The CCE4502 Evaluation Board is designed to evaluate and demonstrate the CCE4502 IO-Link Device IC.

**Feature Overview**

- Renesas ARM Cortex-M33 µC RA4M2
- Programmable via SWD and USB
- Reset Button
- Power and User LED indicator
- Renesas 8 Kbit EEPROM
- Additional on-board protection circuitry
- CCE4502 3.3V Buck Mode IO-Link Device IC
- M12 connector + terminal blocks for IO-Link interface
- Renesas HS3001 Temperature and Humidity Sensor
- Renesas SLG46826V GreenPAK™ (configured as LED driver)
- All pins accessible via pin-headers for microcontroller and IO-Link Device IC
- Independent use of sections
- IO-Link demonstration Software Stack from IQ² Development ([https://www.iq2-development.de](https://www.iq2-development.de))

![CCE4502 Evaluation Board V4](image)

Figure 1. CCE4502 Evaluation Board V4
Contents

1. References.......................................................................................................................... 3
2. Introduction.......................................................................................................................... 3
3. System Requirements.......................................................................................................... 4
4. Getting Started.................................................................................................................... 4
5. Power Supply....................................................................................................................... 5
6. Sections................................................................................................................................ 6
   6.1 IO-Link Section .................................................................................................................. 6
   6.2 MCU Section .................................................................................................................... 7
   6.3 Sensor / Actuator Section ................................................................................................. 7
7. Schematic and Layout........................................................................................................... 9
   7.1 Connectors ....................................................................................................................... 9
   7.2 Schematic ........................................................................................................................ 10
   7.3 Bill of Materials ............................................................................................................. 13
   7.4 Board Layout ................................................................................................................... 15
8. Ordering Information .......................................................................................................... 17
9. Revision History .................................................................................................................. 17

Figures

Figure 1. CCE4502 Evaluation Board V4 .................................................................................. 1
Figure 3. System Diagram ......................................................................................................... 4
Figure 4. Sections Overview ..................................................................................................... 6
Figure 4. Connectors .................................................................................................................. 9
Figure 5. Schematics 1 ............................................................................................................. 10
Figure 6. Schematics 2 ............................................................................................................. 11
Figure 7. Schematics 3 ............................................................................................................. 12
Figure 8. Top Layer ................................................................................................................... 15
Figure 9. Second Layer (GND) ............................................................................................... 15
Figure 10. Third Layer (Supply) ............................................................................................ 16
Figure 11. Bottom Layer .......................................................................................................... 16
1. References

- CCE4502 Datasheet, Renesas Electronics.
- RA4M2 Group Datasheet, Renesas Electronics.
- RA4M2 Group User’s Manual: Hardware, Renesas Electronics
- R1EX25008ASA001#S0 Datasheet, Renesas Electronics
- HS3001 Datasheet, Renesas Electronics
- SLG46826V Datasheet, Renesas Electronics
- IO-Link Interface and System Specification V1.1.2, IO-Link Community.

2. Introduction

The board is divided into three sections:

- **IO-Link Section**
  The IO-Link section contains all necessary circuitry to use one CCE4502 3.3V (Buck Mode) including an M12 A-Coded connector and terminal block for IO-Link communication. Pin headers enable the user to control and monitor the CCE4502 externally.

- **Sensor / Actuator Section**
  The sensor section contains an HS3001 temperature and humidity sensor to provide an example for measurement signals and a Renesas SLG46826V GreenPAK™ which is configured as multicolor LED driver to act as an actuator.

- **MCU Section**
  The MCU section contains a RA4M2 ARM Cortex-M33 microcontroller from Renesas to control the CCE4502 Device IC as well as the provided sensor and actuator. It also contains an 8 kB EEPROM, USB and SWD debug connector and user and power LED indicators as well as a reset button.

For maximum flexibility, the sections can be used separately and independently from each other. This allows to evaluate the CCE4502 Device IC with every suitable MCU.

The evaluation board is compliant to IO-Link Interface and System Specification V1.1.2.
3. **System Requirements**

The CCE4502 Evaluation Board is ready to use with a preinstalled IO-Link device stack.

