LENESAS

-
7
12
-~
<
Q
-
-
D

RX64M Group

Renesas Starter Kit+ Code Generator Tutorial Manual
For e? studio

RENESAS MCU
RX Family / RX600 Series

All information contained in these materials, including products and product specifications, represents
information on the product at the time of publication and is subject to change by Renesas Electronics
Corporation without notice. Please review the latest information published by Renesas Electronics
Corporation through various means, including the Renesas Electronics Corporation website
(http://www.renesas.com).

Renesas Electronics
Www.renesas.com Rev. 1.00 Jun 2014

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the
operation of semiconductor products and application examples. You are fully responsible for the incorporation of these
circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for
any losses incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas
Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever
for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property
rights of third parties by or arising from the use of Renesas Electronics products or technical information described in
this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other
intellectual property rights of Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or
in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such
alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High
Quality”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade,
as indicated below.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio
and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial
robots etc.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster
systems; anticrime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a
direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may
cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality
grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas
Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable
for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for
which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas
Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage
range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no
liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified
ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products
have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to
implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire
in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including
but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or
any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please
evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all
applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation,
the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your
noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not
use Renesas Electronics products or technology described in this document for any purpose relating to military
applications or use by the military, including but not limited to the development of weapons of mass destruction. When
exporting the Renesas Electronics products or technology described in this document, you should comply with the
applicable export control laws and regulations and follow the procedures required by such laws and regulations.

10. Itis the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or
otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set
forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as
a result of unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of
Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its
majority owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(2012.4)

Disclaimer

By using this Renesas Starter Kit+ (RSK+), the user accepts the following terms:

The RSK+ is not guaranteed to be error free, and the entire risk as to the results and performance of the RSK+ is
assumed by the User. The RSK+ is provided by Renesas on an “as is” basis without warranty of any kind whether
express or implied, including but not limited to the implied warranties of satisfactory quality, fitness for a particular
purpose, title and non-infringement of intellectual property rights with regard to the RSK+. Renesas expressly
disclaims all such warranties. Renesas or its affiliates shall in no event be liable for any loss of profit, loss of data,
loss of contract, loss of business, damage to reputation or goodwill, any economic loss, any reprogramming or recall
costs (whether the foregoing losses are direct or indirect) nor shall Renesas or its affiliates be liable for any other
direct or indirect special, incidental or consequential damages arising out of or in relation to the use of this RSK+,
even if Renesas or its affiliates have been advised of the possibility of such damages.

Precautions

The following precautions should be observed when operating any RSK+ product:

This Renesas Starter Kit+ is only intended for use in a laboratory environment under ambient temperature and
humidity conditions. A safe separation distance should be used between this and any sensitive equipment. Its use
outside the laboratory, classroom, study area or similar such area invalidates conformity with the protection
requirements of the Electromagnetic Compatibility Directive and could lead to prosecution.

The product generates, uses, and can radiate radio frequency energy and may cause harmful interference to radio
communications. However, there is no guarantee that interference will not occur in a particular installation. If this
equipment causes harmful interference to radio or television reception, which can be determined by turning the
equipment off or on, you are encouraged to try to correct the interference by one or more of the following measures;

e ensure attached cables do not lie across the equipment

e reorient the receiving antenna

e increase the distance between the equipment and the receiver

e connect the equipment into an outlet on a circuit different from that which the receiver is connected
e power down the equipment when not in use

e consult the dealer or an experienced radio/TV technician for help NOTE: It is recommended that wherever
possible shielded interface cables are used.

The product is potentially susceptible to certain EMC phenomena. To mitigate against them it is recommended that the
following measures be undertaken;

e The user is advised that mobile phones should not be used within 20m of the product when in use.
e The user is advised to take ESD precautions when handling the equipment.

The Renesas Starter Kit does not represent an ideal reference design for an end product and does not fulfil the
regulatory standards for an end product.

How to Use This Manual

1. Purpose and Target Readers

This manual is designed to provide the user with an understanding of how to use Application Leading Tool
(Code Generator) for RX together with the e’ studio IDE to create a working project for the RSK+ platform. It is
intended for users designing sample code on the RSK+ platform, using the many different incorporated
peripheral devices.

The manual comprises of step-by-step instructions to generate code and import it into e studio, but does not
intend to be a complete guide to software development on the RSK+ platform. Further details regarding
operating the RX64M microcontroller may be found in the Hardware Manual and within the provided sample
code.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body
of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of
the manual for details.

The following documents apply to the RX64M Group. Make sure to refer to the latest versions of these
documents. The newest versions of the documents listed may be obtained from the Renesas Electronics Web
site.

Document Type Description Document Title Document No.
User's Manual Describes the technical details of the RSK+ RSK+RX64M User’'s R20UT2593EG
hardware. Manual
Tutorial Provides a guide to setting up RSK+ environment, RSK+RX64M R20UT2594EG
running sample code and debugging programs. Tutorial Manual
Quick Start Guide Provides simple instructions to setup the RSK+ and RSK+RX64M Quick R20UT2595EG
run the first sample. Start Guide
Code Generator Provides a guide to code generation in the e’ studio RSK+RX64M Code R20UT2983EG
Tutorial IDE. Generator Tutorial
Manual
Schematics Full detail circuit schematics of the RSK+. RSK+RX64M R20UT2589EG
Schematics
Hardware Manual Provides technical details of the RX64M RX64M Group RO1UHO0377EJ
microcontroller. Hardware Manual

2. List of Abbreviations and Acronyms

Abbreviation Full Form
ADC Analog-to-Digital Converter
API Application Programming Interface
CMT Compare Match Timer
COM COMmunications port referring to PC serial port
CPU Central Processing Unit
DVD Digital Versatile Disc
El On-chip Debugger
GUI Graphical User Interface
IDE Integrated Development Environment
IRQ Interrupt Request line
LCD Liquid Crystal Display
LED Light Emitting Diode
MCU Micro-controller Unit
MSB Most Significant Bit
PC Personal Computer
Pmod™ Digilent Pmod™ Compatible connector. PmodTM is registered to Digilent Inc.
Digilent-Pmod_Interface_Specification (Link valid at 26Jun2013)
PLL Phase-locked Loop
RSK+ Renesas Starter Kit Plus
SCI Serial Communications Interface
SPI Serial Peripheral Interface
UART Universal Asynchronous Receiver/Transmitter

Table of Contents

O V=T 4T PP 7
S U o [0 1= PP PUUPPPPPPPPNN 7
A T 11U | =T TP TP PP PP TPPPPPPPPN 7
P20 111 0T 3 Tox 1 o o 8
3. Project Creation With €% StUIO............cvivieieieee ettt en e, 9
R 700 R [o1 1o T [V 1o o I TP TP PUPRRPT 9
R I O (- 1] o i 4 U= 1T o PRSP 9
4. Code Generation Using the €% StUdio PIUG iN.......cveveeeeeeeee oo, 14
o | i o o[0T 1o o SRR SP 14
N e To [€1 =T a1 =Y (o] g Ko 11 SRR 14
o T 0o To [1 =T o [T = Vi o] PP U UPTPPPRT 17
4.4 BUIldING the PrOJECT ettt et e e e e e s b bttt e e e e e e s e sanbbe e e e e e e e e s nnbbeeeaaaaeas 30
TG R 0o To [[11 To =11 (o) o FO PR SP 31
L0 R @4 @ To [1] (== L1 o] o OSSR 31
L7 Vo (o 11 o) F= VT o218 o L= o = 1 £ OO ER 34
LR T A 111 (od T @Yo [N 1 €= = 11T o IO RER 35
L0 1= o 18 o [@ o (=N 1 €= = U1 o] o I O RER 41
LT T U 7Y = IO o o L= [g1 1=To | - 1o o O RER 41
5.6 LED COOE INTEGIALIONeiiiiiiiiiiiiiiiiee ettt e ettt et e e e e e st ettt e e e e e s e st b be e e e e e e e e saanbebeeeaaeesesnnsbnneaeaeeaaaannes 44
6. Debugging the PrOjJECE ... e e 47

Ao o [1nTo ot M [a1 {0110 4 T=1 1o] o [T 49

ENESANS

RSK+RX64M R20UT2983EG0100
Rev. 1.00
RENESAS STARTER KIT Jun 20, 2014

1. Overview

1.1 Purpose

This RSK+ is an evaluation tool for Renesas microcontrollers. This manual describes how to the e? studio IDE
code generator plug in to create a working project for the RSK+ platform.

1.2 Features

This RSK+ provides an evaluation of the following features:
« Project Creation with e’ studio.

« Code Generation using the code generator plug in.
« User circuitry such as switches, LEDs and a potentiometer.

The RSK+ board contains all the circuitry required for microcontroller operation.

R20UT2983EG0100 Rev. 1.00 ———
Jun 20, 2014 RENESAS

RSK+RX64M 2. Introduction

2. Introduction

This manual is designed to answer, in tutorial form, how to use the code generator plug in for the RX family
together with the e’ studio IDE to create a working project for the RSK+ platform. The tutorials help explain the
following:

e Project generation using the e’ studio

e Detailed use of the code generator plug in for e studio
e Integration with custom code

e Building the project e’ studio

The project generator will create a tutorial project with two selectable build configurations:
e ‘HardwareDebug’ is a project built with the debugger support included. Optimisation is set to zero.
e ‘Release’is a project with optimised compile options, producing code suitable for release in a product.

Some of the illustrative screenshots in this document will show text in the form RXxxx. These are general
screenshots and are applicable across the whole RX family. In this case, simply substitute RXxxx for RX64M

These tutorials are designed to show you how to use the RSK+ and are not intended as a comprehensive introduction to
the e” studio debugger, compiler toolchains or the E1 emulator. Please refer to the relevant user manuals for more in-
depth information.

R20UT2983EG0100 Rev. 1.00 ———
Jun 20, 2014 RENESAS

RSK+RX64M 3. Project Creation with e’ studio

3. Project Creation with e studio

3.1 Introduction

In this section the user will be guided through the steps required to create a new C project for the RX64M
MCU, ready to generate peripheral driver code using Code Generator. This project generation step is
necessary to create the MCU-specific source, project and debug files.

3.2 Creating the Project

Start e” studio and select a suitable location for the project workspace

e Start e studio and select a suitable [[e% Werkspace Launcher =
location for the project workspace. Select a workspace

e studio stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace: | [SENYEIEERT - Browse...

