

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas

Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog

and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)

Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand

names are mentioned in the document, these names have in fact all been changed to Renesas

Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and

corporate statement, no changes whatsoever have been made to the contents of the document, and

these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.

Customer Support Dept.

April 1, 2003

To all our customers

Cautions

Keep safety first in your circuit designs!

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but

there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire

or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i)

placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or

mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation

product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any

other rights, belonging to Renesas Technology Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights,

originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in

these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents

information on products at the time of publication of these materials, and are subject to change by Renesas Technology

Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact

Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product

information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these

inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various means, including the

Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and

algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of

the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other

loss resulting from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used

under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an

authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for

any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea

repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these

materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license

from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is

prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.

Renesas Debugging
Interface
User’s Manual

U
ser’s M

anual

Rev.2.0 1999.02

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s
patent, copyright, trademark, or other intellectual property rights for information contained in
this document. Hitachi bears no responsibility for problems that may arise with third party’s
rights, including intellectual property rights, in connection with use of the information
contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that you
have received the latest product standards or specifications before final design, purchase or
use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability.
However, contact Hitachi’s sales office before using the product in an application that
demands especially high quality and reliability or where its failure or malfunction may directly
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear
power, combustion control, transportation, traffic, safety equipment or medical equipment for
life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitachi
particularly for maximum rating, operating supply voltage range, heat radiation characteristics,
installation conditions and other characteristics. Hitachi bears no responsibility for failure or
damage when used beyond the guaranteed ranges. Even within the guaranteed ranges,
consider normally foreseeable failure rates or failure modes in semiconductor devices and
employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi
product does not cause bodily injury, fire or other consequential damage due to operation of
the Hitachi product.

5. This product is not designed to be radiation resistant.

6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document
without written approval from Hitachi.

7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi
semiconductor products.

Rev. 2.0, 02/99, page i of xvii

IMPORTANT INFORMATION

READ FIRST

• READ this user's manual before using the Hitachi Debugging Interface (hereafter, called
HDI).

• KEEP the user's manual handy for future reference.

Do not attempt to use the system until you fully understand its mechanism.

Target User of the System:

This system should only be used by those who have carefully read and thoroughly understood the
information and restrictions contained in the user's manual. Do not attempt to use the system until
you fully understand its mechanism.

It is highly recommended that first-time users be instructed by users that are well versed in the
operation of the system.

Purpose of HDI:

This system is a software and hardware development tool for systems employing the Hitachi
microcomputer. This system must only be used for the above purpose.

Improvement Policy:

Hitachi, Ltd. (including its subsidiaries, hereafter collectively referred to as Hitachi) pursues a
policy of continuing improvement in design, performance, and safety of the system. Hitachi
reserves the right to change, wholly or partially, the specifications, design, user's manual, and
other documentation at any time without notice.

Figures:

Some figures in this user's manual may show items different from your actual system.

Other Important Things to Keep in Mind:

1. Examples described herein are meant merely to indicate the characteristics and performance of
Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual
property claims or other problems that may result from applications based on the examples
described herein.

2. No license is granted by implication or otherwise under any patents or other rights of any third
party or Hitachi.

Rev. 2.0, 02/99, page ii of xvi

All Rights Reserved:

This user's manual and this system are copyrighted and all rights are reserved by Hitachi. No part
of this user's manual, all or part, may be reproduced or duplicated in any form, in hard-copy or
machine-readable form, by any means available without Hitachi's prior written consent.

Trademarks:

Microsoft®, Windows®, and WindowsNT® are registered trademarks of Microsoft Corporation in
the United States and/or other countries.

IBM PC is the name of a computer administered by International Business Machines Corporation.

ELF/DWARF is the name of an object format developed by the Tool Interface Standards
Committee.

All products or brand names used in the manual are trademarks or registered trademarks of their
respective companies.

Rev. 2.0, 02/99, page iii of xvii

Preface

About this Manual

This manual explains the use of the Hitachi Debugging Interface (HDI) for Hitachi microcomputer
development tools. The following section will provide a brief Introduction to the debugging
interface and list its key features.

System Overview describes how the different software modules make up the HDI system and
which modules are needed for a specific configuration. The different parts of the user interface are
described and some common features explored.

The following sections Preparing to Debug, Looking at Your Program, Working with Memory,
Executing Your Program, Stopping Your Program, Looking at Variables, Overlay Function,
Selecting Functions, and Configuring the User Interface, provide a “how to” guide to using HDI
for debugging.

The next two sections Menus and Windows give in depth reference information about the
operation and facilities available from these respective areas.

This manual assumes that the HDI is used on the English version of Microsoft® Windows®95
operating system running on the IBM PC.

The separate Debugging Platform User’s Manual will typically provide:

A Setting up section that informs you about installing the debugging platform's hardware and
software on your PC and verifying that all the components have been correctly installed.

A Tutorial section that takes you through the available features using some sample code.

A Reference section that describes the user interface that is specific to that debugging platform; for
example, editing breakpoints, configuring the trace acquisition, etc.

Assumptions

It is assumed that the reader has a competent knowledge of the C/C++ programming language,
assembly-language mnemonics for the processor being debugged and is experienced in using
Microsoft® Windows® applications on PC compatible computers.

Document Conventions

This manual uses the following typographic conventions:

Rev. 2.0, 02/99, page iv of xvi

Table 1 Typographic Conventions

CONVENTION MEANING

[Menu->Menu Option] Bold text with ‘->’ is used to indicate menu options
(for example, [File->Save As...])

FILENAME.C Uppercase names are used to indicate file names

“enter this string” Used to indicate text that must be entered (excluding the “ ” quotes)

Key+Key Used to indicate required key presses. For example, Ctrl+N means
press the Ctrl key and then, while holding the Ctrl key down, press the N
key

(The “how to” symbol)

When this symbol is used, it is always located in the left hand margin. It
indicates that the text to its immediate right is describing “how to” do
something

Rev. 2.0, 02/99, page vi of xvi

Contents

Section 1 Introduction ...1
1.1 Key Features..1

Section 2 System Overview...3
2.1 User Interface ..3

2.1.1 Menu Bar..3
2.1.2 Toolbar ...5
2.1.3 Status Bar ...6
2.1.4 Pop-Up Menus ...7

2.2 Data Entry ...8
2.2.1 Operators ..8
2.2.2 Data Formats ..8
2.2.3 Precision...8
2.2.4 Expression Examples ...9
2.2.5 Symbol Format...9
2.2.6 Symbol Examples...9

2.3 Help ..10
2.3.1 Context Sensitive Help...10

Section 3 Preparing to Debug..11
3.1 Compiling for Debug...11
3.2 Selecting a Debugging Platform..11
3.3 Configuring the Debugging Platform..12

3.3.1 Setup...12
3.3.2 Mapping ...12
3.3.3 Status ..14

3.4 Downloading a Program..16
3.4.1 Selecting a File Type..17
3.4.2 Setting a File Path Name ..17

Section 4 Looking at Your Program..19
4.1 Viewing the Code..19

4.1.1 Viewing Assembly-Language Code...20
4.1.2 Modifying Assembly-Language Code ...21
4.1.3 Displaying Source Code...22
4.1.4 Displaying Mixed Code ...22

4.2 Looking at Symbols...22
4.2.1 Listing Symbols..22
4.2.2 Finding a Symbol ...23

Rev. 2.0, 02/99, page vii of xvii

4.2.3 Finding Again...24
4.2.4 Adding Symbols...24
4.2.5 Adding a Symbol from the Program Window..24
4.2.6 Modifying Symbols..25
4.2.7 Deleting Symbols ...26
4.2.8 Deleting All Symbols ...26
4.2.9 Loading a Symbol File ...27
4.2.10 Saving a Symbol File ...28
4.2.11 Symbol File Format..28

4.3 Looking at a Specific Address...29
4.3.1 Looking at the Current Program Counter Address ...29

4.4 Finding Text ..30
4.5 Looking at a Text File ...30

4.5.1 Opening a Text Window ..30
4.5.2 Copying Text..32
4.5.3 Finding Text ...33

Section 5 Working with Memory ..35
5.1 Looking at an Area of Memory ...35

5.1.1 Displaying Memory as Bytes ...36
5.1.2 Displaying Memory as Words..36
5.1.3 Displaying Memory as Long words ...37
5.1.4 Displaying Memory as Single-Precision Floating Point37
5.1.5 Displaying Memory as Double-Precision Floating Point38
5.1.6 Displaying Memory as ASCII ..38
5.1.7 Looking at a Different Area of Memory ..38

5.2 Modifying Memory Contents ..39
5.2.1 Quick Edit ..39
5.2.2 Full Edit..39

5.3 Finding a Value in Memory ..40
5.4 Filling an Area of Memory with a Value ..41

5.4.1 Selecting a Memory Range ..41
5.4.2 Filling the Range ..42

5.5 Moving an Area of Memory..43
5.6 Testing an Area of Memory ..44
5.7 Saving an Area of Memory ...45
5.8 Loading an Area of Memory ...46
5.9 Verifying an Area of Memory...47

Section 6 Executing Your Program ...49
6.1 Running from Reset...49
6.2 Continuing Run ...49
6.3 Running to the Cursor ...50

Rev. 2.0, 02/99, page viii of xvi

6.4 Running to Several Points ...51
6.5 Single Step...51

6.5.1 Stepping Into a Function ..51
6.5.2 Stepping Over a Function Call ...51

6.6 Stepping Out of a Function..51
6.7 Multiple Steps..52

Section 7 Stopping Your Program...53
7.1 Halting Execution..53
7.2 Program Breakpoints (PC Breakpoints) ..53

7.2.1 Clearing Program Breakpoints (PC Breakpoints) ..54
7.3 The Breakpoints Window..54

7.3.1 Adding a Breakpoint ..55
7.3.2 Modifying a Breakpoint ...56
7.3.3 Deleting a Breakpoint...56
7.3.4 Deleting All Breakpoints..56

7.4 Disabling Breakpoints ...56
7.4.1 Disabling a Breakpoint...57
7.4.2 Enabling a Breakpoint ..57

7.5 Temporary Breakpoints ...57
7.6 Hardware Breakpoints(Event) ...58

Section 8 Looking at Variables ...59
8.1 Instant Watch...59
8.2 Using Watch Items ..60

8.2.1 Adding a Watch..60
8.2.2 Expanding a Watch ..62
8.2.3 Modifying Radix for Watch Item Display..62
8.2.4 Changing a Watch Item’s Value ..63
8.2.5 Deleting a Watch..64

8.3 Looking at Local Variables ...64
8.4 Looking at Registers..65

8.4.1 Modifying Register Contents ...65
8.4.2 Using Register Contents...67

8.5 Looking at I/O ...67
8.5.1 Opening an I/O Registers Window...67
8.5.2 Expanding an I/O Register Display..68
8.5.3 Modifying I/O Register Contents ...68
8.5.4 I/O Register Files ...69

Section 9 Overlay Function ...73
9.1 Displaying Section Group ...73
9.2 Setting Section Group ...74

Rev. 2.0, 02/99, page ix of xvii

Section 10 Selecting Functions..77
10.1 Displaying Functions...77
10.2 Specifying Functions...78

10.2.1 Selecting a Function ...78
10.2.2 Deleting a Function ..78
10.2.3 Setting a Function...78

Section 11 Configuring the User Interface ..79
11.1 Arranging Windows ..79

11.1.1 Minimizing Windows...79
11.1.2 Arranging Icons..80
11.1.3 Tiling Windows..81
11.1.4 Cascading Windows...81

11.2 Locating Currently Open Windows...81
11.2.1 Locating the Next Window ..82
11.2.2 Locating a Specific Window ..82

11.3 Enabling/Disabling the Status Bar...82
11.4 Enabling/Disabling the Toolbar ..83
11.5 Customizing the Toolbar ...83

11.5.1 Button Categories...83
11.5.2 Adding a Button to the Toolbar..84
11.5.3 Positioning a Button in the Toolbar..84
11.5.4 Removing a Button from the Toolbar ..84

11.6 Customizing the Fonts...84
11.7 Saving a Session..85
11.8 Loading a Session..86
11.9 Setting HDI Options..86
11.10 Setting the Default Radix ..87

Section 12 Menus...89
12.1 File ..89

12.1.1 Load Program...89
12.1.2 Save Memory... ..89
12.1.3 Verify Memory...90
12.1.4 Save Session...90
12.1.5 Load Session... ...90
12.1.6 Save Session As... ..90
12.1.7 Initialise..90
12.1.8 Exit ...90

12.2 Edit ..90
12.2.1 Cut ..91
12.2.2 Copy ...91
12.2.3 Paste ...91

Rev. 2.0, 02/99, page x of xvi

12.2.4 Find ..91
12.2.5 Set Line ..91
12.2.6 Fill Memory... ..91
12.2.7 Move Memory..92
12.2.8 Test Memory... ...92
12.2.9 Update Memory ...92

12.3 View ..92
12.3.1 Toolbar ...92
12.3.2 Status Bar ...92
12.3.3 Breakpoint Window ...92
12.3.4 Command Line Window ..93
12.3.5 I/O Register Window..93
12.3.6 Local Variable Window ...93
12.3.7 Memory Mapping Window..93
12.3.8 Memory Window... ..93
12.3.9 Performance Analysis Window..93
12.3.10 Program Window... ..93
12.3.11 Register Window..94
12.3.12 Status Window ...94
12.3.13 Text Window..94
12.3.14 Trace Window..94
12.3.15 Watch Window...94

12.4 Run ..94
12.4.1 Go...94
12.4.2 Go Reset ...94
12.4.3 Go To Cursor..95
12.4.4 Run... ..95
12.4.5 Step In ..95
12.4.6 Step Over..95
12.4.7 Step Out..95
12.4.8 Step...95
12.4.9 Halt Program ..95
12.4.10 Set PC to Cursor ...96
12.4.11 Reset CPU ..96

12.5 Setup..96
12.5.1 Options... ..96
12.5.2 Radix ..96
12.5.3 Customise ...96
12.5.4 Select Platform... ..96
12.5.5 Configure Platform...97
12.5.6 Overlay... ..97

12.6 Tools..97
12.6.1 Symbols..97

Rev. 2.0, 02/99, page xi of xvii

12.6.2 Evaluate..97
12.7 Window ...97

12.7.1 Cascade ..97
12.7.2 Tile ...97
12.7.3 Arrange Icons ...98
12.7.4 Close All...98

12.8 Help ..98
12.8.1 Index...98
12.8.2 Using Help ...98
12.8.3 Search for Help on..98
12.8.4 About HDI..98

Section 13 Windows ..99
13.1 Breakpoints..99

13.1.1 Help ..99
13.1.2 Add...100
13.1.3 Edit ...100
13.1.4 Delete ...100
13.1.5 Delete All ...100
13.1.6 Disable/Enable ...100

13.2 Command Line..101
13.2.1 Stop ..101
13.2.2 Batch File ...101
13.2.3 Log File ..102
13.2.4 Logging ..102

13.3 I/O Registers..102
13.3.1 Copy ...103
13.3.2 Edit... ..103
13.3.3 Expand/Collapse...103
13.3.4 Help ..103

13.4 Locals ..103
13.4.1 Copy ...104
13.4.2 Edit Value...104
13.4.3 Radix ..104

13.5 Memory Mapping..105
13.5.1 Add...105
13.5.2 Change..105
13.5.3 Reset ...106
13.5.4 Help ..106

13.6 Memory ...106
13.6.1 Copy ...107
13.6.2 Find ..107
13.6.3 Fill ..107

Rev. 2.0, 02/99, page xii of xvi

13.6.4 Move ..107
13.6.5 Test...107
13.6.6 Save ..107
13.6.7 Set Address...107
13.6.8 ASCII/Byte/Word/Long/Single Float/Double Float...108

13.7 Performance Analysis..108
13.7.1 Add Range..108
13.7.2 Edit Range..108
13.7.3 Delete Range ..108
13.7.4 Reset Counts/Times..108
13.7.5 Delete All Ranges...109
13.7.6 Analysis Enabled..109

13.8 Program ...109
13.8.1 Copy ...111
13.8.2 Find ..111
13.8.3 Set Line ..111
13.8.4 Go To Cursor..111
13.8.5 Set PC Here ..111
13.8.6 Toggle Breakpoint..112
13.8.7 Instant Watch..112
13.8.8 Add Watch ...112
13.8.9 Source/Mixed/Assembler ...112

13.9 Registers ..113
13.9.1 Copy ...113
13.9.2 Edit ...113
13.9.3 Toggle Bit...113

13.10 System Status ..114
13.10.1 Update ..114
13.10.2 Copy ...114
13.10.3 Configure..115

13.11 Text ..115
13.11.1 Copy ...115
13.11.2 Find ..116

13.12 Trace..116
13.12.1 Find ..116
13.12.2 Find Next..116
13.12.3 Filter ...117
13.12.4 Acquisition ...117
13.12.5 Halt...117
13.12.6 Restart ..117
13.12.7 Snapshot ...117
13.12.8 Clear ...117
13.12.9 Save ..117

Rev. 2.0, 02/99, page xiii of xvii

13.13 Watch ..118
13.13.1 Copy ...118
13.13.2 Delete Watch ..118
13.13.3 Add Watch ...118
13.13.4 Edit Value...119
13.13.5 Radix ..119

Appendix
Appendix A System Modules ..121

Graphical User Interface ...122
Object DLL ...122
CPU DLL ..122
Target DLL..122

Appendix B Command Line Interface ...123
HDI Built-In Commands ...123

Appendix C Command Line Summary Chart ..151

Rev. 2.0, 02/99, page xiv of xvi

Figures
Figure 2.1 HDI Graphical User Interface...3
Figure 2.2 Ellipsis ..4
Figure 2.3 Check Mark ..4
Figure 2.4 Cascading Menu ...4
Figure 2.5 Accelerator Key..5
Figure 2.6 Default Toolbar...5
Figure 2.7 File Operation ...5
Figure 2.8 Copy & Move Operations...5
Figure 2.9 Execution Operations..6
Figure 2.10 Open Windows ...6
Figure 2.11 Help ..6
Figure 2.12 Status Bar..7
Figure 2.13 Pop-Up Menu ...7
Figure 2.14 Help Button...10
Figure 3.1 Select Platform Dialog Box ..11
Figure 3.2 Link up Message...12
Figure 3.3 Memory Mapping Window ..13
Figure 3.4 Edit Memory Mapping Window...14
Figure 3.5 System Status Window...15
Figure 3.6 Load Object File Dialog Box..16
Figure 3.7 File Type Selection ...17
Figure 3.8 Download Completion Message...17
Figure 4.1 Open Dialog Box ..19
Figure 4.2 Program Window (Source Display)..20
Figure 4.3 Program Window (Assembly-Language Display)..21
Figure 4.4 Assembler Dialog Box..21
Figure 4.5 Symbols Dialog Box...23
Figure 4.6 Find Symbol Containing Dialog Box ...23
Figure 4.7 Add Symbol Dialog Box ..24
Figure 4.8 Label Dialog Box..25
Figure 4.9 Edit Symbol Dialog Box...26
Figure 4.10 Message Box for Confirming Symbol Deletion ...26
Figure 4.11 Message Box for Confirming All Symbol Deletion ...27
Figure 4.12 Load Symbols Dialog Box..27
Figure 4.13 Number of Loaded Symbols ...28
Figure 4.14 Set Address Dialog Box..29
Figure 4.15 Find Dialog Box ...30
Figure 4.16 Open Dialog Box ..31
Figure 4.17 Text Window ..32
Figure 4.18 Copying Text ..33
Figure 4.19 Find Dialog Box ...33

Rev. 2.0, 02/99, page xv of xvii

Figure 5.1 Open Memory Window Dialog Box...35
Figure 5.2 Memory Window (Bytes) ...36
Figure 5.3 Memory Window (Words) ...36
Figure 5.4 Memory Window (Longwords) ..37
Figure 5.5 Memory Window (Single-Precision Floating Point) ..37
Figure 5.6 Memory Window (Double-Precision Floating Point)...38
Figure 5.7 Memory Window (ASCII)..38
Figure 5.8 Set Address Dialog Box..39
Figure 5.9 Edit Dialog Box ..40
Figure 5.10 Find Memory Dialog Box...40
Figure 5.11 Address Where Data Found..41
Figure 5.12 Address Where Data Not Found...41
Figure 5.13 Selecting a Memory Range...42
Figure 5.14 Fill Memory Dialog Box ..43
Figure 5.15 Move Memory Dialog Box...44
Figure 5.16 Test Memory Dialog Box ...44
Figure 5.17 Save S-Record File Dialog Box..45
Figure 5.18 Message Box for Confirming File Save Completion..46
Figure 5.19 Load Object File Dialog Box..46
Figure 5.20 Message Box for Confirming File Load Completion ...47
Figure 5.21 Verify S-Record File with Memory Dialog Box ..47
Figure 5.22 Message Box for Confirming Verification Completion ...48
Figure 6.1 Highlighted Line Corresponding to PC Address ..50
Figure 6.2 Step Program Dialog Box...52
Figure 7.1 Execution Halted by Clicking Halt Button ...53
Figure 7.2 Setting a Program Breakpoint...54
Figure 7.3 Break at a Program Breakpoint...54
Figure 7.4 Breakpoints Window ..55
Figure 7.5 Run Program Dialog Box ...58
Figure 8.1 Selecting Instant Watch ..59
Figure 8.2 Instant Watch Dialog Box ..60
Figure 8.3 Add Watch Dialog Box ..61
Figure 8.4 Watch Window ...61
Figure 8.5 Expanding a Watch...62
Figure 8.6 Modifying Radix for Watch Item Display ..63
Figure 8.7 Edit Value Dialog Box..63
Figure 8.8 Locals Window...64
Figure 8.9 Registers Window...65
Figure 8.10 Register Dialog Box ...66
Figure 8.11 I/O Registers Window ..68
Figure 8.12 Dialog Box for Modifying I/O Register Contents ..69
Figure 9.1 Overlay Dialog Box (at Opening)...73
Figure 9.2 Overlay Dialog Box (Address Range Selected)..74

Rev. 2.0, 02/99, page xvi of xvi

Figure 9.3 Overlay Dialog Box (Highest-Priority Section Group Selected)75
Figure 10.1 Select Function Dialog Box..77
Figure 11.1 Minimizing a Window..79
Figure 11.2 Code Window Icon...79
Figure 11.3 Icons Before Arrangement..80
Figure 11.4 Icons After Arrangement ..81
Figure 11.5 Selecting a Window..82
Figure 11.6 Customise Toolbar Dialog Box ..83
Figure 11.7 Font Dialog Box ...85
Figure 11.8 Session Name Display ..85
Figure 11.9 HDI Options Dialog Box ..86
Figure 11.10 Setting Radix ..87
Figure 12.1 Menus ...89
Figure 13.1 Breakpoints Window ..99
Figure 13.2 Command Line Window...101
Figure 13.3 I/O Registers Window ..102
Figure 13.4 Locals Window...103
Figure 13.5 Memory Mapping Window ..105
Figure 13.6 Memory Window..106
Figure 13.7 Performance Analysis Window ..108
Figure 13.8 Source Format...110
Figure 13.9 Assembly-Language Format...110
Figure 13.10 Registers Window...113
Figure 13.11 System Status Window...114
Figure 13.12 Text Window ..115
Figure 13.13 Trace Window ..116
Figure 13.14 Watch Window ...118
Figure A.1 HDI System Modules ...121

Rev. 2.0, 02/99, page 1 of 152

Section 1 Introduction

The Hitachi Debugging Interface (HDI) is a Graphical User Interface intended to ease the
development and debugging of applications written in C/C++ and assembly language for Hitachi
microcomputers. Its aim is to provide a powerful yet intuitive way of accessing, observing and
modifying the debugging platform in which the application is running.

