E1/E20 エミュレータ，E2 エミュレータ
ユーザーズマニュアル別冊
（RH850/D1L、RH850/D1Mグループ接続時の注意事項）

対象デバイス
RH850ファミリ
RH850/D1xシリーズ

本資料に記載の全ての情報は本資料発行時点のものであり、ルネサス エレクトロニクスは、予告なしに、本資料に記載した製品または仕様を変更することがあります。ルネサス エレクトロニクスのホームページなどにより公開される最新情報をご確認ください。
ご注意書き

1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。お客様の機器・システムの設計において、回路、ソフトウェアおよびこれらに関連する情報を使用する場合には、お客様の責任において行ってください。これらの使用に起因して生じた損害（お客様または第三者いずれに生じた損害も含みます。以下同じです。）に関し、当社は、一切その責任を負いません。

2. 当社製品、本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許権、著作権その他の知的財産権に対する侵害またはこれらに関する紛争について、当社は、何らの保証を含めても、また責任を負うものではありません。

3. 当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。

4. 当社製品を、全部または一部を問わず、改造、改変、複製、リバースエンジニアリング、その他、不適切に使用しないでください。かかる改造、改変、複製、リバースエンジニアリング等により生じた損害に関し、当社は、一切その責任を負いません。

5. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、各品質水準は、以下に示す用途に製品が使用される場合に限定しております。

 - 標準水準：コンピュータ、OA機器、通信機器、計測機器、AV機器、家電、工作機械、パーソナル機器、産業用ロボット等
 - 高品質水準：輸送機器（自動車、電車、船舶等）、交通制御（信号）、大規模通信機器、金融端末基幹システム、各種安全制御装置等

 当社製品は、データシート等により高信頼度、Harsh environment 向け製品と定義しているものを除き、直接生命・身体に危害を及ぼす可能性のある機器・システム（生命維持装置、人体に埋め込み使用するもの等）、もしくは多大な物的損害を発生させるおそれのある機器・システム（宇宙機器と、海底中継機、原子力発電システム、航空機制御システム、プラント基幹システム、軍事機器等）に使用される場合を想定しております。これらの用途に使用することを想定しておりません。たとえ、当社が想定していない用途に出社製品を使用したことにより损害が生じても、当社は一切その責任を負いません。

6. 当社製品をご使用の際は、最新の製品情報（データシート、ユーザーズマニュアル、アプリケーションノート、信頼性ハンドブックに記載の「半導体デバイスの使用上の一般的な注意事項」等）をご確認の上、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他指定条件の範囲内でご使用ください。指定条件の範囲を超えて当社製品をご使用された場合の故障、誤動作の不具合および事故につきましては、当社は、一切その責任を負いません。

7. 当社は、当社製品の品質および信頼性の向上に努めており、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は、データシート等において高信頼性、Harsh environment 向け製品と定義しているものを除き、耐放射線設計を行っておりません。従に當社製品の故障または誤動作が生じた場合には、人命事案、災害事故その他の社会的損害等を生じさせないよう、お客様の責任において、冗長設計、遮蔽対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証を行ってください。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行ってください。

8. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。かかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。

9. 当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。当社製品および技術を輸出、販売または移転等する場合には、「外国為替及び外国貿易法」その他日本法および適用される外国の輸出管理関連法令を遵守し、それらの定めるところに従い必要な手続きを行ってください。

10. お客様が当社製品を第三者に転売等される場合には、事前に当該第三者に対して、本ご注意書きを記載の諸条件を通知する責任を負うものといたします。

11. 本資料の一部または全部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。

12. 本資料に記載されている内容または当社製品についてご不明な点がございましたら、当社の営業担当者までお問合せください。

注 1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社が直接的、間接的に支配する会社をいいます。

注 2. 本資料において使用されている「当社製品」とは、注 1 において定義された当社の開発、製造製品をいいます。

(Rev.4.0-1 2017.11)
目次

1. 概要... 4
 1.1 E1/E20/E2エミュレータの特長... 4
 1.2 E20エミュレータを使用する際の注意事項... 4
 1.3 マニュアル構成 .. 4

2. エミュレータとユーザシステムとの接続について .. 5
 2.1 ユザシステム上に実装するエミュレータ接続コネクタ... 5
 2.2 エミュレータ接続コネクタのピン配置... 7
 2.3 接続インタフェースとモードについて .. 8
 2.4 エミュレータ接続コネクタとマイコン間の推奨接続例... 8
 2.4.1 推奨接続例 .. 8
 2.4.2 RESET ピンの接続について .. 14
 2.4.3 TVDD ピンの接続について .. 15
 2.4.4 E1 エミュレータ用ホットプラグインアダプタ .. 16
 2.4.5 E1 エミュレータ用アイソレータ ... 16
 2.4.6 E1 エミュレータ用小型コネクタ変換アダプタ ... 16

3. 仕様一覧.. 17
 3.1 E2エミュレータ固有仕様の概要 .. 20
 3.1.1 ソフトウェアトレース(LPDB) .. 20
 3.1.2 外部トリガ入力、外部トリガ出力 .. 21

4. 使用上の注意事項 .. 22
 4.1 実デバイス動作とE1/E20/E2エミュレータ接続時動作の相違に関する注意 .. 22
 4.2 デバッグ時の注意 .. 24

5. エミュレータの内部回路 ... 38

6. トラブルシューティング .. 42
 6.1 エミュレータ接続時のトラブル .. 42
 6.2 エミュレータ接続後のトラブル .. 44
1. 概要

1.1 E1/E20/E2 エミュレータの特長
E1/E20/E2 エミュレータは、フラッシュメモリ内蔵マイコンに組み込むプログラムのデバッグ、または書き込みを行うためのフラッシュプロ Sidd在場を搭載したオンチップデバッジングエミュレータです。ユーザシステムにマイクロコントローラを実装したままプログラムのデバッグができ、マイクロコントローラの内蔵フラッシュメモリにプログラムを書き込むことができます。

1.2 E20 エミュレータを使用する際の注意事項
E20 エミュレータを使用して RH850 ファミリのデバッグを行う場合の機能は、E1 エミュレータと同等となります。E20 エミュレータの特徴的な機能である大容量トレースは使用できません。

1.3 マニュアル構成
E1/E20/E2 エミュレータを使用して、RH850 ファミリのデバッグを行う場合は、(1)、(2) のユーザーズマニュアルを必ずお読みください。また、必要に応じて (3) のアプリケーションをお読みください。

(1) E1/E20 エミュレータユーザーズマニュアル、E2 エミュレータユーザーズマニュアル
E1/E20 エミュレータユーザーズマニュアル、E2 エミュレータユーザーズマニュアルには、ハードウェア仕様が記載されています。
- エミュレータの構成品
- エミュレータのハードウェア仕様
- エミュレータとホストマシンおよびユーザシステムとの接続

(2) E1/E20 エミュレータ、E2 エミュレータユーザーズマニュアル別冊
E1/E20 エミュレータ、E2 エミュレータユーザーズマニュアル別冊には、デバッジの機能説明および各マイコンに依存する内容、注意事項が記載されています。
- ハードウェア設計時に必要な回路接続例やインタフェース回路
- エミュレータ使用時の注意事項

(3) E2 エミュレータアプリケーションノート
E2 エミュレータの拡張機能の説明、使い方および注意事項が記載されています。
2. エミュレータとユーザシステムとの接続について

E1/E20/E2 エミュレータを接続するためには、ユーザシステム上に、ユーザインタフェースケーブルを接続するためのエミュレータ接続コネクタを実装する必要があります。

ユーザシステム設計の際には、本マニュアルの本章および使用するマイコンのハードウェアマニュアルを合わせて参照してください。

2.1 ユーザシステム上に実装するエミュレータ接続コネクタ

E1/E20/E2 エミュレータが推奨するエミュレータ接続コネクタを表 2-1 に示します。14 ピンコネクタ使用時は、図 2-1 に示されている周囲 5mm 四方に部品高さが 10mm を超える部品を実装しないでください。

表 2-1 推奨コネクタ

<table>
<thead>
<tr>
<th>型名</th>
<th>型号</th>
<th>メーカ</th>
<th>仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>14ピンコネクタ</td>
<td>7614-6002</td>
<td>住友スリーエム株式会社</td>
<td>14ピンストレートタイプ（国内推奨）</td>
</tr>
<tr>
<td></td>
<td>2514-6002</td>
<td>3M Limited</td>
<td>14ピンストレートタイプ（海外推奨）</td>
</tr>
</tbody>
</table>

【E1 エミュレータと接続する場合】

E1 エミュレータでの 14 ピンコネクタへのユーザインタフェースケーブルの接続例を図 2-2 に示します。
【E20 エミュレータと接続する場合】
E20 エミュレータを使用する場合はE20付属品の38ピン/14ピンコネクタ変換アダプタ [ROE000200CKA00] を使用して接続してください。

【E2 エミュレータと接続する場合】
E2 エミュレータを使用する場合E2 エミュレータ付属品のコネクタ変換アダプタを使用してください。図 2-3 に接続図を示します。
コネクタ変換アダプタにはスイッチがあります。スイッチの設定はRH850では“1”側にしてください。“3”側にした場合は動作保証しません。スイッチの設定については表 2-2 を参照してください。

図 2-3 E2エミュレータでの14ピンコネクタへのユーザインタフェースケーブル接続

表 2-2 スイッチの設定（SW1）

<table>
<thead>
<tr>
<th>設定</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RH850 マイクロコントローラを対象デバイスとする設定（出荷時設定）</td>
</tr>
<tr>
<td>3</td>
<td>RL78 マイクロコントローラを対象デバイスとする設定</td>
</tr>
</tbody>
</table>

⚠️ 注意

コネクタの抜き差しに関して①:
ユーザシステムからユーザインタフェースケーブルを抜き差しする時は、必ずケーブル先端のコネクタカバーあるいはコネクタ変換アダプタの基板の両端をつかんで抜き差しを行ってください。ケーブル部分を持って抜き差しを行った場合、ケーブル断線の原因となります。

⚠️ 注意

コネクタの抜き差しに関して②:
ユーザインタフェースケーブルおよびコネクタ変換アダプタには方向があります。挿入方向を誤った場合、故障する可能性がありますのでご注意ください。
2.2 エミュレータ接続コネクタのピン配置

