
EZ-CUBE
On-Chip Debug Emulator with Programming
Function

Rev.3.00 Nov. 2013
Renesas Electronics (China)
www.cn.renesas.com

User’s Manual

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however,
is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein,
please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful
attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our
website.
2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property
rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this
document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property
rights of Renesas Electronics or others.
3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or
in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the
operation of semiconductor products and application examples. You are fully responsible for the incorporation of these
circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any
losses incurred by you or third parties arising from the use of these circuits, software, or information.
5. When exporting the products or technology described in this document, you should comply with the applicable export
control laws and regulations and follow the procedures required by such laws and regulations. You should not use
Renesas Electronics products or the technology described in this document for any purpose relating to military
applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas
Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas
Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for
any damages incurred by you resulting from errors in or omissions from the information included herein.
7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”,
and “Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality
grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a
particular application. You may not use any Renesas Electronics product for any application categorized as “Specific”
without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for
any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics
shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any
Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where
you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics
product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio

and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and
industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems;
anticrime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical
equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations,
or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct
threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas
Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage
range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no
liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products
have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to
implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in
the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but
not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any
other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the
safety of the final products or system manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all
applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the
EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your
noncompliance with applicable laws and regulations.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of
Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in
this document or Renesas Electronics products, or if you have any other inquiries.
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its
majorityowned subsidiaries.
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

User’s Manual

Preface
The EZ-CUBE emulator (YRCNEZCUBE01) is designed for use with the MCU’s made by Renesas Electronics.
You can download the latest manuals from the Renesas Tools homepage (http://www.cn.renesas.com/EZ-CUBE).

Important
Before using the emulator, be sure to read this user’s manual carefully. Keep this user’s manual, and refer to it when
you have questions about the emulator.

Emulator:
"Emulator" in this user’s manual collectively refers to the EZ-CUBE emulator manufactured by Renesas Electronics
Corporation.
"Emulator" herein encompasses neither the customer's target system nor the host machine.

Purpose of use of the emulator:
This emulator is a device to support the development of systems that uses the Renesas microcomputers. It provides
support for system development in both software and hardware. The emulator is not guaranteed for use in the
production line. Be sure to use the emulator correctly according to said purpose of use. Please avoid using the
emulator other than for its intended purpose of use.

For those who use the emulator:
The emulator can only be used by those who have carefully read the user’s manual and know how to use it.
Use of the emulator requires basic knowledge of electric circuits, logical circuits, and MCUs.

When using the emulator:
(1)The emulator is a development-support unit for use in your program development and evaluation stages. When a

program you have finished developing is to be incorporated in a mass-produced product, the judgment as to
whether it can be put to practical use is entirely your own responsibility, and should be based on evaluation of the
device on which it is installed and other experiments.

(2)In no event shall Renesas Electronics Corporation be liable for any consequence arising from the use of the
emulator.

(3)Renesas Electronics Corporation strives to provide workarounds for and correct trouble with products malfunctions.
However, this does not necessarily mean that Renesas Electronics Corporation guarantees the provision of a
workaround or correction under any circumstances.

(4)The emulator covered by this document has been developed on the assumption that it will be used for program
development and evaluation in laboratories.

(5)Renesas Electronics Corporation cannot predict all possible situations and possible cases of misuse that carry a
potential for danger. Therefore, the warnings in this user's manual and the warning labels attached to the emulator
do not necessarily cover all such possible situations and cases. The customer is responsible for correctly and
safely using the emulator.

(6)The emulator covered by this document has not been through the process of checking conformance with UL or
other safety standards and IEC or other industry standards. This fact must be taken into account when the emulator
is taken from Japan to some other country.

(7)Renesas Electronics Corporation will not assume responsibility of direct or indirect damage caused by an
accidental failure or malfunction in the emulator.

When disposing of the emulator:
Penalties may be applicable for incorrect disposal of this waste, in accordance with your national legislation.

http://cn.renesas.com/products/tools/emulation_debugging/onchip_debuggers/ez_cube/index.jsp

User’s Manual

Usage restrictions:
The emulator has been developed as a means of supporting system development by users. Therefore, do not use it
as an embedded device in other equipment. Also, do not use it to develop systems or equipment for use in the
following fields.
(1) Transportation and vehicular
(2) Medical (equipment that has an involvement in human life)
(3) Aerospace
(4) Nuclear power control
(5) Undersea repeaters
(6) Military related business or development of Weapon of Mass Destruction

If you are considering the use of the emulator for one of the above purposes, please be sure to consult your local
distributor.

About product changes:
We are constantly making efforts to improve the design and performance of our product. Therefore, the specification
or design of the emulator, or this user's manual, may be changed without prior notice.

About rights:
(1) We assume no responsibility for any damage or infringement on patent rights or any other rights arising from the

use of any information, products or circuits presented in this user’s manual.
(2) The information or data in this user’s manual does not implicitly or otherwise grant a license to patent rights or any

other rights belonging to Renesas or to a third party.
(3) This user’s manual and the emulator are copyrighted, with all rights reserved by Renesas. This user’s manual may

not be copied, duplicated or reproduced, in whole or part, without prior written consent from Renesas.

About diagrams:
Some diagrams in this user’s manual may differ from the objects they represent.

Terminology
The meanings of the terms used in this manual are described in the table below.

Term Meaning

EZ-CUBE Generic name of EZ-CUBE

Target device This is the device to be emulated.

Target system This is the system to be debugged (user-created system).

It includes software and hardware created by the user.

CS+ It is an integrated development environment.

Firmware Program embedded in the device for controlling EZ-CUBE

RFP Renesas Flash Programmer, GUI software used to perform flash

programming.

User’s Manual

CAUTION

Caution to Be Taken for System Malfunctions:
If the emulator malfunctions because of interference like external noise, do the following to remedy the trouble.
(1) Exit the emulator debugger, and shut OFF the emulator and the target system.
(2) After a lapse of 10 seconds, turn ON the power of the emulator and the target system again, then launch the
emulator debugger.

Note
Renesas Electronics (China) does not assume any liability for the user does not follow the user manual for the use of
non-normal and non-practice due to loss of product failure and other related.

User’s Manual

 CONTENTS
CHAPTER 1 OVERVIEW..7

1.1 Features .. 7
1.2 Notes Before Using EZ-CUBE .. 8
1.3 Hardware Specifications.. 9
1.4 Firmware Update ... 9
1.5 Standard configuration .. 10

CHAPTER 2 NAMES AND FUNCTIONS OF HARDWARE11

2.1 Part Names and Functions of EZ-CUBE... 11
2.2 System configuration... 13
2.3 Setup ... 13

2.3.1 Installing Emulator Software .. 13
2.3.2 System startup procedure... 13
2.3.3 System shutdown procedure.. 14

CHAPTER 3 HOW TO USE EZ-CUBE WITH RL78 MICROCONTROLLER15

3.1 Target System Design .. 16
3.1.1 Pin assignment... 16
3.1.2 Circuit connection example .. 17
3.1.3 Connection of reset pin ... 18

3.2 On-Chip Debugging .. 20
3.2.1 Debug functions... 20
3.2.2 Securing of user resources and setting of security ID and on-chip debug option

byte debugging resources .. 20
3.2.3 Cautions on debugging ... 25

3.3 Flash Programming... 27
3.3.1 Specifications of programming function... 27
3.3.2 Cautions on flash programming... 27

CHAPTER 4 HOW TO USE EZ-CUBE WITH 78K0R MICROCONTROLLER28

4.1 Target System Design .. 29
4.1.1 Pin assignment... 30
4.1.2 Circuit connection example .. 31
4.1.3 Connection of reset pin ... 32

4.2 On-Chip Debugging .. 33
4.2.1 Debug functions... 33
4.2.2 Securing of user resources and setting of security ID and on-chip debug option

byte .. 33
4.2.3 Cautions on debugging ... 37

4.3 Flash Programming... 40
4.3.1 Specifications of programming function... 40
4.3.2 Cautions on flash programming... 40

CHAPTER 5 HOW TO USE EZ-CUBE WITH 78K0 MICROCONTROLLER41

5.1 Target System Design .. 42

User’s Manual

5.1.1 Pin assignment ...42
5.1.2 Circuit connection examples...43
5.1.3 Connection of reset pin..45
5.1.4 Cautions on Target system Design ..47
5.1.5 Clock Setting ...47

5.2 On-Chip Debugging...49
5.2.1 Debug functions ...49
5.2.2 Securing of user resources and setting of security ID ...49
5.2.3 Cautions on debugging..54

5.3 Flash Programming..56
5.3.1 Specifications of programming function ...56
5.3.2 Cautions on flash programming ..56

CHAPTER 6 HOW TO USE EZ-CUBE WITH RX MICROCONTROLLER............... 57

6.1 Target System Design...58
6.1.1 Pin assignment ...58
6.1.2 Recommended Circuit Connection...59
6.1.3 Notes on Connection ..62

6.2 On-Chip Debugging...64
6.2.1 Debug functions ...64
6.2.2 Notes on debugging ...65

6.3 Flash Programming ...66
6.3.1 Specifications of programming function ...66
6.3.2 Cautions on flash programming ...66

CHAPTER 7 HOW TO USE EZ-CUBE WITH V850 MICROCONTROLLER....... 67

7.1 Target System Design..68
7.1.1 Pin assignment ...68
7.1.2 Circuit connection examples...69
7.1.3 Connection of reset pin..70

7.2 On-Chip Debugging...72
7.2.1 Debug functions ...72
7.2.2 Securing of user resources and setting of security ID ...72
7.2.3 Cautions on debugging..75

7.3 Flash Programming..78
7.3.1 Specifications of programming function ...78
7.3.2 Cautions on flash programming ...78

User’s Manual

CHAPTER 1 OVERVIEW

EZ-CUBE Emulator (hereinafter referred to as EZ-CUBE) is an on-chip debug emulator with flash programming
function, which is used for debugging and programming a program to be embedded in on-chip flash memory
microcontrollers. This product can debug with the target microcontroller connected to the target system, and can
write programs to the on-chip flash memory of microcontrollers.

1.1 Features

• On-chip debugging

Can debug with the target microcontroller connected to the target system.

• Flash memory programming

Can write programs to the on-chip flash memory of microcontrollers.

• USB connection

Can be connected to the host machine via USB interface 2.0.

Since EZ-CUBE operates on power supplied via USB, an external power supply is unnecessary.
• Variety of supported devices and expandability

EZ-CUBE supports a wide variety of Renesas Electronics 8- bit to 32-bit on-chip flash memory
microcontrollers.
- RL78 Microcontrollers
- 78K0 Microcontrollers
- 78K0R Microcontrollers
- RX Microcontrollers
- V850 Microcontrollers

CHAPTER 1 OVERVIEW

User’s Manual 8

1.2 Notes Before Using EZ-CUBE

Chapters 1 and 2 present an overview and the basic specifications of EZ-CUBE, and the following chapters
provide separate descriptions for the target devices and the purpose of use. To utilize this manual effectively,
refer to the following table and see the relevant chapter for your target device and purpose of use.

Table 1-1. Chapters Corresponding to Usage

Target Device Purpose of Use Relevant Chapter

 CHAPTER 3 HOW TO USE EZ-CUBE WITH

RL78 MICROCONTROLLER

Target system design 3.1 Target System Design

On-chip debugging 3.2 On-Chip Debugging

RL78

Flash memory programming 3.3 Flash Programming

 CHAPTER 4 HOW TO USE EZ-CUBE WITH

78K0R MICROCONTROLLER

Target system design 4.1 Target System Design

On-chip debugging 4.2 On-Chip Debugging

78K0R

Flash memory programming 4.3 Flash Programming

 CHAPTER 5 HOW TO USE EZ-CUBE WITH

78K0 MICROCONTROLLER

Target system design 5.1 Target System Design

On-chip debugging 5.2 On-Chip Debugging

78K0

Flash memory programming 5.3 Flash Programming

 CHAPTER 6 HOW TO USE EZ-CUBE WITH

RX MICROCONTROLLER

Target system design 6.1 Target System Design

On-chip debugging 6.2 On-Chip Debugging

RX

Flash memory programming 6.3 Flash Programming

 CHAPTER 7 HOW TO USE EZ-CUBE WITH

V850 MICROCONTROLLER

Target system design 7.1 Target System Design

On-chip debugging 7.2 On-Chip Debugging

V850

Flash memory programming 7.3 Flash Programming

CHAPTER 1 OVERVIEW

User’s Manual 9

1.3 Hardware Specifications

This section describes the EZ-CUBE hardware specifications.
The specifications related to the on-chip debug and flash memory programming functions are described in the

following chapters.

Table 1-2. Hardware Specifications

Classification Item Specifications

Operating power supply Supplied via USB interface (5 V)

Operating environment

conditions

Temperature: ±0 to +40°C

Humidity: 40 to 80% RH (no condensation)

Storage environment

conditions

Temperature: -15 to +60°C

Humidity: 40 to 80% RH (no condensation)

External dimensions 60× 36 × 13 mm

EZ-CUBE

Weight Approximately 40 g

Target host machine IBM PC/ATTM compatibles

Target OS Windows XP(32bit), Vista, Windows 7, Windows 8

USB 2.0

USB cable 1 m

Host machine interface

Current consumption 500 mA max.

Target cable length 8-pin cable

Supply voltage 5.0 V±0.3V (typ.)

Supply current 100 mA max.

Target interface

Voltage range 2.7 to 5.5 V

1.4 Firmware Update

(1) Installation of the USB driver

This USB driver is required to connect the host machine and EZ-CUBE. Download it from the CD. Please
install this USB driver at first.

(2) Connecting the USB cable

Connect EZ-CUBE to the host machine. Do not connect EZ-CUBE to the target system. The mode LED
glows red after connection.

(3) Startup of EZ-CUBE firmware update tool

Start the EZ-CUBE firmware update tool (QBEZUTL.exe).
QBEZUTL.exe V1.14 or later must be necessary.

CHAPTER 1 OVERVIEW

User’s Manual 10

(4) Select firmware

Click the […] button. Select firmware of EZ-CUBE (*.hex) and click the [OK] button.

(5) Update firmware
Click the [Start] button. Start to update the EZ-CUBE firmware. If firmware update is finished, the following
dialog box appears.

(6) Quit EZ-CUBE firmware update tool
Click the [Exit] button. Quit EZ-CUBE firmware update tool.

(7) Unplugging the USB cable

Unplug the USB cable from EZ-CUBE or the host machine.

1.5 Standard configuration
Main EZ-CUBE emulator unit (YRCNEZCUBE01)

USB interface cable (A pulg-mini B plug)

Target system interface cable (8-pin)

CD-ROM

User’s Manual 11

CHAPTER 2 NAMES AND FUNCTIONS OF HARDWARE

This chapter describes the part names and functions of EZ-CUBE and its accessories.
The part names described in this chapter are used throughout this document. This chapter provides an overview

of the various functions. Reading it through, the reader will gain a basic grasp of EZ-CUBE. While reading this
chapter, also check if the hardware has a defect.

