src;
 const uint16 adc_src_max = ad_gpadc_get_source_max(src);
 uint32_t mv_src_max = (cfg->hw_init.input_attenuator ==
 HW_GPADC_INPUT_VOLTAGE_UP_TO_1V2) ? 1200 : 3600;

For the DA1468x SoC

GPADC Adapters

 27 of 35 © 2018 Dialog Semiconductor

 int ret = 0;

 switch (cfg->hw_init.input_mode) {
 case HW_GPADC_INPUT_MODE_SINGLE_ENDED:
 if (cfg->hw_init.input == HW_GPADC_INPUT_SE_VBAT) {
 mv_src_max = 5000;
 }
 ret = (mv_src_max * value) / adc_src_max;
 break;
 case HW_GPADC_INPUT_MODE_DIFFERENTIAL:
 ret = ((int)mv_src_max * (value - (adc_src_max >> 1))) / (adc_src_max >> 1);
 break;
 default:
 /* Invalid input mode */
 OS_ASSERT(0);
 }

 return ret;
}

5.6 mV to Raw ADC Value Conversion Code

In main.c, after system_init(), add the following code responsible for converting mV to raw ADC values:

/*
 * Function for converting millivolt to raw ADC value
 *
 * \param [in] src The handler returned when calling the ad_battery_open() API
 * \param [in] value The ADC value expressed in mVolt e.g. 3050 (3.05V)
 *
 * \return In single-ended mode: the converted raw ADC value.
 * In differential mode: -1 (not supported)
 *
 */
int convert_mv_to_adc(gpadc_source src, uint16_t value)
{
 gpadc_source_config *cfg = (gpadc_source_config *)src;
 const uint16_t adc_src_max = ad_gpadc_get_source_max(src);
 uint32_t mv_src_max = (cfg->hw_init.input_attenuator ==
 HW_GPADC_INPUT_VOLTAGE_UP_TO_1V2) ? 1200 : 3600;

 int ret = 0;

 switch(cfg->hw_init.input_mode) {
 case HW_GPADC_INPUT_MODE_SINGLE_ENDED:
 if (cfg->hw_init.input == HW_GPADC_INPUT_SE_VBAT) {
 mv_src_max = 5000;
 }
 ret = (value * (adc_src_max + 1)) / (mv_src_max);

For the DA1468x SoC

GPADC Adapters

 28 of 35 © 2018 Dialog Semiconductor

 break;
 case HW_GPADC_INPUT_MODE_DIFFERENTIAL:
 ret = -1; // Not supported!
 break;
 default:
 // Invalid input mode
 OS_ASSERT(0);
 }

 return ret;
}

5.7 Task Code for BAT Measurements

Code snippet of prvGPADC_Battery_Task task responsible for performing battery measurements. In

main.c, add the following code (after system_init()):

/* Task responsible for battery voltage measurements */
static void prvGPADC_Battery_Task(void *pvParameters)
{
 battery_source bat_hdr;

 uint16_t bat_raw_adc; // raw ADC value
 uint16_t bat_value_mv; // converted value to mVolt

 /*
 * Buffer to hold the debugging message
 */
 char dbg_message[40];
 memset(dbg_message, 0x20, sizeof(dbg_message));

 /*
 * GPADC adapter initialization should be done once at the beginning.
 * Alternatively, this function could be called during system initialization in
 * system_init().
 */
 GPADC_INIT();

 for (;;) {

 /*
 * Suspend task execution - As soon as WKUP callback function
 * is triggered the task resumes its execution.
 */
 OS_EVENT_WAIT(signal_bat, OS_EVENT_FOREVER);

For the DA1468x SoC

GPADC Adapters

 29 of 35 © 2018 Dialog Semiconductor

 /* Open battery interface */
 bat_hdr = ad_battery_open();

 /*
 * Read the raw ADC value of the battery. Based on the oversampling used
 * the returned value can vary from 10 to 16 bits,
 */
 bat_raw_adc = ad_battery_read(bat_hdr);

