

-

09.06.2015

www.renesas.com

U
s
e
r M

a
n
u
a
l

32

32

EEPROM Emulation Library

Type T01, European Release

RENESAS 32-Bit MCU
RH Family / RH850 Series

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Technology Corp.
website (http://www.renesas.com).

All information contained in these materials, including products and product specifications,

represents information on the product at the time of publication and is subject to change by

Renesas Electronics Corp. without notice. Please review the latest information published by

Renesas Electronics Corp. through various means, including the Renesas Technology Corp.

website (http://www.renesas.com).

Installer:
RENESAS_EEL_RH850_T01Vx.xx

EEPROM Emulation Library - Type T01, European Release Notice

R01US0116ED0201 2
User Manual

Notice

1. All information included in this document is current as of the date this document is issued. Such information,
however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics
products listed herein, please confirm the latest product information with a Renesas Electronics sales office.
Also, please pay regular and careful attention to additional and different information to be disclosed by
Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other
intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
technical information described in this document. No license, express, implied or otherwise, is granted
hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether
in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to
illustrate the operation of semiconductor products and application examples. You are fully responsible for
the incorporation of these circuits, software, and information in the design of your equipment. Renesas
Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of
these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the
applicable export control laws and regulations and follow the procedures required by such laws and
regulations. You should not use Renesas Electronics products or the technology described in this
document for any purpose relating to military applications or use by the military, including but not limited to
the development of weapons of mass destruction. Renesas Electronics products and technology may not
be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but
Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no
liability whatsoever for any damages incurred by you resulting from errors in or omissions from the
information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”,
“High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product
depends on the product’s quality grade, as indicated below. You must check the quality grade of each
Renesas Electronics product before using it in a particular application. You may not use any Renesas
Electronics product for any application categorized as “Specific” without the prior written consent of
Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall
not be in any way liable for any damages or losses incurred by you or third parties arising from the use of
any Renesas Electronics product for an application categorized as “Specific” or for which the product is not
intended where you have failed to obtain the prior written consent of Renesas Electronics.

EEPROM Emulation Library - Type T01, European Release Notice

R01US0116ED0201 3
User Manual

8. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in
a Renesas Electronics data sheets or data books, etc.

Computers; office equipment; communications equipment; test and measurement equipment;
audio and visual equipment; home electronic appliances; machine tools; personal electronic
equipment; and industrial robots.

Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster
systems; anti- crime systems; safety equipment; and medical equipment not specifically
designed for life support.

Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical
equipment or systems for life support (e.g. artificial life support devices or systems), surgical
implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or
purposes that pose a direct threat to human life.

9. You should use the Renesas Electronics products described in this document within the range specified by
Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range,
movement power voltage range, heat radiation characteristics, installation and other product characteristics.
Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas
Electronics products beyond such specified ranges.

10. Although Renesas Electronics endeavours to improve the quality and reliability of its products,
semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and
malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to
radiation resistance design. Please be sure to implement safety measures to guard them against the
possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas
Electronics product, such as safety design for hardware and software including but not limited to
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any
other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,
please evaluate the safety of the final products or system manufactured by you.

11. Please contact a Renesas Electronics sales office for details as to environmental matters such as the
environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products
in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled
substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability
for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
consent of Renesas Electronics.

13. Please contact a Renesas Electronics sales office if you have any questions regarding the information
contained in this document or Renesas Electronics products, or if you have any other inquiries.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and
also includes its majority- owned subsidiaries.

“Renesas Electronics product(s)” means any product developed or manufactured by or for
Renesas Electronics.

“Standard”:

“High
Quality”:

“Specific”:

Note 1

Note 2

EEPROM Emulation Library - Type T01, European Release Regional information

R01US0116ED0201 4
User Manual

Regional information

Some information contained in this document may vary from country to country. Before using any Renesas
Electronics product in your application, please contact the Renesas Electronics office in your country to obtain a
list of authorized representatives and distributors. They will verify:

 Device availability

 Ordering information

 Product release schedule

 Availability of related technical literature

 Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

 Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from
country to country.

Visit

http://www.renesas.com

to get in contact with your regional representatives and distributors.

http://www.renesas.com/

EEPROM Emulation Library - Type T01, European Release Preface

R01US0116ED0201 5
User Manual

Preface

This manual is intended for users who want to understand the functions of the concerned
libraries.

This manual presents the software manual for the concerned libraries.

Additional remark or tip

Item deserving extra attention

Binary: xxxx or xxxB

Decimal: xxxx

Hexadecimal xxxxH or 0x xxxx

Representing powers of 2 (address space, memory capacity):

K (kilo) 210 = 1024

M (mega): 220 = 10242 = 1,048,576

G (giga): 230 = 10243 = 1,073,741,824

X, x = don’t care

Block diagrams do not necessarily show the exact software flow but the functional structure.
Timing diagrams are for functional explanation purposes only, without any relevance to the real
hardware implementation.

Readers

Purpose

Note

Caution

Numeric
notation

Numeric
prefix

Register

Diagrams

EEPROM Emulation Library - Type T01, European Release How to Use This Document

R01US0116ED0201 6
User Manual

How to Use This Document

(1) Purpose and Target Readers

This manual is designed to provide the user with an understanding of the hardware functions and electrical
characteristics of the MCU. It is intended for users designing application systems incorporating the MCU. A
basic knowledge of electric circuits, logical circuits, and MCUs is necessary in order to use this manual. The
manual comprises an overview of the product; descriptions of the CPU, system control functions, peripheral
functions, and electrical characteristics; and usage notes.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within
the body of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to
the text of the manual for details.

(2) Related documents

Document number Description

R01US0079 FDL User Documentation

(3) List of Abbreviations and Acronyms

Abbreviation Full form

API Application Programming Interface

Flash Area Area of Flash consists of several coherent Flash Blocks

Code Flash
Embedded Flash where the application code or
constant data is stored.

CR Complementary Read

Data Flash
Embedded Flash where mainly the data of the
EEPROM emulation are stored.

Data Set
Instance of data written to the Flash by the EEPROM
Emulation Library (EEL), identified by the Data Set ID

DS Short for Data Set

Dual Operation

Dual operation is the capability to access flash memory
during reprogramming another flash memory range.

Dual operation is available between Code Flash and
Data Flash. Between different Code Flash macros dual
operation depends on the device implementation.

ECC Error Correction Code

EEL EEPROM Emulation Library

EEPROM Electrically erasable programmable read-only memory

EEPROM emulation

In distinction to a real EEPROM the EEPROM
emulation uses some portion of the flash memory to
emulate the EEPROM behaviour. To gain a similar
behaviour some side parameters have to be taken in
account.

FDL Data Flash Library (Data Flash access layer)

Flash
Electrically erasable and programmable nonvolatile
memory. The difference to ROM is, that this type of
memory can be re-programmed several times.

EEPROM Emulation Library - Type T01, European Release How to Use This Document

R01US0116ED0201 7
User Manual

Abbreviation Full form

(Physical) Flash Block
A flash block is the smallest erasable unit of the flash
memory.

Flash Macro
A certain number of Flash blocks is grouped together in
a Flash macro.

ID
Identifier of a Data Set instance in the Renesas
EEPROM Emulation

NVM
Non-volatile memory. All memories that hold the value,
even when the power is cut off. E.g. Flash memory,
EEPROM, MRAM...

RAM
“Random access memory” - volatile memory with
random access

REE Renesas Electronics Europe GmbH

REL Renesas Electronics Japan

ROM
“Read only memory” - non-volatile memory. The
content of that memory cannot be changed.

Serial programming
The on board programming mode is used to program
the device with an external programmer tool.

Virtual Flash blocks
The EEL merges together small physical Flash blocks
to bigger virtual Flash blocks which are then managed
in the ring buffer

All trademarks and registered trademarks are the property of their respective owners.

EEPROM Emulation Library - Type T01, European Release

R01US0116ED0201 8
User Manual

Table of Contents

Chapter 1 Introduction ... 11

1.1 Flash Infrastructure ... 11

1.1.1 Dual Operation ... 11

1.1.2 Data Flash Granularity ... 12

1.1.3 Complementary-Read Data Flash ... 12

1.1.4 Data Flash Error Correction Code Treatment 12

1.2 Feature Overview ... 12

Chapter 2 Architecture ... 14

2.1 Layered Software Architecture ... 14

2.2 Data Flash Pool Structure ... 15

2.2.1 User Pool .. 16

2.2.2 EEL Pool ... 16

2.3 EEL Management ... 16

2.3.1 EEL Pool Structure .. 16

2.3.2 EEL Block Structure .. 19

2.3.3 EEL Data-Sets .. 22

Chapter 3 Functional Specification ... 26

3.1 Functions and Commands .. 26

3.1.1 Functions .. 26

3.1.2 Commands ... 27

3.1.3 Request-Response oriented Dialog ... 27

3.1.4 Handler-oriented Command Execution .. 28

3.2 Flash Interrupt Support ... 29

3.3 EEL User Command Priority ... 29

3.4 Background Operations .. 30

3.5 Data-Set Search and Read .. 30

3.6 Driver Status ... 32

3.7 Start-up Processing ... 34

3.8 Limited Operation Mode .. 36

3.9 Suspend / Resume ... 37

Chapter 4 Application Programming Interface (API) 40

4.1 Pre-compile Configuration .. 40

4.2 Runtime Configuration .. 40

4.2.1 FDL Runtime Configuration Parameters .. 40

EEPROM Emulation Library - Type T01, European Release

R01US0116ED0201 9
User Manual

4.2.2 EEL Runtime Configuration Parameters .. 42

4.3 Data Types .. 43

4.3.1 Header file r_typedefs.h .. 43

4.3.2 Header file e_eel_types.h .. 44

4.4 Functions .. 50

4.4.1 R_EEL_Init .. 50

4.4.2 R_EEL_Startup ... 52

4.4.3 R_EEL_ShutDown ... 53

4.4.4 R_EEL_SuspendRequest .. 55

4.4.5 R_EEL_ResumeRequest ... 57

4.4.6 R_EEL_Execute ... 57

4.4.7 R_EEL_Handler .. 59

4.4.8 R_EEL_GetEraseCounter .. 60

4.4.9 R_EEL_GetDriverStatus .. 61

4.4.10 R_EEL_GetSpace ... 63

4.4.11 R_EEL_GetVersionString .. 64

4.5 Commands ... 65

4.5.1 R_EEL_CMD_READ — DS Read ... 67

4.5.2 R_EEL_CMD_WRITE — DS write .. 70

4.5.3 R_EEL_CMD_WRITE_INC — Incremental DS write 74

4.5.4 R_EEL_CMD_WRITE_IMM — Immediate DS write 74

4.5.5 R_EEL_CMD_WRITE_INC_IMM — Incremental immediate DS write . 75

4.5.6 R_EEL_CMD_INVALIDATE — DS invalidation 75

4.5.7 R_EEL_CMD_INVALIDATE_IMM — Immediate DS invalidation 75

4.5.8 R_EEL_CMD_FORMAT — EEL Pool Format 76

4.5.9 R_EEL_CMD_CLEANUP — EEL Pool Clean-up 77

Chapter 5 Library Setup and Usage .. 80

5.1 File Structure .. 80

5.1.1 Overview ... 80

5.1.2 Directory Structure and Files .. 81

5.2 Library Resources .. 83

5.2.1 Linker Sections .. 83

5.2.2 Stack and Data Buffer .. 84

5.3 Library Timings .. 84

5.3.1 Library Timings during Start-up ... 85

5.3.2 Library Timings during normal Operation ... 86

5.4 Library Setup and Integration ... 88

EEPROM Emulation Library - Type T01, European Release

R01US0116ED0201 10
User Manual

5.4.1 EEL Pool Configuration ... 88

5.4.2 Endurance Calculation .. 88

5.4.3 EEL Data Set Configuration .. 89

5.4.4 Distributing Data between FDL and EEL ... 89

5.4.5 R_EEL_Handler Calls .. 90

5.4.6 Reset Robustness Considerations .. 91

5.4.7 ECC Errors ... 91

5.4.8 Relation between operation status and driver status 91

5.5 Sample Application .. 92

5.6 Miscellaneous... 96

5.6.1 MISRA Compliance .. 96

Chapter 6 Cautions ... 97

6.1 Function re-entrancy ... 97

6.2 Task switches, context changes and synchronization between EEL
functions ... 97

6.3 EEL performance ... 97

6.4 Concurrent Data Flash accesses .. 97

6.4.1 User Data Flash access during active EEPROM emulation 97

6.4.2 Direct access to the Data Flash by the user application by DMA 98

6.5 Entering power safe mode .. 98

6.6 Library behaviour after operation interruption .. 98

6.7 Application update issues ... 99

6.7.1 Change DS length .. 99

6.7.2 ID-L ROM table not available .. 99

6.8 Changing EEL pool size and location configuration 100

6.9 Precompile options .. 100

EEPROM Emulation Library - Type T01, European Release Introduction

R01US0116ED0201 11
User Manual

Chapter 1 Introduction

This user manual describes the internal structure, the functionality and the application programming
interface (API) of the Renesas RH850 EEPROM Emulation Library (EEL) Type 01, designed for RH850
devices with Data Flash based on the RV40 flash technology.

While RH850 devices are equipped with Data Flash, a direct usage of this non-volatile memory can be
more complex than the usage of classical electrically erasable programmable read-only memory
(EEPROM), as erases of flash memory can only be performed block-wise, i.e. on rather large continuous
address ranges. Furthermore, the number of program-erase cycles for each flash block is finite and
demands for effective data management and wear-leveling techniques.

The EEPROM Emulation Library described in this document addresses these challenges by providing a
simple-to-use software interface encapsulating the detailed flash management with a framework based on
emulated data sets. The developer can access (read and write) these data sets independently in an
EEPROM-like manner. This way, the developer can concentrate on the actual functionality of the
application rather than spending time on tedious details of Data Flash access sequences.

The Renesas RH850 EEPROM Emulation Library Type 01 (from here on referred to as EEL) is prepared
for the Green Hills, IAR and Renesas compiler environments. The distributed versions depend on
customer requests. The library is distributed using an installer tool allowing for selection of the appropriate
environment. The library is delivered together with device dependent application programs showing the
implementation of the libraries and the usage of the library functions.

The EEPROM emulation library, the latest version of this user manual and other device dependent
information can be downloaded from the following URL:

http://www.renesas.eu/updates?oc=EEPROM_EMULATION_RH850.

Please ensure to always use the latest release of the library in order to take advantage of improvements
and bug fixes.

The EEL requires the corresponding RH850 Data Flash Access Library (FDL) Type 01 for operation. It
can be obtained from the same URL as the EEL. Please ensure to always use the correct release of the
FDL which is specified inside the EEL release in order to avoid incompatibilities between the two libraries.

If support on the library or library usage is required, please contact the Flash support:

application_support.flash-eu@lm.renesas.com

Note:
Please read all chapters of this manual carefully. Much attention has been put to proper description of
usage conditions and limitations. Anyhow, it can never be completely ensured that all incorrect ways of
integrating the library into the user application are explicitly forbidden. So please follow the given
sequences and recommendations in this document exactly in order to make full use of the library
functionality and features and in order to avoid malfunctions caused by library misuse.

1.1 Flash Infrastructure

The flash technology which is utilized in RH850 devices is called RV40. Besides the Code Flash, devices
of the RH850 microcontroller family are also equipped with a separate flash area - the Data Flash. This
flash area is meant to be used exclusively for data. It cannot be used for instruction execution (code
fetching).

1.1.1 Dual Operation

Common for all Flash implementations is, that during Flash modification operations (Erase/Write) a
certain amount of Flash memory is not accessible for any read operation (e.g. program execution or data
read).

This does not only concern the modified Flash range, but a certain part of the complete Flash system.
The amount of not accessible Flash depends on the device architecture.

http://www.renesas.eu/updates?oc=EEPROM_EMULATION_RH850

EEPROM Emulation Library - Type T01, European Release Introduction

R01US0116ED0201 12
User Manual

A standard architectural approach is the separation of the Flash into Code Flash and Data Flash. By that,
it is possible to fetch instruction code from the Code Flash (to execute program) while data are read or
written into Data Flash. This allows implementation of EEPROM emulation concepts running quasi in
parallel to the application software without significant impact on its execution timing.

If not mentioned otherwise in the device users manuals, RH850 devices with Data Flash are designed
according to this standard approach.

Note:
It is not possible to modify Code Flash and Data Flash in parallel.

1.1.2 Data Flash Granularity

The Data Flash of RH850 devices is separated into blocks of 64 byte. While erase operations can only be
performed on complete blocks, data writing can be done on a granularity of one word (4 bytes). Reading
from an erased flash word will return random values (see below). The number of available Data Flash
blocks varies between the different RH850 devices. Please refer to the corresponding user manual of
your device for detailed information.

1.1.3 Complementary-Read Data Flash

The Data Flash of RH850 devices is based on a complementary read (CR) mechanism in order to
achieve a high endurance (number of erase cycles). Each data bit is stored by means of two Flash cells,
which are programmed to opposite voltage levels allowing for reproducing the content by comparison.

Thereby, erased cells provide a very small differential level rather than a clean voltage difference
indicating a value. Hence, values read from data flash memory that has been erased but not yet been
programmed again are essentially undefined. However, read values have a tendency to match formerly
written data. Please consider the following when working with the RH850 Data Flash:

 The EEL handles the CR behavior of erased cells in the library concept. Application wise, no special
treatment is necessary when using the EEL.

 When using the FDL directly to access the Data Flash, blank checking needs to be used to confirm
that an area is in the non-programmed state (see FDL user manual).

 When inspecting the Data Flash during debugging, the debugger needs to provide additional
information on the Flash cell status (erased/written) in order to allow for correct interpretation of the
Flash content.

1.1.4 Data Flash Error Correction Code Treatment

The Data Flash content or RH850 devices is protected by means of an error correction code. Reading
from an area of the Data Flash memory that has been erased or contains corrupted data (e.g. caused by
single event upsets) can lead to the detection of an ECC error and generation of the corresponding
exception.

In many situations, the EEL will handle these exceptions and invoke countermeasures. However, there
are well-defined situations where the ECC exception is still triggered during EEL library operation. Please
refer to Section 5.4.7, “ECC Errors” for detailed information.

1.2 Feature Overview

The EEL for RH850 devices offers easy-to-use EEPROM-like access to user-defined data sets stored in
the non-volatile Data Flash memory. Thereby, the EEL offers a rich function set to designers e.g. covering
the following features:

 Reset resistance

 Block rotation (balanced data flash usage)

 Applicability in operating systems

 Standby functionality for energy savings

 Immediate and incremental write features

EEPROM Emulation Library - Type T01, European Release Introduction

R01US0116ED0201 13
User Manual

 Early read/write access during start-up

 Normal and limited data set operation mode

 Individually configurable data size

 Configurable usage of parts or the complete Data Flash

EEPROM Emulation Library - Type T01, European Release Architecture

R01US0116ED0201 14
User Manual

Chapter 2 Architecture

This chapter introduces the basic software architecture of the EEL and provides the necessary
background for application designers to understand and effectively use the EEL. Please read this chapter
carefully before moving on to the details of the API description.

2.1 Layered Software Architecture

The EEPROM emulation system is built up from several hierarchical functional blocks. This user manual
concentrates on the functionality and usage of the EEL. However, a short description of all involved
functional blocks and their relationship is important for the general understanding of the concepts and
usage of the EEL.

As depicted in Figure 1, the software architecture of the EEPROM emulation system is built up of several
layers:

 Physical flash layer: The Data Flash is a separate memory that can be accessed independent of the
Code Flash memory. This allows background access to data stored in the Data Flash during program
execution from the code flash.

 Flash access layer: The Data Flash access layer is represented by the Data Flash Access Library
(FDL) provided by Renesas. It offers an easy-to-use API to access and manage the Data Flash by
encapsulating and abstracting tedious timing and flash access sequence details.

 EEPROM layer: The EEPROM layer allows read/write access to the Data Flash on an abstract level.
It is represented by a Renesas EEL (as described in this document) or alternatively any other, user
specific implementation.

 Application layer: The application layer covers the user's application software which has access to
the Data Flash by using functions and commands of the lower layers.

The EEL accesses the Data Flash via the Data Flash Library (FDL). For performance reasons however,
there are also direct read accesses to the Data Flash by means of memory-mapped input/output (I/O).
Such a direct read access is also possible from the user application (please refer to your device user
manual for details).

Please note however, that the Data Flash does not support multiple parallel accesses. It is the duty of the
user to ensure an exclusive usage of one of the layers. That means that the user may not access the
Data Flash via FDL or memory-mapped I/O while the EEL is in operation. Therefore, the EEL features a

Figure 1: Layers of the EEPROM emulation system

Data Flash

Data Flash library

(FDL)

FDL API

EEPROM emulation library (EEL)

EEL API

user application application layer

EEPROM layer

flash access layer

physical flash layer

h
a

rd
w

a
re

s
o

ft
w

a
re m
e

m
o

ry
-m

a
p

p
e

d
 I
/O

m
e

m
o

ry
-m

a
p

p
e

d
 I
/O

EEPROM Emulation Library - Type T01, European Release Architecture

R01US0116ED0201 15
User Manual

standby/wakeup functionality in order to interrupt EEL processing (see also Section 3.9, “Suspend /
Resume”).

Depending on the data to be stored, each library has its advantages and disadvantages. While the FDL
enables an efficient way to store data which is changed very seldom (e.g. configuration parameters or
constant identification numbers) and offers the designer full freedom how to manage the data, the EEL
provides a comfortable way to handle frequently changing data sets at the cost of a mean resource
overhead.

2.2 Data Flash Pool Structure

The decision for using FDL or EEL as Data Flash access mechanism is usually driven by characteristics
of the data, in particular how often the data needs to be updated, reset robustness and the application
overhead to access and manage the data. As a result it is often desirable to use both libraries within the
same application. Consequently, the Data Flash is separated into individual pools as depicted in Figure 2:

 FDL pool: The FDL pool defines the Flash blocks, which may be accessed by any FDL operation
(e.g. write, erase). The limits of the FDL pool are taken into consideration by any of the FDL flash
access commands. The user can define the size of the FDL-pool freely at project runtime during FDL
initialization, while usually the complete Data Flash is selected.

 EEL pool: The FDL pool provides the space for the EEL pool which is allocated the FDL pool. The
EEL Pool provides the Flash space for the EEL to store the emulation data and management
information.

 User pool: All FDL pool space not allocated by the EEL pool is freely usable by the user application,
so is called the user pool.

The separation in EEL and user pool is necessary as the EEL stores additional administrative data in the
blocks of the EEL pool for managing the blocks and the instances of variables. In order to avoid FDL
handling errors which might corrupt the EEL data structures, the API structure and sanity checks of the
FDL ensure that only the user pool is accessed directly from the user application, while the EEL pool is
only accessed by the EEL.