2.1 Part Names and Functions of EZ-CUBE

Figure 2-1 shows the part names of the EZ-CUBE main unit. For their functions, refer to (1) to (9) below.

Figure 2-1. Part Names of EZ-CUBE

(1) SW-1 switch
The position of this switch depends on the target devices. The detail describes, please see the follow chapter.
This switch is set to ″M2″ at shipment.

(2) SW-2 switch

This switch is used to set clock. Table 2-1 describes the setting details. This switch is set to ″Int. Clock″ at
shipment.

Table 2-1. Setting of Clock Select Switch

Setting Description

Int. Clock When this SW-2 is turned to Int. Clock position, 8MHz fixed freq. is to be supplied to

the target board.

Ext. Clock If the other freq. is required, it should be turned to Ext. Clock position (Ext. X'tal

should be connected in this case).

(3) SW-3 switch

This switch is used to set run mode of program. Table 2-2 describes the setting details. This switch is set to ″
Debug Mode ″ at shipment.

CHAPTER 2 NAMES AND FUNCTIONS OF HARDWARE

User’s Manual 12

Table 2-2. Setting of Program Run Select Switch

Setting Description

Debug Mode On "Debug" position, the user's program will run when RUN command is issued from
the debugger GUI.

Stand Alone On "Stand Alone" position, the user's program is automatically run when the reset is
released even the cables from EZ-CUBE is connected to the target board.

(4) SW-4 switch
This switch is used to set the power supplied to the target system. Table 2-3 describes the setting details.
This switch is set to ″5″ at shipment.

Caution Do not change the switch setting while the USB cable is connected.

Table 2-3. Setting of Power Select Switch

Setting Description

5 5 V±0.3V is supplied from EZ-CUBE to the target systemNote.

The supplied power is fed back to EZ-CUBE and used only for power detection.

T Power supply of the target system is used.

EZ-CUBE only detects the power for the target system.

Note The maximum rating of the current is 100mA, so do not use EZ-CUBE with the target system with the
higher current rating. The power is always supplied after EZ-CUBE is connected to the host machine.

(5) SW-5 switch
The position of this switch depends on the target devices. The detail describes, please see the follow chapter.
This switch is set to ″Other″ at shipment.

(6) USB interface connector
This is a connector used to connect EZ-CUBE with the host machine, via a USB cable.
A USB 2.0 compliant mini-B connector is employed.

(7) Target interface connector
This is a connector used to connect EZ-CUBE with the target system, via a 8-pin (2*4pin) target cable.

(8) External X’tal socket(Only for 78K0 and RX)
SW-2 set for Ext. Clock.
Connect an oscillator or oscillation circuit on the External X'tal socket. (Select for “Clock board” in the
Configuration dialog box of the debugger.) For the operation this step, refer to the user's manual for
CS+.

Figure 2-2. Mounting Diagram

CHAPTER 2 NAMES AND FUNCTIONS OF HARDWARE

User’s Manual 13

(9) Mode LED
The appearance of the mode LED changes according to the status of hardware and software, as shown in
Table 2-4.

Table 2-4. Mode LED Status
Description

Mode LED
Color

Appearance USB
Connection

Software Operation

- Extinguished
Not
connected Not yet started

Red Glowing Power or the CPU is in the break
mode.

Green Glowing
Connected

A debugger has been started

2.2 System configuration
Figure 2-3 illustrates the system configuration for on-chip debugging.

Figure 2-3. System Configuration for On-Chip Debugging

<1> Host machine
 Products with USB ports
<2> Software

Includes CS+, firmware update tool, and so on. <3>
USB cable (accessory)
<4> EZ-CUBE (this product)
<5> 8-pin user-system interface cable (accessory)

2.3 Setup

2.3.1 Installing Emulator Software
Install the development software (CS+) into the host machine.

CS+ V3.00 or later must be necessary.

2.3.2 System startup procedure
Turn the power of the EZ-CUBE emulator and the target system following the procedure below.

.

EZ-CUBE

Target device Target device

CHAPTER 2 NAMES AND FUNCTIONS OF HARDWARE

User’s Manual 14

(1) Check the power is off
Check that the target system is turned off.

(2) Connect the target system
Connect the emulator and the target system with a user-system interface cable.

(3) Connect the host machine and turn on the emulator
Connect the emulator and the host machine with a USB interface cable. The EZ-CUBE emulator is turned on by
connecting the USB interface cable.

(4) Turn on the target system
Turn on the target system. This step is not necessary when power is supplied to the target system from the
EZ-CUBE emulator.

(5) Launch the emulator debugger
Launch the emulator debugger. For the operation after this step, refer to the user's manual for CuebSuite+.

If the debugger does not start normally or the operation is unstable, the possible causes may be the following.
Communication error between EZ-CUBE and target system
• Whether firmware is update.
• Whether switch is selected normally.
• Whether communication is performed normally.
• The user resource has not been secured or the security ID has not been set
 To perform debugging with EZ-CUBE, the user resource must be secured and the security ID must be set.
• Unsupported software (debugger, device file, or firmware) is used
 The software used may not support debugging of the target device.
• Defect of EZ-CUBE
 EZ-CUBE may have a defect.

2.3.3 System shutdown procedure
Terminate debugging and shutdown the system in the following order.
If the following order is not observed, the target system or EZ-CUBE may be damaged.

(1) Close the emulator debugger
 Close the emulator debugger.

(2) Turn off the target system
 Turn off the target system. This step is not necessary when power is supplied to the target system from the

EZ-CUBE emulator.

(3) Turn off the emulator and disconnect the emulator.
 Disconnect the USB interface cable from the emulator. The EZ-CUBE emulator is turned off by disconnecting

from the USB interface cable.

(4) Disconnecting the target system
 Disconnect the user-system interface cable from the target system.

User’s Manual 15

CHAPTER 3 HOW TO USE EZ-CUBE WITH RL78 MICROCONTROLLER

This chapter describes how to use EZ-CUBE when performing on-chip debugging and flash programming for a
RL78 microcontroller.

On-chip debugging is a method to debug a microcontroller mounted on the target system, using a debug function
implemented in the device. Since debugging is performed with the target device operating on the board, this method is
suitable for field debugging.

Flash programming is a method to write a program to the flash memory embedded in a device. Erasing, writing and
verifying the program can be performed on-board with the device.

Please update firmware for RL78 at first. Refer to description (1) to (3) on the following order. For detail, refer to 1.4

Firmware update.
(1) Connect EZ-CUBE to the host machine. Do not connect EZ-CUBE to the target system.
(2) Start the EZ-CUBE firmware update tool”QBEZUTL.exe”. Select firmware of RL78 (RL78G10_OCD_FW.hex

or RL78_OCD_FW (except G10).hex).
(3) Click the [Start] button. Start to update the EZ-CUBE firmware.

Read the following chapters if you are using EZ-CUBE for the first time with a RL78 microcontroller as the target

device.

 3.1 Target System Design
 For communication between EZ-CUBE and the target system, communication circuits must be mounted on the

target system. This section describes the circuit design and mounting of connectors.

 3.2 On-Chip Debugging
 This section describes the system configuration and startup method to perform on-chip debugging with

EZ-CUBE.

 3.3 Flash Programming
 This section describes the system configuration and startup method to perform flash programming with

EZ-CUBE.

Supporting MCU
Table 3-1 shows the supporting MCUs of RL78 EZ-CUBE firmware.

Table 3-1 Supporting MCUs of RL78 EZ-CUBE firmware

Items Contents Firmware

RL78/G10 RL78G10_OCD_FW.hex
Supporting MCUs

RL78/G12,G13,G14,I1A RL78_OCD_FW (except G10).hex

Supporting Operation mode UART mode

CHAPTER 3 HOW TO USE EZ-CUBE WITH RL78 MICROCONTROLLER

User’s Manual 16

3.1 Target System Design
This section describes the target system circuit design required for on-chip debugging and flash programming.
Figure 3-1 presents an overview of the EZ-CUBE communication interface. As shown on the left side of the

figure, EZ-CUBE performs serial communication with the target device on the target system. For this
communication, communication circuits must be mounted on the target system. Refer to this section to design
circuits appropriately.

Figure 3-1. Outline of Communication Interface

3.1.1 Pin assignment
This section describes the interface signals used between EZ-CUBE and the target system. Table 3-2 lists the

pin assignment. Table3-3 describes the functions of each pin.

Table 3-2. Pin Assignment

Pin No. Pin nameNote
1 GND

2 RESET_IN

3 Vdd

4 FLMD0

5 CLK

6 RxD.

7 RESET_OUT

8 TOOL0

Note Signal names in EZ-CUBE

.

Target system Host machine EZ-CUBE

Target device

USB
communication

Communication circuits
must be mounted on
the target system. .

RENESAS

EZ-CUBE

UART communication

EZ-CUBE

Target interface
connector

7

8

5

6 4

1

2

3

CHAPTER 3 HOW TO USE EZ-CUBE WITH RL78 MICROCONTROLLER

User’s Manual 17

Table 3-3. Pin Functions

Pin Name IN/OUT Note Description

RESET_IN IN Pin used to input reset signal from the target system

RESET_OUT OUT Pin used to output reset signal to the target device

FLMD0 OUT Pin used to set the target device to debug mode or programming mode

RXD IN/OUT Pin used to transmit/receive command/data between the target device

TOOL0 IN/OUT Pin used to transmit/receive command/data between the target device

CLK IN Pin used to input handshake signal from the target device

Note As seen from EZ-CUBE

3.1.2 Circuit connection example
Refer to Figure 3-2 and Figure 3-3 design an appropriate circuit.

Caution The constants described in the circuit connection example are reference values. If you perform

flash programming aiming at mass production, thoroughly evaluate whether the specifications of
the target device are satisfied.

Figure 3-2. RL78/ G10, G12(20pin,24pin), Recommended Circuit Connection

EZ-CUBE Switch Setting
 For RL78/ G10, G12(20pin, 24pin)

SW-1: Select switch to ″M2″.
SW-2: Select switch to ″Int. Clock″.
SW-3: Select switch to ″Debug Mode″.
SW-4: Depend on the target system environment.
SW-5: Select switch to ″M3 ″.

Notes on the Target System Power Supply:

1. Do not change the switch setting after connecting USB cable.
2. The EZ-CUBE can supply power up to 100 mA current. Do not exceed the maximum supply current.
 The power is supplied from EZ-CUBE after connecting EZ-CUBE to the host machine.

CHAPTER 3 HOW TO USE EZ-CUBE WITH RL78 MICROCONTROLLER

User’s Manual 18

Figure 3-3. RL78/G12(30pin), RL78/G13, RL78/G14, RL78/I1A Recommended Circuit Connection

EZ-CUBE Switch Setting
 For RL78/G12(30pin), RL78/G13, RL78/G14, RL78/I1A

SW-1: Select switch to ″M2″.
SW-2: Select switch to ″Int. Clock″.
SW-3: Select switch to ″Debug Mode″.
SW-4: Depend on the target system environment.

 SW-5: Select switch to ″Other″.

Notes on the Target System Power Supply:

1. Do not change the switch setting after connecting USB cable.
2. The EZ-CUBE can supply power up to 100 mA current. Do not exceed the maximum supply current.
 The power is supplied from EZ-CUBE after connecting EZ-CUBE to the host machine.

3.1.3 Connection of reset pin
This section describes the connection of the reset pin, for which special attention must be paid, in the circuit

connection example shown in the previous section.
During on-chip debugging, a reset signal from the target system is input to EZ-CUBE, masked, and then output

to the target device. Therefore, the reset signal connection varies depending on whether EZ-CUBE is connected.
For flash programming, the circuit must be designed so that the reset signals of the target system and EZ-CUBE

do not conflict.
Recommend automatically switching the reset signal via series resistor.
Figure 3-4 illustrates the reset pin connection described in 3.1.2 Circuit connection example.
This connection is designed assuming that the reset circuit on the target system contains an N-ch open-drain

buffer (output resistance: 100Ω or less). The VDD or GND level may be unstable when the logic of
RESET_IN/OUT of EZ-CUBE is inverted, so observe the conditions described below in Remark.

CHAPTER 3 HOW TO USE EZ-CUBE WITH RL78 MICROCONTROLLER

User’s Manual 19

Figure 3-4. Circuit Connection with Reset Circuit That Contains Buffer

Remark Make the resistance of at least R1 ten times that of R2, R1 being 10 kΩ or more.
 Pull-up resistor R2 is not required if the buffer of the reset circuit consists of CMOS output.
 The circuit enclosed by a dashed line is not required when only flash programming is performed.

Figure 3-5 illustrates the circuit connection for the case where the reset circuit on the target system contains
no buffers and the reset signal is only generated via resistors or capacitors. Design the circuit, observing the
conditions described below in Remark.

Figure 3-5. Circuit Connection with Reset Circuit That Contains No Buffers

Remark Make the resistance of at least R1 ten times that of R2, R1 being 10 kΩ or more.
 The circuit enclosed by a dashed line is not required when only flash programming is performed.

_RESET

EZ-CUBE

RESET_OUT

RESET_IN

R1 R2

V DD _RESETRESET_OUT

RESET_IN

R2

DD

Target device Reset connector

_RESETRESET_OUT

RESET_IN

R1

V DD VDD

R2

_RESET

EZ-CUBE

RESET_OUT

RESET_IN

Buffer

V

R2

Reset connector Target device

CHAPTER 3 HOW TO USE EZ-CUBE WITH RL78 MICROCONTROLLER

User’s Manual 20

3.2 On-Chip Debugging
This section describes the system configuration, startup/shutdown procedure and cautions for debugging when

on-chip debugging is performed with EZ-CUBE.

3.2.1 Debug functions
Table 3-4 lists the debug functions when a RL78 microcontroller is the target device.

Table 3-4. Debug Functions

Functions Specifications

Target device RL78

RL78/G10,12,G13,G14,I1A
Security 10 byte ID code authentication

Download Available

Execution Go, Step In, Step Over, CPU Reset, Restart

Hardware break 1 point

Software break Multiple points

User spaces used for debugging 1-wire mode:Internal ROM: 1024 bytes + 22 bytes, Internal RAM: 6 bytesNote

Function pins used for debugging TOOL0

Note For details, refer to 3.2.2 Securing of user resources and setting of security ID and on-chip debug option
byte.

3.2.2 Securing of user resources and setting of security ID and on-chip debug option byte debugging

resources
The user must prepare the following to perform communication between EZ-CUBE and the target device and

implement each debug function. Refer to the descriptions on the following sections and set these items in the user
program or using the build tool property.

