\

USER'S MANUAL NEC

ATM-LAN LOW-LEVEL DRIVER

Documen t No. S11654EJ1VOUMOO (1st edition)
Date Published December 1996 N
© NEC Corporation 1996 Printed in Japan

Compaq is a trademark of Compaq Computer Corporation.

Deskpro is a registered trademark of Compaq Computer Corporation.
Microsoft is a registered trademark of Microsoft Corporation.
MS-DOS is a trademark of Microsoft Corporation.

PC/AT is a trademark of 1BM Corporation.

The information in this document is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or of others.

Readers

Purpose

Organization

How to Read This Manual

Legend

INTRODUCTION

This manual is intended for user engineers who wish to understand the functions of
the ATM-LAN LSI and design device drivers for it.

This manual explains the device driver of the ATM network interface card (NIC) and
the functions of the ATM-LAN LSI.

This manual contains the following information:
- General

+ Development Environment

+ Hardware control module

» Evaluation software

Itis assumed that the readers of this manual have basic knowledge of ATM networks.

To understand the overall functions of the low-level driver
— Read through this manual in the order of the Table of Contents.

The following symbols are used throughout this manual.

Note : Explanation of items marked with Note in the text
Caution : Important information
Remark : Supplement
U . 1 space
| . Return
Numeric notation: Binary number ... XXXX Or xxxxB
' Decimal number vee XXXX

Hexadecimal number ... xxxxH

Related documents The documents referred to in this publication may include preliminary versions.
However, preliminary versions are not marked as such.

- uPD98401, 98402A

Document Name Brochure . Data Sheet User’s Manual Application Note

Part Number
uPD98401 S11294E S11403E S11380E S11441E
uPD98402A S10835E S10673E

» Documents related to tools
+ ATM-LAN Low-Level Driver User’s Manual (this manual)
» ATM Adapter Card for PCI Bus User’'s Manual (S11655E)

TABLE OF CONTENTS

CHAPTER 1 GENERALoeisnncmsstiessiesanissaenssessssstnssinastnessssniessasasassssnaasosssansanasisans
CHAPTER 2 DEVELOPMENT ENVIRONMENTccocinerrmnneninnasiensnnsasssnsesesssenesscssnsennes
2.1 Hardware Development Environment..........coooicecrcnciennnnnnenienacisnssesascnnnsenes
2.2 Software Development ENVIrONMENt ... eneeesieesesecssstsnren s sanensnensnensenas
2.3 Operating ENVIrONMENtcccocemiirnsnininnnininncemnsinensninssnsssnsnsassssesesssssssssssonssssnss
CHAPTER 3 HARDWARE CONTROL MODULEccoociicmienricncsienessisnssvaresssenensssssssessssssassanes
3.1 Configuration of HCM..........cinnmnnmncinnnienstnsnssssssnssessensssssssssssacssesssssansssasssnaes
3.2 HCOM FUNCLIONS ..ccreiisirnnensecnnsarsnnsmsenssnsessansassassanssmssces wersassasssssssasnns
32,1 PCIDUS SEHING c.cvvereeererrieetrerene ettt sttt s s ettt st st as e
3.2.2 Setting of INTEIrUPt VECION ...ttt
3.2.3 Initialization of HPDBBA0T ...t
3.2.4 Preparation for transmisSion/reCEePLIONocivvreveeeicieieteree e
3.2.5 Setting Of SNAPET ...ccreer ettt
3.2.6 Securing transmit/receive buffer
3.2.7 Setting of packet dESCrIPLOrcccivrieiicneciicte et s
3.2.8 Setting of transmit VC tableccceeeeereemiiinite et e
3.2.9 Setting receive batch and buffer StruCture ...
3.2.10 Setting of POl AESCIPLONceimiiiiiieiccc ettt
3.2.11 Setting of receive VC table ...ttt
3.2.12 Setting of receive 100k-Up table ...
3.2.13 Obtaining receive l0ok-up table address ...
3.2.14 Closing transmit/receive ChanNEl ...ttt
3.2.15 Termination ProCESSING ...ceoveeceeeereerrrerenrrsersreriniesssissesssisansssessasssesarasssnsessssersssaesnssssaneass
3.2.16 INEITUPE SEIVICE ..oueeeeiiccninciintctrrect ittt s e e st es s san e s bbb
3.3 HCM COMMANd.....ceierercrinsiesiitessansssenissssssssssssanssansessssssesassanaresssasnas
3.4 Relation among Function Calls..........cccvuvmneirmiemnsnneinnennennnisnsess s tsssssssssesssnnes
3.5 = Function of Assembler Module................... T eseesssssseersassnnnes
CHAPTER 4 EVALUATION SOFTWAREriicneemrrcnstsesenssansesseesssneennesssnssmssssanns
4.1 Function of Evaluation Modulecceceirmierisnnmninncninnersnessnsessescnensossssssssnsns
4.2 Execution Screen of Evaluation SOftwarecccuvmvivvrmnnnsscsncrsiccssensserssnsaness
4.3 Command Description........cccccecniescsnsnsersnsnnsnnsssncsnnne
4.3.1 Reading/writing direct address registerocvveneeeinneeneencns rreresesnsssinntassase e sneseres
4.3.2 Reading/writing indirect address registercouvvereiicierinnie e
4.3.3 Reading/writing CONrol MEMOTYoveereiiriieriie ittt
4.3.4 Reading/writing PHY chip register
4.3.5 Dumping SYSTEM MEMONY ..ottt sttt
4.3.6 Setting ShAPET ...t
4.3.7 OPEN ChANNEL ..ottt et en s st s et e s e st sb b
4.3.8 Transmit/receive Close ChanNel ...ttt
4.3.9 Setting packet descriptor................

