
© 2015 Renesas System Design Co., Ltd. All rights reserved.

CC-RL C COMPILER FOR
RL78 FAMILY
CODING TECHNIQUES
CC-RL V.1.02.00

Dec. 24, 2015 R20UT3569EJ0100
Microcomputer Tool Product Marketing Department,
Tool Business Division
Renesas System Design Co., Ltd.

© 2015 Renesas System Design Co., Ltd. All rights reserved.

AGENDA

 Introduction Page 3

 Coding Techniques Page 4

 Memory Models Page 16

 Using Variables/Functions Information File Page 19

Page 2

© 2015 Renesas System Design Co., Ltd. All rights reserved.

Introduction

• This document describes coding techniques to further reduce the code size or accelerate
execution even after optimization through option settings when using the CC-RL C compiler.

• Each amount of code reduction shown in this document only applies to the corresponding
example; the actual reduction will vary slightly between cases.

• The output assembly-language codes shown in this document are examples compiled with the
medium model and the code size precedence option (-Osize) specified. Note that the output
code will differ when a different type of optimization (default optimization or speed precedence
optimization) is specified.

• This document uses the following tools and versions for description.

• CC-RL C compiler for the RL78 family V.1.02.00

• e2 studio integrated development environment V4.2.0.012

• CS+ integrated development environment V.3.03.00

Page 3

© 2015 Renesas System Design Co., Ltd. All rights reserved.

Coding Techniques

Page 4

© 2015 Renesas System Design Co., Ltd. All rights reserved.

Effects of Coding Techniques

Effects on the output code size and execution speed when applying coding techniques

Page 5

Coding Technique Code Size Execution Speed
Size of variables

Unsigned variables

saddr area

callt function X
Alignment of structure variables

Bit fields and 1-byte variables

: Effective; : Not effective; X: Performance degraded

© 2015 Renesas System Design Co., Ltd. All rights reserved.

Size of Variables

• When using variables, specify the type having the minimum allowable size.

• This is because the RL78 devices excel in handling small-type variables.

• Example:

• C source program

• Output assembly-language program

Page 6

Before Change After Change
void func(void)
{

signed int i;
for(i=0; i<10; i++)

__nop();
}

void func(void)
{

signed char i;
for(i=0; i<10; i++)

__nop();
}

Before Change After Change
movw ax, #0x000A

.BB@LABEL@1_1:
nop
addw ax, #0xFFFF
bnz $.BB@LABEL@1_1
ret

3

1
3
2
1

mov a, #0x0A
.BB@LABEL@1_1:

nop
dec a
bnz $.BB@LABEL@1_1
ret

2

1
1
2
1

10 bytes 7 bytes

© 2015 Renesas System Design Co., Ltd. All rights reserved.

Unsigned Variables

• Add "unsigned" for all data that never handle negative values.

• This is because the RL78 devices excel in handling unsigned variables.

• Example:

• C source program

• Output assembly-language program

Page 7

Before Change After Change
signed int data0,data1;

if(data0 > 10) data1++;

unsigned int data0,data1;

if(data0 > 10) data1++;

Before Change After Change
movw ax, !LOWW(_data0)
xor a, #0x80
cmpw ax, #0x800B
skc
incw !LOWW(_data1)

3
2
3
2
3

movw ax, !LOWW(_data0)

cmpw ax, #0x000B
skc
incw !LOWW(_data1)

3

3
2
3

13 bytes 11 bytes

© 2015 Renesas System Design Co., Ltd. All rights reserved.

saddr Area (1/2)

• Use the __saddr qualifier or #pragma saddr declaration for frequently used external variables
and static variables within functions.

• Allocating variables in the saddr area improves the code.

• For a one-bit field especially, the __saddr qualifier or #pragma saddr declaration can be
expected to have a large effect.

• Alternatively, the variables/functions information file can be used to allocate variables to the
saddr area.

Page 8

© 2015 Renesas System Design Co., Ltd. All rights reserved.

saddr Area (2/2)

• Example:

• C source program

• Output assembly-language program

Page 9

Before Change After Change
typedef struct {

unsigned char b0:1;
unsigned char b1:1;
unsigned char b2:1;
unsigned char b3:1;
unsigned char b4:1;
unsigned char b5:1;
unsigned char b6:1;
unsigned char b7:1;

} BITF;
BITF data0, data1;

data0.b4 = data1.b1;

typedef struct {
unsigned char b0:1;
unsigned char b1:1;
unsigned char b2:1;
unsigned char b3:1;
unsigned char b4:1;
unsigned char b5:1;
unsigned char b6:1;
unsigned char b7:1;

} BITF;
__saddr BITF data0, data1;

data0.b4 = data1.b1;

Before Change After Change
movw hl,#LOWW (_data1)
mov1 CY,[hl].1
movw hl,#LOWW (_data0)
mov1 [hl].4,CY

3
2
3
2

mov1 CY,_data1.1

mov1 _data0.4,CY

3

3
10 bytes 6 bytes

© 2015 Renesas System Design Co., Ltd. All rights reserved.

callt Function (1/2)

• Use the __callt qualifier or #pragma callt declaration for frequently called functions.