The distribution of the FDL pool to EEL and user pool can be configured at library start-up in the
descriptor of the FDL (see the RH850 FDL T01 user manual for details of the FDL configuration options).
Please note that the assignment of Data Flash memory to user and EEL pool can only be done on a
flash-block basis.

Data Flash

user pool

EEL pool

user pool

FDL

pool

0x FF20 0000

0x FF20 7FFF

0x7FFF

0x0000

Figure 2: Logical fragmentation of Data Flash in EEL and user pool
(example for 32 kB Data Flash)

EEPROM Emulation Library - Type T01, European Release Architecture

R01US0116ED0201 16
User Manual

2.2.1 User Pool

The user pool allocates the Data Flash blocks that are directly managed by the user application via the
FDL. It can be used to simply store constants or to even build up an own user EEPROM emulation.
Please note however, that it is the designers duty to take care of reset and failure scenarios himself when
using the FDL, e.g. by a proper failure mode and effects analysis.

2.2.1.1 Address Virtualization

In order to simplify the flash content handling, the physical addresses used by the flash hardware were
transformed into a linear 16-bit index addressing (8-bit units) inside the user pool (see Figure 2). By this
measure, the FDL pool can be treated as a simple array. To address the array elements (read/write
access), virtual addresses starting at 0x0000 can be used.

2.2.2 EEL Pool

The EEL pool allocates the Data Flash blocks that are used by the EEPROM emulation to store user
content and administrative data. The handling of the flash blocks is completely encapsulated in the EEL
and abstracted through the EEL API. The direct access to this pool via the FDL is prohibited.

While the data stored in the user pool needs to be managed completely by the user application, the usage
of the EEL pool is greatly simplified by data set (DS) virtualization. The user defines multiple DSs with
individual sizes at compile time. These DSs can be read and written via dedicated commands of the EEL
API during runtime. Pool handling and reset-safe variable update processes help the developer to
concentrate on the actual functionality of the application rather than detailed flash-access sequences.

2.2.2.1 Block Virtualization

The EEL concept relies on Flash blocks of a reasonable size to store block management data and data
sets. The physical blocks provided by the RV40 Flash technology (64Bytes erase granularity) are too
small to support EEPROM emulation effectively. Therefore, multiple physical Flash blocks are merged to
one virtual block. The virtual blocks of the EEL pool are then managed by the EEL as a ring buffer.

The size of the virtual blocks is runtime configurable at initialization of the library. Selecting a proper size
for the virtual block is important and depends on the data structure used in the application (see also
Section 5.4.1, “EEL Pool Configuration”).

The transition from physical to virtual blocks is done within the EEL near to the FDL interface. As the FDL
API handles physical blocks, an EEL internal low level routine converts the virtual blocks to physical
blocks before calling the FDL.

The complete EEL operates on virtual blocks. Hence, all pool sizes and alignments need to be configured
based on the virtual block size intervals.

2.3 EEL Management

While the simple usage of the EEL via its API hides many complex management issues from the
developer, it is still mandatory to understand the management mechanisms of the library in order to use it
efficiently. Therefore, the EEL management is introduced in the following by first specifying the structures
of the EEL pool, blocks and data sets. Afterwards, the transitions, sequences and processes within the
EEL are highlighted briefly.

2.3.1 EEL Pool Structure

As introduced earlier, the EEL organizes the EEL pool in virtual blocks. The virtual blocks are used as a
kind of ring buffer as depicted in Figure 3.

EEPROM Emulation Library - Type T01, European Release Architecture

R01US0116ED0201 17
User Manual

Each block has a life-cycle status which indicates the current usage of the block. The following life-cycle
statuses have to be distinguished:

 Prepared: The block is prepared to store data sets. This means that the block is essentially erased.
Only a few cells are written to manage the block status.

 Active: An active block stores valid values of data sets.

 Active (full): Whenever it is not possible to append new data-set values to the contents of an active
block, it is considered as full. However as long as it stores valid data-set values it still needs to be
treated as active, i.e. “active (full)”.

 Invalid: Typically only one block in the ring buffer (Except special power fail conditions) is invalid.
This block passes different conditions:

 Invalid(consumed): Blocks contains only outdated data-set values and is marked invalid

 Invalid (preparation): Consumed blocks are being erased and then marked prepared. The
erasure of a virtual block is a comparably time-consuming operation.

Figure 3 considers a write pointer staying fix, while the ring buffer rotates clockwise. Every block reaching
the write pointer gets activated. This block is called the active zone head. When a block reaches the end
of the active zone it is called the active zone tail.

Figure 3: Virtual block ring buffer

active

(full)

active

(full)
prepared

prepared

invalid

(consumed/

preparation)

active

write pointer
containing valid and old data waiting for new data

erased

region

prepared

logical ring

active

(full)

active

(full)

prepared

invalid

(consumed/

preparation)

prepared

active

prepared
1'st virtual

block

last virtual

block

physical Flash

active

(full)

active

(full)

active

(full)

active

(full)

EEPROM Emulation Library - Type T01, European Release Architecture

R01US0116ED0201 18
User Manual

Each virtual block will pass a complete life cycle on every ring buffer loop as detailed in Figure 4.

The library itself does not need to distinguish all five phases of the block life cycle. For instance, the active
state and the active (full) state are not explicitly distinguished by the library and mapped to a logical active
state.

Also the invalid block (s) will be treated by the library in different processing steps.
If a certain data set is updated (i.e. written) seldom, it can happen that the active zone tail does not move
meaning that it remains in the same physical block. In order to keep the rotation of the logical block ring
alive, it is necessary to copy valid data sets from the active zone tail to the active zone head. After all data
is copied, the active (full) block in the tail can be transferred to the invalid (consumed) state. This
complete process is referred to as refresh.
Afterwards, the block is erased and then marked prepared. While the block status during this complete
proceeding is considered as invalid (preparation), the processing is called prepare.

Figure 4: EEL block life cycle

active

(full)

invalid

(preparation)

active

prepared

logical block status

prepared

block lifecycle

prepared

active

invalid

block

activation

block

invalidation

block

preparation

invalid
(consumed)

EEPROM Emulation Library - Type T01, European Release Architecture

R01US0116ED0201 19
User Manual

2.3.2 EEL Block Structure

The detailed block structure used by the EEL is depicted in Figure 5. In general, an EEL block is divided
into three utilized areas: the block header, the reference zone and the data zone.

The individual purpose of each area is given in the following:

 Block header: The block header contains all block status information needed for the block
management within the EEL-pool. It has a fixed size of 7 words (28 bytes). Please note that one word
of the block header is stored at the bottom of the virtual block (details in Section 0).

 Reference zone: The reference zone contains reference entries which are required for the
management of EEL data sets. It grows in direction of larger indexes whenever a variable is written.

 Data zone: The data zone contains the pure data values of the defined EEL data sets. It grows in
direction of smaller indexes whenever a variable is written.

Between reference and data area, there is an erased area of not-written flash cells. With each data set
update (i.e. the DS is written), this area is reduced successively. However, at least one word of space
always remains between reference and data zone for management and separation of these zones. This is
indicated by the separator in Figure 5.

The EEL block header is detailed in the following, while the structure of variable instances stored in the
reference and data area are described in Section 2.3.3.

2.3.2.1 EEL Block Header

The block header is a small area at the top and bottom of each flash block belonging to the EEL pool. It
contains all information necessary for block management during EEL operation. It is composed of seven
words, one of which is placed at the end of the block.

Figure 5: EEL block structure

block header

data zone

REF zone

blank

growing

growing

0x0000

n-1

separator (1blank word)

block header (1 word)

relative word
index inside the

virtual block

n: virtual-block size in words

EEPROM Emulation Library - Type T01, European Release Architecture

R01US0116ED0201 20
User Manual

Inside the header area, a set of status words is used to code the block status in a reset-resistant manner.
Each status word has a size of 4 byte. In the following, the basic purpose of each word is explained
concentrating on the case of normal operation. Details about how reset resistance is ensured are omitted
here for the sake of clarity.

P (prepare flag):

The prepare flag is written with the pattern 0x55555555 in order to indicate that a block is prepared. The
prepare flag is updated during block preparation.

A0, A1 (active flags):

If the active flags are set to 0x55555555 (in addition to the prepare flag), the block is treated as active.
These flags are written during block activation.

I0, I1 (invalid flags):

By setting the invalid flags to 0x55555555, a block is marked as invalid. Invalid flags have a higher priority
than prepare and active flags and hence can be used to overwrite the block status.

The reason for splitting up invalid flags across the virtual block originates from the technology used for the
Data Flash: It does not allow for overwriting already written cells with arbitrary values to mark patterns
invalid. In order to never end in an instable block status, the invalidation flags are placed into two different
physical Flash blocks within a virtual block.

EC (erase counter):

The erase counter is written during the preparation of a block according to the following rule:
 EC = {previous block EC} + 1 , if the block is the first virtual block of the EEL pool
 EC = {previous block EC} , otherwise.
Thereby, on each ring buffer turn around the erase counter in each block is increased by 1 as exemplarily
depicted in Figure 7. The EC is checksum protected in order to be robust against accidental overwriting
due to application failures.

Please note that the erase counter does not necessarily match the real number of Flash block erase
cycles, but only the erase cycles since the EEPROM emulation has been set up last time. The erase

Figure 6: Structure of each EEL block header

word-idx

0 I0 invalid flag 0

1 P prepare flag

2 A0 active flag 0

3 A1 active flag 1

4
EC

32bit erase counter (8bit CS protected)
CS

5
RWP

32bit reference write pointer (8 bit CS protected)
CS

n-1 I1 invalid flag 1

n: number of words in one virtual block; I0 and I1 are in different physical blocks

updated during block preparation

updated during block activation

updated during block invalidation

EEPROM Emulation Library - Type T01, European Release Architecture

R01US0116ED0201 21
User Manual

counter is affected by complete Data Flash erase or manual Flash modification (e.g. programmer or
debugger).

RWP (reference write pointer):

The reference write pointer is written in during the activation of a block. It points to the previous block
separator between reference and data zone (see Figure 8). This enables a fast analysis of the reference
zones of all active blocks during library start-up. The RWP is checksum protected in order to be robust
against accidental overwriting due to application failures.

active

(full)

active

(full)

prepared

invalid
(consumed /

preparation)

active

prepared

virtual blocks

inside EEL pool

Physical Flash EC

121

120

120

120

120

120

120

active

(full)

active

(full)

undefined

120active

(full)

data zone

REF zone

blank

RWP

data zone

REF zone

blank

RWP

data zone

REF zone

blank

RWP

activeactive (full) active (full)

Figure 7: Exemplary erase counters across EEL pool

Figure 8: Usage of reference write pointers within the active zone of an EEL pool

EEPROM Emulation Library - Type T01, European Release Architecture

R01US0116ED0201 22
User Manual

2.3.3 EEL Data-Sets

Differing from a real EEPROM, where user data is referenced by addresses, the user data in the
EEPROM emulation is referenced by identifiers (IDs). An ID is unique number referring to a data set with
a dedicated length. By means of the so-called EEL descriptor, the developer can configure multiple data
sets to be used within the EEL. (The exact specification of the format of the EEL descriptor can be found
in Section 4.2.2, “EEL Runtime Configuration Parameters”.)

2.3.3.1 Data Set Instances within the EEL Block

Differing from an EEPROM, the data is stored "somewhere" in the Flash memory but not on a fix address.
Whenever a DS content is updated, i.e. the DS is written, a new instance of the DS is written to the active
block. This means that there can be multiple instances of a variable at a time. However, only the newest
instance is considered and referred to when reading the DS.

Each DS instance consists of two mayor parts: a reference entry in the reference zone and a data entry in
the data zone as shown in Figure 9. Thereby, the reference of a DS contains the ID and a pointer to the
corresponding data.

New reference entries are appended to the reference zone while the corresponding data is prepended to
the data zone. As a result the reference zone is growing towards larger word indices while the data zone
is growing towards smaller word indices.

Neither the reference entry nor the data of a DS instance is split across EEL blocks. This has two
consequences:

 The size of a DS instance may not exceed the size of one virtual block (block minus header and
separator). As a consequence, the virtual block size needs to be configured in considering the DS
sizes (see Section 5.4.1, “EEL Pool Configuration”).

 A block has to be considered as full, whenever a DS to be written does not fit into the active block. In
this case, the new DS instance has to be created within the next prepared block, making it new active
block. Figure 10 and Figure 11 illustrate a DS write in case fitting into the current active block and not
fit fitting in the active block respectively.

Figure 9: Data-set instance: REF entry points to user data

REF entry

data

block header

data zone

REF zone

blank

growing

growing

0x0000

n-1

relative word
index inside the

virtual block

n: virtual-block size in words

EEPROM Emulation Library - Type T01, European Release Architecture

R01US0116ED0201 23
User Manual

2.3.3.2 Data Set Structure

The data sets are stored according to the scheme shown in Figure 12. As already described in the
previous sections, one data set instance is assembled from a reference entry and the corresponding user
data.

Every reference entry is built up of four words (SOR, DRP, EOR1 and EOR2), each of which has a
dedicated meaning as described in the following:

SOR (start of reference):

This flag is written first in a DS write sequence with the pattern 0x55555555 and therefore indicates that
the write process has started.

DRP (data reference pointer):

The data reference pointer is written right after the SOR and contains two 16 bit values:

 16-bit lower half word: ID,

 16-bit upper half word: widx, a pointer to the data.

Figure 10: New DS fits into the active block

block header

data zone

REF zone

blank

blank

active prepared active prepared

 DS Write

block header block header

data zone

REF zone

new DS instance

blank

block header

Figure 11: New DS does not fit into the active block

block header

data zone

REF zone

blank

blank

active prepared active (full) active

 DS Write

block header block header

data zone

REF zone

blank

blank

new DS instance

block header

EEPROM Emulation Library - Type T01, European Release Architecture

R01US0116ED0201 24
User Manual

The DRP refers to the word index within the data flash and hence can address up to 256kB Data Flash. It
points to the first element of the data array in the data zone. The actual data is written after the DRP has
been initialized.

EOR0, EOR1 (end of reference):

The end of reference (first EOR0, then EOR1) is filled with the pattern 0x55555555 after the user data
has been written to the data zone. It indicates the successful completion of a write sequence.

The user data is stored sequentially from larger to smaller indices. As Flash accesses can only be
performed on word granularity, the individual data sizes are expanded to a number of bytes dividable by
4. Unused bytes are set to 0xFF. The data of an DS instance is not protected by additional checksums or
ECC. If the application requires additional data protection it is the user's duty to include the checksums in
the raw data.

Please note that the data set instances are specifically designed to ensure that interrupted data set
updates (writes) can be identified. This makes the library resistant against reset scenarios. The library
detects incomplete write sequences at start-up and will in this case stick to the pervious value of the data
set.

Figure 12: Reference entry and data structure details

byte idx

word-idx 0 1 2 3

0

REF entry ID1

REF entry ID4

REF

zone

REF entry ID2

... data(ID2)[25] 0xFF 0xFF data ID2 (26 bytes)

data sets in this example:

ID1 7 bytes

ID2 26 bytes

data data(ID2)[4] ... ID3 12 bytes

zone data(ID2)[0] data(ID2)[1] data(ID2)[2] data(ID2)[3] ID4 8 bytes

data ID4 (8 bytes)

write sequence in this example

data ID1 (7 bytes) ID1 → ID4 → ID2

ID3 is not written (no instance)

n-1

Block header

Block header

SOR

EOR0

EOR1

DRP

SOR

EOR0

blank / fill zone

EOR1

DRP

SOR

EOR0

EOR1

DRP

EEPROM Emulation Library - Type T01, European Release Architecture

R01US0116ED0201 25
User Manual

2.3.3.3 Invalid Data Sets

Besides the regular case that a DS has been written with arbitrary data, it may also be in an invalid, i.e.
not contain any data. There are different ways this state can be reflected in the active blocks depending
on the cause of invalidation.

In any case, the library will return an error (EEL_ERR_NO_INSTANCE) when trying to read an invalid data

set.

Missing data set instance

In case that there is no instance of a particular data set available in the complete active zone of the EEL
pool, the data set is invalid. This can happen for instance when a data set has not been written so far.

Invalidated data set by reference entry

The EEL provides a feature to actively invalidate already written data sets (see also Section 4.5.6,
“R_EEL_CMD_INVALIDATE — DS invalidation”). This invalidation is realized by a special kind of
reference entry. The widx of DRP is set to zero and no data is written in the data zone.

Please note that such an invalid instance will not be copied during maintenance processes running in the
background of the EEL. This means that an invalidated data set will be eventually transferred to a missing
data set instance as described above.

EEPROM Emulation Library - Type T01, European Release Functional Specification

R01US0116ED0201 26
User Manual

Chapter 3 Functional Specification

This chapter introduces the operation of the EEL. Thereby, the focus is put on the concepts and flows
required for a proper usage of the library. The exact specification of the API can be found in Chapter 4.

3.1 Functions and Commands

For a better understanding of the flows and mechanisms required for an EEL usage, the basic functions
of the EEL are introduced in the following. The API of the EEL is thereby on the one hand based on
functions used to manage the operation of the library itself. On the other hand it offers so-called
commands to access and control the content of the EEL pool and the data sets.

3.1.1 Functions

The following functions are provided to control the EEL:

Initialization

 R_EEL_Init:
This function is used to initialize the internal data structures of the EEL and to prepare it for the actual
start-up.

Start-up/Shutdown

 R_EEL_Startup:
R_EEL_Startup resets and starts the EEL state machine. It also triggers the EEL pool analysis, which
is required in order to access the EEL data sets.

 R_EEL_ShutDown:
This function initiates a controlled deactivation of the EEL state machine.

Suspend/Resume

 R_EEL_SuspendRequest:
This function requests suspension of all active EEL operations and processes. Thereby, the library is
put into a passive state.

 R_EEL_ResumeRequest:
This function requests resuming the EEL operations after suspend.

Operation

 R_EEL_Execute:
By means of the R_EEL_Execute function, the user can issue commands to access and manage the
EEL data sets. It is one of the main functions for utilizing the EEL. However, please note that issued
commands are not completed directly but rather require to be processed with calls of
R_EEL_Handler.

 R_EEL_Handler:
R_EEL_Handler needs to be called regularly to drive pending commands and to observe their
progress. Please note that R_EEL_Handler is also used to drive some operations triggered by a
function (e.g. for start-up, shutdown, suspend and resume).

Administrative

 R_EEL_GetDriverStatus:
This function opens a way to check the internal status of the EEL driver. On the one hand this
enables to monitor the progress of pending operations. On the other hand R_EEL_GetDriverStatus
can be used to analyze causes of command errors.

EEPROM Emulation Library - Type T01, European Release Functional Specification

R01US0116ED0201 27
User Manual

 R_EEL_GetSpace:
This function returns the current free space in the EEL pool (prepared space for new data).

 R_EEL_GetVersionString:
This function returns the pointer to the library version string.

 R_EEL_GetEraseCounter:
This function reads the current erase counter of the ring buffer/EEL pool.

3.1.2 Commands

Commands are used to manage the EEL pool and to access the EEL dataset. The number and size if the
EEL data sets can be defined by the designer at compile time.

Commands are initiated via R_EEL_Execute and processed stepwise by consecutive calls of
R_EEL_Handler. This way, the execution of each EEL command is separated into several steps
processed by an EEL-internal state machine. The following commands are offered by the EEL:

Pool-oriented Commands

 Format:
Format the EEL pool for initial usage with the EEL. All Flash blocks of the EEL pool are erased and
prepared for later writing of data sets.

 Clean-up:
This command can be used to defragment the Flash ring buffer (EEL pool). All DSs are refreshed
and obsolete DS instances are deleted. Following that, the pool will afterwards contain only one DS
instance for each ID and the pool will contain as much prepared Flash space as possible to receive
new data.

Data set-oriented Commands

 DS read:
Read a DS identified by a given ID and copy the read data to a read buffer provided by the user
application. The Read operation has the highest priority of all standard operations and can interrupt
all write/invalidate operations.

 DS write:
Write a DS identified by a given ID. The data is provided by a user application buffer.

 Incremental DS write:
The operation is based on the normal write but checks in advance whether the given data has
changed since last DS writing. Only then, a normal write operation is executed.

 Immediate DS write:
The immediate write has the same functionality as write. However, the command is executed with a
higher priority. Thereby, the Immediate write can interrupt any normal priority write/invalidate
operations.

 Incremental immediate DS write:
This command has the same functionality as an incremental DS write, but it is executed with a higher
priority. It can interrupt any normal priority write/invalidate operation.

 DS invalidation:
This command sets a DS identified by a given ID to invalid. A read operation on an invalidated DS will
return a read error instead of reading data.

 Immediate DS invalidation:
This command has the same functionality as DS invalidation, but the execution priority is higher.

3.1.3 Request-Response oriented Dialog

The EEL utilizes a request-response architecture to initiate the commands. This means a request variable
has to be prepared by the application as a kind of "request form sheet" (see Figure 13) and pass it by

EEPROM Emulation Library - Type T01, European Release Functional Specification

R01US0116ED0201 28
User Manual

reference to the EEL driver using its R_EEL_Execute function. The EEL interprets the content of the
request variable, checks its plausibility and initiates the execution. The feedback is reflected immediately
to the requester via the status member of the same request variable. The completion of an accepted
request/command is done by calling R_EEL_Handler periodically as long the request remains "busy".

The biggest advantage of the request-response architecture is the constant and narrow parameter
interface. It allows steady parameter passing and is therefore independent from the used compiler and its
memory models. Furthermore it allows for easy EEL integration into operation systems as well as building
EEL operations stacks and buffers.

The details on the request variable structure and its members are given later in Section 4.3.2.6,
“r_eel_request_t”. Please also note that not all structure members are required for all commands. The
individual command descriptions in Section 4.5, “Commands” provide the corresponding detailed
information.

Note:
The request variable can be accessed (read or written) by the library at any time when R_EEL_Handler is
executed. This also means that it is imperative to ensure the existence of the data structure as long as the
command is being processed.

3.1.4 Handler-oriented Command Execution

In order to satisfy the operation in concurrent or distributed systems, the command execution is divided
into two steps:

1. Initiation of the command execution using R_EEL_Execute.

2. Processing of the requested command state by state using R_EEL_Handler.

This approach comes with one important advantage: Command processing can be done centrally at one
place in the target system (normally the idle-loop or the scheduler loop), while the status of the requests
can be polled locally within the requesting function.

Please note that R_EEL_Execute only initiates the command execution and returns immediately with the
request-status "busy" after execution of the first internal state (or an error in case the request cannot be
accepted). The further command execution is performed in R_EEL_Handler, where the internal
sequences of the command are executed state by state. Together with the background-operation feature
of the FDL, this enables to design complex applications utilizing the computational resources of the
processor efficiently, i.e. to perform other tasks on the CPU while flash operations are running in parallel.

Note:
Each state has a strictly limited execution time. Based on that, the library function controlling the state
machine—the R_EEL_Handler—will immediately return to the user application.