(a) Setting of security ID
This setting is required to prevent the memory from being read by an unauthorized person. Embed a security
ID at addresses 0xC4 to 0xCD in the internal flash memory. The debugger starts only when the security ID that
is set during debugger startup and the security ID set at addresses 0xC4 to 0xCD match. If the ID codes do
not match, the debugger manipulates the target device in accordance with the value set to the on-chip debug
option byte area (refer to Table 3-6).
If the user has forgotten the security ID to enable debugging, erase the flash memory and set the security ID
again.

[How to set security ID]
A setting method of the security ID is following. When both (1) and (2) methods are done at a time,

method (2) has a priority.
(1) Embed the security ID at addresses 0xC4 to 0xCD in the user program.
(2) Setting of the security ID by build tool common options. (In case of CS+)

(1) Embed a security ID at addresses 0xC4 to 0xCD in the user program.
For example If the security ID is embedded as follows, the security ID set by the debugger is
″0123456789ABCDEF1234″ (not case-sensitive).

CHAPTER 3 HOW TO USE EZ-CUBE WITH RL78 MICROCONTROLLER

User’s Manual 21

Table 3-5 Security ID
Address Value
0xC4 0x01
0xC5 0x23
0xC6 0x45
0xC7 0x67
0xC8 0x89
0xC9 0xAB
0xCA 0xCD
0xCB 0xEF
0xCC 0x12
0xCD 0x34

(2) Setting of the security ID by build tool common options. (In case of CS+) Set in “device” in the
common options tab as figure 3-6.

Figure 3-6. Security ID Setting Example

[How to authenticate the security ID at debugger startup]
When connecting a debugger to the device set the security ID, it is necessary to specify the security ID by

connection settings in debug tool property. (Default security ID is set in build tool property.)

CHAPTER 3 HOW TO USE EZ-CUBE WITH RL78 MICROCONTROLLER

User’s Manual 22

(b) Setting of On-chip debugging option byte
This is the area for the security setting to prevent the flash memory from being read by an unauthorized person.
The debugger manipulates the target device in accordance with the set value, as shown below.

 Table 3-6. On-Chip Debug Option Byte Setting and Operation

Set Value Description Remark

0x04 Debugging is disabled This setting is available only

for flash programming and self

programming.

0x85 The on-chip flash memory is not erased no matter

how many times the security ID code authentication

fails.

-

0x84 All on-chip flash memory areas are erased if the

security ID code authentication fails.

-

Other than above Setting prohibited -

 [How to secure areas]
A setting method of On-chip debug option byte is following. When setting each other, priority is (2).
(1) Embed the On-chip debug option byte at addresses 0xC3 in the user program.
(2) Set the On-chip debug option byte by build tool link options. (In case of CS+)

(1) Embed the On-chip debug option byte at addresses 0xC3 in the user program
Embed the On-chip debug option byte at addresses 0xC3 in the user program

(2) Set the On-chip debug option byte by build tool link options. (In case of CS+) Set in
“device” in the link options tab as figure 3-7.

Example Setting 0x85 for control value

Figure 3-7. On-Chip Debug Option Byte Setting Example

CHAPTER 3 HOW TO USE EZ-CUBE WITH RL78 MICROCONTROLLER

User’s Manual 23

(C) Securing of area for debugging
The yellow portions in Figure 3-8 are the areas reserved for placing the debug monitor program, so user
programs or data cannot be allocated in these spaces. These spaces must be secured so as not to be used
by the user program. Moreover, this area must not be rewritten by the user program.
Secure the resources for debugging with the contents explained by (1) and (2).

Figure 3-8. Memory Spaces Where Debug Monitor Programs Are Allocated

 Note 1. In debugging, reset vector is rewritten to address allocated to a monitor program.
2. When the self programming is executed, it will be 12 bytes.

(1) Securing of debug monitor area
This is the area to which the debug monitor program is to be allocated. The monitor program performs
initialization processing for debug communication interface and RUN or break processing for the CPU.
This user programs or data must not be placed in an area of 22 bytes near the on-chip debug option byte, and an
area of 1024 bytes before the internal ROM end address. In addition, reset vector is rewritten to address
allocated to a monitor program.

[How to secure areas]
It is not necessarily required to secure this area if the user program does not use this area.
However To avoid problems that may occur during the debugger startup, it is recommended to secure this
area in advance, using the compiler. Figure 3-9 shows example for securing the area, using the CS+. Set in
“device” in link options tab as figure 3-9.

Figure 3-9 Example for securing the debug monitor area

CHAPTER 3 HOW TO USE EZ-CUBE WITH RL78 MICROCONTROLLER

User’s Manual 24

(2) Securing of stack area for debugging

This area requires 4 bytes as the stack area for debugging. Since this area is allocated immediately before
the stack area, the address of this area varies depending on the stack increase and decrease. That is, 4 extra
bytes are consumed for the stack area used.
Figure 3-10 illustrates the case where the stack area is increased when the internal high-speed RAM starts
from 0xFCF00.

Figure 3-10. Variation of Address of Stack Area for Debugging

[How to secure areas]
Set the stack pointer by estimating the stack area consumed by the user program + 4 bytes. Make sure that
the stack pointer does not extend beyond the internal high-speed RAM start address.

Remark Refer to the self programming manual for how to secure the stack area for self programming.

CHAPTER 3 HOW TO USE EZ-CUBE WITH RL78 MICROCONTROLLER

User’s Manual 25

3.2.3 Cautions on debugging
This section describes cautions on performing on-chip debugging for a RL78 microcontroller.
Be sure to read the following to use EZ-CUBE properly.

(1) Handling of device that was used for debugging

Do not mount a device that was used for debugging on a mass-produced product, because the flash memory
was rewritten during debugging and the number of rewrites of the flash memory cannot be guaranteed.
Moreover, do not embed the debug monitor program into mass-produced products.

(2) Flash self programming
If a space where the debug monitor program is allocated is rewritten by flash self programming, the debugger
can no longer operate normally. This caution also applies to boot swapping for such an area.

(3) Operation after reset
After an external pin reset or internal reset, the monitor program performs debug initialization processing.
Consequently, the time from reset occurrence until user program execution differs from that in the actual
device operation.

(4) Checking operation of a device after debugging
After downloading a load module file to the device to for on-chip debugging, do not check the operation of this
device without EZ-CUBE.
A device after debugging contains the specific program for on-chip debugging, so it is different from actual
operation.

(5) Current consumption when On-chip debugging
On-chip debugging circuit in the device operates during on-chip debugging.
Therefore current consumption of the device increases.
When evaluations current consumption of device, please do not connect a debugger.

(6) On-chip debugging option byte setting (address C3H)
The on-chip debugging option byte setting is rewritten arbitrarily by the debugger.

(7) Operation at voltage with which flash memory cannot be written

If the following debugger operations are executed at voltage with which flash memory cannot be written, the
debugger outputs an error and the operation is ignored. Because these operations are included flash memory
rewriting.
<1> Writing to internal flash memory
<2> Setting or canceling of software breakpoint
<3> Starting execution at the set software breakpoint position
<4> Step execution at the set software breakpoint position
<5> Step-over execution, Return Out execution
<6> Come Here
<7> Setting, changing, or canceling of hardware breaks
<8> Masking/unmasking of internal reset
<9> Switching of peripheral breaks

CHAPTER 3 HOW TO USE EZ-CUBE WITH RL78 MICROCONTROLLER

User’s Manual 26

(8) Relation between Standby function and Break function
The break is interrupt function of CPU. The standby mode is released by the break for using the following
debug function.
<1> Stops execution of the user program.
<2> Step execution of the standby instruction (Stops user program after execution instruction)
<3> Pseudo real-time RAM monitor function (Break When Readout)
<4> Pseudo Dynamic Memory Modification (Break When Write)
<5> Breakpoint setting executing of the user program.

(9) Cautions on using step-in (step execution)

The value of some SFRs (special function registers) might remain unchanged while stepping into code. If the
value of the SFRs does not change while stepping into code, operate the microcontroller by continuously
executing the instructions instead of executing them in steps.
Stepping into code: Instructions in the user-created program are executed one by one.
Continuous execution: The user-created program is executed from the current PC value.

(10) Emulation of flash memory CRC accumulator function
Please check the operation of high-speed CRC by using IECUBE or using device without EZ-CUBE.

CHAPTER 3 HOW TO USE EZ-CUBE WITH RL78 MICROCONTROLLER

User’s Manual 27

3.3 Flash Programming
This section describes the system configuration and startup/shutdown procedure when flash programming is

performed for a RL78 microcontroller, using EZ-CUBE.

3.3.1 Specifications of programming function

Table 3-7. Specifications of Programming Function

Functions Specifications

Host interface USB 2.0

Target interface UART (1-wire mode)

Target system voltage 2.7 to 5.5 V (depends on the target device)

Clock supply Internal high-speed oscillation clock is used

Power supply 5 V ±0.3 V (maximum current rating: 100 mA)

Acquisition of device-specific

information

Parameter file for Renesas Electronics is used

Programming software RFP Note (Renesas Flash Programmer)

Security flag setting Available

Standalone operation Unavailable (must be connected to host machine)

Note For detailed usage of the RFP, refer to the RFP User's Manual.

3.3.2 Cautions on flash programming
This section describes the cautions for flash programming. Be sure to read the following for the proper use of

EZ-CUBE.

• To improve the writing quality, fully understand, verify, and evaluate the following items before using EZ-CUBE.
- Circuits are designed as described in the user's manuals for the device and EZ-CUBE.
- The device, RFP and EZ-CUBE are used as described in each user's manual.
- The power supplied to the target system is stable.

User’s Manual 28

CHAPTER 4 HOW TO USE EZ-CUBE WITH 78K0R MICROCONTROLLER

This chapter describes how to use EZ-CUBE when performing on-chip debugging and flash programming for a
78K0R microcontroller.

On-chip debugging is a method to debug a microcontroller mounted on the target system, using a debug function
implemented in the device. Since debugging is performed with the target device operating on the board, this method is
suitable for field debugging.

Flash programming is a method to write a program to the flash memory embedded in a device. Erasing, writing and
verifying the program can be performed on-board with the device.

Please update firmware for 78K0R at first. Refer to description (1) to (3) on the following order. For detail, refer to

1.4 Firmware update.
(4) Connect EZ-CUBE to the host machine. Do not connect EZ-CUBE to the target system.
(5) Start the EZ-CUBE firmware update tool”QBEZUTL.exe”. Select firmware of 78K0R (78K0R_OCD_FW.hex).
(6) Click the [Start] button. Start to update the EZ-CUBE firmware.

Read the following chapters if you are using EZ-CUBE for the first time with a 78K0R microcontroller as the target

device.

 4.1 Target System Design
 For communication between EZ-CUBE and the target system, communication circuits must be mounted on the

target system. This section describes the circuit design and mounting of connectors.

 4.2 On-Chip Debugging
 This section describes the system configuration and startup method to perform on-chip debugging with

EZ-CUBE.

 4.3 Flash Programming
 This section describes the system configuration and startup method to perform flash programming with

EZ-CUBE.

Supporting MCU
Table 4-1 shows the supporting MCUs of 78K0R EZ-CUBE firmware.

Table 4-1 Supporting MCUs of 78K0R EZ-CUBE firmware

Items Contents Firmware

Supporting MCUs 78K0R/Kx3,Lx3 78K0R_OCD_FW.hex

Supporting Operation mode UART mode

CHAPTER 4 HOW TO USE EZ-CUBE WITH 78K0R MICROCONTROLLER

User’s Manual 29

4.1 Target System Design
This section describes the target system circuit design required for on-chip debugging and flash programming.
Figure 4-1 presents an overview of the EZ-CUBE communication interface. As shown on the left side of the

figure, EZ-CUBE performs serial communication with the target device on the target system. For this
communication, communication circuits must be mounted on the target system. Refer to this section to design
circuits appropriately.

Figure 4-1. Outline of Communication Interface

Note 1-wire mode: Single-wire UART communication using TOOL0 pin

 2-wire mode: Single-wire UART communication using TOOL0 and TOOL1 pins

Table 4-2. Differences Between 1-Wire Mode and 2-Wire Mode

Communication

Mode

Flash Programming

Function

Debugging Function

1-wire mode Available • User resources secured for debugging

Internal ROM: 1036 bytes

Internal RAM: 6 bytes (stack)

2-wire mode Available • User resources secured for debugging

Internal ROM: 100 bytes

Internal RAM: 6 bytes (stack)

.

Target system Host machineEZ-CUBE

Target device

USB
communication

Communication circuits
must be mounted on
the target system. .

RENESAS

EZ-CUBE

UART communication
(1-wire/2-wire mode) Note

EZ-CUBE

CHAPTER 4 HOW TO USE EZ-CUBE WITH 78K0R MICROCONTROLLER

User’s Manual 30

4.1.1 Pin assignment
This section describes the interface signals used between EZ-CUBE and the target system. Table 4-3 lists the

pin assignment. Table 4-4 describes the functions of each pin. The pin assignment varies between 1-wire and
2-wire modes, so design the circuit appropriately according to the circuit connection examples described on the
following sections.

Table 4-3. Pin Assignment

Pin No. Pin nameNote
1 GND

2 RESET_IN

3 Vdd

4 FLMD0

5 CLK

6 RxD.

7 RESET_OUT

8 TxD

Note Signal names in EZ-CUBE

Table 4-4. Pin Functions

Pin Name IN/OUTNote 1 Description

RESET_IN IN Pin used to input reset signal from the target system

RESET_OUT OUT Pin used to output reset signal to the target device

FLMD0 OUT Pin used to set the target device to debug mode or programming mode

RXD IN/OUT Pin used to transmit/receive command/data between the target device

TXD IN/OUT Pin used to transmit/receive command/data between the target device

CLK IN Pin used to input handshake signal from the target device

Note As seen from EZ-CUBE

Target interface
connector

7

8

5

6 4

1

2

3

CHAPTER 4 HOW TO USE EZ-CUBE WITH 78K0R MICROCONTROLLER

User’s Manual 31

4.1.2 Circuit connection example
Refer to Figure 4-2 and design an appropriate circuit.

Caution The constants described in the circuit connection example are reference values. If you perform

flash programming aiming at mass production, thoroughly evaluate whether the specifications of
the target device are satisfied.

Figure 4-2. Recommended Circuit Connection

Notes 1. This connection is designed assuming that the RESET signal is output from the N-ch open-drain
buffer (output resistance: 100Ω or less). For details, refer to 4.1.3 Connection of reset pin

 2. The circuit enclosed by a dashed line is not required when only flash programming is performed.
 3. This connection is required for 2-wire communication, but not for 1-wire communication. This pin is

left open when EZ-CUBE is not connected, so connect a pull-up or pull-down resistor to this pin
before using.