To get started, the following tools are required:

- 18-30V (24V typ.) Power Supply (IO-Link Master)
- Debug probe (for programming via SWD) or Micro USB Cable (for programming via USB)
- For programming via SWD: IDE and Coding tool, e.g. Renesas e² Studio

4. **Getting Started**

**Programming via SWD**

1. Set Boot Mode to Single Chip (no Jumper at JP5 Pin 3 - Pin 4)
2. Connect debug probe to SWD connector (X1)
3. Power on the Evaluation Board (IO-Link interface L+ = 24V, L- = GND)
4. Start programming with your preferred IDE

**Programming via USB**

1. Set Jumper to connect JP5 Pin 3 - Pin 4.
2. Connect PC to USB connector (X5)
3. Power on the Evaluation Board (IO-Link interface L+ = 24V, L- = GND)
4. Flash the software stack to the board, using the Renesas Flash Programmer (RFP)
Demonstration using the preinstalled IO-Link Stack

1. Set Boot Mode to Single Chip (no Jumper at JP5 Pin 3 - Pin 4)
2. Import the IODD into the Master Application (IODD can be downloaded at www.Renesas.com)
3. Connect the Evaluation Board to an IO-Link Master using the M12 connector or X3 and X4
4. Start communication

For reinstalling the demonstration IO-Link software stack, please download the stack from www.Renesas.com and follow the procedures described above.

5. Power Supply

The Evaluation Board is supplied via the L+ voltage of the IO-Link interface. The CCE4502 has a wide input voltage range of 9-36V, however it is recommended to use the typical supply voltage for IO-Link devices of 18-30V (typ. 24V).

The IO-Link interface comprises L+, L- and CQ, and it can be accessed via the M12 connector or terminal clamps (X2). Four SMAJ33A TVS diodes are used to provide additional protection.

In buck converter mode, a regulated voltage of 7 V is generated at port VHH. It is capable of supplying up to 50 mA for external devices.

At port VDD, a regulated voltage of 3.3 V is generated by a LDO regulator. This regulator supplies the digital I/O pads of the CCE4502, the MCU, the sensor / actuator. VDD can supply additional external components, but the overall combined external load of VHH and VDD must not exceed 50 mA. The current consumption of the MCU, the sensor / actuator must be below this limit.

Port VDD5 is the output of an LDO regulator with a regulated voltage of 5 V. External components can be supplied by this port with a maximum load of 10 mA.
6. Sections

The CCE4502 Evaluation Board is divided into three sections, the MCU section, the IO-Link section, and the Sensor/Actuator Section.

All sections can be used in combination with an IO-Link Device software stack to demonstrate a fully functional, ready-to-use IO-Link Device.

If required, all sections can be used independently of each other. The connection between the sections can be disconnected by removing the 0R resistors R12, R13, R16, R18 and R20 – R24.

![Figure 3. Sections Overview]

6.1 IO-Link Section

The IO-Link section contains the CCE4502 IO-Link Device IC in the 3.3V buck mode variant and the reference design for using it, IO-Link communication connectors, and connectors for the use of an external MCU.

The SPI interface (SSX1, SCLK, MOSI, MISO and INTX) of the CCE4502 device grants access to all registers of the CCE4502. Therefore, all features of both IO-Link channels CQ1 and DIO can be enabled. The interface allows access to internal supervisor circuitry, such as the overtemperature detection, overvoltage detection and the output overcurrent protection. Furthermore on-chip logic, for example framehandler and wakeup detection, can be used to ease the IO-Link communication. This reduces the computation overhead for the microcontroller.

Besides SPI, it is possible to control the outputs of CQ1 and DIO, and the input of CQ1 directly through the SIO ports of the CCE4502 device, that is, RXD1, TXD1, TXD2 and TXEN1.

Note that when SPI is omitted, all IO-Link protocol handling must be performed by the connected MCU. However, this allows using the CCE4502 as a simple level shifter from 3.3 V / 5 V logic signals to IO-Link compliant levels.

