

Tutorial

Advertising Concept

(For the DA1468x Devices)

Abstract

This tutorial should be used as a reference guide to gain a deeper understanding of the ‘Advertising Concept’.
As such, it covers a broad range of topics including a brief introduction to Bluetooth Low Energy (BLE) and the
usage of the SmartSnippets Toolbox. Furthermore, it covers a number of sections containing in depth software
analysis of various advertising concepts.

Tutorial #1

Advertising Concept

 2 of 24 © 2017 Dialog Semiconductor

Figures

Figure 1: Bluetooth low energy protocol stack .. 3
Figure 2: Advertising data packet .. 4
Figure 3: First Step .. 5
Figure 4: Second Step ... 6
Figure 5: Third Step ... 6
Figure 6: Connection parameter update .. 12
Figure 7: Verifying the Bluetooth low energy device output using a scanner app 15
Figure 8: Exploring the various services after connecting with a remote peer (using a scanner app) 15
Figure 9: Initializing the SmartSnippets Toolbox ... 16
Figure 10: Verifying advertising interval .. 16
Figure 11: Verifying connection parameter update ... 17
Figure 12: Verifying connection parameter update ... 17
Figure 13: Verifying advertising channel map and interval ... 18
Figure 14: Verifying advertising channel map ... 18

Tables

Table 1: Advertising type enumeration .. 8
Table 2: Advertising ATT permissions ... 8
Table 3: Advertising intervals .. 10
Table 4: Advertising channels ... 11
Table 5: Advertising modes ... 11
Table 6: Update connection parameter values.. 14

Terms and Definitions

BD Bluetooth

GAP Generic Access Profile

ISM Industrial Scientific Medical

LE Low Energy

ms Millisecond

PDU Protocol Data Unit

References

[1] UM-B-044, DA1468x Software Platform Reference, User Manual, Dialog Semiconductor.

[2] Naresh Gupta, “Inside BLEUTOOTH LOW ENERGY”, ARTECH HOUSE, 2013.

Tutorial #1

Advertising Concept

 3 of 24 © 2017 Dialog Semiconductor

Advertising Concept Tutorial

Introduction

1.1 Before You Start

Before you start you need to

 Install the latest SmartSnippets Studio

 Download the latest SDK (currently version 1.0.10.1072)

These can be downloaded from the Dialog Semiconductor support portal.

Additionally, for this tutorial either a Pro or Basic Development kit is required.

The key goals of this tutorial are to:

 Provide a basic understanding of the Advertising Concept

 Explain how to change the advertising contents and connection parameters with
respect to Dialog SDK

 Verify the correct functionality of the Bluetooth low energy device using the
SmartSnippets Toolbox (integrated in the SmartSnippets Studio)

1.2 Bluetooth Low Energy Protocol

Figure 1: Bluetooth Low Energy Protocol Stack

https://support.dialog-semiconductor.com/connectivity/product/da14680?qt-product_restricted_=4#qt-product_restricted_

Tutorial #1

Advertising Concept

 4 of 24 © 2017 Dialog Semiconductor

1.3 Advertising Concept

Bluetooth low energy can broadcast small packets of data containing advertisements to peer
devices.

• An Advertising packet is small and has a well-defined format. As a result, only a restricted
amount of user data can be carried

• The Advertising mode also support transmission of a secondary scan Response packet which
contains additional data. This data can be requested by a potential client using a Scan Request
without establishing a permanent connection to the device.

• An Advertising packet is made up of a number of fields which typically includes:

 The name of the device

 Some or all of the Services supported by the device

• Advertising packets may also contain proprietary manufacturer-specific data and flags declaring
the capabilities of the device

1.3.1 Advertising with Respect to Bluetooth Low Energy

Bluetooth low energy implements two communication methods:

 Advertisement: A Bluetooth low energy peripheral device broadcasts packets to every
device around it. The receiving device can then act on this information without
establishing any connection (scan request) or it may also connect to receive further
information.

 Connected: Communication is setup to receive packets using a physical connection
link, where both the peripheral and central send packets.

Figure 2: Advertising Data Packet

Tutorial #1

Advertising Concept

 5 of 24 © 2017 Dialog Semiconductor

A packet can be 80 to 376 bits in length, and has the following fields:

Preamble

Used for internal protocol management. Advertising packets have 0xAA as preamble.

Access Address

This is always 0x8E89BED6 for advertising packets.