EZ-CUBE Switch Setting

SW-1: Select switch to ″M2″.
SW-2: Select switch to ″Int. Clock″.
SW-3: Select switch to ″Debug Mode″.
SW-4: Depend on the target system environment.

 SW-5: Select switch to ″Other″.

Notes on the Target System Power Supply:

1. Do not change the switch setting after connecting USB cable.
2. The EZ-CUBE can supply power up to 100 mA current. Do not exceed the maximum supply
current.
 The power is supplied from EZ-CUBE after connecting EZ-CUBE to the host machine.

CHAPTER 4 HOW TO USE EZ-CUBE WITH 78K0R MICROCONTROLLER

User’s Manual 32

4.1.3 Connection of reset pin
This section describes the connection of the reset pin, for which special attention must be paid, in the circuit

connection example shown in the previous section.
During on-chip debugging, a reset signal from the target system is input to EZ-CUBE, masked, and then output

to the target device. Therefore, the reset signal connection varies depending on whether EZ-CUBE is connected.
For flash programming, the circuit must be designed so that the reset signals of the target system and EZ-CUBE

do not conflict.
Recommend automatically switching the reset signal via series resistor.
Figure 4-3 illustrates the reset pin connection described in 4.1.2 Circuit connection example.
This connection is designed assuming that the reset circuit on the target system contains an N-ch open-drain

buffer (output resistance: 100Ω or less). The VDD or GND level may be unstable when the logic of
RESET_IN/OUT of EZ-CUBE is inverted, so observe the conditions described below in Remark.

Figure 4-3. Circuit Connection with Reset Circuit That Contains Buffer

Remark Make the resistance of at least R1 ten times that of R2, R1 being 10 kΩ or more.
 Pull-up resistor R2 is not required if the buffer of the reset circuit consists of CMOS output.
 The circuit enclosed by a dashed line is not required when only flash programming is performed.

Figure 4-4 illustrates the circuit connection for the case where the reset circuit on the target system contains
no buffers and the reset signal is only generated via resistors or capacitors. Design the circuit, observing the
conditions described below in Remark.

Figure 4-4. Circuit Connection with Reset Circuit That Contains No Buffers

Remark Make the resistance of at least R1 ten times that of R2, R1 being 10 kΩ or more.
 The circuit enclosed by a dashed line is not required when only flash programming is performed.

_RESET

EZ-CUBE

RESET_OUT

RESET_IN

R1 R2

VDD _RESETRESET_OUT

RESET_IN

R2

DD

Target device Reset connector

_RESETRESET_OUT

RESET_IN

R1

V DD VDD

R2

_RESET

EZ-CUBE

RESET_OUT

RESET_IN

Buffer

V

R2

Reset connector Target device

CHAPTER 4 HOW TO USE EZ-CUBE WITH 78K0R MICROCONTROLLER

User’s Manual 33

4.2 On-Chip Debugging
This section describes the system configuration, startup/shutdown procedure and cautions for debugging when

on-chip debugging is performed with EZ-CUBE.

4.2.1 Debug functions
Table 4-5 lists the debug functions when a 78K0R microcontroller is the target device.

Table 4-5. Debug Functions

Functions Specifications

Target device 78K0R

78K0R/Kx3,Lx3
Security 10 byte ID code authentication

Download Available

Execution Go, Step In, Step Over, CPU Reset, Restart

Hardware break 1 point (commonly used by execution and access)

Software break Multiple points

User spaces used for debugging 1-wire mode:Internal ROM: 1036 bytes, Internal RAM: 6 bytesNote

2-wire mode:Internal ROM: 100 bytes, Internal RAM: 6 bytesNote

Function pins used for debugging 1-wire mode: TOOL0

2-wire mode: TOOL0, TOOL1

Note For details, refer to 4.2.2 Securing of user resources and setting of security ID and on-chip debug option
byte.

4.2.2 Securing of user resources and setting of security ID and on-chip debug option byte
The user must prepare the following to perform communication between EZ-CUBE and the target device and

implement each debug function. Refer to the descriptions on the following sections and set these items in the user
program or using the build tool property.

(a) Setting of Security ID
This setting is to prevent the flash memory from being read by an unauthorized person. Embed a security ID at
addresses 0xC4 to 0xCD in the internal flash memory. The debugger starts only when the security ID that is
set during debugger startup and the security ID set at addresses 0xC4 to 0xCD match. If the ID codes do not
match, the debugger manipulates the target device in accordance with the value set to the on-chip debug
option byte area (refer to Table 4-7).
If the user has forgotten the security ID to enable debugging, erase the flash memory and set the security ID
again.

[How to set]
A setting method of the security ID is following. When both (1) and (2) methods are done at a time, method (2)
has a priority.
(1) Embed the security ID at addresses 0xC4 to 0xCD in the user program.
(2) Setting of the security ID by build tool common options. (In case of CS+)

CHAPTER 4 HOW TO USE EZ-CUBE WITH 78K0R MICROCONTROLLER

User’s Manual 34

(1) Embed a security ID at addresses 0xC4 to 0xCD in the user program.
For example If the security ID is embedded as follows, the security ID set by the debugger is ″
0123456789ABCDEF1234″ (not case-sensitive).

Table 4-6 Security ID
Address Value
0xC4 0x01
0xC5 0x23
0xC6 0x45
0xC7 0x67
0xC8 0x89
0xC9 0xAB
0xCA 0xCD
0xCB 0xEF
0xCC 0x12
0xCD 0x34

(2) Setting of the security ID by build tool common options. (In case of CS+) Set in
“device” in the common options tab as figure 4-5.

Figure 4-5. Security ID Setting Example

Caution If you have forgotten the security ID, erase the flash memory by flash programming or self
programming and then set the security ID again.

CHAPTER 4 HOW TO USE EZ-CUBE WITH 78K0R MICROCONTROLLER

User’s Manual 35

(b)Setting of On-chip debug option byte area
This is the area for the security setting to prevent the flash memory from being read by an unauthorized
person. The debugger manipulates the target device in accordance with the set value, as shown below.

 Table 4-7. On-Chip Debug Option Byte Setting and Operation

Set Value Description Remark

0x04 Debugging is disabled This setting is available only

for flash programming and self

programming.

0x85 The on-chip flash memory is not erased no matter

how many times the security ID code authentication

fails.

-

0x84 All on-chip flash memory areas are erased if the

security ID code authentication fails.

-

Other than above Setting prohibited -

[How to set]
A setting method of On-chip debug option byte is following. When setting each other, priority is (2).
(1) Embed the On-chip debug option byte at addresses 0xC3 in the user program.
(2) Set the On-chip debug option byte by build tool link options. (In case of CS+)

(1) Embed the On-chip debug option byte at addresses 0xC3 in the user program
Embed the On-chip debug option byte at addresses 0xC3 in the user program

(2) Set the On-chip debug option byte by build tool link options. (In case of CS+) Set in
“device” in the link options tab as figure 4-6. Example Setting 0x84 for control value

Figure 4-6. On-Chip Debug Option Byte and Monitor Area Setting Example

CHAPTER 4 HOW TO USE EZ-CUBE WITH 78K0R MICROCONTROLLER

User’s Manual 36

(C) Securing of stack area for debugging
The yellow portions in Figure 4-7 are the areas reserved for placing the debug monitor program, so user
programs or data cannot be allocated in these spaces. These spaces must be secured so as not to be used
by the user program.
Moreover, this area must not be rewritten by the user program.
Secure the resources for debugging with the contents explained by (1) and (2).

Figure 4-7. Memory Spaces Where Debug Monitor Programs Are Allocated

1024 bytes

10 bytes

2 bytes

10 bytes

1 byte
C4H

D7H

C3H (b) On-chip debug option byte area

Internal ROM space

Internal ROM end address

6 bytes

Internal RAM space

Internal RAM end address

(d) Stack area for debugging

CDH

(a) Debug monitor area

D8H

CEH

(c) Security ID area

(a) Debug monitor area

: Area used for on-chip debugging

03H
02H (a) Debug monitor area

1024 bytes

10 bytes

2 bytes

10 bytes

1 byte
C4H

D7H

C3H (b) On-chip debug option byte area

Internal ROM space

Internal ROM end address

6 bytes

Internal RAM space

Internal RAM end address

(d) Stack area for debugging

CDH

(a) Debug monitor area

D8H

CEH

(c) Security ID area

(a) Debug monitor area

: Area used for on-chip debugging

03H
02H (a) Debug monitor area

 Note In debugging, reset vector is rewritten to address allocated to a monitor program.

(1) Securing of debug monitor area
This is the area to which the debug monitor program is to be allocated. The monitor program performs
initialization processing for debug communication interface and RUN or break processing for the CPU.
This user programs or data must not be placed in an area of 22 bytes near the on-chip debug option
byte, and an area of 1,024 bytes before the internal ROM end address. In addition, reset vector is
rewritten to address allocated to a monitor program.

[How to secure areas]
It is not necessarily required to secure this area if the user program does not use this area. However To
avoid problems that may occur during the debugger startup, it is recommended to secure this area in
advance, using the compiler. Figure 4-6 shows example for securing the area, using the CS+. Set in
“device” in link options tab as figure 4-6.

(2) Securing of stack area for debugging
This area requires 6 bytes as the stack area for debuggingNote. Since this area is allocated immediately before
the stack area, the address of this area varies depending on the stack increase and decrease. That is, 6 extra
bytes are consumed for the stack area used.
Figure 4-8 illustrates the case where the stack area is increased when the internal high-speed RAM starts from
0xFCF00.

Note When the self programming is executed, it will be 12 bytes.

Note

CHAPTER 4 HOW TO USE EZ-CUBE WITH 78K0R MICROCONTROLLER

User’s Manual 37

Figure 4-8. Variation of Address of Stack Area for Debugging

6 bytes

Stack area

Stack area for
debugging

Available space
In internal high-
speed RAM0xFCF00

0xFFEDF

6 bytes

0xFCF00

0xFFEDF

6 bytes
0xFCF00

0xFFEDF

0xFCF06

<1> <2> <3>

6 bytes

Stack area

Stack area for
debugging

Available space
In internal high-
speed RAM0xFCF00

0xFFEDF

6 bytes

0xFCF00

0xFFEDF

6 bytes
0xFCF00

0xFFEDF

0xFCF06

<1> <2> <3>

[How to secure areas]
Set the stack pointer by estimating the stack area consumed by the user program + 6 bytes. Make sure that
the stack pointer does not extend beyond the internal high-speed RAM start address.

Remark Refer to the self programming manual for how to secure the stack area for self programming.

4.2.3 Cautions on debugging
This section describes cautions on performing on-chip debugging for a 78K0R microcontroller.
Be sure to read the following to use EZ-CUBE properly.

(1) Handling of device that was used for debugging

Do not mount a device that was used for debugging on a mass-produced product, because the flash memory
was rewritten during debugging and the number of rewrites of the flash memory cannot be guaranteed.
Moreover, do not embed the debug monitor program into mass-produced products.

(2) Flash self programming
If a space where the debug monitor program is allocated is rewritten by flash self programming, the debugger
can no longer operate normally. This caution also applies to boot swapping for such an area.

(3) Operation after reset
After an external pin reset or internal reset, the monitor program performs debug initialization processing.
Consequently, the time from reset occurrence until user program execution differs from that in the actual
device operation.

(4) Debugging with real machine running without using EZ-CUBE
If debugging is performed with a real machine running, without using EZ-CUBE, write the user program using
the RFP. Programs downloaded by the debugger include the monitor program, and such a program
malfunctions if it includes processing to make the TOOL0 pin low level.

(5) Operation when debugger starts
When the debugger is started, if the Target Device Connection setting in the Configuration dialog box of the
debugger is different from the setting for the previous debugging, the internal flash memory is erased.

(6) Debugging after program is written by flash programming

CHAPTER 4 HOW TO USE EZ-CUBE WITH 78K0R MICROCONTROLLER

User’s Manual 38

If a program is written to the internal flash memory using the RFP, on-chip debugging is disabled even if it is
enabled in the on-chip debugging option byte setting. To perform debugging of the target device after that,
erase the internal flash memory using the RFP and then download the program using the debugger.

(7) LVI default start function setting (address C1H)
The LVI setting at address C1H in the internal flash memory during debugging is set as follows.
- When EZ-CUBE is connected: The LVI default start function is available.
- When EZ-CUBE is not connected: The LVI default start function is unavailable.

(8) On-chip debugging option byte setting (address C3H)

The on-chip debugging option byte setting is rewritten arbitrarily by the debugger.

(9) Operation at voltage with which flash memory cannot be written
If any of the following debugger operations <1> to <7>, which involve flash memory rewriting, is performed
while flash memory cannot be rewritten, the debugger automatically changes the register setting so as to
enable flash memory rewriting, and restores the register setting after the operation is completed. If any of the
following operations <1> to <7> is performed while flash memory rewriting has been disabled or operation is
performed at a voltage with which flash memory cannot be rewritten, however, the debugger outputs an error
and the operation is ignored.
To prevent the flash memory from being rewritten, select “No” in permit flash programming in property of
debug tool. To prevent the frequency from being switched automatically, select “User” in the Monitor clock in
property of debug tool.
<1> Writing to internal flash memory
<2> Setting or canceling of software breakpoint
<3> Starting execution at the set software breakpoint position
<4> Step execution at the set software breakpoint position
<5> Step-over execution, Return Out execution
<6> Come Here
<7> If “Yes” is selected in Permit flash programming in property of debug tool, the following operations cannot
be performed.

a) Setting, changing, or canceling of hardware breaks
b) Masking/unmasking of internal reset
c) Switching of peripheral breaks

(10)Debugging in 1-wire mode

Note the following points when debugging is performed in 1-wire mode (selected by choosing TOOL0 in the
Connection with Target Board area in the Communication method dialog box of the debugger).
When the internal high-speed oscillator is used for the CPU operating clock, breaks may not occur normally if
the frequency variation between debugger startup and break occurrence (except for when changing the
register) is too large. This situation may occur when the variation of operating voltage or temperature is too
large.

(11)Relation between Standby function and Break function
The break is interrupt function of CPU. The standby mode is released by the break for using the following
debug function.
- Stops execution of the user program.
- Step execution of the standby instruction (Stops user program after execution instruction)
- Pseudo real-time RAM monitor function (Break When Readout)

CHAPTER 4 HOW TO USE EZ-CUBE WITH 78K0R MICROCONTROLLER

User’s Manual 39

- Pseudo Dynamic Memory Modification (Break When Write)
- Breakpoint setting executing of the user program.

(12)Cautions on using step-in (step execution)
The value of some SFRs (special function registers) might remain unchanged while stepping into code. If the
value of the SFRs does not change while stepping into code, operate the microcontroller by continuously
executing the instructions instead of executing them in steps.
Stepping into code: Instructions in the user-created program are executed one by one.
Continuous execution: The user-created program is executed from the current PC value.