1.1 Key Features

• Windows® GUI for debugging

• Intuitive interface

• On-line help

• Common “Look & Feel”

Notes: 1. For detailed information about debugging platform hardware, please refer to the
separate Debugging Platform User’s Manual.

2. The HDI does not run on Windows® version 3.1.

Rev. 2.0, 02/99, page 2 of 152

Rev. 2.0, 02/99, page 3 of 152

Section 2 System Overview

HDI is a modular software system, utilizing self-contained modules for specific tasks. These
modules are linked to a general purpose Graphical User Interface, which provides a common look
& feel independent of the particular modules with which the system is configured.

2.1 User Interface

The HDI Graphical User Interface is a Windows® application that presents the debugging platform
to you and allows you to set up and modify the system.

Figure 2.1 HDI Graphical User Interface

2.1.1 Menu Bar

Debugging commands are grouped into similar areas on the Menu bar. Using the mouse you can
select a command operation or invoke a dialog box or a window to interact with the system.
Clicking the left mouse button on a category will pull down a menu, from which you can select an
option.

Rev. 2.0, 02/99, page 4 of 152

If the menu option does not perform an action directly, but instead displays a dialog box or
window for further user interaction, then it will be followed by an ellipsis (three dots, …):

Figure 2.2 Ellipsis

If the menu action can also be invoked by pressing a function key, then the function key number
(Fn) will be displayed next to the option.

If a menu option toggles a feature on or off then a check mark () will be displayed next to its text
when it is enabled:

Figure 2.3 Check Mark

In this manual, a menu option selection is expressed using brackets ([]). For example, the above
operation is expressed as [View -> Toolbar]. The cascading menu option selection shown below
is expressed as [Setup->Radix->Hexadecimal]. If the menu option has a cascading menu symbol
() next to it then a cascading or hierarchical menu is available. Clicking on the menu option will
pop up the cascading menu:

Click [Radix]

Figure 2.4 Cascading Menu

Rev. 2.0, 02/99, page 5 of 152

Menus can also be selected directly from the keyboard by pressing the ALT key followed by the
corresponding key for the underlined letter or number in the menu option (called the accelerator
key) that you want to select. For example, press ALT, F, L in sequence to load a program.

Figure 2.5 Accelerator Key

2.1.2 Toolbar

The HDI has a toolbar located below the menu bar. This provides quick access to HDI features by
clicking the respective button with the mouse.

Figure 2.6 Default Toolbar

The buttons are arranged together in associated groups.

Figure 2.7 File Operation

Figure 2.8 Copy & Move Operations

Load Code

Save Memory

Verify Memory

Cut Selection

Copy Selection

Paste Selection

Find Pattern

Fill Memory Block

Move Memory Block

Test Memory Block

Rev. 2.0, 02/99, page 6 of 152

Figure 2.9 Execution Operations

Figure 2.10 Open Windows

Figure 2.11 Help

The toolbar buttons can be customized to provide a button for most of the features available in
HDI and can be arranged in an order that you find easiest to use.

For more details about changing the arrangement of the toolbar buttons and a detailed description
of each button’s function see section 11.5, Customizing the Toolbar.

2.1.3 Status Bar

The Status bar is located at the bottom of the HDI application window. It provides the user with
information about what the debugging system is doing or has just done and also displays the state
of the Cap/Num/Scrl lock.

Run Program

Run from Reset

Stop Program

Step Into

Step Over

Step Out

Program

Register

Memory

Breakpoint

Trace

Memory Mapping

Status

List Help

Rev. 2.0, 02/99, page 7 of 152

Figure 2.12 Status Bar

2.1.4 Pop-Up Menus

Windows have Pop-up menus in order to make commonly used features easier to access. These
menus are invoked by clicking the right mouse button in the window (or pressing SHIFT+F10)
and then selecting the required menu option:

Figure 2.13 Pop-Up Menu

The contents and operation of specific Pop-up menus are explained in detail in the description of
each HDI window. See section 13, Windows.

Status message

Cap/Num/Scrl lock state

Rev. 2.0, 02/99, page 8 of 152

2.2 Data Entry

When entering numbers in any dialog box or field you can always enter an expression instead of a
simple number. This expression can contain symbols and can use the operators in the C/C++
programming languages. Use of C/C++ language features such as arrays and structures is only
available if an object reader that supports C/C++ language debugging is in use.

2.2.1 Operators

The C/C++ language operators are available:

+, -, *, /, &, |, ^, ~, !, >>, <<, %, (,), <, >, <=, >=, ==, !=, &&, ||

2.2.2 Data Formats

Unprefixed data values will be taken as being in the default radix set by the [Setup->Radix] menu
option, with the exception of count fields which expect decimal values as a default (independent
of the current default system radix).

Symbols may be used by name and ASCII character strings can be entered if surrounded by single
quote characters, e.g. ‘demo’.

The following prefixes can be used to identify radices:

O’ Octal
B’ Binary
D’ Decimal
H’ Hexadecimal
0x Hexadecimal

The contents of a register may be used by specifying the register name, prefixed by the #
character, e.g.:

#R1, #ER3, #R4L

2.2.3 Precision

All mathematics in expression evaluation is done using 32 bits (signed). Any values exceeding 32
bits are truncated.

Rev. 2.0, 02/99, page 9 of 152

2.2.4 Expression Examples

Buffer_start + 0x1000
#R1 | B'10001101
((pointer + (2 * increment_size)) & H'FFFF0000) >> D'15
!(flag ^ #ER4)

2.2.5 Symbol Format

You can specify and reference symbols in the same format as in C/C++ language. Cast operators
may be used together with symbols, and you can reference data after its type has been converted.
Note the following limitations.

• Pointers can be specified up to four levels.

• Arrays can be specified up to three dimensions.

• References (&) can be specified for only one level.

• No typedef name can be used.

2.2.6 Symbol Examples

Object.value //Specifies direct reference of a member (C/C++)
p_Object->value //Specifies indirect reference of a member (C/C++)
Class::value //Specifies reference of a member with class (C++)
*value //Specifies a pointer (C/C++)
&value //Specifies a reference (C/C++)
array[0] //Specifies an array (C/C++)
Object.*value //Specifies reference of a member with pointer (C++)
::g_value //Specifies reference of a global variable (C/C++)
Class::function(short) //Specifies a member function (C++)
(struct STR) *value //Specifies cast operation (C/C++)

Rev. 2.0, 02/99, page 10 of 152

2.3 Help

HDI has a standard Windows® context sensitive help system. This provides on-line information
about using the debugging system.

Help can be invoked by pressing the F1 key or via the Help menu. Additionally, some windows
and dialog boxes have a dedicated help button to launch the help file at the appropriate location:

Figure 2.14 Help Button

2.3.1 Context Sensitive Help

To get help on a specific item in the HDI, a help cursor can be used. To enable the help cursor,
press SHIFT+F1.

Your cursor then changes to include a question mark. You can then click on the item for which
you require help and the help system will be opened at the appropriate location.

Rev. 2.0, 02/99, page 11 of 152

Section 3 Preparing to Debug

This section of the manual describes all the facilities that are available in HDI for setting up the
debugging platform ready to start debugging your program. You will learn how to select and
configure a debugging platform with which to debug, and how to load your debug object file.

3.1 Compiling for Debug

In order to be able to debug your program at C/C++ source level, your C/C++ program must be
compiled and linked with the debug option enabled. When this option is enabled, the compiler
puts all the information necessary for debugging your C/C++ code into the absolute file or
management information file, which are then usually called debug object files.

Note: Make sure you have the debug option enabled on your compiler and linker, when you
generate an object file for debugging.

If your debug object file does not contain any debugging information, then you can still load it
into the debugging platform, but you will only be able to debug at assembly-language level.

3.2 Selecting a Debugging Platform

If you have only installed HDI for a single debugging platform, then it will automatically link to
the installed debugging platform when launched.

However, if you have installed more than one debugging platform, then you will have to select the
appropriate debugging platform at HDI start-up or with the Select Platform dialog box by
clicking on the [Setup->Select Platform...] menu option.

Figure 3.1 Select Platform Dialog Box

Rev. 2.0, 02/99, page 12 of 152

The dialog box lists all of the debugging platforms installed in the system. (These could be for
hardware in-circuit emulators, software simulation engines or evaluation board monitors.) Select
the debugging platform you want to use in this session.

HDI will load the target module and establish communications with the debugging platform. As
the module loads, it will initialize any hardware or data structures and provide status messages on
the status bar as the initialization progresses. When the debugging platform has been successfully
initialized HDI will report “Link up” on the status bar:

Figure 3.2 Link up Message

Note: If you have only one debugging platform installed in your system this option is disabled
(the [Setup->Select Platform...] menu option is grayed) as HDI automatically links to
that debugging platform.

3.3 Configuring the Debugging Platform

Before you can load a program into your debugging platform you must set it up to match your
application’s system. The items that must be set-up are typically device type, operating mode,
clock speed and the memory map. It is particularly important to set-up the memory map, as you
must have memory in the debugging platform to which your user code will be loaded.

3.3.1 Setup

To set-up the debugging platform configuration invoke the [Setup->Configure Platform...] menu
option. You will be presented with a set-up dialog box specific to the debugging platform that you
chose in the Select Platform dialog box.

Note: For a detailed description of the features available in your debugging platform, please
refer to the separate Debugging Platform User’s Manual.

3.3.2 Mapping

For the debugger to correctly represent your user system, the memory map must be set up. It needs
to know which areas in the device’s address space are RAM, ROM, on-chip registers or areas
where there is no memory.

When you select the device type and mode in the Configure Platform dialog box, HDI will
automatically set up the map for that device and the mode in which the processor is operating. For

Rev. 2.0, 02/99, page 13 of 152

example in a device with internal ROM and RAM, the areas where these are located in the
device’s memory map will be set by default.

If you are using a device that does not have internal memory, or a device with external memory
instead of, or in addition to, the internal memory, then you must tell the debugging platform that
you have memory there. Also if you are trying to debug code with an emulator and wish to have
some memory available in the address map that does not exist either internally in the device or
externally in your user system, then you can map some emulation memory from the emulator to
the address space for your application to use.

Again the dialog box shown will be specific to the debugging platform that you chose in the Select
Platform dialog box. But, for example, with a hardware in-circuit emulator you will see
something like:

Figure 3.3 Memory Mapping Window

The Map Setting area shows how the address space is currently mapped. It lists all address ranges
covering the entire address space and the type of memory to which they are set; internal or
external to the emulator and any access restrictions they may have, e.g. read only or guarded (no
access). This includes those ranges set automatically by HDI and those you have set or modified
yourself.

The Device Configuration area shows how the memory in the device’s address space is
configured, according to the device type and mode selected in the Configure Platform dialog box
and any on-chip memory control settings.

The System Resources area shows the status of mapping resources available to the system. For
example in an emulator this will show the address ranges to which emulation memory has been
allocated and which are currently available.

Device
configuration

Map setting

System
resources

Rev. 2.0, 02/99, page 14 of 152

Clicking on the [Reset] button will set the system map setting back to the default for the current
device type and mode.

To modify a map setting, select it and click on the [Edit] button or double click on the map setting
line. From the following dialog box you will then be able to modify the start and end addresses of
the map range, and the memory type setting:

Figure 3.4 Edit Memory Mapping Dialog Box

To add a new range click on the [Add] button, the Add Memory Mapping dialog box will appear
(it is the same as the Edit Memory Map dialog box but without any default values). Enter the
start and end addresses of the map range, and the memory type setting for the new area. If the new
range is in the middle of an existing range, HDI will automatically adjust the new range.

Note: Due to page length limitations in some emulators, the range addresses may not exactly
match the entered addresses.

3.3.3 Status

You can check the configuration and status of the debugging platform by looking in the System
Status window. This is invoked from the [View->Status Window] menu.

Rev. 2.0, 02/99, page 15 of 152

Figure 3.5 System Status Window

The status in the window can be updated on demand from the pop-up menu. Click the right mouse
button to pop-up the pop-up menu and select [Configure].

Rev. 2.0, 02/99, page 16 of 152

3.4 Downloading a Program

Once you have made sure that there is memory in your system in which to download your code,
you can then proceed to download a program to debug. Clicking on the [File->Load Program...]
menu option will invoke the Load Object File dialog box:

Figure 3.6 Load Object File Dialog Box

Rev. 2.0, 02/99, page 17 of 152

3.4.1 Selecting a File Type

To select a file to download, first select the type of file to display in the list area by clicking in the
Files of type field and then click on the file type that you require.

Figure 3.7 File Type Selection

The file list will then be updated with the files available, from which your selection can be made.
Directory and drive navigation is possible using the standard windows file open dialog box
controls, to the right of the file list. Alternatively the file name can be typed into the File name:
field directly.

3.4.2 Setting a File Path Name

The source code can be displayed in the Program window even after moving the source file from
the directory wherein it has been compiled or assembled, to another directory.

If the directory wherein the source file was compiled or assembled differs from the directory now
containing the source file, specify each directory in the Load Object File dialog box before
downloading the program.

In the Source File Path group edit box, enter the directory name in which the source file was
compiled or assembled in the Old Path field and the directory name to which the source file was
moved in the Replace Path field.

If this setting is performed before downloading the program, the source code can be displayed in
the Program window.

Clicking the [Open] button after selecting a file will initiate the downloading. During the
download HDI will give a readout of progress on the status bar, and will display the following
message when it is finished.

Figure 3.8 Download Completion Message

A message box will be shown indicating the areas of memory in the user system that have been
changed.

Rev. 2.0, 02/99, page 18 of 152

Rev. 2.0, 02/99, page 19 of 152

Section 4 Looking at Your Program

This section describes how to look at your program as source code and assembly-language
mnemonics. HDI’s facilities for dealing with code and symbol information are explained and you
will be shown how to look at text files in the user interface.

4.1 Viewing the Code

To look at your program, open a Program window by either selecting the [View->Program
Window...] menu option or clicking on the Program Window button [] on the toolbar (if it is
visible).

If you do not have any source files open already, HDI will prompt you for the relevant source file
via the Open dialog box:

Figure 4.1 Open Dialog Box

Select your source file and press [Open], HDI opens a Program window:

Viewing
assembler
code

Rev. 2.0, 02/99, page 20 of 152

Figure 4.2 Program Window (Source Display)

The Program window source display is divided into two areas; the header bar area and the main
window area, and split vertically into three columns; Address, Break, and Code. The respective
width of each column can be adjusted by dragging the dividing line between each column title in
the header bar. The cursor will change to and a vertical line will be displayed where the
dividing line of the columns will be. Release the mouse button when you are satisfied with the
column width and the display will be updated with the new column width.

By default the window will display the C/C++ or assembly-language source text of your program.

4.1.1 Viewing Assembly-Language Code

If you do not have a source file, but wish to view code at assembly-language level, select the
Address radio button in the “Open on” group of the Open dialog box and enter the address (or
symbol) in the Address field. Note that this is the only valid option if you have opened the
Program window by the address and have no matching source file.

The Program window will show assembly-language mnemonics (with symbols when available)
and the Code column will be replaced with three columns; Code - showing the machine code
values, Label - showing labels and symbols, and Assembler - showing the disassembled
mnemonics.

Header bar

Address field

Breakpoint

Source code

Rev. 2.0, 02/99, page 21 of 152

Figure 4.3 Program Window (Assembly-Language Display)

4.1.2 Modifying Assembly-Language Code

You can modify the assembly-language code by double-clicking on the instruction that you wish
to change. The Assembler dialog box will appear:

Figure 4.4 Assembler Dialog Box

The address, machine code and disassembled instruction are displayed. Type the new instruction
or edit the old instruction in the Mnemonic field. Clicking [OK] or pressing ENTER will
assemble the instruction into memory and move on to the next instruction. Clicking [Cancel] or
pressing ESC will close the dialog box.

Note: The assembly-language display is disassembled from the actual machine code in the
debugging platform’s memory. If the memory contents are changed the display will show
the corresponding new assembly-language code, but will not match the text shown in the
source display.

Address

Machine code

Disassembled
instruction

Rev. 2.0, 02/99, page 22 of 152

4.1.3 Displaying Source Code

To change the Program window display to show source code, invoke the pop-up menu by clicking
the right mouse button (or alternatively pressing SHIFT+F10 on the keyboard) and select
[Source].

4.1.4 Displaying Mixed Code

You can also display source code lines interspersed with the corresponding assembly-language
code in what is called a Mixed display. To change the Program window display to show mixed
source and assembly-language code, invoke the pop-up menu by clicking the right mouse button
(or alternatively pressing SHIFT+F10 on the keyboard) and select [Mixed].

4.2 Looking at Symbols

In addition to the debugging information that HDI uses to link your program’s source code to the
actual code in memory, the debug object file also contains symbol information. These symbols (or
labels) are text names that represent an address in the program. When you have the Program
window in assembly-language format or mixed format, you will see symbols in the Label field on
the line of the corresponding address, and in the Assembler field as an instruction’s operand.

Note: An instruction’s operand is replaced with a symbol if the operand and symbol match. This
is done on a simple match of the operand and symbols' values. If two or more symbols
have the same value, then the symbol that comes first alphabetically will be displayed.

Wherever you can enter an address or value in HDI you can use a symbol instead.

4.2.1 Listing Symbols

To see a list of all the symbols defined in the current session open the Symbols dialog box by
selecting the [Tools->Symbols...] menu option.

The Symbols dialog box shows a list of all the symbols defined in HDI.

Rev. 2.0, 02/99, page 23 of 152

Figure 4.5 Symbols Dialog Box

You can view symbols sorted either alphabetically(by ASCII code) or by address value by
clicking on the respective radio buttons.

4.2.2 Finding a Symbol

To find a particular symbol, click on the [Find] button, the Find Symbol Containing dialog box is
presented.

Figure 4.6 Find Symbol Containing Dialog Box

Enter all or part of the symbol name that you wish to find into the edit box and click [OK] or press
ENTER. The dialog box closes and HDI searches the symbol list for a symbol name containing
the text that you entered.