[Use this as the default and do not ask again

QK] ’ Cancel
e In the Welcome page, click ‘Go to the |« i e
, bie Eddt Source Refactor 'Nam;n'r Search F"’.’“‘ Bun Windew Help
workbench’. = Ye—— s

e2studio

M
;

(4] @ <> @
e

Gololmon

RENESAS
Semart Manual Discovery Startug: (33%) -
. Crea}te a new C_ project by right- [P Project Explorer 52 = <}:{>| &
clicking in the Project Explorer pave
and selecting ‘New -> C Project’ as
shown. Alternatively, use the menu New v | E% Project
item ‘File -> New -> C Project’. -
g1y Import.. i CProject
ey Export. [C++ Project
| Refresh F5 |9 Other. Ctrl+M
R20UT2983EG0100 Rev. 1.00 RENESAS Page 9 of 53

Jun 20, 2014

RSK+RX64M 3. Project Creation with e’ studio

e Enter the project name ‘CG_Tutorial’. rcproject]S
In ‘Project type: choose ‘Sample
Project. In ‘Toolchains’ choose
‘Renesas RXC Toolchain’. Click ‘Next'. Create C project of selected type

€ Project

Project narne: CG_Tutarial

Use default location
Corkspace\CG_Tutarial Browse..,

Create Directory for Project

Project type: Toolchains:
Executable (Renesas) KPIT GMUARM-RZ-EABI Toolchain
& Sarnple Project KPIT GMURLTS-ELF Toolchain
Static Library (Renesas) KPIT GMURX-ELF Toolchain
® Sample Project KPIT GMUSH-ELF Taolchain
Debug-Only Project Renesas BXC Toalchain

Executable (I&R)

WR00 Standalone Executable (Green Hills)
W30 Standalone Static Library (Green Hills)
WROD Thread Executable {Green Hills)
Makefile project

4 1 3

Reresas SHC Toolchain

Show project types and toolchains only if they are supported on the platform

@j < Back Mext = l [Finish l [Cancel]
e In the ‘Target Specific Settings’ dialog, C Project =2E=R~"
select the options as shown in the)) . _
. e2 studio - Project Generation —
screenshot OppOSIte. . .
. Select Target Specific Settings |
e The R5F564MLCxFC MCU is found :
under RX600 -> RX64M -> RX64M -
176 pin. Toolchain Version : [vZ.Ul.UU V] P
° Click ‘Next’. Debug Hardware: ’EI. V] .d“%‘
&
Data endian ’Little—endian data V] i‘*“
,
Select Target: RSF564MLCxFC 4
elect Targ x [I] ’:’.
Select Configurations:
Hardware Debug : Debug using hardware
[7] Debug using Simulater : Debug using simulator
i Project without any debug infermation
Build configurations will be created in the project only for the selected debug mode
options, however by default the project will be built for the active configuration i.e,
first configuration selected frem group. Based on the device selection you made
(RX600) the debug hardware (E1) and debug target (RSF564 MLCxFC), debug
cenfiguration will be autematically created for you.
@j < Back ” Mext >] [Finizh l ’ Cancel
R20UT2983EG0100 Rev. 1.00 RENESANAS Page 10 of 53

Jun 20, 2014

. . . 2 .
RSK+RX64M 3. Project Creation with e” studio
e In the ‘Code Generator Settings’ C Project ESERT
dialog, ensure the ‘Use Peripheral . . .
). &2 studio - Project Generation —
code Generator’ is checked. _ ,
Code Generator Settings
e Click ‘Next'.
[¥]iJse Peripheral code Generatar
The e2 studio peripheral code generator automatically generates programs (device drivers)
for MCU peripheral functions (clocks, timers, serial interfaces, /D converters, D&,
controllers, etc.) based on settings entered wia a graphical user interface (GUI). Functions
are provided as application programming interfaces (APIs) and are not limited to
initialization of peripheral functions,
Automatic 3
generation Application under
of paripheral development
function | Software
sellings [Middlewsre
diver | RTOS
e - Microcontroller
@j < Back ” Mext =] [Finish] ’ Cancel]
h
e In ‘Select Additional CPU Options’ C Project o =
leave everything at default values. . . .
e2 studio - Project Generation —
H .)
e Click ‘Next'. Select Additional CPU Options
Select Additional CPU Options:
Round: ’Nearest VI
Precision of Double: ’Single precision VI
Sign of Char: [Unsigned Y]
Sign of bit Field: |Unsigned -
Allocate from Lower Bit ’Lower bit VI
Width of Divergence of Function: ’24 Bit VI
Specify Global Options:
[Denormalized number allowed as a result
[C]Replace from int with short
[T Enum size is made the smallest
[Pack structures, uniens and classes
[use try, throw and catch of C++
[7] Use dynamic cast and typeid of C++
@ <Back || Ned> || Fnshn |[Cancel

R20UT2983EG0100 Rev. 1.00
Jun 20, 2014

RENESAS

Page 11 of 53

RSK+RX64M

3. Project Creation with e’ studio

e In the ‘Global Options Settings’ leave
everything at default values.

e Click ‘Next'.

e In the ‘Standard Header Files’ dialog,
select C99 for ‘Library Configuration’.
Untick ‘new(EC++)" and

others at defaults.
e Click ‘Next'.

CProject fo o] =]
e2 studio - Project Generation —
Global Options Settings |
Patch code generation ’None v]
Fast interrupt vector register: ’None VI
ROM: ’None VI
RAM: ’None VI
Address (H'): 00000000
Address Register: |INone V]
l:?j < Back ” et >] [Finish] ’ Cancel]

C Project '?'@
e2 studio - Project Generation —
Standard Header Files
Library configuration: | C{C99) -
Select Header Files:
runtime : Runtime routines (Checked and disabled by default)
[T ctypeh : Character classification routines
[] math.kh : Mathematical/trigonometric operations{double-precision)
[] mathf.h : Mathematical/trigonometric operations(single-precision)
[stdarg.h : Variable argument functions
[¥] stdio.h : Input/Qutput
stdlib.h : General purpose library features
string.h : 5tring handling operations
[ios(EC++) : Input/Cutput Streams
i : Memory allocation and deallocation routines
[] complex(EC++) : Complex number operations
[string(EC++) : 5tring manipulation operations
] complex.h(C99) :Performs complex number calculation
[ferw.h(C99) : Sets floating point environment
[[Jinttypes.h(C93) : Converts integer type format
[wehar.h(C99) : Performs wide character
chtype.h(cgg] : Performs wide character conversion
@ <Back || Net> |[Enish |[Concel

R20UT2983EG0100 Rev. 1.00
Jun 20, 2014

Page 12 of 53

RSK+RX64M

3. Project Creation with e’ studio

e In the next dialog, untick all check
boxes except ‘I/O Register Definition
Files' as shown opposite. Click
‘Finish’.

e A summary dialog will appear, click
‘OK’ to complete the project
generation.

C Project

@&1

e2 studio - Project Generation

Setwarious Stack Areas and to add additional Supporting Files

Stack/Heap Configuration
[Use User Stack

User's Stack Size: (H" 100

Interrupt Stack Size: (HY 300

[] Use Heap Memaory
Heap Size: (HY) 400

Generation of Supporting Files

/O Register Definition Files

Generate Hardware Setup Function | Mone

™~

Surmmanry

Project Surmmary:

-------- PROJECT GEMERATOR --------
PROJECT MAME : CG_Tutorial
PROJECT DIRECTORY
CPU SERIES:
CPUTYPE :
TOOLCHAIM MARKE :
TOOLCHAIM WVERSIOM

RXa00
EGENY

v2.01.00
GEMERATION FILES:

CvarkspacetCG_TutorialysrchWCG_Tutorial.c
Main Prograrm
Civiforkspace’CGE_Tutorialtsrohdbscto
Setting of B and R sections
CdWorkspace\CG_Tutarial\srchbypedefine.h
Sliases of Inteqger Type
CdWfarkspace’\CG_Tutarial\srchiodefine. h

44

CWorkspacet\CG_Tutorial

Renesas BXC Toalchain

Click Ok to generate the project or Cancel to abort,

m

(8] 4

l I Cancel

R20UT2983EG0100 Rev. 1.00
Jun 20, 2014

RENESAS

Page 13 of 53

RSK+RX64M 4. Code Generation Using the e’ studio plug in

4.Code Generation Using the e? studio plug in

4.1 Introduction

Code Generator is an e’ studio plug in GUI tool for generating template ‘C’ source code for the RX64M. When
using Code Generator, the user is able to configure various MCU features and operating parameters using
intuitive GUI controls, thereby bypassing the need in most cases to refer to sections of the Hardware Manual.

Once the user has configured the project, the ‘Generate Code’ function is used to generate three code
modules for each specific MCU feature selected. These code modules are name ‘r_cg_xxx.h’, ‘r_cg_xxx.c’,
and ‘r_cg_xxx_user.c’, where ‘xxx’ is a three letter acronym for the relevant MCU feature, for example ‘adc’.
Within these code modules, the user is then free to add custom code to meet their specific requirement.
Custom code should be added, whenever possible, in between the following comment delimiters:

/* Start user code for adding. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */

Code Generator will locate these comment delimiters, and preserve any custom code inside the delimiters on
subsequent code generation operations. This is useful if, after adding custom code, the user needs to re-visit
Code Generator to change any MCU operating parameters.

By following the steps detailed in this Tutorial, the user will generate a e’ studio project called CG_Tutorial.
The fully completed Tutorial project is contained on the DVD and may be imported into e’ studio by following
the steps in the Quick Start Guide. This Tutorial is intended as a learning exercise for users who wish to use
the Code Generator to generate their own custom projects for e” studio.

The CG_Tutorial project uses interrupts for switch inputs, the ADC module, the Compare Match Timer (CMT),
the Serial Communications Interface (SCI) and uses these modules to perform A/D conversion and display the
results via the Virtual COM port to a terminal program and also on the LCD display on the RSK+.

Following a tour of the key user interface features of Code Generator in 84.2, the reader is guided through
each of the peripheral function configuration dialogs in 84.3. In 85, the reader is familiarised with the structure
of the template code, as well as how to add their own code to the user code areas provided by the code
generator.

The Code Generator installer is contained on the DVD. This installer must be run before proceeding to the
next section.

4.2 Code Generator Tour

In this section a brief tour of Code Generator is presented. For further details of the Code Generator
paradigm and reference, refer to the Application Leading Tool Common Operations manual
(r20ut2663ej0100_Code Generator.pdf). Application Leading Tool is the stand-alone version of Code
Generator and this manual is applicable to the Code Generator.

From the e” studio menus, select ‘Window -> Open Perspective -> Other. In the ‘Open Perspective’ dialog
shown in Figure 4-1, select ‘Code Generator’ and click ‘OK’.

R20UT2983EG0100 Rev. 1.00 RENESAS Page 14 of 53
Jun 20, 2014

RSK+RX64M

4. Code Generation Using the e’ studio plug in

Open Perspective

=,

(=]

C"u’S Repository Exploring
ﬁ[ﬁlehug

e Git

'ET;:'F'Ianning

L?jFiesaurce

e SN Repositary Exploring
éaTeam Swnchronizing

()4

|| cancel

In the Project Explorer pane, expand the ‘Code Generator’ and ‘Peripheral Functions’ node.
Generator initial view is displayed as illustrated in Figure 4-2.

Figure 4-1 Open Perspective Dialog

The Code

R20UT2983EG0100 Rev. 1.00
Jun 20, 2014

RENESAS

Page 15 of 53

RSK+RX64M

4. Code Generation Using the e’ studio plug in

Code Generator - e2 studic

+ 70 Pin Wiew
4 ﬁ_‘] Peripheral Functions
@& Clock Generator

> W Woltage Detection Cir
Clock Frequency Accr
Loy Poweer Consump
Interrupt Controller U
Buses
D& Controller
Data Transfer Control
Event Link Controller
YO Ports
Multi-Function Tirmer
Part Output Enable 3
General PV Timer
16-Bit Timer Pulse Un
Programmmable Pulse
8-Bit Timer
Cormpare Match Time

m

Cormpare Match Time
Realtime Clock
Watchdog Timer
Independent Watchd:
Serial Comrmunication

File Edit Mawvigate Search Project Bun
L5 Project Explarer 52 = 0
ER=3 =
a CJ Code Generatar -

Window Help

PRI OIS -0 @ric i

25 Peripheral Functions 52

Clock setting | Block diagram

Code Preview Properties

- .|

Quick Access

¥ o= R

?ﬂ Generate Code (3]

Main clock oscillator and RTCMCLE, setting
Operation

[] Main clack oscillator farced oscillation
Main clock oscilation source

Frequency

Ozcillator wait time

Ozcillation stop detection function

FLL circuit setting
[Operatian

FLL clock source
Input frequency divizion ratio
Frequency multiplication factor

Frequency

Sub-clock ozcillator and RTC (RTCSCLEK] setting
[Operatian
Sub-clock ozcillator drive capacity

El Consale 532

Problems

[only for RTC, software standby and deep software standby mode)

m

Resonator -

24 [MHz)
11000 [ns] [Actual value: 11090909 ps)
Disabled -

Main clock oscillstor
w1
%100

240 [tHz]

Dirive capacity for low CL

A | e

= =
* 5~ B

Serial Cormrrunication Code Generator Consale

I2C Bus Interface b
Serial Peripheral Inted
CRC Calculator
12-Bit /D Converter _

4 I 3 4 3

Figure 4-2 Initial View

Code Generator provides GUI features for configuration of MCU sub systems. Once the user has configured
all required MCU sub systems and peripherals, the user can click the ‘Generate Code’ button, resulting in a
fully configured e” studio project that builds and runs without error.

