

Tutorial

Custom Bluetooth Service

For The DA1468x SoC

Abstract

This tutorial should be used as a reference guide to gain a deeper understanding of the ‘Custom Profile
Concept’. As such, it covers a broad range of topics including an introduction to Bluetooth Service structure and
the usage of Dialog’s APIs related to Attribute Protocol. Furthermore, it covers a number of sections containing
in depth software analysis of a complete demonstration example.

For The DA1468x SoC

Custom Bluetooth Service

 2 of 34 © 2018 Dialog Semiconductor

Contents

For The DA1468x SoC ... 1

Abstract .. 1

Contents ... 2

Figures .. 2

Terms and Definitions ... 3

References ... 3

1 Introduction.. 4

1.1 Before You Start .. 4

1.2 Attribute Protocol (ATT) .. 4

1.2.1 Client-Server Architecture.. 4

1.3 Attribute Definition ... 5

1.3.1 Attribute Value ... 5

1.3.2 Attribute Type .. 5

1.3.3 Attribute Handle ... 5

1.3.4 Attribute Permissions ... 5

1.4 BLE Service Structure ... 6

1.4.1 Service Declaration .. 6

1.4.2 Include Declaration .. 7

1.4.3 Characteristics ... 7

1.5 BLE Framework Architecture .. 9

1.6 Event Handling Levels .. 11

1.7 BLE Service Framework ... 12

2 Custom Database Creation Process ... 12

2.1 Working on a Custom BLE Service ... 13

3 Running The Demonstration Example .. 18

3.1 Verifying with a Scanner App .. 18

4 Code Overview .. 21

4.1 Custom BLE Service Header File ... 21

4.2 Custom BLE Service Source File .. 22

4.3 Initializing the Custom BLE Service .. 29

4.4 Macro Definitions .. 31

4.5 Hardware Initialization ... 31

Revision History .. 33

Figures

Figure 1: Client-Server Architecture .. 4
Figure 2: Primary and Secondary Service Declaration ... 6
Figure 3: Including Service Declaration ... 7
Figure 4: Characteristic Declaration .. 8
Figure 5: BLE Framework Architecture ... 10
Figure 6: BLE Framework Flow Chart ... 11
Figure 7: Levels of Event Handling ... 11
Figure 8: Out-of-the-Box Bluetooth Services in the Service Framework .. 12

For The DA1468x SoC

Custom Bluetooth Service

 3 of 34 © 2018 Dialog Semiconductor

Figure 9: Write Request Event Flow Chart .. 16
Figure 10: Read Request Event Flow Chart.. 17
Figure 11: Characteristic Value Notification Flow Chart ... 17
Figure 12: DA1468x Pro DevKit .. 18
Figure 13: Verifying the Bluetooth Low Energy Device Output Using a Scanner App 19
Figure 14: Exploring the Services after Connecting to a Remote Device ... 19
Figure 15: Verify the Service Characteristic .. 20
Figure 16: Verify the Characteristic Behavior (Write Operation) ... 21

Terms and Definitions

API Application Programming Interface

ATT Attribute Protocol

BD Bluetooth

CCC Client Characteristic Configuration

CUD Characteristic User Description

GAP Generic Access Profile

GATT Generic Attribute Profile

H/W Hardware

IP Intellectual Property

LE Low Energy

ms Millisecond

PDU Protocol Data Unit

SDK Software Development Kit

UUID Universally Unique Identifier

References

[1] UM-B-044, DA1468x Software Platform Reference, User Manual, Dialog Semiconductor.

[2] Naresh Gupta, “Inside BLEUTOOTH LOW ENERGY”, ARTECH HOUSE, 2013.

[3] Robin Heydon, “Bluetooth Low Energy - The Developer’s Handbook”, PRENTICE HALL, 2013

For The DA1468x SoC

Custom Bluetooth Service

 4 of 34 © 2018 Dialog Semiconductor

1 Introduction

1.1 Before You Start

Before you start you need to:

• Install the latest SmartSnippets Studio

• Download the latest SDK for the DA1468x platforms

These can be downloaded from the Dialog Semiconductor support portal.

Additionally, for this tutorial either a Pro or Basic Development kit is required.

The key goals of this tutorial are to provide:

• A basic understanding of Generic ATT profile

• A basic understanding of Dialog Bluetooth framework architecture

• A basic understanding of Bluetooth database creation process

• A complete sample project demonstrating the creation of a custom Bluetooth service

1.2 Attribute Protocol (ATT)

The attribute protocol provides mechanisms for discovering attributes of a remote device, as well as

reading and writing attributes. The attribute protocol follows a client-server model. The server

exposes a set of attributes to the client. The client can discover, read, and write those attributes. The

server can also send notifications or indications to the client about any of the attributes. A device can

implement a client, a server, or both client and server roles. At any given time, only one server can

be active on a device.

1.2.1 Client-Server Architecture

Servers have data, this is known as the peripheral in the Generic Access Protocol (GAP).

Clients request data to/from servers, this is known as central in GAP.

Servers expose data using Attributes.

Figure 1: Client-Server Architecture

https://support.dialog-semiconductor.com/connectivity

For The DA1468x SoC

Custom Bluetooth Service

 5 of 34 © 2018 Dialog Semiconductor

1.3 Attribute Definition

An attribute is something that represents data. It could be thought of as any data, at any given time,

when the device is in any given state. ATT is designed to push or pull that data to or from a remote

device. ATT also supports setting notifications and indications, so that the remote device can be

alerted when the data changes. As well as containing the value of the data, an attribute has three

properties associated with it:

1. Attribute Type
2. Attribute Handle
3. Access Permissions

1.3.1 Attribute Value

An attribute value is an octet array that contains the actual value of the attribute. The length of the
attribute can be either fixed or variable:

• Fixed length: The length can be one, two or four octet.
• Variable length: The attribute can be a variable length string.

To simplify things, ATT does not allow multiple attribute values to be transmitted in a single PDU. A

PDU contains only one attribute value and if the attribute value is too long to transmit in a single

PDU, it can be split across multiple PDUs. There are some exceptions to this, for example, when a

client requests multiple attributes to be read and the attributes have a fixed length, then the response

can contain multiple attributes.