The IO-Link communication can either be established using the M12 A-Coded connector (X5) or the terminal blocks X3 and X4.
The CLK_EXT port is used as clock output port if port K1 is low and as clock input port if port K1 is high. In clock output mode, the clock of the calibrated internal oscillator is switched to CLK_EXT or CLK_EXT is floating, depending on the CLK_OUT register of the CCE4502. By default, CLK_OUT register is configured to disable the clock output. In clock input mode, the logic core is clocked by the signal applied externally to CLK_EXT (X2).

6.2 MCU Section

The MCU section contains a RA4M2 ARM Cortex-M33 microcontroller (IC1) from Renesas and an 8 kB EEPROM (IC2) from Renesas.

Two LEDs are used to indicate the status of the Board: the “POWER” LED indicates that the Board is powered on (VDD is powered), and the “USER” LED can be freely configured by the user. The demonstration IO-Link software stack utilizes the “USER” LED as parameter to be turned on or off by the IO-Link Master.

The microcontroller can be programmed via USB (J1) or SWD interface (X1), see 4. Getting Started.

The MCU can be booted in two different boot modes: Single-Chip mode and USB boot mode. To select the boot mode, the corresponding jumper must be set on JP5 when a reset is released:

- Single Chip mode: no jumper at JP5
- USB boot mode: set jumper to connect JP5 pin 3 to pin 4

For maximum accessibility of the RA4M2, all relevant pins are connected to the pin-headers JP5 and JP7.

6.3 Sensor / Actuator Section

The sensor / actuator section contains a HS3001 temperature and humidity sensor and a SLG46826V GreenPAK™ in LED driver configuration serving as an actuator, which can be used for demonstration and evaluation of the IO-Link communication.

The HS3001 as well as the SLG46826V are controlled via I²C. Please note that the I²C pull-up resistors are placed on the sensor / actuator section.

The I²C interface can also be used by an external I²C master via X4 or JP5 pin 15 and pin 18 to easily reconfigure the GreenPAK™. In the delivery state, the GreenPAK™ is already programmed, and no action is necessary. Resetting the GreenPAK™ to the delivery state can be done in three ways:

- Program manually over I²C (download the I²C register data from www.Renesas.com)
- Program with the Go Configure Software Hub using a GreenPAK™ Development Board (Download the GreenPAK™ Project File from www.Renesas.com)
- Flash the Evaluation Board with the IO-Link demonstration stack (download the IO-Link demonstration stack from www.Renesas.com)

LED D5 (temperature) and LED D4 (humidity) are used as indicators for the current temperature and humidity values. Table 1 shows the standard threshold ranges.
### Table 1  Temperature and humidity thresholds

<table>
<thead>
<tr>
<th></th>
<th>Green</th>
<th>Yellow</th>
<th>Orange</th>
<th>Red</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Temperature In °C</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold range High</td>
<td>20-22</td>
<td>22-25</td>
<td>25-30</td>
<td>&gt;30</td>
</tr>
<tr>
<td>Threshold range Low</td>
<td>18-20</td>
<td>16-18</td>
<td>&lt;16</td>
<td></td>
</tr>
<tr>
<td><strong>Humidity In %</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold range High</td>
<td>45-55</td>
<td>55-60</td>
<td>60-70</td>
<td>&gt;70</td>
</tr>
<tr>
<td>Threshold range Low</td>
<td>30-45</td>
<td>20-30</td>
<td>&lt;20</td>
<td></td>
</tr>
</tbody>
</table>

The thresholds can be adjusted by the IO-Link Master in the parameters section.
7. Schematic and Layout

7.1 Connectors

Figure 4 shows all connectors of the CCE4502 Evaluation Board.