4.3.10 Setting of transmit VC table

W Wwww

O N NN g0

19
19
21
22
22
23
23
24
24
25
25
26
27
27

4.3.11 Starting transmission
4.3.12 Setting transmit data

4.3.13 Setting of pool

4.3.14 Setting of RAW cell pool descriptor
4.3.15 Setting of receive VC table

Lo [=1:Tor 11 o) (o1 SRR OO

4.3.16 Enabling receptioncccuvuvue.

4.3.17 Disabling reception
4.3.18 NOP command
4.3.19 AddBatches command
4.3.20 Initialize command

4.3.21 Transmit buffer, packet descriptor address read command...........cccceeerenniiccncrncnnne

4.3.22 Receive buffer, batch address read command
4.3.23 Mailbox address read command
4.3.24 RAW cell buffer address read command
4.3.25 File open command
43.26 REM command

4.3.27 Quit command

4.4 Status of Control Memory
4.5 Example of Using Evaluation Software

APPENDIX A COMMAND LIST

APPENDIX B REGISTER NUMBER LIST 1 (direct address register) .

APPENDIX C REGISTER NUMBER LIST 2 (indirect address register)

28
28
28
29
29
29
30
30
30
30
31
31
31
32
32
32
32
33
34

37

38

39

CHAPTER 1 GENERAL

This User's Manual explains the functions and specifications of the device driver of the ATM network interface card
for the PCI bus (hereafter referred to as “NIC”) manufactured by ZeitNet/NEC. The NIC uses a uPD98401 ATM
chip, and this device driver controls that chip. This device driver actually consists of a hardware control module
(hereafter referred to as “HCM”) that accesses the uPD98401 and evaluation software that evaluates the chip.