Note: Only the first 255 characters of a symbol are stored, therefore symbols should be unique in
these first characters. Symbols are case sensitive.

Sort order radio
buttons

Rev. 2.0, 02/99, page 24 of 152

4.2.3 Finding Again

To find the next symbol in the list containing the text that you entered in the Find Symbol
Containing dialog box, click on the [Find Next] button.

4.2.4 Adding Symbols

To add a new symbol to the symbol list press the [Add] button.

Figure 4.7 Add Symbol Dialog Box

Enter the new symbol name into the Name field and the corresponding value into the Value field
and press [OK]. The Add Symbol dialog box closes and the symbol list is updated to show the
new symbol. When an overloaded function or a class name is entered in the Value field, the Select
Function dialog box appears for you to select a function. For details, refer to section 10, Selecting
Functions.

4.2.5 Adding a Symbol from the Program Window

You can quickly add a symbol from the Program window (when it is in assembly-language display
mode), by double-clicking in the Label column at the address for which you want to assign the
symbol. A Label dialog box appears for you to enter the symbol text.

Rev. 2.0, 02/99, page 25 of 152

Figure 4.8 Label Dialog Box

Enter the symbol name text and click [OK], the symbol is added to the symbol list with the
address value contained in the Address column of the corresponding line, and the Program
window display is updated to show the symbol.

This method can also be used for quickly modifying the text of existing symbols. When you
double-click on the symbol in the Label column, the text is copied into the edit box of the Label
dialog box. You can then edit it and the modified version is saved in the symbol list. The Program
window display is updated to show the new symbol.

Note: To use added or modified symbols again in later sessions, save the symbols in a file. For
details, see section 4.2.10, Saving a Symbol File.

4.2.6 Modifying Symbols

Symbol names and values can be modified from the Symbols dialog box. Open this by selecting
the [Tools->Symbols...] menu option. Select the symbol to modify by clicking on the symbol line
in the list display. Clicking on the [Edit] button will open the Edit Symbol dialog box:

Rev. 2.0, 02/99, page 26 of 152

Figure 4.9 Edit Symbol Dialog Box

You can then edit the symbol name and value. Press [OK] to save the modified version in the
symbol list. The list display is updated to show the new symbol. When an overloaded function or a
class name is entered in the Value field, the Select Function dialog box appears for you to select a
function. For details, refer to section 10, Selecting Functions.

4.2.7 Deleting Symbols

To delete a symbol from the symbol list, select the symbol to delete from the Symbols dialog box
by clicking on the symbol line in the list display, and click on the [Delete] button. A confirmation
message box appears:

Figure 4.10 Message Box for Confirming Symbol Deletion

If you click on the [Yes] button the symbol is removed from the HDI system’s symbol table and
the list display is updated.

4.2.8 Deleting All Symbols

To delete all the symbols from the symbol list, click on the [Del All] button. A confirmation
message box appears:

Rev. 2.0, 02/99, page 27 of 152

Figure 4.11 Message Box for Confirming All Symbol Deletion

If you click on the [Yes] button all the symbols are removed from the HDI system’s symbol table
and the list display will be cleared.

4.2.9 Loading a Symbol File

Although HDI will automatically extract symbols from a debug object file when it is loaded, there
may be times when you want to load extra symbols. This could be the case if you are debugging
code without debug information. Having to enter these symbols manually using the Add Symbols
dialog box would be extremely tedious, but fortunately HDI allows you to load symbols from an
external symbol file.

To load a symbol file into HDI, open the Symbols dialog box by selecting the [Tools->Symbols...]
menu option and click the [Load] button. The Load Symbols dialog box appears:

Figure 4.12 Load Symbols Dialog Box

Rev. 2.0, 02/99, page 28 of 152

The dialog box operates like a standard Windows® open file dialog box; select the file and click
[Open] to start loading. The standard file extension for symbol files is “.sym”. When the loading
is complete a message box shows how many symbols have been loaded:

Figure 4.13 Number of Loaded Symbols

4.2.10 Saving a Symbol File

To save a symbol file from HDI, open the Symbols dialog box by selecting the
[Tools->Symbols...] menu option and click the [Save] button. The Save Symbols dialog box
appears. The dialog box operates like a standard Windows® save file dialog box. Enter the name
for the file in the File name: field and click [Open] to start saving. The standard file extension for
symbol files is “.sym”.

4.2.11 Symbol File Format

In order for HDI to be able to understand and decode the symbol file correctly, the file must be
formatted in a specific way:

1. The file must be a plain ASCII text file.

2. The file must start with the word “BEGIN”.

3. Each symbol must be on a separate line with the value first, in hexadecimal terminated by an
“H”, followed by a space then the symbol text.

4. The file must end with the word “END”.

Example:

BEGIN
11FAH Symbol_name_1
11FCH Symbol_name_2
11FEH Symbol_name_3
1200H Symbol_name_4
END

Rev. 2.0, 02/99, page 29 of 152

4.3 Looking at a Specific Address

When you are looking at your program in the Program window, you may want to look at another
area of your program’s code. Rather than scrolling through a lot of code in the program, you can
go directly to a specific address. Double-click in the Address column of the Program window, the
Set Address dialog box appears:

Figure 4.14 Set Address Dialog Box

Enter the address or symbol name in the edit box and either click on [OK] or press ENTER. If the
code at that address is in the same source file, the Program window updates to show the code at
the new address. When an overloaded function or a class name is entered, the Select Function
dialog box appears for you to select a function. For details, refer to section 10, Selecting
Functions.

If the new address is in another source file, a new Program window opens to show the code at that
address. By default the new window shows source if it is available. If no source is available for the
new address, the Program window shows assembly-language code.

If the new address is in a source file that already has a Program window open, that window is
brought to the front and updated to show the code at the new address.

4.3.1 Looking at the Current Program Counter Address

Wherever you can enter an address or value into HDI, you can also enter an expression (see
section 2.2, Data Entry). If you enter a register name prefixed by the “#” character, the contents of
that register will be used as the value in the expression. Therefore if you invoke the Set Address
dialog box and enter the expression “#PC”, the Program window display will go to the current PC
address. It also allows that you can display from an offset of the current PC by entering an
expression with the PC register plus an offset, e.g., “#PC+0x100”.

Rev. 2.0, 02/99, page 30 of 152

4.4 Finding Text

You can search for a particular text string in the Program window using the find option. To do this
invoke the pop-up menu by clicking the right mouse button (or alternatively pressing SHIFT+F10
on the keyboard) and select [Find…].

The Find dialog box is displayed:

Figure 4.15 Find Dialog Box

Enter the text that you wish to find and click [Find Next] or press ENTER. The Program window
will display the text (if found) highlighted. To find the next occurrence of the text, click [Find
Next] or press ENTER again. To close the Find dialog box, click [Cancel] or press ESC.

4.5 Looking at a Text File

HDI will automatically show source files for your program if the debug object file provides it with
source file information. However there will be occasions when you want to look at source or text
files for which the compiler does not include this information e.g. include files, data tables or
project documentation files. HDI provides this feature with the Text window.

4.5.1 Opening a Text Window

To open a Text window, select [View->Text Window...] menu option.

The Open dialog box appears:

Rev. 2.0, 02/99, page 31 of 152

Figure 4.16 Open Dialog Box

The dialog box operates like a standard Windows® open file dialog box; select a text file and click
[Open] to open it. A Text window will open and the file will be displayed.

Rev. 2.0, 02/99, page 32 of 152

Figure 4.17 Text Window

You can move around in the display window using the scroll bars or via the keyboard using the
cursor and Page Up/Down keys.

4.5.2 Copying Text

To copy text from a Text window into the clipboard, first select the text by dragging the mouse
over it. Then invoke the local pop-up menu by clicking the right mouse button:

Rev. 2.0, 02/99, page 33 of 152

Figure 4.18 Copying Text

Click on [Copy] and the selected text is copied to the clipboard.

4.5.3 Finding Text

You can search for a particular text string in the Text window using the find option. Invoke the
local pop-up menu by clicking the right mouse button, click on [Find...] and you will be presented
with the Find dialog box.

Figure 4.19 Find Dialog Box

Rev. 2.0, 02/99, page 34 of 152

Enter the text that you wish to search for in the edit box and click on [Find Next]. HDI searches
through the Text window and stops at the first occurrence of the text that you specified. To find
the next occurrence, click [Find Next] again.

Rev. 2.0, 02/99, page 35 of 152

Section 5 Working with Memory

This section describes how to look at areas of memory in the CPU’s address space. It will show
you how to look at an area of memory in different formats, fill, move and test a block of memory,
and save, load and verify an area of memory with a disk file.

5.1 Looking at an Area of Memory

To look at an area of memory, open a Memory window, by selecting the [View->Memory
Window] menu option, or clicking the Memory Window toolbar button [] if it is visible. You
will be presented with an Open Memory Window dialog box:

Figure 5.1 Open Memory Window Dialog Box

Type in the start address or equivalent symbol for the window display in the Address field and
select the required display format from the Format list. Click [OK] or press ENTER, and the
dialog box disappears and a Memory window opens:

Rev. 2.0, 02/99, page 36 of 152

Figure 5.2 Memory Window (Bytes)

If you want to change the display format from the one you selected when you opened the window,
this can be done from the pop-up menu.

5.1.1 Displaying Memory as Bytes

To display memory as bytes, invoke the pop-up menu by clicking the right mouse button (or
pressing SHIFT+F10).

Select the [Byte] menu option and the display will be updated to show the area of memory as
individual bytes, as shown above.

5.1.2 Displaying Memory as Words

To display memory as words, invoke the pop-up menu by clicking the right mouse button (or
pressing SHIFT+F10). Select the [Word] menu option and the display will be updated to show
the area of memory as 16 bit words:

Figure 5.3 Memory Window (Words)

Rev. 2.0, 02/99, page 37 of 152

5.1.3 Displaying Memory as Long words

To display memory as long words, invoke the pop-up menu by clicking the right mouse button (or
pressing SHIFT+F10). Select the [Long] menu option and the display will be updated to show the
area of memory as 32 bit long words:

Figure 5.4 Memory Window (Long words)

5.1.4 Displaying Memory as Single-Precision Floating Point

To display memory as single-precision floating-point data, invoke the pop-up menu by clicking
the right mouse button (or pressing SHIFT+F10). Select the [Single float] menu option and the
display will be updated to show the area of memory as single-precision floating-point data:

Figure 5.5 Memory Window (Single-Precision Floating Point)

Rev. 2.0, 02/99, page 38 of 152

5.1.5 Displaying Memory as Double-Precision Floating Point

To display memory as double-precision floating-point data, invoke the pop-up menu by clicking
the right mouse button (or pressing SHIFT+F10). Select the [Double float] menu option and the
display will be updated to show the area of memory as double-precision floating-point data:

Figure 5.6 Memory Window (Double-Precision Floating Point)

5.1.6 Displaying Memory as ASCII

To display memory as ASCII characters, invoke the pop-up menu by clicking the right mouse
button (or pressing SHIFT+F10). Select the [ASCII] menu option and the display will be updated
to show the area of memory as ASCII characters:

Figure 5.7 Memory Window (ASCII)

5.1.7 Looking at a Different Area of Memory

If you want to change the area of memory that the Memory window is displaying you can use the
scroll bars. To quickly look at a new address you can use the Set Address dialog box. This can be

Rev. 2.0, 02/99, page 39 of 152

invoked either from the pop-up menu or by double clicking in the Address column. Invoke the
pop-up menu by clicking the right mouse button, (or pressing SHIFT+F10) and click on [Set
Address]:

Figure 5.8 Set Address Dialog Box

The Set Address dialog box appears; enter the new address value. Click [OK] or press ENTER,
the dialog box disappears and the Memory window display is updated with the data at the new
address. When an overloaded function or a class name is entered, the Select Function dialog box
appears for you to select a function. For details, refer to section 10, Selecting Functions.

5.2 Modifying Memory Contents

There are two ways that you can change the contents of memory at an address; the quick edit
method that allows you to enter values by typing directly into the window, but is limited to
hexadecimal values only, and the full edit method that requires you to enter values via a dialog
box, but allows you to enter values in any simple or complex expressions.

5.2.1 Quick Edit

The quick way to change the contents of memory is to select the digit that you wish to change, by
clicking or dragging on it. You will see the selected digit is highlighted. Type the new value for
the digit, it must be in the range 0-9, a-f. The new value is written into the digit and the cursor
moves on to the next digit in memory.

5.2.2 Full Edit

The full way to change the contents of memory is accessed via the Edit dialog box. Move the
cursor on the memory unit (depending on your Memory window display choice) that you wish to
change. Either double-click on the memory unit, or press ENTER. The Edit dialog box appears:

Rev. 2.0, 02/99, page 40 of 152

Figure 5.9 Edit Dialog Box

Like any other data entry field in HDI, you can enter a formatted number or C/C++ expression
(see section 2.2, Data Entry). When you have entered the new number or expression, click the
[OK] button or press ENTER, the dialog box closes and the new value is written into memory.

5.3 Finding a Value in Memory

You can search for a value in memory using the Find feature. To find the value, invoke the pop-up
menu by clicking the right mouse button, (or pressing SHIFT+F10) and click on [Find]. The Find
Memory dialog box appears:

Figure 5.10 Find Memory Dialog Box

Rev. 2.0, 02/99, page 41 of 152

Enter the start and end addresses of the range in which to search and the data value to search for.
Select the search format Long word/Word/Byte/Single float/Double float and click [OK] or press
ENTER. The dialog box closes and HDI searches the range for the specified data. If the data is
found, a message showing the address at which the data has been found is displayed on the Status
bar:

Figure 5.11 Address Where Data Found

otherwise the following message will be displayed:

Figure 5.12 Address Where Data Not Found

5.4 Filling an Area of Memory with a Value

You can set the contents of a range of memory addresses to a value using the memory fill feature.

5.4.1 Selecting a Memory Range

If the memory address range is in the Memory window, you can select the range by clicking on the
first memory unit (depending on your Memory window display choice) and dragging the mouse to
the last unit, the selected range is highlighted.

Rev. 2.0, 02/99, page 42 of 152

Figure 5.13 Selecting a Memory Range

If the memory address range is larger than or outside the Memory window, then you can enter the
start addresses and byte count in the respective fields of Fill Memory dialog box.

5.4.2 Filling the Range

To fill the range, invoke the pop-up menu by clicking the right mouse button, (or pressing
SHIFT+F10) and click on [Fill]. The Fill Memory dialog box appears:

Rev. 2.0, 02/99, page 43 of 152

Figure 5.14 Fill Memory Dialog Box

When an address range has been selected in the Memory window, the specified start address and
byte count will be displayed in the Address and Byte Count fields. Select the format by clicking
on the relevant radio button in the Format group and enter the data value in the Data field. Click
the [OK] button or press ENTER, the dialog box closes and the new value is written into the
memory range.

5.5 Moving an Area of Memory

You can move an area of memory in the address space using the memory move feature. Select a
memory range (see section 5.4.1, Selecting a memory range), invoke the pop-up menu and click
on [Move]. The Move Memory dialog box appears:

Rev. 2.0, 02/99, page 44 of 152

Figure 5.15 Move Memory Dialog Box

The source start address and end address specified in the Memory window will be displayed in the
Source Start Address and Source End Address fields. Enter the destination start address in the
Destination Address field and click the [OK] button or press ENTER, the dialog box closes and
the memory block will be copied to the new address.

5.6 Testing an Area of Memory

You can test an area of memory in the address space using the memory test feature. Select a
memory range (see section 5.4.1, Selecting a memory range), invoke the pop-up menu and click
on [Test]. The Test Memory dialog box appears:

Figure 5.16 Test Memory Dialog Box

Rev. 2.0, 02/99, page 45 of 152

The start address and end address specified in the Memory window will be displayed in the Start
Address and End Address fields. Click the [OK] button or press ENTER, the dialog box closes
and HDI will perform a test on the memory range.

Note: The exact test is target dependent. However, in all cases the current contents of the
memory will be overwritten - YOUR PROGRAM OR DATA WILL BE ERASED.

5.7 Saving an Area of Memory

You can save an area of memory in the address space to a disk file using the save memory feature.
Open the Save S-Record File dialog box by selecting the [File->Save Memory...] menu option:

Figure 5.17 Save S-Record File Dialog Box

Enter the start and end addresses of the memory block that you wish to save and a file name.
Directory and drive navigation is possible using the standard Windows® file open dialog box
controls, to the right of the file list. Click the [Save] button or press ENTER, the dialog box closes
and the memory block will be saved to the disk as a Motorola S-record format file. When the file
save is complete a confirmation message box appears:

Rev. 2.0, 02/99, page 46 of 152

Figure 5.18 Message Box for Confirming File Save Completion

5.8 Loading an Area of Memory

You can load a program to an area of memory from a disk file using the load program feature.
Since programs are loaded as Motorola S-Record files this feature can be used to load any data
values into memory at the addresses specified by the records in the file, e.g. a previously saved
memory block. Open the Load Object File dialog box by selecting the [File->Load Program...]
menu option:

Figure 5.19 Load Object File Dialog Box

You can offset the loading address from the address specified in the S-record by entering a value
(positive or negative) in the Offset field. Click the [Open] button or press ENTER, the dialog box

Rev. 2.0, 02/99, page 47 of 152

closes and the file is loaded into memory. When the file load is complete a confirmation message
box appears:

Figure 5.20 Message Box for Confirming File Load Completion

5.9 Verifying an Area of Memory

You can verify an area of memory in the address space against a disk file using the verify memory
feature. This can be useful for checking the integrity of data currently in memory compared to a
previously saved block of memory in a file. Open the Verify S-Record File with Memory dialog
box by selecting the [File->Verify Memory] menu option:

Figure 5.21 Verify S-Record File with Memory Dialog Box

Rev. 2.0, 02/99, page 48 of 152

You can offset the verification address from the address specified in the S-record by entering a
value (positive or negative) in the Offset field. Click the [OK] button or press ENTER, the dialog
box closes and the file is verified. When the file verification is complete a confirmation message
box appears:

Figure 5.22 Message Box for Confirming Verification Completion

Rev. 2.0, 02/99, page 49 of 152

Section 6 Executing Your Program

This section describes how you can execute your program’s code. You will learn how to do this by
either running your program continuously or stepping single or multiple instructions at a time.

6.1 Running from Reset

To reset your user system and run your program from the Reset Vector address, click the Go Reset
toolbar button [], if it is visible, or select the [Run->Go Reset] menu option.

The program will run until it hits a breakpoint or a break condition is met. You can stop the
program manually by clicking the Halt toolbar button [] or selecting the [Run->Halt
program] menu option.

Note: The program will start running from whatever address is stored in the Reset Vector
location. Therefore it is important to make sure that this location contains the address of
your startup code.

6.2 Continuing Run

When your program is stopped and the debugger is in break mode, the HDI will highlight the line
in the Program window that corresponds to the CPU’s current Program Counter (PC) address
value. This will be the next instruction to be executed if you perform a step or continue running.

Rev. 2.0, 02/99, page 50 of 152

Figure 6.1 Highlighted Line Corresponding to PC Address

To continue running from the current PC address click the Continue toolbar button [], if it is
visible, or select the [Run->Go] menu option.

6.3 Running to the Cursor

Sometimes as you are going through your application you may want to run only a small section of
code, that would require many single steps to execute. In this case it would be useful to be able to
run to a particular point. You can do this using the Go To Cursor feature.

 Using Go To Cursor

1. Make sure that the Program window is open showing the address at which you wish to
stop.

2. Position the cursor on the address at which you wish to stop by either clicking in the
Address field or using the cursor keys.

3. Invoke the pop-up menu by clicking the right mouse button, (or pressing SHIFT+F10).

4. Select the [Go To Cursor] menu option. The debugging platform will run your code from
the current PC value until it reaches the address indicated by the cursor’s position.

Notes: 1. If your program never executes the code at this address, the program will not stop. If
this happens, code execution can be stopped by pressing Esc, selecting the [Run->Halt
program] menu option, or clicking on the ‘Stop’ toolbar button[].

2. The Go To Cursor feature requires a temporary breakpoint - if you have already used
all those available then the feature will not work, and the menu option will be disabled.

Rev. 2.0, 02/99, page 51 of 152

6.4 Running to Several Points

When you want to perform something like the Go To Cursor operation but the destination is
outside the Program window, or want to stop at several addresses, you can use HDI’s temporary
breakpoint feature (see section 7.5, Temporary Breakpoints).

6.5 Single Step

When you are debugging your code it is very useful to be able to step a single line or instruction at
a time and examine the effect of that instruction on the system. If the Program window display is
in source mode, then a step operation will step a single source line. If the Program window display
is in assembly-language or mixed mode, a step operation will step a single assembly-language
instruction. If the instruction calls another function or subroutine, you have the option to either
step into or step over the function. If the instruction does not perform a call, then either option will
cause the debugger to execute the instruction and stop at the next instruction.