![Connectors Diagram]

*Pull-Down for boot mode select

Figure 4. Connectors
7.2 Schematic

Figure 5. Schematics 1
Figure 7. Schematics 3
### 7.3 Bill of Materials

<table>
<thead>
<tr>
<th>Qty</th>
<th>Reference Designator</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Manufacturer Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>C1, C2</td>
<td>CAP, SMD, 0603, 15pF, 50V, 10%, X7R</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>3</td>
<td>C12, C21, C22</td>
<td>CAP, SMD, 0603, 47pF, 50V, 10%, X7R</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>2</td>
<td>C13, C15</td>
<td>CAP, SMD, 0603, 1nF, 50V, 10%, X7R</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>1</td>
<td>C17</td>
<td>CAP, SMD, 0603, 470nF, 50V, 10%, X7R</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>1</td>
<td>C19</td>
<td>22 µF 16 V 10 %</td>
<td>AVX</td>
<td>TPSB226K016R0600</td>
</tr>
<tr>
<td>1</td>
<td>C20</td>
<td>CAP, SMD, 0603, 100pF, 50V, 10%, X7R</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>1</td>
<td>C23</td>
<td>CAP, SMD, 1210, 10µF, 50V, 10%, X7R</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>10</td>
<td>C3, C5, C6, C7, C8, C9, C10, C14, C16, C18, C35, C36, C37, C38</td>
<td>CAP, SMD, 0603, 100nF, 50V, 10%, X7R</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>3</td>
<td>C4, C11, C24</td>
<td>CAP, SMD, 0805, 1µF, 50V, 10%, X7R</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>3</td>
<td>D1, D2, D3, D4</td>
<td>TVS DIODE 33VWM 53.3VC DO214AC</td>
<td>Littlefuse Inc.</td>
<td>SMAJ33A</td>
</tr>
<tr>
<td>2</td>
<td>D5, D6</td>
<td>LED RGB DIFFUSED CHIP SMD</td>
<td>Lite-on Inc.</td>
<td>LTST-C19HE1WT</td>
</tr>
<tr>
<td>2</td>
<td>D7, D8</td>
<td>TVS DIODE 33VWM 53.3VC DO214AC</td>
<td>Littlefuse Inc.</td>
<td>SMAJ33A</td>
</tr>
<tr>
<td>2</td>
<td>D9, D10</td>
<td>DIODE SCHOTT 40V 250MA SC79-2-1</td>
<td>Infeneon</td>
<td>BAT6402VH6327XTSA1</td>
</tr>
<tr>
<td>2</td>
<td>LED1, LED2</td>
<td>LED GREEN CLEAR SMD</td>
<td>Lite-on Inc.</td>
<td>LTST-C191KGKT</td>
</tr>
<tr>
<td>1</td>
<td>IC1</td>
<td>MCU RA4 ARM CM33 100MHZ 512K/128</td>
<td>Renesas Electronics</td>
<td>R7FA4M2AD3CFL#AA0</td>
</tr>
<tr>
<td>1</td>
<td>IC2</td>
<td>EEPROM 8KBIT SPI 5MHZ 8SOP</td>
<td>Renesas Electronics</td>
<td>R1EX25008ASA00I#S0</td>
</tr>
<tr>
<td>1</td>
<td>IC3</td>
<td>CCE4502 IO-Link Device IC 3.3V Buck Mode</td>
<td>Renesas Electronics</td>
<td>CCE4502 CC 3.3B-QFN</td>
</tr>
<tr>
<td>1</td>
<td>IC4</td>
<td>SENSOR HUMIDITY 90% RH SMD</td>
<td>Renesas Electronics</td>
<td>HS3001</td>
</tr>
<tr>
<td>1</td>
<td>J1</td>
<td>CONN RCPT USB2.0 MICRO B SMD R/A</td>
<td>Würth Elektronik</td>
<td>629105150521</td>
</tr>
<tr>
<td>5</td>
<td>JP1, JP2, JP3, JP4, JP6</td>
<td>Trace Cut Jumper</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>JP5, JP7</td>
<td>CONN HEADER VERT 18POS 2.54MM</td>
<td>Würth Elektronik</td>
<td>61301821121</td>
</tr>
<tr>
<td>1</td>
<td>JP8</td>
<td>CONN HEADER VERT 10POS 2.54MM</td>
<td>Würth Elektronik</td>
<td>61301011121</td>
</tr>
<tr>
<td>1</td>
<td>JP9</td>
<td>CONN HEADER VERT 4POS 2.54MM</td>
<td>Würth Elektronik</td>
<td>61300411121</td>
</tr>
<tr>
<td>1</td>
<td>L1</td>