14ピンコネクタのピン配置を表2-3に示します。

<table>
<thead>
<tr>
<th>ピン番号</th>
<th>信号名</th>
<th>入出力</th>
<th>デバッグ</th>
<th>プログラミング</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>【注3】</td>
<td>LPD4pin</td>
<td>LPD1pin</td>
</tr>
<tr>
<td>1</td>
<td>LPDCLK</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2【注1】</td>
<td>GND</td>
<td>-</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>FPMD0</td>
<td>-</td>
<td>FPMD0</td>
<td>FPMD0</td>
</tr>
<tr>
<td>5</td>
<td>LPDO</td>
<td>-</td>
<td>FPDT</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>LPDIO</td>
<td>-</td>
<td>FPDR</td>
<td>FPDR</td>
</tr>
<tr>
<td>8</td>
<td>TVDD</td>
<td>-</td>
<td>TVDD</td>
<td>TVDD</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>LPDCLKO</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12【注1】</td>
<td>GND</td>
<td>-</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>13【注2】</td>
<td>RESET#</td>
<td>-</td>
<td>RESET#</td>
<td>RESET#</td>
</tr>
<tr>
<td>14【注1】</td>
<td>GND</td>
<td>-</td>
<td>GND</td>
<td>GND</td>
</tr>
</tbody>
</table>

【注1】: 2、12、および14ピンをユーザシステム上で必ず、全てGNDに接続してください。電気的なGNDとして使用するほか、E1/E20/E2エミュレータがユーザシステムとの接続を監視するためにも使用しています。

【注2】: 13ピンは必ず接続してご利用ください。

【注3】: ユーザシステムから見た方向

未使用ピンについて:

未使用ピンにユーザシステムから信号を印加しないでください。印加した場合、故障する可能性がありますのでご注意ください。

⚠️ 注意
2.3 接続インタフェースとモードについて

E1/E20/E2 エミュレータは、表 2-4 に示すように、デバッグ時（デバッガ使用時）とプログラミング時（Flash Programmer 使用時）とで、デバイスの動作モードと接続インタフェースを切り替えます。デバッガ使用時であっても、フラッシュプログラミングモードを利用する場合があります。また、デバイスのダウンロード機能等によりフラッシュメモリに書き込みを行う際は、フラッシュセルフプログラミング機能を利用しています。

<table>
<thead>
<tr>
<th>使用ツール</th>
<th>モードと接続インタフェース</th>
<th>通常動作モード</th>
<th>フラッシュプログラミングモード</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>接続インタフェース</td>
<td>接続インタフェース</td>
</tr>
<tr>
<td></td>
<td></td>
<td>接続インタフェース</td>
<td>接続インタフェース</td>
</tr>
<tr>
<td>Flash Programmer (RFP 等)</td>
<td>OPJTAG 自動設定時 (接続時)</td>
<td>-</td>
<td>1wireUART / 2wireUART</td>
</tr>
<tr>
<td>デバッガ (CS+等)</td>
<td>OPJTAG 自動設定時 (接続時) (*)</td>
<td>-</td>
<td>LPD1 ピン選択時は 1wireUART を使用</td>
</tr>
<tr>
<td></td>
<td>LPD4 ピン選択時は 2wireUART を使用</td>
<td></td>
<td></td>
</tr>
<tr>
<td>デバッグ中</td>
<td>LPD1 pin / LPD4 pin</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(*) OPJTAG 自動設定機能：デバイスのデバッグ時の接続インタフェース種別は、オプションバイトレジスタの OPJTAG ビットにより決定されます。OPJTAG ビットとデバッガで選択しているデバッグ時の接続インタフェースとが一致しない場合はデバッグを開始できません。OPJTAG 自動設定機能を有効にすると、必ずフラッシュプログラミングモードに遷移して OPJTAG ビットを読み出し、デバッガの選択と異なる場合は、OPJTAG ビットを書き換えてから、通常動作モードに遷移し、デバッグを開始します。

本機能を有効にしてデバッグを開始すると、フラッシュプログラミングモードに遷移した影響により、ECC バグやリセット後の初期値を“不定”と定義しているレジスタの初期値の変更が発生することがあります。なお、OPJTAG 自動設定機能は、オプションバイトレジスタの OPJTAG ビットを変更したい場合のみ使用してください。本機能の設定方法は、各デバイスのマニュアルを参照してください。

2.4 エミュレータ接続コネクタとマイコン間の推奨接続例

本節では、対象マイコンとのインタフェース回路の推奨接続例を記載しています。

2.4.1 推奨接続例

用途に応じて推奨接続例が複数あります。下表を参照して適切な回路を設計してください。また、回路設計にあたっては対象デバイスの仕様、およびノイズ等を考慮してください。

<table>
<thead>
<tr>
<th>用途</th>
<th>接続図</th>
</tr>
</thead>
<tbody>
<tr>
<td>デバッガ (LPD4pin) とプログラミング (1wireUART または 2wireUART) の両方</td>
<td>図 2-4</td>
</tr>
<tr>
<td>デバッガ (LPD1pin または LPD4pin) とプログラミング (1wireUART または 2wireUART) の両方</td>
<td>図 2-5</td>
</tr>
<tr>
<td>デバッガ (LPD1pin) とプログラミング (1wireUART) の両方</td>
<td>図 2-6</td>
</tr>
<tr>
<td>プログラミング (1wireUART または 2wireUART) のみ</td>
<td>図 2-7</td>
</tr>
<tr>
<td>プログラミング (1wireUART) のみ</td>
<td>図 2-8</td>
</tr>
</tbody>
</table>
(1) デバッグ（LPD4pin）とプログラミング（1wireUART または 2wireUART）の両方が可能な接続方法

リセット回路についての詳細は、「2.4.2 RESETピンの接続について」を参照してください。

TVDDについての詳細は、「2.4.3 TVDDピンの接続について」を参照してください。

14ピンコネクタとターゲットデバイス間の配線パターン長は、できるだけ短くしてください（50mm以内を推奨）。また、基板上でエミュレータ接続コネクタとマイコン間以外への信号線の引き回しは行わないでください。

14ピンコネクタとターゲットデバイス間の配線パターンは、GNDでガードリングしてください。また、他の高速な信号線と併走させたりクロスさせたりしないでください。

端子名称はターゲットデバイスによって異なる場合があります。実際の端子名称は各ターゲットデバイスのユーザーズマニュアルを参照してください。

ターゲットデバイスの端子について、エミュレータと接続不要なもの、ターゲットデバイスのユーザーズマニュアルに記載されている「未使用端子の処理」に従った適切な処理を行ってください。

【Note1】FLMD1端子は、プログラミング時、必ずロウレベルになるよう回路を設計してください。
(2) デバッグ (LPD1pin または LPD4pin) とプログラミング (1wireUART または 2wireUART) の両方が可能な接続方法

![接続例図](image)

- リセット回路についての詳細は、「2.4.2 RESETピンの接続について」を参照してください。
- TVDDについての詳細は、「2.4.3 TVDDピンの接続について」を参照してください。
- 14ピンコネクタとターゲットデバイス間の配線パターン長は、できるだけ短くしてください（50mm以内を推奨）。また、基板上でエミュレータ接続コネクタとマイコン以外への信号線の引き回しは行わないでください。
- 14ピンコネクタとターゲットデバイス間の配線パターンは、GNDでガードリングしてください。また、他の高速な信号線と併走させたりクロスさせたりしないでください。
- 端子名称はターゲットデバイスによって異なる場合があります。実際の端子名称は各ターゲットデバイスのユーザーズマニュアルを参照してください。
- ターゲットデバイスの端子について、エミュレータと接続不要なものは、ターゲットデバイスのユーザーズマニュアルに記載されている「未使用端子の処理」に従った適切な処理を行ってください。
- 【Note1】FLMD1端子は、プログラミング時、必ずロウレベルになるよう回路を設計してください。
- 【Note2】JP0_0のプルアップ処理は、LPD1pinを使用する際にのみ必要です。LPD1pinを使用する予定がない場合は、図 2-4に従ってください。
（3）デバッグ（LPD1pin）とプログラミング（1wireUART）の両方が可能な接続方法

図 2-6 接続例

- リセット回路についての詳細は、「2.4.2 RESETビンの接続について」を参照してください。
- TVDDについての詳細は、「2.4.3 TVDDビンの接続について」を参照してください。
- 14ピンコネクタとターゲットデバイス間の配線パターン長はできるだけ短くしてください（50mm以内を推奨）。また、基板上でエミュレータ接続コネクタとマイコン間以外への信号線の引き回しは行わないでください。
- 14ピンコネクタとターゲットデバイス間の配線パターンは、GNDでガードリングしてください。また、他の高速な信号線と併走させたりクロスさせたりしないでください。
- 端子名称はターゲットデバイスによって異なる場合があります。実際の端子名称は各ターゲットデバイスのユーザーマニュアルを参照してください。
- ターゲットデバイスの端子について、エミュレータと接続不要なものは、ターゲットデバイスのユーザーマニュアルに記載されている「未使用端子の処理」に従った適切な処理を行ってください。
- 【Note1】FLMD1端子は、プログラミング時、必ずロウレベルになるよう回路を設計してください。
プログラミング (1wireUART または 2wireUART) のみが可能な接続方法

図 2-7 接続例

- リセット回路についての詳細は、「2.4.2 RESETピンの接続について」を参照してください。
- TVDDについての詳細は、「2.4.3 TVDDピンの接続について」を参照してください。
- 14ピンコネクタとターゲットデバイス間の配線パターン長は、できるだけ短くしてください（50mm以内を推奨）。また、基板上でエミュレータ接続コネクタとマイコン間以外での信号線の引き回しは行わないでください。
- 14ピンコネクタとターゲットデバイス間の配線パターンは、GNDでガードリングしてください。また、他の高速な信号線と併走させたりクロスさせたりしないでください。
- 端子名称はターゲットデバイスによって異なる場合があります。実際の端子名称は各ターゲットデバイスのユーザーズマニュアルを参照してください。
- ターゲットデバイスの端子について、エミュレータと接続不要なものは、ターゲットデバイスのユーザーズマニュアルに記載されている「未使用端子の処理」に従った適切な処理を行ってください。
- 【Note1】 FLMD1端子は、プログラミング時、必ずロウレベルになるよう回路を設計してください。
（5）プログラミング（1wireUART）のみが可能な接続方法

図 2-8 接続例

- リセット回路についての詳細は、「2.4.2 RESETピンの接続について」を参照してください。
- TVDDについての詳細は、「2.4.3 TVDDピンの接続について」を参照してください。
- 14ピンコネクタとターゲットデバイス間の配線パターン長は、できるだけ短くしてください（50mm以内を推奨）。また、基板上でエミュレータ接続コネクタとマイコン間以外への信号線の引き回しは行わないでください。
- 14ピンコネクタとターゲットデバイス間の配線パターンは、GNDでガードリングしてください。また、他の高速な信号線と併走させたりクロスさせたりしないでください。
- 端子名称はターゲットデバイスによって異なる場合があります。実際の端子名称は各ターゲットデバイスのユーザーズマニュアルを参照してください。
- ターゲットデバイスの端子について、エミュレータと接続不要なものは、ターゲットデバイスのユーザーズマニュアルに記載されている「未使用端子の処理」に従った適切な処理を行ってください。
- 【Note1】FLMD1端子は、プログラミング時、必ずロウレベルになるよう回路を設計してください。
2.4.2 RESET ピンの接続について

