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Notice 
1. All information included in this document is current as of the date this document is issued. Such information, however, is 

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please 
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to 
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. 

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights 
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others. 

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of 

semiconductor products and application examples.  You are fully responsible for the incorporation of these circuits, software, 
and information in the design of your equipment.  Renesas Electronics assumes no responsibility for any losses incurred by 
you or third parties arising from the use of these circuits, software, or information. 

5. When exporting the products or technology described in this document, you should comply with the applicable export control 
laws and regulations and follow the procedures required by such laws and regulations.  You should not use Renesas 
Electronics products or the technology described in this document for any purpose relating to military applications or use by 
the military, including but not limited to the development of weapons of mass destruction.  Renesas Electronics products and 
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited 
under any applicable domestic or foreign laws or regulations. 

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free.  Renesas Electronics assumes no liability whatsoever for any damages 
incurred by you resulting from errors in or omissions from the information included herein. 

7. Renesas Electronics products are classified according to the following three quality grades:  “Standard”, “High Quality”, and
“Specific”.  The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as 
indicated below.  You must check the quality grade of each Renesas Electronics product before using it in a particular 
application.  You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior 
written consent of Renesas Electronics.  Further, you may not use any Renesas Electronics product for any application for 
which it is not intended without the prior written consent of Renesas Electronics.  Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics.  The quality grade of each Renesas Electronics product is “Standard” unless otherwise 
expressly specified in a Renesas Electronics data sheets or data books, etc. 

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual 
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots. 

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support. 

“Specific”:  Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or 
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare 
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life. 

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation 
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges. 

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have 
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, 
Renesas Electronics products are not subject to radiation resistance design.  Please be sure to implement safety measures to 
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a 
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire 
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures.  Because 
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system 
manufactured by you. 

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental 
compatibility of each Renesas Electronics product.  Please use Renesas Electronics products in compliance with all applicable 
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS 
Directive.  Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with 
applicable laws and regulations. 

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics. 

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this 
document or Renesas Electronics products, or if you have any other inquiries. 

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries. 

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. 
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1. Inside the E8a Emulator User’s Manual 

 

The E8a manual consists of two documents: the E8a User’s Manual and the E8a Additional Document for User’s 

Manual (this document). Be sure to read BOTH documents before using the E8a emulator. 

In this user’s manual, the symbol # is used to show active LOW. (e.g. RESET#) 

 

(1) E8a Emulator User’s Manual 
The E8a Emulator User’s Manual describes the hardware specifications and how to use the emulator debugger. 

 

- E8a emulator hardware specifications 

- Connecting the E8a emulator to the host computer or user system 

- Operating the E8a emulator debugger 

- Tutorial: From starting up the E8a emulator debugger to debugging 

 
(2) E8a Additional Document for User’s Manual 

The E8a Additional Document for User’s Manual describes content dependent on the MCUs and precautionary 

notes. 

 

- MCU resources used by the E8a emulator 

- Example of the E8a emulator connection or interface circuit necessary for designing the hardware 

- Notes on using the E8a emulator 

- Setting the E8a emulator debugger during startup 

 

 

Note: 

 For the specifications and supported MCUs of the optional FDT, please check the Flash Development 

Tool Kit page of our website ( http://www.renesas.com/tools). 

 FDT stands for the Flash Development Toolkit. 

 

Trademarks 

Microsoft, MS-DOS, Visual SourceSafe, Windows and Windows Vista are either registered trademarks or trademarks 

of Microsoft Corporation in the United States and/or other countries.  

All other company or product names are the trademarks or registered trademarks of their respective owners. 

 

 

 

 

http://www.renesas.com/tools�
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2. E8a Emulator Specifications 

2.1  Target MCUs  

Table  2.1 shows the target MCUs covered in this user’s manual. 

 

Table  2.1  Target MCUs 

Item Description 

Target MCUs M16C Family M16C/50 Series  

M16C/57 and M16C/5M Groups 

Available operating modes Single-chip mode 

 

 

2.2  Emulator specifications 

Table  2.2 shows the specifications of the emulator supported by the M16C E8a Emulator Debugger. Table  2.3 shows the 

E8a emulator specifications when using the target MCU. 

 

Table  2.2   E8a Emulator Specifications 

Item Description 

Emulator power supply Unnecessary (USB bus powered, power supplied from the host machine) 

Applicable emulator debugger M16C E8a Emulator Debugger V.1.04.00 or later 

Operating Environment Temperatures Active : 10°C to 35°C 

  Inactive : –10°C to 50°C 

 Humidity Active : 35% RH to 80% RH, no condensation 

  Inactive : 35% RH to 80% RH, no condensation 

 Vibrations Active : maximum 2.45 m/s2 

  Inactive : maximum 4.9 m/s2 

  Transportation : maximum 14.7 m/s2 

 Ambient gases No corrosive gases 
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Table  2.3   E8a Emulator Specifications when Using the Target MCU 

Item Description 

Power voltages 3.0 - 5.5 V 

For details, refer to the hardware manual of the MCU. 

Break functions - Address match break, 8 points 

- Data access break, 2 points 

- Event A: Comparison with the address/data mask, and access condition (R, W, R/W) can be set. 

- Event B: Comparison with the address mask, and access condition (R, W, R/W) can be set. 

- PC break points (maximum 255 points) 

- Forced break 

Trace functions 32 branch instructions (branch source/destination PC) 

or 

Up to 64 data cycles can be specified 

Flash memory programming 
function 

Available (when selecting the ‘Program Flash’ mode) 

User interface 

(see Section  4.1.1 on page 11) 

When communicating via CNVss pin:  

When communicating via P6_4/P6_5/P6_6/P6_7: 

2-line clock-asynchronous serial 

Clock-synchronous serial 

When communicating via CNVss pin 

(see Section  4.1.1 on page 11) 

- ROM size: 4 KB 

- RAM size: 128 bytes 

- Stack 14 bytes 

- Address match interrupt 

- UART1 function (external clock) and P6_5 [*1] 

MCU resources to be used 

When communicating via P6_4/P6_5/P6_6/P6_7 

(see Section  4.1.1 on page 11) 

- UART1 function and P6_4/P6_5/P6_6/P6_7 

 

Interface with host machine USB (USB 1.1, full speed) 

* Also connectable to host computers that support USB 2.0 

* Operation with all combinations of host machine, USB device and USB hub is not guaranteed for the 
USB interface. 

Power supply function Can supply 3.3 V or 5.0 V to the user system (maximum 300 mA) [*2] 

 

Notes: 
[*1] Communication mode requiring UART1 CLK1 pin is not supported. 

 
[*2] Do not use the power-supply function of the emulator when it is being used to program flash memory as part of a 

mass-production process. Separately supply power from the user system in accord with the specifications of the 
MCU.  
Use FDT for programming flash memory during mass-production, etc. 
Voltage supplied from the E8a emulator depends on the quality of the USB power supply of the host computer, and 
as such, precision is not guaranteed. 
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2.3  Applicable tool chain and third-party products 

You can debug a module created by the inhouse tool chain and third-party products listed in Table  2.4 below. 

 

Table  2.4  Applicable Tool Chain and Third-party Products 

Tool chain M3T-NC30WA V.5.20 Release 01 or later 

Third-party products 
TASKING M16C C/C++/EC++ Compiler V.2.3r1 or later [*1] 
IAR EWM16C V.2.12 or later 

 

 

Note: 
[*1] Notes on debugging the load modules created in ELF/DWARF2 format  

If the load module was created in ELF/DWARF2 format using TASKING M16C C/C++/EC++ compiler 
V3.0r1, the precautionary note described below must be observed when displaying member variables of the base 
class in the [Watch] window. 

 
Precautionary Note: 
If any class object with a base class is defined, the following problems may occur: 
Case 1: Member variables of the base class cannot be referenced directly from the class object (*1). 

=>Use indirect references from the class object to refer to member variables of the base class (*2) (*3). 
Case 2: If the PC value resides in any member function of a derived class, member variables of the base class 

cannot be referenced directly (*4). 
=> Use indirect references from “this” pointer to refer to member variables of the base class (*5) (*6). 