PDU

There are two PDU formats, one for advertising packets and one for data packets. The
Advertising PDU consists of the 16-bit PDU header, and depending on the type of
advertising, the device address (6 bytes) and up to 31 bytes of information. If the advertising
mode allows it, the active scanner (through scan request) may request up to 31 bytes of
additional information from the advertiser. This means that a sizeable portion of data can be
received from the advertising device even without establishing a connection.

Setting the Bluetooth Address and Device Name

SmartBondTM device family uses a default Bluetooth Device (BD) address if the device developer has
not assigned a specific address. This approach allows a device to be brought up quickly but proves
inadequate as soon as multiple devices advertise using the same address. This section provides a
step-by-step description of how to change the BD address and device name. It also explains the key
parameters.

2.1 Importing a Project

The fastest way to get started with advertising is to examine the example application named ble_adv
from our SDK. The First setup is to include the project in our current workspace:

1. In the SmartSnippet Welcome page, click on Browse under the SOFTWARE RESOURCES

section.

Figure 3: First Step

Tutorial #1

Advertising Concept

 6 of 24 © 2017 Dialog Semiconductor

2. In the pop-up window, click OK as your current workspace folder should be automatically
selected. If this is not the case, you must explicitly select it.

Figure 4: Second Step

3. The final step is to select the preferred project(s) to import in. By default all projects are
selected. It is recommended to:

1. Click Deselect All.

2. Select the required projects by clicking on the respective tick box.

3. Click Finish.

Now you are ready to start working with the project.

Figure 5: Third Step

Tutorial #1

Advertising Concept

 7 of 24 © 2017 Dialog Semiconductor

2.2 Setting the BD Address

2.2.1 Using MACRO Definition

To change the BD address, follow the method in Using API Functions.

When no address is provided, the application uses the default address definition found in the

/sdk/ble/config/ble_config.h header file. It is not recommended to change this definition although, for

some development purposes, it can be more practical than programming the address through the

API. If possible, define the proper macro definition in the /ble_adv/config/custom_config_qspi.h

header file which is where all custom definitions should be declared.

Code snippet:

/* Add this macro definition in custom_config_qspi.h header file to overwrite the
 * default public address. The address will be displayed in reverse order
 * i.e. 06-05-04-03-02-01
 */

#define defaultBLE_STATIC_ADDRESS {0x01, 0x02, 0x03, 0x04, 0x05, 0x06}

2.2.2 Using API Functions

The recommended way of setting the device address is to use the GAP function which is responsible

for setting the BD address

STEP #1 Add the following code snippet somewhere at the beginning of the main.c file.

Code snippet:

/*Initialize the BLE structure related to BD address value*/

static const own_address_t user_bd_address = {
 .addr_type = PRIVATE_STATIC_ADDRESS,
 .addr = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06}
};

Note: The device address type must be set to PRIVATE_STATIC_ADDRESS. If this is not
done, the default BD address is used (see Using MACRO Definition)

Note: The address in the above macro definition is the PUBLIC address. It is used if the
user does not explicitly declare a custom address as described in Using API Functions.

Tutorial #1

Advertising Concept

 8 of 24 © 2017 Dialog Semiconductor

Table 1: Advertising Type Enumeration

Enumeration name Value Description

PUBLIC_STATIC_ADDRESS 0x0 Public Static Address

PRIVATE_STATIC_ADDRESS 0x1 Private Static Address

PRIVATE_RANDOM_RESOLVABLE_ADDRESS 0x2
Private Random Resolvable
Address

PRIVATE_RANDOM_NONRESOLVABLE_ADDRESS 0x3
Private Random Non-resolvable
Address

STEP #2 Call the corresponding GAP function to set the BD address with the defined value. (Place it

immediately after the device name function.)

Code snippet:

/*Set BD address to the preferred value*/

ble_gap_address_set(&user_bd_address, 0x00FF);

2.3 Setting the Device Name

Open the main.c file in the ble_adv folder and change the device name as required.

Code snippet:

/*Set device name*/

ble_gap_device_name_set("Dialog TTT Demo", ATT_PERM_READ);

Table 2: Advertising ATT Permissions

Enumeration name Value Description

ATT_PERM_NONE 0x00
You are not permitted to take
any action

ATT_PERM_READ 0x01
You are permitted READ
only action

ATT_PERM_WRITE 0x02
You are permitted WRITE
only action

Note: The second input parameter of this function, that is 0x00FF, does not have any special
meaning. It is only used if the address type is either PRIVATE_RANDOM_RESOLVABLE_ADDRESS

or PRIVATE_RANDOM_NONRESOLVABLE_ADDRESS.