E1/E20/E2 エミュレータ使用時は、14 ピンコネクタの 13 番ピン (RESET ピン) をターゲットデバイスのリセット端子へ接続する必要があります。図 2-9 に例を示します。

E1/E20/E2 エミュレータは RESET ピンを、デバッガが起動される前まではロウレベルに固定し、デバッガ起動された後はデバッガの操作に応じて、ロウレベル、または、Hi-Z に制御します。

![図 2-9 リセット回路接続例](image)

- リセット回路の出力は、N-ch オープンドレイン出力、または抵抗やコンデンサのみで生成する信号としてください。
- 本書のターゲットデバイスでは、RESET端子のプルアップ先はEVCC電圧を使用してください。
- E1/E20/E2 エミュレータのRESET（13ピン）は、エミュレータ内部でプルアップ（100kΩ）しています（5. エミュレータの内部回路を参照）。
- ターゲットデバイスのRESET端子は、デバイス内部でプルアップ/プルダウンされている場合があります。ターゲットデバイスのマニュアル等を参照してください。
- E1/E20/E2 エミュレータのRESET端子が受け入れられるシンク電流は最大2mAです。これを超えないように適切なプルアップ抵抗を選択してください。
- リセット信号は、ロウレベルからハイレベルの80%まで立ち上がり時間が900us以内に収まるように、時定数を調節してください。
- ホットプラグイン接続を行う場合は、ノイズ抑制のためにリセット信号とGNDとの間にコンデンサを挿入することもご検討ください。ただし、その場合も前述の立ち上がり時間のスペックを満たす必要があります。
2.4.3 TVDD ピンの接続について

（1）電源監視機能

14 ピンコネクタの 8 番ピン（TVDD ピン）には、ユーザシステム上の電源を接続してください。本書のターゲットデバイスでは、EVCC 電圧として使用されている電源を接続してください。

TVDD ピンに接続された電源は、E1/E20/E2 エミュレータ回路上の出力最終段パッファ、および、入力初段パッファ電源として使用されます。E1/E20/E2 エミュレータを接続している時は、ユーザシステムが本来消費する電流に加え、下記の数値を目安とした電流が消費されます。

- E1/E2 エミュレータ：TVDD=3.3V 時約 20mA、TVDD=5.0V 時約 40mA
- E20 エミュレータ：TVDD=3.3V 時約 40mA、TVDD=5.0V 時約 100mA

ホットプラグイン接続を行う可能性がある場合には、下記のような回路構成にしておく必要があります。図 2-10 ①のように E1 エミュレータの 8 番ピンには、エミュレータ内部で 4.7uF のコンデンサが付いているため、ホットプラグイン接続を行う場合はユーザシステム上の電源電圧が一瞬低下する場合があります。この電圧低下により MCU リセットが発生する可能性があります。図 2-10 ②に示すように、エミュレータ接続コネクタの TVDD ラインの直近にフェライトビーズ（またはインダクタ）と低 ESR で大きなコンデンサを付けることで症状を軽減することができますが、本対策は、電圧降下を完全に改善するものではありません。なお、ホットプラグイン接続はデバッグ時のみ有効な機能であり、本機能を使用する場合は、別売のホットプラグインアダプタが必要です。

図 2-10 ホットプラグイン向け対策回路
(2) 電源供給機能（E1/E2 エミュレータのみ）

E1/E2 エミュレータは、TVDD ピンからユーザシステムへ、3.3V または 5.0V の電源を供給することが可能です（供給可能電流・最大 200mA）。本機能を使用する際は下記の点に注意してください。

- ユーザシステムへ別途電源が供給されている場合は、本機能を使用しないでください。E1/E2 エミュレータが故障する恐れがあります。
- 200mA以上を消費するユーザシステムに対しては、機能を使用しないでください。E1/E2 エミュレータや、ホストマシンのUSBインタフェースが故障する恐れがあります。
- 供給する電圧が、ユーザシステムが必要とする電圧範囲であることを確認してください。
- E1 エミュレータの場合：5.0V 電圧の供給は、ご使用のホストマシンの環境によっては、5.0V よりも0.5V以上低い電圧となる場合もございます。
- E2 エミュレータの場合：5.0V 電圧の供給は、ご使用のホストマシンの環境によっては、5.0V よりも0.3V以上低い電圧となる場合もございます。

E1/E2 エミュレータからの電源供給は、精度の保証ができません。信頼性を要求する書き込みを行う場合は、E1/E2 エミュレータからの電源供給機能は使用せず、安定した別電源をユーザシステムに供給してください。なお、量産工程などで書き込みを行う場合は、Renesas Flash Programmerをご使用ください。

警告

電源のオン/オフに関して：
電源を投入する前に、ユーザシステムの電源回路がショートしていないことを確認してください。
エミュレータ接続コネクタの逆差しや誤挿入など、E1/E2/E2 エミュレータをユーザシステムに誤って接続した場合、ホストマシン、E1/E2/E2 エミュレータおよびユーザシステムが発煙発火する可能性があります。

2.4.4 E1 エミュレータ用ホットプラグインアダプタ
E1 エミュレータでホットプラグイン接続を行う場合は、別売のE1 エミュレータ用ホットプラグインアダプタ（ROE000010ACB00）をご使用ください。

2.4.5 E1 エミュレータ用アイソレータ
ユーザシステムの GND とホストマシンの GND に電位差がある環境下でデバッグする場合は、別売の E1 エミュレータ用アイソレータ（ROE000010ACB20）をご使用ください。

2.4.6 E1 エミュレータ用小型コネクタ変換アダプタ
ユーザシステムの基板が小さく、E1 エミュレータ標準の 14 ピンコネクタを使用できない場合、別売の E1 エミュレータ用小型コネクタ変換アダプタ（ROE00010CKZ11）を使用することで、コネクタ部の専有面積を抑えることが可能です。
E1 エミュレータ用小型コネクタ変換アダプタをご使用になる場合、E1 エミュレータ標準の 14 ピンコネクタとはピン配置が異なりますのでご注意ください。
3. 仕様一覧

表 3-1 に E1/E20/E2 エミュレータ共通の仕様一覧を示します。
表 3-2 に E2 エミュレータのみがサポートしている仕様一覧を示します。
デバッグ関連機能については、デバッガによってはサポートしていない機能もあります。ご使用になるデバッガのマニュアル等も合わせて確認してください。

表 3-1 仕様一覧（E1/E20/E2 エミュレータ共通）

<table>
<thead>
<tr>
<th>大項目</th>
<th>中項目</th>
<th>小項目</th>
<th>仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>ハード共通</td>
<td>対応ホストマシン</td>
<td>USB搭載品、OSはデバッガに依存</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ユーザインタフェース</td>
<td>14ピンコネクタ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ホストマシンインタフェース</td>
<td>USB2.0(フルスピード/ハイスピード)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ユーザシステムとの接続</td>
<td>付属のユーザインタフェースケーブルで接続</td>
<td></td>
</tr>
<tr>
<td></td>
<td>電源供給機能（E1/E2 エミュレータ使用時のみ）</td>
<td>3.3Vまたは5.0V（供給電流：200mA）をTVDDからユーザシステムに供給可能（デバッガで設定）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>エミュレータ用電源</td>
<td>不要（USBバスパワーで動作）</td>
<td></td>
</tr>
<tr>
<td>デバッグ関連</td>
<td>ブレーク</td>
<td>ソフトウェアブレーク</td>
<td>ROM / RAM 空間：2000点</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ハードウェアブレーク</td>
<td>実行・CPUアクセス兼用で12点（実行専用8点、実行・アクセス兼用4点）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>イベントブレーク</td>
<td>可能</td>
</tr>
<tr>
<td></td>
<td></td>
<td>強制ブレーク</td>
<td>可能</td>
</tr>
<tr>
<td></td>
<td></td>
<td>トレースフルブレーク</td>
<td>可能（E2ストレージ）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>外部トリガ入力ブレーク</td>
<td>可能</td>
</tr>
<tr>
<td>イベント</td>
<td>設定可能数</td>
<td>実行：8点 / CPUアクセス：8点 DMAアクセス4点</td>
<td></td>
</tr>
<tr>
<td></td>
<td>イベント使用機能</td>
<td>ブレーク、パフォーマンス測定</td>
<td></td>
</tr>
<tr>
<td></td>
<td>イベント組み合わせ</td>
<td>OR / シーケンシャル</td>
<td></td>
</tr>
<tr>
<td>大項目</td>
<td>中項目</td>
<td>小項目</td>
<td>仕様</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>デバッグ関連</td>
<td>パフォーマンス測定</td>
<td>時間①</td>
<td>測定区間
実行開始～停止</td>
</tr>
<tr>
<td></td>
<td></td>
<td>測定内容
実行時間【注4】</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>性能
32bit カウンタ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>時間②</td>
<td>測定区間
実行開始～停止、イベント 2 点間</td>
<td></td>
</tr>
<tr>
<td></td>
<td>測定内容
実行時間、終実行時間、パスカウント
最大実行時間、最小実行時間【注4】</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>性能
32bit カウンタ (3 区間)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>時間以外</td>
<td>測定項目</td>
<td>実行命令数(全て、分岐のみ)、割り込み受け付け
回数(E1 レベル、FE レベル)、例外受け付け回数
(命令非同期、命令同期)、クロックサイクル(全て、割り込み禁止状態、割り込み処理中以外)、
命令フェッチリクエスト回数、命令キャッシュ
ヒット回数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>測定区間
実行開始～停止、イベント 2 点間</td>
<td></td>
</tr>
<tr>
<td></td>
<td>測定内容
最大値、最小値、最新値、積算値、パスカウント</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>性能
32bit カウンタ (4 区間)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>疑似リアルタイム RAM モニタ</td>
<td></td>
<td>可能 (バスを占有します (サイクルスチール))
【注1】</td>
</tr>
<tr>
<td></td>
<td>ダイレクトメモリ変更</td>
<td></td>
<td>可能 (バスを占有します (サイクルスチール))
【注1】</td>
</tr>
<tr>
<td></td>
<td>デバッグコンソール</td>
<td></td>
<td>不可</td>
</tr>
<tr>
<td></td>
<td>外部フラッシュメモリのダウンロード</td>
<td></td>
<td>不可</td>
</tr>
<tr>
<td></td>
<td>ホットプラグイン</td>
<td></td>
<td>可能 (ただし、E1 エミュレータの場合、別売りの
ホットプラグインアダプタが必要)</td>
</tr>
<tr>
<td></td>
<td>周辺ブレーク</td>
<td></td>
<td>可能 【注2】</td>
</tr>
</tbody>
</table>
| | ユーザプログラム中のエミュレータ検出機能 | | 可能 【注3】
| | | デバッグスタートアップレジスタ
初期値：0000 0000H
アドレス： FA00 2078H (CPU1) | |
| | セキュリティ | | 16 パイト ID 認証 |
| | セキュリティ ID 設定 | | 不可 |
| | セキュリティフラグ設定 | | 不可 |
| | ICUS の ON 設定 | | 不可 |
| | 接続インタフェース | | LPD1pin 500kbps/1Mbps/2Mbps
LPD4pin 5.5MHz/11MHz/16.5MHz/33MHz (E2) |
| | プログラミング関連 | セキュリティ ID 設定 | 可能 |
| | | セキュリティフラグ設定 | 可能 |
| | | ICUS の ON 設定 | 可能 |
| | | 接続インタフェース | 2wireUART、1wireUART |