1.3.2 Attribute Type

The attribute type specifies what that particular attribute represents. This allows the client to

understand the meaning of the attribute. The attribute type is identified by a Universally Unique

Identifier (UUID). A UUID is a 128-bit value which is considered to be unique over space and time.

The implementation could either use the set of predefined UUIDs or define its own UUIDs. In

general, a shorter form of UUIDs is used. This shorter form is 16-bit. The 16-bit UUIDs are assigned

by the Bluetooth SIG and published on the Bluetooth Assigned Numbers page on the Bluetooth SIG

website.

1.3.3 Attribute Handle

All attributes on the server are assigned a unique non-zero attribute handle. This handle is used by

the client in all operations with the server to identify the attribute. It is allowed to dynamically add or

remove attributes on the server as long as the new attributes are not assigned a handle which has

already been used by any other attribute in the past (even if that attribute has been deleted). This

ensures that clients always get a unique attribute handle. Once an attribute has been assigned an

attribute handle, it should not change over time. This ensures that clients can keep accessing that

attribute with the same handle. The attributes on the server are ordered by the attribute handle. The

attribute handle of 0x0000 is reserved and the attribute handle of 0xFFFF is known as the maximum

attribute handle.

1.3.4 Attribute Permissions

Each attribute has an associated set of permissions which determines the level of access permitted

for that particular attribute. The attribute permissions are used by a server to determine whether a

client is allowed to read or write an attribute value, and whether Authentication or Authorization is

required to access that particular attribute. Attribute permissions are a combination of the following

three permissions:

For The DA1468x SoC

Custom Bluetooth Service

 6 of 34 © 2018 Dialog Semiconductor

1. Access Permission: This can be:

– Readable
– Writeable
– Readable and Writeable

2. Authentication Permission: This is used by the server to determine if an authenticated

physical link is required when a client attempts to access that attribute or when the server has

to send a notification or indication to client. This can be set to either:

– Authentication Required

– No Authentication Required

3. Authorization Permission: This is used by the server to determine if client needs to be

authorized before accessing an attribute value. This could be set to either:

– Authorization Required

– No Authorization Required

If client does not have sufficient permissions an error is returned.

1.4 BLE Service Structure

This section describes the internal structure of an ATT Profile. It contains a brief description of the

attributes that make up a profile and then it explains the Dialog BLE framework architecture.

1.4.1 Service Declaration

A service is grouped using a Service Declaration. This is an attribute with an attribute type of either

Primary Service or Secondary Service. All attributes that follow this Service Declaration and occur

before the next Service Declaration are considered grouped with this service; they belong to this

service. A Primary Service is one that encapsulates what the device does. A Secondary Service is

one that helps the Primary Service to achieve its behavior. All Secondary Services are referenced

from a Primary Service. The service declaration's value is a Service UUID. This is either a 16-bit

Bluetooth UUID or a 128-bit custom UUID. Any service that a device does not understand can be

safely ignored. To help with this, the Attribute Protocol allows the range of attribute handles of

services to be discovered and only known services will be processed further.

Figure 2: Primary and Secondary Service Declaration

For The DA1468x SoC

Custom Bluetooth Service

 7 of 34 © 2018 Dialog Semiconductor

1.4.2 Include Declaration

Secondary Services must be discovered separately. To do this, each service can have zero or more

Include attributes. Include declarations always immediately follow the Service Declaration and come

before any other attributes of the service. The Include definitions also encompass the handle range

of the referenced service, along with the Service UUID of the included service. This allows very quick

discovery of the referenced services, their grouped attributes and the type of the service. It does not

state if this referenced service is a primary or a secondary service because this is not relevant.

Figure 3: Including Service Declaration

Note: Given that four octets are used for handles in the Attribute Value fields, a full 128-bit

Service UUID will not fit into the standard response packets used to find the included

services. Therefore, when the included service has a 128-bit UUID, the Service UUID is not

part of the value declaration. This means that an additional Attribute Protocol read request is

required to find the type of the service included.

1.4.3 Characteristics

Grouping attributes together within a service, demonstrates how these attributes can be combined to

provide a consistent interface to a block of behavior. The Bluetooth Low Energy architecture also

makes it possible to group attributes to allow the state and behavior of a service to be exposed. More

specifically, a characteristic exposes the type of data a value represents, whether a value can be

read or written, how to configure the value to be indicated, notified, or broadcast, and what a value

means. To do this, a characteristic is composed of three basic elements:

• Declaration

• Value

• Descriptor(s)

A Declaration is the start of a characteristic; it groups all the other attributes for this characteristic.

The Value attribute contains the actual value for this characteristic. The Descriptors hold additional

information or configuration for this characteristic.

For The DA1468x SoC

Custom Bluetooth Service

 8 of 34 © 2018 Dialog Semiconductor

1.4.3.1 Characteristic Declaration

To start a characteristic, a Characteristic attribute is used. This contains three fields, as shown in

Figure 4:

• Properties

• Value handle

• Characteristic UUID

More specifically, the characteristic Properties determines if the characteristic Value attribute can be

read, written, notified, indicated, broadcast, or authenticated in a signed write. The characteristic

Value Handle field is the handle of the attribute that contains the value for the characteristic. The

final field is the Characteristic UUID which holds the UUID that is used to identify the type of the

characteristic value.

Figure 4: Characteristic Declaration

Note: The Value Handle field allows a very quick search for the characteristic to be performed

by a client. It returns only Characteristic Declarations. With this declaration, the attribute that

holds the value is immediately available. If this field did not exist, the client would need to

perform an additional search for attributes and effectively guess which attribute after the

declaration was the value.

1.4.3.2 Characteristic Value

The Characteristic Value is an attribute with a type that must match the characteristic declarations'

Characteristic UUID field. Apart from that, it is an ordinary attribute. The biggest difference is that

the types of actions that can be performed on this characteristic value attribute, are exposed in the

characteristic declarations' Properties field and additionally might be in the Characteristic

Extended Properties descriptor.