<td>FIXED IND 22UH 220MA 1.3 OHM SMD</td>
<td>Würth Elektronik</td>
<td>744032220</td>
</tr>
<tr>
<td>1</td>
<td>Q1</td>
<td>CRYSTAL 24.0000MHZ 10PF SMD</td>
<td>Diodes Incorporated</td>
<td>FL2400022</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>R1, R25, R26</td>
<td>RES, SMD, 0603, 10kOhm, 50V, 1.0%, 100mW</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>5</td>
<td>R10, R11, R15, R17, R19</td>
<td>RES, SMD, 0603, 100Ohm, 50V, 1.0%, 100mW</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>9</td>
<td>R12, R13, R16, R18, R20, R21, R22, R23, R24</td>
<td>RES, SMD, 0805, 0 Ohm, 50V, 1.0%, 100mW</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>1</td>
<td>R14</td>
<td>RES, SMD, 0603, 33Ohm, 50V, 1.0%, 100mW</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>2</td>
<td>R2, R3</td>
<td>RES, SMD, 0603, 27Ohm, 50V, 1.0%, 100mW</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>1</td>
<td>R4</td>
<td>RES, SMD, 0603, 15kOhm, 50V, 1.0%, 100mW</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>1</td>
<td>R5</td>
<td>RES, SMD, 0603, 30kOhm, 50V, 1.0%, 100mW</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>1</td>
<td>R6</td>
<td>RES, SMD, 0603, 1.5kOhm, 50V, 1.0%, 100mW</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>2</td>
<td>R7, R8</td>
<td>RES, SMD, 0603, 4.7kOhm, 50V, 1.0%, 100mW</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>8</td>
<td>R9, R27, R28, R29, R30, R31, R32, R33</td>
<td>RES, SMD, 0603, 560Ohm, 50V, 1.0%, 100mW</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>1</td>
<td>S1</td>
<td>SWITCH TACTILE SPST-NO 0.05A 12V</td>
<td>Würth Elektronik</td>
<td>430481035816</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>GPAK MIXED SIGNAL MATRIX</td>
<td>Renesas Electronics</td>
<td>SLG46826V</td>
</tr>
<tr>
<td>1</td>
<td>X1</td>
<td>CONN HEADER SMD 10POS 1.27MM</td>
<td>Samtec Inc.</td>
<td>FTSH-105-01-F-DV-K</td>
</tr>
<tr>
<td>1</td>
<td>X2</td>
<td>CONN SMA JACK R/A 50 OHM PCB</td>
<td>TE Connectivity</td>
<td>5-1814400-2</td>
</tr>
<tr>
<td>2</td>
<td>X3, X4</td>
<td>THERM BLK 2POS SIDE ENT 3.5MM PCB</td>
<td>Würth Elektronik</td>
<td>691103110002</td>
</tr>
<tr>
<td>1</td>
<td>X5</td>
<td>M12 Connector</td>
<td>Binder</td>
<td>09 0431 212 04</td>
</tr>
<tr>
<td>1</td>
<td>X6</td>
<td>CONN HEADER SMD 4POS 1MM</td>
<td>TE Connectivity</td>
<td>1734595-4</td>
</tr>
</tbody>
</table>
7.4 Board Layout

Figure 8. Top Layer

Figure 9. Second Layer (GND)
Figure 10. Third Layer (Supply)

Figure 11. Bottom Layer
### 8. Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCE4502-EVAL-V4</td>
<td>CCE4502 Evaluation Board V4</td>
</tr>
</tbody>
</table>

### 9. Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Jan 05, 2023</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>
Important Notice and Disclaimer

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENASAS”) PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas’ products are provided only subject to Renesas’ Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

© 2023 Renesas Electronics Corporation. All rights reserved.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
https://www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.