【注1】Local RAM 領域に対してのみ可能です。
【注2】ブレーク中に周辺 1/0 の動作を停止させる機能のことを周辺ブレーク機能と呼びます。デバッガ上で周辺エミュレーション機能を停止する/しないを設定することができます。設定方法については、ご利用のデバッガのマニュアルをご確認ください。周辺エミュレーション機能を停止する/しないの選択については、ご使用マイコンのマニュアルにてご確認ください。
【注3】エミュレータ接続中にデバッガからデバッガ情報として任意の 32bit データをデバッグスタートアップレジスタに設定し、保持する機能です。本機能を使用してユーザプログラム上でエミュレータ接続/未接続状態を判定することができます (4.2 No.38 の注意事項参照)。
【注4】測定時間の分解能は接続インタフェースに依存します (例 LPD4pin 11MHz の場合、分解能は 90.9nsec)。
表 3-2 仕様一覧 (E2 エミュレータ 固有)

<table>
<thead>
<tr>
<th>大項目</th>
<th>中項目</th>
<th>小項目</th>
<th>仕様</th>
</tr>
</thead>
</table>
| デバッグ関連 | ソフトウェアトレース (LPD) | [注 1] | 対象 CPU: CPU を 1 つ選択。
マルチコアデバイスの場合:
デバッグからエミュレータ接続時に、いずれか 1 つ
の対象 CPU を選択。対象 CPU を変更する場合は、デ
バッガからエミュレータを再接続する。
(同期デバッグモード時のみ利用可能) |
| | | | 格納先: E2 エミュレータ保有メモリ "E2 ストレージ" |
| | | 内部バッファ | 8 段 [注 4] |
| | | 記録データ | ソフトウェアトレースデータ + タイムスタンプ (E2 エミュレータにおいて付与) 【注 2】
分解能: 8.333 nsec、最大 27 日間 |
| | | 記録開始/終了条件 | プログラムの実行開始/停止 (ブレーク) |
| | | トレース取得優先度 | リアルタイムトレースモード (スピード優先) |
| | | トレースメモリ記録方式 | リングモード (上書きモード)
トレースフルストップモード
トレースフルブレークモード |
| | | 外部トリガ入出力 | 入力信号チャネル: E2 拡張インタフェース 2 本
ch0: 11 番ピン、 ch1: 12 番ピン |
| | | | 出力信号チャネル: E2 拡張インタフェース 2 本
ch0: 9 番ピン、 ch1: 10 番ピン |
| | | I/F 電圧 | ユーザシステムへの電源供給機能未使用時:
TVDD 電圧
1.8~5.0V の任意の電圧
ユーザシステムへの電源供給有効時:
供給電圧 |
| | | トリガ入力検出条件 | エッジ検出 (立ち上がり/立ち下がり/両エッジ)
レベル検出 (Low/High) |
| | | トリガ入力時の動作 | ソフトウェアトレース (LPD) 使用時:
ブレーク
ソフトウェアトレース (LPD) 未使用時:
ブレーク |
| | | トリガ出力検出条件 | ブレーク検出【注 3】 |
| | | トリガ出力時の動作 | Low/High バルス出力 (1usec ~ 65535usec を設定可) |

【注 1】ソフトウェアトレース (LPD)、外部トリガ入力、外部トリガ出力機能利用時は、プログラム実行中のメモリアクセス、イベント変更、STOP などのステータス表示ができません。
【注 2】タイムスタンプは、デバッグ命令を実行した時間ではなく、E2 エミュレータがソフトウェアトレースデータを取得した時間は示しています。また、E2 エミュレータは、自身のタイムスタンプのカウントを開始してから、マイコンに対してプログラム実行開始を要求します。タイムスタンプのカウント開始と、プログラムの実行開始を完全に同期させることはできないため、E2 ストレージの先頭に格納されたソフトウェアトレースデータに付与されているタイムスタンプは、誤差が含まれている可能性があります。
【注 3】ソフトウェアトレース (LPD) 未使用時は、プログラム実行開始から 10usec 間隔、低速内蔵発振回路 (LS IntOSC) で動作時は 100usec 期間、ブレーク検出ができません。
【注 4】PC 出力、TAG 出力、レジスタ 1 個出力で内部バッファ 1 段分を消費します。内部バッファの 7 段目までソフトウェアトレースデータが格納された時点で、8 段目にオーバーフローメッセージが格納されます。
3.1 E2 エミュレータ固有仕様の概要

3.1.1 ソフトウェアトレース (LPD)

RH850 デバイスは、ソフトウェアトレースデータを出力するためのデバッグ命令をサポートしています。ソフトウェアトレースデータは、デバイスの内蔵トレースメモリーに格納されるだけでなく、デバッグ接続インタフェースである LPD 端子を経由し、エミュレータへと出力されます。ソフトウェアトレース機能は、従来のトレース機能のようにイベントや条件を設定し、その設定に合致した場合にトレースデータが出力されるのではなく、実行するプログラムにお客様自身がチェックポイントとしての目的や、特定の情報やレジスタ値を出力する目的で、デバッグ命令を埋め込み、その実行履歴をエミュレータ側にトレースデータとして出力することができる機能です。新たなデバッグ手法としてご活用ください。デバッガ CS+ では、このソフトウェアトレース (LPD) を応用し、便利なソリューション機能を提供しています。詳しくは、CS+ のマニュアルおよびアプリケーションノートを参照してください。

デバッグ命令については RH850G3M/G3MH/G3K/G3KH ユーザーズマニュアル デバッグ命令編 を参照してください。概略を表 3-3 に示します。なお、プログラムに埋め込まれたデバッグ命令はエミュレータ未接続時、LPD 端子からソフトウェアトレースデータを出力しません。

表 3-3 ソフトウェアトレース用 デバッグ命令一覧

<table>
<thead>
<tr>
<th>デバッグ命令</th>
<th>機能</th>
<th>LPD 出力する場合における推奨命令埋め込み間隔【*】</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBCP</td>
<td>ソフトウェアトレースデータとして PC 値を出力します。</td>
<td>LPD 4pin (33MHz) 1.727usec LPD 1pin (2Mbps) 28.500usec</td>
</tr>
<tr>
<td>DBTAG imm10</td>
<td>ソフトウェアトレースデータとして 10 ビットのイミディエット (imm10) の値を出力します。実行 PC 値も出力するかどうか選択可能です。</td>
<td>LPD 4pin (33MHz) 0.576usec LPD 1pin (2Mbps) 9.500usec</td>
</tr>
<tr>
<td>DBPUSH rh-rt (汎用レジスタは rh ≦ rt (昇順) で指定)</td>
<td>ソフトウェアトレースデータとして汎用レジスタ rh から rt までのレジスタ番号とレジスタ値を出力します。実行 PC 値も出力するかどうか選択可能です。</td>
<td>LPD 4pin (33MHz) 1.727usec LPD 1pin (2Mbps) 28.500usec</td>
</tr>
</tbody>
</table>

【*】デバッグ命令の実行により生成されるソフトウェアトレースデータを LPD 出力するのにかかる時間を示しています。この間隔でデバッグ命令を実行すれば、ソフトウェアトレースデータのオーバーフロー (ロスト) を回避できます。これにより、短い間隔でデバッグ命令を実行しても、デバイス内にトレース用の内部バッファがあるため、すぐにオーバーフロー (ロスト) することはありませんが、内部バッファが埋め尽くされるとオーバーフローしますので、ご注意ください。DBPUSH 命令のオーバーフローを避けるためには、指定レジスタ数を 5 個以下にしてください。
3.1.2 外部トリガ入力、外部トリガ出力

E2 エミュレータの拡張インタフェース（E2 エミュレータの SELF CHECK と書かれているカバーを外すと確認できるコネクタ）を利用して、外部トリガ入力、出力機能を実現しています。機能の詳細は、表 3-2 を参照してください。また、拡張インタフェースについての詳細は、E2 エミュレータのユーザーズマニュアルを参照してください。

図 3-1 E2 エミュレータ拡張インタフェース
4. 使用上の注意事項

E1/E20/E2エミュレータ使用時の注意事項を以下に示します。

4.1 実デバイス動作とE1/E20/E2エミュレータ接続時動作の相違に関する注意

No.1 DBTRAP命令
DBTRAP命令はソフトウェアブレーク機能に使用するため、プログラムには使用できません。

No.2 シリアルプログラミング機能
デバッグ時、シリアルプログラミング機能のエミュレーションはできません。

No.3 HALTモード（欠番）
4.2 No.16 HALTモードとHALT命令のステップ実行についてに統合。

No.4 消費電流
エミュレータ接続時の消費電流は未接続時と異なります。デバッグ中はデバッグ用の機能が動作しているため、通常動作時と比較して対象デバイスの消費電流が上昇します。

No.5 RAM領域の初期化
エミュレータ接続時は、Local RAM領域とFCU-RAM領域が0000 0000Hに初期化されます。このため、実際のデバイスとは以下のような違いがあります。
- 起動直後のRAM領域の初期値がデバイス本来の初期値（不定値）とは異なります。
- RAM未初期化によるECCエラー検出は発生しません。エミュレータ未接続時に動作が不正になる場合
はRAM領域の初期化漏れがないか確認してください。