1.4.3.3 Characteristic Descriptors

There can be any number of descriptors on a characteristic. Most descriptors are optional, although

they might be required depending on the Characteristic Declaration. Some descriptors might also be

required by a service specification. The following descriptors can be included in a characteristic:

For The DA1468x SoC

Custom Bluetooth Service

 9 of 34 © 2018 Dialog Semiconductor

Characteristic Extended Properties

This is used to capture the additional extended properties, for example the ability to perform reliable

writes on the value or to write the Characteristic User Description descriptor.

Characteristic User Description

Using this descriptor, a device can associate a text string with a characteristic.

Client Characteristic Configuration

If a characteristic is notifiable or indicatable, this descriptor must exist. It is a two-bit value, with one

bit for notifications and the other for indications. Notifications and Indications are complementary

procedures, so it's impossible to set both of these bits at the same time. How the value is notified or

indicated is not defined in the core specifications; this is defined by the service specifications.

Server Characteristic Configuration

This is very similar to the Client Characteristic Configuration descriptor, except that is has only one

bit which is used for broadcast. Setting this bit causes the device to broadcast data associated with

the service in which this characteristic is grouped. The timing of this broadcast is determined by the

service.

Characteristic Presentation Format

One of the goals for the Generic Attribute Profile is to enable generic clients. A generic client is

defined as a device that can read the values of a characteristic and display them to the user without

understanding what they mean. The Characteristic Presentation Format denotes if a characteristic

can be used by a generic client.

Characteristic Aggregation Format

Some characteristic values are more complex than just a single value. To allow for such complex

characteristic values, the Characteristic Aggregation Format descriptor allows multiple Characteristic

Presentation Format descriptors to be referenced, so that individual fields of the value can be

illustrated.

1.5 BLE Framework Architecture

The Dialog's BLE framework consists of the following building blocks:

• BLE Service Framework - provides implemented 'out-of-the-box' BLE services

• Dialog BLE API - a set of functions to initiate BLE operations or respond to BLE events

• BLE Manager - provides the interface to the BLE functionality of the chip

• BLE Adapter - provides the interface to the BLE stack and executes the BLE stack internal

scheduler, BLE interrupts etc.

• BLE Stack - together with the BLE H/W IP, this implements all of the additional BLE stack

layers up to GAP and GATT

For The DA1468x SoC

Custom Bluetooth Service

 10 of 34 © 2018 Dialog Semiconductor

Figure 5: BLE Framework Architecture

A typical flow chart of a command execution is as follows:

1. In principle, an application should only have to interface either with the Dialog BLE API library

or/and the BLE Service Framework.

2. Commands are sent to the BLE Manager over the command queue and Application tasks wait

for the response on the response queue.

3. Once the command is received, the response message is sent on the response queue.

4. API call completes and application execution continues.

5. BLE events are received asynchronously from the BLE event queue.

Note: Some API calls don't send command messages but directly access BLE manager's

device parameters structure (acquire, modify, release).

For The DA1468x SoC

Custom Bluetooth Service

 11 of 34 © 2018 Dialog Semiconductor

Figure 6: BLE Framework Flow Chart

1.6 Event Handling Levels

Several events can occur during the lifetime of the BLE application and these events need to be

handled in a specific manner. In all Dialog's sample projects (found in the SDK) there are three levels

of event handling:

1. Check whether Bluetooth events can be handled by well-defined Bluetooth Services.

2. If not, then the main application task should handle them.

3. If the application does not exhibit handlers for handling specific Bluetooth events, then

ble_handle_event_default() should be invoked.

Figure 7: Levels of Event Handling

For The DA1468x SoC

Custom Bluetooth Service

 12 of 34 © 2018 Dialog Semiconductor

1.7 BLE Service Framework

Provides:

• The API to create new services.

• A pool of services to be used "out-of-the-box" in an end application.

Header files are in:

• sdk/ble_services/include

Usage:

• Call simple initialization functions

• Define callbacks for the various BLE service events

Figure 8: Out-of-the-Box Bluetooth Services in the Service Framework

2 Custom Database Creation Process

This section analyzes an application example which demonstrates creating a custom Bluetooth

service. The example is based on the ble_peripheral sample code found in the SDK. It adds an

additional custom 128-bit BLE service in the internal BLE Framework.

For The DA1468x SoC

Custom Bluetooth Service

 13 of 34 © 2018 Dialog Semiconductor

2.1 Working on a Custom BLE Service

This section goes through the steps required to create a custom 128-bit ATT Service. For

demonstration purposes let’s create a custom service which exhibits the following features:

• One Service Declaration of type Primary

• One Characteristic Declaration with write-read-notify access permissions

• Two Descriptors, one of type Client Characteristic Configuration and one of type Characteristic

User Description

In general, it's good practice to separate the source code of Bluetooth service implementation from

the application itself. With this approach, a Bluetooth service is portable to any application just by

defining a few callback functions as well as invoking an initialization function in application context.

1. Declare callback functions. These callbacks will be called following specific BLE events to

exchange data between the application task and the Bluetooth service itself. The number of

callback functions depends on the number of characteristics as well as their associated

permissions. For demonstration purposes let’s define two callbacks: one triggered upon read

requests and one triggered upon write requests. Please note that these callbacks will be

triggered from application context.

/* Callback functions */
typedef struct {

 /* Handler for read requests – Triggered on application context */

 /* Handler for write requests – Triggered on application context */

} my_custom_service_cb_t;

2. Define a structure associated with the Bluetooth service. This structure should contain a

variable of type ble_service_t, the previously defined callback functions, as well as all the

attribute handles of Bluetooth service.

/* Service related variables */
typedef struct {
 ble_service_t svc;

 // Callback functions

 // Attribute handles of Bluetooth Service

} mc_service_t;

3. Define the total number of attribute handles of Bluetooth service:

For The DA1468x SoC

Custom Bluetooth Service

 14 of 34 © 2018 Dialog Semiconductor

 /*
 * 0 --> Number of Included Services
 * 1 --> Number of Characteristic Declarations
 * 2 --> Number of Descriptors
 */
 num_attr = ble_gatts_get_num_attr(0, 1, 2);

4. Declare all the attributes of type Service (either Primary or/and Secondary). Please note that all

the custom Bluetooth services should exhibit a 128-bit UUID, while the Bluetooth SIG ones a

16-bit UUID.