Navigation to the MCU peripheral configuration screens may be performed by double-clicking the required
function in the Code Generator -> Peripheral Function on the left.

It is also possible to see a preview of the code that will be generated for the current peripheral function
settings by double-clicking the required function in the Code Generator -> Code Preview on the left.

R20UT2983EG0100 Rev. 1.00
Jun 20, 2014

RENESAS Page 16 of 53

RSK+RX64M 4. Code Generation Using the e’ studio plug in

4.3 Code Generation

In the following sub-sections, the reader is guided through the steps to configure the MCU for a simple project
containing interrupts for switch inputs, timers, ADC and a UART.

431 Clock Generator

Figure 4-3 shows a screenshot of Code Generator with the Clock Generator function open. Click on the
‘Clock setting’ sub tab. Configure the system clocks as shown in the figure. In this tutorial we are using the
on board 24 MHz crystal resonator for our main clock oscillation source and the PLL circuit is in operation.
The PLL output is used as the main system clock and the divisors should be set as shown in Figure 4-3.

R20UT2983EG0100 Rev. 1.00 RENESAS Page 17 of 53
Jun 20, 2014

RSK+RX64M 4. Code Generation Using the e’ studio plug in

ﬁ_" Peripheral Functions 52 | 5 Code Preview [Properties ICLJ Generate Code (3] 7 = 0
i Clock setting || Black diagram -
Main clock oscillator and RTCMCLEK. setting
Operation
[] Main clock oscillator forced oscillation [only for RTC, software standby and deep software standby mode)
M ain clock oscillation source Fesonator -
Frequency 24 [tHz)
Oscillator wait time 11000 [ps] [Actual value: 11090909 pz)
Dzcillation stop detection function Dizabled -
PLL circuit setting
Operation
PLL clock source M ain clock oscillatar -
Input frequency division ratio w1 -
Frequency multiplication factor «10.0 -
Frequency 240 [MHz]
Sub-clock oscillator and RTC [RTCSCLE] setting
[Operation
Sub-clock oscillator drive capacity Dirive capacity for low CL
Frequency 32 TES [kHz]
Ozcillator wait tire 225273 [mz] [Actual value: 2296182 mz)
High speed clock oscillator [HOCO) setting
[Operation
Frequency 16 [MHz]
Low speed clock oscillator [LOCO] setting
Operation =
Frequency 240 [kHz]
WD T-dedicated low-speed clock oscillator (WD TLOCO] setting
[Operation
Frequency 120 [kHz]
RTC clock zetting
[Operation
Clock source Sub-clock oscillator
Spstem clock setting
Clock source PLL circuit -
Syztem clock [ICLK] w12 - 120 [MHz]
Peripheral module clock [PCLEA) w12 - 120 [MHz]
Peripheral module clock [FCLKE] x1/4 - B0 [MHz]
Peripheral module clock for ADC [PCLKC) »1/4 - B0 [MHz]
Peripheral module clock for A0C [PCLED) w14 - B0 [MHz]
External bus clock (BCLK) w144 - E0 [MHz]
Flash IF clock [FCLK] w144 - &0 [MHz]
USE clock [UCLK) % 1/5 - 48 [MHz]
BCLE. pin output etting
[Operation
Clock output zource BCLE
SDCLE pin output setting
[] Operation
] m 3
Figure 4-3 Clock setting tab
Proceed to the next section on the Interrupt Controller Unit.
R20UT2983EG0100 Rev. 1.00 RENESAS Page 18 of 53

Jun 20, 2014

RSK+RX64M

4. Code Generation Using the e’ studio plug in

4.3.2 Interrupt Controller Unit

Referring to the RSK+ schematic, SW1 is connected to IRQ5 (P15) and SW2 is connected to IRQ2 (P12).
SW3 is connected to directly to the ADCTRGOn and will be configured later in 84.3.4. Navigate to the
‘Interrupt Controller Unit’ node in Code Generator and in the ‘General’ tab, configure these two interrupts as
falling edge triggered as shown in Figure 4-4 below.

i_xl Peripheral Functions 52 | [3f Code Preview [Properties

{ General | Group Interpts | Interrupt B 44 selection |

7| Generate Code (2]

Faszt intermupt setting

Software intermupt zetting

[] Software intermupt
[Software intermipt 2

MM zetting
[] MMI pin interrupt

IRG0 zetting
] 1RGO

IRG1 zetting

[1RG1

IRG2 setting
IRG2

IRG3 zetting
[]1RQ3

IRG4 setting
[]IRQ4

IRG5 setting
IRG5

e

[] Fast intermupt |nterupt zounce

Pricrity

Pricirity

Walid edge

Fin

Walid edge

Fin

Walid edge

Fin

Valid edge

Fin

Walid edge

Fin

Walid edge

Fin

Valid edge

BSC [BUSERR vect=1E)

Lewvel 15 [highest]

Lewvel 15 [highest]

Falling

F30

Low level

F31

Laow level

P12

Falling

F33

Lo level

FE1

Law lewvel

P15

Falling

Digital filker

Digital filter

Pricity

Digital filter

Pricrity

Digital filter

Pricity

Digital filter

Priciity

Drigital filter

Pricarity

Digital filker

Pricity

ta filker

Mo filker

Lewel 15 [highest)

Mo filker

Lewvel 15 [highest]

Mo filker

Lewel 15 [highest]

Mo filker

Lewel 15 [highest]

M filker

Lewel 15 [highest]

Mo filker

Lewel 15 (highest)

Figure 4-4 Interrupt Functions tab

0 [MHz)
0 [MHz)
0 [MHz)
~ [0 [MHz)
0 [MHz)
0 [MHz)
~ [0 [MHz)

|

-

m

Navigate to the ‘Group Interrupts’ sub tab and ensure that the ‘Group BLO’ interrupt is selected as shown in
Figure 4-5. The Group BLO interrupt is used for SCI Transmit End Interrupts (TEIl) and Reception Error
Interrupts (ERI) as described in §4.3.5.

R20UT2983EG0100 Rev. 1.00
Jun 20, 2014

RENESAS

Page 19 of 53

RSK+RX64M 4. Code Generation Using the e’ studio plug in

f,_é *Peripheral Functions 52 3 Code Preview [Properties

General | Group Intemupts | |pterrupt B A2 selection
Group BED zetting

[] Group BED Friority | Level 15 [highest]

Group BLO zetting
Group BLO Priority — Lewel 15 [higheszt] -

Group BLT zetting
[] Group BL1 Friority | Lewel 15 [highest]

Group ALD zetting
[] Group ALD Priority | Lewvel 15 higheszt]

Group AL1T zetting
[] Group AL Friority | Lewel 15 [highest]

Figure 4-5 Group Interrupt Functions tab

4.3.3 Compare Match Timer

Navigate to the ‘Compare Match Timer’ node in Code Generator. CMTO will be used as an interval timer for
generation of accurate delays. CMT1 and CMT2 will be used as timers in de-bouncing of switch interrupts.

In the ‘CMTO’ sub-tab configure CMTO as shown in Figure 4-6. This timer is configured to generate a High

priority interrupt every 1ms. We will use this interrupt later in the tutorial to provide an API for generating high
accuracy delays required in our application.

£l Peripheral Functions 52 5 Code Preview [Properties fof Generate Code (3] 7 = [

 CMT0| oMT1 | oMT2 | CMT3 | .

Compare match timer operation zetting

m

0 Uruzed @ Uzed

Court clock zetting
@ PCLESS) PCLE/32 1 PCLEA1Z28 1 PCLEATZ

Interval walue setting
Interval value 1 s w [Bctual value: 1

|nterrupt zetting
Enable compare match interrupt [ChI0)

Priciity Lewel 10 -

4 1L 3

Figure 4-6 CMTO tab

Navigate to the ‘CMTL1’ sub-tab and configure CMT1 as shown in Figure 4-7. This timer is configured to
generate a High priority interrupt after 20ms. This timer is used as our short switch de-bounce timer later in
this tutorial.

R20UT2983EG0100 Rev. 1.00 RENESAS Page 20 of 53
Jun 20, 2014

RSK+RX64M 4. Code Generation Using the e’ studio plug in

Eil Peripheral Functions 7 [Code Preview £ Properties fel Generate Code 2] 7 = 8

| CMTO || CMT1:| cMT2 | CMT3 | i

Compare match timer operation setting

m

1 Unuzed @ Uzed

Count clock, setting

) PCLEA2 @ PCLE/32) PCLEA 28) PCLEAS12

Interval value setting

Interval value 20 i w [Actual value: 20]

[nterupt setting

Enable compare match interrupt [ChI7]

Pricrity Lewvel 10 -

Figure 4-7 CMT1 tab

Navigate to the ‘CMT2’ sub-tab and configure CMT2 as shown in Figure 4-8. This timer is configured to

generate a High priority interrupt after 200ms. This timer is used as our long switch de-bounce timer later in
this tutorial.

il Peripheral Functions 52 [Code Preview [Properties fol Generate Cade (2] T = 5

| CMTO | CMT1 || CMT21 CwT3 | it

Compare match timer operation setting

m

1 Unused @ zed

Count clock setting

) PCLEAE) PCLEA32 O PCLEA 22 @ PCLE/S12

Interval value setting

Interval value 200 ms w [&ctual value: 200.004267)

Interrupt zetting

Enable compare match intermupt [Ch1Z)
Pricirity Lewel 10 -

a4 L 3

Figure 4-8 CMT2 tab
4.3.4 12-bit A/D Converter

Navigate to the '12-bit A/D Converter’ tab in Code Generator. Refer to the screenshot shown in Figure 4-9
and configure the S12AD0 as shown. We will be using the S12ADO0 in 12-bit one shot mode on the ANOOO
input, which is connected to the RV1 potentiometer output on the RSK. The conversion start trigger will be via
the pin connected to SW3.

R20UT2983EG0100 Rev. 1.00 RENESAS Page 21 of 53
Jun 20, 2014

RSK+RX64M 4. Code Generation Using the e” studio plug in

24 *Peripheral Functions 22 | [Code Preview [Properties] Generate Code 0] T = O

5124D0 | 592401 il

Setting 1 | Selting 2 |

— 512400 operation setting

() Unused @ Used

— Operation mode setting

@ Single scan mode onltinuous scan mode

Group scan mode

~ Double trigger made setting

Dizable () Enable

~ Self diagnosis setting
Mode Unused -

Voltage uzed Use VREFHO=0

— Dizconnection detection assist zetting

Charge setting Unuzed
Period 1ADCLE

— Group scan priority setting

Group & priarity Group & withaut priority
Group B action Mot restarted or continued due to Group & priarity

~4/D converted value count setting

Addition mode () Average mode

—&nalog input channel setting

Conwert [Group &) Convert [Group B) Add/Average AD value Dedicated sample and hald
ANDOD = =}
ANODT
ANOD2
ANDO3
ANDO4
ANDOS
ANDOE
ANDOT

m

OoooOoOoOE

— Conversion start trigger setting
Corversion start tigger [Group 4]

Convergion start trigger [Group B]
Compare match with or input capture to MTUDTGRA

ADTRGOH pin selection FO7 -

~Data registers setting

AD converted value addition count 1-time conversion

Data placement Right-alignment -

Automatic clearing Disable automatic clearing -
Data accuracy 12-bit sccuracy -

—Dedicated sample and hold circuit setting

Input zampling time: 8 [ps] [The input walue is invalid.]