ECCエラーのエミュレーションを行う場合は、以下のオプション設定をしてください。
- 起動時にRAM領域を初期化しない
- エミュレータ接続時にOPJTAGをLPD接続に設定しない
ただし、RAM領域の初期化をしないに設定した場合、以下の機能が使えなくなります。
- 内蔵フラッシュメモリへのダウンロード
- メモリパネルや逆アセンブルパネル等を使用した内蔵フラッシュメモリの変更
- ソフトウェアブレークの設定
- オプションバイトの書き換え
No. 6 OTPフラグ
セルフプログラミングによってOTP（One Time Programming）フラグを設定しないでください。設定した場合は、デバッガからフラッシュメモリへのダウンロードができなくなります。ご注意ください。

No. 7 エミュレータ使用時のリセットと割り込みの動作について（欠番）
4.2 No.14 エミュレータ使用時のリセットについて、No.15 エミュレータ使用時の割り込みについてに統合。

No. 8 オプションバイトレジスタ
下記のオプションバイトレジスタのビットについてはエミュレータが使用するため、デバッガからこれらのビットを書き換えることはできません。またセルフプログラミングによってこれらのビットを書き換えないでください。
- OPJTAG[1:0] (OPBT0[17:16])ビット
 エミュレータ接続時はOPJTAG[1:0]の値は、LPD4pinインタフェース選択時は01Bに、LPD1pinインタフェース選択時は10Bになります。
4.2 デバッグ時の注意

No.1 デバッグに使用したデバイスの取り扱いについて
デバッグに使用したデバイスを量産製品に搭載しないでください。デバッグ中にフラッシュメモリの書き換えをしており、フラッシュメモリの書き換え回数を保証することができないためです。なお、フラッシュメモリの書き換えができなくなった場合、デバッガによるエラーが発生します。このような場合は、デバイスを交換してください。

No.2 デバッグ中のターゲットシステム電源について
デバッグ中にターゲットシステムの電源をオフにしないでください。電源をオフにした場合はデバッガの再接続が必要になります。

No.3 ハードウェアブレーク（アクセス）機能（ブレークが発生するタイミング）
ハードウェアブレーク（アクセス）機能において、データ指定のリードアクセスブレーク、およびデータ指定のリードモディファイライト命令のライトアクセスブレークは実行後ブレークとなります。それ以外のハードウェアブレーク（アクセス）は実行前ブレークとなります。

No.4 ハードウェアブレーク（アクセス）機能（リード/ライトアクセス検出不可）
以下の命令によるリード/ライトアクセス条件が成立してもブレークが発生しません。
(1) CAXI、SET1、CLR1、NOT1、TST1 命令
(2) PREPARE、DISPOSE、PUSHSP、POPSPL、SWITCH、CALLT、SYSCALL 命令
ただし、(1) の命令はデータ条件の指定がない場合のみリードアクセスが検出可能です。

No.5 ハードウェアブレーク（アクセス）機能（EIINT テーブル）
EIINT のテーブルアドレスをハードウェアブレーク条件に設定しないでください。ブレークすると EIRET 命令で割り込み処理から元のプログラムに戻れない場合があります。

No.6 OCD 接続端子の兼用機能について
デバッグ中は OCD 接続端子の兼用機能は使用できません。
No.7 デバッグ時の接続インタフェース
E1/E20/E2 エミュレータは LPD4pin および LPD1pin インタフェースをサポートしています。
E1/E20/E2 エミュレータはオプションバイト 0 レジスタが OPJTAG[1:0]=11B (JTAG) になっている場合（ブランクチップの場合は、JTAG になっています）、下記のように動作します。

- E1/E20/E2 エミュレータの起動（接続）時
 デバッガでオプションバイト 0 レジスタの設定を JTAG→LPD1pin または JTAG→LPD4pin に書き換えてエミュレータと接続します。このため、エミュレータ動作時のオプションバイト 0 レジスタは OPJTAG[1:0]=10B (LPD1pin) または OPJTAG[1:0]=01B (LPD4pin) になります。

- E1/E20/E2 エミュレータ終了（切断）時
 デバッガでオプションバイト 0 レジスタの設定を変更することができます。
 - JTAG に変更して終了する（フラッシュメモリの書き換えが発生）
 - LPD の設定を変更せずに終了する
次回も LPD で接続する場合は、LPD の設定を変更せずに終了することをお勧めします。
何らかの要因でデバッガを正常終了できずにターゲット電源を切断した場合、LPD の設定を変更せずに終了します。オプションバイト 0 レジスタを JTAG に変更したい場合は、E1/E20/E2 エミュレータ終了時に JTAG に変更して終了してください。

No.8 RAM 領域の初期化について
プログラムで使用する RAM 領域は必ず初期化を行ってください。エミュレータ使用時には、「起動時に RAM 領域を初期化する」に設定した場合、デバッガが RAM 領域を初期化しているため、ECC エラーは発生しません。しかし、RAM 領域の初期化を行わないプログラムで実デバイスを動作させると ECC エラーが発生し、正常にプログラムが動作しません。また、RAM 領域の初期化を行う場合、プログラム実行前に RAM 領域へダウンロードしたデータも初期化されるため、ROM 化も必ず行ってください。ROM 化の詳細は、使用するコンパイラのユーザーズマニュアルを参照してください。

No.9 端子リセット（欠番）
4.2 No.14 エミュレータ使用時のリセットについてに統合。
No. 10 パワーセーブモード

パワーセーブモード使用時には下記制限があります。
- デバッグ時は、プログラム上で NWFMSK0[0]=0 を設定してください。
- ユーザプログラム実行中に下記の操作および条件の発生で DEEPSTOP モードは解除されます。
 - ブレーク成立
 - メモリアクセス
 - イベントの設定
- デバッグ中は、DEEPSTOP モードにおいても、Iso 領域（CPU、RAM、周辺モジュール等）の電源供給は停止しません。そのため、初期値が不定な RAM の値やレジスタの値は保持されるため、RUN モードに復帰後に必ず初期化を行ってください。

No. 11 フラッシュプログラミングの品質について

フラッシュプログラミングでは、品質向上のために下記の点を守ってください。
- マイコンおよび E1/E20/E2 エミュレータのユーザーズマニュアルに従った回路設計
- マイコンおよび E1/E20/E2 エミュレータ、ソフトウェアのマニュアルに記載された使用方法
- ユーザシステムへの安定した電源供給

No. 12 電源のオン/オフについて

下記の手順で E1/E20/E2 エミュレータとユーザシステムの電源をオン/オフしてください。
- 別電源からユーザシステムに電源を供給する場合

【使用開始時】

① 電源オフの確認
ユーザシステムの電源がオフになっていることを確認してください。
E20エミュレータをご使用の場合は、E20エミュレータの電源スイッチがオフになっていることを確認してください。

② ユーザシステムの接続
エミュレータとユーザシステムをユーザインタフェースケーブルで接続してください。

③ ホストマシンとの接続とエミュレータ電源の投入
エミュレータとホストマシンをUSBインタフェースケーブルで接続してください。
E1/E2エミュレータの場合、USBインタフェースケーブルを接続することで電源がオンになります。
E20エミュレータをご使用の場合は、E20エミュレータの電源スイッチをオンにしてください。

④ ユーザシステム電源の投入
ユーザシステムの電源をオンにしてください。

⑤ デバッガの起動
デバッガを起動してください。
【使用終了時】
① デバッガの終了
デバッガを終了してください。
② ユーザシステムの電源オフ
ユーザシステムの電源をオフにしてください。
③ エミュレータの電源オフとエミュレータの取り外し
E20エミュレータをご使用の場合は、E20エミュレータの電源スイッチをオフにしてください。
ユーザシステムからUSBインタフェースケーブルを取り外してください。
E1/E2エミュレータの場合、USBインタフェースケーブルを取り外すことで電源がオフになります。
④ ユーザシステムの取り外し
ユーザシステムからユーザインタフェースケーブルを取り外してください。

注意
ユーザシステムの電源について:
ユーザシステムの電源をオンしたままの状態で、ホストマシンの電源をオフにしたり、USBインタフェースケーブルを抜いたり、E20エミュレータの電源スイッチをオフにしたりしないでください。
リーク電流などが原因でユーザシステムが故障する可能性があります。

- エミュレータからユーザシステムに電源を供給する場合（E1/E2 エミュレータのみ）

【使用開始時】
① 電源オフの確認
ユーザシステムの電源がオフになっていることを確認してください。
② ユーザシステムの接続
エミュレータとユーザシステムをユーザインタフェースケーブルで接続してください。
③ ホストマシンとの接続とエミュレータ電源の投入
エミュレータとホストマシンをUSBインタフェースケーブルで接続し、エミュレータの電源をオンにしてください。
④ デバッガの起動
デバッガを起動して、ユーザシステムへの電源供給を選択してください。

【使用終了時】
① デバッガの終了
デバッガを終了してください。
② エミュレータの電源オフとエミュレータの取り外し
エミュレータからUSBインタフェースケーブルを取り外し、エミュレータの電源をオフにしてください。
③ ユーザシステムの取り外し
ユーザシステムからユーザインタフェースケーブルを取り外してください。
No. 13 PBG について

エミュレータ使用時、PBG の FSGDxxPROTn レジスタの PROTDEB ビットは、「1」（デバッグマスタアクセスを許可する）から変更しないでください。初期値と異なる場合は、メモリアクセスが正常に行えない場合があります。

No. 14 エミュレータ使用時のリセットについて

エミュレータ使用時のデバイスの状態とユーザシステムやユーザプログラムが発行するリセット（ユーザシステムリセット）の動作を表 4-1 デバイスの状態と表 4-1 に示します。シングルステップ中は、ノンリアルタイムにプログラムのソースコードを 1 行ずつエミュレーションすることを目的としているため、エミュレータがユーザシステムリセットをマスクします。また、C ソースレベルステップ実行は、デバッガによって実現手段が異なり、シングルステップを利用して実現している場合と、テンポラリのブレークトイントを設定してユーザプログラム実行により実現している場合があります。そのため本書でエミュレータがマスクする/しないを定義することができません。デバッガのマニュアルをご確認ください。