 /* Service declaration */
 ble_uuid_from_string("00000000-1111-2222-2222-333333333333", &uuid);
 ble_gatts_add_service(&uuid, GATT_SERVICE_PRIMARY, num_attr);

Note: Special care must be taken when defining a 128-bit UUID. If the UUID is not defined

correctly, an assertion will be issued.

5. Declare all the attributes of type Characteristic:

 /* Characteristic declaration */
 ble_uuid_from_string("11111111-0000-0000-0000-111111111111", &uuid);
 ble_gatts_add_characteristic(&uuid,
 GATT_PROP_READ | GATT_PROP_NOTIFY | GATT_PROP_WRITE,
 ATT_PERM_RW, 1, GATTS_FLAG_CHAR_READ_REQ, NULL,
 &mcs->mc_char_value_h);

Note: The GATTS_FLAG_CHAR_READ_REQ flag, is mandatory when enabling read

permissions.

6. Declare all the attributes of type Characteristic Descriptors.

 /* Descriptor declaration - Client Characteristic Configuration (CCC) */
 ble_uuid_create16(UUID_GATT_CLIENT_CHAR_CONFIGURATION, &uuid);
 ble_gatts_add_descriptor(&uuid, ATT_PERM_RW, 2, 0,
 &mcs->mc_char_value_ccc_h);

 /* Descriptor declaration - Characteristic User Description (CUD) */
 ble_uuid_create16(UUID_GATT_CHAR_USER_DESCRIPTION, &uuid);
 ble_gatts_add_descriptor(&uuid, ATT_PERM_READ,
 sizeof(char_user_descriptor_val), 0, &char_user_descriptor_h);

Note: For all the available GATT descriptor UUIDs see at sdk/ble/include/ble_uuid.h.

7. Register the newly created service in the ATT database. The first input parameter should be the

first attribute handle of the service, whereas the last input parameter should be zero. In this

For The DA1468x SoC

Custom Bluetooth Service

 15 of 34 © 2018 Dialog Semiconductor

step, all the attribute handles should be registered, so that the BLE manager can update them

automatically upon Bluetooth events.

 /*
 * Register all the attribute handles so that they can be updated
 * by the BLE manager automatically.
 */
 ble_gatts_register_service(&mcs->svc.start_h, &mcs->mc_char_value_h,
 &mcs->mc_char_value_ccc_h, &char_user_descriptor_h , 0);

8. Calculate the last attribute handle of the service.

 /* Calculate the last attribute handle of the BLE service */
 mcs->svc.end_h = mcs->svc.start_h + num_attr;

9. When necessary, declare predefined attribute values.

 /* Set default attribute values */
 ble_gatts_set_value(mcs->mc_char_value_h, 1, variable_value);
 ble_gatts_set_value(char_user_descriptor_h, sizeof(char_user_descriptor_val),
 char_user_descriptor_val);

10. Register the service in Dialog Bluetooth framework.

 /* Register the BLE service in BLE framework */
 ble_service_add(&mcs->svc);

11. Define handlers for specific Bluetooth events.

 /* Declare handlers for specific BLE events */
 mcs->svc.read_req = handle_read_req;
 mcs->svc.write_req = handle_write_req;
 mcs->svc.cleanup = cleanup;

12. Upon a write request, that is BLE_EVT_GATTS_WRITE_REQ, identify the attribute handle. In

In case of invalid attribute handles, the appropriate error code should be sent back to the peer

device.

/* Handler for write requests, that is BLE_EVT_GATTS_WRITE_REQ */
static void handle_write_req(ble_service_t *svc,
 const ble_evt_gatts_write_req_t *evt)
{
 mc_service_t *mcs = (mc_service_t *) svc;
 att_error_t status = ATT_ERROR_WRITE_NOT_PERMITTED;

For The DA1468x SoC

Custom Bluetooth Service

 16 of 34 © 2018 Dialog Semiconductor

 /*
 * Identify for which attribute handle the write request has been sent to
 * and call the appropriate function.
 */
}

Figure 9: Write Request Event Flow Chart

13. Upon a read request, that is BLE_EVT_GATTS_READ_REQ, identify the attribute handle. In

case of invalid attribute handles, the appropriate error code should be sent back.

/* Handler for read requests, that is BLE_EVT_GATTS_READ_REQ */
static void handle_read_req(ble_service_t *svc, const ble_evt_gatts_read_req_t *evt)
{
 mc_service_t *mcs = (mc_service_t *) svc;

 /*
 * Identify for which attribute the read request has been sent to
 * and call the appropriate function.
 */

}

For The DA1468x SoC

Custom Bluetooth Service

 17 of 34 © 2018 Dialog Semiconductor

Figure 10: Read Request Event Flow Chart

14. In case of notifications/indications, how an attribute value is notified or indicated, is not defined

in the core Bluetooth specifications. Thus, a custom process should be declared in order to

signal all the connected peer devices about the updated characteristic value (given that

notifications for that specific attribute are enabled).

Figure 11: Characteristic Value Notification Flow Chart

For The DA1468x SoC

Custom Bluetooth Service

 18 of 34 © 2018 Dialog Semiconductor

3 Running The Demonstration Example

This section describes the steps required to prepare the Pro DevKit and other tools to successfully

run the example code. A Pro DevKit as well as a smartphone are required for testing and verifying

the code.

3.1 Verifying with a Scanner App

1. Establish a connection between the target device and your PC through the USB2(DBG) port of

the motherboard. This port is used both for powering and communicating to the DA1468x SoC.

For this tutorial a Pro DevKit is used.

Figure 12: DA1468x Pro DevKit

2. Import and then make a copy of the ble_peripheral sample code found in the SDK of the

DA1468x family of devices.

Note: It is essential to import the folder named scripts to perform various operations

(including building, debugging, and downloading)

3. In the target application, add/modify all the required code blocks as illustrated in the Code

Overview section.