 
Figure  2.1 shows a code example, and Figure  2.2 shows a [Watch] window registration example. 
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///////////////////////////////////////////////////////// 
 *.h 
     class BaseClass 
     { 
     public:  
         int m_iBase;  
     public:  
         BaseClass() { 
             m_iBase = 0;  
         } 
         void BaseFunc(void);  
     }; 
 
     class DerivedClass : public BaseClass 
     { 
     public:  
         int m_iDerive;  
     public:  
         DerivedClass() { 
             m_iDerive   = 0;  
         } 
         void DerivedFunc(void);  
     }; 
 
 
 *.cpp 
     main() 
     { 
         class DerivedClass ClassObj;  
         ClassObj.DerivedFunc(); 
         return;  
     } 
  
    void BaseClass::BaseFunc(void)  
     { 
         m_iBase = 0x1234;  
     } 
  
     void DerivedClass::DerivedFunc(void)  
     { 
         BaseFunc(); 
         m_iDerive   = 0x1234;  
     } 
///////////////////////////////////////////////////////// 
 

Figure  2.1  Example code 

 
 
///////////////////////////////////////////////////////// 

Case 1: If the PC value resides in the main() function 
(1)"ClassObj.m_iBase"  : Cannot be referenced (*1) 
(2)"ClassObj.__b_BaseClass.m_iBase" : Can be referenced (*2) 
(3)"ClassObj" 

-"__b_BaseClass" 
-"m_iBase"  : Can be referenced (*3) 

-"m_iDerive" 
-: Expansion symbol 

Case 2: If the PC value resides in the DerivedClass::DerivedFunc() function 
(1)"m_iBase"   : Cannot be referenced (*4) 
(2)"this->__b_BaseClass.m_iBase" : Can be referenced (*5) 
(3)"__b_BaseClass.m_iBase"  : Can be referenced (*5) 
(4)"this" 

-"*" 
-"__b_BaseClass" 

-"m_iBase"  : Can be referenced (*6) 
-"m_iDerive" 

(5)"__b_BaseClass" 
-"m_iBase"   : Can be referenced (*6) 

///////////////////////////////////////////////////////// 

Figure  2.2  Watch window registration example
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3. Connecting the E8a Emulator to the User System 

3.1  Connector for connecting the E8a emulator and the user system 

Before connecting the E8a emulator to the user system, a connector must be installed in the user system so a user system 

interface cable can be connected. Table  3.1 shows the recommended connector for the E8a emulator and Figure  3.2 

shows E8a connecting connector pin assignments. 

 

When designing the user system, refer to Figure  3.2 “E8a Connecting Connector Pin Assignments” and Section 4 

“Examples of Pin Handling for Connecting the E8a”. 

Before designing the user system, be sure to read the E8a Emulator User’s Manual and related device hardware manuals. 

 

Table  3.1  Recommended Connector 

 Type Number Manufacturer Specification 
2514-6002 3M Limited 14-pin straight type (for use outside Japan)14-pin connector 
7614-6002 3M Limited 14-pin straight type (for use in Japan) 

 

 

Pin 1

Pin 2 User system

Connector

User system interface cable

  
Figure  3.1  Connecting the User System Interface Cable with an E8a Connecting Connector 

 

Notes: 
 Do not place any components within 3 mm area of the connector. 
 When using the E8a emulator as a programmer, connect it to the user system in the same way. 
 Connect E8a connecting connector pins 2, 6, 10, 12 and 14 firmly to the GND on the user system board. These pins 

are used as an electric GND and monitor the connection of the user system connector. 
 When inserting or removing the user system interface cable from the connector section of the user system, be sure to 

hold the connector cover at the head of the cable. Removal by pulling the cable portion instead of grasping the cover 
causes breakage of the cable connection. 
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Pin 
NO

Communication 
via CNVss 

Communication via 
P6_4/P6_5/P6_6/P6_7

 MCU Signals 
1 P6_5(SCLK) P6_5(SCLK) 
2 Vss Vss 
3 CNVss CNVss 
4 N.C. N.C. 
5 N.C. P6_7(TxD) 
6 Vss Vss 
7 N.C. N.C. 
8 Vcc Vcc 
9 N.C. P6_4(BUSY) 
10 Vss Vss 
11 N.C. P6_6(RxD) 
12 Vss Vss 
13 RESET# RESET# 
14 Vss Vss  

Pin 1 mark 

Pin 2  

Pin 1 mark  
Connector 

Pin 1  
Pin 14

Pin 13

 
25.0

23.0

6×2.54 = 15.24

2.54

0.45

Pin 14

Pin 13

Pin 2

Pin 1

[mm]

[mm]

[mm]

[mm]

[mm]

Pin 1 mark

 
 
 
 

Figure  3.2  E8a Connecting Connector Pin Assignments 

 

Notes: 
 Pin 14 is used for checking the connection between the E8a and the user system, and is not directly connected to the 

Vss inside the E8a. Make sure pins 2, 6, 10, 12 and 14 are all connected to the Vss. 
 Note the pin assignments for the user system connector. 
 Do not connect anything to the N.C. pin. 
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4. Examples of Pin Handling for Connecting the E8a 

4.1  Pin handling for connecting the E8a 

4.1.1  Examples of pin handling for connecting the E8a (types of connection method) 

Table  4.1 shows two types of connection method between the E8a and an MCU. 

 

Table  4.1 Types of E8a connection method 

 Debugging by E8a Emulator Debugger Flash memory programming by FDT [*1]

Communication via CNVss pin Yes Yes 
Communication via 
P6_4/P6_5/P6_6/P6_7 

No Yes 

 

4.1.2  Examples of pin handling for connecting the E8a (communication via CNVss pin) 

The following shows examples of pin handling for connecting the E8a. 

 

*

Vcc

MCU

SCLK

CNVss

RESET#

Vss

Vcc

RESET#

Vcc

CNVss

E8a Connecting 
Connector

User system

*: Open-collector buffer

User
logic

 

Figure  4.1  Example of an E8a Connection 

 

Notes: 
[*1] For the applicable version of the FDT, refer to the ‘Flash Development Toolkit target device list’ on the Flash 

Development Toolkit page of our website (http://www.renesas.com/tools）.  
 

[*2] Pin P6_5 (SCLK) is used exclusively by the E8a emulator. 
Pull up the pins at the Vcc level or pull them down according to the MCU pin state after disconnecting the E8a 
emulator. 
 

 When adjacent resistors are used for pull-up, they may be affected by noise from other pins. In particular, separate the 
resistor for CNVss from the other resistors. 

 Wiring patterns between the connector and the MCU must be as short as possible (within 50 mm is recommended). Do 
not connect the signal lines between the connector and MCU to other signal lines. 

 For the handling of pins while the E8a emulator is not in use, refer to the hardware manual for the MCU. 

Pulled up at 

4.7kΩ or more Pulled down at 

47k to 180kΩ

P6_5 [*2]

http://www.renesas.com/tools�
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(1) CNVss pin 

The E8a emulator uses the CNVss pin for MCU control.  

Pull down the E8a emulator and MCU pins and connect the E8a emulator. 

Do not connect a capacitor etc. to this pin. 

 

 

MCUCNVss CNVss

E8a Connecting 
Connector

3

 
Figure  4.2  E8a Emulator and CNVss Pin Connection 

 

(2) RESET# pin 

The RESET# pin is used by the E8a emulator. Therefore, use an open-collector output buffer or a CR reset circuit as the 

reset circuit for the user system. The recommended pull-up value is 4.7 kΩ or more. The MCU can be reset by 

outputting “L” from the E8a emulator. However, if the reset IC output is “H”, the user system reset circuit cannot be set 

to “L”. As such, the E8a emulator will not operate normally. 

 

User
logic

*

RESET# RESET#

Vcc

13

*: Open-collector buffer

E8a Connecting 
Connector

MCU

 
 

Figure  4.3  Example of a Reset Circuit 

 

(3) Other pins 

 Connect Vss and Vcc to the Vss and Vcc of the MCU, respectively. 

 The amount of voltage input to Vcc must be within the specified range of the MCU. 

 If NMI# interrupts are used, make sure the NMI# pin is pulled up to the Vcc pin through a resistor. 

 Pin 14 is used for checking the connection between the E8a and the user system, and is not directly connected to the 

Vss inside the E8a. Make sure that pins 2, 6, 10, 12 and 14 are all connected to the Vss. 

 Do not connect anything to the N.C. pin. 

 

 WARNING 

About Power Supply Circuit of the User System:  

 

When supplying power, ensure that there are no short circuits between Vcc and GND. Only connect the E8a 
emulator after confirming that there are no mismatches in pin assignments of the E8a connecting connector. 
Incorrect connection will result in the host computer, the emulator, and the user system emitting smoke or 
catching fire. 
 

 

 

 

Pulled down at 

47k to 180kΩ

Pulled up at 4.7kΩ or more
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4.1.3  Examples of pin handling for connecting the E8a (communication via P6_4/P6_5/P6_6/P6_7) 

The following shows examples of pin handling for connecting the E8a. 