表 4-1 デバイスの状態とエミュレータによるユーザシステムリセットのマスク

<table>
<thead>
<tr>
<th>デバイスの状態</th>
<th>プレーク中</th>
<th>シングルステップ中</th>
<th>ユーザプログラム実行中</th>
<th>C ソースレベルステップ実行中</th>
</tr>
</thead>
<tbody>
<tr>
<td>デバッガ上のリセットマスク設定</td>
<td>リセットをマスクしない</td>
<td>リセットをマスクする【*】</td>
<td>リセットをマスクしない</td>
<td>デバッガ依存</td>
</tr>
<tr>
<td>リセットマスクする</td>
<td>リセットをマスクする【*】</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- デバッガからのリセット（デバッガ上のリセットボタン等）を実行した場合は、リセットマスク有効/無効にかかわらず、常にリセットがかかる。また、デバッガからのリセット後は、すべての CPU はプレークします。
- 表 4-1 内の【*】の状態において発生したリセットは破棄されます。例えば、ソフトウェアリセットの設定処理をシングルステップ実行した場合や、プレーク中にソフトウェアリセットの設定レジスタをデバッガ上で操作した場合、ソフトウェアリセット要求は破棄されます。
- ターゲットシステムからの端子リセットは、上記のマスク無に関わらず、ユーザプログラム実行中以外は、発生させないようにしてください。リセットが発生した場合はデバッガがハングアップする場合があります。
No.15 エミュレータ使用時の割り込みについて

エミュレータ使用時のデバイスの状態と割り込みの動作を、表4-2に示します。シングルステップ中は、ノンリアルタイムにプログラムのソースコードを1行ずつエミュレーションすることを目的としているため、エミュレータが割り込みをマスクします。割り込み処理をステップ実行したい場合は、割り込み処理の先頭にブレークポイントを設定し、ユーザプログラム実行中に割り込みを発生させ、割り込み処理の先頭でブレークしてからステップ実行してください。また、Cソースレベルステップ実行は、デバッガによって実現手段が異なり、シングルステップを利用して実現している場合と、テンポラリのブレークポイントを設定してユーザプログラム実行により実現している場合があります。このため本書でエミュレータがマスクする/しないを定義することができません。デバッガのマニュアルをご確認ください。

<table>
<thead>
<tr>
<th>デバイスの状態</th>
<th>ブレーク中</th>
<th>シングルステップ中</th>
<th>ユーザプログラム実行中</th>
<th>Cソースレベルステップ実行中</th>
</tr>
</thead>
<tbody>
<tr>
<td>割り込みをマスクする【*】</td>
<td>割り込みをマスクしない (ユーザシステムの設定通りに動作)</td>
<td>デバッガ依存</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 表4-2内の【*】の状態において発生した割り込み（EIINTとFEINT、FPI）は保留され、マスク解除後に割り込み処理が実施されます。

No.16 HALTモードとHALT命令のステップ実行について

ブレークが発生した場合、HALTモードは解除されます。
HALT命令をシングルステップ実行（アセンブル命令単位で実行）した場合は、HALT命令の次の命令でブレークし、HALTモードには遷移しません。HALT命令を含むCソースレベルステップ実行において、HALTモードに遷移するかどうかはデバッガの機能に依存します。

No.17 DEEPSTOPモードへの遷移が発生する命令のステップ実行について

ステップ実行にはシングルステップ実行（アセンブル命令単位で実行）機能とCソースレベルステップ実行（C言語ソースや関数レベルで実行）機能があります。DEEPSTOPモードに遷移する命令をシングルステップ実行（アセンブル命令単位で実行）した場合は、リセット時のアドレスでブレークし、DEEPSTOPモードには遷移しません。DEEPSTOPモードに遷移する命令を含むCソースレベルステップ実行において、DEEPSTOPモードに遷移するかどうかはデバッガの機能に依存します。
No.18 エミュレータ接続時の注意点（端子リセット）
エミュレータ接続時のエミュレータとマイコンとの通信準備中にリセットをアサートしたままにすると、両通信が不正動作となります。エミュレータ接続時は、リセットをアサートしたままにしないでください。

No.19 エミュレータ接続時の注意点（通信準備期間）
エミュレータ接続時、エミュレータとマイコンとの通信準備が成立する前にマイコンに書き込まれているプログラムがリセットベクタから動作するため、注意が必要です。マイコンに書き込まれているプログラムの実行が問題となるプログラムをデバッグする際は、リセット解除から該当プログラム実行までに以下のウェイト（注）*を挿入してください。

- LPD1pin の場合は 140ms 以上のウェイトが必要です。
- LPD4pin の場合は 5ms 以上のウェイトが必要です。
注：通信準備期間は、E1/E20/E2 エミュレータのホスト PC 環境および、マイコンの動作周波数に依存します。

No.20 エミュレータ接続時の注意点（内部リセット）
リセット直後に内部リセット（ソフトウェアリセットやウォッチドックオーバフローによるリセットなど）を発生させるプログラムを格納すると、エミュレータ接続時のエミュレータとマイコンとの通信準備が成立する前に内部リセットが発生するため、両通信が不正動作となります。このため、内部リセットを行うプログラムをデバッグする際は、リセット解除から内部リセットを実施するまでに以下のウェイト（注）*を挿入してください。

- LPD1pin の場合は 140ms 以上のウェイトが必要です。
- LPD4pin の場合は 5ms 以上のウェイトが必要です。
注：通信準備期間は、E1/E20/E2 エミュレータのホスト PC 環境および、マイコンの動作周波数に依存します。

No.21 エミュレータ接続時の注意点（DEEPSTOP モード）
リセット直後に DEEPSTOP モードへ遷移する設定を行うと、エミュレータ接続時のエミュレータとマイコンとの通信準備が成立する前に DEEPSTOP モードに遷移するため、両通信が不正動作となります。このため、DEEPSTOP モードへ遷移するプログラムをデバッグする際は、リセット解除から DEEPSTOP モードへ遷移する命令を実行するまでに以下のウェイト（注）*を挿入してください。

- LPD1pin の場合は 140ms 以上のウェイトが必要です。
- LPD4pin の場合は 5ms 以上のウェイトが必要です。
注：通信準備期間は、E1/E20/E2 エミュレータのホスト PC 環境および、マイコンの動作周波数に依存します。
No. 22 マイコン内蔵の I/O 資源のアクセスについて

マイコン内蔵の I/O 資源（レジスタ、RAM）をデバッガからアクセス（メモリウィンドウ、I/O レジスタウィンドウからのアクセス）した場合は、ユーザプログラム上からアクセスした時と同じ動作となります。

例。（I/O 資源の実際の動作については、各マイコンのマニュアルを参照してください。）

- FCU-RAM 資源のアクセス
 FCU-RAM イネーブルビットを設定しないと正常にアクセスできません。

- PBG エリアへのアクセス
 PBG エリアをアクセスした時に、ガードが有効の場合は、正常にアクセスできません。また、エラー検出の対象となります。

No. 23 周辺モジュールのレジスタについて

シリアルフラッシュメモリインタフェース A（SFMA）、HyperBus コントローラ（HYPB）、OctaBus コントローラ（OCTA）および CANFD へのクロック供給設定がない状態、または正常な供給設定ではない状態で、SFMA レジスタ、HYPB レジスタ、OCTA レジスタおよび CANFD レジスタにデバッガからアクセス（I/O レジスタウィンドウからのアクセス）した場合、タイムアウトする場合があります。正常なクロック供給設定を行ったうえでデバッガからアクセスするよう注意してください。
No. 24 ホットプラグイン接続時の注意点

- ホットプラグイン接続を行う際に、オプションバイトレジスタのOPJTAG[1:0]ビットがLPD動作モードに設定されていない場合、接続エラーが発生します。このため、ホットプラグイン接続を行う場合は接続前にOPJTAG[1:0]ビットをLPD動作モードに設定してください。
- ホットプラグイン接続を行う場合は、オプションのRH850、RL78対応E1エミュレータ用アイソレータを使用できません。
- ホットプラグイン接続を行う場合は、E1/E2エミュレータからの電源供給機能を使用できません。
- ホットプラグイン接続を行わない場合は、起動時にRAM領域の初期化が行われますが、ホットプラグイン接続を行う場合は、RAM領域の初期化が行われません。また、端子のマスクが使用できません。このため、プログラムで使用するRAM領域を初期化せずに動作させると、ECCエラーが発生します。必ずプログラム上で使用するRAM領域を行ったうえで接続してください。
- ホットプラグイン接続完了後は、ユーザプログラムが実行中の状態となります。この時、以下の機能のみ使用可能です。
 - 内蔵RAM領域へのリード／ライト・アクセス
 - 強制ブレーク
 - CPUリセット

エミュレータでサポートされる全ての機能を使用するためには、強制ブレークを行ってください。強制ブレーク発生後は、通常の起動時と同等の機能が使用可能となります。
注：RAM領域の初期化は、「起動時にRAM領域を初期化する」に設定している場合のみ行われます。

No. 25 ホットプラグイン接続できないケースについて

マイコンの状態が以下の場合、ホットプラグイン接続することができません。
リセット入力状態

No. 26 ホットプラグイン接続により解除されるスタンバイモードについて

マイコンの状態が以下の場合、ホットプラグイン接続によりスタンバイモードが解除されます。
DEEPSTOPモード（デバイス仕様上リセットが発生します）
No.27 パフォーマンス計測
特定区間のパフォーマンスを計測する際、計測開始から計測終了まで、および、計測終了から次の計測開始までの間隔が短いと計測できません。正常に計測するためには十分に長い間隔（注）をとる必要があります。

注：必要な検出間隔はマイコンの動作周波数とLPD通信周波数に依存します。

No.28 リセット
ユーザプログラム実行中にCPUリセットが発生した場合、デバッグ機能（ブレーク、イベント、タイマなど）および、マイコンの動作が不安定になる場合があります。

No.29 内蔵フラッシュメモリ書き換え時の注意点（ワークRAM）
デバッガとして、ブレーク中にフラッシュメモリ書き換えを伴う操作（注）を行った場合、内蔵RAMの一部をワークRAMとして使用します。ワークRAM領域の初期設定は、CPU1のLocalRAMの終了アドレス側から4KB分（E2エミュレータの場合）あるいは9KB分（E1/E20エミュレータの場合）です。LocalRAMが存在しないデバイスの場合はRetentionRAMを使用します。

ワークRAM領域はデバッガから変更可能です。デバッガは、ワークRAMの値を退避してから、フラッシュメモリを書き換えた後、退避したワークRAMの値を復帰します。値を保証するために、ブレーク中であっても動作継続する可能性があるDMAや外部マスタからアクセスされない領域をワークRAMとして設定しておく必要があります。

注：フラッシュメモリ書き換えは、下記の操作時に発生します。
- 内蔵フラッシュメモリへのダウンロード
- メモリパネルや逆アセンブルパネル等を使用した内蔵フラッシュメモリの変更
- ソフトウェアブレークの設定・解除
- ソフトウェアブレーク成立後の再実行（ステップ含む）
No.30 内蔵フラッシュメモリ書き換え時の注意点（クロックモニタ）