CHAPTER 4 HOW TO USE EZ-CUBE WITH 78K0R MICROCONTROLLER

User’s Manual 40

4.3 Flash Programming
This section describes the system configuration and startup/shutdown procedure when flash programming is

performed for a 78K0R microcontroller, using EZ-CUBE.

4.3.1 Specifications of programming function

Table 4-8. Specifications of Programming Function

Functions Specifications

Host interface USB 2.0

Target interface UART (1-wire mode)

Target system voltage 2.7 to 5.5 V (depends on the target device)

Clock supply Internal high-speed oscillation clock is used

Power supply 5 V ±0.3 V (maximum current rating: 100 mA)

Acquisition of device-specific

information

Parameter file for Renesas Electronics is used

Programming software RFPNote (Renesas Flash Programmer)

Security flag setting Available

Standalone operation Unavailable (must be connected to host machine)

Note For detailed usage of the RFP, refer to the RFP User's Manual.

4.3.2 Cautions on flash programming
This section describes the cautions for flash programming. Be sure to read the following for the proper use of

EZ-CUBE.

• To improve the writing quality, fully understand, verify, and evaluate the following items before using EZ-CUBE.
- Circuits are designed as described in the user's manuals for the device and EZ-CUBE.
- The device, RFP and EZ-CUBE are used as described in each user's manual.
- The power supplied to the target system is stable.

User’s Manual 41

CHAPTER 5 HOW TO USE EZ-CUBE WITH 78K0 MICROCONTROLLER

This chapter describes how to use EZ-CUBE when performing on-chip debugging and flash programming for a
78K0 microcontroller.

On-chip debugging is a method to debug a microcontroller mounted on the target system, using a debug function
implemented in the device. Since debugging is performed with the target device operating on the board, this method is
suitable for field debugging.

Flash programming is a method to write a program to the flash memory embedded in a device. Erasing, writing and
verifying the program can be performed on-board with the device.

Please update firmware for 78K0 at first. Refer to description (1) to (3) on the following order. For detail, refer to 1.4

Firmware Update.
(1) Connect EZ-CUBE to the host machine. Do not connect EZ-CUBE to the target system.
(2) Start the EZ-CUBE firmware update tool”QBEZUTL.exe”. Select firmware of 78K0 (78K0_OCD_FW.hex).
(3) Click the [Start] button. Start to update the EZ-CUBE firmware.

Read the following chapters if you are using EZ-CUBE for the first time with a 78K0 microcontroller as the target

device.

 5.1 Target System Design
 For communication between EZ-CUBE and the target system, communication circuits must be mounted on the

target system. This section describes the circuit design and mounting of connectors.

 5.2 On-Chip Debugging
 This section describes the system configuration and startup method to perform on-chip debugging with

EZ-CUBE.

 5.3 Flash Programming
 This section describes the system configuration and startup method to perform flash programming with

EZ-CUBE.

Supporting MCU
Table 5-1 shows the supporting MCUs of 78K0 EZ-CUBE firmware.

Table 5-1 Supporting MCUs of 78K0 EZ-CUBE firmware

Items Contents Firmware

Supporting MCUs 78K0/Kx2, Lx3 78K0_OCD_FW.hex

Supporting Operation mode UART mode

CHAPTER 5 HOW TO USE EZ-CUBE WITH 78K0 MICROCONTROLLER

User’s Manual 42

5.1 Target System Design
This section describes the target system circuit design required for on-chip debugging and flash programming.
Figure 5-1 present overviews of the EZ-CUBE communication interface. For communication between EZ-CUBE

and the target system, communication circuits must be mounted on the target system, as shown on the left side of
the figure. Refer to this section to design circuits appropriately.

Figure 5-1. Outline of Communication Interface for On-Chip Debugging

5.1.1 Pin assignment
This section describes the interface signals used between EZ-CUBE and the target system. Table 5-2 lists the

pin assignment. Table 5-3 describes the functions of each pin.

Table 5-2. Pin Assignment

Pin No. Pin nameNote
1 GND

2 RESET_IN

3 Vdd

4 FLMD0

5 CLK

6 RxD.

7 RESET_OUT

8 TxD

Note Signal names in EZ-CUBE

.

Target system Host machine EZ-CUBE

Target device

USB
Communication

Communication circuits
must be mounted on
the target system. .

RENESAS

EZ-CUBE
UART

communication

EZ-CUBE

Target interface
connector

7

8

5

6 4

1

2

3

CHAPTER 5 HOW TO USE EZ-CUBE WITH 78K0 MICROCONTROLLER

User’s Manual 43

Table 5-3. Pin Functions

Pin Name IN/OUT Note Description

RESET_IN IN Pin used to input reset signal from the target system

RESET_OUT OUT Pin used to output reset signal to the target device

CLK OUT Pin used to output clock signal to the target device

FLMD0 OUT Pin used to set the target device to debug mode or programming mode

RxD IN Pin used to receive command/data from the target device

TxD OUT Pin used to transmit command/data to the target device

Note As seen from EZ-CUBE.

5.1.2 Circuit connection examples
The circuit design on the target system varies depending on the used connector and interface signals.
The following (1) to (2) are the major purpose of use. Confirm the purpose, refer to Table 5-2 and see the

relevant circuit connection example for specifications.

Caution The constants described in the circuit connection example are reference values. If you perform
flash programming aiming at mass production, thoroughly evaluate whether the specifications of
the target device are satisfied.

(1) Used to perform on-chip debugging.
(2) Used to perform flash programming.

CHAPTER 5 HOW TO USE EZ-CUBE WITH 78K0 MICROCONTROLLER

User’s Manual 44

Figure 5-2. When Debugging is Performed

Notes 1. This connection is designed assuming that the RESET signal is output from the N-ch open-drain buffer

(output resistance: 100Ω or less). For details, refer to 5.1.3 Connection of reset pin .
 2. OCD1A may be a different name, depending on the device used. For details, refer to the user's manual for

the target device.

EZ-CUBE Switch setting
SW-1: Select switch to ″M2″.
SW-2: Depend on the target system environment.
SW-3: Select switch to ″Debug Mode″.
SW-4: Depend on the target system environment.
SW-5: Select switch to ″Other″.

Notes on the Target System Power Supply:

1. Do not change the switch setting after connecting USB cable.
2. The EZ-CUBE can supply power up to 100 mA current. Do not exceed the maximum supply current.
 The power is supplied from EZ-CUBE after connecting EZ-CUBE to the host machine.

CHAPTER 5 HOW TO USE EZ-CUBE WITH 78K0 MICROCONTROLLER

User’s Manual 45

Figure 5-3. When Programming is Performed

Notes 1. This connection is designed assuming that the RESET signal is output from the N-ch open-drain buffer

(output resistance: 100 Ω or less). For details, refer to 5.1.3 Connection of reset pin.
 2. Connect TxD (transmit side) of the target device to RxD (receive side) of the target connector, and TxD

(transmit side) of the target connector to RxD (receive side) of the target device.

EZ-CUBE Switch setting
SW-1: Select switch to ″M1″.
SW-2: Depend on the target system environment.
SW-3: Select switch to ″Debug Mode″.
SW-4: Depend on the target system environment.
SW-5: Select switch to ″Other″.

Notes on the Target System Power Supply:

1. Do not change the switch setting after connecting USB cable.
2. The EZ-CUBE can supply power up to 100 mA current. Do not exceed the maximum supply current.
 The power is supplied from EZ-CUBE after connecting EZ-CUBE to the host machine.

5.1.3 Connection of reset pin
This section describes the connection of the reset pin, for which special attention must be paid, in circuit

connection examples shown in the previous section.

CHAPTER 5 HOW TO USE EZ-CUBE WITH 78K0 MICROCONTROLLER

User’s Manual 46

During on-chip debugging, a reset signal from the target system is input to EZ-CUBE, masked, and then output
to the target device. Therefore, the reset signal connection varies depending on whether EZ-CUBE is connected.

For flash programming, the circuit must be designed so that the reset signals of the target system and EZ-CUBE
do not conflict.

 Automatically switching the reset signal via resistor (recommended; described in recommended circuit
connection in the previous section).

Figure 5-4 illustrates the reset pin connection described in 5.1.2 Circuit connection examples. This
connection is designed assuming that the reset circuit on the target system contains an N-ch open-drain buffer
(output resistance: 100Ω or less). The VDD or GND level may be unstable when the logic of RESET_IN/OUT of
EZ-CUBE is inverted, so observe the conditions described below in Remark.

Figure 5-4. Circuit Connection with Reset Circuit That Contains Buffer

Remark Make the resistance of at least R1 ten times that of R2, R1 being 10 kΩ or more.
 Pull-up resistor R2 is not required if the buffer of the reset circuit consists of CMOS output.
 The circuit enclosed by a dashed line is not required when only flash programming is performed.

Figure 5-5 illustrates the circuit connection for the case where the reset circuit on the target system contains
no buffers and the reset signal is only generated via resistors or capacitors. Design the circuit, observing the
conditions described below in Remark.

Figure 5-5. Circuit Connection with Reset Circuit That Contains No Buffers

Remark Make the resistance of at least R1 ten times that of R2, R1 being 10 kΩ or more.
 The circuit enclosed by a dashed line is not required when only flash programming is performed.

_RESET

EZ-CUBE

RESET_OUT

RESET_IN

R1 R2

VDD _RESETRESET_OUT

RESET_IN

R2

DD

Target device Reset connector

_RESETRESET_OUT

RESET_IN

R1

V DD VDD

R2

_RESET

EZ-CUBE

RESET_OUT

RESET_IN

Buffer

V

R2

Reset connector Target device

CHAPTER 5 HOW TO USE EZ-CUBE WITH 78K0 MICROCONTROLLER

User’s Manual 47

5.1.4 Cautions on Target system Design
Note the following cautions when designing the target system.

• If possible, do not create sections in which the communication lines for debugging run in parallel in the target
system. If this cannot be prevented, shorten the sections as much as possible.
• Use a GND pattern to shield the communication lines for debugging to reduce their capacitive load, because
the lines are used for high-speed communication.
• Make the distance between the target connector and the target device as short as possible.
• Before shipping the product, use jumpers or other means to physically separate the X1/OCD1A and
X2/OCD1B pins from the target connector in order to ensure normal clock oscillation.
• To use X1/OCD1A and X2/OCD1B as communication pins for debugging, remove elements such as resonator
capacitance and feedback resistors, so that the signals do not degrade due to capacitive load.

5.1.5 Clock Setting
The clock signal generated by the X1 oscillator, internal high-speed oscillator can be used for the clock signal

of the target device during on-chip debugging. Setting up each is described below.

(a) Using the internal high-speed oscillator
EZ-CUBE can supply a clock to be used as the high-speed system clock (4, 8, or 16 MHz).

EZ-CUBE Select SW-2 is “Int. Clock”
Remove the oscillator or oscillation circuit (Selected for ”Generate by emulator” in the Configuration dialog box
of the debugger).
For the settings, refer to the user's manual for CS+.

Figure 5-6. Clock setting

CHAPTER 5 HOW TO USE EZ-CUBE WITH 78K0 MICROCONTROLLER

User’s Manual 48

(b) Using the External oscillator

EZ-CUBE Select SW-2 is “Ext. Clock”

Connect an oscillator or oscillation circuit on the External X'tal socket. (Select for “Clock board” in the
Configuration dialog box of the debugger.) For the operation this step, refer to the user's manual for
CS+.

Figure 5-7. Clock setting

CHAPTER 5 HOW TO USE EZ-CUBE WITH 78K0 MICROCONTROLLER

User’s Manual 49

5.2 On-Chip Debugging

This section describes the system configuration, startup/shutdown procedure and cautions for debugging when
on-chip debugging is performed with EZ-CUBE.

5.2.1 Debug functions
Table 5-4 lists the debug functions when a 78K0 microcontroller is the target device.

Table 5-4. Debug Functions

Functions Specifications

Target device 78K0

78K0/Kx2, Lx3

Security 10-byte ID code authentication

Download Available

Execution Go, Step In, Step Over, CPU Reset, Restart

Hardware break 1 point

Software break Multiple points

User spaces used for debugging Internal ROM: 256 to 400 bytes

Internal RAM: 7 to 9 bytes

depending on the device used

Function pins used for debugging X1, X2

5.2.2 Securing of user resources and setting of security ID
EZ-CUBE uses the user memory spaces (shaded portions in Figure 5-8) to implement communication with the

target device, or each debug functions. The areas marked with a dot (•) are always used for debugging, and other
areas are used for each debug function used. Refer to the descriptions of (a) to (e) on the following pages and
secure these spaces in the user program or using the compiler options.

Figure 5-8. Reserved Area Used by EZ-CUBE

CHAPTER 5 HOW TO USE EZ-CUBE WITH 78K0 MICROCONTROLLER

User’s Manual 50

(a) Debug monitor areas (areas must be secured)
Addresses 0x02, 0x03 and area starting from address 0x8F must be secured to embed the debug monitor
program. Be sure to reserve this area. The monitor program performs initialization process for the
communication interface for debugging as well as run/break processing of the CPU. If this area is rewritten by
user program or flash self-programming, on-chip debugging can no longer be performed.

[Area reservation method]
Figure 5-9 shows an example of reserving an area with the CS+. Figure 5-9 is the setting dialog for link option
of the CS+. In [Use on-chip debug] in the red rectangle in Figure 5-9, set [Yes (-go)] and specify [Debug
monitor area size] (256 byte). This setting reserves the area of 0x02, 0x03, and 0x8F and on for the debug
monitor.

Figure 5-9. Link Options Setting (Debug Monitor Area)

(b) Option byte area (required)
This is the area for the security setting to prevent the flash memory from being read by an unauthorized person.
The target device operates in accordance with the set value, as shown below. For the detailed settings of the
option byte area, refer to the user’s manual of the device.

CHAPTER 5 HOW TO USE EZ-CUBE WITH 78K0 MICROCONTROLLER

User’s Manual 51

Table 5-5. Option Byte Setting and Operation

Set Value Description

0x00 The debugger cannot be started even if EZ-CUBE is

connected.

0x02 The internal flash memory is not erased regardless of how

many times authenticating the security ID code fails.

0x03 The entire internal flash memory area is erased if

authenticating the security ID code fails.

Other than above Setting prohibited

[How to set]
There are the following 2 methods to set option bytes to the internal flash memory. If both (1) and (2) are set,
the setting of (2) has precedence.