 /*
 * Convert the previously measured raw ADC value to millivolt (mV)
 */
 bat_value_mv = ad_battery_raw_to_mvolt(bat_hdr, (uint32_t) bat_raw_adc);

 /*
 * Prepare the message to be sent out on the serial console
 */
 sprintf(dbg_message, "\n\rBattery voltage is: %d mV\n\r", bat_value_mv);

 printf("%s", dbg_message);
 fflush(stdout);

 /* Close the already opened battery interface */
 ad_battery_close(bat_hdr);

 }
}

5.8 Task Code for GPADC Measurements

Code snippet of prvGPADC_POT_Task task responsible for performing voltage measurements from

an analog GPIO pin. In main.c, add the following code (after system_init()):

#if POT_ASYNC_EN == 1
/*
 * Callback function for GPADC asynchronous operations:
 *
 * \param [in] user_data Data that can be passed and used within the function
 * \param [out] value The raw ADC value
 *
 */
void potentiometer_task_cb(void *user_data, int value)
{
 /* User can pass in and process data from here */
 uint16_t *user_ptr = (uint16_t *) user_data;

 /* Read the raw ADC value */

For the DA1468x SoC

GPADC Adapters

 30 of 35 © 2018 Dialog Semiconductor

 *user_ptr = (uint16_t) value;

 /*
 * Signal [prvGPADC_POT_Task] task that time
 * for resuming has elapsed.
 */
 OS_EVENT_SIGNAL_FROM_ISR(signal_pot);
}
#endif

/* Task responsible for GPADC voltage measurements */
static void prvGPADC_POT_Task(void *pvParameters)
{
 gpadc_source pot_hdr;

 uint16_t pot_raw_adc; // raw ADC value
 uint16_t pot_value_mv; // converted value to mV

 /*
 * Buffer for holding the debugging message
 */
 char dbg_message[40];
 memset(dbg_message, 0x20, sizeof(dbg_message));

 /*
 * Initialize GPADC interface. This should be done once at the beginning.
 * Alternatively, this function could be called during system initialization in
 * system_init() function.
 */
 ad_gpadc_init();

 for (;;) {

 /* Suspend task's execution for 1000 ms */
 OS_DELAY(OS_MS_2_TICKS(1000));

 /*
 * Turn on the LED D2 on Pro DevKit indicating the beginning of a process.
 */
 hw_gpio_set_active(HW_GPIO_PORT_1, HW_GPIO_PIN_5);

 /*
 * Open the GPADC interface used (POT_LEVEL)
 */
 pot_hdr = ad_gpadc_open(POT_LEVEL);

#if POT_ASYNC_EN == 0
 /*
 * Perform a synchronous GPADC operation.

For the DA1468x SoC

GPADC Adapters

 31 of 35 © 2018 Dialog Semiconductor

 */
 ad_gpadc_read(pot_hdr, &pot_raw_adc);
#else
 /*
 * Perform an asynchronous GPADC operation.
 */
 ad_gpadc_read_async(pot_hdr, potentiometer_task_cb, (void *)
 &pot_raw_adc);

 /*
 * Wait until the current GPADC operation is finished
 */
 OS_EVENT_WAIT(signal_pot, OS_EVENT_FOREVER);
#endif
 /*
 * Convert the previously measured raw ADC value to millivolt (mV)
 */
 pot_value_mv = (uint16_t) convert_adc_to_mv(pot_hdr, pot_raw_adc);

 /*
 * Prepare the message to be sent out on the serial console.
 */
 sprintf(dbg_message, "\n\rPotentiometer voltage is: %d mV\n\r",
 pot_value_mv);

 printf("%s", dbg_message);
 fflush((stdout));

 /* Close the already opened device */
 ad_gpadc_close(pot_hdr);

 /*
 * Turn off LED D2 on ProDev kit indicating the end of a process.
 */
 hw_gpio_set_inactive(HW_GPIO_PORT_1, HW_GPIO_PIN_5);