デバッガはフラッシュメモリ書き換え時に下記に示すようにPLL倍倍を変更します。このため、フラッシュメモリ書き換え時の周波数は、ご使用の周波数より高速になる場合があります。クロックモニタ（CLMA）で設定した周波数の上界を超える場合は、フラッシュメモリ書き換えを抑止します。デバッガによるクロック周波数の変更が問題になる場合、「フラッシュ書き込み時にクロックを変更しない」に設定してください。

【PLL倍倍の変更】

- D1M2（H）、D1M1Aの場合

 MainOSC=8MHz時: 30倍倍します。(CPUクロック: 240MHz)
 MainOSC=10MHz時: 24倍倍します。(CPUクロック: 240MHz)
 MainOSC=12MHz時: 20倍倍します。(CPUクロック: 240MHz)
 MainOSC=16MHz時: 15倍倍します。(CPUクロック: 240MHz)

- D1M1Hの場合

 MainOSC=8MHz時: 25倍倍します。(CPUクロック: 200MHz)
 MainOSC=10MHz時: 20倍倍します。(CPUクロック: 200MHz)
 MainOSC=16MHz時: 12.5倍倍します。(CPUクロック: 200MHz)

- D1M1の場合

 MainOSC=8MHz時: 20倍倍します。(CPUクロック: 160MHz)
 MainOSC=10MHz時: 16倍倍します。(CPUクロック: 160MHz)
 MainOSC=16MHz時: 10倍倍します。(CPUクロック: 160MHz)

- D1L1、D1L2（H）の場合

 MainOSC=8MHz時: 15倍倍します。(CPUクロック: 120MHz)
 MainOSC=10MHz時: 12倍倍します。(CPUクロック: 120MHz)
 MainOSC=12MHz時: 10倍倍します。(CPUクロック: 120MHz)
 MainOSC=16MHz時: 7.5倍倍します。(CPUクロック: 120MHz)

注: フラッシュメモリ書き換えは、下記の操作時に発生します。

- 内蔵フラッシュメモリへのダウンロード
- メモリパネルや逆アセンブルパネル等を使用した内蔵フラッシュメモリの変更
- ソフトウェアブレークの設定・解除
- ソフトウェアブレーク成立後の再実行（ステップ含む）
No.31 内蔵フラッシュメモリ書き換え時の注意点（レジスタ値）
デバッガは、フラッシュメモリ書き換え時にPLL0を発振させCPUへ給されます。そのため、CKSC_PLL0S.ACT_PLL0SACTの値が初期値の0から1に変わってきます。レジスタ値の変更が問題になる場合、「フラッシュ書き込み時にクロックを変更しない」に設定してください。

注：フラッシュメモリ書き換えは、下記の操作時に発生します。
- 内蔵フラッシュメモリへのダウンロード
- メモリパネルや逆アセンプリパネル等を使用した内蔵フラッシュメモリの変更
- ソフトウェアブレークの設定・解除
- ソフトウェアブレーク成立後の再実行（ステップ含む）

No.32 クロック設定中のブレークについて
クロック設定中にブレークした場合、デバッガからフラッシュメモリの書き換えができません。クロック設定中にブレークした状態で下記の操作を実施する場合は、「フラッシュ書き込み時にクロックを変更しない」に設定してください。
- 再ダウンロードなどフラッシュメモリの書き換えを伴う操作
- ソフトウェアブレークの設定および解除
また、クロック設定するプログラムにソフトウェアブレークを設定しないでください。

No.33 イベント機能（64bitアクセス）
64bitサイズを条件としたアクセスイベントを設定しないでください。64bitアクセスサイズ以外のアクセスを検出する、別のイベントが正常に動作しなくなる、といった場合があります。

No.34 イベント機能（イベント検出順）
以下の場合は命令順とイベント検出順が前後する可能性があるためシーケンシャルイベント、任意区間の時間測定/パフォーマンス測定ができない場合があります。
- 2 命令を同時に実行する場合があるため、連続する命令に設定したイベント
- ライトアクセスとリードアクセスのイベント検出タイミングが異なり、ライト→リードの順に命令を実行してもリード→ライトの順で検出される場合があるため、接近したリード命令とライト命令が検出対象となるアクセスイベント
No.35 イベント機能（ビット操作命令）
イベントとしてリード/ライトアクセスを条件に設定している場合、ビット操作命令によるRead-Modify-Writeのライトサイクルが条件成立しても、イベント検出されません。この条件でブレークやパフォーマンス測定のトリガとしては使用できません。

No.36 ブレーク成立条件の競合
強制ブレークやイベントブレーク等でブレーク状態に遷移する直前に別のリードアクセスイベントを検出した場合、再実行時にリードアクセスイベントによるブレーク要求が受け付けられるため、再実行してすぐに再ブレークします。

No.37 ソフトウェアブレーク機能（RAM領域）
ソフトウェアブレーク機能は命令を置き換えることによって実現しています。そのため、実行中にユーザプログラムによって、ソフトウェアブレークを設定したアドレスが書き換えられると、ブレークが発生しませんでご注意ください。

No.38 ユーザプログラム中のエミュレータ検出機能
デバッグ情報を設定しても、リセットが発生するとデバッグ情報は0000 0000Hに初期化されてしまいすのでご注意ください。リセット後に一旦全CPUをブレークして、再度ユーザプログラム実行するときに、デバッグ情報が再設定されます。

No.39 LPD 1pin選択時のソフトウェアトレース（LPD）機能（E2 エミュレータのみ該当）
LPD 1pinを選択している場合は、強制ブレーク、E2ストレージのトレースフルブレーク、外部トリガ入力ブレークによってブレークした場合、それ以降のプログラム再実行時にソフトウェアトレース（LPD）は使用できません。再度、ソフトウェアトレース（LPD）を行う場合は、デバッガからエミュレータを再接続してください。

No.40 ソフトウェアトレース（LPD）で取得したトレースデータに関する注意（E2 エミュレータのみ該当）
強制ブレーク、E2ストレージのトレースフルブレーク、外部トリガ入力によってブレークした場合、ブレーク直前に実行されたデバッグ命令はE2ストレージには格納されません。

デバッグ命令をシングルステップ実行した場合、デバッグ命令にソフトウェアブレークやハードウェアブレークを設定しその命令から実行する場合は、ソフトウェアトレースデータはLPD出力されません。

ソフトウェアブレーク、ハードウェアブレーク、イベントブレークによってブレークし、トレース取得を停止した場合、E2ストレージの最終トレースデータとして、ブレーク成立後、デバッガ領域で実行したDBCP命令の実行履歴が格納されます。
No.41 コードフラッシュ P/E モード中、データフラッシュ P/E モード中のブレークポイント

コードフラッシュ P/E モードまたはデータフラッシュ P/E モードに遷移するユーザプログラムのデバッグでは、ソフトウェアブレークポインタではなくハードウェアブレークポインタを使用することを推奨します。

対象デバイスがコードフラッシュ P/E モードまたはデータフラッシュ P/E モードに遷移している状態では、フラッシュの書き換えが行えないため、コードフラッシュ上ソフトウェアブレークポインタの追加および削除ができません。そのため、実際には対象デバイスに追加および削除できていない動作になります。対象デバイスをコードフラッシュ P/E モードまたはデータフラッシュ P/E モード以外に遷移させた状態で、コードフラッシュ上ソフトウェアブレークポインタの追加および削除をしてください。

また、対象デバイスがコードフラッシュ P/E モードまたはデータフラッシュ P/E モードに遷移している状態で、コードフラッシュ上ソフトウェアブレークポインタでブレークした場合、その後ユーザプログラムを実行しても現在アドレスのソフトウェアブレークポインタでブレークしてしまい、現在アドレスから進まない動作になります。該当する状況になった場合は、リセットを入れてください。
5. エミュレータの内部回路

参考図 A および参考図 B に E1/E2 エミュレータ、参考図 C および参考図 D に E2 エミュレータとユーザシステムの通信インターフェースに関わる、内部のインターフェース回路を示します。基板設計時のパラメータを決定する時の参考にしてください。

![内部回路図](image-url)

参考図 A E1/E2 エミュレータ内インタフェース回路（LPD1pin、1wireUART）
参考図 B E1/E20 エミュレータ内インタフェース回路 (LPD4pin, 2wireUART)
電源供給回路
（電源供給モード時のみ使用）

電源供給回路
（電源供給モード時のみ使用）

内回路

74LVC1T45

74LVC8T245

NFL21SP

ノイズフィルタ
47Ω

1MΩ x6

3.3V

100kΩ

0.1μF

自己復帰型ヒューズ

自己復帰型ヒューズ

100kΩ

参考図 6 E2 エミュレータ内インタフェース回路 (LPD1pin, 1wireUART)
参考図 D2 エミュレータ内インタフェース回路（LPD4pin、2wireUART）
6. トラブルシューティング

E1/E20/E2 エミュレータをデバッガと組み合わせて使用した場合のトラブル事例とその対処方法について示します。E1/E20 エミュレータユーザーズマニュアル、E2 エミュレータユーザーズマニュアル、弊社ホームページ、デバッガのユーザーズマニュアルにもトラブルシューティングや FAQ が掲載されていますので合わせてお読みください。なお、CS+については、対応するエラーメッセージも掲載しています。CS+以外のデバッガをご使用の場合は各デバッガのマニュアルを参照してください。

6.1 エミュレータ接続時のトラブル

<table>
<thead>
<tr>
<th>トラブル内容</th>
<th>対処方法</th>
<th>CS+エラーメッセージ</th>
</tr>
</thead>
<tbody>
<tr>
<td>デバッグ・ツール（エミュレータ）に接続できない（フラッシュプログラミングモードにおけるエラー）</td>
<td>デバッグの設定として OPJTAG 自動設定機能が有効な場合は、接続時にデバイスをフラッシュプログラミングモードに切り替え、オプションバイトレジスタの OPJTAG ビットの確認と変更を行います（2.3 参照）。この処理に失敗すると、右のエラーメッセージが表示されます。以下の要因が考えられますので、ご確認ください。</td>
<td>E1203237</td>
</tr>
<tr>
<td></td>
<td>・フラッシュプログラミングモードに遷移するための端子リセット制御が正しく行われていない可能性があります。エミュレータ接続時は、エミュレータ以外の回路から端子リセットを入力しないでください。また、2.4.2 に記載の注意事項（リセット信号の立ち上がり時間等）やデバイスの RESET 端子の電気的特性を満たせているかご確認ください。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>・エミュレータとターゲットデバイス間の接続が間違っている可能性があります。2.4.1 の推奨接続回路例を参考に、エミュレータとターゲットデバイス間の接続回路をご確認ください。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>・エミュレータの制御対象外のモード端子（FLMD1 など）が、フラッシュプログラミングモードに遷移できる端子処理になっているか確認ください。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MainOSC の設定値が間違っている可能性があります。ボード上に搭載している MainOSC の周波数とデバッガ接続設定の設定値が一致しているかご確認ください。</td>
<td>E1203275</td>
</tr>
<tr>
<td></td>
<td>エミュレータとターゲットデバイス間の接続（特に FLMD0 端子）が間違っている可能性があります。2.4.1 の推奨接続回路例を参考に、エミュレータとターゲットデバイス間の接続回路をご確認ください。</td>
<td>E1203276</td>
</tr>
</tbody>
</table>
表 6-2 エミュレータ接続時のトラブル (2/2)