(1) Setting method with the program
Embed option bytes to the user program. Add the code to the assembler source by referring to the following
example.
Example Setting 80H:03, 81H:00 82H:00 83H:00H 84H:02H

 SSS CSEG AT 080H; ″SSS″ is any symbol name (eight characters or less)
DB 03H;
DB 00H;
DB 00H;
DB 00H;
DB 02H;

Caution If address 0x84 is overwritten by 0x00 by self programming, communication is disabled, and
debugging and connection can no longer be performed even if the debugger is restarted. In
such as case, erase the memory via flash programming.

(2) Setting method with the CS+
You can also set the option byte area with the CS+ setting. In [Set user option byte] in the red rectangle in
Figure 5-10, select [Yes (-gb)], and specify the option byte values for the addresses from 80H to 84H.

Figure 5-10. User Option Byte Setting

An example of setting when 03H is set to 80H, 00H is set to 81H,
00H is set to 82H, 00H is set to 83H,
and 02H is set to 84H as user option byte values

CHAPTER 5 HOW TO USE EZ-CUBE WITH 78K0 MICROCONTROLLER

User’s Manual 52

(c) Security ID area (essential)
This is the area for the security setting to prevent the flash memory from being read by an unauthorized person.
The security ID functions as a password for starting the debugger. The debugger starts only when the security
ID that is input during debugger startup and the security ID embedded in this area match.
If you forget the security ID, erase the flash memory, and set a new security ID.

[How to set]
There are the following 2 methods to set a security ID to the internal flash memory. If both (1) and (2) are set,
the setting of (2) has precedence.

(1) Embedding the security ID in 0x85-0x8E in the user program
Embed the security ID in 0x85-0x8E in the user program. For example, if the security ID is embedded as
described below, the security ID set in the debugger is “0123456789ABCDEF1234” (not case-sensitive).

Example) Setting the security ID “0123456789ABCDEF1234” to the addresses 0x85 to 0x8E
SSS CSEG AT 85H; “SSS” is any symbol name (up to 8 characters).

DB 01H;
DB 23H;
DB 45H;
DB 67H;
DB 89H;
DB ABH;
DB CDH;
DB EFH;
DB 12H;
DB 34H;

(2) Setting method with the CS+
You can also set the security ID with the CS+ setting. In the right field of [Security ID] in the red rectangle in
Figure 5-11, specify the values in hexadecimal successively for the addresses from 85H to 8FH.

Figure 5-11. Security ID Setting

CHAPTER 5 HOW TO USE EZ-CUBE WITH 78K0 MICROCONTROLLER

User’s Manual 53

(d) Stack area for debugging (this area must be secured)

This area requires 7 to 9 bytes as the stack area for debugging. Since this area is allocated immediately before
the stack area, the address of this area varies depending on the stack increase and decrease.
Figure 5-12 illustrates the case where the stack area is increased when the internal high-speed RAM starts
from 0xFB00.

Figure 5-12. Variation of Address of Stack Area for Debugging

The size of this area also varies depending on whether software breaks or pseudo real-time RAM monitor is
used.

Table 5-6. Size of Stack Area for Debugging

Item Size of Stack Area for Debugging

Standard 7 bytes

When software breaks are used 9 bytes

[How to secure areas]
Refer to the address range shown below and set the stack pointer.

Example When internal high-speed RAM starts from 0xFB00
- Standard
 Within the range 0xFB07 to 0xFEE0
- When software breaks are used (also refer to (e))
 Within the range 0xFB09 to 0xFEE0

(e) Area for software break

This area is used for software breaks.

[How to secure areas]
Refer to the following and secure the area.
 SSS CSEG AT 07EH; ″SSS″ is any symbol name (eight characters or less)
 DB 0FFH, 0FFH

CHAPTER 5 HOW TO USE EZ-CUBE WITH 78K0 MICROCONTROLLER

User’s Manual 54

5.2.3 Cautions on debugging
This section describes cautions on performing on-chip debugging for a 78K0 microcontrollers.
Be sure to read the following to use EZ-CUBE properly.

(1) Handling of device that was used for debugging

Do not mount a device that was used for debugging on a mass-produced product, because the flash memory
was rewritten during debugging and the number of rewrites of the flash memory cannot be guaranteed.

(2) Overwriting flash memory during on-chip debugging

If the following operations are performed during on-chip debugging, the flash memory in the device is
overwritten.
<1> Writing to internal flash memory
<2> Program execution after specifying or canceling software breakpoints
<3> Step-over execution, Return Out execution
<4> Come Here
<5> If Permit is selected in the Target Power off area in the Configuration dialog box, the following operations
cannot be performed:

a) Specifying, changing, or canceling hardware breakpoints
b) Masking/unmasking internal resets
c) Switching peripheral breakpoints
d) Program execution
e) Software reset (a reset performed by the debugger)

<6> Adding, changing, or deleting the monitor address when using the pseudo real-time RAM monitor function
<7> Performing operations without using breakpoints when software breakpoints are specified
<8> When the debugger is started or terminated

It takes time from completion of flash memory programming until the control is passed to GUI.

(3) Software break

During program running, do not rewrite the data at the address where a software break is set. This includes
self programming and rewriting to RAM. If performed, the instruction placed at the address may be invalid.

(4) Self programming

If the space where the monitor program for debugging is rewritten by flash self programming, the debugger
does not operate correctly. This also holds true when boot swapping is executed.

(5) Boot swapping during self programming

The boot swapping function cannot be emulated. This is because boot swapping moves the memory spaces
used for debugging, and thus the debug communication can no longer be performed.

(6) Break function for stack pointer initialization failure

This function executes a break when an interrupt occurs or a PUSH instruction is executed while the initial
setting has not been made for the stack pointer.
If the manipulation or instruction shown below is executed immediately after a reset operation, the break
function for stack pointer initialization failure becomes invalid.
• Setting a software break
• Write to the stack pointer from the Register window
• Write to the flash memory from the Memory window, etc

CHAPTER 5 HOW TO USE EZ-CUBE WITH 78K0 MICROCONTROLLER

User’s Manual 55

If a software break occurs while the initial setting has not been made for the stack pointer, the message
″Uninitialized Stack Pointer″ is displayed on the status bar.
The subsequent operations are not performed normally, so make sure to set the SP value in the user program.

(7) Caution on downloading a HEX file

When downloading a HEX file, do not set specify a filling value other than 0xFF for the object converter option
(-U).

(8) Cautions when stepping into code

The value of some SFRs (special function registers) might remain unchanged while stepping into code. If the
value of the SFRs does not change while stepping into code, operate the microcontroller by continuously
executing the instructions instead of executing them in steps.
Stepping into code: Instructions in the user-created program are executed one by one.
Continuous execution: The user-created program is executed from the current PC value.

(9) Emulation of POC function

The POC function of the target device cannot be emulated. Make sure that the power to the target system is
not shut down during debugging

CHAPTER 5 HOW TO USE EZ-CUBE WITH 78K0 MICROCONTROLLER

User’s Manual 56

5.3 Flash Programming
This section describes the system configuration and startup/shutdown procedure when flash programming is

performed for a 78K0 microcontroller, using EZ-CUBE.

5.3.1 Specifications of programming function

Table 5-7. Specifications of Programming Function

Functions Specifications

Host interface USB 2.0

Target interface UART

Target system voltage 2.7 to 5.5 V (depends on the target device)

Clock supply 8MHz clock can be supplied

Clock mounted on the target system can be used

Power supply 5 ±0.3 V (maximum current rating: 100 mA)

Acquisition of device-specific

information

Parameter file for Renesas Electronics is used

Programming software RFPNote (Renesas Flash Programmer)

Security flag setting Available

Standalone operation Unavailable (must be connected to host machine)

Note For detailed usage of the RFP, refer to the RFP User's Manual.

5.3.2 Cautions on flash programming
This section describes the cautions for flash programming. Be sure to read the following for the proper use of

EZ-CUBE.

• To improve the writing quality, fully understand, verify, and evaluate the following items before using EZ-CUBE.
- Circuits are designed as described in the user's manuals for the device and EZ-CUBE.
- The device, RFP and EZ-CUBE are used as described in each user's manual.
- The power supplied to the target system is stable.

User’s Manual 57

CHAPTER 6 HOW TO USE EZ-CUBE WITH RX MICROCONTROLLER

This chapter describes how to use EZ-CUBE when performing on-chip debugging and flash programming for a RX
microcontroller.

On-chip debugging is a method to debug a microcontroller mounted on the target system, using a debug function
implemented in the device. Since debugging is performed with the target device operating on the board, this method is
suitable for field debugging.

Flash programming is a method to write a program to the flash memory embedded in a device. Erasing, writing and
verifying the program can be performed on-board with the device.

Please update firmware for RX at first. Refer to description (1) to (3) on the following order. For detail, refer to 1.4
Firmware update.

(1) Connect EZ-CUBE to the host machine. Do not connect EZ-CUBE to the target system.
(2) Start the EZ-CUBE firmware update tool”QBEZUTL.exe”. Select firmware of RX (RX_OCD_FW.hex).
(3) Click the [Start] button. Start to update the EZ-CUBE firmware.

Read the following chapters if you are using EZ-CUBE for the first time with a RX microcontroller as the target
device.

6.1 Target System Design
For communication between EZ-CUBE and the target system, communication circuits must be mounted on the
target system. This section describes the circuit design and mounting of connectors.

6.2 On-Chip Debugging
This section describes the system configuration and startup method to perform on-chip debugging with
EZ-CUBE.

6.3 Flash Programming
This section describes the system configuration and startup method to perform flash programming with
EZ-CUBE.

Supporting MCU
Table 6-1 shows the supporting MCUs of RX EZ-CUBE firmware.

Table 6-1 Supporting MCUs of RX EZ-CUBE firmware

Items Contents Firmware

RX600 series RX63T group [R5F563T4/5/6]

RX200 series RX210, RX220 groups Supporting MCUs

RX100 series RX111 group

RX_OCD_FW.hex

Supporting Operation mode
Single chip mode

User’s Manual 58

6.1 Target System Design
Figure 6-1 shows the outline of EZ-CUBE communication interface.

Figure 6-1. Outline of Communication Interface

Note: Single chip mode

6.1.1 Pin assignment
Table 6-2 shows the pin assignments of EZ-CUBE. Table 6-3 shows the pin functions.

Table 6-2. Pin Assignment
Pin name *1 Pin

No. RX63T
[R5F563T4/5/6]

RX210, RX220,
RX111

1 GND GND
2 RES# RES#
3 VCC VCC
4 N.C. N.C.
5 FINEC *2 N.C.
6 RxD *3 RxD *3
7 N.C. N.C.
8 MD/FINED, TxD *3 MD/FINED, TxD *3

*1 Signal name on EZ-CUBE

*2 Mount the 16MHz three-terminal oscillator on
EZ-CUBE, and set SW-2 to “Ext. Clock”.

*3 TxD and RxD pins are necessary for flash
programming by flash programmer.

Table 6-3. Pin Functions
Pin name IN/OUT * Explanation

FINEC OUT Communication clock output (Only RX63T group [R5F563T4/5/6])

MD/FINED, TxD IN/OUT Debugger communication data input-output (MD/FINED), or Flash programmer
communication data oputput (TxD)

RxD IN Flash programmer communication data input
RES# IN/OUT Reset signal input-output
VCC Power Power input (2.7V - 5V) or Power output (5V)
GND Power Ground
* Seen from EZ-CUBE side

.

Target system Host machine EZ-CUBE

Target device

USB
communication

Communication circuits
must be mounted on
the target system. .

RENESAS

EZ-CUBE
UART
communication

EZ-CUBE

Target interface

connector

7

8

5

6 4

1

2

3

CHAPTER 6 HOW TO USE EZ-CUBE WITH RX MICROCONTROLLER

CHAPTER 6 HOW TO USE EZ-CUBE WITH RX MICROCONTROLLER

User’s Manual 59

6.1.2 Recommended Circuit Connection

 (1) Recommended Circuit Connection for Debugging
Table 36-2 shows the recommended circuit connection for debugging.

Figure 6-2. Recommended Circuit Connection

TxD1 *3

RxD1 *3

FINEC *1

MD/FINED

Vcc Vcc

Reset
circuit

VCC

FINEC

MD/FINED, TxD *5

RES#

GND
1

2

8

5

3

RES#

Vcc

UB *4

EMLE *4

Vcc

Target connector

Pulled-up at 4.7 kΩ to 10 kΩ

MCU
Pulled-up at 4.7 kΩ

Open-collector
buffer *2

Vcc

RxD 6

Pulled-down
at 4.7 kΩ to 10 kΩ

4, 7Not
connected

Circuit for
selection of the
operating mode

Vcc

*1 Connect FINEC pin for debugging RX63T group [R5F563T4/5/6]. No need connection for debugging RX210, RX220 and
RX111 groups. This pin can be used as the normal port.

*2 The output of the reset circuit of the target system must be open collector.

*3 TxD1 and RxD1 pins are not used for debugging. No need connection.

*4 Refer to “Notes on Connection” for detailed process of UB and EMLE pins.

*5 Connected pin of the MCU for debugging is different from for flash programming.
Connect to MD/FINED pin of the MCU and pull-up RxD1 pin of the MCU.

CHAPTER 6 HOW TO USE EZ-CUBE WITH RX MICROCONTROLLER

User’s Manual 60

 (2) Recommended Connection Circuit for Flash Programming

Figure 6-3 shows the recommended circuit connection for flash programming.

Figure 6-3 Recommended Circuit Connection for Flash Programming

TxD1 *3

RxD1 *3

MD/FINED

Vcc Vcc

Reset
circuit

VCC

FINEC

MD/FINED, TxD *5

RES#

GND
1

2

8

5

3

Vcc

UB *4

EMLE *4

Vcc

Target connector

Pulled-up at 4.7 kΩ to 10 kΩ

MCU
Pulled-up at 4.7 kΩ

Open-collector
buffer

Vcc

RxD 6

Pulled-down
at 4.7 kΩ to 10 kΩ

4, 7Not
connected

Circuit for
selection of the
operating mode

Vcc

FINEC *1

RES# *2

*1 FINEC pin is not used for flash programming. No need connection.

*2 RES# pin is not used for flash programming. No need connection.

*3 Connect TxD1 and RxD1 pins for flash programming.

*4 Refer to “Notes on Connection” for detailed process of UB and EMLE pins.

*5 Connected pin of the MCU for flash programming is different from for debugging.
Connect to RxD1 pin of the MCU and pull-up MD/FINED pin of the MCU for flash programming.

User’s Manual 61

EZ-CUBE Switch setting

RX63T group [R5F563T4/5/6]

SW-1: Select "M2"

SW-2: Select "Ext. Clock", Need mounting 16MHz oscillator.