• The addresses of the functions to be called are stored in the callt table area [80H - BFH], and the
functions are called with a smaller-size code than that for direct function calls.

• Example:

• C source program

Page 10

Before Change After Change
void func_sub(void)
{

;
}
void func()
{

func_sub();
;

func_sub();
}

__callt void func_sub(void)
{

;
}
void func()
{

func_sub();
;

func_sub();
}

© 2015 Renesas System Design Co., Ltd. All rights reserved.

callt Function (2/2)

• Example:

• Output assembly-language program

• Notes:

• A table of addresses for function calls is generated (.callt0).

• Due to generation of this table, code size reduction is not effective for a function called only once.

• The CALLT instruction requires more clock cycles for execution than the CALL instruction.

• Alternatively, the variables/functions information file can be used to specify declarations of the functions to be
called through the CALLT instruction

Page 11

Before Change After Change

.SECTION .textf,TEXTF
_func:

call !!_func_sub

call !!_func_sub

4

4

.SECTION .callt0,CALLT0
@_func_sub:

.DB2 _func_sub

.SECTION .textf,TEXTF
_func:

callt [@_func_sub]

callt [@_func_sub]

2

2

2
8 bytes 6 bytes

© 2015 Renesas System Design Co., Ltd. All rights reserved.

Alignment of Structure Members (1/2)

• In the RL78 family of devices, reading or writing in word units cannot start from an odd address;
data for alignment is inserted by the default option setting so that 2-byte or larger members are
allocated to even addresses.

• Therefore, take care regarding the alignment of structure members and do not leave unused
space between members.

• Example:

• C source program

Page 12

Before Change After Change
struct {

signed char a;
signed int b;
signed char c;
struct {

signed int d;
signed int e;

} f;
} data;

struct {
signed char a;
signed char c;
signed int b;
struct {

signed int d;
signed int e;

} f;
} data;

© 2015 Renesas System Design Co., Ltd. All rights reserved.

Alignment of Structure Members (2/2)

• Example:

• Memory Allocation

Page 13

Before Change: 10 bytes After Change: 8 bytes

Data for alignment

(Upper address)

(Lower address)

c

b

a

d

e

c

b

a

d

e

© 2015 Renesas System Design Co., Ltd. All rights reserved.

Bit Fields and 1-Byte Variable (1/2)

• When the size of a bit-field member is two or more bits, use the char type instead of a bit field
(two or more bits).

• Note that the size of RAM area used will increase when this is done.

• Example:

• C source program

Page 14

Before Change After Change
struct {

unsigned char b0:1;
unsigned char b1:2;

} data;
unsigned char dummy;

if(data.b1){
dummy++;

}

unsigned char data;

unsigned char dummy;

if(data){
dummy++;

}

© 2015 Renesas System Design Co., Ltd. All rights reserved.

Bit Fields and 1-Byte Variable (2/2)

• Example:

• Output assembly-language program

Page 15

Before Change After Change
mov a, #0x06
and a, !LOWW(_data)
sknz
ret
inc !LOWW(_dummy)
ret

2
3
2
1
3
1

cmp0 !LOWW(_data)

sknz
ret
inc !LOWW(_dummy)
ret

3

2
1
3
1

12 bytes 10 bytes

© 2015 Renesas System Design Co., Ltd. All rights reserved.

Memory Models

Page 16

© 2015 Renesas System Design Co., Ltd. All rights reserved.

Memory Models (1/2)

• According to the specifications of the RL78 family, the sizes of the codes for function call and
data access differ depending on whether

• the program size is 64 Kbytes or larger

• the data size (including ROM data) is 64 Kbytes or larger.

• CC-RL provides the following two memory models.

Page 17

Model Size Functions Variables

Small model Program: 64 Kbytes or smaller; Data: 64 Kbytes or
smaller

near near

Medium model Program: 64 Kbytes or larger; Data: 64 Kbytes or smaller far near

© 2015 Renesas System Design Co., Ltd. All rights reserved.

Memory Models (2/2)

• For a large program, select the medium model and add the __near qualifier to frequently called
functions to reduce the code size.

• Note that when the __near or __far qualifier is added to a function, the type of the pointer
variable that handles the qualified function should also be modified to match the type of the
function.