Figure 13: Schematic usage of the request variable

address_pu08

identifier_u16

length_u16

offset_u16

command_enu

application

Write access

Read access

status_enu

EEL

request variable

EEPROM Emulation Library - Type T01, European Release Functional Specification

R01US0116ED0201 29
User Manual

3.2 Flash Interrupt Support

The EEL is prepared to support the Flash interrupt. This means, that the EEL triggers the Flash interrupt
when the handler function shall be called in order to process a next EEL process state. By that, the
handler function can be executed in the Flash interrupt context or in an interrupt triggered task which
means as few as possible handler function calls (no polling) by achieving the best EEL performance.

Basically, each Flash operation end triggers the Flash interrupt. However, quite some EEL state machine
internal states (User operations as well as background processes) do not issue a Flash operation. In
order to support the Flash interrupt in a sufficient way, these states must issue the Flash interrupt by SW.
This can be achieved by the EEL configuration (See Section 4.1,”Pre-compile Configuration”).

Note:
Even when the EEL is idle, the handler function shall be called regularly in order to execute idle time
supervision tasks like bit error check (See Section 3.4, "Background Operations"). As for that the handler
shall not be called with high frequency (e.g. 10ms~100ms task), the user application need to trigger the
interrupt by software.

3.3 EEL User Command Priority

The EEL provides the following user operations which are invoked by appropriate commands: Format,
Clean-up, DS read, DS write, Incremental DS write, Immediate DS write, Incremental immediate DS write,
DS invalidation and Immediate DS invalidation. These commands have partially been mentioned before
and are described in the API description.

The Read and Write operations are considered to be prioritized according to the following scheme:

 Priority 1:
DS Read
can interrupt
DS Write, Incremental DS Write, Invalidation, Immediate DS Write, Immediate Incremental DS Write
and Immediate DS Invalidation.

 Priority 2:
Immediate DS Write, Immediate Incremental DS Write and Immediate DS Invalidation
can interrupt
DS Write, Incremental DS Write and Invalidation.

 Priority 3:
DS Write, Incremental DS Write and DS Invalidation cannot interrupt any other user operation.

The following rules apply to these operations:

 All of the above operations can interrupt ongoing background operations (see Section 3.4,
“Background Operations”).

 A command invoking an operation when an operation of the same priority is ongoing will be rejected.

 When an operation of a higher priority is invoked, a possibly ongoing operation of a lower priority will
be suspended.

 When invoking an operation of a lower priority, a possibly ongoing operation of a higher priority is will
be finished first then the lower priority operation is executed.

Furthermore, special conditions apply for the other commands:

 Format command:
The format command requires that the system executes no user or background operations. If this is
not the case, the command will be rejected. When started, all other operations are blocked.

 Clean-up command:
The Clean-up command requires that the system executes no user or background operations. If this
is not the case, the command will be rejected. After being started other operations can be executed,
the Clean-up operation will be suspended and later on resumed automatically.

EEPROM Emulation Library - Type T01, European Release Functional Specification

R01US0116ED0201 30
User Manual

3.4 Background Operations

The EEL operations are based on independent processes for the different user commands, such as
Read, Write, Immediate Write. Furthermore, background processes are to be executed in order to
manage the EEL pool and to manage the start-up flow.

The following background operations and their processes are available:

 Refresh:
This process manages copying any potential DS instances from the EEL pool active tail to the head
before invalidating a virtual block. The copy process itself is done by the Write (Refresh) process.
After invalidation, the block can be prepared again.

 Write (Refresh):
This process is triggered by the refresh process to copy one DS instance from the active zone tail to
the active zone head.

 Prepare:
The prepare process erases invalid Flash blocks and marks them prepared. Thereby new space for
the active pool is provided.

 Supervision:
This process manages the complete start-up processing (See Section 3.7, “Start-up Processing”).
When the library is started up and in normal operation, it controls the following background
processes:

 The supervision process triggers the refresh process and sequentially the prepare process to
provide enough prepared pool space to store new DS instances. In order to decide when it is
necessary to start a refresh, the so-called refresh threshold can be set at compile time (see
Section 4.2.2, “EEL Runtime Configuration Parameters”). The refresh threshold specifies the
number of blocks which the library background operation should always try to keep prepared.

 When no further pool handling is required, the process checks the EEL pool for bit errors (c.f.
Section 1.1.4). To do so, the complete pool address range (only active and prepared virtual
blocks) is checked word by word using the FDL bit error check function. On detection of a bit
error, further refresh and prepare operations are triggered and by that, sequentially all blocks are
refreshed. This is continued until the bit error is gone.
In this case any ECC error and exception is handled completely by the EEL. There is no need for
the user to intervene or react.

On invocation of a user command, the background processes are interrupted at the next possible state in
order to execute the user processes. After user process termination, the background processes are
continued.

3.5 Data-Set Search and Read

The library uses internal tables to store the DS size information and latest DS location.

While the DS size is stored together with the ID statically in ROM (the so-called ID-L table), the pointers to
the latest DS instances are evaluated on library start-up and stored in RAM (the so-called IDX table) as
depicted in Figure 14.

EEPROM Emulation Library - Type T01, European Release Functional Specification

R01US0116ED0201 31
User Manual

The ID-L table (ROM table) contains one entry for each ID available in the system, together with its DS
length information. This table is configured at compile time.

IDX table (RAM table) contains for each ID available in the system the pointer to the latest data instance.
On EEL start-up the IDX table is filled and continuously updated on each DS Write access.

Searching DS instances via these ID tables is fast. However, the RAM table needs to be built up during
start-up before this mechanism can be used. Therefore, the EEL supports two different mechanisms for
data read:

 ROM table search
Whenever a DS with a dedicated ID shall be read, the requested ID is searched in the ROM table.
The index of the ROM table entry with the fitting ID is then used to get the data pointer (to the Data
Flash) from the RAM table.
This ROM table search is fast, but the RAM table must be initialized on start-up which requires some
time.
The ROM table is used for the read process as well as for the refresh process

 REF zone search
In order to be able to read data without initialized RAM table, the library provides another read (data
search) mechanism. The library can parse the REF zone of the blocks and read the entries
sequentially until an entry with the requested ID is found. It needs to be considered, that the REF
zone parsing requires some time and creates 100% CPU load.
The REF zone search is used in the library start-up phase, when the ID-L table is not yet initializes
and also in other special library operation modes (see Section 3.8, “Limited Operation Mode”).

Figure 14: Library ID tables

ID 0 Length

ID 1 Length

ID 2 Length

ID 3 Length

ID 4 Length

ID n-2 Length

ID n-1 Length

ID n Length

Data Flash pointer

Data Flash pointer

Data Flash pointer

Data Flash pointer

Data Flash pointer

Data Flash pointer

Data Flash pointer

Data Flash pointer

active

(full)

active

(full)

prepared

Invalid
(consumed/

prepapration)

active

prepared

Data Flash

RAM

IDX table

ROM

ID-L table

16bit 16bit 16bit

EEL

pool

active

(full)

active

(full)

... ...

prepared

EEPROM Emulation Library - Type T01, European Release Functional Specification

R01US0116ED0201 32
User Manual

3.6 Driver Status

The library internal status can be monitored by the user application by means of the function

R_EEL_GetDriverStatus. The library status is separated into three orthogonal classes: the operational

status, the access status and the background operation status. For better usability, the three status
components are collected in a data structure (see Section 4.3.2.9, “r_eel_driver_status_t”). Each status
class is individually detailed in the following.

Operational Status

The operational status describes the general status of the EEL state machine. Table 1 shows the different
operational statuses the EEL can assume during execution.

Table 1: Operational statuses of the EEL

Status Description

R_EEL_OPERATION_PASSIVE

The state machine can handle neither internal nor user initiated
processes.

This state is set

 after EEL initialization and before EEL start-up

 after EEL shutdown is finished

 after fatal EEL operations errors

R_EEL_OPERATION_STARTUP

This status is set as long as the start-up processing is ongoing.
This indicates that the EEL is not completely up and running. As
long as this operational status is returned, EEL functionality is
inhibited or limited. Please see emulation access status below.

R_EEL_ OPERATION _BUSY

This status is set, if either a background process, e.g. refresh or
prepare is active or a user process read or write is being
processed.

As Flash operations may be processed, the device should not be
switched off in this status in order to avoid repair operations to be
executed on EEL star-up.

R_EEL_ OPERATION _IDLE
No process active except supervision doing margin checks. No
refresh or prepare necessary and no user process read, write,
format active.

R_EEL_OPERATION_SUSPENDED

When the suspend request is issued to the EEL by the

R_EEL_SuspendRequest function, the state machine will try to

enter the suspend mode. As this cannot be done immediately,
the application need to call the handler function frequently until
the suspend status is set.

The status R_EEL_OPERATION_IDLE also signals to the user application that no EEL operation and

with that also no Flash modification is ongoing. This is an indication that a power save mode can be
entered.

Note:
The user application needs to ensure that no power save mode is entered that may result in losing any
Flash programming hardware contents (e.g. deep stop).

Access Status

During start-up, the full functionality of the EEPROM emulation is not given. It is increased step by step
depending on the proceeding of the start-up flow. The available functionality is defined by the access
status as presented in Table 2.

It is important, that not only start-up processing affects the access level, but also EEL failures may result
in loss of functionality. Depending on the failure, either Write is prohibited or no access is possible.

EEPROM Emulation Library - Type T01, European Release Functional Specification

R01US0116ED0201 33
User Manual

Table 2: Access statuses of the EEL

Status Description

R_EEL_ACCESS_LOCKED

During Start-up:
The state machine is in an early start-up phase and so, does not
accept any user operation.

During normal operation:
Due to a failure no more data access is possible.

R_EEL_ACCESS_READ_WRITE

Set during Start-up only.

The state machine proceeded further in the start-up phase and so,
accepts DS read and write operations.

 The read operations require REF table search as the RAM table
is not yet available. So, the read requires longer execution time
at 100% CPU load

 The DS write capability is limited to the available passive blocks
(prepared and invalid) as due to the missing RAM table no
refresh operation is possible

R_EEL_ACCESS_READ_ONLY

During normal operation only:

A user DS write operation resulted in a Flash write error, either
caused by hardware or software problem. In order to preserve the
remaining Flash contents the library forbids any further Flash
modification operations. Read operations are still possible, however
a certain risk is given, that the read data may be wrong if the write
operation caused damage to the read data.

R_EEL_ACCESS_UNLOCK
The state machine is up and running. All user and background
operations should be possible, if no error occurred. The RAM table is
built up, so read operations are executed fast from now on.

Background Operation Status

Beside user operations, also the background operations may return errors. As only process errors are

considered (no errors on R_EEL_Execute resulting in not starting an operation), the error range is limited

to the ones presented in below.

Table 3: Background operation statuses of the EEL

Status Class Background and handling

R_EEL_OK normal

meaning No background operation problem.

reason -

remedy -

R_EEL_ERR_FIX_DONE warning

meaning
During start-up processing a fix in the EEL pool
blocks had to be done.

reason

Block handling operations (activation,
invalidation, preparation) were interrupted, e.g.
by power fail. When the EEL start-up processing
detects this, the block will be invalidated and the
warning is returned.

remedy

No remedy necessary. The status is a warning
only.

Note: After reading the warning once by the

function R_EEL_GetDriverStatus, the

warning is reset.

EEPROM Emulation Library - Type T01, European Release Functional Specification

R01US0116ED0201 34
User Manual

R_EEL_ERR_FLASH_ERROR error

meaning
Some Flash contents could not be erased or
written.

reason
A background Flash erase or write operation
ended with an error. The Flash range has no
defined status, allowing using it later on.

remedy
Stop the emulation and investigate in the root
cause.

R_EEL_ERR_POOL_
INCONSISTENT

error

meaning
The EEL pool structure is not consistent and the
EEL cannot work with it.

reason
Start-up processing does several consistency
checks on the EEL pool. If one of the checks
fails, the EEL sets this error.

remedy
Stop the emulation and investigate in the root
cause.

R_EEL_ERR_INTERNAL error

meaning
A library internal problem occurred, that cannot
be related to a concrete root cause. The library
will be locked.

reason
Some library internal checks that should never
fail, failed. These can be checks on hardware or
software values.

remedy

Stop emulation and investigate the root cause.

In some cases, e.g. in case of external influence
on the EEL or FDL variables or the Flash
hardware (e.g. caused by wild running
application pointers or PC), re-initialization of the
FDL and EEL may help.

A reasonable proceeding might be:

During development:
Stop the emulation and investigate in the root
cause

In the field:
2~3 times try to re-initialize the library (or reset
the device). If the problem still exists, stop the
emulation and investigate in the root cause.

3.7 Start-up Processing

The start-up processing is controlled by the internal state machine of the EEL. After library initialization
and start-up invocation by means of R_EEL_Startup, several start-up process steps are executed until the
system is in normal operation. Along with the start-up progress the access rights to the data and the
library features are unlocked and the full performance of the EEL is reached. The actual steps during
start-up are illustrated in Figure 15.

EEPROM Emulation Library - Type T01, European Release Functional Specification

R01US0116ED0201 35
User Manual

The start-up progress can be checked by the user application with the function

R_EEL_GetDriverStatus which returns the access status and the operational status (see Section 3.6,

“Driver Status”). Please check Table 4 for the status values depending on the progress.

Figure 15: Start-up processing steps

is
0

0
is

0
1

is
0

n

is
1

0
is

1
1

is
1

m

is
2

0
is

2
1

is
2
m

is
3

0
is

3
1

G
e

t
B

lo
c

k
 S

ta
tu

s

C
h

e
c

k
 R

in
g

 b
u

ff
e

r

c
o

n
s

is
te

n
c

y

In
it

 r
in

g
 b

u
ff

e
r

v
a

ri
a

b
le

s
 &

 c
h

e
c

k

p
o

o
l
fu

ll
R

E
S

E
T

0
1

2
3

t[
m

s
]

G
e

t
p

o
in

te
rs

is
x
0

is
x
1

is
x
y

is
x
2

is
4
m

P
e

rm
a

n
e

n
t

s
u

p
e

rv
is

io
n

(s
ta

rt
in

g
 w

it
h

e
n

s
u

ri
n

g
 D

S
 s

ta
b

il
it

y
)

is
3
m

is
4

0
is

4
1

B
u

il
d

 R
A

M
 t

a
b

le

L
im

it
e

d
 W

ri
te

 a
c
c
e

s
s
 &

 L
im

it
e

d

R
e

a
d

 a
c
c
e

s
s
 e

n
a

b
le

d

F
u

lly
 o

p
e

ra
ti
o

n
a

l

(a
ft
e

r
D

S
 s

ta
b

ili
ty

 e
n

s
u

re
d
)

R
_

E
E

L
_
A

C
C

E
S

S
_
L

O
C

K
E

D

A
c

c
e

s
s

 l
e

v
e

l

R
_
E

E
L

_
A

C
C

E
S

S
_

R
E

A
D

W
R

IT
E

R
_

E
E

L
_

A
C

C
E

S
S

_
U

N
L

O
C

K
E

D

is
<

x
y
>

:
 i
n

te
rn

a
l
lib

ra
ry

 s
ta

te
 m

a
c
h

in
e

 s
ta

te
s

R
_
E

E
L

_
O

P
E

R
A

T
IO

N
_

S
T

A
R

T
U

P

O
p

e
ra

ti
o

n
a

l
le

v
e

l

R
_

E
E

L
_
O

P
E

R
A

IO
N

_
B

U
S

Y

R
_

E
E

L
_
O

P
E

R
A

IO
N

_
ID

L
E

EEPROM Emulation Library - Type T01, European Release Functional Specification

R01US0116ED0201 36
User Manual

Table 4: Start-up processing steps

Start-up progress Access status Operational status Comment

EEL initialized R_EEL_ACCESS_
LOCKED

R_EEL_OPERATION_
PASSIVE

All library operations are
prevented.

EEL start-up started R_EEL_ACCESS_
LOCKED

R_EEL_OPERATION_
STARTUP

All library operations are
prevented.

EEL start-up ongoing
- basic start-up
finished

R_EEL_ACCESS_
READ_
WRITE

R_EEL_OPERATION_
STARTUP

DS read is possible with limited
performance (REF zone search).

DS Write is possible until the
prepared blocks are full.

EEL start-up ongoing
- RAM table filled

R_EEL_ACCESS_
UNLOCKED

R_EEL_OPERATION_
STARTUP

DS Read is possible with full
performance (ROM table search).

DS Write is possible and
supervision processing is active to
manage the ring buffer.

EEL start-up end R_EEL_ACCESS_
UNLOCKED

R_EEL_OPERATION_
BUSY or _IDLE
(depending on refresh/
prepare operations are
to be done)

DS Read and DS Write as before.

Stability of the latest DS instances
is ensured.

In case of a fatal error during any start-up step, the library switches to R_EEL_ACCESS_LOCKED and
R_EEL_OPERATION_PASSIVE and the function R_EEL_GetDriverStatus will additionally return an
appropriate error.

Note:
The last start-up processing step (ensuring the stability of the latest DS instances) checks if the valid DS
instances have been completely written. Therefore, it checks if the last step of a DS write was executed
(EOR1 is written). If not, redundant information (valid EOR0) ensures that the DS data is valid. On
detection of such cases, the DS is refreshed (copied to active zone head).

3.8 Limited Operation Mode

The following description assumes a usage scenario with a device containing a boot loader and an
application.

The boot loader as well as the application needs to access EEPROM emulation data with read as well as
write. While the application requires frequent data write, the boot loader will only store a very limited
amount of data, e.g. to store the application update process status.

The ROM ID-L table containing all IDs available in the emulation belongs to the application. On
application update it needs to be removed together with the application.

So, the boot loader cannot trust on the availability of the application table, but requires a separate one.
However, as the ID-L table may change with the application update, the boot loader can only have a
limited table with always available IDs (with stable DS length), owned by the boot loader.

In order to support the scenario, the library additionally provides the so-called “limited mode”.

The major issue in this scenario is that the EEL requires an ID-L table containing all available IDs for the
full library functionality. This affects the refresh process which will have a limited performance and require
more CPU load without complete ID-L table. Furthermore, the library will ensure the DS stability (data
retention) during the start-up for the case that a power fail interrupted writing the EOR markers. It will do
this by refreshing the data when EOR1 is not available. This mechanism will not be executed in limited
mode. Although, the possibility of data loss caused by power fail due to the missing feature is very low,
the EEL should be re-started in normal mode soon.

The mode configuration is done by the initialization function R_EEL_Init. In order to change the mode,

EEL_Init need to be called again.

EEPROM Emulation Library - Type T01, European Release Functional Specification

R01US0116ED0201 37
User Manual

 R_EEL_OPERATION_MODE_NORMAL:
Full (normal) operation of the library, requires the complete ID-L table in ROM.

 R_EEL_OPERATION_MODE_LIMITED:
Operation with limited ID-L-table in ROM, containing only the IDs required by the boot loader. The DS
read and write work on the ID-L table.

Figure 16 presents a flow chart illustrating the application update idea. Although the boot loader may also
always work in limited mode, the sample explains how the EEL can be switched between normal
operation mode (application ID-L table available) and limited mode (only boot loader ID-L table).

3.9 Suspend / Resume

The library provides the functionality to suspend and resume its operation in order to provide the
possibility to synchronize the EEL Flash operations with possible user application Flash operations, e.g.
write/erase by using the FDL library directly or read by direct Data Flash read access.

Please note that a proper synchronization between EEL, FDL and Flash access via memory-mapped I/O
is the user’s duty (c.f. Figure 1 on page 14). This means that the user has to ensure that only one way of
flash access is used at the same time. In general there are two ways to treat this synchronization from an
EEL point of view as described in the following.

Figure 16: Switching between normal and limited operation mode

BL start

Start EEL with operation mode

EEL_OPERATION_MODE_NORMAL

Execute BL including EEPROM

emulation

Request to update the

application

Normal operation mode

Re-start EEL with operation mode

EEL_OPERATION_MODE_LIMITED

Update Application including ID-L table

in ROM

Re-start EEL with operation mode

EEL_OPERATION_MODE_NORMAL

Execute BL including EEPROM

emulation

Limited operation mode

Normal operation mode

EEPROM Emulation Library - Type T01, European Release Functional Specification

R01US0116ED0201 38
User Manual

EEL Suspend / Resume

This EEL suspend/resume mechanism allows to suspend the EEL operation on top level. However, this
functionality will not suspend underlying low level operations but just the ensure that no further processes
are started (such as prepare, refresh and user commands). Ongoing Flash (FDL) operations will be
finished before the suspend status is entered. This implies a longer suspend latency time. Please see
sections 4.4.4, “R_EEL_SuspendRequest” and 4.4.5, “R_EEL_ResumeRequest” for a detailed description

of the corresponding API functions R_EEL_SuspendRequest and R_EEL_ResumeRequest. Please

note that both of these functions only trigger suspension/resume of the EEL. Consecutive calls of

R_EEL_Handler are required in a sufficient amount in order to drive the EEL state machine into and

back from the suspended state as exemplified in the following sequence:

Call R_EEL_SuspendRequest cyclic call of R_EEL_Handler until the library is suspended

perform FDL commands and ensure that they are completed by a sufficient amount of R_FDL_Handler

calls call R_EEL_ResumeRequest cyclic call of R_EEL_Handler until the library is resumed

continue EEL operation.

While this suspend/resume mechanism operates on a high level of abstraction, it comes with the
drawback that a quick switch between the modes is not guaranteed as pending Flash operations are
finished first.

Figure 17: Suspend-resume flow

Start

Call R_EEL_SuspendRequest

Call R_EEL_Handler until the EEL

driver status suspended

Function error return

Function error return

function and operation errors,

handled by user application

Check the driver status with

R_EEL_GetDriverStatus

Do direct Data flash accesses:

- via FDL functions:

 R_FDL_Erase, R_FDL_Write, ...

- direct Data Flash read by the CPU

FDL operations processing

errors

Call R_EEL_ResumeRequest

Continue with EEL operations

Function error return

Ongoing EEL operations

EEPROM Emulation Library - Type T01, European Release Functional Specification

R01US0116ED0201 39
User Manual

FDL Standby / Wakeup

If faster mechanisms are required, the low layer FDL provides a standby/wakeup mechanism to suspend
ongoing Flash erase and write accesses (see FDL documentation). The user application will have to take
care for the synchronization between FDL and EEL by a proper sequence, e.g.:

Cyclic R_EEL_Handler calls cyclic call of R_FDL_StandBy until the FDL is in standby read Data

Flash contents via memory-mapped I/O call of R_FDL_WakeUp continue EEL operation.

This mechanism allows reading Data Flash with very low latency. Writing Data Flash by the user
application requires EEL suspending—and with that a higher latency.

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 40
User Manual

Chapter 4 Application Programming Interface (API)

This chapter provides the formal description of the application programming interface of the EEPROM
Emulation Library Type T01 for RH850 devices. It is strongly advised to read and understand the previous
chapters presenting the concepts and structures of the library before continuing with the API details.