SW-3: Select "Debug Mode"

SW-4: Select "T"

SW-5: Select "M3"

RX210, RX220 group and RX111 group

SW-1: Select "M2"

SW-2: Select "Int. Clock"

SW-3: Select "Debug Mode"

SW-4: Depend on the target system environment

SW-5: Select "M3"

Notes on the Target System Power Supply:

1. Do not change the switch setting after connecting USB cable.
2. The EZ-CUBE can supply power up to 100 mA current. Do not exceed the maximum supply current.
 The power is supplied from EZ-CUBE after connecting EZ-CUBE to the host machine.
3. RX111 operate voltage up to 3.6V.

CHAPTER 6 HOW TO USE EZ-CUBE WITH RX MICROCONTROLLER

User’s Manual 62

6.1.3 Notes on Connection

(1) About the FINEC and MD/FINED pins

For the RX63T Groups, FINE interface only supports a 2-wire system using FINEC and MD/FINED pins. The
FINEC and MD/FINED pins are exclusively used by the emulator. Any functions that are multiplexed on the
FINEC pin are not available.

For the RX210, RX220 and RX111 Groups, FINE interface supports a 1-wire system using the MD/FINED pin.
Only the MD/FINED pin is exclusively used by the emulator. It is not necessary to connect the FINEC pin since
this pin is not used. The FINEC pin can be used as a port.

Pull up the FINEC signal at 4.7 kΩ to 10 kΩ. Pull up the MD/FINED signal at 4.7 kΩ. Do not arrange these signal
lines in parallel with or across other high-speed signal lines.

MD/FINED signal and TxD signal are assigned to the same pin. Connect this pin to MD/FINED pin of the MCU
when debugging.

(2) About the TxD and RxD pins
TxD and RxD signals are NOT required for debugging. These are only used for internal flash programming with
Renesas Flash Programmer.

If the MCU has multiple TxD1 or RxD1 pins, confirm which one of the respective pins is used in boot mode in the
hardware manual of the MCU.

MD/FINED signal and TxD signal are assigned to the same pin. Connect this pin to RxD1 pin of the MCU for
internal flash programming with Renesas Flash Programmer.

(3) About the RES# pin
The emulator uses the RES# pin. If the target system includes a user logic reset circuit, the output signal from
the reset circuit must be connected to the RES# pin of the connector via an open-collector buffer. If there is no
reset circuit, on the other hand, the RES# pin of the connector must be directly connected to the RES# pin of the
MCU.

(4) About the EMLE pin (Only RX63T group [R5F563T4/5/6])
Pull the levels on the EMLE down at 4.7 kΩ to 10 kΩ on the target system.

(5) About the UB pin
UB pin is the port for entering the user boot mode and the USB I/F mode. Which port is the UB pin depends on
the MCU. Refer to the section on operation modes in the hardware manual of the MCU to be used.

The handling of pins is not necessary for debugging RX63T group [R5F563T4/5/6] because of not having the
user boot mode.

Pull the levels on the UB down at 4.7 kΩ to 10 kΩ on the target system not to transit to the user boot mode for
debugging RX210 and RX220 groups.

Pull the levels on the UB up at 4.7 kΩ to 10 kΩ on the target system not to transit to the USB I/F mode for
debugging RX111 group.

CHAPTER 6 HOW TO USE EZ-CUBE WITH RX MICROCONTROLLER

CHAPTER 6 HOW TO USE EZ-CUBE WITH RX MICROCONTROLLER

User’s Manual 63

(6) About VCC

Connect the VCC of the connector to the VCC (power supply) of the target system.

Use the emulator within the power supply voltage of 2.7V to 5.5V and within the operating voltage range of the
MCU.

EZ-CUBE can supply 5V power to a simple evaluation system. Up to 100 mA current can be supplied. In case of
supplying 5V power from the emulator, set SW-4 to “5”.

When using the power supply function of EZ-CUBE, check the voltage supplied to the target system. The voltage
may drop 0.5V or more since it depends on the USB VBUS power supply voltage.

(7) About GND
The pins of the connector marked "GND" must be at the same ground level as the VSS pin of the MCU.

Warning for Turning the Power On/Off:
 When supplying power, ensure that there are no shorts between Vcc and GND. Only connect the EZ-CUBE after

confirming that there are no mismatches of alignment on the target system port connector. Incorrect connection
will result in the host machine, the emulator, and the target system emitting smoke or catching fire.

User’s Manual 64

6.2 On-Chip Debugging

This section describes the system configuration, startup/shutdown procedure and cautions for debugging when
on-chip debugging is performed with EZ-CUBE.

6.2.1 Debug functions
Table 6-4 shows the debugging functions list.

Table 6-4. Debugging functions list

Specifications
Functions

RX600 series RX200 series RX100 series

Target device RX63T group
[R5F563T4/5/6] RX210, RX220 group RX111 group

Supporting voltage 2.7 - 3.6 V 2.7 - 5 V 2.7 - 3.6 V

Maximum operating frequency 100 MHz 50 MHz 32 MHz

Operation mode Single chip mode

Download to internal ROM Available

Execution control Go, Stop, Step in, Step over, Return out, CPU Reset, Restart

Software break Maximum 256 points
Execution
address Maximum 8 points Maximum 4 points

Data access Maximum 4 points Maximum 2 points Event
Number of
passes Maximum 256 times None

Pre-PC break Maximum 8 points Maximum 4 points
Combination of
events OR/AND(cumulative)/Sequential On-chip

break
Other Trace full break

Trace (Internal trace) Maximum 256 branches
Maximum 64 branches

(RX210)
Maximum 32 branches

(RX220)
Maximum 32 branches

Performance measurement
Execution cycle (Maximum

2 points) or Number of
executions

(32-bit counter x 2)

Execution cycle (1 point)
(24-bit counter x 1) None

Debug communication pin FINEC, MD/FINED MD/FINED

CHAPTER 6 HOW TO USE EZ-CUBE WITH RX MICROCONTROLLER

CHAPTER 6 HOW TO USE EZ-CUBE WITH RX MICROCONTROLLER

User’s Manual 65

6.2.2 Notes on debugging

(1) Reset during the User Program Execution

If an internal reset occurs during user program execution, it becomes impossible to control from the emulator. Do
not generate an internal reset such as those generated by the watchdog timer.

When a pin reset has occurred during the execution of the target system, user program may hang up. If a pin
reset input is detected, input a reset from the emulator and re-execute a user program, but it may become a
break state to be unable to re-execute.

An error message "A timeout error. The MCU is in the reset state. Is system reset issued?" is displayed in cases
of contention between a reset (through a pin, from the watchdog timer, etc.) and operations by the emulator
system (memory reference in the [Memory] window, etc.). The emulator is initialized and the user program stops.
After a system reset is issued, the trace record is initialized too. Debugging can be continued.

(2) Reset cancellation time of the target system
Exceed the VIH voltage within 100ms after cancelling the reset input.

(3) MCUs that are used in debugging
MCUs that are connected to the emulator and used in debugging are placed under stress by repeated
programming of flash memory during emulation. Do not use MCUs that were used in debugging in
mass-production for end users.

(4) High-Speed Clock Oscillator (HOCO)
The emulator uses a device’s internal high-speed clock oscillator (hereafter the HOCO) to achieve
communications with RX200 series and RX100 series MCUs via FINE interface. Therefore, the HOCO is always
in an oscillating state no matter how the HOCO-related registers are set.

If there is a contention between switching of the HOCO frequency and memory access, the memory access
operation is not guaranteed.

(5) Final Evaluation of the User Program
Before entering the mass-production phase, be sure to perform a final evaluation of the program which is written to a
flash ROM using a flash programmer. Be sure to perform the evaluation singly, without the emulator connected.

CHAPTER 6 HOW TO USE EZ-CUBE WITH RX MICROCONTROLLER

User’s Manual 66

6.3 Flash Programming
This section describes the system configuration and startup/shutdown procedure when flash programming is

performed for a RX microcontroller, using EZ-CUBE.

6.3.1 Specifications of programming function

Table 6-5. Specifications of Programming Function

Functions Specifications

Host interface USB 2.0

Target interface Single chip mode

Target system voltage 2.7 to 5.5 V (depends on the target device)

Clock supply Internal high-speed oscillation clock is used

Power supply 5 V ±0.3 V (maximum current rating: 100 mA)

Acquisition of device-specific

information

Parameter file for Renesas Electronics is used

Programming software RFPNote (Renesas Flash Programmer)

Security flag setting Available

Standalone operation Unavailable (must be connected to host machine)

Note For detailed usage of the RFP, refer to the RFP User's Manual.

6.3.2 Cautions on flash programming
This section describes the cautions for flash programming. Be sure to read the following for the proper use of

EZ-CUBE.

• To improve the writing quality, fully understand, verify, and evaluate the following items before using EZ-CUBE.
- Circuits are designed as described in the user's manuals for the device and EZ-CUBE.
- The device, WriteEZ5 and EZ-CUBE are used as described in each user's manual.
- The power supplied to the target system is stable.

User’s Manual 67

CHAPTER 7 HOW TO USE EZ-CUBE WITH V850 MICROCONTROLLER

This chapter describes how to use EZ-CUBE when performing on-chip debugging and flash programming for a
V850 microcontroller.

On-chip debugging is a method to debug a microcontroller mounted on the target system, using a debug
function implemented in the device. Since debugging is performed with the target device operating on the board,
this method is suitable for field debugging.

Flash programming is a method to write a program to the flash memory embedded in a device. Erasing, writing
and verifying the program can be performed on-board with the device.

Please update firmware at first. Follow step (1)-(3). For detail on update firmware, refer to 1.4 Firmware
Update.

(1) Connect EZ-CUBE to the host machine. Do not connect EZ-CUBE to the target system.
(2) Start the EZ-CUBE firmware update tool”QBEZUTL.exe”. Select firmware of V850” V850_OCD_FW.hex”.
(3) Click the [Start] button. Start to update the EZ-CUBE firmware.

Read the following chapters if you are using EZ-CUBE for the first time with a V850 microcontroller as the target

device.

 7.1 Target System Design
 For communication between EZ-CUBE and the target system, communication circuits must be mounted on

the target system. This section describes the circuit design and mounting of connectors.

 7.2 On-Chip Debugging
 This section describes the system configuration and startup method to perform on-chip debugging with

EZ-CUBE.

 7.3 Flash Programming
 This section describes the system configuration and startup method to perform flash programming with

EZ-CUBE.

Supporting MCU

Table 7-1 shows the supporting MCUs of V850 EZ-CUBE firmware.

Table 7-1 Supporting MCUs of V850 EZ-CUBE firmware

Items Contents Firmware
V850ES/Jx3

Supporting MCUs V850ES/Jx3-L V850_OCD_FW.hex

Supporting Operation mode UART mode

CHAPTER 7 HOW TO USE EZ-CUBE WITH V850 MICROCONTROLLER

User’s Manual 68

7.1 Target System Design

This section describes the target system circuit design required for on-chip debugging and flash programming.
Figure 7-1 presents an overview of the EZ-CUBE communication interface. As shown on the left side of the

figure, EZ-CUBE performs serial communication with the target device on the target system. For this
communication, communication circuits must be mounted on the target system. Refer to this section to design
circuits appropriately.

UART are supported as communication modes.
The pins used for serial communication are basically the same as those of the flash memory programmer

(such as EZ-CUBE), but some devices do not support some of them.

Figure 7-1. Outline of Communication Interface

7.1.1 Pin assignment
This section describes the interface signals used between EZ-CUBE and the target system. Table 7-2 lists the

pin assignment. Table 7-3 describes the functions of each pin.

Table 7-2. Pin Assignment

Pin No. Pin NameNote

1 GND

2 RESET_IN

3 VDD

4 FLMD0

5 CLK

6 RxD

7 RESET_OUT

8 TxD

Note Signal names in EZ-CUBE

.

Target system Host machine EZ-CUBE

Target device

USB
communication

.

Serial communication
（UART）

Renesas

EZ-CUBE

Communication circuits
must be mounted on
the target system.

Target interface
connector

7

8

5

6 4

1

2

3

CHAPTER 7 HOW TO USE EZ-CUBE WITH V850 MICROCONTROLLER

User’s Manual 69

Table 7-3. Pin Functions

Pin Name IN/OUT Note Description

RESET_IN IN Pin used to input reset signal from the target system

RESET_OUT OUT Pin used to output reset signal to the target device

CLK OUT Pin used to output clock signal to the target device

FLMD0 OUT Pin used to set the target device to debug mode or

programming mode

RxD IN Pin used to receive command/data from the target device

TxD OUT Pin used to transmit command/data to the target device

Note As seen from EZ-CUBE

7.1.2 Circuit connection examples
The circuit design on the target system varies depending on the communication interface mode. Refer to the

following table and see the relevant circuit connection example.

Caution The constants described in the circuit connection example are reference values. If you perform
flash programming aiming at mass production, thoroughly evaluate whether the specifications of
the target device are satisfied.

Figure 7-2. Recommended Circuit Connection

Notes 1. This connection is designed assuming that the RESET signal is output from the N-ch open-drain buffer

(output resistance: 100Ω or less). For details, refer to 7.1.3 Connection of reset pin.
2. Connect TxD (transmit side) of the target device to RxD (receive side) of the target connector, and TxD

(transmit side) of the target connector to RxD (receive side) of the target device. Read the serial interface

CHAPTER 7 HOW TO USE EZ-CUBE WITH V850 MICROCONTROLLER

User’s Manual 70

pin names on the target device side as those for flash programming supported by the target device.

 EZ-CUBE Switch setting
SW-1: Select switch to ″M1″.
SW-2: Select switch to ″Int. Clock″.
SW-3: Select switch to ″Debug Mode″.
SW-4: Depend on the target system environment.

 SW-5: Select switch to ″Other″.

Notes on the Target System Power Supply:

1. Do not change the switch setting after connecting USB cable.
2. The EZ-CUBE can supply power up to 100 mA current. Do not exceed the maximum supply current.
 The power is supplied from EZ-CUBE after connecting EZ-CUBE to the host machine.

7.1.3 Connection of reset pin
This section describes the connection of the reset pin, for which special attention must be paid, in circuit

connection examples shown in the previous section.
During on-chip debugging, a reset signal from the target system is input to EZ-CUBE, masked, and then

output to the target device. Therefore, the reset signal connection varies depending on whether EZ-CUBE is
connected.

For flash programming, the circuit must be designed so that the reset signals of the target system and
EZ-CUBE do not conflict.
 Automatically switching the reset signal via series resistor (recommended; described in recommended

circuit connection in the previous section)
 Figure 7-3 illustrates the reset pin connection described in 7.1.2 Circuit connection examples.
 This connection is designed assuming that the reset circuit on the target system contains an N-ch open-drain

buffer (output resistance: 100Ω or less). The VDD or GND level may be unstable when the logic of
RESET_IN/OUT of EZ-CUBE is inverted, so observe the conditions described below in Remark.