6.5.1 Stepping Into a Function

If you choose to step into the function the debugger will execute the call and stop at the first line
or instruction of the function. To step into the function either click the Step In toolbar button
[], if it is visible, or select the [Run->Step In] menu option.

6.5.2 Stepping Over a Function Call

If you choose to step over the function the debugger will execute the call and all of the code in the
function (and any function calls that that function may make) and stop at the next line or
instruction of the calling function. To step over the function either click the Step Over toolbar
button [], if it is visible, or select the [Run->Step Over] menu option.

6.6 Stepping Out of a Function

During debugging, there are occasions when you may have entered a function, finished stepping
through the instructions that you want to examine and would like to return to the calling function
without tediously stepping through all the remaining code in the function. Or alternatively (and
perhaps more usefully) you may have stepped into a function by accident, when you meant to step
over it and so want to return to the calling function without stepping all the way through the
current function. You can do this with the Step Out feature.

To step out of the current function either click the Step Out toolbar button [], if it is visible, or
select the [Run->Step Out] menu option.

Rev. 2.0, 02/99, page 52 of 152

6.7 Multiple Steps

Sometimes you may find it useful to step several instructions at a time. You can do this by using
the Step Program dialog box. The dialog box also provides an automated step with a selectable
delay between steps. It is invoked by selecting the [Run->Step...] menu option.

The Step Program dialog box is displayed:

Figure 6.2 Step Program Dialog Box

Enter the number of steps in the Steps field and select whether you want to step over function calls
by the Step Over Calls check box. If you are using the feature for automated stepping, select the
step rate from the list in the Rate field. Click [OK] or press ENTER to start stepping.

Rev. 2.0, 02/99, page 53 of 152

Section 7 Stopping Your Program

This section describes how you can halt execution of your application’s code. This section
describes how to do this directly by using the halt command and by setting breakpoints at specific
locations in your code.

7.1 Halting Execution

When your program is running, the Halt toolbar button is enabled [] (a red STOP sign), and
when the program has stopped it is disabled [] (the STOP sign is grayed out). To stop the
program click on the Halt toolbar button, if it is visible, or select the [Run->Halt Program] menu
option.

Your program’s execution is halted, with the following message displayed on the status bar. HDI
will then update any open windows.

Figure 7.1 Execution Halted by Clicking Halt Button

7.2 Program Breakpoints (PC Breakpoints)

When you are trying to debug your program you will want to be able to stop the program running
when it reaches a specific point or points in your code. You can do this by setting a PC breakpoint
on the line or instruction at which to want the execution to stop. The following instructions will
show you how to quickly set and clear simple PC breakpoints. More complex breakpoint operation
can be done via the Breakpoints window, which is discussed later.

 To set a program (PC) breakpoint

1. Make sure that the Program window is open at the place you want to set a program (PC)
breakpoint.

2. Double-click in the Break column of the line at which you want the program to stop.

3. You will see the word ‘Break’ appear in the column to indicate that a program (PC) breakpoint
has been set.

Rev. 2.0, 02/99, page 54 of 152

Figure 7.2 Setting a Program Breakpoint

Now when you run your program and it reaches the address at which you set the program (PC)
breakpoint, execution halts with the message:

Figure 7.3 Break at a Program Breakpoint

displayed on the status bar, and the Program window display is updated with the program (PC)
breakpoint line highlighted.

Note: The line or instruction at which you set a program (PC) breakpoint is not actually
executed; the program stops just before it is about to execute it. If you choose to Go or
Step after stopping at the program (PC) breakpoint, then the highlighted line will be the
next instruction to be executed.

7.2.1 Clearing Program Breakpoints (PC Breakpoints)

To clear a program (PC) breakpoint, double-click on the word ‘Break’ in the Break column of the
line at which the program (PC) breakpoint is set. The display will update and the word ‘Break’
disappears.

7.3 The Breakpoints Window

The Breakpoints window allows you to access complex breakpoints (if your debugging platform
supports them) and gives you more control over setting/clearing and enabling/disabling
breakpoints. To open the Breakpoints window select the [View->Breakpoint Window] menu
option or click the Breakpoint Window toolbar button [], if it visible.

Breakpoint set

Current
PC location

Rev. 2.0, 02/99, page 55 of 152

A Breakpoints window opens.

Figure 7.4 Breakpoints Window

The window is divided into two main areas; a list of the breakpoints set in the system, and a
display of breakpoint resources. The breakpoint list is divided horizontally into five columns;
Enable, File/Line, Symbol, Address, and Type. The respective widths of each of the columns can
be adjusted by clicking and dragging on the dividing line between each column title in the header
bar. The cursor will change to and a vertical line will be displayed at the dividing line of the
columns. Release the mouse button when you are satisfied with the column width and the display
will be updated with the new column width.

7.3.1 Adding a Breakpoint

You can add a new breakpoint in the Breakpoints window in one of three ways:

• Click the [Add] button.

• Invoke the pop-up menu by clicking the right mouse button and select the [Add] menu option.

• Invoke the pop-up menu by pressing SHIFT+F10 and select the [Add] menu option.

In this manual, directions to click a button also mean selecting the local pop-up menu option
having the same name as the button.

Breakpoint/Event Properties dialog box will appear in which you can select the type and
parameters of the breakpoint that you wish to set.

Note: The Breakpoint/Event Properties dialog box is specific to the debugging platform you
have selected. Its appearance and operation depend on the breakpoint features available in

Breakpoint
enabled

Breakpoint
disabled

Resource
display

Header bar

Rev. 2.0, 02/99, page 56 of 152

the debugging platform. For details on debugging platform specific breakpoints, see the
separate Debugging Platform User’s Manual.

7.3.2 Modifying a Breakpoint

To edit an existing breakpoint in the Breakpoints window, select the breakpoint in the list by
double clicking, or by clicking on the line corresponding to it and click [Edit] button.

Breakpoint/Event Properties dialog box will appear in which you can select the type and
parameters of the breakpoint that you wish to set.

Note: Breakpoint/Event Properties dialog box is specific to the debugging platform you have
selected. Its appearance and operation depend on the breakpoint features available in the
debugging platform. For details on debugging platform specific breakpoints, see the
separate Debugging Platform User’s Manual.

7.3.3 Deleting a Breakpoint

To delete an existing breakpoint in the Breakpoints window, select the breakpoint in the list by
clicking on the line corresponding to it and click [Delete] button.

The breakpoint is deleted and the window is updated.

7.3.4 Deleting All Breakpoints

To delete all of the breakpoints listed in the Breakpoints window click [Del All] button.

All breakpoints are deleted and the window is cleared.

7.4 Disabling Breakpoints

During the course of a debugging session you may find that you tend to focus on particular areas
of code for a period of time and then look at other areas, but want to return to the previous ones
afterwards. When concentrating on these areas you will want to set breakpoints to stop your
program execution at useful points. If you have set these breakpoints and wish to move on to
another area of investigation, but know that you will want to return to the current area later, it is
frustrating to have to delete all the breakpoints you have set only to have to set them all again
when you return. Fortunately, HDI eases this problem by allowing you to disable breakpoints,
while still leaving them in the breakpoint list.

Rev. 2.0, 02/99, page 57 of 152

7.4.1 Disabling a Breakpoint

To disable an individual breakpoint, select the breakpoint in the list by clicking on the line
corresponding to it and click [Disable] button.

The menu disappears and the breakpoint list updates to show that the breakpoint is no longer
enabled in the Enable column.

7.4.2 Enabling a Breakpoint

When you want to re-enable a breakpoint in the Breakpoints window list, select the breakpoint in
the list by clicking on the line corresponding to it and click [Enable] button.

The menu disappears and the breakpoint list updates to show that the breakpoint is again enabled,
by showing a check mark in the Enable column.

7.5 Temporary Breakpoints

There are times when you may want to start running your program and want it to stop if it hits one
or more addresses, but do not want to set permanent breakpoints at these address. For example you
may want to perform something like the Go To Cursor operation, but the destination may be
outside the Program window or you may want to stop at several addresses. To do this you can use
HDI’s temporary breakpoint feature to run with up to ten temporary breakpoints set that are
cleared when you break. Temporary breakpoints are set in the Run Program dialog box, which is
opened by selecting the [Run->Run...] menu option.

The Run Program dialog box appears:

Rev. 2.0, 02/99, page 58 of 152

Figure 7.5 Run Program Dialog Box

Enter the symbols or address values for the points at which you want the program to stop (up to
ten points) in the Stop At field. When an overloaded function or a class name is entered, the Select
Function dialog box appears for you to select a function. For details, refer to section 10, Selecting
Functions.

Click the [Go PC] button to start running from the current Program Counter address, as displayed
in the Program Counter field. Click the [Go Reset] button to reset the CPU and start running from
the reset vector address.

The program will stop if it reaches a temporary breakpoint, a normal breakpoint or if you halt it
manually. When the program halts the temporary breakpoints that you specified in the Stop At
field are cleared. When you select the Run Program dialog box again, the temporary breakpoints
are listed and will be set again if you click [Go PC] or [Go Reset]. To remove a temporary
breakpoint from the list, select it by clicking and dragging the mouse across it and press DELETE.
If you click [Cancel] any changes that you have made in the Run Program dialog box will be lost.

7.6 Hardware Breakpoints(Event)

Note: The hardware breakpoints are specific to the debugging platform you have selected. Their
operation depends on the breakpoint features available in the debugging platform. For
details on debugging platform specific breakpoints, see the separate Debugging Platform
User’s Manual.

Rev. 2.0, 02/99, page 59 of 152

Section 8 Looking at Variables

This section describes how to look at the variables and data objects that your program uses. It
shows you how to view variables, set up watch items and look at the contents of the CPU’s
general and on-chip peripheral registers.

8.1 Instant Watch

The quickest way to look at a variable in your program is to use the Instant Watch feature.

 To use Instant Watch:

1. Open the Program window showing the variable that you want to examine.

2. Click on the variable. You should see a cursor on the variable.

3. Invoke the pop-up menu by clicking the right mouse button, (or pressing SHIFT+F10),
and click on [Instant Watch].

Figure 8.1 Selecting Instant Watch

An Instant Watch dialog box appears showing the variable name and its value:

Rev. 2.0, 02/99, page 60 of 152

Figure 8.2 Instant Watch Dialog Box

You can add this variable to the list of watch items in the Watch window by clicking on the [Add
Watch] button.

8.2 Using Watch Items

When you are debugging your program you may find it useful to be able to look at variables of
interest and see their values at different times during the program. HDI allows you to open Watch
windows, which contain a list of variables and their values. To open a Watch window select the
[View->Watch Window] menu option; or click on the Watch Window toolbar button [] if it is
visible. A Watch window opens. Initially the contents of the window will be blank.

8.2.1 Adding a Watch

There are two ways to add Watch items to the Watch window; the quick method accessed from the
Program window, and the full method using the Add Watch dialog box in the Watch window.

Quick Method

The quickest way to add a variable to the Watch window is to use the Add Watch feature.

 To use Add Watch:

1. Open the Program window showing the variable that you want to examine.

2. Click on the variable. You should see a cursor on the variable.

3. Invoke the Program window pop-up menu by clicking the right mouse button, (or pressing
SHIFT+F10) and click on [Add Watch].

4. The variable is added as a watch item and the Watch window updates.

Rev. 2.0, 02/99, page 61 of 152

Full Method

To add an item to the Watch window, invoke the local pop-up menu by clicking the right mouse
button (or pressing SHIFT+F10) in the Watch window and click on the [Add Watch] option.

The Add Watch dialog box appears:

Figure 8.3 Add Watch Dialog Box

Enter the name of the variable that you wish to watch and click [OK]. The variable is added to the
Watch window.

Figure 8.4 Watch Window

Note: If the variable that you have added is a local variable that is not currently in scope, HDI
will add it to the Watch window but its value will be blank.

Rev. 2.0, 02/99, page 62 of 152

8.2.2 Expanding a Watch

If a watch item is a pointer, array, or structure, then you will see a plus sign (+) expansion
indicator to left of its name, this means that you can expand the watch item. To expand a watch
item, double click on it. The item expands to show the elements (in the case of structures and
arrays) or data value (in the case of pointers) indented by one tab stop, and the plus sign changes
to a minus sign (-). If the elements of the watch item also contain pointers, structures, or arrays
then they will also have expansion indicators next to them.

Figure 8.5 Expanding a Watch

To collapse an expanded watch item, double click on the item again. The item elements collapse
back to the single item and the minus sign changes back to a plus sign.

8.2.3 Modifying Radix for Watch Item Display

To change the radix for watch item display, click on the watch item you wish to change. Then
invoke the pop-up menu by clicking the right mouse button, (or pressing SHIFT+F10) and click
on the [Radix] option.

The submenu to specify the radix appears:

Expanded
watch

Collapsed
watch

Expansion
indicator

Rev. 2.0, 02/99, page 63 of 152

Figure 8.6 Modifying Radix for Watch Item Display

Click on the radix you wish to be used for display, and the radix of the selected watch item is
changed to that.

8.2.4 Changing a Watch Item’s Value

You may wish to change the value of a watch variable, e.g. for testing purposes or if the value is
incorrect due to a bug in your program. To change a watch item’s value use the Edit Value
function.

 Editing a watch item’s value:

1. Select the item to edit by clicking on it, you will see a flashing cursor on the item.

2. Invoke the pop-up menu by clicking the right mouse button (or pressing SHIFT+F10).

3. Click on the [Edit Value] menu option.

The Edit Value dialog box appears:

Figure 8.7 Edit Value Dialog Box

Rev. 2.0, 02/99, page 64 of 152

Enter the new value or expression in the New Value field and click [OK]. The Watch window is
updated to show the new value.

8.2.5 Deleting a Watch

To delete a watch item, select it by clicking on it. Invoke the pop-up menu by clicking the right
mouse button (or pressing SHIFT+F10) and click on the [Delete Watch] option. The item is
deleted and the Watch window is updated.

Note: The watches that you have set in the watch window can be saved in a session file. See
section 11, Configuring the User Interface.

8.3 Looking at Local Variables

To look at local variables, open the Locals window by selecting the [View->Local Variable
Window] menu option.

The Locals window appears:

Figure 8.8 Locals Window

As you debug your program the Locals window will be updated, following a step or break from
run, to show current local variables and their values. If a local variable is not initialized when
defined, then the value in the Locals window will be undefined until a value is assigned to the
local variable.

The local variable values and the radix for local variable display can be modified in the same
manner as in the Watch window.

Rev. 2.0, 02/99, page 65 of 152

8.4 Looking at Registers

If you are debugging at assembly-language level, using the Program window in assembly-
language or mixed display, then you will probably find it useful to see the contents of the CPU’s
general registers. You can do this using the Registers window.

Figure 8.9 Registers Window

To open a Registers window select the [View->Register Window] menu option or click the
Register Window toolbar button [] if it is visible. A Registers window opens showing all of the
CPU’s general registers and their values, displayed in hexadecimal.

8.4.1 Modifying Register Contents

There are two ways that you can change a register’s contents; the quick edit method that allows
you to enter values by typing directly into the window, but is limited to hexadecimal values only,
and the full edit method that requires you to enter values via a dialog box, but allows you to enter
values in any base and complex expressions.

Quick Edit

The quick way to change a register’s contents is to select the digit that you wish to change, by
clicking or dragging on it. You will see the selected digit is highlighted. Type the new value for
the digit; it must be in the range 0-9 or a-f. The new value is written into the digit and the cursor
moves to the next digit in the register. When you enter a value into the least significant digit of the
register, the cursor moves on to the most significant digit of the next register. If the digit of the

Rev. 2.0, 02/99, page 66 of 152

register display indicates a bit e.g. in the CPU condition code register (CCR) then you can press
SPACE to toggle the bit’s value.

Full Edit

The full way to change a register’s contents is accessed via a Register dialog box. Open the
Register dialog box in one of four ways:

• Double-click the register you want to change.

• Select the register you want to change, and press ENTER.

• Select the register you want to change, invoke the pop-up menu by clicking the right mouse
button, and click on the [Edit] menu option.

• Select the register you want to change, invoke the pop-up menu by pressing SHIFT+F10, and
click on the [Edit] menu option.

Figure 8.10 Register Dialog Box

As in any other data entry field in HDI, you can enter a formatted number or C/C++ expression
(see section 2.2, Data Entry).

You can choose whether to modify the whole register contents or just part of the register by
selecting the Whole register/High Word/Low Word/Byte 0-3 radio buttons. You can enter
floating-point data by checking the Single float check box.

When you have entered the new number or expression, click the [OK] button or press ENTER,
the dialog box closes and the new value is written into the register.

Rev. 2.0, 02/99, page 67 of 152

8.4.2 Using Register Contents

It can be useful to be able to use the value contained in a CPU register when you are entering a
value elsewhere in HDI, for example when displaying a specified address in the Program or
Memory windows. You can do this by specifying the register name prefixed by the “#” character,
e.g.: #R1, #PC, #R6L, or #ER3.

8.5 Looking at I/O

As well as a CPU and ROM/RAM, the microcomputer also contains on-chip peripheral modules.
The exact number and type of peripheral modules differ between devices but typical modules are
DMA controllers, serial Communications interfaces, A/D converters, integrated timer units, a bus
state controller and a watchdog timer. These on-chip peripherals are programmed by accessing
registers mapped into the microcomputer’s address space.

Since the setting up and use of these on-chip peripheral registers is usually very important in an
embedded microcomputer application, it is useful to be able to look clearly at the contents of these
registers. The Memory window only allows you to look at data in memory as byte, word, long
word, single-precision floating-point, double-precision floating-point, or ASCII values, so HDI
also provides an I/O Registers window to ease inspection and setting up of these registers.

8.5.1 Opening an I/O Registers Window

To open an I/O Registers window select the [View->I/O Register Window] menu option or click
the I/O Register Window toolbar button [] if it is visible. The I/O register information is
organized by modules, corresponding to the on-chip peripheral modules. When an I/O Registers
window is first opened, only a list of module names is displayed.

Rev. 2.0, 02/99, page 68 of 152

Figure 8.11 I/O Registers Window

8.5.2 Expanding an I/O Register Display

To display the names, addresses and values of the I/O registers, double click on the module name
or select the module name, by clicking on it or using the cursor keys, and press ENTER. The
module display will expand to show the individual registers of that peripheral module and their
names, addresses and values. Double clicking (or pressing ENTER) again on the module name
will close the I/O register display.

8.5.3 Modifying I/O Register Contents

To edit the value in an I/O register you can double click or press ENTER on the register to open a
dialog box to modify the register contents:

Module name

I/O registers

Register address

Register name

Register value

Rev. 2.0, 02/99, page 69 of 152

Figure 8.12 Dialog Box for Modifying I/O Register Contents

When you have entered the new number or expression, click the [OK] button or press ENTER;
the dialog box closes and the new value is written into the register.

Note: If you are using an emulator debugging platform, when it reads data from an I/O register
this can sometimes affect the operation of your program. For example, reading a data
register can cancel a pending interrupt. Data is only read from I/O modules that have been
expanded in the I/O Registers window (so that the register values are displayed).
Therefore, as long as I/O modules are collapsed when they no longer need to be displayed,
this will not cause a problem. In order to check whether this is affecting your program try
running it without the I/O Registers window. Also, note that having a Memory window (or
Code window) open on the I/O area can have the same effect.

8.5.4 I/O Register Files

HDI formats the I/O Registers window based on information it finds in an I/O Register definition
file. When you select a debugging platform using the [Setup->Configure Platform...] menu
option, HDI will look for a “<device>.IO” file corresponding to the selected device and load it if it
exists. This file is a formatted text file that describes the I/O modules and the address and size of
their registers. You can edit this file, with a text editor, to add support for memory mapped
registers or peripherals you may have specific to your application e.g. registers in an ASIC device
mapped into the microcomputer’s address space.

File format

Each module name must be defined in the [Modules] definition section and the numbering of each
module must be sequential. Each module corresponds to a register definition section and within
the section each entry defines an I/O register.

The ‘BaseAddress’ definition is for devices where the location of I/O registers moves in the
address space depending on the CPU mode. In this case, the ‘BaseAddress’ value is the base
address of the I/O registers in one specific mode and the addresses used in the register definitions
are the address locations of the registers in the same mode. When the I/O register file is actually

Rev. 2.0, 02/99, page 70 of 152

used, the ‘BaseAddress’ value is subtracted from the defined register address and the resultant
offset added to the relevant base address for the selected mode.

The first field in a [Register] definition entry is the register name followed by the “=” character.
The second field is the register address value followed by two optional flags:

1. <size> which may be B, W or L for byte, word, or long word (default is byte).