 

 

*: Open-collector buffer

User
logic

*

User system

Vcc

E8a Connecting 
Connector

MCU

SCLK

RxD

TxD

BUSY

CNVss

RESET#

Vss

Vcc VccVcc

RESET#

Vcc

CNVss

 
Figure  4.4  Example of an E8a Connection 

 

 

Note: 

[*1] For details on setting pins P6_4 and P6_5, refer to “(1) SCLK, RxD, TxD and BUSY pins” on page 14. 

Pulled up at 4.7kΩ or more 

Pulled up at 

4.7kΩ or more
Pulled down at 

47k to 180kΩ 

P6_5 [*1]

P6_6

P6_7

P6_4 [*1]
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(1) SCLK, RxD, TxD and BUSY pins 

Pins P6_4(BUSY), P6_5(SCLK), P6_6(RxD) and P6_7(TxD) are used exclusively by the E8a emulator.  

Connect pins P6_6 and P6_7 to the E8a emulator after pulling up the MCU pins at the Vcc level.  

For P6_4 and P6_5, pull up the pins at the Vcc level or pull down them according to the MCU pin state after 

disconnecting the E8a emulator.  

P6_4 may be in a Hiz state while the E8a emulator is active. Therefore, set the pin resistance value so the voltage cannot 

be at the midpoint potential, depending on the voltage dividing of the resistance inside the E8a emulator (Figure  4.8 on 

page 16). 

 

 

MCU

SCLK

RxD

TxD

BUSY

VccVcc

E8a Connecting 
Connector

1

11

5

9

 
 

Figure  4.5 Connection of the SCLK, RxD, TxD and BUSY pins to the E8a Emulator 

Pulled up at 

4.7kΩ or more

P6_5/SCLK

P6_6/RxD

P6_7/TxD

P6_4/BUSY
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(2) CNVss pin 

The E8a emulator uses the CNVss pin for MCU control.  

Pull down the E8a emulator and MCU pins and connect the E8a emulator. 

Do not connect a capacitor etc. to this pin. 

 

 

MCUCNVss CNVss

E8a Connecting 
Connector

3

 
Figure  4.6  E8a Emulator and CNVss Pin Connection 

 

(3) RESET# pin 

The RESET# pin is used by the E8a emulator. Therefore, use an open-collector output buffer or a CR reset circuit as the 

reset circuit for the user system. The recommended pull-up value is 4.7 kΩ or more. The MCU can be reset by 

outputting “L” from the E8a emulator. However, if the reset IC output is “H”, the user system reset circuit cannot be set 

to “L”. As such, the E8a emulator will not operate normally. 

 

User
logic

*

RESET# RESET#

Vcc

13

*: Open-collector buffer

E8a Connecting 
Connector

MCU

 
 

Figure  4.7  Example of a Reset Circuit 

 

(4) Other pins 

 Connect Vss and Vcc to the Vss and Vcc of the MCU, respectively. 

 The amount of voltage input to Vcc must be within the specified range of the MCU. 

 If NMI# interrupts are used, make sure the NMI# pin is pulled up to the Vcc pin through a resistor. 

 Pin 14 is used for checking the connection between the E8a and the user system, and is not directly connected to the 

Vss inside the E8a. Make sure that pins 2, 6, 10, 12 and 14 are all connected to the Vss. 

 Do not connect anything to the N.C. pin. 

 

 WARNING 

About Power Supply Circuit of the User System:  

 

When supplying power, ensure that there are no short circuits between Vcc and GND. Only connect the E8a 
emulator after confirming that there are no mismatches in pin assignments of the E8a connecting connector. 
Incorrect connection will result in the host computer, the emulator, and the user system emitting smoke or 
catching fire. 
 

 

 

Pulled down at 

47k to 180kΩ

Pulled up at 4.7kΩ or more
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4.2  Interface circuit in the E8a emulator 

Figure  4.8 shows the interface circuit in the E8a emulator. Use this figure as a reference when determining the pull-up 

resistance value. 
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1
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User system connecter

Emulator control circuit

[*1]  Power for 74LVC125 and 74LVC2T45 is supplied from Vcc in the user system connector or power supply circuit (in power supply mode).  
 

Figure  4.8  Interface Circuit inside the E8a Emulator (For Reference) 
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5. Emulator Debugger Setting 

5.1  [Emulator Setting] dialog box 

The [Emulator Setting] dialog box is provided for setting items that need to be set when the debugger is launched. The 

contents set from this dialog box (excluding [Power Supply] group box items) also become valid the next time the 

debugger is launched. When launching the debugger for the first time after creating a new project work space, the 

[Emulator Setting] dialog box is displayed with the Wizard. 

The settings you have made here cannot be changed after the emulator is booted up. To change the settings, you need to 

cancel the process of booting-up and then reboot the emulator. 

 

Figure  5.1  [Emulator Setting] Dialog Box 

 

If you check “Do not show this dialog box again.” at the bottom of the [Emulator Setting] dialog box, the [Emulator 

Setting] dialog box will not be displayed the next time the debugger is launched.  

 

You can open the [Emulator Setting] dialog box using one of the following methods: 

-  After the debugger is launched, select Menu -> [Setup] -> [Emulator] -> [Emulator Setting...]. 

-  Hold down the Ctrl key while launching the debugger. 

 

When “Do not show this dialog box again.” is checked, the E8a does not supply power to the user system. 
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5.2  [Emulator mode] tab 

Device selection, mode specification and power supply setting are made from the [Emulator mode] tab of the [Emulator 

Setting] dialog box. 

 

[MCU Group] 
Select the name of the MCU group to be used 

from the [MCU Group] drop-down list. 

 

 

[Device] 
Select the type of MCU to be used from the 

[Device] drop-down list. 

(See “ 7.1 MCU resources used by the E8a 

emulator” on page 29 for the list of applicable 

MCUs.) 

 

 

[Mode] 
Select the mode to be used. 

For details, see “ 5.2 (1) Selecting the Mode” 

(p.19). 

 

 

[Power supply] 
Select the power supply to the user system. 

- When supplying power to the user system 

from the E8a, click the [Power Target from 

Emulator. (MAX 300mA)] checkbox. 

 Figure  5.2 [Emulator mode] Tab of [Emulator Setting] Dialog Box 
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(1) Selecting the Mode 

 

Table  5.1 Selecting the Mode 

Mode Usage Description 

Erase Flash and Connect [*2] 

When starting the debugger, the E8a emulator erases the Flash memory data for the MCUs 

and simultaneously writes the area for the E8a emulator program and the vector area used 

by the E8a emulator. The emulator rewrites the OFS1 and ID code areas. 

Keep Flash and Connect [*2] 

Debugging 

only [*1] 
When launching the debugger, the E8a emulator retains the Flash memory data for the 

MCUs.  

Note that the area for the E8a emulator program and the vector area used by the E8a 

emulator will change. The emulator rewrites the OFS1 and ID code areas. 

Program Flash [*2] 

Simple 

programmer 

[*3] 

When downloaded, the E8a writes only the user program.  

(E8a emulator program is not written.)  

Therefore, the program cannot be debugged in this mode. 

When [Execute the user program after ending the debugger.] is selected, with the E8a 

emulator connected to the user system, the user program is executed at the same time the 

debugger is terminated. This check box setting is available only when the [Program Flash] 

mode is selected. 

Debugging of CPU rewrite 

mode [*4] 

Debugging 

only [*1] 

Be sure to select this setting when debugging the program which rewrites the CPU.  

In this mode, the following debug operation which rewrites the Flash memory cannot be 

executed.  

     - Setting the PC break points 

     - Changing the memory contents in the Flash memory area 

In this mode, when starting the debugger, the E8a emulator erases the Flash memory data 

for the MCUs and simultaneously writes the area for the E8a emulator program and the 

vector area used by the E8a emulator. The emulator rewrites the OFS1 and ID code areas. 

 

Notes: 
[*1] In this mode, vector addresses are used by the E8a emulator program. After a program has been downloaded, you 

cannot disconnect the emulator and operate the user system as a stand-alone unit. (Programs written in this mode 
cannot be executed from the MCU.)  
If you want to execute a program from the MCU, use [Program Flash] mode. 
 
The vector area, ID code area and the OFS1 area have their values rewritten by the emulator, so be aware that their 
checksums do not match. 
 

[*2] When starting up in these modes, lock bits in all the blocks of the flash memory will be unlocked. Note that the lock 
bits of the downloaded blocks will be unlocked after downloading the user program. 
 
In this mode, the ID code settings made on the user program will be written to the internal flash memory of the 
MCU. 
 

[*3] When downloading the user program in this mode, a checksum is displayed. The checksum covers the E2dataFlash 
area. 
However, when ECC is used, the ECC area is not covered by the checksum. 
In addition, note that the E2dataFlash area is erased when starting up in this mode. 
 