[MEMO]

CHAPTER 2 DEVELOPMENT ENVIRONMENT

2.1 Hardware Development Environment

The hardware development environment under which this device driver was developed as follows:
Compaq™ Deskpro® XL560

2.2 Software Development Environment

The software development environment under which this device driver was developed as follows:
Microsoft® Visual C++ ver 1.0
Microsoft MacroAssembler ver 5.0

The device driver source code consists of the following files:

s10hcm.c : HCM

s10asm.asm : Assembier of HCM
sarsmp.c : Evaluation software
ibm_pc.c : PC identification
s10head.h : Header

s10func.h : Header
sarsmp.mak : Make file

Only s10asm.asm must be assembled with MacroAssembler to create an object file. At assembly time, use the
/Mx option (that distinguishes between uppercase and lowercase characters).

The rest of the files and created object file must be compiled and linked with the C compiler, using the make file
sarsmp.mak.

2.3 Operating Environment

The hardware environment under which this device driver runs is as follows:
IBM PC/AT™ or compatible machine, or NEC PC-9800 series
ZeitNet/NEC ATM-NIC card
This device driver runs as an application on MS-DOSTM by executing the created EXE file at the command prompt.

[MEMO]

CHAPTER 3 HARDWARE CONTROL MODULE

3.1 Configuration of HCM

HCM consists of two files: s10hcm.c and s10asm.asm. s10hcm.c includes a control block that controls transmission
and reception, and commands that access the uPD98401. s10asm.asm executes BIOS call and port input/output.

3.2 HCM Functions

3.2.1 PCI bus Setting
int set_pci (void)
Accesses the PCI configuration space by using the BIOS call of the PCI.
Sets the PCI by obtaining the base address.

(1) Obtains a bus number and a device number from the device ID and vendor 1D {f_dev()}.

(2) Writes to the command register that the 1/0 space can be accessed from the bus number and device number,
and that the HCM can operate as a bus master (command 05H).
NIC is mapped to the I/O space {w_config()}.

(3) Obtains the base address from the bus number and device number {r_base()}.

(4) Obtains an interrupt line from the bus number and device number {r_intr()}.

Remark Each module, which is accessing PCI configuration space, is written in assembler.

3.2.2 Setting of interrupt vector

int set_intr_vect (void)

Obtains an interrupt number from an interrupt line, sets an interrupt vector, and clears the interrupt mask. Saves
the initial values of both the interrupt vector and interrupt mask, and restores them on termination of the program.

(1) Obtains an interrupt number.
(2) Saves the interrupt vector, and writes a new vector.
(3) Saves the interrupt mask and clears the mask.

CHAPTER 3 HARDWARE CONTROL MODULE

3.2.3 Initialization of uPD98401
int init_s10 (void)
Clears the control memory to 0 and executes software reset.
After that, sets the registers, allocates mailboxes, and clears the shaper to 0.

(1) Clearing control memory to 0 {init_CitMem()}
Clears address OH through 8000H to 0.
(2) Software reset
Executes software reset by writing a value to the SWR register.
(3) Register setting
GMR = 80000020H
IMR = 00000000H
TOS = 00002050H
SMA = 00002040H
PMA = 00002000H
VRR = 000A1FFFH
T1R = 7200
(4) Secu~ring mailbox {init_MailBox()}
Allocates four mailboxes in the system memory for transmission/reception indication.
The size of all the mailboxes (MB_SIZE) is 10K bytes.
(5) Clearing shaper to O {init_Shaper()}
Initializes (to 0) I, M, P, C, and Priority of each shaper indicated by a shaper number (i) using the following
modules:

+ 1 =0, M =0 {shaper_set_im (i, 0, 0)}
+ X = 0 {shaper_set_x (i, 0)}

Y = 0 {shaper_set_y (i, 0)}

P = 0, C = 0 {shaper set_pc(i, 0, 0)}
» Priority = 0 {shaper set_pri(i, 0)}

CHAPTER 3 HARDWARE CONTROL MODULE

3.2.4 Preparation for transmission/reception
int pre_tx_rx (void)
To prepare for transmission/reception, set the RE bit and SE bit of GMR, and set shaper number 0.

(1) Sets the RE and SE bits of GMR.

(2) Clears the interrupt mask.
Store FFFFFFFFH to the IMR fegister.