Tutorial #1

Advertising Concept

 9 of 24 © 2017 Dialog Semiconductor

ATT_PERM_READ_AUTH 0x04
You are permitted READ
only action using
authentication

ATT_PERM_WRITE_AUTH 0x08
You are permitted WRITE
only action using
authentication

ATT_PERM_READ_ENCRYPT 0x10
You are permitted READ
only action using encryption

ATT_PERM_WRITE_ENCRYPT 0x20
You are permitted READ
only action using encryption

ATT_PERM_KEYSIZE_16 0x80 Using Key size 16

ATT_PERM_RW
ATT_PERM_READ |
ATT_PERM_WRITE

You are permitted both Read
and Write action

ATT_PERM_RW_AUTH
ATT_PERM_READ_AUTH |
ATT_PERM_WRITE_AUTH

You are permitted both Read
and Write action using
authentication

ATT_PERM_RW_ENCRYPT
ATT_PERM_READ_ENCRYPT |
ATT_PERM_WRITE_ENCRYPT

You are permitted both Read
and Write action using
encryption

Changing Advertising Parameters

This section describes how to change the various advertising parameters. It covers all the necessary

key elements related to advertising, specifically dealing with advertising data and intervals. It also

describes the advertising channel map and mode.

3.1 Advertising Data

Step #1 Change the contents of the existing adv_data[] variable for the required advertising data.

Code snippet:

/*Bluetooth low energy adv demo advertising data*/

static const uint8_t adv_data[] = {
0x14, GAP_DATA_TYPE_LOCAL_NAME,
'H', 'o', 'w', ' ', 'A', 'r', 'e', ' ', 'Y', 'o', 'u', ' ', 'T', 'o', 'd', 'a', 'y', ' ', '?'
};

Note: The first element of the array is the size of the data to be sent plus an extra null character,
that is, 19 + 1 = 20 elements or 0x14 in hexadecimal format. If the wrong value is given, it is likely
that Bluetooth low energy device will not to advertise at all so care must be taken when
calculating this value.

Tutorial #1

Advertising Concept

 10 of 24 © 2017 Dialog Semiconductor

3.2 Advertising Interval

Step #2 The advertising interval is the period for which a Bluetooth low energy peripheral device

advertises. For this scenario we have adapted two different time slots - one in a high-speed mode

and another in a lower speed. To switch between them, set the preferred mode to “1”.

Code snippet:

/* Depending on the advertising interval mode the corresponding code segment
 * is selected
 */
#if (FAST_ADV_INTERVAL == 1)
 static const uint16_t min = BLE_ADV_INTERVAL_FROM_MS(80);
 static const uint16_t max = BLE_ADV_INTERVAL_FROM_MS(100);
#else
 static const uint16_t min = BLE_ADV_INTERVAL_FROM_MS(1000);
 static const uint16_t max = BLE_ADV_INTERVAL_FROM_MS(1500);
#endif

Table 3: Advertising Intervals

MACRO Value Description

FAST_ADV_INTERVAL 0x0 Fast advertising mode

POWER_ADV_INTERVAL 0x1
Slow advertising mode. Use this mode in case of need for
reduce power consumption.

Step #3 Call the corresponding GAP function to set the min-max advertising intervals (before starting

advertising and after starting the Bluetooth low energy module as a peripheral device).

Code snippet:

/*Set advertising interval*/

ble_gap_adv_intv_set(min,max);

3.3 Advertising Channel Map

Step #4 The channel defined in the Bluetooth Core Specification consists of 37 data communication

channels and 3 advertising channels used for device discovery. The latter are allocated in different

parts of the spectrum to prevent interference from concurrent activities in the ISM Band. Specifically

a Bluetooth low energy device can advertise on channels 37, 38 and 39 which correspond to

frequencies of 2.402 MHz, 2.2426 MHz and 2.480 MHz respectively. SmartBondTM devices advertise

successively in all enabled channels. By default, all channels are enabled. To force the Bluetooth low

energy device to use only one channel, for example channel 37, use the following GAP function:

https://www.bluetooth.com/specifications/bluetooth-core-specification
https://en.wikipedia.org/wiki/ISM_band