[*4] When debugging a program in CPU rewrite mode, memory reference or modification functions can be used. 
However, do not use these functions in the following condition. The MCU does not recognize the writing is 
continuously executed if the write instruction is interrupted by the memory reference or modification process. 
 

- While write instruction is being executed to the register which requires continuous writing (ex. FMR01 bit) 
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5.3  [Firmware Location] tab 

You can specify the address of the firmware location in the [Firmware Location] tab. 

 

[Firmware Location] 
Select the area in which the firmware is located. 

Specify the address that will not be used by the 

user system in the ROM area or RAM area. 

 

- Program 

Specify the ROM area in which the firmware 

is located. This setting is not required. 

- Work RAM 

Specify the RAM area in which the firmware 

is located. Specify 128 bytes that will not be 

used by the user system. 

 

 

Figure  5.3 [Firmware Location] tab of [Emulator Setting] Dialog Box 
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5.4  [MCU Setting] tab 

In the [MCU Setting] tab, set the operating condition of the MCU used in the user system. 

 

MCU 
The MCU selected in the [Device] drop-down 

list in the [Emulator mode] tab is displayed. 

 

  

Processor Mode 
Specify the processor mode according to the 

user system. Only the following mode can be 

specified for this product: 

- Single-Chip Mode 

 

 

PM10 (b0 of 000005H) is ‘1’ 
Specify whether PM10 (data flash enable bit) is 

set. When using the user program with PM10 

set to “1”, check this option. [*1] 

 

 

PRG2C0 (b0 of 000010H) is ‘1’ 
Specify whether PRG2C0 (program 2 area 

control register) is set. PRG2C0 is fixed to “0”. 

 

 
Figure  5.4 [MCU Setting] Tab Use ECC for E2 Data Flash 

Select this checkbox if you want to use ECC for 

an MCU with E2dataFlash. You cannot check 

this box if you selected an MCU without 

E2dataFlash. Be sure to make the setting 

according to the setting of the E2dataFlash of the 

program to debug. [*2] 

 

 

Notes: 
[*1] For the case that the MCU in use does not have data flash, do not select this checkbox. 

 
[*2] The block configuration of the E2dataFlash is determined by the setting of this checkbox. If the setting is made 

erroneously, the E2dataFlash area will be displayed incorrectly. 
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5.5  [Communication Baud Rate] tab 

Select communication baud rate between the E8a and MCU in the [Communication Baud Rate] tab.  

250000 bps (default setting) should be selected [*1] [*2]. 

 

Figure  5.5 [Communication Baud Rate] Tab 

 

Notes: 
[*1] Depending on the wired length of the CNVss signal and how it is wired on the user system, communication at the 

selected baud rate may not be performed. Reducing this baud rate may help to solve the problem.  
Also, the communication information you set here cannot be changed after the emulator debugger has started. To 
change the communication baud rate, you need to disconnect the emulator and the MCU temporarily and then 
reconnect. 
 

[*2] The baud rate of 57600 bps or below is designated for checking purpose in case there is a failure in the connection 
with the emulator. With such a low baud rate, it takes a long time to write into the flash memory of the target MCU, 
and the emulator debugger may appear to be giving no response. 
Also note if the data of 1024 bytes or larger is handled when displaying the memory contents or in memory fill 
function, a time-out error may occur because the communication takes up much time. 
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6. E8a Emulator Functions (Supplement on the User’s Manual) 

6.1  E8a emulator functions 

With the MCUs in this user’s manual, three break functions can be used: forced break, S/W break and on-chip break. 

The break functions can be set singly or multiply. 

The list of break functions supported for the MCUs in this user’s manual is shown in Table  6.1. 

 

6.1.1  Forced break  

The forced break function is used to forcibly cause a break in execution of the user program. 

 

6.1.2  S/W break (software break) 

This function breaks the program by rewriting the instruction of the specified address to an instruction (BRK 

instruction) dedicated to the debugger. 

Since the op-code at the specified address is replaced by the instruction dedicated to the debugger, when a S/W 

breakpoint is set, a write to on-chip memory (flash memory and RAM) will occur. (Similarly, removing a S/W 

breakpoint involves a write to memory.)  

 

6.1.3  On-chip break functions 

With the MCUs in this user’s manual, the following three on-chip break functions are available: Address match break, 

data access break and trace full break. 

- Address match break 

This function breaks the program immediately before a specified address instruction is executed. It can be realized 

using the address match interrupt of the MCU.  

Set the address match breakpoint in the Break condition sheet of the Eventpoints window. You can also set it by 

double-clicking the Event column in the Editor window. 

For details, refer to the E8a User’s Manual. 

- Data access break 

This function breaks the program when a specified event is encountered. You can combine two points of the data 

access event.  

- Trace full break 

This function breaks the program when the trace buffer is filled. 

 

Table  6.1  Break Functions 
Break type Number of points that 

can be set (max.) 
Break condition Flash memory rewrite Can a breakpoint be set while 

the program is running? 
Forced break  No No Yes 
S/W break [*1] 255 Specified address Yes No 

Address match 
break [*1] 

8 Specified address No Yes 

EventA 1  Specified address & 
specified data 

No No Data 
access 
break EventB 1 Specified address No No 

On-chip 
break 

Trace full break  Trace buffer full No No 

 

Note: 
[*1] When execution is restarted from the address where it stopped at a breakpoint (S/W breakpoints or address match 

breakpoints), the actual instruction at the address must be executed as a single step before further execution 
continues. Operation is thus not in real time. 
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6.1.4  On-chip trace functions 

With the MCUs in this user’s manual, either the branch trace or data trace function is available. 

- Branch trace 

This function displays addresses, mnemonics and source lines of the branch source and destination. 

- Data trace 

This function displays data accesses when a data access event is encountered. 

 

For the data access event and trace condition, set them in the Event condition sheet of the Eventpoints window. 

 

6.2  Eventcondition tab of the Eventpoints window 

Set the contents of the data access event, break condition and trace condition. 

 

Double-clicking each item in this window will open the Event Setting dialog box to change the conditions. The items 

displayed in the sheet are shown in Table  6.2. 

 

Figure  6.1  Eventpoints Window (Eventcondition tab) 

 

Table  6.2  Display Contents of the Eventcondition Tab 

Item Description 

Type Displays the event types. 
- Event A 
- Event B 
- Break Condition 
- Trace Condition 

State Shows the event is enable or disable. 
- Enable 
- Disable 

Condition Displays the set condition. 
Action For the Event A and Event B, the access types are displayed. 

- R/W: READ or WRITE 
- READ 
- WRITE 

For the Break Condition and Trace Condition, Break/Trace is always displayed. 
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6.3  Event Setting dialog box 

The conditions in the Event condition sheet can be set. 

 

 
Figure  6.2  Event Setting Dialog box 

 

(1) Event A 

Set the contents of the Event A. You can set the conditions of the address comparison with mask specification and data 

comparison with mask specification for the Event A. 

 

Table  6.3  Contents of the Event A 

Option Description 

Address (with mask specification) Specify an address to detect the data access. Specify the bit number to set 
the address mask. The specified lower bits of the specified address are 
masked. 

Data (with mask specification) If you compare data, specify the data and data mask. When selecting BYTE 
for the Access Size, you can specify to FF. When selecting WORD for the 
Access Size, you can specify to FFFF. If you do not compare data, leave the 
Data item empty or enter 0 in the Mask. If you do not use the data mask, 
leave the Mask item empty. 

Access Size Select one from BYTE, WORD or Not specify for the Access Size. If a data 
access which does not match the specified access size occurs, the event is 
not encountered. When specifying WORD for the Access Size, specify the 
even address for the Address item. 

Access Type Select an access type. 
- R/W: READ or WRITE 
- READ 
- WRITE 
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(2) Event B 

Set the contents of the Event B. You can set the conditions of the address comparison with mask specification for the 

Event B. 

 

Table  6.4  Contents of the Event B 

Option Description 

Address (with mask specification) Same as the Event A.  
Access Size Same as the Event A. 
Access Type Same as the Event A. 

 

(3) Break Condition 

Set the break condition. 

 

Table  6.5  Break Condition 

Option Description 

Break Select a break condition. 
- None: None specified. (No break by event) 
- Event A: Breaks the program when the Event A is encountered. 
- Event A or B: Breaks the program when either the Event A or Event B is 

encountered. 
- Event A and B: Breaks the program when both the Event A and Event B are 

encountered. 
- Event B->A: Breaks the program when an event is encountered in the order of the 

Event B and Event A. 
Break at Trace Full Check it to break the program when the trace buffer is filled. It can be set with the break 

condition by event. 

 

(4) Trace Condition 

Set the trace condition. 