2. <absolute> which can be set to A if the register is at an absolute address. This is only relevant
if the I/O area address range moves about on the CPU in different modes. In this case, if a
register is defined as absolute the base address offset calculation is not performed and the
specified address is used directly.

Comment lines are allowed and must start with a “;” character.

Rev. 2.0, 02/99, page 71 of 152

Example:

; SH7034 Family I/O Register Definitions File

[Modules]

BaseAddress=0

Module1=Interrupt Controller

Module2=Bus State Controller

Module3=DMAC Channel 0

...

Module18=Serial Communications Interface 1

Module19=A/D Converter

Module110=User ASIC

[Interrupt Controller]

IPRA=0x5FFFF84 W

IPRB=0x5FFFF86 W

IPRC=0x5FFFF88 W

IPRD=0x5FFFF8A W

IPRE=0x5FFFF8C W

ICR=0x5FFFF8E W

...

[User ASIC]

CTLR=0x10000 L A

ADDR=0x10004 W A

DDIR=0x10006 B A

DATR=0x10007 B A

Module
definition

Register
definition

Register name

Size

Absolute address flag

Comment

Address

Rev. 2.0, 02/99, page 72 of 152

Rev. 2.0, 02/99, page 73 of 152

Section 9 Overlay Function

Programs making use of the overlay function can be debugged. This section explains the settings
for using the overlay function.

9.1 Displaying Section Group

When the overlay function is used, that is, when several section groups are assigned to the same
address range, the address ranges and section groups are displayed in the Overlay dialog box.

Open the Overlay dialog box by selecting the [Setup->Overlay] menu option.

Figure 9.1 Overlay Dialog Box (at Opening)

This dialog box has two areas: the Address list box and the Section Name list box.

The Address list box displays the address ranges used by the overlay function. Click to select one
of the address ranges in the Address list box.

Rev. 2.0, 02/99, page 74 of 152

Figure 9.2 Overlay Dialog Box (Address Range Selected)

The Section Name list box displays the section groups assigned to the selected address range.

9.2 Setting Section Group

When using the overlay function, the highest-priority section group must be selected in the
Overlay dialog box; otherwise HDI will operate incorrectly.

First click one of the address ranges displayed in the Address list box. The section groups assigned
to the selected address range will then be displayed in the Section Name list box.

Click to select the section group with the highest-priority among the displayed section groups.

Rev. 2.0, 02/99, page 75 of 152

Figure 9.3 Overlay Dialog Box (Highest-Priority Section Group Selected)

After selecting a section group, clicking the [OK] button stores the priority setting and closes the
dialog box. Clicking the [Cancel] button closes the dialog box without storing the priority setting.

Note: Within the address range used by the overlay function, the debugging information for the
section specified in the Overlay dialog box is referred to. Therefore, the same section of
the currently loaded program must be selected in the Overlay dialog box.

Rev. 2.0, 02/99, page 76 of 152

Rev. 2.0, 02/99, page 77 of 152

Section 10 Selecting Functions

When selecting overloaded functions or member functions that can be used in C++ programs,
follow the description in this section.

10.1 Displaying Functions

Use the Select Function dialog box to display overloaded functions and member functions.

A function can be selected in the following cases.

• When setting a breakpoint

• When specifying a function in the Run Program dialog box

• In the Set Address dialog box for opening the Program window

• In the Set Address dialog box for opening the Memory window

• When adding or modifying a symbol

• When specifying a function for performance analysis

When multiple functions have the same specified function name, or when a class name including a
member function is specified, the Select Function dialog box opens.

Figure 10.1 Select Function Dialog Box

Rev. 2.0, 02/99, page 78 of 152

This dialog box has three areas.

• Select Function Name list box

Displays the same-name functions or member functions and their detailed information.

• Set Function Name list box

Displays the function to be set and their detailed information.

• Counter group edit box

All Function Displays the number of same-name functions or member functions.

Select Function Displays the number of functions displayed in the Select Function Name list
box.

Set Function Displays the number of functions displayed in the Set Function Name list
box.

10.2 Specifying Functions

Select overloaded functions or member functions in the Select Function dialog box. Generally, one
function can be selected at one time; only for setting breakpoints, multiple functions can be
selected.

10.2.1 Selecting a Function

Click the function you wish to select in the Select Function Name list box, and click the [>]
button. You will see the selected function in the Set Function Name list box. To select all
functions in the Select Function Name list box, click the [>>] button.

10.2.2 Deleting a Function

Click the function you wish to delete from the Set Function Name list box, and click the [<]
button. To delete all functions in the Set Function Name list box, click the [<<] button.

10.2.3 Setting a Function

Click the [OK] button to set the functions displayed in the Set Function Name list box. The
functions are set and the Select Function dialog box closes.

Clicking the [Cancel] button closes the dialog box without setting the functions.

Rev. 2.0, 02/99, page 79 of 152

Section 11 Configuring the User Interface

When we designed the user interface for HDI we tried to make all the frequently used operations
quickly accessible and have related operations grouped in a logical order. However, when you are
in the middle of a heavy debugging session you may find it more useful to have a different
arrangement of the user interface items or you may just have a personal preference for the way
you want it arranged. We realize this and so HDI allows you to customize the user interface so that
you can be satisfied with the tool that you are using for debugging your program. This section
describes how you can arrange the user interface windows, customize various aspects of the
display and save the configuration.

11.1 Arranging Windows

11.1.1 Minimizing Windows

If you have temporarily finished using an open window but want to be able to look at it in its
current state later, you can reduce it to an icon. This is called minimizing the window. To
minimize a window, either click on the minimize button of the window, or select the
[->Minimize] window menu option.

Figure 11.1 Minimizing a Window

The window is minimized to an icon at the bottom left of the HDI application window; for the
above Code window example the icon is:

Figure 11.2 Code Window Icon

Minimize button

Window menu

Rev. 2.0, 02/99, page 80 of 152

Note: You may not be able to see the icon if you have a window open over the bottom of the
screen.

To restore the icon back to a window, either double click on the icon, or click once to invoke the
pop-up menu and select [Restore].

11.1.2 Arranging Icons

Although the icons will be put at the bottom left of the HDI application window by default when
you minimize a window, you can move them anywhere you like in the application window by
simply clicking and dragging them to a new position. When you restore the icon to a window, the
window will be at the same position that it was in when you minimized it. Similarly, when you
minimize it again, the icon will be placed at the last position that you moved it to.

When you have many minimized windows as icons, the display can look rather messy. To tidy up
the icons, select the [Window->Arrange Icons] menu option.

The icons will be arranged in order from the bottom left of the application window:

Figure 11.3 Icons Before Arrangement

Rev. 2.0, 02/99, page 81 of 152

Figure 11.4 Icons After Arrangement

11.1.3 Tiling Windows

After some heavy debugging you may find that you have many windows open on the screen. You
can arrange all the windows in a tile format with none of them overlapping each other using the
Tile function. To invoke this select the [Window->Tile] menu option.

All currently open windows are arranged in a tile format. Windows that are minimized to icons are
not affected.

11.1.4 Cascading Windows

Open windows can also be arranged in a cascading format with only their left and top border
visible under the window in front of them. To invoke this select the [Window->Cascade] menu
option. All currently open windows are arranged in a cascading format. Windows that are
minimized to icons are not affected.

11.2 Locating Currently Open Windows

When you have many windows open in the HDI application window it is quite easy to lose one of
them behind the others. There are two methods that you can use to find the lost window:

Rev. 2.0, 02/99, page 82 of 152

11.2.1 Locating the Next Window

To bring the next window in the window list to the front of the display, select [Next] from the
window menu, or press CTRL+F6. Repeating this operation will cycle selection of all windows
(open and minimized).

11.2.2 Locating a Specific Window

To select a specific window, invoke the [Window] menu. Click on the window that you wish to
select from the list of windows (open and minimized) at the bottom of the menu. The currently
selected window has a check mark next to it in the window list. In the following example, the
Code window is the currently selected window:

Figure 11.5 Selecting a Window

The window that you select (the Trace window in the above example) will be brought to the front
of the display. If it is minimized the icon is restored to a window.

11.3 Enabling/Disabling the Status Bar

You can select whether or not the Status bar is displayed at the bottom of the HDI application
window; by default it will be displayed. To disable display of the Status bar, select the [View-
>Status Bar] menu option.

The Status bar will be disabled and removed from the HDI application window display. To re-
enable the Status bar display, select the [View->Status Bar] menu option again. The Status bar
will be enabled and added to the HDI application window display.

Rev. 2.0, 02/99, page 83 of 152

11.4 Enabling/Disabling the Toolbar

You can select whether or not the Toolbar is displayed at the top of the HDI application window;
by default it will be displayed. To disable display of the Toolbar, select the [View->Toolbar]
menu option.

The Toolbar will be disabled and removed from the HDI application window display. To re-enable
the Toolbar display, select the [View->Toolbar] menu option again. The Toolbar will be enabled
and added to the HDI application window display.

11.5 Customizing the Toolbar

You can customize the selection and arrangement of buttons displayed on the toolbar. To change
the display invoke the [Setup->Customise->Toolbar] menu option.

The Customise Toolbar dialog box appears:

Figure 11.6 Customise Toolbar Dialog Box

11.5.1 Button Categories

At the top left of the dialog box is a list of button categories, which are; File, Edit, View, Run,
Setup, Tools, Window, and Help. For each category a list of possible button controlled operations

Button
categories

Button
operations

Button arrangement list

Description
of button’s
operation

Button order
control

Add button
to toolbar

Rev. 2.0, 02/99, page 84 of 152

is listed below the category. Click on a button operation option in the list and you will see a
description of the button’s operation in the Button Description field.

11.5.2 Adding a Button to the Toolbar

 To add a button to the toolbar:

1. Select the button category from the button category list.

2. Select the button item from the operation list.

3. Click the add [>>] button.

The button is added to the list. If an existing button item is selected in the Selected Buttons list, the
new button is added after the selected button in the list. If no button is selected the new button is
added to the bottom of the list.

11.5.3 Positioning a Button in the Toolbar

 To move a button position in the toolbar order:

1. Select the button to move in the Selected Button list.

2. Click the button order controls to move the button; [Up], [Down], [Top], [Bottom] of the
list.

You can add a separator in the list to separate blocks of buttons by clicking on the [Sep. Before]
or [Sep. After] buttons.

11.5.4 Removing a Button from the Toolbar

To remove a button from the toolbar, select the button in the Selected Buttons list and click
[Remove]. The button is removed from the list and the list is updated.

11.6 Customizing the Fonts

You can customize the main display font for text style windows (e.g. Program and Memory
windows), or change the default font that is used when a new window is opened.

To change the display invoke the [Setup->Customise->Font] menu option. This will launch the
Font configuration dialog box:

Rev. 2.0, 02/99, page 85 of 152

Figure 11.7 Font Dialog Box

The dialog box is based on the standard Windows® font selection dialog box, except that only
fixed width fonts are listed in the Font list box. The command button ‘Use as Default Font’ will
save the current font settings as the font used when opening any new windows that do not already
have their own font settings.

11.7 Saving a Session

If you have downloaded user code into the debugging platform, have the corresponding source
files displayed and a number of auxiliary windows open, then it can take some time to setup this
information the next time the program is loaded. To help with this, HDI can save the current
settings to a file.

To save the current setting, select the [File->Save Session As...] menu option. This will launch a
standard Windows® file dialog box prompting you for a file name. Two files are saved, an HDI
session file (*.hds) and a target session file (*.hdt) - the former includes the HDI interface settings,
e.g. all the open windows and their positions, while the latter includes the settings specific to the
debugging platform/user system, e.g. the name of the debugging platform and its configuration.
The session name is then displayed as the second entry in HDI’s title bar, e.g. “MANUAL”:

Figure 11.8 Session Name Display

Rev. 2.0, 02/99, page 86 of 152

If you are already using a named session, it can be updated by selecting the [File->Save Session]
menu option. This will overwrite the current session files with the latest settings.

Note: The session file does not include symbol or memory information. To use modified
information again in later sessions, save the symbol and memory information in
appropriate files. For details, see section 4.2.10, Saving a Symbol File and section 5.7,
Saving an Area of Memory.

11.8 Loading a Session

To reload a saved session, select the [File->Load Session] menu option. This will launch a
standard Windows® file dialog box prompting you for an HDI session file name (*.hds) - the
associated target session file (*.hdt) will be automatically loaded at the same time.

Any currently open windows will be closed, and the connection to the debugging platform
initialized. If user code has been downloaded to the user system, then the status bar will display
the percentage done. When the download is complete, windows will be opened and refreshed to
show the latest information from the user system.

11.9 Setting HDI Options

There are a number of settings available to help you to use the HDI interface. Selecting the
[Setup->Options] menu option will launch the HDI Options dialog box:

Figure 11.9 HDI Options Dialog Box

The ‘Tab Size’ list box can be used to set the number of spaces that a tab character will be
expanded to within the views. Valid values are between 2 and 8 - the best value will be the same
as your normal editor.

Rev. 2.0, 02/99, page 87 of 152

The ‘On Exit’ group of radio buttons automates saving the current session when the program is
shut down:

• Automatically save session - this will save the session information in the current session file. If
there is no current session file then you will be prompted to enter an HDI session file name.

• Prompt for session save - this will always ask you if you want to save the current session when
the program shuts down. If you select 'Yes', then the session information is saved in the current
session file. If there is no current session file then you will be prompted to enter a session file
name.

• Quit without asking - this shuts down the program and does not prompt you, nor save the
current session information.

Check the ‘Load last session on startup’ check box if you want to automatically load the last saved
session the next time the program is started.

11.10 Setting the Default Radix

HDI can display numbers in several formats. Normally you would fill in information fields by
using one of the prefixes described in section 2.2.2, Data Formats. To improve usability, you can
select one of these formats as the default, i.e. you will not need to enter the corresponding prefix to
use that radix.

To change the default radix, use the [Setup->Radix] menu option. This will display a list of
possible numbering systems with a check mark to the left of the current radix:

Figure 11.10 Setting Radix

Rev. 2.0, 02/99, page 88 of 152

Rev. 2.0, 02/99, page 89 of 152

Section 12 Menus

This document uses the standard Microsoft® menu naming convention:

Figure 12.1 Menus

Check marks indicate that the feature provided by the menu option is selected.

Ellipsis indicate that selecting the menu option will open a dialog box that requires extra
information to be entered.

Refer to your Windows® user manual for details on how to use the Windows® menu system.

12.1 File

The File menu is used for aspects of the program that access data files.

12.1.1 Load Program...

Launches the Load Object File dialog box, allowing the user to select an object file in
either S-record (*.mot; *.s20; and *.obj extensions), SYSROF (*.abs extension), or ELF/DWARF
(*.abs extension) format and download it to the debugging platform's memory. This will also load
the symbols if they are available in the selected file.

12.1.2 Save Memory...

Launches the Save S-Record File dialog box, allowing the user to select a start and an

end address in the memory area, to save to an S-record format file on disk. If a block of memory is
highlighted in a Memory window, these will be automatically entered as the start and end
addresses when the dialog box is displayed.

Menu bar

Check mark

Menu title

Drop-down
menu

Menu option

Ellipsis

Cascading menu

Rev. 2.0, 02/99, page 90 of 152

12.1.3 Verify Memory...

Launches the Verify S-Record File with Memory dialog box, allowing the user to select a

start and an end address in the memory area to check against the contents of an S-record file on
disk.

12.1.4 Save Session

Updates the session file for the current session file. If there is no current session file
defined, this acts in a similar manner to the Save Session As... menu option.

12.1.5 Load Session...

Launches the Open dialog box allowing the user to load a session from a selected session

file (*.hds extension). A session file contains the details of the current debugging platform, the
debugging platform's settings, and the current program and the position of open child windows
(views) - it contains symbols, breakpoints, or current register values.

12.1.6 Save Session As...

Launches the Save As dialog box allowing the user to save the current session details under a new
file name. A session file contains the details of the current debugging platform, the debugging
platform’s settings, and the current program and the position of open child windows (views) - it
contains symbols, breakpoints, or current register values.

12.1.7 Initialise

This will attempt to re-initialize the debugging system. It will close down any open child
windows and shut down the link to the debugging platform. If this is successful, an attempt to re-
establish the link to the debugging platform will be made. The message ‘Link up’ will appear in
the left-most box of the status bar if this is successful. (See also section 12.4.11, Reset CPU)

12.1.8 Exit

This will close down the HDI. The actions that are carried out by the HDI can be defined by the
user in the ‘On Exit’ section of the HDI Options dialog box. (See also section 12.5.1, Options...)

12.2 Edit

The Edit menu is used for aspects of the program that access or modify data in the child windows
and debugging platform.

Rev. 2.0, 02/99, page 91 of 152

12.2.1 Cut

Only available if a block is highlighted in a child window who’s contents can be
modified (shown disabled).

This will remove the contents of the highlighted block from the window and place it on the
clipboard in the standard Windows® manner.

12.2.2 Copy

Only available if a block is highlighted in a child window (shown disabled).

This will copy the contents of the highlighted block to the clipboard in the standard Windows®

manner.

12.2.3 Paste

Only available if the contents of the child window can be modified (shown disabled).

This will copy the contents of the Windows® clipboard into the child window at the current cursor
position.

12.2.4 Find

Only available if the window contains text (shown disabled).

This will launch the Find dialog box allowing the user to enter a word and locate occurrences
within the text. If a match is found, the cursor will move to the start of the word.

12.2.5 Set Line

Only available in the Program window source format. Launches the Set Line dialog box allowing
the user to enter an integer (i.e. a line number of the source program) - the view will then scroll to
display this line at the top of the window.

12.2.6 Fill Memory...

Launches the Fill Memory dialog box allowing the user to fill a block of the debugging
platform's memory with a value.

Rev. 2.0, 02/99, page 92 of 152

12.2.7 Move Memory...

Launches the Move Memory dialog box allowing the user to copy a block of the
debugging platform's memory to an address within the same memory area. The blocks may
overlap, in which case any data within the overlapped region of the source block will be
overwritten.

12.2.8 Test Memory...

Launches the Test Memory dialog box allowing the user to specify a block of memory to

test for correct read/write operation. The exact test is target dependent. However, in all cases the
current contents of the memory will be overwritten - YOUR PROGRAM OR DATA WILL BE
ERASED.

12.2.9 Update Memory

Forces a manual update of the contents of all open memory windows.

12.3 View

The View menu is used to select and open new child windows. If the menu option is grayed, then
the features provided by the window are not available with the current debugging platform.

12.3.1 Toolbar

Toggles the toolbar feature on and off. If the feature is enabled then a check mark will be
displayed to the left of the menu text.

12.3.2 Status Bar

Toggles the status bar feature on and off. If the feature is enabled then a check mark will be
displayed to the left of the menu text.

12.3.3 Breakpoint Window

Opens the Breakpoints window allowing the user to view and edit current breakpoints.

Rev. 2.0, 02/99, page 93 of 152

12.3.4 Command Line Window

Opens the Command Line window allowing the user to enter text based commands to
control the debugging platform. These commands can be piped in from a batch file, and the results
piped out to a log file, allowing automatic tests to be performed.

12.3.5 I/O Register Window

Opens the I/O Registers window allowing the user to control the user system's on-chip
input/output functionality, e.g. an interrupt controller.

12.3.6 Local Variable Window

Opens the Locals window allowing the user to view and edit the values of the variables
defined in the current function. The contents are blank unless the PC is within a C/C++ source-
level function.

12.3.7 Memory Mapping Window

Opens the Memory Mapping window allowing the user to view and (if supported) edit
the debugging platform’s current memory map. In some debugging platforms, the Memory Map
dialog box will open.

12.3.8 Memory Window...

Launches the Open Memory Window dialog box allowing the user to specify a memory
block and view format to display within a Memory window.

12.3.9 Performance Analysis Window

Launches the Performance Analysis window allowing the user to set up and view the
number of times that particular sections of the user code have been called.

12.3.10 Program Window...

Launches the Open dialog box allowing the user to enter a file name of the program (in

either C/C++ or assembly-language format) to view. If the source file is not included within the
current program or there is no debugging information for the file within the 'absolute' (*.abs) file,
then the message "Cannot load program. No Source level debugging available" is displayed. To
view a file in these circumstances use the [View->Text Window] menu option.

Rev. 2.0, 02/99, page 94 of 152

12.3.11 Register Window

Opens the Registers window allowing the user to view all the current CPU registers and
their contents.

12.3.12 Status Window

Opens the System Status window allowing the user to view the debugging platform's
current status and the current session and program names.

12.3.13 Text Window...

Launches the Open dialog box allowing the user to enter the name of a text file that you
wish to view.

12.3.14 Trace Window

Opens the Trace window allowing the user to see the current trace information.

12.3.15 Watch Window

Opens the Watch window allowing the user to enter C/C++-source level variables and
view and modify their contents.

12.4 Run

The Run menu controls the execution of the user code in the debugging platform.