4.1 Pre-compile Configuration

The pre-compile configuration of the EEL may be located in the eel_cfg.h. The user has to configure all
parameters and attributes by adapting the related constant definition in that header file.

The configuration contains the following element:

 R_EEL_FLINT_SET_SW:
Each Flash operation end triggers the Flash interrupt. However, quite some EEL state machine
internal states do not issue a Flash operation. If the handler function shall be executed in the Flash
interrupt context, these states must issue the Flash interrupt by SW.

The R_EEL_FLINT_SET_SW macro can be used to request the Flash interrupt by SW. If set, it is

called within the handler function at the end of each process state, when no Flash operation was
started.
Please note that in case it is used this define is device family specific.

Sample implementation in eel_cfg.h for RH850 F1L devices:

#define R_EEL_FLINT_SET_SW ((*(uint16_t*)0xffff60feuL) = \

 (*(uint16_t*)0xffff60feuL) | 0x1000)

4.2 Runtime Configuration

The overall EEPROM emulation runtime configuration is defined by an EEL-specific part (EEL runtime
configuration) and by the FDL runtime configuration. Background of the splitting is that the FDL requires
either common, by EEL and FDL used information (e.g. block size) or EEL related information (e.g. about
the EEL pool size). So, this information is part of the FDL runtime configuration.

Both configurations of FDL and EEL are stored in descriptor structures which are declared in
r_fdl_types.h / r_eel_types.h, but defined in the user application and passed to the libraries as reference

by means of the functions R_FDL_Init and R_EEL_Init.

The files fdl_descriptor.c and eel_descriptor.c show an example of the descriptor structure definition and
filling, while fdl_descriptor.h and eel_descriptor.h show an example of the definitions required to fill in the
structure. For more details on the file structure, please refer to Section 5.1.

In fact, the files fdl_descriptor.h and eel_descriptor.h should be modified according to the user
applications needs and might be added to the user application project together with fdl_descriptor.c and
eel_descriptor.c. The descriptor files (.c and .h) are part of the library installation package.

4.2.1 FDL Runtime Configuration Parameters

The following settings shall be configured by the user inside the FDL descriptor. In the sample application,
they are set as defines in r_fdl_descriptor.h, but could (even if not recommended) also be configured at
run-time by other means:

 CPU_FREQUENCY_MHZ:
This defines the internal CPU frequency in MHz unit, rounded up to the nearest integer, e.g. for 24.3

MHz set CPU_FREQUENCY_MHZ to 25. Please check the Device Manual for limit values.

Note:
The define requires the CPU frequency, not the crystal frequency. The CPU frequency must be set
correctly. If not, malfunction may occur such as unstable Flash data without data retention,
programming failure or operation blocking.

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 41
User Manual

 FDL_POOL_SIZE:
It defines the number of blocks to be accessed by the FDL for user access and EEL access. Usually it
is set to the total number of blocks physically available on the device. For example, if the device is
equipped with 32 KB of Data Flash and the block size is 64 bytes, then FDL_POOL_SIZE can be any
value up to 512.

Value range: Min: EEL_POOL_SIZE

 Max: Physical number of Data Flash blocks

 EEL_POOL_START:
It defines the starting block of the EEL-Pool. If FDL is used without EEL on top, the value should be
set to 0.
Value range: Min: 0

 Max: FDL_POOL_SIZE - EEL_POOL_SIZE

 EEL_POOL_SIZE:
It defines the number of blocks used for the EEL-Pool. If FDL is used without EEL on top, the value
should be set to 0.

Value range: Min: 4 * EEL_VIRTUALBLOCKSIZE (see below for virtual block size)

 Max: FDL_POOL_SIZE - EEL_POOL_START

For setting these parameters it is sufficient to adapt the defines specified in fdl_descriptor.h. The defined
values are utilized in fdl_descriptor.c in order to initialize the actual FDL descriptor variable. It is not
necessary to modify fdl_descriptor.c. Further details on FDL runtime configuration can be found in the
RH850 FDL T01 user manual.

Please recall that the EEL operates on virtual blocks rather than physical blocks (see Section 2.2.2.1).
However, the aforementioned parameters of the FDL descriptor relate to physical blocks (Data Flash
block size for RH850 is 64 byte). Therefore, when using the EEL it is strongly recommended to relate the

specification of the defines EEL_POOL_START and EEL_POOL_SIZE to an additional define for the

virtual block size. Thereby, a proper alignment of the EEL virtual blocks in the FDL pool can be ensured.
For proper operation the EEL requires at least 4 virtual blocks.

Example 1:
FDL descriptor setup for a device with 32kB Data Flash and a virtual block size of 61 physical blocks. The
EEL uses the virtual blocks from 2 to 5 for operation, while virtual blocks 0, 1, 6 and 7 can be addressed
directly by the FDL.

#define CPU_FREQUENCY_MHZ (80)

#define FDL_POOL_SIZE (512)

/* FDL pool will use 32KB, from wich EEL pool occupies area:

START: 2 * 61 * 64 = 7808 till

END: 4 * 61 * 64 + 7808 = 23424 */

#define EEL_VIRTUALBLOCKSIZE (61u)

#define EEL_POOL_START (2u * EEL_VIRTUALBLOCKSIZE)

#define EEL_POOL_SIZE (4u * EEL_VIRTUALBLOCKSIZE)

Example 2:
FDL descriptor setup for a device with 32kB Data Flash and a virtual block size of 32 physical blocks. The
EEL uses the complete Data Flash for EEPROM emulation.

#define CPU_FREQUENCY_MHZ (80)

#define FDL_POOL_SIZE (512)

/* FDL pool will use 32KB, from wich EEL pool occupies area:

START: 0 * 32 * 64 = 0 till

END: 16 * 32 * 64 - 1 = 32767 */

#define EEL_VIRTUALBLOCKSIZE (32u)

#define EEL_POOL_START (0u * EEL_VIRTUALBLOCKSIZE)

#define EEL_POOL_SIZE (16u * EEL_VIRTUALBLOCKSIZE)

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 42
User Manual

4.2.2 EEL Runtime Configuration Parameters

The following settings should be configured by the user inside the EEL descriptor:

 EEL_CONFIG_VBLK_SIZE:
This define describes how many physical Flash blocks are merged together to one virtual block (see
Section 2.2.2.1), which are used by the EEL to manage the ring buffer. The following relation between
physical blocks, virtual blocks and EEL pool size must match:

 The EEL pool size is defined in the FDL in terms of physical blocks; virtual blocks are unknown to
the FDL (see Section 4.2.1).

 The number of virtual blocks is defined by: EEL_POOL_SIZE / EEL_CONFIG_VBLK_SIZE

 EEL_POOL_SIZE must be a multiple of EEL_CONFIG_VBLK_SIZE.

Value Range: Min: 16 (a virtual block needs to be at least 1kB)

 Max: EEL_POOL_SIZE / 4

Recommendation: Selecting a proper virtual block size is a non-trivial task and requires some
evaluation of the behaviour of the actual application. As a rule of thumb, virtual blocks should be at
least of 2kB size for a smooth operation of the library. More hints on how to select a proper virtual-
block size can be found in Section 5.4.1, “EEL Pool Configuration”.

 EEL_CONFIG_VBLK_CNT_REFRESH_THRESHOLD:
The EEL requires prepared blocks (passive pool) to be able to accept new DS Write requests by the
user application. The background supervision process will provide these blocks during runtime. As the
supervision process has a lower priority than the user DS Write operation, it will be displaced by this.
A fast sequence of DS Write operations might lead to using up the prepared space because the
supervision will not get the time to prepare new space in between. So, a threshold is defined which
determines the number of blocks that the supervision process shall provide in order to overcome
situations where DS Write operations use up the free space faster than the supervision process can
provide new one.
Increasing the threshold allows longer sequences of DS Write operations until the prepared space is
used up. Reducing the threshold improves the Flash usage as written data sets stay longer in the ring
buffer and need less refresh copy operations. When the threshold is set too low and the ring buffer
gets full, the library will return a pool full error and block further write operations until the supervision
had enough time to prepare at least one additional Flash block.

The EEL_CONFIG_VBLK_CNT_REFRESH_THRESHOLD parameter is specified in terms of number of

virtual blocks.
Value range: Min: 2 (required for proper EEL operation)

 Max: EEL_POOL_SIZE - 2

Example: On a threshold of 6 the EEL will always try to have 6 prepared virtual blocks as passive
pool in the ring buffer. This means that the user application could write 5 virtual blocks of data in
sequence (one block must remain prepared for pool full situation handling).
Recommendation: ~1/3 of the total available Flash blocks might be a reasonable starting point to
evaluate the balance between long uninterrupted DS Write sequences (big threshold) and reducing

the data copy effort on Refresh (low threshold). The service function R_EEL_GetSpace provides a

tool to trace the available free space in the ring buffer during runtime enabling threshold optimization.

 EEL_CONFIG_ERASE_SUSPEND_THRESHOLD:
When the EEL background operation executes the prepare process, the Data Flash block is erased.
Any user read or write command will suspend the Flash erase. After command completion, the erase
will be resumed again. Based on the Flash implementation, this erase suspend/resume flow is
restricted. The erase operation might not finish, if it is interrupted continuously. The user application
must be realized in a way that the erase operation once gets the time to complete, which means that
the user application must provide a time frame as long as the worst case Flash block erase time in
which the erase operation is not suspended. As long as the erase is not finished, the EEL cannot
continue to provide new free passive pool space for further write operations. In order to signal too
often erase suspends to the user application, a threshold can be configured by means of

EEL_CONFIG_ERASE_SUSPEND_THRESHOLD. A user operation resulting in exceeding the threshold

will return a warning “erase suspend overflow”. This is no hard error resulting in EEL reaction but just
a signal to the user application to provide enough time to the EEL to finish the background operation.

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 43
User Manual

Value range: Min: 1 (on every erase suspend the warning is returned)
 Max: 0xFFFF

 EEL_CONFIG_IDL_TABLE:
This define is used to specify the ID-L table (see also Section 3.5, “Data-Set Search and Read”). The
table needs to be given as an array of the structure r_eel_ds_cfg_t (see Section 4.3.2.1,
“r_eel_ds_cfg_t”). For each DS, an ID needs to be specified as positive integer number which is used
to refer to the DS. Additionally, for each specified ID, the corresponding size of the DS needs to be
given in terms of number of bytes (adjusted library internal to word boundary).

{ { ID1, size 1 }, { ID2, size 2 }, { ID3, size 3 }, }
Value range: ID min: 1
 ID max: 0xFFFE
 Size min: 1
 Size max: Virtual block size - block header size
 - REF entry size - separator size

 = EEL_CONFIG_VBLK_SIZE - 28 - 16 - 4

 = EEL_CONFIG_VBLK_SIZE - 48

For setting these parameters it is sufficient to adapt the defines specified in eel_descriptor.h. The defined
values are utilized in eel_descriptor.c in order to initialize the actual EEL descriptor variable. It is not
necessary to modify eel_descriptor.c.

Example:
Data Flash size is 32kB, separated into virtual blocks of 2kB.
The EEL uses the complete Data Flash for the EEL pool. The refresh threshold is set to ~1/3 of 16 virtual
blocks (i.e. 5). The erase shall be suspendable up to 10 times until the erase suspend warning is issued.

#define EEL_CONFIG_VBLK_SIZE (32)

#define EEL_CONFIG_VBLK_CNT_REFRESH_THRESHOLD (5)

#define EEL_CONFIG_ERASE_SUSPEND_THRESHOLD (10)

#define EEL_CONFIG_IDL_TABLE { \

 { 0x1111, 0x0005 }, \

 { 0x2222, 0x0006 }, \

 { 0x3333, 0x0007 }, \

 { 0x4444, 0x0008 }, \

 { 0x5555, 0x0009 }, \

 { 0x6666, 0x000a }, \

 { 0x7777, 0x000b }, \

 { 0x8888, 0x000c }, \

 { 0x9999, 0x000d }, \

 { 0xaaaa, 0x0015 } \

 }

4.3 Data Types

This section describes all data definitions used and offered by the EEL. In order to reduce the probability
of type mismatches in the user application, please make strict usage of the provided types and avoid
using standard data types instead.

The EEL data types are defined in r_typedefs.h and r_eel_types.h.

4.3.1 Header file r_typedefs.h

4.3.1.1 Library-specific Simple-Type Definitions

Type
definition:

typedef signed char int8_t;

typedef unsigned char uint8_t;

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 44
User Manual

typedef signed short int16_t;

typedef unsigned short uint16_t;

typedef signed long int32_t;

typedef unsigned long uint32_t;

Description:

These simple types are used throughout the complete library API for passing of integer
parameters.

4.3.2 Header file e_eel_types.h

4.3.2.1 r_eel_ds_cfg_t

Type
definition:

typedef struct R_EEL_DS_CFG_T {

 uint16_t ID_u16;

 uint16_t len_u16;

} r_eel_ds_cfg_t;

Description:
The structure defines the ID-L table elements. The user application needs to set up an
array of this structure to define all supported DSs (refer to Section 4.2.2, "EEL Runtime
Configuration Parameters" for details).

Member /
Value:

Member / Value Description

ID_u16 dataset ID

len_u16 length of the DS in byte

4.3.2.2 r_eel_descriptor_t

Type
definition:

typedef struct R_EEL_DESCRIPTOR_T {

 uint16_t vBlkRefreshThreshold_u16;

 const uint16_t *IDLTab_pastr;

 uint16_t *IDXTab_pau16;

 uint16_t IDLTabIdxCnt_u16;

 uint16_t eraseSuspendThreshold_u16;

 } r_eel_descriptor_t;

Description:

The EEL descriptor is used to specify certain general behavior of the EEL as well as the
actual datasets. In case that the eel_descriptor.c is used, it is not necessary to utilize this
type directly. It is sufficient to modify eel_descriptor.h according to the application
requirements. Please refer to Section 4.2.2, "EEL Runtime Configuration Parameters" for
details.

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 45
User Manual

Member /
Value:

Member / Value Description

vBlkRefreshThreshold_u16 Refresh threshold

*IDLTab_pastr pointer to the IDL table

*IDXTab_pau16 pointer to the IDX table

IDLTabIdxCnt_u16 number of IDL/IDX table entries

eraseSuspendThreshold_u16 erase suspend threshold

4.3.2.3 r_eel_operation_mode_t

Type
definition:

typedef enum R_EEL_OPERATION_MODE_T {

 R_EEL_OPERATION_MODE_NORMAL,

 R_EEL_OPERATION_MODE_LIMITED

} r_eel_operation_mode_t;

Description:
This type is specifies the supported operation modes of the library. Please refer to 3.8,
"Limited Operation Mode” for a more detailed specification of the modes.

Member /
Value:

Member / Value Description

R_EEL_OPERATION_MODE_
NORMAL

Normal operation mode

R_EEL_OPERATION_MODE_
LIMITED

Mode with limited Refresh performance with incomplete
ID-L table

4.3.2.4 r_eel_status_t

Type
definition:

#define R_EEL_WRN 0x10

#define R_EEL_ERR 0x20

typedef enum R_EEL_STATUS_T {

 R_EEL_OK = 0x00u,

 R_EEL_BUSY = 0x01u,

 R_EEL_ERR_ERASESUSPEND_OVERFLOW = R_EEL_WRN+0x00u,

 R_EEL_ERR_FIX_DONE = R_EEL_WRN+0x03u,

 R_EEL_ERR_CONFIGURATION = R_EEL_ERR+0x00u,

 R_EEL_ERR_PARAMETER = R_EEL_ERR+0x01u,

 R_EEL_ERR_REJECTED = R_EEL_ERR+0x02u,

 R_EEL_ERR_ACCESS_LOCKED = R_EEL_ERR+0x03u,

 R_EEL_ERR_NO_INSTANCE = R_EEL_ERR+0x04u,

 R_EEL_ERR_POOL_FULL = R_EEL_ERR+0x05u,

 R_EEL_ERR_FLASH_ERROR = R_EEL_ERR+0x06u,

 R_EEL_ERR_INTERNAL = R_EEL_ERR+0x07u,

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 46
User Manual

 R_EEL_ERR_POOL_EXHAUSTED = R_EEL_ERR+0x08u,

 R_EEL_ERR_POOL_INCONSISTENT = R_EEL_ERR+0x09u,

 R_EEL_ERR_COMMAND = R_EEL_ERR+0x0au

} r_eel_status_t;

Description:

Function and operation error codes. Please refer to the Sections 4.4 "Functions" and 4.5
"Commands" for a detailed explanation of the errors root cause, and remedy.

R_EEL_WRN and R_EEL_ERR are defined to distinguish between warnings and errors.

Member /
Value:

Member / Value Description

R_EEL_OK Operation ended successfully

R_EEL_BUSY EEL is busy (operation on-going)

R_EEL_ERR_ERASESUSPEND_
OVERFLOW

Warning:

An on-going Flash block erase has been suspended
too often

R_EEL_ERR_FIX_DONE
Warning:

a fix has been done during start-up

R_EEL_ERR_CONFIGURATION
Error:

Wrong library configuration

R_EEL_ERR_PARAMETER
Error:

Parameter error on operation invocation

R_EEL_ERR_REJECTED
Error:

Operation rejected due to busy EEL

R_EEL_ERR_ACCESS_LOCKED
Error:

operation not possible, Read/Write access locked

R_EEL_ERR_NO_INSTANCE
Error:

No DS instance in the EEL pool

R_EEL_ERR_POOL_FULL
Error:

Pool is full, Write operation blocked

R_EEL_ERR_FLASH_ERROR
Error:

Flash write/erase error

R_EEL_ERR_INTERNAL
Error:

Internal undefined error

R_EEL_ERR_POOL
_INCONSISTENT

Error:

Pool is inconsistent

R_EEL_ERR_COMMAND
Error:

Unknown command

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 47
User Manual

4.3.2.5 r_eel_command_t

Type
definition:

typedef enum R_EEL_COMMAND_T {

 R_EEL_CMD_READ,

 R_EEL_CMD_WRITE,

 R_EEL_CMD_WRITE_INC,

 R_EEL_CMD_INVALIDATE,

 R_EEL_CMD_WRITE_IMM,

 R_EEL_CMD_WRITE_INC_IMM,

 R_EEL_CMD_INVALIDATE_IMM,

 R_EEL_CMD_FORMAT,

 R_EEL_CMD_CLEANUP

} r_eel_command_t;

Description:
The enumeration represents the EEL commands to invoke the different EEL operations.
For a detailed description of each command , please refer to Section 4.5 "Commands".

Member /
Value:

Member / Value Description

R_EEL_CMD_READ Read command

R_EEL_CMD_WRITE Write command

R_EEL_CMD_WRITE_INC Incremental write command

R_EEL_CMD_INVALIDATE Invalidation command

R_EEL_CMD_WRITE_IMM Immediate write command

R_EEL_CMD_WRITE_INC_IMM Immediate incremental write command

R_EEL_CMD_INVALIDATE_IMM Immediate invalidate command

R_EEL_CMD_FORMAT Format command (format the EEL pool)

R_EEL_CMD_CLEANUP
Clean-up command (clean-up, defragment the EEL
pool)

4.3.2.6 r_eel_request_t

Type
definition:

typedef volatile struct R_EEL_REQUEST_T {

 uint8_t * address_pu08;

 uint16_t identifier_u16;

 uint16_t length_u16;

 uint16_t offset_u16;

 r_eel_command_t command_enu;

 r_eel_status_t status_enu;

} r_eel_request_t;

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 48
User Manual

Description:
Request structure, used as parameter for the function R_EEL_Execute in order to invoke

an EEL operation. Please refer to Section 3.1.3, “Request-Response oriented Dialog” for
the structure usage overview and Section 4.5, “Commands” for the structure usage.

Member /
Value:

Member / Value Description

address_pu08 Data address (read destination, write source)

identifier_u16 Dataset ID

length_u16 Number of words to read

offset_u16 Data offset within the DS

command_enu Command to execute

status_enu Status of the command to execute

4.3.2.7 r_eel_access_status_t

Type
definition:

typedef enum R_EEL_ACCESS_STATUS_T {

 R_EEL_ACCESS_LOCKED,

 R_EEL_ACCESS_READ_ONLY,

 R_EEL_ACCESS_READ_WRITE,

 R_EEL_ACCESS_UNLOCKED,

 R_EEL_ACCESS_UNDEFINED

} r_eel_access_status_t;

Description:
Enumeration describing the access status of the EEL. Please refer to Section 3.6 “Driver
Status” for the access status details.

Member /
Value:

Member / Value Description

R_EEL_ACCESS_LOCKED Read and write access are disabled

R_EEL_ACCESS_READ_ONLY Only read access to DSs

R_EEL_ACCESS_READ_WRITE Read and write access, but limited performance

R_EEL_ACCESS_UNLOCKED Full access

R_EEL_ACCESS_UNDEFINED No valid status, this is used library internal only

4.3.2.8 r_eel_operation_status_t

Type
definition:

typedef enum R_EEL_OPERATION_STATUS_T {

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 49
User Manual

 R_EEL_OPERATION_PASSIVE,

 R_EEL_OPERATION_IDLE,

 R_EEL_OPERATION_BUSY,

 R_EEL_OPERATION_STARTUP,

 R_EEL_OPERATION_SUSPENDED,

 R_EEL_OPERATION_UNDEFINED

} r_eel_operation_status_t;

Description:
Enumeration describing the operation status of the EEL. Please refer to Section 3.6
“Driver Status” for the access status details.

Member /
Value:

Member / Value Description

R_EEL_OPERATION_PASSIVE
EEL passive, all operations and commands
locked

R_EEL_OPERATION_IDLE
EEL up and running, no internal operation
ongoing

R_EEL_OPERATION_BUSY
EEL up and running, either user or background
operations are served

R_EEL_OPERATION_STARTUP EEL is in start-up processing

R_EEL_OPERATION_SUSPENDED EEL is suspended by a user command

R_EEL_OPERATION_UNDEFINED No valid status, this is used library internal only

4.3.2.9 r_eel_driver_status_t

Type
definition:

typedef struct R_EEL_DRIVER_STATUS_T {

 r_eel_operation_status_t operationStatus_enu;

 r_eel_access_status_t accessStatus_enu;

 r_eel_status_t backgroundStatus_enu;

} r_eel_driver_status_t;

Description:
Structure to contain the full driver status information. Please refer to Section 3.6 “Driver
Status” to read the status information.

Member /
Value:

Member / Value Description

operationStatus_enu EEL background operational status

accessStatus_enu EEL commands access status

backgroundStatus_enu EEL background operations error status

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 50
User Manual

4.4 Functions

Due to the request-oriented interface of the EEL, the functional interface is very narrow. Beside the
initialization/start-up and some administrative functions, the access to the EEL pool concentrates on two

functions only: R_EEL_Execute and R_EEL_Handler.

All EEL interface functions are prototyped in the header file r_eel.h.

4.4.1 R_EEL_Init

Outline: Initialize the EEL variables; prepare the EEL for starting up.