~AN000 / Self-diagnosiz conversion lime setting

Input zampling time: 3.BEY (ws) [Actual value: 3.667)

—&N00T conversion time setting

Input zampling time: 3.EEY [n] [Actual value: 3.6E7]

—&N002 conversion time setting

Input zampling time 3EET (sl [Actual value: 3.EET)

—&M003 converzsion time setting

Input zampling time: 3EBE7 [ps] [Actual value: 3.667]

—&M004 conversion time zetting |

Input zampling time: 3.BEY (ms] [Actual value: 3.667]

—ANO05 conversion time setting

Input sampling time 3.EEY (nz] [Actual value: 3.667)

—&NO0E conversian time setting

Input sampling time 3.EEY [ps] [Actual value: 3.6E7]

—&MO07 conversion time setting

Input zampling time 3EET (sl [Actual value: 3.EET)
— Conversion time zetting

Total conversion time [Group 4] 4.083 [ps)

Total conversion time [Group B] (T3]

[Mate: Continuous zampling is dizabled)

~Interrupt setting
Enable A0 conwersion end interupt [S1240D10]

Priority Level 15 [highest] -
Enable 2D conversion end interrupt for group B [S12GBADID]
Friority Lewel 15 [highest]

< [0 | 3

Figure 4-9 A/D Converter tab

R20UT2983EG0100 Rev. 1.00 RENESANAS Page 22 of 53
Jun 20, 2014

RSK+RX64M 4. Code Generation Using the e’ studio plug in

4.3.5 Serial Communications Interface

Navigate to the ‘Serial Communications Interface’ tab in Code Generator, select the SCI6 sub-tab and apply
the settings shown in Figure 4-10. In the RSK+RX64M SCI6 is used as an SPI master for the Okaya Pmod™
LCD on the PMOD1 connector as shown in the schematic.

|
Pt

sCio | sCit | sci2 | so3 | soi4 | so5 [506 so7 | soiz |

*Peripheral Functions 52 3 Code Preview [Properties

General setting m‘
Function setting

1 Urzed

(71 Azynchronous mode Tranzmizzion

(71 Asynchronous mode [Mulbi-processor) Transmizzion

1 Clack synchronous mode Transmizzion

(71 Smart card interface mode Tranzmizzion

(7 Sirmple 11 busg

@ Simple 5P bus k azter tranzmit anly -
Fin zetting

FeDE/SKISOESSSCLE FO1

T=DE/SMOSIESSDAR Foo -

Figure 4-10 SCI6 General Setting tab

Select the SCI6 ‘Setting’ sub-tab and configure the SPI Master as illustrated in Figure 4-11. Make sure the
‘Transfer direction setting’ is set to ‘MSB-first’ and the ‘Bit rate’ is set to 1500000. All other settings remain at
their defaults.

R20UT2983EG0100 Rev. 1.00 RENESAS Page 23 of 53
Jun 20, 2014

RSK+RX64M

4. Code Generation Using the e’ studio plug in

fﬂ! Peripheral Functions &3 Code Presvieu

Properties

| sc0 | son | sciz | soz | so4 | sos | S0 soi7 | sciz |

?ﬂGenerateCode 2 T =79

.

| General setting| Setting

Tranzfer direction zetting
() LSBfirst

Data inversion zetting
@ Marmal

Tranzfer rate zetting

Tranzfer clock.

Bit rate

SCKE pin function selection

Clock setting
Clock delay

[] Enable clock polarity inversion
D ata handling zetting

Tranzmit data handling
Interupt zetting

THIE pricrity

TEIE, ERIE priarity [Group BLO]

Callback function zetting
Transmission end

[Enable modulation duty correction

@ MSE-first
) Irwerted

Internal clack -« P02
1500000 -

2585

Clock, output -

Clock is not delayed -

Data handled in interupt zervice routine

Lewvel 15 [highest] -

Lewvel 15 [highest]

(L

Figure 4-11 SCI6 SPI Master Setting

[bps] [Actual walue: 1500000,

m

Errar: 0]

Staying in the ‘Serial Communications Interface’ tab in Code Generator, select the SCI7 sub-tab and apply the
settings shown in Figure 4-12. In the RSK+RX64M SCI7 is connected via a Renesas RL78/G1C to provide a
USB virtual COM port as shown in the schematic.

R20UT2983EG0100 Rev. 1.00
Jun 20, 2014

RENESAS

Page 24 of 53

RSK+RX64M 4. Code Generation Using the e’ studio plug in

28l Peripheral Functions 22 | [Code Preview [Properties

sCI0 | sCi1 | sC12 | 5013 | 5014 | 5005 | 5006 | 5007 | sCi1z |

General setting m‘
Function setting
7 Uruzed
@ Azynchronous mode Tranzmizsionreception -
(71 Asynchronous mode [Muli-processor) Tranzmizzion
(71 Clock synchronous mode Tranzmizzian
() Smart card interface mode Tranzmizzion
(7 Simple IC bug
(7 Simple 5P bus Slave tranzmit/receive
Fin zetting
RxD7 ASMISOT/SSCLT F32 -
TxD7/SMOSI7/550A7 F30 -
4 m

Figure 4-12 SCI7 General Setting tab

Select the SCI7 ‘Setting’ sub-tab and configure SCI7 as illustrated in Figure 4-13. Make sure the ‘Start bit
edge detection’ is set as ‘Falling edge on RXD7 pin’ and the ‘Bit rate’ is set to 19200 bps. All other settings
remain at their defaults.

R20UT2983EG0100 Rev. 1.00 RENESAS Page 25 of 53
Jun 20, 2014

RSK+RX64M 4. Code Generation Using the e’ studio plug in
E8l Peripheral Functions 52 | [Code Preview [Properties %] senerate Code (2] Y = O
| 500 | son | soiz | soa | sci4 | sos | soe | 007 sonz | £
| General setting | SGetting |

Start bit edge detection zetting
() Low level on BxD7 pin @ Falling edae on RxD7 pin
[ata length setting
() 9 bits @ 8 hits () 7 bits
Parity zetting
@ MNone) Even) Odd
Stap bit length zetting
@ 1 hit () 2 bits E
Tranzfer direction setting
@ LSB-first () MSB-first
Tranzfer rate zetting
Tranzfer clock Internal clock. - P
Bit rate 19200 - [bps] [Actual walue: 19230769, Eror: 0.16%]
[] Enable modulatian duty corection 255
SCK7 pin function SCEY iz not uzed -

MHaise filter zetting
[] Enable noise filter

Moize filter clock

Hardware flow contral zetting
@ MNone
CTS7/RTS7 pin
Drata handling zetting
Tranzmit data handling
Receive data handling
Interrupt zetting
T=I7 pricrity
REIT priority
Enable errar interupt [ERIT)
TEI7. ERI7 pricrity (Group BLO)

Callback function setting
Transmission end

Clock signal divided by 1

@ CT5
P33

Data handled ininterupt service routine

Data handled ininterupt service routine

Level 15 [highest] -

Level 15 [highest) -

Level 15 [highest)

50000000 [Hz]

) RTS

Reception end Reception errar

L

Figure 4-13 SCI7 Asynchronous Setting

R20UT2983EG0100 Rev. 1.00

Jun 20, 2014

RENESAS

Page 26 of 53

RSK+RX64M 4. Code Generation Using the e’ studio plug in

4.3.6 I/O Ports

Referring to the RSK+ schematic, LEDO is connected to P03, LED1 is connected to P05, LED2 is connected
to P26 and LED3 is connected to P27. Navigate to the ‘I/O Ports’ tab in Code Generator and configure these
four 1/O lines as shown in Figure 4-14 and Figure 4-15 below. Ensure that the ‘Output 1’ tick box is checked.
This ensures that the code is generated to set LEDs initially off.

28l Peripheral Functions 52 | [Code Preview] Properties Fol cenerate code (2] T = B

¢ Port] | Partl I Port2 | Part3 I Paortd | Fart5 | PaortG I Port? | Partd | Paort3 | Porte, | PaortB I PartC I PortD I PortE | PaortF | PartG | Port) | u"

FO0
@ Unused (n v (O 0Out 8 CMOS output

PO
@ Unused 0 In () Out CHOS output

POz =
@ Unused L S T R I n CHOS autput

F0O3
7 Unuszed) In @ Out CMOS output - Dutput 1

P05 -
7 Unuszed 0 In @ Out CMOS output - Output 1

FO7
@ Unused (m v O 0Out 8 CMOS output

Figure 4-14 1/O ports — Port0

R20UT2983EG0100 Rev. 1.00 RENESAS Page 27 of 53
Jun 20, 2014

RSK+RX64M 4. Code Generation Using the e” studio plug in

2l Peripheral Functions 52 | [Code Preview] Properties fo| Generate code 2] T = O
| Fortd | Fart1 | Part2 | Fort3 I Fortd4 I Fort5 I FartE I Fart? I Fortd I Fort3 I Parta, I PartB I FaortC | FaortD | PartE | PartF | PartG I Pk | i |
- P20
@ Unuzed) In) Out Full-up ChOS5 output Clutput 1 High-drive output
- P21
@ Unused i n 0 Out Fullup CHMIOS output Output 1 High-drive output
- P22 =
@ Unused) In 7 Out Pull-up COS output Output 1 High-drive output
- P23
@ Unuzed) In) Out Full-up ChOS output Clutput 1 High-drive output
-F24 L.
@ Unused i n 0 Out Fullup CHMIOS output Output 1 High-drive output
- P25
@ Unused) In 7 Out Full-up CHOS autput Output 1 High-drive output
- P2E
) Unused & In @ Out Pull-up ChOS output - Output 1 High-drive output
- P27
) Urused & In @ Out Pull-up CMOS output - Dutput 1 High-drive output
4 11 r

Figure 4-15 1/O ports — Port2

P45 is used as one of the LCD control lines, together with P46 and P47. Configure these lines as shown in
Figure 4-16.

ﬂ Peripheral Functions 52 3 Code Preview 1 Properties ﬁ.] Generate Code {1] ¥ =8
| Part | Fart1 I Paort2 I Port3 | Portd | Part5 | PartE I Paort? | Paortd | Paort3 | Partd, I FortB I PartC | PartD | PartE | PartF | PaortG | Part) | i
- P40
@ Unuzed D lm oy) Out oy Pull-up CrOS oukput Dutput 1
-4
@ Unuzed) In) Ot Pull-up CrOS oukput Dutput 1
P4z =
@ Unuzed) In (70 Out Pull-up CMOS output Dutput 1
- P43
@ Unuzed) In (70 Out Pull-up CrOS oukput Dutput 1
- P44 L.
@ Unuzed @) In (70 Out Pull-up CrOS oukput Dutput 1
- P45
) Unuzed) In @ Dut Pull-up CMOS output - Cutput 1
- P4E
) Unuzed) In @ Dut Pull-up CMOS output - Cutput 1
- P47
) Unuzed @) In @ Out Pull-up CrOS output - [Output 1
] 1l b

Figure 4-16 1/O ports — Port4

R20UT2983EG0100 Rev. 1.00 RENESANAS Page 28 of 53
Jun 20, 2014

RSK+RX64M

4. Code Generation Using the e’ studio plug in

Peripheral function configuration is now complete. Save the project using the File -> Save menu item, then
click ‘Generate Code’. The Console pane should report ‘The operation of generating file was successful’, as
shown Figure 4-17 below.