Note: It is possible for the defined macros not to be taken into consideration instantly. Thus,

resulting in errors during compile time. If this is the case, the easiest way to deal with the

For The DA1468x SoC

Custom Bluetooth Service

 19 of 34 © 2018 Dialog Semiconductor

issue is to: right-click on the application folder, select Index > Rebuild and then Index >

Freshen All Files.

4. Build the project in either Debug_QSPI or Release_QSPI mode and burn the generated image

to the chip (either via the serial or jtag port).

5. Press the K2 button on Pro DevKit to start the chip executing its firmware.

6. When the project starts running, the DA1468x module should be visible by any Bluetooth

scanner application. For this demonstration the BLE Scanner application was used.

Figure 13: Verifying the Bluetooth Low Energy Device Output Using a Scanner App

Figure 14: Exploring the Services after Connecting to a Remote Device

For The DA1468x SoC

Custom Bluetooth Service

 20 of 34 © 2018 Dialog Semiconductor

7. Verify the custom 128-bit UUID as well as the properties of the characteristic. Depending on the

assigned properties, the scanner App will draw the corresponding symbols, for example R for

reading, W for writing and N for enabling notifications.

The descriptor with UUID equal to 0x2902 indicates whether notifications/indications are

enabled or not. By default, notifications should be disabled. The descriptor with UUID equal to

0x2901 describes the role of the characteristic.

Figure 15: Verify the Service Characteristic

8. Verify the behavior of the characteristic This characteristic consists of 1-byte value. User can

read as well as modify that value. If the attribute value is equal to 0x01, then the LED D2 on the

Pro DevKit is turned on. For all other cases, the LED D2 is turned off.

For The DA1468x SoC

Custom Bluetooth Service

 21 of 34 © 2018 Dialog Semiconductor

Figure 16: Verify the Characteristic Behavior (Write Operation)

4 Code Overview

This section provides the code blocks needed to successfully execute this tutorial.

4.1 Custom BLE Service Header File

Create a new header file, for instance my_custom_service.h, and add the following code:

#include <stdint.h>
#include <ble_service.h>

/* User-defined callback functions - Prototyping */
typedef void (* mcs_get_char_value_cb_t) (ble_service_t *svc, uint16_t conn_idx);

typedef void (* mcs_set_char_value_cb_t) (ble_service_t *svc,
 uint16_t conn_idx, const uint8_t *value);

/* User-defined callback functions */
typedef struct {

 /* Handler for read requests – Triggered on application context */
 mcs_get_char_value_cb_t get_characteristic_value;

 /* Handler for write requests – Triggered on application context */
 mcs_set_char_value_cb_t set_characteristic_value;

} my_custom_service_cb_t;

For The DA1468x SoC

Custom Bluetooth Service

 22 of 34 © 2018 Dialog Semiconductor

/*
 * \brief This function creates the custom BLE service and registers it in BLE framework
 *
 * \param [in] variable_value Default characteristic value
 * \param [in] cb Application callback functions
 *
 * \return service handle
 *
 */
ble_service_t *mcs_init(const uint8_t *variable_value,
 const my_custom_service_cb_t *cb);

/*
 * This function should be called by the application as a response to a read request
 *
 * \param[in] svc service instance
 * \param[in] conn_idx connection index
 * \param[in] status ATT error
 * \param[in] value attribute value
 */
void mcs_get_char_value_cfm(ble_service_t *svc, uint16_t conn_idx,
 att_error_t status, const uint8_t *value);

/*
 * This function should be called by the application as a response to a write request
 *
 * \param[in] svc service instance
 * \param[in] conn_idx connection index
 * \param[in] status ATT error
 */
void mcs_set_char_value_cfm(ble_service_t *svc, uint16_t conn_idx,
 att_error_t status);

/*
 * Notify all the connected peer devices that characteristic value has been
 * updated.
 *
 * \param[in] svc service instance
 * \param[in] value updated characteristic value
 */
void mcs_notify_char_value_all(ble_service_t *svc, const uint8_t *value);

4.2 Custom BLE Service Source File

Code snippet of custom BLE service implementation. Create a new source file, for instance

my_custom_service.c, and add the following code:

For The DA1468x SoC

Custom Bluetooth Service

 23 of 34 © 2018 Dialog Semiconductor

#include <stdbool.h>
#include <stddef.h>
#include <string.h>
#include "osal.h"
#include "ble_att.h"
#include "ble_bufops.h"
#include "ble_common.h"
#include "ble_gatt.h"
#include "ble_gatts.h"
#include "ble_storage.h"
#include "ble_uuid.h"
#include "my_custom_service.h"

#define UUID_GATT_CLIENT_CHAR_CONFIGURATION (0x2902)

static const char char_user_descriptor_val[] = "Switch ON/OFF LED D2 on DevKit";

void mcs_notify_char_value(ble_service_t *svc, uint16_t conn_idx,
 const uint8_t *value);

/* Service related variables */
typedef struct {
 ble_service_t svc;

 // User-defined callback functions
 const my_custom_service_cb_t *cb;

 // Attribute handles of BLE service
 uint16_t mc_char_value_h;
 uint16_t mc_char_value_ccc_h;

} mc_service_t;

/* This function is called upon write requests to characteristic attribute value */
static att_error_t do_char_value_write(mc_service_t *mcs,
 uint16_t conn_idx, uint16_t offset, uint16_t length, const uint8_t *value)
{
 uint8_t ct;

 if (offset) {
 return ATT_ERROR_ATTRIBUTE_NOT_LONG;
 }

 /* Check if the length of the envoy data exceed the maximum permitted */
 if (length != 1) {
 return ATT_ERROR_INVALID_VALUE_LENGTH;
 }

 /*
 * Check whether the application has defined a callback function

For The DA1468x SoC

Custom Bluetooth Service

 24 of 34 © 2018 Dialog Semiconductor

 * for handling the event.
 */
 if (!mcs->cb || !mcs->cb->set_characteristic_value) {
 return ATT_ERROR_WRITE_NOT_PERMITTED;
 }

 ct = get_u8(value);