(3) Sets the shaper {set_shaper_reg(&sp)}-
no=0,I=1,M=2,P =1, C =15, Priority =0

3.2.5 Setting of shaper
int set_shaper_reg (sshp*x)
Sets the shaper indicated by the shaper number.
The argument is indicated by structure x of sshp type, as follows:
typedef struct shaper_param{

long no; : Shaper number

long pri; : Priority

long I; H|

long M; M

long P; :P

long C; :C

long enabileflag; : Enable flag
Jsshp;

3.2.6 Securing transmitreceive buffer

long *bufalloc (size_t bufsize)

Allocates a buffer of size (in bytes) indicated by bufsize. The buffer size that can be set during transmission or
reception is as follows: :

- Transmit buffer size: 0 to 32K bytes

« Receive buffer size : 64 to 32K bytes

As areturn value, the address of the buffer allocated is returned. This address is located at a double word boundary.

This module is also used to allocate packet descriptors and batches.

CHAPTER 3 HARDWARE CONTROL MODULE

3.2.7 Setting of packet descriptor
int set_txpd (long *ptxpd, long bufaddr, spp*x)
Sets the address of the buffer indicated by bufaddr and the parameter indicated by structure x of spp type to the
packet descriptor indicated by ptxpd.
The configuration of ptxpd is as follows:
ptxpd = word0
ptxpd + 1 = wordt1
ptxpd + 2 = word2
ptxpd + 3 = word 3

The structure of ssp type is as follows:

typedef struct packetdesc_param {

long v; :*1": valid descriptor, ‘0': blank descriptor
long dp; - : Descriptor/pointer
long sm; : Single/multi-buffer mode
long cipm; : CLP mode
long pti; : PTl pattern
long dfc; : GFC pattern
long ¢10; : CRC-10
long aal; : AAL type of cell
long mb; : Mailbox number
long cpcsuu; : Indication between user machines
long cpi; : Common part type indication
long size; : Buffer size (0 to 64K bytes)
spp;

The transmit data buffer of the following structure is allocated in system memory by this function.

Packet descriptor Buffer

CHAPTER 3 HARDWARE CONTROL MODULE

3.2.8 Setting of transmit VC table

int set_txvctable (long txvenum, stxvcp*x, “pixpd)

Sets the shaper number, VPI/VCI, and the address of the packet descriptor in the transmit VC table indicated by
txvenum.

The structure of stxvcp type is as follows:

typedef struct txvctable_param {

long shaperno; : : Shaper number
long vpivci; : VPINCI
} stxvep;

The contents of the transmit VC table are as follows:

word0 : Setto 0.

word1 : Sets L = 1, shaperno and vpivci.

word2 : Setto 0.

word3 : Setto 0.

word4 : Set to 0.

word5 : Setto 0.

word6 : Convert the address (logical address) of the packet descriptor indicated by ptxpd to a
physical address for setting. {phy_addr((long)ptxpd)}

word7 : Not used, because a link pointer is set.

CHAPTER 3 HARDWARE CONTROL MODULE

3.2.9 Setting receive batch and buffer structure
long *set_rxbat (size_t batsize, size_t rxbufsize, int rxbatnum)

batsize : Receive batch size (8 bytes)
rxbufsize : Receive buffer size
rxbatnum : Number of receive batches

The receive batch and buffer are configured from the above arguments.

“set_rxbat” links the receive buffer (prxbuff{i]) with the receive batch (prxbatchli]) by using the batch in the link
format, and links the last batch with the first batch. As a return value, the address of the first batch is returned. The
receive batch and buffer of the following structure is allocated in system memory by this function.

Batch Buffer
Link pointer
Batch Buffer
Link pointer
1
1
(S i
1
1
1
——— 1
Batch Buffer
Link pointer

10

CHAPTER 3 HARDWARE CONTROL MODULE ‘

3.2.10 Setting of pool descriptor

int set_pooldesc(srxvcp*x, long bataddr, srp*y)

Sets the address and parameter (srp type structure) of the receive batch indicated by bataddr to the pool descriptor
indicated by the pool number (contents of srxvcp type structure).