Interface: C Interface

r_eel_status_t R_EEL_Init(const r_eel_descriptor_t* descriptor_pstr,

 r_eel_operation_mode_t opMode_enu);

 Parameters

Argument Type Access Description

descriptor_pstr
const
r_eel_descriptor_t*

R

EEL run-time configuration
structure. See Section 4.2.2 “EEL
Runtime Configuration
Parameters” for details of the
library configuration.

Argument Type Access Description

opMode_enu
r_eel_operation_m
ode_t

R
EEL operation mode
configuration. See 3.8 “Limited
Operation Mode”.

Return value

Type Description

r_eel_status_t
Function execution result. The table below explains
the possible results.

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 51
User Manual

Status Class Background and handling

R_EEL_OK normal

meaning function finished successfully

reason -

remedy -

R_EEL_ERR_C
ONFIGURATION

error

meaning
Initialization of the library failed. Further EEL
functionality is blocked

reason

The configuration checks found a problem in
the descriptor configuration, passed to the
function. Checks done:

 EEL pool size (defined in FDL
descriptor) must be a multiple as the

virtual block size vBlkSize_u16

 vBlkRefreshThreshold_u16 must

be >= 2

 remaining active pool must be >= 2
bocks

 Max DS size must be as described in
4.2.2, “EEL Runtime Configuration
Parameters”

remedy Fix the wrong configuration

R_EEL_ERR_AC
CESS_LOCKED

error

meaning
Initialization of the library failed. Further EEL
functionality is blocked

reason
The underlying FDL is busy with any Flash
operation or is suspended

remedy Retry the initialization, when the FDL is idle

Pre-
conditions:

EEL initialization is not possible when Flash operations are active in order to avoid wrong
synchronization between FDL and EEL. So:

 R_FDL_Init needs to be called before R_EEL_Init may be called.

 FDL must be idle

Post-
conditions:

Library internal variables are initialized, but the emulation processing is not yet started.

Description:
The function is executed before any execution of other EEL functions. It does descriptor
variable configuration checks and then initializes the basic internal variables according to
the parameters passed to the library.

Example: eel_rtConfiguration is configured globally in eel_descriptor.c.

ret = EEL_Init (eel_rtConfiguration, EEL_OPMODE_FULL);

if (EEL_OK != ret)

{

 /* Error treatment */

}

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 52
User Manual

4.4.2 R_EEL_Startup

Outline: Resets and starts the EEL state machine. The library start-up sequence is initiated.

Interface: C Interface

r_eel_status_t R_EEL_Startup (void);

 No Parameters

 Return value

Type Description

r_eel_status_t
Function execution result. The table below explains
the possible results.

Status Class Background and handling

R_EEL_OK normal

meaning Function finished successfully.

reason -

remedy -

R_EEL_ERR_AC
CESS_LOCKED

error

meaning
Starting the state machine failed. State
machine status is unchanged.

reason See pre-conditions.

remedy Fix the flow of function handling.

Pre-
conditions:

The library must be initialized. Call R_EEL_Init before execution.

The library may not already be active (function R_EEL_Startup already called).

In case of re-initialization, the function R_EEL_ShutDown must be called before

R_EEL_Init and R_EEL_Startup

Post-
conditions:

None

Description:

This function starts the EEL state machine and initiates execution of the start-up process.

Please note that this function does not execute but only initiates the start-up sequence of

the library. By consecutive R_EEL_Handler calls, the library passes the start-up status

and enters the operational status (see Section 3.7, “Start-up Processing”).

Example: Option: Wait after R_EEL_Startup until the library is completely up and running

r_eel_driver_status_t driverStatus_str;

ret = R_EEL_Init();

if (R_EEL_OK == ret)

{

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 53
User Manual

 R_EEL_Startup();

}

else

{

 /*error treatment */

}

do

{

 R_EEL_Handler();

 R_EEL_GetDriverStatus (&driverStatus_str);

}

/* Wait until the system is completely up and running (or error) */

while (R_EEL_OPERATION_STARTUP == driverStatus_str.operationStatus_enu);

/* Error check */

if (R_EEL_OK != driverStatus_str.errorStatus_enu)

{

 /* Error handler */

 . . .

}

Example: Option: Wait after R_EEL_Startup until the library at least partially unlocked

r_eel_driver_status_t driverStatus_str;

ret = R_EEL_Init();

if (R_EEL_OK == ret)

{

 R_EEL_Startup();

}

else

{

 /*error treatment */

}

do

{

 R_EEL_Handler();

 R_EEL_GetDriverStatus (&driverStatus_str);

}

/* Wait until early read/write is possible (or error) */

while ((R_EEL_OPERATION_STARTUP == driverStatus_str.operationStatus_enu)

 && (R_EEL_ACCESS_LOCKED == driverStatus_str.accessStatus_enu));

/* Error check */

if (R_EEL_OK != driverStatus_str.errorStatus_enu)

{

 /* Error handler */

 . . .

}

4.4.3 R_EEL_ShutDown

Outline: This function initiates deactivation of the EEL state machine.

Interface: C Interface

eel_status_t EEL_ShutDown (void);

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 54
User Manual

 No Parameters

 Return value

Type Description

r_eel_status_t
Function execution result. The table below explains
the possible results.

Status Class Background and handling

R_EEL_OK normal

meaning Function finished successfully.

reason -

remedy -

R_EEL_ERR_AC
CESS_LOCKED

error

meaning
Shut down request failed. State machine
status is unchanged.

reason See pre-conditions.

remedy Fix the flow of function handling.

Pre-
conditions:

The library must be active. So, R_EEL_Startup must have been called before.

The library may not be suspended.

Post-
conditions:

Library access status is locked. No further user commands are accepted.

Description:

This function initiates the deactivation of the EEL state machine.

After this function the R_EEL_Handler need to be consecutively executed in order to

complete running processes and to set the state machine status to passive.

The individual effects on running processes is as follows:

 Start-up:
The process is stopped after a sub-process execution.

 Refresh
An ongoing DS write is finished, then the refresh is stopped.

 Prepare
The prepare is finished in order not to waste a Flash erase cycle.

 User DS write
An on-going DS write is finished.

 User DS read
An on-going DS read is finished.

Example:

r_eel_driver_status_t driverStatus_str;

/* ... */

ret = R_EEL_ShutDown();

if (R_EEL_OK != ret)

{

 /* Error treatment */

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 55
User Manual

}

/* Wait until operation end */

do

{

 R_EEL_Handler();

 R_EEL_GetDriverStatus (&driverStatus_str);

}

while (R_EEL_OPERATION_PASSIVE != driverStatus_str.operationStatus_enu);

/* Error check */

if (R_EEL_OK != driverStatus_str.errorStatus_enu)

{

 /* Error handler */

 . . .

}

4.4.4 R_EEL_SuspendRequest

Outline: This function requests suspension of the EEL operations and puts the EEL in a passive
state.

Interface: C Interface

r_eel_status_t R_EEL_SuspendRequest (void);

Arguments: No parameters

 Return value

Type Description

r_eel_status_t
Function execution result. The table below explains
the possible results.

Status Class Background and handling

R_EEL_OK normal

meaning Function finished successfully.

reason -

remedy -

R_EEL_ERR_AC
CESS_LOCKED

error

meaning
Suspend request failed. State machine
status is unchanged.

reason See pre-conditions.

remedy Fix the flow of function handling.

Pre-
conditions:

The library must be active. Call R_EEL_Init before execution.

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 56
User Manual

Post-
conditions:

Library access status is locked. So, no further user commands are accepted.

Description:

This function requests suspension of the EEL operations and puts the EEL in a passive
state.

After this function the R_EEL_Handler need to be executed consecutively in order to

complete running processes and to set the state machine status to passive. Then the

driver status is set to R_EEL_OPERATION_SUSPENDED.

The individual effects on running processes is as follows:

 Start-up
The process is stopped after a sub-process execution.

 Refresh
An on-going DS Write is finished, then the Refresh is stopped.

 Prepare
The Prepare is finished in order not to waste a Flash erase cycle.

 User DS write
An on-going DS Write is finished.

 User DS read
An on-going DS read is finished.

Please refer to Section →3.9 for a more detailed description of the suspend/resume
mechanism.

Example:

r_eel_driver_status_t driverStatus_str;

/* ... */

ret = R_EEL_SuspendRequest();

if (R_EEL_OK != ret)

{

 /* Error treatment */

}

/* Wait until operation end */

do

{

 R_EEL_Handler();

 R_EEL_GetDriverStatus (&driverStatus_str);

}

while (R_EEL_OPERATION_SUSPENDED != driverStatus_str.operationStatus_enu);

/* Do other Flash operations by directly using the FDL API, read Data Flash user

pool contents (direct read by CPU) or bring the device in power safe mode */

 ...

ret = R_EEL_ResumeRequest();

if (R_EEL_OK != ret)

{

 /* Error treatment */

}

/ Continue with EEL operations */

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 57
User Manual

4.4.5 R_EEL_ResumeRequest

Outline: This function requests resuming the EEL operations after suspend.

Interface: C Interface

ret = R_EEL_ResumeRequest (void);

Arguments: No Parameters

 Return value

Type Description

r_eel_status_t
Function execution result. The table below explains
the possible results.

Status Class Background and handling

R_EEL_OK normal

meaning Function finished successfully.

reason -

remedy -

R_EEL_ERR_AC
CESS_LOCKED

error

meaning
Starting the state machine failed. State
machine status is unchanged.

reason See pre-conditions.

remedy Fix the flow of function handling.

Pre-
conditions:

The library must be suspended. This implies that not only R_EEL_SuspendRequest has

been executed before, but also that there have been enough R_EEL_Handler calls in
order to drive the library into the suspended state.

Post-
conditions:

None

Description:

This function requests resuming the EEL operations after suspend. The resume handling
is done by the R_EEL_Handler function, i.e. it is necessary to call the handler function
until the operation status changed to a status differing from

R_EEL_OPERATION_SUSPENDED.

Example: See 4.4.4, “R_EEL_SuspendRequest”

4.4.6 R_EEL_Execute

Outline: This function initiates an EEL user command.

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 58
User Manual

Interface: C Interface

void R_EEL_Execute (r_eel_request_t * request_pstr);

 Parameters

Argument Type Access Description

request_pstr r_eel_request_t* R/W

The request structure defines the
command to be executed.

The concrete usage of the
request structure is command
specific and therefore described
in Section 4.5, “Commands”
individually for each command.

Furthermore, the request
structure contains the status
variable for the operation result

storage (status_enu). Setting

of the variable after function end
is described in the post
conditions.

 No return value

Pre-
conditions:

The library has to be initialized and started up successfully before any command can be
accepted via R_EEL_Execute.

Post-
conditions:

The function updates the request structure status variable according to the function
interpretation of the command and its starting (execution) conditions. Please refer to
Section 4.5, “Commands” for the possible result values of the individual commands.

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 59
User Manual

Description:

This function initiates an EEL user command. The command type and parameters are
passed to the EEL by the request structure.

The underlying request-response concept is introduced in Section 3.1.3.

A detailed description of all available commands can be found in Section 4.5. Please note
that the meaning of the different request structure elements depends on the command.
Before execution, the request structure is checked for plausibility. However, the error
codes (returned as a member of the request structure) are command-specific as well.
Please have a look at the individual command description for details.

This function only starts a process according to the command to be executed. The
processes must be controlled and stepped forward by the state machine handler function

R_EEL_Handler.

One advantage of the request-response oriented command execution is that multiple
independent request structures can be used. Thereby, different commands can be
prepared and monitored in parallel, although a real parallel execution is not possible. The
priorities in which concurring commands are executed are described in Section 3.3.

Note 1:
The request structure might be read by the EEL state machine any time before the
command execution is not yet completed. Therefore, it is imperative to ensure a sufficient
lifetime of the request variable and not to modify its members as long as a command is
being processed.

Note 2:
The user application can either react directly on the errors returned by the

R_EEL_Execute function or call R_EEL_Handler as long as the status is busy and

react on errors then. The errors set on EEL_Execute are not reset and the handler

execution does not do additional operations in case of an error already set.

Example:

r_eel_request_t myRequest_str;

uint8_t buffer[0x100]={ 0 };

/* Start the write operation */

myRequest_str.address_pu08 = (uint8_t*)(&buffer); /* Set receive buffer */

myRequest_str.identifier_u16 = 10u;

myRequest_str.command_enu = R_EEL_CMD_WRITE;

R_EEL_Execute (&myRequest_str);

/* Wait until operation end */

while (R_EEL_BUSY == myRequest_str.status_enu)

{

 R_EEL_Handler();

}

/* Error check */

if (EEL_OK != myRequest_str.status_enu)

{

 /* Error handler */

 . . .

}

4.4.7 R_EEL_Handler

Outline: This function handles the EEL state machine.

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 60
User Manual

Interface: C Interface

void R_EEL_Handler (void);

 No Parameters

 No Return value

Pre-
conditions:

The library has to be initialized by means of R_EEL_Init before R_EEL_Handler may

be called.

Post-
conditions:

The handler function executes user commands as well as background processes. By
that, it modifies the Data Flash contents as well as the user operation status as well as
background operation (driver) status.

Description:

This function handles the complete EEL state machine including user and background
operations management.

On the one hand, the function R_EEL_Handler needs to be called regularly in order to

drive pending commands and observe their progress. Thereby, the command execution
is performed state by state. When a command execution is finished, the request status

variable (structural element status_enu of r_eel_request_t) is updated and

contains the status/error code of the corresponding command execution. Please have a
look at Section 3.1.4 for a more detailed description of the principles of the handler-
oriented command execution.

On the other hand, background processes are also executed by means of the handler.

Hence it is mandatory to call the R_EEL_Handler regularly in case that there are no

user commands pending.

Example: See Section 4.4.6, “R_EEL_Execute”.

4.4.8 R_EEL_GetEraseCounter

Outline: This function reads the current erase counter of the ring buffer / EEL pool.

Interface: C Interface

r_eel_status_t R_EEL_GetEraseCounter (uint32 *counter_pu32);

 Parameters

Argument Type Access Description

counter_pu32 uint32 * W
Pointer to the destination buffer
to store the current erase
counter.

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 61
User Manual

 Return value

Type Description

r_eel_status_t
Function execution result. See table below regarding
the possible results.

Status Class Background and handling

R_EEL_OK normal

meaning Function finished successfully.

reason -

remedy -

R_EEL_ERR_AC
CESS_LOCKED

error

meaning Erase counter could not be read.

reason See pre-conditions.

remedy Fix the flow of function handling.

Pre-
conditions:

The library must be unlocked which means

 The library has be initialized and started up completely
(i.e. access status != R_EEL_ACCESS_LOCKED).

 Shut down processing (R_EEL_ShutDown) or suspend processing

(R_EEL_Suspend) may not have been initiated beforehand.

Post-
conditions:

None

Description:

This function reads the erase counter of the currently active virtual block. Due to the ring
buffer handling of the EEL pool, the erase counter of all other blocks only differs from the
active block in the range of -1 to +1.

Note:
The erase counter is counting the ring buffer loops. As long as the ring buffer is normally
handled by the library, the erase counter is counted up. Of cause, the erase counter is as
reliable as all EEPROM emulation data. It is handled by the library and any mistreatment
outside the library (e.g. manual erase of the Flash) may destroy the erase counter.

Example:

eel_u32 eraseCounter;

r_eel_status_t ret;

ret = R_EEL_GetEraseCounter (&EraseCounter);

if (R_EEL_OK != ret)

{

 /* Error treatment */

}

4.4.9 R_EEL_GetDriverStatus

Outline: This function returns the state machine status into the driver status structure.

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 62
User Manual

Interface: C Interface

r_eel_status_t R_EEL_GetStatus (r_eel_driver_status_t

 *driverStatus_str);

 Parameters

Argument Type Access Description

driverStatus_str uint32 * W
Pointer to the buffer to store the
driver status structure.
See Section 3.6 “Driver Status”.

 Return value

Type Description

r_eel_status_t
Function execution result. See table below regarding
the possible results.

Status Class Background and handling

R_EEL_OK normal

meaning Function finished successfully.

reason -

remedy -

R_EEL_ERR_AC
CESS_LOCKED

error

meaning Driver status could not be read.

reason See pre-conditions.

remedy Fix the flow of function handling.

Pre-
conditions:

The library needs to be initialized by means of R_EEL_Init before the function

R_EEL_GetDriverStatus may be called.

Post-
conditions:

None

Description:

The R_EEL_GetDriverStatus function opens a way to check the internal status of

the EEL driver before placing a request. It returns the EEL state machine status into the
driver status structure. A detailed description of the different statuses and how to interpret
them can be found in Section 3.6, “Driver Status”.

Example:

r_eel_driver_status_t driverStatus_str;

r_eel_status_t ret;

ret = R_EEL_GetDriverStatus (&driverStatus_str);

if (R_EEL_OK != ret)

{

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 63
User Manual

 /* Error treatment */

}

4.4.10 R_EEL_GetSpace

Outline: This function returns the current free space in the EEL pool (prepared space for new
data).

Note:

During transient conditions the space calculation is not accurate as currently running write
operations may not be considered. The function is meant to be used only when EEL
operation status is R_EEL_OPERATION_IDLE.

Interface: C Interface

r_eel_status_t R_EEL_GetSpace (uint32_t *space_pu32);

 Parameters

Argument Type Access Description

space_pu32 uint32 * W
Pointer to the buffer to store the
space value.

 Return value

Type Description

r_eel_status_t
Function execution result. See table below regarding
the possible results.

Status Class Background and handling

R_EEL_OK normal

meaning Function finished successfully.

reason -

remedy -

R_EEL_ERR_AC
CESS_LOCKED

error

meaning The space information could not be read.

reason See pre-conditions.

remedy Fix the flow of function handling.

Pre-
conditions:

The library must be unlocked which means:

 The library has be initialized and started up completely
(i.e. access status != R_EEL_ACCESS_LOCKED).

 Shut down processing (R_EEL_ShutDown) or suspend processing

(R_EEL_Suspend) may not have been initiated beforehand.

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 64
User Manual

Post-
conditions:

None

Description:

This function returns the current free space in the EEL ring buffer (prepared space for

new data) into the user buffer space_pu32.

As the library always need to reserve one virtual block for refreshing data sets (copy from
the ring buffer tail to the front), the space of this block is not considered for space
computation.

Furthermore it is important to note that each dataset instance requires also space for the
management data in the REF zone. Please refer to Section 2.3.3 “EEL Data-Sets” for a
detailed description of the space requirement of a dataset instance.

Please also note that it cannot be guaranteed that a dataset instance can fit into the
current active block and the next prepared block might to be used. Hence, whenever a
dataset is written, the remaining free space might be reduced by more than the space
required for the dataset instance. Also background processes can change the free space
in the EEL pool. This makes it necessary to recheck the free space by means of the
R_EEL_GetSpace function before issuing a command or calling the R_EEL_Handler.
Otherwise the information is outdated.

Calculation base:
Free space = (no. of prepared blocks – 1) * (block size – block header – 1 word) +
 emaining space in the active block

Example:

uint32_t space;

r_eel_status_t ret;

ret = R_EEL_GetSpace (&space);

if (R_EEL_OK != ret)

{

 /* Error treatment */

}

4.4.11 R_EEL_GetVersionString

Outline: This function returns the pointer to the library version string.

Interface: C Interface

(const uint8_t*) R_EEL_GetVersionString (void);

 No Parameters

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 65
User Manual

 Return value

Type Description

(const uint8_t*)

Pointer to the version string, stored in EEL linker
section.

String format:

“DH850T01xxxxxYZabcD”

 Replace xxxxx by the used version. If no
information is coded, the build is a generic library
valid for different compilers.

 “Y” coded the used memory/register model. If no
information is coded, the build is a generic library
valid for different models.

 P: 22 register model

 Q: 26 register model

 R: 32 register model

 Replace “Z “by “E” for engineering version or “V”
for final version.

 Additionally “abc” must be substitute by the library
version numbers according to version Va.bc.

 “D” is an optional character to identify different
engineering versions.

Pre-
conditions:

None

Post-
conditions:

None

Description:
This function returns the pointer to the library version string. The version string is a zero
terminated string identifying the library. The version string is stored in the library code
section.

Example:

/* Read library version */

uint8_t *version_pu08;

version_pu08 = R_EEL_GetVersionString();

4.5 Commands

The following Sections describe the EEL commands that can be executed by the library. A command is

initiated by the library function R_EEL_Execute utilizing a request data structure of type

r_eel_request_t which contains the individual command details. An initiated command is controlled

and driven forward by the library function R_EEL_Handler. The command status can be read from the

request structure element status_enu. Figure 18 shows the schematic usage of the request structure

as already introduced in Section 3.1.3.

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 66
User Manual

Please note that the library may access the request structure during any R_EEL_Execute or

R_EEL_Handler call. Therefore, it is on the one hand mandatory to ensure a proper lifetime of the

request variable. On the other hand, it is imperative not to change the elements of the request variable as
long as the command execution is ongoing.

Not all request structure elements are required for each command. While the elements command_enu

and status_enu are mandatory for all commands, the usage of the other four elements is command

specific and listed in Table 5.

Table 5: Command codes and usage of request variable members

Command identifier address_pu08 identifier_u16
length_u16
offset_u16

Comment

R_EEL_CMD_READ used used used DS read

R_EEL_CMD_WRITE used used unused DS write

R_EEL_CMD_WRITE_INC used used unused
incremental DS
write

R_EEL_CMD_WRITE_IMM used used unused immediate DS write

R_EEL_CMD_WRITE_INC_IMM used used unused
incremental
immediate DS write

R_EEL_CMD_INVALIDATE unused used unused DS invalidation

R_EEL_CMD_INVALIDATE_IMM unused used unused
immediate DS
invalidation

R_EEL_CMD_FORMAT unused unused unused EEL pool format

R_EEL_CMD_CLEANUP unused unused unused EEL pool Clean-up

In general, all EEL commands can be handled in the same way as illustrated in Figure 19 (a
corresponding code example can be found in Section 5.5, “Sample Application”):

1. The application fills up the private request variable my_request (command definition).

2. The application tries to initiate the command execution by R_EEL_Execute(&my_request).

3. In case of a command rejection, the application has to call the R_EEL_Handler first to proceed the

processing of the already pending request and can retry by continuing with step 2.

Figure 18: Schematic usage of the request variable (reprise of Figure 13)

address_pu08

identifier_u16

length_u16

offset_u16

command_enu

application

Write access

Read access

status_enu

EEL

request variable

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 67
User Manual

4. The application has to call R_EEL_Handler to proceed the EEL command execution as long the

request is being processed (i.e. my_request.status_enu == EEL_BUSY).

5. After finishing the command (i.e. my_request.status_enu != EEL_BUSY) the application has to

analyze the status to detect potential errors.

Not all commands can/should be executed from every library state. For details, please refer to Section
3.7, "Start-up Processing".