Page 18

© 2015 Renesas System Design Co., Ltd. All rights reserved.

Using Variables/Functions Information
File

Page 19

© 2015 Renesas System Design Co., Ltd. All rights reserved.

Using Variables/Functions Information File (1/3)

• Features

• Frequently used variables are allocated to the saddr area.

• Frequently called functions are handled as callt functions.

• In addition to the qualifiers (__saddr and __callt) and #pragma declarations (saddr and callt)
specified in the source files, the variables specified in the variables/functions information file
are allocated to the saddr area and the functions specified in the file are handled as callt
functions.

• How to use

• Specify the –vfinfo linker option to generate a variables/functions information file.

• Include the variables/functions information file at compilation in either of the following methods.

• Specify the file through the –preinclude compiler option.

• Use #include to include the file to each source file.

Page 20

© 2015 Renesas System Design Co., Ltd. All rights reserved.

Using Variables/Functions Information File (2/3)

• Note

• When generating a variables/functions information file through the –vfinfo linker option, check
that the build process has been completed correctly and a load module file has been created.

• Linker option -vfinfo

• This option selects variables and functions for which code reduction works most effectively
based on their reference frequencies, adds declarations of saddr variables and callt functions
through #pragma directives to the selected variables and functions, and outputs them to a
header file (variables/functions information file).

Page 21

© 2015 Renesas System Design Co., Ltd. All rights reserved.

Using Variables/Functions Information File (3/3)

• Example:

Page 22

/* RENESAS OPTIMIZING LINKER GENERATED FILE yyyy.mm.dd */
/*** variable information ***/
#pragma saddr data0 /* count:10,size:1,near,tp0.obj */
#pragma saddr data1 /* count:5,size:1,near,tp0.obj */

：
/* #pragma saddr datann */ /* count:1,size:1,near,tp1.obj */

：
/*** function information ***/
#pragma callt func_sub0 /* count:4,far,tp0.obj */
#pragma callt func_sub1 /* count:1,far,tp0.obj */

：
/* #pragma callt func0 */ /* count:1,far,tp1.obj */

：

© 2015 Renesas System Design Co., Ltd. All rights reserved.

Using Variables/Functions Information File (e2 studio)
(1/2)

• Generating a variables/functions information file automatically

• Enable position optimization in the linker.

• Project name.h" is registered in the project tree.

Page 23

© 2015 Renesas System Design Co., Ltd. All rights reserved.

Using Variables/Functions Information File (e2 studio)
(2/2)

• Editing a variables/functions information file (after automatic generation)

• Disable position optimization that was enabled in the step shown in the previous page in the
linker.

• Import the automatically generated "Project name.h" file to the src folder.

• Register the "Project name.h" file in [Include files at head of compiling units].

Page 24

© 2015 Renesas System Design Co., Ltd. All rights reserved.

Using Variables/Functions Information File (CS+) (1/2)

• Generating a variables/functions information file automatically

• Enable output of a variables/functions information file.

• "Project name.h" is registered in the project tree.

Page 25

© 2015 Renesas System Design Co., Ltd. All rights reserved.

Using Variables/Functions Information File (CS+) (2/2)

• Editing a variables/functions information file (after automatic generation)

• Disable output of a variables/functions information file that was enabled in the step shown in
the previous page.

• Copy the "Project name.h" file to another folder (such as the source folder). (Although it can be
used without copying, when output of a variables/functions information file is enabled, the tool
overwrites and deletes the file.)

• Register the "Project name.h" file in [Include files at head of compiling units].

Page 26

© 2015 Renesas System Design Co., Ltd. All rights reserved.

Renesas System Design Co., Ltd.

	スライド番号 1
	Agenda
	Introduction
	スライド番号 4
	Effects of Coding Techniques
	Size of Variables
	Unsigned Variables
	saddr Area (1/2)
	saddr Area (2/2)
	callt Function (1/2)
	callt Function (2/2)
	Alignment of Structure Members (1/2)
	Alignment of Structure Members (2/2)
	Bit Fields and 1-Byte Variable (1/2)
	Bit Fields and 1-Byte Variable (2/2)
	スライド番号 16
	Memory Models (1/2)
	Memory Models (2/2)
	スライド番号 19
	Using Variables/Functions Information File (1/3)
	Using Variables/Functions Information File (2/3)
	Using Variables/Functions Information File (3/3)
	Using Variables/Functions Information File (e2 studio) (1/2)
	Using Variables/Functions Information File (e2 studio) (2/2)
	Using Variables/Functions Information File (CS+) (1/2)
	Using Variables/Functions Information File (CS+) (2/2)
	スライド番号 27