Bl Console 2 |2 Problerms

Code Generator Console
Information of walid input walue range: 8.@081333333~8.738
The generating source felder is: C:MWeorkspacel (G Tutoriall
The follewing files were generated:

Wadasaas
Hadasaay
Hadasaal :
H25aaa:

Had@saaa

K 25aaa:
M @saaa:
M @oaaa:
Hadasaaa:

Hadasaaa

K 2saaa:
H25aaa:

Had@saaa

K 25aaa:
M @saaa:
M @oaaa:
Hadasaaa:
Hada2saaa:
K 2saaa:
H25aaa:

Had@saaa

K 25aaa:
K 25aaa:
M @saaa:
M @oaaa:

Hadasaaa

Hada2saaa:
K 2saaa:

Hd25aaa

K @5aaa:
K 25aaa:
M @saaa:
M @oaaa:

Hadasaas

srcheg

srehr

L5124

H =_,¢'>l - [ES7

“Eplll L

main.c was generated.

ishchopg

srchr

cE

dbsct.c was generated.

srchCg

srchr

L5124

intprg.c was generated.

srocheg

srehr

L5124

resetprg.c Was generated.

srchog

srchr

cE

sbrk.c was generated.

srchog

srohr

CE

vectthl.c was generated.

isroheg

srohr

CE

srchCg

srohr

cE

sbrk.h was generated.
stacksect.h was generated.

srcheg

srehr

€E

wert.h was generated.

ishchopg

srchr

L5124

hardware setup.c was generated.

srchCg

srchr

CE

macrodriver.h was generated.

srocheg

srehr

cE

userdefine.h was generated.

srchog

srchr

g

CEC.C Was generated.

srchog

srohr

CE

CEC user.c Was generated.

srchog

srohr

cE

cgc.h was generated.

srchCg

srohr

L5124

icu.c was generated.

srcheg

srehr

L5124

icu user.c was generated.

ishchopg

srchr

cE

icu.h was generated.

srchCg

srchr

L5124

port.c was generated.

srchCg

srchr

L5124

port user.c was generated.

srocheg

srehr

cE

port.h was generated.

srchog

srchr

cE

cmt.c Wwas generated.

isroheg

srohr

CE

cmt user.c was generated.

srchog

srohr

CE

cmt.h was generated.

srchCg

srohr

L5124

sci.c was generated.

ishchopg

srehr

L5124

sei user.c was generated.

srcheg

srchr

cE

sci.h was generated.

srchCg

srchr

CE

s12ad.c was generated.

srocheg

srehr

L5124

s12ad user.c Was generated.

srchog

srchr

g

sl2ad.h was generated.

:The operation of generating file was successful.

Figure 4-17 Code generator console

m

R20UT2983EG0100 Rev. 1.00

Jun 20, 2014

RENESAS

Page 29 of 53

RSK+RX64M 4. Code Generation Using the e’ studio plug in

4.4 Building the Project

The project is template created by Code Generator can now be built. In the Project Explorer pane expand the
‘src’ folder. The three files created by the New Project Wizard in 83.2 have been excluded from the build
automatically as part of the code generation procedure as shown in Figure 4-18. This is because the main()
function now resides in r_cg_main.c in the cg_src folder and the type definitions and setting of sections has
been handled by the Code Generator.

7 Project Explorer &3 = <},=t=l";>
4 ‘_5 CG_Tutorial [HardwareDebug]
. 91;—? Binaries
+ [a Includes
a 8 s
s §=e CO_stC

: indefine.h
[# CG_Tutorial.c
[# dbsct.c

I typedefine.h
Figure 4-18 Files excluded from the build by Code Generator

Switch back to the ‘C/C++' perspective using the g C/C++ button on the top right of the e’ studio

R v

workspace. Use ‘Build Project’ from the ‘Project’ menu or the button to build the tutorial. The project
will build with no errors.

R20UT2983EG0100 Rev. 1.00 RENESAS Page 30 of 53
Jun 20, 2014

RSK+RX64M 5. User Code Integration

5.User Code Integration

In this section the remaining application code is added to the project. Source files found on the RSK+ DVD
are copied into the workspace and the user is directed to add code in the user areas of the code generator
files.

Code must be inserted in to the user code area in many files in this project, in the areas delimited by
comments as follows:

/* Start user code for _xxxxx_. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */

Where _xxxx_ depends on the particular area of code, i.e. ‘function’ for insertion of user functions and
prototypes, ‘global’ for insertion of user global variable declarations, or ‘include’ for insertion of pre-processor
include directives. User code inserted inside these comment delimiters is protected from being overwritten by
Code Generator, if the user needs to subsequently change any of the Code Generator-generated code.

5.1 LCD Code Integration

API functions for the Okaya LCD display are provided with the RSK+. Locate the files ascii.h , r_okaya_lcd.h,
ascii.c, and r_okaya_lcd.c on the RSK+ DVD. These files can be found in the Tutorial project for e studio.
Copy these files into the C:\Workspace\CG_ Tutorial\src directory. The files will be automatically added to the
project as shown in Figure 5-1.

L Project Explorer 23 — <§>

4 *_5 CG_Tutorial [HardwareDebug]
> i{,—f Binaries
o [wpt) Includes
a8 s
¢ e Cg_srC
- g asciic
- [k asciih
. indefine.h
- g rokaya_lcd.c
. r_okaya_lcd.h

[#H 5 Tokarial -

Figure 5-1 Adding files to the project

In the e’ studio Project Tree, expand the ‘src/cg_src’ folder and open the file ‘r_cg_userdefine.h’ by double-
clicking on it. Insert the following #defines in between the user code delimiter comments as shown below.

/* Start user code for function. Do not edit comment generated here */
#define TRUE (€D

#define FALSE)

/* End user code. Do not edit comment generated here */

In the same folder open the file ‘r_cg_main.c’ by double-clicking on it. Insert #include "r_okaya lIcd.h" in
between the user code delimiter comments as shown below.

/* Start user code for include. Do not edit comment generated here */
#include "r_okaya_lcd.h"
/* End user code. Do not edit comment generated here */

Scroll down to the ‘main()’ function and insert the highlighted code as shown below into the beginning of the
user code area of the main() function:

void main(void)

{

R20UT2983EG0100 Rev. 1.00 RENESAS Page 31 of 53
Jun 20, 2014

RSK+RX64M 5. User Code Integration

R_MAIN_UseriInit(Q);
/* Start user code. Do not edit comment generated here */

/* Initialise the debug LCD */
R_LCD_Init(Q);

/* Displays the application name on the debug LCD */
R_LCD_Display(0, (uint8_t *)" RSK+RX64M ');
R_LCD_Display(1l, (uint8_t *)" Tutorial ');
R_LCD_Display(2, (uint8_t *)" Press Any Switch ');
while (1U)

{

3

/* End user code. Do not edit comment generated here */

¥
5.1.1 SPICode

The Okaya LCD display is driven by the SPI Master that was configured using Code Generator in 84.3.5. In
the e’ studio Project Tree, open the file ‘r_cg_sci.h’ by double-clicking on it. Insert the following code in the
user code area at the end of the file:

/* Start user code for function. Do not edit comment generated here */
MD_STATUS R_SCI6_SPIMasterTransmit(uint8_t * const tx_buf, const uintl6_t tx_num);
/* End user code. Do not edit comment generated here */

Now, open the r_cg_sci_user.c file and insert the following code in the user area for global:

/* Start user code for global. Do not edit comment generated here */
/* Flag used locally to detect transmission complete */

static volatile uint8_t sci6_txdone;

/* End user code. Do not edit comment generated here */

Insert the following code in the transmitend call-back function for SCI6:

static void r_sci6_callback_transmitend(void)

/* Start user code. Do not edit comment generated here */
sci6_txdone = TRUE;
/* End user code. Do not edit comment generated here */

}

Now insert the following function in the user code area at the end of the file:

/

* Function Name: R_SCI6_SPIMasterTransmit

* Description : This function sends SPI6 data to slave device.
* Arguments - tx_buf -

* transfer buffer pointer

* t>©_num -

* buffer size

* Return Value : status -

*

MD_OK or MD_ARGERROR

/
MD_STATUS R_SCI6_SPIMasterTransmit (uint8_t * const tx_buf, const uintl6_t tx_num)

{
MD_STATUS status = MD_OK;

/* clear the flag before initiating a new transmission */
sci6_txdone = FALSE;

/* Send the data using the APl */
status = R_SCI6_SPIl_Master_Send(tx_buf, tx_num);

/* Wait for the transmit end flag */
while (FALSE == sci6_txdone)

/* Wait */
¥
return (status);
bs
R20UT2983EG0100 Rev. 1.00 RENESAS Page 32 of 53

Jun 20, 2014

RSK+RX64M 5. User Code Integration

/
* End of function R_SCI6_SPIMasterTransmit

/
This function uses the transmit end callback function to perform flow control on the SPI transmission to the
LCD, and is used as the main API call in the LCD code module.

5.1.2 CMT Code

The LCD code needs to insert delays to meet the timing requirements of the display module. This is achieved
using the dedicated timer which was configured using Code Generator in 84.3.3. Open the file r_cg_cmth
and insert the following code in the user area for function at the end of the file:

/* Start user code for function. Do not edit comment generated here */
void R_CMT_MsDelay(const uintl6_t millisec);
/* End user code. Do not edit comment generated here */

Open the file r_cg_cmt_user.c and insert the following code in the user area for global at the beginning of the
file:

/* Start user code for global. Do not edit comment generated here */
static volatile uint8_t one_ms_delay complete = FALSE;
/* End user code. Do not edit comment generated here */

Scroll down to the r_cmt_cmiO_interrupt() function and insert the following line in the user code area:

static void r_cmt_cmiO_interrupt(void)

{
/* Start user code. Do not edit comment generated here */
one_ms_delay_complete = TRUE;
/* End user code. Do not edit comment generated here */
3

Then insert the following function in the user code area at the end of the file:

Function Name: R_CMT_MsDelay

Description : Uses CMTO to wait for a specified number of milliseconds
Arguments : uintlé_t millisecs, number of milliseconds to wait
Return Value : None

o X ok T~

void R_CMT_MsDelay (const uintl6_t millisec)
uintl6é_t ms_count = O;

do
{
R_CMTO_Start();
while (FALSE == one_ms_delay_complete)

{
/* Wait */

(o)

R_CMTO_Stop();
one_ms_delay complete = FALSE;
ms_count++;

3} while (ms_count < millisec);

3
/

End of function R_CMT_MsDelay

R20UT2983EG0100 Rev. 1.00 RENESAS Page 33 of 53
Jun 20, 2014

RSK+RX64M 5. User Code Integration

5.2 Additional include paths

Before the project can be built the compiler needs some additional include paths added. Select the
CG_Tutorial project in the Project Explorer pane. Use the @ button in the toolbar to open the project settings.

Navigate to ‘C/C++ Build -> Settings ->Compiler -> Source and click the] button as shown in below in
Figure 5-2.

Properties for CG_Tutorial uﬂ‘—“&
type filter text Settings - T
. Resource -
Builders 4 BB E;mpller Include file directories &g & 1
a C/C++ Build 4|2 Source LLYinclude"

Build Wariables

) i
Change Toalchain Wers % O_hJEEt
Dependency Scan % LlSt. . I
Dewice a4 B Optimize

Errviranment
Logging

@ Source file

(2 Advanced
(# Miscellaneous

T
Settings [g; User
Tool Chain Editor 4 (2= CPU

» CfC++ General
Project References
Run/Debug Settings
+ Task Repository

Advanced
(5 PIC/PID
4 B3y Assembler
(2 Source

Preinclude files

m

4 (B Object
(2 Advanced
2 List
(2 Miscellaneous
2B User
4 B8 Linker

Figure 5-2 Adding additional search paths

In the ‘Add directory path’ dialog, click the ‘Workspace’ button and in the ‘Folder selection’ dialog browse to the
‘CG_Tutorial/src’ folder and click ‘OK’. e” studio formats the path as show in Figure 5-3 below.