 }
}

5.9 Macro Definitions

In /config/custom_config_qspi.h, add the following macro definitions:

/* Enable the GPADC instance used for POT measurements */
#define GPADC_POT

/*
 * Macros for enabling GPADC + Battery measurement operations using Adapters
 */
#define dg_configUSE_HW_GPADC (1)

For the DA1468x SoC

GPADC Adapters

 32 of 35 © 2018 Dialog Semiconductor

#define dg_configGPADC_ADAPTER (1)
#define dg_configBATTERY_ADAPTER (1)
/*
 * This macro should already be declared in the file.
 * Just make sure it is set to 1
 */
#define dg_configUSE_HW_TEMPSENS (1)

5.10 GPADC HW Configuration Macros

In the newly created platform_devices.h, add the following macro definition between #if

dg_configGPADC_ADAPTER and #endif

#ifdef GPADC_POT
GPADC_SOURCE(POT_LEVEL, HW_GPADC_CLOCK_INTERNAL,
 HW_GPADC_INPUT_MODE_SINGLE_ENDED, HW_GPADC_INPUT_SE_P12, 5, true,
 HW_GPADC_OVERSAMPLING_2_SAMPLES,
HW_GPADC_INPUT_VOLTAGE_UP_TO_3V6)
#endif

Note: By default, the SDK comes with a few predefined device settings in platform_devices.h.

Therefore, the developer should check whether an entry matches with a device connected to

the controller.

For the DA1468x SoC

GPADC Adapters

 33 of 35 © 2018 Dialog Semiconductor

Revision History

Revision Date Description

1.0 19-Mar-2018 First released version

1.1 14-May-2018
Correction of typos, Updated code in section 5.7 (missing
configurations)

2.0 23-July-2018 More descriptive steps to follow, figures and examples.

2.1 19-Sep-2018 Updated figures, Minor improvements in prvGPADC_POT_Task.

For the DA1468x SoC

GPADC Adapters

 34 of 35 © 2018 Dialog Semiconductor

Status Definitions

Status Definition

DRAFT
The content of this document is under review and subject to formal approval, which may result in modifications or

additions.

APPROVED

or unmarked
The content of this document has been approved for publication.

Disclaimer

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or
warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no
responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the
specification and the design of the related semiconductor products, software and applications.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes
no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further
testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog
Semiconductor excludes all liability in this respect.

Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software
and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor’s Standard
Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.

Dialog and the Dialog logo are trademarks of Dialog Semiconductor plc or its subsidiaries. All other product or service names are the property of
their respective owners.

© 2018 Dialog Semiconductor. All rights reserved.

Contacting Dialog Semiconductor

United Kingdom (Headquarters)

Dialog Semiconductor (UK) LTD

Phone: +44 1793 757700

Germany

Dialog Semiconductor GmbH

Phone: +49 7021 805-0

The Netherlands

Dialog Semiconductor B.V.

Phone: +31 73 640 8822

North America

Dialog Semiconductor Inc.

Phone: +1 408 845 8500

Japan

Dialog Semiconductor K. K.

Phone: +81 3 5769 5100

Taiwan

Dialog Semiconductor Taiwan

Phone: +886 281 786 222

Hong Kong

Dialog Semiconductor Hong Kong

Phone: +852 2607 4271

Korea

Dialog Semiconductor Korea

Phone: +82 2 3469 8200

China (Shenzhen)

Dialog Semiconductor China

Phone: +86 755 2981 3669

China (Shanghai)

Dialog Semiconductor China

Phone: +86 21 5424 9058

Email: Web site:

http://www.dialog-semiconductor.com/standard-terms-and-conditions
http://www.dialog-semiconductor.com/standard-terms-and-conditions
http://www.dialog-semiconductor.com/

For the DA1468x SoC

GPADC Adapters

 35 of 35 © 2018 Dialog Semiconductor

enquiry@diasemi.com www.dialog-semiconductor.com