The structure of srxvep type is as follows:

typedef struct rxvctable_param {

long mb; : Mailbox specification

long poolno; : Pool number

long unifo; : User information

long od; : OAM cell drop

long ar; : Cell type

long maxseg; : Maximum segment
}srxvep;

The structure of srp type is as follows:

typedef struct rxpooldesc_param {

long alert; : Alert level

long bufsize; : Buffer size

long batsize; : Batch size

long poolbat; : Number of batches remaining in pool
}srp;

11

CHAPTER 3 HARDWARE CONTROL MODULE

3.2.11 Setting of receive VC table
int set_rxvctable (long rxvenum, srxvep*y)
Sets the parameter indicated by structure y of srxvep type to the receive VC table indicated by rxvenum.
The structure of srxvep type is as follows:

typedef struct rxvctable_param {

long mb; : Mailbox specification

long poolno; : Pool number

long uinfo; : User information

long od; : OAM cell drop

long ar; : Cell type

long maxseg; : Maximum segment
} srxvep;

“ The contents of the receive VC table are as follows:

word0 : Sets mb, poolno, and uinfo.

word1 : Sets od, ar, and maxseg.

wordé : Set to 0.

word3 : Set to 0.

word4 : Setto 0.

word5 : Setto 0.

word6 : Setto 0.

word7 : Not used, because a link pointer is set.

3.2.12 Setting of receive look-up table

int set_lookuptable (long rxvenum, srxvpvc*vpvc)

(1) Obtains the value (VC number) to be set to the look-up table address. At the same time, the look-up table
(LUTENABLE = 8000H) is enabled and stores the value to cnum.

(2) Combines (synthesize) the VPI/VCI value and VRR to obtain the synthesized look-up table address
{vpvcmap(vpvc)}.

(3) Sets the value (cnum) to the look-up table addressNote,

The look-up table address (vrrvpvc) is the return vaiue.

Note Sets the value to the high-order 16 bits if the LSB of the synthesized look-up table address is “0”; sets the
value to the low-order 16 bits if the LSB is “1".

12

CHAPTER 3 HARDWARE CONTROL MODULE

3.2.13 Obtaining receive look-up table address
int vovemap (srxvpvcvpvc)
(1) Shifts the VPI by VRR_SHIFT and OR the VPl with VCI.
(2) Masks VRR_MASK.
The return vaiue is the address obtained through synthesis.

3.2.14 Closing transmit/receive channel

[Transmit]

int close_txch (long venum)
(1) Issues the DeactivateChannel command. {s10_DeactivateChannel (vcnum, tx)}
(2) Issues the close channel command. {s10_CloseChannel (vcnum, tx)}

[Receive]
int close_rxch (long venum, long vrrvpve)
(1) Disables the look-up table.
(2) Issues the NOP command two times. {s10_Nop()}
(3) Issues the DeactivateChannel command. [s10_DeactivateChannel (venum, rx)}
(4) lssues the close channel command. [s10_CloseChannel (vcnum, rx)}

3.2.15 Termination processing
int end_ope(void)
(1) Restores the interrupt vector.
(2) Restores the interrupt mask.

3.2.16 Interrupt service
void interrupt far gsr_check(void)
(1) Masks the interrupt of the uPD98401.
(2) Reads the GSR register.
(3) Issues the EOl command to the interrupt controlier.
(4) Updates the mailbox pointer.
(5) Clears the interrupt mask of the uPD98401.