 

Table  6.6  Trace Condition 

Option Description 

Type Select a trace type. 
- Branch Trace 
- Data Trace 

Start Select a start condition for the trace measurement. 
- Go: Starts a measurement when starting executing the target program. 
- Event A: Starts a measurement when the Event A is encountered. 
- Event A or B: Starts a measurement when either the Event A or Event B is encountered. 
- Event A and B: Starts a measurement when both the Event A and Event B are encountered. 
- Event B->A: Starts a measurement when an event is encountered in the order of the Event B 

and Event A. 
Stop Select a stop condition for the trace measurement. 

- Break: Stops a measurement when stopping executing the target program. 
- Trace FULL: Stops a measurement when the trace data is filled. 
- Event A: Stops a measurement when the Event A is encountered. 
- Event A or B: Stops a measurement when either the Event A or Event B is encountered. 
- Event A and B: Stops a measurement when both the Event A and Event B are encountered. 
- Event B->A: Stops a measurement when an event is encountered in the order of the Event B 

and Event A. 

Pick up Select an event to record when tracing data. 
- Event A: Records only data access which encounters the condition of the Event A. 
- Event A or B: Records only data access which encounters the condition of either the Event A 

or Event B. 
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6.4  Display contents of the Trace window 

To display the trace results, open the Trace window. 

For each function of the popup menu, refer to the E8a User’s Manual. The items displayed in the sheet are shown in 

Table  6.7.  

 

 
Figure  6.3  Trace Window 

 

Table  6.7  Trace Display 

Item Description 

PTR Displays the pointer numbers in the trace buffer. Displays them in ascending order with the trace end 
position as 0. 

IP Displays the instruction pointer. 
Type Displays the type of trace information. When the branch trace is set, BRANCH/DESTINATION is displayed. 

When the data trace is set, READ/WRITE is displayed. 
Address When the branch trace is set, an address of the branch source and destination is displayed. When the data 

trace is set, an address or address range set for the encountered event is displayed. 
Data When the data trace is set, the accessed value is displayed. When the branch trace is set, nothing is 

displayed. 
Instruction When the branch trace is set, the mnemonic of the address is displayed. When the data trace is set, nothing 

is displayed. 
“*** EML ***” may be displayed in the Instruction column. This shows that the target program accessed the 
area of emulator use to control breaks, etc. It is not an error. 

Source If there is a source line information correspondent to the Instruction, the correspondent source line is 
displayed. When the data trace is set, nothing is displayed. 

Label If there is a label correspondent to an address in the Instruction, the correspondent label is displayed. When 
the data trace is set, nothing is displayed. 
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6.5  Notes on the event settings of the access break and trace function 

When setting the Event A or Event B for the access break and trace function, set the address, access size and access type 

referring to Table  6.8 below. [*1] [*2] [*3] [*4] 

 

Table  6.8  Availability of the Event Setting 

Event setting condition Availability of event 
setting Example of Event Setting dialog box 

Byte read to even address Available 
Address: 400h 
Access size: BYTE 
Access type: READ or R/W 

Byte write to even address Available 
Address: 400h 
Access size: BYTE 
Access type: WRITE or R/W 

Word read to even address Available 
Address: 400h 
Access size: WORD 
Access type: READ or R/W 

Word write to even address Available 
Address: 400h 
Access size: WORD 
Access type: WRITE or R/W 

Byte read to odd address Available 
Address: 401h 
Access size: BYTE 
Access type: READ or R/W 

Byte write to odd address Available 
Address: 401h 
Access size: BYTE 
Access type: WRITE or R/W 

Word read to odd address Available 
Address: 401h 
Access size: BYTE [*5] 
Access type: READ or R/W 

Word write to odd address Available 
Address: 401h 
Access size: BYTE [*5] 
Access type: WRITE or R/W 

 

Notes: 
[*1] Note on the trace start condition 

When setting an event (other than “Go”) for the trace start condition, a data when the event is encountered is not 
recorded to the trace data. The data of the event which is encountered the next time is recorded. 

[*2] Notes on the trace stop condition 
When the trace start and trace stop conditions occur simultaneously, the trace stop condition becomes invalid. 
When setting other than “Break” for the trace stop condition, the display contents of the Trace window will not be 
updated until the user program stops even after a trace stop condition is encountered. 

[*3] Note on setting the Event A 
When setting an event for the Event A, you cannot specify a mask for an address and data simultaneously. If you 
mask them simultaneously, an event will not be encountered. 

[*4] Note on setting an event 
Do not specify the following addresses as the address of the event. Otherwise, an unauthorized break may occur. 
 - Address in the interrupt vector table 
 - Address set in the interrupt vector table (interrupt routine start address) 
 - Branch address of the branch instruction 
Both fixed vector table and variable vector table are included with the interrupt vector table above. 

[*5] For the access size, specify "BYTE". In this condition, the lower one byte data can be compared. 
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7. Notes on Using the E8a Emulator 

7.1  MCU resources used by the E8a emulator 

(1) Program area for the E8a emulator 

Table  7.1 and Table  7.2 list the program area for the E8a emulator. Do not change this area, otherwise the E8a emulator 

will not control the MCU. In this case, disconnect the debugger and then reconnect it. 

Table  7.1  Program Area for the E8a Emulator (1) 

ROM Size Program Area for E8a Emulator 
Group Part No. 

Program ROM 
RAM Size 

Vector Area ROM Area RAM Area 
R5F35M23 96 KB 8 KB 
R5F35M33 96 KB 8 KB 
R5F35M73 96 KB 8 KB 
R5F35M83 96 KB 8 KB 
R5F35MB3 96 KB 8 KB 
R5F35MC3 96 KB 8 KB 
R5F35ME3 96 KB 8 KB 
R5F35MF3 96 KB 8 KB 
R5F35M16 128 KB 12 KB 
R5F35M26 128 KB 12 KB 
R5F35M36 128 KB 12 KB 
R5F35M66 128 KB 12 KB 
R5F35M76 128 KB 12 KB 
R5F35M86 128 KB 12 KB 
R5F35MA6 128 KB 12 KB 
R5F35MB6 128 KB 12 KB 
R5F35MC6 128 KB 12 KB 
R5F35MD6 128 KB 12 KB 
R5F35ME6 128 KB 12 KB 
R5F35MF6 128 KB 12 KB 
R5F35M1E 256 KB 20 KB 
R5F35M2E 256 KB 20 KB 
R5F35M3E 256 KB 20 KB 
R5F35M6E 256 KB 20 KB 
R5F35M7E 256 KB 20 KB 
R5F35M8E 256 KB 20 KB 
R5F35MAE 256 KB 20 KB 
R5F35MBE 256 KB 20 KB 
R5F35MCE 256 KB 20 KB 
R5F35MDE 256 KB 20 KB 
R5F35MEE 256 KB 20 KB 

M16C/5M 

R5F35MFE 256 KB 20 KB 

FFFE4h - FFFE7h,

FFFE8h - FFFEBh,

FFFECh - FFFEFh,

FFFF4h - FFFF7h,

FFFFCh - FFFFFh

13000h - 13FEFh 
[*1] 

128 bytes 
[*2] 

  
 

Notes: 
[*1] - The portion of the program ROM2 area (13000h - 13FEFh) is used by the E8a emulator program. 

- This area overlaps with the user boot area. Therefore, when using any other mode than “Program Flash” mode (see 
 5.2 (1) Selecting the Mode on page 19) at the startup of the emulator debugger, note that this area (13000h - 
13FEFh) is overwritten by the E8a emulator program. 

[*2] - When starting the debugger, the [Emulator Setting] dialog box is displayed. Specify the area which will not be used 
by the user system. For details, see  5.3 [Firmware Location] tab on page 20. 
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Table  7.2  Program Area for the E8a Emulator (2) 

ROM Size Program Area for E8a Emulator 
Group Part No. 

Program ROM 
RAM Size 

Vector Area ROM Area RAM Area 
R5F35723 96 KB 8 KB 
R5F35733 96 KB 8 KB 
R5F35773 96 KB 8 KB 
R5F35783 96 KB 8 KB 
R5F35716 128 KB 12 KB 
R5F35726 128 KB 12 KB 
R5F35736 128 KB 12 KB 
R5F35766 128 KB 12 KB 
R5F35776 128 KB 12 KB 
R5F35786 128 KB 12 KB 
R5F3571E 256 KB 20 KB 
R5F3572E 256 KB 20 KB 
R5F3573E 256 KB 20 KB 
R5F3576E 256 KB 20 KB 
R5F3577E 256 KB 20 KB 

M16C/57 

R5F3578E 256 KB 20 KB 

FFFE4h - FFFE7h,

FFFE8h - FFFEBh,

FFFECh - FFFEFh,

FFFF4h - FFFF7h,

FFFFCh - FFFFFh

13000h - 13FEFh 
[*1] 

128 bytes 
[*2] 

 

Notes: 
[*1] - The portion of the program ROM2 area (13000h - 13FEFh) is used by the E8a emulator program. 