12.4.1 Go

Starts executing the user code at the current PC.

12.4.2 Go Reset

Resets the user system hardware and sets the PC to the Reset Vector address before
executing the user code.

Rev. 2.0, 02/99, page 95 of 152

12.4.3 Go To Cursor

Starts executing the user code at the current PC and continues until the PC equals the
address indicated by the current text cursor (not mouse cursor) position.

12.4.4 Run...

Launches the Run Program dialog box allowing the user to enter temp-orary breakpoints before
executing the user code.

12.4.5 Step In

Executes a block of user code before breaking. The size of this block is normally a single

instruction but may be set by the user to more than one instruction or a C/C++-source line (see
also section 12.4.8, Step...). If a subroutine call is reached, then the subroutine will be entered and
the view is updated to include its code.

12.4.6 Step Over

Executes a block of user code before breaking. The size of this block is normally a single
instruction but can be set by the user to more than one instruction or a C/C++-source line (see also
section 12.4.8, Step...). If a subroutine call is reached, then the subroutine will not be entered and
sufficient user code will be executed to set the current PC position to the next line in the current
view.

12.4.7 Step Out

Executes sufficient user code to reach the end of the current function and set the PC to
the next line in the calling function before breaking.

12.4.8 Step...

Launches the Step Program dialog box allowing the user to modify the settings for stepping.

12.4.9 Halt Program

Stops the execution of the user code and returns control to the user.

Rev. 2.0, 02/99, page 96 of 152

12.4.10 Set PC to Cursor

Sets the PC to the address indicated by the current text cursor (not mouse cursor).

12.4.11 Reset CPU

Resets the user system hardware and sets the PC to the Reset Vector address. (See also
section 12.1.7, Initialise)

12.5 Setup

The Setup menu is used to modify the settings of the HDI user interface, and the configuration of
the debugging platform.

12.5.1 Options...

Launches the HDI Options dialog box allowing the user to modify the settings that are specific to
the HDI (not debugging platform dependent settings).

12.5.2 Radix

 Cascades a menu displaying a list of radix in which the numeric values will be
displayed and entered by default (without entering the radix prefix). The current radix has a check
mark to its left and the associated toolbar button is locked down.

For example, if the current radix is decimal then the number ten will be displayed as “10” and
may be entered as “10”, “H'A”, “0x0a”, etc.; if the current radix is hexadecimal then the number
ten will be displayed as “0A” and entered as “A”, “D'10”, etc.

12.5.3 Customise

 Cascades a menu displaying a list of options that can be customized by the user.

Toolbar launches the Customise Toolbar dialog box.

Font launches the Font dialog box, allowing a fixed width font to be selected.

12.5.4 Select Platform...

Launches the Select Platform dialog box allowing the user to select a new debugging platform.
The item is grayed if only one target DLL is present in the same directory as the HDI program file
(and that debugging platform will be selected automatically when HDI is loaded).

Rev. 2.0, 02/99, page 97 of 152

12.5.5 Configure Platform...

Launches a set-up dialog box specific to the selected debugging platform. Refer to the
debugging platform's user manual for more detail about the options available in the dialog box.

12.5.6 Overlay...

Launches the Overlay dialog box. When the overlay function is used, the target section group can
be selected in the dialog box.

12.6 Tools

The Tools menu selects and launches additional applications. The following three menu options
are always displayed, and the user may define their own tools (e.g. a find in file utility) which will
be displayed below the standard items.

12.6.1 Symbols...

Launches the Symbols dialog box allowing the user to manipulate the current program's
symbols (labels).

12.6.2 Evaluate...

Launches the Evaluate dialog box allowing the user to enter a numeric expression, e.g.
“(#pc + 205)*2”, and display the result in all currently supported radix.

12.7 Window

The Window menu modifies the display of currently open child windows. The following menu
options are always displayed, and a numbered list of current child windows will be appended - the
topmost child window will have a check mark.

12.7.1 Cascade

Arranges the child windows in the standard cascade manner, i.e. from the top left such
that the title bar of each child window is visible.

12.7.2 Tile

Arranges the child windows in the standard tile manner, i.e. sizes each window such that
all are displayed without overlapping.

Rev. 2.0, 02/99, page 98 of 152

12.7.3 Arrange Icons

Lines up any iconized windows neatly along the bottom of the parent frame in the
standard manner.

12.7.4 Close All

Closes all the child windows.

12.8 Help

The Help menu accesses additional information on how to use the functionality provided by HDI.

12.8.1 Index

Opens the main help file at the index.

12.8.2 Using Help

Opens a help file allowing the user to find out how to use Windows® hypertext help system.

12.8.3 Search for Help on

Opens the main help file and launches the Search dialog box allowing the user to enter and browse
through the file’s keywords.

12.8.4 About HDI

Launches the About HDI dialog box allowing the user to view the version of HDI and the
currently loaded DLLs.

Rev. 2.0, 02/99, page 99 of 152

Section 13 Windows

This section describes each child window type, the features that each window supports and the
options available through their associated pop-up menu.

13.1 Breakpoints

Figure 13.1 Breakpoints Window

Allows the user to view and control current breakpoints and to view the hardware breakpoint
resources. For more information regarding supported breakpoint types and resources, refer to the
Debugging Platform User’s Manual.

The functionality of the command buttons is identical to the pop-up menu options shown below;
while global enabling of breakpoints is only available using the check box in the window.

A pop-up menu containing the following options is available by right-clicking within the window.

13.1.1 Help

Launches the help file at the index for controlling breakpoints.

Rev. 2.0, 02/99, page 100 of 152

13.1.2 Add

Launches the Breakpoint/Event Properties dialog box allowing the user to enter a new breakpoint.
The dialog box is dependent on the debugging platform.

13.1.3 Edit

Only enabled if a breakpoint is selected. Launches the Breakpoint/Event Properties dialog box
allowing the user to modify the properties of an existing breakpoint. The dialog box is dependent
on the debugging platform.

13.1.4 Delete

Only enabled if a breakpoint is selected. Removes the selected breakpoint. To retain the details of
the breakpoint but not have it cause a break when its conditions are met, use the Disable option
(see section 13.1.6, Disable/Enable).

13.1.5 Delete All

Removes all breakpoints from the list.

13.1.6 Disable/Enable

Only enabled if a breakpoint is selected. Toggles the selected breakpoint between enabled and
disabled (when disabled, a breakpoint remains in the list, but does not cause a break when the
specified conditions are satisfied). When a breakpoint is enabled, a check mark is shown to the left
of the menu text (and an ‘x’ is shown in the Enable column for the breakpoint).

Rev. 2.0, 02/99, page 101 of 152

13.2 Command Line

Figure 13.2 Command Line Window

Allows the user to control the debugging platform by sending text-based commands instead of the
window menus and commands. It is useful if a series of predefined commands need to be sent to
the debugging platform by calling them from a batch file and, optionally, recording the output in a
log file. For information about the available commands, refer to the on-line help.

The functionality of the command buttons is identical to the pop-up menu options shown below.

13.2.1 Stop

Stops an executing batch file and returns control to the user.

13.2.2 Batch File

Launches the Run Batch File dialog box, allowing the user to enter the name of an HDI command
file (*.hdc).

Rev. 2.0, 02/99, page 102 of 152

13.2.3 Log File

Launches the Open Log File dialog box, allowing the user to enter the name of an HDI log file
(*.log). The logging option is automatically set and the name of the file shown on the window, e.g.
“ Logging to MANUAL.LOG”.

Opening a previous log file will ask the user if they wish to append or over-write the current log.

13.2.4 Logging

Toggles logging to file on and off. When logging is active, a check mark is shown to the left of the
menu text (and the check box in the window is set). Note that the contents of the log file cannot be
viewed until logging is completed, or temporarily disabled by clearing the check box. Re-enabling
logging will append to the log file.

13.3 I/O Registers

Figure 13.3 I/O Registers Window

Rev. 2.0, 02/99, page 103 of 152

Allows the user to view and control the user system hardware's on-chip peripherals. The
peripherals are organized by modules, and the level of displayed detail can be changed with a plus
indicating that the information may be expanded by double-clicking on the variable name, and a
minus indicating that the information may be collapsed.

A pop-up menu containing the following options is available by right-clicking within the window:

13.3.1 Copy

Only available if a block of text is highlighted. This copies the highlighted text into the
Windows® clipboard, allowing it to be pasted into other applications.

13.3.2 Edit...

Launches a dialog box to modify the selected register’s contents.

13.3.3 Expand/Collapse

Expands/collapses the selected module.

13.3.4 Help

Launches the help file.

13.4 Locals

Figure 13.4 Locals Window

Rev. 2.0, 02/99, page 104 of 152

Allows the user to view and modify the values of all the local variables. The contents of this
window are blank unless the current PC can be associated to a C/C++-source file via the
debugging information available in the absolute file (*.abs).

The variables are listed with a plus indicating that the information may be expanded by double-
clicking on the variable name, and a minus indicating that the information may be collapsed. For
more information on the display of information, refer to section 8.2.2, Expanding a Watch.

A pop-up menu containing the following options is available by right-clicking within the window:

13.4.1 Copy

Only available if a block of text is highlighted. This copies the highlighted text into the
Windows® clipboard, allowing it to be pasted into other applications.

13.4.2 Edit Value

Launches a dialog box to modify the selected variable’s value.

13.4.3 Radix

Changes the radix for the selected local variable display.

Rev. 2.0, 02/99, page 105 of 152

13.5 Memory Mapping

Figure 13.5 Memory Mapping Window

Allows the user to view and modify the debugging platform's memory map and to view its
memory configuration and resources. In some debugging platforms, the Memory Map dialog box
will open.

The functionality of the command buttons is basically the same as the pop-up menu options shown
below, but the pop-up menu options depend on the debugging platform.

13.5.1 Add

Launches the Edit Memory Mapping dialog box allowing the user to enter the details of a new
memory area to add to the map. Grayed if the debugging platform does not support editing of its
maps.

13.5.2 Change

Launches the Edit Memory Mapping dialog box allowing the user to modify the details of the
currently selected memory map. Grayed if the debugging platform does not support editing of its
maps.

Rev. 2.0, 02/99, page 106 of 152

13.5.3 Reset

Returns the map information to the debugging platform's default values. Grayed if the debugging
platform does not support editing of its maps.

13.5.4 Help

Launches the help file.

13.6 Memory

Figure 13.6 Memory Window

Allows the user to view and modify the contents of the debugging platform's memory. Memory
may be viewed in ASCII, byte, word, long word, single-precision floating-point, and double-
precision floating-point formats, and the title bar indicates the current view style and the address
shown as the offset from the previous label (symbol).

The contents of memory may be edited by either typing at the current cursor position, or by
double-clicking on a data item. The latter will launch the Edit dialog box, allowing the user to
enter a new value using an complex expression. If the data at that address cannot be modified (i.e.
within ROM) then the message "Invalid address value" is displayed.

Double-clicking within the Address column will launch the Set Address dialog box, allowing the
user to enter an address. Clicking the [OK] button will update the window so that the address
entered in the Set Address dialog box is the first address displayed in the top-left corner.

A pop-up menu containing the following options is available by right-clicking within the window:

Rev. 2.0, 02/99, page 107 of 152

13.6.1 Copy

Only available if a block of memory is highlighted. This copies the highlighted text
including the address into the Windows® clipboard, allowing it to be pasted into other applications.

13.6.2 Find

Launches the Find Memory dialog box, allowing the user to search a block of the debugging
platform’s memory for a specified data value. If a block of memory is highlighted, the start and
end fields in the dialog box will be filled automatically with the start and end addresses
corresponding to the highlighted block, respectively.

13.6.3 Fill

Launches the Fill Memory dialog box, allowing the user to fill a block of the debugging platform’s
memory with a specified value. The start and end fields may be set similarly to the Find option.

13.6.4 Move

Launches the Move Memory dialog box, allowing the user to copy a block of memory within the
debugging platform to another location within the same memory space. The blocks may overlap.
The start and end fields may be set similarly to the Find option.

13.6.5 Test

Launches the Test Memory dialog box, allowing the user to validate a block of memory within the
debugging platform. The details of the test depend on the debugging platform. The start and end
fields may be set similarly to the Find option.

13.6.6 Save

Launches the Save S-Record File dialog box, allowing the user to save a block of the debugging
platform’s memory to an S-record file (*.mot). The start and end fields may be set similarly to the
Find option.

13.6.7 Set Address

Launches the Set Address dialog box, allowing the user to enter a new start address. The window
will be updated so that this is the first address displayed in the top-left corner. When an
overloaded function or a class name is entered, the Select Function dialog box appears for you to
select a function.

Rev. 2.0, 02/99, page 108 of 152

13.6.8 ASCII/Byte/Word/Long/Single Float/Double Float

A check mark next to these six options indicates the current view format. The user may select a
different option to change to that format.

13.7 Performance Analysis

Figure 13.7 Performance Analysis Window

Allows the user to view and control the performance analysis data. The items displayed as default
cannot be deleted or modified by the user. The display contents and operation depend on the
debugging platform. See the supplied Debugging Platform User’s Manual for more information.
A pop-up menu containing the following options is available by right-clicking within the view
area:

13.7.1 Add Range

Launches the Add PA Range dialog box, allowing the user to add a new user range based on either
source lines or an address range. The name of the range can be edited.

13.7.2 Edit Range

Only enabled when the highlighting bar is on a user-defined range. Launches the Edit PA Range
dialog box, allowing the user to modify the range’s settings.

13.7.3 Delete Range

Only enabled when the highlighting bar is on a user-defined range. Deletes the range and
immediately recalculates the data for the other ranges.

13.7.4 Reset Counts/Times

Clears the current performance analysis data.

Rev. 2.0, 02/99, page 109 of 152

13.7.5 Delete All Ranges

Deletes all the current user-defined ranges, and clears the perform-ance analysis data.

13.7.6 Analysis Enabled

Toggles the collection of performance analysis data. When performance analysis is active, a check
mark is shown to the left of the text.

13.8 Program

The format of this window can be set to one of three different formats - source, mixed, and
assembly-language.

• The source format can be used to view any source file that was included within the absolute
(*.abs) file’s debug information - this may be C/C++, assembly-language, etc.

• The mixed format has a similar layout to the source format, but also displays the instructions
associated with each line of code. This is useful when stepping through a program at assembly
level.

• The assembly-language format has a different layout to the other two, with an additional
column Label which displays the symbol name (if available) for that address. Assembler
information is obtained by disassembling the memory contents, and may be edited or viewed
directly from memory without requiring debug information from the object file. (If there is no
associated source file, the window’s title is “Code”.)

Rev. 2.0, 02/99, page 110 of 152

Figure 13.8 Source Format

Figure 13.9 Assembly-Language Format

All formats support column-specific double-click actions:

• Address - Launches the Set Address dialog box, allowing the user to enter a new address. If the
address is within the range of this file, then the view will scroll such that the cursor can be
positioned correctly. If the address is in a different source file, then that file will be opened in a
new window with the cursor set to the specified address. Finally, if the address does not

Rev. 2.0, 02/99, page 111 of 152

correspond to a source file, then a new window will be opened in assembly-language format
and entitled ‘Code’. When an overloaded function or a class name is entered, the Select
Function dialog box appears for you to select a function.

• Break - Sets/clears a program (PC) breakpoint at that address.

• Code - (Assembly-language format only.) Launches the Assembler dialog box allowing the
user to modify the instruction at that address. Note that changes to the machine code do not
modify the source file, and any changes will be lost at the end of the session.

• Label - (Assembly-language format only.) Launches the Label dialog box, allowing the user to
enter a new label, or to clear or edit the name of an existing label.

• Assembler - (Assembly-language format only.) Launches the Assembler dialog box allowing
the user to modify the instruction at that address. Note that changes to the instruction do not
modify the source file, and any changes will be lost at the end of the session.

A pop-up menu containing the following options is available by right-clicking within the window:

13.8.1 Copy

Only available if a block of text is highlighted. This copies the highlighted text into the
Windows® clipboard, allowing it to be pasted into other applications.

13.8.2 Find

Launches the Find dialog box, allowing the user to search the source file for a string. It is
only available in the source view format.

13.8.3 Set Line

Launches the Set Line dialog box, allowing the user to display and move the text cursor (not the
mouse cursor) to a specific line. It is only available in the pure source view format.

13.8.4 Go To Cursor

Commences to execute the user code starting from the current PC address. The program
will continue to run until the PC reaches the address indicated by the text cursor (not the mouse
cursor) or another break condition is satisfied. Grayed if not supported by the debugging platform.

13.8.5 Set PC Here

Changes the value of the PC to the address indicated by the text cursor (not the mouse cursor).

Rev. 2.0, 02/99, page 112 of 152

13.8.6 Toggle Breakpoint

Sets/clears a software breakpoint at the address indicated by the text cursor (not the mouse cursor).
This is equivalent to double-clicking within the Break column. (Additional break point types may
be available depending on the selected debugging platform - in this case, the list will be cycled
through.)

13.8.7 Instant Watch

Only available in the source and mixed formats. Launches the Instant Watch dialog box with the
name extracted from the view at the current text cursor (not mouse cursor) position.

13.8.8 Add Watch

Only available in the source and mixed formats. Adds the name extracted from the view at the
current text cursor (not mouse cursor) position to the list of watched variables. If the Watch
window is not open, then it is opened and brought to the top of the child windows.

13.8.9 Source/Mixed/Assembler

A check mark next to these options indicates the current view format. The user may select a
different option to change to that format.

Rev. 2.0, 02/99, page 113 of 152

13.9 Registers

Figure 13.10 Registers Window

Allows the user to view and modify the current register values.

A pop-up menu containing the following options is available by right-clicking within the window:

13.9.1 Copy

Only available if a block of text is highlighted. This copies the highlighted text into the
Windows® clipboard, allowing it to be pasted into other applications.

13.9.2 Edit

Launches the Register dialog box, allowing the user to set the value of the register indicated by the
text cursor (not mouse cursor).

13.9.3 Toggle Bit

Only available if the text cursor is placed on a bit-field, e.g. a flag within a status register. Changes
the current state of the bit to its other state, e.g. a set overflow flag can be cleared.

Rev. 2.0, 02/99, page 114 of 152

13.10 System Status

Figure 13.11 System Status Window

Allows the user to view the current status of the debugging platform. The text consists of two
sections - a standard section (from Emulator to Cause of last break) and a debugging platform
dependent section. See the supplied Debugging Platform User’s Manual for more information
about the latter section.

A pop-up menu containing the following options is available by right-clicking within the window:

13.10.1 Update

Updates the displayed data.

13.10.2 Copy

Only available if a block of text is highlighted. This copies the highlighted text into the
Windows® clipboard, allowing it to be pasted into other applications.

Rev. 2.0, 02/99, page 115 of 152

13.10.3 Configure...

Launches a setup dialog box specific to the selected debugging platform. Refer to the

supplied Debugging Platform User’s Manual for more detail about the options available in the
dialog box.

13.11 Text

Figure 13.12 Text Window

Allows the user to view a text file, e.g. a log file or source code without debugging information
available. The window is read-only.

A pop-up menu containing the following options is available by right-clicking within the window:

13.11.1 Copy

Only available if a block of text is highlighted. This copies the highlighted text into the
Windows® clipboard, allowing it to be pasted into other applications.

Rev. 2.0, 02/99, page 116 of 152

13.11.2 Find

Launches the Find dialog box, allowing the user to search the text file for a string.

13.12 Trace

Figure 13.13 Trace Window

Allows the user to view the sequence of instructions leading up to the debugging platform’s
current status.

The functionality of the command buttons is identical to the pop-up menu options shown below.

13.12.1 Find

Launches the Trace Search dialog box, allowing the user to search the current trace buffer for a
specific trace record.

13.12.2 Find Next

If a find operation is successful, and the item found is non-unique, then this will move to the next
similar item.

Rev. 2.0, 02/99, page 117 of 152

13.12.3 Filter

Launches the Filter Trace dialog box, allowing the user to mask out all unnecessary trace entries.

13.12.4 Acquisition

Launches the Trace Acquisition dialog box, allowing the user to define the area of user code to be
traced. This is useful to focus tracing on problem areas.

13.12.5 Halt

Stops tracing data and updates the trace information without stopping execution of the user code.

13.12.6 Restart

Starts tracing data.

13.12.7 Snapshot

Updates the trace information to show the debugging platform’s current status without stopping
user code execution.

13.12.8 Clear

Empties the trace buffer in the debugging platform. If more than one trace window is open, all
trace windows will be cleared as they all access the same buffer.

13.12.9 Save

Launches the Save As file dialog box, allowing the user to save the contents of the trace buffer as
a text file. It is possible to define a numeric range based on the Cycle number or to save the
complete buffer (saving the complete buffer may take several minutes). Note that this file cannot
be reloaded into the trace buffer.