Tutorial #1

Advertising Concept

 11 of 24 © 2017 Dialog Semiconductor

Code snippet:

/* Set advertising channel map */
gap_adv_chnl_t channel_map = GAP_ADV_CHANNEL_37

ble_gap_adv_chnl_map_set(channel_map);

Table 4: Advertising Channels

Enumeration Name Value Description

GAP_ADV_CHANNEL_37 0x00 Select channel 37 for advertising

GAP_ADV_CHANNEL_38 0x02 Select channel 38 for advertising

GAP_ADV_CHANNEL_39 0x04 Select channel 39 for advertising

3.4 Advertising Mode

Step #5 The advertising mode is also customizable by changing the input parameter of the

ble_gap_adv_start() function. The default mode in this application is depicted in the following code

snippet and forces the Bluetooth low energy module to advertise toward all devices in the outside

world.

Code snippet:

/* Start advertising */

ble_gap_adv_start(GAP_CONN_MODE_UNDIRECTED);

Table 5: Advertising Modes

Enumeration Name Value Description

GAP_CONN_MODE_NON_CON 0x00
The Bluetooth low energy device just advertises
without permitting connection with another central
device.

GAP_CONN_MODE_UNDIRECTED 0x01
The Bluetooth low energy device advertises
towards all devices regardless of their BD value.

GAP_CONN_MODE_DIRECTED 0x02
The Bluetooth low energy device advertises
towards a device with specific BD address

GAP_CONN_MODE_DIRECTED_LDC 0x03
The Bluetooth low energy device advertises
towards a device with specific BD address using
Low Duty Cycle

Tutorial #1

Advertising Concept

 12 of 24 © 2017 Dialog Semiconductor

Connection parameter update

This section describes how to initiate a connection parameter update procedure.

4.1 Introduction

It is important to understand the central/peripheral (master/slave) concept at the heart of the

connected mode in the Bluetooth low energy protocol. The peripheral device, which is advertising,

assumes the role of a slave device, while the scanner device, which is searching for a device to

connect to, assumes the role of a master device upon a connection process. The latter is responsible

for the various mandatory settings including in which channel to transmit and what event interval to

use. However, following a successful connection, the slave device can propose its own preferred

parameters via an update connection parameter request. After that, the master responds to the

slave if its demands has been approved.

Figure 6: Connection Parameter Update

4.2 Updating connection parameter

Step #1 In the handle_evt_gap_connected() handler, which is triggered when a connection is

established, we create a software timer with a default timeout of 5 seconds. When it expires, a

callback function is called and the update connection parameter process takes place.

/* Handler for successful connection establishment */

Note: There are some restrictions with regard to the timing intervals. For example, for an iOS
platform the Interval Min must be different from the Interval Max.

Tutorial #1

Advertising Concept

 13 of 24 © 2017 Dialog Semiconductor

static void handle_evt_gap_connected(ble_evt_gap_connected_t *evt)
{
 /*
 * Manage behavior upon connection
 */
 connection_index = evt->conn_idx;

 /* Add a timer that when expired will renegotiate connection parameters. */
 update_timer = OS_TIMER_CREATE("conn_timer", OS_MS_2_TICKS(5000), \
 OS_TIMER_FAIL , (uint32_t) OS_GET_CURRENT_TASK(), \
conn_param_timer_cb);
 OS_TIMER_START(update_timer, OS_TIMER_FOREVER);
}

Step #2 When timer expires, the conn_params_timer_cb() callback function is triggered. This

function calls the conn_param_update() function which is responsible for initiating the update

connection parameters process.

/* This timer callback notifies task that time for discovery, bonding and
 * encryption has elapsed, and connection parameters can be changed to the
 * preferred ones
 */
static void conn_param_timer_cb(OS_TIMER timer)
{
 /* Call the function which is responsible for the connection parameters
 * update
 */
 conn_param_update(connection_index);
}

Step #3 In the conn_param_update() function, change the parameters displayed in the code snippet:

/* Update connection parameters. */
static void conn_param_update(uint16_t conn_idx)
{
 gap_conn_params_t cp;

 cp.interval_min = defaultBLE_PPCP_INTERVAL_MIN;
 cp.interval_max = defaultBLE_PPCP_INTERVAL_MAX;
 cp.slave_latency = defaultBLE_PPCP_SLAVE_LATENCY;
 cp.sup_timeout = defaultBLE_PPCP_SUP_TIMEOUT;

 ble_gap_conn_param_update(conn_idx, &cp);
}

Note: The second input parameter of the timer creation function (OS_TIMER_CREATE) is the
timer period and has been set to 5 seconds. The last parameter is the callback function which is
called when the timer expires.