S

Add directory path
ry p

Directory:

Hworkspace_locy$ProjMarmelfsrc]

]] ’ Cancel] [Mifarkspace..,] ’ File systern...

Figure 5-3 Adding workspace search path

Repeat the above steps to add the ‘src/cg_src’ workspace search path. Select ‘Build Project’ from the ‘Project’

-

menu, or use the button. e’ studio will build the project with no errors.

The project may now be run using the debugger as described in 86. The program will display ‘RSK+RX64M
Tutorial Press Any Switch’ on 3 lines in the LCD display.

R20UT2983EG0100 Rev. 1.00
Jun 20, 2014

RENESAS Page 34 of 53

RSK+RX64M 5. User Code Integration

5.3 Switch Code Integration

API functions for user switch control are provided with the RSK. Locate the files rskrx64mdef.h,
r_rsk_switch.h and r_rsk_switch.c on the RSK DVD. These files can be found in the Tutorial project for e’
studio. Copy these files into the C:\Workspace\CG_Tutorial\src directory. Import these three files into the
project in the same way as the lcd files.

The switch code uses interrupt code in the files r_cg_icu.h, r_cg_icu.c and r_cg_icu_user.c and timer code in
the files r_cg_cmt.h, r_cg_cmt.c and r_cg_cmt_user.c, as described in 84.3.2 and 84.3.3. It is necessary to
provide additional user code in these files to implement the switch press/release detection and de-bouncing
required by the API functions in r_rsk_switch.c.

53.1 Interrupt Code

In the e” studio Project Tree, expand the ‘src/cg_src’ folder and open the file ‘r_cg_icu.h’ by double-clicking on
it. Insert the following code in the user code area at the end of the file:

/* Start user code for function. Do not edit comment generated here */

/* Function prototypes for detecting and setting the edge trigger of ICU_IRQ */
uint8_t R_ICU_IRQIsFallingEdge(const uint8_t irg_no);

void R_ICU_IRQSetFallingEdge(const uint8_t irg_no, const uint8_t set_f_edge);
void R_ICU_IRQSetRisingEdge(const uint8_t irg_no, const uint8_t set_r_edge);

/* End user code. Do not edit comment generated here */

Now, open the r_cg_icu.c file and insert the following code in the user code area at the end of the file:

/
* Function Name: R_ICU_IRQIsFallingEdge
* Description : This function returns 1 if the specified ICU_IRQ is set to
* falling edge triggered, otherwise 0.
* Arguments : uint8_t irg_no
* Return Value : 1 if falling edge triggered, O if not
/
uint8_t R_ICU_IRQIsFallingEdge (const uint8_t irg_no)
{
uint8_t falling_edge_trig = 0x0;
if (ICU.IRQCR[Lirg_no]-BYTE & _04_ICU_IRQ_EDGE_FALLING)
falling_edge_trig = 1;
}
return falling_edge_trig;
}
/
* End of function R_ICU_IRQIsFallingEdge
/
/
* Function Name: R_ICU_IRQSetFallingEdge
* Description : This function sets/clears the falling edge trigger for the
* specified ICU_IRQ.
* Arguments T uint8_t irg_no
* uint8_t set_T _edge, 1 if setting falling edge triggered, O if
* clearing
* Return Value : None
/
void R_ICU_IRQSetFallingEdge (const uint8_t irg_no, const uint8_ t set f_edge)
{
ifT (1 == set_fT _edge)
ICU.IRQCR[Lirg_no].BYTE |= _04_ICU_IRQ_EDGE_FALLING;
¥
else
ICU. IRQCR[Lirg_no].BYTE &= (uint8_t) ~_04_ICU_IRQ_EDGE_FALLING;
¥
}
/
* End of function R_ICU_IRQSetFallingEdge
R20UT2983EG0100 Rev. 1.00 IIEN ESNS Page 35 of 53

Jun 20, 2014

RSK+RX64M 5. User Code Integration

/
/
* Function Name: R_ICU_IRQSetRisingEdge
* Description : This function sets/clear the rising edge trigger for the
* specified ICU_IRQ.
* Arguments : uint8_t irg_no
* uint8_t set_r_edge, 1 if setting rising edge triggered, O if
* clearing
* Return Value : None
/
void R_ICU_IRQSetRisingEdge (const uint8_t irg_no, const uint8 t set r_edge)
if (1 == set_r_edge)
ICU.IRQCR[Lirg_no] -BYTE |= _08_ICU_IRQ_EDGE_RISING;
3
else
ICU.IRQCR[irg_no] -BYTE &= (uint8_t) ~_08_ICU_IRQ_EDGE_RISING;
3
}
/
* End of function R_ICU_IRQSetRisingEdge
/

Open the r_cg_icu_user.c file and insert the following code in the user code area for include near the top of
the file:

/* Defines switch callback functions required by interrupt handlers */
#include "r_rsk_switch._h"

In the same file insert the following code in the user code area inside the function r_icu_irg2_interrupt ():

/* Switch 2 callback handler */
R_SWITCH_IsrCallback2();

In the same file insert the following code in the user code area inside the function r_icu_irg5_interrupt ():
/* Switch 1 callback handler */
R_SWITCH_IsrCallbackl1();

5.3.2 De-bounce Timer Code

Open the r_cg_cmt_user.c file and insert the following code in the user code area for include near the top of
the file:

/* Defines switch callback functions required by interrupt handlers */
#include "r_rsk_switch._h"

In the same file insert the following code in the user code area inside the function r_cmt_cmil_interrupt ():

/* Stop this timer - we start it again in the de-bounce routines */
R_CMT1_Stop(Q);

/* Call the de-bounce call back routine */
R_SWITCH_DebouncelsrCal lback();

In the same file insert the following code in the user code area inside the function r_cmt_cmi2_interrupt ():

/* Stop this timer - we start it again in the de-bounce routines */
R_CMT2_Stop();

/* Call the de-bounce call back routine */
R_SWITCH_DebouncelsrCal lback();

R20UT2983EG0100 Rev. 1.00 RENESAS Page 36 of 53
Jun 20, 2014

RSK+RX64M 5. User Code Integration

5.3.3 Main Switch and ADC Code

In this part of the tutorial we add the code to act on the switch presses to activate A/D conversions and display
the result on the LCD. In 84.3.4 we configured the ADC to be triggered from the ADTRGO# pin. In this code,
we also perform software triggered A/D conversion from the user switches SW1 and SW2, by reconfiguring
the ADC trigger source on-the-fly once an SW1 or SW2 press is detected.

In the e” studio Project Tree open the file ‘r_cg_userdefine.h’. Insert the following code the user code area,
resulting in the code shown below

/* Start user code for function. Do not edit comment generated here */
#define TRUE (€D
#define FALSE)

extern volatile uint8_t g_adc_trigger;
/* End user code. Do not edit comment generated here */

Open the file ‘r_cg_main.c’ and insert #include "r_rsk_switch.h" in the user code area for include, resulting in
the code shown below:

/* Start user code for include. Do not edit comment generated here */
#include "r_okaya lcd.h"

#include "r_rsk_switch.h"

/* End user code. Do not edit comment generated here */

Next add the switch module initialisation function call highlighted in the user code area inside the main()
function, resulting in the code shown below:

void main(void)

{
R_MAIN_UserlInit(Q);
/* Start user code. Do not edit comment generated here */
/* Initialise the switch module */
R_SWITCH_InitQ);
/* Initialise the debug LCD */
R_LCD_InitQ);
/* Displays the application name on the debug LCD */
R_LCD_Display(0, (uint8_t *)'" RSK+RX64M ");
R_LCD Display(1, (uint8_t *)" Tutorial ");
R_LCD Display(2, (uint8_t *)" Press Any Switch ");
while (1U)
by
/* End user code. Do not edit comment generated here */
3

In the same file, insert the declarations in the user code area for global, resulting in the code shown below:

/* Start user code for global. Do not edit comment generated here */

/* Prototype declaration for cb_switch_press */
static void cb_switch_press (void);

/* Prototype declaration for get _adc */
static uintl6_t get_adc(void);

/* Prototype declaration for lcd display_adc */
static void lcd_display adc (const uintl6_t adc_result);

/* Variable for flagging user requested ADC conversion */
volatile uint8_t g_adc_trigger = FALSE;

/* End user code. Do not edit comment generated here */

Next add the highlighted code below in the user code area inside the main() function

R20UT2983EG0100 Rev. 1.00 RENESAS Page 37 of 53
Jun 20, 2014

RSK+RX64M 5. User Code Integration

and the code inside the while loop, resulting in the code shown below:
void main(void)

R_MAIN_UserlInit(Q);
/* Start user code. Do not edit comment generated here */

/* Initialise the switch module */
R_SWITCH_Init(Q);

/* Set the call back function when SW1 or SW2 is pressed */
R_SWITCH_SetPressCal lback(cb_switch_press);

/* Initialise the debug LCD */
R_LCD_Init ;

/* Displays the application name on the debug LCD */
R_LCD_Display(0, (uint8_t *)" RSK+RX64M ');
R_LCD_Display(1, (uint8_t *)" Tutorial ");

R_LCD _Display(2, (uint8_t *)" Press Any Switch ");

/* Start the A/D converter */
R_S12AD0O_Start();

while (1U)
uintlé_t adc_result;

/* Wait for user requested A/D conversion flag to be set (SW1 or SW2) */
if (TRUE == g_adc_trigger)
{

/* Call the function to perform an A/D conversion */

adc_result = get_adc();

/* Display the result on the LCD */
Icd_display_adc(adc_result);

/* Reset the flag */
g_adc_trigger = FALSE;

by

/* SW3 is directly wired into the ADTRGOn pin so will
cause the interrupt to fire */

else iIf (TRUE == g_adc_complete)

{

/* Get the result of the A/D conversion */
R_S12AD0O_Get_ValueResult(ADCHANNELO, &adc_result);

/* Display the result on the LCD */
Icd_display_adc(adc_result);

/* Reset the flag */
g_adc_complete = FALSE;
}

/* End user code. Do not edit comment generated here */
3
Then add the definition for the switch call-back, get_adc() and Icd_display_adc() functions in the user code
area for adding at the end of the file, as shown below:

/

* Function Name : cb_switch_press

* Description . Switch press callback function. Sets g_adc_trigger flag.
* Argument > none

* Return value : none

static void cb_switch_press (void)

/* Check if switch 1 or 2 was pressed */
if (g_switch_flag & (SWITCHPRESS_ 1 | SWITCHPRESS_2))

/* set the flag indicating a user requested A/D conversion is required */
g_adc_trigger = TRUE;

/* Clear flag */
g_switch_flag = 0x0;

R20UT2983EG0100 Rev. 1.00 RENESAS Page 38 of 53
Jun 20, 2014

RSK+RX64M 5. User Code Integration

}

NS

End of function cb_switch_press

Function Name : get_adc

Description : Reads the ADC result, converts it to a string and displays
it on the LCD panel.