Rev. 2.0, 02/99, page 118 of 152

13.13 Watch

Figure 13.14 Watch Window

Allows the user to view and modify C/C++-source level variables. The contents of this window
are blank unless the current user code can be associated to a C/C++-source file via the debugging
information available in the absolute file (*.abs).

The variables are listed with a plus indicating that the information may be expanded by double-
clicking on the variable name, and a minus indicating that the information may be collapsed.

A pop-up menu containing the following options is available by right-clicking within the
windows:

13.13.1 Copy

Only available if a block of text is highlighted. This copies the highlighted text into the
Windows® clipboard, allowing it to be pasted into other applications.

13.13.2 Delete Watch

Removes the variable indicated by the text cursor (not the mouse cursor) from the Watch window.

13.13.3 Add Watch

Launches the Add Watch dialog box, allowing the user to enter a variable or expression to be
watched.

Rev. 2.0, 02/99, page 119 of 152

13.13.4 Edit Value

Launches the Edit Watch dialog box, allowing the user to change the variable’s value. Particular
care should be taken when the value of a pointer is changed as it may no longer point to valid data.

13.13.5 Radix

Modifies the radix for the selected watch item display.

Rev. 2.0, 02/99, page 120 of 152

Rev. 2.0, 02/99, page 121 of 152

Appendix A System Modules

The following section describes the architecture of the HDI debugging system.

HDI
graphical

user
interface

Target
DLL

CPU
DLL

Object
DLL

User code
(object file)

User
system

hardware

EmulatorMonitor Simulator

Debugging
platform

IO file

Figure A.1 HDI System Modules

In normal operation, the user code will be placed directly into the target hardware (for example as
an EPROM). HDI uses this information to provide a Windows®-based debugging system.

To decrease the learning curve when swapping between different debugging platforms and/or user
system hardware, HDI provides a single unified interface (the GUI) and a family of target specific
modules. Normally, the user will only interact with the standard GUI - once the appropriate target
module has been selected, the rest of the system configures itself automatically by loading the
appropriate modules.

Rev. 2.0, 02/99, page 122 of 152

Graphical User Interface

This is the main HDI.EXE program that runs under Windows®. It uses familiar Windows®

operations, with menus and windows to give a user-friendly view into the debugging system. The
GUI is the only contact between the user and the rest of the system, it processes commands and
provides the required information about the user code. It also provides the interface between the
module DLLs and the host file system, i.e., the PC.

Object DLL

When creating the user code, a compiler will generate an absolute object file. This file contains the
actual machine code and data that the microcomputer processes to execute the functions making
up the target application. In order to debug the user code as original source code, the compiler
must provide more information to the debugger. For this reason, nearly all compilers have a debug
option that puts all the information necessary for debugging your source code into the absolute
file, which is usually called a debug object file.

The object DLL extracts this information from the object file for display to the user. Since the
format of data is compiler dependent, more than one object DLL may be present in the HDI
directory - HDI will try each in turn until it finds one that can understand the object file’s format.

CPU DLL

The CPU DLL module contains information specific to the target microcomputer. For example, it
contains the number and types of registers available to the microcomputer. It also translates the
raw machine code in the target into more familiar assembly-language mnemonics displayed in the
Program window, and vice versa.

Target DLL

The target DLL informs HDI about the debugging platform’s capabilities and selects the correct
CPU DLL. Since some capabilities of the debugging platform cannot be generic (for example,
target configuration), the target DLL also includes extensions to the standard GUI to provide the
user with access to these capabilities.

For a detailed description of the features available using your target DLL, refer to the supplied
Debugging Platform User’s Manual.

Rev. 2.0, 02/99, page 123 of 152

Appendix B Command Line Interface

HDI Built-In Commands

The following is a list of the standard HDI built in commands.

!(COMMENT)

Abbreviation: none

Description:
Allows a comment to be entered, useful for documenting batch & log files.

Syntax:
! <text>

Parameter Type Description

<text> Text Output text

Example:
! Start of test routine Outputs comment ‘Start of test routine’ into the Command Line

window (and to the log file, if logging is active).

ACCESS

Abbreviation: AC

Description:
Sets or displays the illegal access handling.

Syntax:
access [<state>]

Parameter Type Description

none Displays the current setting

Keyword Action to be taken on illegal access

break Break emulation (default setting)

<state>

none No action

Illegal accesses are writes to protected areas during RUN, writes to internal ROM, or any access to
an unmapped area of memory.

Rev. 2.0, 02/99, page 124 of 152

Example:
ACCESS break Break on guarded/write-protected access. (default setting).
AC Displays current illegal access handing.
AC none Sets no action on an illegal access.

ANALYSIS

Abbreviation: AN

Description:
Enables/disables performance analysis. Counts are not automatically reset before running.

Syntax:
an [<state>]

Parameter Type Description

none Displays the analysis state

Keyword Enables/disables analysis

enable Enables analysis

disable Disables analysis

<state>

reset Resets analysis counts

Example:
ANALYSIS Displays analysis state.
AN enable Enables analysis.
AN disable Disables analysis.
AN reset Resets analysis counts.

Rev. 2.0, 02/99, page 125 of 152

ANALYSIS_RANGE

Abbreviation: AR

Description:
Sets performance analysis range, or displays performance analysis ranges if no parameters are
specified. The syntax depends on the debugging platform. See the supplied Debugging Platform
User’s Manual.

Syntax:
ar [<start> <end> [<name>]]

Parameter Type Description

none Displays all analysis ranges

<start> Numeric Start address of range

<end> Numeric End address of range

<name> String User range description

Example:
ANALYSIS_RANGE H’0 Defines a performance analysis range from address H'0 to H'100.
H’100
AR H’1000 H’3FFF Defines a performance analysis range from H'1000 to H'3FFF.
AR Displays the current analysis ranges set.

ANALYSIS_RANGE_DELETE

Abbreviation: AD

Description:
Deletes the specified performance analysis range, or all ranges if no parameters are specified (it
does not ask for confirmation).

Syntax:
ad [<index>]

Parameter Type Description

none Deletes all analysis ranges

<index> Numeric Index number of range to delete

Rev. 2.0, 02/99, page 126 of 152

Example:
ANALYSIS_RANGE Deletes the analysis range with index number 6 from the system.
_DELETE 6
AD Deletes all user defined analysis ranges.

ASSEMBLE

Abbreviation: AS

Description:
Assembles instructions into memory. In assembly mode, ‘.’ exits, ‘^’ steps back a byte, the
ENTER key steps forward a byte.

Syntax:
as <address>

Parameter Type Description

<address> Numeric Address at which to start assembling

Example:
AS H'1000 Starts assembling from H'1000.

ASSERT

Abbreviation: none

Description:
Checks if an expression is true or false. It can be used to terminate the batch file when the
expression is false. If the expression is false, an error is returned. This command can be used to
write test harnesses for subroutines.

Syntax:
assert <expression>

Parameter Type Description

<expression> Expression Expression to be checked

Example:
ASSERT #R0 == 0x100 Returns an error if R0 does not contain 0x100.

Rev. 2.0, 02/99, page 127 of 152

DISASSEMBLE

Abbreviation: DA

Description:
Disassembles memory contents to assembly-language code. Disassembly display is fully
symbolic.

Syntax:
da <address> [<length>]

Parameter Type Description

<address> Numeric Start address

<length> Numeric Number of instructions (optional, default = 16)

Example:
DISASSEMBLE H'100 5 Disassembles 5 lines of code starting at H'100.
DA H'3E00 20 Disassembles 20 lines of code starting at H'3E00.

ERASE

Abbreviation: ER

Description:
Clears the Command Line window

Syntax:
er

Parameter Type Description

none Clears the Command Line window

Example:
ER Clears the Command Line window.

Rev. 2.0, 02/99, page 128 of 152

EVALUATE

Abbreviation: EV

Description:
Provides a calculator function, evaluating simple and complex expressions, with parentheses,
mixed radices, and symbols. All operators have the same precedence but parentheses may be used
to change the order of evaluation. The operators have the same meaning as in C/C++. Expressions
can also be used in any command where a number is required, but they cannot contain spaces
since these are used to separate parameters. Register names may be used, but must always be
prefixed by the ‘#’ character. The result is displayed in hexadecimal, decimal, octal, or binary.

Note: It is not possible to evaluate expressions containing C/C++ variable, structure, or array
references.

Syntax:
ev <expression>

Parameter Type Description

<expression> Expression Expression to be evaluated

Valid operators:

&& logical AND || logical OR << left arithmetic
shift

>> right arithmetic
shift

+ addition - subtraction * multiplication / division

% modulo | bitwise OR & bitwise AND ~ bitwise NOT

^ bitwise exclusive
OR

! logical NOT == equal to != unequal to

> greater than < less than >= greater than or
equal to

<= less than or equal
to

Example:
EV H'123 + (D'73 | B'10) Result: H'16E D'366 O'556 B'00000000;00000000;00000001;

01101110
EV #R2H * #R2L Result: H'121 D'289 O'441 B'00000000;00000000;00000001;

00100001

Rev. 2.0, 02/99, page 129 of 152

FILE_LOAD

Abbreviation: FL

Description:
Loads an object code file to memory with, or without, the specified offset. Existing symbols are
cleared, but the new ones will override any existing ones with the same names. If an offset is
specified this will be added to the symbols. The file extension default is .MOT.

Syntax:
fl <filename> [<offset>] [<state>]

Parameter Type Description

<filename> String File name

<offset> Numeric Offset to be added to load address (optional, default = 0)

Keyword Verify flag (optional, default = V)

V Verify

<state>

N No verify

Example:
FILE_LOAD Loads S-record file “testfile.a22”.
A:\\BINARY\\TESTFILE.A22
FL ANOTHER.MOT H'200 Loads Motorola S-record file “another.mot” with an offset of

H'200 bytes.

FILE_SAVE

Abbreviation: FS

Description:
Saves memory area to a file. The data is saved in Motorola S-record format. The user is warned if
about to overwrite an existing file.
The file extension default is .MOT. Symbols are not automatically saved.

Syntax:
fs <filename> <start> <end>

Parameter Type Description

<filename> String File name

<start> Numeric Start address

<end> Numeric End address

Rev. 2.0, 02/99, page 130 of 152

Example:
FILE_SAVE TESTFILE.MOT Saves address range H’0-H'2013 as Motorola S-record file
H'0 H'2013 “TESTFILE.MOT”.
FS D:\\USER\\ANOTHER.A22 Saves address range H'4000-H'4FFF as S-record format file
H'4000 H'4FFF “ANOTHER.A22”.

FILE_VERIFY

Abbreviation: FV

Description:
Verifies file contents against memory. The file data must be in a Motorola S-record format. The
file extension default is .MOT.

Syntax:
fv <filename> [<offset>]

Parameter Type Description

<filename> String File name

<offset> Numeric Offset to be added to file address (optional, default = 0)

Example:
FILE_VERIFY Verifies S-record file “TEST.A22” against memory.
A:\\BINARY\\TEST.A22
FV ANOTHER 200 Verifies Motorola S-record file “ANOTHER.MOT” against

memory with an offset of H'200 bytes.

Rev. 2.0, 02/99, page 131 of 152

GO

Abbreviation: GO

Description:
Runs object code (the user program).
While the user program is running, only the Performance Analysis window is updated.
When execution stops, the register values and reason for break are displayed.

Syntax:
go [<state>] [<address>]

Parameter Type Description

Keyword Specifies whether or not to continue command processing during
program execution (optional, default = wait)

wait Causes command processing to wait until program stops

<state>

continue Continues command processing during execution

<address> Numeric Start address for PC (optional, default = PC value)

Wait is the default and this causes command processing to wait until program stops running.
Continue allows you to continue to enter commands (but they may not work depending on the
facilities of the debugging platform).

Example:
GO Runs the user program from the current PC value (does not

continue command processing).
GO CONTINUE H'1000 Runs the user program from H'1000 (continues command

processing).

Rev. 2.0, 02/99, page 132 of 152

GO_RESET

Abbreviation: GR

Description:
Runs the user program starting at the address specified in the reset vector.
While the user program is running, only the Performance Analysis window is updated.

Syntax:
gr [<state>]

Parameter Type Description

Keyword Specifies whether or not to continue command processing during
program execution (optional, default = wait)

wait Causes command processing to wait until program stops

<state>

continue Continues command processing during execution

Wait is the default and this causes command processing to wait until program stops running.
Continue allows you to continue to enter commands (but they may not work depending on the
facilities of the debugging platform)

Example:
GR Runs the user program starting at the address specified in the

reset vector (does not continue command processing).

Rev. 2.0, 02/99, page 133 of 152

GO_TILL

Abbreviation: GT

Description:
Runs the debugging platform program from the current PC with temporary breakpoints. This
command takes multiple addresses as parameters, and these are used to set temporary PC
breakpoints (these breakpoints only exist for the duration of the command).

Syntax:
gt [<state>] <address>...

Parameter Type Description

Keyword Specifies whether or not to continue command processing during
program execution (optional, default = wait)

wait Causes command processing to wait until program stops

<state>

continue Continues command processing during execution

<address>... Numeric Temporary breakpoint address (list)

Wait is the default and this causes command processing to wait until program stops running
Continue allows you to continue to enter commands (but they may not work depending on the
facilities of the debugging platform)

Example:
GO_TILL H'1000 Runs emulation until the PC reaches address H'1000.

HALT

Abbreviation: HA

Description:
Halts the user program (can be used after a “go continue” command).

Syntax:
ha

Parameter Type Description

none Halts the user program

Example:
HA Halts the user program.

Rev. 2.0, 02/99, page 134 of 152

HELP

Abbreviation: HE

Description:
Opens a window displaying the help file.
For context sensitive help, the F1 key should be pressed. Help on a particular command can be
retrieved by entering HELP or HE followed by the command name at the command line.

Syntax:
he [<command>]

Parameter Type Description

none Displays the contents of the help

<command> String Displays the help for the specified command

Example:
HE Displays the contents of the help.
HE GO Displays help for the GO command.

INITIALISE

Abbreviation: IN

Description:
Initializes HDI (including debugging platform) and the user system (as if you had reselected the
target DLL). All breakpoints, memory mapping, etc. are reset.

Syntax:
in

Parameter Type Description

none Initialized HDI

Example:
IN Initializes HDI.

Rev. 2.0, 02/99, page 135 of 152

INTERRUPTS

Abbreviation: IR

Description:
Enables or disables interrupts or sets the interrupt priority level of the CPU. This command
operates by changing the CPU status register (SR or CCR).

Note: Some debugging platforms do not support this command.

Syntax:
ir [<state>|<level>]

Parameter Type Description

none Displays the current interrupt state

Keyword Enables or disables interrupts

enable Enables interrupts

<state>

disable Disables interrupts

<level> Numeric Sets the interrupt priority level

Example:
IR Displays the CPU interrupt status
IR ENABLE Enables all interrupts
IR DISABLE Disables all interrupts (except NMI).
IR 5 Sets interrupt priority level 5.

Rev. 2.0, 02/99, page 136 of 152

LOG

Abbreviation: LO

Description:
Controls logging of command output to file. If no parameters are specified, logging status is
displayed. If an existing file is specified, you will be warned; if you answer 'No', data will be
appended to the existing file, otherwise the file will be truncated. Logging is only supported for
the command line interface.

Syntax:
lo [<state>|<filename>]

Parameter Type Description

none Displays logging status

Keyword Starts or suspends logging

+ Starts logging

<state>

- Suspends logging

<filename> Numeric Specifies the logging output file

Example:
LOG TEST Logs the output to the list box in file TEST.
LO - Suspends logging.
LOG + Resumes logging.
LOG Displays logging status

MAP_DISPLAY

Abbreviation: MA

Description:
Displays memory mapping.

Syntax:
ma

Parameter Type Description

none Displays the current memory mapping

Example:
MA Displays the current memory mapping.

Rev. 2.0, 02/99, page 137 of 152

MEMORY_DISPLAY

Abbreviation: MD

Description:
Displays memory contents.

Syntax:
md <address> [<length>] [<mode>]

Parameter Type Description

<address> Numeric Start address

<length> Numeric Length (optional, default = H'100 bytes)

Keyword Display format (optional, default = byte)

byte Displays as bytes

word Displays as words (2 bytes)

long Displays as long words (4 bytes)

ascii Displays as ASCII

single Displays as single-precision floating-point

<mode>

double Displays as double-precision floating-point

Example:
MEMORY_DISPLAY Dumps H'100 bytes of memory starting at H'C000 in the word
H'C000 H'100 WORD format.
MEMORY_DISPLAY Dumps H'FF bytes of memory starting at H'1000 in the byte
H'1000 H'FF format

Rev. 2.0, 02/99, page 138 of 152

MEMORY_EDIT

Abbreviation: ME

Description:
Allows memory contents to be modified. When editing memory the current location may be
modified in a similar way to that described in the ASSEMBLE command description.
When editing, ‘.’ exits edit mode, ‘^’ goes back a unit, and blank line goes forward without
change.

Syntax:
me <address> [<mode>] [<state>]

Parameter Type Description

<address> Numeric Address to edit

Keyword Format (optional, default = byte)

byte Edits as bytes

word Edits as words

long Edits as long words

ascii Edits as ASCII

single Edits as single-precision floating-point

<mode>

double Edits as double-precision floating-point

Keyword Verify flag (optional, default = V)

V Verify

<state>

N No verify

Example:
ME H'1000 WORD Modifies memory contents as words starting from H'1000 (with

verification)

Rev. 2.0, 02/99, page 139 of 152

MEMORY_FILL

Abbreviation: MF

Description:
Fills an area of memory.

Syntax:
mf <start> <end> <data> [<mode>] [<state>]

Parameter Type Description

<start> Numeric Start address

<end> Numeric End address

<data> Numeric Data value

Keyword Data size (optional, default = byte)

byte Byte

word Word

long Long word

single Single-precision floating-point

<mode>

double Double-precision floating-point

Keyword Verify flag (optional, default = V)

V Verify

<state>

N No verify

Example:

MEMORY_FILL H'C000 Fills memory from H'C000 to H'C0FF with word data H'55AA.
H'C0FF H'55AA WORD
MF H'5000 H'7FFF H'21 Fills memory from H'5000 to H'7FFF with data H'21.

Rev. 2.0, 02/99, page 140 of 152

MEMORY_MOVE

Abbreviation: MV

Description:
Moves memory.

Syntax:
mv <start> <end> <dest> [<state>]

Parameter Type Description

<start> Numeric Source start address

<end> Numeric Source end address (including this address)

<dest> Numeric Destination start address

Keyword Verify flag (optional, default = V)

V Verify

<state>

N No verify

Example:
MEMORY_MOVE H'1000 Copies area H'1000-H'1FFF to H'2000.
H'1FFF H'2000
MV H'FB80 H'FF7F H'3000 Moves area H'FB80-H'FF7F to H'3000.

MEMORY_TEST

Abbreviation: MT

Description:
A full read/write/verify test is performed on the address range specified, destroying the original
contents. The test will access the memory according to the map settings.

Syntax:
mt <start> <end>

Parameter Type Description

<start> Numeric Start address

<end> Numeric End address (inclusive)

Example:
MEMORY_TEST H'8000 Tests from H’8000 to H'BFFF.
H'BFFF

Rev. 2.0, 02/99, page 141 of 152

MT H'4000 H'5000 Tests integrity from H'4000 to H'5000.

QUIT

Abbreviation: QU

Description:
Exits HDI. Closes log file if open.

Syntax:
qu

Parameter Type Description

none Exits HDI

Example:
QU Exits HDI.

RADIX

Abbreviation: RA

Description:
Sets default input radix. If no parameters are specified, the current radix is displayed. Radix can be
changed by using B'/H'/D'/O' before numeric data.

Syntax:
ra [<mode>]

Parameter Type Description

none Displays current radix

Keyword Sets radix to specified type

H Sets radix to hexadecimal

D Sets radix to decimal

O Sets radix to octal

<mode>

B Sets radix to binary

Example:
RADIX Displays the current radix.
RA H Sets the radix to hexadecimal.

Rev. 2.0, 02/99, page 142 of 152

REGISTER_DISPLAY

Abbreviation: RD

Description:
Displays CPU register values.

Syntax:
rd

Parameter Type Description

none Displays all register values

Example:
RD Displays all register values.

REGISTER_SET

Abbreviation: RS

Description:
Changes the contents of a register.

Syntax:
rs <register> <value> <mode>

Parameter Type Description

<register> Keyword Register name

<value> Numeric Register value

Keyword Data size (default = register size)

byte Byte

word Word

long Long word

single Single-precision floating-point

<mode>

double Double-precision floating-point

Example:
RS PC _StartUp Sets the program counter to the address defined by the symbol

_StartUp
RS R0 H'1234 WORD Sets word data H'1234 to R0.

Rev. 2.0, 02/99, page 143 of 152

RESET

Abbreviation: RE

Description:
Resets the microprocessor. All register values are set to the initial state for the device. Memory
mapping and breakpoints are not affected.