13

CHAPTER 3 HARDWARE CONTROL MODULE

3.3 HCM Command

long s10_ReadDReg(long reg)
Reads a direct address register.
Reads the value of the register indicated by the number reg. The value of the register is the return value.

int s10_WriteDReg(long reg, iong value)
Writes a direct address register.
Writes the value indicated by value to the register indicated by the number reg.

long s10_OpenChannel(void)
Open channel command.
Opens a channel. A VC number is the return value.

long s10_CloseChannel(iong vcnum, long rt)
Close channel command.
Closes the channel indicated by venum (VC number) and rt (transmit: O, receive: 1).
A VC number is the return value.

int s10_DeactivateChannel(long venum, long rt)
Deactivate channel command.
Deactivates the channel indicated by venum (VC number) and rt (transmit: 0, receive: 1).

int s1 O_TxReady(Iong venumy)
TxReady command. ‘
Issues the TxReady command to the channel indicated by venum (VC number).

int s10_Nop(void)
NOP command.
Issues the NOP command.

long s10_IndirectAccessR(long tgt, long byte, long address)

Indirect access read command.
Reads the contents indicated by tgt, byte, and address. The contents are returned in a 32 bit value.

14

CHAPTER 3 HARDWARE CONTROL MODULE

int s10_IndirectAccessW(long tgt, long byte, long address, long data)
Indirect access write command. :
Writes the value indicated by data to the location indicated by tgt, byte, and address.

long s10_ReadlReg(long reg)
Reads the indirect address register.
Reads the value of the register indicated by the number reg. The value of the register is the return value.

int s10_WritelReg(long reg, long value)
Writes the indirect address register.
Writes the value indicated by value to the register indicated by the number reg.

long s10_ReadMem(long address)
Reads the control memory.
Reads the value of the address of the control memory indicated by address. The value of the control memory
is the return value. ‘

int s10_WriteMem(long address, long value)
Writes the control memory.
Writes the value indicated by value to the control memory indicated by address.

long s10_ReadMem_lh(long address)
Reads the low-order bits of the control memory.
Reads the low-order 16 bits of the value of the address of the control memory indicated by address. The value
of the control memory is the return value.

int s10_WriteMem_lh(long address, long value)
Writes the low-order bits of the control memory.
Writes the value indicated by value to the low-order 16 bits of the control memory indicated by address.

long s10_ReadMem_uh(long address)
Reads the high-order bits of the control memory.
Reads the high-order 16 bits of the value of the address of the control memory indicated by address. The value
of the control memory is the return value.

int s10_WriteMem_uh(long address, long value)

Writes the high-order bits of the control memory.
Writes the value indicated by value to the high-order 16 bits of the control memory indicated by address.

15

CHAPTER 3 HARDWARE CONTROL MODULE

long p10_ReadReg(long address)
Reads a uPD98402A register.
Reads the register of the uPD98402A indicated by address. The value of the register is the return value.

int p10_WriteReg(long address, long value)
Writes a uPD98402A register.
Writes the value indicated by value to the register of the pPD98402A indicated by address.

long phy_addr(long addr)
Obtains a physical address.

Converts the 32-bit address indicated by addr to a physical address. The physical address is the return value.

3.4 Relation among Function Calls

set_pci : Sets PCI
f dev : Obtains config space address
w_config : Sets command register
r_base : Obtains base address
r_intr : Obtains interrupt line
set_intr_vect : Sets interrupt vector
init_s10 : Initializes pPD98401
init_CtiMem : Clears control memory to O
init_MailBox : Allocates mailbox
init_Shapen\ : Clears shaper to 0
shaper_set_im : Sets IM
shaper_set_x : Sets x
shaper_set_y :Sets y
shaper_set_pc : Sets PC
shaper_set_pri : Sets Priority