For exemplary code showing how to use EEL commands, please refer to Section 5.5, "Sample
Application".

4.5.1 R_EEL_CMD_READ — DS Read

This command reads a DS identified by a given ID and copies the read data to a read buffer provided by
the user application. It is possible to read the complete DS or only fractions, defined by an offset and
number of bytes.

The read command has the highest priority of all standard operations and can interrupt all write/invalidate
operations.

Figure 19: Generic command execution flow

start command execution

end of command execution

fill request variable

my_request

R_EEL_Execute

(&my_request)

R_EEL_Handler()

error handling

my_request.status_enu ?

<other>

R_EEL_BUSY

other user application

processing

1

2

3

4my_request.status_enu ?

<other>

R_EEL_OK

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 68
User Manual

Note:
Differing from other commands, the read command actions are completely done within one handler call.
This will also result in longer handler function execution time, depending on the amount of Bytes to read
from the Flash and depending on the Data flash access speed.

Table 6: Configuration of the request structure for DS Read

Request structure element Data Comment

command_enu R_EEL_CMD_READ Read command

address_pu08 {pointer to uint8_t buffer}
Pointer to the read data
destination buffer.

identifier_u16 {uint16 number} Defines the ID of the DS to read

offset_u16 {uint16 number}

Offset of the read data from the
DS base address.

Number range:
0 <= number < DS size

length_u16 {uint16 number}

Number of bytes to read

Number range:
0 < number < (DS size –
offset_u16)

status_enu -

This is an output member. It
contains the status of the
command during and after the
execution. Possible values are
described in the next table.

Table 7: Possible statuses of DS-read command returned to status_enu

Status Class Background and handling

R_EEL_OK normal

meaning Command finished successfully.

reason -

remedy -

R_EEL_BUSY <*1> normal

meaning Command started successfully.

reason -

remedy -

R_EEL_ERR_ERASESUSPEND_
OVERFLOW

warning

meaning
Warning: Background Flash block erase
interrupted too often.

reason

Each DS read or write command will interrupt a
possibly on-going background Flash erase
operation (part of the prepare process). If the
threshold (acceptable number of interruptions)

defined by eraseSuspendThreshold_u16

(see Section 4.2.2, "EEL Runtime Configuration
Parameters") is exceeded, this warning is
returned.

remedy

The return value is just a warning without
impact on the operations.

Reduce the load to the EEL caused by
Read/Write commands to give potential
background Flash erase the time to finish.

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 69
User Manual

Status Class Background and handling

R_EEL_ERR_PARAMETER <*1> error

meaning
Execution of the requested command is
rejected.

reason

There is/are wrong parameter(s) in the request
structure. Parameter checks done by the
library:

 identifier_u16 invalid (configured ID not

available in the ID-L table)

 offset_u16 + length_u16 > DS size

configured in the ID-L table

remedy Fix the parameters.

R_EEL_ERR_REJECTED <*1> error

meaning
Execution of the requested command is
rejected.

reason
A read operation is ongoing and not yet
finished. Invoking a 2nd read command is not
possible.

remedy
Request the command again after the end of
the 1st read operation.

R_EEL_ERR_ACCESS_LOCKED
<*2>

error

meaning
Execution of the requested command is
rejected.

reason

The library internal status does not allow
execution of the command.

Either it’s in Start-up processing and the access
is not yet unlocked or the library that was
previously unlocked has been locked by
suspend or shut-down processing (User
requests) or a library internal problem.

remedy

If the error is caused by a library internal
problem, use the function

R_EEL_GetDriveStatus to read the library

status. Then, react according to the observed
error (see Section 3.6, "Driver Status").

The other described reasons are based on
wrong library handling by the user application.
In that case, stop the application, investigate in
the root cause and fix the application.

R_EEL_ERR_NO_INSTANCE
<*1>

normal or
error

meaning
The read command could not find any valid DS
with the requested ID.

reason

Either the EEL pool contains no DS with that ID
at all (ID was not yet written) or the last DS
instance with that ID is an invalidation instance
(data was explicitly invalidated on application
request).

remedy
Write a new DS instance with the concerning
ID.

R_EEL_ERR_INTERNAL <*2> error

meaning
A library internal problem occurred, that cannot
be related to a concrete root cause. The library
will be locked.

reason
Some library internal checks that should never
fail, failed. These can be checks on hardware or
software values.

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 70
User Manual

Status Class Background and handling

remedy

Stop emulation and investigate the root cause.

In some cases, e.g. in case of external
influence on the EEL or FDL variables or the
Flash hardware (e.g. caused by wild running
application pointers or PC), re-initialization of
the FDL and EEL may help.

A reasonable proceeding might be:

During development:
Stop the emulation and investigate in the root
cause

In the field:
2~3 times try to re-initialize the library (Or reset
the device). If the problem still exists, stop the
emulation and investigate in the root cause.

The command status can be updated by the command initiating function R_EEL_Execute as well as by

the handler function R_EEL_Handler. The notes describe, which status value can be set by which

function:

<*1>: Value can be set by R_EEL_Execute only.

<*2>: Value can be set by both functions.

No note: Value can be set be R_EEL_Handler only.

4.5.2 R_EEL_CMD_WRITE — DS write

This command reads data from an application buffer and writes the data to a DS identified by a given ID.

The write command will write always a complete DS and so always requires the complete data in the
buffer. A partial write is not possible.

Table 8: Configuration of the request structure for DS Write

Request structure element Data Comment

command_enu R_EEL_CMD_WRITE Write command.

address_pu08 {pointer to uint8_t buffer}
Pointer to the write data source
buffer.

identifier_u16 {uint16 number} Defines the ID of the DS to write.

offset_u16 -

length_u16 -

status_enu -

This is an output member. It
contains the status of the
command during and after the
execution. Possible values are
described in the next table.

Table 9: Possible statuses of DS-write command returned to status_enu

Status Class Background and handling

R_EEL_OK normal meaning Command finished successfully.

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 71
User Manual

Status Class Background and handling

reason -

remedy -

R_EEL_BUSY <*1> normal

meaning Command started successfully.

reason -

remedy -

R_EEL_ERR_ERASESUSPEND_
OVERFLOW

warning

meaning
Warning: Background Flash block erase
interrupted too often.

reason

Each DS read or write command will interrupt a
possibly ongoing background Flash erase
operation (part of the prepare process). If the
threshold (acceptable number of interruptions)

defined by eraseSuspendThreshold_u16 (see

Section 4.2.2, "EEL Runtime Configuration
Parameters") is exceeded, the warning is
returned.

remedy

The return value is just a warning without impact
on the operations.

Reduce the load to the EEL caused by read/write
commands to give potential background Flash
erase the time to finish

R_EEL_ERR_PARAMETER <*1> error

meaning Execution of the requested command is rejected.

reason

There is/are wrong parameter(s) in the request
structure. Parameter checks done by the library:

 identifier_u16 invalid (configured ID not

available in the ID-L table)

remedy Fix the parameters

R_EEL_ERR_REJECTED <*1> error

meaning Execution of the requested command is rejected.

reason

A write, incremental write or invalidate command
is ongoing and not yet finished. Those commands
are all based on the same internal process and it
is not allowed to invoke a 2nd command basing
on the same process.

Note: the immediate commands are based on
another process and thus, invoking those is
possible (and vice versa).

remedy
Request the command again after the end of the
former command.

R_EEL_ERR_ACCESS_LOCKED
<*2>

error

meaning Execution of the requested command is rejected.

reason

The library internal status does not allow
execution of the command.

Either it is in start-up processing and the access
is not yet unlocked or the library that was
previously unlocked has been locked by suspend
or shut-down processing (User requests) or a
library internal problem.

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 72
User Manual

Status Class Background and handling

remedy

If the error is caused by a library internal problem,

use the function R_EEL_GetDriveStatus to

read the library status. Then, react according to
the observed error (see Section 3.6, "Driver
Status").

The other described reasons are based on wrong
library handling by the user application. In that
case, stop the application, investigate in the root
cause and fix the application

R_EEL_ERR_POOL_FULL error

meaning Execution of the requested command is rejected.

reason

Due to subsequent write commands (incl.
immediate and incremental as well as invalidation
commands), the EEL pool got full (no more space
to write new DS instances).

The library has got no time (and R_EEL_Handler

calls) to prepare new space in the pool by

executing the background prepare and refresh
processes.

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 73
User Manual

Status Class Background and handling

remedy

Do repeated R_EEL_Handler calls until enough

space is prepared again.

The library provided 3 mechanisms to check if
space is prepared which can be used depending
on the application needs:

 Use R_EEL_GetDriverStatus (default

way):

After each call of R_EEL_Handler call

R_EEL_GetDriverStatus. The later

function will return the driver status by a
structure. When the library is busy with any
background or user operation, the structure
element operationStatus_enu will be set to

R_EEL_OPERATION_BUSY (or

R_EEL_OPERATION_STARTUP in the start-

up phase). So continue calling the functions
until operationStatus_enu shows

R_EEL_IDLE.

 Use R_EEL_GetSpace:

After each call of R_EEL_Handler call

R_EEL_GetSpace. The later function will

calculate the space for new DS instances
available in the pool. Call the functions until
enough space is prepared to write the new
DS.
This method allows writing the new DS as
soon as possible.

 Repeat the command invocation:

After each call of R_EEL_Handler call try

again to invoke the write command. Repeat
this until the command does not fail anymore.
This method allows writing the new DS as
soon as possible.

Note: In addition to the methods mentioned
above, the handler shall be called continuously
even after reaching idle status. Only then, the
library can execute background bit error checks
(robustness feature to find and fix possible single
bit errors in the Flash).

R_EEL_ERR_FLASH_ERROR error

meaning
The emulation should be considered as defect as
some Flash contents could not be erased or
written.

reason
A background Flash erase or write operation
ended with an error. The Flash range has no
defined status, allowing using it later on.

remedy
Stop the emulation and investigate in the root
cause.

R_EEL_ERR_INTERNAL <*2> error

meaning
A library internal problem occurred, that cannot be
related to a concrete root cause. The library will
be locked.

reason
Some library internal checks that should never
fail, failed. These can be checks on hardware or
software values.

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 74
User Manual

Status Class Background and handling

remedy

Stop emulation and investigate the root cause.

In some cases, e.g. in case of external influence
on the EEL or FDL variables or the Flash
hardware (e.g. caused by wild running application
pointers or PC), re-initialization of the FDL and
EEL may help.

A reasonable proceeding might be:

During development:
Stop the emulation and investigate in the root
cause

In the field:
2~3 times try to re-initialize the library (Or reset
the device). If the problem still exists, stop the
emulation and investigate in the root cause

The command status can be updated by the command-initiating function R_EEL_Execute as well as by

the handler function R_EEL_Handler. The notes describe, which status value can be set by which

function:

<*1>: Value can be set by R_EEL_Execute only.

<*2>: Value can be set by both functions.

No note: Value can be set be R_EEL_Handler only.

4.5.3 R_EEL_CMD_WRITE_INC — Incremental DS write

This command compares data in an application buffer with the last DS instance identified with a given ID.
On mismatch, the DS is written with the updated data from the application buffer. On data match, no write
operation is executed.

Except the comparison before writing, the command completely matches the write command of Section
4.5.2, “R_EEL_CMD_WRITE — DS write ”. So, the configuration and the returned data are identically
except the following:

Table 10: Configuration difference for DS incremental write (compared to DS Write)

Request structure element Data Comment

command_enu R_EEL_CMD_WRITE_INC Incremental write command.

4.5.4 R_EEL_CMD_WRITE_IMM — Immediate DS write

From functionality point of view, this command exactly matches the write command of Section 4.5.2,
“R_EEL_CMD_WRITE — DS write ”.

The difference is a higher priority of the immediate command. So, an immediate command can interrupt a
normal priority operation.

The configuration and the returned data are identically to 4.5.2, “R_EEL_CMD_WRITE — DS write ”
except the following:

Table 11: Configuration difference for DS immediate write (compared to DS Write)

Request structure element Data Comment

command_enu R_EEL_CMD_WRITE_IMM Immediate write command.

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 75
User Manual

4.5.5 R_EEL_CMD_WRITE_INC_IMM — Incremental immediate DS write

From functionality point of view, this command exactly matches the incremental write command of
Section 4.5.3, “R_EEL_CMD_WRITE_INC — Incremental DS write”.

The difference is a higher priority of the immediate command. So, an immediate command can interrupt a
normal priority operation.

The configuration and the returned data are identically to 4.5.2, “R_EEL_CMD_WRITE — DS write ”
except the following:

Table 12: Configuration difference for DS immediate incremental write (compared to DS Write)

Request structure element Data Comment

command_enu R_EEL_CMD_WRITE_INC_IMM
Immediate incremental write
command

4.5.6 R_EEL_CMD_INVALIDATE — DS invalidation

This command invalidates the data of a formerly written DS with a given ID. Instead of erasing the data
which is not possible (and not necessary) in an EEPROM emulation, the EEL will write a new DS
Reference zone entry with invalidation marker and without data part. A later read command on the same

ID will return R_EEL_ERR_NO_INSTANCE instead of reading any data.

Use case example:
A window position is stored in by the EEL. The position is invalidated before the window is moved. On
moving end, the new position is stored again. In case of power fail during window moving, the application

will know by the EEL return R_EEL_ERR_NO_INSTANCE, that there was a problem during window moving

and the window position need to be calibrated new.

From implementation point of view, the invalidation command is very similar to the write process as
described in Section 4.5.2, “R_EEL_CMD_WRITE — DS write ”. In fact, both commands use the same
process.

The configuration and the returned data are identically to 4.5.2, “R_EEL_CMD_WRITE — DS write ”
except the following:

Table 13: Configuration difference for DS invalidation (compared to DS Write)

Request structure element Data Comment

command_enu R_EEL_CMD_INVALIDATE DS invalidation command

address_pu08 -

4.5.7 R_EEL_CMD_INVALIDATE_IMM — Immediate DS invalidation

From functionality point of view, this command exactly matches the invalidation command of Section
4.5.6, “R_EEL_CMD_INVALIDATE — DS invalidation”.

The difference is a higher priority of the immediate command. So, an immediate command can interrupt a
normal priority operation.

The configuration and the returned data are identically to Section 4.5.2, “R_EEL_CMD_WRITE — DS
write ” except the following:

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 76
User Manual

Table 14: Configuration difference for DS invalidation (compared to DS Write)

Request structure element Data Comment

command_enu R_EEL_CMD_INVALIDATE_IMM
Immediate DS invalidation
command

address_pu08 -

4.5.8 R_EEL_CMD_FORMAT — EEL Pool Format

The Data Flash contents must have the correct format in order to enable successful operation of the EEL.
On the one hand, formatting can be done by an external tool chain: A reference contents is written to the
Data Flash, e.g. using a flash programmer or debugging tool chain. On the other hand, the EEL provides
the format command for that.

Note:
The format command overwrites any potential data in the EEL pool, which is then lost.

Differing from the read/write-related commands; this command is bound to slightly different conditions:

 Format is a singular command. No other user or background operation may be executed. This is

ensured after the start-up processing, when the operation status is R_EEL_IDLE or R_EEL_PASSIVE

(see Section 3.6, "Driver Status").

 The command may also be executed when the start-up processing failed (operation status is

R_EEL_PASSIVE).

Table 15: Configuration of the request structure for the format command

Request structure element Data Comment

command_enu R_EEL_CMD_FORMAT Format command.

address_pu08 -

identifier_u16 -

offset_u16 -

length_u16 -

status_enu -

This is an output member. It
contains the status of the
command during and after the
execution. Possible values are
described in the next table.

Table 16: Possible statuses of format command returned to status_enu

Status Class Background and handling

R_EEL_OK normal

meaning Command finished successfully.

reason -

remedy -

R_EEL_BUSY <*1> normal

meaning Command started successfully.

reason -

remedy -

R_EEL_ERR_ACCESS_LOCKED
<*1>

error meaning
Execution of the requested command is
rejected.

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 77
User Manual

reason

The library internal status does not allow
execution of the command.

The operation status is not

R_EEL_OPERATION_IDLE or

R_EEL_OPERATION_PASSIVE.

remedy
Stop the emulation and investigate in the root
cause.

R_EEL_ERR_FLASH_ERROR error

meaning
The emulation should be considered as defect
as some Flash contents could not be erased or
written.

reason
A background Flash erase or write operation
ended with an error. The Flash range has no
defined status, allowing using it later on.

remedy
Stop the emulation and investigate in the root
cause.

R_EEL_ERR_INTERNAL <*2> error

meaning
A library internal problem occurred, that cannot
be related to a concrete root cause. The library
will be locked.

reason
Some library internal checks that should never
fail, failed. These can be checks on hardware or
software values.

remedy

Stop emulation and investigate the root cause.

In some cases, e.g. in case of external
influence on the EEL or FDL variables or the
Flash hardware (e.g. caused by wild running
application pointers or PC), re-initialization of
the FDL and EEL may help.

A reasonable proceeding might be:

During development:
Stop the emulation and investigate in the root
cause.

In the field:
2~3 times try to re-initialize the library (Or reset
the device). If the problem still exists, stop the
emulation and investigate in the root cause.

The command status can be updated by the command-initiating function R_EEL_Execute as well as by

the handler function R_EEL_Handler. The notes describe, which status value can be set by which

function:

<*1>: Value can be set by R_EEL_Execute only.

<*2>: Value can be set by both functions.

No note: Value can be set be R_EEL_Handler only.

4.5.9 R_EEL_CMD_CLEANUP — EEL Pool Clean-up

During normal EEPROM emulation, the EEL pool will be filled with DSs, containing the last DS instance
and so, important data. Furthermore, many elder DS instances with no longer relevant data will exist. The
Clean-up command takes care for deleting the elder DS instances from the ring buffer and thereby
temporarily increases the available free EEL pool space for new DS instances.

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 78
User Manual

Note:
The clean-up command will just forward library internal pointers and end immediately. Triggered by that,
the supervision process—running when the EEL is idle—will trigger new refresh and prepare processes
until the complete ring buffer is updated once.

Differing from the read/write related commands; this operation is bound to slightly different conditions:

 Clean-up is a singular command. No other user or background operation may be executed. This is

ensured after the start-up processing, when the operation status is R_EEL_IDLE (see Section 3.6,

"Driver Status").

 The request status will be updated by R_EEL_Execute to the final value. Although further handling

of the command itself by the handler is not required, this command has the impact on the system, that
it will be busy for a longer time with updating the pool. So, the operational status will change to

R_EEL_BUSY.

Possible use cases are:

 Remove temporary secret data from the emulation in order to avoid attacks to that data from outside.

 Prepare as much as possible free space in the pool for high frequent data write without the time to
prepare new space in between.

Table 17: Configuration of the request structure for the Clean-up command

Request structure element Data Comment

command_enu R_EEL_CMD_CLEANUP Clean-up command.

address_pu08 -

identifier_u16 -

offset_u16 -

length_u16 -

status_enu -

This is an output member. It
contains the status of the
command during and after the
execution. Possible values are
described in the next table.

Table 18: Possible statuses of Clean-up command returned to status_enu

Status Class Background and handling

R_EEL_OK normal

meaning Command finished successfully.

reason -

remedy -

R_EEL_ERR_ACCESS_LOCKED error

meaning
Execution of the requested operation is
rejected.

reason

The library internal status does not allow
execution of the command.

 The operation status is not

R_EEL_OPERATION_IDLE.

 No data instance stored to the EEL pool
(e.g. immediately after Format command
execution)

EEPROM Emulation Library - Type T01, European Release Application Programming Interface (API)

R01US0116ED0201 79
User Manual

remedy

Stop the emulation and investigate in the root
cause.

 Fix EEL handling flow

 Store data to the EEL pool (Write
command) before execution of Clean-up

EEPROM Emulation Library - Type T01, European Release Library Setup and Usage

R01US0116ED0201 80
User Manual

Chapter 5 Library Setup and Usage

This chapter describes the library set-up and usage in the final application. Beside the API, it is important
to understand the library modules and dependencies, build conditions and constraints as well as timing
conditions.

5.1 File Structure

The library is delivered as a complete compile-able sample project which contains the EEL and FDL
libraries and in addition an application sample to show the library implementation and usage in the target
application.

The application sample initializes the EEL and does some dummy data set Write and Read operations.

Differing from former EEPROM emulation libraries, this one is not realized as a graphical IDE related
specific sample project, but as a standard sample project which is controlled by make files.

Following that, the sample project can be built in a command line interface and the resulting elf file can be
run in the debugger.

The FDL and EEL files are strictly separated, so that the FDL can be used without the EEL. However,
using EEL without FDL is not possible.

The delivery package contains dedicated directories for both libraries containing the source and the
header files.

5.1.1 Overview

The following picture contains the library and application related files:

The library code consists of different source files, starting with R_FDL/R_EEL_...The files shall not be
touched by the user.

The file R_FDL/R_EEL.h is the library interface functions header file. The interface parameters and types
are defined in the file R_FDL/R_EEL_Types.h.

The library must be configured for compilation. The files FDL/EEL_Cfg.h contain defines for that. As these
are included by the library source files, the files contents may be modified by the user, but the file name
may not.

Figure 20: Library and application file structure

Libray

EEL_...c

EEL_...c
R_FDL_...c

R_EEL_...c

Source Code

Libraries

User

FDL_Descriptor.c

EEL_Descriptor.c

EEL_...c

EEL_...c

App....c

Describtors

Passed to the

library

Source Code

Application

R_FDL.h

R_FDL_Types.h

R_EEL.h

R_EEL_Types.h

FDL_Cfg.h

EEL_Cfg.h

Library Files – Fix, may not be touched by the user

Library pre-compile configuration – File name fix, File content user configurable

Application (User) Code – Completely in the hand of the user

Library

Configuration

API declaration

FDL_Descriptor.h

EEL_Descriptor.h

EEPROM Emulation Library - Type T01, European Release Library Setup and Usage

R01US0116ED0201 81
User Manual

Caution:
Wrong configuration of the EEL/FDL might lead to undefined results.

FDL/EEL_Descriptor.c and FDL/EEL_Descriptor.h do not belong to the libraries themselves, but to the
user application. These files reflect an example, how the library descriptor variables can be built up which
need to be passed with the functions R_FDL/R_EEL_Init to the FDL/EEL for run-time configuration (see
Section 4.2, “Runtime Configuration”).

The structure of the descriptor is passed to the user application by R_FDL/EEL_Types.h, while the value
definition should be done in the file FDL/EEL_Descriptor.h. The constant variable definition and value
assignment should be done in the file FDL/EEL_Descriptor.c.

If overtaking the files FDL/EEL_Descriptor.c/h into the user application, only the file
FDL/EEL_Descriptor.h need to be adapted by the user, while FDL/EEL_Descriptor.c may remain
unchanged.