- This area overlaps with the user boot area. Therefore, when using any other mode than “Program Flash” mode (see 
 5.2 (1) Selecting the Mode on page 19) at the startup of the emulator debugger, note that this area (13000h - 
13FEFh) is overwritten by the E8a emulator program. 

[*2] - When starting the debugger, the [Emulator Setting] dialog box is displayed. Specify the area which will not be used 
by the user system. For details, see  5.3 [Firmware Location] tab on page 20. 
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(2) Pins used by the E8a emulator 

The E8a emulator controls the MCUs by using the following pins depending on the usage. 

- When communicating via CNVss pin: P6_5 pin [*1], RESET# and CNVss pins 

- When communicating via P6_4/P6_5/P6_6/P6_7: RESET#, CNVss, P6_4, P6_5, P6_6 and P6_7 pins 

 

(3) Interrupts used by the E8a emulator program (unusable) 

The BRK instruction interrupt, address match interrupt, single-step interrupt and DBC interrupt are used by the E8a 

emulator program. Therefore, make sure the user program does not use any of these interrupts. The E8a emulator 

changes these interrupt vector values to the values to be used by the emulator. No problems occur if the interrupt vector 

values are written in the user program. 

 

(4) Interrupts used by the E8a emulator program (NMI) 

If NMI interrupts are used, be sure to take the necessary precautions before executing the user program like disabling 

the automatic update in the watch window or fix the display in the memory window before running the program so that 

memory accesses do not occur during an execution. If an NMI interrupt occurs while the user program halts or when 

memory contents are referenced or modified during user program execution, the E8a emulator cannot control the MCU. 

 

(5) Stack area used by the E8a emulator 

The E8a emulator uses up to 14 bytes of the stack pointer (ISP) during a user program break. Therefore, set aside 14 

bytes for the stack area. 

 

(6) Count source protection mode 

Count source protection mode cannot be debugged with the E8a emulator. 

 

(7) User boot function 

When debugging with the E8a emulator, the user boot function cannot be used. 

If the user boot function is set to be enabled in the user boot code area, the E8a emulator cannot connect with the MCU. 

In this case, rewrite the area to disable the user boot function with a parallel programmer. 

 

Note: 
[*1] The communication mode that needs the CLK1 pin of UART1 cannot be used. 

The external clock cannot be selected as a transfer clock for UART1. Be sure to set the internal clock for it. 
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(8) SFRs used by the E8a emulator program 

The SFRs listed in Table  7.3 are used by the E8a emulator program as well as the user program. 

 

- Do not change the value in the memory window, etc., by other than the user program.  

- Note that although the SFRs can be changed during user program execution, the changed value cannot be read at the 

break. 

- The SFRs listed in Table  7.3 are not initialized by selecting [Debug] -> [Reset CPU] or by using the RESET command. 

If register contents are referred to, a value that has been set in the E8a emulator program will be read out. 

 

Table  7.3  SFRs Used by the E8a Emulator Program (1) 

 

 

Notes: 
[*1] DMAC during a user program halt 

When the user program is halted or when the memory is referred to or modified during user program execution, 
DMA transfer is disabled. In such cases, the E8a emulator sets the registers below as following.  
Therefore, if you refer to the registers below in the memory window, etc., it shows that DMA is disabled. 
 

- DMA0 control register (DM0CON) DMA enable bit (bit 3) 0: DMA disabled 

- DMA1 control register (DM1CON) DMA enable bit (bit 3)  0: DMA disabled 

- DMA2 control register (DM2CON) DMA enable bit (bit 3) 0: DMA disabled 

- DMA3 control register (DM3CON) DMA enable bit (bit 3)  0: DMA disabled 

- Interrupt control registers Interrupt request bit (bit 3) 0: Interrupt not requested 

 
Do not enable DMA transfer from the memory window, etc., but enable it in the user program. 
 

[*2] When restarting the user program, though the E8a emulator sets back the value of a DMA enable bit to the previous 
value that was set before the program stops, the interrupt request bit remains 0. 

 

Address Register Symbol Bit 

0005h Processor mode register 1 PM1 Bit 0 

000Ah Protect register PRCR Bit 0 

0012h Peripheral clock select register PCLKR Bit 2, 6, 7 

018Ch DMA0 control register DM0CON Bit 3 [*1] 

019Ch DMA1 control register DM1CON Bit 3 [*1] 

01ACh DMA2 control register DM2CON Bit 3 [*1] 

01BCh DMA3 control register DM3CON Bit 3 [*1] 

004Bh DMA0 interrupt control register DM0IC Bit 3 [*1] [*2] 

004Ch DMA1 interrupt control register DM1IC Bit 3 [*1] [*2] 

0069h DMA2 interrupt control register DM2IC Bit 3 [*1] [*2] 

006Ah DMA3 interrupt control register DM3IC Bit 3 [*1] [*2] 
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(9) SFRs exclusively used by the E8a emulator program 

The SFRs listed in Table  7.4 are used by the E8a emulator program, not the user program.  

- Do not change the registers, otherwise the E8a cannot control the MCU. 

- The SFRs listed in Table  7.4 are not initialized by selecting [Debug] -> [Reset CPU] or by using the RESET command. 

If register contents are referred to, a value that has been set in the E8a emulator program will be read out. 

 

Table  7.4  SFRs Used by the E8a Emulator Program (2) 

Address Register Symbol Bit 
Notes on Using the 

E8a Emulator 

0010h Program 2 area control register PRG2C Bit 0 [*1] 

0022h 40 MHz on-chip oscillator control register 0 FRA0 Bit 0 [*2] 

020Eh Address match interrupt enable register  AIER All bits 

020Fh Address match interrupt enable register 2 AIER2 All bits 

0210h - 0212h Address match interrupt register 0 RMAD0 All bits 

0214h - 0216h Address match interrupt register 1 RMAD1 All bits 

0218h - 021Ah Address match interrupt register 2 RMAD2 All bits 

021Ch - 021Eh Address match interrupt register 3 RMAD3 All bits 

[*3] 

0220h Flash memory control register 0 FMR0 Bit 5 

0258h UART1 transmit/receive mode register U1MR Bit 3 

03EEh Port P6 direction register PD6 Bit 5 

[*1] 

 

(10) Pin Assignment Control Register (PACR) 

When the system is launched, the E8a emulator initializes the Pin Assignment Control Register (PACR:370h) as shown 

below. Only set the bit values specified for the MCU to be debugged, otherwise the E8a cannot control the MCU. 

bit (Bit name) The number of pins of MCUs to debug Initial value set by E8a Notes 

100 pins 100 [*1] 

80 pins 000 [*4] 
b2, b1, b0  

(pin enable bit) 
64 pins 000 [*4] 

 

Notes: 
[*1] When operating this register, make changes using the bit operation instructions to avoid changing the bit values. 

[*2] 40 MHz on-chip oscillator 
When debugging with the E8a emulator, the 40 MHz on-chip oscillator does not stop although the options for  
40 MHz on-chip oscillator start bit are available and FRA00 can be set to “40 MHz on-chip oscillator off”.  
For this reason, functions to reduce power consumption, with the 40 MHz on-chip oscillator off, need to be checked 
using your final products or system for which only the user program is written to the MCU, with the E8a emulator 
disconnected. 
The functions can also be checked by writing only the user program to the MCU in the ‘Program Flash’ mode, 
ending the debugger, then executing the user program. In the [Emulator Setting] dialog box displayed when starting 
the debugger, select [Program Flash], then check [Execute the user program after ending the debugger]. 

[*3] Do not change this register value. 

[*4] Set the bit values specified for the MCU to be debugged in the user program as follows. 

 b2 b1 b0

When debugging 64-pin version MCUs: 0 1 0

When debugging 80-pin version MCUs: 0 1 1
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(11) Registers initialized by the E8a emulator 

When the system is launched, the E8a emulator initializes the general registers and some of the flag registers as shown 

in Table  7.5. 

 

Table  7.5  E8a Emulator Register Initial Values 

Status Register Initial Value 

PC Reset vector value in the vector address table 

R0 to R3 (bank 0, 1) 0000h 

A0, A1 (bank 0, 1) 0000h 

FB (bank 0, 1) 0000h 

INTB 00000h 

USP 0000h 

ISP Work RAM Address for the E8a emulator + 80h [*1] 

SB 0000h 

E8a 

Emulator 

Activation 

FLG 0000h 

 

 

(12) Reserved area 

The addresses not specified in the Hardware Manual of MCUs are reserved area. Do not change the contents. Otherwise, 

the E8a emulator cannot control the MCU. 