Tutorial #1

Advertising Concept

 14 of 24 © 2017 Dialog Semiconductor

Step #4 In the /ble_adv/config/customer_config_qspi.h header file, define the preferred update

connection parameters values

/* Peripheral specific config */

#define defaultBLE_PPCP_INTERVAL_MIN (BLE_CONN_INTERVAL_FROM_MS(500))
// 500ms

#define defaultBLE_PPCP_INTERVAL_MAX (BLE_CONN_INTERVAL_FROM_MS(750))
// 750ms

#define defaultBLE_PPCP_SLAVE_LATENCY (0) // 0 events

#define defaultBLE_PPCP_SUP_TIMEOUT (BLE_SUPERVISION_TMO_FROM_MS(6000))
//6000ms

Table 6: Update Connection Parameter Values

Macro name Unit Description

defaultBLE_PPCP_INTERVAL_MIN ms

The Central device connecting to a Peripheral device
needs to define the time interval for a connection to
happen. This parameter is the minimum permissible
connection time value to be used during a
connection event.

defaultBLE_PPCP_INTERVAL_MAX ms

The Central device connecting to a Peripheral device
needs to define the time interval for a connection to
happen. This parameter is the maximum permissible
connection time value to be used during a
connection event.

defaultBLE_PPCP_SLAVE_LATENCY --

Defines the latency of the slave in responding to a
connection event in consecutive connection events.
This is expressed in terms of multiples of connection
intervals, where only one connection event is
allowed per interval.

defaultBLE_PPCP_SUP_TIMEOUT ms

This parameter defines the LE link supervision
timeout interval. It defines the timeout duration for
which an LE link needs to be sustained in case of no
response from peer device over the LE link.

Verify your advertiser

This section suggests some useful tools that can be used to verify if your SmartBondTM device is

behaving as expected. It describes how to initialize the various tools and use them to verify the

procedures described in previous sections of this document.

5.1 Advertised Data in the Air

When the project starts running, the Bluetooth low energy module will be shown up on the Bluetooth

low energy scanner on your cell phone. In our case study, the following results were captured:

Tutorial #1

Advertising Concept

 15 of 24 © 2017 Dialog Semiconductor

Figure 7: Verifying the Bluetooth Low Energy Device Output Using a Scanner App

Figure 8: Exploring the Various Services after Connecting to a Remote Peer

Tutorial #1

Advertising Concept

 16 of 24 © 2017 Dialog Semiconductor

5.2 Initializing the SmartSnippets Toolbox

Another useful tool that can be used both for debugging and measurement purposes is the

SmartSnippets Toolbox bundled with the SmartSnippets Studio. To create a new session, in the

SmartSnippets Welcome page, click on SmartSnippets Toolbox section. In the pop-up window

displayed, do the following (with the number order):

Figure 9: Initializing the SmartSnippets Toolbox

5.2.1 Using the SmartSnippets Toolbox

Step #1 Using the power profiler, check that the advertising interval has been set to power-save

mode as selected. In this case, the Bluetooth low energy module uses the max value of this mode.

(1500 ms). The alternative option would be the min value (1000 ms). You can also change the

advertising interval to fast mode and verify the device behavior.

Figure 10: Verifying Advertising Interval

Tutorial #1

Advertising Concept

 17 of 24 © 2017 Dialog Semiconductor

Step #2 Using the power profiler check that connection parameter has changed 5 seconds after a

connection establishment. (Remember that the timer period was set to 5000 ms.)

Figure 11: Verifying Connection Parameter Update

Step #3 Using the power profiler, check that connection parameter has been changed and is set to

the new values. In this case, the max interval value is used by the Bluetooth low energy module

(750ms). The alterative option would be the slow interval value (500 ms).

Figure 12: Verifying Connection Parameter Update

Tutorial #1

Advertising Concept

 18 of 24 © 2017 Dialog Semiconductor

Step #4 Using the power profiler, check the default advertising channel map (channels 37, 38 and

39). Also note the advertising interval is set to high speed mode.

Figure 13: Verifying Advertising Channel Map and Interval

Step #5 Using the power profiler, check that the advertising channel map has been updated (only

channel 37 advertises).