<table>
<thead>
<tr>
<th>トラブル内容</th>
<th>対処方法</th>
<th>CS+エラーメッセージ</th>
</tr>
</thead>
<tbody>
<tr>
<td>デバッグ・ツール（エミュレータ）に接続できない（LPD接続エラー）</td>
<td>オプションバイトレジスタのOPJTAGビットが指定の接続インタフェース（LPD）になっていない可能性があります。デバッガの設定として、OPJTAG自動設定機能を有効にし、起動時のオプションバイト書き換えを許可するか、デバッガ接続前にFlash Programmer（RFP等）でOPJTAGビットを書き換えてください。</td>
<td>E1203240</td>
</tr>
<tr>
<td></td>
<td>エミュレータがターゲットデバイスに接続するまでの通信準備期間中に対する注意点No.20を満たせていない可能性があります。Flash Programmer（RFP等）でコードフラッシュを消去してから、ターゲットデバイスへ接続できるかご確認ください。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ホットプラグイン接続以外の接続時、エミュレータが端子リセットの制御を行いますが、この制御に失敗している可能性があります。2.4.2に記載の注意事項（リセット信号の立ち上がり時間等）やデバイスのRESET端子の電気的特性を満たせているかご確認ください。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>エミュレータとターゲットデバイス間の接続が間違っている可能性があります。2.4.1 推奨接続例を参考に、エミュレータとターゲットデバイス間の接続回路をご確認ください。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ターゲットボードの状態によっては、通信スペックを満たせていない可能性があります。LPD通信速度設定を低く設定し、再度接続できるかご確認ください。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>オプションバイトレジスタの値が正しくない可能性があります。オプションバイトレジスタの値が使用するマイコンのハードウェアマニュアル通りに設定されているか、Flash Programmer（RFP等）を使用してご確認ください。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ターゲットデバイスのRESET端子がアクティブになっている可能性があります。エミュレータ接続時はRESET端子をインアクティブにしてください。</td>
<td>E1203274</td>
</tr>
<tr>
<td>デバッグ・ツール（エミュレータ）に接続できない（セキュリティIDの不一致）</td>
<td>デバッグ接続時のID認証に失敗した可能性があります。入力したIDコードが正しいかご確認ください。</td>
<td>C0602202</td>
</tr>
<tr>
<td></td>
<td>エミュレータがターゲットデバイスに接続するまでの通信準備期間中に対する注意点No.21を満たせていない可能性があります。Flash Programmer（RFP等）でコードフラッシュを消去してから、ターゲットデバイスへ接続できるかご確認ください。</td>
<td></td>
</tr>
</tbody>
</table>
6.2 エミュレータ接続後のトラブル

表 6-3 エミュレータ接続後のトラブル

<table>
<thead>
<tr>
<th>トラブル内容</th>
<th>対処方法</th>
<th>CS+エラーメッセージ</th>
</tr>
</thead>
</table>
| ブレークできない | ・リセットが長時間入力されている可能性があります。8秒以上リセット入力が継続していると強制ブレークできません。リセット入力が終わるのを待つか、リセットをマスクする設定に変えてください。
 ・CPUへのクロック供給が止まっている可能性があります。CPUへのクロック供給を止めないでください。強制リセットにより、CPUへのクロック供給が復帰してブレークできる可能性があります。（CS+の場合、「強制リセットを使用する」オプションを「はい」に設定してください。）
 ・パワーセーブモードに関する注意点 No.10 を満たせていない可能性があります。ターゲットデバイスが通常モードに遷移するのを待つか、リセットマスクを解除しターゲットボードから端子リセットを入力してください。デバッグ時は必ずWUFMSK0レジスタのウェイクアップ要因を設定してください。 | E1200674 |
<table>
<thead>
<tr>
<th>Rev.</th>
<th>発行日</th>
<th>改訂内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00</td>
<td>2015.10.01</td>
<td>初版発行</td>
</tr>
<tr>
<td>3.00</td>
<td>2016.06.01</td>
<td>未使用ピンについての注意書きを追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>接続インタフェースとモードについての説明を追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>図2-4 RESETのプルアップ抵抗値の記載を削除</td>
</tr>
<tr>
<td></td>
<td></td>
<td>エミュレータ内部のプルアップ抵抗、ターゲットデバイス内部のプルアップ/プルダウン抵抗に関する注意書きを追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RAM空間のソフトウェアブレークをサポート</td>
</tr>
<tr>
<td></td>
<td></td>
<td>「疑似リアルタイムモニタ」と「ダイレクトメモリ変更」に対応している領域について注意書きを追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>「セキュリティIDの設定」と「セキュリティフラグ設定」、「ICUSのON設定」の項目を追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No.4の項目を新規追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No.5の項目を新規追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No.10にDEESTOPモードが解経される制限を追加(CS+リリースノートR20UT3121JJ0200より転記)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No.13の項目を新規追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No.22の例からDTC-RAMに関する記載を削除</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No.22の誤字訂正(PBGガードエリア→PBGエリア)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No.23のタイトル変更 本制限事項の対象としてCANFDを追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No.28の項目を新規追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No.29の項目を新規追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No.30の項目を新規追加(CS+リリースノートR20UT3121JJ0200より転記)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No.31の項目を新規追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No.32の項目を新規追加(CS+リリースノートR20UT3121JJ0200より転記)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No.33の項目を新規追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No.34の項目を新規追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No.35の項目を新規追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No.36の項目を新規追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No.37の項目を新規追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>参考図Aに「電源供給回路」のモジュールを追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>参考図Bに「電源供給回路」のモジュールを追加</td>
</tr>
<tr>
<td>3.10</td>
<td>2016.10.05</td>
<td>No.5のタイトルを「ECOエラー」から「RAM領域の初期化」に変更 また、確認事項とRAM領域を初期化しないに設定した場合の使いえない機能について記載</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No.29ワークRAM領域に関する制限事項を追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No.29-31フラッシュメモリ書き換え発生条件を追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1 デバッグ・ツールに関係ない場合の回避策を追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.2 強制ブレークできない場合の回避策を追加</td>
</tr>
<tr>
<td>4.00</td>
<td>2017.01.20</td>
<td>全体 E2エミュレータの記述を追加 E1/E20をE1/E20に変更</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E2エミュレータを追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.1、1.3項にE2エミュレータの記述を追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>項に20-pin/14-pin変換アダプタを使用する記述を追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.4.3項のホストマシンのUSBインタフェースの記述を削除</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.4.4項の文脈に「E1エミュレータで」を追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ホットプラグインにE1使用時の注意を追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ユーザプログラム中のエミュレータ検出機能を追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No.38ユーザプログラム中のエミュレータ検出機能を追加</td>
</tr>
<tr>
<td>Rev.</td>
<td>発行日</td>
<td>改訂内容</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>改訂内容</td>
</tr>
<tr>
<td></td>
<td></td>
<td>改訂内容</td>
</tr>
<tr>
<td></td>
<td></td>
<td>改訂内容</td>
</tr>
<tr>
<td></td>
<td>5.00</td>
<td>2017.07.01 4 1.3 (3)を追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 2.3 説明を追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17 表 3-1 更新</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19 表 3-2 新規追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 3.1 を新規追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22-36 4.1 No.3, 4.1 No.7, 4.2 No.9 欠番</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.1 No.6 変更 (デバッグできない→ダウンロードできない)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2 No.3 タイトル変更</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2 No.14, No.15, No.16 タイトル変更と説明を追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2 No.23, 4.2 No.30 更新 (RM850/DIM1A 対応)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2 No.39, No40 新規追加</td>
</tr>
<tr>
<td></td>
<td>5.10</td>
<td>2018.01.15 5 6 説明を追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21 「フタ」を「カバーを外すと確認できるコネクタ」に変更</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33 4.2 No.29 説明追加</td>
</tr>
<tr>
<td></td>
<td>6.00</td>
<td>2020.10.09 18 3. 表 3-1 に【注 4】追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19 3. 表 3-2 に【注 4】追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32 No.24 説明追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37 4.2 No.41 新規追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42 6.1 表 6-1 に対処方法 2 件追加 (E1203275, E1203276)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>43 6.2 表 6-2 に対処方法 1 件追加 (E1203274)</td>
</tr>
</tbody>
</table>
E1/E20エミュレータ,E2エミュレータユーザーズマニュアル別冊
(RH850/D1L、RH850/D1Mグループ接続時の注意事項)

<table>
<thead>
<tr>
<th>発行年月日</th>
<th>発行</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015年10月01日</td>
<td>Rev. 2.00</td>
</tr>
<tr>
<td>2016年06月01日</td>
<td>Rev. 3.00</td>
</tr>
<tr>
<td>2016年10月05日</td>
<td>Rev. 3.10</td>
</tr>
<tr>
<td>2017年01月20日</td>
<td>Rev. 4.00</td>
</tr>
<tr>
<td>2017年07月01日</td>
<td>Rev. 5.00</td>
</tr>
<tr>
<td>2018年01月15日</td>
<td>Rev. 5.10</td>
</tr>
<tr>
<td>2020年10月09日</td>
<td>Rev. 6.00</td>
</tr>
</tbody>
</table>

発行：ルネサス エレクトロニクス株式会社
〒135-0061 東京都江東区豊洲3-2-24（豊洲フォレシア）
営業お問合せ窓口
技術的なお問合せおよび資料のご請求は下記へどうぞ。
総合お問合せ窓口:
https://www.renesas.com/contact/

ルネサス エレクトロニクス株式会社 〒135-0061 東京都江東区豊洲3-2-24（豊洲フォレシア）

技術的なお問合せおよび資料のご請求は下記へどうぞ。
総合お問合せ窓口：https://www.renesas.com/contact/

© 2020 Renesas Electronics Corporation. All rights reserved.
Colophon 3.1
E1/E20エミュレータ、E2エミュレータ
ユーザーズマニュアル別冊
（RH850/D1L、RH850/D1Mグループ 接続時の注意事項）