16

CHAPTER 3 HARDWARE CONTROL MODULE

pre_tx_rx
set_shaper_reg

shaper_set_im
shaper_set_x
shaper_set_y
shaper_set_pc
shaper_set_pri
shaper_set_enable

bufalloc
send_data
set_txpd
set_txvctable
s10_TxReady
set_rxbat
receive_data
set_pooldesc
set_rxvctable
set_lookuptable
vpvcmap
close_txch
close_rxch

end_ope

gsr_check

: Preparation for transmission/reception
: Sets shaper

: Sets IM

: Sets X

:Sets y

: Sets PC

: Sets Priority

: Sets enable

: Allocates buffer

: Transmission processing
: Sets packet descriptor

: Sets transmit VC table

: TxReady command

: Sets receive data structure
: Reception processing

: Sets pool descriptor

: Sets receive VC table

: Sets lookup table

: Shifts and masks VPI/VCI
: Closes transmit channel

: Closes receive channel

: Termination processing

: Interrupt processing

17

CHAPTER 3 HARDWARE CONTROL MODULE

3.5 Function of Assembler Module

The assembler module (s10asm.asm) executes the BIOS call of the PCl bus and 32-bit input/output through ports.

+ BIOS call of PCl bus
When software interrupt 1AH is generated with values set to the CPU register, a BIOS call is executed. As a
result, information such as a base address is stored to the register. If the BIOS call fails, a carry flag is set.

+ 32-bit 1/O
32-bit input/output is realized by using the in and out instructions of the assembler. The uPD98401 is actually
accessed in this way.

Only the above two processes are described with assembler.

18

CHAPTER 4 EVALUATION SOFTWARE

4.1 Function of Evaluation Module

int set_drv(void)
(1) Sets PCI {set_pci()}
(2) Sets interrupt vector {set_intr_vect()}
(3) Initializes pPD98401 {init_s10()}
(4) Enabies SE and RE bits
(5) Enables interrupt
(6) Allocates system memory area

1. Transmit buffer (ptxbuf) : 20K bytes
2. Packet descriptor (prxbat) : 4100 bytes
3. Receive buffer (prxbat) : 10 batches, each 11000-byte buffer

4. RAW cell receive buffer (prawbuf) : 64 bytes
5. RAW cell receive batch (prawbat) 116

char *prompt(char*pletter)
Displays ‘my:\>' and prompt, and allocates the input value to pletter. The input value is returned as a return value.

19

CHAPTER 4 EVALUATION SOFTWARE

int cmd_str(char*pletter)
Looks up and codes the input character string (cmd). The codes (retcod) are as follows:

Command (cmd) | Code (retcod) | Command (cmd) | Code (retcod) | Command (cmd) | Code (retcod)
rdreg 1 opcha 12 setpool 23
wdreg 2 clchat 13 setrxvc 24
rireg 3 cichar 14 rxenbl 25
wireg 4 nop 15 rxdis 26
rcmem 5 setpd 16 tkmbox 27
wemem 6 settxve 17 addbat 28
dm 7 rp10 18 rawpool 29
Ikbuft 8 wp10 19 Ikraw 30
Ikbufr 9 txrdy 20 quit 100
@ 10 init 21 rem 101
setshap 11 txdata 22

long *value_str(char*pletter, long*pvalue)
Stores data.
The data (pvalue) is the return value.

int f_input(char*fname, char**filestr)
Reads from a file.

int call_command(int cmd, long*pvalue, char*pletter)
Performs processing corresponding to the code (retcod).

20

CHAPTER 4 EVALUATION SOFTWARE

4.2 Execution Screen of Evaluation Software

To execute the evaluation software, input sarsmp ! in response to the command prompt of MS-DOS.
When the software is executed, the following message is displayed.

R Y 2 222222 R TR R RS S AR R 22 2 R AR AR SRR EES

sar chip samplesoftware v1.0 1995
1lst systems, NEC

P Y 2 22 222222222 R R R 2 R RS2 2 2 2 2 2 R S A0 b bt gd

my : \\>

Input a command and data after prompt “my:\\&>*.

Remarks 1. Only lowercase characters can be input as commands.

2. All input data and displayed data are in hexadecimal numbers.

3. The transmit/receive buffer is fixed.
- One transmit buffer, 10 packet descriptors
« Ten receive buffers, 10 batches (one buffer per batch)
« Nine RAW cell receive buffers, three batches (three buffers per batch)
« If VC tables, packet descriptors, and pool descriptors violate the above fixed settings, the personal

computer may hang up.