 /*
 * The application should get the data sent by the peer device.
 */
 mcs->cb->set_characteristic_value(&mcs->svc, conn_idx, &ct);

 return ATT_ERROR_OK;

}

/* This function is called upon write requests to CCC attribute value */
static att_error_t do_char_value_ccc_write(mc_service_t *mcs,
 uint16_t conn_idx, uint16_t offset, uint16_t length, const uint8_t *value)
{
 uint16_t ccc;

 if (offset) {
 return ATT_ERROR_ATTRIBUTE_NOT_LONG;
 }

 if (length != sizeof(ccc)) {
 return ATT_ERROR_INVALID_VALUE_LENGTH;
 }

 ccc = get_u16(value);

 /* Store the envoy CCC value to the ble storage */
 ble_storage_put_u32(conn_idx, mcs->mc_char_value_ccc_h, ccc, true);

 return ATT_ERROR_OK;
}

/* This function is called upon read requests to characteristic attribute value */
static void do_char_value_read(mc_service_t *mcs,
 const ble_evt_gatts_read_req_t *evt)
{
 /*
 * Check whether the application has defined a callback function
 * for handling the event.
 */
 if (!mcs->cb || !mcs->cb->get_characteristic_value) {
 ble_gatts_read_cfm(evt->conn_idx, evt->handle,
 ATT_ERROR_READ_NOT_PERMITTED, 0, NULL);
 return;
 }

For The DA1468x SoC

Custom Bluetooth Service

 25 of 34 © 2018 Dialog Semiconductor

 /*
 * The application should provide the requested data to the peer device.
 */
 mcs->cb->get_characteristic_value(&mcs->svc, evt->conn_idx);

 // callback executed properly

}

/*
 * Notify all the connected peer devices that characteristic attribute
 * value has been updated.
 */
void mcs_notify_char_value_all(ble_service_t *svc, const uint8_t *value)
{
 uint8_t num_conn;
 uint16_t *conn_idx;

 ble_gap_get_connected(&num_conn, &conn_idx);

 while (num_conn--) {
 mcs_notify_char_value(svc, conn_idx[num_conn], value);
 }

 if (conn_idx) {
 OS_FREE(conn_idx);
 }
}

/* Notify the peer device that characteristic attribute value has been updated */
void mcs_notify_char_value(ble_service_t *svc, uint16_t conn_idx,
 const uint8_t *value)
{
 mc_service_t *mcs = (mc_service_t *) svc;

 uint16_t ccc = 0x0000;
 uint8_t pdu[1];

 ble_storage_get_u16(conn_idx, mcs->mc_char_value_ccc_h, &ccc);

 /*
 * Check if the notifications are enabled from the peer device,
 * otherwise don't send anything.
 */
 if (!(ccc & GATT_CCC_NOTIFICATIONS)) {
 return;
 }

 pdu[0] = *((uint8_t *)value);

For The DA1468x SoC

Custom Bluetooth Service

 26 of 34 © 2018 Dialog Semiconductor

 ble_gatts_send_event(conn_idx, mcs->mc_char_value_h,
 GATT_EVENT_NOTIFICATION, sizeof(pdu), pdu);
}

/*
 * This function should be called by the application as a response to read requests
 */
void mcs_get_char_value_cfm(ble_service_t *svc, uint16_t conn_idx,
 att_error_t status, const uint8_t *value)
{
 mc_service_t *mcs = (mc_service_t *) svc;
 uint8_t pdu[1];

 pdu[0] = *value;

 /* This function should be used as a response for every read request */
 ble_gatts_read_cfm(conn_idx, mcs->mc_char_value_h, ATT_ERROR_OK,
 sizeof(pdu), pdu);
}

/*
 * This function should be called by the application as a response to write requests
 */
void mcs_set_char_value_cfm(ble_service_t *svc, uint16_t conn_idx,
 att_error_t status)
{
 mc_service_t *mcs = (mc_service_t *) svc;

 /* This function should be used as a response for every write request */
 ble_gatts_write_cfm(conn_idx, mcs->mc_char_value_h, status);
}

/* Handler for read requests, that is BLE_EVT_GATTS_READ_REQ */
static void handle_read_req(ble_service_t *svc,
 const ble_evt_gatts_read_req_t *evt)
{
 mc_service_t *mcs = (mc_service_t *) svc;

 /*
 * Identify for which attribute handle the read request has been sent to
 * and call the appropriate function.
 */

 if (evt->handle == mcs->mc_char_value_h) {
 do_char_value_read(mcs, evt);
 } else if (evt->handle == mcs->mc_char_value_ccc_h) {
 uint16_t ccc = 0x0000;

 /* Extract the CCC value from the ble storage */
 ble_storage_get_u16(evt->conn_idx, mcs->mc_char_value_ccc_h, &ccc);

 // We're little-endian - OK to write directly from uint16_t

For The DA1468x SoC

Custom Bluetooth Service

 27 of 34 © 2018 Dialog Semiconductor

 ble_gatts_read_cfm(evt->conn_idx, evt->handle, ATT_ERROR_OK,
 sizeof(ccc), &ccc);

 /*
 * Otherwise, read operations are not permitted
 */
 } else {
 ble_gatts_read_cfm(evt->conn_idx, evt->handle,
 ATT_ERROR_READ_NOT_PERMITTED, 0, NULL);
 }

}

/* Handler for write requests, that is BLE_EVT_GATTS_WRITE_REQ */
static void handle_write_req(ble_service_t *svc,
 const ble_evt_gatts_write_req_t *evt)
{
 mc_service_t *mcs = (mc_service_t *) svc;
 att_error_t status = ATT_ERROR_WRITE_NOT_PERMITTED;

 /*
 * Identify for which attribute handle the write request has been sent to
 * and call the corresponding function.
 */

 if (evt->handle == mcs->mc_char_value_h) {
 status = do_char_value_write(mcs, evt->conn_idx,
 evt->offset, evt->length, evt->value);
 goto done;
 } else if (evt->handle == mcs->mc_char_value_ccc_h) {
 status = do_char_value_ccc_write(mcs, evt->conn_idx,
 evt->offset, evt->length, evt->value);
 goto done;
 }

done:
 if (status == ((att_error_t) - 1)) {
 // Write handler executed properly, will be replied by cfm call
 return;
 }