5.1.2 Directory Structure and Files

The following table contains all files installed by the library installer:

 Files in red belong to the build environment, controlling the compile, link and target build process

 Files in blue belong to the sample application

 Files in green are description files only

 Files in black belong to the FDL and EEL (in the separate directories for EEL and FDL)

Table 19: Installed directory structure

root

Release.txt Installer package release notes

root\make

GNUPublicLicense.txt Make utility license file

libiconv2.dll DLL-File required by make.exe

libintl3.dll DLL-File required by make.exe

make.exe Make utility

ReadMe.txt Containing link to retrieve the make source code

Setup.exe Make setup file

root\<device name>\compiler

Build.bat Batch file to build the application sample

Clean.bat Batch file to clean the application sample

Makefile Makefile that controls the build and clean process

root\<device name>\<compiler>\sample

eelapp_main.c Main source code

eelapp.h EEPROM emulation sample code

eelapp_control.c EEPROM emulation sample code

target.h target device and application related definitions

r_typedefs.h
Type definitions for standard types. May be removed
if the types are already defined in the application or
by the compiler

fdl_cfg.h
Header file with definitions for library setup at
compile time

EEPROM Emulation Library - Type T01, European Release Library Setup and Usage

R01US0116ED0201 82
User Manual

root\<device name>\<compiler>\sample

eel_cfg.h
Header file with definitions for library setup at
compile time.

fdl_descriptor.h
Descriptor file header with the run-time FDL
configuration. To be edited by the user.

fdl_descriptor.c

Descriptor file with the run-time FDL configuration.

Using defines of FDL_Descriptor.h. Should not be
edited by the user.

fdl_user.h
Header file for library related application functions,
which may be edited by the user

fdl_user.c
Library related application functions, which may be
edited by the user

eel_descriptor.h
Descriptor file header with the run-time EEL
configuration. To be edited by the user.

eel_descriptor.c Descriptor file with the run-time EEL configuration.

device header files GHS:

df<device number>_0.h

df<device number>_irq.h

io_macros_v2.h

IAR:

ior_7f< device number>.h

REC:

iodefine.h

start-up files GHS:

dr<dev. num.>_start-up.850

IAR:

cstart-up.s85

REC

cstart.asm

vecttbl.asm

linker directive file GHS:

dr<dev. num.>.ld

IAR:

lnkr7f<dev. num.>.icf

layout.icf

REC:

dr<dev. num.>.dir

root\<device name>\<compiler>\sample\FDL

r_fdl.h Header file containing function prototypes of the
library user interface.

EEPROM Emulation Library - Type T01, European Release Library Setup and Usage

R01US0116ED0201 83
User Manual

root\<device name>\<compiler>\sample\FDL

r_fdl_types.h Header file containing calling structures and error
enumerations of the library user interface.

r_fdl_mem_map.h Header file containing memory segment mapping
directives

root\<device name>\<compiler>\sample\FDL\lib

r_fdl_env.h Library internal defines for accessing the Flash
programming hardware and Data Flash related
definitions.

r_fdl_global.h Library internal defines, function prototypes and
variables.

r_fdl_hw_access.c Source code for the library HW interface.

r_fdl_user_if.c Source code for the library user interface and
service functions.

root\<device name>\<compiler>\sample\EEL

r_eel.h Header file containing all function prototypes of the
library user interface.

r_eel_types.h Header file containing calling structures and error
enumerations of the library user interface.

r_eel_mem_map.h
Header file containing memory segment mapping
directives

root\<device name>\<compiler>\sample\EEL\lib

r_eel_global.h Library internal defines, function prototypes and
variables

r_eel_basic_fct.c EEL internal functions & state machine

r_eel_user_if.c EEL user interface functions

5.2 Library Resources

5.2.1 Linker Sections

The following sections are EEPROM emulation library related:

 R_FDL_TEXT

FDL code section, containing the hardware interface and user interface

 R_FDL_CONST

FDL data section, containing library internal constant data

 R_FDL_DATA

FDL Data section containing all FDL internal variables

 R_EEL_TEXT

EEPROM Emulation Library - Type T01, European Release Library Setup and Usage

R01US0116ED0201 84
User Manual

EEL code section containing the state machine, user interface and FAL interface

 R_EEL_CONST

EEL data section, containing library internal constant data

 R_EEL_DATA

EEL Data section containing all EEL internal variables

5.2.2 Stack and Data Buffer

The EEL utilizes the same stack as specified in the user application. It is the developer’s duty to reserve
enough stack for the operation of user application, EEL and FDL. With source code library it is not
possible to give an exact value for stack consumption. Furthermore, the library usesfuntion pointers,
making a static analysis of the stack consumption difficult. Thus, it is recommended to evaluate the stack
consumption dynamically in the user application.

The data buffer used by the EEL refers to the RAM area in which data is located that is to be written into
the data flash. This buffer needs to be allocated and managed by the user.

Note:

In order to allocate the stack and data buffer to a user-specified address, please utilize the link directives
of your framework.

5.3 Library Timings

In the following important aspects of the EEL timings are presented. Please note that the concrete
function and command execution times can vary and are subject to many factors of the target system like
compiler setup and current EEL pool status. Especially, it needs to be considered whether the library is in
start-up phase or has already been started up.

In any case, three important times need to be considered when utilizing the EEL into a user application:

 Operation invocation latency:

This is the time from calling R_EEL_Execute to issue the command and start an operation (e.g.

read, write, etc.) up to the point where the process of the operation is really started.
This latency is determined by execution of higher priority operations but also by the delay to suspend
a lower priority operation.
Some process steps of lower priority operations cannot be suspended because they started Flash
write operations (erase can immediately be suspended).
The 1st steps of the DS Write process until the user data is written cannot be suspended for higher
priority Flash write operations because then the data consistency would be endangered.
So, these process steps must be finished and by this determine the invocation latency of a higher
priority operation

 Handler execution time:

The R_EEL_Handler execution time should be typically below 100us on a 100MHz device in order

to realize a user system with reliable timing. During normal operation this can be reached, but in the
start-up phase the execution times will be longer as complex calculations and searches are executed.
In the start-up phase this time is affected by many conditions and so can only be measured for a
reference system, whereas the real timing needs to be evaluated by the customer in the user
application.
Issues affecting this time are e.g. DS Size, higher priority operations on-going, pool size, etc.

 Overall command execution time:
This is the time to execute a complete command, like user DS write, user DS Read from invocation to
its completion.
This time is affected by many conditions and so can only be measured for a reference system,

EEPROM Emulation Library - Type T01, European Release Library Setup and Usage

R01US0116ED0201 85
User Manual

whereas the real timing needs to be evaluated by the customer in the user application.
Issues affecting this time are e.g. Flash Write time (in the evaluations also the worst case time need
to be considered), DS Size, operation invocation latency, higher priority operations on-going, etc.
Hence, this time is not mentioned again in the upcoming sections.

5.3.1 Library Timings during Start-up

The library needs to execute various process steps according to the implementation concept (see start-up

phase description). The R_EEL_Handler execution time during these steps will be partially more than

100µs, which needs to be considered in the library implementation concept.

Note:
From implementation point of view, the start-up phase will end when the operational status changes from

R_EEL_OPERATION_STARTUP to R_EEL_OPERATION_BUSY/IDLE. Then all start-up operations are

finished.
From timing point of view, the start-up phase will end when the access status changes from

R_EEL_ACCESS_READ_WRITE to R_EEL_ACCESS_UNLOCKED. The remaining start-up operations are

executed in background and transparent for the user.

5.3.1.1 Early Read Command

A read command executed during the library start-up phase while the RAM table is not (completely) filled
is called early read.

Operation Invocation Latency

The maximum latency of the read operation invocation by the R_EEL_Execute function is defined by

the R_EEL_Handler execution time.

Handler Execution Time

The data of a DS with a certain ID to be read is found as follows:

 If the ID-X RAM table entry belonging to the ID is already filled, the entry addresses the data and the
data can be read quickly.

 If the ID-X RAM table entry belonging to the ID is not yet filled, the DS is searched by parsing the
REF entries from the youngest one backwards until a valid DS with the ID is found.

According to the possibly necessary REF entry parsing, the early read may take a longer time (more than
100us) and requires 100% CPU load. Furthermore, the data read from Flash itself needs some time. So,
the required time can already exceed 100µs for DS sizes > 32 Bytes.

5.3.1.2 Early Immediate Write Command and related

The following commands are closely related to an early immediate write and can be treated equally from
a timing perspective:

 Early immediate write

 Early immediate invalidate

 Early immediate incremental write

The early write sequence does not differ to the normal write. Generally, a write operation needs to wait for
the end of a preceding immediate operation. Trying to invoke an immediate operation before will be
rejected.

Operation Invocation Latency

The maximum latency of the write operation invocation by the R_EEL_Execute function is defined by

the R_EEL_Handler execution time.

EEPROM Emulation Library - Type T01, European Release Library Setup and Usage

R01US0116ED0201 86
User Manual

Furthermore, after invocation, starting of the write/invalidation process need to wait for

 The end of a higher priority read command.

 The end of blocking by a lower priority DS Write process invoked by user DS Write/Invalidation
command or background Refresh process. In order to ensure data and ring buffer consistency, any
DS Write process need to block higher priority Write commands until the process step to write the
user data is reached.
The blocking time is defined by 5 times a 1-word Data Flash Write (write SOR and RWP; possibly
activate a new block by writing A0, RWP and A1.

Handler Execution Time

The execution of R_EEL_Handler time should be <100us on a 100MHz device.

5.3.1.3 Early Write Command and related

The following commands are closely related to an early write and can be treated equally from a timing
perspective:

 Early write

 Early invalidate

 Early incremental write

The early write sequence does not differ to the normal write. Generally, a write operation needs to wait for
the end of a preceding write or invalidation operation. Trying to invoke a write before will be rejected.

Operation invocation latency

The maximum latency of the write operation invocation by the R_EEL_Execute function is defined by

the R_EEL_Handler execution time.

Furthermore, after invocation, starting of the write/invalidation process need to wait for

 The end of a higher priority read, immediate write or immediate invalidation command.

 The end of blocking by a lower priority DS Write process invoked by user DS Write/Invalidation
command or background Refresh process. In order to ensure data and ring buffer consistency, any
DS Write process need to block higher priority Write commands until the process step to write the
user data is reached.
The blocking time is defined by 5 times a 1-word Data Flash Write (write SOR and RWP; possibly
activate a new block by writing A0, RWP and A1.

Handler execution time

The execution time should be <100us on a 100MHz device.

5.3.2 Library Timings during normal Operation

If not mentioned otherwise, in the normal operation phase the execution time of the R_EEL_Handler

function should always be below 100us on a 100MHz device.

An on-going Flash erase will not block any user command. The erase will be suspended and later on
resumed. Anyhow, after a configurable number of times suspending, the warning

EEL_ERR_ERASESUSPEND_OVERFLOW is returned in order to inform the user to give sufficient time to

complete the erase operation rather than extremely frequently invoking read/write/invalidation operations.

5.3.2.1 Read Command

Operation Invocation Latency

EEPROM Emulation Library - Type T01, European Release Library Setup and Usage

R01US0116ED0201 87
User Manual

The maximum latency of the Read operation invocation by the R_EEL_Execute function is dominated

by the R_EEL_Handler execution time. However, the data read from Flash itself also needs some time.

So, the time can exceed 100µs for DS sizes > 32 Bytes.

Handler Execution Time

Typically the handler execution time will be below 100us.

5.3.2.2 Immediate Write Command and related

The sequences of immediate write, immediate invalidate and immediate incremental write commands
during normal operation do not differ from the early commands during start-up. So please refer to Section
5.3.1.2.

5.3.2.3 Write Command and related

The sequences of write, invalidate and incremental write commands during normal operation do not differ
from the early commands during start-up. So please refer to Section 5.3.1.3.

5.3.2.4 Format Command

The Format command is considered as an exclusive command and can only be executed if the

background state machine is R_EEL_OPERATION_IDLE or R_EEL_OPERATION_PASSIVE. So,

invocation by R_EEL_Execute is rejected until this state is reached.

Operation Invocation Latency

The operation is invoked without latency as no other operations are ongoing.

Handler Execution Time

The execution of R_EEL_Handler time should be <100us on a 100MHz device.

5.3.2.5 Clean-up Command

The Clean-up command is considered as an exclusive command and can only be executed if the

background state machine is R_EEL_OPERATION_IDLE. So, invocation by R_EEL_Execute is

rejected until this state is reached.

Operation Invocation Latency

The operation is invoked without latency as no other operations are ongoing.

Handler Execution Time

The Clean-up command only sets an internal variable to more often call the refresh and prepare

processes in background. The execution of R_EEL_Handler time will be <100us on a 100MHz device.

EEPROM Emulation Library - Type T01, European Release Library Setup and Usage

R01US0116ED0201 88
User Manual

5.4 Library Setup and Integration

There are several ways to approach the EEPROM emulation concept and the integration into the user
application.

It is for sure important to understand the basics of the RENESAS EEPROM emulation concept and the
library architecture, design and implementation before starting the actual integration of the library into the
target application. Such integration requires careful consideration of the libraries features and
requirements as well as the user application requirements.

A few things worth mentioning in this context are listed in the following:

 Start-up time until 1st data read and write

 CPU load by the EEL, during library start-up and during normal operation

 Where to call the EEL_Handler function

 Where to call the EEL_Execute function

 How to map application variables to the EEL IDs

 ...

Several importance aspects are collected in the following sections. Please go through them carefully
before setting up the library configuration for your own target application.

5.4.1 EEL Pool Configuration

As mentioned in Section 2.2, “Data Flash Pool Structure”, the available Data Flash space is separated in
different pools. The part used by the EEL is the EEL pool. The pools are configured by the FDL descriptor
(See Section 4.2.1, “FDL Runtime Configuration Parameters”).

The EEL organizes the pool as a set of virtual blocks of equal size and uses this pool as a kind of ring
buffer (See Section 4.2.2, “EEL Runtime Configuration Parameters”). The virtual block size is configurable
by the EEL descriptor in terms of number of physical blocks. The major conditions for configuration are:

 EEL pool size = “number of virtual blocks” * “size of virtual blocks

 Minimum number of virtual blocks = 4

 Minimum virtual block size = Maximum DS size + REF entry size + block header size + 4Bytes
However, from practical usage point of view, the virtual block size ought to be configured bigger (See
Section 5.4.3, “EEL Data Set Configuration”)

5.4.2 Endurance Calculation

The Data Flash has a limited endurance (number of erase cycles), which is furthermore dependant of the
expected data retention of the physical data. As the library organizes data storage in a kind of ring buffer,
the usage of the Flash blocks is balanced in a way, that all Flash blocks of the EEL pool will have a
similar number of erase cycles. This avoids “hot spots” with blocks of high erase cycles.

By storing multiple DS instances in the ring buffer, the EEL architecture allows storing certain DSs much
more often than the physical Flash endurance would allow. This, requiring that other DSs are stored less
often.

It is very important to judge if the EEL pool size and Data Flash endurance are sufficient to store the
available user data the required number of times. At the final end, this need to be proven by the customer
as much conditions influence the EEL, such as fragmentation of user data, storage sequence…
Renesas provides a tool for a first estimation of the Data Flash endurance, based on a chosen EEL and
user data configuration. This tool is called “Endurance calculation sheet”. It is individual for each EEL
type. If not available in the installer package of download page, please request it from the Flash support.

Note:
The endurance calculation sheet is a very helpful tool, but still the result is just an estimation and
cannot be absolute accurate because the result depends on different conditions like e.g. the
sequence of the written Data sets. So, the result must be confirmed in the real user application

EEPROM Emulation Library - Type T01, European Release Library Setup and Usage

R01US0116ED0201 89
User Manual

5.4.3 EEL Data Set Configuration

Important consideration is the data fragmentation. For each application there is a need to find a balance
between small data granularity, resulting in small DSs with different IDs or few big DSs.

 Each DS instance requires a REF entry. This is additional data management overhead to be stored

 Decreasing the Data Flash endurance available for the user data

 Decreasing the data storage and read performance

 Big DSs may often not fit into the remaining blank space of a current active virtual block, resulting in
activation of the next block for storage, the remaining space in the current block is lost for further data
storage in the current ring buffer loop.

 Faster user data storage and read due to less data management overhead

 More unused Data Flash space in full blocks

Important tool to find the right balance with respect to Data Flash usage is the “Endurance calculation
sheet” (See last Section). However, some basic hints may help to find the correct configuration.

 Separate the data which is written at different times in the application lifecycle. This ensures that only
the data is written which has really been updated. E.g.:

 Store ODO meter data (Updated very often) separated from any other data to avoid that the other
data is continuously re-written without being updated

 Merge configuration data (only written few times) to few DSs with reasonable size

 Use the incremental write commands to store user data only, when it has really changed

 Don’t configure often written DSs too big in order to avoid unused space in the virtual blocks.

 E.g.:

 DS has max. possible size:
In average on each storage ½ size of the current virtual block size is lost

 DS has ½ of max. possible size:
In average on each storage ¼ size of the current virtual block size is lost

 Thus, it is recommended to choose the max. DS size less than ½ of max possible size

5.4.4 Distributing Data between FDL and EEL

The EEL is designed as a standard solution for storage of dynamic data to the Data Flash. It provides
certain features and is bound to conditions and limitations of the library concept.

In case of very specific requirements that cannot be fulfilled by the library or purely static data, it is
possible to build a solution for data storage by using the FDL only. This solution can be operated together
with the EEL, however, is bound to certain conditions, such as:

 The FDL based solution may have no relation to the EEL. Especially, it may not impact the EEL
operation, e.g. by modification of resources used by the EEL (RAM sections, Flash hardware, …)

 FDL access and EEL access by the user application must be synchronized as the EEL always
assumes to be the only FDL usage master

 EEL must be in non-busy operational status (Not R_EEL_OPERATION_STARTUP,
R_EEL_OPERATION_BUSY) when FDL operation is started by the user application

 The user application triggered FDL operation must be finished when the EEL is handled (Any
EEL function is called)

 Re-entrancy and function call nesting of any EEL or FDL function is forbidden at all (See Section
6.1, “Function re-entrancy” and 6.2, “Task switches, context changes and synchronization
between EEL functions”)

EEPROM Emulation Library - Type T01, European Release Library Setup and Usage

R01US0116ED0201 90
User Manual

5.4.5 R_EEL_Handler Calls

The handler function R_EEL_Handler the complete EEL state machine. Once an operation is initiated, its
status need to be controlled and the the states need to be forwarded to complete the operation. This is
done by regularly calling the handler function from the application.

In order to achieve an appropriate operation performance, the function need to be called frequently. The
calling style depends on the user application architecture. Major possible solutions are:

 Asynchronous to EEL operation invocation by EEL_Execute in an operating system idle task

In a normal system the CPU load is balanced in a way, that a sufficient idle time is available.
By calling from the idle task loop, the handler can be called frequently and the EEPROM Emulation
performance is quite high. However, as the idle time is not always deterministic, also the emulation
performance might not be deterministic enough.

 Advantages:
+ Usually high emulation performance
+ No blocking of other user application operations

 Disadvantages:
- Not always deterministic

 Asynchronous to EEL operation invocation by EEL_Execute in a timed task

By calling in a timed task a deterministic performance can be reached. However, as the Flash
operations execution (Flash Write) usually require less than 500us, for best possible performance the
handler should be called in very short time slices. As these are usually not available, the performance
of the emulation decreases.

 Advantages:
+ Deterministic

 Disadvantages:
- Lower emulation performance

 Synchronous with EEL operation invocation by EEL_Execute

The handler is called in the same function context as EEL_Execute. The handler call is repeated in
this function in a loop until the EEL operation has finished.

 Advantages:
+ Highest performance

 Disadvantages:
- function execution time is high and not deterministic

 In the Flash interrupt context

The handler is called in the Flash interrupt context. In that case the function is not polled, but exactly
called when required to finish a user or background operation. Therefore, the library must be
configured to support the Flash interrupt (See 5.1, “Pre-compile configuration”)

 Advantages:
+ Highest performance

 Disadvantages:
- function execution time in interrupt context
- Synchronization between handler call in interrupt context and other EEL function in tasks
- handler must be called in other timed tasks to do bit error checks
 (See 3.4, “Background Operations”)

EEPROM Emulation Library - Type T01, European Release Library Setup and Usage

R01US0116ED0201 91
User Manual

5.4.6 Reset Robustness Considerations

EEPROM emulation in the automotive market is not only operated under normal conditions, where stable
function execution can be guaranteed. In fact, several failure scenarios should be considered.

Most important issue to be considered is the interruption of a function e.g. by power fail or Reset.

Differing from a normal digital system, where the operation is re-started from a defined entry point (e.g.
Reset vector), the EEPROM emulation modifies Flash cells, which is an analogue process with
permanent impact on the cells. Such an interruption may lead to instable electrical cell conditions of
affected cells. This might be visible by undefined read values (read value != write value), but also to
defined read values (blank or read value = write value). In each case the read margin of these cells is not
given. The value may change by time into any direction.

This is considered in the library concept and tested by various interruption, reset and power fail scenarios
including logical as well as stress tests with random interruptions. Nevertheless, it is up to the user of the
library to test and ensure (reset) robustness of the EEL in the user application context by appropriate test
scenarios.

5.4.7 ECC Errors

The Renesas Flash technology is very robust and allows reading stable data values over a very long data
retention period.

Additionally, the Data Flash is protected by Error Correction Code (ECC). This means that together with
32bit of data, additional bits are stored. A dedicated decryption logic allows to at run-time - without any
delay visible to the user application – to detect and correct one wrong bit out of the data and ECC bits. 2
failing bits are detected but cannot be corrected. Reaction on multi-bit errors (>2bits) is not defined.
Signalling of SED or DED is possible but not ensured.

The signalling of single bit ECC errors (SEC) or double bit ECC errors (DED) can happen on different
ways. On the one hand it is possible to enable SEC and DED interrupts, on the other hand it is possible to
read error results without activation of interrupts. Last option is also supported by the underlying FDL,
which reads the data and returns an SED or DED error in the request structure (“Error polling”).

The ECC implementation is a very efficient mechanism to ensure stable data read values even though
possibly single data bits might get “weak” or flip e.g. due to exceeding the specified data retention period
by far.

The EEL basically uses the FDL read operation with “Error polling” in order to read EEL management
data, where it can be expected that ECC errors are present, e.g. caused by interrupted Erase/Write
operations to the Flash. The data and ECC errors are evaluated and so, stable user data is ensured even
in case of EEL operation interruption.

Additionally, the EEL uses the read mechanism to scan the Flash for SED errors in order to refresh the
Flash contents (See Section 3.4, “Background Operations”).

Differing from that, ECC errors in the user data are not expected, as stable conditions of the user data are
ensured by the EEL. So, and in order to improve the EEL read performance, the user data read
operations are executed directly by the CPU. Following that, in the unreasonable case of an ECC error, it
is possible that ECC error interrupts are issued. It is up to the user application to react appropriately on
such interrupts.