4. Maximum transmit buffer size (TXBUFSIZE) : 20K bytes
Maximum packet descriptor size (PDSIZE) : 4K bytes
Maximum receive buffer size (RXBUFSIZE) : 11000 bytes

Receive batch (RXBATNUM) : 10
Receive batch size (RXBATSIZE) ‘ : 8 bytes
Maximum number of open channels (OPNUM) : 50
Maximum packet descriptors (PDNUM) :10

21

CHAPTER 4 EVALUATION SOFTWARE

4.3 Command Description

4.3.1 Reading/writing direct address register
[Read]

“rdreg” reads one direct address register indicated by a register number (registers are numbered 0, 4, 8, c, 10,
14, and so on).
<Execution>

my:\\>rdregix J

X: register number

<Display>

data = XXXXXXXxX

[Write]
“wdreg” writes a value to the direct address register indicated by a register number.
<Execution>
my:\\>wdregix11x2]
x1: register number
x2: value
<Display>
ok!

22

CHAPTER 4 EVALUATION SOFTWARE

4.3.2 Reading/writing indirect address register
[Read]

“rireg” reads one indirect address register indicated by a register number.
<Execution>

my:\\>firegux J

x: register number

<Display>

date=xxxxxxxx

[Write]
“wireg” writes a value to the indirect address register indicated by a register number.
<Execution>
my:\\>wiregx1 X2 J
x1: register number
x2: value
<Display>
ok!

4.3.3 Reading/writing control memory
[Read]
“rcmem” reads the control memory indicated by an address.
<Execution>
my:\\>remempxix2 J
x1: address
x2: number of words
<Display> (if x2 = 5)
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
XXXXXXXX

[Write]
“wcmem” writes a value to the control memory indicated by an address.
<Execution>
my:\S>wememx1 X2 J
x1: address
x2: value
<Display>
ok!

CHAPTER 4 EVALUATION SOFTWARE

4.3.4 Reading/writing PHY chip register
[Read]

“rp10” reads a register of the uPD98402A.
<Execution>

my:\>rp10ux J

x: register number

<Display>

data = XXXXxxxx

[Write]
“wp10” writes a value to a register of the uPD98402A.
<Execution>
my:\w>wp10x1yx2 J
x1: register number
x2: value
<Display>
ok!

4.3.5 Dumping system memory
“dm” dumps the system memory indicated by an address.
<Execution>
my:\\>dmx1x2 !
x1: address
x2: number of words
<Display> (if x2 = 5)
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
XXXXXXXX

24

CHAPTER 4 EVALUATION SOFTWARE

4.3.6 Setting shaper
“setshap” sets the shaper indicated by a shaper number.
<Execution>
my:\\>setshapx1x2x3 x4 x51x6
x1: shaper number
x2: priority
x3: |
x4: M
x5: P
x6: C
<Display>
ok!

Remark The shaper is enabled when it is set.

4.3.7 Open channel
“opcha” opens one VC. The address of the VC is saved to a number specified by the number of the open channel.
<Execution>
my:\\>opchajx
x: number of open channel (The address of the VC is saved to this.)
<Display>
xxxx (The address of the VC)

25

CHAPTER 4 EVALUATION SOFTWARE

4.3.8 Transmit/receive close channel
[Transmit]

“cichat” executes the close channel command to the transmit channel specified by the number of the close channel
(the number has been specified when the channel was opened).
<Execution>

my:\\>cichatx J

x: number of close channel

<Display>

xxxx (VC number)

[Receive]

“cichar” executes the close channel command to the receive channel specified by the number of the close channel
(the number has been specified when the channel was opened).
<Execution>

my:\\>clcharx !

x: number of close channel

<Display>

xxxx (VC number)

26

CHAPTER 4 EVALUATION SOFTWARE

4.3.9 Setting packet descriptor