- The value of this area is undefined when referenced in the memory window. 

- In this area, the memory window’s search, compare and move functions do not work normally. 

 

 

Note: 
[*1] The Work RAM address for the E8a emulator is specified in the [Firmware Location] tab of the [Emulator Setting] 

dialog box. 
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(13) Debugging during a watchdog timer operation [*1] [*2] [*3] 

When running the E8a emulator program (when the user program is stopped), the E8a emulator program refreshes the 

watchdog timer. If memory access is executed through memory reference or modification, the watchdog timer will be 

refreshed by the E8a emulator program. Note that this timing will differ from the actual operational timing.  

 

When starting the M16C E8a Emulator Debugger, set each of bit 0 and bit 7 of the optional function select address 1 

(OFS1: FFFFFh) to 1b. Although these addresses can be rewritten and the changed values can be referred to in the 

memory window, etc., the changed values for these bits (bit 0 and bit 7) are invalid. 

 

- b0: Watchdog timer start select bit   1: Watchdog timer is in a stopped state after reset. 

- b7: After-reset count source protection mode select bit  1: Count source protection mode disabled after reset 

 

For the optional function select address 2 (OFS2: FFFDBh), the values are always as follows in the E8a emulator and 

even if the values are changed, they are invalid. 

 

- b1, b0: Watchdog timer initial setting bit   11: 3FFFh 

- b3, b2: Watchdog timer refresh duty cycle setting bit  11: 100% 

 

Notes: 
[*1] If an underflow or other abnormal condition occurs immediately after the user program breaks, causing the watchdog 

timer to be reset immediately before it is refreshed, the emulator may become uncontrollable. 
 
Note that if the user program uses the watchdog timer, the watchdog timer will be refreshed by the E8a emulator 
program during the user program halt, making the refresh timing differ from the actual operational timing. 
Also, note that the watchdog timer is not refreshed during the execution of the user program. 
 

[*2] Count source protection mode cannot be debugged with the E8a emulator. 
 

[*3] If the reset circuit of the user system has a watchdog timer, disable it when using the emulator. 
 

 

7.2   Reset 

(1) Reset function 

Do not perform reset from other than the emulator debugger, otherwise the E8a emulator will run out of control. 

Also note that if a reset occurs while the automatic update is enabled in the memory or watch window, the E8a emulator 

may run out of control. 

Do not stop the user program while the reset pin remains in the “L” state. A timeout error will occur. 

 

(2) Reset vector address 

During a debug with the E8a emulator, the reset vector addresses are used by the E8a emulator program. If the MCU is 

reset while the user program is being executed, control is transferred to the E8a emulator program and the user program 

is forced to stop. 
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7.3  Notes on using the CAN module 

(1) When using the CAN module [*1] and if BCLK (CPU clock) is used as the CAN clock source (fCAN) 

The CPU clock should be used at 4MHz or more. If the CPU clock is used at less than 4MHz in this case, a 

communication error may occur. 

 

(2) When using the CPU clock at more than 10MHz and if the program activates the CAN module 

The following debugging operations, which rewrite the flash memory, cannot be performed. This is because of the 

limitation on the operation speed in flash rewrite mode (for details, refer to the hardware manual or data sheet of the 

MCU).  

- Setting PC break points 

- Changing memory contents in the flash memory area 

If these debugging operations are performed, the rewrite operation on the flash memory may result in error. 

 

(3) Do not activate the CAN module from the memory window, etc., except from the user program. 

 

(4) When using the CAN module [*1], do not shift into stop mode.  

Otherwise, a communication error may occur. 

 

Note: 
[*1] The CAN module is recognized as being used in the following status (other than in CAN sleep mode) 

- Bit 2 (SLPST: CAN sleep status flag) of the CAN0 status register C0STR (D7C2h)  
0: Not in CAN sleep mode 

- Bit 2 (SLPST: CAN sleep status flag) of the CAN1 status register C1STR (D4C2h)  
0: Not in CAN sleep mode 
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7.4  Flash memory 

7.4.1  Notes on debugging in CPU rewrite mode 

(1) Unrewritable area in CPU rewrite mode 

When debugging in CPU rewrite mode, do not perform CPU rewrite operations to the following areas. If these areas are 

rewritten, the E8a emulator will not control the MCU.  

- Block 0 area (addresses F0000h - FFFFFh) and block containing the E8a emulator program 

(2) Operation in CPU rewrite mode 

- When debugging in the CPU rewrite mode, select “Debugging of CPU rewrite mode” in the [Mode] section of the 

[Emulator mode] tab. 

- When debugging in the CPU rewrite mode, do not halt the user program while the CPU rewrite mode is enabled or 

while in the erase suspend state, otherwise the E8a emulator may not control the MCU. And do not perform a step 

execution of the instruction which enables a CPU rewrite mode or enters an erase-suspend state. 

Disable the automatic update in the watch window or fix the display in the memory window before running the 

program so memory accesses do not occur during an execution. 

- To check the data after executing the CPU rewrite mode, halt the program after releasing the CPU rewrite mode and 

refer to the memory window, etc. 

- When rewriting the Flash memory in the program area, select Menu -> [Setup] -> [Emulator] -> [System...] to open the 

[Configuration] dialog box in the High-performance Embedded Workshop. In this dialog box, change the [Flash 

memory synchronization] setting to [Flash memory to PC] and set the debugger cache to OFF.  

In this setting, the Flash memory is read whenever a break occurs, which takes some time. Use it with the [Disable] 

setting except when debugging in CPU rewrite mode. 

Setting the debugger cache to OFF is not necessary if the debugger is started in “Debugging of CPU rewrite mode”. 

 

7.4.2  Note on rewriting flash memory by the E8a emulator 

Do not reset nor execute debugging operations to the MCU while the internal ROM (flash memory) is being written by 

the E8a emulator.  

Flash memory rewrite ends when the “Flash memory write end” is displayed in the output window of the High-

performance Embedded Workshop. If the MCU is reset or debugged when rewriting the flash memory, the user program 

or the E8a emulator program may be disrupted. 

Flash memory rewrite occurs: 

- When downloading the user program 

- After setting PC breaks in the flash memory and executing the user program 

- After canceling PC breaks in the flash memory and executing the user program 

- After rewriting the value of the flash memory in the memory window and executing the user program 

 

7.4.3  Note on flash memory during user program execution 

Modification of the internal ROM area (program ROM) attempted except from the user program (such as from the 

memory window) while the user program is being executed is always made to the internal cache of the E8a emulator. 

Actual access to the flash memory is executed before the user program restarts. (In the same way, modification of the 

internal ROM area during a user program halt is made to the internal cache of the E8a emulator, and actual access to the 

flash memory is executed before the user program restarts.)  

 

7.4.4  MCUs used for debugging 

When debugging, the flash memory is frequently rewritten by the E8a emulator. Therefore, do not use an MCU that has 

been used for debugging in products.  

Also, as the E8a emulator program is written to the MCU while debugging, do not save the contents of the MCU Flash 

memory which were used for debugging nor use them as the ROM data for products. 
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7.4.5  Flash memory ID code 

This MCU function prevents the Flash memory from being read out by anyone other than the user.  

The ID code in Table  7.6 written to the flash memory of the MCU must match the ID code displayed in the Figure  7.1 

[ID Code verification] Dialog Box at debugger startup, otherwise the debugger cannot be launched. Note that when the 

ID code is FFh, FFh, FFh, FFh, FFh, FFh, FFh, the ID code is regarded as undefined. In this case, the ID code is 

automatically authenticated and the [ID Code verification] dialog box is not displayed. 

The values written into the ID code area differs depending on the mode. 

- ‘Program Flash’ mode [*1]:    Contents of the user program 
- Modes other than ‘Program Flash’ mode [*2]: 
(regardless of the contents of the downloaded user program) 

FFh, FFh, FFh, FFh, FFh, FFh, FFh 
 

 

Table  7.6  ID Code Storage Area 

Address Description 

FFFDFh First byte of ID code 

FFFE3h Second byte of ID code 

FFFEBh Third byte of ID code 

FFFEFh Fourth byte of ID code 

FFFF3h Fifth byte of ID code 

FFFF7h Sixth byte of ID code 

FFFFBh Seventh byte of ID code 

 

Figure  7.1 [ID Code verification] Dialog Box 

 

Notes: 
[*1] Notes on ‘Program Flash’ mode: 

 When the ID code is specified by the -ID option of the lmc30, download the MOT file or HEX file. When 
the X30 file is downloaded, the ID code is not valid. 