 /*
 * Otherwise, write operations are not permitted
 */
 ble_gatts_write_cfm(evt->conn_idx, evt->handle, status);
}

/* Function to be called after a cleanup event */
static void cleanup(ble_service_t *svc)
{
 mc_service_t *mcs = (mc_service_t *) svc;

For The DA1468x SoC

Custom Bluetooth Service

 28 of 34 © 2018 Dialog Semiconductor

 ble_storage_remove_all(mcs->mc_char_value_ccc_h);

 OS_FREE(mcs);
}

/* Initialization function for My Custom Service (mcs).*/
ble_service_t *mcs_init(const uint8_t *variable_value ,
 const my_custom_service_cb_t *cb)
{
 mc_service_t *mcs;

 uint16_t num_attr;
 att_uuid_t uuid;

 uint16_t char_user_descriptor_h;

 /* Allocate memory for the service handle */
 mcs = (mc_service_t *)OS_MALLOC(sizeof(*mcs));
 memset(mcs, 0, sizeof(*mcs));

 /* Declare handlers for specific BLE events */
 mcs->svc.read_req = handle_read_req;
 mcs->svc.write_req = handle_write_req;
 mcs->svc.cleanup = cleanup;
 mcs->cb = cb;

 /*
 * 0 --> Number of Included Services
 * 1 --> Number of Characteristic Declarations
 * 2 --> Number of Descriptors
 */
 num_attr = ble_gatts_get_num_attr(0, 1, 2);

 /* Service declaration */
 ble_uuid_from_string("00000000-1111-2222-2222-333333333333", &uuid);
 ble_gatts_add_service(&uuid, GATT_SERVICE_PRIMARY, num_attr);

 /* Characteristic declaration */
 ble_uuid_from_string("11111111-0000-0000-0000-111111111111", &uuid);
 ble_gatts_add_characteristic(&uuid, GATT_PROP_READ | GATT_PROP_NOTIFY |
 GATT_PROP_WRITE, ATT_PERM_RW, 1, GATTS_FLAG_CHAR_READ_REQ, NULL,
 &mcs->mc_char_value_h);

 /* Descriptor declaration - Client Characteristic Configuration (CCC) */
 ble_uuid_create16(UUID_GATT_CLIENT_CHAR_CONFIGURATION, &uuid);
 ble_gatts_add_descriptor(&uuid, ATT_PERM_RW, 2, 0,
 &mcs->mc_char_value_ccc_h);

 /* Descriptor declaration – Characteristic User Description (CUD) */
 ble_uuid_create16(UUID_GATT_CHAR_USER_DESCRIPTION, &uuid);
 ble_gatts_add_descriptor(&uuid, ATT_PERM_READ,

For The DA1468x SoC

Custom Bluetooth Service

 29 of 34 © 2018 Dialog Semiconductor

 sizeof(char_user_descriptor_val), 0, &char_user_descriptor_h);

 /*
 * Register all the attribute handles so that they can
 * be updated by the BLE manager automatically.
 */
 ble_gatts_register_service(&mcs->svc.start_h, &mcs->mc_char_value_h,
 &mcs->mc_char_value_ccc_h, &char_user_descriptor_h ,0);

 /* Calculate the last attribute handle of the BLE service */
 mcs->svc.end_h = mcs->svc.start_h + num_attr;

 /* Set default attribute values */
 ble_gatts_set_value(mcs->mc_char_value_h, 1, variable_value);
 ble_gatts_set_value(char_user_descriptor_h,
 sizeof(char_user_descriptor_val), char_user_descriptor_val);

 /* Register the BLE service in BLE framework */
 ble_service_add(&mcs->svc);

 /* Return the service handle */
 return &mcs->svc;

}

4.3 Initializing the Custom BLE Service

In ble_peripheral_task.c, before ble_peripheral_task(), declare all the user-defined callback

functions as well as variables for initializing the custom BLE service:

#if CFG_MY_CUSTOM_SERVICE
#include "my_custom_service.h"
#include "hw_gpio.h"

/* LED D2 status flag */
__RETAINED_RW volatile bool pin_status_flag = 0;

/* Characteristic value */
__RETAINED_RW uint8_t mcs_char_val = 0;

/* Handle of custom BLE service */
__RETAINED_RW ble_service_t *mcs = NULL;

/* Handler for read requests */
static void mcs_get_char_val_cb(ble_service_t *svc, uint16_t conn_idx)
{
 uint8_t var_value = mcs_char_val;

 /* Send the requested data to the peer device */

For The DA1468x SoC

Custom Bluetooth Service

 30 of 34 © 2018 Dialog Semiconductor

 mcs_get_char_value_cfm(svc, conn_idx, ATT_ERROR_OK, &var_value);
}

/* Handler for write requests */
static void mcs_set_char_val_cb(ble_service_t *svc, uint16_t conn_idx,
 const uint8_t *value)
{
 mcs_char_val = *value;

 /*
 * Check the written value and if it is equal to 0x01 then turn on
 * LED D2 on DevKit.
 */
 if (mcs_char_val == 0x01) {
 hw_gpio_set_active(HW_GPIO_PORT_1, HW_GPIO_PIN_5);
 pin_status_flag = 1; // Turn on LED D2
 } else {
 hw_gpio_set_inactive(HW_GPIO_PORT_1, HW_GPIO_PIN_5);
 pin_status_flag = 0; // Turn off LED D2
 }

 /* Send an ACK to the peer device as a response to the write request */
 mcs_set_char_value_cfm(svc, conn_idx, ATT_ERROR_OK);

 /*
 * Notify all the connected peer devices that characteristic
 * value has been changed.
 */
 mcs_notify_char_value_all(mcs, &mcs_char_val);
}

/* Declare callback functions for specific BLE events */
static const my_custom_service_cb_t mcs_callbacks = {
 .get_characteristic_value = mcs_get_char_val_cb,
 .set_characteristic_value = mcs_set_char_val_cb,
};
#endif