Figure 7-3. Circuit Connection with Reset Circuit That Contains Buffer

Remark Make the resistance of at least R1 ten times that of R2, R1 being 10 kΩ or more.
 Pull-up resistor R2 is not required if the buffer of the reset circuit consists of CMOS output.
 The circuit enclosed by a dashed line is not required when only flash programming is performed.

 Figure 7-4 illustrates the circuit connection for the case where the reset circuit on the target system contains

no buffers and the reset signal is only generated via resistors or capacitors. Design the circuit, observing the
conditions described below in Remark.

_RESETRESET_OUT

RESET_IN

R1

V DD VDD

R2

_RESET

EZ-CUBE

RESET_OUT

RESET_IN

R1

Reset connector

Buffer

Target Device

V V

R2

CHAPTER 7 HOW TO USE EZ-CUBE WITH V850 MICROCONTROLLER

User’s Manual 71

Figure 7-4. Circuit Connection with Reset Circuit That Contains No Buffers

Remark Make the resistance of at least R1 ten times that of R2, R1 being 10 kΩ or more.
 The circuit enclosed by a dashed line is not required when only flash programming is performed.

_RESET

EZ-CUBE

RESET_OUT

RESET_IN

R1 R2

V DD RESET_OUT

RESET_IN

R1

Reset connectorTarget Device

R2

V

User’s Manual 72

7.2 On-Chip Debugging
This section describes the system configuration, startup/shutdown procedure and cautions for debugging when

on-chip debugging is performed with EZ-CUBE.

7.2.1 Debug functions
Table 7-4 lists the debug functions when a V850 microcontroller is the target device and the debugger is used.

Table 7-4. Debug Functions

Functions Specifications

Target Device V850

V850ES/Jx3，V850ES/Jx3-L

Security 10-byte ID code authentication

Download Available

Execution Go, Step In, Step Over, CPU Reset, Restart

Hardware break 1 point

Software break Multiple points

RAM monitoring Available

Function pins used for debugging RXD, TXD

7.2.2 Securing of user resources and setting of security ID
The user must prepare the following to perform communication between EZ-CUBE and the target device and

implement each debug function. Refer to the descriptions on the following pages and set these items in the user
program or using the compiler options.

(a) Security ID setting

This setting is required to prevent the memory from being read by an unauthorized person. Embed a security
ID at addresses 0x70 to 0x79 in the internal flash memory. The debugger starts only when the security ID that
is set during debugger startup and the security ID set at addresses 0x70 to 0x79 match.
If bit 7 of address 0x79 is ″0″, however, debugging is disabled. In such a case, there are no methods to start
the debugger. Debugging is mainly disabled for mass-produced devices.
If the user has forgotten the security ID or to enable debugging, erase the flash memory and set the security ID
again.

[How to set security ID]
Embed a security ID at addresses 0x70 to 0x79 in the user program.
If the security ID is embedded as follows, for example, the security ID set by the debugger is
″123456789ABCDEF123D4″ (not case-sensitive).

Address Value

0x70 0x12

0x71 0x34

0x72 0x56

0x76 0x78

0x74 0x9A

0x75 0xBC

CHAPTER 7 HOW TO USE EZ-CUBE WITH V850 MICROCONTROLLER

CHAPTER 7 HOW TO USE EZ-CUBE WITH V850 MICROCONTROLLER

User’s Manual 73

0x76 0xDE

0x77 0xF1

0x78 0x23

0x79 0xD4

If Renesas Electronics compiler is used, the security ID can be set using the Compiler Common Options
menu.

Figure 7-5. Setting Security ID

 (b) Reset handler
 A reset handler includes the jump instruction for the debug monitor program.

 [How to secure areas]
 It is not necessary to secure this area intentionally. When downloading a program, however, the debugger

rewrites the reset vector in accordance with the following cases. If the rewritten pattern does not match the
following cases, the debugger generates an error.

• When two nop instructions are placed in succession from address 0
 Before writing After writing
 0x0 nop → Jumps to debug monitor program at 0x0
 0x2 nop 0x4 xxxx
 0x4 xxxx

CHAPTER 7 HOW TO USE EZ-CUBE WITH V850 MICROCONTROLLER

User’s Manual 74

• When two 0xFFFF are successively placed from address 0 (already erased device)
 Before writing After writing
 0x0 0xFFFF → Jumps to debug monitor program at 0x0
 0x2 0xFFFF 0x4 xxxx
 0x4 xxxx

• The jr instruction is placed at address 0 (when using Renesas Electronics compiler CA850)
 Before writing After writing
 0x0 jr disp22 → Jumps to debug monitor program at 0x0
 0x4 jr disp22 - 4

• The jump instruction for the debug monitor program is placed at address 0
 Before writing After writing
 Jumps to debug monitor program at 0x0 → No change

(c) Securing of area for debugging
 The area for debugging is for performing initialization processing for debug communication interface and RUN

or break processing for the CPU. The internal ROM area must be filled with 0xFF. This area must not be
rewritten by the user program.

 [How to secure areas]
 It is not necessarily required to secure this area if the user program does not use this area.
 To avoid problems that may occur during the debugger startup, however, it is recommended to secure this

area in advance, using the compiler. The following shows examples for securing the area, using the Renesas
Electronics compiler CA850. Add the assemble source file and link directive code, as shown below.

• Assemble source (Add the following code as an assemble source file.)

Note The downloading speed can be increased by replacing this line with the statement “monitorromsym:” to perform a

symbol definition only. This effect is not applicable if values are filled into a hole (area without a code). When

performing filling, the filling value must be 0xFF for securing the area.

• Link directive (Add the following code to the link directive file.)

 The following shows an example when the internal ROM end address is 0x3ffff and internal RAM end

-- Secures 2 KB space for monitor ROM section
.section "MonitorROM", const
.space 0x800, 0xffNote

-- Secures interrupt vector for debugging
.section "DBG0"
.space 4, 0xff

-- Secures interrupt vector for serial communication
-- Change the section name according to serial communication mode used
.section "INTCSI00"
.space 4, 0xff

-- Secures 16 byte space for monitor ROM section
.section "MonitorRAM", bss
.lcomm monitorramsym, 16, 4 /* defines monitorramsym symbol */

CHAPTER 7 HOW TO USE EZ-CUBE WITH V850 MICROCONTROLLER

User’s Manual 75

address is 0x3ffefff.

(d) Securing of communication serial interface
UART is used for communication between EZ-CUBE and the target system. The settings related to the serial
interface modes are performed by the debug monitor program, but if the setting is changed by the user
program, a communication error may occur.
To prevent such a problem from occurring, communication serial interface must be secured in the user
program.

[How to secure communication serial interface]
Create the user program observing the following points.

• Serial interface registers
 Do not set the registers related to UART in the user program.

• Interrupt mask register

When UART is used, do not mask receive end interrupts Note.
Note Do not mask receive error interrupts.

• Port registers

When UART is used, do not set port registers to make the TxD and RxD pins invalid.

7.2.3 Cautions on debugging
This section describes cautions on performing on-chip debugging for a V850 microcontroller.
Be sure to read the following to use EZ-CUBE properly.

(1) Handling of device that was used for debugging

Do not mount a device that was used for debugging on a mass-produced product, because the flash memory
was rewritten during debugging and the number of rewrites of the flash memory cannot be guaranteed.
Moreover, do not embed the debug monitor program into mass-produced products.

(2) Notes on downloading

When debugging, reset CPU before downloading. If DMA transfer to the internal RAM is performed while a
program is being downloaded to the flash memory, downloading of the program may not be performed
normally. When breaks cannot be executed

(3) Regarding ROM correction function
Do not use the ROM correction function or else unexpected breaks will occur.

(4) Regarding current consumption

MROMSEG : !LOAD ?R V0x03f800{
 MonitorROM = $PROGBITS ?A MonitorROM;
};

MRAMSEG : !LOAD ?RW V0x03ffeff0{
 MonitorRAM = $NOBITS ?AW MonitorRAM;
};

CHAPTER 7 HOW TO USE EZ-CUBE WITH V850 MICROCONTROLLER

User’s Manual 76

The current consumption in the target device increases during debugging compared with that in normal
operation mode, because the OCD unit of the target device operates during debugging.

(5) Regarding standby release with debugging functions

In case using the RRM function and DMM function, the standby mode is released when the memory is read
or written.

(6) Notes on flash self programming

Do not break in ROM area during flash environment. In case of monitoring memory with RRM function, a
temporary break is executed. So do not use RRM function when using flash self programming.
Do not modify the debug monitor area when using debugging interface.

(7) Regarding POC function and emulation of turning OFF

Make sure that the power to the target system is not shut down during debugging. Regarding to check the
operation of POC function and tuning OFF, perform without the emulator. In case the target system is
turning OFF instantaneously, the debugger may hang up.

(8) Regarding I/O buffer when using reset mask

The I/O buffer (port pin) may enter the reset status depending on the target device when a reset is input
from the pin, even if reset is masked by the mask function.

(9) When forced break, RRM function and DMM function do not operate

Forced breaks, RRM function and DMM function cannot be executed if one of the following conditions is
satisfied.
・Interrupts are disabled (DI)
・Interrupts issued for UART interface are masked
・Standby mode is entered while standby release by a maskable interrupt is prohibited
・When using UART interface, the main clock has been stopped
・When using UART interface, a clock different from the one specified in the debugger is used for

communication

(10) Writing quality of flash programming
To improve the writing quality, fully understand, verify, and evaluate the following items before using
EZ-CUBE emulator.

・Circuits are designed as described in the user's manuals for the device.
・The device and the software are used as described in each user's manual.
・The power supplied to the target system is stable.

(11)Debugging with real machine running
If debugging is performed with a real machine running, without using emulator, write the user program using
the programming software. Programs downloaded by the debugger include the monitor program, and such a
program malfunctions if it is not controlled via EZ-CUBE emulator.

(12)Regarding watchdog timer
The watchdog timer is forcibly stopped by the debug monitor program. Therefore, do not use the option byte to
specify that the watchdog timer cannot be stopped. For details about the option byte settings, see the user’s
manual of the target device.

CHAPTER 7 HOW TO USE EZ-CUBE WITH V850 MICROCONTROLLER

User’s Manual 77

(13)Regarding external reset
A break occurs when an external reset occurs (except when resets are masked) or an internal reset occurs.

(14)Regarding reset vector handling
Reset vector handling is not supported.

CHAPTER 7 HOW TO USE EZ-CUBE WITH V850 MICROCONTROLLER

User’s Manual 78

7.3 Flash Programming
This section describes the system configuration and startup/shutdown procedure when flash programming is

performed for a V850 microcontroller, using EZ-CUBE.

7.3.1 Specifications of programming function

Table 7-5. Specifications of Programming Function

Functions Specifications

Host interface USB 2.0

Target interface UART

Target system voltage 2.7 to 5.5 V (depends on the target device)

Clock supply 8MHz clock can be supplied

Clock mounted on the target system can be used

Power supply 5 V±0.3V (maximum current rating: 100 mA)

Acquisition of device-specific

information

Parameter file for Renesas Electronics is used

Programming software RFPNote (Renesas Flash Programmer)

Security flag setting Available

Standalone operation Unavailable (must be connected to host machine)

Note For detailed usage of the RFP, refer to the RFP User's Manual.

7.3.2 Cautions on flash programming
This section describes the cautions for flash programming. Be sure to read the following for the proper use of

EZ-CUBE.

• To improve the writing quality, fully understand, verify, and evaluate the following items before using EZ-CUBE.
- Circuits are designed as described in the user's manuals for the device and EZ-CUBE.
- The device, RFP and EZ-CUBE are used as described in each user's manual.
- The power supplied to the target system is stable.

	CHAPTER 1 OVERVIEW
	1.1 Features
	 1.2 Notes Before Using EZ-CUBE
	1.3 Hardware Specifications
	1.4 Firmware Update
	1.5 Standard configuration

	CHAPTER 2 NAMES AND FUNCTIONS OF HARDWARE
	2.1 Part Names and Functions of EZ-CUBE
	2.2 System configuration
	2.3 Setup
	2.3.1 Installing Emulator Software
	2.3.2 System startup procedure
	2.3.3 System shutdown procedure

	CHAPTER 3 HOW TO USE EZ-CUBE WITH RL78 MICROCONTROLLER
	 3.1 Target System Design
	3.1.1 Pin assignment
	3.1.2 Circuit connection example
	3.1.3 Connection of reset pin

	3.2 On-Chip Debugging
	3.2.1 Debug functions
	3.2.2 Securing of user resources and setting of security ID and on-chip debug option byte debugging resources
	 3.2.3 Cautions on debugging

	 3.3 Flash Programming
	3.3.1 Specifications of programming function
	3.3.2 Cautions on flash programming

	CHAPTER 4 HOW TO USE EZ-CUBE WITH 78K0R MICROCONTROLLER
	 4.1 Target System Design
	 4.1.1 Pin assignment
	 4.1.2 Circuit connection example
	 4.1.3 Connection of reset pin

	4.2 On-Chip Debugging
	4.2.1 Debug functions
	4.2.2 Securing of user resources and setting of security ID and on-chip debug option byte
	4.2.3 Cautions on debugging

	 4.3 Flash Programming
	4.3.1 Specifications of programming function
	4.3.2 Cautions on flash programming

	CHAPTER 5 HOW TO USE EZ-CUBE WITH 78K0 MICROCONTROLLER
	 5.1 Target System Design
	5.1.1 Pin assignment
	5.1.2 Circuit connection examples
	5.1.3 Connection of reset pin
	5.1.4 Cautions on Target system Design
	5.1.5 Clock Setting

	5.2 On-Chip Debugging
	5.2.1 Debug functions
	5.2.2 Securing of user resources and setting of security ID
	 5.2.3 Cautions on debugging

	 5.3 Flash Programming
	5.3.1 Specifications of programming function
	5.3.2 Cautions on flash programming

	CHAPTER 6 HOW TO USE EZ-CUBE WITH RX MICROCONTROLLER
	6.1 Target System Design
	6.1.1 Pin assignment
	6.1.2 Recommended Circuit Connection
	6.1.3 Notes on Connection

	6.2 On-Chip Debugging
	6.2.1 Debug functions
	 6.2.2 Notes on debugging

	 6.3 Flash Programming
	6.3.1 Specifications of programming function
	6.3.2 Cautions on flash programming

	CHAPTER 7 HOW TO USE EZ-CUBE WITH V850 MICROCONTROLLER
	 7.1 Target System Design
	7.1.1 Pin assignment
	7.1.2 Circuit connection examples
	7.1.3 Connection of reset pin

	7.2 On-Chip Debugging
	7.2.1 Debug functions
	7.2.2 Securing of user resources and setting of security ID
	7.2.3 Cautions on debugging

	 7.3 Flash Programming
	7.3.1 Specifications of programming function
	7.3.2 Cautions on flash programming