Figure 14: Verifying Advertising Channel Map

Code Overview

This section provides the code blocks needed to successfully execute this tutorial. It is recommended

that you copy these blocks to the new project before reading the tutorial. Please watch the following

video.

Tutorial #1

Advertising Concept

 19 of 24 © 2017 Dialog Semiconductor

6.1 Initialization Code

Code snippet of the initialization code block:

/* Definitions for the advertising interval */
#define FAST_ADV_INTERVAL (0)
#define POWER_ADV_INTERVAL (1)

OS_TIMER update_timer;
static uint16_t connection_index;

/*
 * BLE adv demo advertising data
 */
static const uint8_t adv_data[] = {
 0x14, GAP_DATA_TYPE_LOCAL_NAME,
 'H', 'o', 'w', ' ', 'A', 'r', 'e', ' ', 'Y', 'o', 'u', ' ', 'D', 'o', 'd', 'a', 'y', ' ', '?'
};

/* Initialize the BLE structure related to BD address value. */
static const own_address_t user_bd_address = {
 .addr_type = PRIVATE_STATIC_ADDRESS,
 .addr = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06},
};

#if (FAST_ADV_INTERVAL == 1)
 static const uint16_t min = BLE_ADV_INTERVAL_FROM_MS(80); //80ms
 static const uint16_t max = BLE_ADV_INTERVAL_FROM_MS(100); //100ms
#else
 static const uint16_t min = BLE_ADV_INTERVAL_FROM_MS(1000); //1000ms
 static const uint16_t max = BLE_ADV_INTERVAL_FROM_MS(1500); //1500ms
#endif

6.2 Advertising Task Code

Code snippet of ble_adv_demo_task() function:

static void ble_adv_demo_task(void *pvParameters)
{
 int8_t wdog_id;

 gap_adv_chnl_t channel_map = GAP_ADV_CHANNEL_37;

 // Just remove compiler warnings about the unused parameter
 (void) pvParameters;

 /* register ble_adv_demo task to be monitored by watchdog */
 wdog_id = sys_watchdog_register(false);

 // Start BLE module as a peripheral device
 ble_peripheral_start();

Tutorial #1

Advertising Concept

 20 of 24 © 2017 Dialog Semiconductor

 // Set device name
 ble_gap_device_name_set("Dialog TTT Demo", ATT_PERM_READ);

 // Set BD address to the preferred value
 ble_gap_address_set(&user_bd_address, 0x00FF);

 // Set advertising interval
 ble_gap_adv_intv_set(min,max);

 ble_gap_adv_chnl_map_set(channel_map);

 // Set advertising data
 ble_gap_adv_data_set(sizeof(adv_data), adv_data, 0, NULL);

 // Start advertising
 ble_gap_adv_start(GAP_CONN_MODE_UNDIRECTED);

 for (;;) {
 ble_evt_hdr_t *hdr;

 /* notify watchdog on each loop */
 sys_watchdog_notify(wdog_id);

 /* suspend watchdog while blocking on ble_get_event() */
 sys_watchdog_suspend(wdog_id);

 /*
 * Wait for a BLE event - this task will block
 * indefinitely until something is received.
 */
 hdr = ble_get_event(true);

 /* resume watchdog */
 sys_watchdog_notify_and_resume(wdog_id);

 if (!hdr) {
 continue;
 }

 switch (hdr->evt_code) {
 case BLE_EVT_GAP_CONNECTED:
 handle_evt_gap_connected((ble_evt_gap_connected_t *) hdr);
 break;
 case BLE_EVT_GAP_DISCONNECTED:
 handle_evt_gap_disconnected((ble_evt_gap_disconnected_t *) hdr);
 break;
 case BLE_EVT_GAP_PAIR_REQ:
 handle_evt_gap_pair_req((ble_evt_gap_pair_req_t *) hdr);
 break;
 default:
 ble_handle_event_default(hdr);
 break;
 }

Tutorial #1

Advertising Concept

 21 of 24 © 2017 Dialog Semiconductor

 // Free event buffer
 OS_FREE(hdr);
 }
}

6.3 Connection Parameter Update Code

Code snippet of connection parameter update code block:

/* Update connection parameters. */
static void conn_param_update(uint16_t conn_idx)
{
 gap_conn_params_t cp;

 cp.interval_min = defaultBLE_PPCP_INTERVAL_MIN;
 cp.interval_max = defaultBLE_PPCP_INTERVAL_MAX;
 cp.slave_latency = defaultBLE_PPCP_SLAVE_LATENCY;
 cp.sup_timeout = defaultBLE_PPCP_SUP_TIMEOUT;

 ble_gap_conn_param_update(conn_idx, &cp);
}

/* This timer callback notifies task that time for discovery, bonding and
 * encryption has elapsed, and connection parameters can be changed to
 * the preferred values.
 */
static void conn_param_timer_cb(OS_TIMER timer)
{
 /* Call the function which is responsible for the connection parameters
 * update
 */
 conn_param_update(connection_index);
}

static void handle_evt_gap_connected(ble_evt_gap_connected_t *evt)
{
 /*
 * Manage behavior upon connection
 */
 connection_index = evt->conn_idx;

 /* Add a timer that when expired will renegotiate connection parameters. */
 update_timer = OS_TIMER_CREATE("conn_timer", OS_MS_2_TICKS(5000), \
 OS_TIMER_FAIL , (uint32_t) OS_GET_CURRENT_TASK(), \
conn_param_timer_cb);
 OS_TIMER_START(update_timer, OS_TIMER_FOREVER);
}

static void handle_evt_gap_disconnected(ble_evt_gap_disconnected_t *evt)
{
 /*
 * Manage behavior upon disconnection

Tutorial #1

Advertising Concept

 22 of 24 © 2017 Dialog Semiconductor

 */

 // Restart advertising
 ble_gap_adv_start(GAP_CONN_MODE_UNDIRECTED);
}

6.4 Custom definitions code

Code snippet for macro definitions defined in customer_config_qspi.h header file:

/* Peripheral specific config */

#define defaultBLE_PPCP_INTERVAL_MIN (BLE_CONN_INTERVAL_FROM_MS(500))
// 500ms

#define defaultBLE_PPCP_INTERVAL_MAX (BLE_CONN_INTERVAL_FROM_MS(750))
// 750ms

#define defaultBLE_PPCP_SLAVE_LATENCY (0) // 0 events

#define defaultBLE_PPCP_SUP_TIMEOUT (BLE_SUPERVISION_TMO_FROM_MS(6000))
//6000ms

Note: Don’t forget to delete the already existing handle_evt_gap_connected() and

handle_evt_gap_disconnected() function.

Tutorial #1

Advertising Concept

 23 of 24 © 2017 Dialog Semiconductor

Revision History

Revision Date Description

1.0 30-Nov-2017 First released version

Tutorial #1

Advertising Concept

 24 of 24 © 2017 Dialog Semiconductor

Status Definitions

Status Definition

DRAFT
The content of this document is under review and subject to formal approval, which may result in modifications or

additions.

APPROVED

or unmarked
The content of this document has been approved for publication.

Disclaimer

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or
warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no
responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the
specification and the design of the related semiconductor products, software and applications.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes
no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further
testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog
Semiconductor excludes all liability in this respect.

Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software
and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor’s Standard
Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.

Dialog and the Dialog logo are trademarks of Dialog Semiconductor plc or its subsidiaries. All other product or service names are the property of
their respective owners.

© 2017 Dialog Semiconductor. All rights reserved.

Contacting Dialog Semiconductor

United Kingdom (Headquarters)

Dialog Semiconductor (UK) LTD

Phone: +44 1793 757700

Germany

Dialog Semiconductor GmbH

Phone: +49 7021 805-0

The Netherlands

Dialog Semiconductor B.V.

Phone: +31 73 640 8822

North America

Dialog Semiconductor Inc.

Phone: +1 408 845 8500

Japan

Dialog Semiconductor K. K.

Phone: +81 3 5769 5100

Taiwan

Dialog Semiconductor Taiwan

Phone: +886 281 786 222

Hong Kong

Dialog Semiconductor Hong Kong

Phone: +852 2607 4271

Korea

Dialog Semiconductor Korea

Phone: +82 2 3469 8200

China (Shenzhen)

Dialog Semiconductor China

Phone: +86 755 2981 3669

China (Shanghai)

Dialog Semiconductor China

Phone: +86 21 5424 9058

Email:

enquiry@diasemi.com

Web site:

www.dialog-semiconductor.com

http://www.dialog-semiconductor.com/standard-terms-and-conditions
http://www.dialog-semiconductor.com/standard-terms-and-conditions
http://www.dialog-semiconductor.com/