In ble_peripheral_task.c, inside ble_peripheral_task() and before starting advertising, register the

custom BLE service in Dialog BLE framework:

#if CFG_MY_CUSTOM_SERVICE
 /* Initialize the custom BLE service */
 mcs = mcs_init(&mcs_char_val, &mcs_callbacks);
#endif

Optionally, in ble_peripheral_task.c source file change the advertising data:

/*

For The DA1468x SoC

Custom Bluetooth Service

 31 of 34 © 2018 Dialog Semiconductor

 * BLE peripheral advertising data
 */
static const uint8_t adv_data[] = {
 0x12, GAP_DATA_TYPE_LOCAL_NAME,
 'M', 'y', ' ', 'C', 'u', 's', 't', 'o', 'm', ' ', 'S', 'e', 'r', 'v', 'i', 'c', 'e'
};

4.4 Macro Definitions

In config/ble_peripheral_config.h, disable all the predefined services and add/enable the custom

service as provided by this tutorial.

// enable debug service (see readme.txt for details)
#define CFG_DEBUG_SERVICE (0)

#define CFG_BAS (0) // register BAS service
#define CFG_BAS_MULTIPLE (0) // add 2 instances of BAS service
#define CFG_CTS (0) // register CTS
#define CFG_DIS (0) // register DIS
#define CFG_DIS_FULL (0) // add all possible characteristics to DIS
#define CFG_SCPS (0) // register ScPS
#define CFG_USER_SERVICE (0) // register custom service (using 128-bit UUIDs)

#define CFG_MY_CUSTOM_SERVICE (1) // register my custom service

4.5 Hardware Initialization

In main.c, replace prvSetupHardware() with the following code to configure pins after a power-
up/wake-up cycle. Please note that every time the system enters sleep, it loses all its pin
configurations.

__RETAINED_RW extern volatile bool pin_status_flag;

/**
 * @brief Initialize the peripherals domain after power-up.
 *
 */
static void periph_init(void)
{
 hw_gpio_configure_pin(HW_GPIO_PORT_1, HW_GPIO_PIN_5,
 HW_GPIO_MODE_OUTPUT, HW_GPIO_FUNC_GPIO, pin_status_flag);

}

/**
 * \brief Initialize the peripherals domain after power-up.
 *
 */
static void prvSetupHardware(void)

For The DA1468x SoC

Custom Bluetooth Service

 32 of 34 © 2018 Dialog Semiconductor

{
#if mainCHECK_INTERRUPT_STACK == 1
 extern unsigned long _vStackTop[], _pvHeapStart[];
 unsigned long ulInterruptStackSize;
#endif

 /* Init hardware */
 pm_system_init(periph_init);

#if mainCHECK_INTERRUPT_STACK == 1
 /* The size of the stack used by main and interrupts is not defined in
 the linker, but just uses whatever RAM is left. Calculate the amount of
 RAM available for the main/interrupt/system stack, and check it against
 a reasonable number. If this assert is hit then it is likely you don't
 have enough stack to start the kernel, or to allow interrupts to nest.
 Note - this is separate to the stacks that are used by tasks. The stacks
 that are used by tasks are automatically checked if
 configCHECK_FOR_STACK_OVERFLOW is not 0 in FreeRTOSConfig.h –
 but the stack used by interrupts is not. Reducing the conifgTOTAL_HEAP_SIZE
 setting will increase the stack available to main() and interrupts. */
 ulInterruptStackSize = ((unsigned long) _vStackTop) - ((unsigned long)
_pvHeapStart);
 OS_ASSERT(ulInterruptStackSize > 350UL);

 /* Fill the stack used by main() and interrupts to a known value, so its
 use can be manually checked. */
 memcpy((void *) _pvHeapStart, ucExpectedInterruptStackValues, sizeof(
ucExpectedInterruptStackValues));
#endif
}

For The DA1468x SoC

Custom Bluetooth Service

 33 of 34 © 2018 Dialog Semiconductor

Revision History

Revision Date Description

1.0 20-Dec-2017 First released version

2.0 18-Sep-2018 Updated application code, More descriptive steps

For The DA1468x SoC

Custom Bluetooth Service

 34 of 34 © 2018 Dialog Semiconductor

Status Definitions

Status Definition

DRAFT
The content of this document is under review and subject to formal approval, which may result in modifications or

additions.

APPROVED

or unmarked
The content of this document has been approved for publication.

Disclaimer

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or
warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no
responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the
specification and the design of the related semiconductor products, software and applications.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes
no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further
testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog
Semiconductor excludes all liability in this respect.

Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software
and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor’s Standard
Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.

Dialog and the Dialog logo are trademarks of Dialog Semiconductor plc or its subsidiaries. All other product or service names are the property of
their respective owners.

© 2018 Dialog Semiconductor. All rights reserved.

Contacting Dialog Semiconductor

United Kingdom (Headquarters)

Dialog Semiconductor (UK) LTD

Phone: +44 1793 757700

Germany

Dialog Semiconductor GmbH

Phone: +49 7021 805-0

The Netherlands

Dialog Semiconductor B.V.

Phone: +31 73 640 8822

North America

Dialog Semiconductor Inc.

Phone: +1 408 845 8500

Japan

Dialog Semiconductor K. K.

Phone: +81 3 5769 5100

Taiwan

Dialog Semiconductor Taiwan

Phone: +886 281 786 222

Hong Kong

Dialog Semiconductor Hong Kong

Phone: +852 2607 4271

Korea

Dialog Semiconductor Korea

Phone: +82 2 3469 8200

China (Shenzhen)

Dialog Semiconductor China

Phone: +86 755 2981 3669

China (Shanghai)

Dialog Semiconductor China

Phone: +86 21 5424 9058

Email:

enquiry@diasemi.com

Web site:

www.dialog-semiconductor.com

http://www.dialog-semiconductor.com/standard-terms-and-conditions
http://www.dialog-semiconductor.com/standard-terms-and-conditions
http://www.dialog-semiconductor.com/