Argument > none

Return value : uintl6_t adc value

FoX X X XN

static uintl6_t get _adc (void)
{

/* A variable to retrieve the adc result */
uintl6é_t adc_result;

/* Stop the A/D converter being triggered from the pin ADTRGOn */
R_S12AD0O_Stop();

/* Start a conversion */
R_S12AD0O_SWTriggerStart();

/* Wait for the A/D conversion to complete */
while (FALSE == g_adc_complete)

/* Wait */
}

/* Stop conversion */
R_S12ADO_SWTriggerStop();

/* Clear ADC flag */
g_adc_complete = FALSE;

R_S12AD0O_Get_ValueResult(ADCHANNELO, &adc_result);
/* Set AD conversion start trigger source back to ADTRGOn pin */

R_S12AD0_Start();

return adc_result;
by
/

* End of function get_adc

Function Name : lcd_display_adc

Description : Converts adc result to a string and displays
it on the LCD panel.

Argument : uintl6_t adc result

Return value : none

XX X o EN

static void lcd_display_adc (const uintl6_t adc_result)
{

/* Declare a temporary variable */

uint8_t a;

/* Declare temporary character string */
char lcd_buffer[11] = " ADC: XXXH";

/* Convert ADC result into a character string, and store in the local.
Casting to ensure use of correct data type. */

a = (uint8_t)((adc_result & 0x0F00) >> 8);

Icd_buffer[6] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));

a = (uint8_t)((adc_result & 0x00F0) >> 4);

Icd_buffer[7] = (char)((a < Ox0A) ? (a + 0x30) : (a + 0x37));

a = (uint8_t)(adc_result & 0x000F);

Icd_buffer[8] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));

/* Display the contents of the local string lcd_buffer */
R_LCD_Display(3, (uint8_t *)lcd_buffer);

R20UT2983EG0100 Rev. 1.00 RENESANAS Page 39 of 53
Jun 20, 2014

RSK+RX64M 5. User Code Integration

/
* End of function lcd_display_adc

/

Open the file ‘r_cg_s12ad.h’ by double-clicking on it. Insert the following code in the in the user code area for
function, resulting in the code shown below:

/* Start user code for function. Do not edit comment generated here */

/* Flag indicates when A/D conversion is complete */
extern volatile uint8_t g_adc_complete;

/* Functions for starting and stopping software triggered A/D conversion */
void R_S12ADO_SWTriggerStart(void);

void R_S12ADO_SWTriggerStop(void);

/* End user code. Do not edit comment generated here */

Open the file ‘r_cg_s12ad.c’ by double-clicking on it. Insert the following code in the in the user code area for
global, resulting in the code shown below:

/* Start user code for adding. Do not edit comment generated here */

Function Name: R_S12ADO_SWTriggerStart

Description : This function starts the ADO converter.
Arguments : None

Return Value : None

o X XN

void R_S12ADO_SWTriggerStart(void)
{
IR(PERIB, INTB129) = O
IEN(PERIB, INTB129)
ICU.GENBL1.BIT.EN19
S12AD.ADCSR.BIT.ADST =

U;
= 1U;
= 1U;
1U;
H

/
End of function R_S12AD0 SWTriggerStart

Function Name: R_S12ADO_SWTriggerStop

Description : This function stops the ADO converter.
Arguments : None

Return Value : None

o X XN

void R_S12ADO_SWTriggerStop(void)

{
S12AD.ADCSR.BIT.ADST = 0U;
IEN(PERIB, INTB129) = OU;
IR(PERIB, INTB129) = 0U;
ICU.GENBL1.BIT.EN19 = 0U;

3

/

End of function R_S12ADO_SWTriggerStop

/* End user code. Do not edit comment generated here */

Open the file r_cg_sl12ad_user.c and insert the following code in the in the user code area for global, resulting
in the code shown below:

/* Start user code for global. Do not edit comment generated here */
/* Flag indicates when A/D conversion is complete */

volatile uint8_t g_adc_complete;

/* End user code. Do not edit comment generated here */

Insert the following code in the in the user code area of the r_s12adO_interrupt () function, resulting in the
code shown below:

static void r_sl2adO_interrupt(void)

/* Start user code. Do not edit comment generated here */
g_adc_complete = TRUE;
/* End user code. Do not edit comment generated here */

R20UT2983EG0100 Rev. 1.00 RENESAS Page 40 of 53
Jun 20, 2014

RSK+RX64M 5. User Code Integration

}

-

Select ‘Build Project’ from the ‘Project’ menu, or use the button. e studio will build the project with no
errors.

The project may now be run using the debugger as described in 86. When any switch is pressed, the
program will perform an A/D conversion of the voltage level on the ADPOT line and display the result on the
LCD panel. Return to this point in the Tutorial to add the UART user code.

5.4 Debug Code Integration

API functions for trace debugging via the RSK+ serial port are provided with the RSK+. Locate the files
r_rsk_debug.h and r_rsk_debug.c on the RSK+ DVD. These files can be found in the RSKRX64M_Tutorial
project for e” studio. Copy these files into the C:\Workspace\CG_Tutorial\src directory. Import these two files
into the project in the same way as the LCD files.

In the r_rsk_debug.h file, ensure the following macro definition is included:

/* Macro for definition of serial debug transmit function - user edits this */
#define SerialDbgWrite (R_SCI17_AsyncTransmit)

This macro is referenced in the r_rsk_debug.c file and allows easy re-direction of debug output if a different
debug interface is used.

5.5 UART Code Integration

551 SCICode

In the e” studio Project Tree, expand the ‘src/cg_src’ folder and open the file ‘r_cg_sci.h’ by double-clicking on
it. Insert the following code in the user code area at the end of the file:

/* Start user code for function. Do not edit comment generated here */

/* Exported functions used to transmit a number of bytes and wait for completion */

MD_STATUS R_SCI6_SPIMasterTransmit(uint8_t * const tx_buf, const uintl6_t tx_num);

MD_STATUS R_SCI7_AsyncTransmit(uint8_t * const tx_buf, const uintl6_t tx_num);

/* Character is used to receive key presses from PC terminal */
extern uint8_t g_rx_char;

/* Flag used to control transmission to PC terminal */
extern volatile uint8_t g_tx_flag;

/* End user code. Do not edit comment generated here */

Open the file ‘r_cg_sci_user.c. Insert the following code in the user area for global near the beginning of the
file:

/* Start user code for global. Do not edit comment generated here */

/* Global used to receive a character from the PC terminal */
uint8_t g_rx_char;

/* Flag used to control transmission to PC terminal */
volatile uint8_t g_tx_flag = FALSE;

/* Flag used locally to detect transmission complete */
static volatile uint8_t sci6_txdone;
static volatile uint8_t sci7_txdone;

/* End user code. Do not edit comment generated here */

In the same file, insert the following code in the user code area inside the r_sci7_callback_transmitend()
function:

static void r_sci7_callback_transmitend(void)

/* Start user code. Do not edit comment generated here */
sci7_txdone = TRUE;
R20UT2983EG0100 Rev. 1.00 .zEN ESNS Page 41 of 53

Jun 20, 2014

RSK+RX64M 5. User Code Integration

/* End user code. Do not edit comment generated here */

}

In the same file, insert the following code in the user code area inside the r_sci7_callback_receiveend()
function:

static void r_sci7_callback_receiveend(void)

{

/* Start user code. Do not edit comment generated here */
/* Check the contents of g_rx _char */
iIf (("c” == g_rx_char) || (°C" == g_rx_char))

g_adc_trigger = TRUE;
by

/* Set up SCI7 receive buffer and callback function again */
R_SC17_Serial_Receive((uint8_t *)&g_rx_char, 1);

/* End user code. Do not edit comment generated here */

}

At the end of the file, in the user code area for adding, add the following function definition:

Function Name: R_SCI17_AsyncTransmit
Description : This function sends SCI7 data and waits for the transmit end flag.
Arguments . tx_buf -

transfer buffer pointer

t>x_num -

buffer size
Return Value : status -

MD_OK or MD_ARGERROR

ook X X X X Ok XN\

/
MD_STATUS R_SCI7_AsyncTransmit (uint8_t * const tx_buf, const uintl6_t tx_num)

{
MD_STATUS status = MD_OK;

/* clear the flag before initiating a new transmission */
sci7_txdone = FALSE;

/* Send the data using the APl */
status = R_SCI7_Serial_Send(tx_buf, tx_num);

/* Wait for the transmit end flag */
while (FALSE == sci7_txdone)

/* Wait */

return (status);

}

/
* End of function R_SCI7_AsyncTransmit

55.2 Main UART code

Open the file ‘r_cg_main.c’. Add the following declaration to the user code area for include near the top of the
file:

#include "r_rsk_debug.h"

Add the following declaration to the user code area for global near the top of the file:

/* Prototype declaration for uart_display_adc */
static void uart_display_adc(const uint8_t adc_count, const uintl6_t adc_result);

/* Variable to store the A/D conversion count for user display */
static uint8_t adc_count = 0;

Add the following highlighted code to the user code area in the main function:

R20UT2983EG0100 Rev. 1.00 RENESAS Page 42 of 53
Jun 20, 2014

RSK+RX64M 5. User Code Integration
void main(void)
{
R_MAIN_UserlInit(Q);
/* Start user code. Do not edit comment generated here */
/* Initialise the switch module */
R_SWITCH_Init();
/* Set the call back function when SW1 or SW2 is pressed */
R_SWITCH_SetPressCal lback(cb_switch_press);
/* Initialise the debug LCD */
R_LCD_Init ;
/* Displays the application name on the debug LCD */
R_LCD_Display(0, (uint8_t *)'" RSK+RX64M ');
R_LCD Display(1, (uint8_t *)" Tutorial ");
R_LCD Display(2, (uint8_t *)" Press Any Switch ");
/* Start the A/D converter */
R_S12AD0O_Start();
/* Set up SCI7 receive buffer and callback function */
R_SC17_Serial_Receive((uint8_t *)&g_rx_char, 1);
/* Enable SCI7 operations */
R_SC17_Start();
while (1U)
{
/* Wait for user requested A/D conversion flag to be set */
if (TRUE == g_adc_trigger)
uintl6é_t adc_result;
/* Call the function to perform an A/D conversion */
adc_result = get_adc();
/* Display the result on the LCD */
Icd_display_adc(adc_result);
/* Increment the adc_count */
if (16 == ++adc_count)
{
adc_count = 0;
¥
/* Send the result to the UART */
uart_display_adc(adc_count, adc_result);
/* Reset the flag */
g_adc_trigger = FALSE;
ks
/* SW3 is directly wired into the ADTRGOn pin so will
cause the interrupt to fire */
else if (TRUE == g_adc_complete)
{
/* Get the result of the A/D conversion */
R_S12ADO_Get_ValueResult(ADCHANNELO, &adc_result);
/* Display the result on the LCD */
Icd_display_adc(adc_result);
/* Increment the adc_count */
if (16 == ++adc_count)
{
adc_count = 0;
by
/* Send the result to the UART */
uart_display_adc(adc_count, adc_result);
/* Reset the flag */
g_adc_complete = FALSE;
¥
/* End user code. Do not edit comment generated here */
R20UT2983EG0100 Rev. 1.00 .zEN ESNS Page 43 of 53

Jun 20, 2014

RSK+RX64M 5. User Code Integration

}

Then, add the following function definition in the user code area at the end of the file:

/

* Function Name : uart_display_adc

* Description : Converts adc result to a string and sends it to the UARTL.
* Argument : uint8_t : adc_count

* uintl6_t: adc result

* Return value : none

/
static void uart_display_adc (const uint8_t adc_count, const uintl6_t adc_result)

/* Declare a temporary variable */
char a;

/* Declare temporary character string */
static char uart_buffer[] = "ADC xH Value: »xxH\r\n";

/* Convert ADC result into a character string, and store in the local.
Casting to ensure use of correct data type. */

a = (char)(adc_count & O0x000F);

uart_buffer[4] = (char)((a < Ox0A) ? (a + 0x30) : (a + 0x37));

a = (char)((adc_result & 0x0F00) >> 8);

uart_buffer[14] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));

a = (char)((adc_result & 0Ox00F0) >> 4);

uart_buffer[15] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));

a = (char)(adc_result & 0x000F);

uart_buffer[16] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));

/* Send the string to the UART */
R_DEBUG_Print(uart_buffer);

}

/
* End of function uart_display_adc

/
Select ‘Build Project’ from the ‘Build’ menu. e studio will build the project with no errors.