 When downloading the X30 file, specify the ID code using an assembler directive command such as 
“.BYTE”. 

 The file to which the ID code specified by the assembler directive command “.ID” is output varies 
depending on the version of the assembler. For details, refer to the Assembler User’s Manual.  

[*2] If the ID code written to the ID code area of the MCU matches the one entered for the [ID Code] box in the [ID 
Code verification] dialog displayed at emulator debugger startup, the E8a emulator writes FFh, FFh, FFh, FFh, FFh, 
FFh, FFh to the ID code area. Therefore, the [ID Code verification] dialog will not be displayed the next time the 
debugger starts up. 
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7.5  Functions of the E2dataFlash 

(1) Program download  

Program download is possible as well as user program download. 

(2) Memory access to the E2dataFlash area (during user program halt) 

Memory access to the E2dataFlash area is possible as well as the ROM and RAM. 

When the memory is accessed from the memory window, read/write is performed according to the mode selected with 

the [Use ECC for E2 Data Flash] checkbox in the [MCU Setting] tab (see  5.4 [MCU Setting] tab) in the init dialog box 

which appears at debugger startup. If the setting of this checkbox differs from that of the ECC Control Bit (ECC enabled 

/ECC disabled) in the user program, memory reference/modification cannot be performed correctly. 

(3) Memory access to the E2dataFlash area (during user program execution) 

Memory access to the E2dataFlash is not possible. If the E2dataFlash area is displayed in the memory or other windows, 

“1” will be displayed for all the bits of the displayed area. Do not stop the user program when it is processing the access 

to the E2dataFlash area. If the user program stops, the operation to the E2dataFlash is suspended, and the access to the 

E2dataFlash may not be processed properly even after the user program is restarted. Disable the automatic update in the 

windows before running the user program so access to the E2dataFlash does not occur during an execution. 

(4) Other 

PC break points cannot be set in the E2dataFlash area. 

 

7.6  Power supply 

(1) Consumption current 

When the E8a emulator does not supply power to the user system, it consumes the power voltage of the user system 

from several mA to more than 10 mA. This is because the user power supply drives 74LVC125, 74LVC1T45 and 

74LVC2T45 to make the communication signal level match the user system power supply voltage. 

(2) Note on E8a emulator power supply 

When writing a program with the E8a emulator for mass production processes, the program requires reliability, so do 

not use the E8a emulator power supply function. Supply power separately to the user system according to the allowable 

voltage for MCU writing. Voltage supplied from the E8a emulator depends on the quality of the USB power supply of 

the PC, and as such, precision is not guaranteed. 

 

7.7  Operation during a user program halt 

(1) Peripheral I/Os during a halt 

During a user program halt, the maskable interrupt request cannot be accepted, because the emulator disables interrupts. 

However, since peripheral I/Os continue to run, the interrupt request is accepted immediately after the user program 

execution is started.  

For example, a timer interrupt is not accepted although the timer continues to count when a user program is stopped by a 

break after the timer started. 
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(2) Operation clock during a user program halt (for MCUs that have CAN modules) 

When the user program halts, the operation clock differs depending on the status of the CAN module (status of the 

CAN sleep status flag). 

a) In CAN sleep mode (SLPST = 1) 

The emulator changes the CPU clock to the internal high-speed on-chip oscillator clock to operate. However, the 

peripheral features operate with the clock specified by the user program (the peripheral clock coming from the CPU 

clock originates from the internal high-speed on-chip oscillator clock). 

The internal high-speed on-chip oscillator clock is changed as follows to meet the frequency specification for 

rewriting the flash memory of the MCU. 

-  When firmware is operating: Approx. 10 MHz    

-  When writing flash memory: Approx. 8 MHz or approx. 4 MHz 

b) Not in CAN sleep mode (SLPST = 0) 

The clock specified by the user program is used as the operation clock. [*1] 

 

(3) Operation clock during a user program halt (for MCUs that do not have CAN modules) 

When the user program halts, the emulator changes the CPU clock to the internal high-speed on-chip oscillator clock to 

operate. However, the peripheral features operate with the clock specified by the user program (the peripheral clock 

coming from the CPU clock originates from the internal high-speed on-chip oscillator clock). 

The internal high-speed on-chip oscillator clock is changed as described in a) in (2) to meet the frequency specification 

for rewriting the flash memory of the MCU. 

 

(4) Notes on accessing the SFR areas 

You can reference or set the contents of the SFR areas in the memory window or the IO window. Note the followings. 

a) When accessing the special registers 

You may not be able to access some special registers successfully during the user program halt. [*2]  

These registers include: 

- Access prohibited addresses 

- Registers for which access order is specified from high-order byte to low-order byte 

- Registers that can be accessed only by a specific instruction 

- Registers whose bus width specification does not match the bus width set in the [Memory] window 

- Registers that can be accessed on conditions (one of which is that fOCO-F must be faster than the CPU clock to 

access the register) 

Notes: 
[*1] When using the CAN module for communication, the clock specified by the user program is used as the operation 

clock. Therefore, the following should be considered. 

- PC break point 
If a low-speed clock such as the sub clock is used as the operation clock of the MCU, setting or canceling PC 
breaks may take time. Use event breaks as the first choice. 

 
[*2] Follow the instructions in the hardware manual of the target MCU to access to the SFR areas. 

 

7.8  Final evaluation of the program 

Before entering the mass-production phase, be sure to perform a final evaluation of the program singly, without the E8a 

emulator connected. 
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7.9  Debug functions 

7.9.1  Step execution 

(1) Exceptional step execution  

a) Software interrupt instruction 

Step execution cannot be performed in the internal processing of instructions (undefined, overflow, BRK and INT) 

which generate a software interrupt continuously in the program (see Figure  7.2). 

 

 

Figure  7.2  Example of Software Interrupt Instruction 

 

b) INT instruction 

To debug the user program with the INT instruction, set a PC break for the internal processing of the INT instruction 

and execute the program with the GO command (see Figure  7.3).  

 

 

Figure  7.3  Example of INT Instruction 

 

c) Other: Flag manipulating instructions 

The following instructions, when single-stepped, only manipulate a flag in the E8a emulator, with no MCU operations 

involved. Therefore, when these instructions are executed, be aware that the Start/Stop function does not work. 

LDC src, FLG 

STC FLG, dest 

LDINTB src 

NOP 

NOP 

INT#3 

NOP 

JMP MAIN 

INT_3: 

 NOP  

 NOP 

 NOP 

 REIT 

Program should be stopped at this address. 

Passes through if the STEP execution is carried out.

NOP 
INT  #3 
NOP  
JMP  MAIN 

INT_3: 
NOP  Break 
NOP 
REIT 

Execute using GO command. 
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7.9.2  Other debug functions 

 

(1) “Go to cursor” function 

The “Go to cursor” function is actualized using an address match break. Therefore, when you execute the “Go to cursor” 

command, all the address match breaks you set become invalid, while all the PC breaks remain valid. 

 

(2) Debugging in stop mode or wait mode 

When debugging in stop mode or wait mode, do not operate windows until the program stops at the breakpoint by 

setting the breakpoint at the line of the program which will be executed after the stop mode or wait mode is cancelled.  

Also, if memory contents are referenced or changed during the stop mode or wait mode, the program—after exiting the 

stop or wait mode and accessing the MCU memory—restarts from the instruction next to the one by which it was placed 

into the stop or wait mode. If the program enters the stop or wait mode in the middle of a memory access, a reference or 

a change of memory contents may not be performed normally. 

In addition, disable the automatic update in the memory window or watch window or fix the display in the memory 

window before running the program, and do not make refresh operations during an execution so memory accesses do 

not occur during user program execution.  

When the program is forcibly stopped or when the memory is referred to or modified in stop mode or wait mode, these 

modes will be cancelled, and the memory reference or modification may not be performed properly. 

 

(3) Note on PC break point 

When downloading a user program after modifying it, the set address of PC break may not be corrected normally 

depending on the modification. Therefore, break points other than the set PC breaks may shift. After downloading a user 

program, check the setting of PC breaks in the event point window and reset it. 

 

(4) Note on the CPU clock 

Do not use the CPU clock at less than 32.768 kHz (sub-clock). 

 

(5) Low power consumption mode 

When debugging in low-current consumption read mode, slow read mode, or the state that the flash memory is stopped, 

do not operate windows until the program stops at the breakpoint by setting the breakpoint at the line of the program 

which will be executed after each mode or state is cancelled. 

 

(6) Note on using automatic memory update 

When the automatic memory update is enabled in the memory or watch window, do not execute Step Out or Multiple-

step. Otherwise, it will take longer to update memory data and the operation will be delayed. 
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