Syntax:
re

Parameter Type Description

none Resets the microprocessor

Example:
RE Resets the microprocessor.

SLEEP

Abbreviation: none

Description:
Delays command execution for a specified number of milliseconds.

Syntax:
sleep <milliseconds>

Parameter Type Description

< milliseconds > Numeric Delayed time (millisecond)

Default radix (it is not always decimal) is used, if you do not specify D'.

Example:
SLEEP D'9000 Delays for 9 seconds.

Rev. 2.0, 02/99, page 144 of 152

STEP

Abbreviation: ST

Description:
Single-step (source line or instruction) execution.
Performs a specified number of instructions, from current PC.
Default is stepping by lines if source debugging is available. Count default is 1.

Syntax:
st [<mode>] [<count>]

Parameter Type Description

Keyword Type of stepping (optional)

instruction Steps by assembly instruction

<mode>

line Steps by source code line

<count> Numeric Number of steps (optional, default = 1)

Example:
STEP 9 Steps code for 9 steps.

STEP_OUT

Abbreviation: SP

Description:
Step the program out of the current function. (i.e., a step up). This works for both assembly-
language and source level debugging.

Syntax:
sp

Parameter Type Description

none Steps the program out of the current function

Example:
SP Steps the program out of the current function.

Rev. 2.0, 02/99, page 145 of 152

STEP_OVER

Abbreviation: SO

Description:
Step-over (function call, source line or instruction) execution.
Performs a specified number of instructions, from current PC.
This command differs from STEP in that it does not perform single-step operation in subroutines
or interrupt routines. These are executed at full speed.

Syntax:
so [<mode>] [<count>]

Parameter Type Description

Keyword Type of stepping (optional)

instruction Steps by assembly instruction

<mode>

line Step by source code line

<count> Numeric Number of steps (optional, default = 1)

Example:
SO Steps over 1-step code.

STEP_RATE

Abbreviation: SR

Description:
Controls the speed of stepping in the STEP and STEP_OVER commands. A rate of 6 causes the
fastest stepping. A value of 1 is the slowest.

Syntax:
sr <rate>Sets step rate (1-6), 6 = fastest

Parameter Type Description

none Displays the step rate

<rate> Numeric Step rate 1 to 6 (6 = fastest)

Example:
SR Displays the current step rate.
SR 6 Specifies the fastest step rate.

Rev. 2.0, 02/99, page 146 of 152

SUBMIT

Abbreviation: SU

Description:
Executes a file of commands. Nested submit files are permitted. Any error aborts the file. The
[stop] button terminates the process.

Syntax:
su <filename>

Parameter Type Description

<filename> String File name

Example:
SUBMIT COMMAND.HDC Processes the file COMMAND.UDC.
SU A:SETUP.TXT Processes the file SETUP.TXT on drive A:.

SYMBOL_ADD

Abbreviation: SA

Description:
Adds a symbol, or changes an existing one.

Syntax:
sa <symbol> <value>

Parameter Type Description

<symbol> String Symbol name

<value> Numeric Value

Example:
SYMBOL_ADD start H'1000 Defines start to be H'1000.
SA END_OF_TABLE 1000 Defines END_OF_TABLE to be 1000 using current default

radix.

Rev. 2.0, 02/99, page 147 of 152

SYMBOL_CLEAR

Abbreviation: SC

Description:
Deletes a symbol. If no parameters are specified, deletes all symbols (after confirmation).

Syntax:
sc [<symbol>]

Parameter Type Description

none Deletes all symbols

<symbol> String Symbol name

Example:
SYMBOL_CLEAR Deletes all symbols (after confirmation).
SC start Deletes the symbol ‘start’.

SYMBOL_LOAD

Abbreviation: SL

Description:
Loads symbols from file. File must be in XLINK Pentica-b format (i.e. ‘XXXXH name’). The
symbols are added to the existing symbol table. The symbol file extension default is .SYM.

Syntax:
sl <filename>

Parameter Type Description

<filename> String File name

Example:
SYMBOL_LOAD TEST.SYM Loads the file TEST.SYM.
SL MY_CODE.SYM Loads the file MY_CODE.SYM.

Rev. 2.0, 02/99, page 148 of 152

SYMBOL_SAVE

Abbreviation: SS

Description:
Saves symbols to a file in XLINK Pentica-b format. The symbol file extension default is .SYM. If
the file name already exists, then a prompt to overwrite the file is displayed.

Syntax:
ss <filename>

Parameter Type Description

<filename> String File name

Example:
SYMBOL_SAVE TEST Saves symbol table to TEST.SYM.
SS MY_CODE.SYM Saves the symbol table to MY_CODE.SYM.

SYMBOL_VIEW

Abbreviation: SV

Description:
Displays all defined symbols, or those containing the case sensitive string pattern.

Syntax:
sv [<pattern>]

Parameter Type Description

none Displays all symbols

<pattern> String Displays the symbols including the specified string pattern

Example:
SYMBOL_VIEW BUFFER Displays all symbols containing the word BUFFER.
SV Displays all the symbols.

Rev. 2.0, 02/99, page 149 of 152

TRACE

Abbreviation: TR

Description:
Displays the trace buffer contents. If no trace delay is set, the last (most recently executed) cycle
in the buffer is 0, and older cycles have negative values. If trace delay is set, the cycle on which
the level 1 breakpoint occurred will be 0 and the most recent cycle will have the trace delay value.

Syntax:
tr [<start rec> [<count>]]

Parameter Type Description

<start rec> Numeric Offset (optional, default = most recent cycle - 9)

<count> Numeric Count (optional, default - 10)

Example:
TR -10 5 Displays five lines of trace buffer contents starting from cycle -

10.

Rev. 2.0, 02/99, page 150 of 152

Debugging Platform-Specific Commands

The following lists the debugging platform-specific commands - typically for breakpoints, tracing,
memory mapping, and configuration. Refer to the supplied Debugging Platform User’s Manual
for details.

ANALYSIS_RANGE
BREAKPOINT
BREAKPOINT_CLEAR
BREAKPOINT_DISPLAY
BREAKPOINT_ENABLE
BREAKPOINT_SEQUENCE
BREAK_ACCESS
BREAK_CLEAR
BREAK_DATA
BREAK_DISPLAY
BREAK_ENABLE
BREAK_REGISTER
BREAK_SEQUENCE
CLOCK
DEVICE_TYPE
MAP_SET
MODE
REFRESH
TEST_EMULATOR
TIMER
TRACE_ACQUISITION
TRACE_COMPARE
TRACE_SAVE
TRACE_SEARCH
USER_SIGNAL

Rev. 2.0, 02/99, page 151 of 152

Appendix C Command Line Summary Chart

Long name Short name Description
! - Comment
ACCESS AC Sets action on illegal access
ANALYSIS AN Enables or disables performance analysis
ANALYSIS_RANGE AR Sets or displays performance analysis ranges
ANALYSIS_RANGE_DELETE AD Deletes a performance analysis range
ASSEMBLE AS Assembles instructions into memory
ASSERT - Checks if an expression is true or false
BREAKPOINT BP Sets a breakpoint
BREAKPOINT_CLEAR BC Clears a breakpoint or all breakpoints
BREAKPOINT_DISPLAY BD Displays breakpoints
BREAKPOINT_ENABLE BE Enables or disables one or all breakpoints
BREAKPOINT_SEQUENCE BS Defines the events which arm or reset an event
BREAK_ACCESS BA Sets a memory range access as a breakpoint
BREAK_CLEAR BC Deletes a breakpoint
BREAK_DATA BD Sets a memory data value as a break condition
BREAK_DISPLAY BI Displays breakpoints
BREAK_ENABLE BE Enables or disables one or all breakpoints
BREAK_REGISTER BR Sets a register value as a break condition
BREAK_SEQUENCE BS Sets sequential breakpoints
CLOCK CK Sets emulator CPU clock rate
DEVICE_TYPE DE Selects device type to emulate
DISASSEMBLE DA Disassembles memory contents
ERASE ER Clears the Command Line window
EVALUATE EV Evaluates an expression
FILE_LOAD FL Loads an object (program) file
FILE_SAVE FS Saves memory to a file
FILE_VERIFY FV Verifies file contents against memory
GO GO Runs program
GO_RESET GR Runs program from reset
GO_TILL GT Runs program until temporary breakpoint
HALT HA Halts program
HELP HE Gets help for command line or help on a

command
INITIALISE IN Initializes HDI and debugging platform system
INTERRUPTS IR Enables or disables debugging platform

system interrupts
LOG LO Controls command output logging
MAP_DISPLAY MA Displays memory mapping
MAP_SET MS Sets up memory mapping

Rev. 2.0, 02/99, page 152 of 152

Long name Short name Description
MEMORY_DISPLAY MD Displays memory contents
MEMORY_EDIT ME Modifies memory contents
MEMORY_FILL MF Fills a memory area
MEMORY_MOVE MV Moves a block of memory
MEMORY_TEST MT Tests a block of memory
MODE MO Sets or displays CPU mode
QUIT QU Exits HDI
RADIX RA Sets default input radix
REFRESH RF Refreshes memory-related window contents
REGISTER_DISPLAY RD Displays CPU register values
REGISTER_SET RS Changes CPU register contents
RESET RE Resets CPU
SLEEP - Delays command execution.
STEP ST Steps program (by instructions or source lines)
STEP_OUT SP Steps out of the current function
STEP_OVER SO Steps program, not stepping into functions
STEP_RATE SR Sets rate of stepping
SUBMIT SU Executes a file of commands
SYMBOL_ADD SA Defines a symbol
SYMBOL_CLEAR SC Deletes a symbol or all symbols
SYMBOL_LOAD SL Loads symbols from a file
SYMBOL_SAVE SS Saves symbols to a file
SYMBOL_VIEW SV Displays symbols
TEST_EMULATOR TE Tests emulator hardware
TIMER TI Sets or displays the timer resolution
TRACE TR Displays trace buffer contents
TRACE ACQUISITION TA Sets or displays trace acquisition parameters
TRACE_COMPARE TC Compares a saved trace file with the current

trace data
TRACE_SAVE TV Saves the trace data to a file in binary format
TRACE_SEARCH TS Searches trace data
USER_SIGNALS US Enables or disables user signals (NMI, Reset,

etc.)

Hitachi Debugging Interface User’s Manual

Publication Date: 1st Edition, November 1997
2nd Edition, February 1999

Published by: Electronic Devices Sales & Marketing Group
 Semiconductor & Integrated Circuits Group
 Hitachi, Ltd.
Edited by: Technical Documentation Group

UL Media Co., Ltd.
Copyright © Hitachi, Ltd., 1997. All rights reserved. Printed in Japan.

	Cover
	Cautions
	IMPORTANT INFORMATION
	Preface
	Contents
	Section 1 Introduction
	1.1 Key Features

	Section 2 System Overview
	2.1 User Interface
	2.1.1 Menu Bar
	2.1.2 Toolbar
	2.1.3 Status Bar
	2.1.4 Pop-Up Menus

	2.2 Data Entry
	2.2.1 Operators
	2.2.2 Data Formats
	2.2.3 Precision
	2.2.4 Expression Examples
	2.2.5 Symbol Format
	2.2.6 Symbol Examples

	2.3 Help
	2.3.1 Context Sensitive Help

	Section 3 Preparing to Debug
	3.1 Compiling for Debug
	3.2 Selecting a Debugging Platform
	3.3 Configuring the Debugging Platform
	3.3.1 Setup
	3.3.2 Mapping
	3.3.3 Status

	3.4 Downloading a Program
	3.4.1 Selecting a File Type
	3.4.2 Setting a File Path Name

	Section 4 Looking at Your Program
	4.1 Viewing the Code
	4.1.1 Viewing Assembly-Language Code
	4.1.2 Modifying Assembly-Language Code
	4.1.3 Displaying Source Code
	4.1.4 Displaying Mixed Code

	4.2 Looking at Symbols
	4.2.1 Listing Symbols
	4.2.2 Finding a Symbol
	4.2.3 Finding Again
	4.2.4 Adding Symbols
	4.2.5 Adding a Symbol from the Program Window
	4.2.6 Modifying Symbols
	4.2.7 Deleting Symbols
	4.2.8 Deleting All Symbols
	4.2.9 Loading a Symbol File
	4.2.10 Saving a Symbol File
	4.2.11 Symbol File Format

	4.3 Looking at a Specific Address
	4.3.1 Looking at the Current Program Counter Address

	4.4 Finding Text
	4.5 Looking at a Text File
	4.5.1 Opening a Text Window
	4.5.2 Copying Text
	4.5.3 Finding Text

	Section 5 Working with Memory
	5.1 Looking at an Area of Memory
	5.1.1 Displaying Memory as Bytes
	5.1.2 Displaying Memory as Words
	5.1.3 Displaying Memory as Long words
	5.1.4 Displaying Memory as Single-Precision Floating Point
	5.1.5 Displaying Memory as Double-Precision Floating Point
	5.1.6 Displaying Memory as ASCII
	5.1.7 Looking at a Different Area of Memory

	5.2 Modifying Memory Contents
	5.2.1 Quick Edit
	5.2.2 Full Edit

	5.3 Finding a Value in Memory
	5.4 Filling an Area of Memory with a Value
	5.4.1 Selecting a Memory Range
	5.4.2 Filling the Range

	5.5 Moving an Area of Memory
	5.6 Testing an Area of Memory
	5.7 Saving an Area of Memory
	5.8 Loading an Area of Memory
	5.9 Verifying an Area of Memory

	Section 6 Executing Your Program
	6.1 Running from Reset
	6.2 Continuing Run
	6.3 Running to the Cursor
	6.4 Running to Several Points
	6.5 Single Step
	6.5.1 Stepping Into a Function
	6.5.2 Stepping Over a Function Call

	6.6 Stepping Out of a Function
	6.7 Multiple Steps

	Section 7 Stopping Your Program
	7.1 Halting Execution
	7.2 Program Breakpoints (PC Breakpoints)
	7.2.1 Clearing Program Breakpoints (PC Breakpoints)

	7.3 The Breakpoints Window
	7.3.1 Adding a Breakpoint
	7.3.2 Modifying a Breakpoint
	7.3.3 Deleting a Breakpoint
	7.3.4 Deleting All Breakpoints

	7.4 Disabling Breakpoints
	7.4.1 Disabling a Breakpoint
	7.4.2 Enabling a Breakpoint

	7.5 Temporary Breakpoints
	7.6 Hardware Breakpoints(Event)

	Section 8 Looking at Variables
	8.1 Instant Watch
	8.2 Using Watch Items
	8.2.1 Adding a Watch
	8.2.2 Expanding a Watch
	8.2.3 Modifying Radix for Watch Item Display
	8.2.4 Changing a Watch Item’s Value
	8.2.5 Deleting a Watch

	8.3 Looking at Local Variables
	8.4 Looking at Registers
	8.4.1 Modifying Register Contents
	8.4.2 Using Register Contents

	8.5 Looking at I/O
	8.5.1 Opening an I/O Registers Window
	8.5.2 Expanding an I/O Register Display
	8.5.3 Modifying I/O Register Contents
	8.5.4 I/O Register Files

	Section 9 Overlay Function
	9.1 Displaying Section Group
	9.2 Setting Section Group

	Section 10 Selecting Functions
	10.1 Displaying Functions
	10.2 Specifying Functions
	10.2.1 Selecting a Function
	10.2.2 Deleting a Function
	10.2.3 Setting a Function

	Section 11 Configuring the User Interface
	11.1 Arranging Windows
	11.1.1 Minimizing Windows
	11.1.2 Arranging Icons
	11.1.3 Tiling Windows
	11.1.4 Cascading Windows

	11.2 Locating Currently Open Windows
	11.2.1 Locating the Next Window
	11.2.2 Locating a Specific Window

	11.3 Enabling/Disabling the Status Bar
	11.4 Enabling/Disabling the Toolbar
	11.5 Customizing the Toolbar
	11.5.1 Button Categories
	11.5.2 Adding a Button to the Toolbar
	11.5.3 Positioning a Button in the Toolbar
	11.5.4 Removing a Button from the Toolbar

	11.6 Customizing the Fonts
	11.7 Saving a Session
	11.8 Loading a Session
	11.9 Setting HDI Options
	11.10 Setting the Default Radix

	Section 12 Menus
	12.1 File
	12.1.1 Load Program...
	12.1.2 Save Memory...
	12.1.3 Verify Memory...
	12.1.4 Save Session
	12.1.5 Load Session...
	12.1.6 Save Session As...
	12.1.7 Initialise
	12.1.8 Exit

	12.2 Edit
	12.2.1 Cut
	12.2.2 Copy
	12.2.3 Paste
	12.2.4 Find
	12.2.5 Set Line
	12.2.6 Fill Memory...
	12.2.7 Move Memory...
	12.2.8 Test Memory...
	12.2.9 Update Memory

	12.3 View
	12.3.1 Toolbar
	12.3.2 Status Bar
	12.3.3 Breakpoint Window
	12.3.4 Command Line Window
	12.3.5 I/O Register Window
	12.3.6 Local Variable Window
	12.3.7 Memory Mapping Window
	12.3.8 Memory Window...
	12.3.9 Performance Analysis Window
	12.3.10 Program Window...
	12.3.11 Register Window
	12.3.12 Status Window
	12.3.13 Text Window...
	12.3.14 Trace Window
	12.3.15 Watch Window

	12.4 Run
	12.4.1 Go
	12.4.2 Go Reset
	12.4.3 Go To Cursor
	12.4.4 Run...
	12.4.5 Step In
	12.4.6 Step Over
	12.4.7 Step Out
	12.4.8 Step...
	12.4.9 Halt Program
	12.4.10 Set PC to Cursor
	12.4.11 Reset CPU

	12.5 Setup
	12.5.1 Options...
	12.5.2 Radix
	12.5.3 Customise
	12.5.4 Select Platform...
	12.5.5 Configure Platform...
	12.5.6 Overlay...

	12.6 Tools
	12.6.1 Symbols...
	12.6.2 Evaluate...

	12.7 Window
	12.7.1 Cascade
	12.7.2 Tile
	12.7.3 Arrange Icons
	12.7.4 Close All

	12.8 Help
	12.8.1 Index
	12.8.2 Using Help
	12.8.3 Search for Help on
	12.8.4 About HDI

	Section 13 Windows
	13.1 Breakpoints
	13.1.1 Help
	13.1.2 Add
	13.1.3 Edit
	13.1.4 Delete
	13.1.5 Delete All
	13.1.6 Disable/Enable

	13.2 Command Line
	13.2.1 Stop
	13.2.2 Batch File
	13.2.3 Log File
	13.2.4 Logging

	13.3 I/O Registers
	13.3.1 Copy
	13.3.2 Edit...
	13.3.3 Expand/Collapse
	13.3.4 Help

	13.4 Locals
	13.4.1 Copy
	13.4.2 Edit Value
	13.4.3 Radix

	13.5 Memory Mapping
	13.5.1 Add
	13.5.2 Change
	13.5.3 Reset
	13.5.4 Help

	13.6 Memory
	13.6.1 Copy
	13.6.2 Find
	13.6.3 Fill
	13.6.4 Move
	13.6.5 Test
	13.6.6 Save
	13.6.7 Set Address
	13.6.8 ASCII/Byte/Word/Long/Single Float/Double Float

	13.7 Performance Analysis
	13.7.1 Add Range
	13.7.2 Edit Range
	13.7.3 Delete Range
	13.7.4 Reset Counts/Times
	13.7.5 Delete All Ranges
	13.7.6 Analysis Enabled

	13.8 Program
	13.8.1 Copy
	13.8.2 Find
	13.8.3 Set Line
	13.8.4 Go To Cursor
	13.8.5 Set PC Here
	13.8.6 Toggle Breakpoint
	13.8.7 Instant Watch
	13.8.8 Add Watch
	13.8.9 Source/Mixed/Assembler

	13.9 Registers
	13.9.1 Copy
	13.9.2 Edit
	13.9.3 Toggle Bit

	13.10 System Status
	13.10.1 Update
	13.10.2 Copy
	13.10.3 Configure...

	13.11 Text
	13.11.1 Copy
	13.11.2 Find

	13.12 Trace
	13.12.1 Find
	13.12.2 Find Next
	13.12.3 Filter
	13.12.4 Acquisition
	13.12.5 Halt
	13.12.6 Restart
	13.12.7 Snapshot
	13.12.8 Clear
	13.12.9 Save

	13.13 Watch
	13.13.1 Copy
	13.13.2 Delete Watch
	13.13.3 Add Watch
	13.13.4 Edit Value
	13.13.5 Radix

	Appendix A System Modules
	Graphical User Interface
	Object DLL
	CPU DLL
	Target DLL

	Appendix B Command Line Interface
	HDI Built-In Commands

	Appendix C Command Line Summary Chart
	Colophon