DED: User data is defect. The application should withdraw the data

SED: Data ought to be correct, but should be refreshed in a reasonable short time. It is recommended to
frequently call the R_EEL_Handler (will check 4Bytes of the ring buffer on each call, when the EEL is
idle), so that the error is also detected by the EEL and automatically corrected.

5.4.8 Relation between operation status and driver status

Important operation control signals are the status of a requested user operation and the driver status. The
following diagram shows the relationship between a requested operation and execution of background
operations.

EEPROM Emulation Library - Type T01, European Release Library Setup and Usage

R01US0116ED0201 92
User Manual

The handler call frequency significantly determines the EEL performance. As long as the driver or request
state is busy, the handler should be called with higher frequency. When the driver state is idle, the call
frequency can be reduced as then only cyclical bit error checks are done by the EEL. Then, on each
handler call one Flash word is checked.

5.5 Sample Application

Setting up a proper EEL configuration requires some hands on experience with the EEL. The best way
after initially reading the user manual will be testing the EEL application sample. The application sample
is shipped with the library installer and copied to a separate directory during installation (see Section 5.1,
"File Structure").

Note:
Before the first compile run, the compiler path must be configured in the application sample file “makefile”:

Set the variable COMPILER_INSTALL_DIR to the correct compiler directory.

In order to get a better feeling for the source code files, the request structure mechanism and the library
start-up behavior, the user should first execute and debug the existing sample. Later on, the sample might
be extended by further IDs and different data read and write sequences in order to come nearer to the
later application requirements (data set amount and size) and to get a feeling of the CPU load and
execution time during start-up and normal operation. After this exercise, it might be easier to understand
and follow the recommendations and considerations of this document.

The flow chart in Figure 22 represents the recommended EEL life cycle during device operation including
the API functions to be used. It can be separated into three phases:

 In the start-up phase, the EEL is initialized by R_EEL_Init and the background operation is started

by R_EEL_Startup.

 During normal operation, the foreground operations (user commands) are initiated synchronous to the
application, while the background handler task ought to be executed in a task, asynchronous to the
application (idle task, interrupt task, timed task).

 In the power down phase, the EEL is shut down. EEL_Handler needs to be executed until the

library status is passive. This is required in order to complete ongoing EEL processes.

Figure 21: Relation between operation status and driver status

Request state

Driver state

EEL_BUSY

EEL_OK

EEL_OPERATION_IDLE

EEL_OPERATION_BUSY

User operations request User operations finished, starting

background operations.

New user operation can be

requested

Background operations finished,

nothing to do except bit error

checking

EEPROM Emulation Library - Type T01, European Release Library Setup and Usage

R01US0116ED0201 93
User Manual

Device Start-up

The device boots and the application starts up. Usually, very soon some data sets need to be read. Then
the EEPROM emulation has some time to come up completely before the rest of the data needs to be
read (e.g. build up a RAM mirror) and written.

The example code below reads and writes data as soon as possible and then waits until the EEL is fully
operational and unlocked.

uint08_t buffer_au08[0x100];

r_eel_request_t myRequest_str;

r_eel_driver_status_t driverStatus_str;

r_eel_status_t ret;

/* -- *\

 Initialize the EEL

 - eel_RTConfiguration_str should have been set in EEL_Descriptor.c

* -- */

ret = R_EEL_Init (R_EEL_OPERATION_MODE_NORMAL, eel_RTConfiguration_str);

Figure 22: EEL life cycle

Device Start

R_EEL_Init

R_EEL_Handler

R_EEL_Execute

- read

- write

(- format)

R_EEL_...

(service

functions)

R_EEL_ShutDown

Device Power Down

Device power

down request?

Y

N

startup

phase

normal

application

operation

power

down

phase

frequent call of

R_EEL_Handler

R_EEL_Startup

System passive?

After user command

(read/write) finish,

background

operations (ring

buffer space

preparation, bit error

check) are executed.

Y

N

Function

serves user

commands and

background

operations

EEPROM Emulation Library - Type T01, European Release Library Setup and Usage

R01US0116ED0201 94
User Manual

if (R_EEL_OK != ret)

{

 /* Error handler */

}

ret = R_EEL_Startup();

if (R_EEL_OK != ret)

{

 /* Error handler */

}

/* -- *\

 Wait until we can read/write 1st data sets

* -- */

do

{

 R_EEL_Handler();

 R_EEL_GetDriverStatus (&driverStatus_str);

}

/* Wait until early read/write is possible (or error) */

while ((R_EEL_OPERATION_STARTUP == driverStatus_str.operationStatus_enu)

 && (R_EEL_ACCESS_LOCKED == driverStatus_str.accessStatus_enu));

/* Error check */

if (R_EEL_OK != driverStatus_str.errorStatus_enu)

{

 /* Error handler */

}

/* -- *\

 Early read/write operation

* -- */

myRequest_str.address_pu08 = (&buffer_au08[0]);

myRequest_str.identifier_u16 = 10u;

myRequest_str.length_u16 = 0x10u;

myRequest_str.offset_u16 = 0x13u;

myRequest_str.command_enu = R_EEL_CMD_READ;

R_EEL_Execute (&myRequest_str);

/* Wait until operation end */

while (R_EEL_BUSY == myRequest_str.status_enu)

{

 R_EEL_Handler();

}

/* Error check */

if (R_EEL_OK != myRequest_str.status_enu)

{

 /* Error handler */

}

myRequest_str.address_pu08 = (&buffer_au08[0]);

myRequest_str.identifier_u16 = 10u;

myRequest_str.command_enu = R_EEL_CMD_WRITE;

R_EEL_Execute (&myRequest_str);

/* Wait until operation end */

while (R_EEL_BUSY == myRequest_str.status_enu)

{

 R_EEL_Handler();

}

/* Error check */

if (R_EEL_OK != myRequest_str.status_enu)

{

EEPROM Emulation Library - Type T01, European Release Library Setup and Usage

R01US0116ED0201 95
User Manual

 /* Error handler */

}

/* -- *\

 Wait for fully operational and access unlock

* -- */

do

{

 R_EEL_Handler();

 R_EEL_GetDriverStatus (&driverStatus_str);

}

/* Wait until the system is completely up and running (or error) */

while (R_EEL_OPERATION_STARTUP == driverStatus_str.operationStatus_enu);

/* Error check */

if (R_EEL_OK != driverStatus_str.backgroundStatus_enu)

{

 /* Error handler */

}

/* -- *\

 Now the EEL is fully operational

* -- */

Normal Operation

When the device has passed the start-up phase and is in normal operation, the complete functionality is
available. The example code below reads and writes data sets.

r_eel_request_t myRequest_str;

/* -- *\

 read command example

* -- */

myRequest_str.address_pu08 = (uint8_t*)(&buffer_au08);

myRequest_str.identifier_u16 = 10u;

myRequest_str.length_u16 = 0x10u;

myRequest_str.offset_u16 = 0x13u;

myRequest_str.command_enu = R_EEL_CMD_READ;

R_EEL_Execute(& myRequest_str);

/* Wait until operation end */

while (R_EEL_BUSY == myRequest_str.status_enu)

{

 R_EEL_Handler();

}

/* Error check */

if (R_EEL_OK != myRequest_str.status_enu)

{

 /* Error handler */

 . . .

}

/* -- *\

 write command example

* -- */

myRequest_str.address_pu08 = (uint8_t*)(&buffer_au08);

myRequest_str.identifier_u16 = 10u;

myRequest_str.command_enu = R_EEL_CMD_WRITE;

R_EEL_Execute(&myRequest_str);

/* Wait until operation end */

while (R_EEL_BUSY == myRequest_str.status_enu)

EEPROM Emulation Library - Type T01, European Release Library Setup and Usage

R01US0116ED0201 96
User Manual

{

 R_EEL_Handler();

}

/* Error check */

if (R_EEL_OK != myRequest_str.status_enu)

{

 /* Error handler */

 . . .

}

Note:

Please note that the state of the command reported inside myRequest_str does not necessarily match

the internal state of the EEL driver, which can be obtained by means of the R_EEL_GetDriverStatus

function: Even if a command has finished, the driver might still be busy with background processes.

Therefore it is imperative to continue calling the R_EEL_Handler periodically, even if no commands are

pending.

Device Power Down

On power down, the user application should give the library time to finish background operations which
are under progress. This can be reached by using the service functions in the following way:

/* -- *\

 Request Library shutdown

* -- */

R_EEL_Shutdown();

/* -- *\

 Wait until all background processes are finished and the supervision

 gets passive

* -- */

do

{

 R_EEL_Handler();

 R_EEL_GetDriverStatus (&driverStatus_str);

}

while (R_EEL_OPERATION_PASSIVE != driverStatus_str.operationStatus_enu);

/* Error check */

if (R_EEL_OK != driverStatus_str. backgroundStatus_enu)

{

 /* Error handler */

}

5.6 Miscellaneous

5.6.1 MISRA Compliance

The EEL and FDL have been tested regarding MISRA compliance.

The used tool is the QAC Source Code Analyser which tests against the MISRA 2004 standard rules.

All MISRA related rules have been enabled. Findings are commented in the code while the QAC checker
machine is set to silent mode in the concerning code lines.

EEPROM Emulation Library - Type T01, European Release Cautions

R01US0116ED0201 97
User Manual

Chapter 6 Cautions

6.1 Function re-entrancy

All functions are not re-entrant. So, re-entrant calls of any EEL or FDL functions must be avoided.

6.2 Task switches, context changes and synchronization between EEL functions

All EEL functions depend on EEL global available information and are able to modify this. In order to
avoid synchronization problems, it is necessary that at any time only one EEL function is executed. So, it
is not allowed to start an EEL function, then switch to another task context and execute another EEL
function while the last one has not finished.

Example of not allowed sequence:

• Task1: Start an EEL operation with EEL_Execute

• Interrupt the function execution and switch to task 2, executing EEL_Handler function

• Return to task 1 and finish EEL_Execute function

As the EEL may not define critical sections which disable interrupts in order to avoid context changes and
task switches, this synchronization need to be done by the user application.

Note:
This limitation is valid also for FDL functions as well as for a mixture of EEL and FDL functions

6.3 EEL performance

The performance of the EEL operations strongly depends on the frequency of the handler calls. This
especially affects operations which require many Flash write operations until the operation is finished,
such as DS Write and background operations such as Start-up processing or Refresh.

As the typical Flash write operation needs less than 1ms, a lower handler call frequency significantly
reduces the operation performance.

See Section 5.4.5, “R_EEL_Handler Calls”

6.4 Concurrent Data Flash accesses

Depending on the user application scenario, the Data Flash might be used for different purposes, e.g. one
part is reserved for direct access by the user application (User Pool) and one part is reserved for
EEPROM emulation by the Renesas EEL (EEL Pool). The FDL is prepared to split the Data Flash into an
EEL Pool and a User Pool.

On splitted Data Flash, the EEL is the only master on the EEL pool, accesses to this pool shall be done
via the EEL API only.

The configuration of FDL pool and EEL pool (and resulting user pool) is done in the FDL descriptor.

See Section 4.2.1, “FDL Runtime Configuration Parameters”.

6.4.1 User Data Flash access during active EEPROM emulation

While the EEL is active, any direct Data Flash access like Data Flash Read by the CPU or execution of
FDL functions are not allowed at all!

The EEL can at each time erase or write Data Flash. During these operations Data Flash is not
accessible for Read operations, even not on other address ranges. Furthermore, execution of FDL
operations like Flash Erase or Write would be blocked.

Following that, EEL operations and user accesses to Data Flash must be synchronized. This has to be
done by the application, considering the EEL as the default master. If the user application wants to get

EEPROM Emulation Library - Type T01, European Release Cautions

R01US0116ED0201 98
User Manual

access rights, the EEL need to be suspended beforehand. The API contains the functions

R_EEL_SuspendRequest and R_EEL_ResumeRequest for this. See Section 3.9, “Suspend / Resume”.

6.4.2 Direct access to the Data Flash by the user application by DMA

Basically, DMA transfers from Data Flash are permitted, but need to be synchronized with the EEL. Same
considerations apply as mentioned in the last Section for accesses by the user application.

6.5 Entering power safe mode

Entering power safe modes is delayed by the device hardware until eventually ongoing Data Flash
operations are finished.

In order to gain a proper synchronisation between EEL and Power safe mode entering, the library
operations must be idle or suspended before entering the mode (Please check R_EEL_Suspend API
description).

Note:
The user application need to ensure that the integrity of all resources required by EEL and FDL is
retained when entering a power save mode. This is required if after leaving the power save mode
the libraries shall continue operation without complete re-initialization. This includes:
- The FDL and EEL data in the library RAM section
- IDX table
- Flash programming hardware internal registers and memory

6.6 Library behaviour after operation interruption

Library operation might be suddenly interrupted e.g. by a power fail. Depending on the interrupted
operation (E.g. Flash erase, write) the behaviour of the library on the next start-up might differ:

 Library was idle or at the end of an operation:

Normal library start-up

 Flash block erase or Flash block header operation was interrupted:

Eventually it is necessary that the library fixes a block status (e.g. block activation or block erase
was interrupted). In this case additionally Flash write operations might take some more time and so,
slightly enlarge the time until the driver leaves the state R_EEL_OPERATION_STARTUP.

Furthermore, the driver will return the warning EEL_ERR_FIX_DONE as an indication that a fix was
done. The library operation continues normal, the application need not react on the warning.

 DS Write was interrupted

If the DS write proceeded up to writing the EOR0, the DS is valid. If the EOR1 has not been written,
the DS will automatically be refreshed.

In this case additionally Flash write operations might take some more time and so, enlarge the time
until the driver leaves the state R_EEL_OPERATION_STARTUP.

 DS Write was interrupted

If the DS write did not proceed up to writing the EOR0, the DS is invalid. The start-up process will
recognize the block as full and continue operation in the next block. This DS instance is not
considered on DS read.

EEPROM Emulation Library - Type T01, European Release Cautions

R01US0116ED0201 99
User Manual

6.7 Application update issues

When a user application shall be updated but the EEPROM emulation data shall be used also further on,
different constraints need to be considered with respect to the ROM ID-L table.

6.7.1 Change DS length

On application update it might be required to change the DS length of some IDs. This is automatically
done, when the ID-L table in ROM is updated. After that update all DS’s are read/written with the new
length and also the Refresh process copies the data with the new length:

 Old length < new length

Data is extended by any data stored after the DS (data of the next DS = undefined)

Note:
When the read data with the new bigger length overlaps into a blank Flash range, this cannot
be identified by the EEL. So, random data may be read and furthermore, the read attempt will
result in an ECC error (See Section 5.4.7, “ECC Errors”). Depending on the ECC error
notification configuration of the device, an error notification by exception/interrupt might be
issued by the device ECC decoder logic. Thus, the user application shall refrain from reading
more data than it was available before length change.

 Old length > new length

Data is cut to new length

The DS length is not stored within the DS, but in the ID-L table. When the table is updated, the
information of the former DS size get lost. So, the library provides no measure to get the length of the last
stored DS instance. This information must be provided otherwise if required

Possible options to store the DS lengths are:

 Store the length of the DS in the DS itself

If the length is stored in the 1st Bytes, a read operation on the 1st Bytes only can be done.

 Reserve a special DS only containing all available DS IDs and the length information

 Protect the DSs with a checksum

Calculating the checksum from data with a different length result in a checksum differing from the
stored one (not 100% safe!).

6.7.2 ID-L ROM table not available

Scenario: The boot loader as well as the application needs to access EEPROM emulation data with Read
as well as Write. While the application requires frequent data write, the boot loader will only store a very
limited amount of data, e.g. to store the application update process state.

The ROM ID-L table containing all IDs available in the emulation belongs to the application. On
application update it needs to be removed together with the application. After removal of the ID-L table,
normal operation of the EEPROM emulation cannot continue. In order to continue at least with limited
functionality, the library provides a limited operation modes to survive this situation.

The mode configuration is done by the initialization function R_EEL_Init. In order to change the mode,

R_EEL_Init need to be called again.

EEPROM Emulation Library - Type T01, European Release Cautions

R01US0116ED0201 100
User Manual

 EEL_OPERATION_MODE_NORMAL

Full (normal) operation of the library, requires the complete ID-L table in ROM

 EEL_OPERATION_MODE_LIMITED

Operation with limited ID-L-table in ROM, containing only the IDs, required by the boot loader. The
DS Read and Write work on the ID-L table, so there is no issue with them. However, the Refresh
process need to copy all needed DS instances in the affected block.
The length information of DS instances in the block whose IDs are not listed in the ID-L table are not
available. To copy them despite of the lacking information, special mechanisms are implemented.
These mechanisms are not that performant and thus, the Refresh will consume more time as
operation and also the function execution time is longer.

Note:
Run only in limited mode when necessary. It is not recommended to use this mode during
normal operation

6.8 Changing EEL pool size and location configuration

Once selected, the EEL pool size, location as well as virtual block size cannot be changed without losing
all user data. Such change will require formatting of the EEL pool. If not done, the library reaction is
undefined, it might return various errors or even lock.

6.9 Precompile options

The user must not use any pre-compile configuration options that are not documented in present manual.
The library behaviour might be undefined

EEPROM Emulation Library - Type T01, European Release Revision History

R01US0116ED0201 101
User Manual

Revision History

Chapter/Section Page Description

V2.00:

Initial version (V2.00 in order to align the major version
number to the FDL version (currently V2.00))

all

4.2.2

4.5.9

43

80

V2.01:

- Minor wording fixes (e.g.
R_EEL_OPERATION_START-UP
R_EEL_OPERATION_STARTUP

- Fixed description of
EEL_CONFIG_ERASE_SUSPEND_THRESHOLD
min value

- Added cause/remedy for Clean-up error

R01US0116ED0201

EEPROM Emulation Library

	Notice
	Regional information
	Preface
	How to Use This Document
	Table of Contents
	Chapter 1 Introduction
	1.1 Flash Infrastructure
	1.1.1 Dual Operation
	1.1.2 Data Flash Granularity
	1.1.3 Complementary-Read Data Flash
	1.1.4 Data Flash Error Correction Code Treatment

	1.2 Feature Overview

	Chapter 2 Architecture
	2.1 Layered Software Architecture
	2.2 Data Flash Pool Structure
	2.2.1 User Pool
	2.2.1.1 Address Virtualization

	2.2.2 EEL Pool
	2.2.2.1 Block Virtualization

	2.3 EEL Management
	2.3.1 EEL Pool Structure
	2.3.2 EEL Block Structure
	2.3.2.1 EEL Block Header

	2.3.3 EEL Data-Sets
	2.3.3.1 Data Set Instances within the EEL Block
	2.3.3.2 Data Set Structure
	2.3.3.3 Invalid Data Sets

	Chapter 3 Functional Specification
	3.1 Functions and Commands
	3.1.1 Functions
	3.1.2 Commands
	3.1.3 Request-Response oriented Dialog
	3.1.4 Handler-oriented Command Execution

	3.2 Flash Interrupt Support
	3.3 EEL User Command Priority
	3.4 Background Operations
	3.5 Data-Set Search and Read
	3.6 Driver Status
	3.7 Start-up Processing
	3.8 Limited Operation Mode
	3.9 Suspend / Resume

	Chapter 4 Application Programming Interface (API)
	4.1 Pre-compile Configuration
	4.2 Runtime Configuration
	4.2.1 FDL Runtime Configuration Parameters
	4.2.2 EEL Runtime Configuration Parameters

	4.3 Data Types
	4.3.1 Header file r_typedefs.h
	4.3.1.1 Library-specific Simple-Type Definitions

	4.3.2 Header file e_eel_types.h
	4.3.2.1 r_eel_ds_cfg_t
	4.3.2.2 r_eel_descriptor_t
	4.3.2.3 r_eel_operation_mode_t
	4.3.2.4 r_eel_status_t
	4.3.2.5 r_eel_command_t
	4.3.2.6 r_eel_request_t
	4.3.2.7 r_eel_access_status_t
	4.3.2.8 r_eel_operation_status_t
	4.3.2.9 r_eel_driver_status_t

	4.4 Functions
	4.4.1 R_EEL_Init
	4.4.2 R_EEL_Startup
	4.4.3 R_EEL_ShutDown
	4.4.4 R_EEL_SuspendRequest
	4.4.5 R_EEL_ResumeRequest
	4.4.6 R_EEL_Execute
	4.4.7 R_EEL_Handler
	4.4.8 R_EEL_GetEraseCounter
	4.4.9 R_EEL_GetDriverStatus
	4.4.10 R_EEL_GetSpace
	4.4.11 R_EEL_GetVersionString

	4.5 Commands
	4.5.1 R_EEL_CMD_READ — DS Read
	4.5.2 R_EEL_CMD_WRITE — DS write
	4.5.3 R_EEL_CMD_WRITE_INC — Incremental DS write
	4.5.4 R_EEL_CMD_WRITE_IMM — Immediate DS write
	4.5.5 R_EEL_CMD_WRITE_INC_IMM — Incremental immediate DS write
	4.5.6 R_EEL_CMD_INVALIDATE — DS invalidation
	4.5.7 R_EEL_CMD_INVALIDATE_IMM — Immediate DS invalidation
	4.5.8 R_EEL_CMD_FORMAT — EEL Pool Format
	4.5.9 R_EEL_CMD_CLEANUP — EEL Pool Clean-up

	Chapter 5 Library Setup and Usage
	5.1 File Structure
	5.1.1 Overview
	5.1.2 Directory Structure and Files

	5.2 Library Resources
	5.2.1 Linker Sections
	5.2.2 Stack and Data Buffer

	5.3 Library Timings
	5.3.1 Library Timings during Start-up
	5.3.1.1 Early Read Command
	5.3.1.2 Early Immediate Write Command and related
	5.3.1.3 Early Write Command and related

	5.3.2 Library Timings during normal Operation
	5.3.2.1 Read Command
	5.3.2.2 Immediate Write Command and related
	5.3.2.3 Write Command and related
	5.3.2.4 Format Command
	5.3.2.5 Clean-up Command

	5.4 Library Setup and Integration
	5.4.1 EEL Pool Configuration
	5.4.2 Endurance Calculation
	5.4.3 EEL Data Set Configuration
	5.4.4 Distributing Data between FDL and EEL
	5.4.5 R_EEL_Handler Calls
	5.4.6 Reset Robustness Considerations
	5.4.7 ECC Errors
	5.4.8 Relation between operation status and driver status

	5.5 Sample Application
	5.6 Miscellaneous
	5.6.1 MISRA Compliance

	Chapter 6 Cautions
	6.1 Function re-entrancy
	6.2 Task switches, context changes and synchronization between EEL functions
	6.3 EEL performance
	6.4 Concurrent Data Flash accesses
	6.4.1 User Data Flash access during active EEPROM emulation
	6.4.2 Direct access to the Data Flash by the user application by DMA

	6.5 Entering power safe mode
	6.6 Library behaviour after operation interruption
	6.7 Application update issues
	6.7.1 Change DS length
	6.7.2 ID-L ROM table not available

	6.8 Changing EEL pool size and location configuration
	6.9 Precompile options

	Revision History