The project may now be run using the debugger as described in 86. Connect the RSK+ G1CUSBO port to a
USB port on a PC. If this is the first time the RSK+ has been connected to the PC then a device driver will be
installed automatically. Open Device Manager, the virtual COM port will now appear under 'Port (COM & LPT)'
as 'RSK USB Serial Port (COMXx)', where x is a number.

Open a terminal program, such as HyperTerminal, on the PC with the same settings as for SCI7 (see §4.3.5).
When any switch is pressed, or when ‘c’ is sent via the COM port, the program will perform an A/D conversion
of the voltage level on the ADPOT line and display the result on the LCD panel and send the result to the PC
terminal program via the via SCI7. Return to this point in the Tutorial to add the LED user code.

5.6 LED Code Integration

Open the file ‘r_cg_main.c’. Add the following declaration to the user code area for include near the top of the
file:

#include "'rskrx64mdef.h"

Add the following declaration to the user code area for global near the top of the file:

/* Prototype declaration for led_display_count */
static void led_display_count(const uint8_t count);

Add the following highlighted code to the user code area in the main function:
void main(void)

R_MAIN_UseriInit(Q);
/* Start user code. Do not edit comment generated here */

R20UT2983EG0100 Rev. 1.00 RENESAS Page 44 of 53
Jun 20, 2014

RSK+RX64M

5. User Code Integration

/* Initialise the switch module */
R_SWITCH_Init(Q;

/* Set the call back function when SW1 or SW2 is pressed */
R_SWITCH_SetPressCal lback(cb_switch_press);

/* Initialise the debug LCD */

R_LCD_Init ;

/* Displays the application name on the debug LCD */
R_LCD Display(0, (uint8_t *)'" RSK+RX64M ');
R_LCD_Display(1, (uint8_t *)" Tutorial ");
R_LCD_Display(2, (uint8_t *)" Press Any Switch ");

/* Sart the A/D converter */
R_S12AD0_Start();

/* Set up SCI7 receive buffer and callback function */
R_SC17_Serial_Receive((uint8_t *)&g_rx_char, 1);

/* Enable SCI7 operations */
R_SC17_Start();

while (1VU)
{

uintl6é_t adc_result;

/* Wait for user requested A/D conversion flag to be set(SW1 or SW2) */

if (TRUE == g_adc_trigger)

{
/* Call the function to perform an A/D conversion */
adc_result = get_adc();

/* Display the result on the LCD */
Icd_display_adc(adc_result);

/* Increment the adc_count and display using the LEDs */
if (16 == ++adc_count)
{

adc_count = 0;
led_display_count(adc_count);

/* Send the result to the UART */
uart_display_adc(adc_count, adc_result);

/* Reset the flag */
g_adc_trigger = FALSE;

/* SW3 is directly wired into the ADTRGOn pin so will
cause the interrupt to fire */
else if (TRUE == g_adc_complete)

{
/* Get the result of the A/D conversion */
R_S12AD0O_Get_ValueResult(ADCHANNELO, &adc_result);
/* Display the result on the LCD */
Icd_display_adc(adc_result);
/* Increment the adc_count and display using the LEDs */
if (16 == ++adc_count)
{
adc_count = 0;
led_display_count(adc_count);
/* Send the result to the UART */
uart_display_adc(adc_count, adc_result);
/* Reset the flag */
g_adc_complete = FALSE;
¥
ks
/* End user code. Do not edit comment generated here */
3
R20UT2983EG0100 Rev. 1.00 .zEN ESNS Page 45 of 53

Jun 20, 2014

RSK+RX64M 5. User Code Integration

Then, add the following function definition in the user code area at the end of the file:

/

* Function Name : led_display_count

* Description : Converts count to binary and displays on 4 LEDSO-3
* Argument I uint8_t count

* Return value : none

/
static void led_display_count (const uint8_t count)
{
/* Set LEDs according to lower nibble of count parameter */
LEDO = (count & 0x01) ? LED ON : LED _OFF;
LED1 = (count & 0x02) ? LED_ON : LED_OFF;
LED2 = (count & 0Ox04) ? LED_ON : LED_OFF;
LED3 = (count & 0x08) ? LED ON : LED OFF;
ks
/
* End of function led_display_count
/

Select ‘Build Project’ from the ‘Build’ menu, or press F7. e’ studio will build the project with no errors.

The project may now be run using the debugger as described in 86. The code will perform the same but now
the LEDs will display the adc_count in binary form.

R20UT2983EG0100 Rev. 1.00 RENESAS Page 46 of 53
Jun 20, 2014

RSK+RX64M 6. Debugging the Project

6. Debugging the Project

In the Project Explorer pane, ensure that the ‘CG_Tutorial’ project is selected. To debug the project, click the
5 button. The dialog shown in Figure 6-1will be displayed.

Confirm Perspective Switch @

This kind of launch is configured to open the Debug perspective when it suspends.

This Debug perspective is designed to support application debugging. It

incorporates views for displaying the debug stack, wariables and breakpoint
management,

Do wou want to open this perspective now?

[Remember rry decision

Yes | ’ Mo

Figure 6-1 Perspective Switch Dialog

Click ‘OK’ to confirm that the debug window perspective will be used. The debugger will start up and the code
will stop at the Code Generator function ‘PowerOn_Reset_PC’ as shown in Figure 6-2.

R20UT2983EG0100 Rev. 1.00 RENESAS Page 47 of 53
Jun 20, 2014

RSK+RX64M 6. Debugging the Project

Debug - CG_Tutorial/srcfcg_srofr_cg_resetprg.c - e2 studic
Eile Edit Source Refactor [Mawigate Search Project Bun Window Help

- | B~ | > o W OB TR e S -2 A F O

35 Debug &2 O v % E@|iv | Y= 8 e=var
a [c7] CG_Tutorial HardurareDebug [Renesas GDB Hardware Debugging]
a §f® CG_Tutorialx

Marre
4 o Thread [1] 1 (Mo thread info available) (Suspended : Signal : SIGTRAP: Trace/breakpaint trap)
= PowerQOMN_Reset PCO atr_cg_resetprg.c:71 Oxffc00000
g gdb
g GDB server
r_cg_userdef.., F_CO_fnain.c r_cg_intprg.c r_cg_icuh r_cg_scih F_CO_$Ci_User.c [

71 ffcooooa void PowerON Reset PC{vodid)

72 I

73 #ifdef Rw2

74 ffcoodde set_exth({ sectop(“EMCEPTWECT"™));

75 #endif

7e ffce@aly set_inth(_ sectop(™CIVECT™));

F7

75 #ifdef _ ROF /* Initialize FRSW */

7o #define ROUND BxE0200081 f* Let FPEM RMbits=01 (round to zera) *f
8a #else

51 #define _ROUND @:x222022200 f* Let FPSW RMbits=8@ (round to nearest) *f
52 #endif

o= TR e

4 L

E Console 52 g2 Tasks 3 Renesas Coverage Mernory Usage - Perfarrnance Analysis () Profile 55" Real-time Chart g

CG_Tutorial HardwareDebug [Renesas GDB Hardware Debugging] gdb

monitor set io access width,RW,1,c1234,c1236,c1238-c123c,c124c-c124d,c1268,c1278,c128@-c1282 ,c1284,c12
monitor set_io access width,RW,1,cl4@3-c14@5,cl4@c,cl6@@-cl68d,c1686,c1a@@-clada,clale-cla@f,claZc-clal
monitor set io_access width,RW,1,clc84-clc86,cle®-cleS6,clcad-clcad,cleh?,clehd, clchs, daaaz, doaas, dad

mAnitrn cot Tn arrace wtd+blk DLW 1 FFa@ld FFaMlA FFadls FFoAan FFaAdn FFamdAa
4 L

Figure 6-2 Debugger start up screen

For more information on the e” studio debugger refer to the Tutorial manual. To run the code click the (B
button. The debugger will stop again at the beginning of the main() function. Press B again to run the code.

R20UT2983EG0100 Rev. 1.00 RENESAS Page 48 of 53
Jun 20, 2014

RSK+RX64M 7. Additional Information

7.Additional Information

Technical Support

For details on how to use e’ studio, refer to
the help file by opening e’ studio, then
selecting Help > Help Contents from the “Window [Help

menu bar. LG (ofé:l Wielcome

{(7) Help Contents
7 Search
Dynarnic Help
For information about the RX/64M group microcontroller refer to the RX/64M Group Hardware Manual.
For information about the RX assembly language, refer to the RX Series Software Manual.
Technical Contact Details

Please refer to the contact details listed in section 9 of the “Quick Start Guide”

General information on Renesas microcontrollers can be found on the Renesas website at:
http://www.renesas.com/

Trademarks
All brand or product names used in this manual are trademarks or registered trademarks of their respective
companies or organisations.

Copyright

This document may be, wholly or partially, subject to change without notice. All rights reserved. Duplication of
this document, either in whole or part is prohibited without the written permission of Renesas Electronics
Europe Limited.

© 2014 Renesas Electronics Europe Limited. All rights reserved.
© 2014 Renesas Electronics Corporation. All rights reserved.
© 2014 Renesas Solutions Corp. All rights reserved.

R20UT2983EG0100 Rev. 1.00 RRENESAS Page 49 of 53
Jun 20, 2014

http://www.renesas.com/

REVISION HISTORY

RSK+ RX64M Code Generator Tutorial Manual

Rev.

Date

Description

Page

Summary

1.00

Jun 20, 2014

First Edition issued

Renesas Starter Kit+ Manual: Code Generator Tutorial
Manual

Publication Date: Rev. 1.00 Jun 20, 2014

Published by: Renesas Electronics Corporation

LENESAS

SALES OFFICES Renesas Electronics Corporatlon http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.

2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.

Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited

1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada

Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Dusseldorf, Germany

Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.

7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Unit 301, Tower A, Central Towers, 555 LanGao Rd., Putuo District, Shanghai, China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.

13F, No. 363, Fu Shing North Road, Taipei, Taiwan

Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949

Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.

12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea

Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2014 Renesas Electronics Corporation. All rights reserved.
Colophon 2.0

RX64M Group

RENESAS

Renesas Electronics Corporation R20UT2983EG0100

	1. Overview
	1.1 Purpose
	1.2 Features

	2. Introduction
	3. Project Creation with e2 studio
	3.1 Introduction
	3.2 Creating the Project

	4. Code Generation Using the e2 studio plug in
	4.1 Introduction
	4.2 Code Generator Tour
	4.3 Code Generation
	4.3.1 Clock Generator
	4.3.2 Interrupt Controller Unit
	4.3.3 Compare Match Timer
	4.3.4 12-bit A/D Converter
	4.3.5 Serial Communications Interface
	4.3.6 I/O Ports

	4.4 Building the Project

	5. User Code Integration
	5.1 LCD Code Integration
	5.1.1 SPI Code
	5.1.2 CMT Code

	5.2 Additional include paths
	5.3 Switch Code Integration
	5.3.1 Interrupt Code
	5.3.2 De-bounce Timer Code
	5.3.3 Main Switch and ADC Code

	5.4 Debug Code Integration
	5.5 UART Code Integration
	5.5.1 SCI Code
	5.5.2 Main UART code

	5.6 LED Code Integration

	6. Debugging the Project
	7. Additional Information

